26st European Symposium on
Algorithms

ESA 2018, August 20-22, 2018, Helsinki, Finland

Edited by
Yossi Azar
Hannah Bast
Grzegorz Herman

\\v LIPICS

LIPlcs — Vol. 112 — ESA 2018 www.dagstuhl.de/lipics

Editors

Yossi Azar Hannah Bast Grzegorz Herman

School of Computer Science Department of Computer Science Theoretical Computer Science
Tel Aviv University University of Freiburg Jagiellonian University in Krakéw
azarQtau.ac.il bast@cs.uni-freiburg.de gherman@tcs.uj.edu.pl

ACM Classification 2012

Computer systems organization — Single instruction, multiple data;

Computing methodologies — Graphics processors; Robotic planning;

Hardware — Theorem proving and SAT solving;

Information systems — Data dictionaries;

Mathematics of computing — Approximation algorithms; Combinatorial algorithms; Combinatorial
optimization; Combinatorics on words; Extremal graph theory; Graph algorithms; Graph theory;
Network flows; Paths and connectivity problems; Permutations and combinations; Random graphs;
Spectra of graphs;

Networks — Network design principles; Network structure;

Theory of computation — Algorithm design techniques; Algorithmic mechanism design; Approximation
algorithms analysis; Cell probe models and lower bounds; Complexity theory and logic; Computational
geometry; Database query processing and optimization (theory); Database theory; Data compression;
Data structures and algorithms for data management; Data structures design and analysis; Design
and analysis of algorithms; Distributed algorithms; Dynamic graph algorithms; Dynamic programming;
Facility location and clustering; Fixed parameter tractability; Graph algorithms analysis; Integer
programming; Linear programming; Market equilibria; Models of computation; Network games; Network
optimization; Online algorithms; Oracles and decision trees; Packing and covering problems; Parallel
algorithms; Parameterized complexity and exact algorithms; Probabilistic computation; Problems,
reductions and completeness; Quantum computation theory; Routing and network design problems;
Scheduling algorithms; Self-organization; Sorting and searching; Sparsification and spanners; Streaming
models; Theory of randomized search heuristics

ISBN 978-3-95977-081-1

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-081-1.

Publication date
August, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.ESA.2018.0
ISBN 978-3-95977-081-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-081-1
http://www.dagstuhl.de/dagpub/978-3-95977-081-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-081-1
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU Miinchen)
Christel Baier (TU Dresden)
Javier Esparza (TU Miinchen)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ESA 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Yossi Azar, Hannah Bast, and Grzegorz Herman cciiiiiii... 0:xi

Program Committees

.. 0:xiii
List of External Reviewers
.. 0:xv

Regular Papers
Algorithms for Inverse Optimization Problems

Sara Ahmadian, Umang Bhaskar, Laura Sanita, and Chaitanya Swamy 1:1-1:14
Two-Dimensional Maximal Repetitions

Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol 2:1-2:14
Approximate Convex Intersection Detection with Applications to Width and
Minkowski Sums

Sunil Arya, Guilherme D. da Fonseca, and David M. Mount 3:1-3:14
On the Worst-Case Complexity of TimSort

Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau 4:1-4:13
A New and Improved Algorithm for Online Bin Packing

Janos Balogh, Jozsef Békési, Gyorgy Désa, Leah Epstein, and Asaf Levin 5:1-5:14
Practical Access to Dynamic Programming on Tree Decompositions

Maz Bannach and Sebastian Berndt oo 6:1-6:13
Average Whenever You Meet: Opportunistic Protocols for Community Detection

Luca Becchetti, Andrea Clementi, Pasin Manurangsi, Emanuele Natale,

Francesco Pasquale, Prasad Raghavendra, and Luca Trevisan 7:1-7:13
Polynomial-Time Approximation Schemes for k-center, k-median, and
Capacitated Vehicle Routing in Bounded Highway Dimension

Amariah Becker, Philip N. Klein, and David Saulpic 8:1-8:15
Fine-grained Lower Bounds on Cops and Robbers

Sebastian Brandt, Seth Pettie, and Jara Uitto i, 9:1-9:12
A Polynomial Kernel for Diamond-Free Editing

Yizin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye 10:1-10:13
Parallel and I/O-efficient Randomisation of Massive Networks using Global
Curveball Trades

Corrie Jacobien Carstens, Michael Hamann, Ulrich Meyer, Manuel Penschuck,

Hung Tran, and Dorothea Wagnero iiiiiiiiiiiniininnan. 11:1-11:15
Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

Diptarka Chakraborty, Debarati Das, Michal Koucky, and Nitin Saurabh 12:1-12:15

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi

Contents

A Framework for In-place Graph Algorithms
Sankardeep Chakraborty, Anish Mukherjee, Venkatesh Raman, and

STinivasa Rao SAtti

Self-Assembly of Any Shape with Constant Tile Types using High Temperature

Cameron Chalk, Austin Luchsinger, Robert Schweller, and Tim Wylie

A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling
Metrics
T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang

Near-Optimal Distance Emulator for Planar Graphs
Hsien-Chih Chang, Pawel Gawrychowski, Shay Mozes, and Oren Weimann

Approximation Schemes for Geometric Coverage Problems

Steven Chaplick, Minati De, Alexander Ravsky, and Joachim Spoerhase

Amortized Analysis of Asynchronous Price Dynamics

Yun Kuen Cheung and Richard Cole i,

Cycles to the Rescue! Novel Constraints to Compute Maximum Planar
Subgraphs Fast
Markus Chimani and Tilo Wiederao i,

Parameterized Approximation Algorithms for Bidirected Steiner Network
Problems
Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi

Online Facility Location with Deletions

Marek Cygan, Artur Czumaj, Marcin Mucha, and Piotr Sankowski

Improved Routing on the Delaunay Triangulation
Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré,

Darryl Hill, and Michiel Smido e

On Geometric Prototype and Applications

Hu Ding and Manni Lit oo e

Improved Bounds for Multipass Pairing Heaps and Path-Balanced Binary Search
Trees

Dani Dorfman, Haim Kaplan, Ldszlé Kozma, Seth Pettie, and Uri Zwick

Improved Time and Space Bounds for Dynamic Range Mode
Hicham FEl-Zein, Meng He, J. Ian Munro, and Bryce Sandlund

Online Makespan Scheduling with Job Migration on Uniform Machines

Matthias Englert, David Mezlaf, and Matthias Westermann

Truthful Prompt Scheduling for Minimizing Sum of Completion Times
Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub

Weighted Model Counting on the GPU by Exploiting Small Treewidth

Johannes K. Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser

Light Spanners for High Dimensional Norms via Stochastic Decompositions

Arnold Filtser and Ofer Neimanouueuuuii e,

13:1-13:16

14:1-14:14

15:1-15:13

16:1-16:17

17:1-17:15

18:1-18:15

19:1-19:14

20:1-20:16

21:1-21:15

22:1-22:13

23:1-23:15

24:1-24:13

25:1-25:13

26:1-26:14

27:1-27:14

28:1-28:16

29:1-29:15

Contents

On the Tractability of Optimization Problems on H-Graphs
Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond

On the Optimality of Pseudo-polynomial Algorithms for Integer Programming
Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh

Symmetry Exploitation for Online Machine Covering with Bounded Migration
Waldo Gdlvez, José A. Soto, and José Verschaecciiuiiiiiiiiiii.n.

Edit Distance with Block Operations
Michal Gariczorz, Pawel Gawrychowski, Artur Jez, and Tomasz Kociumaka

A QPTAS for Gapless MEC
Shilpa Garg and Tobias Mdmkeo e

FPT Algorithms for Embedding into Low Complexity Graphic Metrics
Arijit Ghosh, Sudeshna Kolay, and Gopinath Mishra

The Stochastic Score Classification Problem

Dimitrios Gkenosis, Nathaniel Grammel, Lisa Hellerstein, and Devorah Kletenik .

Improved Space-Time Tradeoffs for kKSUM
Isaac Goldstein, Moshe Lewenstein, and Ely Porat o...

Dynamic Trees with Almost-Optimal Access Cost
Mordecai Golin, John Iacono, Stefan Langerman, J. Ian Munro, and Yakov Nekrich

A Tree Structure For Dynamic Facility Location
Gramoz Goranci, Monika Henzinger, and Dariusz Leniowski

Dynamic Effective Resistances and Approximate Schur Complement on Separable
Graphs
Gramoz Goranci, Monika Henzinger, and Pan Peng

Buffered Count-Min Sketch on SSD: Theory and Experiments
Mayank Goswami, Dzejla Medjedovic, Emina Mekic, and Prashant Pandey

Scalable Katz Ranking Computation in Large Static and Dynamic Graphs
Alexander van der Grinten, Elisabetta Bergamini, Oded Green,
David A. Bader, and Henning Meyerhenke

Round-Hashing for Data Storage: Distributed Servers and External-Memory
Tables
Roberto Grossi and Luca VETSario.ooue o

Algorithmic Building Blocks for Asymmetric Memories
Yan Gu, Yihan Sun, and Guy E. Blelloch i i i

On the Decision Tree Complexity of String Matching
Xiaoyu He, Neng Huang, and Xiaoming Sun,

Decremental SPQR-trees for Planar Graphs
Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lgcki, and
Evua Rotenbergo o

Computing the Chromatic Number Using Graph Decompositions via Matrix Rank
Bart M. P. Jansen and Jesper Nederlofooiiiiiiiiiiiiiiiiiiinnn..

0:vii

30:1-30:14

31:1-31:13

32:1-32:14

33:1-33:14

34:1-34:14

35:1-35:13

36:1-36:14

37:1-37:14

38:1-38:14

39:1-39:13

40:1-40:15

41:1-41:15

42:1-42:14

43:1-43:14

44:1-44:15

45:1-45:13

46:1-46:16

47:1-47:15

ESA 2018

0:viii

Contents

Polynomial Kernels for Hitting Forbidden Minors under Structural
Parameterizations
Bart M. P. Jansen and Astrid Pieterse,

Quantum Algorithms for Connectivity and Related Problems
Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita

Generalized Coloring of Permutations
Vit Jelinek, Michal Opler, and Pavel Valtr

Solving Partition Problems Almost Always Requires Pushing Many Vertices
Around

Iyad Kanj, Christian Komusiewicz, Manuel Sorge, and Erik Jan van Leeuwen

String Attractors: Verification and Optimization
Dominik Kempa, Alberto Policriti, Nicola Prezza, and Fva Rotenberg

Data Reduction for Maximum Matching on Real-World Graphs: Theory and
Experiments
Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche

Searching a Tree with Permanently Noisy Advice
Lucas Boczkowski, Amos Korman, and Yoav Rodeh

Efficient and Adaptive Parameterized Algorithms on Modular Decompositions
Stefan Kratsch and Florian Nelles e

On Nondeterministic Derandomization of Freivalds’ Algorithm: Consequences,
Avenues and Algorithmic Progress
Marvin KUnmemanmn

Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities
FEuiwoong Lee and Sahil Singla

Equilibrium Computation in Atomic Splittable Routing Games
Umang Bhaskar and Phani Raj Lolakapuri

Online Non-Preemptive Scheduling to Minimize Weighted Flow-time on

Unrelated Machines
Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav, and
Denis Trystramo

Finding Stable Matchings That Are Robust to Errors in the Input
Tung Mai and Vijay V. Vaziranio

Disconnected Cuts in Claw-free Graphs
Barnaby Martin, Daniél Paulusma, and Erik Jan van Leeuwen

Practical Low-Dimensional Halfspace Range Space Sampling
Michael Matheny and Jeff M. Phillipsco i,

Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That Optimally
Adapt to Existing Runs
J. Ian Munro and Sebastian Wild i

On a Problem of Danzer
Nabil H. Mustafa and Saurabh Raycco i,

48:1-48:15

49:1-49:13

50:1-50:14

51:1-51:14

52:1-52:13

53:1-53:13

54:1-54:13

55:1-55:15

56:1-56:16

57:1-57:14

58:1-58:14

59:1-59:12

60:1-60:11

61:1-61:14

62:1-62:14

63:1-63:16

64:1-64:8

Contents

Quasi-Polynomial Time Approximation Schemes for Packing and Covering
Problems in Planar Graphs

Michal Pilipczuk, Erik Jan van Leeuwen, and Andreas Wiese

On Learning Linear Functions from Subset and Its Applications in Quantum
Computing

Gabor Ivanyos, Anupam Prakash, and Miklos Santha

Strong Collapse for Persistence

Jean-Daniel Boissonnat, Siddharth Pritam, and Divyansh Pareek

On the Complexity of the (Approximate) Nearest Colored Node Problem

Mazimilian Probst oo

Planar Support for Non-piercing Regions and Applications

Rajiv Raman and Saurabh Ray

An Exact Algorithm for the Steiner Forest Problem

Daniel R. Schmidt, Bernd Zey, and Francois Margot

Large Low-Diameter Graphs are Good Expanders

Michael Dinitz, Michael Schapira, and Gal Shahaf

Improved Dynamic Graph Coloring

Shay Solomon and Nicole Weino i

Soft Subdivision Motion Planning for Complex Planar Robots

Bo Zhou, Yi-Jen Chiang, and Chee Yapo,

0:ix

65:1-65:13

66:1-66:14

67:1-67:13

68:1-68:14

69:1-69:14

70:1-70:14

71:1-71:15

72:1-72:16

73:1-73:14

ESA 2018

Preface

This volume contains the extended abstracts selected for presentation at ESA 2018, the
26th European Symposium on Algorithms, held in Helsinki, Finland, on 20-22 September
2018, as part of ALGO 2018. The scope of ESA includes original, high-quality, theoretical
and applied research on algorithms and data structures. Since 2002, it has had two tracks:
the Design and Analysis Track (Track A), intended for papers on the design and mathem-
atical analysis of algorithms, and the Engineering and Applications Track (Track B), for
submissions dealing with real-world applications, engineering, and experimental analysis of
algorithms. Information on past symposia, including locations and proceedings, is maintained
at http://esa-symposium.org.

In response to the call for papers for ESA 2018, 307 papers were submitted, 256 for
Track A and 51 for Track B (these are the counts after the removal of papers with invalid
format and after withdrawals). Paper selection was based on originality, technical quality,
exposition quality, and relevance. Each paper received at least three reviews. The program
committees selected 73 papers for inclusion in the program, 58 from Track A and 15 from
Track B, yielding an acceptance rate of about 24%. In addition to the accepted contributions,
the symposium featured two invited lectures: the first by Claire Mathieu (CNRS, Paris), and
the second by Tim Roughgarden (Stanford University).

For this year’s Track B, an experiment was performed, where the complete set of sub-
missions was reviewed by two independent PCs. Each PC had 12 members, with a similar
distribution according to gender, academic seniority, area of expertise, and continent of
affiliation. In each PC, each submission was assigned to 3 PC members. Both PCs used the
same standard reviewing process, which involved independently written reviews from the
PC members, followed by an extensive discussion phase, and a voting phase for the papers
that were still undecided in the end. Each PC eventually accepted 11 papers. A paper was
accepted for Track B if and only if it was accepted by at least one of the two PCs. For the
analysis of the process, the scores had a clearly communicated semantics and particular care
was taken that for each submission in each PC the score set and the state of the discussion
matched.

A detailed write-up of the course and the results of the experiment was still ongoing at the
time of the creation of these proceedings. It will be published in a separate article containing
the words “ESA 2018 experiment” in the title. As an appetizer, here is a list of some of
the questions investigated and a first informal answer: how large was the overlap of the set
of accepted papers by the two PCs (it fluctuated between 50% and 75% throughout the
reviewing process and was very sensitive to relatively minor changes in the discussion), how
many “clear accepts” were there (none really: the chance that a paper with the high score in
one PC also had the high score in the other PC was not larger than random), how many
“clear rejects” were there (about one fourth of all submissions had only negative reviews in
both PCs, and the overlap of these sets from the two PCs was over 70%), how many papers
had overall positive reviews in one PC and overall negative reviews in the other PC (less
than 10% of all submissions), how effective were the discussion phase and the final voting
phase (it’s not clear that either had a non-random effect on the set of papers that were
eventually accepted), what are possible implications for future PCs (read the publication
when it’s there).

The European Association for Theoretical Computer Science (EATCS) sponsored a
best paper award and a best student paper award. A submission was eligible for the best

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii

Preface

student paper award if all authors were doctoral, master, or bachelor students at the time
of submission. The best student paper award for Track A was given to Maximilian Probst
for the paper “On the complexity of the (approximate) nearest colored node problem”. The
best student paper award for Track B was given to Max Bannach and Sebastian Berndt for
the paper “Practical Access to Dynamic Programming on Tree Decompositions”. The best
paper award for Track A was given to Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz,
Jakub Lacki and Eva Rotenberg for the paper “Decremental SPQR-trees for Planar Graphs”.
The best paper award for Track B was given to Daniel R. Schmidt, Bernd Zey and Francois
Margot for the paper “An exact algorithm for the Steiner forest problem”.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and all the external
reviewers who assisted the program committees in the evaluation process. Special thanks go
to the local organizing committee, who helped us with the organization of the conference.

Program Committees

Track A (Design and Analysis) Program Committee

Yossi Azar (chair) (Tel Aviv University, Israel)

Petra Berenbrink (University of Hamburg, Germany)
Shuchi Chawla (University of Wisconsin-Madison, USA)
Flavio Chierichetti (Sapienza University of Rome, Italy)
Ashish Chiplunkar (EPFL, Switzerland)

George Christodoulou (University of Liverpool, UK)
Samuel Fiorini (Université libre de Bruxelles, Belgium)
Cyril Gavoille (University of Bordeaux, France)

Loukas Georgiadis (University of Ioannina, Greece)
Anupam Gupta (Carnegie Mellon University, USA)
Danny Hermelin (Ben Gurion University, Israel)

Zhiyi Huang (University of Hong Kong, China)

Satoru Iwata (University of Tokyo, Japan)

Klaus Jansen (University of Kiel, Germany)

Thomas Kesselheim (TU Dortmund, Germany)

Lukasz Kowalik (University of Warsaw, Poland)
Sebastian Krinninger (University of Salzburg, Austria)
Amit Kumar (IIT Delhi, India)

Daniel Lokshtanov (University of Bergen, Norway)
Konstantin Makarychev (Northwestern University, USA)
Debmalya Panigrahi (Duke University, USA)

Merav Parter (Weizmann Institute, Israel)

Christian Scheideler (Paderborn University, Germany)
Bettina Speckmann (TU Eindhoven, Netherlands)
Subhash Suri (University of California Santa Barbara, USA)
Csaba D. Téth (Cal State Northridge, USA)

Gerhard Woeginger (RWTH Aachen, Germany)
Christian Wulff-Nilsen (University of Copenhagen, Denmark)

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xiv Program Committees

Track B (Engineering and Applications) Program Committee

Martin Aumiiller (IT University of Copenhagen, Denmark)
Hannah Bast (chair) (University of Freiburg, Germany)

Christina Biising (RWTH Aachen University, Germany)

Pierluigi Crescenzi (University of Florence, Ttaly)

Veronica Gil-Costa (Universidad Nacional de San Luis, Argentina)
Michael T. Goodrich (University of California, Irvine, USA)
Paolo Ferragina (University of Pisa, Italy)

Stefan Funke (University of Stuttgart, Germany)

Inge Li Ggrtz (Technical University of Denmark, Denmark)
Sungjin Im (University of California at Merced, USA)

Michael Kerber (Graz University of Technology, Austria)

Silvio Lattanzi (Google, Switzerland)

Jon Lee (University of Michigan, USA)

Tamara Mchedlidze (Karlsruhe Institute of Technology, Germany)
Matthias Miiller-Hannemann (Martin Luther University Halle-Wittenberg, Germany)
Petra Mutzel (TU Dortmund University, Germany)

Gonzalo Navarro (University of Chile, Chile)

Richard Peng (Georgia Institute of Technology, USA)

Simon J. Puglisi (University of Helsinki, Finland)

Melanie Schmidt (University of Bonn, Germany)

Anita Schobel (Georg-August-Universitidt Gottingen, Germany)
Chris Schwiegelshohn (Sapienza University of Rome, Italy)
Sebastian Stiller (TU Braunschweig, Germany)

Darren Strash (Colgate University, USA)

Carola Wenk (Tulane University, USA)

List of External Reviewers

Amir Abboud
Mikkel Abrahamsen
Jayadev Acharya
Peyman Afshani
Akanksha Agrawal
Oswin Aichholzer
Yaroslav Akhremtsev
Hugo Akitaya

Eleni C. Akrida
Gorjan Alagic
Xavier Allamigeon
Noga Alon

Helmut Alt
Amihood Amir
Haris Angelidakis
Antonios Antoniadis
Srinivasan Arunachalam
James Aspnes

Igor Averbakh
Davide Bacciu
Arturs Backurs

Eric Balkanski
Evangelos Bampas
Evripidis Bampis
Hideo Bannai
Nikhil Bansal
Jérémy Barbay
Lukas Barth

Ulrich Bauer

Ruben Becker
Xiaohui Bei

Djamal Belazzougui
Mark de Berg
Sebastian Berndt
Sayan Bhattacharya
Arnab Bhattacharyya
Marcin Bienkowski
Gianfranco Bilardi
Philip Bille

Vittorio Bilo

Timo Bingmann
Andreas Bjorklund
Thomas Blésius
Hans L. Bodlaender
Greg Bodwin

Maria Luisa Bonet
Edouard Bonnet
Steffen Borgwardt
Piotr Borowiecki
Ulrik Brandes

Marco Bressan
Valentin Brimkov
Karl Bringmann
Simina Branzei
Gerandy Brito

Niv Buchbinder
Mickagél Buchet
Valentin Buchhold
Kevin Buchin

Maike Buchin

Boris Bukh
Christina Burt
Sebastian Buschjiager
Sam Buss

Matthias Buttkus
Jaroslaw Byrka
Sergio Cabello
Manuel Céceres
Chris Cade

Yixin Cao

Tim Carpenter
Matteo Ceccarello
Parinya Chalermsook
Erin Chambers

T-H. Hubert Chan
Timothy M. Chan
Karthekeyan Chandrasekaran
Panagiotis Charalampopoulos
Chandra Chekuri
Jiehua Chen

Lin Chen

Yu Cheng

Rajesh Chitnis
Janka Chlebikova
Anamitra Roy Choudhury
Tobias Christiani
Anders Roy Christiansen
Timothy Chu

Will Cipolli
Catherine Cleophas

26th Annual European Symposium on Algorithms (ESA 2018).

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xvi

List of External Reviewers

Dustin Cobas

Avi Cohen

Alessio Conte
Graham Cormode
Denis Cornaz
Bruno Courcelle
Alex Cozzi

Agnes Cseh

Radu Curticapean
Artur Czumaj
Christine Dahn
Abhimanyu Das
Syamantak Das
Sanjeeb Dash

Sina Dehghani
Holger Dell

Max Deppert
Nikhil Devanur
Tamal Dey

Martin Dietzfelbinger
Michael Dinitz
Paul Dorbec
David Doty
Agostino Dovier
Feodor Dragan
Matt Drescher
Anne Driemel
Andre Droschinsky
Ran Duan
Philippe Duchon
Paul Duetting
Stephane Durocher
Martijn van Ee
Eduard Eiben
Khaled Elbassioni
Alina Ene

David Eppstein
Thomas Erlebach
Elaine Eschen
Louis Esperet
Mikko Berggren Ettienne
Rolf Fagerberg
Brittany Fasy
John Fearnley
Uriel Feige

Moran Feldman
Andreas Emil Feldmann
Michael Feldmann

Henning Fernau
Diodato Ferraioli
Amos Fiat

Hendrik Fichtenberger
Gabriele Fici

Arnold Filtser

Anja Fischer

Felix Fischer
Matthias Fischer

Till Fluschnik
Dimitris Fotakis
Kyle Fox

Tom Friedetzky
Tobias Friedrich
Alan Frieze

Zachary Friggstad
Ulderico Fugacci
Toshihiro Fujito

Ben Fulcher
Radoslav Fulek
Travis Gagie

Waldo Gélvez
Guilhem Gamard
Arun Ganesh

Arnab Ganguly
Wilfried Gansterer
Naveen Garg

Bernd Gértner

Pawel Gawrychowski
Rong Ge

Ofir Geri

Yiannis Giannakopoulos
Konstantinos Giannis
Panos Giannopoulos
Archontia Giannopoulou
Vasilis Gkatzelis
Alexander Goke
Shay Golan

Kira Goldner

Petr Golovach
Adridn Gémez-Brandén
Gramoz Goranci
Thorsten Gotte
Lee-Ad Gottlieb
Garance Gourdel
Vineet Goyal

Daniel Graf

Fabrizio Grandoni

List of External Reviewers

Nick Gravin

Elena Grigorescu
Martin Gronemann
Martin Grof3
Roberto Grossi
Krystal Guo

Manoj Gupta
Shahrzad Haddadan
Michael Hamann
Samuel Haney
Kristoffer Arnsfelt Hansen
Thomas Dueholm Hansen
Nicolas Hanusse
Tobias Harks
Hamed Hatami
Elham Havvaei
Michael Hay

Meng He

Christoph Helmberg
Monika Henzinger
John Hershberger
Mhand Hifi
Kristian Hinnenthal
Martin Hoefer
Michael Hoffmann
Jacob Holm

Ivor Hoog V.D.
Chien-Chung Huang
Patricio Huepe
Thore Husfeldt
John Iacono

Alonso Inostrosa-Psijas
Takehiro Ito

Yoichi Iwata
Taisuke Izumi
Adalat Jabrayilov
Riko Jacob

Lars Jaffke

Ragesh Jaiswal
Bart M. P. Jansen
Bruno Jartoux
Artur Jez

Yukasz Jez
Shaofeng Jiang

Kai Jin

Timothy Johnson
Jordan Jorgensen
Alpar Jittner

Dominik Kaaser
Volker Kaibel
Naonori Kakimura
Christos Kalaitzis
Sagar Kale

Naoyuki Kamiyama
Frank Kammer
Haim Kaplan
Michael Kapralov
Aikaterini Karanasiou
Andreas Karrenbauer
Michael Kaufmann
Bart de Keijzer
Nathaniel Kell
Jonathan Kelner
Dominik Kempa
Balazs Keszegh
Arindam Khan
Shuji Kijima

Eun Jung Kim

Ralf Klasing
Jonathan Klawitter
Kim-Manuel Klein
Philip Klein

Lasse Kliemann
Max Klimm

Peter Kling

Yusuke Kobayashi
Tomasz Kociumaka
Zhuan Khye Koh
Sudeshna Kolay
Christina Kolb
Christian Komusiewicz
Spyros Kontogiannis
Parisa Kordjamshidi
Janne H. Korhonen
Arie Koster

Irina Kostitsyna
Martin Koutecky
Toannis Koutis
Laszlo Kozma
Rastislav Kralovic
Dieter Kratsch
Stefan Kratsch
Marc Van Kreveld
Ravishankar Krishnaswamy
R. Krithika

Michael Krivelevich

0:xvii

ESA 2018

0:xviii

List of External Reviewers

Amer Krivosija
Sven Krumke
Dominik Krupke
Piotr Krysta
Janardhan Kulkarni
Neeraj Kumar
Niraj Kumar
Marvin Kiinnemann
Anastasia Kurdia
Denis Kurz
Anthony Labarre
Sébastien Labbé
Bundit Laekhanukit
Michael Lampis
Stefan Langerman
Alexandra Lassota
Luigi Laura
Francois Le Gall
Euiwoong Lee
Christoph Lenzen
Stefano Leucci

Roie Levin

Jason Li

Shi Li

Andre Lieutier
Nutan Limaye
Andre Linhares
Jinyan Liu
Elisabeth Lobe
Maarten Loffler

Veronika Loitzenbauer

Marten Maack
Sepideh Mahabadi
Yury Makarychev

Frederik Mallmann-Trenn

Florin Manea
Sebastian Maneth
George Manoussakis
Pasin Manurangsi
Giovanni Manzini
Jieming Mao
Andrea Marino
Samuel McCauley
Andrew McGregor
Nicole Megow
Aranyak Mehta
Julian Mestre
Wouter Meulemans

Ulrich Meyer
Othon Michail
Samuel Micka

Ivan Mikhailin
Benjamin Miller
David L. Millman
Till Miltzow

Majid Mirzanezhad
Pranabendu Misra
Slobodan Mitrovic
Matthias Mnich
Hendrik Molter
Christopher Morris
Benjamin Moseley
Michal Moshkovitz
David Mount

Aidasadat Mousavifar

Wolfgang Mulzer
Ralf-Peter Mundani
Cameron Musco
Viswanath Nagarajan
Meghana Nasre
Amir Nayyeri
Jesper Nederlof
Ofer Neiman
Hung Nguyen
Rad Niazadeh
André Nichterlein
Rolf Niedermeier
Alexander Noe
Christos Nomikos
Ashkan Norouzi Fard
Zeev Nutov

Pascal Ochem
Carlos Ochoa

Lutz Oettershagen
Eunjin Oh

Yoshio Okamoto
Aurélien Ooms
Tim Ophelders
Sebastian Ordyniak
Joseph O’Rourke
Pekka Orponen
Rotem Oshman
Sang-I1 Oum

Maris Ozols

Linda Pagli
Katarzyna Paluch

List of External Reviewers

Alessandro Panconesi
Fahad Panolan
Greta Panova
Charis Papadopoulos
Kunsoo Park

Nikos Parotsidis
Maurizio Patrignani
Christophe Paul
Niklas Paulsen

Ami Paz

Pan Peng

Richard Peng

Pablo Pérez-Lantero
Ljubomir Perkovic
Giulio Ermanno Pibiri
Marcin Pilipczuk
Michat Pilipczuk
Ely Porat

Giuseppe Prencipe
Nicola Prezza
Maximilian Probst
Toannis Psarros
Simon Puglisi

Kent Quanrud
Marcel Radermacher
Sharath Raghvendra
Benjamin Raichel
M. S. Ramanujan
Michael Raskin
Malin Rau
Jean-Florent Raymond
Ilya Razenshteyn
Igor Razgon

David Renault
David Richerby
Havana Rika
Matteo Riondato
Lars Rohwedder
Clemens Roésner
Giunter Rote

Eva Rotenberg

Alan Roytman
Pawel Rzazewski
Yogish Sabharwal
Kunihiko Sadakane
Barna Saha

Rahul Saladi

Piotr Sankowski

Srinivasa Rao Satti
Maria Saumell

Saket Saurabh

Till Schéafer

Oliver Schaudt
Christian Scheffer
Kevin Schewior

Ingo Schiermeyer
Christian Schindelhauer
Sebastian Schlag
Andreas Schmid
Arne Schmidt

Daniel Schmidt
Melanie Schmidt

Jon Schneider
Christian Schulz
Jordan Schupbach
Gregory Schwartzman
Pascal Schweitzer
Chris Schwiegelshohn
Uwe Schwiegelshohn
Diego Seco

Saeed Seddighin
Victor Septlveda
Alexander Setzer
Alkmini Sgouritsa
Mordechai Shalom
Roohani Sharma,
Nobutaka Shimizu
Akiyoshi Shioura
Julian Shun

Aaron Sidford
Anastasios Sidiropoulos
Francesco Silvestri
Sahil Singla

Stavros Sintos
Carsten Sinz

Jouni Sirén

Nodari Sitchinava
Primoz Skraba
Martin Skutella
Shakhar Smorodinsky
Roberto Solar

Frank Sommer
Anthony Man-Cho So
Christian Sohler
Shay Solomon

Kiril Solovey

0:xix

ESA 2018

0:xx

List of External Reviewers

Manuel Sorge

M. Grazia Speranza
Frits Spieksma
Sophie Spirkl

Frank Staals
Georgios Stamoulis
Rob van Stee

Mike Steel

Ben Strasser

Peter J. Stuckey
Hsin-Hao Su
Torsten Suel

Warut Suksompong
He Sun

Maxim Sviridenko
Meesum Syed Mohammad
Zhihao Gavin Tang
Shin-Ichi Tanigawa
Géabor Tardos
Kavitha Telikepalli
Yifeng Teng

Veerle Timmermans
Sumedh Tirodkar
Andreas To6nnis
Ohad Trabelsi
Guillermo Trabes
Nicolas Trotignon
Kostas Tsichlas
Charalampos Tsourakakis
Dekel Tsur

Torsten Ueckerdt
Marc Uetz

Chris Umans

Ali Vakilian

Erik Jan van Leeuwen
Kasturi Varadarajan
Shai Vardi

Vincent Vatter
Kevin Verbeek
Luca Versari
Laurent Viennot

Aravindan Vijayaraghavan
Fabio Vitale

Ben Lee Volk

Hoa Vu

Magnus Wahlstrom
Tomasz Walen
Haitao Wang
Jianxin Wang

Yuyi Wang

Justin Ward

Karol Wegrzycki
Karsten Weihe
Oren Weimann

S. Matthew Weinberg
Armin Weiss
Stefan Weltge
Andreas Wiese
Virginia Williams
Carsten Witt
Damien Woods
Marcin Wrochna
Xiaowei Wu

Chao Xu

Pan Xu

Yutaro Yamaguchi
Chunxing Yin
Eylon Yogev
Huacheng Yu

Xilin Yu

Luca Zanetti
Meirav Zehavi

Wei Zhan
Guochuan Zhang
Qin Zhang

Yuhao Zhang
Samson Zhou
Yuan Zhou

Xue Zhu

Uri Zwick

Anna Zych-Pawlewicz

Algorithms for Inverse Optimization Problems

Sara Ahmadian

Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada
sahmadian@uwaterloo.ca

Umang Bhaskar!

Tata Institute of Fundamental Research, Mumbai, India 400 005
umang@tifr.res.in

Laura Sanita
Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada
sanita@uwaterloo.ca

Chaitanya Swamy?
Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada
cswamy@Quwaterloo.ca

—— Abstract

We study inverse optimization problems, wherein the goal is to map given solutions to an under-
lying optimization problem to a cost vector for which the given solutions are the (unique) optimal
solutions. Inverse optimization problems find diverse applications and have been widely studied.
A prominent problem in this field is the inverse shortest path (ISP) problem [9, 3, 4], which finds
applications in shortest-path routing protocols used in telecommunications. Here we seek a cost
vector that is positive, integral, induces a set of given paths as the unique shortest paths, and has
minimum ¢, norm. Despite being extensively studied, very few algorithmic results are known for
inverse optimization problems involving integrality constraints on the desired cost vector whose
norm has to be minimized.

Motivated by ISP, we initiate a systematic study of such integral inverse optimization prob-
lems from the perspective of designing polynomial time approximation algorithms. For ISP, our
main result is an additive 1-approximation algorithm for multicommodity ISP with node-disjoint
commodities, which we show is tight assuming P #NP. We then consider the integral-cost inverse
versions of various other fundamental combinatorial optimization problems, including min-cost
flow, max/min-cost bipartite matching, and max/min-cost basis in a matroid, and obtain tight
or nearly-tight approximation guarantees for these. Our guarantees for the first two problems
are based on results for a broad generalization, namely integral inverse polyhedral optimization,
for which we also give approximation guarantees. Our techniques also give similar results for
variants, including £,-norm minimization of the integral cost vector, and distance-minimization
from an initial cost vector.

2012 ACM Subject Classification Theory of computation — Network optimization, Theory of
computation — Approximation algorithms analysis, Mathematics of computing — Network flows

Keywords and phrases Inverse optimization, Shortest paths, Approximation algorithms, Linear
programming, Polyhedral theory, Combinatorial optimization

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.1

! Funded in part by a Ramanujan Fellowship. Part of this work was done while visiting U. Waterloo.
2 Supported in part by NSERC grant 327620-09 and an NSERC Discovery Accelerator Supplement Award.

© Sara Ahmadian, Umang Bhaskar, Laura Sanita, and Chaitanya Swamy;
37 licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 1; pp. 1:1-1:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sahmadian@uwaterloo.ca
mailto:umang@tifr.res.in
mailto:sanita@uwaterloo.ca
mailto:cswamy@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2

Algorithms for Inverse Optimization Problems

1 Introduction

Consider the following problem, adapted from [4], faced by the administrator of a telecommu-
nication network. The administrator seeks to impose a desired routing pattern (e.g., one that
distributes traffic along multiple paths to minimize congestion) under a given underlying
routing protocol. Many routing protocols — OSPF (open-shortest-path-first), IS-IS etc. — use
shortest-path routing, with path lengths defined as the sum of link lengths that are set by the
administrator, where the link lengths must typically be positive integers that can be stored
using a limited number of bits (e.g., in IS-IS, they must be at most 63). Thus, the adminis-
trator must choose small, positive, integer link lengths so that the resulting shortest paths
coincide with the prescribed paths (thus ensuring that we utilize precisely these paths).

This is an inverse shortest path (ISP) problem (which also arises in seismic tomography,
traffic modeling, and network tolling [9, 19, 8, 12, 13]), a prominent problem from the rich
class of inverse optimization problems, wherein we are given solutions to an underlying
optimization problem and we seek a cost vector under which the given solutions constitute
the (unique) optimal solutions. Since we map solutions to a suitable cost vector, this is termed
inverse optimization. Inverse optimization problems find applications in a variety of domains
including telecommunication routing [3, 4], seismic and medical tomography [9, 19, 23],
traffic modeling and network tolling [12, 13, 9, 8], and portfolio optimization [18]. They
also arise in the domain of revealed-preference theory in economics [24], which seeks to
understand when observations can be attributed to behavior consistent with game-theoretic
models. As these examples indicate, inverse optimization problems typically have two primary
objectives: (a) parameter estimation, where we seek to infer certain parameters of a system
that are consistent with a set of observations (e.g., seismic and medical tomography, revealed
preference theory); and (b) solution imposition, where the goal is to (minimally) perturb the
system parameters so as to enforce a set of solutions (e.g., the telecommunication routing
application mentioned above, and network tolling where we want to find (minimal) edge tolls
imposing a given routing pattern as an equilibrium flow).

Motivated by ISP, we consider inverse optimization problems wherein the desired cost
vector c is required to be positive, integral, and induce the given subset S of solutions as
the unique optimal solutions to the underlying optimization problem; we call these problems
integral inverse optimization problems. We primarily consider the objective of minimizing
|lc]| oo, but our results also yield guarantees for the objective of minimizing the perturbation
e = ¢9|| o of a given “base” cost vector ¢(®), which is frequently considered in the inverse-
optimization literature. Uniqueness can be important because we may want to explain/impose
S without introducing spurious solutions (i.e., “we get precisely what we bargain for”), and
integrality is, in many cases, a desirable or necessary practical consideration (as in the
telecommunication-routing setting). Despite extensive literature, very few algorithmic results
are known for inverse optimization problems involving integrality constraints on the desired
cost vector whose norm, or deviation from a given cost vector ¢(?), is to be minimized; we
only know of [3, 4] that address this, both in the context of ISP.

Our contributions and results. We initiate a systematic study of integral inverse optimiza-
tion problems from the perspective of designing polynomial time (approximation) algorithms.
We focus on the inverse versions of various combinatorial optimization problems, a nat-
ural starting point to investigate integral inverse optimization problems. As our results
demonstrate, even for such problems, wherein the underlying optimization problem is well
structured and polytime-solvable, the resulting integral inverse optimization problems are

S. Ahmadian et al.

Table 1 Summary of our main results. These are stated for the implicit model, wherein the
solution-set is specified implicitly by listing its support set. Most of our guarantees also hold in the
explicit model.

Problem Our results

Inverse shortest path (ISP) polytime

additive 1-approximation; problem is NP-hard

Node-disjoint multi dity ISP . . e
ode-cisjoint musticormodity (Previous work gives multiplicative O(|V'|)-approx.)

Inverse polyhedral optimization additive 1-approximation for minimization (IMin-Poly)
(I0pt-Poly) with TU constraint matrix | multiplicative 2-approx. for maximization (IMax-Poly)
|Opt-Poly with {0, 1} matrix A multiplicative 5(« /min{r, k})—approximation

(r,k = row, column sparsity of A) additive factors of k: IMin-Poly; (k — 1): IMax-Poly

I 5 51 f min-cost fl
nverse. versions o m}n CO,S oW . additive 1-approx.; follows from results for 10pt-Poly
and min/max-cost bipartite matching

Inverse matroid-basis optimization polytime (for minimization and maximization)

quite non-trivial and exhibit an interesting range of possibilities in terms of positive (ap-
proximation) algorithmic results and hardness of approximation results. We obtain tight or
nearly-tight guarantees for a variety of integral inverse optimization problems, including the
well-studied inverse shortest path (ISP) problem. Our salient contributions are as follows;
Table 1 summarizes our main results.

We begin by considering ISP (Section 3). We show that the single-commodity version
(Section 3.1), wherein S is a subset of s ~ ¢ paths in a directed graph, is polytime
solvable (Theorem 5). We then consider multicommodity ISP, the generalization where
we have multiple commodities, each specified by an (s;,t;) pair of nodes and a subset
S; of s;~~t; paths, and we seek positive, integral edge costs that ensure that S; is the
unique set of shortest s; ~» t; paths for each commodity . We resolve the status of
node-disjoint multicommodity ISP, where the S;s correspond to node-disjoint subgraphs
(Section 3.2): we devise an additive 1-approxzimation algorithm (Theorem 6), which is
the best possible guarantee (if P ANP) since we show that this node-disjoint version is
NP-hard (Theorem 7). Our proof also shows that it is NP-hard to obtain a multiplicative
(% — e)—approximation for multicommodity ISP, for any € > 0.

Our results improve upon the previous-best multiplicative O(|V'|)-approximation guaran-
tees for these problems, which follow from the work of [3, 4]. The algorithms in [3, 4] are
for multicommodity ISP, but they apply to the restrictive setting where S; includes a
single s; ~t;-path for every commodity; moreover, they do not yield improved guarantees
even for the special cases of single-commodity ISP or node-disjoint multicommodity ISP.
We also improve upon the factor % hardness-of-approximation guarantee in [4].
Motivated by the fact that many combinatorial optimization problems can be cast as
polyhedral optimization problems, in Section 4, we consider a broad generalization of
integral inverse discrete optimization, namely integral inverse polyhedral optimization.
Here, we are given a polytope P C R"™ explicitly, and the set S is replaced by a set X of
extreme points of P; we seek a positive, integral cost vector ¢ € Z™ that induces X as the
unique set of extreme-point optimal solutions to the problem of optimizing (minimizing
or maximizing) ¢z over z € P. We obtain approximation guarantees for integral inverse
polyhedral optimization that depend on the structure of the constraint matrix A defining
P. When A is totally unimodular (TU), we obtain an additive 1-, or multiplicative 2-
approximation (see Theorem 8), and for a general {0,1} matrix A, our approximation
factor depends on the row and/or column sparsity of A (see Theorem 9). As corollaries

1:3

ESA 2018

1:4

Algorithms for Inverse Optimization Problems

of these results, we obtain additive 1-approximation algorithms for the integral inverse
versions of min-cost flows and max/min-cost bipartite matchings.

Similar to ISP, integral inverse min-cost flow (IMCF) captures the optimization problem
encountered in the context of spanning-tree protocols (STPs) — e.g., rapid STP, multiple
STP etc. — which route using a shortest-path tree rooted at a given node s under the
assigned link weights; enforcing a prescribed routing tree rooted at s by choosing small,
positive, integer link lengths is then an IMCF problem, and in fact, the special case
involving a single source and infinite (or equivalently, very large) capacities. This link-
weight assignment problem was studied in [15, 16], who prove upper bounds on the
optimum value (in a more general setting). We show that this single-source IMCF problem
is polytime solvable, which implies that we can solve this link—weight assignment problem
in polynomial time.

It is illuminating to view integral inverse polyhedral optimization (I0pt-Poly) geometrically.
The set of cost vectors that yield X as extreme-point optimal solutions in P, form a
polyhedral cone; a cost vector in the interior of this cone yields X as the unique set of
extreme-point optimal solutions. Thus, the goal in 10pt-Poly is to find a shortest (in ||.||co-
norm) positive, integral vector in the interior of this cone (if one exists). Viewed from this
perspective, integral inverse polyhedral optimization can be seen as a problem in the field
of geometry of numbers and in the same vein as the important shortest-vector-problem in
lattices. We believe that this geometric connection makes |0pt-Poly an appealing problem
of independent interest meriting further study.

In Section 5, we consider integral inverse matroid-basis optimization. Here, S is a
collection of bases of a matroid, and we seek positive, integer costs on the elements under
which S is the unique set of optimal bases. We give a polytime algorithm for this problem
(Theorem 12).

Our techniques are versatile and yield results for various variants (see Section 6), including,
most notably, integral inverse optimization under two other commonly considered objectives
in the literature: (1) £,-norm minimization, where we seek to minimize ||c||,; and (2) distance
minimization, where we seek to minimize the perturbation |c — ¢(®)| o of an integral “base”
vector ¢(?). Our results typically also hold in an #mplicit model, where the input specifies a
(potentially exponential-size) set S implicitly by listing the elements in terms of its support.

Most prior results on inverse optimization, with the exception of ISP, are obtained in the
setting where S consists of a single solution & (with [26, 28] being exceptions), which is not
required to be the unique optimal solution, and the objective is to minimize ||c — ¢(?)||, (or
lc — c@]|, for some other p), with ¢ fractional. This setting is significantly simpler than the
integral inverse optimization setting we consider. In particular, it is not hard to see that,
as noted in [2], even for a general inverse polyhedral optimization problem, one can: (a)
utilize the complementary slackness (CS) conditions from LP theory to encode the problem
of finding a suitable cost vector ¢ as another LP (or a convex program for £, norms); or (b)
use the ellipsoid method to solve the LP that directly encodes that & has optimal objective
value among all 2 € P, given an optimization/separation oracle for P. This work therefore
focuses on obtaining faster algorithms for the integral inverse optimization problem.

In contrast, in the integral inverse optimization setting, two distinct sources of difficulty
arise that do not appear in the above setup. First, even computing a suitable fractional cost
vector is non-trivial due to the uniqueness constraint. For instance, in inverse polyhedral
optimization, this entails discerning if the given solutions form the extreme points of a face
of the given polytope, and determining how to encode, and separate over, the constraints
enforcing uniqueness. Second, rounding a fractional cost vector poses the difficulty that we

S. Ahmadian et al.

need to coordinate things so as to simultaneously ensure that all solutions in S continue
to have the same cost, and solutions not in S remain non-optimal solutions. This creates
unique challenges, and we leverage tools from optimization theory, polyhedral theory, and
recent results in discrepancy theory to circumvent these difficulties and obtain our results.
An interesting and notable implication of our work is that, in many cases, imposing integral
costs does not significantly impact the achievable performance guarantees.

Our array of results allude to the richness of integral inverse optimization problems. While
our work makes significant progress towards understanding these problems, it also opens up
various directions for further research, such as investigating the inverse-optimization versions
of NP-hard optimization problems.

Related work. Inverse problems were initially extensively studied in geophysics for the
estimation of model parameters (see, e.g., [23]). Since then there has been a great deal of
work in inverse optimization in the optimization community (see, e.g., the survey [17]). In the
optimization community, Burton and Toint [9] (see also [8]) were the first to consider inverse
optimization problems. They introduced the the f5-norm distance-minimization variant
of ISP, where we seck to minimize |c — ¢(©|o, where ¢ is a base vector, while allowing
for fractional cost vectors, and do not require the given paths to be the unique shortest
paths. They motivate ISP from applications in traffic modeling and seismic tomography,
and suggest the extension to the ¢; and o, norms. Ben-Ameur and Gordin [3] and Bley [4]
study (among other problems) ISP under the constraints of positive, integral edge costs,
and uniqueness of the given paths (i.e., integral ISP), motivated by its applications to
shortest-path routing protocols. These give algorithms having multiplicative approximation
ratios of O(min{|V|/2, (maximum length of a given path)}), and [4] also shows that it is
NP-hard to obtain an approximation ratio better than 9/8. Other ISP variants have also
been investigated [2, 4, 7, 11, 12, 13, 25].

Following initial work on inverse shortest paths, algorithms were developed for the
inverse-optimization versions of other combinatorial optimization problems, such as minimum
spanning tree, min-cost flow, min-cut, matroid intersection, and general inverse polyhedral
optimization (also called inverse linear programming [29, 30]); see [17] for details. Most of
this work pertains to the distance-minimization problem when we allow fractional costs, and
only a single solution is given ([26, 28] are exceptions that consider multiple solutions) that
is not required to be the unique optimal solution. These papers focus on developing fast
combinatorial algorithms. Ahuja and Orlin [2] unify and generalize many of these results.
They note that inverse polyhedral optimization can be solved in the above setting by solving
a suitable LP: a compact LP encoding this can be obtained by utilizing the CS conditions,
and even the (huge) LP that directly encodes that the given solution be optimal can be solved
via the ellipsoid method. They show that in various cases, the compact LP leads to an LP
similar to the one for optimizing over P, and hence one can obtain combinatorial algorithms
for various inverse discrete optimization problems. Similar results were also obtained by [27].

We remark that while we also solve an LP to obtain fractional cost vectors en route to
obtaining integral cost vectors, a crucial difference in our setting is that we need to devise
suitable ways of encoding (and separating over) the constraint that the costs induce the
given (multiple) solutions as the unique optimal solutions. Our algorithms for integral inverse
polyhedral optimization require either a face oracle for P, which determines if the given set
X of extreme points forms a face of P, or an oracle that determines if all mazimal/minimal
points on a face of P have the same cost under a given cost vector. Devising a face oracle is
related to the problem of enumerating all vertices (i.e., extreme points) of a polyhedron, or

1:5

ESA 2018

1:6

Algorithms for Inverse Optimization Problems

all vertices on its optimal face (under an objective function), with each new vertex being
output in polynomial delay. (For instance, we can decide if X forms a face by determining if
the minimal face of P containing X contains at least |X| + 1 vertices.) Such procedures are
known for various polyhedra such as network-flow polyhedra [20], general 0/1 polytopes [10],
simplicial and simple polyhedra [6, 14], but this is NP-hard for general 0/1 polyhedra [5].

2 Problem definitions, notation, and preliminaries

For an integer n, we use [n] to denote {1,...,n}. Given z € R¥ and S C E, we use z(S)
to denote) .gz.. We use |z] and [z] to denote the vectors (LZEJ)eeE and ([z])
respectively.

eck

Inverse discrete optimization. An inverse discrete optimization problem involves an un-
derlying discrete optimization problem specified in terms of a ground set E and a collection
F C 2F of feasible solutions, and a subset S C F of feasible solutions to the optimization
problem. We seek a cost vector ¢ € RF such that the solutions in S are the optimal solutions
to the underlying optimization problem. Formally, in an inverse minimization problem,
the underlying optimization problem is a minimization problem, and we seek a cost vector
c € R¥ such that ¢(S) = minper ¢(F) for all S € S. In an inverse maximization problem,
the underlying optimization problem is a maximization problem, and we seek ¢ € R¥ such
that ¢(S) = maxper c¢(F) for all S € S. More precisely, motivated by applications of the
inverse-shortest-path problem in the context of shortest-path network-routing protocols in
telecommunication, we impose the following requirements on the cost vector c.

(C1) Positive, integer costs: c. > 1, c. € Z for all e € E;

(C2) Unique optimal solutions: For inverse minimization, we require ¢(S) = minper ¢(F) <
c(F') for all S € S and F' € F\ S; for inverse maximization, we require ¢(S) =
maxper c(F) > c(F') forall S € S and F' € F\ S;

Our goal is to find a vector ¢ satisfying 1 and 2 that minimizes ||¢/| .. We call this an integral

inverse optimization problem; we drop “integral” when it is clear from the context.

The uniqueness condition 2 is often important in applications, where the inverse optimiza-
tion problem is used to infer or perturb some system parameters so as to explain or impose
a set S of observations, since we would like to do so without introducing spurious solutions.
We impose ¢ > 1 as a normalization requirement: this prevents one from arbitrarily scaling a
vector satisfying 2 to obtain another feasible solution. Integrality is a discretization condition
that ensures that we are optimizing over a closed set (note that 2 leads to an open feasible
region). (Without an underlying objective such as minimizing ||¢|/, 1 becomes redundant
as one can always scale a rational vector ¢ to satisfy 1.)

We allow for specifying exponentially large (in the natural input size) solution sets S
(thus obtaining greater modeling power), by also considering the following implicit model for
specifying S: we specify a set U of elements, which implicitly describes the set S = {S € F :
S C U} of feasible solutions. For example, in the implicit version of inverse shortest paths,
U is a set of arcs and S comprises all s~+t paths contained in U; so a solution is a positive,
integral cost vector such that the collection of shortest s~-t paths is precisely S. Our results
typically apply to both models, and the underlying arguments are similar.

Our techniques are versatile and yield results for other variants of the above integral
inverse optimization problem such as, most notably,

(1) the £,-norm version: find a vector ¢ satisfying 1, 2 that minimizes ||c||,

(2) the distance-minimization version (with £, norm): the input specifies a “base” vector

¢ € ZE, and we seek a cost vector ¢ satisfying 1, 2 that minimizes |c — (9| .

S. Ahmadian et al.

At a high level, this follows because our results are obtained by first obtaining an (near-)
optimal fractional cost vector ¢* satisfying 1, 2 via an LP (or, for £,-norms where 1 < p < oo,
via a convex program) and then rounding it to a feasible integral vector ¢ while introducing
an additive O(1) rounding error; this rounding error easily translates to a multiplicative
approximation for problems (1), (2). The following theorem makes this precise.

» Theorem 1. Let c¢* € RE be a cost vector satisfying c; > 1 Ve € E. Let & € ZF be a vector
satisfying 1, 2.
(i) Let O*p :=min { ||c||, : ¢ satisfies 1,2}. Suppose that ||c*||, < O*p+¢, and & < aci+f
foralle e E. Then, ||&|, < (a+ B8)(1+€)0*,; if e < (W)p, this implies that
el < [a+ 5107,
(i) Let Op, := min {|lc — c©| : c satisfies 1,2}. Suppose that O}, > O,
|¢* —c | < Ofiey, and ||E—c*||loo < B. Then, [|6—cO||oe < Ohi +[8] =1 < [B] Ofie-

Inverse polyhedral optimization. Many combinatorial optimization problems have conve-
nient polyhedral descriptions and can be modeled via linear programs that have integral
optimal solutions; this indeed holds for the problems whose integral inverse optimization
versions we investigate. With this in mind, we consider the following general inverse polyhe-
dral optimization problem, which is a natural abstraction of an inverse discrete optimization
problem. We are given a polytope P C Rf with explicitly specified constraints, and a
collection X C P of extreme points of P. In integral inverse polyhedral minimization
(IMin-Poly), we seek a cost vector ¢ € RE that minimizes ||c||o, and satisfies 1, and (C2):
c’'2 = mingep Tz < Tz’ for every & € X and every extreme point z’ of P not in X.
Similarly, in integral inverse polyhedral mazimization (IMax-Poly), we seek ¢ € RE that
minimizes ||| and satisfies 1, and (C2): ¢4 = max,cp Tz > T2’ for every 2 € X and
every extreme point 2’ of P not in X. If the underlying discrete optimization problem is
captured by the problem of optimizing over P (e.g., if extreme points of P correspond to
feasible solutions to the discrete optimization problem), then this integral inverse polyhedral
optimization problem captures the integral inverse discrete optimization problem defined
earlier. As before, we also consider the implicit version, wherein we are given U C FE, which
implicitly specifies X := { extreme points & of P s.t. {e: T, > 0} C U, & is maximal/minimal
in P } By & being maximal in P, we mean that there is no « € P such that x > 2, x # Z;
minimality is similarly defined. The set X must be maximal for IMax-Poly, and minimal for
IMin-Poly, as only such points can be optimal solutions since ¢ > 0.

We say that X forms a face of P, if X is precisely the set of extreme points of some face
of P. Integral inverse polyhedral optimization can be stated geometrically as: determine if X
forms a face, say F', of P, and if so, find a positive, integral vector (if one exists) of minimum
{~ norm in the interior of the polyhedral cone of vectors yielding F' as the optimal face.

Difference systems. We often need to obtain a solution to a system of constraints of the
following form, called a difference system with bounds, involving n variables z1,. .., z,:

Zi—Zdeij V(i,j)EA, zi >4 ViGL, zi<wu; VielU (1)

where A C [n] x [n], L,U C [n]. The d;;s can be arbitrary, so (1) can also incorporate
constraints of the form z; — z; > d;;. The following useful result is well known (see, e.g., [1]).

» Theorem 2. We can find a feasible solution to a difference system (1), or detect it is
infeasible, by computing a shortest path in a digraph with |A| + |L| + |U| arcs, n + 1 nodes.
If the data is integral, and (1) is feasible, this yields an integer-valued feasible solution.

1:7

ESA 2018

1:8

Algorithms for Inverse Optimization Problems

Further, given costs {b;}_,, we can solve a min-cost flow problem to find an optimal
solution to the following LP: minimize _, b;z; subject to (1). If this LP has an optimal
solution and the d;js, {;s and u;s are integral, this yields an integer-valued optimal solution.

3 The inverse shortest path problem

In the integral inverse shortest path (ISP) problem, we are given a directed graph D = (V, E),
terminals s,t € V', and a collection S of simple s~+t paths; we seek positive, integral edge
costs {ce}eer such that the paths in S are the unique shortest s~~t paths under these edge
costs, s0 as to minimize ||¢||s = max, ce. In multicommodity ISP, we have k commodities,

with each commodity ¢ = 1, ..., k specified by a pair s;,t; € N of terminals, and a collection
S; of s;~~t; paths. We seek positive, integral edge costs {ce }eep minimizing ||¢|/s such that
for each commodity 7 =1, ..., k, the paths in §; are the unique s; ~t; shortest paths under

these edge costs. Clearly, ISP is the special case where £ = 1. In the implicit version of
multicommodity ISP, we are given edge-sets E',..., E* which implicitly defines S; to be
the collection of all s;~¢; paths in E°.

We show that ISP is polytime solvable (Section 3.1). For multicommodity ISP (Section 3.2),
we devise an additive 1-approximation algorithm in the setting where the S;s correspond to
node-disjoint subgraphs. Our guarantee is tight, since we show that (even) this special case
of multicommodity ISP is NP-hard to approximate within a factor better than % Previously,
only a multiplicative O(|V|)-approximation guarantee was known for these problems [3, 4],
and a factor % hardness-of-approximation was known for general multicommodity ISP [4]. In
Section 6, we show that our techniques yield results for various other ISP variants including:
(1) the £,-norm minimization version; (2) the distance minimization version; and (3) variants
involving shortest-s; ~t;-path distances in the objective or constraints.

3.1 A polynomial time exact algorithm for ISP

We may assume that every edge in D lies on some s~~t path, as otherwise we can assign
it cost 1, and so can simply delete the edge. Let O* denote the optimal value of the ISP
instance. We utilize the following well-known properties of shortest paths.

» Claim 3. Let D = (N, A) be a digraph with nonnegative edge costs {ce}teca, and s,t € N.
Suppose that every edge of A lies on some s~>t path. Let S be a collection of s~>t paths.
(i) S consists of shortest s~t paths (under c) iff there are node potentials {y, }ren such
that:

Yo — Yu < Cupw for all (u,v) €A, Yv — Yu = Cup for all (U, 'U) € U P. (2)
PeS

(ii) Node potentials satisfying (2) exist iff the node potentials obtained by setting
Yy = (shortest-s ~ v-path distance) Yv, satisfy (2).

(iii) S comprises shortest s~ paths iff every s ~t path Q C |Jp.g P is shortest s ~~1
path.

If the input is in the explicit model (i.e., S is explicitly given), define E' := |Jp.g P. By
Claim 3 (iii), an ISP instance in the explicit model is feasible only if S includes all s ~¢ paths
contained in E*. Also, since we seek positive edge costs, E' must be acyclic (a directed cycle
must have cost 0 due to (2)), otherwise the ISP instance is infeasible. In the explicit model,
we first check if E* contains an s~t path not in . This can be checked in polynomial time
in various ways: for instance, we can use topological sort to count the number of s~~¢ paths

S. Ahmadian et al.

in B! and check if this number is |S|. (We can also use depth-first search and backtracking
to enumerate |S| 4 1 distinct s~-t paths in polytime (if they exist); see, e.g., [21].)

In the sequel, we assume that the ISP instance meets these feasibility requirements (so the
explicit and implicit models coincide). Let G* = (V!, E') be the subgraph induced by E*. We
may assume that every edge e € E! lies on an s ~~t path contained in E' (which holds by def-
inition in the explicit model); otherwise, we can remove e from E! and solve the resulting ISP
instance. We consider the following LP-relaxation of the problem with the c.s and node po-
tentials {y, }yen as variables. (The objective function and constraints are easily linearized.)

min [le] oo (ISP-P)
st max{l,y, —vyu} <cuo V(u,v)€E, Yo — Yu = Cup V(u,v) € B (3)
Yo —Yu +1 < c(P) Y(u,v) € VP x V!, Vu ~ v paths P C E\ E'. (4)

Constraints (3) follow from Claim 3, and ensure that all s~¢ paths in E! are shortest s~t
paths. Note that if there is no u ~» v path in E'\ E', then there is no constraint (4) for (u,v).
We argue below that constraints (4) are valid; this follows because (4) encodes that every
s~»t path @ not contained in E' has length at least 1 + ming..; path P:pCcE ¢(P), and with
integer edge costs, this is equivalent to the condition that every s~~t path @ not contained
in E' is not a shortest s~+t path.

» Lemma 4. (ISP-P) is a relazation of ISP.

We can efficiently solve (ISP-P) via the ellipsoid method since we can efficiently separate
over constraints (4) when ¢ > 0 by solving a shortest-path problem. (We can actually avoid
the ellipsoid method and obtain a much more efficient algorithm for ISP. We retain the LP-
based exposition since this extends easily to multicommodity ISP and other variants of ISP.) If
(ISP-P) is infeasible, then the ISP instance is infeasible. Otherwise, let (¢*, y*) be an optimal
solution to (ISP-P). Let B* = ||¢*||0o- Note that O* > [B*]. Our rounding algorithm is quite
simple. We first round the {y}} node potentials by solving the following difference system:

s —yul <o —Yu < [y —] for all (u,v) € V! x V1.

Notice that ¢ = y* is a feasible solution to this difference system, so since the constant terms
in the above inequalities are integers, it has a feasible integer solution ¢ (Theorem 2). We
set edge costs Guu = o — Ju for all (u,v) € EY, and &y, = [c},] for all (u,v) € E\ E'.

» Theorem 5. Vector ¢ satisfies [¢*| < & < [¢*], and is hence an optimal solution to ISP.

3.2 Multicommodity ISP with node-disjoint subgraphs

We now consider multicommodity ISP, where the edges in the S;s induce node-disjoint
subgraphs. More precisely, if the input is in the explicit model, define E* := |J pes, L-
Let G* = (V*, E") be the subgraph induced by E’. We consider the setting where the
Vs are disjoint; we call this node-disjoint multicommodity ISP. As before, by Claim 3, a
muticommodity ISP instance in the explicit model is feasible only if S; includes all s; ~~t;
paths contained in E* for all i = 1,..., k&, which can be verified efficiently. Moreover, each
E* must be acyclic, and we may assume that for every 4, and every e € E?, there is some
s;~»1; path contained in E? that contains e. We prove the following results, which together
resolve the complexity of node-disjoint multicommodity ISP.

» Theorem 6. There is an additive 1-approzimation for node-disjoint multicommodity ISP.

1:9

ESA 2018

1:10

Algorithms for Inverse Optimization Problems

» Theorem 7. Node-disjoint multicommodity ISP is NP-hard. Moreover, it is NP-hard to

obtain a multiplicative (% — €)-approximation for any e > 0.

4 Inverse polyhedral optimization

Recall that in an abstract integral inverse polyhedral optimization problem, we are given
a polytope P C Rf with explicitly specified constraints, and a set X of extreme points
of P. We want to find a positive, integral cost vector ¢ € R¥ minimizing ||¢||~ such that:
(i) in inverse polyhedral minimization (IMin-Poly), X is the set of extreme-point optimal
solutions to mingep c’'x; and (ii) in inverse polyhedral maximization (IMax-Poly), X is the
set of extreme-point optimal solutions to max,cp ¢’ 2. In the implicit version, we are given
U C E, which defines X to be all extreme points & of P such that {e: &, >0} C U, and %
is maximal (for IMax-Poly) or minimal (for IMin-Poly) in P.

Our approach consists of two main steps. We first find an optimal fractional cost vector
¢ > 1, and then round this. While prior work also deals with obtaining such a fractional
cost vector, in our case, this step is significantly more complicated due to both the existence
of multiple solutions in X, and the requirement that these be the unique optimal solutions.
Let Az < b denote the constraints of P (including nonnegativity). Let K be an integer such
that all entries of A, b, and all extreme points of P are integer multiples of % We can
compute K with log K = poly(input size). (If A is totally unimodular (TU) and b is integral,
then K = 1.) So for any solution ¢ to IMax-Poly or IMin-Poly, we have |c''% — ¢Ta| > 3 for
any £ € X and 2’ ¢ X. For IMin-Poly, we solve the following LP-relaxation to find ¢*. (For
IMax-Poly, (6), and the arguments below, are modified appropriately.)

ce>1 VYecE, Ta=)\ViecX (5)
(IMin-P) min ||¢||sc s-t. 1
>+ e V& : & is an extreme point of P, & ¢ X. (6)

To solve (IMin-P) in the explicit model, we require a face oracle for P. We first use this to
determine if X forms a face F' of P; if not, then the inverse problem is infeasible. Otherwise,
letting J be the set of constraints that are tight for all x € X, the face F' is given by
F={xeP:(Azx); =b; Vi € J}. Further, any extreme point x € P\ X does not lie in F, so
there is some i € J such that (Az); < b;, and hence (Ax); < b; — % Our separation oracle
for (IMin-P) is as follows. Constraints (5) can be directly checked. For (6), we consider every
i € J and check that the minimum value of ¢’z over the set {z € P : (Az); <b; — +} is at
least A\ + % This can be done in polynomial time.

In the implicit setting, to separate over constraints (5), we require what we call a
minimality oracle (or maximality oracle, for IMax-Poly), which given a set U C F and a cost
vector ¢, determines if every minimal (extreme) point of P whose support lies in U has the
same (minimum) cost. To verify if constraints (6) hold, first note that if 2’ ¢ X is an extreme
point supported on U, then there is some # € X with & < 2/, and so ¢T2' > 7% + % So we
only need to check if (6) holds for extreme points ' not supported on U; this can be done
by the same procedure as for the explicit model, taking J = F'\ U. The problem of devising
a minimality /maximality oracle is itself an interesting and non-trivial problem for various
combinatorial optimization problems. We show how to devise such an oracle for min-cost
flow and bipartite matching (Theorems 10 and 11). Note that for a polytope P of the form
{z : Ax =b, x > 0}, any two feasible points are incomparable; so the face formed by X is
simply F = {z € P: 2. =0Ve ¢ U}, and we can obtain a minimality /maximality oracle by
checking if the minimum and maximum values of ¢’z over F are equal.

S. Ahmadian et al.

The next step is to round c¢* to obtain an approximately optimal integral cost vector. We
show how to do this in two settings, when the constraint matrix A is TU, and when A is a
sparse {0, 1}-matrix. In both cases, we round an optimal solution to the dual of the problem
of optimizing ¢*Tz over P but the details and bounds obtained differ.

» Theorem 8. Let P = {z € RF : Az > b, x > 0}, where A is TU, and b is integral. We
can round an optimal fractional solution ¢* to the inverse problem to obtain: (a) an additive
1-approzimation for IMin-Poly; and (b) a multiplicative 2-approximation for IMax-Poly.

» Theorem 9. Let A € {0,1}™*™ have row sparsity r and column sparsity k, where n = |E|.
(Row sparsity is the mazimum number of nonzero entries in a row of A; column sparsity is the
mazximum number of nonzero entries in a column of A.) Let Ay and Ag be submatrices of A
with n columns, whose rows partition [m]. We can round an optimal fractional solution c¢* to
the inverse problem to obtain the following guarantees (in both implicit and explicit models).
(a) Additive (k—1)-approz. for IMax-Poly with P = {x ERF Az =by, Asz < by, x> 0}.
(b) Additive k-approzimation for IMin-Poly with P = {{E ERF : Ay =by, Agx > by, x>
0}.
(c) Multiplicative B-approxzimation for IMax-Poly and IMin-Poly, where we have = min{k—f—

O(1),0(y/rlogn),O(y/k min(log(kr),logn)) }.

4.1 Applications to inverse min-cost flow and inverse bipartite
matching

Inverse min-cost flow. In the integral inverse min-cost flow (IMCF) problem, we are given
a directed graph D = (N, E), integer bounds 0 < ¢, < u, on every edge e, integer demands
{by}ven (which could be arbitrary) such that b(N) := > _n b, =0, and a set E! C E of
edges. A flow in D is a vector 2 € RF satisfying

veEN

z(6™(v)) —z(5°(v)) =b, Yo €N, L. <ze<u. VecE. (7)

Given edge costs {cc}ecp, the cost of a flow x is), ccwe. We seek positive, integral edge
costs {c¢}ecp minimizing ||¢||s so that the set of min-cost integral flows is precisely the set
of acyclic integral flows supported on E'. As with ISP, we may assume that every e € E' is
used by some feasible flow supported on E', and then, we may further assume that E' is
acyclic, as otherwise the inverse problem is infeasible.

The min-cost flow problem is given by the LP: min) c.a. subject to (7). The constraint
matrix specifying (7) is TU (see, e.g., [22]), so IMCF is an instance of IMin-Poly with a TU
constraint matrix. Since E' is acyclic, any two distinct feasible flows supported on E! are
incomparable, so it is easy to obtain a minimality oracle and solve (IMin-P). We then obtain
the following positive result in the above implicit model as a corollary of Theorem 8 (a). We
discuss the explicit model in the full version. where we also show that IMCF is polytime
solvable in certain cases, such as, the single-source setting with no (or equivalently, very
large) capacities. As noted earlier, in the context of spanning-tree protocols, this implies
that in polynomial time, we can find the smallest positive integer link weights that enforce a
prescribed routing tree as a shortest-path tree rooted a given node s.

» Theorem 10. There is an additive 1-approximation for IMCF in the implicit model.
Inverse bipartite matching. In inverse bipartite matching, the input is an undirected bi-

partite graph G = (V, E). In integral max-cost bipartite matching (IMax-BMat), we have a
collection My, ..., M} of maximal matchings, and we seek positive, integral edge costs {ce }eck

1:11

ESA 2018

1:12

Algorithms for Inverse Optimization Problems

minimizing ||¢||oo so that My, ..., My, are the unique max-cost bipartite matchings in G. In the
implicit model, we are given E' C E, and we require that the set of max-cost bipartite match-
ings be the set of maximal matchings contained in E'. (Max-cost matchings must be maximal.)
The max-cost bipartite matching LP is: max Y, cexe st. z(6(v)) <1Vv eV, z>0.
We also consider integral min-cost bipartite matching (IMin-BMat), where we are given per-
fect matchings My, . .., My, and we seek positive integral edge costs {c. }eep minimizing | ¢||oo
such that these are the unique min-cost perfect matchings in G. In the implicit model, we are
given E' C E, and the set of min-cost perfect matchings should be the set of perfect matchings
contained in E'. The min-cost perfect matching problem can be modeled by the following
LP: min) cexe s.t. x(é(v)) =1Vv €V, x>0. The constraint matrix in the above
LPs is TU and has column sparsity 2. We devise a face oracle for IMax-BMat and IMin-BMat
in the explicit setting, and a maximality oracle for IMax-BMat in the implicit setting when
E' = E by exploiting various structural properties of bipartite matchings. (A minimality
oracle for IMin-BMat is easy since the corresponding polytope is defined by equations and
nonnegativity constraints.) The maximality oracle for IMax-BMat determines if there exist
two maximal matchings of different costs; we note that the related problem of finding a
min-cost maximal matching is NP-hard. Theorems 8(a) and 9(a) then yield the following.

» Theorem 11. We can obtain additive guarantees of 1 for IMin-BMat, and IMax-BMat in
the explicit setting, and IMax-BMat in the implicit setting when E' = E.

5 Inverse matroid-basis optimization

We consider the integral inverse min-cost matroid basis (IMin-Basis) and integral inverse
maz-cost matroid basis (IMax-Basis) problems. In both problems, the input is a matroid
M = (E,T) (specified by an independence oracle) and a collection S of bases of M. The goal
is to find positive, integral costs {ce}ecr such that the bases in S are the unique optimal
bases under these costs, so as to minimize ||¢||»,. More precisely, in IMin-Basis, we require
that the bases in S be the unique min-cost bases under the {c.} costs, while in IMax-Basis, we
require that the bases in S be the unique maxz-cost bases under the {c.} costs. In the implicit
model, we are given U C E, which implicitly specifies S to be all bases of M contained in U.

» Theorem 12. We can solve IMin-Basis and IMax-Basis in polynomial time.

6 Extensions and variants

Our techniques are versatile and yield guarantees for other variants of integral inverse
optimization mentioned in Section 2, including the ¢,-norm version (minimize ||c||,) and
distance-minimization version (minimize ||c — ¢(?||«, where ¢(®) € ZE) problems; for these
two problems our guarantees follow by simply combining our earlier results with Theorem 1.

Inverse shortest paths. We obtain multiplicative guarantees of 2 and 3 respectively for
the ¢,-norm variant of ISP and multicommodity ISP respectively, and obtain the optimal
solution and an additive guarantee of 1 for the distance-minimization variants. Bley [4]
considered the ISP variant where we seek positive, integral costs so as to minimize max;=1,. .
(shortest-s; ~t;-path distance). A related variant specifies integer upper bounds {D;}¥_; on
the shortest-s; ~»t;-path distances, and seeks a positive, integral cost vector ¢ that respects
these bounds and minimizes ||¢||s. The guarantees in Theorems 5, 6 hold for both variants.

S. Ahmadian et al.

» Theorem 13. We obtain the following multiplicative guarantees for the £,-norm and

distance-minimization versions of integral inverse polyhedral optimization.

(a) 3-approzimation for IMin-Poly with P = {z € R¥ : Az > b, x > 0}, where A is TU and
b is integral.

(b) (k + 1)-approzimation for IMax-Poly with P = {z € R¥ : Ayxz = by, Asx < by, x>0},
where AT = (AT AT) is a {0,1} matriz, and A has column sparsity k.

(c) (k+2)-approzimation for of IMin-Poly with P = {x € RF : Ajz = by, Asx > by, >0},
where AT = (AT AT) is a {0,1} matriz, and A has column sparsity k.

In the explicit model, we assume that we have a face oracle for P. In the implicit model, we

assume that we have a minimality/mazimality oracle for P.

» Theorem 14. (a) There is a multiplicative 2-approzimation algorithm for the £,-norm
minimization versions of IMin-Basis and IMax-Basis. (b) The distance-minimization versions
of IMin-Basis and IMax-Basis can be solved exactly in polytime.

—— References

1 Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,
algorithms, and applications. Prentice hall, 1993.

2 R.K. Ahuja and J.B. Orlin. Inverse optimization. Oper. Res., 49:171-783, 2001.

3 W. Ben-Ameur and E. Gourdin. Internet routing and related topology issues. SIAM J.
Discrete Math., 17:18-49, 2004.

4 A. Bley. Inapproximability results for the inverse shortest paths problem with integer
lengths and unique shortest paths. Networks, 50:29-36, 2007.

5 Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Hans Raj Tiwary. The negative cy-
cles polyhedron and hardness of checking some polyhedral properties. Annals of Operations
Research, 188(1):63-76, 2011.

6 David Bremner, Komei Fukuda, and Ambros Marzetta. Primal-dual methods for vertex
and facet enumeration. Discrete & Computational Geometry, 20(3):333-357, 1998.

7 D. Burton, W. Pulleyblank, and Ph. L. Toint. The inverse shortest paths problem with
upper bounds on shortest paths costs. In Network optimization, pages 156—171. Springer,
1996.

8 D Burton and Ph L Toint. On the use of an inverse shortest paths algorithm for recovering
linearly correlated costs. Mathematical Programming, 63(1):1-22, 1994.

9 D. Burton and Ph.L. Toint. On an instance of the inverse shortest paths problem. Math.
Program., 53:45—61, 1992.

10 Michael R Bussieck and Marco E Liibbecke. The vertex set of a 0l-polytope is strongly
p-enumerable. Computational Geometry, 11(2):103-109, 1998.

11 Mikael Call and Kaj Holmberg. Complexity of inverse shortest path routing. In INOC,
pages 339-353. Springer, 2011.

12 Robert B Dial. Minimal-revenue congestion pricing part i: A fast algorithm for the single-
origin case. Transportation Research Part B: Methodological, 33(3):189-202, 1999.

13 Robert B Dial. Minimal-revenue congestion pricing part ii: An efficient algorithm for the
general case. Transportation Research Part B: Methodological, 34(8):645-665, 2000.

14 Martin E Dyer. The complexity of vertex enumeration methods. Mathematics of Operations
Research, 8(3):381-402, 1983.

15 F. Grandoni, G. Nicosia, G. Oriolo, and L. Sanita. Stable routing under the spanning tree
protocol. Operations Research Letters, 38:399-404, 2010.

16 N. Haehnle, L. Sanita, and R. Zenklusen. Stable routing and unique-max coloring on trees.
SIAM J. Discret. Math, 27:109-125, 2013.

1:13

ESA 2018

1:14

Algorithms for Inverse Optimization Problems

17

18

19

20

21

22
23

24

25

26

27

28

29

30

C. Heuberger. Inverse combinatorial optimization: A survey on problems, methods, and
results. J. Combin. Optim., 8:329-361, 2004.

Garud Iyengar and Wanmo Kang. Inverse conic programming with applications. Operations
Research Letters, 33(3):319-330, 2005.

Gertrud Neumann-Denzau and Jérn Behrens. Inversion of seismic data using tomographical
reconstruction techniques for investigations of laterally inhomogeneous media. Geophysical
Journal International, 79(1):305-315, 1984.

J. Scott Provan. Efficient enumeration of the vertices of polyhedra associated with network
LP’s. Math. Program., 63(1):47-64, 1994.

Robert C Read. Bounds on backtrack algorithms for listing cycles, paths and spanning
trees. Networks, 5:237-252, 1975.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
Albert Tarantola. Inverse problem theory and methods for model parameter estimation.
SIAM, 2005.

H.R. Varian. Revealed preference. Samuelsonian Economics and the Twenty-first Century,
pages 99-115, 2006.

S. Xu and J. Zhang. An inverse problem of the weighted shortest path problem. Japan J.
Indust. Appl. Math., 12:47-59, 1995.

J. Zhang and M.C. Cai. Inverse problem of minimum cuts. Mathematical Methods of Oper.
Res., 47:51-58, 1998.

J. Zhang and Z. Liu. A general model of some inverse combinatorial optimization problems
and its solution method under l-infinity norm. J. Combin. Optim., 6:207-227, 2002.

J. Zhang and Z. Ma. Solution structure of some inverse combinatorial optimization prob-
lems. J. Combin. Optim., 3:127-139, 1999.

Jianzhong Zhang and Zhenhong Liu. Calculating some inverse linear programming prob-
lems. Journal of Computational and Applied Mathematics, 72(2):261-273, 1996.
Jianzhong Zhang and Zhenhong Liu. A further study of inverse linear programming prob-
lems. Journal of Computational and Applied Mathematics, 106:345-359, 1999.

Two-Dimensional Maximal Repetitions

Amihood Amir!
Bar Ilan University, Ramat-Gan, 52900, Israel
amir@esc.biu.ac.il

Gad M. Landau?

University of Haifa, Haifa 31905, Israel, and

NYU Tandon School of Engineering, New York University,
Six MetroTech Center, Brooklyn, NY 11201, USA
landau@univ.haifa.ac.il

Shoshana Marcus

Kingsborough Community College of the City University of New York
2001 Oriental Boulevard, Brooklyn, NY 11235, USA
shoshana.marcus@kbcc.cuny.edu

Dina Sokol?

Brooklyn College of the City University of New York
2900 Bedford Avenue, Brooklyn, NY, 11210, USA
sokol@sci.brooklyn.cuny.edu

—— Abstract

Maximal repetitions or runs in strings have a wide array of applications and thus have been
extensively studied. In this paper, we extend this notion to 2-dimensions, precisely defining a
mazimal 2D repetition. We provide initial bounds on the number of maximal 2D repetitions
that can occur in a matrix. The main contribution of this paper is the presentation of the first
algorithm for locating all maximal 2D repetitions in a matrix. The algorithm is efficient and
straightforward, with runtime O(n?lognloglogn+ plogn), where n? is the size of the input, and
p is the number of 2D repetitions in the output.

2012 ACM Subject Classification Mathematics of computing — Combinatorics on words, The-
ory of computation — Design and analysis of algorithms

Keywords and phrases pattern matching algorithms, repetitions, periodicity, two-dimensional

Digital Object ldentifier 10.4230/LIPIcs.ESA.2018.2

1 Introduction

Repetitions in strings constitute one of the most fundamental areas of string combinatorics.
They are exploited in the design of efficient algorithms for string matching, data compression,
and analysis of biological sequences. Maximal repetitions are important structures, as they
encode all of the repetitions in the string in a concise way. Once the set of maximal repetitions
is known, repetitions of any other type (such as squares and cubes) can be extracted from it.

L Partially supported by the Israel Science Foundation grant 571/14 and Grant No. 2014028 from the
United States-Israel Binational Science Foundation (BSF).

2 Partially supported by the Israel Science Foundation grant 571/14 and Grant No. 2014028 from the
United States-Israel Binational Science Foundation (BSF).

3 Partially supported by Grant No. 2014028 from the United States-Israel Binational Science Foundation
(BSF).

© Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol;
37 licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 2; pp. 2:1-2:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:amir@esc.biu.ac.il
mailto:landau@univ.haifa.ac.il
mailto:shoshana.marcus@kbcc.cuny.edu
mailto:sokol@sci.brooklyn.cuny.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

Two-Dimensional Maximal Repetitions

Driven by the many applications to pattern recognition, low level image processing,
computer vision and multimedia, the past decades have seen the extension of clever string
searching techniques and combinatorial properties to two-dimensional arrays. However, the
notion of maximal two-dimensional repetitions has not been explored, neither from the
combinatorial perspective nor from the algorithmic perspective. Thus, in this project we
propose to fill this void. We define a maximal 2D repetition to be a submatrix that can be
decomposed into repeating non-overlapping occurrences of the same subblock horizontally
and vertically that is maximally extended in all directions.

A range of motivating applications exist that can spur the exploration of maximal
repetitions in matrices. In one-dimension, algorithms that compute all the maximal repetitions
in a text have application to data compression. The discovery of repetitive structures in the
two-dimensional sense can lead to improvements in the compression schemes used for images
and video. Just as properties of repetitions have enabled the speeding up of one-dimensional
pattern searching algorithms and are relied on by space-efficient one-dimensional pattern
matching algorithms, discovering properties of two-dimensional repetitions should create new
possibilities and opportunities to speed up two-dimensional string matching algorithms and
to design algorithms that use less working space in memory.

As Crochemore et al. have pointed out [9], “the difficulties in extending string-matching
techniques to image pattern matching methods are essentially due to different and more
complex structures of 2D-periodicities.”

In this paper we define two-dimensional mazimal repetitions for matrices, prove upper
bounds on the number of maximal repetitions that can occur in a matrix, and develop an
efficient algorithm for locating them. We begin by putting our work in context of related
work in Section 2. In Section 3 we precisely define a 2D maximal repetition. Then, in Section
4, we prove that there are at most O(n?) maximal 2D repetitions in an n x n matrix. In
Section 5 we develop an algorithm to find all the maximal 2D repetitions in an n X n matrix
in close to linear time.

2 Related Work

A string r is periodic if its longest prefix that is also a suffix is at least half the length of
r. A string s is primitive if it cannot be expressed in the form s = u/, for some integer
j > 1 and some prefix u of s. A periodic string r can be expressed as u’u’ for one unique
primitive u, which is called the period of r. Every non-primitive string is periodic but not
every periodic string is non-primitive. For example, abc, abcab are both primitive and
non-periodic, abcabc is non-primitive (and hence periodic), while abcabca is primitive and
periodic with period abc.

In a string s, a maximal repetition, or run, is a periodic substring r with period v in
which an extension by one letter to the right or to the left yields a string with a longer
period than |u| [16]. The maximal repetitions in a string can overlap, be embedded one
within another, or begin at the same position. Thus, it was remarkable when Kolpakov and
Kucherov proved that a string of length n can contain only O(n) runs [16]. More recently,
Bannai et al. proved that the number of runs is strictly less than n [6].

A square is a particular type of repetition. In one-dimension, a square is a string which
consists of precisely two consecutive occurrences of a substring. Apostolico and Brimkov
[3] extend the notion of a square to two dimensions, to form a 2D tandem. They define
a 2D tandem as a configuration consisting of two occurrences of the same primitive block
that share a side or a corner. A primitive array is one that cannot be partitioned into

A. Amir, G. M. Landau, S. Marcus, and D. Sokol

non-overlapping replicas of some block W [3]. Apostolico and Brimkov prove combinatorially
that an n X n matrix can contain ©(n*) corner-sharing tandems and ©(n?3logn) side-sharing
tandems [3]. They develop an O(n?logn) algorithm for finding side-sharing tandems in an
n x n matrix, which can be used to derive an O(n?) algorithm for locating all corner-sharing
tandems [4].* In this paper we extend Apostolico and Brimkov’s concept of a side-sharing
2D tandem to many copies to form maximal tandems horizontally and vertically.

A combinatoric construct that is related to repetitions is that of periodicities, i.e. highly
repetetive subblocks. The different kinds of two-dimensional periodicities in matrices have
been studied by Amir and Benson [1] in terms of self-overlap. Their definition of line and

radiant periodicity do not result in 2D repetitions since only the overlapping portion repeats.

The lattice periodicity of Amir and Benson is most similar to a 2D repetition. It is also similar
in concept to the bi-periodic infinite pictures studied by Bacquey [5]. Bacquey provides

interesting combinatoric properties of the primitive roots of bi-periodic infinite pictures.

The current paper is more restrictive in terms of lattice periodicity in that the primitive
root always has to occur immediately adjacent to its neighbor to the right or beneath it,
forming a lattice with all right angles. Apostolico and Brimkov [3], at the beginning of the
above-mentioned paper on tandems, define exactly this kind of repetition.

The right-angle lattice periodicity is also used by Gamard and Richomme [11] where the
primitive roots of 2D arrays are studied. A matrix is defined as primitive if it cannot be
broken down to a repeating factor vertically and/or horizontally. Gamard et al. [12] show
that every matrix has one unique primitive root. They present several 2D generalizations of
the Lyndon-Schutzenberger periodicity theorem for words. However, all exponents in their
periodic matrices are integers, i.e. only whole copies of the primitive root are allowed in a
repetitive matrix.

In this paper we discuss periodicity where partial copies are allowed at the ends of the
matrix, i.e. we use real exponents. Our goal is to find mazimal rectangular submatrices that
are repetitions in a given matrix. In the next section we precisely define a 2D repetition and
a maximal 2D repetition in a matrix.

3 Definition of 2D Maximal Repetition

3.1 1D Maximal Repetitions

In one-dimensional data, a maximal repetition is a substring that is a repetition such that its

extension by one character to the right or to the left yields a word with a larger period [16].

» Definition 1. Let T be a 1D repetition of length ¢ with period U of length u. The exponent
t

e of T' is the rational number that satisfies e = .
» Lemma 2. Let T be a 1D repetition of length t with period U of size u. Let the exponent
e be the number of adjacent times U occurs in T such that U =T and w-e=1t. Then T is
maximal iff it is a substring in which extending one character to the right or left yields a

string T' of size t + 1 with period U’ of size v’ and exponent €' such that ' < e.

Proof. The proof has been omitted due to lack of space. |

4 They consider this optimal based on the largest number of such repetitions that can occur in a matrix.

However, this is not optimal for a matrix with few 2D tandems. A truly optimal algorithm would find
all 2D tandems in O(n? + occ) time, where occ is the number of 2D tandems in the matrix.

2:3

ESA 2018

2:4

Two-Dimensional Maximal Repetitions

Table 1 Non-primitive matrices.

X X | X
X XX

3.2 2D Maximal Repetitions

We say that U is a horizontal prefix (resp. suffix) in matrix M if U is an initial (resp. ending)
sequence of contiguous columns in M. A horizontal border of matrix M is a proper horizontal
prefix that is also a horizontal suffix of M. We say that B is the longest horizontal border of
M if it is the horizontal border of M that spans the largest number of columns among the
horizontal borders of M.

» Definition 3. The horizontal period, or h-period, of an m x n matrix M is n — b where b
is the number of columns contained in the longest horizontal border of M.

» Definition 4. [8, 17] An m x n matrix M with h-period p is horizontally periodic, or
h-periodic, if p < [5.
The vertical period of a matrix and vertical periodicity are defined analogously.

» Definition 5. [3] A matrix M is a two-dimensional repetition if M is h-periodic and
v-periodic.

Consider an m x n matrix M and rational numbers z > 0, y > 0. M*¥ is the matrix
constructed by repeating M z times vertically and y times horizontally, yielding an |xm] x
lyn| matrix.

For example,

a b ¢ d
M:Lfgh}

a b ¢c d a b ¢ d ¢ ;)C ¢ Z ¢ ;)C

ML5:2:25 _ f g hefgh e M5 — € g €
b J b J a b ¢ d a b
c a c e f g hoe f

» Definition 6. [3, 12] A matrix M is primitive if it cannot be partitioned into more than
one non-overlapping complete occurrences of some block W. M is non-primitive if M can be
expressed as M = W™ for integers r, s such that either » > 1 or s > 1 or both r and s are
strictly greater than 1.

Table 1 shows the different basic configurations of a non-primitive matrix. As in the string
terminology, a periodic matrix can be either primitive or non-primitive. In the example,
M1-52:25 i3 hoth periodic and primitive, while M %% is periodic and non-primitive.

» Definition 7. The primitive root W of a matrix M is a primitive submatrix such that
M = W™* for rational numbers r,s. M begins with W at its upper left corner and can be
partitioned into non-overlapping replicas of W, possibly including partial occurrences of W
at its right and / or lower ends.

» Lemma 8. FEvery matriz M has a unique primitive root W such that M = W™ for
rational numbers r, s.

A. Amir, G. M. Landau, S. Marcus, and D. Sokol

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 m?
1 |a a a b a a b a a a a b a a b b a a w
2 a a a a a a a b b a b a|b a a b a Y
3 |a b J]a T _a _a -: _a -Ia a b a b Jla a a |a a X
4 |a b Ia b a b [a b Ib b b b bla a a|b b X
5 |[b a Ia a a a a a Ib a a a a b b b |a b Y
6 |a b a _b 2 _b 13 _b J b [b a b a a a a Ja b X
7 |b b b b (b b afa b a b la a a |a a Y
8 |b a a a a b a b b b b |a a a b a Y
9 |b b a b [a a b |a a a a b b b |a b Y
10 | a a b a a|b a b aJa a a |a b X
11 |a a a b b [a b a b T _a _a] a a w
12 | b b a a b |b b b b b b b |b b z
13 |a b b a [a a a a a a a |a a W
14 | b b b b |b a b a a a a b a Y
15 | a a a a b b a b Ja a a Ja a W
16 | a b b b b a a b |[b b b Ja b w
17 |a b a b a a a b b a a b a b a a a b X
18 |a a a a a b b b a b b b a b a a b a W

[

B|A |A |c |A |A |c |A |B|B|A|D|A|B|C |C|B

[*]

Figure 1 A matrix M with many maximal 2D repetitions highlighted
depicted below M and the first column of M} is depicted on the right.

Proof. The proof has been omitted due to lack of space.

» Definition 9. Let R be a 2D repetition of size r1 X ro with primitive root W of size wy X ws.
The exponent of R is a tuple (e1, e2) in which e; and e are rational numbers that satisfy

elzl’;—llandegzl%.

In a 2D repetition R =

w w w’
w w w’
W/l W// W//l

. The first row of M} is

<

there are at least two W-blocks horizontally and vertically. That is, the primitive root W
repeats both to the right and underneath its initial occurrence in R.

We introduce the idea of a maximal two-dimensional repetition. A 2D repetition R

with root W is mazimal if it cannot be extended by one row or one column to obtain a

2D repetition with the same primitive root W. Figure 1 depicts a matrix with many 2D

maximal repetitions highlighted.

» Lemma 10. A 2D repetition R of size r1 X ro with root W of size wy X wo and exponent
(e1,e2) is mazimal iff extending R by one row or column in either direction yields a matriz
R’ of size vy x rh with primitive root W' of size w} x wh and exponent (e},eh) such that

ey < ey ore) <es.

Proof. The proof has been omitted due to lack of space.

4 Bounds on the Number of 2D Maximal Repetitions

» Lemma 11. There are O(n®) mazimal 2D repetitions in an n x n matriz.

2:5

ESA 2018

2:6

Two-Dimensional Maximal Repetitions

Proof. In each row there are O(n) maximal 1D repetitions [16]. For each possible height
0 < h < n, we can linearize the 2D submatrix beginning in each row with height h and width
n, by naming metacharacters of subcolumns of height h. This linearization yields a string of
length n with O(n) runs. Thus, beginning in each row, for each height, we have O(n) 2D
h-periodic horizontally maximal repetitions, resulting in O(n?) over all rows. The number of
2D maximal repetitions is no more than the number of h-periodic submatrices, since all 2D
maximal repetitions are h-periodic. <

5 Algorithm to Find 2D Maximal Repetitions

In this section we develop an efficient algorithm to identify all maximal 2D repetitions in
an n x n matrix M. The naive algorithm can examine each of the O(n*) submatrices in M.
For each submatrix .S, we can check whether S can possibly be the primitive root of a 2D
repetition by attempting to extend it as far as possible. This would take O(n°) time for all
submatrices S. Using LCA queries within each row or column to extend S would speed up
the algorithm to O(n®) time. The last step that remains is to filter out repetitions that were
located more than once, which can complete the process in O(n®) time. The remainder of
this section presents a more efficient O(n?lognloglogn + plogn) algorithm for finding all p
maximal 2D repetitions that occur in M.

Algorithm Overview:

Step 1 Preprocess the matrix and set up data structures that are used later on by algorithm.

Step 2 Search in each row of the matrix for h-periodic submatrices of height 2¢, for every
1 < i <logn, that begin in that row.

Step 3 Locate all maximal 2D repetitions of height 2¢ < r < 2¢*!, for every 1 < i < logn,
whose prefix 2¢ rows are v-periodic.

Step 4 Identify the maximal 2D repetitions of height 2! < r < 2!+1 for every 1 < i < logn,
whose v-period is not apparent in the first 2 rows.

5.1 Step 1: Preprocessing the matrix

There are three steps to the preprocessing stage of our algorithm:

1. Naming
We use Karp-Miller-Rosenberg (KMR) naming [14] on matrix M. One-dimensional KMR
naming works with a string, naming each substring whose length is a power of 2. In
two-dimensions, we name subcolumns of an n x n matrix M spanning a number of rows
that are powers of 2, i.e., r = 2,1 < i < logn. We construct log n matrices of names
called M}, for each 1 < i < logn, by naming subcolumns of heigth 2¢. Similarly, we
construct a second set of log n matrices of names which we call M}, for each 1 < j < logn,
by naming subrows of M whose widths are 27. Throughout the rest of this paper, i is
used as the exponent when denoting a number of rows, e.g. height 2¢, while j is used in
reference to columns, e.g. width 27.

2. Substring Periodicity Queries
A Substring Periodicity Query (SPQ) is as follows: given a string T of length n and two
indices, 1 < i < j < n, return the period length of T7i..j], when TTi..j] is a repetition.
Kociumaka et al. [15] presented an algorithm that processes a string in linear time
and space to support O(1) time Substring Periodicity Queries, which they call 2-Period
Queries. (Similar time and space complexities are presented by Bannai et al. [7].) We
preprocess each column of M, for each 1 < j < logn, in linear time following the
algorithm of Kociumaka et al. [15] to support O(1) time SPQ.

A. Amir, G. M. Landau, S. Marcus, and D. Sokol

3. Vertical Squares Preprocessing

We build and decorate suffix trees of each column in each of M7, 1 < j < logn, using
the approach of Gusfield and Stoye [13]. The decorated suffix tree marks the endpoints
of tandem repeats, either at a node or along an edge. In each decorated suffix tree,
we add a link at each node that points to its closest ancestor that is marked or has a
marked edge leading into it. We also add links from each marked node to its closest
marked ancestor. We then preprocess each decorated suffix tree to admit O(loglogn)
time weighted ancestor queries, where the weight of a node corresponds to the string
length it encodes in the suffix tree [2].

Time Complexity for Preprocessing: Subcolumns and subrows can be named with gener-
alized suffix trees of the matrix columns and of the matrix rows for each of the logn matrices
of names. This takes O(n?logn) time, since the naming can be done during Ukkonen’s suffix
tree construction process [18]. We build a suffix tree of the matrix and preprocess it in linear
time to admit O(1) time LCA queries later on. The preprocessing of Kociumaka et al. [15]
for SPQ rums in linear time per column of each matrix of names, a total of O(n?logn) time
and space. Suffix trees of each column in each of M7, 1 < j < logn, are constructed in linear
O(n?) time and space for each column, overall O(n?logn), and the preprocessing of Amir et
al. [2] for weighted ancestor queries is also linear in time and space. In total, the complexity
of preprocessing is O(n?logn) time and space.

5.1.1 Queries Used in Algorithm

Once the preprocessing is performed, we can make use of three kinds of efficient queries later
on in our algorithm.

Query 1: Vertical Periodicity Query. Given an h-periodic submatrix S within matrix M,
what is the vertical period of S?

A Vertical Periodicity Query can be answered in constant time by a SPQ in a column
of one of the matrices of names MJ,1 < j <logn. If S has width 27, we use MJ. Suppose
S begins in row « and ends in row 8 of M. We ask a SPQ in the column of M/ in which
S begins with indices « and 8 that indicate the starting and ending rows of S in M. If §
has width ¢ such that 27 < ¢ < 29+, it is sufficient to ask a SPQ on the first 27 columns of
S. Since S is h-periodic, all of its remaining columns must appear in the first 2/ columns,
and they do not affect the vertical periodicity of S. For example, in Figure 1, the Vertical
Periodicity Query (on 2 columns) will answer 4 for the 8x3 highlighted submatrix at position
(3, 14) and the Vertical Periodicity Query will answer 7 for the 14x3 highlighted submatrix
at position (3, 14).

Query 2: Vertical Extension Query. Given a submatrix R that is a 2D repetition of height
r, and an integer x < r, can R be extended vertically by = rows?

A Vertical Extension Query can be answered in O(1) time as follows. We can compute
the v-period v of R using Query 1. Let R* be the submatrix R extended above by x rows.
We do not know if R® is h-periodic so we do not use Query 1. Let the width ¢ of R satisfy
27 < ¢ < 29*1, To compute the v-periodic of R%, we use two SPQs in O(1) time: one query
for a prefix of size 2/ and another query for a suffix of size 2/ in a column of MJ. If both
answers to the SPQs are equivalent to v, then the answer to the Vertical Extension Query is
yes, meaning that the repetition R can be extended above by x rows. Otherwise, we perform
the same computation for R®, the submatrix R extended below by x rows. If the answers to

2:7

ESA 2018

2:8

Two-Dimensional Maximal Repetitions

both SPQs for R’ are equivalent to v, the answer to the Vertical Extension Query is yes.
Otherwise, the answer to the vertical extension query is no, meaning that the repetition R
cannot be extended by x rows up or down. For example, in Figure 1, a Vertical Extension
Query by 6 rows on the 8x3 2D repetition beginning at position (3, 14) answers no even
though it results in a 2D repetition since the vertical period grows with the vertical extension.

Query 3: Vertical Squares Query. Given a column ¢ in MJ, 1 < j < logn, a position
1 < p < n within the column, and 1 < ¢ < logn, locate each vertical square beginning at
position (¢, p) with height 2¢ < r < 2¢+1,

We use the data structure of the Vertical Squares Preprocessing described in Step 3 of
the preprocessing. To answer the query we ask an O(loglogn) time weighted ancestor query
on suffix p of column ¢ in M} with weight 2¢*! — 1. The returned node’s link to the closest
marked ancestor yields such a square if one exists. Later, in Lemma 20 we prove that there
are at most two answers to this query, hence, one additional link may need to be followed.

5.2 Step 2: Populate the Set H

In this section, we find h-periodic submatrices of height 2% in the input matrix. A 1D search,
e.g. [16, 6], for runs across each row in M} yields a set of h-periodic submatrices. These
submatrices are necessarily maximal in their widths but not their heights since the height is
fixed at 2¢ for some i. Since a 1D row of length n can contain O(n) repetitions [16], each row
in M! can contain O(n) h-periodic submatrices. Thus, each matrix of names can contain
O(n?) h-periodic submatrices, yielding a total of O(n? logn) h-periodic submatrices over the
log n matrices of names. These submatrices may or may not be v-periodic. However, we will
use them as a starting point for our search.

» Definition 12. Let H denote the set of all horizontally maximal h-periodic submatrices of
height 2¢, for all 1 < i < logn.

» Lemma 13. The procedure described in the previous paragraph finds every horizontally
mazimal h-periodic submatriz with height 2¢, for each 1 < i < logn, in input matriz M, i.e.
we can find the complete set H, in O(n?logn) time.

Proof. Let I be a horizontally maximal h-periodic submatrix of height 2¢, 1 < i < logn, in
M. There must be a subrow of M¢ that corresponds exactly to I. By the correctness of
the 1D search algorithm for runs across the rows of M, I will be found as a maximal 1D
run. The algorithms of [16, 6] run in linear time on each of the O(n) rows of length n in the
O(logn) texts, resulting in O(n?logn) time overall. <

In Step 3 and and Step 4 we use the set H as the starting point for our search for all 2D
maximal repetitions. We prove that each 2D maximal repetition in the desired output has
a representative in the set H that shares its h-period. Thus, our algorithm processes each
element in H, extending it possibly in several ways, yielding different size repetitions.

» Lemma 14. Each mazximal 2D repetition R of height 28 < r < 2+1 1 < i <logn, has a
representative R’ € H that overlaps R by 2° rows and shares a corner on the left with R. R
also has a representative R € H that overlaps R by 2' rows and shares a corner on the right

with R.

A. Amir, G. M. Landau, S. Marcus, and D. Sokol

Proof. Let R be a maximal 2D repetition of height r. If » = 21,1 < i < logn, then R € H
and R is its own representative. Now suppose 2¢ < r < 271, Let R denote the prefix 2° rows
of R. Let R denote the suffix 2 rows of R. If either R € H or R € H then a corner on each
side is shared with a member of H and we do not need to consider other scenarios.

Now suppose R ¢ H and R ¢ H. This implies that both R and R are not horizontally
maximal. Suppose both R and R need to be extended on the left to attain horizontal
maximality. This implies that R needs to be extended on the left to attain horizontal
maximality. This contradicts the fact that R is a maximal 2D repetition. Thus, R shares
either its upper or lower left corner with a member of H. The same argument can be used
for the existence of a representative in H that shares a right corner with R. |

» Corollary 15. Each mazimal 2D repetition R shares either its upper left corner or its
lower left corner with some element of H.

» Corollary 16. Let A be the set of all horizontal prefizes in H. FEvery maximal 2D repetition
in M s the result of a vertical extension on some element of A.

» Lemma 17. Let R be a mazimal 2D repetition of height 28 < r < 21T 1 < i < logn, with
representatives R' € H and R € H. R’ and R” both have the same h-period as R.

Proof. Let h be the h-period of R. Let I/ be the h-period of R’. Suppose h’ > h. This is
impossible since R cannot include fewer rows than R’. Suppose h’ < h. This means that the
Least Common Multiple (LCM) of the periods of the rows in R is larger than the LCM of
the periods of the rows in R’. This is only possible if some row in R that is not part of R’
has a period larger than that of any row in R’. This implies that some row in R does not
occur in R’. This is impossible since we know that more than half of the vertical repetition
in R occurs in R’, and all the rows of R must occur in R’ as well. Thus i/ = h. The same
argument can be made for the h-period of R”. |

Following Corollary 16, our algorithm will iterate through the elements in H and attempt
to extend them downward and upward®. Since we know that the repetitions in H are maximal
in width, it is not necessary to check horizontal maximality. However, it is possible that by
reducing the width, an element in H can be extended to a taller height. (See the three 2D
maximal repetitions beginning at position (13, 2) in Figure 1.) Hence, the task of extension
is non-trivial. It is further complicated by the fact that we do not know the v-period of the
elements in H. In fact, some elements in H may not be v-periodic and yet may possibly be
extendable into v-periodic matrices. (See the 14x3 2D maximal repetition at position (3, 14)
and the 11x4 2D maximal repetition at (3, 3) in Figure 1.) Thus, we consider these two cases
separately in the following two subsections. In Section 5.3, we consider the representatives in
H that are v-periodic and identify all 2D maximal repetitions of height 2¢ < r < 2¢+! whose
prefix 2! rows are v-periodic. Then, in Section 5.4, we locate the maximal 2D repetitions
of height 2! < r < 27+! whose prefix 2¢ rows do not contain two complete copies of their
v-periods.

5.3 Step 3: Extending 2D Repetitions Vertically

We begin by performing a Vertical Periodicity Query on each element in H. If the element is
v-periodic then it is processed in Step 3.

5 The rest of the paper discusses the downward direction, the upward direction is analogous.

2:9

ESA 2018

2:10 Two-Dimensional Maximal Repetitions

Algorithm 1 Find Maximal Height.

Input: 2D repetition R of height 2¢ < r < 2/+!
Output: maximal height r with width of R

> perform binary search to extend R

j—i1—1 > we will try to extend by 27 rows
while j > —1 do > last extension should be by 1 row
if Vertical Extension Query(R,2’) then
rer+27 > R is extended by 27 rows
end if
j+—ji—1 > decrementing j by 1 in effect halves the size of the extension
end while

Let R’ denote an element in H that is both h-periodic and v-periodic. Algorithm 1
attempts to add rows to R’ while maintaining its full width. A binary search procedure
performs this extension by performing a sequence of Vertical Extension Queries. Once we
have determined the maximal height for the full width, it is necessary to attempt to extend
narrower widths. The following lemma shows that when there are several 2D maximal
repetitions with the same primitive root that share a corner we get a progression of increasing
heights and corresponding decreasing widths. For example, position (13, 2) of Figure 1
depicts several 2D repetitions with the same primitive root all starting at the same position.

» Lemma 18. Let R be a maximal 2D repetition beginning at position (i, j) with dimensions
r1 X r9 and primitive Toot w of size w1 X wy. For any other maximal 2D repetition R’
beginning at (i, j) with dimensions v} x 4 and the same primitive root w, vy > r1 if and only
if h <.

Proof. The proof follows from the definition of maximality. |

This monotonicity property gives us the ability to use the modified binary search presented
in Algorithm 1 on the potential heights of a 2D repetition. To illustrate Algorithm 1, we
can consider the 13x4 maximal 2D repetition at position (2, 10) in Figure 1. We begin with
the representative in H which has 23 = 8 rows. We first try to extend downwards by 4 rows
and succeed. Then we try to extend downwards by 2 more rows and fail. Finally, we try to
extend downwards by 1 additional row and succeed, resulting in a maximal 2D repetition of
height 13.

Algorithm 2 is the outer loop; its job is to compute the widths for which it needs
Algorithm 1 to compute the corresponding maximal heights. For each repetition R of height
27 < p < 211 Algorithm 2 first checks whether it can be extended to the full height of 2¢+1.
If it can, then this particular output will be found in another iteration, and the representative
has been completed being processed. Otherwise, Algorithm 1 is called. Let r’ denote the
maximal height returned by Algorithm 1 for some repetition R. The full width of R cannot
be extended even one row past r’ since the last Vertical Extension Query failed at the end of
Algorithm 1. Hence, a Longest Common Prefix (LCP) query in M between the substring of
row 7’ 4+ 1 directly below R and the row that is a v-period above it will determine the next
width to extend. If the LCP suffices to admit two horizontal copies of the primitive root,
we attempt to extend further downwards with Algorithm 1, passing a 2D repetition whose
width is the answer to the LCP query and whose height is ' 4+ 1. This process continues
until either the width is too narrow or the height becomes 2¢+1.

A. Amir, G. M. Landau, S. Marcus, and D. Sokol

Algorithm 2 Find Maximal Repetitions with v-periodic prefix 2¢ rows.

Input: set H of h-periodic submatrices, each with height 2
Output: maximal 2D repetitions with height 2¢ < r < 2¢+! that are v-periodic in their
prefix 2¢ rows

for all R € H do > R has height r = 2, width ¢, and h-period h
Ask Vertical Periodicity Query on R to get vertical period v of R
if v < % then > R is v-periodic
repeat
d« 20t —r > d is distance to height 2¢+!
if Vertical Extension Query(R, d) then
break > Don’t process R if it extends to height 2¢+1.
end if
Call Algorithm 1 to compute maximal height v’ for R
rr

Output R with new height
> see if can extend R further downwards by decreasing its width
¢ + LCP between row r —v 4+ 1 in R and row r + 1 below R
if £ > 2h then
c ¢
r—r+1
end if
until ¢ < 2k or r > 21
> continue looking for taller and narrower 2D repetitions as long as width is
h-periodic and height is less than 27+!
end if
end for

5.

4 Step 4: Unknown Vertical Period

In this section we process all elements of H to discover v-periods that were previously

unknown. This can happen in one of two ways in a 2D repetition of height 2¢ < r < 2¢+1
1 <i<logn.

1.

The first 2¢ rows of a repetition are not v-periodic. For example, abaababa with i = 2,
and each character of the string is a metacharacter representing a subrow in M. (See the
11x4 maximal repetition at position (3, 3) in Figure 1.)

. The first 2* rows are v-periodic, but there is another v-period that comes into existence

when rows are added. For example, aabaaabaabaaab with i = 3 and each character of
the string is a metacharacter representing a subrow in M. In the first 2° rows of this
submatrix, we have the periodic string aabaaaba with period aaba. The first 14 rows are
also periodic with period aabaaab of size 7. (See the two maximal repetitions at position
(3, 14) in Figure 1.)

The following two lemmas identify the key characteristics of a 2D repetition of height

20 < pr < 271 1 < <logn, and v-period v such that v is not a vertical period in the first

2i

rows of R, i.e., v > 271,

» Lemma 19. In a 2D repetition R of height 20 < r < 21+ whose 2! prefiz rows are not
v-periodic, the exponent e of the v-period v is between 2 and 4, i.e., 2 < e < 4.

2:11

ESA 2018

2:12

Two-Dimensional Maximal Repetitions

Proof. Let |v| be the size of v. We know |v| > £2¢ = 2/~ since the first 2¢ rows of R are not
periodic in v. Thus, |v| > 2¢~! + 1. We know that the height of R is at most 21 — 1. The
longest possible height of R divided by its shortest possible root yields the largest possible
exponent for the v-period.

2i+1 -1 2i+1

N S

By the definition of an exponent for a period, e > 2. Overall, 2 < e < 4. <

» Lemma 20. Let I be an h-periodic matriz of height 28 < r < 2¢t1. No more than 2
v-periods v can occur at the beginning of I such that the first 2 rows of I are not periodic
muv.

Proof. Suppose v; and v, are the smallest v-periods in I such that v; > 2¢71 and vy > 2071,
Suppose I has a third v-period vs in which the first 2° rows are not periodic in v3. Then
v3 > v; + v [10]. Thus, v3 > 2°. This implies that vs cannot occur twice in I of height
r < 271 and I cannot be v-periodic in v3. Thus, a third v-period of height larger than 2¢~!
cannot exist in 1. |

By Lemmas 19 and 20, we know that we are looking for 2D repetitions that contain
either 2 or 3 complete copies of their v-periods and that each element of H will extend to
at most 2 new v-periods. Hence, we are looking for at most two squares that begin with [
and have height 2! < r < 2i+1. Suppose I has width ¢ such that 2/ < ¢ < 2/*! and that I
begins in row a. We ask a Vertical Squares Query on the column at which I begins in M,
a, and 7. Once we identify the 1 or 2 v-periods, if they occur, we revert back to Step 3 of
the algorithm (when the v-period is known) and use the procedure described in Algorithm 2

to find the set of maximal 2D repetitions corresponding to each v-period we have identified.

5.5 Algorithm Correctness and Time Complexity

» Theorem 21. Let M be an n x n matriz. Our algorithm finds all mazximal 2D repetitions
that occur in M.

Proof. By Lemma 14 every repetition in the output has a representative in H. It remains
to show that we hit upon every repetition R in the output with some vertical extension of
an element R’ € H that is a prefix or suffix of R. By Corollary 15, we know that R’ shares
a corner on the left with R. If R and R’ have the same primitive root (Step 3), then by
Lemma 18 the successive binary searches will hit upon every output. Now suppose that R’
has a different primitive root than R. R’ and R must have the same h-period, by Lemma 17,
so R’ and R must have different v-periods. By Lemma 20, there can be no more than two
possible v-periods to try extending with a binary search. One of the extensions must be R,
by Corollary 16. Hence, our algorithm identifies all maximal 2D repetitions in M. |

» Theorem 22. Let M be an n x n matriz. Our algorithm finds all maximal 2D repetitions
in M in O(n*lognloglogn + plogn) time, where p is the number of maximal 2D repetitions
that occur in M.

Proof. Step 1 of the Algorithm Outline, the preprocessing, was shown in Section 5.1 to be
done in O(n?logn) time. For Step 2, a linear time 1D search (e.g., [16, 6]) for runs across
each row in M yields the set H in O(n?logn) time and space.

In Step 3, we iterate through the O(n?logn) elements in H and perform a constant time
Vertical Periodicity Query on each element. Then, Algorithm 2 is called on each v-periodic

A. Amir, G. M. Landau, S. Marcus, and D. Sokol

element. Algorithm 2 performs a Vertical Extension Query and LCP query in constant time.
It also calls Algorithm 1 for each representative for each width that is necessary to check.
Algorithm 1 runs in O(#) = O(logn) time. However, the only widths that are checked are
those that will certainly produce output. Therefore, we can charge the time spent running
Algorithm 1 to the output it generates, yielding O(plogn) where p equals the number of
repetitions reported. Each repetition is reported at most twice since it can be found once by
the upward and downward extensions. For Step 4, we find the 1 or 2 v-periods of interest in
O(loglogn) time using the Vertical Squares Query and again use Algorithm 2 to find the
corresponding maximal 2D repetitions in O(n?logn + plogn) time. Hence, the total time
complexity of our algorithm is O(n?lognloglogn + plogn). <

—— References

1 A, Amir and G. Benson. Two-dimensional periodicity in rectangular arrays. SIAM J.
Comput., 27(1):90-106, 1998. doi:10.1137/50097539795298321.

2 A, Amir, G. M. Landau, M. Lewenstein, and D. Sokol. Dynamic text and static pattern
matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

3 A. Apostolico and V. E. Brimkov. Fibonacci arrays and their two-dimensional repetitions.
Theor. Comput. Sci., 237(1-2):263-273, 2000. doi:10.1016/50304-3975(98)00182-0.

4 A. Apostolico and V. E. Brimkov. Optimal discovery of repetitions in 2d. Discrete Applied
Mathematics, 151(1-3):5-20, 2005. doi:10.1016/j.dam.2005.02.019.

5 N. Bacquey. Primitive roots of bi-periodic infinite pictures. In Words 2015, 2015.

6 H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. A new characteri-
zation of maximal repetitions by Lyndon trees. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, Jan-
uary 4-6, 2015, pages 562-571, 2015. doi:10.1137/1.9781611973730.38.

7 H.Bannai, T.I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The "runs" theorem.
SIAM J. Comput., 46(5):1501-1514, 2017. doi:10.1137/15M1011032.

8 M. Crochemore, L. Gasieniec, R. Hariharan, S. Muthukrishnan, and W. Rytter. A constant
time optimal parallel algorithm for two-dimensional pattern matching. SIAM J. Comput.,
27(3):668-681, 1998. doi:10.1137/S0097539795280068.

9 M. Crochemore, L. Ilie, and W. Rytter. Repetitions in strings: Algorithms and combina-
torics. Theor. Comput. Sci., 410(50):5227-5235, 2009. doi:10.1016/j.tcs.2009.08.024.

10 M. Crochemore and W. Rytter. Sqares, cubes, and time-space efficient string searching.
Algorithmica, 13(5):405-425, 1995. doi:10.1007/BF01190846.

11 G. Gamard and G. Richomme. Coverability in two dimensions. In A. H. Dediu, E. Formenti,
C. Martin-Vide, and B. Truthe, editors, Language and Automata Theory and Applications
- 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings,
volume 8977 of Lecture Notes in Computer Science, pages 402-413. Springer, 2015. doi:
10.1007/978-3-319-15579-1_31.

12 G. Gamard, G. Richomme, J. Shallit, and T. J. Smith. Periodicity in rectangular arrays.
Inf. Process. Lett., 118:58-63, 2017. doi:10.1016/j.ipl.2016.09.011.

13 D. Gusfield and J. Stoye. Linear time algorithms for finding and representing all the tandem
repeats in a string. J. Comput. Syst. Sci., 69(4):525-546, 2004. doi:10.1016/j.jcss.2004.
03.004.

14 R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. In Proceedings of the 4th Annual ACM Symposium on Theory of
Computing, May 1-3, 1972, Denver, Colorado, USA, pages 125-136, 1972. doi:10.1145/
800152.804905.

2:13

ESA 2018

http://dx.doi.org/10.1137/S0097539795298321
http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1016/S0304-3975(98)00182-0
http://dx.doi.org/10.1016/j.dam.2005.02.019
http://dx.doi.org/10.1137/1.9781611973730.38
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.1137/S0097539795280068
http://dx.doi.org/10.1016/j.tcs.2009.08.024
http://dx.doi.org/10.1007/BF01190846
http://dx.doi.org/10.1007/978-3-319-15579-1_31
http://dx.doi.org/10.1007/978-3-319-15579-1_31
http://dx.doi.org/10.1016/j.ipl.2016.09.011
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1145/800152.804905
http://dx.doi.org/10.1145/800152.804905

2:14 Two-Dimensional Maximal Repetitions

15 T. Kociumaka, J. Radoszewski, W. Rytter, and T. Walen. Internal pattern matching
queries in a text and applications. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 532-551, 2015. doi:10.1137/1.9781611973730.36.

16 R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 596-604. IEEE Computer Society, 1999. doi:10.1109/
SFFCS.1999.814634.

17 S. Marcus and D. Sokol. 2d Lyndon words and applications. Algorithmica, 77(1):116-133,
2017. d0i:10.1007/s00453-015-0065-z.

18 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995. doi:
10.1007/BF01206331.

http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1007/s00453-015-0065-z
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331

Approximate Convex Intersection Detection with
Applications to Width and Minkowski Sums

Sunil Arya'

Department of Computer Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong

arya@cse.ust.hk

Guilherme D. da Fonseca?
Université Clermont Auvergne, LIMOS, and INRIA Sophia Antipolis, France
fonseca@isima.fr

David M. Mount?

Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD, USA

mount@cs.umd.edu

—— Abstract

Approximation problems involving a single convex body in R? have received a great deal of
attention in the computational geometry community. In contrast, works involving multiple con-
vex bodies are generally limited to dimensions d < 3 and/or do not consider approximation. In
this paper, we consider approximations to two natural problems involving multiple convex bodies:
detecting whether two polytopes intersect and computing their Minkowski sum. Given an approx-
imation parameter € > 0, we show how to independently preprocess two polytopes 4, B C R? into
data structures of size O(1/e(?=1)/2) such that we can answer in polylogarithmic time whether
A and B intersect approximately. More generally, we can answer this for the images of A and B
under affine transformations. Next, we show how to e-approximate the Minkowski sum of two
given polytopes defined as the intersection of n halfspaces in O(nlog(1/e) 4 1/e(@=1/2+a) time,
for any constant o > 0. Finally, we present a surprising impact of these results to a well studied
problem that considers a single convex body. We show how to e-approximate the width of a set
of n points in O(nlog(1/e) + 1/e(@=1/2+) time, for any constant a > 0, a major improvement
over the previous bound of roughly O(n 4 1/¢971) time.

2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases Minkowski sum, convex intersection, width, approximation

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.3

1 Introduction

Approximation problems involving a single convex body in d-dimensional space have received
a great deal of attention in the computational geometry community [4, 9, 10, 11, 12, 18, 19, 45].
Recent results include near-optimal algorithms for approximating the convex hull of a set
of points [9, 19], as well as an optimal data structure for answering approximate polytope

! Research supported by the Research Grants Council of Hong Kong, China under project number
16200014.

2 Research supported by the European Research Council under ERC Grant Agreement number 339025
GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions).

3 Research supported by NSF grant CCF-1618866.

© Sunil Arya, Guilherme D. da Fonseca, and David M. Mount;

licensed under Creative Commons License CC-BY
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 3; pp. 3:1-3:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:arya@cse.ust.hk
mailto:fonseca@isima.fr
mailto:mount@cs.umd.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2

Approximate Convex Intersection Detection with Applications

membership queries [11]. In contrast, works involving multiple convex bodies are generally
limited to dimensions d < 3 and/or do not consider approximation [2, 13, 29, 30, 44]. In
this paper we present new approximation algorithms to natural problems that either involve
multiple convex polytopes or result from such an analysis:

Determining whether two convex polytopes A and B intersect

Computing the Minkowski sum, A @ B, of two convex polytopes

Computing the width of a convex polytope A (which results from an analysis of the

Minkowski sum A @ (—A))

Throughout we assume that the input polytopes reside in R? and are full-dimensional,
where the dimension d is a fixed constant. Polytopes may be represented either as the
convex hull of n points (point representation) or as the intersection of n halfspaces (halfspace
representation). In either case, n denotes the size of the polytope.

1.1 Convex Intersection

Detecting whether two geometric objects intersect and computing the region of intersection
are fundamental problems in computational geometry. Geometric intersection problems arise
naturally in a number of applications. Examples include geometric packing and covering,
wire and component layout in VLSI, map overlay in geographic information systems, motion
planning, and collision detection. Several surveys present the topics of collision detection
and geometric intersection [33, 36, 37].

The special case of detecting the intersection of convex objects has received a lot of
attention in computational geometry. The static version of the problem has been considered
in R? [39, 42] and R3 [20, 38]. The data structure version where each convex object is
preprocessed independently has been considered in R? [13, 21, 22, 25] and R? [13, 22, 25, 26].

Recently, Barba and Langerman [13] considered the problem in higher dimension. They
showed how to preprocess convex polytopes in R? so that given two such polytopes that
have been subject to affine transformations, it can be determined whether they intersect
each other in logarithmic time. However, the preprocessing time and storage grow as the
combinatorial complexity of the polytope raised to the power |d/2]. Since the combinatorial
complexity of a polytope with n vertices can be as high as @(nLd/ 2J)7 the storage upper
bound is roughly O(nd2/ 4). This high complexity motivates the study of approximations to
the problem.

We define approximation in a manner that is sensitive to direction. Consider any convex
body K in R? and any ¢ > 0. Given a nonzero vector v € R?, define II,(K) to be the
minimum slab defined by two hyperplanes that enclose K and are orthogonal to v. Define
the directional width of K with respect to v, width, (K), to be the perpendicular distance
between these hyperplanes. Let IL, .(K) be the central expansion of II,(K) by a factor of
1+ ¢, and define K. to be the intersection of these expanded slabs over all unit vectors v. It
can be shown that for any v, width, (K;) = (1 + ¢) width, (K). An e-approzimation of K
is any set K’ (which need not be convex) such that K C K’ C K.. This defines an outer
approximation. It is also possible to define an analogous notion of inner approximation in
which each directional width is no smaller than 1 — ¢ times the true width. Our results can
be extended to either type of approximation.

Given a discrete point set S in R%, an e-kernel of S is any subset @ C S such that
conv(Q) is an inner e-approximation of conv(S) [4]. Tt is well known that O(1/e(¢=1)/2)
points are sufficient and sometimes necessary in an e-kernel. Kernels efficiently approximate
the convex hull and as such have been used to obtain fast approximation algorithms to
several problems such as diameter, minimum width, convex hull volume, minimum enclosing
cylinder, minimum enclosing annulus, and minimum-width cylindrical shell [4, 5].

S. Arya, G. D. da Fonseca, and D. M. Mount

AaB X

Ao —-A

(a) (b)

Figure 1 Minkowski sum and its relationship to width.

In the e-approximate version of convex intersection, we are given two convex bodies A
and B and a parameter ¢ > 0. If AN B # (), then the answer is “yes” If A. N B. = 0,
then the answer is “no.” Otherwise, either answer is acceptable. The e-approximate polytope
intersection problem is defined as follows. A collection of two or more convex polytopes in R¢
are individually preprocessed (with knowledge of £). Given any two preprocessed polytopes,
A and B, the query determines whether A and B intersect approximately. In general, the
query algorithm can be applied to any affine transformation of the preprocessed polytopes.

» Theorem 1. Given a parameter e > 0 and two polytopes A, B C R? each of size n (given
either using a point or halfspace representation), we can independently preprocess each polytope
into a data structure in order to answer e-approximate polytope intersection queries with query
time O(polylog %), storage O(1/(=1/2) and preprocessing time O(n log% + 1/eld=1)/2+e)
where a is an arbitrarily small positive constant.

The space is nearly optimal because there is a lower bound of Q(1/£(?=1/2) on the
worst-case bit complexity of representing an e-approximation of a polytope [11].

1.2 Minkowski Sum

Given two convex bodies A, B C R?, the Minkowski sum A & B is defined as {p+q:p€
A, q € B} (see Figure 1(a)). Minkowski sums have found numerous applications in motion
planning [7, 31], computer-aided design [44], computational biology [40], satellite layout [15],
and image processing [35]. Minkowski sums have been also been well studied in the context
of discrete and computational geometry [1, 3, 29, 32, 43].

It is well known that in dimension d > 3, the number of vertices in the Minkowski
sum of two polytopes can grow as rapidly as the product of the number of vertices in the
two polytopes [7]. This has led to the study of algorithms to compute approximations to
Minkowski sums in R? [2, 30, 44]. In this paper, we show how to approximate the Minkowski
sum of two convex polytopes in R? in near-optimal time.

» Theorem 2. Given a parameter e > 0 and two polytopes A, B C R? each of size n (given
either using a point or halfspace representation), it is possible to construct an e-approximation
of A® B of size O(1/£(4=1/2) in O(n log 1 + 1/e(@=1D/24e) time, where o is an arbitrarily
small positive constant.

The output representation can be either point-based or halfspace-based.

3:3

ESA 2018

3:4

Approximate Convex Intersection Detection with Applications

1.3 Width

Define the directional width of a set S of n points to be the directional width of conv(S).
The width of S is the minimum over all directional widths. The mazimum over all directional
widths is equal to the diameter of S. Both problems can be approximated using the e-kernel
of S. After successive improvements [4, 6, 8, 14, 18], algorithms to compute e-kernels and to
e-approximate the diameter in roughly O(n+1/%?) time have been independently discovered
by Chan [19] and the authors [9]. Somewhat surprisingly, these works offer no improvement
to the running time to approximate the width [4, 17, 18, 28, 45], which Chan [19] posed
as an open problem. The fastest known algorithms date from over a decade ago and take
roughly O(n + 1/¢471) time [17, 18].

Agarwal et al. [2] showed that the width of a convex body K is equal to the minimum
distance from the origin to the boundary of the convex body K & (—K) (see Figure 1(b)).
Using Theorem 2, we can approximate the width by computing an e-approximation of
K @ (—K) represented as the intersection of halfspaces and then determining the closest
point to the origin among all bounding hyperplanes. The following presents this result.

» Theorem 3. Given a set S of n points in R and an approzimation parameter € > 0, it is
possible to compute an e-approzimation to the width of S in O(n logé + 1/eld=D/24e) time,
where « s an arbitrarily small positive constant.

1.4 Techniques

Our algorithms and data structure are based on a data structure defined by a hierarchy
of Macbeath regions [9, 11], which answers approximate directional width queries in poly-
logarithmic time. First, we show how to use this data structure as a black box to answer
approximate polytope intersection queries by transforming the problem to a dual setting and
performing a multidimensional convex minimization. Next, we show how to use approximate
polytope intersection queries to compute e-approximations of the Minkowski sum. The
approximation to the width follows directly.

Since we only access the input polytopes through a data structure for approximate
directional width queries, our results apply in much more general settings. For example,
we could answer in polylogarithmic time whether the Minkowski sum of two polytopes
(preprocessed independently) approximately intersects a third polytope. Our techniques are
also amenable to other polytope operations such as intersection and convex hull of the union,
as long as the model of approximation is defined accordingly.

The preprocessing time of the approximate directional width data structure we use is
O(nlog L +1/e(@=1/2+) for arbitrarily small @ > 0. If this preprocessing time is reduced
in the future, the complexity of our algorithms becomes equal to the preprocessing time plus
O((1/¢“=1/2) polylog 1).

2 Preliminaries

In this section we present a number of results, which will be used throughout the paper. The
first provides three basic properties of Minkowski sums. The proof can be found in standard
sources on Minkowski sums (see, e.g., [41]).

» Lemma 4. Let A, B C R? be two (possibly infinite) sets of points. Then:
(@) ANB#0 if and only if O € A® (—B), where O is the origin.

(b) conv(A @ B) = conv(A) @ conv(B).

(c) For all nonzero vectors v, width, (A @ B) = width,(A4) + width, (B).

S. Arya, G. D. da Fonseca, and D. M. Mount

Next, we recall a recent result of ours on answering directional width queries approxi-
mately [9], which we will use as a black box later in this paper. Given a set S of n points in a
constant dimension d and an approximation parameter € > 0, the answer to the approximate
directional width query for a nonzero query vector v consists of a pair of points p,q € S such
that width, ({p,¢}) > (1 — &) width,(S).

» Lemma 5. Given a set S of n points in R? and an approzimation parameter € > 0, there
is a data structure that can answer e-approximate directional width queries with query time
O(log? 1), space O(1/e4=1/2) and preprocessing time O(n log 1 + 1/eld=1/2+4e),

2.1 Fattening

Existing algorithms and data structures for convex approximation often assume that the
bodies have been fattened through an appropriate affine transformation. In the context of
multiple bodies, this is complicated by the fact that different fattening transformations may
be needed for the two bodies or their Minkowski sum. In this section we explore this issue.

Consider a convex body K in d-dimensional space R?. Given a parameter 0 < v < 1, we
say that K is y-fat if there exist concentric Euclidean balls B and B’, such that B C K C B’,
and radius(B)/ radius(B’) > v. We say that K is fat if it is -fat for a constant ~ (possibly
depending on d, but not on ¢ or K). For a centrally symmetric convex body C, the body
obtained by scaling C' about its center by a factor of A is called the A-expansion of C.

Let K be a convex body. We say that a convex body C'is a A-sandwiching body for K if
C'is centrally symmetric and C C K C C’, where C’ is a A-expansion of C'. John [34] proved
tight bounds for the constant A of a A-sandwiching ellipsoid. This ellipsoid is referred to as
the John ellipsoid.

» Lemma 6. For every convex body K in R?, there exists a d-sandwiching ellipsoid. Fur-
thermore, if K is centrally symmetric, there exists a v/d-sandwiching ellipsoid.

It is an immediate consequence of this lemma that for any convex body K there exists an
affine transformation 7" such that T'(K) is (1/d)-fat. Any affine transformation that maps
the John ellipsoid into a Fuclidean ball will do. The following lemma generalizes this to
hyperrectangles (see also Barequet and Har-Peled [14]).

» Lemma 7. For every convex body K in R%, there exists a (d3/2)-sandwiching hyperrectangle.

Proof. Let E denote the d-sandwiching ellipsoid for K, described in Lemma 6. By elementary
geometry, there exists a v/d-sandwiching hyperrectangle R for E. We claim that R is a
(d®/?)-sandwiching hyperrectangle for K. To prove this claim, observe that R C E C R’
and E C K C E’, where R’ is the v/d-expansion of R and E’ is the d-expansion of E.
Letting R” denote the d-expansion of R’, it is easy to see that £’ C R”. Tt follows that
RCECK CE' CR". Since R is the d-expansion of R’ and R’ is the v/d-expansion of R,
it follows that R” is the (d%/?)-expansion of R. This completes the proof. <

Next, let us consider fattening in the context of multiple bodies. The next two lemmas
follow from elementary geometry and properties of Minkowski sums.

» Lemma 8. Let Cy and Cy be A-sandwiching bodies for K1 and K, respectively. Then
C1 @ Cs is a A-sandwiching body for K1 & K.

» Lemma 9. Let K be a convex body. Given a A-sandwiching polytope for K of constant
complezity, we can compute a v-fattening affine transformation T for K in constant time,

where v = 1/(A\d).

3:5

ESA 2018

3:6

Approximate Convex Intersection Detection with Applications

We conclude by showing that we can maintain a small amount of auxiliary information
for any collection of convex bodies in order to determine the fattening transformation for
the Minkowski sum of any two members of this library. We refer to the data structure for
approximate directional width queries from Lemma 5 together with the additional information
to determine the fattening transformation as the augmented data structure for approximate
directional width queries.

» Lemma 10. Consider any finite collection of convex polytopes in RY, and let v = 1/d>.
It is possible to store information of constant size with each polytope such that in constant
time we can compute a ~y-fattening affine transformation for the Minkowski sum of any two
polytopes from the collection. This information can be computed in time proportional to the
size of the input polytope.

Proof. At preprocessing time, we store the Ad-sandwiching hyperrectangles R; for each K;,
where A = d®/2. By Lemma 7, such hyperrectangles exist and they can be computed in time
proportional to the size of the input polytope [23].

Suppose we want to compute a y-fattening affine transformation for K} @ K ;», where
K[and K j’ are the result of applying (possibly different) affine transformations to K; and
K, respectively. Let C! and C’; be the polytopes of constant complexity obtained by
applying the corresponding affine transformations to R; and Rj, respectively. Clearly, C;
and C’ are A-sandwiching polytopes for K; and K, respectively. Thus, by Lemma 8,
C; © C’ is a A-sandwiching polytope for K] @ K. Note that this polytope has constant
complexity and can be computed in constant time. Applying Lemma 9, we can use this
polytope to compute a y-fattening affine transformation for K| & K]’ in constant time, where

v=1/(\Wd) = 1/d. <

The previous lemma holds more generally even when each of the polytopes are subject to
any non-singular affine transformation and to the Minkowski sum of a constant number of
polytopes.

2.2 Projective Duality and Width

Our algorithm for approximating the directional width of a point set is based on a projective
dual transformation, which maps points into hyperplanes and vice versa. Each primal point
p=(p1,...,pq) € S is mapped to the dual hyperplane p* : x4 = p1x1 + -+ + pa—1Ta—1 —
pa- Each primal hyperplane is mapped to a dual point in the same manner. This dual
transformation has several well-known properties [24]. For example, the points in the lower
convex hull of S map to the hyperplanes in the upper envelope.

Let H be a set of n hyperplanes in R%. Given a point » € R?~!, the thickness of H at
7, denoted thick, (H) is defined as follows. Given r € R4~! and t € R, let (r,t) denote the
point in R? resulting by concatenating r and ¢. For the sake of illustration, we think of the
d-th coordinate axis as being the vertical axis. Let ' = (r,¢1) and v = (r,t2). We define
thick,(H) as the maximum difference t; — t; for points 7/, 7" in the hyperplanes in H. In
other words, the thickness is the vertical distance between the intersection of the vertical
line defined by r with the upper and lower envelopes of H. The following relates width and
thickness.

» Lemma 11. Consider two points p,q € R and a vector v = (v1,...,vq_1,—1). Let p*,q*
denote the dual hyperplanes and v1, q—1 = (v1,...,v4-1). We have

thicky, ,_, ({p",¢"}) = I|v]| width, ({p, ¢}).

S. Arya, G. D. da Fonseca, and D. M. Mount

Proof. Given vectors u and v, let u - v denote the standard inner product. Assume without
loss of generality that p-v > ¢-v. Clearly, v is nonzero, so width,({p,q}) = (p-v—q-v)/|lv]|.
Let p = (p1,...,pqa) and ¢ = (q1, - ..,qq). The dual hyperplanes are

P ixg =p1r1 4+ Pa-1%g—1 —pa and " 1xg=qT1 4+ @a-1Ta—1 — a-

If weset z1,...,24-1 = v1,4q—1 we have ty = (p1,...,Pd—1)V1,d—1—Ppd and t1 = (q1,-- ., qd—1)
v1,d4—1 — qq. Therefore

thick,, , , (H) =ty — t;
= (p1;--spa—1) - v1,.d-1 —pa— ((q1;---,qda-1) " V1,a-1 — qa)
=p-v—q-v
= [Jv]| width, ({p, ¢}). <

3 Approximate Convex Intersection

In this section, we will prove Theorem 1 for the case when the input polytopes are represented
by points. Assume that we are given two polytopes A and B in the point representation.
The objective is to preprocess A and B individually such that we can efficiently answer
approximate intersection queries for A and B (or more generally for affine transformations
of A and B).

Given a convex body K, ¢ > 0, and a point p, an e-approximate polytope membership
query is defined as follows. If p € K, the answer is “yes,” if p ¢ K., the answer is “no,” and
otherwise, either answer is acceptable. Our strategy to answer approximate intersection
queries is based on reducing them to approximate polytope membership queries. This
reduction is presented in the following lemma, which is a straightforward generalization of
Lemma 4(a) to an approximate context. The proof follows from standard algebraic properties
of Minkowski sums and the observation that K. can be expressed as K @ 5(K © —K), and
is omitted from this version.

» Lemma 12. Let A, B C R? be two polytopes and € > 0. Determining the e-approzimate
intersection of A and B is equivalent to determining the c-approximate membership of

Oe€Aa (—B).

The previous lemma relates approximate polytope intersection with an approximate
membership of the origin in a polytope (Figure 2(a)). Determining whether the origin
lies within the convex hull of a set of points S is a classic problem in computational
geometry, which can be solved by linear programming. However, we are interested in a faster
approximate solution that does not compute S explicitly. We cannot afford to preprocess
an approximate polytope membership data structure for A @ (—B) for each pair A and B,
since the number of such pairs is quadratic in the number of input polytopes. Instead, we
preprocess each input polytope individually, and we show next how to efficiently answer
approximate polytope membership queries for A ¢ (—B) by using augmented data structures
for approximate directional width queries for A and B as black boxes.

» Lemma 13. Given augmented data structures for answering e-approzimate directional
width queries for polytopes A and B, we can answer e-approximate membership queries for
A @ (—B) using O(polylog 1) queries to these data structures.

Proof. Without loss of generality, we may translate space so that the query point coincides
with the origin O. Let K = A® (—B), and let S be K’s vertex set. (Note that K and S are
not explicitly computed.)

3:7

ESA 2018

3:8 Approximate Convex Intersection Detection with Applications

width,(S)

Ll1yewooyXd—1 = V1y...,U4-1

thick,,, (5%)
<

—— o*

e Ud—1

-y

(a) (b)

Figure 2 (a) Primal problem of determining if O € conv(S). (b) Dual problem of determining if
the horizontal hyperplane O* is between the upper and lower envelopes.

The problem of determining whether O € K is invariant to scaling and rotation about
the origin. It will be helpful to perform some affine transformations that will guarantee
certain properties for K. First, we apply Lemma 10 to fatten K and then apply a uniform
scaling about the origin so that K’s diameter is ©(1). By fatness, K has a A-sandwiching
ball of radius r = ©(1). If the origin either lies within the inner ball or outside the outer
ball, then the answer is trivial. Otherwise, let A = 2\r be the diameter of the outer ball.
We may apply a rotation about the origin so that the center of this ball lies on the positive
xq axis at a point (0,...,0,3). Again, this scaling and rotation can be computed in constant
time using the augmented information. It follows that the coordinates of the points of S
have absolute values at most A = O(1).

In summary, there exists an affine transformation computable in constant time such
that after applying this transformation, the query point lies at the origin, K = conv(S) is
sandwiched between two concentric balls of constant radii centered at ¢ = (0,...,0, 8), where
0<B<A=0(1), and K’s vertex set S is contained within [-A, A]¢. Tt is an immediate
consequence that width, (K) = ©(1) for all directions v, and hence it suffices to answer the
membership query to an absolute error of ©(¢).

Lemma 4(c) implies that we can answer e-approximate width queries for K as the
sum of two e-approximate width queries to A and B. Therefore, our goal is to determine
approximately if O € K using only approximate width queries to A and B. In order to do this,
we look at the projective dual problem in which each point p = (p1,...,pq) € S is mapped
to the hyperplane p* : g = p1x1 + - + pa—1T4—1 — pg- Let S* denote the corresponding set
of hyperplanes. The primal problem O € K is equivalent to the dual problem of determining
whether the horizontal hyperplane O* : x4 = 0 is sandwiched between the upper and lower
envelopes of S* (Figure 2(b)). Since the point ¢ lies vertically above the origin and within
K’’s interior, it follows that O* cannot intersect the lower envelope. Therefore, it suffices to
test whether O* intersects the upper envelope.

The dual problem can be solved exactly by computing the minimum value y of the
x4-coordinate in the upper envelope and testing whether y > 0. In the primal, the value of y
corresponds to the negated z4-coordinate of the intersection of a facet F' of the lower convex
hull of K and a vertical line passing through the origin (see Figure 2). Let F’s supporting
hyperplane be denoted by x4 = wix1 + -+ wyg—1T4—1 — wq. Since K is sandwiched between
two concentric balls of constant radii whose common center lies on this vertical line, it follows
from simple geometry that this supporting hyperplane cannot be very steep. In particular,
there exists & = O(1) such that w; € [—a,a], for i = 1,...,d — 1. In the dual, this means
that the minimum value y is attained at a point whose first d — 1 coordinates all lie within

S. Arya, G. D. da Fonseca, and D. M. Mount

Figure 3 (a) One-dimensional convex minimization. (b) Higher-dimensional convex minimization.

[~a,a]. In approximating y, we will apply directional width queries only for directional

vectors v = (v, ...,vq) whose first d — 1 coordinates lie within [—«, «] and vy = —1. Thus,
loll = O(1).

By Lemma 11, the duals of two points p, ¢ € S returned by an exact directional width
query width, (K) in the primal for a vector v = (v1,...,v4-1, —1) correspond to the two dual

hyperplanes in the upper and lower envelopes of S* that intersect the vertical line x; = v; for
i=1,...,d — 1. Since queries are only applied to directions v where ||v|| = O(1) and since
width, (K) = ©(1) for all directions v, it follows from Lemma 11 that a relative error of € in
the directional width implies an absolute error of O(e) in the corresponding thickness. We
can think of the upper envelope of S* as defining the graph of a convex function over the
domain [—a, o)1, Since S C [-A, A]¢, the slopes of the hyperplanes in S* are similarly
bounded, and therefore this function has bounded slope. It follows that, for an appropriate
¢’ = O(g), we can compute this function to an absolute error of € at any (v1,...,v4-1) by
performing an (¢’)-approximate directional width query on K for v = (vy,...,v4-1,—1). To
complete the proof, it suffices to show that with O(polylog é) such queries, it is possible to
compute an absolute e-approximation to y. We do this in the next section. |

3.1 Convex Minimization

The following lemma shows how to use binary search to solve a one-dimensional convex
minimization problem approximately (see Figure 3(a)).

» Lemma 14. Let a,b € R and ¢ € R+ be real parameters. Let f : [a,b] = R be a convex
function with bounded slope and fe : [a,b] — R be a function with |f(z) — f-(z)| < e for all
x € [a,b]. Let x* € [a,b] be the value of x that minimizes f(x). It is possible to determine
a value ' with f(z') — f(z*) = O(e) after O(log((b — a)/¢c)) evaluations of f-(-) and no
evaluation of f(-).

Proof. First, we present the recursive algorithm used to determine the value z’. If b —a < &,
then since the function has bounded slope, we simply return =’ = a, as a valid answer.
Otherwise, we start by trisecting the interval [a, b] and evaluate f.(z) at the four endpoints
Z1, %9, X3, x4 of the subintervals (see Figure 3(a)). Let m denote the value ¢ that minimizes
fe(x;), breaking ties arbitrarily. To simplify the boundary cases, let o = a and z5 = b.

3:9

ESA 2018

3:10

Approximate Convex Intersection Detection with Applications

We then invoke our algorithm recursively on the interval [z,,_1, Z;,+1] and store the value
returned as z’/. We return the value x among the two values x,,,z” that minimizes f.(x).

Since the length of the interval reduces by at least one third at each iteration, the number
of recursive calls and therefore evaluations of f.(-) is O(log((b — a)/e)). Next, we show that
f(@') = f(z*) = O(e). By the convexity of f we have

@) = flem) + 3@ = i) (f (@mi1) = f(2m))/ (b= a), for & = Tpps.
Using that |f(x) — fo(x)] < ¢, we have
f(@) > fe(@mi1) — e+ 3(x — zpmi1) (fe(@mi1) — fe(zm) — 26)/(b—a), for & > 1.
Since fo(xm) < fe(Tm41), we have
f@) > folxm) —e—6e(x — xpmy1)/(b—a), for x > xpy.
For z inside the interval [a, b] we have | — 2, 11| < b — a, and therefore
f(x) = fe(zm) = Te, for xpyr <z <D
The same argument is used to bound the case of a < z < x,,_1, obtaining

f(x) > fa(xm) — Te, for ¢ [mm—lvxm—&-l]-

Either the minimum of f(z) is inside the interval [,,—1, Zm11] or not. If it is not, then
the previous inequality shows that fe(z,,) provides a good approximation, regardless of the
value returned in the recursive call. If the minimum is inside the interval [Z,,—1, Zm+1], then
the recursive call will provide a value result by an inductive argument. <

We are now ready to extend the result to arbitrary dimensions.

» Lemma 15. Let a,b € R and € € R+ be real parameters. Let f : [a,b]¢ — R for a constant
dimension d be a conver function with bounded slope and f. : [a,b]? — R be a function with
|f(z) — f-(x)| < € for all x € [a,b]¢. Let z* € [a,b]? be the value of x that minimizes f(z).
It is possible to determine a value =’ with f(z') — f(z*) = O(e) after O(log®((b — a)/e))
evaluations of f-(-) and no evaluation of f(-).

Proof. The minimum f(z*) can be written as

P& = BT = 0y selilfie T

Note that if f(z) is a convex function with bounded slope, then so is the function g : [a,b] — R
(see Figure 3(b)) defined as

g(x1) = sein, [y, 7).

The proof is based on induction on the dimension d. Since d is a constant, the number
of induction steps is also a constant. The base case of d = 1 follows from Lemma 14. By
the induction hypothesis, we can solve the (d — 1)-dimensional instance to obtain a function
¢’ (1) such that

l9(z1) — ¢'(z1)] = O(e).

Using Lemma 14 for the function ¢'(-), we obtain a value «’ with f(z') — f(z*) = O(e).

S. Arya, G. D. da Fonseca, and D. M. Mount

For the number of function evaluations ¢(d) for a given dimension d we have
t(1) = O(log((b — a)/e)) and

t(k) = t(1) - t(k — 1).

The recurrence easily solves to the desired
t(d) = O(log"((b — a)/2)). <

By applying Lemma 15 to the dual problem defined in the proof of Lemma 13 (where
f is the graph of the upper envelope of S* and [a,b] = [, a]) with the augmented data
structure from Lemma 5, we obtain Theorem 1 for the case when the input polytopes are
represented by points. We will consider the case when the input polytopes are represented
by halfspaces at the end of the next section.

4 Minkowski Sum Approximation

In this section, we will prove Theorems 2 and 3, as well as Theorem 1 for the case when
the input polytopes are represented by halfspaces. Assume that we are given two polytopes
A and B in the point representation, and we have computed the augmented approximate
directional width data structures from Lemma 5 for each polytope. The objective is to
obtain an e-approximation of the Minkowski sum A @ B of size O(1/(471/2) using these
data structures. Our approach is to fatten A & B using Lemma 10 and then apply Dudley’s
construction [27] in order to obtain an approximation with O(1/£(4=1)/2) halfspaces. For
completeness, we start by describing Dudley’s algorithm.

Let K C [~1,1]? be a fat polytope of constant diameter. Dudley’s algorithm obtains an
e-approximation represented by halfspaces as follows. Let D be a ball of radius 2v/d centered
at the origin. (Note that K C D.) Place a set W of O(1/£(¢=1)/2) points on the surface of D
such that every point on the surface of D is within distance O(4/¢) of some point in W. For
each point w € W, let w’ be its nearest point on the boundary of K. We call these points
samples. For each sample point w’, take the supporting halfspace passing through w’ that is
orthogonal to the vector from w’ to w. The approximation is defined as the intersection of
these halfspaces (see Figure 4(a)).

Bronshteyn and Ivanov [16] presented a similar construction. Instead of approximating
K by halfspaces, Bronshteyn and Ivanov’s construction approximates K as the convex hull
of the aforementioned set of samples? (see Figure 4(b)). In both constructions it is possible
to tune the constant factors so that closest point queries need only be computed to within
an absolute error of O(g).

An approximate closest point query between a polytope K and a point p within constant
distance from K can be reduced to computing an e-approximation to the smallest radius ball
centered at p that intersects K. This can be solved through binary search on the radius of
this ball, where each probe involves determining whether K intersects a ball of some radius
centered at p. Notice that the data structure for approximate polytope intersection from
Section 3 only accesses the bodies through approximate directional width queries, besides
the initial fattening transformation. By Lemma 4(c), given two preprocessed bodies A and

4 Dudley’s construction yields an outer approximation and Bronshteyn and Ivanov’s yields inner approxi-
mation, but it is possible to convert both to the other type through standard techniques. For details,
see Lemma 2.8 of the full version of [9].

3:11

ESA 2018

3:12

Approximate Convex Intersection Detection with Applications

(a) (b)

Figure 4 (a) Dudley’s and (b) Bronshteyn and Ivanov’s polytope approximations.

B, we can answer directional width queries on A & B through directional width queries on A
and B individually. (In the case of a ball, no data structure is required.) Therefore, we can
test intersection with a Minkowski sum A @ B, as long as we have augmented approximate
directional width data structures for both A and B.

In order to establish Theorem 2 for the case when the input polytopes are represented by
points, we apply the aforementioned binary search to simulate Dudley’s construction. Each
sample is obtained after O(log é) e-approximate polytope intersection queries. The total
running time is dominated by the preprocessing time of Lemma 5. Note that the output
polytope may be represented by either points or halfspaces according to whether we use
Dudley’s or Bronshteyn and Ivanov’s algorithm. To show that the input polytopes may be
represented by halfspaces, we show how to efficiently convert between the two representations.

» Lemma 16. Given an approzimation parameter ¢ > 0 and a polytope K C R? of size n
(given either using a point or halfspace representation), we can obtain an e-approximation
of size O(1/e4=1/2) (in either representation, independent of the input representation) in
O(nlog ! + 1/e(@=D/2%e) time, where a > 0 is an arbitrarily small constant.

Proof. The case when the input is represented by points is a trivial case of Theorem 2,
where B = {O}. For the alternative case, it suffices to obtain an e-approximation of the
polar polytope after fattening. (For details see Lemma 2.9 of the full version of [9].) <

We remind the reader that Agarwal et al. [2] showed that the width of a convex body
K is equal to the minimum distance from the origin to the boundary of the convex body
K@ (—K). To obtain Theorem 3, we compute Dudley’s approximation of K @ (—K) and then
we determine the closest point to the origin among the O(1/ gld=1)/ 2) bounding hyperplanes
of the approximation.

—— References

1 P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction
of Minkowski sums. Comput. Geom. Theory Appl., 21(1):39-61, 2002.

2 P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir. Penetration
depth of two convex polytopes in 3D. Nordic J. of Computing, 7(3):227-240, 2000.

S. Arya, G. D. da Fonseca, and D. M. Mount

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random Minkowski sums
and network vulnerability analysis. Discrete Comput. Geom., 52(3):551-582, 2014.

P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of
points. J. Assoc. Comput. Mach., 51:606-635, 2004.

P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via core-
sets. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational
Geometry. MSRI Publications, 2005.

P. K. Agarwal, J. Matousek, and S. Suri. Farthest neighbors, maximum spanning trees and
related problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189-201, 1992.
B. Aronov and M. Sharir. On translational motion planning of a convex polyhedron in
3-space. SIAM J. Comput., 26(6):1785-1803, 1997.

S. Arya and T. M. Chan. Better e-dependencies for offline approximate nearest neighbor
search, Euclidean minimum spanning trees, and e-kernels. In Proc. 80th Annu. Sympos.
Comput. Geom., pages 416-425, 2014.

S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal e-kernel construction and
related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1-15, 2017.
URL: https://arxiv.org/abs/1604.01175.

S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approx-
imating polytopes. Discrete Comput. Geom., 58(4):849-870, 2017.

S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017.

S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.
SIAM J. Comput., 47(1):1-51, 2018.

L. Barba and S. Langerman. Optimal detection of intersections between convex polyhedra.
In Proc. 26th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1641-1654, 2015.

G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding
box of a point set in three dimensions. J. Algorithms, 38(1):91-109, 2001.

J.-D. Boissonnat, E. De Lange, and M. Teillaud. Minkowski operations for satellite antenna
layout. In Proc. 13th Annu. Sympos. Comput. Geom., pages 6776, 1997.

E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra.
Siberian Math. J., 16:852-853, 1976.

T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-
width annulus. Internat. J. Comput. Geom. Appl., 12:67-85, 2002.

T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Comput. Geom. Theory Appl., 35(1):20-35, 2006.

T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational
geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1-15, 2017.

B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.
SIAM J. Comput., 21(4):671-696, 1992.

B. Chazelle and D. P. Dobkin. Detection is easier than computation. In Proc. 12th Annu.
ACM Sympos. Theory Comput., pages 146-153, 1980.

B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions.
J. Assoc. Comput. Mach., 34:1-27, 1987.

B. Chazelle and J. Matousek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. J. Algorithms, 21:579-597, 1996.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 3rd edition, 2010.

D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theo. Comp.
Sci., 27(3):241-253, 1983.

3:13

ESA 2018

https://arxiv.org/abs/1604.01175

3:14

Approximate Convex Intersection Detection with Applications

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

45

D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed
polyhedra—A unified approach. In Proc. Internat. Collog. Automata Lang. Prog., pages
400413, 1990.

R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3):227-236, 1974.

C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and optimiza-
tion algorithms for computational metrology. In Proc. Eighth Annu. ACM-SIAM Sympos.
Discrete Algorithms, pages 121-130, 1997.

E. Fogel, D. Halperin, and C. Weibel. On the exact maximum complexity of Minkowski
sums of polytopes. Discrete Comput. Geom., 42(4):654-669, 2009.

X. Guo, L. Xie, and Y. Gao. Optimal accurate Minkowski sum approximation of polyhe-
dral models. Advanced Intelligent Computing Theories and Applications. With Aspects of
Theoretical and Methodological Issues, pages 179-188, 2008.

D. Halperin, O. Salzman, and M. Sharir. Algorithmic motion planning. In J. E. Goodman,
J. O’Rourke, and C. D. Té6th, editors, Handbook of Discrete and Computational Geometry,
Discrete Mathematics and its Applications. CRC Press, 2017.

S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity of
a single face of a Minkowski sum. In Proc. Seventh Canad. Conf. Comput. Geom., pages
91-96, 1995.

P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: A survey. Computers &
Graphics, 25(2):269-285, 2001.

F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Es-
says Presented to R. Courant on his 60th Birthday, pages 187—204. Interscience Publishers,
Inc., New York, 1948.

A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and animation
of pips. Computers € graphics, 16(1):107-115, 1992.

M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In
Proc. of IMA conference on mathematics of surfaces, volume 1, pages 602-608, 1998.

D. M. Mount. Geometric intersection. In J. E. Goodman, J. O’'Rourke, and C. D. Téth,
editors, Handbook of Discrete and Computational Geometry, Discrete Mathematics and its
Applications. CRC Press, 2017.

D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theo.
Comp. Sci., 7(2):217-236, 1978.

J. O’Rourke. Computational geometry in C. Cambridge University Press, 1998.

L. Pachter and B. Sturmfels. Algebraic statistics for computational biology, volume 13.
Cambridge University Press, 2005.

R. Schneider. Convex bodies: The Brunn-Minkowski theory. Cambridge University Press,
1993.

M. I. Shamos. Geometric complexity. In Proc. Seventh Annu. ACM Sympos. Theory
Comput., pages 224-233, 1975.

H. R. Tiwary. On the hardness of computing intersection, union and Minkowski sum of
polytopes. Discrete Comput. Geom., 40(3):469-479, 2008.

G. Varadhan and D. Manocha. Accurate Minkowski sum approximation of polyhedral
models. Graphical Models, 68(4):343-355, 2006.

H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape
fitting and kinetic data structures using coresets. Algorithmica, 52(3):378-402, 2008.

On the Worst-Case Complexity of TimSort

Nicolas Auger
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Vincent Jugé
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Cyril Nicaud
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Carine Pivoteau
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

—— Abstract

TIMSORT is an intriguing sorting algorithm designed in 2002 for Python, whose worst-case com-
plexity was announced, but not proved until our recent preprint. In fact, there are two slightly
different versions of TIMSORT that are currently implemented in Python and in Java respec-
tively. We propose a pedagogical and insightful proof that the Python version runs in O(nlogn).
The approach we use in the analysis also applies to the Java version, although not without very
involved technical details. As a byproduct of our study, we uncover a bug in the Java implemen-
tation that can cause the sorting method to fail during the execution. We also give a proof that
Python’s TIMSORT running time is in O(n+mnlog p), where p is the number of runs (i.e. maximal
monotonic sequences), which is quite a natural parameter here and part of the explanation for
the good behavior of TIMSORT on partially sorted inputs.

2012 ACM Subject Classification Theory of computation — Sorting and searching

Keywords and phrases Sorting algorithms, Merge sorting algorithms, TimSort, Analysis of al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.4

1 Introduction

TIMSORT is a sorting algorithm designed in 2002 by Tim Peters [9], for use in the Python
programming language. It was thereafter implemented in other well-known programming
languages such as Java. The algorithm includes many implementation optimizations, a
few heuristics and some refined tuning, but its high-level principle is rather simple: The
sequence S to be sorted is first decomposed greedily into monotonic runs (i.e. nonincreasing
or nondecreasing subsequences of S as depicted on Figure 1), which are then merged pairwise
according to some specific rules.

The idea of starting with a decomposition into runs is not new, and already appears
in Knuth’s NATURALMERGESORT [6], where increasing runs are sorted using the same
mechanism as in MERGESORT. Other merging strategies combined with decomposition into
runs appear in the literature, such as the MINIMALSORT of [10] (see also [2, 8] for other
considerations on the same topic). All of them have nice properties: they run in O(nlogn)
and even O(n + nlog p), where p is the number of runs, which is optimal in the model of
sorting by comparisons [7], using the classical counting argument for lower bounds. And
yet, among all these merge-based algorithms, TIMSORT was favored in several very popular
programming languages, which suggests that it performs quite well in practice.

© Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau;
37 licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 4; pp. 4:1-4:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

On the Worst-Case Complexity of TimSort

S =(12,10,7,5, 7,10,14,25,36, 3,5,11,14, 15,21, 22, 20,15,10,8,5,1)
——

first run second run third run fourth run

Figure 1 A sequence and its run decomposition computed by TIMSORT: for each run, the first
two elements determine if it is increasing or decreasing, then it continues with the maximum number
of consecutive elements that preserves the monotonicity.

TIMSORT running time was implicitly assumed to be O(nlogn), but our unpublished
preprint [1] contains, to our knowledge, the first proof of it. This was more than ten years after
TIMSORT started being used instead of QUICKSORT in several major programming languages.
The growing popularity of this algorithm invites for a careful theoretical investigation. In
the present paper, we make a thorough analysis which provides a better understanding of
the inherent qualities of the merging strategy of TIMSORT. Indeed, it reveals that, even
without its refined heuristics,' this is an effective sorting algorithm, computing and merging
runs on the fly, using only local properties to make its decisions.

As the analysis we made in [1] was a bit involved and clumsy, we first propose in Section 3
a new pedagogical and self-contained exposition that TIMSORT runs in O(nlogn) time,
which we want both clear and insightful. Using the same approach, we also establish in
Section 4 that it runs in O(n + nlogp), a question left open in our preprint and also in a
recent work? on TIMSORT [4]. Of course, the first result follows from the second, but since
we believe that each one is interesting on its own, we devote one section to each of them.
Besides, the second result provides with an explanation to why TIMSORT is a very good
sorting algorithm, worth considering in most situations where in-place sorting is not needed.

To introduce our last contribution, we need to look into the evolution of the algorithm:
there are actually not one, but two main versions of TIMSORT. The first version of the
algorithm contained a flaw, which was spotted in [5]: while the input was correctly sorted, the
algorithm did not behave as announced (because of a broken invariant). This was discovered
by De Gouw and his co-authors while trying to prove formally the correctness of TIMSORT.
They proposed a simple way to patch the algorithm, which was quickly adopted in Python,
leading to what we consider to be the real TIMSORT. This is the one we analyze in Sections 3
and 4. On the contrary, Java developers chose to stick with the first version of TIMSORT,
and adjusted some tuning values (which depend on the broken invariant; this is explained in
Sections 2 and 5) to prevent the bug exposed by [5]. Motivated by its use in Java, we explain
in Section 5 how, at the expense of very complicated technical details, the elegant proofs of
the Python version can be twisted to prove the same results for this older version. While
working on this analysis, we discovered yet another error in the correction made in Java.
Thus, we compute yet another patch, even if we strongly agree that the algorithm proposed
and formally proved in [5] (the one currently implemented in Python) is a better option.

2 TimSort core algorithm

The idea of TIMSORT is to design a merge sort that can exploit the possible “non randomness”

of the data, without having to detect it beforehand and without damaging the performances
on random-looking data. This follows the ideas of adaptive sorting (see [7] for a survey on
taking presortedness into account when designing and analyzing sorting algorithms).

1 These heuristics are useful in practice, but do not change the worst-case complexity of the algorithm.
2 In [4], the authors refined the analysis of [1] to obtain very precise bounds for the complexity of TIMSORT
and of similar algorithms.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

Algorithm 1: TIMSORT. (Python 3.6.5)

Input: A sequence S to sort
Result: The sequence S is sorted into a single run, which remains on the stack.

Note: The function merge_force_collapse repeatedly pops the last two runs on the
stack R, merges them and pushes the resulting run back on the stack.

runs < a run decomposition of S

R <+ an empty stack

while runs # () do // main loop of TIMSORT
L remove a run r from runs and push r onto R

oA W N R

merge_collapse(R)

6 if height(R) # 1 then // the height of R is its number of rums
L merge_force_collapse(R)

N

Algorithm 2: The merge_collapse procedure. (Python 3.6.5)

Input: A stack of runs R
Result: The invariant of Equations (1) and (2) is established.

Note: The runs on the stack are denoted by R[1]... R[height(R)], from top to bottom.
The length of run R[i] is denoted by r;. The blue highlight indicates that the
condition was not present in the original version of TIMSORT (this will be discussed
in section 5).

1 while height(R) > 1 do
2 n < height(R) — 2

3 if (n>0and r3<ra+ry) or (n>1 and rs <r3-+r3) then
4 if r3 < r; then
L merge runs R[2] and R[3] on the stack

6 else merge runs R[1] and R[2] on the stack

else if ry < r; then
L merge runs R[1] and R[2] on the stack

9 else break

The first feature of TIMSORT is to work on the natural decomposition of the input
sequence into maximal runs. In order to get larger subsequences, TIMSORT allows both
nondecreasing and decreasing runs, unlike most merge sort algorithms.

Then, the merging strategy of TIMSORT (Algorithm 1) is quite simple yet very efficient.

The runs are considered in the order given by the run decomposition and successively pushed
onto a stack. If some conditions on the lengths of the topmost runs of the stack are not
satisfied after a new run has been pushed, this can trigger a series of merges between pairs of
runs at the top or right under. And at the end, when all the runs in the initial decomposition
have been pushed, the last operation is to merge the remaining runs two by two, starting at
the top of the stack, to get a sorted sequence. The conditions on the stack and the merging

rules are implemented in the subroutine called merge_collapse detailed in Algorithm 2.

This is what we consider to be TIMSORT core mechanism and this is the main focus of our
analysis.

Another strength of TIMSORT is the use of many effective heuristics to save time, such as
ensuring that the initial runs are not to small thanks to an insertion sort or using a special
technique called “galloping” to optimize the merges. However, this does not interfere with
our analysis and we will not discuss this matter any further.

4:3

ESA 2018

4:4

On the Worst-Case Complexity of TimSort

#1 #1
#1#2 #1
" e # f f

merge_collapse merge_coligpse

Figure 2 The successive states of the stack R (the values are the lengths of the runs) during an
execution of the main loop of TIMSORT (Algorithm 1), with the lengths of the runs in runs being
(24,18,50,28,20,6,4,8,1). The label #1 indicates that a run has just been pushed onto the stack.
The other labels refer to the different merges cases of merge_collapse as translated in Algorithm 3.

Let us have a closer look at Algorithm 2 which is a pseudo-code transcription of the
merge_collapse procedure found in the latest version of Python (3.6.5). To illustrate its
mechanism, an example of execution of the main loop of TIMSORT (lines 3-5 of Algorithm 1)
is given in Figure 2. As stated in its note [9], Tim Peter’s idea was that:

“The thrust of these rules when they trigger merging is to balance the run lengths
as closely as possible, while keeping a low bound on the number of runs we have to
remember.”

To achieve this, the merging conditions of merge_collapse are designed to ensure that the
following invariant® is true at the end of the procedure:

Fite > iyl + 1, 1)
rig1 > ;. (2)

This means that the runs lengths r; on the stack grow at least as fast as the Fibonacci numbers
and, therefore, that the height of the stack stays logarithmic (see Lemma 6, section 3).

Note that the bound on the height of the stack is not enough to justify the O(nlogn)
running time of TIMSORT. Indeed, without the smart strategy used to merge the runs “on
the fly”, it is easy to build an example using a stack containing at most two runs and that
gives a ©(n?) complexity: just assume that all runs have length two, push them one by one
onto a stack and perform a merge each time there are two runs in the stack.

We are now ready to proceed with the analysis of TIMSORT complexity. As mentioned
earlier, Algorithm 2 does not correspond to the first implementation of TIMSORT in Python,
nor to the current one in Java, but to the latest Python version. The original version will be
discussed in details later, in Section 5.

3 TimSort runs in O(nlogn)

At the first release of TIMSORT [9], a time complexity of O(nlogn) was announced with no
element of proof given. It seemed to remain unproved until our recent preprint [1], where we
provide a confirmation of this fact, using a proof which is not difficult but a bit tedious. This
result was refined later in [4], where the authors provide lower and upper bounds, including
explicit multiplicative constants, for different merge sort algorithms.

3 Actually, in [9], the invariant is only stated for the 3 topmost runs of the stack.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

Algorithm 3: TimSort: translation of Algorithm 1 and Algorithm 2.

Input: A sequence to S to sort

Result: The sequence S is sorted into a single run, which remains on the stack.

Note: At any time, we denote the height of the stack R by h and its " top-most run (for
1 << h) by R;. The length of this run is denoted by ;.

1 runs < the run decomposition of S
2 R < an empty stack

3 while runs # 0 do // main loop of TIMSORT
4 remove a run r from runs and push r onto R // #1
5 while true do

6 if h > 3 and r; > r3 then merge the runs Ry and R3 // #2
7 else if h > 2 and r1 > r2 then merge the runs R and Ro // #3
8 else if h > 3 and r1 + r2 > r3 then merge the runs R; and Ro // #4
9 else if h > 4 and r2 + r3 > r4 then merge the runs R; and R» // #5
10 else break

11 while h # 1 do merge the runs R; and R

Our main concern is to provide an insightful proof of the complexity of TIMSORT, in
order to highlight how well designed is the strategy used to choose the order in which the
merges are performed. The present section is more detailed than the following ones as we
want it to be self-contained once TIMSORT has been translated into Algorithm 3 (see below).

As our analysis is about to demonstrate, in terms of worst-case complexity, the good
performances of TIMSORT do not rely on the way merges are performed. Thus we choose
to ignore their many optimizations and consider that merging two runs of lengths r and 7’
requires both 7 +7’ element moves and r+ 1’ element comparisons. Therefore, to quantify the
running time of TIMSORT, we only take into account the number of comparisons performed.

» Theorem 1. The running time of TIMSORT is O(nlogn).

The first step consists in rewriting Algorithm 1 and Algorithm 2 in a form that is easier
to deal with. This is done in Algorithm 3.

» Claim 2. For any input, Algorithms 1 and 3 perform the same comparisons.

Proof. The only difference is that Algorithm 2 was changed into the while loop of lines 5
to 10 in Algorithm 3. Observing the different cases, it is straightforward to verify that merges
involving the same runs take place in the same order in both algorithms. Indeed, if r3 < rq,
then r3 < r1 + ro, and therefore line 5 is triggered in Algorithm 2, so that both algorithms
merge the 2"4 and 39 runs. On the contrary, if 3 > 1, then both algorithms merge the 15
and 2" runs if and only if 7o <7y or r3 <71 + 1o (0r 74 < 7o +73). <

» Remark 3. Proving Theorem 1 only requires analyzing the main loop of the algorithm
(lines 3 to 10). Indeed, computing the run decomposition (line 1) can be done on the fly, by
a greedy algorithm, in time linear in n, and the final loop (line 11) might be performed in
the main loop by adding a fictitious run of length n 4+ 1 at the end of the decomposition.

In the sequel, for the sake of readability, we also omit checking that h is large enough to
trigger the cases #2 to #5. Once again, such omissions are benign, since adding fictitious
runs of respective sizes 8n, 4n, 2n and n (in this order) at the beginning of the decomposition
would ensure that h > 4 during the whole loop.

4:5

ESA 2018

4:6

On the Worst-Case Complexity of TimSort

In Algorithm 3, we can see that the merges performed during Case #2 allow a very large
run to be pushed and “absorbed” onto the stack without being merged all the way down,
but by collapsing the stack under this run instead. Meanwhile, the purpose of Cases #3 to
#5 is mainly to re-establish the invariant of Equations (1) and (2), ensuring an exponential
growth of the run lengths within the stack (this duality is made even clearer in the proof of
Section 4). Along this process, the cost of keeping the stack in good shape is compensated by
the absorption of this large run, which naturally calls for an amortized complezity analysis.

To proceed with the core of our proof (that is the amortized analysis of the main loop),
we now credit tokens to the elements of the input array, which are spent for comparisons.
One token is paid for every comparison performed by the algorithm and each element is
given O(logn) tokens. Since the balance is always non-negative, we can conclude that at
most O(nlogn) comparisons are performed, in total, during the main loop.

Elements of the input array are easily identified by their starting position in the array,
so we consider them as well-defined and distinct entities (even if they have the same value).
The height of an element is the number of runs that are below it in the stack: the elements
belonging to the run R; in the stack (Ry,...,Ry) have height h — i. To simplify the
presentation, we also distinguish two kinds of tokens, the {-tokens and the O-tokens, which
can both be used to pay for comparisons.

Two {-tokens and one O-token are credited to an element when it enters the stack (this
is Case #1 of Algorithm 3) or when its height decreases: all the elements of Ry are credited
when R; and Ry are merged, and all the elements of R; and Ry are credited when Ry and
Rj3 are merged. Tokens are spent to pay for comparisons, depending on the case triggered:

Case #2: every element of Ry and Ry pays 1 <. This is enough to cover the cost of

merging Ry and Rg, since 79 + r3 < 79 + 71, as r3 < ry in this case.

Case #3: every element of Ry pays 2 . In this case r; > r and the cost is r1 +r9 < 277.

Cases #4 and #5: every element of Ry pays 1 > and every element of Ry pays 1 . The

cost 71 + 1o is exactly the number of tokens spent.

» Lemma 4. The balances of {-tokens and O-tokens of each element remain non-negative
throughout the main loop of TIMSORT.

Proof. In all four cases #2 to #5, because the height of the elements of R; and possibly
the height of those of Ry decrease, the number of credited {-tokens after the merge is at
least the number of {-tokens spent. The O-tokens are spent in Cases #4 and #b5 only:
every element of Ry pays one ©-token, and then belongs to the topmost run R; of the new
stack S = (Ry,..., R,_1) obtained after merging R; and Ry. Since R; = R;yq for i > 2,
the condition of Case #4 implies that 7; > 7o and the condition of Case #5 implies that
T1 + To > T3: in both cases, the next modification of the stack S is another merge. This
merge decreases the height of Ry, and therefore decreases the height of the elements of Rs,
who will regain one O-token without losing any, since the topmost run of the stack never
pays with O-tokens. This proves that, whenever an element pay one O-token, the next
modification is another merge during which it regains its O-token. This concludes the proof
by direct induction. <

Let Apax be the maximum number of runs in the stack during the whole execution of the
algorithm. Due to the crediting strategy, each element is given at most 2h,,, {-tokens and
at most hyax O-tokens in total. So we only need to prove that hpax is O(logn) to complete
the proof that the main loop running time is in O(nlogn). This fact is a consequence of
TIMSORT’s invariant established with a formal proof in the theorem prover KeY [3, 5]: at
the end of any iteration of the main loop, we have r; + ;41 < r;42, for every ¢ > 1 such that
the run R;4o exists.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

For completeness, and because the formal proof is not meant to be read by humans, we
sketch a “classical” proof of the invariant. It is not exactly the same statement as in [5], since
our invariant holds at any time during the main loop: in particular we cannot say anything
about Ri, which can have any length when a run has just been added. For technical reasons,
and because it will be useful later on, we establish four invariants in our statement.

» Lemma 5. At any step during the main loop of TIMSORT, we have (i) r; + 7i11 < Tt
forie{3,...,h =2}, (ii) ro < 3rs, (iii) r3 < r4 and (iv) ro < r3 +74.

Proof. The proof is done by induction. It consists in verifying that, if all four invariants
hold at some point, then they still hold when an update of the stack occurs in one of the five
situations labeled #1 to #b5 in the algorithm. This can be done by a straightforward case
analysis. We denote by S = (Ry, ... ,Eﬁ) the new state of the stack after the update:
If Case #1 just occurred, a new run R; was pushed. This implies that none of the
conditions of Cases #2 to #b5 hold in S, otherwise merges would have continued. In
particular, we have 1 < ro < rsand ro+7r3 < ry. AsT; =r;_1 for i > 2, and invariant (i)
holds for S, we have Ty < T3 < T4, and thus invariants (i) to (iv) hold for S.
If one of the Cases #2 to #5 just occurred, we have 7y = ry + r3 (in Case #2) or
7o = r3 (in Cases #3 to #5). This implies that 7o < ro + r3. As 7; = r;4q for i > 3,
and invariants (i) to (iv) hold for S, we have To < 1o + 13 < 13 +1r4 + 135 < 3rgy = 373,

Tg=r4 <T3+1rs <715 =Tyg,andTo <7ro+73 <T3+r4+7r3 <T3+715 <T4+r5 =T3+T4.

Thus, invariants (i) to (iv) hold for S. |
At this point, invariant (i) can be used to bound hp,.y from above.

» Lemma 6. At any time during the main loop of TIMSORT, if the stack is (Ry,...,Rp)
i—j—1

then we have r9/3 <13 <r4 <...<r, and, for alli > j > 3, we have r; > ﬂl / rj. As

a consequence, the number of runs in the stack is always O(logn).

Proof. By Lemma 5, we have r; + r;41 < rjys for 3<i < h—2. Thus ri40 — 741 >1r; >0
and the sequence is increasing from index 4: r4 < 15 < rg < ... < 73. The increasing
sequence of the statement is then obtained using the invariants (i) and (iii). Hence, for
j = 3, we have r;9 > 2r;, from which one can get that r; > \/ii_j_lrj. In particular, if
h > 3 then r, > \/gh_4r3, which yields that the number of runs is O(logn) as r, < n. <«

Collecting all the above results is enough to prove Theorem 1. First, as mentioned
in Remark 3, computing the run decomposition can be done in linear time. Then, we
proved that the main loop requires O(nhmax) comparisons, by bounding from above the
total number of tokens credited, and that hyax = O(logn), by showing that the run lengths
grow at exponential speed. Finally, the final merges of line 11 might be taken care of by
Remark 3, but they can also be dealt with directly:* if we start these merges with a stack
S = (Ry,...,Rp), then every element of the run R; takes part in h + 1 — i merges at most,
which proves that the overall cost of line 11 is O(nlogn). This concludes the proof of the
theorem.

4 Refined analysis parametrized with the number of runs

A widely spread idea to explain why certain sorting algorithms perform better in practice
than expected is that they are able to exploit presortedness [7]. This can be quantified in

4 Relying on Remark 3 will be necessary only in the next section, where we need more precise computations.

4:7

ESA 2018

4:8

On the Worst-Case Complexity of TimSort

FLAH2H2H2 H3FF2HEH2HAH2 FHLH2H2H2 H2 42 #5 #2 #3 #3 4 72

starting seq. ending seq. starting seq. ending seq.

Figure 3 The decomposition of the encoding of an execution into starting and ending sequences.

many ways, the number of runs in the input sequence being one. Since this is the most natural
parameter, we now consider the complexity of TIMSORT, according to it. We establish the
following result, which was left open in [1, 4]:

» Theorem 7. The complezity of TIMSORT on inputs of size n with p runs is O(n+nlogp).

If p =1, then no merge is to be performed, and the algorithm clearly runs in time linear
in n. Hence, we assume below that p > 2, and we show that the complexity of TIMSORT
is O(nlog p) in this case.

To obtain the O(nlog p) complexity, we need to distinguish several situations. First,
consider the sequence of Cases #1 to #5 triggered during the execution of the main loop
of TIMSORT. It can be seen as a word on the alphabet {#1,...,#5} that starts with #1,
which completely encodes the execution of the algorithm. We split this word at every #1, so
that each piece corresponds to an iteration of the main loop. Those pieces are in turn split
into two parts, at the first occurrence of a symbol #3, #4 or #5. The first half is called a
starting sequence and is made of a #1 followed by the maximal number of #2’s. The second
half is called an ending sequence, it starts with #3, #4 or #5 (or is empty) and it contains
no occurrence of #1 (see Figure 3 for an example).

We treat starting and ending sequences separately in our analysis. The following lemma
points out one of the main reasons TIMSORT is so efficient regarding the number of runs.

» Lemma 8. The number of comparisons performed during all the starting sequences is O(n).

Proof. More precisely, for a stack S = (Ry,...,Ry), we prove that a starting sequence
beginning with a push of a run R of length r onto S uses at most yr comparisons in total,
where 7 is the real constant 3v/2 >0 i/v/2". After the push, the stack is S = (R, R1,..., Rp)
and, if the starting sequence contains k > 1 letters, i.e. kK — 1 occurrences of #2, then this
sequence amounts to merging the runs Ry, Ra, ..., Rk. Since no merge is performed if k = 1,
we assume below that k& > 2.

Looking closely at these runs, we compute that they require a total of

C=Fk-1)r+k-Dro+k—2)rs+...+7r <

)

k
(k +1-— i)?“i

=1

comparisons. The last occurrence of Case #2 ensures that r > ry, hence applying Lemma 6

to the stack S shows that r > \/ﬁk_lri/i% foralli=1,...,k. It follows that

k
i
Cfr <33 (k+1-0)/V2 "<~
i=2
This concludes the proof, since each run is the beginning of exactly one starting sequence,
and the sum of their lengths is n. <

We can now focus on the cost of ending sequences. Because the inner loop (line 5) of
TIMSORT has already begun, during the corresponding starting sequence, we have some
information on the length of the topmost run.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

#1 [50]
#1 [18] [13] [50] #3 [28]

Figure 4 Execution of the main loop of Java’s TIMSORT (Algorithm 3, without merge case #b5,
at line 9), with the lengths of the runs in runs being (24, 18, 50, 28,20, 6,4, 8,1). When the second
to last run (of length 8) is pushed onto the stack, the while loop of line 5 stops after only one merge,
breaking the invariant (in red), unlike what we see in Figure 2 using the Python version of TIMSORT.

» Lemma 9. At any time during an ending sequence, including just before it starts and just
after it ends, we have r1 < 3r3.

Proof. The proof is done by induction. At the beginning of the ending sequence, the condition
of #2 cannot be true, so r; < r3 < 3r3. Before any merge during an ending sequence, if the
stack is S = (Ry, ... Rp), then we denote by S = (Ry, ..., Rn_1) the stack after that merge. If
the invariant holds before the merge, and since ry < r3+1r4 and r3 < r4 by Lemma 5, we have
T1 =71 <3r3<3ry =3r3in Case #2, and 71 =11 +1ro <r3+ry <rzs+rz3+ry < 3ry =373
in Cases #3 to #5 (since r1 < r3, as Case #2 does not apply), concluding the proof. <

In order to obtain a suitable upper bound for the merges that happen during ending
sequences, we refine the analysis of the previous section. We still use {-tokens and O-tokens
to pay for comparisons when the stack is not too high, and we use different tokens otherwise:

at the beginning of the algorithm, a common pool is credited with 24 n &-tokens,

all elements are still credited two {-tokens and one O-token when entering the stack,

no token (of any kind) is credited nor spent during merges of starting sequences (the cost

of such sequences is already taken care of by Lemma 9),

if the stack has height less than x« = [2log, p], elements are credited {-tokens and

O-tokens and merges (of ending sequences) are paid in the same fashion as in Section 3,

if the stack has height at least s, then merges (of ending sequences) are paid using

&-tokens, and elements are not credited any token when a merge decreases their height.

By the analysis of the previous section, at most O(nk) comparisons are paid with {-tokens
and O-tokens. Hence, using Remark 3, we complete the proof of Theorem 7 by checking that
we initially credited enough &-tokens. This is a direct consequence of the following lemma,
since at most p merges are paid by &-tokens.

» Lemma 10. A merge performed during an ending sequence with a stack containing at
least Kk runs costs at most 24n/p comparisons.

Proof. Lemmas 5 and 9 prove that o < 3rz and r; < 3rs . Since a merging step either

merges R; and Ry, or Ry and R, it requires at most 6r3 comparisons. By Lemma 6, we
h—4 —h —K

have rp, > V2 r3, whence 6r3 < 242 T < 242 < 24n/p. |

5 About the Java version of TimSort

Algorithm 2 (and therefore Algorithm 3) does not correspond to the original TIMSORT.

Before release 3.4.4 of Python, the second part of the condition (in blue) in the test at line 3
of merge_collapse (and therefore merge case #5 of Algorithm 3) was missing. This version

4:9

ESA 2018

4:10 On the Worst-Case Complexity of TimSort

#1
#1 26| #2 #1
#1 7 7 26 | #2 #1 [27] #2

#1 8] 8 15 26| #2 2 2 27

#1 |16 16 16 16 16 31 26 26 26 28

#1 |25 25 25 25 25 25 25 56 56 56 56

#1 [83] | 83 83 33 83 83 83 33 33 83 83 33
[109] [109] [109] [109] [109] [109] [109] [109] [109] [109] [109] [109] [109

Figure 5 Execution of the main loop of the Java version of TIMSORT (without merge case #5,
at line 9 of Algorithm 3), with the lengths of the runs in runs being (109, 83,25, 16,8, 7, 26, 2, 27).
When the algorithm stops, the invariant is violated twice, for consecutive runs (in red).

of the algorithm worked fine, meaning that it did actually sort arrays, but the invariant
given by Equation (1) did not hold. Figure 4 illustrates the difference caused by the missing
condition when running Algorithm 3 on the same input as in Figure 2.

This was discovered by de Gouw et al. [5] when trying to prove the correctness of the
Java implementation of TIMSORT (which is the same as in the earlier versions of Python).
And since the Java version of the algorithm uses the (wrong) invariant to compute the
maximum size of the stack used to store the runs, the authors were able to build a sequence
of runs that causes the Java implementation of TIMSORT to crash. They proposed two
solutions to fix TIMSORT: reestablish the invariant, which led to the current Python version,
or keep the original algorithm and compute correct bounds for the stack size, which is the
solution that was chosen in Java 9 (note that this is the second time these values had to be
changed). To do the latter, the developers used the claim in [5] that the invariant cannot be
violated for two consecutive runs on the stack, which turns out to be false,® as illustrated in
Figure 5. Thus, it is still possible to cause the Java implementation to fail: it uses a stack
of runs of size at most 49 and we were able to compute an example requiring a stack of
size 50 (see http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java), causing an error
at runtime in Java’s sorting method.

Even if the bug we highlighted in Java’s TIMSORT is very unlikely to happen, this should
be corrected. And, as advocated by de Gouw et al. and Tim Peters himself,® we strongly
believe that the best solution would be to correct the algorithm as in the current version
of Python, in order to keep it clean and simple. However, since this is the implementation
of Java’s sort for the moment, there are two questions we would like to tackle: Does the
complexity analysis holds without the missing condition? And, can we compute an actual
bound for the stack size? We first address the complexity question. It turns out that the
missing invariant was a key ingredient for having a simple and elegant proof.

» Proposition 11. At any time during the main loop of Java’s TIMSORT, if the stack
of runs is (Ry,...,Rp) then we have r3 < rqy < ... < 1y, and, for all i > 3, we have
(2+\ﬁ)7"1 >T2+...+’I"i,1.

Proof ideas. The proof of Proposition 11 is much more technical and difficult than insightful,
and therefore we just summarize its main steps. As in previous sections, this proof relies
on several inductive arguments, using both inductions on the number of merges performed,

5 This is the consequence of a small error in the proof of their Lemma 1. The constraint C; > Co has no
reason to be. Indeed, in our example, we have C; = 25 and C2 = 31.
5 Here is the discussion about the correction in Python: https://bugs.python.org/issue23515.

http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java
https://bugs.python.org/issue23515

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

on the stack size and on the run lengths. The inequalities r3 < r4 < ... < rp come at once,
hence we focus on the second part of Proposition 11.

Since separating starting and ending sequences was useful in Section 4, we first introduce
the notion of stable stacks: a stack S is stable if, when operating on the stack S = (Ry, ..., Rp),
Case #1 is triggered (i.e. Java’s TIMSORT is about to perform a run push operation).

We also call obstruction indices the integers ¢ > 3 such that r; < r;_1 + r;_o: although
they do not exist in Python’s TIMSORT, they may exist, and even be consecutive, in Java’s
TiMSORT. We prove that, if i — k,i—k+1,...,7 are obstruction indices, then the stack sizes
Ti—k—2,--.,T; grow “at linear speed”. For instance, in the last stack of Figure 5, obstruction
indices are 4 and 5, and we have ro = 28, r3 =19 + 28, r4 = r3 + 27 and r5 = r4 + 26.

Finally, we study so-called expansion functions, i.e. functions f : [0, 1] — R such that, for
every stable stack S = (Ry,..., Rp), we have ro + ...+ rp_1 < rpf(rp—1/rn). We exhibit an
explicit function f such that f(x) < 2+ +/7 for all x € [0, 1], and we prove by induction on
rp, that f is an expansion function, from which we deduce Proposition 11. <

Once Proposition 11 is proved, we easily recover the following variant of Lemmas 6 and 9.

» Lemma 12. At any time during the main loop of Java’s TIMSORT, if the stack is
(Ry,...,Ryp) then we have r2/(2 +V7) < r3 < ry < ... < 1y, and, for alli > j > 3,
we have r; > 697 4r;, where § = (5/(2 + \ﬁ))l/s > 1. Furthermore, at any time during an
ending sequence, including just before it starts and just after it ends, we have r1 < (24+/7)r3.

Proof. The inequalities ro/(2 +/7) < r3 <14 < ... < 7}, are just a (weaker) restatement
of Proposition 11. Then, for j > 3, we have (2 + V7)rji5 = 7j + ... + 1j44 = 51y, ie.
Ti+5 = 0°r;, from which one gets that r; > 677 4r;.

Finally, we prove by induction that 71 < (2 + v/7)r3 during ending sequences. First,
when the ending sequence starts, r; < 73 < (2 + v/7)r3. Before any merge during this
sequence, if the stack is S = (Ry,...Ry), then we denote by S = (Ry,..., R,_1) the
stack after the merge. If the invariant holds before the merge, in Case #2, we have
71 =71 < (24V7)r3 < (24+V7)rs = (2-4+1/7)T3; and using Proposition 11 in Cases #3 and #4,
we have 7y = 71 + 79 and 71 <73, hence 7y = 11 + 79 <ro + 73 < (2+VT)ry = (2 +V7)T3,
concluding the proof. <

We can then recover a proof of complexity for the Java version of TIMSORT, by following
the same proof as in Sections 3 and 4, but using Lemma 12 instead of Lemmas 6 and 9.

» Theorem 13. The complexity of Java’s TIMSORT on inputs of size n with p runs is
O(n+nlogp).

Another question is that of the stack size requirements of Java’s TIMSORT, i.e. comput-
ing Apax. A first result is the following immediate corollary of Lemma 12.

» Corollary 14. On an input of size n, Java’s TIMSORT will create a stack of runs of
mazximal size hmax < 7+ logs(n), where 6 = (5/(2 + \ﬁ))l/S.

Proof. At any time during the main loop of Java’s TIMSORT on an input of size n, if the
stack is (R1, ..., Rp) and h > 3, it follows from Lemma 12 that n > r;, > 6" "ry > 6"~ 7. =

Unfortunately, for integers smaller than 23!, Corollary 14 only proves that the stack size
will never exceed 347. However, in the comments of Java’s implementation of TIMSORT,”

7 Comment at line 168: http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort. java.

4:11

ESA 2018

http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java

4:12

On the Worst-Case Complexity of TimSort

there is a remark that keeping a short stack is of some importance, for practical reasons, and
that the value chosen in Python— 85 — is “too expensive”. Thus, in the following, we go to
the extent of computing the optimal bound. It turns out that this bound cannot exceed 86
for such integers. This bound could possibly be refined slightly, but definitely not to the
point of competing with the bound that would be obtained if the invariant of Equation (1)
were correct. Once more, this suggests that implementing the new version of TIMSORT in
Java would be a good idea, as the maximum stack height is smaller in this case.

» Theorem 15. On an input of size n, Java’s TIMSORT will create a stack of runs of
mazimal size hmax < 3+ loga(n), where A = (14 +/7)Y/5. Furthermore, if we replace A by
any real number A’ > A, the inequality fails for all large enough n.

Proof ideas. The first part of Theorem 15 is proved as follows. Ideally, we would like to
show that r;4; > Afr; for all i > 3 and some fixed integer j. However, these inequalities do
not hold for all 7. Yet, we prove that they hold if ¢ + 2 and i 4+ j 4+ 2 are not obstruction
indices and if i + j 4+ 1 is an obstruction index. It follows quickly that 7, > A"=3.

The optimality of A is much more difficult to prove. It turns out that the constants 2++/7,
(1++/7)*/5, and the expansion function referred to in the proof of Proposition 11 were con-
structed as least fixed points of non-decreasing operators, although this construction needed
not be explicit for using these constants and function. Hence, we prove that A is optimal by
inductively constructing sequences of run lengths that show that lim sup{log(ry)/h} = A;
much care is required for proving that our constructions are indeed feasible. |

6 Conclusion

At first, when we learned that Java’s QuickSort had been replaced by a variant of MERGESORT,
we thought that this new algorithm — TIMSORT — should be really fast and efficient in practice,
and that we should look into its average complexity to confirm this from a theoretical point
of view. Then, we realized that its worst-case complexity had not been formally established
yet and we first focused on giving a proof that it runs in O(nlogn), which we wrote in a
preprint [1]. In the present article, we simplify this preliminary work and provide a short,
simple and self-contained proof of TIMSORT’s complexity, which sheds some light on the
behavior of the algorithm. Based on this description, we were also able to answer positively
a natural question, which was left open so far: does TIMSORT runs in O(n + nlog p), where
p is the number of runs? We hope our theoretical work highlights that TIMSORT is actually
a very good sorting algorithm. Even if all its fine-tuned heuristics are removed, the dynamics
of its merges, induced by a small number of local rules, results in a very efficient global
behavior, particularly well suited for almost sorted inputs.

Besides, we want to stress the need for a thorough algorithm analysis, in order to prevent
errors and misunderstandings. As obvious as it may sound, the three consecutive mistakes
on the stack height in Java illustrate perfectly how the best ideas can be spoiled by the lack
of a proper complexity analysis.

Finally, following [5], we would like to emphasize that there seems to be no reason not
to use the recent version of TIMSORT, which is efficient in practice, formally certified and
whose optimal complexity is easy to understand.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

—— References

1

10

Nicolas Auger, Cyril Nicaud, and Carine Pivoteau. Merge strategies: From Merge Sort

to TimSort. Research Report hal-01212839, hal, 2015. URL: https://hal-upec-upem.

archives-ouvertes.fr/hal-01212839.

Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting.
Theor. Comput. Sci., 513:109-123, 2013. doi:10.1016/j.tcs.2013.10.019.

Bernhard Beckert, Reiner Hahnle, and Peter H Schmitt. Verification of object-oriented
software: The KeY approach. Springer-Verlag, 2007.

Sam Buss and Alexander Knop. Strategies for stable merge sorting. Research Report
abs/1801.04641, arXiv, 2018. URL: http://arxiv.org/abs/1801.04641.

Stijn De Gouw, Jurriaan Rot, Frank S de Boer, Richard Bubel, and Reiner Héhnle. Open-
JDK’s Java.utils.Collection.sort() is broken: The good, the bad and the worst case. In
International Conference on Computer Aided Verification, pages 273-289. Springer, 2015.
Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publish. Co., Redwood City, CA, USA, 1998.

Heikki Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Trans.
Computers, 34(4):318-325, 1985. doi:10.1109/TC.1985.5009382.

J. Tan Munro and Sebastian Wild. Nearly-optimal mergesorts: Fast, practical sorting
methods that optimally adapt to existing runs. In Hannah Bast Yossi Azar and Grzegorz
Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), Leibniz
International Proceedings in Informatics (LIPIcs), pages 63:1-63:15, 2018.

Tim Peters. Timsort description, accessed june 2015. URL: http://svn.python.org/
projects/python/trunk/Objects/listsort.txt.

Tadao Takaoka. Partial solution and entropy. In Rastislav Kralovi¢ and Damian Niwinski,
editors, Mathematical Foundations of Computer Science 2009, pages 700-711, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg.

4:13

ESA 2018

https://hal-upec-upem.archives-ouvertes.fr/hal-01212839
https://hal-upec-upem.archives-ouvertes.fr/hal-01212839
http://dx.doi.org/10.1016/j.tcs.2013.10.019
http://arxiv.org/abs/1801.04641
http://dx.doi.org/10.1109/TC.1985.5009382
http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://svn.python.org/projects/python/trunk/Objects/listsort.txt

A New and Improved Algorithm for Online Bin
Packing

Janos Balogh

Department of Applied Informatics, Gyula Juhész Faculty of Education,
University of Szeged, Hungary

balogh@jgypk.u-szeged.hu

Jb6zsef Békési

Department of Applied Informatics, Gyula Juhész Faculty of Education,
University of Szeged, Hungary
bekesi@jgypk.u-szeged.hu

Gyorgy Désa
Department of Mathematics, University of Pannonia, Veszprém, Hungary
dosagy@almos.vein.hu

Leah Epstein
Department of Mathematics, University of Haifa, Haifa, Israel
lea@math.haifa.ac.il

Asaf Levin

Faculty of Industrial Engineering and Management, The Technion, Haifa, Israel
levinas@jie.technion.ac.il

—— Abstract

We revisit the classic online bin packing problem studied in the half-century. In this problem,

items of positive sizes no larger than 1 are presented one by one to be packed into subsets called
bins of total sizes no larger than 1, such that every item is assigned to a bin before the next
item is presented. We use online partitioning of items into classes based on sizes, as in previous
work, but we also apply a new method where items of one class can be packed into more than
two types of bins, where a bin type is defined according to the number of such items grouped
together. Additionally, we allow the smallest class of items to be packed in multiple kinds of bins,
and not only into their own bins. We combine this with the approach of packing of sufficiently
big items according to their exact sizes. Finally, we simplify the analysis of such algorithms,
allowing the analysis to be based on the most standard weight functions. This simplified analysis
allows us to study the algorithm which we defined based on all these ideas. This leads us to
the design and analysis of the first algorithm of asymptotic competitive ratio strictly below 1.58,
specifically, we break this barrier by providing an algorithm AH (Advanced Harmonic) whose
asymptotic competitive ratio does not exceed 1.57829.

Our main contribution is the introduction of the simple analysis based on weight function to
analyze the state of the art online algorithms for the classic online bin packing problem. The
previously used analytic tool named weight system was too complicated for the community in
this area to adjust it for other problems and other algorithmic tools that are needed in order
to improve the current best algorithms. We show that the weight system based analysis is not
needed for the analysis of the current algorithms for the classic online bin packing problem. The
importance of a simple analysis is demonstrated by analyzing several new features together with
all existing techniques, and by proving a better competitive ratio than the previously best one.

2012 ACM Subject Classification Theory of computation — Scheduling algorithms
Keywords and phrases Bin packing, online algorithms, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.5

© Janos Balogh, Jozsef Bekesi, Gyorgy Dosa, Leah Epstein, and Asaf Levin;
37 licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 5; pp. 5:1-5:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:balogh@jgypk.u-szeged.hu
mailto:bekesi@jgypk.u-szeged.hu
mailto:dosagy@almos.vein.hu
mailto:lea@math.haifa.ac.il
mailto:levinas@ie.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2

A New and Improved Algorithm for Online Bin Packing

1 Introduction

Bin packing [5, 6] is the problem of packing a set of items of rational sizes in (0, 1] into
subsets of items, which are called bins, of total sizes no larger than 1. In the offline variant
the list of items is given as a set, and in the online environment items are presented one by
one and each item has to be packed into a bin irrevocably before the next item is presented.

For an algorithm A, we denote its cost, that is, the number of used bins in its packing on
an input I by A(I). The cost of an optimal solution OPT, for the same input, is denoted
by OPT(I). The asymptotic approximation ratio allows to compare the costs for inputs
for which the optimal cost is sufficiently large. The asymptotic approximation ratio of A is

defined as follows. Ry = lim sup %TI()I) . In this paper we only consider the
N—=co \ noPT(I)>N
asymptotic approximation ratio, which is the common measure for bin packing algorithms.
Thus we use the term approximation ratio throughout the paper, with the meaning of
asymptotic approximation ratio. Moreover, the term competitive ratio often replaces the
term “approximation ratio” in cases where online algorithms are considered. We will use
this term for the asymptotic measure. When we discuss the absolute measure sup; O’;‘,#TI()I)
(the absolute approximation ratio or the absolute competitive ratio), we will mention this
explicitly. A standard method for proving an upper bound for the asymptotic approximation
ratio or the asymptotic competitive ratio for an algorithm A is to show the existence of a
constant C' > 0 independent of the input, such that for any input I, A(I) < R-OPT(I)+C
(and then the value of the asymptotic measure is at most R). Most work on upper bounds
on the asymptotic competitive ratio provide in fact an upper bound using this last method,

and we will follow this approach as well.

For the offline problem, algorithms with an approximation ratio of 1 4+ ¢ can be designed
[10, 17, 9, 13] for any € > 0. If the first definition is used, a 1-approximation is known [17],
where the cost of the solution computed by the algorithm is OPT(I) + o(OPT(I)) (see also
recent work on improving the sub-linear function of OPT(I) [21, 12]).

The classic bin packing problem, which we study here, was presented in the early 1970’s
[25, 14, 15, 16]. It was introduced as an offline problem, but many of the algorithms initially
proposed for it were in fact online. Johnson [14, 15] defined and analyzed the simple algorithm
Next Fit (NF), which tries to pack the next item into the last bin that was used for packing,
if such a bin exists (in which case such a bin is called “active”) and the item can be packed
there, and otherwise it opens a new bin for the item. The competitive ratio of this algorithm
is 2 [14, 15]. Any Fit (AF) algorithms, as opposed to the behavior of NF which only tests
at most one active bin for feasibility of packing a new item there, pack a new item into a
nonempty bin unless this is impossible (in which case a new bin is opened). Such algorithms
have competitive ratios of at most 2. Next, consider a sub-class of algorithms where one
may not select a bin with smallest total size of currently packed items for packing a new
item, unless this minimum is not unique or this is the only bin that can accommodate the
new item except for an empty bin. The last class of algorithms is called Almost Any Fit
(AAF), and they have competitive ratios of 1.7 [16, 15]. A well-known algorithm, which is in
fact a special case of AAF is Best Fit (BF), which always chooses the fullest bin where the
new item can be packed. First Fit (FF) is another important special case of AF (but not of
AAF) which selects a minimum index bin for each new item (where it can be packed). The
competitive ratio of FF is 1.7 [16, 7].

The pre-sorted versions of these algorithms, called NFD, FFD, BFD, and AFD, were
studied as well. Here items are still presented one by one, but they are sorted in a non

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

increasing order of sizes. For example, the approximation ratio of NFD is (approximately)
1.69103 [2] and that of FFD is 4 ~ 1.22222 [14]. For AFD in general, the approximation
ratio is at most 1.25 [14, 15, 16]. These pre-sorted variants are not online algorithms.

We design and analyze a new algorithm AH (Advanced Harmonic) for online bin packing,
and show that its competitive ratio does not exceed 1.57828956. This is the first algorithm
whose asymptotic competitive ratio is below 1.58. We use a new type of analysis of algorithms
which allows us to split the analysis into cases, while for every case we define only three
values (and even just one value in a large number of cases), and based on those we calculate
weights for items. The analysis is split into cases in recent previous work as well, but the
analysis of each case is much more difficult. Items are partitioned into classes according to
sizes. As in previous work, we sometimes do not pack the maximum number of items of

some class into a bin, and leave space for items of another class (possibly arriving later).

One new feature of AH is that in previous papers, in the algorithms there were at most two
options for every class. For any given class, one option was a bin with the maximum number
of items of this class fitting into a bin. For some of the classes there was a second option
consisted of a very small number of items from this class (with reserved spaces for items of
another class, possibly arriving later). We allow intermediate values as well with more than
two options for some classes and not only two kinds of bins for a given class.

We use simple weight functions for the analysis, rather than the much more complicated
tool called weight systems [23]. Weight functions are an auxiliary tool used for the analysis
of bin packing (and other) algorithms (this technique is also called dual fitting). In this
method, a weight is defined for each item (usually, based on its size, and sometimes it is
also based on its role in the packing). If there are multiple kinds of outputs, it is possible
to define a weight function for each one of them. The total weight of items is then used to
compare the numbers of bins in the output of the algorithm and in an optimal solution. The
list of weights of one item for different output types, also called scenarios, can be seen as
a vector associated with the item. Thus, the weights can be seen as one function from the
items to vectors whose dimension is the number of scenarios. Briefly, a weight system is a
generalization where the weight function also maps items (or item sizes) to vectors, but in
order to compute the weight of some item for a given scenario, another function, called a
consolidation function, is used. This last function is a piecewise linear function (mapping
real vectors to reals). The slightly simplified approach is to use convex combinations of
weights according to subsets of scenarios. It has not been proved that weight systems are
a stronger tool than just weights defined for the different scenarios. However, for simple
weights every scenario can be analyzed independently from other scenarios. We exploit the
simplicity of weight functions to obtain a clean and full analysis, which is easier to implement
and verify (compared to the analysis resulting from weight systems). The main advantage
is that every case is analyzed in a separate calculation using a standard knapsack solver
without considering any other cases at that time. This simplicity allows us to analyze the
new features that we introduce. Obviously, as these are cases for one algorithm, they have a
common set of parameters, but once the algorithm has been fixed, there is no connection
between the various cases.

The significance of our approach is that we combine many existing methods, including
that of Babel et al. [1] (recently used by Heydrich and van Stee [22, 11] for classic bin
packing), adding several new features, and applying a simple analysis, which can be verified
easily and is robust to further changes of the algorithm. We define the action of our algorithm
AH, we prove a number of invariants and properties of AH in detail, and then we provide the
specific parameters and compact representations of the lists of weights. For every possible

5:3

ESA 2018

5:4

A New and Improved Algorithm for Online Bin Packing

output type and scenario, there is a small number of values used for the calculation of weights
for it that we choose based on solving an auxiliary linear program. We also provide explicit
lists of weights calculated based on the values and the parameters.

To explain the new features of our work, we discuss the harmonic type algorithms. Already
in much of the previous work on online algorithms for bin packing, items were partitioned
into classes by size. The simplest such classification is based on harmonic numbers, leading
to the Harmonic algorithm of Lee and Lee [18]. In the harmonic algorithm of index k (for
an integer parameter k > 2), subset j is the intersection of the input and (Jﬁ, %] (where
1 <j<k-—1), and subset k of tiny items is the intersection of the input and (0, %]

In these algorithms each subset is packed independently from other subsets using NF (so
for j < k — 1, any bin for subset j, except for possibly the last such bin, has j items, but
for subset k, every bin except for the last bin for this subset has a total size of items above
%), and for k£ growing to infinity, the resulting competitive ratio is approximately 1.69103
[18]. The drawback of those algorithms is that bins of subsets with small values of j can
be packed with small sizes of items (for example, a bin of subset 2 may have total size just

above % and a bin of subset 1 may have just one item of size just above %)

The first idea which comes to mind is to try to combine items of those two subset into
common bins. However, if items of class 2 arrive first, one cannot just pack them one per
bin, as this immediately leads to a competitive ratio of 2 (if no items of subset 1 arrive
afterwards). Lee and Lee [18] proposed the following method to overcome this. A fixed
fraction of items of subset 2 (up to rounding errors) is packed one per bin and the remaining
items are packed in pairs. Thus, there are two kinds of bins for subset 2. The items we refer
to here can only be sufficiently small items, so there is a threshold A € (%, %) such that items
of sizes in (A, 1] and (1 — A, 1] are packed as before, while the algorithm tries to combine an
item of size in (3,1 — A] with an item of size in (3, A]. Even if those two items (one item of
each one of the two intervals) are relatively small, still their total size is above % ~ 0.83333.
This last algorithm was called Refined-Harmonic, and its competitive ratio is smaller than
1.636. Ramanan et al. [19] designed two algorithms called Modified Harmonic and Modified
Harmonic-2. The first one has a competitive ratio below 1.61562, and it allows to combine
1 (and at most A). The second algorithm
does not use only a single value of A, but splits the interval (%, 1] further, allowing additional
kinds of combinations. Its competitive ratio is approximately 1.612. For most subsets of
items (where k is chosen to be in [20,40] in all these algorithms), the last two algorithms
pack some proportion of the items in groups of smaller sizes, to allow it to be combined with
an item of size above % Intuitively, for an illustrative example, assume that A = 0.6, and
consider the items of sizes in (ﬁ, 1—10] The items that are not packed into groups of ten items
should be packed into groups of four items (the parameters of the algorithms are different
from those of this example). For some of the subsets the proportion is zero, and they are
still packed using NF. The drawback of such algorithms (as it is exhibited by Ramanan et al.
[19]) is that no matter how many thresholds there are, there can be pairs of items that can
be combined into bins of optimal solutions while the algorithm does not allow it as it has
fixed thresholds. Specifically, such algorithms allow to combine items of different intervals
only in the case that the largest items of the two intervals fit together into a bin. This is the

case with the next two harmonic type algorithms as well.

The next two papers, that of Richey [20] and that of Seiden [23] deal with a more
complicated algorithm where many more subsets can be combined. The general structure
is proposed in [20], and a full and corrected algorithm with its analysis is provided in [23].
For illustration, the items packed into smaller groups are called red and those packed into

items of many subsets with items of sizes above

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

bins with maximum numbers of items of the subset are called blue. The goal is to combine
as many bins with blue items with bins having red items as possible. Bins with red items
always have small numbers of items, to allow them to be combined with relatively large items
of sizes above % The analysis is far from being simple, though it leads to a competitive
ratio of at most 1.58889 (Heydrich and van Stee [22, 11] mention that this last value can be
decreased very slightly). The analysis of [23] is based on a complicated notion called weight
system. The complicated details of this analytic tool basically did not allow the research

community to introduce new algorithmic methods for dealing with the online bin packing

problem. We expect that our simplified analysis will not suffer from this major disadvantage.

The carefully designed subset structure eliminates many worst-case examples, but the
drawback mentioned above still remains. Recently, Heydrich and van Stee [22, 11] proposed
to use a method introduced by Babel et. al [1], where some items are packed based on their
exact size rather than by their subset. The approach of [22, 11] which we adopt is to apply
the methods of Babel et. al [1] on the largest items, of sizes in (%, 1]. This approach means
to combine items of sizes above 3 with items of sizes in (%, 1
Moreover, the approach involves combining pairs of items of subsets of sizes contained in
(%, %] while keeping the smallest items of such a subset to be matched with items of sizes
above % (and larger items of such a subset are used to be packed into pairs), as much as
possible. Prior to the work of [22, 11], all previous algorithms for classic bin packing that
partition items into classes always assumed that an item of a certain subset has the maximum
size when its possible packing was examined. This method simplifies the algorithm and its
analysis, but it is not always a good strategy as this excludes the option of combining items
that can fit together into a bin in many cases. This approach is very different from that of
AF algorithms and even from NF. Moreover, an approach similar to that of Babel et. al
[1] was used in an online algorithm designed in [3]. Heydrich and van Stee [22, 11] claim a

competitive ratio of 1.5816 but we were not able to verify this claim.

In algorithm AH, we do not just have red and blue items, but we potentially allow several
kinds of bins (that is, several and potentially a large number of colors for items of a given
class, and furthermore items may change their colors once further items arrive. Due to
these differences we will not use the illustration via colors of items in the description of
our algorithm). For example, for the subset of items of sizes in (3, 1]
into subsets of 14 items or three items or just one item. We also use bins of the smallest

we group items

items (our value of k is 43) where the total size of items is at most %, to allow them to be
combined (among others) with items of sizes in (1, £3]. These two features are possible due

to the simple nature of our analysis, and they are crucial for getting the improved bound.
| are treated together (by the algorithm and its analysis).

1
> 43
In order to use just a small number of values (one or three) for each scenario that we

Note that all items of sizes in (0

choose by solving an auxiliary linear program, we use the concept of containers. A container
is a set of items of one class (in the partition of potential inputs into items of similar sizes,
called classes), and it can be complete if its planned number of items has arrived already or
incomplete otherwise (but it is treated in the same way in both cases). Containers are of
two types, where a container is either positive or negative, and a bin may contain at most
one of each of them. The goal is to have as many bins as possible with both a positive and
a negative container. Roughly speaking, positive containers have total sizes above % and
negative containers have total sizes of at most % This last statement is imprecise as in most
cases we consider volumes and not exact sizes, where volumes are based on the maximum
sizes for the corresponding classes. There is one exception which is containers with one item

of size above %, where the exact size is taken into account (both by the algorithm and the

] based on their exact sizes.

5:5

ESA 2018

5:6

A New and Improved Algorithm for Online Bin Packing

analysis), and it is defined to be the volume. A positive container and a negative one fit
together if their total volumes does not exceed 1, and does not depend only on the classes.
Our positive containers and negative containers have some relation to concepts used in [23].

In our weight based analysis, we assign weights to containers, where the number of
different weights is small. Specifically, let the minimum volume of any positive container not
packed with a negative container be denoted by a. We have two cases. In the simple case
where all positive containers packed without negative containers have volumes of at least %
(i.e., a > %), we define weights as follows. Assign weights of 1 to positive containers packed
without negative containers and negative containers packed without positive containers.
Since we later base our weights of items on sizes, we assign these weights of 1 to all positive
containers of volume at least a and all negative containers of volumes above 1 — a. We have
a variable w (0 < w < 1) such that other positive containers have weights of w and other
negative containers have weights of 1 — w. Those weights are called the required weights
of containers (the actual weights can be larger but not smaller). Given the approximate
proportions of items of each class packed in every type of container, we compute a weighted
average (based on the containers of every item) to define weights of items using the required
weights of containers. The case where a < % is more interesting as a negative container
with one item of size in (%, %] and a positive container with one item of size above % can be
packed into one bin if the total size of the two items does not exceed 1 (i.e., the volumes of
their containers are the exact sizes of these two items). Thus, the exact value a is crucial
and not only its class, and additionally the class and even the exact value of 1 — a play an
important role. This is indeed more interesting as the analysis cannot be done for an infinite
set of scenarios and thus we need to analyze intervals of a together. Here, for other classes
we do the same as in the previous case, but for one class we perform a more careful analysis.
This is the class containing the value 1 — a. For this class we define weights of items directly.
We let the weight of an item of this class of size at most 1 — a be a variable u, and otherwise
it is a variable v, where v > u (this class is contained in (%, 1]). For the analysis, we found
suitable values for the variables for all scenarios (this was done separately for each scenario),
that is, for all possible values of a (the number of scenarios is still finite, as they are based
on the dividing points of the algorithm, though not only on the classes). For every scenario
where a < %, there are additional constraints on u, v, and w. As we do not use weights of
containers in this case (for the class containing 1 — a), while the packing of pairs of items of
classes contained in (%, %] is performed carefully for all such classes. After selecting suitable
values for those variables, all other item weights are also computed using the parameters of
the algorithm.

There are also improved algorithms based on First Fit. Yao [27] designed a %—competitive
algorithm where certain size based subsets are packed separately. Later, an algorithm of
absolute competitive ratio g was designed [3], which is the best possible with respect to
this last measure [28] (see also [24, 7, 8]). The (asymptotic) competitive ratios should be
compared to lower bounds on the competitive ratio. The current best such lower bound is
1.5403 [4] (see also [26]).

2 Algorithm AH

Notation and definitions. Similarly to previous algorithms’ definitions, AH has a sequence
of boundary points that are used in its precise definition: 1 =1tg > t; = % >ty > >ty =
> >ty >tyq1 =0. That is 1/2 and 1/3 are always boundary points, and there is no
boundary point in (1/2,1).

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

For every j, all items of sizes in the interval (¢;,t;_1] are called items of class j. We say
that a class of items (and every item of this class) is huge if j = 1, it is large if 1 < j <b
(these are all items of sizes above 1/3 and at most 1/2), small if b < j < M, and tiny if this
is the class of items of size at most ¢5; (i.e., the last class which is the class of tiny items is
class M + 1, and in general the index of a class corresponds to the index j such that ¢; is
the infimum size of any item of the class).

Our algorithm will pack items into containers and pack containers into bins. As the
algorithm is online, a container will be packed into a bin immediately when it is created, even
though it may receive additional items later. In the last case, when we say that an item is
packed into a container, this means that the bin containing the container receives that item.
Any container will contain items of a single class, and at most two different containers can
be combined (packed) into a bin. We provide additional details on combining two containers
into a bin later. Every container of items that are not tiny has a cardinality associated with
it, and this is the (maximum) number of items that it is supposed to receive.

Let v; = Lt]%lj for j < M. For class j that is either large or small (but not huge or tiny,
i.e., for values of j such that 2 < j < M holds), and for every i (where 1 < i < ~;) there is a
nonnegative parameter a;;, where 0 < a;; < 1. The value «;; will denote the proportion of
number of containers of cardinalities i of class j items among the number of containers of
class j (the term proportion corresponds to the property of the sum of proportions satisfies
>, a5 =1 for all j). Such containers that will eventually receive i items of class j (unless
the input terminate before this becomes possible) will be called type i containers of class j.
That is, intuitively if we let = denote the number of containers for items of class j, we will
have approximately o;; - type i containers each of which having exactly ¢ items of class j.
For every j such that 2 < j < M and every i, we let A; ; =4 -t;_1. While the values a;; are
defined so far only for large and small classes, we see one huge item as a type 1 container.
Note that the values of a;; are not proportions of items but of containers for class j, and
the resulting proportions of items can be computed from them (we will prove such bounds
accurately later).

For classes of large items the notion of the cardinality of a container is slightly more
delicate, and we will have exactly four possible types of containers. The first type is a reqular
type 2 container (already) containing exactly two items of this class. The second type is
a declared type 2 container, where this type consists of containers for which the algorithm
already decided to pack two items of this class in the container (so the planned cardinality
of the container is 2) but so far only one such item was packed into the container (one of the
few next arriving items of this class, if they exist, will be packed there, in which case the
type will be changed into a regular type 2 container). The third is a regular type 1 container,
where such a container has one item of the class and cannot ever have (in future steps) an
additional item of this class (such a container will be already combined with a container of
another class that is packed into the same bin). The fourth and last type of a container of
large items is a temporary type 1 container. A container of this last type currently has one
item of the class but sometimes it will get an additional item of this class in future steps
(and in this case its type will be changed at that time to regular type 2, its type can change
to declared type 2 or regular type 1 as well, but in those cases it does not happen as a result
of packing a new item to this container). Given a class of large items, the number of declared
type 2 containers will be at most four throughout the execution of the algorithm (as we
will prove below) while the numbers of containers of type 1 (of both kinds) and containers
of regular type 2 can grow unbounded as the length of the input grows, though we will

show certain properties on the relations between their numbers maintained by the algorithm.

5:7

ESA 2018

5:8

A New and Improved Algorithm for Online Bin Packing

The set of the union of containers of regular type 2 and declared type 2 are called type 2
containers, and the set of the union of containers of regular type 1 and temporary type 1
are called type 1 containers. The parameters ay; and ag; of a large class j determine the
approximate proportions of type 1 containers and type 2 containers, respectively.

For class M + 1 (of the tiny items), instead of the definitions above, there is a sequence
of p possible upper bounds on the total sizes of items packed into containers of this class:
1> Apm+1 > Ap—im+1 > -+ > Ay v 2> tu, and we let the positive parameters
o pm41 > 0 for i =1,...,p denote the proportion of numbers of containers of class M + 1
with items of total size in the interval (A; pr+1 — tar, Ai ar+1] (this is the planned total size
of items for such a container). Such containers will be called type i containers of class M + 1.
The values of a;; for all 4, j are selected heuristically via a search procedure carried out by a
computer program. Any such set of parameters give a different algorithm and our proof of
the numerical value of the upper bound is for one specific set of parameters that we provide
explicitly.

The volume of a container of type 7 of class j is defined as follows: If i=1and 1 < j<b
(that is, for items of sizes above 1/3), the volume of the container is the size of its (unique)
item, and otherwise ({ =2and 2 < j <bori>1andj>b)itis A; ;. That is, the volume
is usually simply the largest total size that the container can occupy, but for a container
that contains a single large or huge item, the volume is the ezact size of the item (there is
one exception where the bin already contains one large item and it is planned to contain
another item of the same class). In most cases we would like the volume of a container to be
known when it is created, which is possible for containers such that their planned contents
are known (in the sense that for example type 4 containers of a non tiny class j are planned
to contain ¢ items finally). However, for large items such containers with a single item may
be temporary type 1 containers, in which case there is still no planning of contents for them.
In this last case, the volume of the container is the size of its unique item. However, the
volume of such a container may change in the case the algorithm will decide to pack another
item of the same class (no matter if it packs that other item immediately at the time of
decision or whether we decide to pack such an item later) into this container and transform it
into a type 2 container. The volume of a declared type 2 container of class jis A ; =2-t;_1
(the volume is based on its complete contents, no matter whether they are present already or
not, as it is the case for classes of small or tiny items).

We say that a container is negative if its volume is at most 1/2 and otherwise it is positive.
Obviously, two positive containers cannot be packed into one bin. We will also not pack two
or more negative containers into a bin together. Thus, a bin containing two containers will
contain one positive container and one negative container, and no bin will contain more than
two containers.

The rules for packing containers. The algorithm AH which we define next will pack items
into containers and pack containers into bins according to rules we will define. Recall that
the packing of containers into bins will be such that every bin will have at most one positive
container and at most one negative container. Obviously, a bin is nonempty if it has at least
one container and at most two containers. We say that a nonempty bin is negative if it has a
negative container and does not have a positive container, it is positive if it has a positive
container and does not have a negative container, and it is neutral if it has both a negative
container and a positive container.

It is unknown whether a temporary type 1 container will eventually be positive or negative.
Therefore, such a container will not be combined in a bin with another container as long as

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

its type is not changed. Moreover, it is seen as a negative container until it changes its type
(so its bin is negative as long as the container is of temporary type 1). Specifically, it remains
a negative container if a positive container joins it (and its bin becomes neutral), and in this
case it becomes a regular type 1 container (and remains negative), and it becomes a positive
container if its type changes to type 2. It can also happen that a temporary type 1 container
will remain such till the termination of the input and the action of AH (and its bin remains
negative). It is important to note that the difference between regular type 1 containers of
a large class and temporary type 1 containers of the same class is that each of the former
containers is already packed into a bin with a positive container (of some class), while the
latter are not packed with other containers (in fact, the corresponding items are placed into
their own bins, one item per bin).

For every class j, we denote by n; the number of containers of class j. Let n;; denote
the number of containers of type i of class j. We also let IV; denote the number of items of
class j at that moment. We often consider the values n; and n,; just prior to the packing of
a new item, when NN; was already increased but the new item not packed yet so the values
n; and n;; are not updated yet.

We say that two containers fit together if their total volume is at most 1. In what follows,
when we refer to packing an item e - or more precisely, packing a container containing e
(which was just created and therefore contains only e) into existing bins using Best Fit - we
refer to packing e (or the container containing e) into the bin with a container of largest
volume where the existing container and e (or the container containing e) fit together. For
the original version of Best Fit, actual sizes are taken into account, but here we base this rule
on volumes (as for a container with a single large or huge item the volume is equal to the
size of the item, if we select one such container among a set of this last kind of containers,
our action is equivalent to the standard application of Best Fit).

Packing rules of a new item. Next, we define the packing rules of the algorithm when a
new item of class j arrives. The algorithm is defined for each step, based on the class of the
new item.

A huge item. Recall that a huge item is immediately packed into a positive container
containing only this item. Use Best Fit (applied on volumes, as explained above) to pack
the created container into an existing bin, out of existing negative bins, such that the two
containers (the new one with the huge item and the negative one of the negative bin) fit
together. The only case where the new huge item joins a bin with a large item of some
class j’ is the case where the container of class j' is a temporary type 1 container, and in
this case the type of this container of class j is changed into regular type 1. If no bin can
accommodate the container of the new item according to those packing rules, that is, for
every negative bin, the total volume together with the new item is too big (or there is no
negative bin at all), then use a new bin for the positive container of the new item (this new
bin becomes a positive bin).

An item of a class of small or tiny items. For these classes we define the concept of an
open container. Informally, an open container (of class j) can receive at least one additional
item of class j. As a new container is introduced in order to pack an item, any container (of
any type and class) already has at least one item of the corresponding class. If b < j < M,
an open type ¢ container of class j is one where the total number of the items in the container
is strictly smaller than i. Once such a container receives ¢ items, it is closed. For j = M + 1,

5:9

ESA 2018

5:10

A New and Improved Algorithm for Online Bin Packing

a type i container of this class will be open starting the time it is created and while the total
size of items in it is positive and at most A; ar+1 — tar. Once it reaches a total size above
A; a1 — tar, it will be closed. For all cases of packing a small or tiny item, a new container
of some class will be used only if there is no open container of the same class, and thus, in
particular, there will be at most one open container for each j (and the corresponding value
of i will always be one such that a;; > 0).

When a new item of class j (such that j > b) arrives, if there is an open container of
some type i of class j, then pack the item there (there can be at most one such container, so
there are no ties in this case). Otherwise, open a new container for it (the details of the type
are given below). After packing the new item into the container (and packing its container
into a bin if it is a new container), close the container if necessary, based on its type and the
rules above.

In the case that a new container is used for the item, we define the process of packing
the item in more detail. Prior to packing the item, we define the type of the new open
container. As the item is not packed yet, n; is the number of containers of class j excluding
the container opened for the new item. Find the minimum value of 7 such that a;; > 0 and
so far there are at most |a;; - n;| type ¢ containers of class j (i.e., ni; < |aj - n;|, where the
values n;; do not include the new container which will be opened). Such an index i exists as
otherwise there are more than n; containers of class j. More precisely, since), o, ;j = 1,
there is always a value of ¢ satisfying that c;; > 0 such that so far we opened at most
la; ;- mj] type ¢ containers of class j. Open a new type i container of class j containing the
new item (increasing both n; and n;;). Observe that this opening of a new container defines
its volume as well as whether it is a positive container or a negative container.

Next, we decide where to pack this new container. First consider the case where this
container is a negative container. Then, if there is a positive bin, such that the new container
fits into the bin according to its volume, then use that bin to pack the new container. This
last case includes the possibility that the positive container is a type 2 container of a large
class (regular or declared). If there are multiple options for choosing a bin, one of them is
chosen arbitrarily.

Otherwise (there is no positive bin where the new negative container can be added), the
algorithm checks the option of using a bin with a temporary type 1 container of some class
of large items. Assume that there is a negative bin B such that the following two conditions
are satisfied. The first condition is that the bin B has a temporary type 1 container of class
j' such that a positive container of class j’ (with two items) will fit together with the new
(negative) container. The second condition is that there are at most |agjs - njr | — 1 type 2
containers of class j' (before the packing of the new item is performed). Then, pack the new
negative container into B, and define the container of class j packed into B as a declared
type 2 container. This last container of class j’ will get one of the next items of class 7’ that
will arrive, which will happen before any new container is opened for any new class j item,
see below. If there are multiple options for choosing B, one of the classes of large items is
chosen arbitrarily (among those that can be used), and a temporary type 1 container of this
class with maximum volume is selected, i.e., we use Best Fit in this case. This last packing
step is possible as a temporary type 1 container is never packed with another container into
a bin (if another container joins it, its type is changed).

Otherwise (if there is no suitable positive bin and no class of large items has a suitable
temporary type 1 container that can be used under the required conditions), pack the new
negative container into a new bin.

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

Finally, consider the case where the new container is a positive container. Then, if there
is a negative bin whose container is not a temporary type 1 container, such that the new
container fits together with it, then use such a bin to pack the new container. Otherwise,
if there is a temporary type 1 container with one large item of a class j' where the new
container fits, then pack the new positive container into this bin and define the container of
class 7' in this bin as a regular type 1 container. The class j' can be chosen arbitrarily if
there are multiple options, and among the temporary type 1 containers of class j’, one of

maximum volume (out of those that can be used) is selected, i.e., once again we use Best Fit.

Otherwise, pack the new positive container into a new bin.

A large item of a class j. If there is a declared type 2 container of class j, pack the
item there (as a second item) and change it into a regular type 2 container (breaking ties
arbitrarily). This packing rule is checked first, and we apply it whenever possible. We

continue to the other cases in the situation where there is no such declared type 2 container.

If the number of type 2 containers equals [ao; - n;] (that is, we should not increase the
number of type 2 containers at this stage), then pack the new item into a new negative
container. To pack the container into a bin, do as follows. If there is a positive bin where
the new negative container fits, then use Best Fit to pack it as a regular type 1 container of
class j (its volume is defined accordingly as the size of the new item) together with a positive
container (this positive container is not of large items, as three large items cannot be packed
into a bin together). Otherwise the new container is packed into a new bin, in which case it
is defined to be a temporary type 1 container.

Otherwise (that is, the number of type 2 containers is strictly smaller than |asg; - n;]),
we will increase the number of regular type 2 containers or the number of declared type 2
containers of this class in the current iteration as follows. If there is a negative bin B where
a type 2 container of class j fits, then pack the item into a new declared type 2 container of
class j and pack this container into this bin B. Otherwise, if there is a temporary type 1
container of class j, then we pack the new item using Best Fit (considering only temporary
type 1 containers of class j, and selecting such a container of largest volume) and change the
type of this container into a regular type 2 container. Otherwise (all containers of class j are
either regular type 1 or regular type 2, we should increase the number of type 2 containers,
and a new container with two items of this class cannot be packed into an existing bin), we
open a new declared type 2 container for the new item and open a new bin for this declared
type 2 container (and pack it there).

A sketch of the analysis. In the analysis, we see a pair of a negative container and a
positive container, packed together in a bin, as matched to each other, and each one of them
is seen as matched (while every container packed into a bin without another container is
unmatched). Let a’ =1 — spin/2 where sy, is the smallest item size in the examined input,
and let a be the smallest volume of a positive container that is unmatched, if it exists. If
no unmatched positive container exists, let a = a’. If a > o/, decrease the value of a to be
a'. A simple property of the algorithm is that it tries to match a positive container and a
negative container whenever possible. Thus every positive container of volume smaller than
a is matched and every negative container of volume at least 1 — a is matched.

We define a finite set of scenarios according to the value of a. To do that we define a set of
values V as follows. V ={A4; ;,1-A4,,:7=2,3,....,M+1,0;; >0} U{t1,t2, ..., tam,tmr+1}
and V' = {z € V : 2 < 1/2} (in particular, § € V’). Note that the set V' contains (among
other) all boundary points t; (for all j > 1), even for values of j for which a;; = 0. The

5:11

ESA 2018

5:12

A New and Improved Algorithm for Online Bin Packing

name of a scenario is an interval (x,y] between consecutive values in V’. Using this partition,
we ensure that if the scenario is (x,y], then there is no 4 > 2 and class j such that a;; > 0
and the volume of a container of type 4 of class j is in (z,y) or in (1 —y,1 — z).

The first step for analyzing each scenario is to obtain a good weight function for the
scenario, in the sense that the analysis will be as tight as possible and can be done using
a computer assisted proof within a small running time. The weight function defines size
based weights for values in (0,1]. The goal is to define weights such that the cost of the
algorithm is roughly the total weight of all input items (a weight function satisfying this
requirement is called here valid), and if the target competitive ratio is R, the cost of an
optimal solution is at least the total weight divided by R (this can be proved by showing
that no bin can contain items of total weight above R). Then, for an input I, letting w(I)
denote its total weight, (and as defined above, letting OPT(I) the optimal cost for I, and
A(I) the number of bins used by A), we will have A(I) < w(I)+ ¢, OPT(I) > %, which
shows that A(I) < R-OPT(I) + ¢. This last argument is the standard argument for weight
functions based analysis [14, 15, 16, 18, 19].

In order to define a suitable function, we will solve a linear program defined below (this
linear program has only four variables w, u, v and R, and in some cases it actually has only
two variables w and R). More precisely, we will provide a feasible solution for this linear
program that is very close to the optimal one (but we only use its feasibility and do not
prove that it is almost optimal). The weights of specific sizes will be based on the values
w, u, v (or just on w, if the others are undefined), and on some of the parameters of the
algorithm (the ay; values for the given class).

We define a quantity for each container called the required weight of the container, and
its goal is to introduce a uniform value such that weights of items are defined based on these
values, in order to satisfy all requirements. This quantity is defined for a class that is not the
threshold class or is not a large class. If the threshold class k (the class containing 1 — a) is a
large class, we keep this quantity undefined for that class. For a positive container of volume
at least a, the required weight of the container is 1. For a positive container of volume in the
interval (1/2, a), the required weight of the container is denoted as w. This will be a decision
variable of the forthcoming linear program. The required weight of a negative container is 1
if its volume is larger than 1 — a and otherwise its required weight is 1 — w. We ensure that
the required weight of a container depends only on the index of the scenario (z,y] and not
the specific value of a in the interval [1 —y,1 —) and there are only few exceptions that are
handled separately.

The weight of a huge item is 1 if its size is at least a and w otherwise. The weight of an
item of class j < M such that either j # k or j > b is the ratio between the average required
weight of a container of class j and the average number of items in a container of class j.
The weight of a tiny item of size s is s times the ratio between the average required weight
of a container of tiny items and the average (lower bounds on the) total size of items in a
container of tiny items. The weight of items of class j = k that is a large class is as follows.
An item of this class has weight w if its size is at most 1 — a and otherwise a weight of v. We
find linear inequalities on the variables u, v, w that ensure that the resulting weight function
is valid. By solving a linear program we can find such values of u,v,w that minimize the
corresponding competitive ratio that can be proven using this weight function. In this linear
program the goal is to minimize R that is an upper bound on the total weight of items that
can fit into one bin subject to the additional constraints on u, v, w ensuring that the resulting
weight function is indeed valid.

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin

In this way we get a table showing for each scenario the set of the values of u,v,w (or

only w for scenarios where the threshold class is not large) that define the weight function
that we use for the scenario. Using these weight functions we show the correctness of our
main result, namely that the competitive ratio of AH is at most 1.57828956.

—— References

1

10

11

12

13

14

15

16

17

L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems
with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238-251, 2004.

B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for next-fit-decreasing
bin-packing. SIAM J. on Algebraic and Discrete Methods, 2(2):147-152, 1981.

J. Balogh, J. Békési, Gy. Dodsa, J. Sgall, and R. van Stee. The optimal absolute ratio
for online bin packing. In Proc. of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA2015), pages 1425-1438, 2015.

J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain bin packing al-
gorithms. Theoretical Computer Science, 1:1-13, 2012.

E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:
A survey. In D. Hochbaum, editor, Approzimation algorithms. PWS Publishing Company,
1997.

J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and
G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages 147-177, 1998.
Gy. Désa and J. Sgall. First Fit bin packing: A tight analysis. In Proc. of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS2013), pages
538-549, 2013.

Gy. Désa and J. Sgall. Optimal analysis of Best Fit bin packing. In The 41st International
Collogquium on Automata, Languages and Programming (ICALP201}), pages 429-441, 2014.
L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. Mathem-
atical Programming, 119(1):33-49, 2009.

W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 14¢ in linear
time. Combinatorica, 1(4):349-355, 1981.

S. Heydrich and R. van Stee. Beating the harmonic lower bound for online bin packing.
In Proc. of 43rd International Colloquium on Automata, Languages, and Programming
(ICALP2016), pages 41:1-41:14, 2016.

R. Hoberg and T. Rothvoss. A logarithmic additive integrality gap for bin packing. In
Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2017),
pages 2616-2625, 2017.

K. Jansen and K.-M. Klein. A robust AFPTAS for online bin packing with polynomial
migration. In Proc. of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP2013), part I, pages 589-600, 2013.

D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA,
1973.

D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8:272-314, 1974.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing, 3:256-278, 1974.

N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proc. of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 312-320, 1982.

5:13

ESA 2018

5:14

A New and Improved Algorithm for Online Bin Packing

18

19

20

21

22

23
24

25

26

27
28

C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM,
32(3):562-572, 1985.

P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.
Journal of Algorithms, 10:305-326, 1989.

M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Discrete
Applied Mathematics, 34(1-3):203-227, 1991.

T. Rothvoss. Better bin packing approximations via discrepancy theory. SIAM Journal on
Computing, 45(3):930-946, 2016.

R. van Stee S. Heydrich. Beating the harmonic lower bound for online bin packing. The
Computing Res. Rep. (CoRR), abs/1707.01728, 2017. arXiv:1511.00876v3.

S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640-671, 2002.
D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Research Lo-
gistics, 41(4):579-585, 1994.

J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,
Princeton University, Princeton, NJ, 1971.

A. van Vliet. An improved lower bound for online bin packing algorithms. Information
Processing Letters, 43(5):277-284, 1992.

A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207-227, 1980.

G. Zhang. Private communication.

http://arxiv.org/abs/1511.00876v3

Practical Access to Dynamic Programming on
Tree Decompositions

Max Bannach
Institute for Theoretical Computer Science, Universitit zu Liibeck, Liibeck, Germany
bannach@tcs.uni-luebeck.de

https://orcid.org/0000-0002-6475-5512

Sebastian Berndt

Department of Computer Science, Kiel University, Kiel, Germany
seb@informatik.uni-kiel.de
https://orcid.org/0000-0003-4177-8081

—— Abstract

Parameterized complexity theory has lead to a wide range of algorithmic breakthroughs within
the last decades, but the practicability of these methods for real-world problems is still not
well understood. We investigate the practicability of one of the fundamental approaches of this
field: dynamic programming on tree decompositions. Indisputably, this is a key technique in
parameterized algorithms and modern algorithm design. Despite the enormous impact of this
approach in theory, it still has very little influence on practical implementations. The reasons
for this phenomenon are manifold. One of them is the simple fact that such an implementation
requires a long chain of non-trivial tasks (as computing the decomposition, preparing it,...). We
provide an easy way to implement such dynamic programs that only requires the definition of the
update rules. With this interface, dynamic programs for various problems, such as 3-COLORING,
can be implemented easily in about 100 lines of structured Java code.

The theoretical foundation of the success of dynamic programming on tree decompositions is
well understood due to Courcelle’s celebrated theorem, which states that every MSO-definable
problem can be efficiently solved if a tree decomposition of small width is given. We seek to
provide practical access to this theorem as well, by presenting a lightweight model-checker for a
small fragment of MSO. This fragment is powerful enough to describe many natural problems,
and our model-checker turns out to be very competitive against similar state-of-the-art tools.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases fixed-parameter tractability, treewidth, model-checking

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.6

1 Introduction

Parameterized algorithms aim to solve intractable problems on instances where some para-
meter tied to the complexity of the instance is small. This line of research has seen enormous
growth in the last decades and produced a wide range of algorithms [9]. More formally,
a problem is fized-parameter tractable (in FPT), if every instance I can be solved in time
f(r(I)) - poly(|I]) for a computable function f, where x(I) is the parameter of I. While the
impact of parameterized complexity to the theory of algorithms and complexity cannot be
overstated, its practical component is much less understood. Very recently, the investigation
of the practicability of fixed-parameter tractable algorithms for real-world problems has
started to become an important subfield (see e.g. [18, 11]). We investigate the practicability
of dynamic programming on tree decompositions — one of the most fundamental techniques of
parameterized algorithms. A general result explaining the usefulness of tree decompositions
? Max Bannach and.Sebastian Bern.dt;

5v icensed under Creative Commons License CC-BY
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 6; pp. 6:1-6:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:bannach@tcs.uni-luebeck.de
https://orcid.org/0000-0002-6475-5512
mailto:seb@informatik.uni-kiel.de
https://orcid.org/0000-0003-4177-8081
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2

Practical Access to Dynamic Programming on Tree Decompositions

was given by Courcelle in [8], who showed that every property that can be expressed in
monadic second-order logic is fixed-parameter tractable if it is parameterized by tree width.
By combining this result (known as Courcelle’s Theorem) with the f(tw(G)) - |G| algorithm
of Bodlaender [7] to compute an optimal tree decomposition in FPT-time, a wide range of
graph-theoretic problems is known to be solvable on these tree-like graphs. Unfortunately,
both ingredients of this approach are very expensive in practice.

One of the major achievements concerning practical parameterized algorithms was the
discovery of a practically fast algorithm for treewidth due to Tamaki [19]. Concerning Cour-
celle’s Theorem, there are currently two contenders concerning efficient implementations of it:
D-Flat, an Answer Set Programming (ASP) solver for problems on tree decompositions [1];
and Sequoia, an MSO solver based on model checking games [17]. Both solvers allow to solve
very general problems and the corresponding overhead might, thus, be large compared to a
straightforward implementation of the dynamic programs for specific problems.

Our Contributions. In order to study the practicability of dynamic programs on tree
decompositions, we expand our tree decomposition library Jdrasil with an easy to use
interface for such programs: The user only needs to specify the update rules for the different
kind of nodes within the tree decomposition. The remaining work — computing a suitable
optimized tree decomposition and performing the actual run of the dynamic program — are
done by Jdrasil. This allows users to implement a wide range of algorithms within very few
lines of code and, thus, gives the opportunity to test the practicability of these algorithms
quickly. This interface is presented in Section 3.

While D-Flat and Sequoia solve very general problems, the experimental results of Section 5
show that naive implementations of dynamic programs might be much more efficient. In
order to balance the generality of MSO solvers and the speed of direct implementations,
we introduce a small MSO fragment, that avoids quantifier alternation, in Section 4. By
concentrating on this fragment, we are able to build a model-checker, called Jatatosk, that
runs nearly as fast as direct implementations of the dynamic programs. To show the feasibility
of our approach, we compare the running times of D-Flat, Sequoia, and Jatatosk for various
problems. It turns out that Jatatosk is competitive against the other solvers and, furthermore,
its behaviour is much more consistent (i.e. it does not fluctuate greatly on similar instances).
We conclude that concentrating on a small fragment of MSO gives rise to practically fast
solvers, which are still able to solve a large class of problems on graphs of bounded treewidth.

2 Preliminaries

All graphs considered in this paper are undirected, that is, they consists of a set of vertices V'
and of a symmetric edge-relation £ C V x V. We assume the reader to be familiar with basic
graph theoretic terminology, see for instance [10]. A tree decomposition of a graph G = (V, E)
is a tuple (T, t) consisting of a rooted tree 7" and a mapping ¢ from nodes of T' to sets of
vertices of G (which we call bags) such that (1) for all v € V there is a node n in T with
v € v(n), (2) for every edge {v,w} € E there is a node m in T' with {v,w} C ¢(m), and (3)
the set {x | v € ¢(x) } is connected in T for every v € V. The width of a tree decomposition
is the maximum size of one of its bags minus one, and the treewidth of G, denoted by tw(G),
is the minimum width any tree decomposition of G must have.

In order to describe dynamic programs over tree decompositions, it turns out be helpful
to transform a tree decomposition into a more structured one. A nice tree decomposition
is a triple (T,¢,n) where (T,t) is a tree decomposition and 7n: V(T) — {leaf, introduce,

M. Bannach and S. Berndt

forget, join} is a labeling such that (1) nodes labeled “leaf” are exactly the leaves of T,
and the bags of these nodes are empty; (2) nodes n labeled “introduce” or “forget” have
exactly one child m such that there is exactly one vertex v € V(G) with either v & «(m) and
t(n) = ¢(m) U {v} or v € t(m) and ¢(n) = t(m) \ {v}, respectively; (3) nodes n labeled “join”
have exactly two children z, y with ¢(n) = ¢(z) = t(y). A very nice tree decomposition is a nice
tree decomposition that also has exactly one node labeled “edge” for every e € E(G), which
virtually introduces the edge e to the bag — i.e., whenever we introduce a vertex, we assume
it to be “isolated” in the bag until its incident edges are introduced. It is well known that
any tree decomposition can efficiently be transformed into a very nice one without increasing
its width (essentially traverse through the tree and “pull apart” bags) [9]. Whenever we
talk about tree decompositions in the rest of the paper, we actually mean very nice tree
decompositions. However, we want to stress out that all our interfaces also support “just”
nice tree decompositions.

We assume the reader to be familiar with basic logic terminology and give just a brief
overview over the syntax and semantic of monadic second-order logic (MSQO), see for
instance [13] for a detailed introduction. A vocabulary (or signature) T = (R7*,...,R%") is a
set of relational symbols R; of arity a; > 1. A 7-structure is a set U — called universe — together

with an interpretation RY C R% of the relational symbols. Let 1, z2,... be a sequence of
first-order variables and X7, X, ... be a sequence of second-order variables X; of arity ar(X;).
The atomic 7-formulas are z; = x; for two first-order variables and R(z;,,...,;,), where R

is either a relational symbol or a second-order variable of arity k. The set of T-formulas is
inductively defined by (1) the set of atomic 7-formulas; (2) Boolean connections —¢, (¢ V),
and (¢ A ¢) of 7-formulas ¢ and v; (3) quantified formulas Jz¢ and Vz¢ for a first-order
variable z and a 7-formula ¢; (4) quantified formulas 3X ¢ and VX ¢ for a second-order variable
X of arity 1 and a 7-formula ¢. The set of free variables of a formula ¢ consists of the variables
that appear in ¢ but are not bounded by a quantifier. We denote a formula ¢ with free
variables z1, ..., zk, X1,...,X¢ as ¢(x1, ..., 2k, X1,...,Xp). Finally, we say a 7-structure S
with an universe U is a model of an 7-formula ¢(z1,...,zk, X1,...,X,) if there are elements
ui,...,u, € U and relations Uy,...,U, with U; € U with ¢(uq, ..., u, U, ..., Up)
being true in §. We write S = ¢(u1, ..., ux, Ur,...,Up) in this case.

» Example 1. Graphs can be modeled as { E?}-structures with a symmetric interpretation
of E. Properties such as “is 3-colorable” can then be described by formulas as:

$3col = IRIGAB (Vx R(z) V G(z) V B(z)) A (VaVy E(z,y) — /\ -C(x) vV -C(y)).
C e {R,G, B}

For instance, we have m = (;g,col and m = égcol. We write gg whenever a more refined
version of ¢ will be given later on.

The model-checking problem asks, given a logical structure S and a formula ¢, if S |= ¢
holds. A model-checker is a program that solves this problem and outputs an assignment to
its free and bounded variables if S |= ¢ holds.

3 An Interface for Dynamic Programming on Tree Decompositions

It will be convenient to recall a classical viewpoint of dynamic programming on tree de-
compositions to illustrate why our interface is designed the way it is. We will do so by the
guiding example of 3-COLORING: Is it possible to color vertices of a given graph with three
colors such that adjacent vertices never share the same color? Intuitively, a dynamic program

6:3

ESA 2018

6:4

Practical Access to Dynamic Programming on Tree Decompositions

for 3-cOLORING will work bottom-up on a very nice tree decomposition and manages a
set of possible colorings per node. Whenever a vertex is introduced, the program “guesses”
a color for this vertex; if a vertex is forgotten we have to remove it from the bag and
identify configurations that become eventually equal; for join bags we just have to take the
configurations that are present in both children; and for edge bags we have to reject colorings
in which both endpoints of the introduced edge have the same color. To formalize this vague
algorithmic description, we view it from the perspective of automata theory.

3.1 The Tree Automaton Perspective

Classically, dynamic programs on tree decompositions are described in terms of tree auto-
mata [13]. Recall that in a very nice tree decomposition the tree T' is rooted and binary; we
assume that the children of T" are ordered. The mapping ¢ can then be seen as a function
that maps the nodes of T' to symbols from some alphabet 3. A naive approach to manage
¢ would yield a huge alphabet (depending on the size of the graph). We thus define the
so called tree-index, which is a map idx: V(G) — {0,...,tw(G)} such that no two vertices
that appear in the same bag share a common tree-index. The existence of such an index
follows directly from the property that every vertex is forgotten exactly once: We can simply
traverse T from the root to the leaves and assign a free index to a vertex V when it is
forgotten, and release the used index once we reach an introduce bag for v. The symbols
of ¥ then only contain the information for which tree-index there is a vertex in the bag.
From a theoreticians perspective this means that |X| depends only on the treewidth; from
a programmers perspective the tree-index makes it much easier to manage data structures
that are used by the dynamic program.

» Definition 2 (Tree Automaton). A nondeterministic bottom-up tree automaton is a tuple
A=(Q,%,A F) where Q is a set of states with a subset F' C @Q of accepting states, ¥ is an
alphabet, and A C (QU{L}) x (QU{L}) x X x Q is a transition relation in which L & Q is
a special symbol to treat nodes with less than two children. The automaton is deterministic
if for every z,y € QU {L} and every o € ¥ there is exactly one g € Q with (z,y,0,q) € A.

» Definition 3 (Computation of a Tree Automaton). The computation of a tree automaton
A= (Q,X,AF) on a labeled tree (T,¢) with ¢: V(T) — ¥ and root r € V(T) is an
assignment ¢: V(T) — @ such that for all n € V(T) we have (1) (¢(x), q(y),t(n),q(n)) € A
if n has two children z, y; (2) (q(x), L, t(n),q(n)) € A or (L,q(x),t(n),q(n)) € A if n has
one child z; (3) (L, L,t(n),q(n)) € A if n is a leaf. The computation is accepting if ¢(r) € F.

Simulating Tree Automata. A dynamic program for a decision problem can be formulated
as a nondeterministic tree automaton that works on the decomposition, see the left side
of Figure 1 for a detailed example. Observe that a nondeterministic tree automaton A
will process a labeled tree (T,¢) with n nodes in time O(n). When we simulate such an
automaton deterministically, one might think that a running time of the form O(|Q| - n) is
sufficient, as the automaton could be in any potential subset of the @) states at some node of
the tree. However, there is a pitfall: For every node we have to compute the set of potential
states of the automaton depending on the sets of potential states of the children of that
node, leading to a quadratic dependency on |@|. This can be avoided for transitions of the
form (L, L, u(x),p), (q,L,c(x),p), and (L,q,c(z),p), as we can collect potential successors
of every state of the child and compute the new set of states in linear time with respect to
the cardinality of the set. However, transitions of the form (g;, ¢;, ¢(z), p) are difficult, as we
now have to merge two sets of states. In detail, let x be a node with children y and z and let

M. Bannach and S. Berndt

@y and @, be the set of potential states in which the automaton eventually is in at these
nodes. To determine (), we have to check for every ¢; € @, and every g; € Q. if there is a
p € Q such that (g;,q;,t(z),p). Note that the number of states |Q| can be quite large even
for moderately sized parameters k, as |Q)] is typically of size 22k) "and we will thus try to
avoid this quadratic blow-up.

» Observation 4. A tree automaton can be simulated in time O(|Q|? - n).

Unfortunately, the quadratic factor in the simulation cannot be avoided in general, as the
automaton may very well contain a transition for all possible pairs of states. However, there
are some special cases in which we can circumnavigate the increase in the running time.

» Definition 5 (Symmetric Tree Automaton). A symmetric nondeterministic bottom-up tree
automaton is a nondeterministic bottom-up tree automaton A = (Q, %, A, F') in which all
transitions (I,r,0,q) € A satisfy either l =1, r= 1, or [=r.

Assume as before that we wish to compute the set of potential states for a node x with
children y and z. Observe that in a symmetric tree automaton it is sufficient to consider the
set @, N Q. and that the intersection of two sets can be computed in linear time if we take
some care in the design of the underlying data structures.

» Observation 6. A symmetric tree automaton can be simulated in time O(|Q] - n).

The right side of Figure 1 illustrates the deterministic simulation of a symmetric tree
automaton. The massive time difference in the simulation of tree automata and symmetric
tree automata significantly influenced the design of the algorithms in Section 4, in which we
try to construct an automaton that is 1) “as symmetric as possible” and 2) allows to take
advantage of the “symmetric parts” even if the automaton is not completely symmetric.

3.2 The Interface

We introduce a simple Java-interface to our library Jdrasil, which originally was developed
for the computation of tree decompositions only. The interface is build up from two
classes: StateVectorFactory and StateVector. The only job of the factory is to generate
StateVector objects for the leaves of the tree decomposition, or with the terms of the
previous section: “to define the initial states of the tree automaton”. The StateVector class
is meant to model a vector of potential states in which the nondeterministic tree automaton
is at a specific node of the tree decomposition. Our interface does not define at all what a
“state” is, or how a collection of states is managed (although most of the times, it will be
a set). The only thing the interface requests a user to implement is the behaviour of the
tree automaton when it reaches a node of the tree-decomposition, i.e., given a StateVector
(for some unknown node in the tree decomposition) and the information that the automaton
reaches a certain node, how does the StateVector for this node look like? To this end, the
interface contains the methods shown in Listing 1.

Listing 1 The four methods of the interface describe the behaviour of the tree automaton. Here
“T” is a generic type for vertices. Each function obtains as parameter the current bag and a tree-index
“idx”. Other parameters correspond to bag-type specifics, e. g. the introduced or forgotten vertex v.

StateVector <T> introduce(Bag<T> b, T v, Map<T, Integer> idx);
StateVector<T> forget (Bag<T> b, T v, Map<T, Integer> idx);
StateVector<T> join(Bag<T> b, StateVector<T> o, Map<T, Integer> idx);
StateVector<T> edge(Bag<T> b, T v, T w, Map<T, Integer> idx);

6:5

ESA 2018

6:6

Practical Access to Dynamic Programming on Tree Decompositions

(o~~~
0000
0000 02 02 0000
0000
| | 0000
: 5
{2}-5 { }‘*3 10000
| | 8000| (@@ce
| | 0000 | |0000
(000@@) {2,3,4,5} 0 {2,3,4, 5}join 9338 | |89ce
/0 /| ece) 9938
\ \\
\ 0000
(0000)- (23,45} 5 {5.7} s (2345} {5.7}-s| |8808| | 8850
| \ 0000 | \ ©000| |8838
| 0000 | 2938 |9@c0
©999) (01,3100 (57500 |S838) 101,30 15780 8838 18858
| | 3838l | | |g90e| 8838
0000 719938 | |oece
(Co000)— {1.3}41 {5,7.8}ssy |Q90@| {1.3}11 {5.7.8}(551 3000 |S$SS
00009 ‘ ‘ 3388 0000
‘ ‘ 0@00 2938 0800
(c000}— {35 {5.7.8hs |8QSQ|~ 13h+s {57815 1 9GEQ| 19838
! — ‘ 1 0000 @000
o | 8o
0000 Groar Drcar 0000 }— Dieat Dreat L lel)

Figure 1 The left picture shows a part of a tree decomposition of the grid graph %% with vertices
{0,...,9}. The index of a bag shows the type of the bag: a positive sign means “introduce”, a
negative one “forget”, a pair represents an “edge”-bag, and text is self explanatory. Solid lines
represent real edges of the decomposition, while dashed lines illustrate a path (i.e., there are some
bags skipped). On the left branch of the decomposition a run of a nondeterministic tree automaton

with tree-index (g Los e 3) for 3-COLORING is illustrated. To increase readability, states of

the automaton are connected to the corresponding bags with gray lines, and for some nodes the
states are omitted. In the right picture the same automaton is simulated deterministically.

This already rounds up the description of the interface, everything else is done by Jdrasil.
In detail, given a graph and an implementation of the interface, Jdrasil will compute a
tree decomposition!, transform this decomposition into a very nice tree decomposition,
potentially optimize the tree decomposition for the following dynamic program, and finally
traverse through the tree decomposition and simulate the tree automaton described by the
implementation of the interface. The result of this procedure is the StateVector object
assigned to the root of the tree decomposition.

3.3 Example: 3-Coloring

Let us illustrate the usage of the interface with our running example of 3-COLORING. A State
of the automaton can be modeled as a simple integer array that stores a color (an integer)
for every vertex in the bag. A StateVector stores a set of State objects, i.e., essentially a
set of integer arrays. Introducing a vertex v to a StateVector therefore means that three
duplicates of each stored state have to be created, and for every duplicate a different color
has to be assigned to v. Listing 2 illustrates how this operation could be realized in Java.

L See [6] for the concrete algorithms used by Jdrasil.

M. Bannach and S. Berndt

Listing 2 Exemplary implementation of the introduce method for 3-COLORING.

StateVector <T> introduce (Bag<T> b, T v, Map<T, Integer> idx) {
Set<State> newStates = new HashSet<>();
for (State state : states) { // ’states’ is the set of states

for (int color = 1; color <= 3; color++) {
State newState = new State(state); // copy the state
newState.colors[idx.get(v)] = color;
newStates.add (newState) ;
}
}
states = newStates;
return this;

The three other methods can be implemented in a very similar fashion: in the forget-method
we set the color of v to 0; in the edge-method we remove states in which both endpoints of
the edge have the same color; and in the join-method we compute the intersection of the
state sets of both StateVector objects. Note that when we forget a vertex v, multiple states
may become identical, which is handled here by the implementation of the Java Set-class,
which takes care of duplicates automatically.

A reference implementation of this 3-COLORING solver is publicly available [4], and
a detailed description of it can be found in the manual of Jdrasil [5]. Note that this
implementation is only meant to illustrate the interface and that we did not make any effort
to optimize it. Nevertheless, this very simple implementation (the part of the program that
is responsible for the dynamic program only contains about 120 lines of structured Java-code)
performs surprisingly well, as the experiments in Section 5 indicate.

4 A Lightweight Model-Checker for a Small MSO-Fragment

Experiments with the coloring solver of the previous section have shown a huge difference in
the performance of general solvers as D-Flat and Sequoia against a concrete implementation of
a tree automaton for a specific problem (see Section 5). This is not necessarily surprising, as
a general solver needs to keep track of way more information. In fact, a MSO-model-checker
can probably (unless P = NP) not run in time f(|¢|+tw)-poly(n) for any elementary function
f [14]. On the other hand, it is not clear (in general) what the concrete running time of such
a solver is for a concrete formula or problem (see e.g. [16] for a sophisticated analysis of
some running times in Sequoia). We seek to close this gap between (slow) general solvers
and (fast) concrete algorithms. Our approach is to concentrate only on a small fragment of
MSO, which is powerful enough to express many natural problems, but which is restricted
enough to allow model-checking in time that matches or is close to the running time of a
concrete algorithm for the problem. As a bonus, we will be able to derive upper bounds on
the running time of the model-checker directly from the syntax of the input formula.

Based on the interface of Jdrasil, we have implemented a publicly available prototype
called Jatatosk [3]. In Section 5, we perform various experiments on different problems on
multiple sets of graphs. It turns out that Jatatosk is competitive against the state-of-the-art
solvers D-Flat and Sequoia. Arguably these two programs solve a more general problem and
a direct comparison is not entirely fair. However, the experiments do reveal that it seems
very promising to focus on smaller fragments of MSO (or perhaps any other description
language) in the design of treewidth based solvers.

6:7

ESA 2018

6:8

Practical Access to Dynamic Programming on Tree Decompositions

4.1 Description of the Fragment

We only consider vocabularies 7 that contain the binary relation E?, and we only consider
T-structures with a symmetric interpretation of E2, i.e., we only consider structures that
contain an undirected graph (but may also contain further relations). The fragment of MSO
that we consider is constituted by formulas of the form ¢ = 3X;...3X, A, ¢¥;, where the
X are second-order variables and the ; are first-order formulas of the form

Vi € {VaVy E(x,y) — xi, YoIy E(z,y) A xi, I2Vy E(x,y) — Xis
JxTy E(x,y) A xi, Vo x4, 3T X5 }-

Here, the x; are quantifier-free first-order formulas in canonical normal form. It is easy
to see that this fragment is already powerful enough to encode many classical problems as
3-COLORING (@301 from the introduction is part of the fragment), or VERTEX-COVER (we will
discuss how to handle optimization in Section 4.4): ¢y = ISVaVy E(z,y) — S(x) V S(y).

4.2 A Syntactic Extension of the Fragment

Many interesting properties, such as connectivity, can easily be expressed in MSO, but not
directly in the fragment that we study. Nevertheless, a lot of these properties can directly
be checked by a model-checker if it “knows” what kind of properties it actually checks. We
present a syntactic extension of our MSO-fragment which captures such properties. The
extension consist of three new second order quantifiers that can be used instead of 3X;.
The first extension is a partition quantifier, which quantifies over partitions of the universe:

k
Foartitionxy L X = 3X13X, L 3Xk (Ve \/ X)) A (Ve \ N\ - Xi(x) A =X ().
i=1 i=1j#i

This quantifier has two advantages. First, formulas like ¢sco1 can be simplified to

B3c01 = PR, G, B VaVy E(xz,y) = [\ ~C(z) vV =C(y),
C € {R,G, B}

and second, the model-checking problem for them can be solved more efficiently: the solver
directly “knows” that a vertex must be added to exactly one of the sets.

We further introduce two quantifiers that work with respect to the symmetric relation
E? (recall that we only consider structures that contain such a relation). The Joonnected X
quantifier guesses an X C U that is connected with respect to E (in graph theoretic terms),
i.e., it quantifies over connected subgraphs. The 3t F quantifier guesses a F' C U that is
acyclic with respect to E (again in graph theoretic terms), i.e., it quantifies over subgraphs
that are forests. These quantifiers are quite powerful and allow, for instance, to express that
the graph induced by E? contains a triangle as minor:

:ElconnectedR ElconnectedG ElconnectedB .
(Vz (~R(z) V =G () A (G(x) vV ~B(2)) A (=B(z) V ~R(z)))
A (Jz3y E(z,y) A R(z) (y)) A (Hxﬂy E(z,y) AG(z) A B(y))
A (323y E(z,y) A B(x) (y)).

(btrianglc—minor

We can also express problems that usually require more involved formulas in a very natural way.
For instance, the FEEDBACK-VERTEX-SET problem can be described by the following formula
(again, optimization will be handled in Section 4.4): ¢g = 35 IS FVr S(z) V F(z).

M. Bannach and S. Berndt

4.3 Description of the Model-Checker

We describe our model-checker in terms of a nondeterministic tree automaton that works on a
tree decomposition of the graph induced by E? (note that, in contrast to other approaches in
the literature, we do not work on the Gaifman graph). We define any state of the automaton
as bit-vector, and we stipulate that the initial state at every leaf is the zero-vector. For any
quantifier or subformula, there will be some area in the bit-vector reserved for that quantifier
or subformula and we describe how state transitions effect these bits. The “algorithmic idea”
behind the implementation of these transitions is not new, and a reader familiar with folklore
dynamic programs on tree decompositions (for instance for VERTEX-COVER, or STEINER-TREE)
will probably recognize them. An overview over common techniques can be found in the
standard textbooks [9, 13].

The Partition Quantifier. We start with a detailed description of the partition quantifier
Jpartition x, . X, (we do not implement an additional 3X quantifier, as we can easily state
JX = Jpartition ¥ ¥): Let k be the maximum bag-size of the tree decomposition. We reserve
k -logs g bit in the state description, where each block of length log, g indicates in which
set X; the corresponding element of the bag is. On an introduce-bag (e.g. for v € U), the
nondeterministic automaton guesses an index @ € {1,...,¢} and sets the log, ¢ bits that are
associated with the tree-index of v to i. Equivalently, the corresponding bits are cleared
when the automaton reaches a forget-bag. As the partition is independent of any edges, an
edge-bag does not change any of the bits reserved for the partition quantifier. Finally, on
join-bags we may only join states that are identical on the bits describing the partition (as
otherwise the vertices of the bag would be in different partitions) — meaning this transition
is symmetric with respect to these bits (in terms of Section 3.1).

The Connected Quantifier. The next quantifier we describe is 3°°"m¢cted X which has to
overcome the difficulty that an introduced vertex may not be connected to the rest of the bag
in the moment it got introduced, but may be connected to it when further vertices “arrive”.
The solution to this dilemma is to manage a partition of the bag into &’ < k connected
components Py, ..., Py, for which we reserve k - log, k bit in the state description. Whenever
a vertex v is introduced, the automaton either guesses that it is not contained in X and
clears the corresponding bits, or it guesses that v € X and assigns some P; to v. Since v is
isolated in the bag in the moment of its introduction (recall that we work on a very nice tree
decomposition), it requires its own component and is therefore assigned to the smallest empty
partition P;. When a vertex v is forgotten, there are four possible scenarios: 1) v € X, then
the corresponding bits are already cleared and nothing happens; 2) v € X and v € P; with
|P;| > 1, then v is just removed and the corresponding bits are cleared; 3) v € X and v € P,
with |P;| = 1 and there are other vertices w in the bag with w € X, then the automaton
rejects the configuration, as v is the last vertex of P; and may not be connected to any other
partition anymore; 4) v € X is the last vertex of the bag that is contained in X, then the
connected component is “done”; the corresponding bits are cleared and one additional bit is
set to indicate that the connected component cannot be extended anymore. When an edge
{u,v} is introduced, components might need to be merged. Assume u,v € X, u € P;, and
v € P; with ¢ < j (otherwise, an edge-bag does not change the state), then we essentially
perform a classical union-operation from the well-known union-find data structure. Hence, we
assign all vertices that are assigned to P; to F;. Finally, at a join-bag we may join two states
that agree locally on the vertices that are in X (i.e., they have assigned the same vertices to
some P;), however, they do not have to agree in the way the different vertices are assigned to

6:9

ESA 2018

6:10

Practical Access to Dynamic Programming on Tree Decompositions

P; (in fact, there does not have to be an isomorphism between these assignments). Therefore,
the transition at a join-bag has to connect the corresponding components analogous to the
edge-bags — in terms of Section 3.1 this transition is not symmetric. The description of the
remaining quantifiers and subformulas is very similar.

4.4 Extending the Model-Checker to Optimization Problems

As the example formulas from the previous section already indicate, performing model-
checking alone will not suffice to express many natural problems. In fact, every graph is a
model of the formula ¢y if S simply contains all vertices. It is therefore a natural extension to
consider an optimization version of the model-checking problem, which is usually formulated
as follows [9, 13]: Given a logical structure S, a formula ¢(X1,...,X,) of the MSO-fragment
defined in the previous section with free unary second-order variables X7, ..., X, and weight
functions wy, ..., w, with w;: U — Z; find S1,..., S, with S; C U such that > %, Y ses, wi(s)
is minimized under S = ¢(S1,...,Sp), or conclude that S is not a model for ¢ for any
assignment of the free variables. We can now correctly express the (actually weighted)
optimization version of VERTEX-COVER as follows: ¢y.(S) = VaVy E(z,y) — (S(z)V S(y)).
Similarly we can describe the optimization version of DOMINATING-SET if we assume the
input does not have isolated vertices (or is reflexive), and we can also fix the formula éfvs:

@as(S) = VaTIy E(z,y) A (S(a:) Vv S(y)), Drys(S) = TSt F vz (S(J:) Vv F(Jc))

We can also mazimize the term > ¢, > ses, wi(s) by multiplying all weights with —1 and,
thus, express problems such as INDEPENDENT-SET: ¢(S) = VaVy E(z,y) — (=S(z) vV
-5 (y)) The implementation of such an optimization is straightforward: essentially there is
a partition quantifier for every free variable X; that partitions the universe into X; and X;.
We assign a current value of > 7, > ses, wi(s) to every state of the automaton, which is
adapted if elements are “added” to some of the free variables at introduce nodes. Note that,
since we optimize an affine function, this does not increase the state space: even if multiple
computational paths lead to the same state with different values at some node of the tree, it
is well defined which of these values is the optimal one. Therefore, the cost of optimization
only lies in the partition quantifier, i.e., we pay with k bits in the state description of the
automaton per free variable — independently of the weights.

4.5 Handling Symmetric and Non-Symmetric Joins

In Section 4.3 we have defined the states of our automaton with respect to a formula, the left
side of Table 1 gives an overview of the number of bits we require for the different parts of
the formula. Let bit(¢, k) be the number of bits that we have to reserve for a formula ¢ and a
tree decomposition of maximum bag size k, i.e., the sum over the required bits of each part of
the formula. By Observation 4 this implies that we can simulate the automaton (and hence,
solve the model-checking problem) in time O* ((Qbit(¢’k))2 . n); or by Observation 6 in time
o* (2bit(¢’k) n) if the automaton is symmetric?. Unfortunately, this is not always the case, in
fact, only the quantifier FPartition X, X the bits needed to optimize over free variables,
as well as the formulas that do not require any bits, yield an symmetric tree automaton.
That means that the simulation is wasteful if we consider a mixed formula (for instance, one
that contains a partition and a connected quantifier). To overcome this issue, we partition

2 The notation O* supresses polynomial factors.

M. Bannach and S. Berndt

Table 1 The left table shows the precise number of bit we reserve in the description of a state
of the tree automaton for different quantifier and formulas. The values are with respect to a tree
decomposition with maximum bag size k. The right table gives an overview of example formulas ¢
used here, together with values symmetric(¢, k) and asymmetric(¢, k), as well as the precise time
our algorithm will require for that particular formula.

Quantifier / Formula Number of Bit 10} symmetric(o, k) Time
free variables X1,..., Xy gq-k asymmetric(, k)
Jpartitiony, X, k-log,q ®3col k - log,(3) 0*(3%)
geomnected ¥k log, k + 1 0
Jforest .. log, k Dve(S) (k)? O*(Qk)
VaVy E(z,y) = xi 0 Bas(S) % 0" (84)
Vady E(z,y) Axi kK %
JaVy E(z,y) - xi k+1 burianglommor 0 O™ (k5++9)
3y E(z,y) Axi 1 3k - log, (k) + 3
Ve x: 0 brvs(S) k 0" (2°k7%)
Jrxi 1 k - log, (k)

the bits of the state description into two parts: first the “symmetric” bits of the quantifiers
Jpartition x, . X, and the bits required for optimization, and in the “asymmetric” ones
of all other elements of the formula. Let symmetric(¢, k) and asymmetric(¢, k) be defined
analogously to bit(¢, k). We implement the join of states as in the following lemma, allowing
us to deduce the running time of the model-checker for concrete formulas. The right side of
Table 1 provides an overview for formulas presented here.

» Lemma 7. Let x be a node of T' with children y and z, and let Q, and Q. be sets of states
in which the automaton may be at y and z. Then the set Q, of states in which the automaton
may be at node x can be computed in time O* (QSymmetric(¢’k)+2‘asy“‘me“ic(‘ﬁ’k)).

Proof. To compute Q., we first split @, into By, ..., B, such that all elements in one B; share
the same “symmetric bits”. This can be done in time |Q,| using bucket-sort. Note that we
have g < 2symmetric(d.k) anqd |B;| < 2asymmetric(d.k) YWith the same technique we identify for
every elements v in @), its corresponding partition B;. Finally, we compare v with the elements

in B; to identify those for which there is a transition in the automaton. This yields a running
time of ‘Qz| . maxg,l |Bz| < 2bit(¢,k) . 2asymmetric(¢,k) _ 2symmetric(¢,k)+2‘asymmetric(¢,k). <

5 Applications and Experiments

To show the feasibility of our approach, we have performed experiments for widely investig-
ated graph problems: 3-COLORING, VERTEX-COVER, DOMINATING-SET, INDEPENDENT-SET,
and FEEDBACK-VERTEX-SET. All experiments were performed on an Intel Core processor
containing four cores of 3.2 GHz each and 8 Gigabyte RAM. Jdrasil was used with Java 1.8
and both Sequoia and D-Flat were compiled with gce 7.2. The implementation of Jatatosk
uses hashing to realize Lemma 7, which works well in practice. We use a data set assembled
from different sources containing graphs with 18 to 956 vertices and treewidth 3 to 13. The
first source is a collection of transit graphs from GTFS-transit feeds [15] that was also used
for experiments in [12], the second source are real-world instances collected in [2], and the
last one are those of the PACE challenge [18] with treewidth at most 11. For 3-COLORING,
the results are shown in Experiment 1.

6:11

ESA 2018

6:12

Practical Access to Dynamic Programming on Tree Decompositions

Experiment 1 3-COLORING.

D-Flat Jdrasil-Coloring Jatatosk Sequoia

Average Time 478.19 36.52 42.63 714.73
Standard Deviation 733.90 77.8 81.82 866.34
Median Time 3.5 21 24.5 20.5

(a) Average, standard deviation, and median of the time (in seconds) each solver needed to solve
3-COLORING over all instances of the data set. The best values are highlighted.

1,600 HEWD-Flat B0 Jdrasil-Coloring ‘ ‘llJatatosk ‘ I8 Sequoia
1,200

800

400

- 14
L, 60f :
112 E
Q
(]
e &
L oA10 4 os0l |
- g
- 3. <
M |E E
— o}
S e @ 40 B
5 76 2
— <o
3
574 E
w0
= 301 B
49 Ik
|

1 1 1 1 1 1
0 100 200 300 400 500 600
Time in seconds
(c) The left picture shows the difference of Jatatosk against D-Flat and Sequoia. A positive bar means
that Jatatosk is faster by this amount in seconds, and a negative bar means that either D-Flat or Sequoia
is faster by that amount. The bars are capped at 100. On every instance, Jatatosk was compared against
the solver that was faster on this particular instance. The image also shows for every instance the size and
the treewidth of the input. The right image shows the number of instances that can be solved by each of
the solvers in = seconds, i. e., faster growing functions are better. The colors in this image are as in (b).

6 Conclusion and Outlook

We investigated the practicability of dynamic programming on tree decompositions, which is
arguably one of the corner stones of parameterized complexity theory. We implemented a
simple interface for such programs and used it to build a competitive graph coloring solver
with just a few lines of code. We hope that this interface allows others to implement and
explore various dynamic programs. The whole power of these algorithms is well captured
by Courcelle’s Theorem, which states that there is an efficient version of such a program
for every problem definable in monadic second-order logic. We took a step towards practice
by implementing a “lightweight” version as model-checker for a small fragment of the logic.
This fragment turns out to be powerful enough to express many natural problems.

M. Bannach and S. Berndt

—— References

1

10

11

12

13

14

15

16

17

18

19

Michael Abseher, Bernhard Bliem, Giinther Charwat, Frederico Dusberger, Markus Hecher,
and Stefan Woltran. D-flat: progress report. DBAI, TU Wien, Tech. Rep. DBAI-TR-201/-
86, 2014.

Michael Abseher, Frederico Dusberger, Nysret Musliu, and Stefan Woltran. Improving the
efficiency of dynamic programming on tree decompositions via machine learning. In Proc.
IJCAI pages 275-282, 2015.

M. Bannach. Jatatosk. https://github.com/maxbannach/Jatatosk, 2018. [Online; ac-
cessed 22-04-2018].

M. Bannach. Jdrasil for Graph Coloring. https://github.com/maxbannach/Jdrasil-
for-GraphColoring, 2018. [Online; accessed 22-04-2018].

M. Bannach, S. Berndt, and T. Ehlers. Jdrasil. https://github.com/maxbannach/
Jdrasil, 2017. [Online; accessed 22-04-2018].

Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A modular library for
computing tree decompositions. In 16th International Symposium on Ezperimental Al-
gorithms, SEA 2017, June 21-23, 2017, London, UK, pages 28:1-28:21, 2017. doi:
10.4230/LIPIcs.SEA.2017.28.

Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. STAM Journal on computing, 25(6):1305-1317, 1996.

Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and computation, 85(1):12-75, 1990.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

M. R. Fellows. Parameterized complexity for practical computing. http://www.mrfellows.
net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf, 2018. [On-
line; accessed 22-04-2018].

Johannes Klaus Fichte, Neha Lodha, and Stefan Szeider. Sat-based local improvement for
finding tree decompositions of small width. In Theory and Applications of Satisfiability
Testing - SAT, pages 401-411, 2017.

J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. Springer, 2006. doi:10.1007/3-540-29953-X.

Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of pure and applied logic, 130(1-3):3-31, 2004.

gtfs2graphs - A Transit Feed to Graph Format Converter. https://github.com/daajoe/
gtfs2graphs. Accessed: 2018-04-20.

Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s theorem — a game-
theoretic approach. Discrete Optimization, 8(4):568-594, 2011. doi:10.1016/j.disopt.
2011.06.001.

Alexander Langer. Fast algorithms for decomposable graphs. PhD thesis, RWTH Aachen,
2013.

The Parameterized Algorithms and Computational Experiments Challenge (PACE). https:
//pacechallenge.wordpress.com/. Accessed: 2018-04-20.

Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In Proc. ESA,
pages 68:1-68:13, 2017.

6:13

ESA 2018

https://github.com/maxbannach/Jatatosk
https://github.com/maxbannach/Jdrasil-for-GraphColoring
https://github.com/maxbannach/Jdrasil-for-GraphColoring
https://github.com/maxbannach/Jdrasil
https://github.com/maxbannach/Jdrasil
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.1007/978-3-319-21275-3
http://www.mrfellows.net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf
http://www.mrfellows.net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf
http://dx.doi.org/10.1007/3-540-29953-X
https://github.com/daajoe/gtfs2graphs
https://github.com/daajoe/gtfs2graphs
http://dx.doi.org/10.1016/j.disopt.2011.06.001
http://dx.doi.org/10.1016/j.disopt.2011.06.001
https://pacechallenge.wordpress.com/
https://pacechallenge.wordpress.com/

Average Whenever You Meet: Opportunistic
Protocols for Community Detection

Luca Becchetti
Sapienza Universita di Roma, Italy
becchetti@dis.uniromal.it

Andrea Clementi
Universita di Roma “Tor Vergata”, Italy
clementi@mat.uniroma?2.it

Pasin Manurangsi
U.C. Berkeley, California, USA
pasin@berkeley.edu

Emanuele Natale
Simons Institute and MPII, Germany
enatale@mpi-inf.mpg.de

Francesco Pasquale
Universita di Roma “Tor Vergata”, Italy
pasquale@mat.uniroma2.it

Prasad Raghavendra
U.C. Berkeley, California, USA
raghavendra@berkeley.edu

Luca Trevisan

Simons Institute and U.C. Berkeley, California, USA
luca@Dberkeley.edu

—— Abstract

Consider the following asynchronous, opportunistic communication model over a graph G: in
each round, one edge is activated uniformly and independently at random and (only) its two
endpoints can exchange messages and perform local computations. Under this model, we study
the following random process: The first time a vertex is an endpoint of an active edge, it chooses
a random number, say +1 with probability 1/2; then, in each round, the two endpoints of the
currently active edge update their values to their average.

We provide a rigorous analysis of the above process showing that, if G exhibits a two-
community structure (for example, two expanders connected by a sparse cut), the values held
by the nodes will collectively reflect the underlying community structure over a suitable phase
of the above process. Our analysis requires new concentration bounds on the product of certain
random matrices that are technically challenging and possibly of independent interest.

We then exploit our analysis to design the first opportunistic protocols that approximately re-
cover community structure using only logarithmic (or polylogarithmic, depending on the sparsity
of the cut) work per node.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Community Detection, Random Processes, Spectral Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.7

© Luca Becchetti, Andrea Clementi, Pasin Manurangsi, Emanuele Natale, Francesco Pasquale,
BY Prasad Raghavendra, and Luca Trevisan;
licensed under Creative Commons License CC-BY
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 7; pp. 7:1-7:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:becchetti@dis.uniroma1.it
mailto:clementi@mat.uniroma2.it
mailto:pasin@berkeley.edu
mailto:enatale@mpi-inf.mpg.de
mailto:pasquale@mat.uniroma2.it
mailto:raghavendra@berkeley.edu
mailto:luca@berkeley.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2

Average Whenever You Meet: Opportunistic Protocols for Community Detection

Related Version A full version of the paper is available at [2], https://arxiv.org/abs/1703.
05045.

Funding This material is based upon work supported by the National Science Foundation under
Grants No. 1540685 and No. 1655215 and by the University of “Tor Vergata” under research
programme “Mission: Sustainability” project ISIDE (grant no. E81118000110005).

1 Introduction

The Averaging Protocol. Consider the following, elementary distributed process on an
undirected graph G = (V, E) with |V| = n nodes and |E| = m edges. Each node v holds
a real number z, (which we call the state of node v); at each time step, one random edge
{u,v} becomes active and its endpoints u and v update their states to their average.

Viewed as a protocol, the above process is consistent with asynchronous, opportunistic
communication models, such as those considered in [1] for population protocols; here, in every
round, one edge is activated uniformly and independently at random and (only) its two
endpoints can exchange messages and perform local computations in that round. We further
assume no global clock is available (nodes can at most count the number of local activations)
and that the network is anonymous, i.e., nodes are not aware of theirs or their neighbors’
identities and all nodes run the same process at all times.

The long-term behavior of the process outlined above is well-understood: assuming G to
be connected, for each initial global state x € RY the system converges to a global state in
which all nodes share a common value, namely, the average of their initial states. A variant
of an argument of Boyd et al. [4] shows that convergence time is equivalent to the the mixing

time of a lazy random walk on the graph, namely O (inlog n), where A is the second

smallest eigenvalue of the normalized Laplacian of G.

Distributed Community Detection. Suppose now that G is well-clustered, i.e. it exhibits
a community structure which in the simplest case consists of two equal-sized expanders,
connected by a sparse cut: this structure arises, for instance, when the graph is sampled from
the popular stochastic block model Gy, p, 4 for p > q and p > logn/n [6, 7, 10]. If we let the
averaging process unfold on such a graph, for example starting from an initial £1 random
global state, one might reasonably expect a faster, transient convergence toward some local
average within each community, accompanied by a slower, global convergence toward the
average taken over the entire graph. If, as is likely the case, a gap exists between the local
averages of the two communities, the global state during the transient phase would reflect
the graph’s underlying community structure. This intuition suggests the main questions we
address in this paper: Is there a phase in which the global state carries information about
community structure? If so, how strong is the corresponding “signal”? Finally, can nodes
leverage local history to recover this information?

Our Results: Highlights. We show that, if G exhibits a two-community structure (for
example, two expanders connected by a sparse cut), the values held by the nodes will
collectively reflect the underlying community structure over a suitable phase of the above
process, allowing efficient and effective recovery in important cases.

In more detail, we first provide a first moment analysis showing that, for a large class of
almost-regular clustered graphs that includes the stochastic block model, the expected values
held by all but a negligible fraction of the nodes eventually reflect the underlying cut signal.
We prove this property emerges after a “mixing” period of length O(nlogn).

https://arxiv.org/abs/1703.05045
https://arxiv.org/abs/1703.05045

L. Becchetti et al.

We further provide a second moment analysis for a more restricted class of regular
clustered graphs that includes the regular stochastic block model [3, 5, 11]. Since nodes do
not share a common clock, it is not immediate to translate the above results into distributed
clustering protocols. To this purpose, we show that concentration holds over a long time
window and most nodes are able to select a local time within this window. So, most nodes can
efficiently and locally identify their community of reference over a suitable time window. Even
for the above class of regular graphs, our second moment analysis requires new concentration
bounds on the product of certain random matrices that are technically challenging and
possibly of independent interest.

This results in the first opportunistic protocols that approximately recover community
structure. For clustered graphs with sparse (i.e. size o(m)) cut, we devise a first protocol,
using the sign of the nodes’ state as local clustering criterion (see Algorithm 2), that
converges in O(nlogn) time and has only polylogarithmic work per node (see Theorem 12
for a formal statement). So, the protocol can be much faster than the global mixing time of
the corresponding process and, moreover, the work per node does not depend on the node
degree, thus resulting very efficient in the case of dense graphs. For clustered graphs with
dense cut (i.e. size ©(m)), the cut “signal” is much harder to recover: we derive a more
complex second moment analysis leading us to a weighted version of the averaging process,
equipped with a clustering criterion based on the fluctuations of the nodes’ state. This second
protocol (see Algorithm 3) converges within O(nlogn+ n/\s) rounds and has work per node
O(polylog (n) + 1/A2) (see Theorem 14, Corollaries 15 and 16 for formal statements).

Comparison to Previous Work. We here discuss only strongly-related work (see the full-
version [2] for a more detailed description of previous results. The idea of using averaging
local rules to perform distributed community detection is not new: In [3], Becchetti et
al. consider a deterministic dynamics in which, at every round, each node updates its
local state to the average of its neighbors. The authors show that this results in a fast
clustering algorithm with provable accuracy on a wide class of almost-regular graphs that
includes the stochastic block model. We remark that the algorithm in [3] (only) works
in a synchronous, parallel communication model where every node exchanges data with
all its neighbors in each round. This implies considerable work and communication costs,
especially when the graph is dense. It turns out that, in d-regular, well-clustered graphs, the
algorithm in [3] requires overall communication cost ©(nd polylog (n)) and work per-node
©(dpolylog (n)). On the other hand, each step of the process in [3] is described by the
same matrix and its deterministic evolution unfolds according to the power of this matrix
applied to the initial state. In contrast, the averaging process we consider in this paper
is considerably harder to analyze than the one in [3], since each step is described by a
random, possibly different averaging matrix. Differently from [3], our goal here is the design
of simple, lightweight protocols for fully-decentralized community detection which fit the
asynchronous, opportunistic communication model, in which a (random) link activation
represents an opportunistic meeting that the endpoints can exploit to exchange one-to-one
messages. More specifically, by “lightweight” we mean protocols that require minimalistic
assumptions as to network capabilities, while performing their task with minimal work,
storage and communication per node (at most logarithmic or polylogarithmic in our case).
In this respect, any clustering strategies (like the one in [12]) which construct (and then work
over) some static, sparse subgraph of the underlying graph are unfeasible in the opportunistic
model we consider here. This restrictive setting is motivated by network scenarios in which
individual agents need to autonomously and locally uncover underlying, implicit communities

7:3

ESA 2018

7:4

Average Whenever You Meet: Opportunistic Protocols for Community Detection

Algorithm 1: Updating rule for a node u of an active edge, where ¢ € (0,1) is the
parameter measuring the weight given to the neighbor’s value.

AVERAGING(d) (for a node u that is one of the two endpoints of an active edge)
Initialization: If it is the first time u is active, then pick x, € {—1,4+1} w.a.r.
Update: Send x, to the other endpoint and set x,, := (1 — §)x,, + dr, where r is the
value received from the other endpoint.

of which they are members. This has widespread applicability, for example in communication
systems where lightweight data can be locally shared via wireless opportunistic meetings
when agents come within close range [13].

Roadmap of the paper. After presenting some preliminaries in Section 2, the first moment
analysis for almost-regular graphs is given in Section 3. The second moment analysis for
regular graphs is given in Section 4 while, in Section 5, we describe our protocols for community
detection and give the main bounds on their performances. Due to space constraints, most
technical results are given in the full-version of the paper [2].

2 Preliminaries

Averaging process. In general, we consider the weighted version of the averaging process
described in the introduction: In each round, one edge of the graph is sampled uniformly at
random and the two endpoints of the sampled edge execute Algorithm 1.

Graphs and their spectra. For a connected graph G = (V, E) with n nodes, m edges and
adjacency matrix A, let 0 = A1 < -+ < A\, be the eigenvalues of the normalized Laplacian
L=1—-D"Y2AD=1/2 where D is the diagonal matrix with the degrees of the nodes. We
consider the following graph classes.

» Definition 1. An (n,d, 8)-almost-reqular graph is a connected, non-bipartite graph G =
(V, E) with n nodes such that every node has degree d + 8d. An (n,d,b)-clustered regular
graph, where n is even and d and b are two positive integers with 2b < d < n, is a graph
G = ((V1, V2), E) over node set V =V} U Va, with |V4| = |Va| = n/2 and such that: (i) every
node has degree d and (ii) every node in V; has b neighbors in V5 and every node in V; has b
neighbors in V.

It is easy to see that the indicator vector x € {—1,+1} of the cut (V7, V3) is an eigenvector
of £ with eigenvalue 27;’, whenever the graph is clustered regular. If we further assume that
Ag > 27.5’, then x is an eigenvector of .

Block reconstruction. We next discuss what it means to recover the “underlying community
structure” in a distributed setting, a notion that can come in stronger or weaker flavors [6,
11, 8, 9]. Ideally, we would like the protocol to reach a state in which, at least with high
probability, each node can use a simple rule to assign itself one of two possible labels, so
that labelling within each community is consistent and nodes in different communities are
assigned different labels. Achieving this corresponds to ezact (block) reconstruction. The
next best guarantee is weak (block) reconstruction.

L. Becchetti et al.

» Definition 2 (Weak Reconstruction). A function f : V — {£1} is said to be an e-weak
reconstruction of G if subsets Wi C V; and Wy C V5 exist, each of size at least (1 —e)n/2,
such that f(Wy) N f(Ws) = 0.

We introduce a third notion, which we call community-sensitive labeling (CSL for short):
in this case, there is a predicate that can be applied to pairs of labels so that, for all but a
small fraction of outliers, the labels of any two nodes within the same community satisfy the
predicate, whereas the converse occurs when they belong to different communities®. In this
paper, informally speaking, nodes are labelled with binary signatures of logarithmic length,
while two labels satisfy the predicate whenever their Hamming distance is below a certain
threshold. This introduces a notion of similarity between nodes of the graph, with labels
behaving like profiles that reflect community membership?. Note that this weaker notion of
community-detection allows nodes to locally tell “friends” in their community from “foes” in
the other community, which is the main application of distributed community detection in
the opportunistic setting we consider here.

Let A(x,y) denote the Hamming distance between two binary strings x and y.

» Definition 3 (Community-sensitive labeling). Let G = (V| E) be a graph, let (V1,V2) be
a partition of V and let v € (0,1]. For some £ € N, a function h : V; UV, — {0,1}¢ is a
~y-community-sensitive labeling for (Vi,Va) if a subset V C V with size |V| > (1 —7)|V| and
two constants 0 < ¢; < ¢y < 1 exist, such that for all u,v € V it holds that: A(hy,,h,) < 1/
if 4, =1y, and A(hy,h,) > cof, otherwise, where i,, = 1 if u € V; and i, = 2 if u € V5.

3 First moment analysis

We analyze the expected behaviour of Algorithm AVERAGING(1/2) on an almost-regular
graph G. The evolution of the resulting process can be formally described by the recursion
xHD =W, . x| where W; = (W(i,4)) is the random matrix that defines the updates of
the values at round ¢, i.e.,

0 ifi+# j and {4,J} is not sampled (at round ¢),

Wo(i,5) =4 1 /2 if ¢ = 5 and an edge with endpoint ¢ is sampled (1)
’ or i # j and edge {i,j} is sampled,
1 if ¢ = j and ¢ is not an endpoint of sampled edge.

and the initial random vector x(9) is uniformly distributed in {—1,1}".® Note that, con-
sequently, x(*+1) = W, ... x| with the W;’s independently and identically distributed.
Simple calculus shows that the expectation of the random matrices {W; : ¢ > 0} can be
expressed as

— 1

Wi=EW]=1-—L, (2)

where L = D — A is the Laplacian matrix of G. Matrix W is thus symmetric and doubly-
stochastic. We denote its eigenvalues as A1,..., Ay, with 1=X 1 2> X > --- A, = —1.

Note that a weak reconstruction protocol entails a community-sensitive labeling. In this case, the
predicate is true if two labels are the same.

Hence the phrase community-sensitive Labeling we use to refer to our approach.

Notice that, since each node chooses value £1 with probability 1/2 the first time it is active, by using
the principle of deferred decisions we can assume there exists an “initial” random vector x(© uniformly
distributed in {—1,+1}".

7:5

ESA 2018

7:6

Average Whenever You Meet: Opportunistic Protocols for Community Detection

Our first contribution is an analysis of the expected evolution of the averaging process
over (n,d, 3)-almost regular graphs that possess a hidden and balanced partition of the nodes
with the following properties: (i) The cut separating the two communities contains o(m)
edges; (ii) the subgraphs induced by the two communities are expanders, i.e., the gap A3 — Ao
is constant. The above conditions on the underlying graph are satisfied, for instance, by
graphs sampled from the stochastic block model* G,, ,, , for ¢ = o(p) and p > logn/n. Our
analysis proves the following results.

» Theorem 4. Let G = (V,E) be an (n,d,3)-almost regular graph G = (V,E) with a
balanced partition V = (V1,Va) and such that: (i) The cut E(V1,Va) is sparse, i.e., my o =
|E(V1, Va)| = o(m); (i) A3 — A2 = Q(1). If nodes of G execute Protocol AVERAGING then,
with constant probability w.r.t. the initial random vector x(0) € {=1,1}", after ©(nlogn)
rounds the following holds for all but o(n) nodes:

(i) The expected value of a node u increases or decreases depending on the community it

belongs to, i.e., sgn (IE [xg_l) \X(O)] —E [ng) |x(0)D =sgn (xu);
(ii) Over a suitable time window of length Q(nlogn), the sign of the expected value of a
node u reflects the community u belongs to, i.e., sgn (IE [xq(f) |X(O)D = sgn (aaXu), for some

Qg = (9 (X(O)) .

We note that these results suggest two different local criteria for community-sensitive
labeling: (i) According to the first one, every node uses the sign of its own state within the
aforementioned time window to set the generic component of its binary label (in fact, we
run independent copies of the averaging process to get binary labels of logarithmic size - see
Protocol SIGN-LABELING in Section 5.1). (ii) According to the second criterion, every node
uses the signs of fluctuations of its own value along consecutive rounds to set the generic
component of its binary label (see Protocol JUMP-LABELING in Section 5.2).

The above results describe the “expected” behaviour of the averaging process over a
large class of well-clustered graphs, at the same time showing that our approach might lead
to efficient, opportunistic protocols for block reconstruction. Yet, designing and analyzing
protocols with provable, probabilistic guarantees, requires addressing the following questions:
i) Do realizations of the averaging process approximately follow its expected behavior with
high, or even constant, probability? ii) If this is the case, how can nodes locally and
asynchronously recover the cut signal, let alone guess the “right” global time window? The
first issue is addressed in Section 4, while the second one is addressed in Section 5, which
presents our main algorithmic results for community detection.

4 Second Moment Analysis

Recall from Section 3 that x(*) depends on the product of ¢ identically distributed random
matrices. Not much is known about concentration of such products, but we are able to
accurately characterize the class of regular clustered graphs. We point out that many of the
technical results and tools we develop to this purpose apply to far more general settings than
the regular case and may be of independent interest. In more detail, we are able to provide
accurate concentration bounds on the norm of x()’s projection onto the subspace spanned by
the first and second eigenvector of W for a class of regular clustered graphs that includes the
regular stochastic block model [3, 5, 11]. These bounds are derived separately for two different

4 See the full-version [2] for the definition of G, .4 and for more details about our results for Gn p.q-

L. Becchetti et al.

regimes, defined by the sparseness of the cut separating the two communities. Assuming
good inner expansion within each community, the first concentration result applies for cuts
of size o(m/log® n) and it is given in Subsectioni 4.1 while, for the case of cuts of size up to
am for any a < 1, the obtained concentration results are described in Subsection 4.2.

4.1 Second moment analysis for sparse cuts

We next provide a second moment analysis of the AVERAGING(§) with 6 = 1/2 on the class
of (n,d,b)-clustered regular graphs when the cut between the two communities is relatively
sparse, i.e., for Ao = 2b/d = o(\3/logn). This analysis is consistent with the “expected”
clustering behaviour of the dynamics explored in the previous section and highlights clustering
properties that emerge well before global mixing time, as we show in Section 5.1.

Restriction to (n,d, b)-clustered reqular graphs simplifies the analysis of the AVERAGING
dynamics. When G is regular, W defined in (2) can be written as W = (1 — %) I+ % pP=
I- %E. This obviously implies that W and £ share the same eigenvectors, while every
eigenvalue \; of £ corresponds to an eigenvalue \; = 1 — \;/n of W. For (n,d,b)-clustered
reqular graphs, these facts further imply Ao = 1 — Xy /n=1—2b/dn whenever A3 > %b while,
very importantly, the partition indicator vector x turns out to be the eigenvector of W
corresponding to Ao (see (2)). On the other hand, even in this restricted setting, our second
moment analysis requires new, non-standard concentration results for the product of random
matrices that apply to far more general settings and may be of independent interest.

For the sake of readability, in the remainder we denote x(*)’s projection onto 1 by x| and
we use y*) to denote its component in the eigenspace of the second eigenvalue of W (ie.,
x).° Finally, we use z® to denote x(¥)’s projection onto the subspace orthogonal to 1 and x.
We thus have:

x® = x; +y® 4 2. (3)

Our analysis of the process induced by AVERAGING(1/2) provides the following bound,
whose proof can be found in the full-version [2].

» Theorem 5 (Second moment analysis). Let G be an (n,d,b)-clustered regular graph with
Ay = %’ =o0(A3/logn). Then, for every i—: logn <t < gx; it holds that

E [Hyu) O y<o>m & Bt
n

We prove Theorem 5 by bounding and tracking the lengths of the projections of x*) onto
the eigenspace of Ay and onto the space orthogonal to 1 and x;, i.e. [|y®|? and ||z ||2. We
here remark that the only part using the regularity of the graph is the derivation of the
upper bound on E [||y(t+1)H2}, in particular its second addend. This term arises from an
expression involving the Laplacian of G, which is far from simple in general, but that very
nicely simplifies in the regular case. We suspect that increasingly weaker bounds should be
achievable as the graph deviates from regularity.

Theorem 5 gives an upper bound on the squared norm of the difference of the state vector
at step ¢ with the state vector at step 0. Intuitively, this will allow us to conclude that,
for most vertices, xg,t) R X[T yE,O) over a time window of size Q(nlogn). More formally,
Corollary 7 below shows how such a global bound can be used to derive pointwise bounds on
the values of the nodes.

5 Note that x| is time-invariant.

77

ESA 2018

7:8

Average Whenever You Meet: Opportunistic Protocols for Community Detection

» Definition 6. A node v is e-good at time ¢ if (xg,t) — (X0 +y1()0)))2 < %Hy(O)HZ7 it is e-bad
otherwise. We also define B, = {u : u is e-bad at time ¢}.

» Corollary 7. Assume 3)\% logn <t < ?)cf—3 logn for any absolute constant ¢ > 1 and
/\2//\3 § 64/(4clogn):

P[IBil > en|x® =x] <. (4)

The next lemma strengthens the result above, giving a bound on the number of nodes
that are good over a relatively large time-window. This is the key-property that we leverage
to analyse the asynchronous protocol SIGN-LABELING. The main idea of its proof is to first
show that with probability strictly larger than 1 — ¢, the number of e-good nodes is at least
n- (1 —¢/logn) in every round ¢ € [t1,2t1]. Theorem 5 already ensures this to be true in
any given time step within a suitable window, but simply taking a union bound will not
work, since we have nlogn time steps and only a 1 — ¢ probability of observing the desired
outcome in each of them. We will instead argue about the possible magnitude of the change
in |y® +z® — y©)||2 over time, assuming this quantity is small at time 65 logn. We will
then show that our argument implies that, with probability 1 — €, at least n — en nodes
remain e-good over the entire window [65*logn, 125 logn].

» Lemma 8 (Non-ephemeral good nodes). Let € > 0 be an arbitrarily small value, let G be an
4

(n,d,b)-clustered reqular graph with :\\—2 < Cﬁf; -,

AVERAGING(1/2) on G, it holds that

P [\Bt| <3e-n,Vt: 6)\%logn<t< 12)\—"310gn] >1—c¢.

for a large enough costant c. If we execute

4.2 Second moment analysis for dense cuts

In this section, we extend our study to the lazy averaging algorithm AVERAGING(J) where
d < 1/2. Similar to the previous section, we assume that the underlying graph G is an
(n,d,b)-clustered regular graph and A3 > Ay = 2b/d. However, this new analysis works
even for large (constant) Az, in contrast to that in Section 4.1 which only works for small
Ao K 1/ log2 n. Informally speaking, we show that, for an appropriate value of § and any
t such that Q(nlogn) < t < O(n?), with large probability, the vector y® + z® is almost
parallel to , i.e., [|z()| is much smaller than |[y®||. A more precise statement is given below
as Theorem 9. Note that, for brevity, we write £ here to denote the sequence {(u¢, v¢)}ren of
the edges chosen by the protocol.

» Theorem 9. For any sufficiently large n € N, any® 6 € (0,0.8(\3 — X2)) and any t €
2/3
n n? d(Az—A2)
|:Q (m 10g (n/(s)) 70 (5(}\3)\2) (igb) >:| , we ha/l)e

Pro e [[2012 < /a2 Iy ©112] > 1 0 (/i +)

Theorem 9 should be compared to Theorem 5: both assert that ||y(®)|| is much larger
than [|z()||, but Theorem 9 works even when), is quite large whereas Theorem 5 only holds
for Ao < 1/ log® n. While the parameter dependencies in Theorem 9 may look confusing at
first, there are mainly two cases that are interesting here. First, for any error parameter ¢,
we can pick § depending only on € and A3 — A\ in such a way that Theorem 9 implies that,
with probability 1 — &, ||z ||? t)||2, as stated below.

is at most e[|y

5 Here 0.8 is arbitrary and can be changed to any constant less than 1. However, we pick an absolute
constant here to avoid introducing another parameter to our theorem.

L. Becchetti et al.

Algorithm 2: SIGN-LABELING algorithm.
SIGN-LABELING(T,¢) (for a node w that is one of the two endpoints of an active edge)
Component selection: Jointly with the other endpoint choose a component j € [¢]

u.a.r.
Initialization and update: Run one step of AVERAGING (1/2) for component j.
Labeling: If this is the T-th activation of component j: set hi'"(j) = sgn(x,(7)).

» Corollary 10. For any constant € > 0 and for any A5 > Ao, there exists § depending only on
£ and A3 — \g such that, for any sufficiently large n and for any t € [Qc x;—»,(nlogn), O(n?)],
we have Pry ¢ [I20]? <elly®|?] > 1—e.

Another interesting case is when 6 = 1/2 (i.e., we consider the basic averaging protocol).
Recalling that Ao = 2b/d, observe that Ay appears in both the bound on ||z ||? and the error
probability. Hence, we can derive a similar lemma as the one above, but with Ay depending
on ¢ instead of d:

» Corollary 11. Fiz § = 1/2. For any constant € > 0, any’ A3 > 0.7, any sufficiently small
Ao depending only on €, any sufficiently large n and any t € [Q.(nlogn),O(n?)], we have
Proo ¢ [[29]° <ely?|?] > 1 -«

5 Distributed Community Detection

5.1 The Sign-Labeling protocol for sparse cuts

In the case of sparse cuts (i.e. of size o(m/log?n)), the obtained bound on the variance of
non-ephemeral nodes (see Lemma 8) holds over a time window that essentially equals the
one “suggested” by our first moment analysis. Hence, we next propose a simple, lightweight
opportunistic protocol that provides community-sensitive labeling for graphs that exhibit a
relatively sparse cut.

The algorithm, denoted as SIGN-LABELING (see Algorithm 2), adds a simple labeling
rule to the AVERAGING(1/2) process: Each node keeps track of the number of times it is
activated. Upon its T-th activation, for a suitable T = O (logn), the node uses the sign of its
current value as a binary label. The above local strategy is applied to ¢ independent runs of
AVERAGING(1/2), so that every node is eventually assigned a binary signature of length £.

Roughly, Lemma 8 implies that over a suitable time window of size ©(nlogn), for all
nodes u but a fraction O (¢/logn), we have sgn(xg)) = sgn(x, + y&o)). Recalling that x|
0)’s projections along x/v/7 and 1/+/n, this immediately implies
that, with probability 1 — e and up to a fraction ¢ of the nodes, sgn(ng)) = sgn(xg,t)),
whenever u and v belong to the same community and ¢ falls within the aforementioned
window. As to the latter condition, we prove that each node labels itself within the right

window with probability at least 1—1/n.8 Moreover, sgn(xH,qung)))) = sgn(x.), whenever

v exceeds X, in modulus, which occurs with probability 1/2—o(1) from the (independent)
Rademacher initialization. As a consequence, if we run £ suitably independent copies of the
process, the following will happen for all but a fraction O(e) of the nodes: the signatures of

and y(© respectively are x(

7 0.7 here can be replaced by any constant larger than 0.5.

8 It may be worth noting that sgn(ng))= sgn(xs,t)) for u and v belonging to the same community does

not imply sgn(x@) #* sgn(xg,t>) when they don’t.

7:9

ESA 2018

7:10 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Algorithm 3: JumMP-LABELING Here, 7, is a local counter keeping track of the
number of times u was an endpoint of an active edge, while x,, is u’s current value.
JUMP-LABELING(6, 75, 75, 7¢, 7°)
(for a node u that is one of the two endpoints of an active edge)

Initialization: The first time it is activated, u chooses 75, 7¢ € N independently

u)'u
uniformly at random from [7°,7%] and [7°, 7°| respectively. Moreover, let 7, = 0.
Update (and Averaging’s initialization): Run one step of AVERAGING(J).

Labeling: If 7, = 75, then set 5 = x,,. If 7, = 7¢, then label h!"“™” = sgn(z% — z,,).

two nodes belonging to the same community will agree on ¢ — o(1) bits, whereas those of
two nodes belonging to different communities will disagree on Q(¢) bits, i.e., our algorithm
returns a community-sensitive labeling of the graph, as stated in the following theorem and
corollary.

» Theorem 12 (Community-sensitive labeling). Let € > 0 be an arbitrarily small value, let
G be an (n,d,b)-clustered regular graph with i—i < Cﬁf’g&:n, for a large enough constant c.
Then, protocol SIGN-LABELING (T, ¢) with T = (8/3)logn and ¢ = 10c~!logn performs a
~y-community-sensitive labeling of G according to Definition 3 with ¢; = 4e, c3 = 1/6 and
v = 6e, w.h.p. The convergence time is O(nllogn/As) and the work per node is O(£logn/As3),
w.h.p.

Notice that, according to the hypothesis of Theorem 12, in order to set local parameters
T and ¢, nodes should know parameters € and A3 (in addition to a polynomial upper bound
on the number of the nodes). However, it easy to restate it in a slightly restricted form that
does not require such assumptions on what nodes know about the underlying graph.

» Corollary 13. Protocol SIGN-LABELING (80 logn, 600logn) performs a (1/10)-community-
sensitive labeling, according to Definition 3 with ¢; = 1/15 and co = 1/6, of any (n,d,b)-
clustered regular graph G with A > 1/10 and Xy < 1/(clog?n) for a large enough constant c.

Observe that the “good” time-window begins after O(nlogn) rounds: So, if the underlying
graph has dense communities and a sparse cut, nodes can collectively compute an accurate
labeling before the global mixing time of the graph. For instance, if the cut is O(m/n?),
for some constant v < 2, our protocol is polynomially faster than the global mixing time.
Importantly enough, the costs of our first protocol do not depend on the cardinality of the
edge set F.

5.2 The Jump-Labeling protocol for dense cuts

The bound on the variance that allows us to adopt the sign-based criterion above does not
hold when the cut is not sparse, i.e., whenever it is w(m/log> n). For such dense cuts, we
use a different bound on the variance of nodes’ values given in Theorem 9, which starts to
hold after the global mixing time of the underlying graph and over a time window of length
©(n?). In this case, the specific form of the concentration bound leads to adoption of the
second clustering criterion suggested by our first moment analysis, i.e., the one based on
monotonicity of the values of non-ephemeral nodes. To this aim, we consider a “lazy” version
of the averaging process equipped with a local clustering criterion, whereby nodes use the
signs of fluctuations of their own values along consecutive rounds to label themselves (see
Algorithm 3).

L. Becchetti et al.

Here 6 € [0,1] and 75,75, 7¢,7¢ € N are parameters that will be chosen later. Intuitively,
protocol JUMP-LABELING exploits the expected monotonicity in the behaviour of sgn(xg) —
x(t_l)) highlighted in Section 3. Though this property does not hold for a single realization
of the averaging process in general, the results of Section 4.2 allow us to show that the
sign of x(7w) — x(7) reflects u’s community membership for most vertices with probability
1 —o0(1) (i.e., the algorithm achieves weak reconstruction) when 75 and 7¢ are randomly
chosen within a suitable interval. This is the intuition behind the main result of this section
which is formalized below.

» Theorem 14. Let n be any sufficiently large even positive integer. For any 0 < § <
0.8(A3 — A2), there exist 7°,7°,7¢,7¢ € N such that, after O (mmg (n/d) + %l)
rounds of protocol JUMP-LABELING (9, 7°,7°,7¢,7¢), every node labels its cluster and this

labelling is a (i/ﬁ + </$)—weak reconstruction of G, with probability at least

1-0 (i/ﬁ + (‘/@) The convergence time of this algorithm is Qs (n (logn + %)).

Proof of Theorem 14: an informal overview. Since our discussion here will involve both
local times and global times, let us define the following notation to facilitate the discussion:
for each vertex u € V', let T, : N — N be a function that maps the local time of u to the
global time, i.e., T, (7) £ min{t € N | [{i <t |u € {u;,v;}}| = 7} where ({u;,v;})ien is the
sequence of active edges.

We let a,(t) € R be such that y = a,(t) - (x/y/n). Let us also assume without loss
of generality that a,(0) > 0. Observe first that our concentration result (Corollaries 10
and 11) implies the following: for any ¢ such that Q(nlogn) < t < O(n?), with large
probability, Xu(xq(f) _ X||,u) is roughly Eg a,(t)/n for most vertices u € V; let us call these
vertices good for time t. Imagine for a moment that we change the protocol in such a way
that each u has access to the global time ¢ and u assigns h?"“™" = sgn(xge) - ngs)) for
some t°,t° € [Q(nlogn),O(n?)] that do not depend on u. If ¢ — ¢* is large enough, then
Ee ay(t*) > Ee a,(t°). This means that, if a vertex v € V' is good at both times t* and t°,

then we have that XU(XSf) —X|lu) & Eg ay(t°)/n > Ee a,(t°)/n = Xu(xSfC) — X||,u). Note
that when y,, - ngs) > X Xq(fe)

are good at both times ¢° and ¢°,

, we have h?"“™ = y... From this and from almost all vertices
h7“™ is indeed a good weak reconstruction for the graph!

The problem of the modified protocol above is of course that, in our settings, each
vertex does not know the global time ¢. Perhaps the simplest approach to imitate the
above algorithm in this regime is to fix 7°,7¢ € [Q(logn),O(n)] and, for each u € V,
proceed as in JUMP-LABELING except with 7) = 7% and 7, = 7°. In other words, u assigns
h/mP — sgn(x;T“(Td)) — XELT“(Te))). The problem about this approach is that, while we know
that Eg T, (7°) = 0.5n7° and Eg¢ T3,(7°) = 0.5n7°, the actual values of T, (7°) and T, (7°)
differ quite a bit from their means, i.e., on average they will be Q(n+/logn) of away their
mean. Since our concentration result only says that, at each time ¢, we expect 99% of the
vertices to be good, it is unclear how this can rule out the following extreme case: for many
u €V, T,(m%) or T, (7°) is a time step at which u is bad. This case results in h’*"” not
being a good weak reconstruction of V.

The above issue motivates us to arrive at our eventual algorithm, in which 7}, and 7
are not fixed to be the same for every u, but instead each u pick these values randomly
from specified intervals [7%, 7%] and [, 7¢]. To demonstrate why this overcomes the above
problem, let us focus on the interval [75, 7°]. While T,,(7®) and T, (7°) can still differ from
their means, the interval [T, (7%), To,(7%)] still, with large probability, overlaps with most of
[0.5n7%,0.5n7%] if 75 — 7° is sufficiently large. Now, if T, (7 4+ 1) — Ty, (7) are the same for all

7:11

ESA 2018

7:12

Average Whenever You Meet: Opportunistic Protocols for Community Detection

T € [7%,7%], then the distribution of XLT“(TS)) is very close to xq(ﬁ‘) if we pick ¢}, randomly

from [0.5n7%,0.5n7%]. From the usual global time step argument, it is easy to see that the
latter distribution results in most u being good at time t5. Of course, T,,(7 + 1) — T, (7) will
not be the same for all 7 € [75, 7%], but we will be able to argue that, for almost all such 7,
Tu(T+ 1) — T, (7) is not too small, which is sufficient for our purpose. <

We remark that the nd/b dependency in the running time is necessary. If we start with a
good state where x(*) = z(®) = 0, then the values on one side of the partition are all a,(0)
and the values on the other side are —a,(0). It is easy to see that, after o(nd/b) steps of our
protocol, 1 — o(1) fraction of the values remain the same. For these nodes, it is impossible to
determine which cluster they are in and, hence, no good reconstruction can be achieved.

Similarly to our concentration results in Subsection 4.2, let us demonstrate the use of
Theorem 14 to the two interesting cases. First, let us start with the case where As — Ay is
constant.

» Corollary 15. For any constant € > 0 and for any A3, A2, there exists § depending only on e
and A3 — Ao such that, for any sufficiently large n, there exists 7°,7°,7¢,7¢ € N such that, with
probability 1 — ¢, after O¢ x,—x, (n logn +)\%) rounds of JUMP-LABELING (8, 75, 7%, 7¢,7¢),

every node labels its cluster and this labelling is a e-weak reconstruction of G.

As in Subsection 4.2, we can consider the (non-lazy) averaging protocol and view Ag
instead as a parameter. On this front, we arrive at the following reconstruction guarantee.

» Corollary 16. Fiz 6 = 1/2. For any constant € > 0, any Az > 0.7, any sufficiently small
Ao depending only on €, any sufficiently large n, there exists 7°,7°,7¢,7¢ € N such that,
with probability 1 — e, after O, (n logn + /\%) rounds of JUMP-LABELING (8, 7%, 7%, 7¢,7¢),

the nodes’ labelling is a e-weak reconstruction of G.

While the weak reconstruction in the above claims is guaranteed only with arbitrarily-large
constant probability, we can boost this success probability considering the same approach we
used in Subsection 5.1.

Indeed, we first run £ = O.(log n) copies of JUMP-LABELING where, similarly to Algorithm
2, “running ¢ copies” of JUMP-LABELING means that each node keeps ¢ copies of the states
of JUMP-LABELING and, when an edge {u,v} is activated, u and v jointly sample a random
j € [£] and run the j-th copy of JUMP-LABELING. In the previous section, we have seen that
Lemma 8 and the repetition approach above allowed us to get a good community-sensitive
labeling, w.h.p. (not a good weak-reconstruction). Interestingly enough, the somewhat
stronger concentration results used in this section allow us to “add” a simple majority rule
on the top of the ¢ components and get a “good” single-bit label, as described below. When
UM = MAJORITY je (g (h3"™ (1))

all £ components of a node u have been set, node u sets h;,)

where h?“™ () is the binary label of u from the j-th copy of the protocol. Observe that the
weak reconstruction guarantee of JUMP-LABELING shown earlier implies that the expected
number of mislabelings of each copy is at most 2en, i.e., E[{u € V | |hZ“™ (i) # xu|}] < 2en.
Now, since the number of mislabelings of each copy is independent, the total number of
mislabelings is at most O(enf), w.h.p. However, if the eventual label of u is incorrect, it
must contributes to mislabeling across at least £/2 copies. As a result, there are at most
O(en) mislabelings in the new protocol, w.h.p.

» Corollary 17. For any constant € > 0 and A3 >)Xo, there is a protocol that yields an

e-weak reconstruction of G , w.h.p. The convergence time is O x;—», (n (log2 n+ %))

rounds, while the work per node is Of x,—», (log2 n+ %)

L. Becchetti et al.

We finally remark that, for the dense-cut case we focus on in this section (i.e. Ao = 2b/d =

©(1)), the fraction of outliers turns out to be a constant we can made arbitrarily small. If
we relax the condition to Ay = o(1), then this fraction can be made o(1), accordingly.

—— References

1

10

11

12

13

Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279-304, 2007.

Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Prasad Raghaven-
dra, and Luca Trevisan. Average whenever you meet: Opportunistic protocols for commu-
nity detection. CoRR, abs/1703.05045, 2017. URL: https://arxiv.org/abs/1703.05045.
Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Tre-
visan. Find your place: Simple distributed algorithms for community detection. In Proc.
of the 28th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’17), pages 940-959.
SIAM, 2017. doi:10.1137/1.9781611974782.59.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized Gossip
Algorithms. IEEE/ACM Transactions on Networking, 14:2508-2530, 2006. doi:10.1109/
TIT.2006.874516.

Gerandy Brito, Ioana Dumitriu, Shirshendu Ganguly, Christopher Hoffman, and Linh V.
Tran. Recovery and Rigidity in a Regular Stochastic Block Model. In Proc. of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 371-390. ACM, 2015.

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborové. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social networks, 5(2):109-137, 1983.

Laurent Massoulié. Community Detection Thresholds and the Weak Ramanujan Property.
In Proc. of the ACM Symposium on Theory of Computing (STOC), pages 694-703. ACM,
2014.

Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold con-
jecture. Combinatorica, pages 1-44, 2013.

Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction
and optimal recovery of block models. In Conference on Learning Theory, pages 356-370,
2014.

Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted
partition model. Probability Theory and Related Fields, 162(3-4):431-461, 2015.

He Sun and Luca Zanetti. Distributed Graph Clustering and Sparsification. CoRR,
abs/1711.01262, 2017. URL: http://arxiv.org/abs/1711.01262.

Matthew J. Williams, Roger M. Whitaker, and Stuart M. Allen. Decentralised detection of
periodic encounter communities in opportunistic networks. Ad Hoc Networks, 10(8):1544—
1556, 2012.

7:13

ESA 2018

https://arxiv.org/abs/1703.05045
http://dx.doi.org/10.1137/1.9781611974782.59
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.1109/TIT.2006.874516
http://arxiv.org/abs/1711.01262

Polynomial-time approximation schemes for
k-center, k-median, and capacitated vehicle
routing in bounded highway dimension

Amariah Becker

Department of Computer Science, Brown University
amariah becker@brown.edu

Philip N. Klein

Department of Computer Science, Brown University
klein@brown.edu

David Saulpic

Département d’Informatique, Ecole Normale Supérieure
david.saulpic@Qens.fr

—— Abstract

The concept of bounded highway dimension was developed to capture observed properties of
road networks. We show that a graph of bounded highway dimension with a distinguished root
vertex can be embedded into a graph of bounded treewidth in such a way that u-to-v distance
is preserved up to an additive error of € times the u-to-root plus v-to-root distances. We show
that this embedding yields a PTAS for BOUNDED-CAPACITY VEHICLE ROUTING in graphs of
bounded highway dimension. In this problem, the input specifies a depot and a set of clients,
each with a location and demand; the output is a set of depot-to-depot tours, where each client
is visited by some tour and each tour covers at most) units of client demand. Our PTAS can
be extended to handle penalties for unvisited clients.

We extend this embedding result to handle a set S of root vertices. This result implies a
PTAS for MULTIPLE DEPOT BOUNDED-CAPACITY VEHICLE ROUTING: the tours can go from
one depot to another. The embedding result also implies that, for fixed k, there is a PTAS for
k-CENTER in graphs of bounded highway dimension. In this problem, the goal is to minimize d so
that there exist k vertices (the centers) such that every vertex is within distance d of some center.
Similarly, for fixed k, there is a PTAS for k-MEDIAN in graphs of bounded highway dimension.
In this problem, the goal is to minimize the sum of distances to the k centers.

2012 ACM Subject Classification Theory of computation — Routing and network design prob-
lems

Keywords and phrases Highway Dimension, Capacitated Vehicle Routing, Graph Embeddings
Digital Object Identifier 10.4230/LIPIcs.ESA.2018.8

Related Version A full version of this article can be found at [13], arxiv.org/abs/1707.08270.
Funding Research supported by National Science Foundation grant CCF-1409520.

Acknowledgements Thanks to Andreas Feldmann and Vincent Cohen-Addad for helpful dis-
cussions and comments.

© Amariah Becker, Philip N. Klein, and David Saulpic;
37 licensed under Creative Commons License CC-BY
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 8; pp. 8:1-8:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:amariah_becker@brown.edu
mailto:klein@brown.edu
mailto:david.saulpic@ens.fr
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.8
https://arxiv.org/abs/1707.08270
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

PTAS for k-center, k-median and BCVR in low highway dimension

1 Introduction

The notion of highway dimension was introduced by Abraham et al. [3, 1] to explain the
efficiency of some shortest-path heuristics. The motivation of this parameter comes from
the work of Bast et al. [11, 12] who observed that, on a road network, a shortest path from
a compact region to points that are far enough must go through one of a small number
of nodes. They experimentally showed that the US road network has this property, and
Abraham et al. [3, 1, 2] proved results on the efficiency of shortest-path heuristics on graphs
with bounded highway dimension.

Though several definitions of highway dimension have been proposed, we use the one
given in [20] :

» Definition 1. The highway dimension of a graph G = (V, E) is the smallest integer 7 such
that for every r € RT and v € V, there is a set of at most n vertices in B, (cr) such that
every shortest path of length at least » that has all its vertices in B, (cr) intersects this set.

B,(r) = {u € V|d(u,v) < r} denotes here the ball with center v and radius r. This definition
is chosen as it captures this property for a wider range of transportation networks than
[2]. Since the latter implies low doubling dimension, it cannot, for example, represent air
traffic networks, that are star-like at large airports which causes a large doubling dimension.
Nevertheless, as noted in Feldman et al. [20], these networks have a low highway dimension
according to the definition of this paper (see the full version for a further discussion of these
definitions).

New polynomial-time approximation schemes: Abraham et al. note that “conceivably,
better algorithms for other [optimization] problems can be developed and analyzed under
the small highway dimension assumption.” Since road networks are thought to be modeled
by graphs of small highway dimension, NP-hard optimization problems that arise in road
networks are natural candidates for study. Feldmann [19] and Feldmann, Fung, Kénemann,
and Post [20] inaugurated this line of research, giving (respectively) a constant-factor
approximation algorithm for one problem and quasi-polynomial-time approximation schemes
for several other problems. In this paper, we give the first polynomial-time approximation
schemes (PTASs) for classical optimization problems in graphs of small highway dimension.

Vehicle routing: Consider CAPACITATED VEHICLE ROUTING, defined as follows. An
instance consists of a positive integer @ (the capacity), a graph with edge-lengths, a subset
Z of vertices (called clients), a demand function p : Z — {1,2...,Q}, and a distinguished
vertex, called the depot. A solution consists of a set of tours, where each tour is a walk that
starts and ends at the depot, and a function that assigns each client to a tour that passes
through it, such that the total client demand assigned to each tour is at most Q. (If a client
v is assigned to a tour, we say that the tour wvisits v.) The objective is to minimize the sum
of lengths of the tours.

We emphasize that in this version of CAPACITATED VEHICLE ROUTING, client demand is
indivisible: a client’s entire demand must be covered by a single tour. For arbitrary metrics,
the problem is APX-hard, even when @ > 0 is fixed [9]. When @ is unbounded, it is NP-hard
to approximate to within a factor of 1.5 even when the metric is that of a star [21]. Since
stars have highway dimension one, this hardness result holds for graphs of bounded highway
dimension. We therefore require @ to be constant. To emphasize this, we sometimes refer to
the problem as BOUNDED-CAPACITY VEHICLE ROUTING.

A. Becker, P. N. Klein, and D. Saulpic

» Theorem 2. For any e >0, n >0 and Q > 0, there is a polynomial-time algorithm that,
given an instance of BOUNDED-CAPACITY VEHICLE ROUTING in which the capacity is Q
and the graph has highway dimension n, finds a solution whose cost is at most 1 + € times
optimum.

The running time is bounded by a polynomial whose degree depends on ¢, n, and Q.
PTASs for vehicle routing were previously known only for Euclidean spaces, although a
quasi-polynomial-time approximation scheme (QPTAS) was known for planar graphs (see
Section 1.2).

Our approach can be modified to handle a generalization in which an instance also
specifies a penalty for each client, to be imposed if the solution omits the client. We also give
a PTAS for a more general version of the problem, MULTIPLE-DEPOT BOUNDED-CAPACITY
VEHICLE ROUTING, in which there are a constant number of depots, and each tour is required
only to start and end at one of the depots.

k-Center and k-Median: Given a graph, the goal in k-CENTER is to select a set of k
vertices (the centers) so as to minimize the maximum distance of a vertex to the nearest
center. This problem might arise, for example, in selecting locations for k firehouses. The
objective in k-MEDIAN is to minimize the average vertex-to-center distance.

For k-CENTER, when the number k of centers is unbounded, for any § > 0, it is NP-
hard [22, 28] to obtain a (2 — d)-approximation, even in the Euclidean plane under L; or
Lo, metrics!, even in unweighted planar graphs [31], and even in n-vertex graphs with
highway dimension O(log?n) [19]. We therefore consider bounded k, but even a (2 — ¢)-
approximation is W2]-hard for parameter k [19] in general graphs. Thus, even for bounded
k, it seems necessary to consider restricted inputs. Feldmann [19] gave a polynomial-time
3/2-approximation algorithm for bounded-highway-dimension graphs, and raised the question
of whether a better approximation ratio could be achieved. The following theorem answers
that question (Note that the running time is bounded by a polynomial in n whose degree
does not depend on 7, k, or ¢).

» Theorem 3. There is a function fi(-,-,-) and a constant ¢ such that, for each of the
problems k-CENTER and k-MEDIAN, for anyn >0, k> 0 and € > 0, there is an algorithm
running in time f1(n, k,e)n¢ that, given an instance in which the graph has highway dimension
at most 1, finds a solution whose cost is at most 1 + ¢ times optimum.

1.1 New metric embedding results

The key to achieving the new approximation schemes is a new result on metric embeddings of
bounded-highway-dimension graphs into bounded-treewidth graphs. Treewidth is a measure
of how complicated a graph is, and many NP-hard optimization problems in graphs become
polynomial-time solvable when the input is restricted to graphs of bounded treewidth. The
definition is the following.

A tree decomposition of a graph G is a tree Tz whose nodes are bags of vertices that
satisfy the following three criteria: every v € V appears in at least one bag, for every edge
(u,v) € E there is some bag containing both u and v and for every v € V| the bags containing
v form a connected subtree. The width of T is the size of the largest bag minus one, and
the treewidth of G is the minimum width among all tree decompositions of G.

! Approximation better than 1.822 is hard under Lo, see [18].

8:3

ESA 2018

8:4

PTAS for k-center, k-median and BCVR in low highway dimension

A metric embedding of an (undirected) guest graph G into a host graph H is a mapping
¢(+) from the vertices of G to the vertices of H such that, for every pair of vertices u,v in
G, the ¢(u)-to-¢(v) distance in H resembles the u-to-v distance in G. Usually in studying
metric embeddings one seeks an embedding that preserves u-to-v distance up to some factor
(the distortion). That is, the allowed error is proportional to the original distance. In this
work, the allowed error is instead proportional to the distance from a given root vertex (or a
constant number of vertices).

» Theorem 4. There is a function fo(-,-) such that, for every e > 0, graph G of highway
dimension n, and vertex s, there exists a graph H and an embedding ¢(-) of G into H such
that

H has treewidth at most fa(e,n), and

for all vertices u and v, dg(u,v) < dg(Pp(u), p(v)) < dg(u,v) +e(dg(s,u) + dg(s,v)).

As we describe in greater detail in Section 5, our PTAS for BOUNDED-CAPACITY VEHICLE
ROUTING first applies Theorem 4 with s being the depot and ¢’ = ¢/c for a constant ¢ to be
determined, obtaining an embedding of the original graph into the bounded-treewidth graph
H. The embedding induces an instance of VEHICLE ROUTING in H. The algorithm finds an
optimal solution to this instance, and converts it to a solution for the original instance. This
conversion does not increase the cost of the solution. However, we need to show that the
optimal solution in the original instance induces a solution in H of not too much greater
cost. We do this using a lower bound due to Haimovich and Rinnoy Kan [26].

For the multiple-depot version of vehicle routing and for k-CENTER and k-MEDIAN,
Theorem 4 does not suffice. We present a generalization in which there is a set of root
vertices, and the allowed error is proportional to the minimum distance to any root vertex.

» Theorem 5. There is a function f3(-,-,) such that, for every e > 0, graph G of highway
dimension n and set S of vertices of G, there exists a graph H and an embedding ¢(-) of G
into H such that

H has treewidth f3(n,|S|,€), and

for allu and v, dg(u,v) < dg(Pp(u), p(v)) < (140(e))dg(u, v)+e min(dg (S, u), dg (S, v))

1.2 Related Work

Metric embeddings of bounded-highway-dimension graphs: Feldmann [19] and Feldmann
et al. [20] inaugurated research into approximation algorithms for NP-hard problems in
bounded-highway-dimension graphs. Feldmann et al. [20] gave quasi-polynomial-time ap-
proximation schemes for TRAVELING SALESMAN, STEINER TREE, and FACILITY LOCATION.
The key to their results is a probabilistic metric embedding of bounded-highway dimension
graphs into graphs of small treewidth. The aspect ratio of a graph with edge-lengths is the
ratio of the maximum vertex-to-vertex distance to the minimum vertex-to-vertex distance.
Feldmann et al. show that, for any ¢ > 0, for any graph G of highway dimension 7, there is a
probabilistic embedding ¢(-) of G of expected distortion 1 + € into a randomly chosen graph
H whose treewidth is polylogarithmic in the aspect ratio of G (and also depends on € and 7).
There are two obstacles to using this embedding in achieving approximation schemes:
The distortion is achieved only in expectation. That is, for each pair u, v of vertices, the
expected ¢(u)-to-¢(v) distance in H is at most (1 + €) times the u-to-v distance in G.
The treewidth depends on the aspect ratio of G, so is only bounded if the aspect ratio is
bounded.

A. Becker, P. N. Klein, and D. Saulpic

The first is an obstacle for problems (e.g. k-CENTER) where individual distances need to
be bounded; this does not apply to problems such as TRAVELING SALESMAN or VEHICLE
ROUTING where the objective is a sum of lengths of paths. The second is the reason that
Feldmann et al. obtain only quasi-polynomial-time approximation schemes; it seems to be
an obstacle to obtaining true PTAS. Nevertheless, the techniques introduced by Feldmann et
al. are at the core of our embedding results. We build heavily on their framework.

About VEHICLE ROUTING PROBLEM, Haimovich and Rinnoy Kan [26] proved the following
lower bound?:

» Lemma 6. For CAPACITATED VEHICLE ROUTING with capacity @, and client set Z,
2
cost(OPT) > 0 Z{d(qs) :ceZ}

Note that the CAPACITATED VEHICLE ROUTING problem is a generalization of TRAVELING
SALESMAN (Q =n, Z =V, and p(v) = 1,Vv). Conversely, Haimovich and Rinnoy Kan show
how to use a solution to TRAVELING SALESMAN to achieve a constant-factor approximation
for CAPACITATED VEHICLE ROUTING, where the constant depends on the approximation
ratio for TRAVELING SALESMAN.

Since CAPACITATED VEHICLE ROUTING in general graphs is APX-hard for every fixed
Q > 3 [8, 9], much work has focused on the Euclidean plane. Haimovich and Rinnoy Kan [26]
gave a polynomial-time approximation scheme (PTAS) for the Euclidean plane for the case
when the capacity @ is constant. Asano et al. [9] showed how to improve this algorithm to
get a PTAS when @ is O(logn/loglogn). For general capacities, Das and Mathieu [17] gave
a quasi-polynomial-time approximation scheme for unbounded). Building on this work,
Adamaszek, Czumaj, and Lingas [4] gave a PTAS that for any € > 0 can handle @ up to
2108”7 where § depends on e.

Little is known for higher dimensions or other metrics. Kachay gave a PTAS in R? that
requires @ to be O(logl/ 4log n) [30], and Hamaguchi and Katoh [27] and Asano, Katoh, and
Kawashima [7] focused on constant-factor approximation algorithms for the case where the
graph is a tree and client demand is divisible. Becker, Klein and Saulpic [14] gave the first
approximation scheme for a non-Euclidean metric: they describe a quasi-polynomial-time
approximation scheme in planar graphs, but only when the capacity @ is polylogarithmic
in the graph size. They introduce the idea of an error that depends on the distance to the
depot, which we also use in the embedding presented in our work here.

For k-MEDIAN, constant-factor approximation algorithms have been found for general
metric spaces [15, 32, 29, 6]. The best known approximation ratio for k-MEDIAN in general
metrics is 2.675 [15], and it is NP-hard to approximate within a factor of 1 + 2/e [23]. For
k-MEDIAN in d-dimensional Euclidean space, PTAS have been found when £ is fixed (e.g. [10])
and when d is fixed (e.g. [5]) but there exists no PTAS if k and d are part of the input
[25]. Recently Cohen-Addad et al. [16] gave a local search-based PTAS for k-MEDIAN in
edge-weighted planar graphs, and more generally in graphs from any nontrivial minor-closed
graph family.

Outline. Section 2 provides preliminary definitions and presents useful results from Feld-
mann et al. [20]. In Section 3 we give an initial embedding result for graphs of bounded aspect
ratio. Section 4 explains the main embedding result (Theorem 4), and Section 5 describes

2 Although their result addresses the unit-demand case, it generalizes to instances where each non-zero
client demand p(v) is at least one.

8:5

ESA 2018

8:6

PTAS for k-center, k-median and BCVR in low highway dimension

how to use this embedding to achieve a PTAS for CAPACITATED VEHICLE ROUTING, proving
Theorem 2. We refer the reader to the full version [13] for a discussion of highway dimension,
omitted proofs, the dynamic program for vehicle routing, and a discussion of Theorem 5 and
its application to multi-depot vehicle routing, k-CENTER, and k- MEDIAN.

2 Preliminaries

We use OPT to denote the optimum solution for an optimization problem. For minimization
problems, an a-approximation algorithm returns a solution with cost at most « - cost(OPT).
An approzimation scheme is a family of (1 + €)-approximation algorithms indexed by & > 0.
A polynomial-time approzimation scheme (PTAS) is an approximation scheme that for each
fixed € runs in polynomial time.

For an undirected graph G = (V, E), we use dg(u,v) (or d(u,v) when G is unambiguous)
to denote the shortest-path distance between u and v. For any vertex subsets W C V
and vertex v € V we let d(v, W) denote min,ecw d(v,w), and we let diam(W) denote
max,, yew d(u,v).

An embedding of a graph G = (V, E) is a mapping ¢ from a guest graph G to a host
graph H = (V, Ey). For notational simplicity, we identify the vertices of H with points of G
and therefore omit ¢.

Let Y C X be a subset of elements in a metric space (X,d). Y is a d-covering of X if for
allz € X, d(z,Y) < 0. Y is a B-packing of X if for all y1,y2 € Y with y1 # ya, d(y1,y2) > .
Y is an e-net if it is both an e-covering and an e-packing.

Shortest-Path Covers. Now we introduce a tool for dealing with bounded highway-dimen-
sion graphs. Recall that c is a constant greater than 4.

» Definition 7. For a graph G with vertex set V and r € RT, a shortest-path cover for scale
r SPC(r) C V is a set of vertices, called hubs, such that every shortest path of length in
(r, cr/2] contains at least one hub. Such a cover is called locally s-sparse for scale r if every
ball of diameter cr contains at most s vertices from SPC(r).

For a graph of highway dimension 7, Abraham et al. [1] showed how to find a locally
O(nlogn)-sparse shortest-path cover in polynomial time (though they show it for a different
definition of highway dimension (¢ = 4), the algorithm can be straightforwardly adapted).
This result allows us to use shortest-path covers instead of directly using highway dimension.

Town Decomposition. Feldmann et al.[20] observed that a shortest-path cover for scale
r naturally defines a clustering of the vertices into towns [20]. Informally, a town at scale
r is a subset of vertices that are close to each other and far from other towns and from
the shortest-path cover for scale r. Formally, a town is defined by at least one v € V such
that d(v,SPC(r)) > 2r and is composed of {u € V|d(u,v) < r}. The following lemma of
Feldmann et al. describes key properties of towns.

» Lemma 8 (Lemma 3.2 in [20]). If T is a town at scale r, then
1. diam(T) <r and
2. d(T,V\T)>r

Feldmann et al. define a recursive decomposition of the graph using the concept of towns,
which we adopt for this paper. First, scale all distances so that the shortest point-to-point
distance is a little more than ¢/2. Then fix a set of scales r; = (¢/4)". We say that a town

A. Becker, P. N. Klein, and D. Saulpic

Figure 1 Illustration of Lemma 8.

T at scale r; is on level i. The scaling ensures that SPC(rg) =), and therefore at level 0
every vertex forms a singleton town. The largest level is 7,4, = [log,. /4 diam(Gscated)] =
[log./4(5 - 0c))], where fc is the aspect ratio of the input graph. Similarly at this topmost
level, SPC(7maz) = 0 since there are no shortest paths that need to be covered. The only
town at scale 1,4, is the town that contains the entire graph. We say that the town at scale
Tmaz and the singleton towns at scale g are trivial towns. Since c is a constant greater than
four, the total number of scales is linear in the input size.

The set 7 = {T' C V|T is a town on level i € N} of towns at all levels is called the town
decomposition. Because of the properties of Lemma 8, this set forms a laminar family and
therefore has a tree structure. Moreover, the decomposition has the following properties.

» Lemma 9 (Lemma 3.3 in [20]). For every town T in a town decomposition T,
1. T has either 0 children or at least 2 children, and
2. if T is a town at level i and has child town T' at level j, then j < 1.

Approximate Core Hubs. For the purpose of approximation algorithms, it suffices to use
not all hubs but a representative subset. For € > 0, Feldmann et al. show how to compute, for
each town T', a subset X1 of T' (] U;SPC(r;), called approzimate core hubs. Their properties
are described in Lemma 10. Recall that the doubling dimension of a metric is the smallest 6
such that for every r, every ball of radius 2r can be covered by at most 27 balls of radius r.

» Lemma 10 (Theorem 4.2 and Lemma 5.1 in [20]). For every town T € T, there exist a set

X1 such that:

1. if T1 and Ty are different child towns of T, and uw € Ty and v € T, then there is some
h € Xt such that d(Plu,v],h) < ed(u,v), where Plu,v] is the shortest u-to-v path, and

2. the doubling dimension of Xt is 8 = O(log(nslog(1/¢)).

Minimality of Shortest-Path Covers. Note that the result of Lemma 10 requires the
shortest-path covers be inclusion-wise minimal. For the embedding we present in Section 4,
however, it is useful to assume that the depot is not a member of any town except for the
trivial topmost town containing all of G' and bottommost singleton town containing just the
depot. This assumption can be made safely, as explained in the full version of the paper.

3 Embedding for Graphs of Bounded Aspect-Ratio

Lemma 11 describes an embedding for the case when the graph has bounded aspect-ratio,
ie. the ratio between diameter and smallest distance. This embedding gives only a small
additive error, and will prove to be a useful tool for the following sections. In this section we
show how to construct this embedding.

8:7

ESA 2018

8:8

PTAS for k-center, k-median and BCVR in low highway dimension

u
& ~
5/
vod @S b v
(a) Town decomposition (b) Embed- (c) Path approxi-
dings mation

Figure 2 (a) An example of a town decomposition. 77 has diameter at most eA and T has
diameter greater than eA. (b) Two cases of town embeddings. T} is embedded as a star with center
vry,. The embedding of T, connects all vertices in T5 to all hubs in Xr, (depicted as squares). (c)
Hub h € X’T is close to hub A € X7 which itself is close to the shortest u-to-v path.

» Lemma 11. There is a function f(x,y) such that, for any € > 0 and n > 0, for any graph
G with highway dimension at most n, minimal distance 1 and diameter A, there is a graph
H with treewidth at most f(e,n) and an embedding ¢(-) of G into H such that, for all points
u and v,

da(u,v) < dr(p(u),d(v)) < da(u,v) + 4eA
Furthermore, there is a polynomial-time algorithm to construct H and the embedding.

We first present an algorithm to compute the host graph H and a tree decomposition of
H. This algorithm relies on the town decomposition 7 of G, described in Section 2.

The host graph H is constructed as follows. First, consider a town 7" that has diameter
d < €A but has no ancestor towns of diameter eA or smaller. We call such a town a mazimal
town of diameter at most eA. The town T is embedded into a star: choose an arbitrary
vertex vp in T, and for each u € T, include an edge in H between u and vy with length
de(u,vr) equal to their distance in G (see Figures 2a and 2b).

Now consider a town T' of diameter dr > ¢A. The set of approximate core hubs X7 can
be used as portals to preserve distances between vertices lying in different child towns of T
Specifically, by Lemma 10, for every pair of vertices (u,v) in different child towns of T, X
contains a vertex that is close to the shortest path between v and v. In order to approximate
the shortest paths, it is therefore sufficient to consider a set of points close to Xp. Let Xr
be an edr-net of X7. For each he XT and v € T, include an edge in H connecting v to h
with length dg (v, h) = dg(v, h) equal to the v-to-h distance in G (see Figures 2a and 2b).

The tree decomposition D mimics the town decomposition tree: for each town T of
diameter greater than €A, there is a bag by. This bag is connected in D to all of the bags
of child towns of T and contains all of the vertices of the net assigned to T and of the nets
assigned to T’s ancestors in the town decomposition. Formally, if A denotes the set of all
towns that contain T', br = Uzicy, Xr/. Note that if 77 is the parent of T in the town
decomposition, by = XT U brr. Now for each maximal town T of diameter at most eA with
parent town 7", the tree decomposition contains a bag b9, connected to a bag b% for each
vertex u € T. We define b3 = {vr} U by and b% = {u} U bJ..

Following Feldmann et al. [20], the above construction can be shown to be polynomial-time
constructible. The following three lemmas therefore prove Lemma 11.

» Lemma 12. D is a valid tree decomposition of H.

A. Becker, P. N. Klein, and D. Saulpic

» Lemma 13. H has a treewidth O((1)? log. 1), where 6 is a bound on the doubling dimension
of the sets Xr.

Proof. Since the size of the bags is clearly bounded by the depth times the maximal cardinality

of Xr, it is enough to prove that, for each town 7', X7 is bounded by (é)e, and that the

tree decomposition has a depth O(log% 1), By Lemma 10, the doubling dimension of X7 is

€
bounded by 6. X7 is a subset of X7, so its doubling dimension is bounded by 26 (see Gupta
et a}. [24]). Furthermore, the aspect ratio of X is L: the longest distance between members
of Xr is bounded by the diameter dr of the town, and the smallest distance is at least edp by
definition of a net. The cardinality of a set with doubling dimension x and aspect ratio - is
bounded by 27108271 (see [24] for a proof), therefore | X7| is bounded by (1)?. We prove now
that the tree decomposition has a depth O(log. 1), Let T be a town of diameter dr > €A

€
and let r; be the scale of that town. By Lemma 8, dr < r;, and since r; = (i)l and dp > €A,
we can conclude that ¢ > logﬁ eA. As the diameter of the graph is A, the biggest town has
a diameter at most A. It follows that r; < A and therefore i < log% A. The depth of br

in the tree decomposition is therefore bounded by logi EAA = logi é Furthermore, the tree
decomposition of a town of diameter at most eA has depth 2. The overall depth is therefore
O(logi %), concluding the proof. <

» Lemma 14. For all vertices u and v, dg(u,v) < dg(u,v) < dg(u,v) +4eA

Proof. Let u and v be vertices in V', and let T be the town that contains both u and v such
that u and v are in different child towns of 7'

If T has diameter dr < €A, then let 77 be the maximal town of diameter at most €A that is
an ancestor of T' (possibly T itself). By construction, 77 was embedded into a star centered at

some vertex vy € T, so dp (u,v) < dg(u, vy) + dg (v, v) < dg(u, v) +dg(vr,v) < 2eA.

Otherwise if T has diameter dp > €A, then by Lemma 10, there is some h € X¢ such
that dg(P[u,v], h) < ed(u,v). Since X7 is an edy cover of X7, there is some h € X7 such
that d(h, B) < edp. The host graph H includes edges (u, B) and (fz, v), SO

Ay (u,v) < dp(u,) +dg (h,v) < dg(u, h) +da(h,v) + 2ed(u, v) + 2edp < dg(u,v) +4eA
(see Figure 2c¢). Finally, since edge lengths in H are given by distances in G, dg(u,v) <
dy (u,v) for all u,v € V. <

4 Main Embedding: Proof of Theorem 4

4.1 Embedding Construction
Given the parameter €, our goal for the embedding is that
dG (ua ’U) < dH (¢(u)7 ¢(U)) < dG(“? U) + é(dG(Sa u) + dG(Sa ’U))

With this goal in mind, we define e = min{1/4,£/k} for an appropriate constant k (chosen
to compensate for the big-O in the following inequality), and prove that

de(u,v) < dp(p(u), d(v)) < dg(u,v) + e(dg(s,u) + da(s,v))

Our construction relies on the assumption that the depot s does not appear in any
non-trivial town. We can make this assumption without loss of generality, as discussed in
Section 2.

The root town in the composition, denoted Tj, is the town that contains the entire graph.

We say that a town T that is a child of the root town is a top-level town, which means that
the only town that properly contains T is Tj.

8:9

ESA 2018

8:10

PTAS for k-center, k-median and BCVR in low highway dimension

(c) Tree decomposition

Figure 3 (a) Towns 71 and 7% are top-level towns, with {(T1) = ¢ and {(T2) = ¢ + 1. (b) The
embedding of each top-level town (circles) are connected to a band of log, < 4+ 1 hub sets (squares).
Edges are striped to convey that they connect all vertices of the given hub-set endpoint to all
vertices of the town-embedding endpoint. (c) The vertices of each bag B (circles) are added to each
bag of each descendent top-level-town tree decomposition (triangles).

The assumption that the depot, s, does not appear in any non-trivial town implies that
the top-level town that contains s is the trivial singleton town. This assumption is helpful to
bound the distance between a top-level town T and the depot s: as s ¢ T', Lemma 8 gives
the bound d(T, s) > diam (7). This bound turns out to be very helpful in the construction
of the host graph.

We use Lemma 11 to construct an embedding for each top-level town. It remains to
connect these embeddings : we cannot approximate X, with a net as we did in Lemma 11,
because the diameter of G may be arbitrarily large.

To cope with that issue, we define inductively the hub sets X0, X{, ... such that X5 is a
net of X7, N B,(2%). Let X§ be an e-net of X7, N B,(1) that contains the depot, s, and for
k> 01let Xg' be an e2¥ Lnet of the set (X7, N (By(2¥F1) — B4(2))) U X§ that contains
the depot. This construction ensures that X' N B,(2%) € X, which will be helpful in
Section 4.3 to find a tree decomposition of the host graph. Note that we can assume s € Xr,,
since adding it increases the doubling dimension by at most one and thus does not change
the result of Lemma 10.

For a set of vertices X C V, we define [(X) = [log,(max,cx d(s,v))] (See Figure 3a).

For every child town T of Ty, the host graph connects every vertex v of T to every hub h
in X(l)(T), ... ,Xé(T)Hogz(l/E) with an edge of length dg (v, h) (See Figure 3b).

4.2 Proof of Error Bound

In Lemma 16 we prove a bound on the error incurred by the embedding. Our proof makes
use of the following lemma.

» Lemma 15 (see full version). For all k, Xk is an e2¥*1-covering of X1, N Bs(2%).

» Lemma 16. For all vertices u and v,
de(u,v) < dg(u,v) < dg(u,v) + O(e)(da(s,u) + da(s,v))

Proof. Consider two vertices v and v. Let T, and T, denote the top-level towns that contain
u and v, respectively. There are two cases to consider.

A. Becker, P. N. Klein, and D. Saulpic

(a) v and v are both connected to h. (b) v is not connected to h.

Figure 4 The shortest path between u and v in G is indicated by the curved, directed lines. The
path in the host graph is represented by the straight lines.

If T, = T,, Lemma 8 gives dg(u,v) < diam(T,) < dg(Ty,V \ Ty), and therefore
diam(T,) < min{dg(s,u), dg(s,v)}. Because T,, = T, is a top-level town, its embedding is
given by Lemma 11, which directly gives the desired bound.

Otherwise T, # Ti,. Without loss of generality, assume that dg(u,s) > da(v,s). We
show that there exists some X connected to u with a vertex he X close to Plu,v).

By definition of the approximate core hubs, there exists h € X, such that d(h, Plu,v]) <
ed(u,v). Moreover, h € B, (2/(Tu)+2).

d(s,h) <d(s,u) +d(u,h) <d(s,u) + (1 +¢)d(u,v)

<d(s,u) + (1 +¢€) (d(s,u) +d(s,v)) by triangle inequality
<d(s,u) + (1+¢)-2d(s,u) since d(u, s) > d(v, s)
< (3 + 2¢)21Tw) < 9l(TW)+2

Since h € Xq, N By(2'(T)+2), then by Lemma 15, there is an h € X)) %2 such that
d(h,h) < 21T 43 Since log, 1 > 2, uis connected to h in the host graph.

Depending on v, there remain two cases: either v is connected to h (see Figure 4a) or
not (Figure 4b). First, if v is connected to h in the host graph, dg (v, h) = dg (v, h) (and the
same holds for u). The triangle inequality gives therefore,

di(u,v) < da(u,h) +dg(v,h) < da(u,h) +da(v,h) + 2d¢ (h, h)
N——

<(142¢)dg(u,v) by definition of b <2e2H{(Tu)+3=0(e)d(s,u)

Since dg(u,v) < dg(s,u) + dg(s,v), we infer dg(u,v) < dg(u,v) + O(e)(dg(s,u) +
dg(s,v)). R

Otherwise, v is not connected to h. That means that either I(T,) + 2 < I(T,) or
I(T.) +2 > U(T,) +logy L. We exclude the first case by noting that since the diameter of a
town is less than its distance to the depot, dg (v, s) < dg(u, s) implies that I(T,) < I(T,) + 1.
The second case implies that dg(s,u) > O(1)dg(s,v). Since the host graph connects
the source s to all the vertices, dgy(u,v) < dg(s,u) + da(s,v) < dg(u,v) + 2dg(s,v) <
da(u,v) + O(e)(da (s, u) + da(s,v)). <

4.3 Tree Decomposition

We present here the construction of a bounded-width tree decomposition D of the host graph.
k+log,(1/¢) i
For each k > 0 let By = U X{. For a top-level town T', the tree decomposition D
i=k—1
connects the decomposition Dr given by Lemma 11 to the bag Bjr). Moreover, we add all
vertices that appear in By(r) to all bags in the tree Dr. Finally, for every k we connect By,

to both By_; and Bi41 in D. (See Figure 3b.)

8:11

ESA 2018

8:12

PTAS for k-center, k-median and BCVR in low highway dimension

» Lemma 17 (see full version). D is a valid tree decomposition of the host graph H.
» Lemma 18. For all k, |X{| < (2)°.

Proof. Since X} is a subset of Xr,, it has doubling dimension 2¢ (see Lemma 10). Since
Xk is a e2F-net, the smallest distance between two hubs in X} is at least €2¥. Moreover,
since X% C B,(2%), the longest distance between two hubs is at most 2 - 2¥, therefore, X
has an aspect ratio of at most % The bound used in Lemma 13 on the cardinality of a set
using its aspect ratio and its doubling dimension concludes the proof. <

» Lemma 19. The tree decomposition D has bounded width.

Proof. This follows from Lemma 18 together with the fact that a bag B; is the union of
log, % + 2 sets X¥. Lemma 13 allows to conclude. |

5 Capacitated Vehicle Routing

5.1 PTAS for Bounded Highway Dimension

The algorithm works as follows. The input graph G is embedded into a host graph H of
bounded treewidth using the embedding given in Theorem 4. The algorithm then optimally
solves the CAPACITATED VEHICLE ROUTING problem with capacity @ for H, using a classical
dynamic programming approach (described in the full version). The solution for H is then
lifted to a solution in G: for each tour in the solution for H, a tour in G that visits the same
clients in the same order is added to the solution for G.

We show that the embedding given in Theorem 4 is such that an optimal solution in
the host graph H gives a (1 + ¢) solution in G. Furthermore, the embedding ensures that
H has small treewidth, allowing CAPACITATED VEHICLE ROUTING to be solved exactly in
polynomial time using dynamic programming. Putting these together gives Theorem 2.

Given an embedding with the properties described in Theorem 4, all that remains in
proving Theorem 2 is showing how to solve CAPACITATED VEHICLE ROUTING optimally on
the host graph H and proving that such an optimal solution has a corresponding near-optimal
solution in G. We do so in the following two lemmas (the first is proved in the full version of
the paper)

» Lemma 20. Given a graph with bounded treewidth w and a capacity @ > 0, CAPACITATED
VEHICLE ROUTING can be solved optimally in n®“@) time.

» Lemma 21. For an embedding with the properties given by Theorem /4, the cost of an
optimal solution in the host graph H is within a (1 + O(e))-factor of the cost of the optimal
solution in the guest graph G.

Proof. Let OPTpg be the optimal solution in the host graph H and OPT¢ be the optimal
solution in G. A solution is described by the order in which the clients and the depot are
visited: (u,v) € S indicates that the solution S visits the client v immediately after visiting
u. We want to prove that costq(OPTg) < (14 O(¢))costqg(OPTg).

First, since dg < dpg, costg < costy. Second, the solution OPT¢ is also a solution in
the host graph H, since the vertices of G and H are the same. So, by definition of OPT,
costy (OPTy) < costyg(OPTg). It is therefore sufficient to prove that costy (OPTg) <
(14 0O(g))costa(OPTg).

A. Becker, P. N. Klein, and D. Saulpic

By definition of cost, costy(OPTg) = > dp(u,v). Applying Theorem 4 gives

(u,v)€OPT¢a

costg(OPTg) < Y da(u,v) + O(e)(da(s,u) + da(s, v))

(u,v)€OPTg

The right side of the inequality can be rewritten as

Z dg(u,v) + O(e) Z da(s,u) + dg(s,v)

(uﬂ))EOPTG (u,’U)EOPTG
= costq(OPTg) = 0(e) Y 2da(s,w) < O(e)Qeoste(OPTg) ()
veEZ

To get the inequalities (x), it is enough to remark that OPT¢ visits every client exactly

once and then to apply Lemma 6. As @ is constant, the whole inequality becomes

—— References

1

10

costir (OPT¢q) < costg(OPTg) + O(e)costqa(OPTq) = (14 O(¢))costq(OPTq) <

Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V Goldberg, and Renato F Werneck.
VC-dimension and shortest path algorithms. In International Colloquium on Automata,
Languages, and Programming, pages 690-699. Springer, 2011.

Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck.
Highway dimension and provably efficient shortest path algorithms. Journal of the ACM,
63(5):41:1-41:26, 2016.

Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. Highway dimen-
sion, shortest paths, and provably efficient algorithms. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 782-793. SIAM,
2010.

Anna Adamaszek, Artur Czumaj, and Andrzej Lingas. PTAS for k-tour cover problem
on the plane for moderately large values of k. International Journal of Foundations of
Computer Science, 21(6):893-904, 2010. doi:10.1142/30129054110007623.

Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Eu-
clidean k-medians and related problems. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (STOC), pages 106-113, 1998.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. STAM
Journal on Computing, 33(3):544-562, 2004.

Tetsuo Asano, Naoki Katoh, and Kazuhiro Kawashima. A new approximation algorithm for
the capacitated vehicle routing problem on a tree. Journal of Combinatorial Optimization,
5(2):213-231, 2001.

Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in
the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research
Laboratory Research Report RT0162, 1996.

Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in
the plane by k-tours: towards a polynomial time approximation scheme for general k. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
275-283, 1997.

M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages 250-257,
2002.

8:13

ESA 2018

http://dx.doi.org/10.1142/S0129054110007623

8:14

PTAS for k-center, k-median and BCVR in low highway dimension

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

H. Bast, Stefan Funke, and Domagoj Matijevic. Ultrafast shortest-path queries via tran-
sit nodes. In Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors,
The Shortest Path Problem: Ninth DIMACS Implementation Challenge, volume 74 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages 175-192.
American Mathematical Society, 2009.

H. Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In
transit to constant time shortest-path queries in road networks. In Proceedings of the Ninth
Workshop on Algorithm Engineering and Ezperiments (ALENEX), pages 46-59. SIAM,
2007.

Amariah Becker, Philip N. Klein, and David Saulpic. Polynomial-time approximation
schemes for k-center and bounded-capacity vehicle routing in metrics with bounded highway
dimension. arXiv:1707.08270, 2017.

Amariah Becker, Philip N Klein, and David Saulpic. A quasi-polynomial-time approxi-
mation scheme for vehicle routing on planar and bounded-genus graphs. In 25th Annual
European Symposium on Algorithms (ESA), volume 87, pages 12:1-12:15, 2017.

Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization.
ACM Transactions on Algorithms, 13(2), 2017.

Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approxima-
tion schemes for k-means and k-median in Euclidean and minor-free metrics. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016.
Aparna Das and Claire Mathieu. A quasipolynomial-time approximation scheme for Eu-
clidean capacitated vehicle routing. Algorithmica, 73(1):115-142, 2015.

Tomaés Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC), 1988.
Andreas Emil Feldmann. Fixed parameter approximations for k-center problems in low
highway dimension graphs. In Proceedings, Part 11, of the 42nd International Colloquium on
Automata, Languages, and Programming (ICALP), pages 588-600. Springer-Verlag, 2015.
Andreas Emil Feldmann, Wai Shing Fung, Jochen Kénemann, and Ian Post. A (1+4¢)-
embedding of low highway dimension graphs into bounded treewidth graphs. In Proceed-
ings, Part I, of the International Colloguium on Automata, Languages, and Programming
(ICALP), pages 469-480. Springer, 2015.

Bruce L Golden and Richard T Wong. Capacitated arc routing problems. Networks,
11(3):305-315, 1981.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293-306, 1985.

Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algo-
rithms. Journal of Algorithms, 31(1):228-248, 1999.

Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 534-543. IEEE, 2003.

Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of geomet-
ric problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2003.

Mark Haimovich and A. H. G. Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10(4):527-542, 1985.

Shin Hamaguchi and Naoki Katoh. A capacitated vehicle routing problem on a tree. In
International Symposium on Algorithms and Computation, pages 399-407. Springer, 1998.
Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180-184, 1985.

A. Becker, P. N. Klein, and D. Saulpic

29

30

31

32

Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal
of the ACM, 48(2):274-296, 2001.

Michael Khachay and Roman Dubinin. PTAS for the Euclidean capacitated vehicle routing
problem in R%. In Proceedings of the 9th International Conference on Discrete Optimization
and Operations Research (DOOR), pages 193—205. Springer, 2016.

Jén Plesnik. On the computational complexity of centers located in a graph. Aplikace
matematiky, 25(6):445-452, 1980.

David B Shmoys, Eva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, pages 265-274. ACM, 1997.

8:15

ESA 2018

Fine-grained Lower Bounds on Cops and Robbers

Sebastian Brandt
ETH Ziirich

Zirich, Switzerland
brandts@ethz.ch

Seth Pettie!
University of Michigan
Ann Arbor, MI, USA
pettieQumich.edu

Jara Uitto?
ETH Ziirich

Zirich, Switzerland
jara.uitto@inf.ethz.ch

—— Abstract

Cops and Robbers is a classic pursuit-evasion game played between a group of g cops and one
robber on an undirected N-vertex graph G. We prove that the complexity of deciding the winner

in the game under optimal play requires (2 (N g *"(1)) time on instances with O(N log2 N) edges,
conditioned on the Strong Exponential Time Hypothesis. Moreover, the problem of calculating
the minimum number of cops needed to win the game is 22(VN)

Exponential Time Hypothesis. Our conditional lower bound comes very close to a conditional
20(\/ﬁlog N)

, conditioned on the weaker

upper bound: if Meyniel’s conjecture holds then the cop number can be decided in
time.

In recent years, the Strong Exponential Time Hypothesis has been used to obtain many lower
bounds on classic combinatorial problems, such as graph diameter, LCS, EDIT-DISTANCE, and
REGEXP matching. To our knowledge, these are the first conditional (S)ETH-hard lower bounds
on a strategic game.

2012 ACM Subject Classification Mathematics of computing — Graph theory
Keywords and phrases Cops and Robbers

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.9

1 Introduction

The game of Cops and Robbers is a two-player perfect information game played on a graph.
One player is the cop player, who is identified with a set of g cops® occupying vertices of the
graph. The other player is the robber player, who is identified with a single robber occupying
some vertex of the graph. The game begins by the cop player placing the set of cops on the
graph. Once she has decided the locations of the cops, it is the turn of the robber player to
do the same.

Then, taking turns and initiated by the cop player, the players are allowed to move their
pieces along the edges of the graph, where a turn of a player consists of moving all pieces the

L Supported by NSF grants CCF-1514383 and CCF-1637546.

2 Partially supported by ERC Grant No. 336495 (ACDC).

3 We decided to denote the number of cops by ¢ as opposed to the “standard” k to avoid confusion later
with the parameter k for k-CNF.

© Sebastian Brandt, Seth Pettie, and Jara Uitto;
37 licensed under Creative Commons License CC-BY
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 9; pp. 9:1-9:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:brandts@ethz.ch
mailto:pettie@umich.edu
mailto:jara.uitto@inf.ethz.ch
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2

Fine-grained Lower Bounds on Cops and Robbers

player is identified with to an adjacent vertex. We assume that the graph is reflexive, i.e.,
a player is allowed to let a piece stay in the vertex it is currently occupying. The goal of
the cop player is to capture the robber, i.e., move at least one cop to the vertex occupied by
the robber. Conversely, the goal of the robber is to avoid being captured indefinitely. We
say that a graph G is g-cop-win if there is a strategy for g cops to guarantee capture of the
robber. Furthermore, we call the smallest integer g such that G is a g-cop-win graph the cop
number of G and denote it by ¢(G). Notice that any graph with n vertices is n-cop-win.

In this paper, we study the computational complexity of determining the cop number of
a given input graph. It is known from previous work by Berarducci and Intrigila [5] that,
for a fized g, one can check in polynomial time whether ¢(G) < g. On the other hand, it
was recently shown by Kinnersley that, for a non-fized g, i.e., that can be a function of n,
deciding whether ¢(G) < g is EXPTIME-complete [22].

Perhaps the most famous and intriguing problem in the field of cops and robbers is
Meyniel’s conjecture, that states that O(y/n) cops always suffice to capture the robber in
any n-vertex graph [17]. Towards proving this conjecture, it is known that there exist graphs

with cop number ©(y/n) [26], and that n/2(1+"(1))\/10g7” cops always suffice to capture the
robber; see Scott and Sudakov [30], or Lu and Peng [24] for a similar bound. Combining
this upper bound with an n®) algorithm for checking whether the cop number is at most
g [5], the cop number can always be computed in n™/ a(reVicen time. Moreover, assuming
that Meyniel’s conjecture is true, this upper bound reduces to n°®(V™. Hence, under this
assumption 22(v1087) ig the best lower bound that we can hope to achieve.

But how close to this bound is it possible to get? While the result by Kinnersley
shows EXPTIME-completeness, it gives relatively loose guarantees on the actual value
in the exponent of the runtime. Since the completeness proof goes through a series of
reductions [22, 31] and the size of the input graph grows (polynomially) in these reductions,
the lower bound by Kinnersley “only” gives a 2* " lower bound.*

Our work can be seen as a step towards finding the right asymptotic bound in the
exponent. Furthermore, our construction is quite simple and, in particular, gives rise to very
concise and easy to understand strategies for the players. To state our main results, we recall
the satisfiability problem and the definitions of the exponential time hypotheses below.

» Definition 1. Let ¢, be the smallest value such that instances of k-CNF-SAT with m
clauses and n variables can be solved in 2(cs+o(1)n poly(m) time. The FEzponential Time
Hypothesis (ETH) is that ¢, > 0 for all k > 3. The Strong Exponential Time Hypothesis is
that limy_,o0 ¢ = 1, i.e., k-CNF-SAT requires 2(1=°()" time for any non-constant k = k(n).

Conditioning on the Exponential Time Hypothesis and the Strong Exponential Time
Hypothesis, we prove the following theorems. We want to emphasize that Theorem 2 is
optimal up to a constant factor in the exponent and Theorem 3 and Theorem 4 are optimal
up to a log N factor in the exponent, in the case of Theorem 3 under the assumption of
Meyniel’s conjecture. Furthermore, a potentially interesting detail of Theorem 2 is that it
works for any g > 2, i.e., not only when g grows large.

4 Suppose an ABF game [31] is played on a CNF formula with £ variables and O(£) clauses. Kinnersley [22]
reduces this to a lazy cops and robbers with protection game on O(£2) vertices, O(£3) edges, and £+ O(1)
cops. Given any such game with n vertices, m edges, and g cops, Kinnersley [22] reduces it to an
equivalent cops and robbers with protection game on O(gn + m) vertices, O(n(g? + m)) edges, and g
cops. Mamino’s reduction [25] from cops and robbers with protection to standard cops and robbers
transforms a game with parameters n,m, g to O(g?n), O(g*m), g. Composing all three reductions, we
arrive at a standard cops and robbers instance with N = O(£°) vertices, O(¢°) edges, and £+ O(1) cops.
If we need 22 time to decide the winner of the original ABF game, then this gives, at the best, a

229V"") Jower bound on deciding the cop number of an N-vertex graph.

S. Brandt, S. Pettie, and J. Uitto

» Theorem 2. Fiz an integer g > 2 and any § > 0. Conditioned on the Strong Exponential
Time Hypothesis, the problem of deciding whether an N -vertex, M -edge graph has cop number
at most g cannot be solved in O(M9I~?) time.

In an informal sense, Theorem 2 can be interpreted as the statement that exploring almost
all of the O(MI*1), resp. O(M972), possible game configurations and transitions between
these configurations in a cops and robbers game with g, resp. g + 1, cops is unavoidable in
order to determine whether the cop number is at most g or at least g + 1.

» Theorem 3. Conditioned on the Fxponential Time Hypothesis, the problem of calculating
the cop number of an N -vertex graph cannot be solved in 200VN) time.

As mentioned above, if Meyniel’s conjecture is true, the lower bound given in Theorem 3
cannot be improved by more than a log-factor in the exponent. However, if Meyniel’s
conjecture turns out to be false and there is an infinite graph family requiring Q(X (N)) cops
to capture the robber, for some function X (N) = w(v/N), there is well-founded hope that
our approach can be used to show that the problem of calculating the cop number of an
N-vertex cannot be solved in 2°(X (™) thereby staying in the realm of being only a log-factor
away from the optimum. The reason for this hope is that the graphs we construct in order
to infer our lower bound contain components that are essentially the hard instances for the
Q(V/N) lower bound on the cop number. Of course, it cannot be taken for granted that all
proof details still work out if we replace these components with the hard instances for a
larger lower bound on the cop number, but the simplicity of our construction suggests that
this might indeed be the case.

» Theorem 4. Let g : N — R be any function such that g(z) = o(y/x) and g(z+1) < g(z)+1
for all positive integers x. Conditioned on the Exponential Time Hypothesis, the problem of
deciding whether the cop number of an N-vertex graph is at most g(N) cannot be solved in
2009(N)) time.

Informally, Theorem 4 states that also for all (“natural”) functions between constant
functions and ©(v/N), deciding whether the cop number of a graph is bounded by the
function takes time exponential in the function. Similarly to the case of Theorem 3, in case
Meyniel’s conjecture turns out to be false, the range of functions for which Theorem 4 applies
might be increased to include functions from w(v/N) by adapting our graph construction in
a straightforward way.

To the best of our knowledge, this is the first work to apply the (Strong) Exponential
Time Hypothesis on a strategic game. In previous works, (S)ETH has been applied to,
e.g., some well known combinatorial problems such as graph diameter [29], LCS [9, 10],
EDIT-DISTANCE [3], and REGEXP matching [4, 11].

2 Related Work

The study of the game of Cops and Robbers was initiated by Quilliot [27] in 1978 and
introduced independently a few years later by Nowakowski and Winkler [7]. Nowakowski
and Winkler provided a full characterization of graphs where one cop can capture a robber
which was later extended to the case of many cops by Clarke and MacGillivray [14]. One
of the core questions related to the game is the cop number of a graph, which denotes the
minimum number of cops required to capture the robber. A very early result by Aigner and
Fromme states that 3 cops suffice to capture a robber on planar graphs and in the same
work, they showed that any graph with girth at least 5 and minimum degree at least § has a
cop number of at least § [2].

9:3

ESA 2018

9:4

Fine-grained Lower Bounds on Cops and Robbers

Later, Pralat showed that there are incidence graphs of projective planes that satisfy
these properties for § = Q(y/n) yielding the state-of-the-art lower bound for the cop number
of any graph [26]. Given that Meyniel’s [17] conjectured O(y/n) upper bound holds, this

bound is tight. The current best upper bound of n/2(1+°(1))\/@ [30] is far away from this
though and improving it is perhaps the most crucial open problem in the field.

Beyond the existential question of determining the maximum cop number, there is the
computational question. On the positive side, for fixed g, determining whether the cop
number is at most g can be computed in polynomial time [5]. To the best of our knowledge,
the current best algorithm runs in O(n29+3) time [6]. Many years later, this was contrasted
by a negative result showing that for a non-fixed g, i.e., g can be a function of the number
of vertices n, this question becomes NP-hard [16]. A bit later, it was shown by Mamino
that this question is hard for PSPACE [25]. An interesting detail on this work is that it
goes through a reduction to a variant called “Cops and Robbers with Protection”. In this
variant, edges are divided into protected and unprotected edges. The crux of the game is
that the capture only occurs if a cop moves to the vertex occupied by the robber through an
unprotected edge. In a recent breakthrough, Kinnersley managed to show that the stardard
variant of the problem is actually EXPTIME-complete [22].

Even though the progress on the specific question of finding the cop number is fairly
recent, other related questions in various graph classes have been studied long ago. For
example, in the end of seventies and beginning of eighties, Adachi et al. studied a variant of
the game where one cop is trying to prevent any of multiple robbers from reaching a “hole”
in the graph [21, 1]. In their variant, the initial positions are fixed and the cop and exactly
one robber have to move in each turn. They showed EXPTIME-completeness. For a survey
of earlier complexity results, we refer to a survey by Johnson [20]

Goldstein and Reingold [18] studied a version of the game in which the cops and robbers
have prescribed initial positions and the goal of the robber is to reach a specific vertex. They
showed that in undirected graphs this variant of the game is EXPTIME-complete. In the
same work, they showed that the directed version of the game, without fixing the initial
positions, is also EXPTIME-complete.

For the curious reader, we point out that many of the results listed here are based on
reductions to the ABF-problem that was shown to be EXPTIME-complete by Stockmeyer
and Chandra [31]. Furthermore, for a great survey on the results of the game we refer the
reader to the book by Bonato and Nowakowski [7].

3 Preliminaries

Let us give some definitions that are used throughout the paper.

» Definition 5 (k-CNF-SAT). The input to the k-CNF-SAT problem is a conjunction of one
or more clauses, where each clause consists of a disjunction of at most k literals. The goal
is to determine whether the formula is satisfiable, i.e., if there is a truth assignment of the
variables such that the input formula evaluates to true.

Especially, we wish to specify what we mean by a partial assignment of variables in a logical
formula consisting only of literals, disjunctions, and conjunctions. In a partial assignment, a
subset of the variables is set to true/false and some may be left unassigned. A disjunctive
clause x1 Vo V -+ -V xy, for £ > 1 is satisfied by a partial assignment if at least one literal
in the clause has an assigned truth value and is true. We point out that this means that
a disjunctive clause that contains both a variable and its negation can still be unsatisfied

S. Brandt, S. Pettie, and J. Uitto

by a partial assignment. Throughout the paper, we denote the number of variables in a
k-CNF-SAT instance by n, the number of vertices in a graph by IV, the number of cops by g,
and we reserve the letter k as the parameter for k-CNF-SAT.

4 The Construction

Fix a number g > 2 of cops and an integer k£ > 3. The technique we use to derive our
main results is a reduction from k-CNF-SAT to the problem of deciding whether a graph is
g-cop-win. To this end, we will start this section by describing how we transform any k-CNF
formula with n variables and m clauses into an input graph for the Cops and Robbers game
with g cops. Then we will prove that our graph construction has the property that the cops
can win the game in the constructed graph iff the k-CNF formula is satisfiable. We will
conclude the section by using this property to infer our lower bounds.

In the following we give an informal high-level overview of our construction. We say that
vertex v covers a set of vertices S if v is adjacent to all vertices in S. Vertex v always covers
itself. The constructed graph consists of two zones: one that is designed for the cops from
which they can cover the whole graph if the k-CNF formula is satisfiable, and one for the
robber in which he can evade capture indefinitely if the formula is unsatisfiable.

The cops’ zone consists of g2"/91 vertices, which represent certain partial assignments
to groups of [n/g] variables in the CNF formula. By occupying g non-conflicting partial
assignments, the cops can collectively represent a total assignment to the variables. If this
total assignment is satisfying, then it should cover every vertex in the robber area, leaving
the robber nowhere to go. (Each vertex in the robber’s zone is associated with a clause,
which is covered by the cops if their collective assignment satisfies the clause.) On the other
hand, if no satisfying assignment exists, then the robber must always be able to move to
some vertex not covered by any cop.

If the cops and robbers agreed to stay in their own zones then the construction of the
robber’s zone could be very simple: m vertices (one for each clause) arranged in a clique
suffices. Of course, both the robber and the cops are free to roam over the whole graph, so
we need to add extra mechanisms to dissuade the robber from entering the cops’ zone, and
protect the robber against any cops entering the robber’s zone. To protect the robber, we
make the subgraph induced by the robber’s zone a girth-6 graph,® which means that any cop
that enters the robber’s zone can never cover more than one neighbor of the robber, leaving
many options for the robber to escape. The mechanism to dissuade the robber from entering
the cops’ zone is more subtle; it ensures that any robber that does this loses in two turns,
regardless of whether the k-CNF formula is satisfiable or not.

Because we are interested in lower bounds as a function of input size, it is important
to keep the graph as sparse as possible. Many transformations on cops and robbers games
(e.g., [22, 23, 25]) create very dense graphs, sometimes having (n?) edges. Parts of our
construction could be simplified by introducing large cliques, but this would weaken the
resulting (conditional) lower bounds. This concludes the informal overview; in the following,
we will give a formal description of our graph construction.

Let ¢ = C1 A--- AC,y, be a k-CNF formula over the variable set V = {vy,...,v,}, where
the ith clause is C; = x;1 V- -- V 2, and each x; ; is a variable or its negation. The variable
set is partitioned into g > 2 groups Vi,...,V, of at most [n/g] variables each. For reasons
that will become clear later, it is desirable that the formula has the property that any partial

5 “Girth” is the length of the shortest cycle.

9:5

ESA 2018

9:6

Fine-grained Lower Bounds on Cops and Robbers

& Cs CY3
gb'{ (1)1 V (%) V ’03) A (_|U3 V U4) A (’Ug V _|U4) } ¢
A (01 V=01 Vg V=) A (v V=g Vg Vo)) CyAChs

Figure 1 A schematic and simplified illustration of our graph construction in the case of two cops
and a k-CNF formula ¢ with four variables and three clauses. Notice that vertex u* is not connected
to the two extra clauses C4 and Cs. Each vertex in the figure labeled with C; for some ¢ corresponds
to the set of vertices in B with clause-type i. The small vertices correspond to the partial truth
assignments and are connected to the clause vertices that they satisfy (i.e., the corresponding literal
is contained in these clauses). Notice that C4 and C5 are only covered by the cops if they occupy a
set of vertices that corresponds to assigning a value to all variables. The edges between vertices in
the C;, i.e., between vertices in B, are not shown in Figure 1. For an illustration of these edges, see
Figure 2.

satisfying truth assignment must set at least one variable in each group. To this end, we
supplement ¢ with g extra clauses. Define ¢’ as follows.

@ =Ci AN ANCy ACrg1 A+ A Crgg

where C,4; = \/ (vV—w)
veEV;

Observe that ¢’ is satisfiable iff ¢ is since any total assignment to V automatically satisfies
each of the clauses Cy,41,...,Cpyqg. Define m=m + g.

The next step is to convert ¢’ to the graph G on which the Cops and Robbers game will
be played. See Figure 1 for a simplified illustration of a graph constructed from a k-CNF-SAT
instance.

Vertices

The vertex set V(G) is A1 U--- U A, U BU {u*}, where there is a vertex u € A; for each
truth assignment 1, : V; — {T,F} to the ith variable group. The set B consists of ©(7m?)
vertices, each of which is associated with one of the 7 clauses in ¢'. If u € B, clause(u) € [m]
indicates the clause index associated with u, and we say that u has clause-type clause(u).
The role of u* will be revealed shortly. In total, |V(G)| = O(g2"/9 +m?).

Edges

The edge set F(G) includes edges of three types:
Satisfaction Edges. Edges join partial assignments to clauses iff the partial assignment
satisfies the clause:

{{u,u'} | uw e A;,u’ € B, clause(u') = ¢, and v, satisfies Cy} C E(G)

S. Brandt, S. Pettie, and J. Uitto

Special u* Edges. In some ways, u* functions like an assignment that magically satisfies all
clauses C; where i € [m], but none where i € [m]\[m]. It is also adjacent to all vertices
in Al,...,Ag.

{{w*,u} | Either u € Ay U---UA, or v € B and clause(u) € [m]} C E(G),

High Girth Subgraph. The subgraph of G induced by B has O(|B|*/?) = ©(7°) edges and
girth at least 6. Moreover, for each u € B and each q € [m],

H{u' € B | {u,v'} € E(G) and clause(u’) = q}| > 1.
Le., each B-vertex has at least one neighbor of each clause-type.

It is not immediate from the description that the subgraph induced by B actually exists.
We construct such a graph and clause-assignment now. Let p be the first prime greater than
m, so p = O(m), by Bertrand’s postulate [13]. Define line(s, t) to be the line in Zf, with slope
s and offset t:

line(s,t) = {(i,4) € Zi |i-s4+t=j(modp)}.

The set B consists of 2p* vertices {w; j,ls: | (i,7), (s,t) € ZIQ,}, where w; ; represents the
point (4, 7) and 5 ; represents line(s, t). The subgraph induced by B is simply the point-line
incidence graph, i.e.,

{wi j,ls+} € E(G) < (i,7) € line(s, t) .

We restate some properties of this graph that were shown in previous work [8]. See [12, 15,
28, 33, 32, 26] for other constructions with essentially the same properties.

» Lemma 6. Consider the p? points and p? lines indexed by Zf).

1. The intersection of two lines contains at most one point.

2. Two points are contained in at most one common line.

3. For any point (i,7) and any slope s, there exists some line(s,t) containing (i, 7).
4. For any line(s,t) and indez i, there is some point (i,) € line(s,t).

Properties (1) and (2) of Lemma 6 imply that the subgraph induced by B has no 4-cycles.
Since it is clearly bipartite, it must have girth (at least) 6. We use properties (3) and (4) of
Lemma 6 to design a good clause-assignment function clause : B — [m]. In particular,

For points, clause(w; ;) =i+ 1

For lines, clause(ls;) =s+1

Since p > m, it follows that for each clause index ¢ € [m], every point w; ; has at least one
neighboring line with clause-type ¢, and every line I;; has at least one neighboring point
with clause-type q. See Figure 2 for an illustration.

This concludes the description of graph G. It is straightforward to construct G in time
linear in the number of edges, which is O(m2¢2™/9 + m?). The following lemma shows that
the construction indeed satisfies its purpose, i.e., the constructed graph G is g-cop-win if
and only if the k-CNF formula ¢ is satisfiable.

» Lemma 7. In the Cops and Robbers game on G with g cops, the cops have a winning
strategy iff ¢ is satisfiable.

9:7

ESA 2018

9:8

Fine-grained Lower Bounds on Cops and Robbers

/ /7
/ /
/ /
/
o 0 & O @
/
/ /
/ /
/ /
/
O e & S
/
/ /
/ /
/ 7
/
/
/ A

® &0 O

(a) The subgraph B can be seen as a set of vertices/-
points and lines on a plane. In the figure, the points
associated with the same clause are illustrated by
the same color. Lines with slope 1 and offsets 0 and
3 are illustrated by solid red and black lines, respect-
ively. Line with slope 2 and offset 0 is illustrated by
a dashed line. The two unique intersections of the
non-parallel lines are emphasized with black boxes.

(b) Concretely, the subgraph B is a bipartite graph
with points on one side (left) and the lines on the
other. Since every two lines have at most one in-
tersection point, at most one neighbor of a point
vertex uz can be covered by any other point vertex
(see black boxes in the figure). Hence, 5 cops are
needed to cover the neighbors of us. The same line
of reasoning holds for any line vertex.

Figure 2 The subgraph depicted as a set of points and lines on a plane and as a bipartite
graph. Notice that any cycle starting from a point vertex must pass through at least 3 line vertices.
Therefore, the girth of the graph is at least 6. This is illustrated by the dashed edges incident on
vertices u1, u2, and us on the right. Notice that the pictures above are not inferred from each other.

Proof. Suppose ¢ : V — {T,F} is a satisfying total assignment, decomposed into partial
assignments ¥, , ...,y , where 9, is associated with u; € A;. In their initial move, the
cops position themselves on ug, ..., u,. At this point they cover all vertices in B U {u*}, but
leave the remaining vertices in A; U---U A, uncovered. Without loss of generality we can
assume that the robber begins at a vertex in A;\{u1}. In the next move, the cops stay put,
except for the cop on us, which moves to w*. At this point all B-vertices with clause-types
in [m] are covered by the cop on u*, and those with clause-type m + 1 are covered by the
cop on u;. The robber, being in A7, can move once more or stay put, but is immediately
caught by the cop on u; or v* in the next turn.

Now consider the case where ¢ is unsatisfiable. We show that the robber has a winning
strategy such that it never leaves the set B. Consider any moment in the middle of the game,
after the cops have moved to vertices ws, ..., wy. The robber is located at some w’ € B and
,wy. Let z > 0 be the number

of cops that are located at some vertex in B. First consider the case that at least z+ 1 of the

may be forced to move if w’ is in the neighborhood of wy, ...

, A,+1 contain no cop.
7w/z+1} - Bv
where clause(w}) = m + i. None of the S-vertices are covered by the g — z cops stationed
in A,4oU---UA, U{u*}. Since the subgraph induced by B has girth at least 6, each

A; do not contain any cop, and without loss of generality, let Ay, ...
By the properties of G, the robber is adjacent to a set of vertices S = {wf, ...

S. Brandt, S. Pettie, and J. Uitto

of the remaining z cops can cover at most one S-vertex, hence at least one S-vertex is
not covered by any cop, and the robber can move there without being captured. Now
consider the other case, i.e., that exactly z of the A;, say A;,..., A, do not contain any
cop. Then the g — z sets A.41,..., A4 contain exactly one cop each. Assume without loss
of generality that w.41 € A.41,...,wy € Ay, and let ¥’ be the partial assignment obtained
by combining the partial assignments 9., ,,...,%w,. Since ¢ is unsatisfiable, there is a
clause from ¢ not satisfied by ', say clause C,. Similarly to the previous case, by the
properties of G, the robber is adjacent to a set of z + 1 vertices S = {w},...,w,,w'} C B,
where clause(w]) = m + ¢ and clause(w’) = ¢. Again, none of the S-vertices is covered by
the g — 2 cops stationed in A,;; U---U A, and the remaining z cops can cover at most z
S-vertices. Now, with the same argumentation as in the previous case, it follows that there
is an S-vertex the robber can move to without being captured.

The arguments above apply to any stage in the middle of the game; the same arguments
show that if ¢ is unsatisfiable, the robber has a safe first move, after the cops choose their
initial positions. <

We also obtain the following curious observation from our construction. Later, we use
the observation to slightly strengthen our results, but we also believe that it is a property of
the construction that is of independent interest.

» Observation 8. Recall the vertex set of G is V(G) = A1 U---UA,;UBU{u*}. Then the
cop number of G is either g or g + 1.

Proof. If there are g 4+ 1 cops, they can position themselves on vertices uq,...,uq, u* with
u; € A;. Then, since u* is connected to all vertices in A; U---U Ay U B except those in
B with clause-type in [m]\[m], and for each 4, the cop in u; covers all vertices in B with
clause-type m + i, the cops cover the entire graph and hence can capture the robber in the
following turn. If, on the other hand, there are at most g — 1 cops, then the robber has
a simple winning strategy by always moving to a vertex in B with clause-type in [m]\[m)]
that is not covered by any cop. By analogous arguments to the ones used in the proof of
Lemma 7, such a vertex always exists. <

5 Hardness of Finding the Cop Number

Quickly before going into the proofs of our main theorems, we point out a small technical
detail. The input k-CNF-SAT instance that we reduce to the Cops and Robbers instance may
contain a very large number of clauses. This would then imply that our graph constuction
has many edges, up to around m* edges, where 7 is the number of input clauses. This would
in turn result in a running time for our construction that is too large for our purposes. We
can work around this problem by using the sparsification lemma [19], which, for any chosen
€ > 0, reduces an arbitrary k-CNF-SAT instance to 2¢* k-CNF-SAT instances with at most
c(k,€) - n clauses each, where ¢(k, €) is a function independent of n.

Next, we prove Theorem 2, i.e., that under the Strong Exponential Time Hypothesis, the
time needed to decide whether the cop number is at most some fixed g grows exponentially
as a function of g. A proof sketch goes as follows. We are given a k-CNF-SAT instance
with n variables and O(n) clauses. We obtain a graph with roughly 2"/9 vertices and
edges from our construction. Being able to solve our cop number decision problem in
M9~ = (2v/ 9)9_5 < 2" time yields a contradiction to the Strong Exponential Time
Hypothesis.

9:9

ESA 2018

9:10

Fine-grained Lower Bounds on Cops and Robbers

» Theorem 2. Fix an integer g > 2 and any § > 0. Conditioned on the Strong Exponential
Time Hypothesis, the problem of deciding whether an N -vertex, M -edge graph has cop number
at most g cannot be solved in O(M9I~?) time.

Proof. Let gig be an instance of k-CNF-SAT with 1 clauses and n variables, and let € > 0.
Using the sparsification lemma, in poly(n) - 2 time we can reduce gZAJ to 2¢ instances of
k-CNF-SAT, each having at most m = c¢(k,€) - n clauses. Let ¢ be one of those instances,
and let G be the graph obtained by applying our graph construction to ¢. G is an N-vertex,
M-edge graph, where N = ©(¢2"/9 +m?) = ©(2"/9) and M = O(m?- N) = O(Nlog® N).
Thus, if we can decide in O(M9~%) = O(poly(m)N9~?) time whether G has cop number
g, we can determine the satisfiability of ¢ in poly(m)2¢" - N9=% = poly(n)2"(<+1-9/9) time,
by Lemma 7. The calculations above do not depend on the value of k, so setting ¢ < §/g
contradicts the Strong Exponential Time Hypothesis. |

Next, we provide the proof for Theorem 3. We note that this result can also be obtained
from extending the proof of Theorem 4 to functions g(x) = ©(z) (which requires some extra
care), but this special case is much cleaner to prove and has all the same ingredients. The
main difference is in the simplicity of calculations. The difference to the proof of Theorem 2
is that since g is a function of n, we can set ¢ = n and the graph becomes much smaller
in terms of the number of variables of the input k-CNF formula. As a consequence, the
dominating part of the constructed graph G w.r.t size is now B (and not the A;, as in the
proof of Theorem 2).

» Theorem 3. Conditioned on the Exponential Time Hypothesis, the problem of calculating
the cop number of an N -vertex graph cannot be solved in 2°0VN) time.

Proof. Fix an arbitrarily small constant ¢ and an integer £k > 3. Let é be an instance
of k-CNF-SAT with m clauses and n variables, and ¢ be one of the 2" instances with
m = ¢(k, €)n clauses generated from the sparsification lemma. Use our graph construction
to create a graph G from ¢ for a Cops and Robbers game with ¢ = n cops. G has
N = 0(g2™9 4 (n + m)?) = O(m?) vertices and O(m?¢2™/9 + m3) = O(m?) edges. If we
can determine the cop number of G in 20(VN) — go(m) — go(n) time, we can determine the
satisfiability of ¢ in poly(n)2¢" - 2°(") = poly(n)2(ct°()" time, by Lemma 7. Since € can be
made arbitrarily small, this contradicts the Exponential Time Hypothesis. |

As our last technical contribution, we show that one can replace the v/N in the exponent
in Theorem 3 with essentially any reasonable function in N that is asymptotically smaller
than v/N and obtain a lower bound for deciding whether the cop number of an input
graph is bounded by this function. Basically, the statement of this theorem, combined with
Observation 8 is that even when we know that the cop number is either g(N) or g(N) + 1,
the decision problem is hard.

» Theorem 4. Let g : N — R be any function such that g(z) = o(v/z) and g(z+1) < g(z)+1
for all positive integers x. Conditioned on the Exzponential Time Hypothesis, the problem of

deciding whether the cop number of an N-vertex graph is at most g(N) cannot be solved in
2009(N)) time.

Proof. Let ¢, k, quS, m, n, ¢ and m be as in the proof of Theorem 3. Use our graph construction
to create a graph G from ¢ for a Cops and Robbers game with n cops and denote the number
of vertices of G by N. Check whether g(N) < n + 1. Observe that since g(x) = o(y/x)
and N = O(n?), there is some constant ngy such that g(N) < n + 1 for all possible k-CNF
formulae ¢ with n > ng variables. Hence, if g(N) > n+ 1, n is constant and we can decide
in constant time whether ¢ is satisfiable.

S. Brandt, S. Pettie, and J. Uitto

Now consider the other case, i.e., g(N) < n+1. As we want to use the Exponential Time
Hypothesis in order to infer a conditional lower bound on the time it takes to determine
whether the cop number of an N-vertex graph is at most g(N), we would like the constructed
graph G to have the property that ¢ is satisfiable iff G has cop number at most g(N). With
the current construction of G we only have a similar property, namely, that ¢ is satisfiable
iff G has cop number at most n, due to Lemma 7. But since g(N) < n+ 1, we can change G
slightly, adding more and more vertices to G in a way that does not change the cop number
of G, and in the end obtain a graph G’ with the desired property. More specifically, we
obtain G’ from G by appending a path of r vertices to some arbitrarily chosen vertex u of G,
where r is the smallest non-negative integer such that g(N +r) > n.

Set N’ = N + r. Due to the properties of our function g, we know that g(N') < n + 1.
Note that the cop number of G’ is the same as the cop number of G: In the case that ¢
is unsatisfiable, our robber strategy still works with the same arguments as in G. In the
case that ¢ is satisfiable, the cops can simply perform the same strategy as in GG, where they
assume that the robber is in u if the robber is actually in one of the newly appended vertices.
With this strategy, after 2 turns per player, the cops have captured the robber or at least
one cop ends up at u while the robber is in one of the new vertices, in which case the robber
can be captured by letting the cop traverse the appended path to the other end.

From the discussion above it follows that ¢ is satisfiable iff G’ has cop number at most
g(N"). Hence, if the problem of deciding whether the cop number of an N-vertex graph is
at most g(N) can be solved in 2°09(N)) = 2°(") time, we can determine the satisfiability of
é in poly(n)2¢" - 2°(") = poly(n)2(cte()” time. Since ¢ can be made arbitrarily small, this
contradicts the Exponential Time Hypothesis. |

—— References

1 Akeo Adachi, Shigeki Iwata, and Takumi Kasai. Some combinatorial game problems require
w(n®) time. J. ACM, 31(2):361-376, 1984.

2 Martin Aigner and Michael Fromme. A game of cops and robbers. Discrete Applied Math-
ematics, 8:1-12, 1984.

3 A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings 47th Annual ACM Symposium on Theory of
Computing (STOC), pages 51-58, 2015.

4 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 457-466, 2016. doi:10.1109/F0CS.2016.56.

5 A. Berarducci and B. Intrigila. On the cop number of a graph. Advances in Applied
Mathematics, 14(4):389-403, 1993.

6 Anthony Bonato and Ehsan Chiniforooshan. Pursuit and evasion from a distance: Al-
gorithms and bounds. In Proceedings of the Meeting on Analytic Algorithmics and Com-
binatorics (ANALCO), pages 1-10, 2009.

7 Anthony Bonato and Richard J. Nowakowski. The Game of Cops and Robbers on Graphs,
volume 61. American Mathematical Soc., 2011.

8 Sebastian Brandt, Yuval Emek, Jara Uitto, and Roger Wattenhofer. A tight lower bound
for the capture time of the cops and robbers game. In 44th International Colloguium on
Automata, Languages, and Programming (ICALP), Warsaw, Poland, 2017.

9 K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proceedings 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 661-670, 2014.

9:11

ESA 2018

http://dx.doi.org/10.1109/FOCS.2016.56

9:12

Fine-grained Lower Bounds on Cops and Robbers

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

K. Bringmann and M. Kiinnemann. Quadratic conditional lower bounds for string problems
and dynamic time warping. In Proceedings 56th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 79-97, 2015.

Karl Bringmann, Allan Grgnlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 307-318, 2017. doi:10.1109/F0CS.2017.
36.

W. G. Brown. On graphs that do not contain a Thomsen graph. Canad. Math. Bull.,
9:281-285, 1966.

P. L. Chebyshev. Memoire sur les nombres premiers. J. Math. Pures Appl., 17:366-390,
1852.

Nancy E. Clarke and Gary MacGillivray. Characterizations of k-copwin graphs. Discrete
Mathematics, 312(8):1421-1425, 2012. doi:10.1016/j.disc.2012.01.002.

P. Erdés, A. Rényi, and V. T. S6s. On a problem of graph theory. Studia Sci. Math.
Hungar., 1:215-235, 1966.

Fedor V. Fomin, Petr A. Golovach, Jan Kratochvil, Nicolas Nisse, and Karol Suchan. Pur-
suing a fast robber on a graph. Theoretical Computer Science, 411(7):1167-1181, 2010.
Peter Frankl. Cops and robbers in graphs with large girth and Cayley graphs. Discrete
Applied Mathematics, 17(3):301-305, 1987. doi:10.1016/0166-218X(87)90033-3.
Arthur S. Goldstein and Edward M. Reingold. The complexity of pursuit on a graph. Theor.
Comput. Sci., 143(1), 1995.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001.
David S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms,
4(4):397-411, 1983.

Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete
problems. STAM Journal on Computing, 8(4):574-586, 1979.

William B. Kinnersley. Cops and robbers is EXPTIME-complete. Journal of Combinatorial
Theory, Series B, 111:201-220, 2015.

William B. Kinnersley. Bounds on the length of a game of cops and robbers. CoRR,
abs/1706.08379, 2017. arXiv:1706.08379.

Linyuan Lu and Xing Peng. On Meyniel’s conjecture of the cop number. Journal of Graph
Theory, 71(2):192-205, 2012.

Marcello Mamino. On the computational complexity of a game of cops and robbers. The-
oretical Computer Science, 477:48-56, 2013.

Pawet Pratat. When does a random graph have constant cop number? Australasian Journal
of Combinatorics, 46:285-296, 2010.

Alain Quilliot. Jeux et Pointes Fizes sur les Graphes. PhD thesis, Université de Paris VI,
1978.

I. Reiman. Uber ein Problem von K. Zarankiewicz. Acta. Math. Acad. Sci. Hungary,
9:269-273, 1958.

L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proceedings 45th ACM Symposium on Theory of Computing
(STOC), pages 515-524, 2013.

Alex Scott and Benny Sudakov. A bound for the cops and robbers problem. SIAM Journal
on Discrete Mathematics, 25(3):1438-1442, 2011. doi:10.1137/100812963.

Larry J. Stockmeyer and Ashok K. Chandra. Provably difficult combinatorial games. STAM
Journal on Computing, 8(2):151-174, 1979.

J. Tits. Sur la trialité et certains groupes qui s’en déduisent. Publ. Math. I.H.E.S., 2:14-20,
1959.

R. Wenger. Extremal graphs with no C*s, C%s, or C1%. J. Comb. Theory Ser. B, 52(1):113—
116, 1991.

http://dx.doi.org/10.1109/FOCS.2017.36
http://dx.doi.org/10.1109/FOCS.2017.36
http://dx.doi.org/10.1016/j.disc.2012.01.002
http://dx.doi.org/10.1016/0166-218X(87)90033-3
http://arxiv.org/abs/1706.08379
http://dx.doi.org/10.1137/100812963

A Polynomial Kernel for Diamond-Free Editing

Yixin Cao
Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
yixin.cao@polyu.edu.hk

https://orcid.org/0000-0002-6927-438X

Ashutosh Rai

Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
ashutosh.rai@polyu.edu.hk

R. B. Sandeep

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),
Hungary; and Indian Institute of Technology Dharwad, Dharwad, India

sandeeprb@iitdh.ac.in

Junjie Ye
Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
junjie.ye@polyu.edu.hk

https://orcid.org/0000-0003-3924-008X

—— Abstract

Given a fixed graph H, the H-free editing problem asks whether we can edit at most k£ edges to
make a graph contain no induced copy of H. We obtain a polynomial kernel for this problem
when H is a diamond. The incompressibility dichotomy for H being a 3-connected graph and the
classical complexity dichotomy suggest that except for H being a complete/empty graph, H-free
editing problems admit polynomial kernels only for a few small graphs H. Therefore, we believe
that our result is an essential step toward a complete dichotomy on the compressibility of H-free
editing. Additionally, we give a cubic-vertex kernel for the diamond-free edge deletion problem,
which is far simpler than the previous kernel of the same size for the problem.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms
Keywords and phrases Kernelization, Diamond-free, H-free editing, Graph modification problem
Digital Object ldentifier 10.4230/LIPIcs.ESA.2018.10

Funding Supported in part by NSFC under grant 61572414, RGC under grants 152261 and
252026, and ERC under grant 725978.

1 Introduction

A graph modification problem asks whether one can apply at most k& modifications to a
graph to make it satisfy certain properties. By modifications we usually mean additions
and/or deletions, and they can be applied to vertices or edges. Although other modifications
are also considered, most results in literature are on vertex deletion and the following three
edge modifications: edge deletion, edge completion, and edge editing (deletion/completion).

As usual, we use n to denote the number of vertices of the input graph. For each graph
modification problem, one may ask three questions: (1) Is it NP-complete? (2) Can it be
solved in time f(k) - n©M for some function f, and if yes, what is the (asymptotically) best
/7 (3) Does it have a polynomial kernel? The first question concerns classic complexity, while
the other two are about parameterized complexity [9, 6]. With parameter k, a problem is

© Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye;

licensed under Creative Commons License CC-BY
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 10; pp. 10:1-10:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:yixin.cao@polyu.edu.hk
https://orcid.org/0000-0002-6927-438X
mailto:ashutosh.rai@polyu.edu.hk
mailto:sandeeprb@iitdh.ac.in
mailto:junjie.ye@polyu.edu.hk
https://orcid.org/0000-0003-3924-008X
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

A Polynomial Kernel for Diamond-Free Editing

fized-parameter tractable (FPT) if it can be solved in time f(k)-n®™) for some function f. On
the other hand, given an instance (G, k), a kernelization algorithm produces in polynomial
time an equivalent instance (G', k') — (G, k) is a yes-instance if and only if (G',k’) is a
yes-instance — such that k' < k. It is a polynomial kernel if the size of G’ is bounded from
above by a polynomial function of k.

For hereditary properties, a classic result of Lewis and Yannakakis [13] states that all
the vertex deletion problems are either NP-hard or trivial. In contrast, the picture for edge
modification problems is far murkier. Earlier efforts for edge deletion problems [15, 7], though
having produced fruitful concrete results, shed little light on a systematic answer, and it was
noted that such a generalization is difficult to obtain.

A basic and ostensibly simple case of graph modification problems is to make the graph
H-free, where H is a fixed graph on at least two vertices. (We say that a graph is H-free if
it does not contain H as an induced subgraph.) For this special case, all the three questions
have been satisfactorily answered for vertex deletion problems, at least in the asymptotic
sense. All of them are NP-complete and FPT— indeed, H-free vertex deletion problems
admit simple |V (H)|* - n®M)-time algorithms [2]. On the other hand, the reduction of Lewis
and Yannakakis [13] excludes subexponential-time algorithms (2°(%) . nO()_time algorithms)
assuming the exponential time hypothesis (ETH) [11]. Further, as observed by Flum and
Grohe [9], the sunflower lemma of Erdés and Rado [8] can be used to produce polynomial
kernels for H-free vertex deletion problems.

Even restricted to this very simple case, edge modification problems remain elusive.
Significant efforts have been devoted to an ongoing program that tries to answer these
questions in a systematic way, and promising progress has been reported in literature.
Recently, Aravind et al. [1] gave a complete answer to the first question: The H-free editing
problem is NP-complete if and only if H contains at least three vertices. They also excluded
subexponential-time algorithms for the NP-complete H-free edge modification problems,
assuming ETH. Noting that H-free edge modification problems can always be solved in
20(k) . nOM) time [2], we are left with the third problem, the existence of polynomial kernels.

Some of the H-free graph classes are important for their own structural reasons, e.g.,
most notably, cluster graphs and cographs, which are Ps-free graphs and Py-free graphs
respectively; hence the edge modification problems toward them have been well-studied
[5, 10]. (Note that edge modification problems to Ps-free graphs, i.e., independent sets,
are trivial.) Given the simplicity of H-free edge modification problems, and the naive FPT
algorithms for them, it may sound shocking that many of them do not admit polynomial
kernels. Indeed, the earliest incompressibility results of graph modification problems, by
Kratsch and Wahlstrém [12], are on H-free edge modification problems. Guillemot et al. [10]
excluded polynomial kernels for H-free edge deletion problems when H is a path of length at
least seven or a cycle of length at least four. An influential result of Cai and Cai [3] furnishes
a dichotomy on the compressibility of H-free edge modification problems when H is a path,
a cycle, or a 3-connected graph.

We tend to believe that H-free edge modification problems admitting polynomial kernels
are the exceptions. Our exploration suggests that graphs on four vertices play the pivotal
roles if we want to fully map the territory. Let H be the complement graph of H. Then the
H-free edge deletion problem is equivalent to the H-free edge completion problem, while the
edge editing problems are the same for H-free and H-free graphs. We are thus focused on
the four-vertex graphs (Figure 1); see Table 1 for a summary of compressibility results of
H-free edge modification problems when H is one of them. We conjecture that H-free edge
modification problems, when H being claw or paw, admit polynomial kernels.

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye

[A<D

(a) Ps (b) C4 (c) Ku (d) claw (e) paw (f) diamond

Figure 1 Graphs on four vertices (their complements are omitted).

Table 1 The compressibility results of H-free edge modification problems for H being four-vertex
graphs. Every result holds for the complement H; e.g., the answers are also no when H is 2K>.

H deletion completion editing

K4 O(k*) [4] trivial O(k*) [4]

Py O(k®) [10] O(k®) [10] O(k®) [10]
diamond O(k®) [14] trivial O(k®) [this paper]
claw unkown unkown unkown

paw unkown unkown unkown

Cy no [10] no [10] no [10]

We show a polynomial kernel for the diamond-free editing problem. Our observations
also lead to a cubic-vertex kernel for the diamond-free edge deletion problem, which is far
simpler than the previous kernel of the same size [14].

Our key observations are on maximal cliques. A graph G is diamond-free if and only if
every two maximal cliques of G share at most one vertex. We say that a maximal clique is
of type 1if it shares an edge with another maximal clique, or type 11 otherwise. It is not hard
to see that to make a graph diamond-free, we should never delete edges from a sufficiently
large clique. We thus put the maximal cliques of G into three categories, small type I, big
type 1, and type 11. It turns out that a vertex participates in a diamond if and only if it is in
a maximal clique of type I, and the small type-I maximal cliques are crucial for the problem.

The first phase of our algorithm comprises two routine reduction rules. If a (non-)edge
participates in k + 1 or more diamonds that pairwise share only this (non-)edge, then it has
to be in a solution. (This is exactly the reason why no edge is deleted from a “large” clique.)
If there exists such an edge/non-edge, we delete/add it. We may henceforth assume that
these two simple rules have been exhaustively applied. We are able to show that the ends
of an edge added by a minimum solution must be from some small type-I1 maximal cliques.
The situation for deleted edges is slightly more complex. The two ends of a deleted edge are
either in a small type-1 maximal clique, or in a type-11 maximal clique. In the second case,
the maximal clique has to intersect some small type-1 maximal clique.

The second phase of our algorithm uses three nontrivial reduction rules to delete irrelevant
vertices. To analyze the size of the kernel, we bound the number of vertices that are (a) in
small type-1 maximal cliques only, (b) in big type-T maximal cliques but not in any small
type-T maximal clique, and (c) only in type-IT maximal cliques. First, we show an upper
bound on the number of type-1 maximal cliques. This immediately bounds the number of
vertices in part (a), because each small type-1 maximal clique has a bounded size. For part
(b), the focus now is to bound the sizes of big maximal cliques of type 1. We introduce
another reduction rule to delete certain “private vertices” from them. On the other hand, the
pattern of vertices shared by big maximal cliques is very limited. We are thus able to bound
the number of vertices in part (b), and we are left with part (c). We correlate a maximal

10:3

ESA 2018

10:4

A Polynomial Kernel for Diamond-Free Editing

clique K of type 11 with small maximal cliques of type I: we would touch K only because
it had become type I after some operation, and this operation has to be an edge addition.
Recall that an edge can only be added between two vertices in part (a). For each pair of
them, we can build a blocker of O(k?) vertices from part (c). One more reduction rule is
introduced to remove all vertices behind the blockers. Together with the bound of vertices in
part (a), this bounds the number of vertices in part (c). They together give our main result.

» Theorem 1. The diamond-free editing problem has a kernel of O(k®) vertices.

2 Maximal cliques

All graphs discussed in this paper are undirected and simple. A graph G is given by its
vertex set V(G) and edge set E(G). The neighborhood of a vertex v in a graph G, denoted by
N¢(v), consists of all the vertices adjacent to v in G. We extend this to a set S C V(G) of
vertices by defining the neighborhood N¢(S) of S as (|J,cg Na(v)) \ S. For aset U C V(G)
of vertices, we denote by G[U] the subgraph induced by U, whose vertex set is U and whose
edge set comprises all edges of G with both ends in U. We use G — v, where v is a vertex of
G, as a shorthand for G[V(G) \ {v}]. In a diamond, we refer to the edge between the two
degree-three vertices as the cross edge, and the only non-edge the missing edge.

For a set E; of edges, we denoted by G 4+ E the graph obtained by adding edges in E
to G, its vertex set is still V(G) and its edge set becomes F(G) U E,. The graph G — E_
is defined analogously. Throughout the paper we always tacitly assume E, N E(G) = () and
E_ C E(G); hence E; and E_ are disjoint. A solution of an instance (G, k) consists of a set
E, of added edges and a set E_ of deleted edges such that G+ E — E_ is diamond-free and
|[E+ UE_| < k. We use E as a shorthand for Ey U E_, and there should be no ambiguities:
E, =E.\E(G)and E_ = EL NE(G). We also use GAE as a shorthand for G+ E; — E_.

We start from two routine reduction rules for edge editing problems. The correctness of
them is straightforward: If we do not add/delete wv, then we have to delete/add at least
k + 1 edges.

» Rule 1. If there exist a non-edge uwv and 2k + 2 distinct vertices 1,Y1, .. Tkt1, Ye+1 I
N(u) N N(v) such that x;y; € E(GQ) for 1 <i<k+1, then add wv and decrease k by one.

» Rule 2. If there exist an edge uv and 2k + 2 distinct vertices T1,Y1,. .., Tht1, Yt1 I
N(u) N N(v) such that x;y; € E(G) for 1 <i <k +1, then delete uv and decrease k by one.

Whether Rule 1 (resp., Rule 2) is applicable to uv can be decided by finding a maximum
matching in G[N(u) N N(v)] (resp., the complement graph of G[N(u) N N(v)]). Therefore,
Rules 1 and 2 can be applied in polynomial time. We call an instance (G, k) reduced if neither
Rule 1 nor 2 is applicable to it. In the rest, we will focus on reduced instances. A similar
idea as the two rules enables us to exclude some (non-)edges from consideration.

» Proposition 2. A (non-)edge uv cannot be in a solution Ey of a yes-instance (G, k), if
(i) uv € E(GQ) and there are k + 1 pairwise adjacent vertices in N(u) N N(v); or
(ii) wv € E(G) and there are k + 1 pairwise nonadjacent vertices in N(u) N N (v).

» Proposition 3. Let (G, k) be a reduced yes-instance. For any (non-)edge uv in a solution
of (G, k), the cardinality of N(u) N N(v) is at most 3k.

Proof. We consider only uwv € E_, and the argument for uv € E is similar and omitted.
Let W = N(u) N N(v); we find a maximum matching in the complement graph of G[W],
and let W' be the ends of the edges in the matching. Since Rule 2 is not applicable (to uv),
|W'| < 2k. There cannot be non-edges between vertices in W\ W’; then by Proposition 2(i),
the size of W\ W’ is at most k. Therefore, |W| < 3k. <

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye

Our algorithm will be mostly concerned with maximal cliques. According to Proposi-
tion 2(i), a maximal clique on k 4+ 3 or more vertices cannot be touched by a minimum
solution “from inside,” but it may be touched “from outside”. We call a maximal clique big
if it contains at least 3k + 2 vertices, and small otherwise.

» Lemma 4. Let (G, k) be a reduced instance.
(i) Two big maximal cliques of G share at most one verter.
(i) If (G, k) is a yes-instance, then a big mazximal clique of G remains a mazximal clique
after applying a solution to (G, k).

Proof. Let K; and K5 be two big maximal cliques of G. Suppose first that some vertex
u € Kj \ K is adjacent to more than 2k 4 1 vertices in K». Since K5 is a maximal clique, we
can find v € Ky \ K7 nonadjacent to u, but then Rule 1 would be applicable (to uv). Hence,
every vertex in K \ K5 has at most 2k + 1 neighbors in K5, which implies |K; N K| < 2k+1.
By assumption, |K;| > 3k + 2 and |K3| > 3k + 2. For each vertex in K7 \ Ks, we can find
k 4+ 1 non-neighbors in K3 \ K;. Therefore, we can greedily find k + 1 pairs of distinct
vertices {z1,y1}, -+, {Tk+1,Yks+1} such that for all 1 < i < k+1, (a) z; € Ky \ K and
y; € Ko\ Ky; and (b) z;y; € F(G). Rule 2 would be applicable (to any edge in G[K; N K3))
if |[Ky N Ka| > 2. Therefore, |[K7 N K| < 1, and this concludes the proof for assertion (i).
Let E1 be a solution to (G,k) and G* = GAFE.. By Proposition 2(i), a big maximal
clique K in G remains a clique in G*. Let v € V(G) \ K and let v € K\ Ng(v). Since Rule 1
is not applicable to uv, there are at most 2k + 1 neighbors of v in K. Since |K| > 3k + 2, at
least one vertex in K remains nonadjacent to v in G* because |Ey| < k. Therefore, K is a
maximal clique in G* as well. |

It is well known that a graph is diamond-free if and only if every pair of adjacent vertices
is contained in exactly one maximal clique. (Proposition 5 implies this fact.) We say that a
maximal clique is of type 1 if it shares two or more vertices with some other maximal clique,
and type 11 otherwise. We can then rephrase the first sentence of this paragraph as: A graph
is diamond-free if and only if it has no type-1 maximal clique.

We use Kp(G), Ks(G), and Ko(G) to denote, respectively, the set of big maximal cliques
of type 1, the set of small maximal cliques of type 1, and the set of maximal cliques of type 11,
of G. A maximal clique in G is in precisely one of them.

» Proposition 5. (i) A mazimal clique is of type 1 if and only if it contains both ends of the
cross edge of a diamond. (i) A vertex is in a mazimal clique of type 1 if and only if it is
contained in an induced diamond.

Proof. The following argument proves assert (i), and it also works for assert (ii).

Let u, v, x,y be four vertices inducing a diamond in G with cross edge uv. We can find
two maximal cliques K, Ky containing u, v,z and u, v,y respectively. For any maximal
clique K containing u, v, at least one of K7, K> is different from K, hence K is of type I.

We now consider the “only if” direction. Let K; be a maximal clique of type I; by
definition, there is another maximal clique K5 such that |K; N Ka| > 2. For any vertex
x € K1\ K2 and any vertex u € K1 N Ka, we can find another vertex v € K1 N Ky different
from u and a vertex y € K \ K not adjacent to x (because K5 is maximal). Clearly, these
four vertices induce a diamond with cross edge uwv. |

The following two statements help us understand edges added by a minimum solution.

10:5

ESA 2018

10:6

A Polynomial Kernel for Diamond-Free Editing

» Proposition 6. Let G be a diamond-free graph, and let U C V(G) such that every vertex
in V(G)\ U is adjacent to at most one vertex of U. If GIU|AEL is diamond-free for a set
E. of non-edges in G[U] and a set E_ of edges in G[U], then so is GAFEL.

Proof. Suppose for contradiction that G* = GAFEL contains a diamond; let D be a set of
vertices inducing a diamond in G*. Since G[D)] is not a diamond, at least one (non-)edge of
this diamond belongs to E1, and is between vertices of U. On the other hand, G[U|AEL
remains diamond-free, hence D € U. Therefore, |D N U] is either two or three, but then a
vertex in D \ U is adjacent to at least two vertices of DN U in G, a contradiction. |

» Lemma 7. Let E1 be a minimum solution to a reduced yes-instance (G, k). Every vertex
incident to some edge in Ey is contained in some small mazximal clique of type 1 in G.

Proof. Let G* = GAFEL, where uv is an edge in E,, and let U be a maximal clique of G*
containing u,v. We argue first that v is in some induced diamond in G[U].

Suppose for contradiction that v participates in no diamond in G[U]. Let X = Ng(v)NU.
The subgraph G[X] is a disjoint union of cliques: An induced path of length two would
make a diamond with v. Let {A;,..., Ay} be those nontrivial cliques (containing more
than one vertex) in G[X]; let B be the other vertices of X; and let C = U \ Ng[v]. Then
{A1,..., Ay, B,C} is a partition of the set U \ {v}. Note that p or |B| may be 0, but |[C| > 0
because u € C. To arrive at a contradiction, we will construct a solution £’y for G[U] whose
size is smaller than the number of non-edges in G[U]. Assume such an F’, exists and let
G’ be the graph obtained from G* by replacing G*[U] with G[U]AE’.. Since U is a type-1I
maximal clique of G*, for each z € V(G)\ U we have |Ng-(z)NU| < 1. By Proposition 6, G’
is diamond-free. This would however imply a strictly smaller solution than E., contradicting
that Ey is a minimum solution of (G, k). Now we show how to construct E’, .

Case 1, |B| > |C|. We set E', = () and E” the set of edges in G[C]. No edge in E’
is incident to v or N(v), and hence N(v) NU is still a disjoint union of cliques in G’. On
the other hand, no vertex x € C is in any diamond in G'[U] because Ng/(z) NU is an
independent set. Thus, G'[U] is diamond-free. Since B is an independent set of G, and v is
nonadjacent to C, we have |E; NU?%| > (“3') +1|C| > (‘gl) +|C| > |E”| = |E.UE"]|.

Case 2, |B| < |C|. We set E’, to be the set of non-edges in G[B U C], and E’ the set of
edges between BUC and U\ (B U C). To see that G'[U] is diamond-free, note that its maximal
cliques are BUC and {v}UA,; for 1 < i < p, whose intersection is either {v} or empty. We then
calculate the cardinality of £, NU?, which comprises three parts, those among B U C, which
is exactly E’,, those between C' and v, and those between C' and A;’s. Since v does not belong
to any diamond in G[U], each vertex in C' is adjacent to at most one vertex of A;;1 < i < p.
In other words, for each x € C and each 1 < ¢ < p, the number of non-edges between z and A;
is at least one. Therefore |[ELNU?| > |E/|+|C|+|C|xp > |E|+|B|+|C|xp > |E |+|E’|.

Now that v is in some induced diamond in G[U], we can find a maximal clique K of G
containing v and another two vertices of this diamond. Since U is not a clique in G, we have
K #U. And |[K NU| > 3 implies that K cannot induce a maximal clique of G*. Hence by
Lemma 4(ii), it is small. This concludes the proof of the lemma. <

After delimiting the ends of the edges added by a minimum solution, we now turn to
the ends of those edges deleted by a minimum solution. The next lemma states that some
maximal cliques in G remain maximal cliques after applying the solution.

» Lemma 8. Let E1 be a minimum solution to an instance (G, k), and let K be a mazimal
clique of type 11 in G. If EL contains neither (i) an edge between uw € K and v € N(K), nor
(ii) two edges between vertices of K and the same vertex in V(G) \ K, then K remains a
maximal clique (of type 11) in GAEL.

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye

N\
W

Ak

SR

"/
{I/I/jﬂ

%

WAPKL

)

2

\\\“,'

< >
Ny

Figure 2 An example with k£ = 4, of which a minimum solution is {+u2v2, —u1v2, —vov1, —usvy }.
(Note that uive and vovi are not in any diamond of G.) It has six maximal cliques, K1 =
{’Uo7 V1, V2, u1}, K2 = {1)2, V3, V4, Us, 1)6}, K3 = {UQ, V3, V4, Us, 1}5}7 K4 = {ug7 V7, ’l}g}, Ky =
{us, usa, v}, while K¢ comprises of u1,us,us,us and other ten unlabeled vertices. Four of these
maximal cliques, K», K3, K5, and Kg, are of type 1, of which only K is big, the other two of type
11. All 14 labeled vertices are vulnerable, and the other 8 unlabeled vertices are guarded.

Proof. Let G* = GAE.. Since K is a type-11 maximal clique of G, each vertex v € V(G)\ K
has at most one neighbor in K. By the assumption that E; contains neither (i) nor (ii),
this remains true in G + E4 and G*. On the other hand, E_ cannot contain edges of G[K];
otherwise, by Proposition 6, G* remains diamond-free after replacing G*[K] by G[K], which
implies a strictly smaller solution than E.. Therefore, K is a maximal clique in G*. |

The next corollary follows from Lemma 7 and Lemma 8.

» Corollary 9. Let EL be a minimum solution to a reduced yes-instance (G, k), and let K
be a mazimal cliqgue of G containing both ends of an edge in E_. Then either K € K4(G),
or K € K3(G) and K intersects one clique in Ks(G).

Lemma 7 and Corollary 9 motivate the following definitions. A vertex v is vulnerable
in graph G if (1) there exists some K € Ks(G) containing v; or (2) there are intersecting
maximal cliques K7 € K4(G) and Ky € Ko(G) such that v € Ks. A vertex is guarded if it
is not vulnerable. Lemma 7 and Corollary 9 can be summarized as: No (non-)edge in a
minimum solution can be incident to a guarded vertex. See Figure 2 for an illustration.

3 The kernel

We partition the vertex set of a reduced graph into five parts, and deal with them separately.
(i) vertices in small maximal cliques of type I (all of them are vulnerable);
(ii) vulnerable vertices in big maximal cliques of type 1 but not in the previous part;
(iii) other vulnerable vertices (not in any maximal cliques of type 1);
(iv) guarded vertices in (big) maximal cliques of type 1; and
(v) other guarded vertices (not in any maximal cliques of type 1).
Note that for this purpose we do not need to enumerate the maximal cliques. The key
observation is that we can easily find the cross edges of all diamonds by enumeration, from
which we can identify all vertices and edges in maximal cliques of type 1. We use the
procedure partition presented in Algorithm 1, which computes this partition in three steps:
It first finds all vertices in a maximal clique of type 1, from which it identifies those in a
small maximal clique of type 1, and finally it uses them to get all vulnerable vertices.

10:7

ESA 2018

10:8

A Polynomial Kernel for Diamond-Free Editing

Algorithm 1 The procedure partition.

INPUT: a reduced instance (G, k).
OUTPUT: vertices in the five parts have (i) mark “small,” (ii) marks “vulnerable” and
“type 1,” (iii) mark “vulnerable,” (iv) mark “type 1,” and (v) no mark, respectively.

1. for each edge uv € E(G) where N(u) N N(v) does not induce a clique do
1.1. mark uv “cross edge”;
1.2. mark u,v and all vertices in N(u) N N(v) as “type 1”;
1.3. mark all edges between these vertices as “type 17;
\a vertezx is in a mazimal clique of type 1 if and only if it is marked “type 1.”
2. for each marked vertex v do
2.1. if G[N(v)] is not a cluster (a disjoint union of cliques) do mark v “small”;
2.2. else if a clique in N(v) of size < 3k contains a cross edge do mark v “small”;
3. for each unmarked edge uv € E(G) do
3.1. find the maximal clique K containing u and v;
3.2. if K contains any vertex marked “small” then mark vertices in K “vulnerable”;
3.3. mark every edge in K “checked.”

It is easy to check that procedure partition runs in polynomial time. We now show its
correctness.

» Lemma 10. Procedure partition is correct.

Proof. An edge uv € E(G) is a cross edge if and only if N(u) N N(v) does not induce a
clique; this justifies step 1.1. Steps 1.2 and 1.3 follow from Proposition 5(i).

Step 2 considers all vertices in maximal cliques of type I. If some component of G[N(v)]
is not a clique, we can find a path zyz of length two. There are two different maximal cliques
containing v, z,y and v, y, z respectively. Both are of type 1, and hence by Lemma 4(i), at
least one of them is small. Step 2.2 also follows from Proposition 5(i). If a vertex v is not
marked in step 2, then every maximal clique containing v is either big or of type 11. Therefore,
all vertices in small maximal cliques of type 1 have been correctly identified in step 2.

Step 3 finds other vulnerable vertices. By definition, such a vertex is in some maximal
clique of type 11. If a type-1I maximal clique consists of an isolated vertex, it is guarded and
not marked in step 3. We may hence consider only nontrivial maximal cliques. All edges in
a type-1I maximal clique remain unmarked. Note that any two vertices of a type-IT maximal
clique determines this clique: It is the only maximal clique that contains these two vertices.
Vertices in the clique are vulnerable if and only if it contains a vertex marked “small.” We
only need to check the clique K once, so we mark them to avoid unnecessary repetition in
step 3.3. After step 3, all type-11 maximal cliques have been checked. |

3.1 Maximal cliques of type i

We start from the vertices in some small type-1 maximal cliques, and denote them by S(G),

ie, S(G)= |J K. Noting that the final graph has no small type-1 maximal cliques, we
KeK:(G)
can bound the size of S(G) by relating vertices in it to edges in a minimum solution.

» Lemma 11. If (G, k) is a reduced yes-instance, then |S(G)| < 18k3 + 2k.

Proof. Let Ey be a minimum solution of (G,k). Let X = U, cp, {z,y} and ¥ =
Uzyer, Na(z) N Ne(y), ie., all vertices incident to a (non-)edge in the solution and
respectively, all vertices that is a common neighbor of the two ends of a (non-)edge in

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye

the solution. Note that |X| < 2k, and by Proposition 3, |Y| < 3k - |Ex| < 3k%. Since
IS(G)N(XUY)| < |XUY| < 3k%+ 2k, it suffices to bound S(G) \ (X UY). A vertex
v € S(G)\ (X UY) cannot be contained in two type-I maximal cliques of G if they share
more than one vertex: Otherwise, there is a diamond (as in Proposition 5(ii)) in Ng[v], but
then v has to be in X UY, a contradiction.

Let us now consider the set of small type-I maximal cliques of G that contain vertices
from S(G) \ (X UY), which we denote by K'. We argue by contradiction that any pair of
cliques in K’ shares at most one vertex. Suppose otherwise, there are two maximal cliques

K1, Ky € K’ with | K7 N K3| > 2. We have seen that K N K> is disjoint from S(G) \ (X UY).

Now let u € K7 \ K3 and v € K5 \ K3 be two vertices in S(G) \ (X UY). Then there is
a diamond with v and two vertices in K; N Ky and one vertex in Ky \ K;. But by the
assumption u € X UY, we cannot add or delete any edge incident to u; on the other hand,
v & X UY forbids the deletion of other three edges, a contradiction.

Let v € S(G) \ (X UY), and let K be a clique in K’ containing v. By definition, there
exists a diamond in which (1) v is a degree-two vertex; (2) the two degree-three vertices are
in K; and (3) the other degree-two vertex is not in K. Since v is not in X NY, one of the two
edges of this diamond that are incident to the other degree-two vertex has to be in E_. In

other words, K contains for some edge xzy € E_, one in {z, y} and a common neighbor of z, y.

By Proposition 3, for each edge xy € E_, there are at most 3k vertices in Ng(x) N Ng(y); for
each z € Ng(z) N Ng(y), there can be at most one clique in K’ containing x, z and at most
one clique in K’ containing ¥, z. Therefore, there can be at most 3k -2 - |[E_| < 6k? cliques
in K. By definition, each clique in it is small and has at most 3k + 1 vertices, of which at
least two are not in S(G) \ (X UY). Hence |S(G) \ (X UY)| < (3k — 1) - 6k? = 18k> — 6k>.
Putting the two parts together, we have |S(G)| < 18k3 + 2k. <

Next, we consider the big type-I maximal cliques, and bound first the number of them.
» Lemma 12. If (G, k) is a reduced yes-instance, then |Ky(G)| < 6k2.

Proof. By Lemma 4, the only way to transform a big maximal clique of type I into one
of type 11 is deleting edges incident to it. For an edge e = uv € E_, denote by K. the

set of big type-I maximal cliques containing one in {u, v}, and one vertex in N(u) N N (v).

Note that ICp(G) = J.cp_ Ke. By Proposition 3, K, has at most 6k maximal cliques. Then
IKp(G)| < 6k - |E_| = 6k <

To bound the size of big type-1 maximal clique, we introduce another reduction rule.

» Rule 3. Let K € Ky(G) with |[K| > 3k + 3. If K contains a guarded vertex x that does
not occur in any other type-1 mazimal clique of G, delete it.

» Lemma 13. Rule 3 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G — z,k) is a yes-instance.

Proof. It is easy to see that (G — x,k) is a reduced instance, and every solution of (G, k)
confined to G — z is a solution of (G — x, k). For the “if” direction, let Ey be a minimum
solution of (G — z,k), and let G* = GAEL. Note that (G — z)AEy = G* — x, and it is
diamond-free. No edge in Fy is incident to z, and hence Ng(z) = Ng+(x), which we simply
denote by N(x). By Proposition 5(ii), it suffices to prove that each maximal clique of G*
containing z is of type 1. For this purpose, we show that each component of G[N(z)] is
either a single vertex or a type-1I maximal clique in G* — .

Note that K \ {z} is a big maximal clique in G — z: It is a clique of size at least 3k + 2,
and its maximality follows from Lemma 4(i). Hence, by Lemma 4(ii), K \ {z} is a maximal

10:9

ESA 2018

10:10

A Polynomial Kernel for Diamond-Free Editing

clique (of type 11) in G* — x. Since z is a guarded vertex that does not occur in any other
type-1 maximal clique, every other maximal clique K’ containing x in G is of type 11, and it
cannot intersect any small type-1 maximal clique. Therefore, by Lemma 7, no edge added by
E, can be incident to any vertex in N(z). From Lemma 8 we can conclude that K’ \ {z}
either contains only a vertex or is a maximal clique (of type 1I) in G* — x.

Since no edge added by F. is between two vertices in N(z) and since z is a guarded
vertex, each component of G[N(z)] is either K \ {z} or K’ \ {z}, hence is either a single
vertex or a type-II maximal clique in G* — x. This concludes the proof. <

» Lemma 14. Let (G, k) be a reduced yes-instance. If Rule 8 is not applicable, then for each
K € Kiy(G), we have that |K| = O(k?).

Proof. Without loss of generality, assume that |K| > 3k + 3. Since Rule 3 is not applicable,
every vertex in K is either a vulnerable vertex, or a guarded vertex in more than one big
type-1 maximal clique. Let U; and Uy be the set of vulnerable vertices in K N S(G) and
K \ S(G) respectively. By the definition, each vertex in U; is adjacent to some vertex
in S(G) \ U1 by an edge of type-11 maximal clique. For each vertex v € S(G) \ Uy, the
cardinality of Us N N (v) is at most one; otherwise, there is a type-1 maximal clique containing
Us N N(v) and v which by Lemma 4(i) is small, contradicting to Uy C K \ S(G). Therefore,
|Uz| < 1S(G) \ Uy|, and by Lemma 11, K contains at most 18%k% + 2k vulnerable vertices. By
Lemma 4(i), every pair of big type-I maximal cliques shares at most one vertex. Hence, by
Lemma 12, K contains at most 6k2 guarded vertices that appear in some other big maximal
cliques of type 1. Putting them together we get |K| < 18k3 + 2k + 6k2. <

The next corollary follows immediately from Lemmas 12 and 14.

» Corollary 15. Let (G, k) be a reduced yes-instance. If Rule 3 is not applicable, then the
number of vertices that are contained in some cliques in Ky(G) is O(k®).

3.2 Maximal cliques of type ii

We have bounded the number of vertices in all maximal cliques of type I, and it remains
to bound the number of vertices that occur only in maximal cliques of type 11. Let T(QG)

denote these vertices, i.e., T(G) = V(G) \ U K. Tt may not be surprising that
KeK.(G)UKy(G)
we can delete all the guarded vertices in them.

» Rule 4. If there is a guarded vertex x not in any type-1 mazximal clique of G, delete it.

» Lemma 16. Rule 4 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G —x,k) is a yes-instance.

Proof. It is easy to see that (G — x,k) is a reduced instance, and every solution of (G, k)
confined to G — « is a solution of (G — x, k). For the other direction, let F4 be a minimum
solution of (G — z, k), and it is sufficient to show that z is not part of any diamond in
G* = GAFEL. Note that z is a vertex which is part of only type-11 maximal cliques in G and
not adjacent to any vertex in small type-1 maximal cliques in G. Therefore, by Lemma 7,
none of the vertices in N(x) is incident to any edges of Ey. If z is part of a diamond in
G*, then it is formed by a deletion of an edge in G[N[z]] by E_. But this is not possible
by Corollary 9, as none of the edges in G[N|z]] is part of any type-IT maximal clique which
intersects with a small type-1 maximal clique in G — z. <

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye

If Rule 4 is not applicable, then all vertices in T(G) are vulnerable. As demonstrated
in Figure 2, an edge may be deleted from a maximal clique of type 11. In that example,
neither end of the deleted edge vgv; is in any maximal clique of type 1. This can happen
only after some modification happens in the neighborhood of this vertex — usvs added in the

example. According to Proposition 2, however, this would not happen when |K| > k + 3.

In other words, to make sure a large clique in K3(G) is immutable to future modifications,
it suffices to keep k + 3 of its vertices. This motivates the following reduction rule, whose
statement is however more complex than previous ones. The main trouble here is that we are
not allowed to delete all but k + 3 guarded vertices from a clique in KC3(G), because it may
be required for another clique in Ko(G). For a pair of vertices u, v, we denote by N (u,v) the
set of common neighbors of u and v not in S(G), i.e., N(u,v) = (N(u) N N(v)) \ S(G).

» Proposition 17. Let u,v be two vertices in G. If uv ¢ E(G), then N(u,v) form an
independent set. Moreover, if uv € E4 for a solution Ey of (G, k), then |N(u,v)| < k.

Proof. If G[N(u,v)] has an edge zy, then {u, v, z,y} forms a diamond. There are two type-I
maximal cliques containing {x,y,u} and {x,y, v} respectively. By Lemma 4(i), at least one of
them is small, contradicting to =,y ¢ S(G). The second claim follows from Proposition 2. <

Our last rule would keep at most k 4 1 from such sets. To avoid unnecessary clutters, we
simply say we mark k + 1 vertices in N(u,v), even if its size is smaller than k + 1; in which
case, we mark all of them.

» Rule 5. For each pair of vertices u,v € S(G), arbitrarily mark k + 1 vertices in N(u,v).
If N (u,v)| < k, then for each vertex w € N(u,v), arbitrarily mark k + 1 vertices in N (u,w)
and k + 1 vertices in N(v,w). If there is an unmarked vertex x in T(QG), delete it.

» Lemma 18. Rule 5 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G — z,k) is a yes-instance.

Proof. It is easy to see that (G — x,k) is a reduced instance, and every solution of (G, k)
confined to G — z is a solution of (G — x, k). For the “if” direction, let Ey be a minimum
solution of (G — z,k), and let G* = GAEL. We show that each maximal clique of G*
containing x is a maximal clique of G and is of type 11 in G*. Since Proposition 5(ii) implies
that deleting a vertex not in any type-1 maximal clique does not alter type-I maximal cliques,
we have S(G") = S(G).

Let K be a maximal clique of G containing x; note that K is a maximal clique of type 11
in G, as € T(G). We argue that |[Ng«(y) N K| < 1 for every y € V(G) \ K. Since K is a
maximal clique of type 1I in G, we have (1) |Ng(y) N K| is either 0 or 1; and (2) for every
pair of vertices u,v € K, N(u,v) C Ng(u) N Ng(v) = K.

Suppose first that there are at least two edges between y and K in E. Let u,v € K be

two vertices such that yu,yv € E;. Then by Lemma 7, u,v € S(G’), and hence u,v € S(G).

Clearly, © # u, * # v and z is an unmarked vertex in N(u,v). Further, there are k + 1
marked vertices in N (u,v). It follows that |[K \ {z}| > k+ 3, and E_ does not have any edge
in G'[K \ {z}] by Proposition 2(i). Therefore, for each marked vertex z € N(u,v) that is not
adjacent to y, the set {u,v,y, z} induces a diamond in G’ + {yu,yv}. The only edge we can
edit is yz, but |[Ng(y) N K| < 1, and there are at least k 4 2 edges between y and K, which
is impossible.

Hence, at most one edge can be added between y and K by E;. If |[Ng(y) N K| =0, or
|[Ne(y) N K| =1 but the only edge between y and K is deleted, then it is trivial that y is
adjacent to at most one vertex of K in G*. Suppose that Ng«(y) N K = {u, v} while only u

10:11

ESA 2018

10:12

A Polynomial Kernel for Diamond-Free Editing

is in Ng(y); note that yu ¢ E_ and yv € E4. By Lemma 7, y,v € S(G’), and hence in S(G).
According to Proposition 17, there are at most k vertices in N(v,y) in G'. If u ¢ S(G), then
it has been marked; hence x # u. Also, z # v as & € T(G). By the rule, no matter whether
u is in S(G) or not, we should have marked vertices in N(u,v). Since x € N(u,v) but is not
marked, we have |N(u,v)| > k+ 1. Let z be any marked vertex in N (u,v); it is not in Ng(y)
by assumption. But then {u,v,y, 2z} induces a diamond in G’ 4+ yv, in which we have to add
the missing edge yz, which requires |E4| > k, a contradiction.

We have thus concluded |Ng«(y) N K| < 1 for each vertex y in V(G)\ K. By Proposition 6,
K \ {2} remains a clique in G* — z, otherwise we can find a strictly smaller solution. Then
K is a maximal clique of type II in G*. On the other hand, according to Proposition 17, no
edge is added between two vertices of Ng(x). Therefore, N(z) induces exactly the same
subgraph in G and G*. Hence, any maximal clique of G* containing x is a maximal clique of
G as well, hence of type 11 in G*. This concludes the proof of the lemma. |

Now Theorem 1 follows by counting numbers of different kinds of vertices.

Proof of Theorem 1. We show first that Rules 3-5 can be applied in polynomial time. For
a guarded vertex z, N(x) induces a cluster graph and each maximal clique in the cluster
graph together with x forms the maximal cliques of G containing x. Recall that a maximal
clique is of type I if and only if it contains both ends of a cross edge. Since the procedure
partition finds all guarded vertices (no mark) and cross edges, we can find for each guarded
vertex all type-1 maximal cliques and type-11 maximal cliques containing it in polynomial
time. Therefore, both Rules 3 and Rule 4 can be applied in polynomial time. Moreover, the
procedure partition finds all vertices in S(G) (mark “small”) and T(G) (no mark “type
1”), and hence Rule 5 can be applied in polynomial time.

We claim that if none of Rules 3-5 is applicable to a reduced yes-instance (G, k), then
|V(G)| = O(k®). By Lemma 11, the number of vertices in small type-T maximal cliques is
|S(G)| = O(k?). By Corollary 15, we have O(k®) vertices in big type-1 maximal cliques. For
each pair of vertices u, v in S(G), we mark at most k+ 1 common neighbors of them. For each
common neighbor w of u, v, we mark at most 2k+2 vertices: k+1 vertices in N (u,w) and k+1
vertices in N (v, w). Hence |T(G)| = O(k®), and |V (G)| = O(k*)+O(k®)+O(k®) = O(k®). =

4 A cubic kernel for diamond-free edge deletion

We use four simple reduction rules to get a cubic kernel for diamond-free edge deletion. The
details of this section are omitted due to space limit.

1. If there exist an edge uv and 2k + 2 distinct vertices 1,41, ..., Tg+1, Ye+1 in N(u) NN (v)
such that z;y; € F(QG) for 1 < i < k+ 1, then delete uv and decrease k by one.

2. Mark an edge uv “permanent” if there are 2k 4 2 distinct vertices z1,y1, - -+, Tht1, Yk+1
in N(u) N N(v) such that z;y; € E(G) for all 1 <i < k+ 1. If there exists a diamond
consisting of only permanent edges, return a trivial no-instance.

3. If there is a vertex x not in any small maximal clique, delete it.

4. Delete all edges and vertices not in any maximal clique of type I.

» Lemma 19. Let (G, k) be a yes-instance of the diamond-free edge deletion problem. If
none of the reduction rules is applicable, then |V (G)| = O(k?).

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye

—— References

1

10

11

12

13

14

15

N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness of
H-free edge modification problems. SIAM Journal on Discrete Mathematics, 31(1):542-561,
2017.

Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letter, 58(4):171-176, 1996.

Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algo-
rithmica, 71(3):731-757, 2015.

Yufei Cai. Polynomial kernelisation of H-free edge modification problems. Mphil thesis,
Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong SAR, China, 2012.

Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152-169, 2012.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Undergraduate texts in computer science. Springer, 2013.

Ehab S. El-Mallah and Charles J. Colbourn. The complexity of some edge deletion problems.
IEEFE Transactions on Circuits and Systems, 35(3):354-362, 1988.

Paul Erdés and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 35(1):85-90, 1960.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-
) existence of polynomial kernels for P-free edge modification problems. Algorithmica,
65(4):900-926, 2013.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001.

Stefan Kratsch and Magnus Wahlstrom. Two edge modification problems without polyno-
mial kernels. Discrete Optimization, 10(3):193-199, 2013.

John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary proper-
ties is NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980.

R. B. Sandeep and Naveen Sivadasan. Parameterized Lower Bound and Improved Kernel for
Diamond-free Edge Deletion. In 10th International Symposium on Parameterized and FExact
Computation, volume 43 of LIPIcs, pages 365-376. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

Mihalis Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297-309,
1981.

10:13

ESA 2018

Parallel and 1/0-efficient Randomisation of
Massive Networks using Global Curveball Trades

Corrie Jacobien Carstens
University of Amsterdam, Netherlands
c.j.carstens@uva.nl

Michael Hamann
Karlsruhe Institute of Technology, Germany
michael.hamann@kit.edu

Ulrich Meyer

Goethe University, Frankfurt, Germany
umeyer@ae.cs.uni-frankfurt.de

Manuel Penschuck
Goethe University, Frankfurt, Germany
mpenschuck@ae.cs.uni-frankfurt.de

Hung Tran
Goethe University, Frankfurt, Germany
htran@ae.cs.uni-frankfurt.de

Dorothea Wagner
Karlsruhe Institute of Technology, Germany
dorothea.wagner@kit.edu

—— Abstract

Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically
implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random
edge pairs while maintaining the degrees involved [23]. Curveball is a novel approach that instead

considers the whole neighbourhoods of randomly drawn node pairs. Its Markov chain converges
to a uniform distribution, and experiments suggest that it requires less steps than the established
ESMC [6]. Since trades however are more expensive, we study Curveball’s practical runtime by
introducing the first efficient Curveball algorithms: the I/O-efficient EM-CB for simple undir-
ected graphs and its internal memory pendant IM-CB. Further, we investigate global trades [6]
processing every node in a single super step, and show that undirected global trades converge
to a uniform distribution and perform superior in practice. We then discuss FM-GCB and EM-
PGCB for global trades and give experimental evidence that EM-PGCB achieves the quality of
the state-of-the-art ESMC algorithm EM-ES [15] nearly one order of magnitude faster.

2012 ACM Subject Classification Mathematics of computing — Random graphs
Keywords and phrases Graph randomisation, Curveball, I/O-efficiency, Parallelism

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.11

Supplement Material Stable versions of IM-CB and EM-GCB are released as part of NetworKit
(http://network-analysis.info).

Funding This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under
grants ME 2088/3-2, ME 2088/4-2, and WA 654/22-2.

Acknowledgements We thank the anonymous reviewers for their many insightful comments and
suggestions.

© Corrie Jacobien Carstens, Michael Hamann, Ulrich Meyer, Manuel Penschuck, Hung Tran, and
5v Dorothea Wagner;

licensed under Creative Commons License CC-BY
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No.11; pp. 11:1-11:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:c.j.carstens@uva.nl
mailto:michael.hamann@kit.edu
mailto:umeyer@ae.cs.uni-frankfurt.de
mailto:mpenschuck@ae.cs.uni-frankfurt.de
mailto:htran@ae.cs.uni-frankfurt.de
mailto:dorothea.wagner@kit.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.11
http://network-analysis.info
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2

Randomisation of Massive Networks using Global Curveball Trades

1 Introduction

In the analysis of complex networks, such as social networks, the underlying graphs are
commonly compared to random graph models to understand their structure [17, 27, 34].
While simple models like Erdés-Rényi graphs [11] are easy to generate and analyse, they are
too different from commonly observed powerlaw degree sequences [27, 26, 34]. Thus, random
graphs with the same degree sequence as the given graph are frequently used [8, 17, 32]. In
practice, many of these graphs are simple graphs, i.e. graphs without self-loops and multiple
edges. In order to obtain reliable results in these cases, the graphs sampled need to be simple
since non-simple models can lead to significantly different results [31, 32]. The randomisation
of a given graph is commonly implemented as an edge switching Markov chain ESMC [8, 24].

Nowadays, massive graphs that cannot be processed in the RAM of a single computer,
require new analysis algorithms to handle these huge datasets. In turn, large benchmark
graphs are required to evaluate the algorithms’ scalability — in terms of speed and quality.
LFR is a standard benchmark for evaluating clustering algorithms which repeatedly generates
highly biased graphs that are then randomised [18, 19]. [15] presents the external memory
LFR generator EM-LFR and its I/O-efficient edge switching EM-ES. Although EM-ES
is faster than previous results even for graphs fitting into RAM, it dominates EM-LFR’s
running time. Alternative sampling via the Configuration Model [25] was studied to reduce
the initial bias and the number of ESMC steps necessary [14]. Still, graph randomisation
remains a major bottleneck during the generation of these huge graphs.

The Curveball algorithm has been originally proposed for randomising binary matrices
while preserving row and column sums [35, 36] and has been adopted for graphs [5, 6]: instead
of switching a pair of edges as in ESMC, Curveball trades the neighbours of two nodes in each
step. Carstens et al. further propose the concept of a global trade, a super step composed of
single trades targetting every node! in a graph once [6]. The authors show that global trades
in bipartite or directed graphs converge to a uniform distribution, and give experimental
evidence that global trades require fewer Markov chain steps than single trades. However,
while fewer steps are needed, the trades themselves are computationally more expensive.
Since we are not aware of previous efficient Curveball algorithms and implementations, we
investigate this trade-off here.

Our contributions. We present the first efficient algorithms for Curveball: the (sequential)
internal memory and external memory algorithms IM-CB? and EM-CB for the Simple
Undirected Curveball algorithm (see section 4). Experiments in section 5, indicate that they
are faster than the established edge switching approaches in practice.

In section 3, we show that random global trades lead to uniform samples of simple,
undirected graphs and demonstrate experimentally in section 5 that they converge even faster
than the corresponding number of uniform single trades. Exploiting structural properties
of global trades, we simplify EM-CB yielding EM-GCB and the parallel I/O-efficient EM-
PGCB which achieves EM-ES’s quality nearly one order of magnitude faster in practice (see
section 5).

L For an odd number n of nodes, either a single node is left out or equivalently an isolated node is added.
2 We prefix internal memory algorithms with IM and I/O-efficient algorithms with EM. The suffices CB, GCB,
and PGCB denote Curveball, CB. with global trades, and parallel CB. with global trades respectively.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner

2 Preliminaries and Notation

We define the short-hand [k] := {1,...,k} for k € Ny, and write [x;]’_, for an ordered
sequence [ZTg, Tat1,---,Tp)-

Graphs and degree sequences. A graph G = (V, E) has n = |V| sequentially numbered
nodes V.= {vy,...,v,} and m = |E| edges. Unless stated differently, graphs are assumed
to be undirected and unweighted. To obtain a unique representation of an undirected edge
{u,v} € E, we use ordered edges [u,v] € E implying u < v; in contrast to a directed edge,
the ordering is used algorithmically but does not carry any meaning. A graph is called simple
if it contains neither multi-edges nor self-loops, i.e. £ C {{u,v}|u,v € V with v # v }. For
node u € V define the neighbourhood A, := {v : {u,v} € E} and degree deg(u) := |A,|. Let
dmax 1= max,{deg(v)} be the maximal degree of a graph. A vector D = [d; |’ is a degree
sequence of graph G iff Vv; € V': deg(v;) = d;.

Randomisation and Distributions. PLD ([a, b),) refers to an integer Powerlaw Distribution
with exponent —y € R for v > 1 and values from the interval [a,b); let X be an integer
random variable drawn from PLD ([a, b),7) then P[X=k] o< k=7 (proportional to) if a < k < b
and P[X=k] = 0 otherwise. A statement depending on some number = > 0 is said to hold
with high probability if it is satisfied with probability at least 1 — 1/x¢ for some constant
¢ > 1. Let S be a finite set, z € S and let o be permutation on S, we define rank, (z) as the
number of elements positioned in front of z by o.

2.1 External-Memory Model

In contrast to classic models of computation, such as the unit-cost random-access machine,
modern computers contain deep memory hierarchies ranging from fast registers, over caches
and main memory to solid state drives (SSDs) and hard disks. Algorithms unaware of these
properties may face performance penalties of several orders of magnitude.

We use the commonly accepted external memory (EM) model by Aggarwal and Vitter [1]
to reason about the influence of data locality in memory hierarchies. It features two memory
types, namely fast internal memory (IM or RAM) holding up to M data items, and a slow
disk of unbounded size. The input and output of an algorithm are stored in EM while
computation is only possible on values in IM. An algorithm’s performance is measured in
the number of 1/Os required. Each I/O transfers a block of B = Q(v/M) consecutive items
between memory levels. Reading or writing n contiguous items is referred to as scanning
and requires scan(n) := O(n/B) I/0s. Sorting n consecutive items triggers sort(n) :=
O((n/B)-logy p(n/B)) 1/0s. For all realistic values of n, B and M, scan(n) < sort(n) < n.
Sorting complexity constitutes a lower bound for most intuitively non-trivial EM tasks [22].

EM queues use amortised O(1/B) I/Os per operation and require O(B) main memory [28].

An external priority queue (PQ) requires O(sort(n)) I/Os to push and pop n items [2].

2.2 TFP: Time Forward Processing

Time Forward Processing (TFP) is a generic technique to manage data dependencies of
external memory algorithms [21]. Consider an algorithm computing values x1,...,z, in
which the calculation of x; requires previously computed values. One typically models these
dependencies using a directed acyclic graph G=(V, E). Every node v; € V corresponds to the
computation of z; and an edge (v;,v;) € E indicates that the value x; is necessary to compute

11:3

ESA 2018

11:4

Randomisation of Massive Networks using Global Curveball Trades

1 PQ.push(<key=2, value=0>); PQ.push(<key=2, value=1>)
2 foreach i+ 2,...,n do
b2 U3 V4 Y5 3 sum < 0
To+2T1 T1+22 Totx3| |x3+a 4 | while PQ.min.key == i do // Two iterations
ro=1 r3=2 r4=3 5= 5 ‘ sum < sum + PQ.remove-min().value
N 6 print (“z; =7, sum)
7 PQ.push(<key=i+1, sum>); PQ.push(<key=i+2, sum>)

Figure 1 Left: Dependency graph of the Fibonacci sequence (ignoring base case). Right: Time
Forward Processing to compute sequence.

x;. For instance consider the Fibonacci sequence g =0, z; =1, z; = x;—1 +2;-2 Vi > 2 in
which each node v; with 7 > 2 depends on exactly its two predecessors (see Fig. 1). Here, a
linear scan for increasing 7 suffices to solve the dependencies.

In general, an algorithm needs to traverse G according to some topological order <7 of
nodes V' and also has to ensure that each v; can access values from all v; with (v;,v;) € E.
The TFP technique achieves this as follows: as soon as x; has been calculated, messages of
the form (v;, ;) are sent to all successors (v;,v;) € E. These messages are kept in a minimum
priority queue sorting the items by their recipients according to <. By construction, the
algorithm only starts the computation v; once all predecessors v; <7 v; are completed. Since
these predecessors already removed their messages from the PQ, items addressed to v; (if
any) are currently the smallest elements in the data structure and can be dequeued. Using a
suited EM PQ [2], TFP incurs O(sort(k)) I/Os, where k is the number of messages sent.

3 Randomisation schemes

Here, we summarise the randomisation schemes ESMC [24] and Curveball for simple undirec-
ted graphs [5], and then discuss the notion of global trades. Since these algorithms iteratively
modify random parts of a graph, they can be analysed as finite Markov chains. It is well
known that any finite, irreducible, aperiodic, and symmetric Markov chain converges to the
uniform distribution on its state space (e.g. [20]). Its mizing time indicates the number of
steps necessary to reach the stationary distribution.

3.1 Edge-Switching

ESMC is a state-of-the-art randomisation method with a wide range of applications, e.g. the
generation of graphs [15, 19], or the randomisation of biological datasets [16]. In each step,
ESMC chooses two edges e = [u1,v1], e2 = [ug2,v2] and a direction d € {0,1} uniformly at
random and rewires them into {u1,us}, {v1,v2} if d=0 and {u1,ve}, {v1,us} otherwise. If
a step yields a non-simple graph, it is skipped. ESMC’s Markov chain is irreducible [10],
aperiodic and symmetric [23] and hence converges to the uniform distribution on the space of
simple graphs with fixed degree sequence. While analytic bounds on the mixing time [12, 13|
are impractical, usually a number of steps linear in the number of edges is used in practice [29)].

3.2 Simple Undirected Curveball algorithm

Curveball is a novel randomisation method. In each step, two nodes trade their neighbour-
hoods, possibly yielding faster mixing times [5, 35, 36].

» Definition 1 (Simple Undirected Trade). Let G = (V, E) be a simple graph, A be its
adjacency list representation, and A,, be the set of neighbours of node u. A trade t = (i, j, o)

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner

G——5) — o(12][345]) — (43][5.12) —
. ~ —— ~ ——
@ Ay Aji Bi_; Bj_;
AZ:{172765.]} B’L—] :{374} 31:{374767j}
Aj ={3,4,5,6,i} Bj_; ={1,2,5} B; = {1,2,5,6,i}

Figure 2 The trade (i, 7,0) between nodes ¢ and j only considers edges to the disjoint neigh-
bours {1,...,5}. For the reassigned disjoint neighbours we use the short-hand B;_; := {z | z €
D;j,ranks(x) < |Ai—;|} and Bj_; := {z | ¢ € D;j,rank,(z) > |Ai—;|}. The triangle (4,7,6) is
omitted as trading any of its edges would either introduce parallel edges, self loops, or result in no
change at all. Then, the given ¢ exchanges four edges.

from A to adjacency list B is defined by two nodes ¢ and j, and a permutation o: D;; — D;;
where A;_; = A; \ (4; U{j}) and D;; := A;_; U A;_;. As shown in Fig. 2, performing ¢ on
G results in Bl = (Az\Al_j) @] {l’ | xr € D,;j,rankg(x) S |A1_J|} and Bj = (AJ\A]_l) @] {:ZJ |
x € D;j,rank,(x) > |A;—;|}. Since edges are undirected, symmetry has to be preserved: for
all uw € A;\B; the label j in adjacency list B, is changed to ¢ and analogously for A; \ B;.

Simple Undirected Curveball randomises a graph by repeatedly selecting a node pair
{4,j} and permutation ¢ on the disjoint neighbours uniformly at random. Its Markov chain
is irreducible, aperiodic and symmetric and hence converges to the uniform distribution [6].

3.3 Undirected Global Trades

Trade sequences typically consist of pairs in which each constituent is drawn uniformly at
random. While it is a well-known fact® that ©(nlogn) trades are required in expectation
until each node is included at least once, there is no apparent reason why this should be
beneficial; in fact, experiments in section 5 suggest the contrary.

Carstens et al. propose the notion of global trades for directed or bipartite graphs as a
2-partition of all nodes implicitly forming n/2 node pairs to be traded in a single step [6].
This concept is not applicable to undirected graphs where in general the two directions (u,v)
and (v, u) of an edge {u,v} cannot be processed independently in a single step. We hence
extend global trades to undirected graphs by interpreting them as a sequence of n/2 single
trades which together target each node exactly once (we assume n to be even; if this is
not the case we add an isolated node). Dependencies are then resolved by the order of this
sequence.

» Definition 2 (Undirected Global trade). Let G = (V, E) be a simple graph and 7: V — V
be a permutation on the set of nodes. A global trade T = (t1,...,tp) for £ = |n/2] is a
sequence of trades ¢; = {m(ve;—1), (v2;),0;}. By applying T to G we mean that the trades
t1,...,t; are applied successively starting with G.

Theorem 3 allows us to use global trades as a substitute for a sequence of single trades,
as global trades preserve the stationary distribution of Curveball’s Markov chain. The proof
extends [6], which shows convergence of global trades in bipartite or directed graphs, to
undirected graphs and uses similar techniques.

3 For instance studied as the coupon collector problem.

11:5

ESA 2018

11:6

Randomisation of Massive Networks using Global Curveball Trades

» Theorem 3. Let G = (V, E) be an arbitrary simple undirected graph, and let Q¢ be the
set of all simple directed graphs that have the same degree sequence as G. The Curveball
algorithm with global trades and started at G converges to the uniform distribution on Qg.

Proof. In order to prove the claim, we have to show irreducibility and aperiodicity of the
Markov chain as well as symmetry of the transition probabilities.

For the first two properties it suffices to show that whenever there exists a single trade from
state A to B, there also exists a global trade from A to B (see [4] for a similar argument).*
Observe that there is a non-zero probability that a single trade does not change the graph,
e.g. by selecting o; as the identity. Hence there is a non-zero probability that ...

a global trade does not alter the graph at all. This corresponds to a self-loop at each

state of the Markov chain and hence guarantees aperiodicity.

all but one single trade of a global trade do not alter the graph. In this case, a global

trade degenerates to a single trade and the irreducibility shown in [4] carries over.

It remains to show that the transition probabilities are symmetric. Let 755 be the set of
global trades that transform state A to state B. Then the transition probability between
A and B equals the sum of probabilities of selecting a trade sequence from 7§ ,. That is
Pyp = ZTeTjB P4(T) where P 4(T) denotes the probability of selecting global trade T in
state A.

The probability P 4(t) of selecting a single trade t = (i, j,0) from state A to state B
equals the probability Pg(f) of selecting the reverse trade ¢ = (i,7,0~!) from state B to
A [6]. We now define the reverse global trade of T = (t1,...,t;) as T = (f4,...,11). Tt is
straight-forward to check that this gives a bijection between the sets T4, and T3 4.

It remains to show that the middle equality holds in

Pap = ZTGT,;’B Py(T) = ZTGT,;'A Pp(T") = Ppa.

Let T = (t1,...,ts) be a global trade from A to B as implied by m and A=A,,..., Ap1=B
be the intermediate states. We denote the reversal of T and m as T and 7 respectively
and obtain Ps(T) = P(m)Pa,(t1)...Pa,(ts) = P(A)Pp(ty) ... Pa,(f1) = PB(T). Clearly
P(m) = P(7) as we are picking permutations uniformly at random. The second equality
follows from P 4(t) = Pp(#) for a single trade between A and B. <

4 Novel Curveball algorithms for undirected graphs

In this section we present the related algorithms EM-CB, IM-CB, EM-GCB and EM-PGCB.
The algorithms receive a simple graph G and a trade sequence T = [{u;,v;}]i—, as input
and compute the result of carrying out the trade sequence T (see section 3.2) in order.

EM-CB and IM-CB are sequential solutions suited to process arbitrary trade sequences T'.
For our analysis, we assume T”s constituents to be drawn uniformly at random (as expected
in typical applications). Both algorithms share a common design, but differ in the data
structures used. EM-CB is an I/O-eflicient algorithm while IM-CB is optimised for small
graphs allowing for unstructured accesses to main memory. In contrast, EM-GCB and
EM-PGCB process global trades only. This restricted input model allows us to represent the
trade sequence T implicitly by hash functions which further accelerates trading.

4 Since each global trade can be emulated by its n/2 decomposed single trades, the reverse is true for a
hop of n/2 single trade steps. Due to dependencies however the transition probabilities generally do not
match, see V = {1,2,3,4} and E = {[1,2],[3,4]} for a simple counterexample.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner

Algorithm 1: EM-CB.
Data: Trade sequence T, simple graph G = (V, E) by edge list £

// Preprocessing: Compute Dependencies
1 foreach trade t; = (u,v) € T for increasing ¢ do

2 ‘ Send messages (u, t;) and (v,t;) to Sorter SorterTtoV

3 Sort SorterTtoV lexicographically // All trades of a node are next to each other
4 foreach node u € V do

5 Receive 8(u) = [t1,...,tx] from k messages addressed to u in SorterTtoV

6 Set tg41 < 00 // t1 =00 iff u is never active
7 Send (t;,u,tiy+1) to SorterDepChain for i € [k]

8 foreach directed edge (u,v) € E do

9 if v < v then

10 ‘ Send message (v, u, t1) via PqVtoV

11 else

12 Receive t] from unique message received via PqVtoV

15 if t1 <t} then Send message (t1,u,v,t7) via PqTtoT

else Send message (t1,v,u,t1) via PqTtoT
14 Sort SorterDepChain

// Main phase - Currently at least the first trade has all information it needs
15 foreach trade t; = (u,v) € T for increasing ¢ do

16 Receive successors 7(u) and 7(v) via SorterDepChain
17 Receive neighbours Ag(u), Ac(v) and their successors 7(-) from PqTtoT
18 Randomly reassign disjoint neighbours, yielding new neighbours A, (u) and Ag(v).

19 foreach (a,b) € ({u} x Ag(u)) U ({v} x Ag(v)) do

if 7, = co and 7, = co then Output final edge {a,b}

20 else if 7, < 7, then Send message (74, a,b,) via PqTtoT
else Send message (1, b, a,7q) via PqTtoT

At core, all algorithms perform trades in a similar fashion: In order to carry out the
i-th trade {u;,v;}, they retrieve the neighbourhoods A,, and A,,, shuffle’ them, and then

update the graph. Once the neighbourhoods are known, trading itself is straight-forward.

We compute the set of disjoint neighbours D = (A,, U A,,) \ (A, N A,,) and then draw
| Ay, N D] nodes from D for u; uniformly at random while the remaining nodes go to v;. If
Ay, and A,, are sorted this requires only O(| A, |+ |Av,|) work and scan(|Ay,| + | Ay, |) T/Os
(see also proof of Lemma 6 if the neighbourhoods fit into RAM). Hence we focus on the
harder task of obtaining and updating the adjacency information.

4.1 EM-CB: A sequential 1/0-efficient Curveball algorithm

EM-CB is an I/O-efficient Curveball algorithm to randomise undirected graphs as detailed
in Alg. 1. This basic algorithm already contains crucial design principles which we further
explore with IM-CB, EM-GCB and EM-PGCB in sections 4.2 and 4.4 respectively.

The algorithm encounters the following challenges. After an undirected trade {u,v} is
carried out, it does not suffice to only update the neighbourhoods A, and A,: consider the
case that edge {u,z} changes into {v,z}. Then this switch also has to be reflected in the
neighbourhood of A,. Here, we call v and v active nodes while z is a passive neighbour.

5 In contrast to Definition 2, we do not consider the permutation o of disjoint neighbours as part of
the input, but let the algorithm choose one randomly for each trade. We consider this design decision
plausible as the set of disjoint neighbours only emerges over the course of the execution.

11:7

ESA 2018

11:8

Randomisation of Massive Networks using Global Curveball Trades

In the EM setting another challenge arises for graphs exceeding main memory; it is
prohibitively expensive to directly access the edge list since this unstructured pattern triggers
(1) I/Os for each edge processed with high probability.

EM-CB approaches these issues by abandoning a classical static graph data structure
containing two redundant copies of each edge. Following the TFP principle, we rather
interpret all trades as a sequence of points over time that are able to receive messages.
Initially, we send each edge to the earliest trade one of its endpoints is active in.® This way,
the first trade receives one message from each neighbour of the active nodes and hence can
reconstruct A,,, and A,,. After shuffling and reassigning the disjoint neighbours, EM-CB
sends each resulting edge to the trade which requires it next. If no such trade exists, the
edge can be finalised by committing it to the output.

The algorithm hence requires for each (actively or passively) traded node u, the index of
the next trade in which u is actively processed. We call this the successor of u and define it to
be oo if no such trade exists. The dependency information is obtained in a preprocessing step;
given T = [{u;,v;}]_,, we first compute for each node u the monotonically increasing index
list S(u) of trades in which u is actively processed, i.e. 8(u) := [i|u € ¢; for i € [{]] o [oc].

» Example 4. Let G = (V, E) be a simple graph with V' = {v1, v9, v3,v4} and trade sequence
T = [t1: {v1,v2},to: {vs,va}, 3 {v1,vs}, L4 {vo,v4}, 85 {v1,v4}]. Then, the successors §
follow as 8(v1) = [1, 3,5, 00|, 8(ve) = [1,4, 00|, 8(vs) = [2, 3, 0], 8(vs) = [2,4, 5, 0].

This information is then spread via two channels:
After preprocessing, EM-CB scans 8 and T' conjointly and sends (t;, u;, t¥) and (¢;, v;,t¥)
to each trade t;. The messages carry the successors t;' and t] of the trade’s active nodes.
When sending an edge as described before, we augment it with the successor of the
passive node. Initially, this information is obtained by scanning the edge list £ and &
conjointly. Later, it can be inductively computed since each trade receives the successors

of all nodes involved.

» Lemma 5. For an arbitrary trade sequence T of length £, EM-CB has a worst-case 1/0
complexity of Olsort({) + sort(n) + scan(m) + ldmax/Blogy 5(m/B)]. For r global trades,
the worst case I/0 complexity is O(r[sort(n) + sort(m)]).

Proof. Refer to the full article [7] for the proof. <

4.2 |IM-CB: An internal memory version of EM-CB

While EM-CB is well-suited if memory access is a bottleneck, we also consider the modified
version IM-CB. As shown in section 5, IM-CB is typically faster for small graph instances.
IM-CB uses the same algorithmic ideas as EM-CB but replaces its priority queues and
sorters” by unstructured I/O into main memory (see [7] for details):
Instead of sending neighbourhood information in a TFP-fashion, we now rely on a classical
adjacency vector data structure Ag (an array of arrays). Similarly to EM-CB, we only

6 If an edge connects two nodes that are both actively traded we implicitly perform an arbitrary tie-break.

7 The term sorter refers to a container with two modes of operation: in the first phase, items are pushed
into the write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the filled
data structure becomes read-only and the elements are provided as a lexicographically non-decreasing
stream which can be rewound at any time. While a sorter is functionally equivalent to filling, sorting and
reading back an EM vector, the restricted access model reduces constant factors in the implementation’s
runtime and I/O-complexity [3].

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner

current trade

w1 (1) m(2) "m(3) mi(4) 7 (5) 71(6) m2(1) m2(2) m2(3) m2(4) m2(5) m2(6)

ivg‘vlivg‘vs'm‘vﬁi ivﬁ‘vgi% 1)1iv2‘v4i
T |\ T 1 T T LI 1

N . - (round: 2,slot: 4, neighbour: vy

new edge produced: { o7 , A } -

Figure 3 During the trade j=1,41=3,i2=4 the edge {v1,v2} is produced; the arrows indicate
positions considered as successors. Since v1 and wve are already processed in round j=1, w2 is used
to compute the successor. Then, the message is sent to v; in round 2 as v is processed before va.

keep one directed representation of an undirected edge. As an invariant, an edge is always
placed in the neighbourhood of the incident node traded before the other. To speed-up
these insertions, IM-CB maintains unordered neighbourhood buffers.

IM-CB does not forward successor information, but rather stores 8 in a contiguous block
of memory. The algorithm additionally maintains the vector Sj4x[1...n] where the i-th
entry points to the current successor of node v;. Once this trade is reached, the pointer
is incremented giving the next successor.

» Lemma 6. For a random trade sequence T' of length ¢, IM-CB has an expected running
time of O(n+ £+ m+ €m/n). In the case of r many global trades (each consisting of n/2
normal trades) the running time is given by O(n + rm).

Proof. Refer to the full article 7] for the proof. <

4.3 EM-GCB: An I/O-efficient Global Curveball algorithm

EM-GCB builds on EM-CB and exploits the regular structure of global trades to simplify
and accelerate the dependency tracking. As discussed in section 3.3, a global trade can
be encoded as a permutation 7: [n] — [n] by interpreting adjacent ranks as trade pairs,
ie. T = [{vﬂ(gi_l),vﬂ(gi)}]?ﬁ. In this setting, a sequence of global trades is given by r
permutations [,]5:1‘ The model simplifies dependencies as it is not necessary to explicitly
gather § and communicate successors.

As illustrated in Fig. 3, we also change the addressing scheme of messages. While EM-CB
sends messages to specific nodes in specific trades, EM-GCB exploits that each node v; is
actively traded only once in each round j and hence can be addressed by its position 7;(¢).
Successors can then be computed in an ad hoc fashion; let a trade of adjacent positions
i1 < iz of the j-th global trade produce (amongst others) the edge {vs,v,}. The successor of
v, (and analogously the one of v) is 8, ;,[vs] = (j, mj(x)) if v, is processed later in round j
(i.e. m(2z)/2 > i2) and otherwise §; ;,[v.] = (j+1,7j+1(z)). Here we imply an untraded
additional function 7,11 (z) = « which avoids corner cases and generates an ordered edge list
as a result of the r-th global trade.

To reduce the computational cost of the successor computation, EM-GCB supports fast
injective functions f: X — Y where [n] C X and [n] C Y. In contrast to the original
permutations, their relevant image { f(x) | « € [n] } may contain gaps which are simply
skipped by EM-GCB. This requires minor changes in the addressing scheme.

In practice, we use functions from the family of linear congruential maps H, :=
{hap |1 <a<pand 0<b<p} with hyp(xz) = [(ax + b) mod p| where p is the smal-
lest prime number p > n. Random choices from H,, are well suited for EM-GCB since they

11:9

ESA 2018

11:10

Randomisation of Massive Networks using Global Curveball Trades

current round next round
1] H | [[T 1T Tl ICTTTTTTIT T T TT 1+
macrochunk In EM
1T T T T T T T J= In IM (front block)
batch

1 _ﬂ:l:l@:l_} P «— the p microchunks in a batch are processed in parallel

Figure 4 EM-PGCB splits each global trade into k macrochunks and maintains an external
memory queue for each. Before processing a macrochunk, the buffer is loaded into IM and sorted,
and further subdivided into z batches each consisting of p microchunks. A type (ii) message is
visualised by the red intra-batch arrow.

are 2-universal® and contain only O(log(n)) gaps (see [7] for details). They are also bijections
with an easily computable inverse h;ll) that allows EM-GCB to determine the active node
h;i(z) traded at position i; this operation is only performed once for each traded position.
EM-GCB also supports non-invertible functions. This can be implemented with messages
(h(7),1) that are generated for 1 <i < n and delivered using TFP.

4.4 EM-PGCB: An 1/0O-efficient parallel Global Curveball algorithm

EM-PGCB adds parallelism to EM-GCB by concurrently executing multiple sequential trades.
As in Fig. 4, we split a global trade into microchunks each containing a similar number of
node pairs and then execute a batch of p such subdivisions in parallel. The batch’s size is a
compromise between intra-batch dependencies (messages are awaited from another processor)
and overhead caused by synchronising threads at the batch’s end (see [7] for details).

EM-PGCB processes each microchunk similarly as in EM-CB but differentiates between
messages that are sent (i) within a microchunk, (ii) between microchunks of the same batch
(iii) and microchunks processed later. Each class is transported using an optimised data
structure (see below) and only type (ii) messages introduce dependencies between parallel
executions and are resolved as follows: each processor retrieves the messages that are sent
to its next trade and checks whether all information required is available by comparing the
number of messages to the active nodes’ degrees. If data is missing the trade is skipped and
later executed by the processor that adds the last missing neighbour.

For graphs with m = O(M?/B) edges®, we optimise the communication structure for
type (iii) messages. Observe that EM-PGCB sends messages only to the current and
the subsequent round. We partition a round into k macrochunks each consisting of O(n/k)
contiguous trades. An external memory queue is used for each macrochunk to buffer messages
sent to it; in total, this requires O(kB) internal memory. Before processing a macrochunk, all
its messages are loaded into IM, subsequently sorted and arranged such that missing messages
can be directly placed to the position they are required in. This can also be overlapped
with the processing of the previous macrochunk. The number k£ of macrochunks should be
as small as possible to reduce overheads, but sufficiently large such that all messages of a
macrochunk fit into main memory (see [7] for details).

» Theorem 7. EM-PGCB requires O(r - [sort(n) + sort(m)]) I/Os to perform r global trades.

Proof. Observe that we can analyse each of the r rounds individually. A constant amount
of auxiliary data is needed per node to provision gaps for missing data, to detect whether a

8 j.e. given one node in a single trade, the other is uniformly chosen among the remaining nodes.

9 Even with as little as 1 GiB of internal memory, several billion edges are supported.

https://github.com/hthetran/networkit
https://github.com/hthetran/networkit
https://github.com/massive-graphs/extmem-lfr

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner

@ [MaxDeg 25] Maximum dependent edges [MaxDeg 750] Maximum dependent edges

s —— ES

< 10 CBU 10-1 4

g —— CBG

2 — ES

=1 CBU

Z 1072 4 -2

g1 1073 5 cBG

_ 2’0 2'1 2'2 2'3 2'0 2'1 2'2 2'3
Thinning Thinning

Figure 5 Fraction of edges still correlated as a function of the thinning parameter k for graphs

with n = 2-10% nodes and degree distribution PLD ([a,b),~) with v = 2, ¢ = 5, and b € {25, 750}.

The (not thinned) long Markov chains of edge switching (ES), uniform Curveball (CBU) and global
Curveball (CBG) contain 6000 super steps each.

trade can be executed and (if required) to invert the permutation. This accounts for ©(n)
messages requiring sort(n) I/Os to be delivered. Using an ordinary PQ, the analysis of
EM-CB (see Lemma 5) carries over, requiring sort(m) I/Os for a global trade. <

5 Experimental Evaluation

In this section we evaluate the quality of the proposed algorithms and analyse the runtime
of our C++ implementations.'® EM-CB, IM-CB, EM-GCB are designed as modules of
NetworKit [33]; due to their superior performance, only the latter two were added to
the library and are available since release 4.6. EM-PGCB’s implementation is developed
separately and facilitates external memory data structures and algorithms of STXXL [9].
Intuitively, graphs with skewed degree distributions are hard instances for Curveball since
it shuffles and reassigns the disjoint neighbours of two trading nodes. Hence, limited progress
is achieved if a high-degree node trades with a low-degree node. Since our experiments
support this hypothesis, we focus on graphs with powerlaw degree distributions as difficult
but highly relevant graph instances. Our experiments use two parameter sets:
(lin) — The maximal possible degree scales linearly as a function of the number n of
nodes. The degree distribution PLD ([a, b),~y) is chosen as a = 10, b = n/20 and v = 2.
(const) — The extremal degrees are kept constant. In this case the parameters are chosen
as a = 50, b = 10000 and ~ = 2.
We select these configurations to be comparable with [15] where both parameter sets are
used to evaluate EM-ES. The first setting (lin) considers the increasing average degree
of real-world networks as they grow. The second setting (const) approximates the degree
distribution of the Facebook network in May 2011 (refer to [14] for details). Runtimes are
measured on the following off-the-shelf machine: Intel Xeon E5-2630 v3 (8 cores at 2.40GHz),
64GB RAM, 2x Samsung 850 PRO SATA SSD (1 TB), Ubuntu Linux 16.04, GCC 7.2.

5.1 Mixing of Edge-Switching, Curveball and Global Curveball

We are not aware of any practical theoretical bounds on the mixing time of Markov chains of
Curveball, Global Curveball or edge switching (see section 3). Hence, we quantitatively study
the progress made by Curveball trades compared to edge switching and approximate the

10 Code used for the presented benchmarks can be found at our fork https://github.com/hthetran/
networkit (IM-CB and EM-CB) and https://github.com/massive-graphs/extmem-1fr (EM-PGCB).

11:11

ESA 2018

11:12

Randomisation of Massive Networks using Global Curveball Trades

mixing time of the underlying Markov chains by a method developed in [30]. This criterion
is a more sensitive proxy to the mixing time than previously used alternatives, such as the
local clustering coefficient, triangle count and degree assortativity [14].

Intuitively, one determines the number of Markov chain steps required until the correlation
to the initial state decays. Starting from an initial graph Gy, the Markov chain is executed
for a large number of steps, yielding a sequence (G¢);>o of graphs evolving over time. For
each occurring edge e, we compute a boolean vector (Z ;);>o where a 1 at position ¢ indicates
that e exists in graph G;. We then derive the k-thinned series (th)tzo only containing
every k-th entry of the original vector (Z. ;):>0 and use k as a proxy for the mixing time.

To determine if & Markov chain steps suffice for edge e to lose the correlation to the
initial graph, the empirical transition probabilities of the k-thinned series (Z. f,t)tzo are fitted
to both an independent and a Markov model respectively. If the independent model is a
better fit, we deem edge e to be independent.

The results presented here consider only small graphs due to the high computational cost
involved. However, additional experiments suggest that the results hold for graphs at least
one order of magnitude larger which is expected as powerlaw distributions are scale-free.

We compare a sequence of uniform (single) trades, global trades and edge switching
and visually align the results of these schemes by defining a super step. Depending on the
algorithm a super step corresponds to either a single global trade, n/2 uniform trades or m
edge-swaps. Comparing n/2 uniform trades with a global trade seems sensible since a global
trade consists of exactly n/2 single trades, furthermore randomising with n/2 single trades
considers the state of 2m edges which is also true for m edge-swaps. The alignment accounts
for the fact that a single Curveball Markov chain step may execute multiple neighbour
switches, thus easily outperforming ESMC in a step-by-step comparison.

Fig. 5 contains a selection of results obtained for small powerlaw graph instances using
this method (see [7] for the complete dataset). Progress is measured by the fraction of edges
that are still classified as correlated, i.e. the faster a method approaches zero the better the
randomisation. We omit an in-depth discussion of uniform trades and rather focus on global
trades which consistently outperform the former (cf. section 3.2).

In all settings ESMC shows the fastest decay. The gap towards global trades growths
temporarily as the maximal degree is increased which is consistent with our initial claim
that skewed degree distributions are challenging for Curveball. The effect is however limited
and in all cases performing 4 global trades for each edge switching super step gives better
results. This is a pessimistic interpretation since typically 10m to 100m edge switches are
used to randomise graphs in practice; in this domain global trades perform similarly well
and 20 global trades consistently give at least the quality of 10m edge switches.

5.2 Runtime performance benchmarks

We measure the runtime of the algorithms proposed in section 4 and compare them to two
state-of-the-art edge switching schemes (using the authors’ C++ implementations):
VL-ES is a sequential IM algorithm with a hashing-based data structure optimised for
efficient neighbourhood queries and updates [37]. To achieve comparability, we removed
connectivity tests, fixed memory management issues, and adopted the number of swaps.
EM-ES is an EM edge switching algorithm and part of EM-LFR’s toolchain [15].

We carry out experiments using the (const) and (lin) parameter sets, and limit the
problem sizes for internal memory algorithms to avoid exhaustion of the main memory. For

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner

Parameter set: (const) Parameter set: (lin)

| —$— EM-CB 3 |
EMG-CB 10
—4— IM-CB
—— VL-ES

—¥— EM-ES

—_
<,

Time / edge / super step [ns]

—— EM-PGCB
10? H/’_f—kT/ - - 102+ - — | - -
106 107 108 10° 10%0 10° 106 107 108 10° 1010
Number m of edges Number m of edges

Figure 6 Runtime per edge and super step (global trade or m edge swaps) of the proposed
algorithms IM-CB, EM-CB and EM-PGCB compared to state-of-the-art IM edge switching VL-ES
and EM edge switching EM-ES. Each data point is the median of § > 5 runs over 10 super steps
each. The left plot contains the (const)-parameter set, the right one (lin). Observe that the super
steps of different algorithms advance the randomisation process at different speeds (see discussion).

each data point we carry out 10 super steps (i.e. 10 global trades or 10m edge swaps) on a
graph generated with Havel-Hakimi from a random powerlaw degree distribution.

Figure 6 presents the walltime per edge and super step including pre-computation®!
required by the algorithms but excluding the initial graph generation process. The plots
include (mostly small) errorbars corresponding to the unbiased estimation of the standard
deviation of S repetitions per data point (with different random seeds).

The number k of macrochunks does not significantly affect EM-PGCB’s performance
for small graphs due to comparably high synchronisation cost. In contrast, adjusting k for
larger graphs can noticeably increase the performance of EM-PGCB. We thus experimentally
determined the value k = 32 for both (const) and (Ilin) with n = 107 nodes and use that
value for all other instances.

All Curveball algorithms outperform their direct competitors significantly — even if we

pessimistically executed two global trades for each edge switching super step (see section 5.1).

For large instances of (const) EM-PGCB carries out one super step 14.3 times faster than
EM-ES and 5.8 times faster for (lin). EM-PGCB also shows a superior scaling behaviour
with an increasing speed-up for larger graphs. Similarly, IM-CB processes super steps up to
6.3 times faster than VL-ES on (const) and 5.1 times on (lin).

On our test machine, the implementation of IM-CB outperforms EM-CB in the internal
memory regime; EM-GCB is faster for large graphs. As indicated in [7], this changes
qualitatively for machines with slower main memory and smaller cache; on such systems the
unstructured I/O of IM-CB and VL-ES is more significant rendering EM-CB and EM-GCB
the better choice with a speed-up factor exceeding 8 compared to VL-ES.

6 Conclusion and outlook

We applied global Curveball trades to undirected graphs simplifying the algorithmic treatment
of dependencies and showed that the underlying Markov chain converges to a uniform
distribution. Experimental results show that global trades yield an improved quality compared
to a sequence of uniform trades of the same size.

1 For VL-ES we report only the swapping process and the generation of the internal data structures.

11:13

ESA 2018

11:14

Randomisation of Massive Networks using Global Curveball Trades

We presented IM-CB and EM-CB, the first efficient algorithms for Simple Undirected

Curveball algorithms; they are optimised for internal and external memory respectively.
Our I/O-efficient parallel algorithm EM-PGCB exploits the properties of global trades and
executes a super step 14.3 times faster than the state-of-the-art edge switching algorithm
EM-ES; for IM-CB we demonstrate speed-ups of up to 6.3 (in a conservative comparison the
speed-ups should be halved to account for the differences in mixing times of the underlying
Markov chains). The implementations of all three algorithms are freely available and are in
the process of being incorporated into EM-LFR and considered for NetworKit.

—— References

1

10

11
12

13

14

15

16

17

18

A. Aggarwal, J. Vitter, et al. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116-1127, 1988. doi:10.1145/48529.48535.

L. Arge. The buffer tree: A new technique for optimal I/O-algorithms, pages 334-345.
Springer Berlin Heidelberg, 1995. doi:10.1007/3-540-60220-8_74.

A. Beckmann, R. Dementiev, and J. Singler. Building a parallel pipelined external memory
algorithm library. In IPDPS’09, 2009. doi:10.1109/IPDPS.2009.5161001.

C. J. Carstens. Proof of uniform sampling of binary matrices with fixed row sums and
column sums for the fast curveball algorithm. Physical Review E, 91:042812, 2015.

C. J. Carstens. Topology of Complex Networks: Models and Analysis. PhD thesis, RMIT
University, January 2016.

C. J. Carstens, A. Berger, and G. Strona. Curveball: a new generation of sampling al-
gorithms for graphs with fixed degree sequence. CoRR, 2016. arXiv:1609.05137.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Parallel
and I/O-efficient randomisation of massive networks using global curveball trades. CoRR,
abs/1804.08487, 2018.

G. W. Cobb and Y.-P. Chen. An application of markov chain monte carlo to community
ecology. The American Mathematical Monthly, 110(4):265-288, 2003.

R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template library for XXL
data sets. Software: Practice and Experience, 38(6):589-637, 2008. doi:10.1002/spe.844.
R. B. Eggleton and D. A. Holton. Simple and multigraphic realizations of degree sequences,
pages 155—172. Springer Berlin Heidelberg, 1981. doi:10.1007/BFb0091817.

P. Erdés and A. Rényi. On random graphs 1. Publicationes Mathematicae Debrecen, 1959.
C. Greenhill. A polynomial bound on the mixing time of a markov chain for sampling
regular directed graphs. The Electronic Journal of Combinatorics, 18(1):P234, 2011.

C. Greenhill. The switch markov chain for sampling irregular graphs: Extended abstract.
In Proceedings of SODA ’15, pages 15641572, 2015.

M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-efficient generation
of massive graphs following the LFR benchmark. CoRR, 2017. arXiv:1604.08738.

M. Hamann, U. Meyer, M. Penschuck, and D. Wagner. I/O-efficient generation of massive
graphs following the LFR benchmark. In ALENEX, 2017. doi:10.1137/1.9781611974768.
F. Torio, M. Bernardo-Faura, A. Gobbi, T. Cokelaer, G. Jurman, and J. Saez-Rodriguez.
Efficient randomization of biological networks while preserving functional characterization
of individual nodes. BMC bioinformatics, 17(1):542, 2016.

S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. Subgraphs in random networks.
Physical review F, 68:026127, Aug 2003. doi:10.1103/PhysRevE.68.026127.

A. Lancichinetti and S. Fortunato. Benchmarks for testing community detection algorithms
on directed and weighted graphs with overlapping communities. Phys. Rev. E, 80:016118,
Jul 2009. doi:10.1103/PhysRevE.80.016118.

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1007/3-540-60220-8_74
http://dx.doi.org/10.1109/IPDPS.2009.5161001
http://arxiv.org/abs/1609.05137
http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1007/BFb0091817
http://arxiv.org/abs/1604.08738
http://dx.doi.org/10.1137/1.9781611974768
http://dx.doi.org/10.1103/PhysRevE.68.026127
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1007/3-540-36574-5

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community
detection algorithms. Phys. Rev. E, 78:046110, 2008. doi:10.1103/PhysRevE.78.046110.
D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mizing times. American
Mathematical Society, Providence, Rhode Island, 2009.

A. Maheshwari and N. Zeh. A Survey of Techniques for Designing 1/O-Efficient Algorithms,
pages 36-61. Springer Berlin Heidelberg, 2003.

U. Meyer, P. Sanders, and J. Sibeyn. Algorithms for Memory Hierarchies: Advanced Lec-
tures. Springer Berlin Heidelberg, 2003. doi:10.1007/3-540-36574-5.

C. G. M. Mihail and E. Zegura. The markov chain simulation method for generating
connected power law random graphs. In Proceedings of ALENEX ’038. STAM, 2003.

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform
generation of random graphs with prescribed degree sequences. CoRR, 2003. arXiv:
cond-mat/0312028.

M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence.
Random Struct. Algorithms, 6(2/3):161-179, 1995.

M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review,
45(2):167-256, 2003. doi:10.1137/5003614450342480.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distributions and their applications. Phys. Rev. E, 64:026118, Jul 2001. doi:10.1103/
PhysRevE.64.026118.

R. Pagh. Basic external memory data structures, pages 36-61. Springer Berlin Heidelberg,
2003.

J. Ray, A. Pinar, and C. Seshadhri. Are We There Yet? When to Stop a Markov Chain
while Generating Random Graphs, pages 153—-164. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-30541-2_12.

J. Ray, A. Pinar, and C. Seshadhri. A stopping criterion for markov chains when generating
independent random graphs. J. of Compl. Net., 3(2), 2015. doi:10.1093/comnet/cnu041.
W. E. Schlauch, E. A. Horvét, and K. A. Zweig. Different flavors of randomness: comparing
random graph models with fixed degree sequences. Social Network Analysis and Mining,
5(1):1-14, 2015. doi:10.1007/s13278-015-0267~-z.

W. E. Schlauch and K. A. Zweig. Influence of the null-model on motif detection. In
ASONAM’15, NY, USA, 2015. ACM. doi:10.1145/2808797.2809400.

C. L. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: A tool suite for large-scale
complex network analysis. Network Science, 4(04), 2016. doi:10.1017/nws.2016.20.

S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268, 2001.

G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz. A fast and
unbiased procedure to randomize ecological binary matrices with fixed row and column
totals. Nature Communications, 5:4114—, 2014. doi:10.1038/ncomms5114.

N. D. Verhelst. An efficient MCMC algorithm to sample binary matrices with fixed mar-
ginals. Psychometrika, 73(4):705-728, 2008.

F. Viger and M. Latapy. Fast generation of random connected graphs with prescribed

degrees. CoRR, feb 2005. Source code available at https://www-complexnetworks.1lip6.

fr/~latapy/FV/generation.html. arXiv:cs/0502085.

11:15

ESA 2018

http://arxiv.org/abs/cond-mat/0312028
http://arxiv.org/abs/cond-mat/0312028
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1093/comnet/cnu041
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.1145/2808797.2809400
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1038/ncomms5114
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
http://arxiv.org/abs/cs/0502085

Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of ESA 2018
(LIPlcs, volume 112, http://www.dagstuhl.de/dagpub/978-3-95977-081-1 published in
August, 2018), in which the concept of global trades is now correctly attributed to Carstens,
Berger, Strona. Curveball: a new generation of sampling algorithms for graphs with fixed degree
sequence. arXiv:1609.05137.

Dagstuhl Publishing — August 27, 2018.

Space-Optimal Quasi-Gray Codes with
Logarithmic Read Complexity

Diptarka Chakraborty

Computer Science Institute of Charles University, Prague, Czech Republic
diptarka@iuuk.mff.cuni.cz

Debarati Das

Computer Science Institute of Charles University, Prague, Czech Republic
debaratix710@Qgmail.com

Michal Koucky

Computer Science Institute of Charles University, Prague, Czech Republic
koucky@iuuk.mff.cuni.cz

Nitin Saurabh

Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
nsaurabh@mpi-inf.mpg.de

——— Abstract

A quasi-Gray code of dimension n and length £ over an alphabet X is a sequence of distinct words
w1, Wa, . .., wp from X™ such that any two consecutive words differ in at most ¢ coordinates, for
some fixed constant ¢ > 0. In this paper we are interested in the read and write complexity of
quasi-Gray codes in the bit-probe model, where we measure the number of symbols read and
written in order to transform any word w; into its successor w;4.

We present construction of quasi-Gray codes of dimension n and length 3™ over the ternary
alphabet {0, 1,2} with worst-case read complexity O(logn) and write complexity 2. This gener-
alizes to arbitrary odd-size alphabets. For the binary alphabet, we present quasi-Gray codes of
dimension n and length at least 2" — 20n with worst-case read complexity 6 + logn and write
complexity 2. This complements a recent result by Raskin [Raskin ’'17] who shows that any
quasi-Gray code over binary alphabet of length 2" has read complexity Q(n).

Our results significantly improve on previously known constructions and for the odd-size
alphabets we break the (n) worst-case barrier for space-optimal (non-redundant) quasi-Gray
codes with constant number of writes. We obtain our results via a novel application of algebraic
tools together with the principles of catalytic computation [Buhrman et al. ’14, Ben-Or and
Cleve ’92, Barrington '89, Coppersmith and Grossman ’75].

2012 ACM Subject Classification Theory of computation — Cell probe models and lower
bounds

Keywords and phrases Gray code, Space-optimal counter, Decision assignment tree, Cell probe
model

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.12
Related Version [8], https://arxiv.org/abs/1712.01834

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC
Grant Agreement no. 616787. The third author was also partially supported by the Center
of Excellence CE-ITI under the grant P202/12/G061 of GA CR.

© Diptarka Chakraborty, Debarati Das, Michal Koucky, and Nitin Saurabh;
37 licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 12; pp. 12:1-12:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@iuuk.mff.cuni.cz
mailto:debaratix710@gmail.com
mailto:koucky@iuuk.mff.cuni.cz
mailto:nsaurabh@mpi-inf.mpg.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.12
https://arxiv.org/abs/1712.01834
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

Acknowledgements Authors would like to thank Gerth Stelting Brodal for bringing the problem
to our attention, and to Petr Gregor for giving a talk on space-optimal counters in our seminar,
which motivated this research. Authors thank Meena Mahajan and Venkatesh Raman for pointing
out the result in [39]. We also thank anonymous reviewers for helpful suggestions that improved
the presentation of the paper.

1 Introduction

One of the fundamental problems in the domain of algorithm design is to list down all the
objects belonging to a certain combinatorial class. Researchers are interested in efficient
generation of a list such that an element in the list can be obtained by a small amount of
change to the element that precedes it. One of the classic examples is the binary Gray code
introduced by Gray [23], initially used in pulse code communication. The original idea of a
Gray code was to list down all binary strings of length n, i.e, all the elements of Z%, such
that any two successive strings differ by exactly one bit. The idea was later generalized
for other combinatorial classes (e.g. see [37, 28]). Gray codes have found applications in a
wide variety of areas, such as information storage and retrieval [9], processor allocation [10],
computing the permanent [37], circuit testing [41], data compression [40], graphics and
image processing [1], signal encoding [32], modulation schemes for flash memories [26, 22, 44]
and many more. Interested reader may refer to an excellent survey by Savage [42] for a
comprehensive treatment on this subject.

In this paper we study the construction of Gray codes over Z;, for any m € N. Originally,
Gray codes were meant to list down all the elements from its domain but later studies
(e.g. [20, 38, 5, 6]) focused on the generalization where we list ¢ distinct elements from the
domain, each two consecutive elements differing in one position. We refer to such codes
as Gray codes of length ¢ [20]. When the code lists all the elements from its domain it is
referred to as space-optimal. It is often required that the last and the first strings appearing
in the list also differ in one position. Such codes are called cyclic Gray codes. Throughout
this paper we consider only cyclic Gray codes and we refer to them simply as Gray codes.
Researchers also study codes where two successive strings differ in at most ¢ positions, for
some fixed constant ¢ > 0, instead of differing in exactly one position. Such codes are called
quasi-Gray codes [5]' or c-Gray codes.

We study the problem of constructing quasi-Gray codes over Z7, in the cell probe
model [43], where each cell stores an element from Z,,. The efficiency of a construction is
measured using three parameters. First, we want the length of a quasi-Gray code to be as
large as possible. Ideally, we want space-optimal codes. Second, we want to minimize the
number of coordinates of the input string the algorithm reads in order to generate the next
(or, previous) string in the code. Finally, we also want the number of cells written in order
to generate the successor (or, predecessor) string to be as small as possible. Since our focus
is on quasi-Gray codes, the number of writes will always be bounded by a universal constant.
We are interested in the worst-case behavior and we use decision assignment trees (DAT) of
Fredman [20] to measure these complexities.

The second requirement of the above is motivated from the study of loopless generation
of combinatorial objects. In the loopless generation we are required to generate the next
string from the code in constant time. Different loopless algorithms to generate Gray codes

! Readers may note that the definition of quasi-Gray code given in [20] was different. The code referred
as quasi-Gray code by Fredman [20] is called Gray code of length ¢ where £ < m™, in our notation.

D. Chakraborty, D. Das, M. Koucky, and N. Saurabh

are known in the literature [17, 4, 28]. However, those algorithms use extra memory cells
in addition to the space required for the input string which makes it impossible to get a
space-optimal code from them. More specifically, our goal is to design a decision assignment
tree on n variables to generate a code over the domain Z, . If we allow extra memory cells
(as in the case of loopless algorithms) then the corresponding DAT will be on n + b variables,
where b is the number of extra memory cells used.

Although there are known quasi-Gray codes with logarithmic read complexity and
constant write complexity [20, 38, 5, 6], none of these constructions is space-optimal. The
best result misses at least 2"~ strings from the domain when having read complexity
t+O(logn) [6]. Despite of an extensive research under many names, e.g., construction of Gray
codes [20, 36, 16, 24], dynamic language membership problem [19], efficient representation of
integers [38, 6], so far we do not have any quasi-Gray code of length 2" — 2", for some constant
€ < 1, with worst-case read complexity o(n) and write complexity o(n). The best worst-case
read complexity for space-optimal Gray code is n — 1 [21]. Recently, Raskin [39] showed that
any space-optimal quasi-Gray code over the domain Z% must have read complexity (n).
This lower bound is true even if we allow non-constant write complexity. It is worth noting
that this result can be extended to the domain Z7}, when m is even.

In this paper we show that such lower bound does not hold for quasi-Gray codes over Z,,,
when m is odd. In particular, we construct space-optimal quasi-Gray codes over {0,1,2}"
with read complexity 4logs n and write complexity 2. As a consequence we get an exponential
separation between the read complexity of space-optimal quasi-Gray code over Z3 and that
over Z%.

» Theorem 1. Let m € N be odd and n € N be such that n > 15. Then, there is a space-
optimal quasi-Gray code C' over ZI, for which, the two functions next(C,w) and prev(C,w)
can be implemented by inspecting at most 4log,, n cells while writing only 2 cells.

In the statement of the above theorem, next(C,w) denotes the element appearing after
w in the cyclic sequence of the code C, and analogously, prev(C,w) denotes the preceding
element. Using the argument as in [20, 36] it is easy to see a lower bound of 2 (log,, n) on
the read complexity when the domain is Z7),. Hence our result is optimal up to some small
constant factor.

Raskin shows Q(n) lower bound on the read complexity of space-optimal binary quasi-
Gray codes. The existence of binary quasi-Gray codes with sub-linear read complexity of
length 2™ — 2" for some constant € < 1, was open. Using a different technique than that
used in the proof of Theorem 1 we get a quasi-Gray code over the binary alphabet which
enumerates all but O(n) many strings. This result generalizes to the domain Zj for any
prime power q.

» Theorem 2. Let n > 15 be any natural number. Then, there is a quasi-Gray code C' of
length at least 2™ — 20n over ZY, such that the two functions next(C,w) and prev(C,w) can
be implemented by inspecting at most 6 + logn cells while writing only 2 cells.

We remark that the points that are missing from C in the above theorem are all of the
form {0’ 1}O(logn)0n—0(logn).

If we are allowed to read and write constant fraction of n bits then Theorem 2 can be
adapted to get a quasi-Gray code of length 2" — O(1) (see Section 5). In this way we get a
trade-off between length of the quasi-Gray code and the number of bits read in the worst-case.
All of our constructions can be made uniform.

Using the Chinese Remainder Theorem (cf. [14]), we also develop a technique that allows
us to compose Gray codes over various domains. Hence, from quasi-Gray codes over domains

12:3

ESA 2018

12:4

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

Loy, s Ly - -+ > Ly, » Where my;’s are pairwise co-prime, we can construct quasi-Gray codes
/
over Z , where m = mj - mg---my. Using this technique on our main results, we get a

quasi-Gray code over Z", for any m € N that misses only O(n - o") strings where m = 20
for an odd o, while achieving the read complexity similar to that stated in Theorem 1. It is
worth mentioning that if we get a space-optimal quasi-Gray code over the binary alphabet
with non-trivial savings in read complexity, then we will have a space-optimal quasi-Gray
code over the strings of alphabet Z,, for any m € N with similar savings.

The technique by which we construct our quasi-Gray codes relies heavily on simple algebra
which is a substantial departure from previous mostly combinatorial constructions. We view
Gray codes as permutations on Z7}, and we decompose them into & simpler permutations on
Zy,, each being computable with read complexity 3 and write complexity 1. Then we apply
a different composition theorem, than mentioned above, to obtain space-optimal quasi-Gray
n’ = n+logk, with read complexity O(1) + log k and write complexity 2.
The main issue is the decomposition of permutations into few simple permutations. This is
achieved by techniques of catalytic computation [7] going back to the work of Coppersmith
and Grossman [13, 2, 3].

It follows from the work of Coppersmith and Grossman [13] that our technique is incapable
of designing a space-optimal quasi-Gray code on Zgl as any such code represents an odd
permutation. The tools we use give inherently only even permutations. However, we can
construct quasi-Gray codes from cycles of length 2" — 1 on Z% as they are even permutations.
Indeed, that is what we do for our Theorem 2. We note that any efficiently computable odd

!
n
codes on Z7,,

permutation on Z%, with say read complexity (1 — €)n and write complexity O(1), could
be used together with our technique to construct a space-optimal quasi-Gray code on Zg/
with read complexity at most (1 — ¢’)n’ and constant write complexity. This would represent
a major progress on space-optimal Gray codes. (We would compose the odd permutation
with some even permutation to obtain a full cycle on Z5. The size of the decomposition of
the even permutation into simpler permutations would govern the read complexity of the
resulting quasi-Gray code.)

Interestingly, Raskin’s result relies on showing that a decision assignment tree of sub-linear
read complexity must compute an even permutation.

1.1 Related works

The construction of Gray codes is central to the design of algorithms for many combinatorial
problems [42]. Frank Gray [23] first came up with a construction of Gray code over binary
strings of length n, where to generate the successor or predecessor strings one needs to read
n bits in the worst-case. The type of code described in [23] is known as binary reflected
Gray code. Later Bose et al. [5] provided a different type of Gray code construction, namely
recursive partition Gray code which attains O(logn) average case read complexity while
having the same worst-case read requirements. The read complexity we referred here is in
the bit-probe model. It is easy to observe that any space-optimal binary Gray code must
read logn + 1 bits in the worst-case [20, 36, 21]. Recently, this lower bound was improved to
n/2 in [39]. An upper bound of even n — 1 was not known until very recently [21]. This is
also the best known so far.

Fredman [20] extended the definition of Gray codes by considering codes that may not
enumerate all the strings (though presented in a slightly different way in [20]) and also
introduced the notion of decision assignment tree (DAT) to study the complexity of any
code in the bit-probe model. He provided a construction that generates a Gray code of
length 2™ for some constant ¢ < 1 while reducing the worst-case bit-read to O(logn). Using

D. Chakraborty, D. Das, M. Koucky, and N. Saurabh

Table 1 Taxonomy of construction of Gray/quasi-Gray codes over Z,.

Reference | Value of m | length Worst-case cell read | Worst-case cell write
[23] 2 2" n 1
[20] 2 20(m) O(logn) o(1)
[19] 2 (2" /n) logn+1 logn +1
[38] 2 A logn + 4 4
5] 2 2" — O(2"/n") | O(tlogn) 3
[6] 2 2m — gnt logn+t+3 2
[6] 2 2" —2nt logn + ¢+ 2 3
[21] 2 2" n—1 1

Theorem 2 2 2" — O(n) logn +4 2
[12] any m m" n 1

Theorem 1 | any odd m | m"™ 4log,, n+3 2

the idea of Lucal’s modified reflected binary code [31], Munro and Rahman [38] got a code
of length 2"~ ! with worst-case read complexity only 4 + logn. However in their code two
successive strings differ by 4 coordinates in the worst-case, instead of just one and we refer
to such codes as quasi-Gray codes following the nomenclature used in [5].
[6] extended the results of [38] by constructing a quasi-Gray code of length 2™ — 2"~ for
arbitrary 1 < ¢ < n —logn — 1, that has ¢t + 3 + logn bits (¢t + 2 4 logn bits) worst-case read
complexity and any two successive strings in the code differ by at most 2 bits (3 bits).

In contrast to the Gray codes over binary alphabets, Gray codes over non-binary alphabets
received much less attention. The construction of binary reflected Gray code was generalized
to the alphabet Z,, for any m € N in [18, 12, 27, 40, 28, 25]. However, each of those
constructions reads n coordinates in the worst-case to generate the next element. As
mentioned before, we measure the read complexity in the well studied cell probe model [43]
where we assume that each cell stores an element of Z,,. The argument of Fredman in [20]
implies a lower bound of Q(log,, n) on the read complexity of quasi-Gray code on Z,. To
the best of our knowledge, for non-binary alphabets, there is nothing known similar to the
results of Munro and Rahman or Brodal et al. [38, 6]. We summarize the previous results
along with ours in Table 1.

Additionally, many variants of Gray codes have been studied in the literature. A particular
one that has garnered a lot of attention in the past 30 years is the well-known middle levels
conjecture. See [33, 34, 35, 24], and the references therein. It has been established only
recently [33]. The conjecture says that there exists a Hamiltonian cycle in the graph induced
by the vertices on levels n and n + 1 of the hypercube graph in 2n + 1 dimensions. In
other words, there exists a Gray code on the middle levels. Miitze et al. [34, 35] studied the
question of efficiently enumerating such a Gray code in the word RAM model. They [35]
gave an algorithm to enumerate a Gray code in the middle levels that requires O(n) space
and on average takes O(1) time to generate the next vertex. In this paper we consider the
bit-probe model, and Gray codes over the complete hypercube. It would be interesting to
know whether our technique can be applied for the middle level Gray codes.

1.2 Our technique

Our construction of Gray codes relies heavily on the notion of s-functions defined by
Coppersmith and Grossman [13]. An s-function is a permutation 7 on Z”, defined by
a function f : Z3 — Z,, and an (s + 1)-tuple of indices i1,1is,...,45,7 € [n] such that

S
m

Brodal et al.

12:5

ESA 2018

12:6

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

T((z1,22,...,20)) = ((x1,22, ..., xj—1, 2 + f(@iy, ..., Ti,), Tj41, ..., Tn)), Where the addi-
tion is inside Z,,. Each s-function can be computed by some decision assignment tree that
given a vector & = (x1,Za,...,T,), inspects s + 1 coordinates of x and then it writes into a

single coordinate of x.

A counter C' (quasi-Gray code) on Z7, can be thought of as a permutation on Z},. Our
goal is to construct some permutation « on Z7, that can be written as a composition of
2-functions a,...,qp, i.e., € = QpoQE_1 0+ 0 Q.

Given such a decomposition, we can build another counter C” on Z7 " where r = [log,, k],
for which the function next(C’, x) operates as follows. The first r-coordinates of serve as an
instruction pointer i € [m”] that determines which «; should be executed on the remaining n
coordinates of z. Hence, based on the current value ¢ of the r coordinates, we perform «; on
the remaining coordinates and then we update the value of ¢ to i + 1. (For i > k we can
execute the identity permutation which does nothing.)

We can use known Gray codes on Z;, to represent the instruction pointer so that when
incrementing ¢ we only need to write into one of the coordinates. This gives a counter C”
which can be computed by a decision assignment tree that reads r + 3 coordinates and writes
into 2 coordinates of z. (A similar composition technique is implicit in Brodal et al. [6].) If C
is of length ¢ = m™ —t, then C" is of length m™*" —tm". In particular, if C is space-optimal
then so is C”.

Hence, we reduce the problem of constructing 2-Gray codes to the problem of designing
large cycles in Z7, that can be decomposed into 2-functions. Coppersmith and Grossman [13]
studied precisely the question of, which permutations on Z% can be written as a composition
of 2-functions. They show that a permutation on Z5 can be written as a composition of
2-functions if and only if the permutation is even. Since Z3 is of even size, a cycle of length
2™ on Zy is an odd permutation and thus it cannot be represented as a composition of
2-functions. However, their result also implies that a cycle of length 2" — 1 on Z% can be
decomposed into 2-functions.

We want to use the counter composition technique described above in connection with a
cycle of length 2" — 1. To maximize the length of the cycle C' in Z5 ™", we need to minimize
k, the number of 2-functions in the decomposition. By a simple counting argument, most
cycles of length 2™ — 1 on Z% require k to be exponentially large in n. This is too large for
our purposes. Luckily, there are cycles of length 2" — 1 on Z7 that can be decomposed into
polynomially many 2-functions, and we obtain such cycles from linear transformations.

There are linear transformations Z4§ — Z% which define a cycle on Z7 of length 2" — 1.
For example, the matrix corresponding to the multiplication by a fixed generator of the
multiplicative group F3,. of the Galois field GF[2"] is such a matrix. Such matrices are full
rank and they can be decomposed into O(n?) elementary matrices, each corresponding to a
2-function. Moreover, there are matrices derived from primitive polynomials that can be
decomposed into at most 4n elementary matrices.? We use them to get a counter on Zg/
of length at least 27" — 20n’ whose successor and predecessor functions are computable by
decision assignment trees of read complexity < 6+logn’ and write complexity 2. Such counter
represents 2-Gray code of the prescribed length. For any prime ¢, the same construction
yields 2-Gray codes of length at least q"/ — 5¢*n’ with decision assignment trees of read
complexity <6 + log, n' and write complexity 2.

2 Primitive polynomials were previously also used in a similar problem, namely to construct shift-register
sequences (see e.g. [28]).

D. Chakraborty, D. Das, M. Koucky, and N. Saurabh

The results of Coppersmith and Grossman [13] can be generalized to Z”, as stated in
Richard Cleve’s thesis [11].> For odd m, if a permutation on Z7, is even then it can be
decomposed into 2-functions. Since m” is odd, a cycle of length m™ on Z}, is an even
permutation and so it can be decomposed into 2-functions. If the number & of those functions
is small, so the log,, k is small, we get the sought after counter with small read complexity.
However, for most cycles of length m™ on Z7, k is exponential in n.

We show though, that there is a cycle « of length m™ on Zj, that can be decomposed
into O(n?) 2-functions. This in turn gives space-optimal 2-Gray codes on Z?,; with decision
assignment trees of read complexity O(log,, n’) and write complexity 2.

We obtain the cycle a and its decomposition in two steps. First, for ¢ € [n], we consider
the permutation o; on Z? which maps each element 0°~!ay onto 0°~!(a + 1)y, for a € Z,,
and y € Z"~* while other elements are mapped to themselves. Hence, a; is a product of
m"~? disjoint cycles of length m. We show that oo = v, 0 a1 © -+ - 0 1 is a cycle of length
m™. In the next step we decompose each «; into O(n?) 2-functions.

For i < n — 2, we can decompose «; using the technique of Ben-Or and Cleve [3] and
its refinement in the form of catalytic computation of Buhrman et al. [7]. We can think of
x € Z7, as content of n memory registers, where x1,...,z;_1 are the input registers, z; is
the output register, and x;41,...,x, are the working registers. The catalytic computation
technique gives a program consisting of O(n?) instructions, each being equivalent to a 2-
function, which performs the desired adjustment of x; based on the values of z1,...,z;_1
without changing the ultimate values of the other registers. (We need to increment x; iff
Z1,...,2;—1 are all zero.) This program directly gives the desired decomposition of «;, for
i <n —2. (Our proof in Section 6 uses the language of permutations.)

The technique of catalytic computation fails for a,,_1 and a,, as the program needs at
least two working registers to operate. Hence, for a,,_1 and «a,, we have to develop entirely
different technique. This is not trivial and quite technical but it is nevertheless possible,
thanks to the specific structure of a,,—1 and «,,.

2 Preliminaries

In the rest of the paper we only present constructions of the successor function next(C, w)
for our codes. Since all the operations in those constructions are readily invertible, the same
arguments also give the predecessor function prev(C,w).

Notation: We use the standard notions of groups and fields, and mostly we will use only
elementary facts about them (see [15, 30] for background.). By Z,, we mean the set of
integers modulo m, i.e., Z,, := Z/mZ. Throughout this paper whenever we use addition and
multiplication operation between two elements of Z,,, then we mean the operations within
Zyy, that is modulo m. For any m € N, we let [m] denote the set {1,2,...,m}. Unless stated
otherwise explicitly, all the logarithms we consider throughout this paper are based 2.

Now we define the notion of counters used in this paper.

» Definition 3 (Counter). A counter of length ¢ over a domain D is any cyclic sequence
C = (wy,...,ws) such that wy,...,w, are distinct elements of D. With the counter C' we
associate two functions next(C,w) and prev(C,w) that give the successor and predecessor
element of w in C, that is for i € [{], next(C,w;) = w; where j —i = 1mod ¢, and
prev(C,w;) = wy where i —k = 1 mod ¢. If ¢ = |D|, we call the counter a space-optimal
counter.

3 Unfortunately, there is no written record of the proof.

12:7

ESA 2018

12:8

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

Often elements in the underlying domain D have some “structure” to them. In such cases,
it is desirable to have a counter such that consecutive elements in the sequence differ by a
“small” change in the “structure”. We make this concrete in the following definition.

» Definition 4 (Gray Code). Let Dy,...,D, be finite sets. A Gray code of length ¢ over the
domain D = D; X --- x D, is a counter (wy,...,wy) of length ¢ over D such that any two
consecutive strings w; and w;, j —¢ = 1 mod ¢, differ in exactly one coordinate when viewed
as an n-tuple. More generally, if for some constant ¢ > 1, any two consecutive strings w; and
wj, j —1 = 1mod ¢, differ in at most ¢ coordinates such a counter is called a c-Gray Code.

By a quasi-Gray code we mean c-Gray code for some unspecified fixed ¢ > 0. In the
literature sometimes people do not place any restriction on the relationship between w, and
wy and they refer to such a sequence a (quasi)-Gray code. In their terms, our codes would
be cyclic (quasi)-Gray codes. If £ = |D|, we call the codes space-optimal (quasi-)Gray codes.

Decision Assignment Tree: The computational model we consider in this paper is called
Decision Assignment Tree (DAT). The definition we provide below is a generalization of that
given in [20]. It is intended to capture random access machines with small word size.

Let us fix an underlying domain D™ whose elements we wish to enumerate. In the
following, we will denote an element in D™ by (z1,xa,...,Zy). A decision assignment tree is
a |Dl-ary tree such that each internal node is labeled by one of the variables x1,xo, ..., z,.
Furthermore, each outgoing edge of an internal node is labeled with a distinct element of
D. Each leaf node of the tree is labeled by a set of assignment instructions that set new
(fixed) values to chosen variables. The variables which are not mentioned in the assignment
instructions remain unchanged.

The execution on a decision assignment tree on a particular input vector (x1,...,x,) € D"
starts from the root of the tree and continues in the following way: at a non-leaf node labeled
with a variable x;, the execution queries x; and depending on the value of x; the control passes
to the node following the outgoing edge labeled with the value of x;. Upon reaching a leaf,
the corresponding set of assignment statements is used to modify the vector (x1,xa,...,x,)
and the execution terminates. The modified vector is the output of the execution.

Thus, each decision assignment tree computes a mapping from D" into D". We are
interested in decision assignment trees computing the mapping next(C, (z1, zo, ..., z,)) for
some counter C'. When C' is space-optimal we can assume, without loss of generality, that
each leaf assigns values only to the variables that it reads on the path from the root to the
leaf. (Otherwise, the decision assignment tree does not compute a bijection.) We define the
read complezity of a decision assignment tree T', denoted by READ(T'), as the maximum
number of non-leaf nodes along any path from the root to a leaf. Observe that any mapping
from D™ into D™ can be implemented by a decision assignment tree with read complexity n.
We also define the write complexity of a decision assignment tree T, denoted by WRITE(T),
as the maximum number of assignment instructions in any leaf.

Instead of the domain D™, we will sometimes also use domains that are a cartesian
product of different domains. The definition of a decision assignment tree naturally extends
to this case of different variables having different domains.

For any counter C = (wq, ..., wy), we say that C is computed by a decision assignment
tree T if and only if for ¢ € [{], next(C,w;) = T(w;), where T(w;) denotes the output
string obtained after an execution of 7" on w;. Note that any two consecutive strings in the
cyclic sequence of C' differ by at most WRITE(T) many coordinates. For a small constant
¢ > 1, some domain D, and all large enough n, we will be interested in constructing cyclic
counters on D" that are computed by decision assignment trees of write complexity ¢ and
read complexity O(logn). By definition such cyclic counters will necessarily be ¢-Gray codes.

D. Chakraborty, D. Das, M. Koucky, and N. Saurabh

2.1 Construction of Gray codes

For our construction of quasi-Gray codes on a domain D™ with decision assignment trees of
small read and write complexity we will need ordinary Gray codes on a domain D(°s™),
Several constructions of space-optimal binary Gray codes are known where the oldest one is
the binary reflected Gray code [23]. This can be generalized to space-optimal (cyclic) Gray
codes over non-binary alphabets (see e.g. [12, 28]).

» Theorem 5 ([12, 28]). For any m,n € N, there is a space-optimal (cyclic) Gray code over
YA

m

3 Chinese Remainder Theorem for Counters

Below we describe how to compose decision assignment trees over different domains to get a
decision assignment tree for a larger mixed domain. For all the details and proofs we refer
the reader to the full version of this paper [8].

» Theorem 6 (Chinese Remainder Theorem for Counters). Letr,nq,...,n, € N be integers, and
letDia,...,DingsD21,..., Dy, be some finite sets of size at least two. Let {1 > r—1 be an
integer, and Lo, . . ., €, be pairwise co-prime integers. Fori € [r], let C; be a counter of length ¢;
over Dy = Dj 1 x---xD; ., computed by a decision assignment tree T; over n; variables. Then,
there exists a decision assignment tree T over Y ._, n; variables that implements a counter C
of length T];_, ¢; over Dy x - -+ x D,.. Furthermore, READ(T) = ny + max{READ(T})}/_,,
and WRITE(T) = WRITE(T)) + max{WRITE(T;)}/_,.

We remark that if C;’s in the theorem are space-optimal then so is C. The proof of the
theorem constructs a special type of a counter where we always read the first coordinate,
increment it, and further depending on its value, we may update the value of another
coordinate. Note, for such type of a counter the co-primality condition is necessary at least
for ¢1 = 2,3 (see the full version [8]).

As a corollary of the above theorem, to get a decision assignment tree implementing
space-optimal quasi-Gray codes over Z,, for any m € N, we only need decision assignment
trees implementing space-optimal quasi-Gray codes over Zs and Z,,, for odd m.

4 Permutation Group and Construction of Counters

We start this section with some basic notation and facts about the permutation group which
we will use heavily in the rest of the paper. The set of all permutations over a domain D
forms a group under the composition operation, denoted by o, which is defined as follows:
for any two permutations o and «, o o a(z) = o(a(z)), where x € D. The corresponding
group, denoted Sy, is the symmetric group of order N = |D|. We say, a permutation o € Sy
is a cycle of length ¢ if there are distinct elements aq,...,ap € [N] such that for ¢ € [¢ — 1],
ai+1 = o(a;), a1 = o(ag), and for all a € [N]\ {a1,az,...,a;}, 0(a) = a. We denote such a
cycle by (a1,as, - ,a).

Roughly speaking, a counter of length ¢ over D, in the language of permutations, is
nothing but a cycle of the same length in S;p|. We now make this correspondence precise
and give a construction of a decision assignment tree that implements such a counter.

We state our key lemma to construct Gray codes from a decomposition of a permutation.

» Lemma 7. Let D =Dy x -+ X D, be a domain. Suppose o1,...,0k € Sjp| are such that
0 =0K00_10---0071 is a cycle of length £. Let Ty, ..., Ty be decision assignment trees that
implement o1, ..., 0 respectively. Let D' =D’y X -+- x D', be a domain such that |D'| > k,

12:9

ESA 2018

12:10

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

and let T' be a decision assignment tree that implements a counter C' of length k' over D’
where k' > k.

Then, there exists a decision assignment tree T that implements a counter of length
k't over D' x D such that READ(T) = 7' + max{READ(T;)}r_,, and WRITE(T) =
WRITE(T") + max{WRITE(T})}%_, .

Proof sketch. Suppose C' = (ay,...,ax). Now let us consider the following procedure P:
on any input (zq,x2) € D' x D, if 1 = a; for some j € [k], set 29 — 0;(x2). Next, increment
the first coordinate, i.e., set z1 < next(C’, x1).

Read and write complexity of the statement follows immediately. The correctness also
follows from some basic property of permutation group together with the fact that o is a
cycle of length /. <

In the next two sections we describe the construction of oq, - - - , 0 € Sy where N = m™ for
some m,n € N and how the value of k depends on the length of the cycle ¢ = gpo0p_10---007.

5 Counters via Linear Transformation

The construction in this section is based on linear transformations. Consider the vector space
Fy, and let L : Fjy — Fy be a linear transformation. A basic fact in linear algebra says that
if L has full rank, then the mapping given by L is a bijection. Thus, when L is full rank, the
mapping can also be thought of as a permutation over Fy. Throughout this section we use
many basic terms related to linear transformation without defining them, for the details of
which we refer the reader to any standard text book on linear algebra (e.g. [29]).

A natural way to build counter out of a full rank linear transformation is to fix a starting
element, and repeatedly apply the linear transformation to obtain the next element (cf. [28]).
Clearly this only list out elements in the cycle containing the starting element. Therefore, we
would like to choose the starting element such that we enumerate the largest cycle. Ideally,
we would like the largest cycle to contain all the elements of Fy. However this is not possible
because any linear transformation fixes the all-zero vector. But there do exist full rank
linear transformations such that the permutation given by them is a single cycle of length
q"™ — 1. Such a linear transformation would give us a counter over a domain of size ¢" that
enumerates all but one element. Clearly, a trivial implementation of the aforementioned
argument would lead to a counter that reads and writes all n coordinates in the worst-case.
In the rest of this section, we will develop an implementation and argue about the choice of
linear transformation such that the read and write complexity decreases exponentially.

It is well known that every linear transformation L is associated with some matrix
A € Fy*™ such that applying the linear transformation is equivalent to the left multiplication
by A. Furthermore, L has full rank iff A is invertible over F,.

» Definition 8 (Elementary matrices). An n X n matrix over a field F is said to be an

elementary matriz if it has one of the following forms:

(a) The off-diagonal entries are all 0. For some i € [n], (i,%)-th entry is a non-zero ¢ € F.
Rest of the diagonal entries are 1.

(b) The diagonal entries are all 1. For some i and j, 1 < i # j < n, (i,5)-th entry is a
non-zero ¢ € F. Rest of the off-diagonal entries are 0.

From the definition it is easy to see that left multiplication by an elementary matrix of
the first type is equivalent to multiplying the i-th row with ¢, and by an elementary matrix
of the second type it is equivalent to adding c¢ times j-th row to the i-th row.

D. Chakraborty, D. Das, M. Koucky, and N. Saurabh

» Proposition 9. Let A € F™"*" be invertible. Then A can be written as a product of k
elementary matrices such that k <n? + 4(n — 1).

The proof follows from Gaussian elimination.

5.1 Construction of the counter

Let A be a full rank linear transformation from [y to IFy such that when viewed as permutation
it is a single cycle of length ¢" — 1. More specifically, A is an invertible matrix in Fy*" such
that for any = € F; where z # (0,...,0), Ax, A%z, ... A" "Dy are distinct. Such a matrix
exists, for example, take A to be the matrix of a linear transformation that corresponds to
multiplication from left by a fixed generator of the multiplicative group of Fy» under the
standard vector representation of elements of Fgn. Let A = EyEy_q --- E1 where E;’s are
elementary matrices.

» Theorem 10. Let q, A, and k be as defined above. Let r > log, k. There exists a quasi-
Gray code on the domain (F,)"*" of length ¢"*" —q" that can be implemented using a decision
assignment tree T such that READ(T) < r +2 and WRITE(T) < 2.

Proof. The proof follows readily from Lemma 7, where E;’s play the role of ¢;’s, and noting
that the permutation given by any elementary matrix can be implemented using a decision
assignment tree that reads at most two coordinates and writes at most one. For the counter
C’" on (F,)" we chose a Gray code of trivial read complexity r and write complexity 1. <«

Thus, we obtain a counter on a domain of size roughly kq¢™ that misses at most gk
elements. Clearly, we would like to minimize k. A trivial bound on k is O(n?) that follows
from Proposition 9. We now discuss the choice of A so that k becomes O(n) based on
primitive polynomials over finite fields.

Let p(z) be a primitive polynomial of degree n over F,, where p(z) = 2" + ¢,—12" "' +
Cn22""2 4+ -4+ 12 + ¢g. The matrix A defined as follows is the matrix representing
multiplication by some generator (a root of p(z)) of the multiplicative group of Fyn:

—p_1 1 0 -+ 0
—Cp_s 0 1 - 0
—; 0 0 -+ 1
—co 0 0 -+ 0

It is easy to see that A can be written as a product of at most n + 4(n — 1) elementary
matrices. (In case, ¢ is a power of 2, then the number of elementary matrices in the product
is at most n + 3(n — 1).) Hence, from the discussion above and using Theorem 10, we obtain
the following corollaries. Setting r = [log(4n — 3)] in Theorem 10 gives:

» Corollary 11. For anyn’ > 2, and n = n' + [log(4n’ — 3)], there exists a counter on (Za)™
that misses at most 8n strings and can be implemented by a decision assignment tree that
reads at most 4 + logn bits and writes at most 2 bits.

By doubling the number of missed strings and increasing the number of read bits by
one we can construct given counters for any Zj, where n > 15. For the general case, when
q is a prime power, we obtain the following corollary by setting r to [log,(5n — 4)] or
1 + [log,(5n — 4)] in Theorem 10.

12:11

ESA 2018

12:12

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

» Corollary 12 (Generalization of Theorem 2). Let q be any prime power. For n > 15, there
exists a counter on Zy that misses at most 5¢%n strings and that is computed by a decision
assignment tree with read complexity at most 6 + log, n and write complexity 2.

6 Space-optimal Counters over Z! for any Odd m

In this section we sketch a proof of Theorem 1. We want to use Lemma 7. Set n’ = n—c-logn
for a suitable constant ¢ > 0. We define permutations oy, - ,an € Sy, for N = m™ , such
that a = a0 -+ 0 o is a cycle of length m". We will show that each of these «;’s can be
further decomposed into a; 1, -, ; ;j € Sy for some j, such that each of «;, for r € [j] can
be implemented using DAT with read complexity 3 and write complexity 1. Finally we use
Lemma 7 by considering all these «;,’s as 01, - , 0%, where k is O(mn’?’).

For any i € [n/], define a; as follows: for any (z1,---,z,/) € Z", if z; = 0 for all
j=1,---,1—1, then z; < x; + 1 mod m. Observe, @ = a,,y 0 --- 0 g is a cycle of length
m™ . Notice each «; is a (i — 1)-function on Z" (see Section 1.2 for their defini