
26st European Symposium on
Algorithms

ESA 2018, August 20–22, 2018, Helsinki, Finland

Edited by

Yossi Azar
Hannah Bast
Grzegorz Herman

LIPIcs – Vo l . 112 – ESA 2018 www.dagstuh l .de/ l ip i c s

Editors
Yossi Azar Hannah Bast Grzegorz Herman
School of Computer Science Department of Computer Science Theoretical Computer Science
Tel Aviv University University of Freiburg Jagiellonian University in Kraków
azar@tau.ac.il bast@cs.uni-freiburg.de gherman@tcs.uj.edu.pl

ACM Classification 2012
Computer systems organization → Single instruction, multiple data;
Computing methodologies → Graphics processors; Robotic planning;
Hardware → Theorem proving and SAT solving;
Information systems → Data dictionaries;
Mathematics of computing → Approximation algorithms; Combinatorial algorithms; Combinatorial

optimization; Combinatorics on words; Extremal graph theory; Graph algorithms; Graph theory;
Network flows; Paths and connectivity problems; Permutations and combinations; Random graphs;
Spectra of graphs;

Networks → Network design principles; Network structure;
Theory of computation → Algorithm design techniques; Algorithmic mechanism design; Approximation

algorithms analysis; Cell probe models and lower bounds; Complexity theory and logic; Computational
geometry; Database query processing and optimization (theory); Database theory; Data compression;
Data structures and algorithms for data management; Data structures design and analysis; Design
and analysis of algorithms; Distributed algorithms; Dynamic graph algorithms; Dynamic programming;
Facility location and clustering; Fixed parameter tractability; Graph algorithms analysis; Integer
programming; Linear programming; Market equilibria; Models of computation; Network games; Network
optimization; Online algorithms; Oracles and decision trees; Packing and covering problems; Parallel
algorithms; Parameterized complexity and exact algorithms; Probabilistic computation; Problems,
reductions and completeness; Quantum computation theory; Routing and network design problems;
Scheduling algorithms; Self-organization; Sorting and searching; Sparsification and spanners; Streaming
models; Theory of randomized search heuristics

ISBN 978-3-95977-081-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-081-1.

Publication date
August, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ESA.2018.0
ISBN 978-3-95977-081-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-081-1
http://www.dagstuhl.de/dagpub/978-3-95977-081-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-081-1
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ESA 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Yossi Azar, Hannah Bast, and Grzegorz Herman . 0:xi

Program Committees
. 0:xiii

List of External Reviewers
. 0:xv

Regular Papers

Algorithms for Inverse Optimization Problems
Sara Ahmadian, Umang Bhaskar, Laura Sanità, and Chaitanya Swamy 1:1–1:14

Two-Dimensional Maximal Repetitions
Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol 2:1–2:14

Approximate Convex Intersection Detection with Applications to Width and
Minkowski Sums

Sunil Arya, Guilherme D. da Fonseca, and David M. Mount . 3:1–3:14

On the Worst-Case Complexity of TimSort
Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau 4:1–4:13

A New and Improved Algorithm for Online Bin Packing
János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin 5:1–5:14

Practical Access to Dynamic Programming on Tree Decompositions
Max Bannach and Sebastian Berndt . 6:1–6:13

Average Whenever You Meet: Opportunistic Protocols for Community Detection
Luca Becchetti, Andrea Clementi, Pasin Manurangsi, Emanuele Natale,
Francesco Pasquale, Prasad Raghavendra, and Luca Trevisan . 7:1–7:13

Polynomial-Time Approximation Schemes for k-center, k-median, and
Capacitated Vehicle Routing in Bounded Highway Dimension

Amariah Becker, Philip N. Klein, and David Saulpic . 8:1–8:15

Fine-grained Lower Bounds on Cops and Robbers
Sebastian Brandt, Seth Pettie, and Jara Uitto . 9:1–9:12

A Polynomial Kernel for Diamond-Free Editing
Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye . 10:1–10:13

Parallel and I/O-efficient Randomisation of Massive Networks using Global
Curveball Trades

Corrie Jacobien Carstens, Michael Hamann, Ulrich Meyer, Manuel Penschuck,
Hung Tran, and Dorothea Wagner . 11:1–11:15

Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity
Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin Saurabh 12:1–12:15

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

A Framework for In-place Graph Algorithms
Sankardeep Chakraborty, Anish Mukherjee, Venkatesh Raman, and
Srinivasa Rao Satti . 13:1–13:16

Self-Assembly of Any Shape with Constant Tile Types using High Temperature
Cameron Chalk, Austin Luchsinger, Robert Schweller, and Tim Wylie 14:1–14:14

A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling
Metrics

T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang . 15:1–15:13

Near-Optimal Distance Emulator for Planar Graphs
Hsien-Chih Chang, Paweł Gawrychowski, Shay Mozes, and Oren Weimann 16:1–16:17

Approximation Schemes for Geometric Coverage Problems
Steven Chaplick, Minati De, Alexander Ravsky, and Joachim Spoerhase 17:1–17:15

Amortized Analysis of Asynchronous Price Dynamics
Yun Kuen Cheung and Richard Cole . 18:1–18:15

Cycles to the Rescue! Novel Constraints to Compute Maximum Planar
Subgraphs Fast

Markus Chimani and Tilo Wiedera . 19:1–19:14

Parameterized Approximation Algorithms for Bidirected Steiner Network
Problems

Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi 20:1–20:16

Online Facility Location with Deletions
Marek Cygan, Artur Czumaj, Marcin Mucha, and Piotr Sankowski 21:1–21:15

Improved Routing on the Delaunay Triangulation
Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré,
Darryl Hill, and Michiel Smid . 22:1–22:13

On Geometric Prototype and Applications
Hu Ding and Manni Liu . 23:1–23:15

Improved Bounds for Multipass Pairing Heaps and Path-Balanced Binary Search
Trees

Dani Dorfman, Haim Kaplan, László Kozma, Seth Pettie, and Uri Zwick 24:1–24:13

Improved Time and Space Bounds for Dynamic Range Mode
Hicham El-Zein, Meng He, J. Ian Munro, and Bryce Sandlund 25:1–25:13

Online Makespan Scheduling with Job Migration on Uniform Machines
Matthias Englert, David Mezlaf, and Matthias Westermann . 26:1–26:14

Truthful Prompt Scheduling for Minimizing Sum of Completion Times
Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub . 27:1–27:14

Weighted Model Counting on the GPU by Exploiting Small Treewidth
Johannes K. Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser 28:1–28:16

Light Spanners for High Dimensional Norms via Stochastic Decompositions
Arnold Filtser and Ofer Neiman . 29:1–29:15

Contents 0:vii

On the Tractability of Optimization Problems on H-Graphs
Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond 30:1–30:14

On the Optimality of Pseudo-polynomial Algorithms for Integer Programming
Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh 31:1–31:13

Symmetry Exploitation for Online Machine Covering with Bounded Migration
Waldo Gálvez, José A. Soto, and José Verschae . 32:1–32:14

Edit Distance with Block Operations
Michał Gańczorz, Paweł Gawrychowski, Artur Jeż, and Tomasz Kociumaka 33:1–33:14

A QPTAS for Gapless MEC
Shilpa Garg and Tobias Mömke . 34:1–34:14

FPT Algorithms for Embedding into Low Complexity Graphic Metrics
Arijit Ghosh, Sudeshna Kolay, and Gopinath Mishra . 35:1–35:13

The Stochastic Score Classification Problem
Dimitrios Gkenosis, Nathaniel Grammel, Lisa Hellerstein, and Devorah Kletenik . 36:1–36:14

Improved Space-Time Tradeoffs for kSUM
Isaac Goldstein, Moshe Lewenstein, and Ely Porat . 37:1–37:14

Dynamic Trees with Almost-Optimal Access Cost
Mordecai Golin, John Iacono, Stefan Langerman, J. Ian Munro, and Yakov Nekrich 38:1–38:14

A Tree Structure For Dynamic Facility Location
Gramoz Goranci, Monika Henzinger, and Dariusz Leniowski . 39:1–39:13

Dynamic Effective Resistances and Approximate Schur Complement on Separable
Graphs

Gramoz Goranci, Monika Henzinger, and Pan Peng . 40:1–40:15

Buffered Count-Min Sketch on SSD: Theory and Experiments
Mayank Goswami, Dzejla Medjedovic, Emina Mekic, and Prashant Pandey 41:1–41:15

Scalable Katz Ranking Computation in Large Static and Dynamic Graphs
Alexander van der Grinten, Elisabetta Bergamini, Oded Green,
David A. Bader, and Henning Meyerhenke . 42:1–42:14

Round-Hashing for Data Storage: Distributed Servers and External-Memory
Tables

Roberto Grossi and Luca Versari . 43:1–43:14

Algorithmic Building Blocks for Asymmetric Memories
Yan Gu, Yihan Sun, and Guy E. Blelloch . 44:1–44:15

On the Decision Tree Complexity of String Matching
Xiaoyu He, Neng Huang, and Xiaoming Sun . 45:1–45:13

Decremental SPQR-trees for Planar Graphs
Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and
Eva Rotenberg . 46:1–46:16

Computing the Chromatic Number Using Graph Decompositions via Matrix Rank
Bart M.P. Jansen and Jesper Nederlof . 47:1–47:15

ESA 2018

0:viii Contents

Polynomial Kernels for Hitting Forbidden Minors under Structural
Parameterizations

Bart M.P. Jansen and Astrid Pieterse . 48:1–48:15

Quantum Algorithms for Connectivity and Related Problems
Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita 49:1–49:13

Generalized Coloring of Permutations
Vít Jelínek, Michal Opler, and Pavel Valtr . 50:1–50:14

Solving Partition Problems Almost Always Requires Pushing Many Vertices
Around

Iyad Kanj, Christian Komusiewicz, Manuel Sorge, and Erik Jan van Leeuwen 51:1–51:14

String Attractors: Verification and Optimization
Dominik Kempa, Alberto Policriti, Nicola Prezza, and Eva Rotenberg 52:1–52:13

Data Reduction for Maximum Matching on Real-World Graphs: Theory and
Experiments

Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche 53:1–53:13

Searching a Tree with Permanently Noisy Advice
Lucas Boczkowski, Amos Korman, and Yoav Rodeh . 54:1–54:13

Efficient and Adaptive Parameterized Algorithms on Modular Decompositions
Stefan Kratsch and Florian Nelles . 55:1–55:15

On Nondeterministic Derandomization of Freivalds’ Algorithm: Consequences,
Avenues and Algorithmic Progress

Marvin Künnemann . 56:1–56:16

Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities
Euiwoong Lee and Sahil Singla . 57:1–57:14

Equilibrium Computation in Atomic Splittable Routing Games
Umang Bhaskar and Phani Raj Lolakapuri . 58:1–58:14

Online Non-Preemptive Scheduling to Minimize Weighted Flow-time on
Unrelated Machines

Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav, and
Denis Trystram . 59:1–59:12

Finding Stable Matchings That Are Robust to Errors in the Input
Tung Mai and Vijay V. Vazirani . 60:1–60:11

Disconnected Cuts in Claw-free Graphs
Barnaby Martin, Daniël Paulusma, and Erik Jan van Leeuwen 61:1–61:14

Practical Low-Dimensional Halfspace Range Space Sampling
Michael Matheny and Jeff M. Phillips . 62:1–62:14

Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That Optimally
Adapt to Existing Runs

J. Ian Munro and Sebastian Wild . 63:1–63:16

On a Problem of Danzer
Nabil H. Mustafa and Saurabh Ray . 64:1–64:8

Contents 0:ix

Quasi-Polynomial Time Approximation Schemes for Packing and Covering
Problems in Planar Graphs

Michał Pilipczuk, Erik Jan van Leeuwen, and Andreas Wiese . 65:1–65:13

On Learning Linear Functions from Subset and Its Applications in Quantum
Computing

Gábor Ivanyos, Anupam Prakash, and Miklos Santha . 66:1–66:14

Strong Collapse for Persistence
Jean-Daniel Boissonnat, Siddharth Pritam, and Divyansh Pareek 67:1–67:13

On the Complexity of the (Approximate) Nearest Colored Node Problem
Maximilian Probst . 68:1–68:14

Planar Support for Non-piercing Regions and Applications
Rajiv Raman and Saurabh Ray . 69:1–69:14

An Exact Algorithm for the Steiner Forest Problem
Daniel R. Schmidt, Bernd Zey, and François Margot . 70:1–70:14

Large Low-Diameter Graphs are Good Expanders
Michael Dinitz, Michael Schapira, and Gal Shahaf . 71:1–71:15

Improved Dynamic Graph Coloring
Shay Solomon and Nicole Wein . 72:1–72:16

Soft Subdivision Motion Planning for Complex Planar Robots
Bo Zhou, Yi-Jen Chiang, and Chee Yap . 73:1–73:14

ESA 2018

Preface

This volume contains the extended abstracts selected for presentation at ESA 2018, the
26th European Symposium on Algorithms, held in Helsinki, Finland, on 20–22 September
2018, as part of ALGO 2018. The scope of ESA includes original, high-quality, theoretical
and applied research on algorithms and data structures. Since 2002, it has had two tracks:
the Design and Analysis Track (Track A), intended for papers on the design and mathem-
atical analysis of algorithms, and the Engineering and Applications Track (Track B), for
submissions dealing with real-world applications, engineering, and experimental analysis of
algorithms. Information on past symposia, including locations and proceedings, is maintained
at http://esa-symposium.org.

In response to the call for papers for ESA 2018, 307 papers were submitted, 256 for
Track A and 51 for Track B (these are the counts after the removal of papers with invalid
format and after withdrawals). Paper selection was based on originality, technical quality,
exposition quality, and relevance. Each paper received at least three reviews. The program
committees selected 73 papers for inclusion in the program, 58 from Track A and 15 from
Track B, yielding an acceptance rate of about 24%. In addition to the accepted contributions,
the symposium featured two invited lectures: the first by Claire Mathieu (CNRS, Paris), and
the second by Tim Roughgarden (Stanford University).

For this year’s Track B, an experiment was performed, where the complete set of sub-
missions was reviewed by two independent PCs. Each PC had 12 members, with a similar
distribution according to gender, academic seniority, area of expertise, and continent of
affiliation. In each PC, each submission was assigned to 3 PC members. Both PCs used the
same standard reviewing process, which involved independently written reviews from the
PC members, followed by an extensive discussion phase, and a voting phase for the papers
that were still undecided in the end. Each PC eventually accepted 11 papers. A paper was
accepted for Track B if and only if it was accepted by at least one of the two PCs. For the
analysis of the process, the scores had a clearly communicated semantics and particular care
was taken that for each submission in each PC the score set and the state of the discussion
matched.

A detailed write-up of the course and the results of the experiment was still ongoing at the
time of the creation of these proceedings. It will be published in a separate article containing
the words “ESA 2018 experiment” in the title. As an appetizer, here is a list of some of
the questions investigated and a first informal answer: how large was the overlap of the set
of accepted papers by the two PCs (it fluctuated between 50% and 75% throughout the
reviewing process and was very sensitive to relatively minor changes in the discussion), how
many “clear accepts” were there (none really: the chance that a paper with the high score in
one PC also had the high score in the other PC was not larger than random), how many
“clear rejects” were there (about one fourth of all submissions had only negative reviews in
both PCs, and the overlap of these sets from the two PCs was over 70%), how many papers
had overall positive reviews in one PC and overall negative reviews in the other PC (less
than 10% of all submissions), how effective were the discussion phase and the final voting
phase (it’s not clear that either had a non-random effect on the set of papers that were
eventually accepted), what are possible implications for future PCs (read the publication
when it’s there).

The European Association for Theoretical Computer Science (EATCS) sponsored a
best paper award and a best student paper award. A submission was eligible for the best
26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii Preface

student paper award if all authors were doctoral, master, or bachelor students at the time
of submission. The best student paper award for Track A was given to Maximilian Probst
for the paper “On the complexity of the (approximate) nearest colored node problem”. The
best student paper award for Track B was given to Max Bannach and Sebastian Berndt for
the paper “Practical Access to Dynamic Programming on Tree Decompositions”. The best
paper award for Track A was given to Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz,
Jakub Łącki and Eva Rotenberg for the paper “Decremental SPQR-trees for Planar Graphs”.
The best paper award for Track B was given to Daniel R. Schmidt, Bernd Zey and François
Margot for the paper “An exact algorithm for the Steiner forest problem”.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and all the external
reviewers who assisted the program committees in the evaluation process. Special thanks go
to the local organizing committee, who helped us with the organization of the conference.

Program Committees

Track A (Design and Analysis) Program Committee

Yossi Azar (chair) (Tel Aviv University, Israel)
Petra Berenbrink (University of Hamburg, Germany)
Shuchi Chawla (University of Wisconsin-Madison, USA)
Flavio Chierichetti (Sapienza University of Rome, Italy)
Ashish Chiplunkar (EPFL, Switzerland)
George Christodoulou (University of Liverpool, UK)
Samuel Fiorini (Université libre de Bruxelles, Belgium)
Cyril Gavoille (University of Bordeaux, France)
Loukas Georgiadis (University of Ioannina, Greece)
Anupam Gupta (Carnegie Mellon University, USA)
Danny Hermelin (Ben Gurion University, Israel)
Zhiyi Huang (University of Hong Kong, China)
Satoru Iwata (University of Tokyo, Japan)
Klaus Jansen (University of Kiel, Germany)
Thomas Kesselheim (TU Dortmund, Germany)
Lukasz Kowalik (University of Warsaw, Poland)
Sebastian Krinninger (University of Salzburg, Austria)
Amit Kumar (IIT Delhi, India)
Daniel Lokshtanov (University of Bergen, Norway)
Konstantin Makarychev (Northwestern University, USA)
Debmalya Panigrahi (Duke University, USA)
Merav Parter (Weizmann Institute, Israel)
Christian Scheideler (Paderborn University, Germany)
Bettina Speckmann (TU Eindhoven, Netherlands)
Subhash Suri (University of California Santa Barbara, USA)
Csaba D. Tóth (Cal State Northridge, USA)
Gerhard Woeginger (RWTH Aachen, Germany)
Christian Wulff-Nilsen (University of Copenhagen, Denmark)

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xiv Program Committees

Track B (Engineering and Applications) Program Committee

Martin Aumüller (IT University of Copenhagen, Denmark)
Hannah Bast (chair) (University of Freiburg, Germany)
Christina Büsing (RWTH Aachen University, Germany)
Pierluigi Crescenzi (University of Florence, Italy)
Veronica Gil-Costa (Universidad Nacional de San Luis, Argentina)
Michael T. Goodrich (University of California, Irvine, USA)
Paolo Ferragina (University of Pisa, Italy)
Stefan Funke (University of Stuttgart, Germany)
Inge Li Gørtz (Technical University of Denmark, Denmark)
Sungjin Im (University of California at Merced, USA)
Michael Kerber (Graz University of Technology, Austria)
Silvio Lattanzi (Google, Switzerland)
Jon Lee (University of Michigan, USA)
Tamara Mchedlidze (Karlsruhe Institute of Technology, Germany)
Matthias Müller-Hannemann (Martin Luther University Halle-Wittenberg, Germany)
Petra Mutzel (TU Dortmund University, Germany)
Gonzalo Navarro (University of Chile, Chile)
Richard Peng (Georgia Institute of Technology, USA)
Simon J. Puglisi (University of Helsinki, Finland)
Melanie Schmidt (University of Bonn, Germany)
Anita Schöbel (Georg-August-Universität Göttingen, Germany)
Chris Schwiegelshohn (Sapienza University of Rome, Italy)
Sebastian Stiller (TU Braunschweig, Germany)
Darren Strash (Colgate University, USA)
Carola Wenk (Tulane University, USA)

List of External Reviewers

Amir Abboud
Mikkel Abrahamsen
Jayadev Acharya
Peyman Afshani
Akanksha Agrawal
Oswin Aichholzer
Yaroslav Akhremtsev
Hugo Akitaya
Eleni C. Akrida
Gorjan Alagic
Xavier Allamigeon
Noga Alon
Helmut Alt
Amihood Amir
Haris Angelidakis
Antonios Antoniadis
Srinivasan Arunachalam
James Aspnes
Igor Averbakh
Davide Bacciu
Arturs Backurs
Eric Balkanski
Evangelos Bampas
Evripidis Bampis
Hideo Bannai
Nikhil Bansal
Jérémy Barbay
Lukas Barth
Ulrich Bauer
Ruben Becker
Xiaohui Bei
Djamal Belazzougui
Mark de Berg
Sebastian Berndt
Sayan Bhattacharya
Arnab Bhattacharyya
Marcin Bienkowski
Gianfranco Bilardi
Philip Bille
Vittorio Bilò
Timo Bingmann
Andreas Björklund
Thomas Bläsius
Hans L. Bodlaender
Greg Bodwin

Maria Luisa Bonet
Édouard Bonnet
Steffen Borgwardt
Piotr Borowiecki
Ulrik Brandes
Marco Bressan
Valentin Brimkov
Karl Bringmann
Simina Brânzei
Gerandy Brito
Niv Buchbinder
Mickaël Buchet
Valentin Buchhold
Kevin Buchin
Maike Buchin
Boris Bukh
Christina Burt
Sebastian Buschjäger
Sam Buss
Matthias Buttkus
Jaroslaw Byrka
Sergio Cabello
Manuel Cáceres
Chris Cade
Yixin Cao
Tim Carpenter
Matteo Ceccarello
Parinya Chalermsook
Erin Chambers
T-H. Hubert Chan
Timothy M. Chan
Karthekeyan Chandrasekaran
Panagiotis Charalampopoulos
Chandra Chekuri
Jiehua Chen
Lin Chen
Yu Cheng
Rajesh Chitnis
Janka Chlebikova
Anamitra Roy Choudhury
Tobias Christiani
Anders Roy Christiansen
Timothy Chu
Will Cipolli
Catherine Cleophas

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xvi List of External Reviewers

Dustin Cobas
Avi Cohen
Alessio Conte
Graham Cormode
Denis Cornaz
Bruno Courcelle
Alex Cozzi
Ágnes Cseh
Radu Curticapean
Artur Czumaj
Christine Dahn
Abhimanyu Das
Syamantak Das
Sanjeeb Dash
Sina Dehghani
Holger Dell
Max Deppert
Nikhil Devanur
Tamal Dey
Martin Dietzfelbinger
Michael Dinitz
Paul Dorbec
David Doty
Agostino Dovier
Feodor Dragan
Matt Drescher
Anne Driemel
Andre Droschinsky
Ran Duan
Philippe Duchon
Paul Duetting
Stephane Durocher
Martijn van Ee
Eduard Eiben
Khaled Elbassioni
Alina Ene
David Eppstein
Thomas Erlebach
Elaine Eschen
Louis Esperet
Mikko Berggren Ettienne
Rolf Fagerberg
Brittany Fasy
John Fearnley
Uriel Feige
Moran Feldman
Andreas Emil Feldmann
Michael Feldmann

Henning Fernau
Diodato Ferraioli
Amos Fiat
Hendrik Fichtenberger
Gabriele Fici
Arnold Filtser
Anja Fischer
Felix Fischer
Matthias Fischer
Till Fluschnik
Dimitris Fotakis
Kyle Fox
Tom Friedetzky
Tobias Friedrich
Alan Frieze
Zachary Friggstad
Ulderico Fugacci
Toshihiro Fujito
Ben Fulcher
Radoslav Fulek
Travis Gagie
Waldo Gálvez
Guilhem Gamard
Arun Ganesh
Arnab Ganguly
Wilfried Gansterer
Naveen Garg
Bernd Gärtner
Paweł Gawrychowski
Rong Ge
Ofir Geri
Yiannis Giannakopoulos
Konstantinos Giannis
Panos Giannopoulos
Archontia Giannopoulou
Vasilis Gkatzelis
Alexander Göke
Shay Golan
Kira Goldner
Petr Golovach
Adrián Gómez-Brandón
Gramoz Goranci
Thorsten Götte
Lee-Ad Gottlieb
Garance Gourdel
Vineet Goyal
Daniel Graf
Fabrizio Grandoni

List of External Reviewers 0:xvii

Nick Gravin
Elena Grigorescu
Martin Gronemann
Martin Groß
Roberto Grossi
Krystal Guo
Manoj Gupta
Shahrzad Haddadan
Michael Hamann
Samuel Haney
Kristoffer Arnsfelt Hansen
Thomas Dueholm Hansen
Nicolas Hanusse
Tobias Harks
Hamed Hatami
Elham Havvaei
Michael Hay
Meng He
Christoph Helmberg
Monika Henzinger
John Hershberger
Mhand Hifi
Kristian Hinnenthal
Martin Hoefer
Michael Hoffmann
Jacob Holm
Ivor Hoog V.D.
Chien-Chung Huang
Patricio Huepe
Thore Husfeldt
John Iacono
Alonso Inostrosa-Psijas
Takehiro Ito
Yoichi Iwata
Taisuke Izumi
Adalat Jabrayilov
Riko Jacob
Lars Jaffke
Ragesh Jaiswal
Bart M. P. Jansen
Bruno Jartoux
Artur Jeż
Łukasz Jeż
Shaofeng Jiang
Kai Jin
Timothy Johnson
Jordan Jorgensen
Alpár Jüttner

Dominik Kaaser
Volker Kaibel
Naonori Kakimura
Christos Kalaitzis
Sagar Kale
Naoyuki Kamiyama
Frank Kammer
Haim Kaplan
Michael Kapralov
Aikaterini Karanasiou
Andreas Karrenbauer
Michael Kaufmann
Bart de Keijzer
Nathaniel Kell
Jonathan Kelner
Dominik Kempa
Balázs Keszegh
Arindam Khan
Shuji Kijima
Eun Jung Kim
Ralf Klasing
Jonathan Klawitter
Kim-Manuel Klein
Philip Klein
Lasse Kliemann
Max Klimm
Peter Kling
Yusuke Kobayashi
Tomasz Kociumaka
Zhuan Khye Koh
Sudeshna Kolay
Christina Kolb
Christian Komusiewicz
Spyros Kontogiannis
Parisa Kordjamshidi
Janne H. Korhonen
Arie Koster
Irina Kostitsyna
Martin Koutecký
Ioannis Koutis
Laszlo Kozma
Rastislav Kralovic
Dieter Kratsch
Stefan Kratsch
Marc Van Kreveld
Ravishankar Krishnaswamy
R. Krithika
Michael Krivelevich

ESA 2018

0:xviii List of External Reviewers

Amer Krivošija
Sven Krumke
Dominik Krupke
Piotr Krysta
Janardhan Kulkarni
Neeraj Kumar
Niraj Kumar
Marvin Künnemann
Anastasia Kurdia
Denis Kurz
Anthony Labarre
Sébastien Labbé
Bundit Laekhanukit
Michael Lampis
Stefan Langerman
Alexandra Lassota
Luigi Laura
Francois Le Gall
Euiwoong Lee
Christoph Lenzen
Stefano Leucci
Roie Levin
Jason Li
Shi Li
Andre Lieutier
Nutan Limaye
Andre Linhares
Jinyan Liu
Elisabeth Lobe
Maarten Löffler
Veronika Loitzenbauer
Marten Maack
Sepideh Mahabadi
Yury Makarychev
Frederik Mallmann-Trenn
Florin Manea
Sebastian Maneth
George Manoussakis
Pasin Manurangsi
Giovanni Manzini
Jieming Mao
Andrea Marino
Samuel McCauley
Andrew McGregor
Nicole Megow
Aranyak Mehta
Julian Mestre
Wouter Meulemans

Ulrich Meyer
Othon Michail
Samuel Micka
Ivan Mikhailin
Benjamin Miller
David L. Millman
Till Miltzow
Majid Mirzanezhad
Pranabendu Misra
Slobodan Mitrovic
Matthias Mnich
Hendrik Molter
Christopher Morris
Benjamin Moseley
Michal Moshkovitz
David Mount
Aidasadat Mousavifar
Wolfgang Mulzer
Ralf-Peter Mundani
Cameron Musco
Viswanath Nagarajan
Meghana Nasre
Amir Nayyeri
Jesper Nederlof
Ofer Neiman
Hung Nguyen
Rad Niazadeh
André Nichterlein
Rolf Niedermeier
Alexander Noe
Christos Nomikos
Ashkan Norouzi Fard
Zeev Nutov
Pascal Ochem
Carlos Ochoa
Lutz Oettershagen
Eunjin Oh
Yoshio Okamoto
Aurélien Ooms
Tim Ophelders
Sebastian Ordyniak
Joseph O’Rourke
Pekka Orponen
Rotem Oshman
Sang-Il Oum
Maris Ozols
Linda Pagli
Katarzyna Paluch

List of External Reviewers 0:xix

Alessandro Panconesi
Fahad Panolan
Greta Panova
Charis Papadopoulos
Kunsoo Park
Nikos Parotsidis
Maurizio Patrignani
Christophe Paul
Niklas Paulsen
Ami Paz
Pan Peng
Richard Peng
Pablo Pérez-Lantero
Ljubomir Perkovic
Giulio Ermanno Pibiri
Marcin Pilipczuk
Michał Pilipczuk
Ely Porat
Giuseppe Prencipe
Nicola Prezza
Maximilian Probst
Ioannis Psarros
Simon Puglisi
Kent Quanrud
Marcel Radermacher
Sharath Raghvendra
Benjamin Raichel
M. S. Ramanujan
Michael Raskin
Malin Rau
Jean-Florent Raymond
Ilya Razenshteyn
Igor Razgon
David Renault
David Richerby
Havana Rika
Matteo Riondato
Lars Rohwedder
Clemens Rösner
Günter Rote
Eva Rotenberg
Alan Roytman
Paweł Rzążewski
Yogish Sabharwal
Kunihiko Sadakane
Barna Saha
Rahul Saladi
Piotr Sankowski

Srinivasa Rao Satti
Maria Saumell
Saket Saurabh
Till Schäfer
Oliver Schaudt
Christian Scheffer
Kevin Schewior
Ingo Schiermeyer
Christian Schindelhauer
Sebastian Schlag
Andreas Schmid
Arne Schmidt
Daniel Schmidt
Melanie Schmidt
Jon Schneider
Christian Schulz
Jordan Schupbach
Gregory Schwartzman
Pascal Schweitzer
Chris Schwiegelshohn
Uwe Schwiegelshohn
Diego Seco
Saeed Seddighin
Víctor Sepúlveda
Alexander Setzer
Alkmini Sgouritsa
Mordechai Shalom
Roohani Sharma
Nobutaka Shimizu
Akiyoshi Shioura
Julian Shun
Aaron Sidford
Anastasios Sidiropoulos
Francesco Silvestri
Sahil Singla
Stavros Sintos
Carsten Sinz
Jouni Sirén
Nodari Sitchinava
Primoz Skraba
Martin Skutella
Shakhar Smorodinsky
Roberto Solar
Frank Sommer
Anthony Man-Cho So
Christian Sohler
Shay Solomon
Kiril Solovey

ESA 2018

0:xx List of External Reviewers

Manuel Sorge
M. Grazia Speranza
Frits Spieksma
Sophie Spirkl
Frank Staals
Georgios Stamoulis
Rob van Stee
Mike Steel
Ben Strasser
Peter J. Stuckey
Hsin-Hao Su
Torsten Suel
Warut Suksompong
He Sun
Maxim Sviridenko
Meesum Syed Mohammad
Zhihao Gavin Tang
Shin-Ichi Tanigawa
Gábor Tardos
Kavitha Telikepalli
Yifeng Teng
Veerle Timmermans
Sumedh Tirodkar
Andreas Tönnis
Ohad Trabelsi
Guillermo Trabes
Nicolas Trotignon
Kostas Tsichlas
Charalampos Tsourakakis
Dekel Tsur
Torsten Ueckerdt
Marc Uetz
Chris Umans
Ali Vakilian
Erik Jan van Leeuwen
Kasturi Varadarajan
Shai Vardi
Vincent Vatter
Kevin Verbeek
Luca Versari
Laurent Viennot

Aravindan Vijayaraghavan
Fabio Vitale
Ben Lee Volk
Hoa Vu
Magnus Wahlström
Tomasz Waleń
Haitao Wang
Jianxin Wang
Yuyi Wang
Justin Ward
Karol Węgrzycki
Karsten Weihe
Oren Weimann
S. Matthew Weinberg
Armin Weiss
Stefan Weltge
Andreas Wiese
Virginia Williams
Carsten Witt
Damien Woods
Marcin Wrochna
Xiaowei Wu
Chao Xu
Pan Xu
Yutaro Yamaguchi
Chunxing Yin
Eylon Yogev
Huacheng Yu
Xilin Yu
Luca Zanetti
Meirav Zehavi
Wei Zhan
Guochuan Zhang
Qin Zhang
Yuhao Zhang
Samson Zhou
Yuan Zhou
Xue Zhu
Uri Zwick
Anna Zych-Pawlewicz

Algorithms for Inverse Optimization Problems

Sara Ahmadian
Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada
sahmadian@uwaterloo.ca

Umang Bhaskar1

Tata Institute of Fundamental Research, Mumbai, India 400 005
umang@tifr.res.in

Laura Sanità
Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada
sanita@uwaterloo.ca

Chaitanya Swamy2

Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1, Canada
cswamy@uwaterloo.ca

Abstract
We study inverse optimization problems, wherein the goal is to map given solutions to an under-
lying optimization problem to a cost vector for which the given solutions are the (unique) optimal
solutions. Inverse optimization problems find diverse applications and have been widely studied.
A prominent problem in this field is the inverse shortest path (ISP) problem [9, 3, 4], which finds
applications in shortest-path routing protocols used in telecommunications. Here we seek a cost
vector that is positive, integral, induces a set of given paths as the unique shortest paths, and has
minimum `∞ norm. Despite being extensively studied, very few algorithmic results are known for
inverse optimization problems involving integrality constraints on the desired cost vector whose
norm has to be minimized.

Motivated by ISP, we initiate a systematic study of such integral inverse optimization prob-
lems from the perspective of designing polynomial time approximation algorithms. For ISP, our
main result is an additive 1-approximation algorithm for multicommodity ISP with node-disjoint
commodities, which we show is tight assuming P 6=NP. We then consider the integral-cost inverse
versions of various other fundamental combinatorial optimization problems, including min-cost
flow, max/min-cost bipartite matching, and max/min-cost basis in a matroid, and obtain tight
or nearly-tight approximation guarantees for these. Our guarantees for the first two problems
are based on results for a broad generalization, namely integral inverse polyhedral optimization,
for which we also give approximation guarantees. Our techniques also give similar results for
variants, including `p-norm minimization of the integral cost vector, and distance-minimization
from an initial cost vector.

2012 ACM Subject Classification Theory of computation → Network optimization, Theory of
computation→ Approximation algorithms analysis, Mathematics of computing→ Network flows

Keywords and phrases Inverse optimization, Shortest paths, Approximation algorithms, Linear
programming, Polyhedral theory, Combinatorial optimization

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.1

1 Funded in part by a Ramanujan Fellowship. Part of this work was done while visiting U. Waterloo.
2 Supported in part by NSERC grant 327620-09 and an NSERC Discovery Accelerator Supplement Award.

© Sara Ahmadian, Umang Bhaskar, Laura Sanità, and Chaitanya Swamy;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 1; pp. 1:1–1:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sahmadian@uwaterloo.ca
mailto:umang@tifr.res.in
mailto:sanita@uwaterloo.ca
mailto:cswamy@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Algorithms for Inverse Optimization Problems

1 Introduction

Consider the following problem, adapted from [4], faced by the administrator of a telecommu-
nication network. The administrator seeks to impose a desired routing pattern (e.g., one that
distributes traffic along multiple paths to minimize congestion) under a given underlying
routing protocol. Many routing protocols – OSPF (open-shortest-path-first), IS-IS etc. – use
shortest-path routing, with path lengths defined as the sum of link lengths that are set by the
administrator, where the link lengths must typically be positive integers that can be stored
using a limited number of bits (e.g., in IS-IS, they must be at most 63). Thus, the adminis-
trator must choose small, positive, integer link lengths so that the resulting shortest paths
coincide with the prescribed paths (thus ensuring that we utilize precisely these paths).

This is an inverse shortest path (ISP) problem (which also arises in seismic tomography,
traffic modeling, and network tolling [9, 19, 8, 12, 13]), a prominent problem from the rich
class of inverse optimization problems, wherein we are given solutions to an underlying
optimization problem and we seek a cost vector under which the given solutions constitute
the (unique) optimal solutions. Since we map solutions to a suitable cost vector, this is termed
inverse optimization. Inverse optimization problems find applications in a variety of domains
including telecommunication routing [3, 4], seismic and medical tomography [9, 19, 23],
traffic modeling and network tolling [12, 13, 9, 8], and portfolio optimization [18]. They
also arise in the domain of revealed-preference theory in economics [24], which seeks to
understand when observations can be attributed to behavior consistent with game-theoretic
models. As these examples indicate, inverse optimization problems typically have two primary
objectives: (a) parameter estimation, where we seek to infer certain parameters of a system
that are consistent with a set of observations (e.g., seismic and medical tomography, revealed
preference theory); and (b) solution imposition, where the goal is to (minimally) perturb the
system parameters so as to enforce a set of solutions (e.g., the telecommunication routing
application mentioned above, and network tolling where we want to find (minimal) edge tolls
imposing a given routing pattern as an equilibrium flow).

Motivated by ISP, we consider inverse optimization problems wherein the desired cost
vector c is required to be positive, integral, and induce the given subset S of solutions as
the unique optimal solutions to the underlying optimization problem; we call these problems
integral inverse optimization problems. We primarily consider the objective of minimizing
‖c‖∞, but our results also yield guarantees for the objective of minimizing the perturbation
‖c− c(0)‖∞ of a given “base” cost vector c(0), which is frequently considered in the inverse-
optimization literature. Uniqueness can be important because we may want to explain/impose
S without introducing spurious solutions (i.e., “we get precisely what we bargain for”), and
integrality is, in many cases, a desirable or necessary practical consideration (as in the
telecommunication-routing setting). Despite extensive literature, very few algorithmic results
are known for inverse optimization problems involving integrality constraints on the desired
cost vector whose norm, or deviation from a given cost vector c(0), is to be minimized; we
only know of [3, 4] that address this, both in the context of ISP.

Our contributions and results. We initiate a systematic study of integral inverse optimiza-
tion problems from the perspective of designing polynomial time (approximation) algorithms.
We focus on the inverse versions of various combinatorial optimization problems, a nat-
ural starting point to investigate integral inverse optimization problems. As our results
demonstrate, even for such problems, wherein the underlying optimization problem is well
structured and polytime-solvable, the resulting integral inverse optimization problems are

S. Ahmadian et al. 1:3

Table 1 Summary of our main results. These are stated for the implicit model, wherein the
solution-set is specified implicitly by listing its support set. Most of our guarantees also hold in the
explicit model.

Problem Our results
Inverse shortest path (ISP) polytime

Node-disjoint multicommodity ISP additive 1-approximation; problem is NP-hard
(Previous work gives multiplicative O(|V |)-approx.)

Inverse polyhedral optimization
(IOpt-Poly) with TU constraint matrix

additive 1-approximation for minimization (IMin-Poly)
multiplicative 2-approx. for maximization (IMax-Poly)

IOpt-Poly with {0, 1} matrix A

(r, k = row, column sparsity of A)
multiplicative Õ

(√
min{r, k}

)
-approximation

additive factors of k: IMin-Poly; (k − 1): IMax-Poly
Inverse versions of min-cost flow
and min/max-cost bipartite matching additive 1-approx.; follows from results for IOpt-Poly

Inverse matroid-basis optimization polytime (for minimization and maximization)

quite non-trivial and exhibit an interesting range of possibilities in terms of positive (ap-
proximation) algorithmic results and hardness of approximation results. We obtain tight or
nearly-tight guarantees for a variety of integral inverse optimization problems, including the
well-studied inverse shortest path (ISP) problem. Our salient contributions are as follows;
Table 1 summarizes our main results.

We begin by considering ISP (Section 3). We show that the single-commodity version
(Section 3.1), wherein S is a subset of s t paths in a directed graph, is polytime
solvable (Theorem 5). We then consider multicommodity ISP, the generalization where
we have multiple commodities, each specified by an (si, ti) pair of nodes and a subset
Si of si ti paths, and we seek positive, integral edge costs that ensure that Si is the
unique set of shortest si ti paths for each commodity i. We resolve the status of
node-disjoint multicommodity ISP, where the Sis correspond to node-disjoint subgraphs
(Section 3.2): we devise an additive 1-approximation algorithm (Theorem 6), which is
the best possible guarantee (if P 6=NP) since we show that this node-disjoint version is
NP-hard (Theorem 7). Our proof also shows that it is NP-hard to obtain a multiplicative(3

2 − ε
)
-approximation for multicommodity ISP, for any ε > 0.

Our results improve upon the previous-best multiplicative O(|V |)-approximation guaran-
tees for these problems, which follow from the work of [3, 4]. The algorithms in [3, 4] are
for multicommodity ISP, but they apply to the restrictive setting where Si includes a
single si ti-path for every commodity; moreover, they do not yield improved guarantees
even for the special cases of single-commodity ISP or node-disjoint multicommodity ISP.
We also improve upon the factor 9

8 hardness-of-approximation guarantee in [4].
Motivated by the fact that many combinatorial optimization problems can be cast as
polyhedral optimization problems, in Section 4, we consider a broad generalization of
integral inverse discrete optimization, namely integral inverse polyhedral optimization.
Here, we are given a polytope P ⊆ Rn explicitly, and the set S is replaced by a set X of
extreme points of P ; we seek a positive, integral cost vector c ∈ Zn that induces X as the
unique set of extreme-point optimal solutions to the problem of optimizing (minimizing
or maximizing) cTx over x ∈ P . We obtain approximation guarantees for integral inverse
polyhedral optimization that depend on the structure of the constraint matrix A defining
P. When A is totally unimodular (TU), we obtain an additive 1-, or multiplicative 2-
approximation (see Theorem 8), and for a general {0, 1} matrix A, our approximation
factor depends on the row and/or column sparsity of A (see Theorem 9). As corollaries

ESA 2018

1:4 Algorithms for Inverse Optimization Problems

of these results, we obtain additive 1-approximation algorithms for the integral inverse
versions of min-cost flows and max/min-cost bipartite matchings.
Similar to ISP, integral inverse min-cost flow (IMCF) captures the optimization problem
encountered in the context of spanning-tree protocols (STPs) – e.g., rapid STP, multiple
STP etc. – which route using a shortest-path tree rooted at a given node s under the
assigned link weights; enforcing a prescribed routing tree rooted at s by choosing small,
positive, integer link lengths is then an IMCF problem, and in fact, the special case
involving a single source and infinite (or equivalently, very large) capacities. This link-
weight assignment problem was studied in [15, 16], who prove upper bounds on the
optimum value (in a more general setting). We show that this single-source IMCF problem
is polytime solvable, which implies that we can solve this link–weight assignment problem
in polynomial time.
It is illuminating to view integral inverse polyhedral optimization (IOpt-Poly) geometrically.
The set of cost vectors that yield X as extreme-point optimal solutions in P, form a
polyhedral cone; a cost vector in the interior of this cone yields X as the unique set of
extreme-point optimal solutions. Thus, the goal in IOpt-Poly is to find a shortest (in ‖.‖∞-
norm) positive, integral vector in the interior of this cone (if one exists). Viewed from this
perspective, integral inverse polyhedral optimization can be seen as a problem in the field
of geometry of numbers and in the same vein as the important shortest-vector-problem in
lattices. We believe that this geometric connection makes IOpt-Poly an appealing problem
of independent interest meriting further study.
In Section 5, we consider integral inverse matroid-basis optimization. Here, S is a
collection of bases of a matroid, and we seek positive, integer costs on the elements under
which S is the unique set of optimal bases. We give a polytime algorithm for this problem
(Theorem 12).

Our techniques are versatile and yield results for various variants (see Section 6), including,
most notably, integral inverse optimization under two other commonly considered objectives
in the literature: (1) `p-norm minimization, where we seek to minimize ‖c‖p; and (2) distance
minimization, where we seek to minimize the perturbation ‖c− c(0)‖∞ of an integral “base”
vector c(0). Our results typically also hold in an implicit model, where the input specifies a
(potentially exponential-size) set S implicitly by listing the elements in terms of its support.

Most prior results on inverse optimization, with the exception of ISP, are obtained in the
setting where S consists of a single solution x̂ (with [26, 28] being exceptions), which is not
required to be the unique optimal solution, and the objective is to minimize ‖c− c(0)‖∞ (or
‖c− c(0)‖p for some other p), with c fractional. This setting is significantly simpler than the
integral inverse optimization setting we consider. In particular, it is not hard to see that,
as noted in [2], even for a general inverse polyhedral optimization problem, one can: (a)
utilize the complementary slackness (CS) conditions from LP theory to encode the problem
of finding a suitable cost vector c as another LP (or a convex program for `p norms); or (b)
use the ellipsoid method to solve the LP that directly encodes that x̂ has optimal objective
value among all x ∈ P, given an optimization/separation oracle for P. This work therefore
focuses on obtaining faster algorithms for the integral inverse optimization problem.

In contrast, in the integral inverse optimization setting, two distinct sources of difficulty
arise that do not appear in the above setup. First, even computing a suitable fractional cost
vector is non-trivial due to the uniqueness constraint. For instance, in inverse polyhedral
optimization, this entails discerning if the given solutions form the extreme points of a face
of the given polytope, and determining how to encode, and separate over, the constraints
enforcing uniqueness. Second, rounding a fractional cost vector poses the difficulty that we

S. Ahmadian et al. 1:5

need to coordinate things so as to simultaneously ensure that all solutions in S continue
to have the same cost, and solutions not in S remain non-optimal solutions. This creates
unique challenges, and we leverage tools from optimization theory, polyhedral theory, and
recent results in discrepancy theory to circumvent these difficulties and obtain our results.
An interesting and notable implication of our work is that, in many cases, imposing integral
costs does not significantly impact the achievable performance guarantees.

Our array of results allude to the richness of integral inverse optimization problems. While
our work makes significant progress towards understanding these problems, it also opens up
various directions for further research, such as investigating the inverse-optimization versions
of NP-hard optimization problems.

Related work. Inverse problems were initially extensively studied in geophysics for the
estimation of model parameters (see, e.g., [23]). Since then there has been a great deal of
work in inverse optimization in the optimization community (see, e.g., the survey [17]). In the
optimization community, Burton and Toint [9] (see also [8]) were the first to consider inverse
optimization problems. They introduced the the `2-norm distance-minimization variant
of ISP,where we seek to minimize ‖c − c(0)‖2, where c(0) is a base vector, while allowing
for fractional cost vectors, and do not require the given paths to be the unique shortest
paths. They motivate ISP from applications in traffic modeling and seismic tomography,
and suggest the extension to the `1 and `∞ norms. Ben-Ameur and Gordin [3] and Bley [4]
study (among other problems) ISP under the constraints of positive, integral edge costs,
and uniqueness of the given paths (i.e., integral ISP), motivated by its applications to
shortest-path routing protocols. These give algorithms having multiplicative approximation
ratios of O

(
min{|V |/2, (maximum length of a given path)}

)
, and [4] also shows that it is

NP-hard to obtain an approximation ratio better than 9/8. Other ISP variants have also
been investigated [2, 4, 7, 11, 12, 13, 25].

Following initial work on inverse shortest paths, algorithms were developed for the
inverse-optimization versions of other combinatorial optimization problems, such as minimum
spanning tree, min-cost flow, min-cut, matroid intersection, and general inverse polyhedral
optimization (also called inverse linear programming [29, 30]); see [17] for details. Most of
this work pertains to the distance-minimization problem when we allow fractional costs, and
only a single solution is given ([26, 28] are exceptions that consider multiple solutions) that
is not required to be the unique optimal solution. These papers focus on developing fast
combinatorial algorithms. Ahuja and Orlin [2] unify and generalize many of these results.
They note that inverse polyhedral optimization can be solved in the above setting by solving
a suitable LP: a compact LP encoding this can be obtained by utilizing the CS conditions,
and even the (huge) LP that directly encodes that the given solution be optimal can be solved
via the ellipsoid method. They show that in various cases, the compact LP leads to an LP
similar to the one for optimizing over P , and hence one can obtain combinatorial algorithms
for various inverse discrete optimization problems. Similar results were also obtained by [27].

We remark that while we also solve an LP to obtain fractional cost vectors en route to
obtaining integral cost vectors, a crucial difference in our setting is that we need to devise
suitable ways of encoding (and separating over) the constraint that the costs induce the
given (multiple) solutions as the unique optimal solutions. Our algorithms for integral inverse
polyhedral optimization require either a face oracle for P, which determines if the given set
X of extreme points forms a face of P, or an oracle that determines if all maximal/minimal
points on a face of P have the same cost under a given cost vector. Devising a face oracle is
related to the problem of enumerating all vertices (i.e., extreme points) of a polyhedron, or

ESA 2018

1:6 Algorithms for Inverse Optimization Problems

all vertices on its optimal face (under an objective function), with each new vertex being
output in polynomial delay. (For instance, we can decide if X forms a face by determining if
the minimal face of P containing X contains at least |X|+ 1 vertices.) Such procedures are
known for various polyhedra such as network-flow polyhedra [20], general 0/1 polytopes [10],
simplicial and simple polyhedra [6, 14], but this is NP-hard for general 0/1 polyhedra [5].

2 Problem definitions, notation, and preliminaries

For an integer n, we use [n] to denote {1, . . . , n}. Given z ∈ RE , and S ⊆ E, we use z(S)
to denote

∑
e∈S ze. We use bzc and dze to denote the vectors

(
bzec

)
e∈E and

(
dzee

)
e∈E

respectively.

Inverse discrete optimization. An inverse discrete optimization problem involves an un-
derlying discrete optimization problem specified in terms of a ground set E and a collection
F ⊆ 2E of feasible solutions, and a subset S ⊆ F of feasible solutions to the optimization
problem. We seek a cost vector c ∈ RE such that the solutions in S are the optimal solutions
to the underlying optimization problem. Formally, in an inverse minimization problem,
the underlying optimization problem is a minimization problem, and we seek a cost vector
c ∈ RE such that c(S) = minF∈F c(F) for all S ∈ S. In an inverse maximization problem,
the underlying optimization problem is a maximization problem, and we seek c ∈ RE such
that c(S) = maxF∈F c(F) for all S ∈ S. More precisely, motivated by applications of the
inverse-shortest-path problem in the context of shortest-path network-routing protocols in
telecommunication, we impose the following requirements on the cost vector c.
(C1) Positive, integer costs: ce ≥ 1, ce ∈ Z for all e ∈ E;
(C2) Unique optimal solutions: For inverse minimization, we require c(S) = minF∈F c(F) <

c(F ′) for all S ∈ S and F ′ ∈ F \ S; for inverse maximization, we require c(S) =
maxF∈F c(F) > c(F ′) for all S ∈ S and F ′ ∈ F \ S;

Our goal is to find a vector c satisfying 1 and 2 that minimizes ‖c‖∞. We call this an integral
inverse optimization problem; we drop “integral” when it is clear from the context.

The uniqueness condition 2 is often important in applications, where the inverse optimiza-
tion problem is used to infer or perturb some system parameters so as to explain or impose
a set S of observations, since we would like to do so without introducing spurious solutions.
We impose c ≥ 1 as a normalization requirement: this prevents one from arbitrarily scaling a
vector satisfying 2 to obtain another feasible solution. Integrality is a discretization condition
that ensures that we are optimizing over a closed set (note that 2 leads to an open feasible
region). (Without an underlying objective such as minimizing ‖c‖∞, 1 becomes redundant
as one can always scale a rational vector c to satisfy 1.)

We allow for specifying exponentially large (in the natural input size) solution sets S
(thus obtaining greater modeling power), by also considering the following implicit model for
specifying S: we specify a set U of elements, which implicitly describes the set S = {S ∈ F :
S ⊆ U} of feasible solutions. For example, in the implicit version of inverse shortest paths,
U is a set of arcs and S comprises all s t paths contained in U ; so a solution is a positive,
integral cost vector such that the collection of shortest s t paths is precisely S. Our results
typically apply to both models, and the underlying arguments are similar.

Our techniques are versatile and yield results for other variants of the above integral
inverse optimization problem such as, most notably,
(1) the `p-norm version: find a vector c satisfying 1, 2 that minimizes ‖c‖p
(2) the distance-minimization version (with `∞ norm): the input specifies a “base” vector

c(0) ∈ ZE+, and we seek a cost vector c satisfying 1, 2 that minimizes ‖c− c(0)‖∞.

S. Ahmadian et al. 1:7

At a high level, this follows because our results are obtained by first obtaining an (near-)
optimal fractional cost vector c∗ satisfying 1, 2 via an LP (or, for `p-norms where 1 < p <∞,
via a convex program) and then rounding it to a feasible integral vector c̃ while introducing
an additive O(1) rounding error; this rounding error easily translates to a multiplicative
approximation for problems (1), (2). The following theorem makes this precise.

I Theorem 1. Let c∗ ∈ RE be a cost vector satisfying c∗e ≥ 1 ∀e ∈ E. Let c̃ ∈ ZE be a vector
satisfying 1, 2.
(i) Let O∗p := min { ‖c‖p : c satisfies 1, 2}. Suppose that ‖c∗‖p ≤ O∗p+ε, and c̃e ≤ αc∗e+β

for all e ∈ E. Then, ‖c̃‖p ≤ (α+ β)(1 + ε)O∗p; if ε <
(1

2(α+β)O∗
p

)p, this implies that
‖c̃‖p ≤ dα+ βeO∗p.

(ii) Let O∗dist := min { ‖c − c(0)‖∞ : c satisfies 1, 2}. Suppose that O∗dist > 0,
‖c∗−c(0)‖∞ ≤ O∗dist, and ‖c̃−c∗‖∞ < β. Then, ‖c̃−c(0)‖∞ ≤ O∗dist +dβe−1 ≤ dβeO∗dist.

Inverse polyhedral optimization. Many combinatorial optimization problems have conve-
nient polyhedral descriptions and can be modeled via linear programs that have integral
optimal solutions; this indeed holds for the problems whose integral inverse optimization
versions we investigate. With this in mind, we consider the following general inverse polyhe-
dral optimization problem, which is a natural abstraction of an inverse discrete optimization
problem. We are given a polytope P ⊆ RE+ with explicitly specified constraints, and a
collection X ⊆ P of extreme points of P. In integral inverse polyhedral minimization
(IMin-Poly), we seek a cost vector c ∈ RE that minimizes ‖c‖∞ and satisfies 1, and (C2):
cT x̂ = minx∈P cTx < cTx′ for every x̂ ∈ X and every extreme point x′ of P not in X.
Similarly, in integral inverse polyhedral maximization (IMax-Poly), we seek c ∈ RE that
minimizes ‖c‖∞ and satisfies 1, and (C2’): cT x̂ = maxx∈P cTx > cTx′ for every x̂ ∈ X and
every extreme point x′ of P not in X. If the underlying discrete optimization problem is
captured by the problem of optimizing over P (e.g., if extreme points of P correspond to
feasible solutions to the discrete optimization problem), then this integral inverse polyhedral
optimization problem captures the integral inverse discrete optimization problem defined
earlier. As before, we also consider the implicit version, wherein we are given U ⊆ E, which
implicitly specifies X :=

{
extreme points x̂ of P s.t. {e : x̂e > 0} ⊆ U , x̂ is maximal/minimal

in P
}
. By x̂ being maximal in P, we mean that there is no x ∈ P such that x ≥ x̂, x 6= x̂;

minimality is similarly defined. The set X must be maximal for IMax-Poly, and minimal for
IMin-Poly, as only such points can be optimal solutions since c > 0.

We say that X forms a face of P , if X is precisely the set of extreme points of some face
of P . Integral inverse polyhedral optimization can be stated geometrically as: determine if X
forms a face, say F , of P , and if so, find a positive, integral vector (if one exists) of minimum
`∞ norm in the interior of the polyhedral cone of vectors yielding F as the optimal face.

Difference systems. We often need to obtain a solution to a system of constraints of the
following form, called a difference system with bounds, involving n variables z1, . . . , zn:

zi − zj ≤ dij ∀(i, j) ∈ A, zi ≥ `i ∀i ∈ L, zi ≤ ui ∀i ∈ U (1)

where A ⊆ [n] × [n], L,U ⊆ [n]. The dijs can be arbitrary, so (1) can also incorporate
constraints of the form zi − zj ≥ dij . The following useful result is well known (see, e.g., [1]).

I Theorem 2. We can find a feasible solution to a difference system (1), or detect it is
infeasible, by computing a shortest path in a digraph with |A|+ |L|+ |U | arcs, n+ 1 nodes.
If the data is integral, and (1) is feasible, this yields an integer-valued feasible solution.

ESA 2018

1:8 Algorithms for Inverse Optimization Problems

Further, given costs {bi}ni=1, we can solve a min-cost flow problem to find an optimal
solution to the following LP: minimize

∑
i bizi subject to (1). If this LP has an optimal

solution and the dijs, `is and uis are integral, this yields an integer-valued optimal solution.

3 The inverse shortest path problem

In the integral inverse shortest path (ISP) problem, we are given a directed graph D = (V,E),
terminals s, t ∈ V , and a collection S of simple s t paths; we seek positive, integral edge
costs {ce}e∈E such that the paths in S are the unique shortest s t paths under these edge
costs, so as to minimize ‖c‖∞ = maxe ce. In multicommodity ISP, we have k commodities,
with each commodity i = 1, . . . , k specified by a pair si, ti ∈ N of terminals, and a collection
Si of si ti paths. We seek positive, integral edge costs {ce}e∈E minimizing ‖c‖∞ such that
for each commodity i = 1, . . . , k, the paths in Si are the unique si ti shortest paths under
these edge costs. Clearly, ISP is the special case where k = 1. In the implicit version of
multicommodity ISP, we are given edge-sets E1, . . . , Ek, which implicitly defines Si to be
the collection of all si ti paths in Ei.

We show that ISP is polytime solvable (Section 3.1). For multicommodity ISP (Section 3.2),
we devise an additive 1-approximation algorithm in the setting where the Sis correspond to
node-disjoint subgraphs. Our guarantee is tight, since we show that (even) this special case
of multicommodity ISP is NP-hard to approximate within a factor better than 3

2 . Previously,
only a multiplicative O(|V |)-approximation guarantee was known for these problems [3, 4],
and a factor 9

8 hardness-of-approximation was known for general multicommodity ISP [4]. In
Section 6, we show that our techniques yield results for various other ISP variants including:
(1) the `p-norm minimization version; (2) the distance minimization version; and (3) variants
involving shortest-si ti-path distances in the objective or constraints.

3.1 A polynomial time exact algorithm for ISP
We may assume that every edge in D lies on some s t path, as otherwise we can assign
it cost 1, and so can simply delete the edge. Let O∗ denote the optimal value of the ISP
instance. We utilize the following well-known properties of shortest paths.

I Claim 3. Let D = (N,A) be a digraph with nonnegative edge costs {ce}e∈A, and s, t ∈ N .
Suppose that every edge of A lies on some s t path. Let S be a collection of s t paths.
(i) S consists of shortest s t paths (under c) iff there are node potentials {yv}v∈N such

that:

yv − yu ≤ cu,v for all (u, v) ∈ A, yv − yu = cu,v for all (u, v) ∈
⋃
P∈S

P. (2)

(ii) Node potentials satisfying (2) exist iff the node potentials obtained by setting
yv = (shortest-s v-path distance) ∀v, satisfy (2).

(iii) S comprises shortest s t paths iff every s t path Q ⊆
⋃
P∈S P is shortest s t

path.

If the input is in the explicit model (i.e., S is explicitly given), define E1 :=
⋃
P∈S P . By

Claim 3 (iii), an ISP instance in the explicit model is feasible only if S includes all s t paths
contained in E1. Also, since we seek positive edge costs, E1 must be acyclic (a directed cycle
must have cost 0 due to (2)), otherwise the ISP instance is infeasible. In the explicit model,
we first check if E1 contains an s t path not in S. This can be checked in polynomial time
in various ways: for instance, we can use topological sort to count the number of s t paths

S. Ahmadian et al. 1:9

in E1 and check if this number is |S|. (We can also use depth-first search and backtracking
to enumerate |S|+ 1 distinct s t paths in polytime (if they exist); see, e.g., [21].)

In the sequel, we assume that the ISP instance meets these feasibility requirements (so the
explicit and implicit models coincide). Let G1 = (V 1, E1) be the subgraph induced by E1. We
may assume that every edge e ∈ E1 lies on an s t path contained in E1 (which holds by def-
inition in the explicit model); otherwise, we can remove e from E1 and solve the resulting ISP
instance. We consider the following LP-relaxation of the problem with the ces and node po-
tentials {yv}v∈N as variables. (The objective function and constraints are easily linearized.)

min ‖c‖∞ (ISP-P)
s.t. max{1, yv − yu} ≤ cu,v ∀(u, v) ∈ E, yv − yu = cu,v ∀(u, v) ∈ E1 (3)

yv − yu + 1 ≤ c(P) ∀(u, v) ∈ V 1 × V 1, ∀u v paths P ⊆ E \ E1. (4)

Constraints (3) follow from Claim 3, and ensure that all s t paths in E1 are shortest s t

paths. Note that if there is no u v path in E \E1, then there is no constraint (4) for (u, v).
We argue below that constraints (4) are valid; this follows because (4) encodes that every
s t path Q not contained in E1 has length at least 1 + mins t path P :P⊆E1 c(P), and with
integer edge costs, this is equivalent to the condition that every s t path Q not contained
in E1 is not a shortest s t path.

I Lemma 4. (ISP-P) is a relaxation of ISP.

We can efficiently solve (ISP-P) via the ellipsoid method since we can efficiently separate
over constraints (4) when c ≥ 0 by solving a shortest-path problem. (We can actually avoid
the ellipsoid method and obtain a much more efficient algorithm for ISP. We retain the LP-
based exposition since this extends easily to multicommodity ISP and other variants of ISP.) If
(ISP-P) is infeasible, then the ISP instance is infeasible. Otherwise, let (c∗, y∗) be an optimal
solution to (ISP-P). Let B∗ = ‖c∗‖∞. Note that O∗ ≥ dB∗e. Our rounding algorithm is quite
simple. We first round the {y∗v} node potentials by solving the following difference system:

by∗v − y∗uc ≤ ψv − ψu ≤ dy∗v − y∗ue for all (u, v) ∈ V 1 × V 1.

Notice that ψ = y∗ is a feasible solution to this difference system, so since the constant terms
in the above inequalities are integers, it has a feasible integer solution ỹ (Theorem 2). We
set edge costs c̃u,v = ỹv − ỹu for all (u, v) ∈ E1, and c̃u,v =

⌈
c∗u,v

⌉
for all (u, v) ∈ E \ E1.

I Theorem 5. Vector c̃ satisfies bc∗c ≤ c̃ ≤ dc∗e, and is hence an optimal solution to ISP.

3.2 Multicommodity ISP with node-disjoint subgraphs
We now consider multicommodity ISP, where the edges in the Sis induce node-disjoint
subgraphs. More precisely, if the input is in the explicit model, define Ei :=

⋃
P∈Si

P .
Let Gi = (V i, Ei) be the subgraph induced by Ei. We consider the setting where the
V is are disjoint; we call this node-disjoint multicommodity ISP. As before, by Claim 3, a
muticommodity ISP instance in the explicit model is feasible only if Si includes all si ti
paths contained in Ei for all i = 1, . . . , k, which can be verified efficiently. Moreover, each
Ei must be acyclic, and we may assume that for every i, and every e ∈ Ei, there is some
si ti path contained in Ei that contains e. We prove the following results, which together
resolve the complexity of node-disjoint multicommodity ISP.

I Theorem 6. There is an additive 1-approximation for node-disjoint multicommodity ISP.

ESA 2018

1:10 Algorithms for Inverse Optimization Problems

I Theorem 7. Node-disjoint multicommodity ISP is NP-hard. Moreover, it is NP-hard to
obtain a multiplicative (3

2 − ε)-approximation for any ε > 0.

4 Inverse polyhedral optimization

Recall that in an abstract integral inverse polyhedral optimization problem, we are given
a polytope P ⊆ RE+ with explicitly specified constraints, and a set X of extreme points
of P. We want to find a positive, integral cost vector c ∈ RE minimizing ‖c‖∞ such that:
(i) in inverse polyhedral minimization (IMin-Poly), X is the set of extreme-point optimal
solutions to minx∈P cTx; and (ii) in inverse polyhedral maximization (IMax-Poly), X is the
set of extreme-point optimal solutions to maxx∈P cTx. In the implicit version, we are given
U ⊆ E, which defines X to be all extreme points x̂ of P such that {e : x̂e > 0} ⊆ U , and x̂
is maximal (for IMax-Poly) or minimal (for IMin-Poly) in P.

Our approach consists of two main steps. We first find an optimal fractional cost vector
c∗ ≥ 1, and then round this. While prior work also deals with obtaining such a fractional
cost vector, in our case, this step is significantly more complicated due to both the existence
of multiple solutions in X, and the requirement that these be the unique optimal solutions.
Let Ax ≤ b denote the constraints of P (including nonnegativity). Let K be an integer such
that all entries of A, b, and all extreme points of P are integer multiples of 1

K . We can
compute K with logK = poly(input size). (If A is totally unimodular (TU) and b is integral,
then K = 1.) So for any solution c to IMax-Poly or IMin-Poly, we have |cT x̂− cTx| ≥ 1

K for
any x̂ ∈ X and x′ /∈ X. For IMin-Poly, we solve the following LP-relaxation to find c∗. (For
IMax-Poly, (6), and the arguments below, are modified appropriately.)

(IMin-P) min ‖c‖∞ s.t.
{

ce ≥ 1 ∀e ∈ E, cT x̂ = λ ∀x̂ ∈ X (5)

cT x̂ ≥ λ+ 1
K

∀x̂ : x̂ is an extreme point of P, x̂ /∈ X. (6)

To solve (IMin-P) in the explicit model, we require a face oracle for P. We first use this to
determine if X forms a face F of P ; if not, then the inverse problem is infeasible. Otherwise,
letting J be the set of constraints that are tight for all x ∈ X, the face F is given by
F = {x ∈ P : (Ax)i = bi ∀i ∈ J}. Further, any extreme point x ∈ P \X does not lie in F , so
there is some i ∈ J such that (Ax)i < bi, and hence (Ax)i ≤ bi − 1

K . Our separation oracle
for (IMin-P) is as follows. Constraints (5) can be directly checked. For (6), we consider every
i ∈ J and check that the minimum value of cTx over the set

{
x ∈ P : (Ax)i ≤ bi − 1

K

}
is at

least λ+ 1
K . This can be done in polynomial time.

In the implicit setting, to separate over constraints (5), we require what we call a
minimality oracle (or maximality oracle, for IMax-Poly), which given a set U ⊆ E and a cost
vector c, determines if every minimal (extreme) point of P whose support lies in U has the
same (minimum) cost. To verify if constraints (6) hold, first note that if x′ /∈ X is an extreme
point supported on U , then there is some x̂ ∈ X with x̂ ≤ x′, and so cTx′ ≥ cT x̂+ 1

K . So we
only need to check if (6) holds for extreme points x′ not supported on U ; this can be done
by the same procedure as for the explicit model, taking J = E \ U . The problem of devising
a minimality/maximality oracle is itself an interesting and non-trivial problem for various
combinatorial optimization problems. We show how to devise such an oracle for min-cost
flow and bipartite matching (Theorems 10 and 11). Note that for a polytope P of the form
{x : Ax = b, x ≥ 0}, any two feasible points are incomparable; so the face formed by X is
simply F = {x ∈ P : xe = 0 ∀e /∈ U}, and we can obtain a minimality/maximality oracle by
checking if the minimum and maximum values of cTx over F are equal.

S. Ahmadian et al. 1:11

The next step is to round c∗ to obtain an approximately optimal integral cost vector. We
show how to do this in two settings, when the constraint matrix A is TU, and when A is a
sparse {0, 1}-matrix. In both cases, we round an optimal solution to the dual of the problem
of optimizing c∗Tx over P but the details and bounds obtained differ.

I Theorem 8. Let P = {x ∈ RE : Ax ≥ b, x ≥ 0}, where A is TU, and b is integral. We
can round an optimal fractional solution c∗ to the inverse problem to obtain: (a) an additive
1-approximation for IMin-Poly; and (b) a multiplicative 2-approximation for IMax-Poly.

I Theorem 9. Let A ∈ {0, 1}m×n have row sparsity r and column sparsity k, where n = |E|.
(Row sparsity is the maximum number of nonzero entries in a row of A; column sparsity is the
maximum number of nonzero entries in a column of A.) Let A1 and A2 be submatrices of A
with n columns, whose rows partition [m]. We can round an optimal fractional solution c∗ to
the inverse problem to obtain the following guarantees (in both implicit and explicit models).
(a) Additive (k−1)-approx. for IMax-Poly with P =

{
x ∈ RE : A1x = b1, A2x ≤ b2, x ≥ 0

}
.

(b) Additive k-approximation for IMin-Poly with P =
{
x ∈ RE : A1x = b1, A2x ≥ b2, x ≥

0
}
.

(c) Multiplicative β-approximation for IMax-Poly and IMin-Poly, where we have β = min
{
k+

O(1), O(
√
r logn), O(

√
kmin(log(kr), logn))

}
.

4.1 Applications to inverse min-cost flow and inverse bipartite
matching

Inverse min-cost flow. In the integral inverse min-cost flow (IMCF) problem, we are given
a directed graph D = (N,E), integer bounds 0 ≤ `e ≤ ue on every edge e, integer demands
{bv}v∈N (which could be arbitrary) such that b(N) :=

∑
v∈N bv = 0, and a set E1 ⊆ E of

edges. A flow in D is a vector x ∈ RE satisfying

x
(
δin(v)

)
− x
(
δout(v)

)
= bv ∀v ∈ N, `e ≤ xe ≤ ue ∀e ∈ E. (7)

Given edge costs {ce}e∈E , the cost of a flow x is
∑
e cexe. We seek positive, integral edge

costs {ce}e∈E minimizing ‖c‖∞ so that the set of min-cost integral flows is precisely the set
of acyclic integral flows supported on E1. As with ISP, we may assume that every e ∈ E1 is
used by some feasible flow supported on E1, and then, we may further assume that E1 is
acyclic, as otherwise the inverse problem is infeasible.

The min-cost flow problem is given by the LP: min
∑
e cexe subject to (7). The constraint

matrix specifying (7) is TU (see, e.g., [22]), so IMCF is an instance of IMin-Poly with a TU
constraint matrix. Since E1 is acyclic, any two distinct feasible flows supported on E1 are
incomparable, so it is easy to obtain a minimality oracle and solve (IMin-P). We then obtain
the following positive result in the above implicit model as a corollary of Theorem 8 (a). We
discuss the explicit model in the full version. where we also show that IMCF is polytime
solvable in certain cases, such as, the single-source setting with no (or equivalently, very
large) capacities. As noted earlier, in the context of spanning-tree protocols, this implies
that in polynomial time, we can find the smallest positive integer link weights that enforce a
prescribed routing tree as a shortest-path tree rooted a given node s.

I Theorem 10. There is an additive 1-approximation for IMCF in the implicit model.

Inverse bipartite matching. In inverse bipartite matching, the input is an undirected bi-
partite graph G = (V,E). In integral max-cost bipartite matching (IMax-BMat), we have a
collectionM1, . . . ,Mk of maximal matchings, and we seek positive, integral edge costs {ce}e∈E

ESA 2018

1:12 Algorithms for Inverse Optimization Problems

minimizing ‖c‖∞ so thatM1, . . . ,Mk are the unique max-cost bipartite matchings in G. In the
implicit model, we are given E1 ⊆ E, and we require that the set of max-cost bipartite match-
ings be the set of maximal matchings contained in E1. (Max-cost matchings must be maximal.)
The max-cost bipartite matching LP is: max

∑
e cexe s.t. x

(
δ(v)

)
≤ 1 ∀v ∈ V, x ≥ 0.

We also consider integral min-cost bipartite matching (IMin-BMat), where we are given per-
fect matchings M1, . . . ,Mk, and we seek positive integral edge costs {ce}e∈E minimizing ‖c‖∞
such that these are the unique min-cost perfect matchings in G. In the implicit model, we are
given E1 ⊆ E, and the set of min-cost perfect matchings should be the set of perfect matchings
contained in E1. The min-cost perfect matching problem can be modeled by the following
LP: min

∑
e cexe s.t. x

(
δ(v)

)
= 1 ∀v ∈ V, x ≥ 0. The constraint matrix in the above

LPs is TU and has column sparsity 2. We devise a face oracle for IMax-BMat and IMin-BMat
in the explicit setting, and a maximality oracle for IMax-BMat in the implicit setting when
E1 = E by exploiting various structural properties of bipartite matchings. (A minimality
oracle for IMin-BMat is easy since the corresponding polytope is defined by equations and
nonnegativity constraints.) The maximality oracle for IMax-BMat determines if there exist
two maximal matchings of different costs; we note that the related problem of finding a
min-cost maximal matching is NP-hard. Theorems 8(a) and 9(a) then yield the following.

I Theorem 11. We can obtain additive guarantees of 1 for IMin-BMat, and IMax-BMat in
the explicit setting, and IMax-BMat in the implicit setting when E1 = E.

5 Inverse matroid-basis optimization

We consider the integral inverse min-cost matroid basis (IMin-Basis) and integral inverse
max-cost matroid basis (IMax-Basis) problems. In both problems, the input is a matroid
M = (E, I) (specified by an independence oracle) and a collection S of bases of M . The goal
is to find positive, integral costs {ce}e∈E such that the bases in S are the unique optimal
bases under these costs, so as to minimize ‖c‖∞. More precisely, in IMin-Basis, we require
that the bases in S be the unique min-cost bases under the {ce} costs, while in IMax-Basis, we
require that the bases in S be the unique max-cost bases under the {ce} costs. In the implicit
model, we are given U ⊆ E, which implicitly specifies S to be all bases of M contained in U .

I Theorem 12. We can solve IMin-Basis and IMax-Basis in polynomial time.

6 Extensions and variants

Our techniques are versatile and yield guarantees for other variants of integral inverse
optimization mentioned in Section 2, including the `p-norm version (minimize ‖c‖p) and
distance-minimization version (minimize ‖c− c(0)‖∞, where c(0) ∈ ZE+) problems; for these
two problems our guarantees follow by simply combining our earlier results with Theorem 1.

Inverse shortest paths. We obtain multiplicative guarantees of 2 and 3 respectively for
the `p-norm variant of ISP and multicommodity ISP respectively, and obtain the optimal
solution and an additive guarantee of 1 for the distance-minimization variants. Bley [4]
considered the ISP variant where we seek positive, integral costs so as to minimize maxi=1,...,k
(shortest-si ti-path distance). A related variant specifies integer upper bounds {Di}ki=1 on
the shortest-si ti-path distances, and seeks a positive, integral cost vector c that respects
these bounds and minimizes ‖c‖∞. The guarantees in Theorems 5, 6 hold for both variants.

S. Ahmadian et al. 1:13

I Theorem 13. We obtain the following multiplicative guarantees for the `p-norm and
distance-minimization versions of integral inverse polyhedral optimization.
(a) 3-approximation for IMin-Poly with P = {x ∈ RE : Ax ≥ b, x ≥ 0}, where A is TU and

b is integral.
(b) (k + 1)-approximation for IMax-Poly with P =

{
x ∈ RE : A1x = b1, A2x ≤ b2, x ≥ 0

}
,

where AT =
(
AT1 AT2

)
is a {0, 1} matrix, and A has column sparsity k.

(c) (k+2)-approximation for of IMin-Poly with P =
{
x ∈ RE : A1x = b1, A2x ≥ b2, x ≥ 0

}
,

where AT =
(
AT1 AT2

)
is a {0, 1} matrix, and A has column sparsity k.

In the explicit model, we assume that we have a face oracle for P. In the implicit model, we
assume that we have a minimality/maximality oracle for P.

I Theorem 14. (a) There is a multiplicative 2-approximation algorithm for the `p-norm
minimization versions of IMin-Basis and IMax-Basis. (b) The distance-minimization versions
of IMin-Basis and IMax-Basis can be solved exactly in polytime.

References
1 Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,

algorithms, and applications. Prentice hall, 1993.
2 R.K. Ahuja and J.B. Orlin. Inverse optimization. Oper. Res., 49:171–783, 2001.
3 W. Ben-Ameur and E. Gourdin. Internet routing and related topology issues. SIAM J.

Discrete Math., 17:18–49, 2004.
4 A. Bley. Inapproximability results for the inverse shortest paths problem with integer

lengths and unique shortest paths. Networks, 50:29–36, 2007.
5 Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Hans Raj Tiwary. The negative cy-

cles polyhedron and hardness of checking some polyhedral properties. Annals of Operations
Research, 188(1):63–76, 2011.

6 David Bremner, Komei Fukuda, and Ambros Marzetta. Primal-dual methods for vertex
and facet enumeration. Discrete & Computational Geometry, 20(3):333–357, 1998.

7 D. Burton, W. Pulleyblank, and Ph. L. Toint. The inverse shortest paths problem with
upper bounds on shortest paths costs. In Network optimization, pages 156–171. Springer,
1996.

8 D Burton and Ph L Toint. On the use of an inverse shortest paths algorithm for recovering
linearly correlated costs. Mathematical Programming, 63(1):1–22, 1994.

9 D. Burton and Ph.L. Toint. On an instance of the inverse shortest paths problem. Math.
Program., 53:45–61, 1992.

10 Michael R Bussieck and Marco E Lübbecke. The vertex set of a 01-polytope is strongly
p-enumerable. Computational Geometry, 11(2):103–109, 1998.

11 Mikael Call and Kaj Holmberg. Complexity of inverse shortest path routing. In INOC,
pages 339–353. Springer, 2011.

12 Robert B Dial. Minimal-revenue congestion pricing part i: A fast algorithm for the single-
origin case. Transportation Research Part B: Methodological, 33(3):189–202, 1999.

13 Robert B Dial. Minimal-revenue congestion pricing part ii: An efficient algorithm for the
general case. Transportation Research Part B: Methodological, 34(8):645–665, 2000.

14 Martin E Dyer. The complexity of vertex enumeration methods. Mathematics of Operations
Research, 8(3):381–402, 1983.

15 F. Grandoni, G. Nicosia, G. Oriolo, and L. Sanità. Stable routing under the spanning tree
protocol. Operations Research Letters, 38:399–404, 2010.

16 N. Haehnle, L. Sanità, and R. Zenklusen. Stable routing and unique-max coloring on trees.
SIAM J. Discret. Math, 27:109–125, 2013.

ESA 2018

1:14 Algorithms for Inverse Optimization Problems

17 C. Heuberger. Inverse combinatorial optimization: A survey on problems, methods, and
results. J. Combin. Optim., 8:329–361, 2004.

18 Garud Iyengar and Wanmo Kang. Inverse conic programming with applications. Operations
Research Letters, 33(3):319–330, 2005.

19 Gertrud Neumann-Denzau and Jörn Behrens. Inversion of seismic data using tomographical
reconstruction techniques for investigations of laterally inhomogeneous media. Geophysical
Journal International, 79(1):305–315, 1984.

20 J. Scott Provan. Efficient enumeration of the vertices of polyhedra associated with network
LP’s. Math. Program., 63(1):47–64, 1994.

21 Robert C Read. Bounds on backtrack algorithms for listing cycles, paths and spanning
trees. Networks, 5:237–252, 1975.

22 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
23 Albert Tarantola. Inverse problem theory and methods for model parameter estimation.

SIAM, 2005.
24 H.R. Varian. Revealed preference. Samuelsonian Economics and the Twenty-first Century,

pages 99–115, 2006.
25 S. Xu and J. Zhang. An inverse problem of the weighted shortest path problem. Japan J.

Indust. Appl. Math., 12:47–59, 1995.
26 J. Zhang and M.C. Cai. Inverse problem of minimum cuts. Mathematical Methods of Oper.

Res., 47:51–58, 1998.
27 J. Zhang and Z. Liu. A general model of some inverse combinatorial optimization problems

and its solution method under l-infinity norm. J. Combin. Optim., 6:207–227, 2002.
28 J. Zhang and Z. Ma. Solution structure of some inverse combinatorial optimization prob-

lems. J. Combin. Optim., 3:127–139, 1999.
29 Jianzhong Zhang and Zhenhong Liu. Calculating some inverse linear programming prob-

lems. Journal of Computational and Applied Mathematics, 72(2):261–273, 1996.
30 Jianzhong Zhang and Zhenhong Liu. A further study of inverse linear programming prob-

lems. Journal of Computational and Applied Mathematics, 106:345–359, 1999.

Two-Dimensional Maximal Repetitions
Amihood Amir1

Bar Ilan University, Ramat-Gan, 52900, Israel
amir@esc.biu.ac.il

Gad M. Landau2

University of Haifa, Haifa 31905, Israel, and
NYU Tandon School of Engineering, New York University,
Six MetroTech Center, Brooklyn, NY 11201, USA
landau@univ.haifa.ac.il

Shoshana Marcus
Kingsborough Community College of the City University of New York
2001 Oriental Boulevard, Brooklyn, NY 11235, USA
shoshana.marcus@kbcc.cuny.edu

Dina Sokol3

Brooklyn College of the City University of New York
2900 Bedford Avenue, Brooklyn, NY, 11210, USA
sokol@sci.brooklyn.cuny.edu

Abstract
Maximal repetitions or runs in strings have a wide array of applications and thus have been
extensively studied. In this paper, we extend this notion to 2-dimensions, precisely defining a
maximal 2D repetition. We provide initial bounds on the number of maximal 2D repetitions
that can occur in a matrix. The main contribution of this paper is the presentation of the first
algorithm for locating all maximal 2D repetitions in a matrix. The algorithm is efficient and
straightforward, with runtime O(n2 logn log logn+ρ logn), where n2 is the size of the input, and
ρ is the number of 2D repetitions in the output.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words, The-
ory of computation → Design and analysis of algorithms

Keywords and phrases pattern matching algorithms, repetitions, periodicity, two-dimensional

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.2

1 Introduction

Repetitions in strings constitute one of the most fundamental areas of string combinatorics.
They are exploited in the design of efficient algorithms for string matching, data compression,
and analysis of biological sequences. Maximal repetitions are important structures, as they
encode all of the repetitions in the string in a concise way. Once the set of maximal repetitions
is known, repetitions of any other type (such as squares and cubes) can be extracted from it.

1 Partially supported by the Israel Science Foundation grant 571/14 and Grant No. 2014028 from the
United States-Israel Binational Science Foundation (BSF).

2 Partially supported by the Israel Science Foundation grant 571/14 and Grant No. 2014028 from the
United States-Israel Binational Science Foundation (BSF).

3 Partially supported by Grant No. 2014028 from the United States-Israel Binational Science Foundation
(BSF).

© Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir@esc.biu.ac.il
mailto:landau@univ.haifa.ac.il
mailto:shoshana.marcus@kbcc.cuny.edu
mailto:sokol@sci.brooklyn.cuny.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Two-Dimensional Maximal Repetitions

Driven by the many applications to pattern recognition, low level image processing,
computer vision and multimedia, the past decades have seen the extension of clever string
searching techniques and combinatorial properties to two-dimensional arrays. However, the
notion of maximal two-dimensional repetitions has not been explored, neither from the
combinatorial perspective nor from the algorithmic perspective. Thus, in this project we
propose to fill this void. We define a maximal 2D repetition to be a submatrix that can be
decomposed into repeating non-overlapping occurrences of the same subblock horizontally
and vertically that is maximally extended in all directions.

A range of motivating applications exist that can spur the exploration of maximal
repetitions in matrices. In one-dimension, algorithms that compute all the maximal repetitions
in a text have application to data compression. The discovery of repetitive structures in the
two-dimensional sense can lead to improvements in the compression schemes used for images
and video. Just as properties of repetitions have enabled the speeding up of one-dimensional
pattern searching algorithms and are relied on by space-efficient one-dimensional pattern
matching algorithms, discovering properties of two-dimensional repetitions should create new
possibilities and opportunities to speed up two-dimensional string matching algorithms and
to design algorithms that use less working space in memory.

As Crochemore et al. have pointed out [9], “the difficulties in extending string-matching
techniques to image pattern matching methods are essentially due to different and more
complex structures of 2D-periodicities.”

In this paper we define two-dimensional maximal repetitions for matrices, prove upper
bounds on the number of maximal repetitions that can occur in a matrix, and develop an
efficient algorithm for locating them. We begin by putting our work in context of related
work in Section 2. In Section 3 we precisely define a 2D maximal repetition. Then, in Section
4, we prove that there are at most O(n3) maximal 2D repetitions in an n × n matrix. In
Section 5 we develop an algorithm to find all the maximal 2D repetitions in an n× n matrix
in close to linear time.

2 Related Work

A string r is periodic if its longest prefix that is also a suffix is at least half the length of
r. A string s is primitive if it cannot be expressed in the form s = uj , for some integer
j > 1 and some prefix u of s. A periodic string r can be expressed as uju′ for one unique
primitive u, which is called the period of r. Every non-primitive string is periodic but not
every periodic string is non-primitive. For example, abc, abcab are both primitive and
non-periodic, abcabc is non-primitive (and hence periodic), while abcabca is primitive and
periodic with period abc.

In a string s, a maximal repetition, or run, is a periodic substring r with period u in
which an extension by one letter to the right or to the left yields a string with a longer
period than |u| [16]. The maximal repetitions in a string can overlap, be embedded one
within another, or begin at the same position. Thus, it was remarkable when Kolpakov and
Kucherov proved that a string of length n can contain only O(n) runs [16]. More recently,
Bannai et al. proved that the number of runs is strictly less than n [6].

A square is a particular type of repetition. In one-dimension, a square is a string which
consists of precisely two consecutive occurrences of a substring. Apostolico and Brimkov
[3] extend the notion of a square to two dimensions, to form a 2D tandem. They define
a 2D tandem as a configuration consisting of two occurrences of the same primitive block
that share a side or a corner. A primitive array is one that cannot be partitioned into

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:3

non-overlapping replicas of some block W [3]. Apostolico and Brimkov prove combinatorially
that an n× n matrix can contain Θ(n4) corner-sharing tandems and Θ(n3 logn) side-sharing
tandems [3]. They develop an O(n3 logn) algorithm for finding side-sharing tandems in an
n× n matrix, which can be used to derive an O(n4) algorithm for locating all corner-sharing
tandems [4].4 In this paper we extend Apostolico and Brimkov’s concept of a side-sharing
2D tandem to many copies to form maximal tandems horizontally and vertically.

A combinatoric construct that is related to repetitions is that of periodicities, i.e. highly
repetetive subblocks. The different kinds of two-dimensional periodicities in matrices have
been studied by Amir and Benson [1] in terms of self-overlap. Their definition of line and
radiant periodicity do not result in 2D repetitions since only the overlapping portion repeats.
The lattice periodicity of Amir and Benson is most similar to a 2D repetition. It is also similar
in concept to the bi-periodic infinite pictures studied by Bacquey [5]. Bacquey provides
interesting combinatoric properties of the primitive roots of bi-periodic infinite pictures.
The current paper is more restrictive in terms of lattice periodicity in that the primitive
root always has to occur immediately adjacent to its neighbor to the right or beneath it,
forming a lattice with all right angles. Apostolico and Brimkov [3], at the beginning of the
above-mentioned paper on tandems, define exactly this kind of repetition.

The right-angle lattice periodicity is also used by Gamard and Richomme [11] where the
primitive roots of 2D arrays are studied. A matrix is defined as primitive if it cannot be
broken down to a repeating factor vertically and/or horizontally. Gamard et al. [12] show
that every matrix has one unique primitive root. They present several 2D generalizations of
the Lyndon-Schutzenberger periodicity theorem for words. However, all exponents in their
periodic matrices are integers, i.e. only whole copies of the primitive root are allowed in a
repetitive matrix.

In this paper we discuss periodicity where partial copies are allowed at the ends of the
matrix, i.e. we use real exponents. Our goal is to find maximal rectangular submatrices that
are repetitions in a given matrix. In the next section we precisely define a 2D repetition and
a maximal 2D repetition in a matrix.

3 Definition of 2D Maximal Repetition

3.1 1D Maximal Repetitions
In one-dimensional data, a maximal repetition is a substring that is a repetition such that its
extension by one character to the right or to the left yields a word with a larger period [16].

I Definition 1. Let T be a 1D repetition of length t with period U of length u. The exponent
e of T is the rational number that satisfies e = t

u .

I Lemma 2. Let T be a 1D repetition of length t with period U of size u. Let the exponent
e be the number of adjacent times U occurs in T such that Ue = T and u · e = t. Then T is
maximal iff it is a substring in which extending one character to the right or left yields a
string T ′ of size t+ 1 with period U ′ of size u′ and exponent e′ such that e′ < e.

Proof. The proof has been omitted due to lack of space. J

4 They consider this optimal based on the largest number of such repetitions that can occur in a matrix.
However, this is not optimal for a matrix with few 2D tandems. A truly optimal algorithm would find
all 2D tandems in O(n2 + occ) time, where occ is the number of 2D tandems in the matrix.

ESA 2018

2:4 Two-Dimensional Maximal Repetitions

Table 1 Non-primitive matrices.

X
X

X X
X X
X X

3.2 2D Maximal Repetitions
We say that U is a horizontal prefix (resp. suffix) in matrix M if U is an initial (resp. ending)
sequence of contiguous columns in M . A horizontal border of matrixM is a proper horizontal
prefix that is also a horizontal suffix of M . We say that B is the longest horizontal border of
M if it is the horizontal border of M that spans the largest number of columns among the
horizontal borders of M .

I Definition 3. The horizontal period, or h-period, of an m× n matrix M is n− b where b
is the number of columns contained in the longest horizontal border of M .

I Definition 4. [8, 17] An m × n matrix M with h-period p is horizontally periodic, or
h-periodic, if p ≤ bn

2 c.

The vertical period of a matrix and vertical periodicity are defined analogously.

I Definition 5. [3] A matrix M is a two-dimensional repetition if M is h-periodic and
v-periodic.

Consider an m × n matrix M and rational numbers x > 0, y > 0. Mx,y is the matrix
constructed by repeating M x times vertically and y times horizontally, yielding an bxmc ×
bync matrix.

For example,

M =
[
a b c d

e f g h

]

M1.5,2.25 =

a b c d a b c d a

e f g h e f g h e

a b c d a b c d a

 M2,1.5 =


a b c d a b

e f g h e f

a b c d a b

e f g h e f


I Definition 6. [3, 12] A matrix M is primitive if it cannot be partitioned into more than
one non-overlapping complete occurrences of some block W . M is non-primitive if M can be
expressed as M = W r,s for integers r, s such that either r > 1 or s > 1 or both r and s are
strictly greater than 1.

Table 1 shows the different basic configurations of a non-primitive matrix. As in the string
terminology, a periodic matrix can be either primitive or non-primitive. In the example,
M1.5,2.25 is both periodic and primitive, while M2,1.5 is periodic and non-primitive.

I Definition 7. The primitive root W of a matrix M is a primitive submatrix such that
M = W r,s for rational numbers r, s. M begins with W at its upper left corner and can be
partitioned into non-overlapping replicas of W , possibly including partial occurrences of W
at its right and / or lower ends.

I Lemma 8. Every matrix M has a unique primitive root W such that M = W r,s for
rational numbers r, s.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 a a a b a a b a a a a b a a b b a a

2 b a a a a a a a b b a b a b a a b a

3 a b a a a a a a a a b a b a a a a a

4 a b a b a b a b b b b b b a a a b b

5 b a a a a a a a b a a a a b b b a b

6 a b a b a b a b b b a b a a a a a b

7 b a b b b b b b a a b a b a a a a a

8 b a a a a a a b a b b b b a a a b a

9 b a a b a b a a b a a a a b b b a b

10 a b a a a a b a a b a b a a a a a b

11 a a a b a b a b b a b a b a a a a a

12 b b b b b b a a b b b b b b b b b b

13 a a a a a a b b a a a a a a a a a a

14 b a a a a a b b b b a b a a a a b a

15 a a a a a b a a a b b a b a a a a a

16 a a a a b b b b b b a a b b b b a b

17 a b a b a a a b b a a b a b a a a b

18 a a a a a b b b a b b b a b a a b a

M1
r

W

Y

X

X

Y

X

Y

Y

Y

X

W

Z

W

Y

W

W

X

W

M1
c B A A C A A C A B B A D A B C C B A

Figure 1 A matrix M with many maximal 2D repetitions highlighted. The first row of M1
c is

depicted below M and the first column of M1
r is depicted on the right.

Proof. The proof has been omitted due to lack of space. J

I Definition 9. Let R be a 2D repetition of size r1×r2 with primitive rootW of size w1×w2.
The exponent of R is a tuple (e1, e2) in which e1 and e2 are rational numbers that satisfy
e1 = r1

w1
and e2 = r2

w2
.

In a 2D repetition R =

W ... W W ′

...
W ... W W ′

W ′′ ... W ′′ W ′′′

there are at least two W -blocks horizontally and vertically. That is, the primitive root W
repeats both to the right and underneath its initial occurrence in R.

We introduce the idea of a maximal two-dimensional repetition. A 2D repetition R

with root W is maximal if it cannot be extended by one row or one column to obtain a
2D repetition with the same primitive root W . Figure 1 depicts a matrix with many 2D
maximal repetitions highlighted.

I Lemma 10. A 2D repetition R of size r1 × r2 with root W of size w1 × w2 and exponent
(e1, e2) is maximal iff extending R by one row or column in either direction yields a matrix
R′ of size r′1 × r′2 with primitive root W ′ of size w′1 × w′2 and exponent (e′1, e′2) such that
e′2 < e2 or e′1 < e1.

Proof. The proof has been omitted due to lack of space. J

4 Bounds on the Number of 2D Maximal Repetitions

I Lemma 11. There are O(n3) maximal 2D repetitions in an n× n matrix.

ESA 2018

2:6 Two-Dimensional Maximal Repetitions

Proof. In each row there are O(n) maximal 1D repetitions [16]. For each possible height
0 < h ≤ n, we can linearize the 2D submatrix beginning in each row with height h and width
n, by naming metacharacters of subcolumns of height h. This linearization yields a string of
length n with O(n) runs. Thus, beginning in each row, for each height, we have O(n) 2D
h-periodic horizontally maximal repetitions, resulting in O(n3) over all rows. The number of
2D maximal repetitions is no more than the number of h-periodic submatrices, since all 2D
maximal repetitions are h-periodic. J

5 Algorithm to Find 2D Maximal Repetitions

In this section we develop an efficient algorithm to identify all maximal 2D repetitions in
an n× n matrix M . The naive algorithm can examine each of the O(n4) submatrices in M .
For each submatrix S, we can check whether S can possibly be the primitive root of a 2D
repetition by attempting to extend it as far as possible. This would take O(n6) time for all
submatrices S. Using LCA queries within each row or column to extend S would speed up
the algorithm to O(n5) time. The last step that remains is to filter out repetitions that were
located more than once, which can complete the process in O(n5) time. The remainder of
this section presents a more efficient O(n2 logn log logn+ ρ logn) algorithm for finding all ρ
maximal 2D repetitions that occur in M .

Algorithm Overview:
Step 1 Preprocess the matrix and set up data structures that are used later on by algorithm.
Step 2 Search in each row of the matrix for h-periodic submatrices of height 2i, for every

1 ≤ i ≤ logn, that begin in that row.
Step 3 Locate all maximal 2D repetitions of height 2i ≤ r < 2i+1, for every 1 ≤ i ≤ logn,

whose prefix 2i rows are v-periodic.
Step 4 Identify the maximal 2D repetitions of height 2i < r < 2i+1, for every 1 ≤ i ≤ logn,

whose v-period is not apparent in the first 2i rows.

5.1 Step 1: Preprocessing the matrix
There are three steps to the preprocessing stage of our algorithm:
1. Naming

We use Karp-Miller-Rosenberg (KMR) naming [14] on matrix M . One-dimensional KMR
naming works with a string, naming each substring whose length is a power of 2. In
two-dimensions, we name subcolumns of an n× n matrix M spanning a number of rows
that are powers of 2, i.e., r = 2i, 1 ≤ i ≤ logn. We construct logn matrices of names
called M i

c , for each 1 ≤ i ≤ logn, by naming subcolumns of heigth 2i. Similarly, we
construct a second set of logn matrices of names which we callM j

r , for each 1 ≤ j ≤ logn,
by naming subrows of M whose widths are 2j . Throughout the rest of this paper, i is
used as the exponent when denoting a number of rows, e.g. height 2i, while j is used in
reference to columns, e.g. width 2j .

2. Substring Periodicity Queries
A Substring Periodicity Query (SPQ) is as follows: given a string T of length n and two
indices, 1 ≤ i < j ≤ n, return the period length of T [i..j], when T [i..j] is a repetition.
Kociumaka et al. [15] presented an algorithm that processes a string in linear time
and space to support O(1) time Substring Periodicity Queries, which they call 2-Period
Queries. (Similar time and space complexities are presented by Bannai et al. [7].) We
preprocess each column of M j

r , for each 1 ≤ j ≤ logn, in linear time following the
algorithm of Kociumaka et al. [15] to support O(1) time SPQ.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:7

3. Vertical Squares Preprocessing
We build and decorate suffix trees of each column in each of M j

r , 1 ≤ j ≤ logn, using
the approach of Gusfield and Stoye [13]. The decorated suffix tree marks the endpoints
of tandem repeats, either at a node or along an edge. In each decorated suffix tree,
we add a link at each node that points to its closest ancestor that is marked or has a
marked edge leading into it. We also add links from each marked node to its closest
marked ancestor. We then preprocess each decorated suffix tree to admit O(log logn)
time weighted ancestor queries, where the weight of a node corresponds to the string
length it encodes in the suffix tree [2].

Time Complexity for Preprocessing: Subcolumns and subrows can be named with gener-
alized suffix trees of the matrix columns and of the matrix rows for each of the logn matrices
of names. This takes O(n2 logn) time, since the naming can be done during Ukkonen’s suffix
tree construction process [18]. We build a suffix tree of the matrix and preprocess it in linear
time to admit O(1) time LCA queries later on. The preprocessing of Kociumaka et al. [15]
for SPQ runs in linear time per column of each matrix of names, a total of O(n2 logn) time
and space. Suffix trees of each column in each of M j

r , 1 ≤ j ≤ logn, are constructed in linear
O(n2) time and space for each column, overall O(n2 logn), and the preprocessing of Amir et
al. [2] for weighted ancestor queries is also linear in time and space. In total, the complexity
of preprocessing is O(n2 logn) time and space.

5.1.1 Queries Used in Algorithm
Once the preprocessing is performed, we can make use of three kinds of efficient queries later
on in our algorithm.

Query 1: Vertical Periodicity Query. Given an h-periodic submatrix S within matrix M ,
what is the vertical period of S?

A Vertical Periodicity Query can be answered in constant time by a SPQ in a column
of one of the matrices of names M j

r , 1 ≤ j ≤ logn. If S has width 2j , we use M j
r . Suppose

S begins in row α and ends in row β of M . We ask a SPQ in the column of M j
r in which

S begins with indices α and β that indicate the starting and ending rows of S in M . If S
has width c such that 2j < c < 2j+1, it is sufficient to ask a SPQ on the first 2j columns of
S. Since S is h-periodic, all of its remaining columns must appear in the first 2j columns,
and they do not affect the vertical periodicity of S. For example, in Figure 1, the Vertical
Periodicity Query (on 2 columns) will answer 4 for the 8x3 highlighted submatrix at position
(3, 14) and the Vertical Periodicity Query will answer 7 for the 14x3 highlighted submatrix
at position (3, 14).

Query 2: Vertical Extension Query. Given a submatrix R that is a 2D repetition of height
r, and an integer x < r, can R be extended vertically by x rows?

A Vertical Extension Query can be answered in O(1) time as follows. We can compute
the v-period v of R using Query 1. Let Ra be the submatrix R extended above by x rows.
We do not know if Ra is h-periodic so we do not use Query 1. Let the width c of R satisfy
2j ≤ c < 2j+1. To compute the v-periodic of Ra, we use two SPQs in O(1) time: one query
for a prefix of size 2j and another query for a suffix of size 2j in a column of M j

r . If both
answers to the SPQs are equivalent to v, then the answer to the Vertical Extension Query is
yes, meaning that the repetition R can be extended above by x rows. Otherwise, we perform
the same computation for Rb, the submatrix R extended below by x rows. If the answers to

ESA 2018

2:8 Two-Dimensional Maximal Repetitions

both SPQs for Rb are equivalent to v, the answer to the Vertical Extension Query is yes.
Otherwise, the answer to the vertical extension query is no, meaning that the repetition R
cannot be extended by x rows up or down. For example, in Figure 1, a Vertical Extension
Query by 6 rows on the 8x3 2D repetition beginning at position (3, 14) answers no even
though it results in a 2D repetition since the vertical period grows with the vertical extension.

Query 3: Vertical Squares Query. Given a column c in M j
r , 1 ≤ j ≤ logn, a position

1 ≤ p ≤ n within the column, and 1 ≤ i ≤ logn, locate each vertical square beginning at
position (c, p) with height 2i < r < 2i+1.

We use the data structure of the Vertical Squares Preprocessing described in Step 3 of
the preprocessing. To answer the query we ask an O(log logn) time weighted ancestor query
on suffix p of column c in M j

r with weight 2i+1 − 1. The returned node’s link to the closest
marked ancestor yields such a square if one exists. Later, in Lemma 20 we prove that there
are at most two answers to this query, hence, one additional link may need to be followed.

5.2 Step 2: Populate the Set H

In this section, we find h-periodic submatrices of height 2i in the input matrix. A 1D search,
e.g. [16, 6], for runs across each row in M i

c yields a set of h-periodic submatrices. These
submatrices are necessarily maximal in their widths but not their heights since the height is
fixed at 2i for some i. Since a 1D row of length n can contain O(n) repetitions [16], each row
in M i

c can contain O(n) h-periodic submatrices. Thus, each matrix of names can contain
O(n2) h-periodic submatrices, yielding a total of O(n2 logn) h-periodic submatrices over the
logn matrices of names. These submatrices may or may not be v-periodic. However, we will
use them as a starting point for our search.

I Definition 12. Let H denote the set of all horizontally maximal h-periodic submatrices of
height 2i, for all 1 ≤ i ≤ logn.

I Lemma 13. The procedure described in the previous paragraph finds every horizontally
maximal h-periodic submatrix with height 2i, for each 1 ≤ i ≤ logn, in input matrix M , i.e.
we can find the complete set H, in O(n2 logn) time.

Proof. Let I be a horizontally maximal h-periodic submatrix of height 2i, 1 ≤ i ≤ logn, in
M . There must be a subrow of M i

c that corresponds exactly to I. By the correctness of
the 1D search algorithm for runs across the rows of M i

c, I will be found as a maximal 1D
run. The algorithms of [16, 6] run in linear time on each of the O(n) rows of length n in the
O(logn) texts, resulting in O(n2 logn) time overall. J

In Step 3 and and Step 4 we use the set H as the starting point for our search for all 2D
maximal repetitions. We prove that each 2D maximal repetition in the desired output has
a representative in the set H that shares its h-period. Thus, our algorithm processes each
element in H, extending it possibly in several ways, yielding different size repetitions.

I Lemma 14. Each maximal 2D repetition R of height 2i ≤ r < 2i+1, 1 ≤ i ≤ logn, has a
representative R′ ∈ H that overlaps R by 2i rows and shares a corner on the left with R. R
also has a representative R′′ ∈ H that overlaps R by 2i rows and shares a corner on the right
with R.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:9

Proof. Let R be a maximal 2D repetition of height r. If r = 2i, 1 ≤ i ≤ logn, then R ∈ H
and R is its own representative. Now suppose 2i < r < 2i+1. Let R̂ denote the prefix 2i rows
of R. Let Ř denote the suffix 2i rows of R. If either R̂ ∈ H or Ř ∈ H then a corner on each
side is shared with a member of H and we do not need to consider other scenarios.

Now suppose R̂ /∈ H and Ř /∈ H. This implies that both R̂ and Ř are not horizontally
maximal. Suppose both R̂ and Ř need to be extended on the left to attain horizontal
maximality. This implies that R needs to be extended on the left to attain horizontal
maximality. This contradicts the fact that R is a maximal 2D repetition. Thus, R shares
either its upper or lower left corner with a member of H. The same argument can be used
for the existence of a representative in H that shares a right corner with R. J

I Corollary 15. Each maximal 2D repetition R shares either its upper left corner or its
lower left corner with some element of H.

I Corollary 16. Let A be the set of all horizontal prefixes in H. Every maximal 2D repetition
in M is the result of a vertical extension on some element of A.

I Lemma 17. Let R be a maximal 2D repetition of height 2i ≤ r < 2i+1, 1 ≤ i ≤ logn, with
representatives R′ ∈ H and R′′ ∈ H. R′ and R′′ both have the same h-period as R.

Proof. Let h be the h-period of R. Let h′ be the h-period of R′. Suppose h′ > h. This is
impossible since R cannot include fewer rows than R′. Suppose h′ < h. This means that the
Least Common Multiple (LCM) of the periods of the rows in R is larger than the LCM of
the periods of the rows in R′. This is only possible if some row in R that is not part of R′
has a period larger than that of any row in R′. This implies that some row in R does not
occur in R′. This is impossible since we know that more than half of the vertical repetition
in R occurs in R′, and all the rows of R must occur in R′ as well. Thus h′ = h. The same
argument can be made for the h-period of R′′. J

Following Corollary 16, our algorithm will iterate through the elements in H and attempt
to extend them downward and upward5. Since we know that the repetitions in H are maximal
in width, it is not necessary to check horizontal maximality. However, it is possible that by
reducing the width, an element in H can be extended to a taller height. (See the three 2D
maximal repetitions beginning at position (13, 2) in Figure 1.) Hence, the task of extension
is non-trivial. It is further complicated by the fact that we do not know the v-period of the
elements in H. In fact, some elements in H may not be v-periodic and yet may possibly be
extendable into v-periodic matrices. (See the 14x3 2D maximal repetition at position (3, 14)
and the 11x4 2D maximal repetition at (3, 3) in Figure 1.) Thus, we consider these two cases
separately in the following two subsections. In Section 5.3, we consider the representatives in
H that are v-periodic and identify all 2D maximal repetitions of height 2i ≤ r < 2i+1 whose
prefix 2i rows are v-periodic. Then, in Section 5.4, we locate the maximal 2D repetitions
of height 2i < r < 2i+1 whose prefix 2i rows do not contain two complete copies of their
v-periods.

5.3 Step 3: Extending 2D Repetitions Vertically
We begin by performing a Vertical Periodicity Query on each element in H. If the element is
v-periodic then it is processed in Step 3.

5 The rest of the paper discusses the downward direction, the upward direction is analogous.

ESA 2018

2:10 Two-Dimensional Maximal Repetitions

Algorithm 1 Find Maximal Height.
Input: 2D repetition R of height 2i ≤ r < 2i+1

Output: maximal height r with width of R
. perform binary search to extend R

j ← i− 1 . we will try to extend by 2j rows
while j > −1 do . last extension should be by 1 row

if Vertical Extension Query(R,2j) then
r ← r + 2j . R is extended by 2j rows

end if
j ← j − 1 . decrementing j by 1 in effect halves the size of the extension

end while

Let R′ denote an element in H that is both h-periodic and v-periodic. Algorithm 1
attempts to add rows to R′ while maintaining its full width. A binary search procedure
performs this extension by performing a sequence of Vertical Extension Queries. Once we
have determined the maximal height for the full width, it is necessary to attempt to extend
narrower widths. The following lemma shows that when there are several 2D maximal
repetitions with the same primitive root that share a corner we get a progression of increasing
heights and corresponding decreasing widths. For example, position (13, 2) of Figure 1
depicts several 2D repetitions with the same primitive root all starting at the same position.

I Lemma 18. Let R be a maximal 2D repetition beginning at position (i, j) with dimensions
r1 × r2 and primitive root w of size w1 × w2. For any other maximal 2D repetition R′

beginning at (i, j) with dimensions r′1× r′2 and the same primitive root w, r′1 > r1 if and only
if r′2 < r2.

Proof. The proof follows from the definition of maximality. J

This monotonicity property gives us the ability to use the modified binary search presented
in Algorithm 1 on the potential heights of a 2D repetition. To illustrate Algorithm 1, we
can consider the 13x4 maximal 2D repetition at position (2, 10) in Figure 1. We begin with
the representative in H which has 23 = 8 rows. We first try to extend downwards by 4 rows
and succeed. Then we try to extend downwards by 2 more rows and fail. Finally, we try to
extend downwards by 1 additional row and succeed, resulting in a maximal 2D repetition of
height 13.

Algorithm 2 is the outer loop; its job is to compute the widths for which it needs
Algorithm 1 to compute the corresponding maximal heights. For each repetition R of height
2i < r < 2i+1, Algorithm 2 first checks whether it can be extended to the full height of 2i+1.
If it can, then this particular output will be found in another iteration, and the representative
has been completed being processed. Otherwise, Algorithm 1 is called. Let r′ denote the
maximal height returned by Algorithm 1 for some repetition R. The full width of R cannot
be extended even one row past r′ since the last Vertical Extension Query failed at the end of
Algorithm 1. Hence, a Longest Common Prefix (LCP) query in M between the substring of
row r′ + 1 directly below R and the row that is a v-period above it will determine the next
width to extend. If the LCP suffices to admit two horizontal copies of the primitive root,
we attempt to extend further downwards with Algorithm 1, passing a 2D repetition whose
width is the answer to the LCP query and whose height is r′ + 1. This process continues
until either the width is too narrow or the height becomes 2i+1.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:11

Algorithm 2 Find Maximal Repetitions with v-periodic prefix 2i rows.
Input: set H of h-periodic submatrices, each with height 2i

Output: maximal 2D repetitions with height 2i ≤ r ≤ 2i+1 that are v-periodic in their
prefix 2i rows
for all R ∈ H do . R has height r = 2i, width c, and h-period h

Ask Vertical Periodicity Query on R to get vertical period v of R
if v ≤ r

2 then . R is v-periodic
repeat

d← 2i+1 − r . d is distance to height 2i+1

if Vertical Extension Query(R, d) then
break . Don’t process R if it extends to height 2i+1.

end if
Call Algorithm 1 to compute maximal height r′ for R
r ← r′

Output R with new height
. see if can extend R further downwards by decreasing its width

`← LCP between row r − v + 1 in R and row r + 1 below R

if ` ≥ 2h then
c← `

r ← r + 1
end if

until ` < 2h or r ≥ 2i+1

. continue looking for taller and narrower 2D repetitions as long as width is
h-periodic and height is less than 2i+1

end if
end for

5.4 Step 4: Unknown Vertical Period

In this section we process all elements of H to discover v-periods that were previously
unknown. This can happen in one of two ways in a 2D repetition of height 2i < r < 2i+1,
1 ≤ i ≤ logn.
1. The first 2i rows of a repetition are not v-periodic. For example, abaababa with i = 2,

and each character of the string is a metacharacter representing a subrow in M . (See the
11x4 maximal repetition at position (3, 3) in Figure 1.)

2. The first 2i rows are v-periodic, but there is another v-period that comes into existence
when rows are added. For example, aabaaabaabaaab with i = 3 and each character of
the string is a metacharacter representing a subrow in M . In the first 2i rows of this
submatrix, we have the periodic string aabaaaba with period aaba. The first 14 rows are
also periodic with period aabaaab of size 7. (See the two maximal repetitions at position
(3, 14) in Figure 1.)

The following two lemmas identify the key characteristics of a 2D repetition of height
2i < r < 2i+1, 1 ≤ i ≤ logn, and v-period v such that v is not a vertical period in the first
2i rows of R, i.e., v > 2i−1.

I Lemma 19. In a 2D repetition R of height 2i < r < 2i+1 whose 2i prefix rows are not
v-periodic, the exponent e of the v-period v is between 2 and 4, i.e., 2 ≤ e < 4.

ESA 2018

2:12 Two-Dimensional Maximal Repetitions

Proof. Let |v| be the size of v. We know |v| > 1
2 2i = 2i−1 since the first 2i rows of R are not

periodic in v. Thus, |v| ≥ 2i−1 + 1. We know that the height of R is at most 2i+1 − 1. The
longest possible height of R divided by its shortest possible root yields the largest possible
exponent for the v-period.

e ≤ 2i+1 − 1
2i−1 + 1 <

2i+1

2i−1 = 4.

By the definition of an exponent for a period, e ≥ 2. Overall, 2 ≤ e < 4. J

I Lemma 20. Let I be an h-periodic matrix of height 2i < r < 2i+1. No more than 2
v-periods v can occur at the beginning of I such that the first 2i rows of I are not periodic
in v.

Proof. Suppose v1 and v2 are the smallest v-periods in I such that v1 > 2i−1 and v2 > 2i−1.
Suppose I has a third v-period v3 in which the first 2i rows are not periodic in v3. Then
v3 ≥ v1 + v2 [10]. Thus, v3 > 2i. This implies that v3 cannot occur twice in I of height
r < 2i+1 and I cannot be v-periodic in v3. Thus, a third v-period of height larger than 2i−1

cannot exist in I. J

By Lemmas 19 and 20, we know that we are looking for 2D repetitions that contain
either 2 or 3 complete copies of their v-periods and that each element of H will extend to
at most 2 new v-periods. Hence, we are looking for at most two squares that begin with I
and have height 2i < r < 2i+1. Suppose I has width c such that 2j ≤ c < 2j+1 and that I
begins in row α. We ask a Vertical Squares Query on the column at which I begins in M j

r ,
α, and i. Once we identify the 1 or 2 v-periods, if they occur, we revert back to Step 3 of
the algorithm (when the v-period is known) and use the procedure described in Algorithm 2
to find the set of maximal 2D repetitions corresponding to each v-period we have identified.

5.5 Algorithm Correctness and Time Complexity
I Theorem 21. Let M be an n× n matrix. Our algorithm finds all maximal 2D repetitions
that occur in M .

Proof. By Lemma 14 every repetition in the output has a representative in H. It remains
to show that we hit upon every repetition R in the output with some vertical extension of
an element R′ ∈ H that is a prefix or suffix of R. By Corollary 15, we know that R′ shares
a corner on the left with R. If R and R′ have the same primitive root (Step 3), then by
Lemma 18 the successive binary searches will hit upon every output. Now suppose that R′
has a different primitive root than R. R′ and R must have the same h-period, by Lemma 17,
so R′ and R must have different v-periods. By Lemma 20, there can be no more than two
possible v-periods to try extending with a binary search. One of the extensions must be R,
by Corollary 16. Hence, our algorithm identifies all maximal 2D repetitions in M . J

I Theorem 22. Let M be an n× n matrix. Our algorithm finds all maximal 2D repetitions
in M in O(n2 logn log logn+ ρ logn) time, where ρ is the number of maximal 2D repetitions
that occur in M .

Proof. Step 1 of the Algorithm Outline, the preprocessing, was shown in Section 5.1 to be
done in O(n2 logn) time. For Step 2, a linear time 1D search (e.g., [16, 6]) for runs across
each row in M i

c yields the set H in O(n2 logn) time and space.
In Step 3, we iterate through the O(n2 logn) elements in H and perform a constant time

Vertical Periodicity Query on each element. Then, Algorithm 2 is called on each v-periodic

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:13

element. Algorithm 2 performs a Vertical Extension Query and LCP query in constant time.
It also calls Algorithm 1 for each representative for each width that is necessary to check.
Algorithm 1 runs in O(i) = O(logn) time. However, the only widths that are checked are
those that will certainly produce output. Therefore, we can charge the time spent running
Algorithm 1 to the output it generates, yielding O(ρ logn) where ρ equals the number of
repetitions reported. Each repetition is reported at most twice since it can be found once by
the upward and downward extensions. For Step 4, we find the 1 or 2 v-periods of interest in
O(log logn) time using the Vertical Squares Query and again use Algorithm 2 to find the
corresponding maximal 2D repetitions in O(n2 logn+ ρ logn) time. Hence, the total time
complexity of our algorithm is O(n2 logn log logn+ ρ logn). J

References

1 A. Amir and G. Benson. Two-dimensional periodicity in rectangular arrays. SIAM J.
Comput., 27(1):90–106, 1998. doi:10.1137/S0097539795298321.

2 A. Amir, G. M. Landau, M. Lewenstein, and D. Sokol. Dynamic text and static pattern
matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

3 A. Apostolico and V. E. Brimkov. Fibonacci arrays and their two-dimensional repetitions.
Theor. Comput. Sci., 237(1-2):263–273, 2000. doi:10.1016/S0304-3975(98)00182-0.

4 A. Apostolico and V. E. Brimkov. Optimal discovery of repetitions in 2d. Discrete Applied
Mathematics, 151(1-3):5–20, 2005. doi:10.1016/j.dam.2005.02.019.

5 N. Bacquey. Primitive roots of bi-periodic infinite pictures. In Words 2015, 2015.
6 H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. A new characteri-

zation of maximal repetitions by Lyndon trees. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, Jan-
uary 4-6, 2015, pages 562–571, 2015. doi:10.1137/1.9781611973730.38.

7 H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The "runs" theorem.
SIAM J. Comput., 46(5):1501–1514, 2017. doi:10.1137/15M1011032.

8 M. Crochemore, L. Gasieniec, R. Hariharan, S. Muthukrishnan, and W. Rytter. A constant
time optimal parallel algorithm for two-dimensional pattern matching. SIAM J. Comput.,
27(3):668–681, 1998. doi:10.1137/S0097539795280068.

9 M. Crochemore, L. Ilie, and W. Rytter. Repetitions in strings: Algorithms and combina-
torics. Theor. Comput. Sci., 410(50):5227–5235, 2009. doi:10.1016/j.tcs.2009.08.024.

10 M. Crochemore and W. Rytter. Sqares, cubes, and time-space efficient string searching.
Algorithmica, 13(5):405–425, 1995. doi:10.1007/BF01190846.

11 G. Gamard and G. Richomme. Coverability in two dimensions. In A. H. Dediu, E. Formenti,
C. Martín-Vide, and B. Truthe, editors, Language and Automata Theory and Applications
- 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings,
volume 8977 of Lecture Notes in Computer Science, pages 402–413. Springer, 2015. doi:
10.1007/978-3-319-15579-1_31.

12 G. Gamard, G. Richomme, J. Shallit, and T. J. Smith. Periodicity in rectangular arrays.
Inf. Process. Lett., 118:58–63, 2017. doi:10.1016/j.ipl.2016.09.011.

13 D. Gusfield and J. Stoye. Linear time algorithms for finding and representing all the tandem
repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, 2004. doi:10.1016/j.jcss.2004.
03.004.

14 R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. In Proceedings of the 4th Annual ACM Symposium on Theory of
Computing, May 1-3, 1972, Denver, Colorado, USA, pages 125–136, 1972. doi:10.1145/
800152.804905.

ESA 2018

http://dx.doi.org/10.1137/S0097539795298321
http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1016/S0304-3975(98)00182-0
http://dx.doi.org/10.1016/j.dam.2005.02.019
http://dx.doi.org/10.1137/1.9781611973730.38
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.1137/S0097539795280068
http://dx.doi.org/10.1016/j.tcs.2009.08.024
http://dx.doi.org/10.1007/BF01190846
http://dx.doi.org/10.1007/978-3-319-15579-1_31
http://dx.doi.org/10.1007/978-3-319-15579-1_31
http://dx.doi.org/10.1016/j.ipl.2016.09.011
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1145/800152.804905
http://dx.doi.org/10.1145/800152.804905

2:14 Two-Dimensional Maximal Repetitions

15 T. Kociumaka, J. Radoszewski, W. Rytter, and T. Walen. Internal pattern matching
queries in a text and applications. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 532–551, 2015. doi:10.1137/1.9781611973730.36.

16 R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 596–604. IEEE Computer Society, 1999. doi:10.1109/
SFFCS.1999.814634.

17 S. Marcus and D. Sokol. 2d Lyndon words and applications. Algorithmica, 77(1):116–133,
2017. doi:10.1007/s00453-015-0065-z.

18 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995. doi:
10.1007/BF01206331.

http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1007/s00453-015-0065-z
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331

Approximate Convex Intersection Detection with
Applications to Width and Minkowski Sums
Sunil Arya1

Department of Computer Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong
arya@cse.ust.hk

Guilherme D. da Fonseca2

Université Clermont Auvergne, LIMOS, and INRIA Sophia Antipolis, France
fonseca@isima.fr

David M. Mount3

Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD, USA
mount@cs.umd.edu

Abstract
Approximation problems involving a single convex body in Rd have received a great deal of
attention in the computational geometry community. In contrast, works involving multiple con-
vex bodies are generally limited to dimensions d ≤ 3 and/or do not consider approximation. In
this paper, we consider approximations to two natural problems involving multiple convex bodies:
detecting whether two polytopes intersect and computing their Minkowski sum. Given an approx-
imation parameter ε > 0, we show how to independently preprocess two polytopes A,B ⊂ Rd into
data structures of size O(1/ε(d−1)/2) such that we can answer in polylogarithmic time whether
A and B intersect approximately. More generally, we can answer this for the images of A and B
under affine transformations. Next, we show how to ε-approximate the Minkowski sum of two
given polytopes defined as the intersection of n halfspaces in O(n log(1/ε) + 1/ε(d−1)/2+α) time,
for any constant α > 0. Finally, we present a surprising impact of these results to a well studied
problem that considers a single convex body. We show how to ε-approximate the width of a set
of n points in O(n log(1/ε) + 1/ε(d−1)/2+α) time, for any constant α > 0, a major improvement
over the previous bound of roughly O(n+ 1/εd−1) time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Minkowski sum, convex intersection, width, approximation

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.3

1 Introduction

Approximation problems involving a single convex body in d-dimensional space have received
a great deal of attention in the computational geometry community [4, 9, 10, 11, 12, 18, 19, 45].
Recent results include near-optimal algorithms for approximating the convex hull of a set
of points [9, 19], as well as an optimal data structure for answering approximate polytope

1 Research supported by the Research Grants Council of Hong Kong, China under project number
16200014.

2 Research supported by the European Research Council under ERC Grant Agreement number 339025
GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions).

3 Research supported by NSF grant CCF–1618866.

© Sunil Arya, Guilherme D. da Fonseca, and David M. Mount;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arya@cse.ust.hk
mailto:fonseca@isima.fr
mailto:mount@cs.umd.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Approximate Convex Intersection Detection with Applications

membership queries [11]. In contrast, works involving multiple convex bodies are generally
limited to dimensions d ≤ 3 and/or do not consider approximation [2, 13, 29, 30, 44]. In
this paper we present new approximation algorithms to natural problems that either involve
multiple convex polytopes or result from such an analysis:

Determining whether two convex polytopes A and B intersect
Computing the Minkowski sum, A⊕B, of two convex polytopes
Computing the width of a convex polytope A (which results from an analysis of the
Minkowski sum A⊕ (−A))

Throughout we assume that the input polytopes reside in Rd and are full-dimensional,
where the dimension d is a fixed constant. Polytopes may be represented either as the
convex hull of n points (point representation) or as the intersection of n halfspaces (halfspace
representation). In either case, n denotes the size of the polytope.

1.1 Convex Intersection
Detecting whether two geometric objects intersect and computing the region of intersection
are fundamental problems in computational geometry. Geometric intersection problems arise
naturally in a number of applications. Examples include geometric packing and covering,
wire and component layout in VLSI, map overlay in geographic information systems, motion
planning, and collision detection. Several surveys present the topics of collision detection
and geometric intersection [33, 36, 37].

The special case of detecting the intersection of convex objects has received a lot of
attention in computational geometry. The static version of the problem has been considered
in R2 [39, 42] and R3 [20, 38]. The data structure version where each convex object is
preprocessed independently has been considered in R2 [13, 21, 22, 25] and R3 [13, 22, 25, 26].

Recently, Barba and Langerman [13] considered the problem in higher dimension. They
showed how to preprocess convex polytopes in Rd so that given two such polytopes that
have been subject to affine transformations, it can be determined whether they intersect
each other in logarithmic time. However, the preprocessing time and storage grow as the
combinatorial complexity of the polytope raised to the power bd/2c. Since the combinatorial
complexity of a polytope with n vertices can be as high as Θ(nbd/2c), the storage upper
bound is roughly O(nd2/4). This high complexity motivates the study of approximations to
the problem.

We define approximation in a manner that is sensitive to direction. Consider any convex
body K in Rd and any ε > 0. Given a nonzero vector v ∈ Rd, define Πv(K) to be the
minimum slab defined by two hyperplanes that enclose K and are orthogonal to v. Define
the directional width of K with respect to v, widthv(K), to be the perpendicular distance
between these hyperplanes. Let Πv,ε(K) be the central expansion of Πv(K) by a factor of
1 + ε, and define Kε to be the intersection of these expanded slabs over all unit vectors v. It
can be shown that for any v, widthv(Kε) = (1 + ε) widthv(K). An ε-approximation of K
is any set K ′ (which need not be convex) such that K ⊆ K ′ ⊆ Kε. This defines an outer
approximation. It is also possible to define an analogous notion of inner approximation in
which each directional width is no smaller than 1− ε times the true width. Our results can
be extended to either type of approximation.

Given a discrete point set S in Rd, an ε-kernel of S is any subset Q ⊆ S such that
conv(Q) is an inner ε-approximation of conv(S) [4]. It is well known that O(1/ε(d−1)/2)
points are sufficient and sometimes necessary in an ε-kernel. Kernels efficiently approximate
the convex hull and as such have been used to obtain fast approximation algorithms to
several problems such as diameter, minimum width, convex hull volume, minimum enclosing
cylinder, minimum enclosing annulus, and minimum-width cylindrical shell [4, 5].

S. Arya, G.D. da Fonseca, and D.M. Mount 3:3

⊕

=

A B

A⊕B

⊕

=

A −A

A⊕−A

w

w

(a) (b)

Figure 1 Minkowski sum and its relationship to width.

In the ε-approximate version of convex intersection, we are given two convex bodies A
and B and a parameter ε > 0. If A ∩ B 6= ∅, then the answer is “yes.” If Aε ∩ Bε = ∅,
then the answer is “no.” Otherwise, either answer is acceptable. The ε-approximate polytope
intersection problem is defined as follows. A collection of two or more convex polytopes in Rd
are individually preprocessed (with knowledge of ε). Given any two preprocessed polytopes,
A and B, the query determines whether A and B intersect approximately. In general, the
query algorithm can be applied to any affine transformation of the preprocessed polytopes.

I Theorem 1. Given a parameter ε > 0 and two polytopes A,B ⊂ Rd each of size n (given
either using a point or halfspace representation), we can independently preprocess each polytope
into a data structure in order to answer ε-approximate polytope intersection queries with query
time O(polylog 1

ε), storage O(1/ε(d−1)/2), and preprocessing time O(n log 1
ε + 1/ε(d−1)/2+α),

where α is an arbitrarily small positive constant.

The space is nearly optimal because there is a lower bound of Ω(1/ε(d−1)/2) on the
worst-case bit complexity of representing an ε-approximation of a polytope [11].

1.2 Minkowski Sum
Given two convex bodies A,B ⊂ Rd, the Minkowski sum A ⊕ B is defined as {p + q : p ∈
A, q ∈ B} (see Figure 1(a)). Minkowski sums have found numerous applications in motion
planning [7, 31], computer-aided design [44], computational biology [40], satellite layout [15],
and image processing [35]. Minkowski sums have been also been well studied in the context
of discrete and computational geometry [1, 3, 29, 32, 43].

It is well known that in dimension d ≥ 3, the number of vertices in the Minkowski
sum of two polytopes can grow as rapidly as the product of the number of vertices in the
two polytopes [7]. This has led to the study of algorithms to compute approximations to
Minkowski sums in R3 [2, 30, 44]. In this paper, we show how to approximate the Minkowski
sum of two convex polytopes in Rd in near-optimal time.

I Theorem 2. Given a parameter ε > 0 and two polytopes A,B ⊂ Rd each of size n (given
either using a point or halfspace representation), it is possible to construct an ε-approximation
of A⊕B of size O(1/ε(d−1)/2) in O(n log 1

ε + 1/ε(d−1)/2+α) time, where α is an arbitrarily
small positive constant.

The output representation can be either point-based or halfspace-based.

ESA 2018

3:4 Approximate Convex Intersection Detection with Applications

1.3 Width
Define the directional width of a set S of n points to be the directional width of conv(S).
The width of S is the minimum over all directional widths. The maximum over all directional
widths is equal to the diameter of S. Both problems can be approximated using the ε-kernel
of S. After successive improvements [4, 6, 8, 14, 18], algorithms to compute ε-kernels and to
ε-approximate the diameter in roughly O(n+1/εd/2) time have been independently discovered
by Chan [19] and the authors [9]. Somewhat surprisingly, these works offer no improvement
to the running time to approximate the width [4, 17, 18, 28, 45], which Chan [19] posed
as an open problem. The fastest known algorithms date from over a decade ago and take
roughly O(n+ 1/εd−1) time [17, 18].

Agarwal et al. [2] showed that the width of a convex body K is equal to the minimum
distance from the origin to the boundary of the convex body K ⊕ (−K) (see Figure 1(b)).
Using Theorem 2, we can approximate the width by computing an ε-approximation of
K ⊕ (−K) represented as the intersection of halfspaces and then determining the closest
point to the origin among all bounding hyperplanes. The following presents this result.

I Theorem 3. Given a set S of n points in Rd and an approximation parameter ε > 0, it is
possible to compute an ε-approximation to the width of S in O(n log 1

ε + 1/ε(d−1)/2+α) time,
where α is an arbitrarily small positive constant.

1.4 Techniques
Our algorithms and data structure are based on a data structure defined by a hierarchy
of Macbeath regions [9, 11], which answers approximate directional width queries in poly-
logarithmic time. First, we show how to use this data structure as a black box to answer
approximate polytope intersection queries by transforming the problem to a dual setting and
performing a multidimensional convex minimization. Next, we show how to use approximate
polytope intersection queries to compute ε-approximations of the Minkowski sum. The
approximation to the width follows directly.

Since we only access the input polytopes through a data structure for approximate
directional width queries, our results apply in much more general settings. For example,
we could answer in polylogarithmic time whether the Minkowski sum of two polytopes
(preprocessed independently) approximately intersects a third polytope. Our techniques are
also amenable to other polytope operations such as intersection and convex hull of the union,
as long as the model of approximation is defined accordingly.

The preprocessing time of the approximate directional width data structure we use is
O(n log 1

ε + 1/ε(d−1)/2+α), for arbitrarily small α > 0. If this preprocessing time is reduced
in the future, the complexity of our algorithms becomes equal to the preprocessing time plus
O((1/ε(d−1)/2) polylog 1

ε).

2 Preliminaries

In this section we present a number of results, which will be used throughout the paper. The
first provides three basic properties of Minkowski sums. The proof can be found in standard
sources on Minkowski sums (see, e.g., [41]).

I Lemma 4. Let A,B ⊂ Rd be two (possibly infinite) sets of points. Then:
(a) A ∩B 6= ∅ if and only if O ∈ A⊕ (−B), where O is the origin.
(b) conv(A⊕B) = conv(A)⊕ conv(B).
(c) For all nonzero vectors v, widthv(A⊕B) = widthv(A) + widthv(B).

S. Arya, G.D. da Fonseca, and D.M. Mount 3:5

Next, we recall a recent result of ours on answering directional width queries approxi-
mately [9], which we will use as a black box later in this paper. Given a set S of n points in a
constant dimension d and an approximation parameter ε > 0, the answer to the approximate
directional width query for a nonzero query vector v consists of a pair of points p, q ∈ S such
that widthv({p, q}) ≥ (1− ε) widthv(S).

I Lemma 5. Given a set S of n points in Rd and an approximation parameter ε > 0, there
is a data structure that can answer ε-approximate directional width queries with query time
O(log2 1

ε), space O(1/ε(d−1)/2), and preprocessing time O(n log 1
ε + 1/ε(d−1)/2+α).

2.1 Fattening
Existing algorithms and data structures for convex approximation often assume that the
bodies have been fattened through an appropriate affine transformation. In the context of
multiple bodies, this is complicated by the fact that different fattening transformations may
be needed for the two bodies or their Minkowski sum. In this section we explore this issue.

Consider a convex body K in d-dimensional space Rd. Given a parameter 0 < γ ≤ 1, we
say that K is γ-fat if there exist concentric Euclidean balls B and B′, such that B ⊆ K ⊆ B′,
and radius(B)/ radius(B′) ≥ γ. We say that K is fat if it is γ-fat for a constant γ (possibly
depending on d, but not on ε or K). For a centrally symmetric convex body C, the body
obtained by scaling C about its center by a factor of λ is called the λ-expansion of C.

Let K be a convex body. We say that a convex body C is a λ-sandwiching body for K if
C is centrally symmetric and C ⊆ K ⊆ C ′, where C ′ is a λ-expansion of C. John [34] proved
tight bounds for the constant λ of a λ-sandwiching ellipsoid. This ellipsoid is referred to as
the John ellipsoid.

I Lemma 6. For every convex body K in Rd, there exists a d-sandwiching ellipsoid. Fur-
thermore, if K is centrally symmetric, there exists a

√
d-sandwiching ellipsoid.

It is an immediate consequence of this lemma that for any convex body K there exists an
affine transformation T such that T (K) is (1/d)-fat. Any affine transformation that maps
the John ellipsoid into a Euclidean ball will do. The following lemma generalizes this to
hyperrectangles (see also Barequet and Har-Peled [14]).

I Lemma 7. For every convex body K in Rd, there exists a (d3/2)-sandwiching hyperrectangle.

Proof. Let E denote the d-sandwiching ellipsoid for K, described in Lemma 6. By elementary
geometry, there exists a

√
d-sandwiching hyperrectangle R for E. We claim that R is a

(d3/2)-sandwiching hyperrectangle for K. To prove this claim, observe that R ⊆ E ⊆ R′

and E ⊆ K ⊆ E′, where R′ is the
√
d-expansion of R and E′ is the d-expansion of E.

Letting R′′ denote the d-expansion of R′, it is easy to see that E′ ⊆ R′′. It follows that
R ⊆ E ⊆ K ⊆ E′ ⊆ R′′. Since R′′ is the d-expansion of R′ and R′ is the

√
d-expansion of R,

it follows that R′′ is the (d3/2)-expansion of R. This completes the proof. J

Next, let us consider fattening in the context of multiple bodies. The next two lemmas
follow from elementary geometry and properties of Minkowski sums.

I Lemma 8. Let C1 and C2 be λ-sandwiching bodies for K1 and K2, respectively. Then
C1 ⊕ C2 is a λ-sandwiching body for K1 ⊕K2.

I Lemma 9. Let K be a convex body. Given a λ-sandwiching polytope for K of constant
complexity, we can compute a γ-fattening affine transformation T for K in constant time,
where γ = 1/(λ

√
d).

ESA 2018

3:6 Approximate Convex Intersection Detection with Applications

We conclude by showing that we can maintain a small amount of auxiliary information
for any collection of convex bodies in order to determine the fattening transformation for
the Minkowski sum of any two members of this library. We refer to the data structure for
approximate directional width queries from Lemma 5 together with the additional information
to determine the fattening transformation as the augmented data structure for approximate
directional width queries.

I Lemma 10. Consider any finite collection of convex polytopes in Rd, and let γ = 1/d2.
It is possible to store information of constant size with each polytope such that in constant
time we can compute a γ-fattening affine transformation for the Minkowski sum of any two
polytopes from the collection. This information can be computed in time proportional to the
size of the input polytope.

Proof. At preprocessing time, we store the λ-sandwiching hyperrectangles Ri for each Ki,
where λ = d3/2. By Lemma 7, such hyperrectangles exist and they can be computed in time
proportional to the size of the input polytope [23].

Suppose we want to compute a γ-fattening affine transformation for K ′i ⊕ K ′j , where
K ′i and K ′j are the result of applying (possibly different) affine transformations to Ki and
Kj , respectively. Let C ′i and C ′j be the polytopes of constant complexity obtained by
applying the corresponding affine transformations to Ri and Rj , respectively. Clearly, C ′i
and C ′j are λ-sandwiching polytopes for K ′i and K ′j , respectively. Thus, by Lemma 8,
C ′i ⊕ C ′j is a λ-sandwiching polytope for K ′i ⊕ K ′j . Note that this polytope has constant
complexity and can be computed in constant time. Applying Lemma 9, we can use this
polytope to compute a γ-fattening affine transformation for K ′i ⊕K ′j in constant time, where
γ = 1/(λ

√
d) = 1/d2. J

The previous lemma holds more generally even when each of the polytopes are subject to
any non-singular affine transformation and to the Minkowski sum of a constant number of
polytopes.

2.2 Projective Duality and Width
Our algorithm for approximating the directional width of a point set is based on a projective
dual transformation, which maps points into hyperplanes and vice versa. Each primal point
p = (p1, . . . , pd) ∈ S is mapped to the dual hyperplane p∗ : xd = p1x1 + · · · + pd−1xd−1 −
pd. Each primal hyperplane is mapped to a dual point in the same manner. This dual
transformation has several well-known properties [24]. For example, the points in the lower
convex hull of S map to the hyperplanes in the upper envelope.

Let H be a set of n hyperplanes in Rd. Given a point r ∈ Rd−1, the thickness of H at
r, denoted thickr(H) is defined as follows. Given r ∈ Rd−1 and t ∈ R, let (r, t) denote the
point in Rd resulting by concatenating r and t. For the sake of illustration, we think of the
d-th coordinate axis as being the vertical axis. Let r′ = (r, t1) and r′′ = (r, t2). We define
thickr(H) as the maximum difference t2 − t1 for points r′, r′′ in the hyperplanes in H. In
other words, the thickness is the vertical distance between the intersection of the vertical
line defined by r with the upper and lower envelopes of H. The following relates width and
thickness.

I Lemma 11. Consider two points p, q ∈ Rd and a vector v = (v1, . . . , vd−1,−1). Let p∗, q∗
denote the dual hyperplanes and v1,d−1 = (v1, . . . , vd−1). We have

thickv1,d−1({p∗, q∗}) = ‖v‖widthv({p, q}).

S. Arya, G.D. da Fonseca, and D.M. Mount 3:7

Proof. Given vectors u and v, let u · v denote the standard inner product. Assume without
loss of generality that p · v ≥ q · v. Clearly, v is nonzero, so widthv({p, q}) = (p · v− q · v)/‖v‖.
Let p = (p1, . . . , pd) and q = (q1, . . . , qd). The dual hyperplanes are

p∗ : xd = p1x1 + · · ·+ pd−1xd−1 − pd and q∗ : xd = q1x1 + · · ·+ qd−1xd−1 − qd.

If we set x1, . . . , xd−1 = v1,d−1 we have t2 = (p1, . . . , pd−1)·v1,d−1−pd and t1 = (q1, . . . , qd−1)·
v1,d−1 − qd. Therefore

thickv1,d−1(H) = t2 − t1
= (p1, . . . , pd−1) · v1,d−1 − pd − ((q1, . . . , qd−1) · v1,d−1 − qd)
= p · v − q · v
= ‖v‖widthv({p, q}). J

3 Approximate Convex Intersection

In this section, we will prove Theorem 1 for the case when the input polytopes are represented
by points. Assume that we are given two polytopes A and B in the point representation.
The objective is to preprocess A and B individually such that we can efficiently answer
approximate intersection queries for A and B (or more generally for affine transformations
of A and B).

Given a convex body K, ε > 0, and a point p, an ε-approximate polytope membership
query is defined as follows. If p ∈ K, the answer is “yes,” if p /∈ Kε, the answer is “no,” and
otherwise, either answer is acceptable. Our strategy to answer approximate intersection
queries is based on reducing them to approximate polytope membership queries. This
reduction is presented in the following lemma, which is a straightforward generalization of
Lemma 4(a) to an approximate context. The proof follows from standard algebraic properties
of Minkowski sums and the observation that Kε can be expressed as K ⊕ ε

2 (K ⊕−K), and
is omitted from this version.

I Lemma 12. Let A,B ⊂ Rd be two polytopes and ε > 0. Determining the ε-approximate
intersection of A and B is equivalent to determining the ε-approximate membership of
O ∈ A⊕ (−B).

The previous lemma relates approximate polytope intersection with an approximate
membership of the origin in a polytope (Figure 2(a)). Determining whether the origin
lies within the convex hull of a set of points S is a classic problem in computational
geometry, which can be solved by linear programming. However, we are interested in a faster
approximate solution that does not compute S explicitly. We cannot afford to preprocess
an approximate polytope membership data structure for A⊕ (−B) for each pair A and B,
since the number of such pairs is quadratic in the number of input polytopes. Instead, we
preprocess each input polytope individually, and we show next how to efficiently answer
approximate polytope membership queries for A⊕ (−B) by using augmented data structures
for approximate directional width queries for A and B as black boxes.

I Lemma 13. Given augmented data structures for answering ε-approximate directional
width queries for polytopes A and B, we can answer ε-approximate membership queries for
A⊕ (−B) using O(polylog 1

ε) queries to these data structures.

Proof. Without loss of generality, we may translate space so that the query point coincides
with the origin O. Let K = A⊕ (−B), and let S be K’s vertex set. (Note that K and S are
not explicitly computed.)

ESA 2018

3:8 Approximate Convex Intersection Detection with Applications

widthv(S)

O
O∗

x1, . . . , xd−1 = v1, . . . , vd−1

thickv1,...,vd−1
(S∗)

y

−yF

v

(a) (b)

Figure 2 (a) Primal problem of determining if O ∈ conv(S). (b) Dual problem of determining if
the horizontal hyperplane O∗ is between the upper and lower envelopes.

The problem of determining whether O ∈ K is invariant to scaling and rotation about
the origin. It will be helpful to perform some affine transformations that will guarantee
certain properties for K. First, we apply Lemma 10 to fatten K and then apply a uniform
scaling about the origin so that K’s diameter is Θ(1). By fatness, K has a λ-sandwiching
ball of radius r = Θ(1). If the origin either lies within the inner ball or outside the outer
ball, then the answer is trivial. Otherwise, let ∆ = 2λr be the diameter of the outer ball.
We may apply a rotation about the origin so that the center of this ball lies on the positive
xd axis at a point (0, . . . , 0, β). Again, this scaling and rotation can be computed in constant
time using the augmented information. It follows that the coordinates of the points of S
have absolute values at most ∆ = Θ(1).

In summary, there exists an affine transformation computable in constant time such
that after applying this transformation, the query point lies at the origin, K = conv(S) is
sandwiched between two concentric balls of constant radii centered at c = (0, . . . , 0, β), where
0 < β ≤ ∆ = O(1), and K’s vertex set S is contained within [−∆,∆]d. It is an immediate
consequence that widthv(K) = Θ(1) for all directions v, and hence it suffices to answer the
membership query to an absolute error of Θ(ε).

Lemma 4(c) implies that we can answer ε-approximate width queries for K as the
sum of two ε-approximate width queries to A and B. Therefore, our goal is to determine
approximately if O ∈ K using only approximate width queries to A and B. In order to do this,
we look at the projective dual problem in which each point p = (p1, . . . , pd) ∈ S is mapped
to the hyperplane p∗ : xd = p1x1 + · · ·+ pd−1xd−1 − pd. Let S∗ denote the corresponding set
of hyperplanes. The primal problem O ∈ K is equivalent to the dual problem of determining
whether the horizontal hyperplane O∗ : xd = 0 is sandwiched between the upper and lower
envelopes of S∗ (Figure 2(b)). Since the point c lies vertically above the origin and within
K’s interior, it follows that O∗ cannot intersect the lower envelope. Therefore, it suffices to
test whether O∗ intersects the upper envelope.

The dual problem can be solved exactly by computing the minimum value y of the
xd-coordinate in the upper envelope and testing whether y > 0. In the primal, the value of y
corresponds to the negated xd-coordinate of the intersection of a facet F of the lower convex
hull of K and a vertical line passing through the origin (see Figure 2). Let F ’s supporting
hyperplane be denoted by xd = w1x1 + · · ·+wd−1xd−1−wd. Since K is sandwiched between
two concentric balls of constant radii whose common center lies on this vertical line, it follows
from simple geometry that this supporting hyperplane cannot be very steep. In particular,
there exists α = O(1) such that wi ∈ [−α, α], for i = 1, . . . , d− 1. In the dual, this means
that the minimum value y is attained at a point whose first d− 1 coordinates all lie within

S. Arya, G.D. da Fonseca, and D.M. Mount 3:9

(a) (b)

1 2
3

4
5

5

4

3

2

1

0x1 x4x2 xm=x3

f

fε
ε

g

f

Figure 3 (a) One-dimensional convex minimization. (b) Higher-dimensional convex minimization.

[−α, α]. In approximating y, we will apply directional width queries only for directional
vectors v = (v1, . . . , vd) whose first d− 1 coordinates lie within [−α, α] and vd = −1. Thus,
‖v‖ = O(1).

By Lemma 11, the duals of two points p, q ∈ S returned by an exact directional width
query widthv(K) in the primal for a vector v = (v1, . . . , vd−1,−1) correspond to the two dual
hyperplanes in the upper and lower envelopes of S∗ that intersect the vertical line xi = vi for
i = 1, . . . , d− 1. Since queries are only applied to directions v where ‖v‖ = O(1) and since
widthv(K) = Θ(1) for all directions v, it follows from Lemma 11 that a relative error of ε in
the directional width implies an absolute error of O(ε) in the corresponding thickness. We
can think of the upper envelope of S∗ as defining the graph of a convex function over the
domain [−α, α]d−1. Since S ⊂ [−∆,∆]d, the slopes of the hyperplanes in S∗ are similarly
bounded, and therefore this function has bounded slope. It follows that, for an appropriate
ε′ = Θ(ε), we can compute this function to an absolute error of ε at any (v1, . . . , vd−1) by
performing an (ε′)-approximate directional width query on K for v = (v1, . . . , vd−1,−1). To
complete the proof, it suffices to show that with O(polylog 1

ε) such queries, it is possible to
compute an absolute ε-approximation to y. We do this in the next section. J

3.1 Convex Minimization
The following lemma shows how to use binary search to solve a one-dimensional convex
minimization problem approximately (see Figure 3(a)).

I Lemma 14. Let a, b ∈ R and ε ∈ R+ be real parameters. Let f : [a, b] → R be a convex
function with bounded slope and fε : [a, b]→ R be a function with |f(x)− fε(x)| ≤ ε for all
x ∈ [a, b]. Let x∗ ∈ [a, b] be the value of x that minimizes f(x). It is possible to determine
a value x′ with f(x′) − f(x∗) = O(ε) after O(log((b − a)/ε)) evaluations of fε(·) and no
evaluation of f(·).

Proof. First, we present the recursive algorithm used to determine the value x′. If b− a < ε,
then since the function has bounded slope, we simply return x′ = a, as a valid answer.

Otherwise, we start by trisecting the interval [a, b] and evaluate fε(x) at the four endpoints
x1, x2, x3, x4 of the subintervals (see Figure 3(a)). Let m denote the value i that minimizes
fε(xi), breaking ties arbitrarily. To simplify the boundary cases, let x0 = a and x5 = b.

ESA 2018

3:10 Approximate Convex Intersection Detection with Applications

We then invoke our algorithm recursively on the interval [xm−1, xm+1] and store the value
returned as x′′. We return the value x among the two values xm, x′′ that minimizes fε(x).

Since the length of the interval reduces by at least one third at each iteration, the number
of recursive calls and therefore evaluations of fε(·) is O(log((b− a)/ε)). Next, we show that
f(x′)− f(x∗) = O(ε). By the convexity of f we have

f(x) ≥ f(xm+1) + 3(x− xm+1)(f(xm+1)− f(xm))/(b− a), for x ≥ xm+1.

Using that |f(x)− fε(x)| ≤ ε, we have

f(x) ≥ fε(xm+1)− ε+ 3(x− xm+1)(fε(xm+1)− fε(xm)− 2ε)/(b− a), for x ≥ xm+1.

Since fε(xm) ≤ fε(xm+1), we have

f(x) ≥ fε(xm)− ε− 6ε(x− xm+1)/(b− a), for x ≥ xm+1.

For x inside the interval [a, b] we have |x− xm+1| ≤ b− a, and therefore

f(x) ≥ fε(xm)− 7ε, for xm+1 ≤ x ≤ b.

The same argument is used to bound the case of a ≤ x ≤ xm−1, obtaining

f(x) ≥ fε(xm)− 7ε, for x /∈ [xm−1, xm+1].

Either the minimum of f(x) is inside the interval [xm−1, xm+1] or not. If it is not, then
the previous inequality shows that fε(xm) provides a good approximation, regardless of the
value returned in the recursive call. If the minimum is inside the interval [xm−1, xm+1], then
the recursive call will provide a value result by an inductive argument. J

We are now ready to extend the result to arbitrary dimensions.

I Lemma 15. Let a, b ∈ R and ε ∈ R+ be real parameters. Let f : [a, b]d → R for a constant
dimension d be a convex function with bounded slope and fε : [a, b]d → R be a function with
|f(x)− fε(x)| ≤ ε for all x ∈ [a, b]d. Let x∗ ∈ [a, b]d be the value of x that minimizes f(x).
It is possible to determine a value x′ with f(x′) − f(x∗) = O(ε) after O(logd((b − a)/ε))
evaluations of fε(·) and no evaluation of f(·).

Proof. The minimum f(x∗) can be written as

f(x∗) = min
x∈[a,b]d

f(x) = min
x1∈[a,b]

min
x̃∈[a,b]d−1

f(x1, x̃).

Note that if f(x) is a convex function with bounded slope, then so is the function g : [a, b]→ R
(see Figure 3(b)) defined as

g(x1) = min
x̃∈[a,b]d−1

f(x1, x̃).

The proof is based on induction on the dimension d. Since d is a constant, the number
of induction steps is also a constant. The base case of d = 1 follows from Lemma 14. By
the induction hypothesis, we can solve the (d− 1)-dimensional instance to obtain a function
g′(x1) such that

|g(x1)− g′(x1)| = O(ε).

Using Lemma 14 for the function g′(·), we obtain a value x′ with f(x′)− f(x∗) = O(ε).

S. Arya, G.D. da Fonseca, and D.M. Mount 3:11

For the number of function evaluations t(d) for a given dimension d we have

t(1) = O(log((b− a)/ε)) and

t(k) = t(1) · t(k − 1).

The recurrence easily solves to the desired

t(d) = O(logd((b− a)/ε)). J

By applying Lemma 15 to the dual problem defined in the proof of Lemma 13 (where
f is the graph of the upper envelope of S∗ and [a, b] = [−α, α]) with the augmented data
structure from Lemma 5, we obtain Theorem 1 for the case when the input polytopes are
represented by points. We will consider the case when the input polytopes are represented
by halfspaces at the end of the next section.

4 Minkowski Sum Approximation

In this section, we will prove Theorems 2 and 3, as well as Theorem 1 for the case when
the input polytopes are represented by halfspaces. Assume that we are given two polytopes
A and B in the point representation, and we have computed the augmented approximate
directional width data structures from Lemma 5 for each polytope. The objective is to
obtain an ε-approximation of the Minkowski sum A⊕B of size O(1/ε(d−1)/2) using these
data structures. Our approach is to fatten A⊕B using Lemma 10 and then apply Dudley’s
construction [27] in order to obtain an approximation with O(1/ε(d−1)/2) halfspaces. For
completeness, we start by describing Dudley’s algorithm.

Let K ⊂ [−1, 1]d be a fat polytope of constant diameter. Dudley’s algorithm obtains an
ε-approximation represented by halfspaces as follows. Let D be a ball of radius 2

√
d centered

at the origin. (Note that K ⊂ D.) Place a set W of Θ(1/ε(d−1)/2) points on the surface of D
such that every point on the surface of D is within distance O(

√
ε) of some point in W . For

each point w ∈W , let w′ be its nearest point on the boundary of K. We call these points
samples. For each sample point w′, take the supporting halfspace passing through w′ that is
orthogonal to the vector from w′ to w. The approximation is defined as the intersection of
these halfspaces (see Figure 4(a)).

Bronshteyn and Ivanov [16] presented a similar construction. Instead of approximating
K by halfspaces, Bronshteyn and Ivanov’s construction approximates K as the convex hull
of the aforementioned set of samples4 (see Figure 4(b)). In both constructions it is possible
to tune the constant factors so that closest point queries need only be computed to within
an absolute error of Θ(ε).

An approximate closest point query between a polytope K and a point p within constant
distance from K can be reduced to computing an ε-approximation to the smallest radius ball
centered at p that intersects K. This can be solved through binary search on the radius of
this ball, where each probe involves determining whether K intersects a ball of some radius
centered at p. Notice that the data structure for approximate polytope intersection from
Section 3 only accesses the bodies through approximate directional width queries, besides
the initial fattening transformation. By Lemma 4(c), given two preprocessed bodies A and

4 Dudley’s construction yields an outer approximation and Bronshteyn and Ivanov’s yields inner approxi-
mation, but it is possible to convert both to the other type through standard techniques. For details,
see Lemma 2.8 of the full version of [9].

ESA 2018

3:12 Approximate Convex Intersection Detection with Applications

K

√
ε

D

w′w

√
ε

D

w′w

K

(a) (b)

Figure 4 (a) Dudley’s and (b) Bronshteyn and Ivanov’s polytope approximations.

B, we can answer directional width queries on A⊕B through directional width queries on A
and B individually. (In the case of a ball, no data structure is required.) Therefore, we can
test intersection with a Minkowski sum A⊕B, as long as we have augmented approximate
directional width data structures for both A and B.

In order to establish Theorem 2 for the case when the input polytopes are represented by
points, we apply the aforementioned binary search to simulate Dudley’s construction. Each
sample is obtained after O(log 1

ε) ε-approximate polytope intersection queries. The total
running time is dominated by the preprocessing time of Lemma 5. Note that the output
polytope may be represented by either points or halfspaces according to whether we use
Dudley’s or Bronshteyn and Ivanov’s algorithm. To show that the input polytopes may be
represented by halfspaces, we show how to efficiently convert between the two representations.

I Lemma 16. Given an approximation parameter ε > 0 and a polytope K ⊂ Rd of size n
(given either using a point or halfspace representation), we can obtain an ε-approximation
of size O(1/ε(d−1)/2) (in either representation, independent of the input representation) in
O(n log 1

ε + 1/ε(d−1)/2+α) time, where α > 0 is an arbitrarily small constant.

Proof. The case when the input is represented by points is a trivial case of Theorem 2,
where B = {O}. For the alternative case, it suffices to obtain an ε-approximation of the
polar polytope after fattening. (For details see Lemma 2.9 of the full version of [9].) J

We remind the reader that Agarwal et al. [2] showed that the width of a convex body
K is equal to the minimum distance from the origin to the boundary of the convex body
K⊕(−K). To obtain Theorem 3, we compute Dudley’s approximation of K⊕(−K) and then
we determine the closest point to the origin among the O(1/ε(d−1)/2) bounding hyperplanes
of the approximation.

References
1 P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction

of Minkowski sums. Comput. Geom. Theory Appl., 21(1):39–61, 2002.
2 P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir. Penetration

depth of two convex polytopes in 3D. Nordic J. of Computing, 7(3):227–240, 2000.

S. Arya, G.D. da Fonseca, and D.M. Mount 3:13

3 P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random Minkowski sums
and network vulnerability analysis. Discrete Comput. Geom., 52(3):551–582, 2014.

4 P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of
points. J. Assoc. Comput. Mach., 51:606–635, 2004.

5 P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via core-
sets. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational
Geometry. MSRI Publications, 2005.

6 P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and
related problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189–201, 1992.

7 B. Aronov and M. Sharir. On translational motion planning of a convex polyhedron in
3-space. SIAM J. Comput., 26(6):1785–1803, 1997.

8 S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor
search, Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Annu. Sympos.
Comput. Geom., pages 416–425, 2014.

9 S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and
related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1–15, 2017.
URL: https://arxiv.org/abs/1604.01175.

10 S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approx-
imating polytopes. Discrete Comput. Geom., 58(4):849–870, 2017.

11 S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270–288, 2017.

12 S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.
SIAM J. Comput., 47(1):1–51, 2018.

13 L. Barba and S. Langerman. Optimal detection of intersections between convex polyhedra.
In Proc. 26th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1641–1654, 2015.

14 G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding
box of a point set in three dimensions. J. Algorithms, 38(1):91–109, 2001.

15 J.-D. Boissonnat, E. De Lange, and M. Teillaud. Minkowski operations for satellite antenna
layout. In Proc. 13th Annu. Sympos. Comput. Geom., pages 67–76, 1997.

16 E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra.
Siberian Math. J., 16:852–853, 1976.

17 T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-
width annulus. Internat. J. Comput. Geom. Appl., 12:67–85, 2002.

18 T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Comput. Geom. Theory Appl., 35(1):20–35, 2006.

19 T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational
geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1–15, 2017.

20 B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.
SIAM J. Comput., 21(4):671–696, 1992.

21 B. Chazelle and D. P. Dobkin. Detection is easier than computation. In Proc. 12th Annu.
ACM Sympos. Theory Comput., pages 146–153, 1980.

22 B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions.
J. Assoc. Comput. Mach., 34:1–27, 1987.

23 B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. J. Algorithms, 21:579–597, 1996.

24 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 3rd edition, 2010.

25 D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theo. Comp.
Sci., 27(3):241–253, 1983.

ESA 2018

https://arxiv.org/abs/1604.01175

3:14 Approximate Convex Intersection Detection with Applications

26 D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed
polyhedra—A unified approach. In Proc. Internat. Colloq. Automata Lang. Prog., pages
400–413, 1990.

27 R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3):227–236, 1974.

28 C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and optimiza-
tion algorithms for computational metrology. In Proc. Eighth Annu. ACM-SIAM Sympos.
Discrete Algorithms, pages 121–130, 1997.

29 E. Fogel, D. Halperin, and C. Weibel. On the exact maximum complexity of Minkowski
sums of polytopes. Discrete Comput. Geom., 42(4):654–669, 2009.

30 X. Guo, L. Xie, and Y. Gao. Optimal accurate Minkowski sum approximation of polyhe-
dral models. Advanced Intelligent Computing Theories and Applications. With Aspects of
Theoretical and Methodological Issues, pages 179–188, 2008.

31 D. Halperin, O. Salzman, and M. Sharir. Algorithmic motion planning. In J. E. Goodman,
J. O’Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry,
Discrete Mathematics and its Applications. CRC Press, 2017.

32 S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity of
a single face of a Minkowski sum. In Proc. Seventh Canad. Conf. Comput. Geom., pages
91–96, 1995.

33 P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: A survey. Computers &
Graphics, 25(2):269–285, 2001.

34 F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Es-
says Presented to R. Courant on his 60th Birthday, pages 187–204. Interscience Publishers,
Inc., New York, 1948.

35 A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and animation
of pips. Computers & graphics, 16(1):107–115, 1992.

36 M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In
Proc. of IMA conference on mathematics of surfaces, volume 1, pages 602–608, 1998.

37 D. M. Mount. Geometric intersection. In J. E. Goodman, J. O’Rourke, and C. D. Tóth,
editors, Handbook of Discrete and Computational Geometry, Discrete Mathematics and its
Applications. CRC Press, 2017.

38 D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theo.
Comp. Sci., 7(2):217–236, 1978.

39 J. O’Rourke. Computational geometry in C. Cambridge University Press, 1998.
40 L. Pachter and B. Sturmfels. Algebraic statistics for computational biology, volume 13.

Cambridge University Press, 2005.
41 R. Schneider. Convex bodies: The Brunn-Minkowski theory. Cambridge University Press,

1993.
42 M. I. Shamos. Geometric complexity. In Proc. Seventh Annu. ACM Sympos. Theory

Comput., pages 224–233, 1975.
43 H. R. Tiwary. On the hardness of computing intersection, union and Minkowski sum of

polytopes. Discrete Comput. Geom., 40(3):469–479, 2008.
44 G. Varadhan and D. Manocha. Accurate Minkowski sum approximation of polyhedral

models. Graphical Models, 68(4):343–355, 2006.
45 H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape

fitting and kinetic data structures using coresets. Algorithmica, 52(3):378–402, 2008.

On the Worst-Case Complexity of TimSort
Nicolas Auger
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Vincent Jugé
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Cyril Nicaud
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Carine Pivoteau
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Abstract
TimSort is an intriguing sorting algorithm designed in 2002 for Python, whose worst-case com-
plexity was announced, but not proved until our recent preprint. In fact, there are two slightly
different versions of TimSort that are currently implemented in Python and in Java respec-
tively. We propose a pedagogical and insightful proof that the Python version runs in O(n logn).
The approach we use in the analysis also applies to the Java version, although not without very
involved technical details. As a byproduct of our study, we uncover a bug in the Java implemen-
tation that can cause the sorting method to fail during the execution. We also give a proof that
Python’s TimSort running time is in O(n+n log ρ), where ρ is the number of runs (i.e. maximal
monotonic sequences), which is quite a natural parameter here and part of the explanation for
the good behavior of TimSort on partially sorted inputs.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases Sorting algorithms, Merge sorting algorithms, TimSort, Analysis of al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.4

1 Introduction

TimSort is a sorting algorithm designed in 2002 by Tim Peters [9], for use in the Python
programming language. It was thereafter implemented in other well-known programming
languages such as Java. The algorithm includes many implementation optimizations, a
few heuristics and some refined tuning, but its high-level principle is rather simple: The
sequence S to be sorted is first decomposed greedily into monotonic runs (i.e. nonincreasing
or nondecreasing subsequences of S as depicted on Figure 1), which are then merged pairwise
according to some specific rules.

The idea of starting with a decomposition into runs is not new, and already appears
in Knuth’s NaturalMergeSort [6], where increasing runs are sorted using the same
mechanism as in MergeSort. Other merging strategies combined with decomposition into
runs appear in the literature, such as the MinimalSort of [10] (see also [2, 8] for other
considerations on the same topic). All of them have nice properties: they run in O(n logn)
and even O(n + n log ρ), where ρ is the number of runs, which is optimal in the model of
sorting by comparisons [7], using the classical counting argument for lower bounds. And
yet, among all these merge-based algorithms, TimSort was favored in several very popular
programming languages, which suggests that it performs quite well in practice.

© Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 On the Worst-Case Complexity of TimSort

S = (12, 10, 7, 5︸ ︷︷ ︸
first run

, 7, 10, 14, 25, 36︸ ︷︷ ︸
second run

, 3, 5, 11, 14, 15, 21, 22︸ ︷︷ ︸
third run

, 20, 15, 10, 8, 5, 1︸ ︷︷ ︸
fourth run

)

Figure 1 A sequence and its run decomposition computed by TimSort: for each run, the first
two elements determine if it is increasing or decreasing, then it continues with the maximum number
of consecutive elements that preserves the monotonicity.

TimSort running time was implicitly assumed to be O(n logn), but our unpublished
preprint [1] contains, to our knowledge, the first proof of it. This was more than ten years after
TimSort started being used instead of QuickSort in several major programming languages.
The growing popularity of this algorithm invites for a careful theoretical investigation. In
the present paper, we make a thorough analysis which provides a better understanding of
the inherent qualities of the merging strategy of TimSort. Indeed, it reveals that, even
without its refined heuristics,1 this is an effective sorting algorithm, computing and merging
runs on the fly, using only local properties to make its decisions.

As the analysis we made in [1] was a bit involved and clumsy, we first propose in Section 3
a new pedagogical and self-contained exposition that TimSort runs in O(n logn) time,
which we want both clear and insightful. Using the same approach, we also establish in
Section 4 that it runs in O(n+ n log ρ), a question left open in our preprint and also in a
recent work2 on TimSort [4]. Of course, the first result follows from the second, but since
we believe that each one is interesting on its own, we devote one section to each of them.
Besides, the second result provides with an explanation to why TimSort is a very good
sorting algorithm, worth considering in most situations where in-place sorting is not needed.

To introduce our last contribution, we need to look into the evolution of the algorithm:
there are actually not one, but two main versions of TimSort. The first version of the
algorithm contained a flaw, which was spotted in [5]: while the input was correctly sorted, the
algorithm did not behave as announced (because of a broken invariant). This was discovered
by De Gouw and his co-authors while trying to prove formally the correctness of TimSort.
They proposed a simple way to patch the algorithm, which was quickly adopted in Python,
leading to what we consider to be the real TimSort. This is the one we analyze in Sections 3
and 4. On the contrary, Java developers chose to stick with the first version of TimSort,
and adjusted some tuning values (which depend on the broken invariant; this is explained in
Sections 2 and 5) to prevent the bug exposed by [5]. Motivated by its use in Java, we explain
in Section 5 how, at the expense of very complicated technical details, the elegant proofs of
the Python version can be twisted to prove the same results for this older version. While
working on this analysis, we discovered yet another error in the correction made in Java.
Thus, we compute yet another patch, even if we strongly agree that the algorithm proposed
and formally proved in [5] (the one currently implemented in Python) is a better option.

2 TimSort core algorithm

The idea of TimSort is to design a merge sort that can exploit the possible “non randomness”
of the data, without having to detect it beforehand and without damaging the performances
on random-looking data. This follows the ideas of adaptive sorting (see [7] for a survey on
taking presortedness into account when designing and analyzing sorting algorithms).

1 These heuristics are useful in practice, but do not change the worst-case complexity of the algorithm.
2 In [4], the authors refined the analysis of [1] to obtain very precise bounds for the complexity of TimSort

and of similar algorithms.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau 4:3

Algorithm 1: TimSort. (Python 3.6.5)
Input :A sequence S to sort
Result: The sequence S is sorted into a single run, which remains on the stack.
Note: The function merge_force_collapse repeatedly pops the last two runs on the

stack R, merges them and pushes the resulting run back on the stack.
1 runs← a run decomposition of S

2 R← an empty stack
3 while runs 6= ∅ do // main loop of TimSort
4 remove a run r from runs and push r onto R
5 merge_collapse(R)
6 if height(R) 6= 1 then // the height of R is its number of runs
7 merge_force_collapse(R)

Algorithm 2: The merge_collapse procedure. (Python 3.6.5)
Input :A stack of runs R
Result: The invariant of Equations (1) and (2) is established.
Note: The runs on the stack are denoted by R[1] . . .R[height(R)], from top to bottom.

The length of run R[i] is denoted by ri. The blue highlight indicates that the
condition was not present in the original version of TimSort (this will be discussed
in section 5).

1 while height(R) > 1 do
2 n← height(R)− 2
3 if (n > 0 and r3 6 r2 + r1) or (n > 1 and r4 6 r3 + r2) then
4 if r3 < r1 then
5 merge runs R[2] and R[3] on the stack
6 else merge runs R[1] and R[2] on the stack
7 else if r2 6 r1 then
8 merge runs R[1] and R[2] on the stack
9 else break

The first feature of TimSort is to work on the natural decomposition of the input
sequence into maximal runs. In order to get larger subsequences, TimSort allows both
nondecreasing and decreasing runs, unlike most merge sort algorithms.

Then, the merging strategy of TimSort (Algorithm 1) is quite simple yet very efficient.
The runs are considered in the order given by the run decomposition and successively pushed
onto a stack. If some conditions on the lengths of the topmost runs of the stack are not
satisfied after a new run has been pushed, this can trigger a series of merges between pairs of
runs at the top or right under. And at the end, when all the runs in the initial decomposition
have been pushed, the last operation is to merge the remaining runs two by two, starting at
the top of the stack, to get a sorted sequence. The conditions on the stack and the merging
rules are implemented in the subroutine called merge_collapse detailed in Algorithm 2.
This is what we consider to be TimSort core mechanism and this is the main focus of our
analysis.

Another strength of TimSort is the use of many effective heuristics to save time, such as
ensuring that the initial runs are not to small thanks to an insertion sort or using a special
technique called “galloping” to optimize the merges. However, this does not interfere with
our analysis and we will not discuss this matter any further.

ESA 2018

4:4 On the Worst-Case Complexity of TimSort

24

#1 18
24

#1 50
18
24

#1

50
42

#2

92

#3 28
92

#1 20
28
92

#1 6
20
28
92

#1 4
6
20
28
92

#1 8
4
6
20
28
92

#1

8
10
20
28
92

#2

18
20
28
92

#5

38
28
92

#4

66
92

#3 1
66
92

#1

merge_collapse merge_collapse

Figure 2 The successive states of the stack R (the values are the lengths of the runs) during an
execution of the main loop of TimSort (Algorithm 1), with the lengths of the runs in runs being
(24, 18, 50, 28, 20, 6, 4, 8, 1). The label #1 indicates that a run has just been pushed onto the stack.
The other labels refer to the different merges cases of merge_collapse as translated in Algorithm 3.

Let us have a closer look at Algorithm 2 which is a pseudo-code transcription of the
merge_collapse procedure found in the latest version of Python (3.6.5). To illustrate its
mechanism, an example of execution of the main loop of TimSort (lines 3-5 of Algorithm 1)
is given in Figure 2. As stated in its note [9], Tim Peter’s idea was that:

“The thrust of these rules when they trigger merging is to balance the run lengths
as closely as possible, while keeping a low bound on the number of runs we have to
remember.”

To achieve this, the merging conditions of merge_collapse are designed to ensure that the
following invariant3 is true at the end of the procedure:

ri+2 > ri+1 + ri, (1)
ri+1 > ri. (2)

This means that the runs lengths ri on the stack grow at least as fast as the Fibonacci numbers
and, therefore, that the height of the stack stays logarithmic (see Lemma 6, section 3).

Note that the bound on the height of the stack is not enough to justify the O(n logn)
running time of TimSort. Indeed, without the smart strategy used to merge the runs “on
the fly”, it is easy to build an example using a stack containing at most two runs and that
gives a Θ(n2) complexity: just assume that all runs have length two, push them one by one
onto a stack and perform a merge each time there are two runs in the stack.

We are now ready to proceed with the analysis of TimSort complexity. As mentioned
earlier, Algorithm 2 does not correspond to the first implementation of TimSort in Python,
nor to the current one in Java, but to the latest Python version. The original version will be
discussed in details later, in Section 5.

3 TimSort runs in O(n log n)

At the first release of TimSort [9], a time complexity of O(n logn) was announced with no
element of proof given. It seemed to remain unproved until our recent preprint [1], where we
provide a confirmation of this fact, using a proof which is not difficult but a bit tedious. This
result was refined later in [4], where the authors provide lower and upper bounds, including
explicit multiplicative constants, for different merge sort algorithms.

3 Actually, in [9], the invariant is only stated for the 3 topmost runs of the stack.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau 4:5

Algorithm 3: TimSort: translation of Algorithm 1 and Algorithm 2.
Input :A sequence to S to sort
Result: The sequence S is sorted into a single run, which remains on the stack.
Note: At any time, we denote the height of the stack R by h and its ith top-most run (for

1 6 i 6 h) by Ri. The length of this run is denoted by ri.
1 runs← the run decomposition of S

2 R← an empty stack
3 while runs 6= ∅ do // main loop of TimSort
4 remove a run r from runs and push r onto R // #1
5 while true do
6 if h > 3 and r1 > r3 then merge the runs R2 and R3 // #2
7 else if h > 2 and r1 > r2 then merge the runs R1 and R2 // #3
8 else if h > 3 and r1 + r2 > r3 then merge the runs R1 and R2 // #4
9 else if h > 4 and r2 + r3 > r4 then merge the runs R1 and R2 // #5

10 else break

11 while h 6= 1 do merge the runs R1 and R2

Our main concern is to provide an insightful proof of the complexity of TimSort, in
order to highlight how well designed is the strategy used to choose the order in which the
merges are performed. The present section is more detailed than the following ones as we
want it to be self-contained once TimSort has been translated into Algorithm 3 (see below).

As our analysis is about to demonstrate, in terms of worst-case complexity, the good
performances of TimSort do not rely on the way merges are performed. Thus we choose
to ignore their many optimizations and consider that merging two runs of lengths r and r′
requires both r+r′ element moves and r+r′ element comparisons. Therefore, to quantify the
running time of TimSort, we only take into account the number of comparisons performed.

I Theorem 1. The running time of TimSort is O(n logn).

The first step consists in rewriting Algorithm 1 and Algorithm 2 in a form that is easier
to deal with. This is done in Algorithm 3.

I Claim 2. For any input, Algorithms 1 and 3 perform the same comparisons.

Proof. The only difference is that Algorithm 2 was changed into the while loop of lines 5
to 10 in Algorithm 3. Observing the different cases, it is straightforward to verify that merges
involving the same runs take place in the same order in both algorithms. Indeed, if r3 < r1,
then r3 6 r1 + r2, and therefore line 5 is triggered in Algorithm 2, so that both algorithms
merge the 2nd and 3rd runs. On the contrary, if r3 > r1, then both algorithms merge the 1st
and 2nd runs if and only if r2 6 r1 or r3 6 r1 + r2 (or r4 6 r2 + r3). J

I Remark 3. Proving Theorem 1 only requires analyzing the main loop of the algorithm
(lines 3 to 10). Indeed, computing the run decomposition (line 1) can be done on the fly, by
a greedy algorithm, in time linear in n, and the final loop (line 11) might be performed in
the main loop by adding a fictitious run of length n+ 1 at the end of the decomposition.

In the sequel, for the sake of readability, we also omit checking that h is large enough to
trigger the cases #2 to #5. Once again, such omissions are benign, since adding fictitious
runs of respective sizes 8n, 4n, 2n and n (in this order) at the beginning of the decomposition
would ensure that h > 4 during the whole loop.

ESA 2018

4:6 On the Worst-Case Complexity of TimSort

In Algorithm 3, we can see that the merges performed during Case #2 allow a very large
run to be pushed and “absorbed” onto the stack without being merged all the way down,
but by collapsing the stack under this run instead. Meanwhile, the purpose of Cases #3 to
#5 is mainly to re-establish the invariant of Equations (1) and (2), ensuring an exponential
growth of the run lengths within the stack (this duality is made even clearer in the proof of
Section 4). Along this process, the cost of keeping the stack in good shape is compensated by
the absorption of this large run, which naturally calls for an amortized complexity analysis.

To proceed with the core of our proof (that is the amortized analysis of the main loop),
we now credit tokens to the elements of the input array, which are spent for comparisons.
One token is paid for every comparison performed by the algorithm and each element is
given O(logn) tokens. Since the balance is always non-negative, we can conclude that at
most O(n logn) comparisons are performed, in total, during the main loop.

Elements of the input array are easily identified by their starting position in the array,
so we consider them as well-defined and distinct entities (even if they have the same value).
The height of an element is the number of runs that are below it in the stack: the elements
belonging to the run Ri in the stack (R1, . . . , Rh) have height h − i. To simplify the
presentation, we also distinguish two kinds of tokens, the ♦-tokens and the ♥-tokens, which
can both be used to pay for comparisons.

Two ♦-tokens and one ♥-token are credited to an element when it enters the stack (this
is Case #1 of Algorithm 3) or when its height decreases: all the elements of R1 are credited
when R1 and R2 are merged, and all the elements of R1 and R2 are credited when R2 and
R3 are merged. Tokens are spent to pay for comparisons, depending on the case triggered:

Case #2: every element of R1 and R2 pays 1 ♦. This is enough to cover the cost of
merging R2 and R3, since r2 + r3 6 r2 + r1, as r3 < r1 in this case.
Case #3: every element of R1 pays 2 ♦. In this case r1 > r2 and the cost is r1 + r2 6 2r1.
Cases #4 and #5: every element of R1 pays 1 ♦ and every element of R2 pays 1 ♥. The
cost r1 + r2 is exactly the number of tokens spent.

I Lemma 4. The balances of ♦-tokens and ♥-tokens of each element remain non-negative
throughout the main loop of TimSort.

Proof. In all four cases #2 to #5, because the height of the elements of R1 and possibly
the height of those of R2 decrease, the number of credited ♦-tokens after the merge is at
least the number of ♦-tokens spent. The ♥-tokens are spent in Cases #4 and #5 only:
every element of R2 pays one ♥-token, and then belongs to the topmost run R1 of the new
stack S = (R1, . . . , Rh−1) obtained after merging R1 and R2. Since Ri = Ri+1 for i > 2,
the condition of Case #4 implies that r1 > r2 and the condition of Case #5 implies that
r1 + r2 > r3: in both cases, the next modification of the stack S is another merge. This
merge decreases the height of R1, and therefore decreases the height of the elements of R2,
who will regain one ♥-token without losing any, since the topmost run of the stack never
pays with ♥-tokens. This proves that, whenever an element pay one ♥-token, the next
modification is another merge during which it regains its ♥-token. This concludes the proof
by direct induction. J

Let hmax be the maximum number of runs in the stack during the whole execution of the
algorithm. Due to the crediting strategy, each element is given at most 2hmax ♦-tokens and
at most hmax ♥-tokens in total. So we only need to prove that hmax is O(logn) to complete
the proof that the main loop running time is in O(n logn). This fact is a consequence of
TimSort’s invariant established with a formal proof in the theorem prover KeY [3, 5]: at
the end of any iteration of the main loop, we have ri + ri+1 < ri+2, for every i > 1 such that
the run Ri+2 exists.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau 4:7

For completeness, and because the formal proof is not meant to be read by humans, we
sketch a “classical” proof of the invariant. It is not exactly the same statement as in [5], since
our invariant holds at any time during the main loop: in particular we cannot say anything
about R1, which can have any length when a run has just been added. For technical reasons,
and because it will be useful later on, we establish four invariants in our statement.

I Lemma 5. At any step during the main loop of TimSort, we have (i) ri + ri+1 < ri+2
for i ∈ {3, . . . , h− 2}, (ii) r2 < 3r3, (iii) r3 < r4 and (iv) r2 < r3 + r4.

Proof. The proof is done by induction. It consists in verifying that, if all four invariants
hold at some point, then they still hold when an update of the stack occurs in one of the five
situations labeled #1 to #5 in the algorithm. This can be done by a straightforward case
analysis. We denote by S = (R1, . . . , Rh) the new state of the stack after the update:

If Case #1 just occurred, a new run R1 was pushed. This implies that none of the
conditions of Cases #2 to #5 hold in S, otherwise merges would have continued. In
particular, we have r1 < r2 < r3 and r2 +r3 < r4. As ri = ri−1 for i > 2, and invariant (i)
holds for S, we have r2 < r3 < r4, and thus invariants (i) to (iv) hold for S.
If one of the Cases #2 to #5 just occurred, we have r2 = r2 + r3 (in Case #2) or
r2 = r3 (in Cases #3 to #5). This implies that r2 6 r2 + r3. As ri = ri+1 for i > 3,
and invariants (i) to (iv) hold for S, we have r2 6 r2 + r3 < r3 + r4 + r3 < 3r4 = 3r3,
r3 = r4 6 r3 + r4 < r5 = r4, and r2 6 r2 + r3 < r3 + r4 + r3 < r3 + r5 < r4 + r5 = r3 + r4.
Thus, invariants (i) to (iv) hold for S. J

At this point, invariant (i) can be used to bound hmax from above.

I Lemma 6. At any time during the main loop of TimSort, if the stack is (R1, . . . , Rh)
then we have r2/3 < r3 < r4 < . . . < rh and, for all i > j > 3, we have ri >

√
2i−j−1

rj. As
a consequence, the number of runs in the stack is always O(logn).

Proof. By Lemma 5, we have ri + ri+1 < ri+2 for 3 6 i 6 h− 2. Thus ri+2 − ri+1 > ri > 0
and the sequence is increasing from index 4: r4 < r5 < r6 < . . . < rh. The increasing
sequence of the statement is then obtained using the invariants (ii) and (iii). Hence, for
j > 3, we have rj+2 > 2rj , from which one can get that ri >

√
2i−j−1

rj . In particular, if
h > 3 then rh >

√
2h−4

r3, which yields that the number of runs is O(logn) as rh 6 n. J

Collecting all the above results is enough to prove Theorem 1. First, as mentioned
in Remark 3, computing the run decomposition can be done in linear time. Then, we
proved that the main loop requires O(nhmax) comparisons, by bounding from above the
total number of tokens credited, and that hmax = O(logn), by showing that the run lengths
grow at exponential speed. Finally, the final merges of line 11 might be taken care of by
Remark 3, but they can also be dealt with directly:4 if we start these merges with a stack
S = (R1, . . . , Rh), then every element of the run Ri takes part in h+ 1− i merges at most,
which proves that the overall cost of line 11 is O(n logn). This concludes the proof of the
theorem.

4 Refined analysis parametrized with the number of runs

A widely spread idea to explain why certain sorting algorithms perform better in practice
than expected is that they are able to exploit presortedness [7]. This can be quantified in

4 Relying on Remark 3 will be necessary only in the next section, where we need more precise computations.

ESA 2018

4:8 On the Worst-Case Complexity of TimSort

#1 #2 #2 #2︸ ︷︷ ︸
starting seq.

#3 #2 #5 #2 #4 #2︸ ︷︷ ︸
ending seq.

#1 #2 #2 #2 #2 #2︸ ︷︷ ︸
starting seq.

#5 #2 #3 #3 #4 #2︸ ︷︷ ︸
ending seq.

Figure 3 The decomposition of the encoding of an execution into starting and ending sequences.

many ways, the number of runs in the input sequence being one. Since this is the most natural
parameter, we now consider the complexity of TimSort, according to it. We establish the
following result, which was left open in [1, 4]:

I Theorem 7. The complexity of TimSort on inputs of size n with ρ runs is O(n+n log ρ).

If ρ = 1, then no merge is to be performed, and the algorithm clearly runs in time linear
in n. Hence, we assume below that ρ > 2, and we show that the complexity of TimSort
is O(n log ρ) in this case.

To obtain the O(n log ρ) complexity, we need to distinguish several situations. First,
consider the sequence of Cases #1 to #5 triggered during the execution of the main loop
of TimSort. It can be seen as a word on the alphabet {#1, . . . ,#5} that starts with #1,
which completely encodes the execution of the algorithm. We split this word at every #1, so
that each piece corresponds to an iteration of the main loop. Those pieces are in turn split
into two parts, at the first occurrence of a symbol #3, #4 or #5. The first half is called a
starting sequence and is made of a #1 followed by the maximal number of #2’s. The second
half is called an ending sequence, it starts with #3, #4 or #5 (or is empty) and it contains
no occurrence of #1 (see Figure 3 for an example).

We treat starting and ending sequences separately in our analysis. The following lemma
points out one of the main reasons TimSort is so efficient regarding the number of runs.

I Lemma 8. The number of comparisons performed during all the starting sequences is O(n).

Proof. More precisely, for a stack S = (R1, . . . , Rh), we prove that a starting sequence
beginning with a push of a run R of length r onto S uses at most γr comparisons in total,
where γ is the real constant 3

√
2
∑
i>0 i/

√
2i. After the push, the stack is S = (R,R1, . . . , Rh)

and, if the starting sequence contains k > 1 letters, i.e. k − 1 occurrences of #2, then this
sequence amounts to merging the runs R1, R2, . . . , Rk. Since no merge is performed if k = 1,
we assume below that k > 2.

Looking closely at these runs, we compute that they require a total of

C = (k − 1)r1 + (k − 1)r2 + (k − 2)r3 + . . .+ rk 6
k∑
i=1

(k + 1− i)ri

comparisons. The last occurrence of Case #2 ensures that r > rk, hence applying Lemma 6
to the stack S shows that r >

√
2k−iri/3 for all i = 1, . . . , k. It follows that

C/r < 3
k∑
i=2

(k + 1− i)/
√

2
k−i

< γ.

This concludes the proof, since each run is the beginning of exactly one starting sequence,
and the sum of their lengths is n. J

We can now focus on the cost of ending sequences. Because the inner loop (line 5) of
TimSort has already begun, during the corresponding starting sequence, we have some
information on the length of the topmost run.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau 4:9

24
#1 18

24

#1 50
18
24

#1

50
42

#2

92
#3 28

92

#1 20
28
92

#1 6
20
28
92

#1 4
6
20
28
92

#1 8
4
6
20
28
92

#1

8
10
20
28
92

#2 1
8
10
20
28
92

#1

Figure 4 Execution of the main loop of Java’s TimSort (Algorithm 3, without merge case #5,
at line 9), with the lengths of the runs in runs being (24, 18, 50, 28, 20, 6, 4, 8, 1). When the second
to last run (of length 8) is pushed onto the stack, the while loop of line 5 stops after only one merge,
breaking the invariant (in red), unlike what we see in Figure 2 using the Python version of TimSort.

I Lemma 9. At any time during an ending sequence, including just before it starts and just
after it ends, we have r1 < 3r3.

Proof. The proof is done by induction. At the beginning of the ending sequence, the condition
of #2 cannot be true, so r1 6 r3 < 3r3. Before any merge during an ending sequence, if the
stack is S = (R1, . . . Rh), then we denote by S = (R1, . . . , Rh−1) the stack after that merge. If
the invariant holds before the merge, and since r2 < r3 +r4 and r3 < r4 by Lemma 5, we have
r1 = r1 < 3r3 < 3r4 = 3r3 in Case #2, and r1 = r1 + r2 6 r3 + r2 < r3 + r3 + r4 < 3r4 = 3r3
in Cases #3 to #5 (since r1 6 r3, as Case #2 does not apply), concluding the proof. J

In order to obtain a suitable upper bound for the merges that happen during ending
sequences, we refine the analysis of the previous section. We still use ♦-tokens and ♥-tokens
to pay for comparisons when the stack is not too high, and we use different tokens otherwise:

at the beginning of the algorithm, a common pool is credited with 24n ♣-tokens,
all elements are still credited two ♦-tokens and one ♥-token when entering the stack,
no token (of any kind) is credited nor spent during merges of starting sequences (the cost
of such sequences is already taken care of by Lemma 9),
if the stack has height less than κ = d2 log2 ρe, elements are credited ♦-tokens and
♥-tokens and merges (of ending sequences) are paid in the same fashion as in Section 3,
if the stack has height at least κ, then merges (of ending sequences) are paid using
♣-tokens, and elements are not credited any token when a merge decreases their height.

By the analysis of the previous section, at most O(nκ) comparisons are paid with ♦-tokens
and ♥-tokens. Hence, using Remark 3, we complete the proof of Theorem 7 by checking that
we initially credited enough ♣-tokens. This is a direct consequence of the following lemma,
since at most ρ merges are paid by ♣-tokens.

I Lemma 10. A merge performed during an ending sequence with a stack containing at
least κ runs costs at most 24n/ρ comparisons.

Proof. Lemmas 5 and 9 prove that r2 < 3r3 and r1 < 3r3 . Since a merging step either
merges R1 and R2, or R2 and R3, it requires at most 6r3 comparisons. By Lemma 6, we
have rh >

√
2h−4

r3, whence 6r3 6 24
√

2−hrh 6 24n
√

2−κ 6 24n/ρ. J

5 About the Java version of TimSort

Algorithm 2 (and therefore Algorithm 3) does not correspond to the original TimSort.
Before release 3.4.4 of Python, the second part of the condition (in blue) in the test at line 3
of merge_collapse (and therefore merge case #5 of Algorithm 3) was missing. This version

ESA 2018

4:10 On the Worst-Case Complexity of TimSort

109
#1 83

109

#1 25
83
109

#1 16
25
83
109

#1 8
16
25
83
109

#1 7
8
16
25
83
109

#1 26
7
8
16
25
83
109

#1

26
15
16
25
83
109

#2

26
31
25
83
109

#2

26
56
83
109

#2 2
26
56
83
109

#1 27
2
26
56
83
109

#1

27
28
56
83
109

#2

Figure 5 Execution of the main loop of the Java version of TimSort (without merge case #5,
at line 9 of Algorithm 3), with the lengths of the runs in runs being (109, 83, 25, 16, 8, 7, 26, 2, 27).
When the algorithm stops, the invariant is violated twice, for consecutive runs (in red).

of the algorithm worked fine, meaning that it did actually sort arrays, but the invariant
given by Equation (1) did not hold. Figure 4 illustrates the difference caused by the missing
condition when running Algorithm 3 on the same input as in Figure 2.

This was discovered by de Gouw et al. [5] when trying to prove the correctness of the
Java implementation of TimSort (which is the same as in the earlier versions of Python).
And since the Java version of the algorithm uses the (wrong) invariant to compute the
maximum size of the stack used to store the runs, the authors were able to build a sequence
of runs that causes the Java implementation of TimSort to crash. They proposed two
solutions to fix TimSort: reestablish the invariant, which led to the current Python version,
or keep the original algorithm and compute correct bounds for the stack size, which is the
solution that was chosen in Java 9 (note that this is the second time these values had to be
changed). To do the latter, the developers used the claim in [5] that the invariant cannot be
violated for two consecutive runs on the stack, which turns out to be false,5 as illustrated in
Figure 5. Thus, it is still possible to cause the Java implementation to fail: it uses a stack
of runs of size at most 49 and we were able to compute an example requiring a stack of
size 50 (see http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java), causing an error
at runtime in Java’s sorting method.

Even if the bug we highlighted in Java’s TimSort is very unlikely to happen, this should
be corrected. And, as advocated by de Gouw et al. and Tim Peters himself,6 we strongly
believe that the best solution would be to correct the algorithm as in the current version
of Python, in order to keep it clean and simple. However, since this is the implementation
of Java’s sort for the moment, there are two questions we would like to tackle: Does the
complexity analysis holds without the missing condition? And, can we compute an actual
bound for the stack size? We first address the complexity question. It turns out that the
missing invariant was a key ingredient for having a simple and elegant proof.

I Proposition 11. At any time during the main loop of Java’s TimSort, if the stack
of runs is (R1, . . . , Rh) then we have r3 < r4 < . . . < rh and, for all i > 3, we have
(2 +

√
7)ri > r2 + . . .+ ri−1.

Proof ideas. The proof of Proposition 11 is much more technical and difficult than insightful,
and therefore we just summarize its main steps. As in previous sections, this proof relies
on several inductive arguments, using both inductions on the number of merges performed,

5 This is the consequence of a small error in the proof of their Lemma 1. The constraint C1 > C2 has no
reason to be. Indeed, in our example, we have C1 = 25 and C2 = 31.

6 Here is the discussion about the correction in Python: https://bugs.python.org/issue23515.

http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java
https://bugs.python.org/issue23515

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau 4:11

on the stack size and on the run lengths. The inequalities r3 < r4 < . . . < rh come at once,
hence we focus on the second part of Proposition 11.

Since separating starting and ending sequences was useful in Section 4, we first introduce
the notion of stable stacks: a stack S is stable if, when operating on the stack S = (R1, . . . , Rh),
Case #1 is triggered (i.e. Java’s TimSort is about to perform a run push operation).

We also call obstruction indices the integers i > 3 such that ri 6 ri−1 + ri−2: although
they do not exist in Python’s TimSort, they may exist, and even be consecutive, in Java’s
TimSort. We prove that, if i− k, i− k+ 1, . . . , i are obstruction indices, then the stack sizes
ri−k−2, . . . , ri grow “at linear speed”. For instance, in the last stack of Figure 5, obstruction
indices are 4 and 5, and we have r2 = 28, r3 = r2 + 28, r4 = r3 + 27 and r5 = r4 + 26.

Finally, we study so-called expansion functions, i.e. functions f : [0, 1] 7→ R such that, for
every stable stack S = (R1, . . . , Rh), we have r2 + . . .+ rh−1 6 rhf(rh−1/rh). We exhibit an
explicit function f such that f(x) 6 2 +

√
7 for all x ∈ [0, 1], and we prove by induction on

rh that f is an expansion function, from which we deduce Proposition 11. J

Once Proposition 11 is proved, we easily recover the following variant of Lemmas 6 and 9.

I Lemma 12. At any time during the main loop of Java’s TimSort, if the stack is
(R1, . . . , Rh) then we have r2/(2 +

√
7) 6 r3 < r4 < . . . < rh and, for all i > j > 3,

we have ri > δi−j−4rj, where δ =
(
5/(2 +

√
7)
)1/5

> 1. Furthermore, at any time during an
ending sequence, including just before it starts and just after it ends, we have r1 6 (2+

√
7)r3.

Proof. The inequalities r2/(2 +
√

7) 6 r3 < r4 < . . . < rh are just a (weaker) restatement
of Proposition 11. Then, for j > 3, we have (2 +

√
7)rj+5 > rj + . . . + rj+4 > 5rj , i.e.

rj+5 > δ5rj , from which one gets that ri > δi−j−4rj .
Finally, we prove by induction that r1 6 (2 +

√
7)r3 during ending sequences. First,

when the ending sequence starts, r1 < r3 6 (2 +
√

7)r3. Before any merge during this
sequence, if the stack is S = (R1, . . . Rh), then we denote by S = (R1, . . . , Rh−1) the
stack after the merge. If the invariant holds before the merge, in Case #2, we have
r1 = r1 6 (2+

√
7)r3 6 (2+

√
7)r4 = (2+

√
7)r3; and using Proposition 11 in Cases #3 and #4,

we have r1 = r1 + r2 and r1 6 r3, hence r1 = r1 + r2 6 r2 + r3 6 (2 +
√

7)r4 = (2 +
√

7)r3,
concluding the proof. J

We can then recover a proof of complexity for the Java version of TimSort, by following
the same proof as in Sections 3 and 4, but using Lemma 12 instead of Lemmas 6 and 9.

I Theorem 13. The complexity of Java’s TimSort on inputs of size n with ρ runs is
O(n+ n log ρ).

Another question is that of the stack size requirements of Java’s TimSort, i.e. comput-
ing hmax. A first result is the following immediate corollary of Lemma 12.

I Corollary 14. On an input of size n, Java’s TimSort will create a stack of runs of
maximal size hmax 6 7 + logδ(n), where δ =

(
5/(2 +

√
7)
)1/5.

Proof. At any time during the main loop of Java’s TimSort on an input of size n, if the
stack is (R1, . . . , Rh) and h > 3, it follows from Lemma 12 that n > rh > δh−7r3 > δh−7. J

Unfortunately, for integers smaller than 231, Corollary 14 only proves that the stack size
will never exceed 347. However, in the comments of Java’s implementation of TimSort,7

7 Comment at line 168: http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java.

ESA 2018

http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java

4:12 On the Worst-Case Complexity of TimSort

there is a remark that keeping a short stack is of some importance, for practical reasons, and
that the value chosen in Python– 85 – is “too expensive”. Thus, in the following, we go to
the extent of computing the optimal bound. It turns out that this bound cannot exceed 86
for such integers. This bound could possibly be refined slightly, but definitely not to the
point of competing with the bound that would be obtained if the invariant of Equation (1)
were correct. Once more, this suggests that implementing the new version of TimSort in
Java would be a good idea, as the maximum stack height is smaller in this case.

I Theorem 15. On an input of size n, Java’s TimSort will create a stack of runs of
maximal size hmax 6 3 + log∆(n), where ∆ = (1 +

√
7)1/5. Furthermore, if we replace ∆ by

any real number ∆′ > ∆, the inequality fails for all large enough n.

Proof ideas. The first part of Theorem 15 is proved as follows. Ideally, we would like to
show that ri+j > ∆jri for all i > 3 and some fixed integer j. However, these inequalities do
not hold for all i. Yet, we prove that they hold if i + 2 and i + j + 2 are not obstruction
indices and if i+ j + 1 is an obstruction index. It follows quickly that rh > ∆h−3.

The optimality of ∆ is much more difficult to prove. It turns out that the constants 2+
√

7,
(1 +

√
7)1/5, and the expansion function referred to in the proof of Proposition 11 were con-

structed as least fixed points of non-decreasing operators, although this construction needed
not be explicit for using these constants and function. Hence, we prove that ∆ is optimal by
inductively constructing sequences of run lengths that show that lim sup{log(rh)/h} > ∆;
much care is required for proving that our constructions are indeed feasible. J

6 Conclusion

At first, when we learned that Java’s QuickSort had been replaced by a variant of MergeSort,
we thought that this new algorithm – TimSort – should be really fast and efficient in practice,
and that we should look into its average complexity to confirm this from a theoretical point
of view. Then, we realized that its worst-case complexity had not been formally established
yet and we first focused on giving a proof that it runs in O(n logn), which we wrote in a
preprint [1]. In the present article, we simplify this preliminary work and provide a short,
simple and self-contained proof of TimSort’s complexity, which sheds some light on the
behavior of the algorithm. Based on this description, we were also able to answer positively
a natural question, which was left open so far: does TimSort runs in O(n+ n log ρ), where
ρ is the number of runs? We hope our theoretical work highlights that TimSort is actually
a very good sorting algorithm. Even if all its fine-tuned heuristics are removed, the dynamics
of its merges, induced by a small number of local rules, results in a very efficient global
behavior, particularly well suited for almost sorted inputs.

Besides, we want to stress the need for a thorough algorithm analysis, in order to prevent
errors and misunderstandings. As obvious as it may sound, the three consecutive mistakes
on the stack height in Java illustrate perfectly how the best ideas can be spoiled by the lack
of a proper complexity analysis.

Finally, following [5], we would like to emphasize that there seems to be no reason not
to use the recent version of TimSort, which is efficient in practice, formally certified and
whose optimal complexity is easy to understand.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau 4:13

References
1 Nicolas Auger, Cyril Nicaud, and Carine Pivoteau. Merge strategies: From Merge Sort

to TimSort. Research Report hal-01212839, hal, 2015. URL: https://hal-upec-upem.
archives-ouvertes.fr/hal-01212839.

2 Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting.
Theor. Comput. Sci., 513:109–123, 2013. doi:10.1016/j.tcs.2013.10.019.

3 Bernhard Beckert, Reiner Hähnle, and Peter H Schmitt. Verification of object-oriented
software: The KeY approach. Springer-Verlag, 2007.

4 Sam Buss and Alexander Knop. Strategies for stable merge sorting. Research Report
abs/1801.04641, arXiv, 2018. URL: http://arxiv.org/abs/1801.04641.

5 Stijn De Gouw, Jurriaan Rot, Frank S de Boer, Richard Bubel, and Reiner Hähnle. Open-
JDK’s Java.utils.Collection.sort() is broken: The good, the bad and the worst case. In
International Conference on Computer Aided Verification, pages 273–289. Springer, 2015.

6 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publish. Co., Redwood City, CA, USA, 1998.

7 Heikki Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Trans.
Computers, 34(4):318–325, 1985. doi:10.1109/TC.1985.5009382.

8 J. Ian Munro and Sebastian Wild. Nearly-optimal mergesorts: Fast, practical sorting
methods that optimally adapt to existing runs. In Hannah Bast Yossi Azar and Grzegorz
Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018), Leibniz
International Proceedings in Informatics (LIPIcs), pages 63:1–63:15, 2018.

9 Tim Peters. Timsort description, accessed june 2015. URL: http://svn.python.org/
projects/python/trunk/Objects/listsort.txt.

10 Tadao Takaoka. Partial solution and entropy. In Rastislav Královič and Damian Niwiński,
editors, Mathematical Foundations of Computer Science 2009, pages 700–711, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg.

ESA 2018

https://hal-upec-upem.archives-ouvertes.fr/hal-01212839
https://hal-upec-upem.archives-ouvertes.fr/hal-01212839
http://dx.doi.org/10.1016/j.tcs.2013.10.019
http://arxiv.org/abs/1801.04641
http://dx.doi.org/10.1109/TC.1985.5009382
http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://svn.python.org/projects/python/trunk/Objects/listsort.txt

A New and Improved Algorithm for Online Bin
Packing
János Balogh
Department of Applied Informatics, Gyula Juhász Faculty of Education,
University of Szeged, Hungary
balogh@jgypk.u-szeged.hu

József Békési
Department of Applied Informatics, Gyula Juhász Faculty of Education,
University of Szeged, Hungary
bekesi@jgypk.u-szeged.hu

György Dósa
Department of Mathematics, University of Pannonia, Veszprém, Hungary
dosagy@almos.vein.hu

Leah Epstein
Department of Mathematics, University of Haifa, Haifa, Israel
lea@math.haifa.ac.il

Asaf Levin
Faculty of Industrial Engineering and Management, The Technion, Haifa, Israel
levinas@ie.technion.ac.il

Abstract
We revisit the classic online bin packing problem studied in the half-century. In this problem,
items of positive sizes no larger than 1 are presented one by one to be packed into subsets called
bins of total sizes no larger than 1, such that every item is assigned to a bin before the next
item is presented. We use online partitioning of items into classes based on sizes, as in previous
work, but we also apply a new method where items of one class can be packed into more than
two types of bins, where a bin type is defined according to the number of such items grouped
together. Additionally, we allow the smallest class of items to be packed in multiple kinds of bins,
and not only into their own bins. We combine this with the approach of packing of sufficiently
big items according to their exact sizes. Finally, we simplify the analysis of such algorithms,
allowing the analysis to be based on the most standard weight functions. This simplified analysis
allows us to study the algorithm which we defined based on all these ideas. This leads us to
the design and analysis of the first algorithm of asymptotic competitive ratio strictly below 1.58,
specifically, we break this barrier by providing an algorithm AH (Advanced Harmonic) whose
asymptotic competitive ratio does not exceed 1.57829.

Our main contribution is the introduction of the simple analysis based on weight function to
analyze the state of the art online algorithms for the classic online bin packing problem. The
previously used analytic tool named weight system was too complicated for the community in
this area to adjust it for other problems and other algorithmic tools that are needed in order
to improve the current best algorithms. We show that the weight system based analysis is not
needed for the analysis of the current algorithms for the classic online bin packing problem. The
importance of a simple analysis is demonstrated by analyzing several new features together with
all existing techniques, and by proving a better competitive ratio than the previously best one.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Bin packing, online algorithms, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.5

© Janos Balogh, Jozsef Bekesi, Gyorgy Dosa, Leah Epstein, and Asaf Levin;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:balogh@jgypk.u-szeged.hu
mailto:bekesi@jgypk.u-szeged.hu
mailto:dosagy@almos.vein.hu
mailto:lea@math.haifa.ac.il
mailto:levinas@ie.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 A New and Improved Algorithm for Online Bin Packing

1 Introduction

Bin packing [5, 6] is the problem of packing a set of items of rational sizes in (0, 1] into
subsets of items, which are called bins, of total sizes no larger than 1. In the offline variant
the list of items is given as a set, and in the online environment items are presented one by
one and each item has to be packed into a bin irrevocably before the next item is presented.

For an algorithm A, we denote its cost, that is, the number of used bins in its packing on
an input I by A(I). The cost of an optimal solution OPT , for the same input, is denoted
by OPT (I). The asymptotic approximation ratio allows to compare the costs for inputs
for which the optimal cost is sufficiently large. The asymptotic approximation ratio of A is

defined as follows. RA = lim
N→∞

(
sup

I:OP T (I)≥N

A(I)
OP T (I)

)
. In this paper we only consider the

asymptotic approximation ratio, which is the common measure for bin packing algorithms.
Thus we use the term approximation ratio throughout the paper, with the meaning of
asymptotic approximation ratio. Moreover, the term competitive ratio often replaces the
term “approximation ratio” in cases where online algorithms are considered. We will use
this term for the asymptotic measure. When we discuss the absolute measure supI

A(I)
OP T (I)

(the absolute approximation ratio or the absolute competitive ratio), we will mention this
explicitly. A standard method for proving an upper bound for the asymptotic approximation
ratio or the asymptotic competitive ratio for an algorithm A is to show the existence of a
constant C ≥ 0 independent of the input, such that for any input I, A(I) ≤ R ·OPT (I) +C

(and then the value of the asymptotic measure is at most R). Most work on upper bounds
on the asymptotic competitive ratio provide in fact an upper bound using this last method,
and we will follow this approach as well.

For the offline problem, algorithms with an approximation ratio of 1 + ε can be designed
[10, 17, 9, 13] for any ε > 0. If the first definition is used, a 1-approximation is known [17],
where the cost of the solution computed by the algorithm is OPT (I) + o(OPT (I)) (see also
recent work on improving the sub-linear function of OPT (I) [21, 12]).

The classic bin packing problem, which we study here, was presented in the early 1970’s
[25, 14, 15, 16]. It was introduced as an offline problem, but many of the algorithms initially
proposed for it were in fact online. Johnson [14, 15] defined and analyzed the simple algorithm
Next Fit (NF), which tries to pack the next item into the last bin that was used for packing,
if such a bin exists (in which case such a bin is called “active”) and the item can be packed
there, and otherwise it opens a new bin for the item. The competitive ratio of this algorithm
is 2 [14, 15]. Any Fit (AF) algorithms, as opposed to the behavior of NF which only tests
at most one active bin for feasibility of packing a new item there, pack a new item into a
nonempty bin unless this is impossible (in which case a new bin is opened). Such algorithms
have competitive ratios of at most 2. Next, consider a sub-class of algorithms where one
may not select a bin with smallest total size of currently packed items for packing a new
item, unless this minimum is not unique or this is the only bin that can accommodate the
new item except for an empty bin. The last class of algorithms is called Almost Any Fit
(AAF), and they have competitive ratios of 1.7 [16, 15]. A well-known algorithm, which is in
fact a special case of AAF is Best Fit (BF), which always chooses the fullest bin where the
new item can be packed. First Fit (FF) is another important special case of AF (but not of
AAF) which selects a minimum index bin for each new item (where it can be packed). The
competitive ratio of FF is 1.7 [16, 7].

The pre-sorted versions of these algorithms, called NFD, FFD, BFD, and AFD, were
studied as well. Here items are still presented one by one, but they are sorted in a non

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin 5:3

increasing order of sizes. For example, the approximation ratio of NFD is (approximately)
1.69103 [2] and that of FFD is 11

9 ≈ 1.22222 [14]. For AFD in general, the approximation
ratio is at most 1.25 [14, 15, 16]. These pre-sorted variants are not online algorithms.

We design and analyze a new algorithm AH (Advanced Harmonic) for online bin packing,
and show that its competitive ratio does not exceed 1.57828956. This is the first algorithm
whose asymptotic competitive ratio is below 1.58. We use a new type of analysis of algorithms
which allows us to split the analysis into cases, while for every case we define only three
values (and even just one value in a large number of cases), and based on those we calculate
weights for items. The analysis is split into cases in recent previous work as well, but the
analysis of each case is much more difficult. Items are partitioned into classes according to
sizes. As in previous work, we sometimes do not pack the maximum number of items of
some class into a bin, and leave space for items of another class (possibly arriving later).
One new feature of AH is that in previous papers, in the algorithms there were at most two
options for every class. For any given class, one option was a bin with the maximum number
of items of this class fitting into a bin. For some of the classes there was a second option
consisted of a very small number of items from this class (with reserved spaces for items of
another class, possibly arriving later). We allow intermediate values as well with more than
two options for some classes and not only two kinds of bins for a given class.

We use simple weight functions for the analysis, rather than the much more complicated
tool called weight systems [23]. Weight functions are an auxiliary tool used for the analysis
of bin packing (and other) algorithms (this technique is also called dual fitting). In this
method, a weight is defined for each item (usually, based on its size, and sometimes it is
also based on its role in the packing). If there are multiple kinds of outputs, it is possible
to define a weight function for each one of them. The total weight of items is then used to
compare the numbers of bins in the output of the algorithm and in an optimal solution. The
list of weights of one item for different output types, also called scenarios, can be seen as
a vector associated with the item. Thus, the weights can be seen as one function from the
items to vectors whose dimension is the number of scenarios. Briefly, a weight system is a
generalization where the weight function also maps items (or item sizes) to vectors, but in
order to compute the weight of some item for a given scenario, another function, called a
consolidation function, is used. This last function is a piecewise linear function (mapping
real vectors to reals). The slightly simplified approach is to use convex combinations of
weights according to subsets of scenarios. It has not been proved that weight systems are
a stronger tool than just weights defined for the different scenarios. However, for simple
weights every scenario can be analyzed independently from other scenarios. We exploit the
simplicity of weight functions to obtain a clean and full analysis, which is easier to implement
and verify (compared to the analysis resulting from weight systems). The main advantage
is that every case is analyzed in a separate calculation using a standard knapsack solver
without considering any other cases at that time. This simplicity allows us to analyze the
new features that we introduce. Obviously, as these are cases for one algorithm, they have a
common set of parameters, but once the algorithm has been fixed, there is no connection
between the various cases.

The significance of our approach is that we combine many existing methods, including
that of Babel et al. [1] (recently used by Heydrich and van Stee [22, 11] for classic bin
packing), adding several new features, and applying a simple analysis, which can be verified
easily and is robust to further changes of the algorithm. We define the action of our algorithm
AH, we prove a number of invariants and properties of AH in detail, and then we provide the
specific parameters and compact representations of the lists of weights. For every possible

ESA 2018

5:4 A New and Improved Algorithm for Online Bin Packing

output type and scenario, there is a small number of values used for the calculation of weights
for it that we choose based on solving an auxiliary linear program. We also provide explicit
lists of weights calculated based on the values and the parameters.

To explain the new features of our work, we discuss the harmonic type algorithms. Already
in much of the previous work on online algorithms for bin packing, items were partitioned
into classes by size. The simplest such classification is based on harmonic numbers, leading
to the Harmonic algorithm of Lee and Lee [18]. In the harmonic algorithm of index k (for
an integer parameter k ≥ 2), subset j is the intersection of the input and (1

j+1 ,
1
j] (where

1 ≤ j ≤ k − 1), and subset k of tiny items is the intersection of the input and (0, 1
k].

In these algorithms each subset is packed independently from other subsets using NF (so
for j ≤ k − 1, any bin for subset j, except for possibly the last such bin, has j items, but
for subset k, every bin except for the last bin for this subset has a total size of items above
k−1

k), and for k growing to infinity, the resulting competitive ratio is approximately 1.69103
[18]. The drawback of those algorithms is that bins of subsets with small values of j can
be packed with small sizes of items (for example, a bin of subset 2 may have total size just
above 2

3 and a bin of subset 1 may have just one item of size just above 1
2).

The first idea which comes to mind is to try to combine items of those two subset into
common bins. However, if items of class 2 arrive first, one cannot just pack them one per
bin, as this immediately leads to a competitive ratio of 2 (if no items of subset 1 arrive
afterwards). Lee and Lee [18] proposed the following method to overcome this. A fixed
fraction of items of subset 2 (up to rounding errors) is packed one per bin and the remaining
items are packed in pairs. Thus, there are two kinds of bins for subset 2. The items we refer
to here can only be sufficiently small items, so there is a threshold ∆ ∈ (1

2 ,
2
3) such that items

of sizes in (∆, 1] and (1−∆, 1
2] are packed as before, while the algorithm tries to combine an

item of size in (1
3 , 1−∆] with an item of size in (1

2 ,∆]. Even if those two items (one item of
each one of the two intervals) are relatively small, still their total size is above 5

6 ≈ 0.83333.
This last algorithm was called Refined-Harmonic, and its competitive ratio is smaller than
1.636. Ramanan et al. [19] designed two algorithms called Modified Harmonic and Modified
Harmonic-2. The first one has a competitive ratio below 1.61562, and it allows to combine
items of many subsets with items of sizes above 1

2 (and at most ∆). The second algorithm
does not use only a single value of ∆, but splits the interval (1

2 , 1] further, allowing additional
kinds of combinations. Its competitive ratio is approximately 1.612. For most subsets of
items (where k is chosen to be in [20, 40] in all these algorithms), the last two algorithms
pack some proportion of the items in groups of smaller sizes, to allow it to be combined with
an item of size above 1

2 . Intuitively, for an illustrative example, assume that ∆ = 0.6, and
consider the items of sizes in (1

11 ,
1

10]. The items that are not packed into groups of ten items
should be packed into groups of four items (the parameters of the algorithms are different
from those of this example). For some of the subsets the proportion is zero, and they are
still packed using NF. The drawback of such algorithms (as it is exhibited by Ramanan et al.
[19]) is that no matter how many thresholds there are, there can be pairs of items that can
be combined into bins of optimal solutions while the algorithm does not allow it as it has
fixed thresholds. Specifically, such algorithms allow to combine items of different intervals
only in the case that the largest items of the two intervals fit together into a bin. This is the
case with the next two harmonic type algorithms as well.

The next two papers, that of Richey [20] and that of Seiden [23] deal with a more
complicated algorithm where many more subsets can be combined. The general structure
is proposed in [20], and a full and corrected algorithm with its analysis is provided in [23].
For illustration, the items packed into smaller groups are called red and those packed into

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin 5:5

bins with maximum numbers of items of the subset are called blue. The goal is to combine
as many bins with blue items with bins having red items as possible. Bins with red items
always have small numbers of items, to allow them to be combined with relatively large items
of sizes above 1

2 . The analysis is far from being simple, though it leads to a competitive
ratio of at most 1.58889 (Heydrich and van Stee [22, 11] mention that this last value can be
decreased very slightly). The analysis of [23] is based on a complicated notion called weight
system. The complicated details of this analytic tool basically did not allow the research
community to introduce new algorithmic methods for dealing with the online bin packing
problem. We expect that our simplified analysis will not suffer from this major disadvantage.

The carefully designed subset structure eliminates many worst-case examples, but the
drawback mentioned above still remains. Recently, Heydrich and van Stee [22, 11] proposed
to use a method introduced by Babel et. al [1], where some items are packed based on their
exact size rather than by their subset. The approach of [22, 11] which we adopt is to apply
the methods of Babel et. al [1] on the largest items, of sizes in (1

3 , 1]. This approach means
to combine items of sizes above 1

2 with items of sizes in (1
3 ,

1
2] based on their exact sizes.

Moreover, the approach involves combining pairs of items of subsets of sizes contained in
(1

3 ,
1
2] while keeping the smallest items of such a subset to be matched with items of sizes

above 1
2 (and larger items of such a subset are used to be packed into pairs), as much as

possible. Prior to the work of [22, 11], all previous algorithms for classic bin packing that
partition items into classes always assumed that an item of a certain subset has the maximum
size when its possible packing was examined. This method simplifies the algorithm and its
analysis, but it is not always a good strategy as this excludes the option of combining items
that can fit together into a bin in many cases. This approach is very different from that of
AF algorithms and even from NF. Moreover, an approach similar to that of Babel et. al
[1] was used in an online algorithm designed in [3]. Heydrich and van Stee [22, 11] claim a
competitive ratio of 1.5816 but we were not able to verify this claim.

In algorithm AH, we do not just have red and blue items, but we potentially allow several
kinds of bins (that is, several and potentially a large number of colors for items of a given
class, and furthermore items may change their colors once further items arrive. Due to
these differences we will not use the illustration via colors of items in the description of
our algorithm). For example, for the subset of items of sizes in (1

15 ,
1

14] we group items
into subsets of 14 items or three items or just one item. We also use bins of the smallest
items (our value of k is 43) where the total size of items is at most 17

60 , to allow them to be
combined (among others) with items of sizes in (1

2 ,
43
60]. These two features are possible due

to the simple nature of our analysis, and they are crucial for getting the improved bound.
Note that all items of sizes in (0, 1

43] are treated together (by the algorithm and its analysis).
In order to use just a small number of values (one or three) for each scenario that we

choose by solving an auxiliary linear program, we use the concept of containers. A container
is a set of items of one class (in the partition of potential inputs into items of similar sizes,
called classes), and it can be complete if its planned number of items has arrived already or
incomplete otherwise (but it is treated in the same way in both cases). Containers are of
two types, where a container is either positive or negative, and a bin may contain at most
one of each of them. The goal is to have as many bins as possible with both a positive and
a negative container. Roughly speaking, positive containers have total sizes above 1

2 and
negative containers have total sizes of at most 1

2 . This last statement is imprecise as in most
cases we consider volumes and not exact sizes, where volumes are based on the maximum
sizes for the corresponding classes. There is one exception which is containers with one item
of size above 1

3 , where the exact size is taken into account (both by the algorithm and the

ESA 2018

5:6 A New and Improved Algorithm for Online Bin Packing

analysis), and it is defined to be the volume. A positive container and a negative one fit
together if their total volumes does not exceed 1, and does not depend only on the classes.
Our positive containers and negative containers have some relation to concepts used in [23].

In our weight based analysis, we assign weights to containers, where the number of
different weights is small. Specifically, let the minimum volume of any positive container not
packed with a negative container be denoted by a. We have two cases. In the simple case
where all positive containers packed without negative containers have volumes of at least 2

3
(i.e., a ≥ 2

3), we define weights as follows. Assign weights of 1 to positive containers packed
without negative containers and negative containers packed without positive containers.
Since we later base our weights of items on sizes, we assign these weights of 1 to all positive
containers of volume at least a and all negative containers of volumes above 1− a. We have
a variable w (0 ≤ w ≤ 1) such that other positive containers have weights of w and other
negative containers have weights of 1 − w. Those weights are called the required weights
of containers (the actual weights can be larger but not smaller). Given the approximate
proportions of items of each class packed in every type of container, we compute a weighted
average (based on the containers of every item) to define weights of items using the required
weights of containers. The case where a < 2

3 is more interesting as a negative container
with one item of size in (1

3 ,
1
2] and a positive container with one item of size above 1

2 can be
packed into one bin if the total size of the two items does not exceed 1 (i.e., the volumes of
their containers are the exact sizes of these two items). Thus, the exact value a is crucial
and not only its class, and additionally the class and even the exact value of 1− a play an
important role. This is indeed more interesting as the analysis cannot be done for an infinite
set of scenarios and thus we need to analyze intervals of a together. Here, for other classes
we do the same as in the previous case, but for one class we perform a more careful analysis.
This is the class containing the value 1− a. For this class we define weights of items directly.
We let the weight of an item of this class of size at most 1− a be a variable u, and otherwise
it is a variable v, where v ≥ u (this class is contained in (1

3 ,
1
2]). For the analysis, we found

suitable values for the variables for all scenarios (this was done separately for each scenario),
that is, for all possible values of a (the number of scenarios is still finite, as they are based
on the dividing points of the algorithm, though not only on the classes). For every scenario
where a < 2

3 , there are additional constraints on u, v, and w. As we do not use weights of
containers in this case (for the class containing 1− a), while the packing of pairs of items of
classes contained in (1

3 ,
1
2] is performed carefully for all such classes. After selecting suitable

values for those variables, all other item weights are also computed using the parameters of
the algorithm.

There are also improved algorithms based on First Fit. Yao [27] designed a 5
3 -competitive

algorithm where certain size based subsets are packed separately. Later, an algorithm of
absolute competitive ratio 5

3 was designed [3], which is the best possible with respect to
this last measure [28] (see also [24, 7, 8]). The (asymptotic) competitive ratios should be
compared to lower bounds on the competitive ratio. The current best such lower bound is
1.5403 [4] (see also [26]).

2 Algorithm AH

Notation and definitions. Similarly to previous algorithms’ definitions, AH has a sequence
of boundary points that are used in its precise definition: 1 = t0 > t1 = 1

2 > t2 > · · · > tb =
1
3 > · · · > tM > tM+1 = 0. That is 1/2 and 1/3 are always boundary points, and there is no
boundary point in (1/2, 1).

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin 5:7

For every j, all items of sizes in the interval (tj , tj−1] are called items of class j. We say
that a class of items (and every item of this class) is huge if j = 1, it is large if 1 < j ≤ b

(these are all items of sizes above 1/3 and at most 1/2), small if b < j ≤M , and tiny if this
is the class of items of size at most tM (i.e., the last class which is the class of tiny items is
class M + 1, and in general the index of a class corresponds to the index j such that tj is
the infimum size of any item of the class).

Our algorithm will pack items into containers and pack containers into bins. As the
algorithm is online, a container will be packed into a bin immediately when it is created, even
though it may receive additional items later. In the last case, when we say that an item is
packed into a container, this means that the bin containing the container receives that item.
Any container will contain items of a single class, and at most two different containers can
be combined (packed) into a bin. We provide additional details on combining two containers
into a bin later. Every container of items that are not tiny has a cardinality associated with
it, and this is the (maximum) number of items that it is supposed to receive.

Let γj = b 1
tj−1
c for j ≤M . For class j that is either large or small (but not huge or tiny,

i.e., for values of j such that 2 ≤ j ≤M holds), and for every i (where 1 ≤ i ≤ γj) there is a
nonnegative parameter αij , where 0 ≤ αij ≤ 1. The value αij will denote the proportion of
number of containers of cardinalities i of class j items among the number of containers of
class j (the term proportion corresponds to the property of the sum of proportions satisfies∑

i αij = 1 for all j). Such containers that will eventually receive i items of class j (unless
the input terminate before this becomes possible) will be called type i containers of class j.
That is, intuitively if we let x denote the number of containers for items of class j, we will
have approximately αij · x type i containers each of which having exactly i items of class j.
For every j such that 2 ≤ j ≤M and every i, we let Ai,j = i · tj−1. While the values αij are
defined so far only for large and small classes, we see one huge item as a type 1 container.
Note that the values of αij are not proportions of items but of containers for class j, and
the resulting proportions of items can be computed from them (we will prove such bounds
accurately later).

For classes of large items the notion of the cardinality of a container is slightly more
delicate, and we will have exactly four possible types of containers. The first type is a regular
type 2 container (already) containing exactly two items of this class. The second type is
a declared type 2 container, where this type consists of containers for which the algorithm
already decided to pack two items of this class in the container (so the planned cardinality
of the container is 2) but so far only one such item was packed into the container (one of the
few next arriving items of this class, if they exist, will be packed there, in which case the
type will be changed into a regular type 2 container). The third is a regular type 1 container,
where such a container has one item of the class and cannot ever have (in future steps) an
additional item of this class (such a container will be already combined with a container of
another class that is packed into the same bin). The fourth and last type of a container of
large items is a temporary type 1 container. A container of this last type currently has one
item of the class but sometimes it will get an additional item of this class in future steps
(and in this case its type will be changed at that time to regular type 2, its type can change
to declared type 2 or regular type 1 as well, but in those cases it does not happen as a result
of packing a new item to this container). Given a class of large items, the number of declared
type 2 containers will be at most four throughout the execution of the algorithm (as we
will prove below) while the numbers of containers of type 1 (of both kinds) and containers
of regular type 2 can grow unbounded as the length of the input grows, though we will
show certain properties on the relations between their numbers maintained by the algorithm.

ESA 2018

5:8 A New and Improved Algorithm for Online Bin Packing

The set of the union of containers of regular type 2 and declared type 2 are called type 2
containers, and the set of the union of containers of regular type 1 and temporary type 1
are called type 1 containers. The parameters α1j and α2j of a large class j determine the
approximate proportions of type 1 containers and type 2 containers, respectively.

For class M + 1 (of the tiny items), instead of the definitions above, there is a sequence
of p possible upper bounds on the total sizes of items packed into containers of this class:
1 ≥ Ap,M+1 > Ap−1,M+1 > · · · > A1,M+1 ≥ tM , and we let the positive parameters
αi,M+1 > 0 for i = 1, . . . , p denote the proportion of numbers of containers of class M + 1
with items of total size in the interval (Ai,M+1 − tM , Ai,M+1] (this is the planned total size
of items for such a container). Such containers will be called type i containers of class M + 1.
The values of αij for all i, j are selected heuristically via a search procedure carried out by a
computer program. Any such set of parameters give a different algorithm and our proof of
the numerical value of the upper bound is for one specific set of parameters that we provide
explicitly.

The volume of a container of type i of class j is defined as follows: If i = 1 and 1 ≤ j ≤ b
(that is, for items of sizes above 1/3), the volume of the container is the size of its (unique)
item, and otherwise (i = 2 and 2 ≤ j ≤ b or i ≥ 1 and j > b) it is Ai,j . That is, the volume
is usually simply the largest total size that the container can occupy, but for a container
that contains a single large or huge item, the volume is the exact size of the item (there is
one exception where the bin already contains one large item and it is planned to contain
another item of the same class). In most cases we would like the volume of a container to be
known when it is created, which is possible for containers such that their planned contents
are known (in the sense that for example type i containers of a non tiny class j are planned
to contain i items finally). However, for large items such containers with a single item may
be temporary type 1 containers, in which case there is still no planning of contents for them.
In this last case, the volume of the container is the size of its unique item. However, the
volume of such a container may change in the case the algorithm will decide to pack another
item of the same class (no matter if it packs that other item immediately at the time of
decision or whether we decide to pack such an item later) into this container and transform it
into a type 2 container. The volume of a declared type 2 container of class j is A2,j = 2 · tj−1
(the volume is based on its complete contents, no matter whether they are present already or
not, as it is the case for classes of small or tiny items).

We say that a container is negative if its volume is at most 1/2 and otherwise it is positive.
Obviously, two positive containers cannot be packed into one bin. We will also not pack two
or more negative containers into a bin together. Thus, a bin containing two containers will
contain one positive container and one negative container, and no bin will contain more than
two containers.

The rules for packing containers. The algorithm AH which we define next will pack items
into containers and pack containers into bins according to rules we will define. Recall that
the packing of containers into bins will be such that every bin will have at most one positive
container and at most one negative container. Obviously, a bin is nonempty if it has at least
one container and at most two containers. We say that a nonempty bin is negative if it has a
negative container and does not have a positive container, it is positive if it has a positive
container and does not have a negative container, and it is neutral if it has both a negative
container and a positive container.

It is unknown whether a temporary type 1 container will eventually be positive or negative.
Therefore, such a container will not be combined in a bin with another container as long as

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin 5:9

its type is not changed. Moreover, it is seen as a negative container until it changes its type
(so its bin is negative as long as the container is of temporary type 1). Specifically, it remains
a negative container if a positive container joins it (and its bin becomes neutral), and in this
case it becomes a regular type 1 container (and remains negative), and it becomes a positive
container if its type changes to type 2. It can also happen that a temporary type 1 container
will remain such till the termination of the input and the action of AH (and its bin remains
negative). It is important to note that the difference between regular type 1 containers of
a large class and temporary type 1 containers of the same class is that each of the former
containers is already packed into a bin with a positive container (of some class), while the
latter are not packed with other containers (in fact, the corresponding items are placed into
their own bins, one item per bin).

For every class j, we denote by nj the number of containers of class j. Let nij denote
the number of containers of type i of class j. We also let Nj denote the number of items of
class j at that moment. We often consider the values nj and nij just prior to the packing of
a new item, when Nj was already increased but the new item not packed yet so the values
nj and nij are not updated yet.

We say that two containers fit together if their total volume is at most 1. In what follows,
when we refer to packing an item e - or more precisely, packing a container containing e
(which was just created and therefore contains only e) into existing bins using Best Fit - we
refer to packing e (or the container containing e) into the bin with a container of largest
volume where the existing container and e (or the container containing e) fit together. For
the original version of Best Fit, actual sizes are taken into account, but here we base this rule
on volumes (as for a container with a single large or huge item the volume is equal to the
size of the item, if we select one such container among a set of this last kind of containers,
our action is equivalent to the standard application of Best Fit).

Packing rules of a new item. Next, we define the packing rules of the algorithm when a
new item of class j arrives. The algorithm is defined for each step, based on the class of the
new item.

A huge item. Recall that a huge item is immediately packed into a positive container
containing only this item. Use Best Fit (applied on volumes, as explained above) to pack
the created container into an existing bin, out of existing negative bins, such that the two
containers (the new one with the huge item and the negative one of the negative bin) fit
together. The only case where the new huge item joins a bin with a large item of some
class j′ is the case where the container of class j′ is a temporary type 1 container, and in
this case the type of this container of class j′ is changed into regular type 1. If no bin can
accommodate the container of the new item according to those packing rules, that is, for
every negative bin, the total volume together with the new item is too big (or there is no
negative bin at all), then use a new bin for the positive container of the new item (this new
bin becomes a positive bin).

An item of a class of small or tiny items. For these classes we define the concept of an
open container. Informally, an open container (of class j) can receive at least one additional
item of class j. As a new container is introduced in order to pack an item, any container (of
any type and class) already has at least one item of the corresponding class. If b < j ≤M ,
an open type i container of class j is one where the total number of the items in the container
is strictly smaller than i. Once such a container receives i items, it is closed. For j = M + 1,

ESA 2018

5:10 A New and Improved Algorithm for Online Bin Packing

a type i container of this class will be open starting the time it is created and while the total
size of items in it is positive and at most Ai,M+1 − tM . Once it reaches a total size above
Ai,M+1 − tM , it will be closed. For all cases of packing a small or tiny item, a new container
of some class will be used only if there is no open container of the same class, and thus, in
particular, there will be at most one open container for each j (and the corresponding value
of i will always be one such that αij > 0).

When a new item of class j (such that j > b) arrives, if there is an open container of
some type i of class j, then pack the item there (there can be at most one such container, so
there are no ties in this case). Otherwise, open a new container for it (the details of the type
are given below). After packing the new item into the container (and packing its container
into a bin if it is a new container), close the container if necessary, based on its type and the
rules above.

In the case that a new container is used for the item, we define the process of packing
the item in more detail. Prior to packing the item, we define the type of the new open
container. As the item is not packed yet, nj is the number of containers of class j excluding
the container opened for the new item. Find the minimum value of i such that αij > 0 and
so far there are at most bαij · njc type i containers of class j (i.e., nij ≤ bαij · njc, where the
values nij do not include the new container which will be opened). Such an index i exists as
otherwise there are more than nj containers of class j. More precisely, since

∑
i αi,j = 1,

there is always a value of i satisfying that αij > 0 such that so far we opened at most
bαi,j · njc type i containers of class j. Open a new type i container of class j containing the
new item (increasing both nj and nij). Observe that this opening of a new container defines
its volume as well as whether it is a positive container or a negative container.

Next, we decide where to pack this new container. First consider the case where this
container is a negative container. Then, if there is a positive bin, such that the new container
fits into the bin according to its volume, then use that bin to pack the new container. This
last case includes the possibility that the positive container is a type 2 container of a large
class (regular or declared). If there are multiple options for choosing a bin, one of them is
chosen arbitrarily.

Otherwise (there is no positive bin where the new negative container can be added), the
algorithm checks the option of using a bin with a temporary type 1 container of some class
of large items. Assume that there is a negative bin B such that the following two conditions
are satisfied. The first condition is that the bin B has a temporary type 1 container of class
j′ such that a positive container of class j′ (with two items) will fit together with the new
(negative) container. The second condition is that there are at most bα2j′ · nj′c − 1 type 2
containers of class j′ (before the packing of the new item is performed). Then, pack the new
negative container into B, and define the container of class j′ packed into B as a declared
type 2 container. This last container of class j′ will get one of the next items of class j′ that
will arrive, which will happen before any new container is opened for any new class j′ item,
see below. If there are multiple options for choosing B, one of the classes of large items is
chosen arbitrarily (among those that can be used), and a temporary type 1 container of this
class with maximum volume is selected, i.e., we use Best Fit in this case. This last packing
step is possible as a temporary type 1 container is never packed with another container into
a bin (if another container joins it, its type is changed).

Otherwise (if there is no suitable positive bin and no class of large items has a suitable
temporary type 1 container that can be used under the required conditions), pack the new
negative container into a new bin.

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin 5:11

Finally, consider the case where the new container is a positive container. Then, if there
is a negative bin whose container is not a temporary type 1 container, such that the new
container fits together with it, then use such a bin to pack the new container. Otherwise,
if there is a temporary type 1 container with one large item of a class j′ where the new
container fits, then pack the new positive container into this bin and define the container of
class j′ in this bin as a regular type 1 container. The class j′ can be chosen arbitrarily if
there are multiple options, and among the temporary type 1 containers of class j′, one of
maximum volume (out of those that can be used) is selected, i.e., once again we use Best Fit.
Otherwise, pack the new positive container into a new bin.

A large item of a class j. If there is a declared type 2 container of class j, pack the
item there (as a second item) and change it into a regular type 2 container (breaking ties
arbitrarily). This packing rule is checked first, and we apply it whenever possible. We
continue to the other cases in the situation where there is no such declared type 2 container.

If the number of type 2 containers equals bα2j · njc (that is, we should not increase the
number of type 2 containers at this stage), then pack the new item into a new negative
container. To pack the container into a bin, do as follows. If there is a positive bin where
the new negative container fits, then use Best Fit to pack it as a regular type 1 container of
class j (its volume is defined accordingly as the size of the new item) together with a positive
container (this positive container is not of large items, as three large items cannot be packed
into a bin together). Otherwise the new container is packed into a new bin, in which case it
is defined to be a temporary type 1 container.

Otherwise (that is, the number of type 2 containers is strictly smaller than bα2j · njc),
we will increase the number of regular type 2 containers or the number of declared type 2
containers of this class in the current iteration as follows. If there is a negative bin B where
a type 2 container of class j fits, then pack the item into a new declared type 2 container of
class j and pack this container into this bin B. Otherwise, if there is a temporary type 1
container of class j, then we pack the new item using Best Fit (considering only temporary
type 1 containers of class j, and selecting such a container of largest volume) and change the
type of this container into a regular type 2 container. Otherwise (all containers of class j are
either regular type 1 or regular type 2, we should increase the number of type 2 containers,
and a new container with two items of this class cannot be packed into an existing bin), we
open a new declared type 2 container for the new item and open a new bin for this declared
type 2 container (and pack it there).

A sketch of the analysis. In the analysis, we see a pair of a negative container and a
positive container, packed together in a bin, as matched to each other, and each one of them
is seen as matched (while every container packed into a bin without another container is
unmatched). Let a′ = 1− smin/2 where smin is the smallest item size in the examined input,
and let a be the smallest volume of a positive container that is unmatched, if it exists. If
no unmatched positive container exists, let a = a′. If a > a′, decrease the value of a to be
a′. A simple property of the algorithm is that it tries to match a positive container and a
negative container whenever possible. Thus every positive container of volume smaller than
a is matched and every negative container of volume at least 1− a is matched.

We define a finite set of scenarios according to the value of a. To do that we define a set of
values V as follows. V = {Ai,j , 1−Ai,j : j = 2, 3, . . . ,M +1, αij > 0}∪{t1, t2, . . . , tM , tM+1}
and V ′ = {x ∈ V : x ≤ 1/2} (in particular, 1

2 ∈ V
′). Note that the set V ′ contains (among

other) all boundary points tj (for all j ≥ 1), even for values of j for which α1j = 0. The

ESA 2018

5:12 A New and Improved Algorithm for Online Bin Packing

name of a scenario is an interval (x, y] between consecutive values in V ′. Using this partition,
we ensure that if the scenario is (x, y], then there is no i ≥ 2 and class j such that αij > 0
and the volume of a container of type i of class j is in (x, y) or in (1− y, 1− x).

The first step for analyzing each scenario is to obtain a good weight function for the
scenario, in the sense that the analysis will be as tight as possible and can be done using
a computer assisted proof within a small running time. The weight function defines size
based weights for values in (0, 1]. The goal is to define weights such that the cost of the
algorithm is roughly the total weight of all input items (a weight function satisfying this
requirement is called here valid), and if the target competitive ratio is R, the cost of an
optimal solution is at least the total weight divided by R (this can be proved by showing
that no bin can contain items of total weight above R). Then, for an input I, letting w(I)
denote its total weight, (and as defined above, letting OPT (I) the optimal cost for I, and
A(I) the number of bins used by A), we will have A(I) ≤ w(I) + c, OPT (I) ≥ w(I)

R , which
shows that A(I) ≤ R ·OPT (I) + c. This last argument is the standard argument for weight
functions based analysis [14, 15, 16, 18, 19].

In order to define a suitable function, we will solve a linear program defined below (this
linear program has only four variables w, u, v and R, and in some cases it actually has only
two variables w and R). More precisely, we will provide a feasible solution for this linear
program that is very close to the optimal one (but we only use its feasibility and do not
prove that it is almost optimal). The weights of specific sizes will be based on the values
w, u, v (or just on w, if the others are undefined), and on some of the parameters of the
algorithm (the αij values for the given class).

We define a quantity for each container called the required weight of the container, and
its goal is to introduce a uniform value such that weights of items are defined based on these
values, in order to satisfy all requirements. This quantity is defined for a class that is not the
threshold class or is not a large class. If the threshold class k (the class containing 1− a) is a
large class, we keep this quantity undefined for that class. For a positive container of volume
at least a, the required weight of the container is 1. For a positive container of volume in the
interval (1/2, a), the required weight of the container is denoted as w. This will be a decision
variable of the forthcoming linear program. The required weight of a negative container is 1
if its volume is larger than 1− a and otherwise its required weight is 1− w. We ensure that
the required weight of a container depends only on the index of the scenario (x, y] and not
the specific value of a in the interval [1− y, 1− x) and there are only few exceptions that are
handled separately.

The weight of a huge item is 1 if its size is at least a and w otherwise. The weight of an
item of class j ≤M such that either j 6= k or j > b is the ratio between the average required
weight of a container of class j and the average number of items in a container of class j.
The weight of a tiny item of size s is s times the ratio between the average required weight
of a container of tiny items and the average (lower bounds on the) total size of items in a
container of tiny items. The weight of items of class j = k that is a large class is as follows.
An item of this class has weight u if its size is at most 1− a and otherwise a weight of v. We
find linear inequalities on the variables u, v, w that ensure that the resulting weight function
is valid. By solving a linear program we can find such values of u, v, w that minimize the
corresponding competitive ratio that can be proven using this weight function. In this linear
program the goal is to minimize R that is an upper bound on the total weight of items that
can fit into one bin subject to the additional constraints on u, v, w ensuring that the resulting
weight function is indeed valid.

J. Balogh, J. Bekesi, Gy. Dosa, L. Epstein, and A. Levin 5:13

In this way we get a table showing for each scenario the set of the values of u, v, w (or
only w for scenarios where the threshold class is not large) that define the weight function
that we use for the scenario. Using these weight functions we show the correctness of our
main result, namely that the competitive ratio of AH is at most 1.57828956.

References
1 L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems

with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238–251, 2004.
2 B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for next-fit-decreasing

bin-packing. SIAM J. on Algebraic and Discrete Methods, 2(2):147–152, 1981.
3 J. Balogh, J. Békési, Gy. Dósa, J. Sgall, and R. van Stee. The optimal absolute ratio

for online bin packing. In Proc. of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA2015), pages 1425–1438, 2015.

4 J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain bin packing al-
gorithms. Theoretical Computer Science, 1:1–13, 2012.

5 E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing:
A survey. In D. Hochbaum, editor, Approximation algorithms. PWS Publishing Company,
1997.

6 J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and
G. J. Woeginger, editors, Online Algorithms: The State of the Art, pages 147–177, 1998.

7 Gy. Dósa and J. Sgall. First Fit bin packing: A tight analysis. In Proc. of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS2013), pages
538–549, 2013.

8 Gy. Dósa and J. Sgall. Optimal analysis of Best Fit bin packing. In The 41st International
Colloquium on Automata, Languages and Programming (ICALP2014), pages 429–441, 2014.

9 L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. Mathem-
atical Programming, 119(1):33–49, 2009.

10 W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ε in linear
time. Combinatorica, 1(4):349–355, 1981.

11 S. Heydrich and R. van Stee. Beating the harmonic lower bound for online bin packing.
In Proc. of 43rd International Colloquium on Automata, Languages, and Programming
(ICALP2016), pages 41:1–41:14, 2016.

12 R. Hoberg and T. Rothvoss. A logarithmic additive integrality gap for bin packing. In
Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2017),
pages 2616–2625, 2017.

13 K. Jansen and K.-M. Klein. A robust AFPTAS for online bin packing with polynomial
migration. In Proc. of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP2013), part I, pages 589–600, 2013.

14 D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA,
1973.

15 D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8:272–314, 1974.

16 D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing, 3:256–278, 1974.

17 N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proc. of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 312–320, 1982.

ESA 2018

5:14 A New and Improved Algorithm for Online Bin Packing

18 C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the ACM,
32(3):562–572, 1985.

19 P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. Online bin packing in linear time.
Journal of Algorithms, 10:305–326, 1989.

20 M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Discrete
Applied Mathematics, 34(1–3):203–227, 1991.

21 T. Rothvoss. Better bin packing approximations via discrepancy theory. SIAM Journal on
Computing, 45(3):930–946, 2016.

22 R. van Stee S. Heydrich. Beating the harmonic lower bound for online bin packing. The
Computing Res. Rep. (CoRR), abs/1707.01728, 2017. arXiv:1511.00876v3.

23 S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671, 2002.
24 D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Research Lo-

gistics, 41(4):579–585, 1994.
25 J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100,

Princeton University, Princeton, NJ, 1971.
26 A. van Vliet. An improved lower bound for online bin packing algorithms. Information

Processing Letters, 43(5):277–284, 1992.
27 A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227, 1980.
28 G. Zhang. Private communication.

http://arxiv.org/abs/1511.00876v3

Practical Access to Dynamic Programming on
Tree Decompositions
Max Bannach
Institute for Theoretical Computer Science, Universität zu Lübeck, Lübeck, Germany
bannach@tcs.uni-luebeck.de

https://orcid.org/0000-0002-6475-5512

Sebastian Berndt
Department of Computer Science, Kiel University, Kiel, Germany
seb@informatik.uni-kiel.de

https://orcid.org/0000-0003-4177-8081

Abstract
Parameterized complexity theory has lead to a wide range of algorithmic breakthroughs within
the last decades, but the practicability of these methods for real-world problems is still not
well understood. We investigate the practicability of one of the fundamental approaches of this
field: dynamic programming on tree decompositions. Indisputably, this is a key technique in
parameterized algorithms and modern algorithm design. Despite the enormous impact of this
approach in theory, it still has very little influence on practical implementations. The reasons
for this phenomenon are manifold. One of them is the simple fact that such an implementation
requires a long chain of non-trivial tasks (as computing the decomposition, preparing it,. . .). We
provide an easy way to implement such dynamic programs that only requires the definition of the
update rules. With this interface, dynamic programs for various problems, such as 3-coloring,
can be implemented easily in about 100 lines of structured Java code.

The theoretical foundation of the success of dynamic programming on tree decompositions is
well understood due to Courcelle’s celebrated theorem, which states that every MSO-definable
problem can be efficiently solved if a tree decomposition of small width is given. We seek to
provide practical access to this theorem as well, by presenting a lightweight model-checker for a
small fragment of MSO. This fragment is powerful enough to describe many natural problems,
and our model-checker turns out to be very competitive against similar state-of-the-art tools.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases fixed-parameter tractability, treewidth, model-checking

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.6

1 Introduction

Parameterized algorithms aim to solve intractable problems on instances where some para-
meter tied to the complexity of the instance is small. This line of research has seen enormous
growth in the last decades and produced a wide range of algorithms [9]. More formally,
a problem is fixed-parameter tractable (in fpt), if every instance I can be solved in time
f(κ(I)) · poly(|I|) for a computable function f , where κ(I) is the parameter of I. While the
impact of parameterized complexity to the theory of algorithms and complexity cannot be
overstated, its practical component is much less understood. Very recently, the investigation
of the practicability of fixed-parameter tractable algorithms for real-world problems has
started to become an important subfield (see e. g. [18, 11]). We investigate the practicability
of dynamic programming on tree decompositions – one of the most fundamental techniques of
parameterized algorithms. A general result explaining the usefulness of tree decompositions

© Max Bannach and Sebastian Berndt;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bannach@tcs.uni-luebeck.de
https://orcid.org/0000-0002-6475-5512
mailto:seb@informatik.uni-kiel.de
https://orcid.org/0000-0003-4177-8081
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Practical Access to Dynamic Programming on Tree Decompositions

was given by Courcelle in [8], who showed that every property that can be expressed in
monadic second-order logic is fixed-parameter tractable if it is parameterized by tree width.
By combining this result (known as Courcelle’s Theorem) with the f(tw(G)) · |G| algorithm
of Bodlaender [7] to compute an optimal tree decomposition in fpt-time, a wide range of
graph-theoretic problems is known to be solvable on these tree-like graphs. Unfortunately,
both ingredients of this approach are very expensive in practice.

One of the major achievements concerning practical parameterized algorithms was the
discovery of a practically fast algorithm for treewidth due to Tamaki [19]. Concerning Cour-
celle’s Theorem, there are currently two contenders concerning efficient implementations of it:
D-Flat, an Answer Set Programming (ASP) solver for problems on tree decompositions [1];
and Sequoia, an MSO solver based on model checking games [17]. Both solvers allow to solve
very general problems and the corresponding overhead might, thus, be large compared to a
straightforward implementation of the dynamic programs for specific problems.

Our Contributions. In order to study the practicability of dynamic programs on tree
decompositions, we expand our tree decomposition library Jdrasil with an easy to use
interface for such programs: The user only needs to specify the update rules for the different
kind of nodes within the tree decomposition. The remaining work – computing a suitable
optimized tree decomposition and performing the actual run of the dynamic program – are
done by Jdrasil. This allows users to implement a wide range of algorithms within very few
lines of code and, thus, gives the opportunity to test the practicability of these algorithms
quickly. This interface is presented in Section 3.

While D-Flat and Sequoia solve very general problems, the experimental results of Section 5
show that naïve implementations of dynamic programs might be much more efficient. In
order to balance the generality of MSO solvers and the speed of direct implementations,
we introduce a small MSO fragment, that avoids quantifier alternation, in Section 4. By
concentrating on this fragment, we are able to build a model-checker, called Jatatosk, that
runs nearly as fast as direct implementations of the dynamic programs. To show the feasibility
of our approach, we compare the running times of D-Flat, Sequoia, and Jatatosk for various
problems. It turns out that Jatatosk is competitive against the other solvers and, furthermore,
its behaviour is much more consistent (i. e. it does not fluctuate greatly on similar instances).
We conclude that concentrating on a small fragment of MSO gives rise to practically fast
solvers, which are still able to solve a large class of problems on graphs of bounded treewidth.

2 Preliminaries

All graphs considered in this paper are undirected, that is, they consists of a set of vertices V
and of a symmetric edge-relation E ⊆ V ×V . We assume the reader to be familiar with basic
graph theoretic terminology, see for instance [10]. A tree decomposition of a graph G = (V,E)
is a tuple (T, ι) consisting of a rooted tree T and a mapping ι from nodes of T to sets of
vertices of G (which we call bags) such that (1) for all v ∈ V there is a node n in T with
v ∈ ι(n), (2) for every edge {v, w} ∈ E there is a node m in T with {v, w} ⊆ ι(m), and (3)
the set {x | v ∈ ι(x) } is connected in T for every v ∈ V . The width of a tree decomposition
is the maximum size of one of its bags minus one, and the treewidth of G, denoted by tw(G),
is the minimum width any tree decomposition of G must have.

In order to describe dynamic programs over tree decompositions, it turns out be helpful
to transform a tree decomposition into a more structured one. A nice tree decomposition
is a triple (T, ι, η) where (T, ι) is a tree decomposition and η : V (T) → {leaf, introduce,

M. Bannach and S. Berndt 6:3

forget, join} is a labeling such that (1) nodes labeled “leaf” are exactly the leaves of T ,
and the bags of these nodes are empty; (2) nodes n labeled “introduce” or “forget” have
exactly one child m such that there is exactly one vertex v ∈ V (G) with either v 6∈ ι(m) and
ι(n) = ι(m) ∪ {v} or v ∈ ι(m) and ι(n) = ι(m) \ {v}, respectively; (3) nodes n labeled “join”
have exactly two children x, y with ι(n) = ι(x) = ι(y). A very nice tree decomposition is a nice
tree decomposition that also has exactly one node labeled “edge” for every e ∈ E(G), which
virtually introduces the edge e to the bag – i. e., whenever we introduce a vertex, we assume
it to be “isolated” in the bag until its incident edges are introduced. It is well known that
any tree decomposition can efficiently be transformed into a very nice one without increasing
its width (essentially traverse through the tree and “pull apart” bags) [9]. Whenever we
talk about tree decompositions in the rest of the paper, we actually mean very nice tree
decompositions. However, we want to stress out that all our interfaces also support “just”
nice tree decompositions.

We assume the reader to be familiar with basic logic terminology and give just a brief
overview over the syntax and semantic of monadic second-order logic (MSO), see for
instance [13] for a detailed introduction. A vocabulary (or signature) τ = (Ra1

1 , . . . , Ran
n) is a

set of relational symbols Ri of arity ai ≥ 1. A τ -structure is a set U – called universe – together
with an interpretation RUi ⊆ Rai of the relational symbols. Let x1, x2, . . . be a sequence of
first-order variables and X1, X2, . . . be a sequence of second-order variables Xi of arity ar(Xi).
The atomic τ -formulas are xi = xj for two first-order variables and R(xi1 , . . . , xik), where R
is either a relational symbol or a second-order variable of arity k. The set of τ -formulas is
inductively defined by (1) the set of atomic τ -formulas; (2) Boolean connections ¬φ, (φ ∨ ψ),
and (φ ∧ ψ) of τ -formulas φ and ψ; (3) quantified formulas ∃xφ and ∀xφ for a first-order
variable x and a τ -formula φ; (4) quantified formulas ∃Xφ and ∀Xφ for a second-order variable
X of arity 1 and a τ -formula φ. The set of free variables of a formula φ consists of the variables
that appear in φ but are not bounded by a quantifier. We denote a formula φ with free
variables x1, . . . , xk, X1, . . . , X` as φ(x1, . . . , xk, X1, . . . , X`). Finally, we say a τ -structure S
with an universe U is a model of an τ -formula φ(x1, . . . , xk, X1, . . . , X`) if there are elements
u1, . . . , uk ∈ U and relations U1, . . . , U` with Ui ⊆ Uar(Xi) with φ(u1, . . . , uk, U1, . . . , U`)
being true in S. We write S |= φ(u1, . . . , uk, U1, . . . , U`) in this case.

I Example 1. Graphs can be modeled as {E2}-structures with a symmetric interpretation
of E. Properties such as “is 3-colorable” can then be described by formulas as:

φ̃3col = ∃R∃G∃B (∀xR(x) ∨G(x) ∨B(x)) ∧ (∀x∀y E(x, y)→
∧

C ∈ {R,G,B}
¬C(x) ∨ ¬C(y)).

For instance, we have |= φ̃3col and 6|= φ̃3col. We write φ̃ whenever a more refined
version of φ will be given later on.

The model-checking problem asks, given a logical structure S and a formula φ, if S |= φ

holds. A model-checker is a program that solves this problem and outputs an assignment to
its free and bounded variables if S |= φ holds.

3 An Interface for Dynamic Programming on Tree Decompositions

It will be convenient to recall a classical viewpoint of dynamic programming on tree de-
compositions to illustrate why our interface is designed the way it is. We will do so by the
guiding example of 3-coloring: Is it possible to color vertices of a given graph with three
colors such that adjacent vertices never share the same color? Intuitively, a dynamic program

ESA 2018

6:4 Practical Access to Dynamic Programming on Tree Decompositions

for 3-coloring will work bottom-up on a very nice tree decomposition and manages a
set of possible colorings per node. Whenever a vertex is introduced, the program “guesses”
a color for this vertex; if a vertex is forgotten we have to remove it from the bag and
identify configurations that become eventually equal; for join bags we just have to take the
configurations that are present in both children; and for edge bags we have to reject colorings
in which both endpoints of the introduced edge have the same color. To formalize this vague
algorithmic description, we view it from the perspective of automata theory.

3.1 The Tree Automaton Perspective
Classically, dynamic programs on tree decompositions are described in terms of tree auto-
mata [13]. Recall that in a very nice tree decomposition the tree T is rooted and binary; we
assume that the children of T are ordered. The mapping ι can then be seen as a function
that maps the nodes of T to symbols from some alphabet Σ. A naïve approach to manage
ι would yield a huge alphabet (depending on the size of the graph). We thus define the
so called tree-index, which is a map idx: V (G)→ {0, . . . , tw(G)} such that no two vertices
that appear in the same bag share a common tree-index. The existence of such an index
follows directly from the property that every vertex is forgotten exactly once: We can simply
traverse T from the root to the leaves and assign a free index to a vertex V when it is
forgotten, and release the used index once we reach an introduce bag for v. The symbols
of Σ then only contain the information for which tree-index there is a vertex in the bag.
From a theoreticians perspective this means that |Σ| depends only on the treewidth; from
a programmers perspective the tree-index makes it much easier to manage data structures
that are used by the dynamic program.

I Definition 2 (Tree Automaton). A nondeterministic bottom-up tree automaton is a tuple
A = (Q,Σ,∆, F) where Q is a set of states with a subset F ⊆ Q of accepting states, Σ is an
alphabet, and ∆ ⊆ (Q ∪ {⊥})× (Q ∪ {⊥})×Σ×Q is a transition relation in which ⊥ 6∈ Q is
a special symbol to treat nodes with less than two children. The automaton is deterministic
if for every x, y ∈ Q ∪ {⊥} and every σ ∈ Σ there is exactly one q ∈ Q with (x, y, σ, q) ∈ ∆.

I Definition 3 (Computation of a Tree Automaton). The computation of a tree automaton
A = (Q,Σ,∆, F) on a labeled tree (T, ι) with ι : V (T) → Σ and root r ∈ V (T) is an
assignment q : V (T)→ Q such that for all n ∈ V (T) we have (1) (q(x), q(y), ι(n), q(n)) ∈ ∆
if n has two children x, y; (2) (q(x),⊥, ι(n), q(n)) ∈ ∆ or (⊥, q(x), ι(n), q(n)) ∈ ∆ if n has
one child x; (3) (⊥,⊥, ι(n), q(n)) ∈ ∆ if n is a leaf. The computation is accepting if q(r) ∈ F .

Simulating Tree Automata. A dynamic program for a decision problem can be formulated
as a nondeterministic tree automaton that works on the decomposition, see the left side
of Figure 1 for a detailed example. Observe that a nondeterministic tree automaton A

will process a labeled tree (T, ι) with n nodes in time O(n). When we simulate such an
automaton deterministically, one might think that a running time of the form O(|Q| · n) is
sufficient, as the automaton could be in any potential subset of the Q states at some node of
the tree. However, there is a pitfall: For every node we have to compute the set of potential
states of the automaton depending on the sets of potential states of the children of that
node, leading to a quadratic dependency on |Q|. This can be avoided for transitions of the
form (⊥,⊥, ι(x), p), (q,⊥, ι(x), p), and (⊥, q, ι(x), p), as we can collect potential successors
of every state of the child and compute the new set of states in linear time with respect to
the cardinality of the set. However, transitions of the form (qi, qj , ι(x), p) are difficult, as we
now have to merge two sets of states. In detail, let x be a node with children y and z and let

M. Bannach and S. Berndt 6:5

Qy and Qz be the set of potential states in which the automaton eventually is in at these
nodes. To determine Qx we have to check for every qi ∈ Qy and every qj ∈ Qz if there is a
p ∈ Q such that (qi, qj , ι(x), p). Note that the number of states |Q| can be quite large even
for moderately sized parameters k, as |Q| is typically of size 2Ω(k), and we will thus try to
avoid this quadratic blow-up.

I Observation 4. A tree automaton can be simulated in time O(|Q|2 · n).

Unfortunately, the quadratic factor in the simulation cannot be avoided in general, as the
automaton may very well contain a transition for all possible pairs of states. However, there
are some special cases in which we can circumnavigate the increase in the running time.

I Definition 5 (Symmetric Tree Automaton). A symmetric nondeterministic bottom-up tree
automaton is a nondeterministic bottom-up tree automaton A = (Q,Σ,∆, F) in which all
transitions (l, r, σ, q) ∈ ∆ satisfy either l = ⊥, r = ⊥, or l = r.

Assume as before that we wish to compute the set of potential states for a node x with
children y and z. Observe that in a symmetric tree automaton it is sufficient to consider the
set Qy ∩Qz and that the intersection of two sets can be computed in linear time if we take
some care in the design of the underlying data structures.

I Observation 6. A symmetric tree automaton can be simulated in time O(|Q| · n).

The right side of Figure 1 illustrates the deterministic simulation of a symmetric tree
automaton. The massive time difference in the simulation of tree automata and symmetric
tree automata significantly influenced the design of the algorithms in Section 4, in which we
try to construct an automaton that is 1) “as symmetric as possible” and 2) allows to take
advantage of the “symmetric parts” even if the automaton is not completely symmetric.

3.2 The Interface
We introduce a simple Java-interface to our library Jdrasil, which originally was developed
for the computation of tree decompositions only. The interface is build up from two
classes: StateVectorFactory and StateVector. The only job of the factory is to generate
StateVector objects for the leaves of the tree decomposition, or with the terms of the
previous section: “to define the initial states of the tree automaton”. The StateVector class
is meant to model a vector of potential states in which the nondeterministic tree automaton
is at a specific node of the tree decomposition. Our interface does not define at all what a
“state” is, or how a collection of states is managed (although most of the times, it will be
a set). The only thing the interface requests a user to implement is the behaviour of the
tree automaton when it reaches a node of the tree-decomposition, i. e., given a StateVector
(for some unknown node in the tree decomposition) and the information that the automaton
reaches a certain node, how does the StateVector for this node look like? To this end, the
interface contains the methods shown in Listing 1.

Listing 1 The four methods of the interface describe the behaviour of the tree automaton. Here
“T” is a generic type for vertices. Each function obtains as parameter the current bag and a tree-index
“idx”. Other parameters correspond to bag-type specifics, e. g. the introduced or forgotten vertex v.

StateVector <T> introduce (Bag <T> b, T v, Map <T, Integer > idx);
StateVector <T> forget (Bag <T> b, T v, Map <T, Integer > idx);
StateVector <T> join(Bag <T> b, StateVector <T> o, Map <T, Integer > idx);
StateVector <T> edge(Bag <T> b, T v, T w, Map <T, Integer > idx);

ESA 2018

6:6 Practical Access to Dynamic Programming on Tree Decompositions

∅−2

{2}−3

{2, 3, 4, 5}join

{2, 3, 4, 5}+5

{0, 1, 3}+0

{1, 3}+1

{3}+3

∅leaf

{5, 7}−8

{5, 7, 8}{7,8}

{5, 7, 8}{5,8}

{5, 7, 8}+5

∅leaf

∅−2

{2}−3

{2, 3, 4, 5}join

{2, 3, 4, 5}+5

{0, 1, 3}+0

{1, 3}+1

{3}+3

∅leaf

{5, 7}−8

{5, 7, 8}{7,8}

{5, 7, 8}{5,8}

{5, 7, 8}+5

∅leaf

Figure 1 The left picture shows a part of a tree decomposition of the grid graph with vertices
{0, . . . , 9}. The index of a bag shows the type of the bag: a positive sign means “introduce”, a
negative one “forget”, a pair represents an “edge”-bag, and text is self explanatory. Solid lines
represent real edges of the decomposition, while dashed lines illustrate a path (i. e., there are some
bags skipped). On the left branch of the decomposition a run of a nondeterministic tree automaton
with tree-index

(
0 1 2 3 4 5 6 7 8
2 3 0 1 2 3 0 1 0

)
for 3-coloring is illustrated. To increase readability, states of

the automaton are connected to the corresponding bags with gray lines, and for some nodes the
states are omitted. In the right picture the same automaton is simulated deterministically.

This already rounds up the description of the interface, everything else is done by Jdrasil.
In detail, given a graph and an implementation of the interface, Jdrasil will compute a
tree decomposition1, transform this decomposition into a very nice tree decomposition,
potentially optimize the tree decomposition for the following dynamic program, and finally
traverse through the tree decomposition and simulate the tree automaton described by the
implementation of the interface. The result of this procedure is the StateVector object
assigned to the root of the tree decomposition.

3.3 Example: 3-Coloring
Let us illustrate the usage of the interface with our running example of 3-coloring. A State
of the automaton can be modeled as a simple integer array that stores a color (an integer)
for every vertex in the bag. A StateVector stores a set of State objects, i. e., essentially a
set of integer arrays. Introducing a vertex v to a StateVector therefore means that three
duplicates of each stored state have to be created, and for every duplicate a different color
has to be assigned to v. Listing 2 illustrates how this operation could be realized in Java.

1 See [6] for the concrete algorithms used by Jdrasil.

M. Bannach and S. Berndt 6:7

Listing 2 Exemplary implementation of the introduce method for 3-coloring.
StateVector <T> introduce (Bag <T> b, T v, Map <T, Integer > idx) {

Set <State > newStates = new HashSet < >();
for (State state : states) { // ’states ’ is the set of states

for (int color = 1; color <= 3; color ++) {
State newState = new State(state); // copy the state
newState . colors [idx.get(v)] = color;
newStates .add(newState);

}
}
states = newStates ;
return this;

}

The three other methods can be implemented in a very similar fashion: in the forget-method
we set the color of v to 0; in the edge-method we remove states in which both endpoints of
the edge have the same color; and in the join-method we compute the intersection of the
state sets of both StateVector objects. Note that when we forget a vertex v, multiple states
may become identical, which is handled here by the implementation of the Java Set-class,
which takes care of duplicates automatically.

A reference implementation of this 3-coloring solver is publicly available [4], and
a detailed description of it can be found in the manual of Jdrasil [5]. Note that this
implementation is only meant to illustrate the interface and that we did not make any effort
to optimize it. Nevertheless, this very simple implementation (the part of the program that
is responsible for the dynamic program only contains about 120 lines of structured Java-code)
performs surprisingly well, as the experiments in Section 5 indicate.

4 A Lightweight Model-Checker for a Small MSO-Fragment

Experiments with the coloring solver of the previous section have shown a huge difference in
the performance of general solvers as D-Flat and Sequoia against a concrete implementation of
a tree automaton for a specific problem (see Section 5). This is not necessarily surprising, as
a general solver needs to keep track of way more information. In fact, a MSO-model-checker
can probably (unless P = NP) not run in time f(|φ|+tw) ·poly(n) for any elementary function
f [14]. On the other hand, it is not clear (in general) what the concrete running time of such
a solver is for a concrete formula or problem (see e. g. [16] for a sophisticated analysis of
some running times in Sequoia). We seek to close this gap between (slow) general solvers
and (fast) concrete algorithms. Our approach is to concentrate only on a small fragment of
MSO, which is powerful enough to express many natural problems, but which is restricted
enough to allow model-checking in time that matches or is close to the running time of a
concrete algorithm for the problem. As a bonus, we will be able to derive upper bounds on
the running time of the model-checker directly from the syntax of the input formula.

Based on the interface of Jdrasil, we have implemented a publicly available prototype
called Jatatosk [3]. In Section 5, we perform various experiments on different problems on
multiple sets of graphs. It turns out that Jatatosk is competitive against the state-of-the-art
solvers D-Flat and Sequoia. Arguably these two programs solve a more general problem and
a direct comparison is not entirely fair. However, the experiments do reveal that it seems
very promising to focus on smaller fragments of MSO (or perhaps any other description
language) in the design of treewidth based solvers.

ESA 2018

6:8 Practical Access to Dynamic Programming on Tree Decompositions

4.1 Description of the Fragment
We only consider vocabularies τ that contain the binary relation E2, and we only consider
τ -structures with a symmetric interpretation of E2, i. e., we only consider structures that
contain an undirected graph (but may also contain further relations). The fragment of MSO
that we consider is constituted by formulas of the form φ = ∃X1 . . . ∃Xk

∧n
i=1 ψi, where the

Xj are second-order variables and the ψi are first-order formulas of the form

ψi ∈ {∀x∀y E(x, y)→ χi, ∀x∃y E(x, y) ∧ χi, ∃x∀y E(x, y)→ χi,

∃x∃y E(x, y) ∧ χi, ∀x χi, ∃x χi }.

Here, the χi are quantifier-free first-order formulas in canonical normal form. It is easy
to see that this fragment is already powerful enough to encode many classical problems as
3-coloring (φ̃3col from the introduction is part of the fragment), or vertex-cover (we will
discuss how to handle optimization in Section 4.4): φ̃vc = ∃S∀x∀y E(x, y)→ S(x) ∨ S(y).

4.2 A Syntactic Extension of the Fragment
Many interesting properties, such as connectivity, can easily be expressed in MSO, but not
directly in the fragment that we study. Nevertheless, a lot of these properties can directly
be checked by a model-checker if it “knows” what kind of properties it actually checks. We
present a syntactic extension of our MSO-fragment which captures such properties. The
extension consist of three new second order quantifiers that can be used instead of ∃Xi.

The first extension is a partition quantifier, which quantifies over partitions of the universe:

∃partitionX1, . . . , Xk ≡ ∃X1∃X2 . . . ∃Xk

(
∀x

k∨
i=1

Xi(x)
)
∧
(
∀x

k∧
i=1

∧
j 6=i
¬Xi(x) ∧ ¬Xj(x)

)
.

This quantifier has two advantages. First, formulas like φ̃3col can be simplified to

φ3col = ∃partitionR,G,B ∀x∀y E(x, y)→
∧

C ∈ {R,G,B}
¬C(x) ∨ ¬C(y),

and second, the model-checking problem for them can be solved more efficiently: the solver
directly “knows” that a vertex must be added to exactly one of the sets.

We further introduce two quantifiers that work with respect to the symmetric relation
E2 (recall that we only consider structures that contain such a relation). The ∃connectedX

quantifier guesses an X ⊆ U that is connected with respect to E (in graph theoretic terms),
i. e., it quantifies over connected subgraphs. The ∃forestF quantifier guesses a F ⊆ U that is
acyclic with respect to E (again in graph theoretic terms), i. e., it quantifies over subgraphs
that are forests. These quantifiers are quite powerful and allow, for instance, to express that
the graph induced by E2 contains a triangle as minor:

φtriangle-minor =∃connectedR ∃connectedG∃connectedB �(
∀x (¬R(x) ∨ ¬G(x)) ∧ (¬G(x) ∨ ¬B(x)) ∧ (¬B(x) ∨ ¬R(x))

)
∧
(
∃x∃y E(x, y) ∧R(x) ∧G(y)

)
∧
(
∃x∃y E(x, y) ∧G(x) ∧B(y)

)
∧
(
∃x∃y E(x, y) ∧B(x) ∧R(y)

)
.

We can also express problems that usually require more involved formulas in a very natural way.
For instance, the feedback-vertex-set problem can be described by the following formula
(again, optimization will be handled in Section 4.4): φ̃fvs = ∃S ∃forestF ∀x S(x) ∨ F (x).

M. Bannach and S. Berndt 6:9

4.3 Description of the Model-Checker
We describe our model-checker in terms of a nondeterministic tree automaton that works on a
tree decomposition of the graph induced by E2 (note that, in contrast to other approaches in
the literature, we do not work on the Gaifman graph). We define any state of the automaton
as bit-vector, and we stipulate that the initial state at every leaf is the zero-vector. For any
quantifier or subformula, there will be some area in the bit-vector reserved for that quantifier
or subformula and we describe how state transitions effect these bits. The “algorithmic idea”
behind the implementation of these transitions is not new, and a reader familiar with folklore
dynamic programs on tree decompositions (for instance for vertex-cover or steiner-tree)
will probably recognize them. An overview over common techniques can be found in the
standard textbooks [9, 13].

The Partition Quantifier. We start with a detailed description of the partition quantifier
∃partitionX1, . . . , Xq (we do not implement an additional ∃X quantifier, as we can easily state
∃X ≡ ∃partitionX, X̄): Let k be the maximum bag-size of the tree decomposition. We reserve
k · log2 q bit in the state description, where each block of length log2 q indicates in which
set Xi the corresponding element of the bag is. On an introduce-bag (e. g. for v ∈ U), the
nondeterministic automaton guesses an index i ∈ {1, . . . , q} and sets the log2 q bits that are
associated with the tree-index of v to i. Equivalently, the corresponding bits are cleared
when the automaton reaches a forget-bag. As the partition is independent of any edges, an
edge-bag does not change any of the bits reserved for the partition quantifier. Finally, on
join-bags we may only join states that are identical on the bits describing the partition (as
otherwise the vertices of the bag would be in different partitions) – meaning this transition
is symmetric with respect to these bits (in terms of Section 3.1).

The Connected Quantifier. The next quantifier we describe is ∃connectedX which has to
overcome the difficulty that an introduced vertex may not be connected to the rest of the bag
in the moment it got introduced, but may be connected to it when further vertices “arrive”.
The solution to this dilemma is to manage a partition of the bag into k′ ≤ k connected
components P1, . . . , Pk′ , for which we reserve k · log2 k bit in the state description. Whenever
a vertex v is introduced, the automaton either guesses that it is not contained in X and
clears the corresponding bits, or it guesses that v ∈ X and assigns some Pi to v. Since v is
isolated in the bag in the moment of its introduction (recall that we work on a very nice tree
decomposition), it requires its own component and is therefore assigned to the smallest empty
partition Pi. When a vertex v is forgotten, there are four possible scenarios: 1) v 6∈ X, then
the corresponding bits are already cleared and nothing happens; 2) v ∈ X and v ∈ Pi with
|Pi| > 1, then v is just removed and the corresponding bits are cleared; 3) v ∈ X and v ∈ Pi
with |Pi| = 1 and there are other vertices w in the bag with w ∈ X, then the automaton
rejects the configuration, as v is the last vertex of Pi and may not be connected to any other
partition anymore; 4) v ∈ X is the last vertex of the bag that is contained in X, then the
connected component is “done”, the corresponding bits are cleared and one additional bit is
set to indicate that the connected component cannot be extended anymore. When an edge
{u, v} is introduced, components might need to be merged. Assume u, v ∈ X, u ∈ Pi, and
v ∈ Pj with i < j (otherwise, an edge-bag does not change the state), then we essentially
perform a classical union-operation from the well-known union-find data structure. Hence, we
assign all vertices that are assigned to Pj to Pi. Finally, at a join-bag we may join two states
that agree locally on the vertices that are in X (i. e., they have assigned the same vertices to
some Pi), however, they do not have to agree in the way the different vertices are assigned to

ESA 2018

6:10 Practical Access to Dynamic Programming on Tree Decompositions

Pi (in fact, there does not have to be an isomorphism between these assignments). Therefore,
the transition at a join-bag has to connect the corresponding components analogous to the
edge-bags – in terms of Section 3.1 this transition is not symmetric. The description of the
remaining quantifiers and subformulas is very similar.

4.4 Extending the Model-Checker to Optimization Problems
As the example formulas from the previous section already indicate, performing model-
checking alone will not suffice to express many natural problems. In fact, every graph is a
model of the formula φ̃vc if S simply contains all vertices. It is therefore a natural extension to
consider an optimization version of the model-checking problem, which is usually formulated
as follows [9, 13]: Given a logical structure S, a formula φ(X1, . . . , Xp) of the MSO-fragment
defined in the previous section with free unary second-order variables X1, . . . , Xp, and weight
functions ω1, . . . , ωp with ωi : U → Z; find S1, . . . , Sp with Si ⊆ U such that

∑p
i=1
∑
s∈Si

ωi(s)
is minimized under S |= φ(S1, . . . , Sp), or conclude that S is not a model for φ for any
assignment of the free variables. We can now correctly express the (actually weighted)
optimization version of vertex-cover as follows: φvc(S) = ∀x∀y E(x, y)→

(
S(x) ∨ S(y)

)
.

Similarly we can describe the optimization version of dominating-set if we assume the
input does not have isolated vertices (or is reflexive), and we can also fix the formula φ̃fvs:

φds(S) = ∀x∃y E(x, y) ∧
(
S(x) ∨ S(y)

)
, φfvs(S) = ∃forestF ∀x

(
S(x) ∨ F (x)

)
.

We can also maximize the term
∑p
i=1
∑
s∈Si

ωi(s) by multiplying all weights with −1 and,
thus, express problems such as independent-set: φis(S) = ∀x∀y E(x, y) →

(
¬S(x) ∨

¬S(y)
)
. The implementation of such an optimization is straightforward: essentially there is

a partition quantifier for every free variable Xi that partitions the universe into Xi and X̄i.
We assign a current value of

∑p
i=1
∑
s∈Si

ωi(s) to every state of the automaton, which is
adapted if elements are “added” to some of the free variables at introduce nodes. Note that,
since we optimize an affine function, this does not increase the state space: even if multiple
computational paths lead to the same state with different values at some node of the tree, it
is well defined which of these values is the optimal one. Therefore, the cost of optimization
only lies in the partition quantifier, i. e., we pay with k bits in the state description of the
automaton per free variable – independently of the weights.

4.5 Handling Symmetric and Non-Symmetric Joins
In Section 4.3 we have defined the states of our automaton with respect to a formula, the left
side of Table 1 gives an overview of the number of bits we require for the different parts of
the formula. Let bit(φ, k) be the number of bits that we have to reserve for a formula φ and a
tree decomposition of maximum bag size k, i. e., the sum over the required bits of each part of
the formula. By Observation 4 this implies that we can simulate the automaton (and hence,
solve the model-checking problem) in time O∗

(
(2bit(φ,k))2 · n

)
; or by Observation 6 in time

O∗
(
2bit(φ,k) ·n

)
if the automaton is symmetric2. Unfortunately, this is not always the case, in

fact, only the quantifier ∃partitionX1, . . . , Xq, the bits needed to optimize over free variables,
as well as the formulas that do not require any bits, yield an symmetric tree automaton.
That means that the simulation is wasteful if we consider a mixed formula (for instance, one
that contains a partition and a connected quantifier). To overcome this issue, we partition

2 The notation O∗ supresses polynomial factors.

M. Bannach and S. Berndt 6:11

Table 1 The left table shows the precise number of bit we reserve in the description of a state
of the tree automaton for different quantifier and formulas. The values are with respect to a tree
decomposition with maximum bag size k. The right table gives an overview of example formulas φ
used here, together with values symmetric(φ, k) and asymmetric(φ, k), as well as the precise time
our algorithm will require for that particular formula.

Quantifier / Formula Number of Bit

free variables X1, . . . , Xq q · k
∃partitionX1, . . . , Xq k · log2 q

∃connectedX k · log2 k + 1
∃forestX k · log2 k

∀x∀y E(x, y)→ χi 0
∀x∃y E(x, y) ∧ χi k

∃x∀y E(x, y)→ χi k + 1
∃x∃y E(x, y) ∧ χi 1

∀x χi 0
∃x χi 1

φ symmetric(φ, k)
asymmetric(φ, k)

Time

φ3col k · log2(3)
0

O∗(3k)

φvc(S) k

0
O∗(2k)

φds(S) k

k

O∗(8k)

φtriangle-minor 0
3k · log2(k) + 3

O∗(k6k+6)

φfvs(S) k

k · log2(k)
O∗(2kk2k)

the bits of the state description into two parts: first the “symmetric” bits of the quantifiers
∃partitionX1, . . . , Xq and the bits required for optimization, and in the “asymmetric” ones
of all other elements of the formula. Let symmetric(φ, k) and asymmetric(φ, k) be defined
analogously to bit(φ, k). We implement the join of states as in the following lemma, allowing
us to deduce the running time of the model-checker for concrete formulas. The right side of
Table 1 provides an overview for formulas presented here.

I Lemma 7. Let x be a node of T with children y and z, and let Qy and Qz be sets of states
in which the automaton may be at y and z. Then the set Qx of states in which the automaton
may be at node x can be computed in time O∗

(
2symmetric(φ,k)+2·asymmetric(φ,k)).

Proof. To compute Qx, we first split Qy into B1, . . . , Bq such that all elements in one Bi share
the same “symmetric bits”. This can be done in time |Qy| using bucket-sort. Note that we
have q ≤ 2symmetric(φ,k) and |Bi| ≤ 2asymmetric(φ,k). With the same technique we identify for
every elements v in Qz its corresponding partition Bi. Finally, we compare v with the elements
in Bi to identify those for which there is a transition in the automaton. This yields a running
time of |Qz| ·maxqi=1 |Bi| ≤ 2bit(φ,k) · 2asymmetric(φ,k) = 2symmetric(φ,k)+2·asymmetric(φ,k). J

5 Applications and Experiments

To show the feasibility of our approach, we have performed experiments for widely investig-
ated graph problems: 3-coloring, vertex-cover, dominating-set, independent-set,
and feedback-vertex-set. All experiments were performed on an Intel Core processor
containing four cores of 3.2 GHz each and 8 Gigabyte RAM. Jdrasil was used with Java 1.8
and both Sequoia and D-Flat were compiled with gcc 7.2. The implementation of Jatatosk
uses hashing to realize Lemma 7, which works well in practice. We use a data set assembled
from different sources containing graphs with 18 to 956 vertices and treewidth 3 to 13. The
first source is a collection of transit graphs from GTFS-transit feeds [15] that was also used
for experiments in [12], the second source are real-world instances collected in [2], and the
last one are those of the PACE challenge [18] with treewidth at most 11. For 3-coloring,
the results are shown in Experiment 1.

ESA 2018

6:12 Practical Access to Dynamic Programming on Tree Decompositions

Experiment 1 3-coloring.

D-Flat Jdrasil-Coloring Jatatosk Sequoia

Average Time 478.19 36.52 42.63 714.73
Standard Deviation 733.90 77.8 81.82 866.34
Median Time 3.5 21 24.5 20.5

(a) Average, standard deviation, and median of the time (in seconds) each solver needed to solve
3-coloring over all instances of the data set. The best values are highlighted.

400

800

1,200

1,600 D-Flat Jdrasil-Coloring Jatatosk Sequoia

(b) Comparison of solvers for the 3-coloring problem on the complete data set.

−100

−50

0

50

100

D
iff

er
en

ce
in

se
co

nd
s

0

5

10

15

20

|V
|a

nd
|E

|(
·1
0−

2
)

2

4

6

8

10

12

14

tw

0 100 200 300 400 500 600

30

40

50

60

Time in seconds

#
In

st
an

ce
s

so
lv

ed
in

x
se

co
nd

s

(c) The left picture shows the difference of Jatatosk against D-Flat and Sequoia. A positive bar means
that Jatatosk is faster by this amount in seconds, and a negative bar means that either D-Flat or Sequoia
is faster by that amount. The bars are capped at 100. On every instance, Jatatosk was compared against
the solver that was faster on this particular instance. The image also shows for every instance the size and
the treewidth of the input. The right image shows the number of instances that can be solved by each of
the solvers in x seconds, i. e., faster growing functions are better. The colors in this image are as in (b).

6 Conclusion and Outlook

We investigated the practicability of dynamic programming on tree decompositions, which is
arguably one of the corner stones of parameterized complexity theory. We implemented a
simple interface for such programs and used it to build a competitive graph coloring solver
with just a few lines of code. We hope that this interface allows others to implement and
explore various dynamic programs. The whole power of these algorithms is well captured
by Courcelle’s Theorem, which states that there is an efficient version of such a program
for every problem definable in monadic second-order logic. We took a step towards practice
by implementing a “lightweight” version as model-checker for a small fragment of the logic.
This fragment turns out to be powerful enough to express many natural problems.

M. Bannach and S. Berndt 6:13

References
1 Michael Abseher, Bernhard Bliem, Günther Charwat, Frederico Dusberger, Markus Hecher,

and Stefan Woltran. D-flat: progress report. DBAI, TU Wien, Tech. Rep. DBAI-TR-2014–
86, 2014.

2 Michael Abseher, Frederico Dusberger, Nysret Musliu, and Stefan Woltran. Improving the
efficiency of dynamic programming on tree decompositions via machine learning. In Proc.
IJCAI, pages 275–282, 2015.

3 M. Bannach. Jatatosk. https://github.com/maxbannach/Jatatosk, 2018. [Online; ac-
cessed 22-04-2018].

4 M. Bannach. Jdrasil for Graph Coloring. https://github.com/maxbannach/Jdrasil-
for-GraphColoring, 2018. [Online; accessed 22-04-2018].

5 M. Bannach, S. Berndt, and T. Ehlers. Jdrasil. https://github.com/maxbannach/
Jdrasil, 2017. [Online; accessed 22-04-2018].

6 Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A modular library for
computing tree decompositions. In 16th International Symposium on Experimental Al-
gorithms, SEA 2017, June 21-23, 2017, London, UK, pages 28:1–28:21, 2017. doi:
10.4230/LIPIcs.SEA.2017.28.

7 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

8 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and computation, 85(1):12–75, 1990.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 M. R. Fellows. Parameterized complexity for practical computing. http://www.mrfellows.
net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf, 2018. [On-
line; accessed 22-04-2018].

12 Johannes Klaus Fichte, Neha Lodha, and Stefan Szeider. Sat-based local improvement for
finding tree decompositions of small width. In Theory and Applications of Satisfiability
Testing - SAT, pages 401–411, 2017.

13 J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. Springer, 2006. doi:10.1007/3-540-29953-X.

14 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of pure and applied logic, 130(1-3):3–31, 2004.

15 gtfs2graphs - A Transit Feed to Graph Format Converter. https://github.com/daajoe/
gtfs2graphs. Accessed: 2018-04-20.

16 Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s theorem – a game-
theoretic approach. Discrete Optimization, 8(4):568–594, 2011. doi:10.1016/j.disopt.
2011.06.001.

17 Alexander Langer. Fast algorithms for decomposable graphs. PhD thesis, RWTH Aachen,
2013.

18 The Parameterized Algorithms and Computational Experiments Challenge (PACE). https:
//pacechallenge.wordpress.com/. Accessed: 2018-04-20.

19 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In Proc. ESA,
pages 68:1–68:13, 2017.

ESA 2018

https://github.com/maxbannach/Jatatosk
https://github.com/maxbannach/Jdrasil-for-GraphColoring
https://github.com/maxbannach/Jdrasil-for-GraphColoring
https://github.com/maxbannach/Jdrasil
https://github.com/maxbannach/Jdrasil
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.1007/978-3-319-21275-3
http://www.mrfellows.net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf
http://www.mrfellows.net/wordpress/wp-content/uploads/2017/11/FellowsToppforsk2017.pdf
http://dx.doi.org/10.1007/3-540-29953-X
https://github.com/daajoe/gtfs2graphs
https://github.com/daajoe/gtfs2graphs
http://dx.doi.org/10.1016/j.disopt.2011.06.001
http://dx.doi.org/10.1016/j.disopt.2011.06.001
https://pacechallenge.wordpress.com/
https://pacechallenge.wordpress.com/

Average Whenever You Meet: Opportunistic
Protocols for Community Detection
Luca Becchetti
Sapienza Università di Roma, Italy
becchetti@dis.uniroma1.it

Andrea Clementi
Università di Roma “Tor Vergata”, Italy
clementi@mat.uniroma2.it

Pasin Manurangsi
U.C. Berkeley, California, USA
pasin@berkeley.edu

Emanuele Natale
Simons Institute and MPII, Germany
enatale@mpi-inf.mpg.de

Francesco Pasquale
Università di Roma “Tor Vergata”, Italy
pasquale@mat.uniroma2.it

Prasad Raghavendra
U.C. Berkeley, California, USA
raghavendra@berkeley.edu

Luca Trevisan
Simons Institute and U.C. Berkeley, California, USA
luca@berkeley.edu

Abstract
Consider the following asynchronous, opportunistic communication model over a graph G: in
each round, one edge is activated uniformly and independently at random and (only) its two
endpoints can exchange messages and perform local computations. Under this model, we study
the following random process: The first time a vertex is an endpoint of an active edge, it chooses
a random number, say ±1 with probability 1/2; then, in each round, the two endpoints of the
currently active edge update their values to their average.

We provide a rigorous analysis of the above process showing that, if G exhibits a two-
community structure (for example, two expanders connected by a sparse cut), the values held
by the nodes will collectively reflect the underlying community structure over a suitable phase
of the above process. Our analysis requires new concentration bounds on the product of certain
random matrices that are technically challenging and possibly of independent interest.

We then exploit our analysis to design the first opportunistic protocols that approximately re-
cover community structure using only logarithmic (or polylogarithmic, depending on the sparsity
of the cut) work per node.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Community Detection, Random Processes, Spectral Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.7

© Luca Becchetti, Andrea Clementi, Pasin Manurangsi, Emanuele Natale, Francesco Pasquale,
Prasad Raghavendra, and Luca Trevisan;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:becchetti@dis.uniroma1.it
mailto:clementi@mat.uniroma2.it
mailto:pasin@berkeley.edu
mailto:enatale@mpi-inf.mpg.de
mailto:pasquale@mat.uniroma2.it
mailto:raghavendra@berkeley.edu
mailto:luca@berkeley.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Related Version A full version of the paper is available at [2], https://arxiv.org/abs/1703.
05045.

Funding This material is based upon work supported by the National Science Foundation under
Grants No. 1540685 and No. 1655215 and by the University of “Tor Vergata” under research
programme “Mission: Sustainability” project ISIDE (grant no. E81I18000110005).

1 Introduction

The Averaging Protocol. Consider the following, elementary distributed process on an
undirected graph G = (V,E) with |V | = n nodes and |E| = m edges. Each node v holds
a real number xv (which we call the state of node v); at each time step, one random edge
{u, v} becomes active and its endpoints u and v update their states to their average.

Viewed as a protocol, the above process is consistent with asynchronous, opportunistic
communication models, such as those considered in [1] for population protocols; here, in every
round, one edge is activated uniformly and independently at random and (only) its two
endpoints can exchange messages and perform local computations in that round. We further
assume no global clock is available (nodes can at most count the number of local activations)
and that the network is anonymous, i.e., nodes are not aware of theirs or their neighbors’
identities and all nodes run the same process at all times.

The long-term behavior of the process outlined above is well-understood: assuming G to
be connected, for each initial global state x ∈ RV the system converges to a global state in
which all nodes share a common value, namely, the average of their initial states. A variant
of an argument of Boyd et al. [4] shows that convergence time is equivalent to the the mixing
time of a lazy random walk on the graph, namely O

(
1
λ2
n logn

)
, where λ2 is the second

smallest eigenvalue of the normalized Laplacian of G.

Distributed Community Detection. Suppose now that G is well-clustered, i.e. it exhibits
a community structure which in the simplest case consists of two equal-sized expanders,
connected by a sparse cut: this structure arises, for instance, when the graph is sampled from
the popular stochastic block model Gn,p,q for p� q and p > logn/n [6, 7, 10]. If we let the
averaging process unfold on such a graph, for example starting from an initial ±1 random
global state, one might reasonably expect a faster, transient convergence toward some local
average within each community, accompanied by a slower, global convergence toward the
average taken over the entire graph. If, as is likely the case, a gap exists between the local
averages of the two communities, the global state during the transient phase would reflect
the graph’s underlying community structure. This intuition suggests the main questions we
address in this paper: Is there a phase in which the global state carries information about
community structure? If so, how strong is the corresponding “signal”? Finally, can nodes
leverage local history to recover this information?

Our Results: Highlights. We show that, if G exhibits a two-community structure (for
example, two expanders connected by a sparse cut), the values held by the nodes will
collectively reflect the underlying community structure over a suitable phase of the above
process, allowing efficient and effective recovery in important cases.

In more detail, we first provide a first moment analysis showing that, for a large class of
almost-regular clustered graphs that includes the stochastic block model, the expected values
held by all but a negligible fraction of the nodes eventually reflect the underlying cut signal.
We prove this property emerges after a “mixing” period of length O(n logn).

https://arxiv.org/abs/1703.05045
https://arxiv.org/abs/1703.05045

L. Becchetti et al. 7:3

We further provide a second moment analysis for a more restricted class of regular
clustered graphs that includes the regular stochastic block model [3, 5, 11]. Since nodes do
not share a common clock, it is not immediate to translate the above results into distributed
clustering protocols. To this purpose, we show that concentration holds over a long time
window and most nodes are able to select a local time within this window. So, most nodes can
efficiently and locally identify their community of reference over a suitable time window. Even
for the above class of regular graphs, our second moment analysis requires new concentration
bounds on the product of certain random matrices that are technically challenging and
possibly of independent interest.

This results in the first opportunistic protocols that approximately recover community
structure. For clustered graphs with sparse (i.e. size o(m)) cut, we devise a first protocol,
using the sign of the nodes’ state as local clustering criterion (see Algorithm 2), that
converges in O(n logn) time and has only polylogarithmic work per node (see Theorem 12
for a formal statement). So, the protocol can be much faster than the global mixing time of
the corresponding process and, moreover, the work per node does not depend on the node
degree, thus resulting very efficient in the case of dense graphs. For clustered graphs with
dense cut (i.e. size Θ(m)), the cut “signal” is much harder to recover: we derive a more
complex second moment analysis leading us to a weighted version of the averaging process,
equipped with a clustering criterion based on the fluctuations of the nodes’ state. This second
protocol (see Algorithm 3) converges within O(n logn+n/λ2) rounds and has work per node
O(polylog (n) + 1/λ2) (see Theorem 14, Corollaries 15 and 16 for formal statements).

Comparison to Previous Work. We here discuss only strongly-related work (see the full-
version [2] for a more detailed description of previous results. The idea of using averaging
local rules to perform distributed community detection is not new: In [3], Becchetti et
al. consider a deterministic dynamics in which, at every round, each node updates its
local state to the average of its neighbors. The authors show that this results in a fast
clustering algorithm with provable accuracy on a wide class of almost-regular graphs that
includes the stochastic block model. We remark that the algorithm in [3] (only) works
in a synchronous, parallel communication model where every node exchanges data with
all its neighbors in each round. This implies considerable work and communication costs,
especially when the graph is dense. It turns out that, in d-regular, well-clustered graphs, the
algorithm in [3] requires overall communication cost Θ(ndpolylog (n)) and work per-node
Θ(d polylog (n)). On the other hand, each step of the process in [3] is described by the
same matrix and its deterministic evolution unfolds according to the power of this matrix
applied to the initial state. In contrast, the averaging process we consider in this paper
is considerably harder to analyze than the one in [3], since each step is described by a
random, possibly different averaging matrix. Differently from [3], our goal here is the design
of simple, lightweight protocols for fully-decentralized community detection which fit the
asynchronous, opportunistic communication model, in which a (random) link activation
represents an opportunistic meeting that the endpoints can exploit to exchange one-to-one
messages. More specifically, by “lightweight” we mean protocols that require minimalistic
assumptions as to network capabilities, while performing their task with minimal work,
storage and communication per node (at most logarithmic or polylogarithmic in our case).
In this respect, any clustering strategies (like the one in [12]) which construct (and then work
over) some static, sparse subgraph of the underlying graph are unfeasible in the opportunistic
model we consider here. This restrictive setting is motivated by network scenarios in which
individual agents need to autonomously and locally uncover underlying, implicit communities

ESA 2018

7:4 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Algorithm 1: Updating rule for a node u of an active edge, where δ ∈ (0, 1) is the
parameter measuring the weight given to the neighbor’s value.

Averaging(δ) (for a node u that is one of the two endpoints of an active edge)
Initialization: If it is the first time u is active, then pick xu ∈ {−1,+1} u.a.r.
Update: Send xu to the other endpoint and set xu := (1− δ)xu + δr, where r is the
value received from the other endpoint.

of which they are members. This has widespread applicability, for example in communication
systems where lightweight data can be locally shared via wireless opportunistic meetings
when agents come within close range [13].

Roadmap of the paper. After presenting some preliminaries in Section 2, the first moment
analysis for almost-regular graphs is given in Section 3. The second moment analysis for
regular graphs is given in Section 4 while, in Section 5, we describe our protocols for community
detection and give the main bounds on their performances. Due to space constraints, most
technical results are given in the full-version of the paper [2].

2 Preliminaries

Averaging process. In general, we consider the weighted version of the averaging process
described in the introduction: In each round, one edge of the graph is sampled uniformly at
random and the two endpoints of the sampled edge execute Algorithm 1.

Graphs and their spectra. For a connected graph G = (V,E) with n nodes, m edges and
adjacency matrix A, let 0 = λ1 6 · · · 6 λn be the eigenvalues of the normalized Laplacian
L = I −D−1/2AD−1/2, where D is the diagonal matrix with the degrees of the nodes. We
consider the following graph classes.

I Definition 1. An (n, d, β)-almost-regular graph is a connected, non-bipartite graph G =
(V,E) with n nodes such that every node has degree d± βd. An (n, d, b)-clustered regular
graph, where n is even and d and b are two positive integers with 2b < d < n, is a graph
G = ((V1, V2), E) over node set V = V1 ∪ V2, with |V1| = |V2| = n/2 and such that: (i) every
node has degree d and (ii) every node in V1 has b neighbors in V2 and every node in V2 has b
neighbors in V1.

It is easy to see that the indicator vector χ ∈ {−1,+1} of the cut (V1, V2) is an eigenvector
of L with eigenvalue 2b

d , whenever the graph is clustered regular. If we further assume that
λ3 >

2b
d , then χ is an eigenvector of λ2.

Block reconstruction. We next discuss what it means to recover the “underlying community
structure” in a distributed setting, a notion that can come in stronger or weaker flavors [6,
11, 8, 9]. Ideally, we would like the protocol to reach a state in which, at least with high
probability, each node can use a simple rule to assign itself one of two possible labels, so
that labelling within each community is consistent and nodes in different communities are
assigned different labels. Achieving this corresponds to exact (block) reconstruction. The
next best guarantee is weak (block) reconstruction.

L. Becchetti et al. 7:5

I Definition 2 (Weak Reconstruction). A function f : V → {±1} is said to be an ε-weak
reconstruction of G if subsets W1 ⊆ V1 and W2 ⊆ V2 exist, each of size at least (1− ε)n/2,
such that f(W1) ∩ f(W2) = ∅.

We introduce a third notion, which we call community-sensitive labeling (CSL for short):
in this case, there is a predicate that can be applied to pairs of labels so that, for all but a
small fraction of outliers, the labels of any two nodes within the same community satisfy the
predicate, whereas the converse occurs when they belong to different communities1. In this
paper, informally speaking, nodes are labelled with binary signatures of logarithmic length,
while two labels satisfy the predicate whenever their Hamming distance is below a certain
threshold. This introduces a notion of similarity between nodes of the graph, with labels
behaving like profiles that reflect community membership2. Note that this weaker notion of
community-detection allows nodes to locally tell “friends” in their community from “foes” in
the other community, which is the main application of distributed community detection in
the opportunistic setting we consider here.

Let ∆(x,y) denote the Hamming distance between two binary strings x and y.

I Definition 3 (Community-sensitive labeling). Let G = (V,E) be a graph, let (V1, V2) be
a partition of V and let γ ∈ (0, 1]. For some ` ∈ N, a function h : V1 ∪ V2 → {0, 1}` is a
γ-community-sensitive labeling for (V1, V2) if a subset Ṽ ⊆ V with size |Ṽ | > (1− γ)|V | and
two constants 0 6 c1 < c2 6 1 exist, such that for all u, v ∈ Ṽ it holds that: ∆(hu,hv) 6 c1`

if iu = iv, and ∆(hu,hv) > c2`, otherwise, where iu = 1 if u ∈ V1 and iu = 2 if u ∈ V2.

3 First moment analysis

We analyze the expected behaviour of Algorithm Averaging(1/2) on an almost-regular
graph G. The evolution of the resulting process can be formally described by the recursion
x(t+1) = Wt · x(t), where Wt = (Wt(i, j)) is the random matrix that defines the updates of
the values at round t, i.e.,

Wt(i, j) =


0 if i 6= j and {i, j} is not sampled (at round t),

1/2 if i = j and an edge with endpoint i is sampled
or i 6= j and edge {i, j} is sampled,

1 if i = j and i is not an endpoint of sampled edge.

(1)

and the initial random vector x(0) is uniformly distributed in {−1, 1}n.3 Note that, con-
sequently, x(t+1) = Wt · · ·W1x(0), with the Wi’s independently and identically distributed.
Simple calculus shows that the expectation of the random matrices {Wt : t > 0} can be
expressed as

W := E[Wt] = I − 1
2mL , (2)

where L = D − A is the Laplacian matrix of G. Matrix W is thus symmetric and doubly-
stochastic. We denote its eigenvalues as λ̄1, . . . , λ̄n, with 1 = λ̄1 > λ̄2 > · · · λ̄n > −1.

1 Note that a weak reconstruction protocol entails a community-sensitive labeling. In this case, the
predicate is true if two labels are the same.

2 Hence the phrase community-sensitive Labeling we use to refer to our approach.
3 Notice that, since each node chooses value ±1 with probability 1/2 the first time it is active, by using

the principle of deferred decisions we can assume there exists an “initial” random vector x(0) uniformly
distributed in {−1, +1}n.

ESA 2018

7:6 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Our first contribution is an analysis of the expected evolution of the averaging process
over (n, d, β)-almost regular graphs that possess a hidden and balanced partition of the nodes
with the following properties: (i) The cut separating the two communities contains o(m)
edges; (ii) the subgraphs induced by the two communities are expanders, i.e., the gap λ3−λ2
is constant. The above conditions on the underlying graph are satisfied, for instance, by
graphs sampled from the stochastic block model4 Gn,p,q for q = o(p) and p > logn/n. Our
analysis proves the following results.

I Theorem 4. Let G = (V,E) be an (n, d, β)-almost regular graph G = (V,E) with a
balanced partition V = (V1, V2) and such that: (i) The cut E(V1, V2) is sparse, i.e., m1,2 =
|E(V1, V2)| = o(m); (ii) λ3 − λ2 = Ω(1). If nodes of G execute Protocol Averaging then,
with constant probability w.r.t. the initial random vector x(0) ∈ {−1, 1}n, after Θ(n logn)
rounds the following holds for all but o(n) nodes:
(i) The expected value of a node u increases or decreases depending on the community it
belongs to, i.e., sgn

(
E
[
x(t−1)
u |x(0)

]
− E

[
x(t)
u |x(0)

])
= sgn (χu);

(ii) Over a suitable time window of length Ω(n logn), the sign of the expected value of a
node u reflects the community u belongs to, i.e., sgn

(
E
[
x(t)
u |x(0)

])
= sgn (α2χu), for some

α2 = α2(x(0)).

We note that these results suggest two different local criteria for community-sensitive
labeling: (i) According to the first one, every node uses the sign of its own state within the
aforementioned time window to set the generic component of its binary label (in fact, we
run independent copies of the averaging process to get binary labels of logarithmic size - see
Protocol Sign-Labeling in Section 5.1). (ii) According to the second criterion, every node
uses the signs of fluctuations of its own value along consecutive rounds to set the generic
component of its binary label (see Protocol Jump-Labeling in Section 5.2).

The above results describe the “expected” behaviour of the averaging process over a
large class of well-clustered graphs, at the same time showing that our approach might lead
to efficient, opportunistic protocols for block reconstruction. Yet, designing and analyzing
protocols with provable, probabilistic guarantees, requires addressing the following questions:
i) Do realizations of the averaging process approximately follow its expected behavior with
high, or even constant, probability? ii) If this is the case, how can nodes locally and
asynchronously recover the cut signal, let alone guess the “right” global time window? The
first issue is addressed in Section 4, while the second one is addressed in Section 5, which
presents our main algorithmic results for community detection.

4 Second Moment Analysis

Recall from Section 3 that x(t) depends on the product of t identically distributed random
matrices. Not much is known about concentration of such products, but we are able to
accurately characterize the class of regular clustered graphs. We point out that many of the
technical results and tools we develop to this purpose apply to far more general settings than
the regular case and may be of independent interest. In more detail, we are able to provide
accurate concentration bounds on the norm of x(t)’s projection onto the subspace spanned by
the first and second eigenvector of W for a class of regular clustered graphs that includes the
regular stochastic block model [3, 5, 11]. These bounds are derived separately for two different

4 See the full-version [2] for the definition of Gn,p,q and for more details about our results for Gn,p,q.

L. Becchetti et al. 7:7

regimes, defined by the sparseness of the cut separating the two communities. Assuming
good inner expansion within each community, the first concentration result applies for cuts
of size o(m/ log2 n) and it is given in Subsectioni 4.1 while, for the case of cuts of size up to
αm for any α < 1, the obtained concentration results are described in Subsection 4.2.

4.1 Second moment analysis for sparse cuts
We next provide a second moment analysis of the Averaging(δ) with δ = 1/2 on the class
of (n, d, b)-clustered regular graphs when the cut between the two communities is relatively
sparse, i.e., for λ2 = 2b/d = o(λ3/ logn). This analysis is consistent with the “expected”
clustering behaviour of the dynamics explored in the previous section and highlights clustering
properties that emerge well before global mixing time, as we show in Section 5.1.

Restriction to (n, d, b)-clustered regular graphs simplifies the analysis of the Averaging
dynamics. When G is regular, W defined in (2) can be written as W =

(
1− 1

n

)
I + 1

n P =
I − 1

n L. This obviously implies that W and L share the same eigenvectors, while every
eigenvalue λi of L corresponds to an eigenvalue λ̄i = 1− λi/n of W . For (n, d, b)-clustered
regular graphs, these facts further imply λ̄2 = 1− λ2/n = 1− 2b/dn whenever λ3 >

2b
d while,

very importantly, the partition indicator vector χ turns out to be the eigenvector of W
corresponding to λ̄2 (see (2)). On the other hand, even in this restricted setting, our second
moment analysis requires new, non-standard concentration results for the product of random
matrices that apply to far more general settings and may be of independent interest.

For the sake of readability, in the remainder we denote x(t)’s projection onto 1 by x‖ and
we use y(t) to denote its component in the eigenspace of the second eigenvalue of W (i.e.,
χ).5 Finally, we use z(t) to denote x(t)’s projection onto the subspace orthogonal to 1 and χ.
We thus have:

x(t) = x‖ + y(t) + z(t). (3)

Our analysis of the process induced by Averaging(1/2) provides the following bound,
whose proof can be found in the full-version [2].

I Theorem 5 (Second moment analysis). Let G be an (n, d, b)-clustered regular graph with
λ2 = 2b

d = o (λ3/ logn). Then, for every 3n
λ3

logn 6 t 6 n
4λ2

it holds that

E
[∥∥∥y(t) + z(t) − y(0)

∥∥∥2
]
6

3λ2t

n
.

We prove Theorem 5 by bounding and tracking the lengths of the projections of x(t) onto
the eigenspace of λ2 and onto the space orthogonal to 1 and χ, i.e. ‖y(t)‖2 and ‖z(t)‖2. We
here remark that the only part using the regularity of the graph is the derivation of the
upper bound on E

[
‖y(t+1)‖2], in particular its second addend. This term arises from an

expression involving the Laplacian of G, which is far from simple in general, but that very
nicely simplifies in the regular case. We suspect that increasingly weaker bounds should be
achievable as the graph deviates from regularity.

Theorem 5 gives an upper bound on the squared norm of the difference of the state vector
at step t with the state vector at step 0. Intuitively, this will allow us to conclude that,
for most vertices, x(t)

v ≈ x‖,v + y(0)
v over a time window of size Ω(n logn). More formally,

Corollary 7 below shows how such a global bound can be used to derive pointwise bounds on
the values of the nodes.

5 Note that x‖ is time-invariant.

ESA 2018

7:8 Average Whenever You Meet: Opportunistic Protocols for Community Detection

I Definition 6. A node v is ε-good at time t if (x(t)
v − (x‖,v + y(0)

v))2 6 ε2

n ‖y
(0)‖2, it is ε-bad

otherwise. We also define Bt = {u : u is ε-bad at time t}.

I Corollary 7. Assume 3 n
λ3

logn 6 t 6 3c nλ3
logn for any absolute constant c > 1 and

λ2/λ3 6 ε4/(4c logn):

P
[
|Bt| > εn |x(0) = x

]
6 ε. (4)

The next lemma strengthens the result above, giving a bound on the number of nodes
that are good over a relatively large time-window. This is the key-property that we leverage
to analyse the asynchronous protocol Sign-Labeling. The main idea of its proof is to first
show that with probability strictly larger than 1− ε, the number of ε-good nodes is at least
n · (1− ε/ logn) in every round t ∈ [t1, 2t1]. Theorem 5 already ensures this to be true in
any given time step within a suitable window, but simply taking a union bound will not
work, since we have n logn time steps and only a 1− ε probability of observing the desired
outcome in each of them. We will instead argue about the possible magnitude of the change
in ‖y(t) + z(t) − y(0)‖2 over time, assuming this quantity is small at time 6 n

λ3
logn. We will

then show that our argument implies that, with probability 1 − ε, at least n − εn nodes
remain ε-good over the entire window [6 n

λ3
logn, 12 n

λ3
logn].

I Lemma 8 (Non-ephemeral good nodes). Let ε > 0 be an arbitrarily small value, let G be an
(n, d, b)-clustered regular graph with λ2

λ3
6 λ3ε

4

c log2 n
, for a large enough costant c. If we execute

Averaging(1/2) on G, it holds that
P
[
|Bt| 6 3ε · n , ∀ t : 6 n

λ3
logn 6 t 6 12 n

λ3
logn

]
> 1− ε.

4.2 Second moment analysis for dense cuts
In this section, we extend our study to the lazy averaging algorithm Averaging(δ) where
δ < 1/2. Similar to the previous section, we assume that the underlying graph G is an
(n, d, b)-clustered regular graph and λ3 > λ2 = 2b/d. However, this new analysis works
even for large (constant) λ2, in contrast to that in Section 4.1 which only works for small
λ2 � 1/ log2 n. Informally speaking, we show that, for an appropriate value of δ and any
t such that Ω(n logn) 6 t 6 O(n2), with large probability, the vector y(t) + z(t) is almost
parallel to χ, i.e., ‖z(t)‖ is much smaller than ‖y(t)‖. A more precise statement is given below
as Theorem 9. Note that, for brevity, we write E here to denote the sequence {(ut, vt)}t∈N of
the edges chosen by the protocol.

I Theorem 9. For any sufficiently large n ∈ N, any6 δ ∈ (0, 0.8(λ3 − λ2)) and any t ∈[
Ω
(

n
δ(λ3−λ2) log (n/δ)

)
,O
(

n2

δ(λ3−λ2)

(
d(λ3−λ2)

δb

)2/3
)]

, we have

Prx(0),E

[
‖z(t)‖2 6

√
δb

d(λ3−λ2)‖y
(t)‖2

]
> 1−O

(
3
√

δb
d(λ3−λ2) + 1√

n

)
.

Theorem 9 should be compared to Theorem 5: both assert that ‖y(t)‖ is much larger
than ‖z(t)‖, but Theorem 9 works even when λ2 is quite large whereas Theorem 5 only holds
for λ2 � 1/ log2 n. While the parameter dependencies in Theorem 9 may look confusing at
first, there are mainly two cases that are interesting here. First, for any error parameter ε,
we can pick δ depending only on ε and λ3 − λ2 in such a way that Theorem 9 implies that,
with probability 1− ε, ‖z(t)‖2 is at most ε‖y(t)‖2, as stated below.

6 Here 0.8 is arbitrary and can be changed to any constant less than 1. However, we pick an absolute
constant here to avoid introducing another parameter to our theorem.

L. Becchetti et al. 7:9

Algorithm 2: Sign-Labeling algorithm.
Sign-Labeling(T,`) (for a node u that is one of the two endpoints of an active edge)
Component selection: Jointly with the other endpoint choose a component j ∈ [`]
u.a.r.
Initialization and update: Run one step of Averaging (1/2) for component j.
Labeling: If this is the T -th activation of component j: set hsignu (j) = sgn(xu(j)).

I Corollary 10. For any constant ε > 0 and for any λ3 > λ2, there exists δ depending only on
ε and λ3−λ2 such that, for any sufficiently large n and for any t ∈ [Ωε,λ3−λ2(n logn),O(n2)],
we have Prx(0),E

[
‖z(t)‖2 6 ε‖y(t)‖2] > 1− ε.

Another interesting case is when δ = 1/2 (i.e., we consider the basic averaging protocol).
Recalling that λ2 = 2b/d, observe that λ2 appears in both the bound on ‖z(t)‖2 and the error
probability. Hence, we can derive a similar lemma as the one above, but with λ2 depending
on ε instead of δ:

I Corollary 11. Fix δ = 1/2. For any constant ε > 0, any7 λ3 > 0.7, any sufficiently small
λ2 depending only on ε, any sufficiently large n and any t ∈ [Ωε(n logn),O(n2)], we have
Prx(0),E

[
‖z(t)‖2 6 ε‖y(t)‖2] > 1− ε.

5 Distributed Community Detection

5.1 The Sign-Labeling protocol for sparse cuts
In the case of sparse cuts (i.e. of size o(m/ log2 n)), the obtained bound on the variance of
non-ephemeral nodes (see Lemma 8) holds over a time window that essentially equals the
one “suggested” by our first moment analysis. Hence, we next propose a simple, lightweight
opportunistic protocol that provides community-sensitive labeling for graphs that exhibit a
relatively sparse cut.

The algorithm, denoted as Sign-Labeling (see Algorithm 2), adds a simple labeling
rule to the Averaging(1/2) process: Each node keeps track of the number of times it is
activated. Upon its T -th activation, for a suitable T = Θ(logn), the node uses the sign of its
current value as a binary label. The above local strategy is applied to ` independent runs of
Averaging(1/2), so that every node is eventually assigned a binary signature of length `.

Roughly, Lemma 8 implies that over a suitable time window of size Θ(n logn), for all
nodes u but a fraction O (ε/ logn), we have sgn(x(t)

u) = sgn(x‖,u + y(0)
u). Recalling that x‖

and y(0) respectively are x(0)’s projections along χ/
√
n and 1/

√
n, this immediately implies

that, with probability 1 − ε and up to a fraction ε of the nodes, sgn(x(t)
u) = sgn(x(t)

v),
whenever u and v belong to the same community and t falls within the aforementioned
window. As to the latter condition, we prove that each node labels itself within the right
window with probability at least 1−1/n.8 Moreover, sgn(x‖,u+y(0)

u))) = sgn(χu), whenever
y(0)
u exceeds x‖,u in modulus, which occurs with probability 1/2−o(1) from the (independent)

Rademacher initialization. As a consequence, if we run ` suitably independent copies of the
process, the following will happen for all but a fraction O(ε) of the nodes: the signatures of

7 0.7 here can be replaced by any constant larger than 0.5.
8 It may be worth noting that sgn(x(t)

u) = sgn(x(t)
v) for u and v belonging to the same community does

not imply sgn(x(t)
u) 6= sgn(x(t)

v) when they don’t.

ESA 2018

7:10 Average Whenever You Meet: Opportunistic Protocols for Community Detection

Algorithm 3: Jump-Labeling Here, τu is a local counter keeping track of the
number of times u was an endpoint of an active edge, while xu is u’s current value.

Jump-Labeling(δ, τ s, τ̃ s, τ e, τ̃ e)
(for a node u that is one of the two endpoints of an active edge)
Initialization: The first time it is activated, u chooses τ su, τ eu ∈ N independently
uniformly at random from [τ s, τ̃ s] and [τ e, τ̃ e] respectively. Moreover, let τu = 0.
Update (and Averaging’s initialization): Run one step of Averaging(δ).
Labeling: If τu = τ su, then set xsu = xu. If τu = τ eu, then label hjumpu = sgn(xsu − xu).

two nodes belonging to the same community will agree on `− o(1) bits, whereas those of
two nodes belonging to different communities will disagree on Ω(`) bits, i.e., our algorithm
returns a community-sensitive labeling of the graph, as stated in the following theorem and
corollary.

I Theorem 12 (Community-sensitive labeling). Let ε > 0 be an arbitrarily small value, let
G be an (n, d, b)-clustered regular graph with λ2

λ3
6 λ3ε

4

c log2 n
, for a large enough constant c.

Then, protocol Sign-Labeling (T, `) with T = (8/λ3) logn and ` = 10ε−1 logn performs a
γ-community-sensitive labeling of G according to Definition 3 with c1 = 4ε, c2 = 1/6 and
γ = 6ε, w.h.p. The convergence time is O(n` logn/λ3) and the work per node is O(` logn/λ3),
w.h.p.

Notice that, according to the hypothesis of Theorem 12, in order to set local parameters
T and `, nodes should know parameters ε and λ3 (in addition to a polynomial upper bound
on the number of the nodes). However, it easy to restate it in a slightly restricted form that
does not require such assumptions on what nodes know about the underlying graph.

I Corollary 13. Protocol Sign-Labeling (80 logn, 600 logn) performs a (1/10)-community-
sensitive labeling, according to Definition 3 with c1 = 1/15 and c2 = 1/6, of any (n, d, b)-
clustered regular graph G with λ3 > 1/10 and λ2 6 1/(c log2 n) for a large enough constant c.

Observe that the “good” time-window begins after O(n logn) rounds: So, if the underlying
graph has dense communities and a sparse cut, nodes can collectively compute an accurate
labeling before the global mixing time of the graph. For instance, if the cut is O(m/nγ),
for some constant γ < 2, our protocol is polynomially faster than the global mixing time.
Importantly enough, the costs of our first protocol do not depend on the cardinality of the
edge set E.

5.2 The Jump-Labeling protocol for dense cuts
The bound on the variance that allows us to adopt the sign-based criterion above does not
hold when the cut is not sparse, i.e., whenever it is ω(m/ log2 n). For such dense cuts, we
use a different bound on the variance of nodes’ values given in Theorem 9, which starts to
hold after the global mixing time of the underlying graph and over a time window of length
Θ(n2). In this case, the specific form of the concentration bound leads to adoption of the
second clustering criterion suggested by our first moment analysis, i.e., the one based on
monotonicity of the values of non-ephemeral nodes. To this aim, we consider a “lazy” version
of the averaging process equipped with a local clustering criterion, whereby nodes use the
signs of fluctuations of their own values along consecutive rounds to label themselves (see
Algorithm 3).

L. Becchetti et al. 7:11

Here δ ∈ [0, 1] and τ s, τ̃ s, τ e, τ̃ e ∈ N are parameters that will be chosen later. Intuitively,
protocol Jump-Labeling exploits the expected monotonicity in the behaviour of sgn(x(t)

u −
x(t−1)) highlighted in Section 3. Though this property does not hold for a single realization
of the averaging process in general, the results of Section 4.2 allow us to show that the
sign of x(τe

u) − x(τs
u) reflects u’s community membership for most vertices with probability

1 − o(1) (i.e., the algorithm achieves weak reconstruction) when τsu and τeu are randomly
chosen within a suitable interval. This is the intuition behind the main result of this section
which is formalized below.

I Theorem 14. Let n be any sufficiently large even positive integer. For any 0 < δ <

0.8(λ3 − λ2), there exist τ s, τ̃ s, τe, τ̃e ∈ N such that, after O
(

n
δ(λ3−λ2) log (n/δ) + nd

bδ

)
rounds of protocol Jump-Labeling(δ, τ s, τ̃ s, τe, τ̃e), every node labels its cluster and this
labelling is a

(
8
√

δb
d(λ3−λ2) + 4

√
1

logn

)
-weak reconstruction of G, with probability at least

1−O
(

8
√

δb
d(λ3−λ2) + 4

√
1

logn

)
. The convergence time of this algorithm is Ωδ

(
n
(
logn+ d

b

))
.

Proof of Theorem 14: an informal overview. Since our discussion here will involve both
local times and global times, let us define the following notation to facilitate the discussion:
for each vertex u ∈ V , let Tu : N → N be a function that maps the local time of u to the
global time, i.e., Tu(τ) , min{t ∈ N | |{i 6 t | u ∈ {ui, vi}}| > τ} where ({ui, vi})i∈N is the
sequence of active edges.

We let ay(t) ∈ R be such that y(t) = ay(t) · (χ/
√
n). Let us also assume without loss

of generality that ay(0) > 0. Observe first that our concentration result (Corollaries 10
and 11) implies the following: for any t such that Ω(n logn) 6 t 6 O(n2), with large
probability, χu(x(t)

u − x||,u) is roughly EE ay(t)/n for most vertices u ∈ V ; let us call these
vertices good for time t. Imagine for a moment that we change the protocol in such a way
that each u has access to the global time t and u assigns hjumpu = sgn(x(te)

u − x(ts)
u) for

some ts, te ∈ [Ω(n logn),O(n2)] that do not depend on u. If te − ts is large enough, then
EE ay(ts)� EE ay(te). This means that, if a vertex u ∈ V is good at both times ts and te,
then we have that χu(x(ts)

u − x||,u) ≈ EE ay(ts)/n � EE ay(te)/n ≈ χu(x(te)
u − x||,u). Note

that when χu ·x(ts)
u > χu ·x(te)

u , we have hjumpu = χu. From this and from almost all vertices
are good at both times ts and te, hjump is indeed a good weak reconstruction for the graph!

The problem of the modified protocol above is of course that, in our settings, each
vertex does not know the global time t. Perhaps the simplest approach to imitate the
above algorithm in this regime is to fix τ s, τ e ∈ [Ω(logn),O(n)] and, for each u ∈ V ,
proceed as in Jump-Labeling except with τ su = τ s and τ eu = τ e. In other words, u assigns
hjumpu = sgn(x(Tu(τs))

u − x(Tu(τe))
u). The problem about this approach is that, while we know

that EE Tu(τ s) = 0.5nτ s and EE Tu(τ e) = 0.5nτ e, the actual values of Tu(τ s) and Tu(τ e)
differ quite a bit from their means, i.e., on average they will be Ω(n

√
logn) of away their

mean. Since our concentration result only says that, at each time t, we expect 99% of the
vertices to be good, it is unclear how this can rule out the following extreme case: for many
u ∈ V , Tu(τ s) or Tu(τ e) is a time step at which u is bad. This case results in hjump not
being a good weak reconstruction of V .

The above issue motivates us to arrive at our eventual algorithm, in which τ su and τ eu
are not fixed to be the same for every u, but instead each u pick these values randomly
from specified intervals [τ s, τ̃ s] and [τ e, τ̃ e]. To demonstrate why this overcomes the above
problem, let us focus on the interval [τ s, τ̃ s]. While Tu(τ s) and Tu(τ̃ s) can still differ from
their means, the interval [Tu(τ s), Tu(τ̃ s)] still, with large probability, overlaps with most of
[0.5nτ s, 0.5nτ̃ s] if τ̃ s − τ s is sufficiently large. Now, if Tu(τ + 1)− Tu(τ) are the same for all

ESA 2018

7:12 Average Whenever You Meet: Opportunistic Protocols for Community Detection

τ ∈ [τ s, τ̃ s], then the distribution of x(Tu(τs))
u is very close to x(tsu)

u if we pick tsu randomly
from [0.5nτ s, 0.5nτ̃ s]. From the usual global time step argument, it is easy to see that the
latter distribution results in most u being good at time tsu. Of course, Tu(τ + 1)− Tu(τ) will
not be the same for all τ ∈ [τ s, τ̃ s], but we will be able to argue that, for almost all such τ ,
Tu(τ + 1)− Tu(τ) is not too small, which is sufficient for our purpose. J

We remark that the nd/b dependency in the running time is necessary. If we start with a
good state where x(0) = z(0) = 0, then the values on one side of the partition are all ay(0)
and the values on the other side are −ay(0). It is easy to see that, after o(nd/b) steps of our
protocol, 1− o(1) fraction of the values remain the same. For these nodes, it is impossible to
determine which cluster they are in and, hence, no good reconstruction can be achieved.

Similarly to our concentration results in Subsection 4.2, let us demonstrate the use of
Theorem 14 to the two interesting cases. First, let us start with the case where λ3 − λ2 is
constant.

I Corollary 15. For any constant ε > 0 and for any λ3, λ2, there exists δ depending only on ε
and λ3−λ2 such that, for any sufficiently large n, there exists τ s, τ̃ s, τe, τ̃e ∈ N such that, with
probability 1− ε, after Oε,λ3−λ2

(
n logn+ n

λ2

)
rounds of Jump-Labeling(δ, τ s, τ̃ s, τe, τ̃e),

every node labels its cluster and this labelling is a ε-weak reconstruction of G.

As in Subsection 4.2, we can consider the (non-lazy) averaging protocol and view λ2
instead as a parameter. On this front, we arrive at the following reconstruction guarantee.

I Corollary 16. Fix δ = 1/2. For any constant ε > 0, any λ3 > 0.7, any sufficiently small
λ2 depending only on ε, any sufficiently large n, there exists τ s, τ̃ s, τe, τ̃e ∈ N such that,
with probability 1 − ε, after Oε

(
n logn+ n

λ2

)
rounds of Jump-Labeling(δ, τ s, τ̃ s, τe, τ̃e),

the nodes’ labelling is a ε-weak reconstruction of G.

While the weak reconstruction in the above claims is guaranteed only with arbitrarily-large
constant probability, we can boost this success probability considering the same approach we
used in Subsection 5.1.

Indeed, we first run ` = Θε(logn) copies of Jump-Labeling where, similarly to Algorithm
2, “running ` copies” of Jump-Labeling means that each node keeps ` copies of the states
of Jump-Labeling and, when an edge {u, v} is activated, u and v jointly sample a random
j ∈ [`] and run the j-th copy of Jump-Labeling. In the previous section, we have seen that
Lemma 8 and the repetition approach above allowed us to get a good community-sensitive
labeling, w.h.p. (not a good weak-reconstruction). Interestingly enough, the somewhat
stronger concentration results used in this section allow us to “add” a simple majority rule
on the top of the ` components and get a “good” single-bit label, as described below. When
all ` components of a node u have been set, node u sets hjumpu = Majorityj∈[`](hjumpu (i))
where hjumpu (j) is the binary label of u from the j-th copy of the protocol. Observe that the
weak reconstruction guarantee of Jump-Labeling shown earlier implies that the expected
number of mislabelings of each copy is at most 2εn, i.e., E[{u ∈ V | |hjumpu (i) 6= χu|}] 6 2εn.
Now, since the number of mislabelings of each copy is independent, the total number of
mislabelings is at most O(εn`), w.h.p. However, if the eventual label of u is incorrect, it
must contributes to mislabeling across at least `/2 copies. As a result, there are at most
O(εn) mislabelings in the new protocol, w.h.p.

I Corollary 17. For any constant ε > 0 and λ3 > λ2, there is a protocol that yields an
ε-weak reconstruction of G , w.h.p. The convergence time is Θε,λ3−λ2

(
n
(

log2 n+ logn
λ2

))
rounds, while the work per node is Oε,λ3−λ2

(
log2 n+ logn

λ2

)
.

L. Becchetti et al. 7:13

We finally remark that, for the dense-cut case we focus on in this section (i.e. λ2 = 2b/d =
Θ(1)), the fraction of outliers turns out to be a constant we can made arbitrarily small. If
we relax the condition to λ2 = o(1), then this fraction can be made o(1), accordingly.

References
1 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational

power of population protocols. Distributed Computing, 20(4):279–304, 2007.
2 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Prasad Raghaven-

dra, and Luca Trevisan. Average whenever you meet: Opportunistic protocols for commu-
nity detection. CoRR, abs/1703.05045, 2017. URL: https://arxiv.org/abs/1703.05045.

3 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Tre-
visan. Find your place: Simple distributed algorithms for community detection. In Proc.
of the 28th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’17), pages 940–959.
SIAM, 2017. doi:10.1137/1.9781611974782.59.

4 Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized Gossip
Algorithms. IEEE/ACM Transactions on Networking, 14:2508–2530, 2006. doi:10.1109/
TIT.2006.874516.

5 Gerandy Brito, Ioana Dumitriu, Shirshendu Ganguly, Christopher Hoffman, and Linh V.
Tran. Recovery and Rigidity in a Regular Stochastic Block Model. In Proc. of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 371–390. ACM, 2015.

6 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011.

7 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social networks, 5(2):109–137, 1983.

8 Laurent Massoulié. Community Detection Thresholds and the Weak Ramanujan Property.
In Proc. of the ACM Symposium on Theory of Computing (STOC), pages 694–703. ACM,
2014.

9 Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold con-
jecture. Combinatorica, pages 1–44, 2013.

10 Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction
and optimal recovery of block models. In Conference on Learning Theory, pages 356–370,
2014.

11 Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted
partition model. Probability Theory and Related Fields, 162(3-4):431–461, 2015.

12 He Sun and Luca Zanetti. Distributed Graph Clustering and Sparsification. CoRR,
abs/1711.01262, 2017. URL: http://arxiv.org/abs/1711.01262.

13 Matthew J. Williams, Roger M. Whitaker, and Stuart M. Allen. Decentralised detection of
periodic encounter communities in opportunistic networks. Ad Hoc Networks, 10(8):1544–
1556, 2012.

ESA 2018

https://arxiv.org/abs/1703.05045
http://dx.doi.org/10.1137/1.9781611974782.59
http://dx.doi.org/10.1109/TIT.2006.874516
http://dx.doi.org/10.1109/TIT.2006.874516
http://arxiv.org/abs/1711.01262

Polynomial-time approximation schemes for
k-center, k-median, and capacitated vehicle
routing in bounded highway dimension

Amariah Becker
Department of Computer Science, Brown University
amariah_becker@brown.edu

Philip N. Klein
Department of Computer Science, Brown University
klein@brown.edu

David Saulpic
Département d’Informatique, École Normale Supérieure
david.saulpic@ens.fr

Abstract
The concept of bounded highway dimension was developed to capture observed properties of
road networks. We show that a graph of bounded highway dimension with a distinguished root
vertex can be embedded into a graph of bounded treewidth in such a way that u-to-v distance
is preserved up to an additive error of ε times the u-to-root plus v-to-root distances. We show
that this embedding yields a PTAS for Bounded-Capacity Vehicle Routing in graphs of
bounded highway dimension. In this problem, the input specifies a depot and a set of clients,
each with a location and demand; the output is a set of depot-to-depot tours, where each client
is visited by some tour and each tour covers at most Q units of client demand. Our PTAS can
be extended to handle penalties for unvisited clients.

We extend this embedding result to handle a set S of root vertices. This result implies a
PTAS for Multiple Depot Bounded-Capacity Vehicle Routing: the tours can go from
one depot to another. The embedding result also implies that, for fixed k, there is a PTAS for
k-Center in graphs of bounded highway dimension. In this problem, the goal is to minimize d so
that there exist k vertices (the centers) such that every vertex is within distance d of some center.
Similarly, for fixed k, there is a PTAS for k-Median in graphs of bounded highway dimension.
In this problem, the goal is to minimize the sum of distances to the k centers.

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems

Keywords and phrases Highway Dimension, Capacitated Vehicle Routing, Graph Embeddings

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.8

Related Version A full version of this article can be found at [13], arxiv.org/abs/1707.08270.

Funding Research supported by National Science Foundation grant CCF-1409520.

Acknowledgements Thanks to Andreas Feldmann and Vincent Cohen-Addad for helpful dis-
cussions and comments.

© Amariah Becker, Philip N. Klein, and David Saulpic;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amariah_becker@brown.edu
mailto:klein@brown.edu
mailto:david.saulpic@ens.fr
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.8
https://arxiv.org/abs/1707.08270
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 PTAS for k-center, k-median and BCVR in low highway dimension

1 Introduction

The notion of highway dimension was introduced by Abraham et al. [3, 1] to explain the
efficiency of some shortest-path heuristics. The motivation of this parameter comes from
the work of Bast et al. [11, 12] who observed that, on a road network, a shortest path from
a compact region to points that are far enough must go through one of a small number
of nodes. They experimentally showed that the US road network has this property, and
Abraham et al. [3, 1, 2] proved results on the efficiency of shortest-path heuristics on graphs
with bounded highway dimension.

Though several definitions of highway dimension have been proposed, we use the one
given in [20] :

I Definition 1. The highway dimension of a graph G = (V,E) is the smallest integer η such
that for every r ∈ R+ and v ∈ V , there is a set of at most η vertices in Bv(cr) such that
every shortest path of length at least r that has all its vertices in Bv(cr) intersects this set.

Bv(r) = {u ∈ V |d(u, v) ≤ r} denotes here the ball with center v and radius r. This definition
is chosen as it captures this property for a wider range of transportation networks than
[2]. Since the latter implies low doubling dimension, it cannot, for example, represent air
traffic networks, that are star-like at large airports which causes a large doubling dimension.
Nevertheless, as noted in Feldman et al. [20], these networks have a low highway dimension
according to the definition of this paper (see the full version for a further discussion of these
definitions).

New polynomial-time approximation schemes: Abraham et al. note that “conceivably,
better algorithms for other [optimization] problems can be developed and analyzed under
the small highway dimension assumption.” Since road networks are thought to be modeled
by graphs of small highway dimension, NP-hard optimization problems that arise in road
networks are natural candidates for study. Feldmann [19] and Feldmann, Fung, Könemann,
and Post [20] inaugurated this line of research, giving (respectively) a constant-factor
approximation algorithm for one problem and quasi-polynomial-time approximation schemes
for several other problems. In this paper, we give the first polynomial-time approximation
schemes (PTASs) for classical optimization problems in graphs of small highway dimension.

Vehicle routing: Consider Capacitated Vehicle Routing, defined as follows. An
instance consists of a positive integer Q (the capacity), a graph with edge-lengths, a subset
Z of vertices (called clients), a demand function ρ : Z → {1, 2 . . . , Q}, and a distinguished
vertex, called the depot. A solution consists of a set of tours, where each tour is a walk that
starts and ends at the depot, and a function that assigns each client to a tour that passes
through it, such that the total client demand assigned to each tour is at most Q. (If a client
v is assigned to a tour, we say that the tour visits v.) The objective is to minimize the sum
of lengths of the tours.

We emphasize that in this version of Capacitated Vehicle Routing, client demand is
indivisible: a client’s entire demand must be covered by a single tour. For arbitrary metrics,
the problem is APX-hard, even when Q > 0 is fixed [9]. When Q is unbounded, it is NP-hard
to approximate to within a factor of 1.5 even when the metric is that of a star [21]. Since
stars have highway dimension one, this hardness result holds for graphs of bounded highway
dimension. We therefore require Q to be constant. To emphasize this, we sometimes refer to
the problem as Bounded-Capacity Vehicle Routing.

A. Becker, P. N. Klein, and D. Saulpic 8:3

I Theorem 2. For any ε > 0, η > 0 and Q > 0, there is a polynomial-time algorithm that,
given an instance of Bounded-Capacity Vehicle Routing in which the capacity is Q
and the graph has highway dimension η, finds a solution whose cost is at most 1 + ε times
optimum.

The running time is bounded by a polynomial whose degree depends on ε, η, and Q.
PTASs for vehicle routing were previously known only for Euclidean spaces, although a
quasi-polynomial-time approximation scheme (QPTAS) was known for planar graphs (see
Section 1.2).

Our approach can be modified to handle a generalization in which an instance also
specifies a penalty for each client, to be imposed if the solution omits the client. We also give
a PTAS for a more general version of the problem, Multiple-Depot Bounded-Capacity
Vehicle Routing, in which there are a constant number of depots, and each tour is required
only to start and end at one of the depots.

k-Center and k-Median: Given a graph, the goal in k-Center is to select a set of k
vertices (the centers) so as to minimize the maximum distance of a vertex to the nearest
center. This problem might arise, for example, in selecting locations for k firehouses. The
objective in k-Median is to minimize the average vertex-to-center distance.

For k-Center, when the number k of centers is unbounded, for any δ > 0, it is NP-
hard [22, 28] to obtain a (2 − δ)-approximation, even in the Euclidean plane under L1 or
L∞ metrics1, even in unweighted planar graphs [31], and even in n-vertex graphs with
highway dimension O(log2 n) [19]. We therefore consider bounded k, but even a (2 − ε)-
approximation is W [2]-hard for parameter k [19] in general graphs. Thus, even for bounded
k, it seems necessary to consider restricted inputs. Feldmann [19] gave a polynomial-time
3/2-approximation algorithm for bounded-highway-dimension graphs, and raised the question
of whether a better approximation ratio could be achieved. The following theorem answers
that question (Note that the running time is bounded by a polynomial in n whose degree
does not depend on η, k, or ε).

I Theorem 3. There is a function f1(·, ·, ·) and a constant c such that, for each of the
problems k-Center and k-Median, for any η > 0, k > 0 and ε > 0, there is an algorithm
running in time f1(η, k, ε)nc that, given an instance in which the graph has highway dimension
at most η, finds a solution whose cost is at most 1 + ε times optimum.

1.1 New metric embedding results
The key to achieving the new approximation schemes is a new result on metric embeddings of
bounded-highway-dimension graphs into bounded-treewidth graphs. Treewidth is a measure
of how complicated a graph is, and many NP-hard optimization problems in graphs become
polynomial-time solvable when the input is restricted to graphs of bounded treewidth. The
definition is the following.

A tree decomposition of a graph G is a tree TG whose nodes are bags of vertices that
satisfy the following three criteria: every v ∈ V appears in at least one bag, for every edge
(u, v) ∈ E there is some bag containing both u and v and for every v ∈ V , the bags containing
v form a connected subtree. The width of TG is the size of the largest bag minus one, and
the treewidth of G is the minimum width among all tree decompositions of G.

1 Approximation better than 1.822 is hard under L2, see [18].

ESA 2018

8:4 PTAS for k-center, k-median and BCVR in low highway dimension

A metric embedding of an (undirected) guest graph G into a host graph H is a mapping
φ(·) from the vertices of G to the vertices of H such that, for every pair of vertices u, v in
G, the φ(u)-to-φ(v) distance in H resembles the u-to-v distance in G. Usually in studying
metric embeddings one seeks an embedding that preserves u-to-v distance up to some factor
(the distortion). That is, the allowed error is proportional to the original distance. In this
work, the allowed error is instead proportional to the distance from a given root vertex (or a
constant number of vertices).

I Theorem 4. There is a function f2(·, ·) such that, for every ε > 0, graph G of highway
dimension η, and vertex s, there exists a graph H and an embedding φ(·) of G into H such
that

H has treewidth at most f2(ε, η), and
for all vertices u and v, dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε(dG(s, u) + dG(s, v)).

As we describe in greater detail in Section 5, our PTAS for Bounded-Capacity Vehicle
Routing first applies Theorem 4 with s being the depot and ε′ = ε/c for a constant c to be
determined, obtaining an embedding of the original graph into the bounded-treewidth graph
H. The embedding induces an instance of Vehicle Routing in H. The algorithm finds an
optimal solution to this instance, and converts it to a solution for the original instance. This
conversion does not increase the cost of the solution. However, we need to show that the
optimal solution in the original instance induces a solution in H of not too much greater
cost. We do this using a lower bound due to Haimovich and Rinnoy Kan [26].

For the multiple-depot version of vehicle routing and for k-Center and k-Median,
Theorem 4 does not suffice. We present a generalization in which there is a set of root
vertices, and the allowed error is proportional to the minimum distance to any root vertex.

I Theorem 5. There is a function f3(·, ·, ·) such that, for every ε > 0, graph G of highway
dimension η and set S of vertices of G, there exists a graph H and an embedding φ(·) of G
into H such that

H has treewidth f3(η, |S|, ε), and
for all u and v, dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1+O(ε))dG(u, v)+εmin(dG(S, u), dG(S, v))

1.2 Related Work
Metric embeddings of bounded-highway-dimension graphs: Feldmann [19] and Feldmann
et al. [20] inaugurated research into approximation algorithms for NP-hard problems in
bounded-highway-dimension graphs. Feldmann et al. [20] gave quasi-polynomial-time ap-
proximation schemes for Traveling Salesman, Steiner Tree, and Facility Location.
The key to their results is a probabilistic metric embedding of bounded-highway dimension
graphs into graphs of small treewidth. The aspect ratio of a graph with edge-lengths is the
ratio of the maximum vertex-to-vertex distance to the minimum vertex-to-vertex distance.
Feldmann et al. show that, for any ε > 0, for any graph G of highway dimension η, there is a
probabilistic embedding φ(·) of G of expected distortion 1 + ε into a randomly chosen graph
H whose treewidth is polylogarithmic in the aspect ratio of G (and also depends on ε and η).
There are two obstacles to using this embedding in achieving approximation schemes:

The distortion is achieved only in expectation. That is, for each pair u, v of vertices, the
expected φ(u)-to-φ(v) distance in H is at most (1 + ε) times the u-to-v distance in G.
The treewidth depends on the aspect ratio of G, so is only bounded if the aspect ratio is
bounded.

A. Becker, P. N. Klein, and D. Saulpic 8:5

The first is an obstacle for problems (e.g. k-Center) where individual distances need to
be bounded; this does not apply to problems such as Traveling Salesman or Vehicle
Routing where the objective is a sum of lengths of paths. The second is the reason that
Feldmann et al. obtain only quasi-polynomial-time approximation schemes; it seems to be
an obstacle to obtaining true PTAS. Nevertheless, the techniques introduced by Feldmann et
al. are at the core of our embedding results. We build heavily on their framework.

About Vehicle Routing problem, Haimovich and Rinnoy Kan [26] proved the following
lower bound2:

I Lemma 6. For Capacitated Vehicle Routing with capacity Q, and client set Z,

cost(OPT) ≥ 2
Q

∑
{d(c, s) : c ∈ Z}

Note that the Capacitated Vehicle Routing problem is a generalization of Traveling
Salesman (Q = n, Z = V , and ρ(v) = 1,∀v). Conversely, Haimovich and Rinnoy Kan show
how to use a solution to Traveling Salesman to achieve a constant-factor approximation
for Capacitated Vehicle Routing, where the constant depends on the approximation
ratio for Traveling Salesman.

Since Capacitated Vehicle Routing in general graphs is APX-hard for every fixed
Q ≥ 3 [8, 9], much work has focused on the Euclidean plane. Haimovich and Rinnoy Kan [26]
gave a polynomial-time approximation scheme (PTAS) for the Euclidean plane for the case
when the capacity Q is constant. Asano et al. [9] showed how to improve this algorithm to
get a PTAS when Q is O(logn/ log logn). For general capacities, Das and Mathieu [17] gave
a quasi-polynomial-time approximation scheme for unbounded Q. Building on this work,
Adamaszek, Czumaj, and Lingas [4] gave a PTAS that for any ε > 0 can handle Q up to
2logδ n where δ depends on ε.

Little is known for higher dimensions or other metrics. Kachay gave a PTAS in Rd that
requires Q to be O(log1/d logn) [30], and Hamaguchi and Katoh [27] and Asano, Katoh, and
Kawashima [7] focused on constant-factor approximation algorithms for the case where the
graph is a tree and client demand is divisible. Becker, Klein and Saulpic [14] gave the first
approximation scheme for a non-Euclidean metric: they describe a quasi-polynomial-time
approximation scheme in planar graphs, but only when the capacity Q is polylogarithmic
in the graph size. They introduce the idea of an error that depends on the distance to the
depot, which we also use in the embedding presented in our work here.

For k-Median, constant-factor approximation algorithms have been found for general
metric spaces [15, 32, 29, 6]. The best known approximation ratio for k-Median in general
metrics is 2.675 [15], and it is NP-hard to approximate within a factor of 1 + 2/e [23]. For
k-Median in d-dimensional Euclidean space, PTAS have been found when k is fixed (e.g. [10])
and when d is fixed (e.g. [5]) but there exists no PTAS if k and d are part of the input
[25]. Recently Cohen-Addad et al. [16] gave a local search-based PTAS for k-Median in
edge-weighted planar graphs, and more generally in graphs from any nontrivial minor-closed
graph family.

Outline. Section 2 provides preliminary definitions and presents useful results from Feld-
mann et al. [20]. In Section 3 we give an initial embedding result for graphs of bounded aspect
ratio. Section 4 explains the main embedding result (Theorem 4), and Section 5 describes

2 Although their result addresses the unit-demand case, it generalizes to instances where each non-zero
client demand ρ(v) is at least one.

ESA 2018

8:6 PTAS for k-center, k-median and BCVR in low highway dimension

how to use this embedding to achieve a PTAS for Capacitated Vehicle Routing, proving
Theorem 2. We refer the reader to the full version [13] for a discussion of highway dimension,
omitted proofs, the dynamic program for vehicle routing, and a discussion of Theorem 5 and
its application to multi-depot vehicle routing, k-Center, and k- Median.

2 Preliminaries

We use OPT to denote the optimum solution for an optimization problem. For minimization
problems, an α-approximation algorithm returns a solution with cost at most α · cost(OPT).
An approximation scheme is a family of (1 + ε)-approximation algorithms indexed by ε > 0.
A polynomial-time approximation scheme (PTAS) is an approximation scheme that for each
fixed ε runs in polynomial time.

For an undirected graph G = (V,E), we use dG(u, v) (or d(u, v) when G is unambiguous)
to denote the shortest-path distance between u and v. For any vertex subsets W ⊆ V

and vertex v ∈ V we let d(v,W) denote minw∈W d(v, w), and we let diam(W) denote
maxu,v∈W d(u, v).

An embedding of a graph G = (V,E) is a mapping φ from a guest graph G to a host
graph H = (V,EH). For notational simplicity, we identify the vertices of H with points of G
and therefore omit φ.

Let Y ⊆ X be a subset of elements in a metric space (X, d). Y is a δ-covering of X if for
all x ∈ X, d(x, Y) ≤ δ. Y is a β-packing of X if for all y1, y2 ∈ Y with y1 6= y2, d(y1, y2) ≥ β.
Y is an ε-net if it is both an ε-covering and an ε-packing.

Shortest-Path Covers. Now we introduce a tool for dealing with bounded highway-dimen-
sion graphs. Recall that c is a constant greater than 4.

I Definition 7. For a graph G with vertex set V and r ∈ R+, a shortest-path cover for scale
r SPC(r) ⊆ V is a set of vertices, called hubs, such that every shortest path of length in
(r, cr/2] contains at least one hub. Such a cover is called locally s-sparse for scale r if every
ball of diameter cr contains at most s vertices from SPC(r).

For a graph of highway dimension η, Abraham et al. [1] showed how to find a locally
O(η log η)-sparse shortest-path cover in polynomial time (though they show it for a different
definition of highway dimension (c = 4), the algorithm can be straightforwardly adapted).
This result allows us to use shortest-path covers instead of directly using highway dimension.

Town Decomposition. Feldmann et al.[20] observed that a shortest-path cover for scale
r naturally defines a clustering of the vertices into towns [20]. Informally, a town at scale
r is a subset of vertices that are close to each other and far from other towns and from
the shortest-path cover for scale r. Formally, a town is defined by at least one v ∈ V such
that d(v,SPC(r)) > 2r and is composed of {u ∈ V |d(u, v) ≤ r}. The following lemma of
Feldmann et al. describes key properties of towns.

I Lemma 8 (Lemma 3.2 in [20]). If T is a town at scale r, then
1. diam(T) ≤ r and
2. d(T, V \ T) > r

Feldmann et al. define a recursive decomposition of the graph using the concept of towns,
which we adopt for this paper. First, scale all distances so that the shortest point-to-point
distance is a little more than c/2. Then fix a set of scales ri = (c/4)i. We say that a town

A. Becker, P. N. Klein, and D. Saulpic 8:7

Figure 1 Illustration of Lemma 8.

T at scale ri is on level i. The scaling ensures that SPC(r0) = ∅, and therefore at level 0
every vertex forms a singleton town. The largest level is rmax = dlogc/4 diam(Gscaled)e =
dlogc/4(c2 · θG))e, where θG is the aspect ratio of the input graph. Similarly at this topmost
level, SPC(rmax) = ∅ since there are no shortest paths that need to be covered. The only
town at scale rmax is the town that contains the entire graph. We say that the town at scale
rmax and the singleton towns at scale r0 are trivial towns. Since c is a constant greater than
four, the total number of scales is linear in the input size.

The set T = {T ⊆ V |T is a town on level i ∈ N} of towns at all levels is called the town
decomposition. Because of the properties of Lemma 8, this set forms a laminar family and
therefore has a tree structure. Moreover, the decomposition has the following properties.

I Lemma 9 (Lemma 3.3 in [20]). For every town T in a town decomposition T ,
1. T has either 0 children or at least 2 children, and
2. if T is a town at level i and has child town T ′ at level j, then j < i.

Approximate Core Hubs. For the purpose of approximation algorithms, it suffices to use
not all hubs but a representative subset. For ε > 0, Feldmann et al. show how to compute, for
each town T , a subset XT of T

⋂
∪iSPC(ri), called approximate core hubs. Their properties

are described in Lemma 10. Recall that the doubling dimension of a metric is the smallest θ
such that for every r, every ball of radius 2r can be covered by at most 2θ balls of radius r.

I Lemma 10 (Theorem 4.2 and Lemma 5.1 in [20]). For every town T ∈ T , there exist a set
XT such that:
1. if T1 and T2 are different child towns of T , and u ∈ T1 and v ∈ T2, then there is some

h ∈ XT such that d(P [u, v], h) ≤ εd(u, v), where P [u, v] is the shortest u-to-v path, and
2. the doubling dimension of XT is θ = O(log(ηs log(1/ε)).

Minimality of Shortest-Path Covers. Note that the result of Lemma 10 requires the
shortest-path covers be inclusion-wise minimal. For the embedding we present in Section 4,
however, it is useful to assume that the depot is not a member of any town except for the
trivial topmost town containing all of G and bottommost singleton town containing just the
depot. This assumption can be made safely, as explained in the full version of the paper.

3 Embedding for Graphs of Bounded Aspect-Ratio

Lemma 11 describes an embedding for the case when the graph has bounded aspect-ratio,
ie. the ratio between diameter and smallest distance. This embedding gives only a small
additive error, and will prove to be a useful tool for the following sections. In this section we
show how to construct this embedding.

ESA 2018

8:8 PTAS for k-center, k-median and BCVR in low highway dimension

(a) Town decomposition (b) Embed-
dings

(c) Path approxi-
mation

Figure 2 (a) An example of a town decomposition. T1 has diameter at most ε∆ and T2 has
diameter greater than ε∆. (b) Two cases of town embeddings. T1 is embedded as a star with center
vT1 . The embedding of T2 connects all vertices in T2 to all hubs in X̂T2 (depicted as squares). (c)
Hub ĥ ∈ X̂T is close to hub h ∈ XT which itself is close to the shortest u-to-v path.

I Lemma 11. There is a function f(x, y) such that, for any ε > 0 and η > 0, for any graph
G with highway dimension at most η, minimal distance 1 and diameter ∆, there is a graph
H with treewidth at most f(ε, η) and an embedding φ(·) of G into H such that, for all points
u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + 4ε∆

Furthermore, there is a polynomial-time algorithm to construct H and the embedding.

We first present an algorithm to compute the host graph H and a tree decomposition of
H. This algorithm relies on the town decomposition T of G, described in Section 2.

The host graph H is constructed as follows. First, consider a town T that has diameter
d ≤ ε∆ but has no ancestor towns of diameter ε∆ or smaller. We call such a town a maximal
town of diameter at most ε∆. The town T is embedded into a star: choose an arbitrary
vertex vT in T , and for each u ∈ T , include an edge in H between u and vT with length
dG(u, vT) equal to their distance in G (see Figures 2a and 2b).

Now consider a town T of diameter dT > ε∆. The set of approximate core hubs XT can
be used as portals to preserve distances between vertices lying in different child towns of T .
Specifically, by Lemma 10, for every pair of vertices (u, v) in different child towns of T , XT

contains a vertex that is close to the shortest path between u and v. In order to approximate
the shortest paths, it is therefore sufficient to consider a set of points close to XT . Let X̂T

be an εdT -net of XT . For each ĥ ∈ X̂T and v ∈ T , include an edge in H connecting v to ĥ
with length dH(v, ĥ) = dG(v, ĥ) equal to the v-to-ĥ distance in G (see Figures 2a and 2b).

The tree decomposition D mimics the town decomposition tree: for each town T of
diameter greater than ε∆, there is a bag bT . This bag is connected in D to all of the bags
of child towns of T and contains all of the vertices of the net assigned to T and of the nets
assigned to T ’s ancestors in the town decomposition. Formally, if AT denotes the set of all
towns that contain T , bT =

⋃
T ′∈AT X̂T ′ . Note that if T ′ is the parent of T in the town

decomposition, bT = X̂T ∪ bT ′ . Now for each maximal town T of diameter at most ε∆ with
parent town T ′, the tree decomposition contains a bag b0T connected to a bag buT for each
vertex u ∈ T . We define b0T = {vT } ∪ bT ′ and buT = {u} ∪ b0T .

Following Feldmann et al. [20], the above construction can be shown to be polynomial-time
constructible. The following three lemmas therefore prove Lemma 11.

I Lemma 12. D is a valid tree decomposition of H.

A. Becker, P. N. Klein, and D. Saulpic 8:9

I Lemma 13. H has a treewidth O((1
ε)θ log c

4

1
ε), where θ is a bound on the doubling dimension

of the sets XT .

Proof. Since the size of the bags is clearly bounded by the depth times the maximal cardinality
of X̂T , it is enough to prove that, for each town T , X̂T is bounded by (1

ε)θ, and that the
tree decomposition has a depth O(log c

4

1
ε). By Lemma 10, the doubling dimension of XT is

bounded by θ. X̂T is a subset of XT , so its doubling dimension is bounded by 2θ (see Gupta
et al. [24]). Furthermore, the aspect ratio of X̂T is 1

ε : the longest distance between members
of X̂T is bounded by the diameter dT of the town, and the smallest distance is at least εdT by
definition of a net. The cardinality of a set with doubling dimension x and aspect ratio γ is
bounded by 2xdlog2 γe (see [24] for a proof), therefore |X̂T | is bounded by (1

ε)θ. We prove now
that the tree decomposition has a depth O(log c

4

1
ε). Let T be a town of diameter dT > ε∆

and let ri be the scale of that town. By Lemma 8, dT ≤ ri, and since ri = (c4)i and dT > ε∆,
we can conclude that i > log c

4
ε∆. As the diameter of the graph is ∆, the biggest town has

a diameter at most ∆. It follows that ri ≤ ∆ and therefore i ≤ log c
4

∆. The depth of bT
in the tree decomposition is therefore bounded by log c

4

∆
ε∆ = log c

4

1
ε . Furthermore, the tree

decomposition of a town of diameter at most ε∆ has depth 2. The overall depth is therefore
O(log c

4

1
ε), concluding the proof. J

I Lemma 14. For all vertices u and v, dG(u, v) ≤ dH(u, v) ≤ dG(u, v) + 4ε∆

Proof. Let u and v be vertices in V , and let T be the town that contains both u and v such
that u and v are in different child towns of T .

If T has diameter dT ≤ ε∆, then let T ′ be the maximal town of diameter at most ε∆ that is
an ancestor of T (possibly T itself). By construction, T ′ was embedded into a star centered at
some vertex vT ′ ∈ T ′, so dH(u, v) ≤ dH(u, vT ′) + dH(vT ′ , v) ≤ dG(u, vT ′) + dG(vT ′ , v) ≤ 2ε∆.

Otherwise if T has diameter dT > ε∆, then by Lemma 10, there is some h ∈ XT such
that dG(P [u, v], h) ≤ εd(u, v). Since X̂T is an εdT cover of XT , there is some ĥ ∈ X̂T such
that d(h, ĥ) ≤ εdT . The host graph H includes edges (u, ĥ) and (ĥ, v), so

dH(u, v) ≤ dH(u, ĥ) +dH(ĥ, v) ≤ dG(u, h) +dG(h, v) + 2εd(u, v) + 2εdT ≤ dG(u, v) + 4ε∆
(see Figure 2c). Finally, since edge lengths in H are given by distances in G, dG(u, v) ≤
dH(u, v) for all u, v ∈ V . J

4 Main Embedding: Proof of Theorem 4

4.1 Embedding Construction
Given the parameter ε̂, our goal for the embedding is that

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε̂(dG(s, u) + dG(s, v))

With this goal in mind, we define ε = min{1/4, ε̂/k} for an appropriate constant k (chosen
to compensate for the big-O in the following inequality), and prove that

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε(dG(s, u) + dG(s, v))

Our construction relies on the assumption that the depot s does not appear in any
non-trivial town. We can make this assumption without loss of generality, as discussed in
Section 2.

The root town in the composition, denoted T0, is the town that contains the entire graph.
We say that a town T that is a child of the root town is a top-level town, which means that
the only town that properly contains T is T0.

ESA 2018

8:10 PTAS for k-center, k-median and BCVR in low highway dimension

(a) Towns (b) Embedding

(c) Tree decomposition

Figure 3 (a) Towns T1 and T2 are top-level towns, with l(T1) = i and l(T2) = i + 1. (b) The
embedding of each top-level town (circles) are connected to a band of log2

1
ε

+ 1 hub sets (squares).
Edges are striped to convey that they connect all vertices of the given hub-set endpoint to all
vertices of the town-embedding endpoint. (c) The vertices of each bag B (circles) are added to each
bag of each descendent top-level-town tree decomposition (triangles).

The assumption that the depot, s, does not appear in any non-trivial town implies that
the top-level town that contains s is the trivial singleton town. This assumption is helpful to
bound the distance between a top-level town T and the depot s: as s /∈ T , Lemma 8 gives
the bound d(T, s) ≥ diam(T). This bound turns out to be very helpful in the construction
of the host graph.

We use Lemma 11 to construct an embedding for each top-level town. It remains to
connect these embeddings : we cannot approximate XT0 with a net as we did in Lemma 11,
because the diameter of G may be arbitrarily large.

To cope with that issue, we define inductively the hub sets X0
0 , X

1
0 , ... such that Xk

0 is a
net of XT0 ∩Bs(2k). Let X0

0 be an ε-net of XT0 ∩Bs(1) that contains the depot, s, and for
k ≥ 0 let Xk+1

0 be an ε2k+1-net of the set
(
XT0 ∩ (Bs(2k+1)−Bs(2k))

) ⋃
Xk

0 that contains
the depot. This construction ensures that Xk+1

0 ∩ Bs(2k) ⊆ Xk
0 , which will be helpful in

Section 4.3 to find a tree decomposition of the host graph. Note that we can assume s ∈ XT0 ,
since adding it increases the doubling dimension by at most one and thus does not change
the result of Lemma 10.

For a set of vertices X ⊆ V , we define l(X) = dlog2(maxv∈X d(s, v))e (See Figure 3a).
For every child town T of T0, the host graph connects every vertex v of T to every hub h

in X l(T)
0 , . . . , X

l(T)+log2(1/ε)
0 with an edge of length dG(v, h) (See Figure 3b).

4.2 Proof of Error Bound
In Lemma 16 we prove a bound on the error incurred by the embedding. Our proof makes
use of the following lemma.

I Lemma 15 (see full version). For all k, Xk
0 is an ε2k+1-covering of XT0 ∩Bs(2k).

I Lemma 16. For all vertices u and v,
dG(u, v) ≤ dH(u, v) ≤ dG(u, v) +O(ε)(dG(s, u) + dG(s, v))

Proof. Consider two vertices u and v. Let Tu and Tv denote the top-level towns that contain
u and v, respectively. There are two cases to consider.

A. Becker, P. N. Klein, and D. Saulpic 8:11

(a) u and v are both connected to ĥ. (b) v is not connected to ĥ.

Figure 4 The shortest path between u and v in G is indicated by the curved, directed lines. The
path in the host graph is represented by the straight lines.

If Tu = Tv, Lemma 8 gives dG(u, v) ≤ diam(Tu) ≤ dG(Tu, V \ Tu), and therefore
diam(Tu) ≤ min{dG(s, u), dG(s, v)}. Because Tu = Tv is a top-level town, its embedding is
given by Lemma 11, which directly gives the desired bound.

Otherwise Tu 6= Tv. Without loss of generality, assume that dG(u, s) ≥ dG(v, s). We
show that there exists some Xk

0 connected to u with a vertex ĥ ∈ Xk
0 close to P [u, v].

By definition of the approximate core hubs, there exists h ∈ XT0 such that d(h, P [u, v]) ≤
εd(u, v). Moreover, h ∈ Bs(2l(Tu)+2):

d(s, h) ≤ d(s, u) + d(u, h) ≤ d(s, u) + (1 + ε)d(u, v)
≤ d(s, u) + (1 + ε) (d(s, u) + d(s, v)) by triangle inequality
≤ d(s, u) + (1 + ε) · 2d(s, u) since d(u, s) ≥ d(v, s)

≤ (3 + 2ε)2l(Tu) ≤ 2l(Tu)+2

Since h ∈ XT0 ∩ Bs(2l(Tu)+2), then by Lemma 15, there is an ĥ ∈ X l(Tu)+2
0 such that

d(ĥ, h) ≤ ε2l(Tu)+3. Since log2
1
ε ≥ 2, u is connected to ĥ in the host graph.

Depending on v, there remain two cases: either v is connected to ĥ (see Figure 4a) or
not (Figure 4b). First, if v is connected to ĥ in the host graph, dH(v, ĥ) = dG(v, ĥ) (and the
same holds for u). The triangle inequality gives therefore,

dH(u, v) ≤ dG(u, ĥ) + dG(v, ĥ) ≤ dG(u, h) + dG(v, h)︸ ︷︷ ︸
≤(1+2ε)dG(u,v) by definition of h

+ 2dG(ĥ, h)︸ ︷︷ ︸
≤2ε2l(Tu)+3=O(ε)d(s,u)

Since dG(u, v) ≤ dG(s, u) + dG(s, v), we infer dH(u, v) ≤ dG(u, v) + O(ε)(dG(s, u) +
dG(s, v)).

Otherwise, v is not connected to ĥ. That means that either l(Tu) + 2 < l(Tv) or
l(Tu) + 2 > l(Tv) + log2

1
ε . We exclude the first case by noting that since the diameter of a

town is less than its distance to the depot, dG(v, s) ≤ dG(u, s) implies that l(Tv) ≤ l(Tu) + 1.
The second case implies that dG(s, u) ≥ O(1

ε)dG(s, v). Since the host graph connects
the source s to all the vertices, dH(u, v) ≤ dG(s, u) + dG(s, v) ≤ dG(u, v) + 2dG(s, v) ≤
dG(u, v) +O(ε)(dG(s, u) + dG(s, v)). J

4.3 Tree Decomposition
We present here the construction of a bounded-width tree decomposition D of the host graph.

For each k > 0 let Bk =
k+log2(1/ε)⋃
i=k−1

Xi
0. For a top-level town T , the tree decomposition D

connects the decomposition DT given by Lemma 11 to the bag Bl(T). Moreover, we add all
vertices that appear in Bl(T) to all bags in the tree DT . Finally, for every k we connect Bk
to both Bk−1 and Bk+1 in D. (See Figure 3b.)

ESA 2018

8:12 PTAS for k-center, k-median and BCVR in low highway dimension

I Lemma 17 (see full version). D is a valid tree decomposition of the host graph H.

I Lemma 18. For all k, |Xk
0 | ≤ (2

ε)θ.

Proof. Since Xk
0 is a subset of XT0 , it has doubling dimension 2θ (see Lemma 10). Since

Xk
0 is a ε2k-net, the smallest distance between two hubs in Xk

0 is at least ε2k. Moreover,
since Xk

0 ⊆ Bs(2k), the longest distance between two hubs is at most 2 · 2k, therefore, Xk
0

has an aspect ratio of at most 2
ε . The bound used in Lemma 13 on the cardinality of a set

using its aspect ratio and its doubling dimension concludes the proof. J

I Lemma 19. The tree decomposition D has bounded width.

Proof. This follows from Lemma 18 together with the fact that a bag Bi is the union of
log2

1
ε + 2 sets Xk

0 . Lemma 13 allows to conclude. J

5 Capacitated Vehicle Routing

5.1 PTAS for Bounded Highway Dimension
The algorithm works as follows. The input graph G is embedded into a host graph H of
bounded treewidth using the embedding given in Theorem 4. The algorithm then optimally
solves the Capacitated Vehicle Routing problem with capacity Q for H, using a classical
dynamic programming approach (described in the full version). The solution for H is then
lifted to a solution in G: for each tour in the solution for H, a tour in G that visits the same
clients in the same order is added to the solution for G.

We show that the embedding given in Theorem 4 is such that an optimal solution in
the host graph H gives a (1 + ε) solution in G. Furthermore, the embedding ensures that
H has small treewidth, allowing Capacitated Vehicle Routing to be solved exactly in
polynomial time using dynamic programming. Putting these together gives Theorem 2.

Given an embedding with the properties described in Theorem 4, all that remains in
proving Theorem 2 is showing how to solve Capacitated Vehicle Routing optimally on
the host graph H and proving that such an optimal solution has a corresponding near-optimal
solution in G. We do so in the following two lemmas (the first is proved in the full version of
the paper)

I Lemma 20. Given a graph with bounded treewidth ω and a capacity Q > 0, Capacitated
Vehicle Routing can be solved optimally in nO(ωQ) time.

I Lemma 21. For an embedding with the properties given by Theorem 4, the cost of an
optimal solution in the host graph H is within a (1 +O(ε))-factor of the cost of the optimal
solution in the guest graph G.

Proof. Let OPTH be the optimal solution in the host graph H and OPTG be the optimal
solution in G. A solution is described by the order in which the clients and the depot are
visited: (u, v) ∈ S indicates that the solution S visits the client v immediately after visiting
u. We want to prove that costG(OPTH) ≤ (1 +O(ε))costG(OPTG).

First, since dG ≤ dH , costG ≤ costH . Second, the solution OPTG is also a solution in
the host graph H, since the vertices of G and H are the same. So, by definition of OPTH ,
costH(OPTH) ≤ costH(OPTG). It is therefore sufficient to prove that costH(OPTG) ≤
(1 +O(ε))costG(OPTG).

A. Becker, P. N. Klein, and D. Saulpic 8:13

By definition of cost, costH(OPTG) =
∑

(u,v)∈OPTG
dH(u, v). Applying Theorem 4 gives

costH(OPTG) ≤
∑

(u,v)∈OPTG

dG(u, v) +O(ε)(dG(s, u) + dG(s, v))

The right side of the inequality can be rewritten as∑
(u,v)∈OPTG

dG(u, v)

︸ ︷︷ ︸
= costG(OPTG)

+ O(ε)
∑

(u,v)∈OPTG

dG(s, u) + dG(s, v)

︸ ︷︷ ︸
= O(ε)

∑
v∈Z

2dG(s,v) ≤ O(ε)QcostG(OPTG) (∗)

To get the inequalities (∗), it is enough to remark that OPTG visits every client exactly
once and then to apply Lemma 6. As Q is constant, the whole inequality becomes

costH(OPTG) ≤ costG(OPTG) +O(ε)costG(OPTG) = (1 +O(ε))costG(OPTG) J

References
1 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V Goldberg, and Renato F Werneck.

VC-dimension and shortest path algorithms. In International Colloquium on Automata,
Languages, and Programming, pages 690–699. Springer, 2011.

2 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck.
Highway dimension and provably efficient shortest path algorithms. Journal of the ACM,
63(5):41:1–41:26, 2016.

3 Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. Highway dimen-
sion, shortest paths, and provably efficient algorithms. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 782–793. SIAM,
2010.

4 Anna Adamaszek, Artur Czumaj, and Andrzej Lingas. PTAS for k-tour cover problem
on the plane for moderately large values of k. International Journal of Foundations of
Computer Science, 21(6):893–904, 2010. doi:10.1142/S0129054110007623.

5 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Eu-
clidean k-medians and related problems. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (STOC), pages 106–113, 1998.

6 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004.

7 Tetsuo Asano, Naoki Katoh, and Kazuhiro Kawashima. A new approximation algorithm for
the capacitated vehicle routing problem on a tree. Journal of Combinatorial Optimization,
5(2):213–231, 2001.

8 Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in
the plane by k-tours: a polynomial approximation scheme for fixed k. IBM Tokyo Research
Laboratory Research Report RT0162, 1996.

9 Tetsuo Asano, Naoki Katoh, Hisao Tamaki, and Takeshi Tokuyama. Covering points in
the plane by k-tours: towards a polynomial time approximation scheme for general k. In
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages
275–283, 1997.

10 M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages 250–257,
2002.

ESA 2018

http://dx.doi.org/10.1142/S0129054110007623

8:14 PTAS for k-center, k-median and BCVR in low highway dimension

11 H. Bast, Stefan Funke, and Domagoj Matijevic. Ultrafast shortest-path queries via tran-
sit nodes. In Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors,
The Shortest Path Problem: Ninth DIMACS Implementation Challenge, volume 74 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages 175–192.
American Mathematical Society, 2009.

12 H. Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In
transit to constant time shortest-path queries in road networks. In Proceedings of the Ninth
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 46–59. SIAM,
2007.

13 Amariah Becker, Philip N. Klein, and David Saulpic. Polynomial-time approximation
schemes for k-center and bounded-capacity vehicle routing in metrics with bounded highway
dimension. arXiv:1707.08270, 2017.

14 Amariah Becker, Philip N Klein, and David Saulpic. A quasi-polynomial-time approxi-
mation scheme for vehicle routing on planar and bounded-genus graphs. In 25th Annual
European Symposium on Algorithms (ESA), volume 87, pages 12:1–12:15, 2017.

15 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization.
ACM Transactions on Algorithms, 13(2), 2017.

16 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approxima-
tion schemes for k-means and k-median in Euclidean and minor-free metrics. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016.

17 Aparna Das and Claire Mathieu. A quasipolynomial-time approximation scheme for Eu-
clidean capacitated vehicle routing. Algorithmica, 73(1):115–142, 2015.

18 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC), 1988.

19 Andreas Emil Feldmann. Fixed parameter approximations for k-center problems in low
highway dimension graphs. In Proceedings, Part II, of the 42nd International Colloquium on
Automata, Languages, and Programming (ICALP), pages 588–600. Springer-Verlag, 2015.

20 Andreas Emil Feldmann, Wai Shing Fung, Jochen Könemann, and Ian Post. A (1+ε)-
embedding of low highway dimension graphs into bounded treewidth graphs. In Proceed-
ings, Part I, of the International Colloquium on Automata, Languages, and Programming
(ICALP), pages 469–480. Springer, 2015.

21 Bruce L Golden and Richard T Wong. Capacitated arc routing problems. Networks,
11(3):305–315, 1981.

22 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

23 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algo-
rithms. Journal of Algorithms, 31(1):228–248, 1999.

24 Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 534–543. IEEE, 2003.

25 Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of geomet-
ric problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2003.

26 Mark Haimovich and A. H. G. Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10(4):527–542, 1985.

27 Shin Hamaguchi and Naoki Katoh. A capacitated vehicle routing problem on a tree. In
International Symposium on Algorithms and Computation, pages 399–407. Springer, 1998.

28 Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985.

A. Becker, P. N. Klein, and D. Saulpic 8:15

29 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal
of the ACM, 48(2):274–296, 2001.

30 Michael Khachay and Roman Dubinin. PTAS for the Euclidean capacitated vehicle routing
problem in Rd. In Proceedings of the 9th International Conference on Discrete Optimization
and Operations Research (DOOR), pages 193–205. Springer, 2016.

31 Ján Plesník. On the computational complexity of centers located in a graph. Aplikace
matematiky, 25(6):445–452, 1980.

32 David B Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, pages 265–274. ACM, 1997.

ESA 2018

Fine-grained Lower Bounds on Cops and Robbers
Sebastian Brandt
ETH Zürich
Zürich, Switzerland
brandts@ethz.ch

Seth Pettie1

University of Michigan
Ann Arbor, MI, USA
pettie@umich.edu

Jara Uitto2

ETH Zürich
Zürich, Switzerland
jara.uitto@inf.ethz.ch

Abstract
Cops and Robbers is a classic pursuit-evasion game played between a group of g cops and one
robber on an undirected N -vertex graph G. We prove that the complexity of deciding the winner
in the game under optimal play requires Ω

(
Ng−o(1)) time on instances with O(N log2N) edges,

conditioned on the Strong Exponential Time Hypothesis. Moreover, the problem of calculating
the minimum number of cops needed to win the game is 2Ω(√N), conditioned on the weaker
Exponential Time Hypothesis. Our conditional lower bound comes very close to a conditional
upper bound: if Meyniel’s conjecture holds then the cop number can be decided in 2O(

√
N logN)

time.
In recent years, the Strong Exponential Time Hypothesis has been used to obtain many lower

bounds on classic combinatorial problems, such as graph diameter, LCS, EDIT-DISTANCE, and
REGEXP matching. To our knowledge, these are the first conditional (S)ETH-hard lower bounds
on a strategic game.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Cops and Robbers

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.9

1 Introduction

The game of Cops and Robbers is a two-player perfect information game played on a graph.
One player is the cop player, who is identified with a set of g cops3 occupying vertices of the
graph. The other player is the robber player, who is identified with a single robber occupying
some vertex of the graph. The game begins by the cop player placing the set of cops on the
graph. Once she has decided the locations of the cops, it is the turn of the robber player to
do the same.

Then, taking turns and initiated by the cop player, the players are allowed to move their
pieces along the edges of the graph, where a turn of a player consists of moving all pieces the

1 Supported by NSF grants CCF-1514383 and CCF-1637546.
2 Partially supported by ERC Grant No. 336495 (ACDC).
3 We decided to denote the number of cops by g as opposed to the “standard” k to avoid confusion later
with the parameter k for k-CNF.

© Sebastian Brandt, Seth Pettie, and Jara Uitto;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 9; pp. 9:1–9:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brandts@ethz.ch
mailto:pettie@umich.edu
mailto:jara.uitto@inf.ethz.ch
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Fine-grained Lower Bounds on Cops and Robbers

player is identified with to an adjacent vertex. We assume that the graph is reflexive, i.e.,
a player is allowed to let a piece stay in the vertex it is currently occupying. The goal of
the cop player is to capture the robber, i.e., move at least one cop to the vertex occupied by
the robber. Conversely, the goal of the robber is to avoid being captured indefinitely. We
say that a graph G is g-cop-win if there is a strategy for g cops to guarantee capture of the
robber. Furthermore, we call the smallest integer g such that G is a g-cop-win graph the cop
number of G and denote it by c(G). Notice that any graph with n vertices is n-cop-win.

In this paper, we study the computational complexity of determining the cop number of
a given input graph. It is known from previous work by Berarducci and Intrigila [5] that,
for a fixed g, one can check in polynomial time whether c(G) ≤ g. On the other hand, it
was recently shown by Kinnersley that, for a non-fixed g, i.e., that can be a function of n,
deciding whether c(G) ≤ g is EXPTIME-complete [22].

Perhaps the most famous and intriguing problem in the field of cops and robbers is
Meyniel’s conjecture, that states that O(

√
n) cops always suffice to capture the robber in

any n-vertex graph [17]. Towards proving this conjecture, it is known that there exist graphs
with cop number Θ(

√
n) [26], and that n/2(1+o(1))

√
logn cops always suffice to capture the

robber; see Scott and Sudakov [30], or Lu and Peng [24] for a similar bound. Combining
this upper bound with an nO(g) algorithm for checking whether the cop number is at most
g [5], the cop number can always be computed in nn/2(1+o(1))

√
log n time. Moreover, assuming

that Meyniel’s conjecture is true, this upper bound reduces to nO(
√
n). Hence, under this

assumption 2Ω(
√
n logn) is the best lower bound that we can hope to achieve.

But how close to this bound is it possible to get? While the result by Kinnersley
shows EXPTIME-completeness, it gives relatively loose guarantees on the actual value
in the exponent of the runtime. Since the completeness proof goes through a series of
reductions [22, 31] and the size of the input graph grows (polynomially) in these reductions,
the lower bound by Kinnersley “only” gives a 2n1/5 lower bound.4

Our work can be seen as a step towards finding the right asymptotic bound in the
exponent. Furthermore, our construction is quite simple and, in particular, gives rise to very
concise and easy to understand strategies for the players. To state our main results, we recall
the satisfiability problem and the definitions of the exponential time hypotheses below.

I Definition 1. Let ck be the smallest value such that instances of k-CNF-SAT with m

clauses and n variables can be solved in 2(ck+o(1))n poly(m) time. The Exponential Time
Hypothesis (ETH) is that ck > 0 for all k ≥ 3. The Strong Exponential Time Hypothesis is
that limk→∞ ck = 1, i.e., k-CNF-SAT requires 2(1−o(1))n time for any non-constant k = k(n).

Conditioning on the Exponential Time Hypothesis and the Strong Exponential Time
Hypothesis, we prove the following theorems. We want to emphasize that Theorem 2 is
optimal up to a constant factor in the exponent and Theorem 3 and Theorem 4 are optimal
up to a logN factor in the exponent, in the case of Theorem 3 under the assumption of
Meyniel’s conjecture. Furthermore, a potentially interesting detail of Theorem 2 is that it
works for any g ≥ 2, i.e., not only when g grows large.

4 Suppose an ABF game [31] is played on a CNF formula with ` variables and O(`) clauses. Kinnersley [22]
reduces this to a lazy cops and robbers with protection game on O(`2) vertices, O(`3) edges, and `+O(1)
cops. Given any such game with n vertices, m edges, and g cops, Kinnersley [22] reduces it to an
equivalent cops and robbers with protection game on O(gn+m) vertices, O(n(g2 +m)) edges, and g
cops. Mamino’s reduction [25] from cops and robbers with protection to standard cops and robbers
transforms a game with parameters n,m, g to O(g2n), O(g4m), g. Composing all three reductions, we
arrive at a standard cops and robbers instance with N = O(`5) vertices, O(`9) edges, and `+O(1) cops.
If we need 2Ω(`) time to decide the winner of the original ABF game, then this gives, at the best, a
2Ω(N1/5) lower bound on deciding the cop number of an N -vertex graph.

S. Brandt, S. Pettie, and J. Uitto 9:3

I Theorem 2. Fix an integer g ≥ 2 and any δ > 0. Conditioned on the Strong Exponential
Time Hypothesis, the problem of deciding whether an N -vertex, M -edge graph has cop number
at most g cannot be solved in O(Mg−δ) time.

In an informal sense, Theorem 2 can be interpreted as the statement that exploring almost
all of the O(Mg+1), resp. O(Mg+2), possible game configurations and transitions between
these configurations in a cops and robbers game with g, resp. g + 1, cops is unavoidable in
order to determine whether the cop number is at most g or at least g + 1.

I Theorem 3. Conditioned on the Exponential Time Hypothesis, the problem of calculating
the cop number of an N -vertex graph cannot be solved in 2o(

√
N) time.

As mentioned above, if Meyniel’s conjecture is true, the lower bound given in Theorem 3
cannot be improved by more than a log-factor in the exponent. However, if Meyniel’s
conjecture turns out to be false and there is an infinite graph family requiring Ω(X(N)) cops
to capture the robber, for some function X(N) = ω(

√
N), there is well-founded hope that

our approach can be used to show that the problem of calculating the cop number of an
N -vertex cannot be solved in 2o(X(n)), thereby staying in the realm of being only a log-factor
away from the optimum. The reason for this hope is that the graphs we construct in order
to infer our lower bound contain components that are essentially the hard instances for the
Ω(
√
N) lower bound on the cop number. Of course, it cannot be taken for granted that all

proof details still work out if we replace these components with the hard instances for a
larger lower bound on the cop number, but the simplicity of our construction suggests that
this might indeed be the case.

I Theorem 4. Let g : N→ R be any function such that g(x) = o(
√
x) and g(x+1) ≤ g(x)+1

for all positive integers x. Conditioned on the Exponential Time Hypothesis, the problem of
deciding whether the cop number of an N -vertex graph is at most g(N) cannot be solved in
2o(g(N)) time.

Informally, Theorem 4 states that also for all (“natural”) functions between constant
functions and Θ(

√
N), deciding whether the cop number of a graph is bounded by the

function takes time exponential in the function. Similarly to the case of Theorem 3, in case
Meyniel’s conjecture turns out to be false, the range of functions for which Theorem 4 applies
might be increased to include functions from ω(

√
N) by adapting our graph construction in

a straightforward way.
To the best of our knowledge, this is the first work to apply the (Strong) Exponential

Time Hypothesis on a strategic game. In previous works, (S)ETH has been applied to,
e.g., some well known combinatorial problems such as graph diameter [29], LCS [9, 10],
EDIT-DISTANCE [3], and REGEXP matching [4, 11].

2 Related Work

The study of the game of Cops and Robbers was initiated by Quilliot [27] in 1978 and
introduced independently a few years later by Nowakowski and Winkler [7]. Nowakowski
and Winkler provided a full characterization of graphs where one cop can capture a robber
which was later extended to the case of many cops by Clarke and MacGillivray [14]. One
of the core questions related to the game is the cop number of a graph, which denotes the
minimum number of cops required to capture the robber. A very early result by Aigner and
Fromme states that 3 cops suffice to capture a robber on planar graphs and in the same
work, they showed that any graph with girth at least 5 and minimum degree at least δ has a
cop number of at least δ [2].

ESA 2018

9:4 Fine-grained Lower Bounds on Cops and Robbers

Later, Prałat showed that there are incidence graphs of projective planes that satisfy
these properties for δ = Ω(

√
n) yielding the state-of-the-art lower bound for the cop number

of any graph [26]. Given that Meyniel’s [17] conjectured O(
√
n) upper bound holds, this

bound is tight. The current best upper bound of n/2(1+o(1))
√

logn [30] is far away from this
though and improving it is perhaps the most crucial open problem in the field.

Beyond the existential question of determining the maximum cop number, there is the
computational question. On the positive side, for fixed g, determining whether the cop
number is at most g can be computed in polynomial time [5]. To the best of our knowledge,
the current best algorithm runs in O(n2g+3) time [6]. Many years later, this was contrasted
by a negative result showing that for a non-fixed g, i.e., g can be a function of the number
of vertices n, this question becomes NP-hard [16]. A bit later, it was shown by Mamino
that this question is hard for PSPACE [25]. An interesting detail on this work is that it
goes through a reduction to a variant called “Cops and Robbers with Protection”. In this
variant, edges are divided into protected and unprotected edges. The crux of the game is
that the capture only occurs if a cop moves to the vertex occupied by the robber through an
unprotected edge. In a recent breakthrough, Kinnersley managed to show that the stardard
variant of the problem is actually EXPTIME-complete [22].

Even though the progress on the specific question of finding the cop number is fairly
recent, other related questions in various graph classes have been studied long ago. For
example, in the end of seventies and beginning of eighties, Adachi et al. studied a variant of
the game where one cop is trying to prevent any of multiple robbers from reaching a “hole”
in the graph [21, 1]. In their variant, the initial positions are fixed and the cop and exactly
one robber have to move in each turn. They showed EXPTIME-completeness. For a survey
of earlier complexity results, we refer to a survey by Johnson [20]

Goldstein and Reingold [18] studied a version of the game in which the cops and robbers
have prescribed initial positions and the goal of the robber is to reach a specific vertex. They
showed that in undirected graphs this variant of the game is EXPTIME-complete. In the
same work, they showed that the directed version of the game, without fixing the initial
positions, is also EXPTIME-complete.

For the curious reader, we point out that many of the results listed here are based on
reductions to the ABF-problem that was shown to be EXPTIME-complete by Stockmeyer
and Chandra [31]. Furthermore, for a great survey on the results of the game we refer the
reader to the book by Bonato and Nowakowski [7].

3 Preliminaries

Let us give some definitions that are used throughout the paper.

I Definition 5 (k-CNF-SAT). The input to the k-CNF-SAT problem is a conjunction of one
or more clauses, where each clause consists of a disjunction of at most k literals. The goal
is to determine whether the formula is satisfiable, i.e., if there is a truth assignment of the
variables such that the input formula evaluates to true.

Especially, we wish to specify what we mean by a partial assignment of variables in a logical
formula consisting only of literals, disjunctions, and conjunctions. In a partial assignment, a
subset of the variables is set to true/false and some may be left unassigned. A disjunctive
clause x1 ∨ x2 ∨ · · · ∨ x`, for ` ≥ 1 is satisfied by a partial assignment if at least one literal
in the clause has an assigned truth value and is true. We point out that this means that
a disjunctive clause that contains both a variable and its negation can still be unsatisfied

S. Brandt, S. Pettie, and J. Uitto 9:5

by a partial assignment. Throughout the paper, we denote the number of variables in a
k-CNF-SAT instance by n, the number of vertices in a graph by N , the number of cops by g,
and we reserve the letter k as the parameter for k-CNF-SAT.

4 The Construction

Fix a number g ≥ 2 of cops and an integer k ≥ 3. The technique we use to derive our
main results is a reduction from k-CNF-SAT to the problem of deciding whether a graph is
g-cop-win. To this end, we will start this section by describing how we transform any k-CNF
formula with n variables and m clauses into an input graph for the Cops and Robbers game
with g cops. Then we will prove that our graph construction has the property that the cops
can win the game in the constructed graph iff the k-CNF formula is satisfiable. We will
conclude the section by using this property to infer our lower bounds.

In the following we give an informal high-level overview of our construction. We say that
vertex v covers a set of vertices S if v is adjacent to all vertices in S. Vertex v always covers
itself. The constructed graph consists of two zones: one that is designed for the cops from
which they can cover the whole graph if the k-CNF formula is satisfiable, and one for the
robber in which he can evade capture indefinitely if the formula is unsatisfiable.

The cops’ zone consists of g2dn/ge vertices, which represent certain partial assignments
to groups of dn/ge variables in the CNF formula. By occupying g non-conflicting partial
assignments, the cops can collectively represent a total assignment to the variables. If this
total assignment is satisfying, then it should cover every vertex in the robber area, leaving
the robber nowhere to go. (Each vertex in the robber’s zone is associated with a clause,
which is covered by the cops if their collective assignment satisfies the clause.) On the other
hand, if no satisfying assignment exists, then the robber must always be able to move to
some vertex not covered by any cop.

If the cops and robbers agreed to stay in their own zones then the construction of the
robber’s zone could be very simple: m vertices (one for each clause) arranged in a clique
suffices. Of course, both the robber and the cops are free to roam over the whole graph, so
we need to add extra mechanisms to dissuade the robber from entering the cops’ zone, and
protect the robber against any cops entering the robber’s zone. To protect the robber, we
make the subgraph induced by the robber’s zone a girth-6 graph,5 which means that any cop
that enters the robber’s zone can never cover more than one neighbor of the robber, leaving
many options for the robber to escape. The mechanism to dissuade the robber from entering
the cops’ zone is more subtle; it ensures that any robber that does this loses in two turns,
regardless of whether the k-CNF formula is satisfiable or not.

Because we are interested in lower bounds as a function of input size, it is important
to keep the graph as sparse as possible. Many transformations on cops and robbers games
(e.g., [22, 23, 25]) create very dense graphs, sometimes having Ω(n2) edges. Parts of our
construction could be simplified by introducing large cliques, but this would weaken the
resulting (conditional) lower bounds. This concludes the informal overview; in the following,
we will give a formal description of our graph construction.

Let φ = C1 ∧ · · · ∧Cm be a k-CNF formula over the variable set V = {v1, . . . , vn}, where
the ith clause is Ci = xi,1 ∨ · · · ∨ xi,k and each xi,j is a variable or its negation. The variable
set is partitioned into g ≥ 2 groups V1, . . . ,Vg of at most dn/ge variables each. For reasons
that will become clear later, it is desirable that the formula has the property that any partial

5 “Girth” is the length of the shortest cycle.

ESA 2018

9:6 Fine-grained Lower Bounds on Cops and Robbers

C1 C2 C3

(v1 ∨ v2 ∨ v3) ∧ (¬v3 ∨ v4) ∧ (v2 ∨ ¬v4)
∧ (v1 ∨ ¬v1 ∨ v2 ∨ ¬v2) ∧ (v3 ∨ ¬v3 ∨ v4 ∨ ¬v4)

︸ ︷︷
︸

︸ ︷︷
︸ φ

C4 ∧ C5

︸
︷︷

︸φ′

C4 C5

C1 C2 C3

v1

¬v1
¬v2v2 v4 ¬v4

v3

¬v3
u∗

Figure 1 A schematic and simplified illustration of our graph construction in the case of two cops
and a k-CNF formula φ with four variables and three clauses. Notice that vertex u∗ is not connected
to the two extra clauses C4 and C5. Each vertex in the figure labeled with Ci for some i corresponds
to the set of vertices in B with clause-type i. The small vertices correspond to the partial truth
assignments and are connected to the clause vertices that they satisfy (i.e., the corresponding literal
is contained in these clauses). Notice that C4 and C5 are only covered by the cops if they occupy a
set of vertices that corresponds to assigning a value to all variables. The edges between vertices in
the Ci, i.e., between vertices in B, are not shown in Figure 1. For an illustration of these edges, see
Figure 2.

satisfying truth assignment must set at least one variable in each group. To this end, we
supplement φ with g extra clauses. Define φ′ as follows.

φ′ = C1 ∧ · · · ∧ Cm ∧ Cm+1 ∧ · · · ∧ Cm+g

where Cm+i =
∨
v∈Vi

(v ∨ ¬v)

Observe that φ′ is satisfiable iff φ is since any total assignment to V automatically satisfies
each of the clauses Cm+1, . . . , Cm+g. Define m = m+ g.

The next step is to convert φ′ to the graph G on which the Cops and Robbers game will
be played. See Figure 1 for a simplified illustration of a graph constructed from a k-CNF-SAT
instance.

Vertices

The vertex set V (G) is A1 ∪ · · · ∪ Ag ∪ B ∪ {u?}, where there is a vertex u ∈ Ai for each
truth assignment ψu : Vi → {T,F} to the ith variable group. The set B consists of Θ(m2)
vertices, each of which is associated with one of the m clauses in φ′. If u ∈ B, clause(u) ∈ [m]
indicates the clause index associated with u, and we say that u has clause-type clause(u).
The role of u? will be revealed shortly. In total, |V (G)| = O(g2n/g +m2).

Edges

The edge set E(G) includes edges of three types:
Satisfaction Edges. Edges join partial assignments to clauses iff the partial assignment

satisfies the clause:

{{u, u′} | u ∈ Ai, u′ ∈ B, clause(u′) = q, and ψu satisfies Cq} ⊂ E(G)

S. Brandt, S. Pettie, and J. Uitto 9:7

Special u? Edges. In some ways, u? functions like an assignment that magically satisfies all
clauses Ci where i ∈ [m], but none where i ∈ [m]\[m]. It is also adjacent to all vertices
in A1, . . . , Ag.

{{u?, u} | Either u ∈ A1 ∪ · · · ∪Ag or u ∈ B and clause(u) ∈ [m]} ⊂ E(G),

High Girth Subgraph. The subgraph of G induced by B has Θ(|B|3/2) = Θ(m3) edges and
girth at least 6. Moreover, for each u ∈ B and each q ∈ [m],

|{u′ ∈ B | {u, u′} ∈ E(G) and clause(u′) = q}| ≥ 1 .

I.e., each B-vertex has at least one neighbor of each clause-type.

It is not immediate from the description that the subgraph induced by B actually exists.
We construct such a graph and clause-assignment now. Let p be the first prime greater than
m, so p = Θ(m), by Bertrand’s postulate [13]. Define line(s, t) to be the line in Z2

p with slope
s and offset t:

line(s, t) = {(i, j) ∈ Z2
p | i · s+ t ≡ j (mod p)}.

The set B consists of 2p2 vertices {wi,j , ls,t | (i, j), (s, t) ∈ Z2
p}, where wi,j represents the

point (i, j) and ls,t represents line(s, t). The subgraph induced by B is simply the point-line
incidence graph, i.e.,

{wi,j , ls,t} ∈ E(G)⇔ (i, j) ∈ line(s, t) .

We restate some properties of this graph that were shown in previous work [8]. See [12, 15,
28, 33, 32, 26] for other constructions with essentially the same properties.

I Lemma 6. Consider the p2 points and p2 lines indexed by Z2
p.

1. The intersection of two lines contains at most one point.
2. Two points are contained in at most one common line.
3. For any point (i, j) and any slope s, there exists some line(s, t) containing (i, j).
4. For any line(s, t) and index i, there is some point (i, j) ∈ line(s, t).

Properties (1) and (2) of Lemma 6 imply that the subgraph induced by B has no 4-cycles.
Since it is clearly bipartite, it must have girth (at least) 6. We use properties (3) and (4) of
Lemma 6 to design a good clause-assignment function clause : B → [m]. In particular,

For points, clause(wi,j) = i+ 1
For lines, clause(ls,t) = s+ 1

Since p ≥ m, it follows that for each clause index q ∈ [m], every point wi,j has at least one
neighboring line with clause-type q, and every line ls,t has at least one neighboring point
with clause-type q. See Figure 2 for an illustration.

This concludes the description of graph G. It is straightforward to construct G in time
linear in the number of edges, which is O(m2g2n/g +m3). The following lemma shows that
the construction indeed satisfies its purpose, i.e., the constructed graph G is g-cop-win if
and only if the k-CNF formula φ is satisfiable.

I Lemma 7. In the Cops and Robbers game on G with g cops, the cops have a winning
strategy iff φ is satisfiable.

ESA 2018

9:8 Fine-grained Lower Bounds on Cops and Robbers

(a) The subgraph B can be seen as a set of vertices/-
points and lines on a plane. In the figure, the points
associated with the same clause are illustrated by
the same color. Lines with slope 1 and offsets 0 and
3 are illustrated by solid red and black lines, respect-
ively. Line with slope 2 and offset 0 is illustrated by
a dashed line. The two unique intersections of the
non-parallel lines are emphasized with black boxes.

`1

`2

`3

`4

`5

P L

u1

u2

u3

`6

(b) Concretely, the subgraph B is a bipartite graph
with points on one side (left) and the lines on the
other. Since every two lines have at most one in-
tersection point, at most one neighbor of a point
vertex u3 can be covered by any other point vertex
(see black boxes in the figure). Hence, 5 cops are
needed to cover the neighbors of u3. The same line
of reasoning holds for any line vertex.

Figure 2 The subgraph depicted as a set of points and lines on a plane and as a bipartite
graph. Notice that any cycle starting from a point vertex must pass through at least 3 line vertices.
Therefore, the girth of the graph is at least 6. This is illustrated by the dashed edges incident on
vertices u1, u2, and u3 on the right. Notice that the pictures above are not inferred from each other.

Proof. Suppose ψ : V → {T,F} is a satisfying total assignment, decomposed into partial
assignments ψu1 , . . . , ψug , where ψui is associated with ui ∈ Ai. In their initial move, the
cops position themselves on u1, . . . , ug. At this point they cover all vertices in B ∪ {u?}, but
leave the remaining vertices in A1 ∪ · · · ∪Ag uncovered. Without loss of generality we can
assume that the robber begins at a vertex in A1\{u1}. In the next move, the cops stay put,
except for the cop on u2, which moves to u?. At this point all B-vertices with clause-types
in [m] are covered by the cop on u?, and those with clause-type m+ 1 are covered by the
cop on u1. The robber, being in A1, can move once more or stay put, but is immediately
caught by the cop on u1 or u? in the next turn.

Now consider the case where φ is unsatisfiable. We show that the robber has a winning
strategy such that it never leaves the set B. Consider any moment in the middle of the game,
after the cops have moved to vertices w1, . . . , wg. The robber is located at some w′ ∈ B and
may be forced to move if w′ is in the neighborhood of w1, . . . , wg. Let z ≥ 0 be the number
of cops that are located at some vertex in B. First consider the case that at least z+ 1 of the
Ai do not contain any cop, and without loss of generality, let A1, . . . , Az+1 contain no cop.
By the properties of G, the robber is adjacent to a set of vertices S = {w′1, . . . , w′z+1} ⊂ B,
where clause(w′i) = m+ i. None of the S-vertices are covered by the g − z cops stationed
in Az+2 ∪ · · · ∪ Ag ∪ {u?}. Since the subgraph induced by B has girth at least 6, each

S. Brandt, S. Pettie, and J. Uitto 9:9

of the remaining z cops can cover at most one S-vertex, hence at least one S-vertex is
not covered by any cop, and the robber can move there without being captured. Now
consider the other case, i.e., that exactly z of the Ai, say A1, . . . , Az, do not contain any
cop. Then the g − z sets Az+1, . . . , Ag contain exactly one cop each. Assume without loss
of generality that wz+1 ∈ Az+1, . . . , wg ∈ Ag, and let ψ′ be the partial assignment obtained
by combining the partial assignments ψwz+1 , . . . , ψwg . Since φ is unsatisfiable, there is a
clause from φ not satisfied by ψ′, say clause Cq. Similarly to the previous case, by the
properties of G, the robber is adjacent to a set of z + 1 vertices S = {w′1, . . . , w′z, w′} ⊂ B,
where clause(w′i) = m+ i and clause(w′) = q. Again, none of the S-vertices is covered by
the g − z cops stationed in Az+1 ∪ · · · ∪ Ag and the remaining z cops can cover at most z
S-vertices. Now, with the same argumentation as in the previous case, it follows that there
is an S-vertex the robber can move to without being captured.

The arguments above apply to any stage in the middle of the game; the same arguments
show that if φ is unsatisfiable, the robber has a safe first move, after the cops choose their
initial positions. J

We also obtain the following curious observation from our construction. Later, we use
the observation to slightly strengthen our results, but we also believe that it is a property of
the construction that is of independent interest.

I Observation 8. Recall the vertex set of G is V (G) = A1 ∪ · · · ∪Ag ∪B ∪ {u?}. Then the
cop number of G is either g or g + 1.

Proof. If there are g + 1 cops, they can position themselves on vertices u1, . . . , ug, u
? with

ui ∈ Ai. Then, since u? is connected to all vertices in A1 ∪ · · · ∪ Ag ∪ B except those in
B with clause-type in [m]\[m], and for each i, the cop in ui covers all vertices in B with
clause-type m+ i, the cops cover the entire graph and hence can capture the robber in the
following turn. If, on the other hand, there are at most g − 1 cops, then the robber has
a simple winning strategy by always moving to a vertex in B with clause-type in [m]\[m]
that is not covered by any cop. By analogous arguments to the ones used in the proof of
Lemma 7, such a vertex always exists. J

5 Hardness of Finding the Cop Number

Quickly before going into the proofs of our main theorems, we point out a small technical
detail. The input k-CNF-SAT instance that we reduce to the Cops and Robbers instance may
contain a very large number of clauses. This would then imply that our graph constuction
has many edges, up to around m̂4 edges, where m̂ is the number of input clauses. This would
in turn result in a running time for our construction that is too large for our purposes. We
can work around this problem by using the sparsification lemma [19], which, for any chosen
ε > 0, reduces an arbitrary k-CNF-SAT instance to 2εn k-CNF-SAT instances with at most
c(k, ε) · n clauses each, where c(k, ε) is a function independent of n.

Next, we prove Theorem 2, i.e., that under the Strong Exponential Time Hypothesis, the
time needed to decide whether the cop number is at most some fixed g grows exponentially
as a function of g. A proof sketch goes as follows. We are given a k-CNF-SAT instance
with n variables and O(n) clauses. We obtain a graph with roughly 2n/g vertices and
edges from our construction. Being able to solve our cop number decision problem in
Mg−δ =

(
2n/g

)g−δ � 2n time yields a contradiction to the Strong Exponential Time
Hypothesis.

ESA 2018

9:10 Fine-grained Lower Bounds on Cops and Robbers

I Theorem 2. Fix an integer g ≥ 2 and any δ > 0. Conditioned on the Strong Exponential
Time Hypothesis, the problem of deciding whether an N -vertex, M -edge graph has cop number
at most g cannot be solved in O(Mg−δ) time.

Proof. Let φ̂ be an instance of k-CNF-SAT with m̂ clauses and n variables, and let ε > 0.
Using the sparsification lemma, in poly(n) · 2εn time we can reduce φ̂ to 2εn instances of
k-CNF-SAT, each having at most m = c(k, ε) · n clauses. Let φ be one of those instances,
and let G be the graph obtained by applying our graph construction to φ. G is an N -vertex,
M -edge graph, where N = Θ(g2n/g +m2) = Θ(2n/g) and M = O(m2 ·N) = O(N log2N).
Thus, if we can decide in O(Mg−δ) = O(poly(m)Ng−δ) time whether G has cop number
g, we can determine the satisfiability of φ̂ in poly(m)2εn ·Ng−δ = poly(n)2n(ε+1−δ/g) time,
by Lemma 7. The calculations above do not depend on the value of k, so setting ε < δ/g

contradicts the Strong Exponential Time Hypothesis. J

Next, we provide the proof for Theorem 3. We note that this result can also be obtained
from extending the proof of Theorem 4 to functions g(x) = Θ(x) (which requires some extra
care), but this special case is much cleaner to prove and has all the same ingredients. The
main difference is in the simplicity of calculations. The difference to the proof of Theorem 2
is that since g is a function of n, we can set g = n and the graph becomes much smaller
in terms of the number of variables of the input k-CNF formula. As a consequence, the
dominating part of the constructed graph G w.r.t size is now B (and not the Ai, as in the
proof of Theorem 2).

I Theorem 3. Conditioned on the Exponential Time Hypothesis, the problem of calculating
the cop number of an N -vertex graph cannot be solved in 2o(

√
N) time.

Proof. Fix an arbitrarily small constant ε and an integer k ≥ 3. Let φ̂ be an instance
of k-CNF-SAT with m̂ clauses and n variables, and φ be one of the 2εn instances with
m = c(k, ε)n clauses generated from the sparsification lemma. Use our graph construction
to create a graph G from φ for a Cops and Robbers game with g = n cops. G has
N = Θ(g2n/g + (n + m)2) = Θ(m2) vertices and O(m2g2n/g + m3) = O(m3) edges. If we
can determine the cop number of G in 2o(

√
N) = 2o(m) = 2o(n) time, we can determine the

satisfiability of φ̂ in poly(n)2εn · 2o(n) = poly(n)2(ε+o(1))n time, by Lemma 7. Since ε can be
made arbitrarily small, this contradicts the Exponential Time Hypothesis. J

As our last technical contribution, we show that one can replace the
√
N in the exponent

in Theorem 3 with essentially any reasonable function in N that is asymptotically smaller
than

√
N and obtain a lower bound for deciding whether the cop number of an input

graph is bounded by this function. Basically, the statement of this theorem, combined with
Observation 8 is that even when we know that the cop number is either g(N) or g(N) + 1,
the decision problem is hard.

I Theorem 4. Let g : N→ R be any function such that g(x) = o(
√
x) and g(x+1) ≤ g(x)+1

for all positive integers x. Conditioned on the Exponential Time Hypothesis, the problem of
deciding whether the cop number of an N -vertex graph is at most g(N) cannot be solved in
2o(g(N)) time.

Proof. Let ε, k, φ̂, m̂, n, φ andm be as in the proof of Theorem 3. Use our graph construction
to create a graph G from φ for a Cops and Robbers game with n cops and denote the number
of vertices of G by N . Check whether g(N) < n + 1. Observe that since g(x) = o(

√
x)

and N = O(n2), there is some constant n0 such that g(N) < n+ 1 for all possible k-CNF
formulae φ with n ≥ n0 variables. Hence, if g(N) ≥ n+ 1, n is constant and we can decide
in constant time whether φ is satisfiable.

S. Brandt, S. Pettie, and J. Uitto 9:11

Now consider the other case, i.e., g(N) < n+ 1. As we want to use the Exponential Time
Hypothesis in order to infer a conditional lower bound on the time it takes to determine
whether the cop number of an N -vertex graph is at most g(N), we would like the constructed
graph G to have the property that φ is satisfiable iff G has cop number at most g(N). With
the current construction of G we only have a similar property, namely, that φ is satisfiable
iff G has cop number at most n, due to Lemma 7. But since g(N) < n+ 1, we can change G
slightly, adding more and more vertices to G in a way that does not change the cop number
of G, and in the end obtain a graph G′ with the desired property. More specifically, we
obtain G′ from G by appending a path of r vertices to some arbitrarily chosen vertex u of G,
where r is the smallest non-negative integer such that g(N + r) ≥ n.

Set N ′ = N + r. Due to the properties of our function g, we know that g(N ′) < n+ 1.
Note that the cop number of G′ is the same as the cop number of G: In the case that φ
is unsatisfiable, our robber strategy still works with the same arguments as in G. In the
case that φ is satisfiable, the cops can simply perform the same strategy as in G, where they
assume that the robber is in u if the robber is actually in one of the newly appended vertices.
With this strategy, after 2 turns per player, the cops have captured the robber or at least
one cop ends up at u while the robber is in one of the new vertices, in which case the robber
can be captured by letting the cop traverse the appended path to the other end.

From the discussion above it follows that φ is satisfiable iff G′ has cop number at most
g(N ′). Hence, if the problem of deciding whether the cop number of an N -vertex graph is
at most g(N) can be solved in 2o(g(N)) = 2o(n) time, we can determine the satisfiability of
φ̂ in poly(n)2εn · 2o(n) = poly(n)2(ε+o(1))n time. Since ε can be made arbitrarily small, this
contradicts the Exponential Time Hypothesis. J

References

1 Akeo Adachi, Shigeki Iwata, and Takumi Kasai. Some combinatorial game problems require
ω(nk) time. J. ACM, 31(2):361–376, 1984.

2 Martin Aigner and Michael Fromme. A game of cops and robbers. Discrete Applied Math-
ematics, 8:1–12, 1984.

3 A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings 47th Annual ACM Symposium on Theory of
Computing (STOC), pages 51–58, 2015.

4 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 457–466, 2016. doi:10.1109/FOCS.2016.56.

5 A. Berarducci and B. Intrigila. On the cop number of a graph. Advances in Applied
Mathematics, 14(4):389–403, 1993.

6 Anthony Bonato and Ehsan Chiniforooshan. Pursuit and evasion from a distance: Al-
gorithms and bounds. In Proceedings of the Meeting on Analytic Algorithmics and Com-
binatorics (ANALCO), pages 1–10, 2009.

7 Anthony Bonato and Richard J. Nowakowski. The Game of Cops and Robbers on Graphs,
volume 61. American Mathematical Soc., 2011.

8 Sebastian Brandt, Yuval Emek, Jara Uitto, and Roger Wattenhofer. A tight lower bound
for the capture time of the cops and robbers game. In 44th International Colloquium on
Automata, Languages, and Programming (ICALP), Warsaw, Poland, 2017.

9 K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proceedings 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 661–670, 2014.

ESA 2018

http://dx.doi.org/10.1109/FOCS.2016.56

9:12 Fine-grained Lower Bounds on Cops and Robbers

10 K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for string problems
and dynamic time warping. In Proceedings 56th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 79–97, 2015.

11 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 307–318, 2017. doi:10.1109/FOCS.2017.
36.

12 W. G. Brown. On graphs that do not contain a Thomsen graph. Canad. Math. Bull.,
9:281–285, 1966.

13 P. L. Chebyshev. Memoire sur les nombres premiers. J. Math. Pures Appl., 17:366–390,
1852.

14 Nancy E. Clarke and Gary MacGillivray. Characterizations of k-copwin graphs. Discrete
Mathematics, 312(8):1421–1425, 2012. doi:10.1016/j.disc.2012.01.002.

15 P. Erdős, A. Rényi, and V. T. Sós. On a problem of graph theory. Studia Sci. Math.
Hungar., 1:215–235, 1966.

16 Fedor V. Fomin, Petr A. Golovach, Jan Kratochvíl, Nicolas Nisse, and Karol Suchan. Pur-
suing a fast robber on a graph. Theoretical Computer Science, 411(7):1167–1181, 2010.

17 Peter Frankl. Cops and robbers in graphs with large girth and Cayley graphs. Discrete
Applied Mathematics, 17(3):301–305, 1987. doi:10.1016/0166-218X(87)90033-3.

18 Arthur S. Goldstein and Edward M. Reingold. The complexity of pursuit on a graph. Theor.
Comput. Sci., 143(1), 1995.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

20 David S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms,
4(4):397–411, 1983.

21 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete
problems. SIAM Journal on Computing, 8(4):574–586, 1979.

22 William B. Kinnersley. Cops and robbers is EXPTIME-complete. Journal of Combinatorial
Theory, Series B, 111:201–220, 2015.

23 William B. Kinnersley. Bounds on the length of a game of cops and robbers. CoRR,
abs/1706.08379, 2017. arXiv:1706.08379.

24 Linyuan Lu and Xing Peng. On Meyniel’s conjecture of the cop number. Journal of Graph
Theory, 71(2):192–205, 2012.

25 Marcello Mamino. On the computational complexity of a game of cops and robbers. The-
oretical Computer Science, 477:48–56, 2013.

26 Paweł Prałat. When does a random graph have constant cop number? Australasian Journal
of Combinatorics, 46:285–296, 2010.

27 Alain Quilliot. Jeux et Pointes Fixes sur les Graphes. PhD thesis, Université de Paris VI,
1978.

28 I. Reiman. Über ein Problem von K. Zarankiewicz. Acta. Math. Acad. Sci. Hungary,
9:269–273, 1958.

29 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proceedings 45th ACM Symposium on Theory of Computing
(STOC), pages 515–524, 2013.

30 Alex Scott and Benny Sudakov. A bound for the cops and robbers problem. SIAM Journal
on Discrete Mathematics, 25(3):1438–1442, 2011. doi:10.1137/100812963.

31 Larry J. Stockmeyer and Ashok K. Chandra. Provably difficult combinatorial games. SIAM
Journal on Computing, 8(2):151–174, 1979.

32 J. Tits. Sur la trialité et certains groupes qui s’en déduisent. Publ. Math. I.H.E.S., 2:14–20,
1959.

33 R. Wenger. Extremal graphs with no C4s, C6s, or C10s. J. Comb. Theory Ser. B, 52(1):113–
116, 1991.

http://dx.doi.org/10.1109/FOCS.2017.36
http://dx.doi.org/10.1109/FOCS.2017.36
http://dx.doi.org/10.1016/j.disc.2012.01.002
http://dx.doi.org/10.1016/0166-218X(87)90033-3
http://arxiv.org/abs/1706.08379
http://dx.doi.org/10.1137/100812963

A Polynomial Kernel for Diamond-Free Editing
Yixin Cao
Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
yixin.cao@polyu.edu.hk

https://orcid.org/0000-0002-6927-438X

Ashutosh Rai
Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
ashutosh.rai@polyu.edu.hk

R. B. Sandeep
Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),
Hungary; and Indian Institute of Technology Dharwad, Dharwad, India
sandeeprb@iitdh.ac.in

Junjie Ye
Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
junjie.ye@polyu.edu.hk

https://orcid.org/0000-0003-3924-008X

Abstract
Given a fixed graph H, the H-free editing problem asks whether we can edit at most k edges to
make a graph contain no induced copy of H. We obtain a polynomial kernel for this problem
when H is a diamond. The incompressibility dichotomy for H being a 3-connected graph and the
classical complexity dichotomy suggest that except for H being a complete/empty graph, H-free
editing problems admit polynomial kernels only for a few small graphs H. Therefore, we believe
that our result is an essential step toward a complete dichotomy on the compressibility of H-free
editing. Additionally, we give a cubic-vertex kernel for the diamond-free edge deletion problem,
which is far simpler than the previous kernel of the same size for the problem.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Kernelization, Diamond-free, H-free editing, Graph modification problem

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.10

Funding Supported in part by NSFC under grant 61572414, RGC under grants 152261 and
252026, and ERC under grant 725978.

1 Introduction

A graph modification problem asks whether one can apply at most k modifications to a
graph to make it satisfy certain properties. By modifications we usually mean additions
and/or deletions, and they can be applied to vertices or edges. Although other modifications
are also considered, most results in literature are on vertex deletion and the following three
edge modifications: edge deletion, edge completion, and edge editing (deletion/completion).

As usual, we use n to denote the number of vertices of the input graph. For each graph
modification problem, one may ask three questions: (1) Is it NP-complete? (2) Can it be
solved in time f(k) · nO(1) for some function f , and if yes, what is the (asymptotically) best
f? (3) Does it have a polynomial kernel? The first question concerns classic complexity, while
the other two are about parameterized complexity [9, 6]. With parameter k, a problem is

© Yixin Cao, Ashutosh Rai, R.B. Sandeep, and Junjie Ye;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yixin.cao@polyu.edu.hk
https://orcid.org/0000-0002-6927-438X
mailto:ashutosh.rai@polyu.edu.hk
mailto:sandeeprb@iitdh.ac.in
mailto:junjie.ye@polyu.edu.hk
https://orcid.org/0000-0003-3924-008X
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 A Polynomial Kernel for Diamond-Free Editing

fixed-parameter tractable (FPT) if it can be solved in time f(k) ·nO(1) for some function f . On
the other hand, given an instance (G, k), a kernelization algorithm produces in polynomial
time an equivalent instance (G′, k′) – (G, k) is a yes-instance if and only if (G′, k′) is a
yes-instance – such that k′ ≤ k. It is a polynomial kernel if the size of G′ is bounded from
above by a polynomial function of k.

For hereditary properties, a classic result of Lewis and Yannakakis [13] states that all
the vertex deletion problems are either NP-hard or trivial. In contrast, the picture for edge
modification problems is far murkier. Earlier efforts for edge deletion problems [15, 7], though
having produced fruitful concrete results, shed little light on a systematic answer, and it was
noted that such a generalization is difficult to obtain.

A basic and ostensibly simple case of graph modification problems is to make the graph
H-free, where H is a fixed graph on at least two vertices. (We say that a graph is H-free if
it does not contain H as an induced subgraph.) For this special case, all the three questions
have been satisfactorily answered for vertex deletion problems, at least in the asymptotic
sense. All of them are NP-complete and FPT– indeed, H-free vertex deletion problems
admit simple |V (H)|k · nO(1)-time algorithms [2]. On the other hand, the reduction of Lewis
and Yannakakis [13] excludes subexponential-time algorithms (2o(k) · nO(1)-time algorithms)
assuming the exponential time hypothesis (ETH) [11]. Further, as observed by Flum and
Grohe [9], the sunflower lemma of Erdős and Rado [8] can be used to produce polynomial
kernels for H-free vertex deletion problems.

Even restricted to this very simple case, edge modification problems remain elusive.
Significant efforts have been devoted to an ongoing program that tries to answer these
questions in a systematic way, and promising progress has been reported in literature.
Recently, Aravind et al. [1] gave a complete answer to the first question: The H-free editing
problem is NP-complete if and only if H contains at least three vertices. They also excluded
subexponential-time algorithms for the NP-complete H-free edge modification problems,
assuming ETH. Noting that H-free edge modification problems can always be solved in
2O(k) · nO(1) time [2], we are left with the third problem, the existence of polynomial kernels.

Some of the H-free graph classes are important for their own structural reasons, e.g.,
most notably, cluster graphs and cographs, which are P3-free graphs and P4-free graphs
respectively; hence the edge modification problems toward them have been well-studied
[5, 10]. (Note that edge modification problems to P2-free graphs, i.e., independent sets,
are trivial.) Given the simplicity of H-free edge modification problems, and the naive FPT
algorithms for them, it may sound shocking that many of them do not admit polynomial
kernels. Indeed, the earliest incompressibility results of graph modification problems, by
Kratsch and Wahlström [12], are on H-free edge modification problems. Guillemot et al. [10]
excluded polynomial kernels for H-free edge deletion problems when H is a path of length at
least seven or a cycle of length at least four. An influential result of Cai and Cai [3] furnishes
a dichotomy on the compressibility of H-free edge modification problems when H is a path,
a cycle, or a 3-connected graph.

We tend to believe that H-free edge modification problems admitting polynomial kernels
are the exceptions. Our exploration suggests that graphs on four vertices play the pivotal
roles if we want to fully map the territory. Let H be the complement graph of H. Then the
H-free edge deletion problem is equivalent to the H-free edge completion problem, while the
edge editing problems are the same for H-free and H-free graphs. We are thus focused on
the four-vertex graphs (Figure 1); see Table 1 for a summary of compressibility results of
H-free edge modification problems when H is one of them. We conjecture that H-free edge
modification problems, when H being claw or paw, admit polynomial kernels.

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye 10:3

(a) P4 (b) C4 (c) K4 (d) claw (e) paw (f) diamond

Figure 1 Graphs on four vertices (their complements are omitted).

Table 1 The compressibility results of H-free edge modification problems for H being four-vertex
graphs. Every result holds for the complement H; e.g., the answers are also no when H is 2K2.

H deletion completion editing

K4 O(k4) [4] trivial O(k4) [4]
P4 O(k3) [10] O(k3) [10] O(k3) [10]
diamond O(k3) [14] trivial O(k8) [this paper]

claw unkown unkown unkown
paw unkown unkown unkown

C4 no [10] no [10] no [10]

We show a polynomial kernel for the diamond-free editing problem. Our observations
also lead to a cubic-vertex kernel for the diamond-free edge deletion problem, which is far
simpler than the previous kernel of the same size [14].

Our key observations are on maximal cliques. A graph G is diamond-free if and only if
every two maximal cliques of G share at most one vertex. We say that a maximal clique is
of type i if it shares an edge with another maximal clique, or type ii otherwise. It is not hard
to see that to make a graph diamond-free, we should never delete edges from a sufficiently
large clique. We thus put the maximal cliques of G into three categories, small type i, big
type i, and type ii. It turns out that a vertex participates in a diamond if and only if it is in
a maximal clique of type i, and the small type-i maximal cliques are crucial for the problem.

The first phase of our algorithm comprises two routine reduction rules. If a (non-)edge
participates in k + 1 or more diamonds that pairwise share only this (non-)edge, then it has
to be in a solution. (This is exactly the reason why no edge is deleted from a “large” clique.)
If there exists such an edge/non-edge, we delete/add it. We may henceforth assume that
these two simple rules have been exhaustively applied. We are able to show that the ends
of an edge added by a minimum solution must be from some small type-i maximal cliques.
The situation for deleted edges is slightly more complex. The two ends of a deleted edge are
either in a small type-i maximal clique, or in a type-ii maximal clique. In the second case,
the maximal clique has to intersect some small type-i maximal clique.

The second phase of our algorithm uses three nontrivial reduction rules to delete irrelevant
vertices. To analyze the size of the kernel, we bound the number of vertices that are (a) in
small type-i maximal cliques only, (b) in big type-i maximal cliques but not in any small
type-i maximal clique, and (c) only in type-ii maximal cliques. First, we show an upper
bound on the number of type-i maximal cliques. This immediately bounds the number of
vertices in part (a), because each small type-i maximal clique has a bounded size. For part
(b), the focus now is to bound the sizes of big maximal cliques of type i. We introduce
another reduction rule to delete certain “private vertices” from them. On the other hand, the
pattern of vertices shared by big maximal cliques is very limited. We are thus able to bound
the number of vertices in part (b), and we are left with part (c). We correlate a maximal

ESA 2018

10:4 A Polynomial Kernel for Diamond-Free Editing

clique K of type ii with small maximal cliques of type i: we would touch K only because
it had become type i after some operation, and this operation has to be an edge addition.
Recall that an edge can only be added between two vertices in part (a). For each pair of
them, we can build a blocker of O(k2) vertices from part (c). One more reduction rule is
introduced to remove all vertices behind the blockers. Together with the bound of vertices in
part (a), this bounds the number of vertices in part (c). They together give our main result.

I Theorem 1. The diamond-free editing problem has a kernel of O(k8) vertices.

2 Maximal cliques

All graphs discussed in this paper are undirected and simple. A graph G is given by its
vertex set V (G) and edge set E(G). The neighborhood of a vertex v in a graph G, denoted by
NG(v), consists of all the vertices adjacent to v in G. We extend this to a set S ⊆ V (G) of
vertices by defining the neighborhood NG(S) of S as (

⋃
v∈S NG(v)) \ S. For a set U ⊆ V (G)

of vertices, we denote by G[U] the subgraph induced by U , whose vertex set is U and whose
edge set comprises all edges of G with both ends in U . We use G− v, where v is a vertex of
G, as a shorthand for G[V (G) \ {v}]. In a diamond, we refer to the edge between the two
degree-three vertices as the cross edge, and the only non-edge the missing edge.

For a set E+ of edges, we denoted by G + E+ the graph obtained by adding edges in E+
to G,– its vertex set is still V (G) and its edge set becomes E(G) ∪ E+. The graph G− E−
is defined analogously. Throughout the paper we always tacitly assume E+ ∩ E(G) = ∅ and
E− ⊆ E(G); hence E+ and E− are disjoint. A solution of an instance (G, k) consists of a set
E+ of added edges and a set E− of deleted edges such that G + E+−E− is diamond-free and
|E+ ∪E−| ≤ k. We use E± as a shorthand for E+ ∪E−, and there should be no ambiguities:
E+ = E± \E(G) and E− = E±∩E(G). We also use G4E± as a shorthand for G+E+−E−.

We start from two routine reduction rules for edge editing problems. The correctness of
them is straightforward: If we do not add/delete uv, then we have to delete/add at least
k + 1 edges.

I Rule 1. If there exist a non-edge uv and 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1 in
N(u) ∩N(v) such that xiyi ∈ E(G) for 1 ≤ i ≤ k + 1, then add uv and decrease k by one.

I Rule 2. If there exist an edge uv and 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1 in
N(u) ∩N(v) such that xiyi 6∈ E(G) for 1 ≤ i ≤ k + 1, then delete uv and decrease k by one.

Whether Rule 1 (resp., Rule 2) is applicable to uv can be decided by finding a maximum
matching in G[N(u) ∩N(v)] (resp., the complement graph of G[N(u) ∩N(v)]). Therefore,
Rules 1 and 2 can be applied in polynomial time. We call an instance (G, k) reduced if neither
Rule 1 nor 2 is applicable to it. In the rest, we will focus on reduced instances. A similar
idea as the two rules enables us to exclude some (non-)edges from consideration.

I Proposition 2. A (non-)edge uv cannot be in a solution E± of a yes-instance (G, k), if
(i) uv ∈ E(G) and there are k + 1 pairwise adjacent vertices in N(u) ∩N(v); or
(ii) uv 6∈ E(G) and there are k + 1 pairwise nonadjacent vertices in N(u) ∩N(v).

I Proposition 3. Let (G, k) be a reduced yes-instance. For any (non-)edge uv in a solution
of (G, k), the cardinality of N(u) ∩N(v) is at most 3k.

Proof. We consider only uv ∈ E−, and the argument for uv ∈ E+ is similar and omitted.
Let W = N(u) ∩ N(v); we find a maximum matching in the complement graph of G[W],
and let W ′ be the ends of the edges in the matching. Since Rule 2 is not applicable (to uv),
|W ′| ≤ 2k. There cannot be non-edges between vertices in W \W ′; then by Proposition 2(i),
the size of W \W ′ is at most k. Therefore, |W | ≤ 3k. J

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye 10:5

Our algorithm will be mostly concerned with maximal cliques. According to Proposi-
tion 2(i), a maximal clique on k + 3 or more vertices cannot be touched by a minimum
solution “from inside,” but it may be touched “from outside”. We call a maximal clique big
if it contains at least 3k + 2 vertices, and small otherwise.

I Lemma 4. Let (G, k) be a reduced instance.
(i) Two big maximal cliques of G share at most one vertex.
(ii) If (G, k) is a yes-instance, then a big maximal clique of G remains a maximal clique

after applying a solution to (G, k).

Proof. Let K1 and K2 be two big maximal cliques of G. Suppose first that some vertex
u ∈ K1 \K2 is adjacent to more than 2k + 1 vertices in K2. Since K2 is a maximal clique, we
can find v ∈ K2 \K1 nonadjacent to u, but then Rule 1 would be applicable (to uv). Hence,
every vertex in K1 \K2 has at most 2k +1 neighbors in K2, which implies |K1∩K2| ≤ 2k +1.
By assumption, |K1| ≥ 3k + 2 and |K2| ≥ 3k + 2. For each vertex in K1 \K2, we can find
k + 1 non-neighbors in K2 \ K1. Therefore, we can greedily find k + 1 pairs of distinct
vertices {x1, y1}, . . ., {xk+1, yk+1} such that for all 1 ≤ i ≤ k + 1, (a) xi ∈ K1 \ K2 and
yi ∈ K2 \K1; and (b) xiyi 6∈ E(G). Rule 2 would be applicable (to any edge in G[K1 ∩K2])
if |K1 ∩K2| ≥ 2. Therefore, |K1 ∩K2| ≤ 1, and this concludes the proof for assertion (i).

Let E± be a solution to (G, k) and G∗ = G4E±. By Proposition 2(i), a big maximal
clique K in G remains a clique in G∗. Let v ∈ V (G) \K and let u ∈ K \NG(v). Since Rule 1
is not applicable to uv, there are at most 2k + 1 neighbors of v in K. Since |K| ≥ 3k + 2, at
least one vertex in K remains nonadjacent to v in G∗ because |E+| ≤ k. Therefore, K is a
maximal clique in G∗ as well. J

It is well known that a graph is diamond-free if and only if every pair of adjacent vertices
is contained in exactly one maximal clique. (Proposition 5 implies this fact.) We say that a
maximal clique is of type i if it shares two or more vertices with some other maximal clique,
and type ii otherwise. We can then rephrase the first sentence of this paragraph as: A graph
is diamond-free if and only if it has no type-i maximal clique.

We use Kb(G), Ks(G), and K2(G) to denote, respectively, the set of big maximal cliques
of type i, the set of small maximal cliques of type i, and the set of maximal cliques of type ii,
of G. A maximal clique in G is in precisely one of them.

I Proposition 5. (i) A maximal clique is of type i if and only if it contains both ends of the
cross edge of a diamond. (ii) A vertex is in a maximal clique of type i if and only if it is
contained in an induced diamond.

Proof. The following argument proves assert (i), and it also works for assert (ii).
Let u, v, x, y be four vertices inducing a diamond in G with cross edge uv. We can find

two maximal cliques K1, K2 containing u, v, x and u, v, y respectively. For any maximal
clique K containing u, v, at least one of K1, K2 is different from K, hence K is of type i.

We now consider the “only if” direction. Let K1 be a maximal clique of type i; by
definition, there is another maximal clique K2 such that |K1 ∩ K2| ≥ 2. For any vertex
x ∈ K1 \K2 and any vertex u ∈ K1 ∩K2, we can find another vertex v ∈ K1 ∩K2 different
from u and a vertex y ∈ K2 \K1 not adjacent to x (because K2 is maximal). Clearly, these
four vertices induce a diamond with cross edge uv. J

The following two statements help us understand edges added by a minimum solution.

ESA 2018

10:6 A Polynomial Kernel for Diamond-Free Editing

I Proposition 6. Let G be a diamond-free graph, and let U ⊆ V (G) such that every vertex
in V (G) \ U is adjacent to at most one vertex of U . If G[U]4E± is diamond-free for a set
E+ of non-edges in G[U] and a set E− of edges in G[U], then so is G4E±.

Proof. Suppose for contradiction that G∗ = G4E± contains a diamond; let D be a set of
vertices inducing a diamond in G∗. Since G[D] is not a diamond, at least one (non-)edge of
this diamond belongs to E±, and is between vertices of U . On the other hand, G[U]4E±
remains diamond-free, hence D 6⊆ U . Therefore, |D ∩ U | is either two or three, but then a
vertex in D \ U is adjacent to at least two vertices of D ∩ U in G, a contradiction. J

I Lemma 7. Let E± be a minimum solution to a reduced yes-instance (G, k). Every vertex
incident to some edge in E+ is contained in some small maximal clique of type i in G.

Proof. Let G∗ = G4E±, where uv is an edge in E+, and let U be a maximal clique of G∗

containing u, v. We argue first that v is in some induced diamond in G[U].
Suppose for contradiction that v participates in no diamond in G[U]. Let X = NG(v)∩U .

The subgraph G[X] is a disjoint union of cliques: An induced path of length two would
make a diamond with v. Let {A1, . . . , Ap} be those nontrivial cliques (containing more
than one vertex) in G[X]; let B be the other vertices of X; and let C = U \NG[v]. Then
{A1, . . . , Ap, B, C} is a partition of the set U \ {v}. Note that p or |B| may be 0, but |C| > 0
because u ∈ C. To arrive at a contradiction, we will construct a solution E′± for G[U] whose
size is smaller than the number of non-edges in G[U]. Assume such an E′± exists and let
G′ be the graph obtained from G∗ by replacing G∗[U] with G[U]4E′±. Since U is a type-ii
maximal clique of G∗, for each x ∈ V (G)\U we have |NG∗(x)∩U | ≤ 1. By Proposition 6, G′

is diamond-free. This would however imply a strictly smaller solution than E±, contradicting
that E± is a minimum solution of (G, k). Now we show how to construct E′±.

Case 1, |B| ≥ |C|. We set E′+ = ∅ and E′− the set of edges in G[C]. No edge in E′−
is incident to v or N(v), and hence N(v) ∩ U is still a disjoint union of cliques in G′. On
the other hand, no vertex x ∈ C is in any diamond in G′[U] because NG′(x) ∩ U is an
independent set. Thus, G′[U] is diamond-free. Since B is an independent set of G, and v is
nonadjacent to C, we have |E+ ∩ U2| ≥

(|B|
2
)

+ |C| ≥
(|C|

2
)

+ |C| > |E′−| = |E′+ ∪ E′−|.
Case 2, |B| < |C|. We set E′+ to be the set of non-edges in G[B ∪ C], and E′− the set of

edges between B∪C and U\(B ∪ C). To see that G′[U] is diamond-free, note that its maximal
cliques are B∪C and {v}∪Ai for 1 ≤ i ≤ p, whose intersection is either {v} or empty. We then
calculate the cardinality of E+ ∩U2, which comprises three parts, those among B ∪C, which
is exactly E′+, those between C and v, and those between C and Ai’s. Since v does not belong
to any diamond in G[U], each vertex in C is adjacent to at most one vertex of Ai, 1 ≤ i ≤ p.
In other words, for each x ∈ C and each 1 ≤ i ≤ p, the number of non-edges between x and Ai

is at least one. Therefore |E+∩U2| ≥ |E′+|+|C|+|C|×p > |E′+|+|B|+|C|×p ≥ |E′+|+|E′−|.
Now that v is in some induced diamond in G[U], we can find a maximal clique K of G

containing v and another two vertices of this diamond. Since U is not a clique in G, we have
K 6= U . And |K ∩ U | ≥ 3 implies that K cannot induce a maximal clique of G∗. Hence by
Lemma 4(ii), it is small. This concludes the proof of the lemma. J

After delimiting the ends of the edges added by a minimum solution, we now turn to
the ends of those edges deleted by a minimum solution. The next lemma states that some
maximal cliques in G remain maximal cliques after applying the solution.

I Lemma 8. Let E± be a minimum solution to an instance (G, k), and let K be a maximal
clique of type ii in G. If E+ contains neither (i) an edge between u ∈ K and v ∈ N(K), nor
(ii) two edges between vertices of K and the same vertex in V (G) \K, then K remains a
maximal clique (of type ii) in G4E±.

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye 10:7

v7

v8

v9

v1v0

v2

v3
v4

v6v5

u1

u2

u3

u4

Figure 2 An example with k = 4, of which a minimum solution is {+u2v2,−u1v2,−v0v1,−u3v9}.
(Note that u1v2 and v0v1 are not in any diamond of G.) It has six maximal cliques, K1 =
{v0, v1, v2, u1}, K2 = {v2, v3, v4, v5, v6}, K3 = {u2, v3, v4, v5, v6}, K4 = {u3, v7, v8}, K5 =
{u3, u4, v9}, while K6 comprises of u1, u2, u3, u4 and other ten unlabeled vertices. Four of these
maximal cliques, K2, K3, K5, and K6, are of type i, of which only K6 is big, the other two of type
ii. All 14 labeled vertices are vulnerable, and the other 8 unlabeled vertices are guarded.

Proof. Let G∗ = G4E±. Since K is a type-ii maximal clique of G, each vertex v ∈ V (G)\K

has at most one neighbor in K. By the assumption that E+ contains neither (i) nor (ii),
this remains true in G + E+ and G∗. On the other hand, E− cannot contain edges of G[K];
otherwise, by Proposition 6, G∗ remains diamond-free after replacing G∗[K] by G[K], which
implies a strictly smaller solution than E±. Therefore, K is a maximal clique in G∗. J

The next corollary follows from Lemma 7 and Lemma 8.

I Corollary 9. Let E± be a minimum solution to a reduced yes-instance (G, k), and let K

be a maximal clique of G containing both ends of an edge in E−. Then either K ∈ Ks(G),
or K ∈ K2(G) and K intersects one clique in Ks(G).

Lemma 7 and Corollary 9 motivate the following definitions. A vertex v is vulnerable
in graph G if (1) there exists some K ∈ Ks(G) containing v; or (2) there are intersecting
maximal cliques K1 ∈ Ks(G) and K2 ∈ K2(G) such that v ∈ K2. A vertex is guarded if it
is not vulnerable. Lemma 7 and Corollary 9 can be summarized as: No (non-)edge in a
minimum solution can be incident to a guarded vertex. See Figure 2 for an illustration.

3 The kernel

We partition the vertex set of a reduced graph into five parts, and deal with them separately.
(i) vertices in small maximal cliques of type i (all of them are vulnerable);
(ii) vulnerable vertices in big maximal cliques of type i but not in the previous part;
(iii) other vulnerable vertices (not in any maximal cliques of type i);
(iv) guarded vertices in (big) maximal cliques of type i; and
(v) other guarded vertices (not in any maximal cliques of type i).
Note that for this purpose we do not need to enumerate the maximal cliques. The key
observation is that we can easily find the cross edges of all diamonds by enumeration, from
which we can identify all vertices and edges in maximal cliques of type i. We use the
procedure partition presented in Algorithm 1, which computes this partition in three steps:
It first finds all vertices in a maximal clique of type i, from which it identifies those in a
small maximal clique of type i, and finally it uses them to get all vulnerable vertices.

ESA 2018

10:8 A Polynomial Kernel for Diamond-Free Editing

Algorithm 1 The procedure partition.
Input: a reduced instance (G, k).
Output: vertices in the five parts have (i) mark “small,” (ii) marks “vulnerable” and
“type i,” (iii) mark “vulnerable,” (iv) mark “type i,” and (v) no mark, respectively.

1. for each edge uv ∈ E(G) where N(u) ∩N(v) does not induce a clique do
1.1. mark uv “cross edge”;
1.2. mark u, v and all vertices in N(u) ∩N(v) as “type i”;
1.3. mark all edges between these vertices as “type i”;

\\a vertex is in a maximal clique of type i if and only if it is marked “type i.”
2. for each marked vertex v do
2.1. if G[N(v)] is not a cluster (a disjoint union of cliques) do mark v “small”;
2.2. else if a clique in N(v) of size ≤ 3k contains a cross edge do mark v “small”;
3. for each unmarked edge uv ∈ E(G) do
3.1. find the maximal clique K containing u and v;
3.2. if K contains any vertex marked “small” then mark vertices in K “vulnerable”;
3.3. mark every edge in K “checked.”

It is easy to check that procedure partition runs in polynomial time. We now show its
correctness.

I Lemma 10. Procedure partition is correct.

Proof. An edge uv ∈ E(G) is a cross edge if and only if N(u) ∩ N(v) does not induce a
clique; this justifies step 1.1. Steps 1.2 and 1.3 follow from Proposition 5(i).

Step 2 considers all vertices in maximal cliques of type i. If some component of G[N(v)]
is not a clique, we can find a path xyz of length two. There are two different maximal cliques
containing v, x, y and v, y, z respectively. Both are of type i, and hence by Lemma 4(i), at
least one of them is small. Step 2.2 also follows from Proposition 5(i). If a vertex v is not
marked in step 2, then every maximal clique containing v is either big or of type ii. Therefore,
all vertices in small maximal cliques of type i have been correctly identified in step 2.

Step 3 finds other vulnerable vertices. By definition, such a vertex is in some maximal
clique of type ii. If a type-ii maximal clique consists of an isolated vertex, it is guarded and
not marked in step 3. We may hence consider only nontrivial maximal cliques. All edges in
a type-ii maximal clique remain unmarked. Note that any two vertices of a type-ii maximal
clique determines this clique: It is the only maximal clique that contains these two vertices.
Vertices in the clique are vulnerable if and only if it contains a vertex marked “small.” We
only need to check the clique K once, so we mark them to avoid unnecessary repetition in
step 3.3. After step 3, all type-ii maximal cliques have been checked. J

3.1 Maximal cliques of type i
We start from the vertices in some small type-i maximal cliques, and denote them by S(G),
i.e., S(G) =

⋃
K∈Ks(G)

K. Noting that the final graph has no small type-i maximal cliques, we

can bound the size of S(G) by relating vertices in it to edges in a minimum solution.

I Lemma 11. If (G, k) is a reduced yes-instance, then |S(G)| ≤ 18k3 + 2k.

Proof. Let E± be a minimum solution of (G, k). Let X =
⋃

xy∈E±
{x, y} and Y =⋃

xy∈E±
NG(x) ∩ NG(y), i.e., all vertices incident to a (non-)edge in the solution and

respectively, all vertices that is a common neighbor of the two ends of a (non-)edge in

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye 10:9

the solution. Note that |X| ≤ 2k, and by Proposition 3, |Y | ≤ 3k · |E±| ≤ 3k2. Since
|S(G) ∩ (X ∪ Y)| ≤ |X ∪ Y | ≤ 3k2 + 2k, it suffices to bound S(G) \ (X ∪ Y). A vertex
v ∈ S(G) \ (X ∪ Y) cannot be contained in two type-i maximal cliques of G if they share
more than one vertex: Otherwise, there is a diamond (as in Proposition 5(ii)) in NG[v], but
then v has to be in X ∪ Y , a contradiction.

Let us now consider the set of small type-i maximal cliques of G that contain vertices
from S(G) \ (X ∪ Y), which we denote by K′. We argue by contradiction that any pair of
cliques in K′ shares at most one vertex. Suppose otherwise, there are two maximal cliques
K1, K2 ∈ K′ with |K1 ∩K2| ≥ 2. We have seen that K1 ∩K2 is disjoint from S(G) \ (X ∪Y).
Now let u ∈ K1 \K2 and v ∈ K2 \K1 be two vertices in S(G) \ (X ∪ Y). Then there is
a diamond with u and two vertices in K1 ∩ K2 and one vertex in K2 \ K1. But by the
assumption u 6∈ X ∪ Y , we cannot add or delete any edge incident to u; on the other hand,
v 6∈ X ∪ Y forbids the deletion of other three edges, a contradiction.

Let v ∈ S(G) \ (X ∪ Y), and let K be a clique in K′ containing v. By definition, there
exists a diamond in which (1) v is a degree-two vertex; (2) the two degree-three vertices are
in K; and (3) the other degree-two vertex is not in K. Since v is not in X ∩Y , one of the two
edges of this diamond that are incident to the other degree-two vertex has to be in E−. In
other words, K contains for some edge xy ∈ E−, one in {x, y} and a common neighbor of x, y.
By Proposition 3, for each edge xy ∈ E−, there are at most 3k vertices in NG(x)∩NG(y); for
each z ∈ NG(x) ∩NG(y), there can be at most one clique in K′ containing x, z and at most
one clique in K′ containing y, z. Therefore, there can be at most 3k · 2 · |E−| ≤ 6k2 cliques
in K′. By definition, each clique in it is small and has at most 3k + 1 vertices, of which at
least two are not in S(G) \ (X ∪ Y). Hence |S(G) \ (X ∪ Y)| ≤ (3k − 1) · 6k2 = 18k3 − 6k2.

Putting the two parts together, we have |S(G)| ≤ 18k3 + 2k. J

Next, we consider the big type-i maximal cliques, and bound first the number of them.

I Lemma 12. If (G, k) is a reduced yes-instance, then |Kb(G)| ≤ 6k2.

Proof. By Lemma 4, the only way to transform a big maximal clique of type i into one
of type ii is deleting edges incident to it. For an edge e = uv ∈ E−, denote by Ke the
set of big type-i maximal cliques containing one in {u, v}, and one vertex in N(u) ∩N(v).
Note that Kb(G) =

⋃
e∈E−

Ke. By Proposition 3, Ke has at most 6k maximal cliques. Then
|Kb(G)| ≤ 6k · |E−| = 6k2. J

To bound the size of big type-i maximal clique, we introduce another reduction rule.

I Rule 3. Let K ∈ Kb(G) with |K| ≥ 3k + 3. If K contains a guarded vertex x that does
not occur in any other type-i maximal clique of G, delete it.

I Lemma 13. Rule 3 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G− x, k) is a yes-instance.

Proof. It is easy to see that (G − x, k) is a reduced instance, and every solution of (G, k)
confined to G− x is a solution of (G− x, k). For the “if” direction, let E± be a minimum
solution of (G − x, k), and let G∗ = G4E±. Note that (G − x)4E± = G∗ − x, and it is
diamond-free. No edge in E± is incident to x, and hence NG(x) = NG∗(x), which we simply
denote by N(x). By Proposition 5(ii), it suffices to prove that each maximal clique of G∗

containing x is of type ii. For this purpose, we show that each component of G[N(x)] is
either a single vertex or a type-ii maximal clique in G∗ − x.

Note that K \ {x} is a big maximal clique in G− x: It is a clique of size at least 3k + 2,
and its maximality follows from Lemma 4(i). Hence, by Lemma 4(ii), K \ {x} is a maximal

ESA 2018

10:10 A Polynomial Kernel for Diamond-Free Editing

clique (of type ii) in G∗ − x. Since x is a guarded vertex that does not occur in any other
type-i maximal clique, every other maximal clique K ′ containing x in G is of type ii, and it
cannot intersect any small type-i maximal clique. Therefore, by Lemma 7, no edge added by
E+ can be incident to any vertex in N(x). From Lemma 8 we can conclude that K ′ \ {x}
either contains only a vertex or is a maximal clique (of type ii) in G∗ − x.

Since no edge added by E+ is between two vertices in N(x) and since x is a guarded
vertex, each component of G[N(x)] is either K \ {x} or K ′ \ {x}, hence is either a single
vertex or a type-ii maximal clique in G∗ − x. This concludes the proof. J

I Lemma 14. Let (G, k) be a reduced yes-instance. If Rule 3 is not applicable, then for each
K ∈ Kb(G), we have that |K| = O(k3).

Proof. Without loss of generality, assume that |K| ≥ 3k + 3. Since Rule 3 is not applicable,
every vertex in K is either a vulnerable vertex, or a guarded vertex in more than one big
type-i maximal clique. Let U1 and U2 be the set of vulnerable vertices in K ∩ S(G) and
K \ S(G) respectively. By the definition, each vertex in U2 is adjacent to some vertex
in S(G) \ U1 by an edge of type-ii maximal clique. For each vertex v ∈ S(G) \ U1, the
cardinality of U2∩N(v) is at most one; otherwise, there is a type-i maximal clique containing
U2 ∩N(v) and v which by Lemma 4(i) is small, contradicting to U2 ⊆ K \ S(G). Therefore,
|U2| ≤ |S(G) \U1|, and by Lemma 11, K contains at most 18k3 + 2k vulnerable vertices. By
Lemma 4(i), every pair of big type-i maximal cliques shares at most one vertex. Hence, by
Lemma 12, K contains at most 6k2 guarded vertices that appear in some other big maximal
cliques of type i. Putting them together we get |K| ≤ 18k3 + 2k + 6k2. J

The next corollary follows immediately from Lemmas 12 and 14.

I Corollary 15. Let (G, k) be a reduced yes-instance. If Rule 3 is not applicable, then the
number of vertices that are contained in some cliques in Kb(G) is O(k5).

3.2 Maximal cliques of type ii
We have bounded the number of vertices in all maximal cliques of type i, and it remains
to bound the number of vertices that occur only in maximal cliques of type ii. Let T (G)
denote these vertices, i.e., T (G) = V (G) \

⋃
K∈Ks(G)∪Kb(G)

K. It may not be surprising that

we can delete all the guarded vertices in them.

I Rule 4. If there is a guarded vertex x not in any type-i maximal clique of G, delete it.

I Lemma 16. Rule 4 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G− x, k) is a yes-instance.

Proof. It is easy to see that (G − x, k) is a reduced instance, and every solution of (G, k)
confined to G− x is a solution of (G− x, k). For the other direction, let E± be a minimum
solution of (G − x, k), and it is sufficient to show that x is not part of any diamond in
G∗ = G4E±. Note that x is a vertex which is part of only type-ii maximal cliques in G and
not adjacent to any vertex in small type-i maximal cliques in G. Therefore, by Lemma 7,
none of the vertices in N(x) is incident to any edges of E+. If x is part of a diamond in
G∗, then it is formed by a deletion of an edge in G[N [x]] by E−. But this is not possible
by Corollary 9, as none of the edges in G[N [x]] is part of any type-ii maximal clique which
intersects with a small type-i maximal clique in G− x. J

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye 10:11

If Rule 4 is not applicable, then all vertices in T (G) are vulnerable. As demonstrated
in Figure 2, an edge may be deleted from a maximal clique of type ii. In that example,
neither end of the deleted edge v0v1 is in any maximal clique of type i. This can happen
only after some modification happens in the neighborhood of this vertex – u2v2 added in the
example. According to Proposition 2, however, this would not happen when |K| ≥ k + 3.
In other words, to make sure a large clique in K2(G) is immutable to future modifications,
it suffices to keep k + 3 of its vertices. This motivates the following reduction rule, whose
statement is however more complex than previous ones. The main trouble here is that we are
not allowed to delete all but k + 3 guarded vertices from a clique in K2(G), because it may
be required for another clique in K2(G). For a pair of vertices u, v, we denote by N(u, v) the
set of common neighbors of u and v not in S(G), i.e., N(u, v) = (N(u) ∩N(v)) \ S(G).

I Proposition 17. Let u, v be two vertices in G. If uv 6∈ E(G), then N(u, v) form an
independent set. Moreover, if uv ∈ E+ for a solution E± of (G, k), then |N(u, v)| ≤ k.

Proof. If G[N(u, v)] has an edge xy, then {u, v, x, y} forms a diamond. There are two type-i
maximal cliques containing {x, y, u} and {x, y, v} respectively. By Lemma 4(i), at least one of
them is small, contradicting to x, y /∈ S(G). The second claim follows from Proposition 2. J

Our last rule would keep at most k + 1 from such sets. To avoid unnecessary clutters, we
simply say we mark k + 1 vertices in N(u, v), even if its size is smaller than k + 1; in which
case, we mark all of them.

I Rule 5. For each pair of vertices u, v ∈ S(G), arbitrarily mark k + 1 vertices in N(u, v).
If |N(u, v)| ≤ k, then for each vertex w ∈ N(u, v), arbitrarily mark k + 1 vertices in N(u, w)
and k + 1 vertices in N(v, w). If there is an unmarked vertex x in T (G), delete it.

I Lemma 18. Rule 5 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G− x, k) is a yes-instance.

Proof. It is easy to see that (G − x, k) is a reduced instance, and every solution of (G, k)
confined to G− x is a solution of (G− x, k). For the “if” direction, let E± be a minimum
solution of (G − x, k), and let G∗ = G4E±. We show that each maximal clique of G∗

containing x is a maximal clique of G and is of type ii in G∗. Since Proposition 5(ii) implies
that deleting a vertex not in any type-i maximal clique does not alter type-i maximal cliques,
we have S(G′) = S(G).

Let K be a maximal clique of G containing x; note that K is a maximal clique of type ii
in G, as x ∈ T (G). We argue that |NG∗(y) ∩K| ≤ 1 for every y ∈ V (G) \K. Since K is a
maximal clique of type ii in G, we have (1) |NG(y) ∩K| is either 0 or 1; and (2) for every
pair of vertices u, v ∈ K, N(u, v) ⊆ NG(u) ∩NG(v) = K.

Suppose first that there are at least two edges between y and K in E+. Let u, v ∈ K be
two vertices such that yu, yv ∈ E+. Then by Lemma 7, u, v ∈ S(G′), and hence u, v ∈ S(G).
Clearly, x 6= u, x 6= v and x is an unmarked vertex in N(u, v). Further, there are k + 1
marked vertices in N(u, v). It follows that |K \ {x}| ≥ k + 3, and E− does not have any edge
in G′[K \ {x}] by Proposition 2(i). Therefore, for each marked vertex z ∈ N(u, v) that is not
adjacent to y, the set {u, v, y, z} induces a diamond in G′ + {yu, yv}. The only edge we can
edit is yz, but |NG(y) ∩K| ≤ 1, and there are at least k + 2 edges between y and K, which
is impossible.

Hence, at most one edge can be added between y and K by E+. If |NG(y) ∩K| = 0, or
|NG(y) ∩K| = 1 but the only edge between y and K is deleted, then it is trivial that y is
adjacent to at most one vertex of K in G∗. Suppose that NG∗(y) ∩K = {u, v} while only u

ESA 2018

10:12 A Polynomial Kernel for Diamond-Free Editing

is in NG(y); note that yu 6∈ E− and yv ∈ E+. By Lemma 7, y, v ∈ S(G′), and hence in S(G).
According to Proposition 17, there are at most k vertices in N(v, y) in G′. If u /∈ S(G), then
it has been marked; hence x 6= u. Also, x 6= v as x ∈ T (G). By the rule, no matter whether
u is in S(G) or not, we should have marked vertices in N(u, v). Since x ∈ N(u, v) but is not
marked, we have |N(u, v)| > k + 1. Let z be any marked vertex in N(u, v); it is not in NG(y)
by assumption. But then {u, v, y, z} induces a diamond in G′ + yv, in which we have to add
the missing edge yz, which requires |E+| > k, a contradiction.

We have thus concluded |NG∗(y)∩K| ≤ 1 for each vertex y in V (G)\K. By Proposition 6,
K \ {x} remains a clique in G∗ − x, otherwise we can find a strictly smaller solution. Then
K is a maximal clique of type ii in G∗. On the other hand, according to Proposition 17, no
edge is added between two vertices of NG(x). Therefore, N(x) induces exactly the same
subgraph in G and G∗. Hence, any maximal clique of G∗ containing x is a maximal clique of
G as well, hence of type ii in G∗. This concludes the proof of the lemma. J

Now Theorem 1 follows by counting numbers of different kinds of vertices.

Proof of Theorem 1. We show first that Rules 3–5 can be applied in polynomial time. For
a guarded vertex x, N(x) induces a cluster graph and each maximal clique in the cluster
graph together with x forms the maximal cliques of G containing x. Recall that a maximal
clique is of type i if and only if it contains both ends of a cross edge. Since the procedure
partition finds all guarded vertices (no mark) and cross edges, we can find for each guarded
vertex all type-i maximal cliques and type-ii maximal cliques containing it in polynomial
time. Therefore, both Rules 3 and Rule 4 can be applied in polynomial time. Moreover, the
procedure partition finds all vertices in S(G) (mark “small”) and T (G) (no mark “type
i”), and hence Rule 5 can be applied in polynomial time.

We claim that if none of Rules 3–5 is applicable to a reduced yes-instance (G, k), then
|V (G)| = O(k8). By Lemma 11, the number of vertices in small type-i maximal cliques is
|S(G)| = O(k3). By Corollary 15, we have O(k5) vertices in big type-i maximal cliques. For
each pair of vertices u, v in S(G), we mark at most k +1 common neighbors of them. For each
common neighbor w of u, v, we mark at most 2k+2 vertices: k+1 vertices in N(u, w) and k+1
vertices in N(v, w). Hence |T (G)| = O(k8), and |V (G)| = O(k3)+O(k5)+O(k8) = O(k8). J

4 A cubic kernel for diamond-free edge deletion

We use four simple reduction rules to get a cubic kernel for diamond-free edge deletion. The
details of this section are omitted due to space limit.

1. If there exist an edge uv and 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1 in N(u)∩N(v)
such that xiyi 6∈ E(G) for 1 ≤ i ≤ k + 1, then delete uv and decrease k by one.

2. Mark an edge uv “permanent” if there are 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1
in N(u) ∩N(v) such that xiyi ∈ E(G) for all 1 ≤ i ≤ k + 1. If there exists a diamond
consisting of only permanent edges, return a trivial no-instance.

3. If there is a vertex x not in any small maximal clique, delete it.
4. Delete all edges and vertices not in any maximal clique of type i.

I Lemma 19. Let (G, k) be a yes-instance of the diamond-free edge deletion problem. If
none of the reduction rules is applicable, then |V (G)| = O(k3).

Y. Cao, A. Rai, R. B. Sandeep, and J. Ye 10:13

References
1 N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness of

H-free edge modification problems. SIAM Journal on Discrete Mathematics, 31(1):542–561,
2017.

2 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letter, 58(4):171–176, 1996.

3 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algo-
rithmica, 71(3):731–757, 2015.

4 Yufei Cai. Polynomial kernelisation of H-free edge modification problems. Mphil thesis,
Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong SAR, China, 2012.

5 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012.

6 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Undergraduate texts in computer science. Springer, 2013.

7 Ehab S. El-Mallah and Charles J. Colbourn. The complexity of some edge deletion problems.
IEEE Transactions on Circuits and Systems, 35(3):354–362, 1988.

8 Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 35(1):85–90, 1960.

9 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
10 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-

) existence of polynomial kernels for Pl-free edge modification problems. Algorithmica,
65(4):900–926, 2013.

11 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

12 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polyno-
mial kernels. Discrete Optimization, 10(3):193–199, 2013.

13 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary proper-
ties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

14 R. B. Sandeep and Naveen Sivadasan. Parameterized Lower Bound and Improved Kernel for
Diamond-free Edge Deletion. In 10th International Symposium on Parameterized and Exact
Computation, volume 43 of LIPIcs, pages 365–376. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2015.

15 Mihalis Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–309,
1981.

ESA 2018

Parallel and I/O-efficient Randomisation of
Massive Networks using Global Curveball Trades
Corrie Jacobien Carstens
University of Amsterdam, Netherlands
c.j.carstens@uva.nl

Michael Hamann
Karlsruhe Institute of Technology, Germany
michael.hamann@kit.edu

Ulrich Meyer
Goethe University, Frankfurt, Germany
umeyer@ae.cs.uni-frankfurt.de

Manuel Penschuck
Goethe University, Frankfurt, Germany
mpenschuck@ae.cs.uni-frankfurt.de

Hung Tran
Goethe University, Frankfurt, Germany
htran@ae.cs.uni-frankfurt.de

Dorothea Wagner
Karlsruhe Institute of Technology, Germany
dorothea.wagner@kit.edu

Abstract
Graph randomisation is a crucial task in the analysis and synthesis of networks. It is typically
implemented as an edge switching process (ESMC) repeatedly swapping the nodes of random
edge pairs while maintaining the degrees involved [23]. Curveball is a novel approach that instead
considers the whole neighbourhoods of randomly drawn node pairs. Its Markov chain converges
to a uniform distribution, and experiments suggest that it requires less steps than the established
ESMC [6]. Since trades however are more expensive, we study Curveball’s practical runtime by
introducing the first efficient Curveball algorithms: the I/O-efficient EM-CB for simple undir-
ected graphs and its internal memory pendant IM-CB. Further, we investigate global trades [6]
processing every node in a single super step, and show that undirected global trades converge
to a uniform distribution and perform superior in practice. We then discuss EM-GCB and EM-
PGCB for global trades and give experimental evidence that EM-PGCB achieves the quality of
the state-of-the-art ESMC algorithm EM-ES [15] nearly one order of magnitude faster.

2012 ACM Subject Classification Mathematics of computing → Random graphs

Keywords and phrases Graph randomisation, Curveball, I/O-efficiency, Parallelism

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.11

Supplement Material Stable versions of IM-CB and EM-GCB are released as part of NetworKit
(http://network-analysis.info).

Funding This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under
grants ME 2088/3-2, ME 2088/4-2, and WA 654/22-2.

Acknowledgements We thank the anonymous reviewers for their many insightful comments and
suggestions.

© Corrie Jacobien Carstens, Michael Hamann, Ulrich Meyer, Manuel Penschuck, Hung Tran, and
Dorothea Wagner;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c.j.carstens@uva.nl
mailto:michael.hamann@kit.edu
mailto:umeyer@ae.cs.uni-frankfurt.de
mailto:mpenschuck@ae.cs.uni-frankfurt.de
mailto:htran@ae.cs.uni-frankfurt.de
mailto:dorothea.wagner@kit.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.11
http://network-analysis.info
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Randomisation of Massive Networks using Global Curveball Trades

1 Introduction

In the analysis of complex networks, such as social networks, the underlying graphs are
commonly compared to random graph models to understand their structure [17, 27, 34].
While simple models like Erdős-Rényi graphs [11] are easy to generate and analyse, they are
too different from commonly observed powerlaw degree sequences [27, 26, 34]. Thus, random
graphs with the same degree sequence as the given graph are frequently used [8, 17, 32]. In
practice, many of these graphs are simple graphs, i.e. graphs without self-loops and multiple
edges. In order to obtain reliable results in these cases, the graphs sampled need to be simple
since non-simple models can lead to significantly different results [31, 32]. The randomisation
of a given graph is commonly implemented as an edge switching Markov chain ESMC [8, 24].

Nowadays, massive graphs that cannot be processed in the RAM of a single computer,
require new analysis algorithms to handle these huge datasets. In turn, large benchmark
graphs are required to evaluate the algorithms’ scalability – in terms of speed and quality.
LFR is a standard benchmark for evaluating clustering algorithms which repeatedly generates
highly biased graphs that are then randomised [18, 19]. [15] presents the external memory
LFR generator EM-LFR and its I/O-efficient edge switching EM-ES. Although EM-ES
is faster than previous results even for graphs fitting into RAM, it dominates EM-LFR’s
running time. Alternative sampling via the Configuration Model [25] was studied to reduce
the initial bias and the number of ESMC steps necessary [14]. Still, graph randomisation
remains a major bottleneck during the generation of these huge graphs.

The Curveball algorithm has been originally proposed for randomising binary matrices
while preserving row and column sums [35, 36] and has been adopted for graphs [5, 6]: instead
of switching a pair of edges as in ESMC , Curveball trades the neighbours of two nodes in each
step. Carstens et al. further propose the concept of a global trade, a super step composed of
single trades targetting every node1 in a graph once [6]. The authors show that global trades
in bipartite or directed graphs converge to a uniform distribution, and give experimental
evidence that global trades require fewer Markov chain steps than single trades. However,
while fewer steps are needed, the trades themselves are computationally more expensive.
Since we are not aware of previous efficient Curveball algorithms and implementations, we
investigate this trade-off here.

Our contributions. We present the first efficient algorithms for Curveball: the (sequential)
internal memory and external memory algorithms IM-CB2 and EM-CB for the Simple
Undirected Curveball algorithm (see section 4). Experiments in section 5, indicate that they
are faster than the established edge switching approaches in practice.

In section 3, we show that random global trades lead to uniform samples of simple,
undirected graphs and demonstrate experimentally in section 5 that they converge even faster
than the corresponding number of uniform single trades. Exploiting structural properties
of global trades, we simplify EM-CB yielding EM-GCB and the parallel I/O-efficient EM-
PGCB which achieves EM-ES’s quality nearly one order of magnitude faster in practice (see
section 5).

1 For an odd number n of nodes, either a single node is left out or equivalently an isolated node is added.
2 We prefix internal memory algorithms with IM and I/O-efficient algorithms with EM. The suffices CB, GCB,

and PGCB denote Curveball, CB. with global trades, and parallel CB. with global trades respectively.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:3

2 Preliminaries and Notation

We define the short-hand [k] := {1, . . . , k} for k ∈ N>0, and write [xi]bi=a for an ordered
sequence [xa, xa+1, . . . , xb].

Graphs and degree sequences. A graph G = (V,E) has n = |V | sequentially numbered
nodes V = {v1, . . . , vn} and m = |E| edges. Unless stated differently, graphs are assumed
to be undirected and unweighted. To obtain a unique representation of an undirected edge
{u, v} ∈ E, we use ordered edges [u, v] ∈ E implying u ≤ v; in contrast to a directed edge,
the ordering is used algorithmically but does not carry any meaning. A graph is called simple
if it contains neither multi-edges nor self-loops, i.e. E ⊆ {{u, v} |u, v ∈ V with u 6= v }. For
node u ∈ V define the neighbourhood Au := {v : {u, v} ∈ E} and degree deg(u) := |Au|. Let
dmax := maxv{deg(v)} be the maximal degree of a graph. A vector D = [di]ni=1 is a degree
sequence of graph G iff ∀vi ∈ V : deg(vi) = di.

Randomisation and Distributions. Pld ([a, b), γ) refers to an integer Powerlaw Distribution
with exponent −γ ∈ R for γ ≥ 1 and values from the interval [a, b); let X be an integer
random variable drawn from Pld ([a, b), γ) then P[X=k] ∝ k−γ (proportional to) if a ≤ k < b

and P[X=k] = 0 otherwise. A statement depending on some number x > 0 is said to hold
with high probability if it is satisfied with probability at least 1 − 1/xc for some constant
c ≥ 1. Let S be a finite set, x ∈ S and let σ be permutation on S, we define rankσ(x) as the
number of elements positioned in front of x by σ.

2.1 External-Memory Model
In contrast to classic models of computation, such as the unit-cost random-access machine,
modern computers contain deep memory hierarchies ranging from fast registers, over caches
and main memory to solid state drives (SSDs) and hard disks. Algorithms unaware of these
properties may face performance penalties of several orders of magnitude.

We use the commonly accepted external memory (EM) model by Aggarwal and Vitter [1]
to reason about the influence of data locality in memory hierarchies. It features two memory
types, namely fast internal memory (IM or RAM) holding up to M data items, and a slow
disk of unbounded size. The input and output of an algorithm are stored in EM while
computation is only possible on values in IM. An algorithm’s performance is measured in
the number of I/Os required. Each I/O transfers a block of B = Ω(

√
M) consecutive items

between memory levels. Reading or writing n contiguous items is referred to as scanning
and requires scan(n) := Θ(n/B) I/Os. Sorting n consecutive items triggers sort(n) :=
Θ((n/B) · logM/B(n/B)) I/Os. For all realistic values of n, B and M , scan(n) < sort(n)� n.
Sorting complexity constitutes a lower bound for most intuitively non-trivial EM tasks [22].
EM queues use amortised O(1/B) I/Os per operation and require O(B) main memory [28].
An external priority queue (PQ) requires O(sort(n)) I/Os to push and pop n items [2].

2.2 TFP: Time Forward Processing
Time Forward Processing (TFP) is a generic technique to manage data dependencies of
external memory algorithms [21]. Consider an algorithm computing values x1, . . . , xn in
which the calculation of xi requires previously computed values. One typically models these
dependencies using a directed acyclic graph G=(V,E). Every node vi ∈ V corresponds to the
computation of xi and an edge (vi, vj) ∈ E indicates that the value xi is necessary to compute

ESA 2018

11:4 Randomisation of Massive Networks using Global Curveball Trades

v2
x0+x1
x2=1

v3
x1+x2
x3=2

v4
x2+x3
x4=3

v5
x3+x4
x5=5

v6
x4+x5
x6=8

v7
x5+x6
x7=13

1 PQ.push(<key=2, value=0>); PQ.push(<key=2, value=1>)
2 foreach i← 2, . . . , n do
3 sum← 0
4 while PQ.min.key == i do // Two iterations
5 sum← sum + PQ.remove-min().value
6 print(“xi =”, sum)
7 PQ.push(<key=i+1, sum>); PQ.push(<key=i+2, sum>)

Figure 1 Left: Dependency graph of the Fibonacci sequence (ignoring base case). Right: Time
Forward Processing to compute sequence.

xj . For instance consider the Fibonacci sequence x0 = 0, x1 = 1, xi = xi−1 + xi−2 ∀i ≥ 2 in
which each node vi with i ≥ 2 depends on exactly its two predecessors (see Fig. 1). Here, a
linear scan for increasing i suffices to solve the dependencies.

In general, an algorithm needs to traverse G according to some topological order ≺T of
nodes V and also has to ensure that each vj can access values from all vi with (vi, vj) ∈ E.
The TFP technique achieves this as follows: as soon as xi has been calculated, messages of
the form 〈vj , xi〉 are sent to all successors (vi, vj) ∈ E. These messages are kept in a minimum
priority queue sorting the items by their recipients according to ≺T . By construction, the
algorithm only starts the computation vi once all predecessors vj ≺T vi are completed. Since
these predecessors already removed their messages from the PQ, items addressed to vi (if
any) are currently the smallest elements in the data structure and can be dequeued. Using a
suited EM PQ [2], TFP incurs O(sort(k)) I/Os, where k is the number of messages sent.

3 Randomisation schemes

Here, we summarise the randomisation schemes ESMC [24] and Curveball for simple undirec-
ted graphs [5], and then discuss the notion of global trades. Since these algorithms iteratively
modify random parts of a graph, they can be analysed as finite Markov chains. It is well
known that any finite, irreducible, aperiodic, and symmetric Markov chain converges to the
uniform distribution on its state space (e.g. [20]). Its mixing time indicates the number of
steps necessary to reach the stationary distribution.

3.1 Edge-Switching
ESMC is a state-of-the-art randomisation method with a wide range of applications, e.g. the
generation of graphs [15, 19], or the randomisation of biological datasets [16]. In each step,
ESMC chooses two edges e1 = [u1, v1], e2 = [u2, v2] and a direction d ∈ {0, 1} uniformly at
random and rewires them into {u1, u2}, {v1, v2} if d=0 and {u1, v2}, {v1, u2} otherwise. If
a step yields a non-simple graph, it is skipped. ESMC ’s Markov chain is irreducible [10],
aperiodic and symmetric [23] and hence converges to the uniform distribution on the space of
simple graphs with fixed degree sequence. While analytic bounds on the mixing time [12, 13]
are impractical, usually a number of steps linear in the number of edges is used in practice [29].

3.2 Simple Undirected Curveball algorithm
Curveball is a novel randomisation method. In each step, two nodes trade their neighbour-
hoods, possibly yielding faster mixing times [5, 35, 36].

I Definition 1 (Simple Undirected Trade). Let G = (V,E) be a simple graph, A be its
adjacency list representation, and Au be the set of neighbours of node u. A trade t = (i, j, σ)

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:5

i j

1
2 3

4

5

6

i j

1
2

2

3
4

5

6

Ai = {1, 2, 6, j}
Aj = {3, 4, 5, 6, i}

Bi = {3, 4, 6, j}
Bj = {1, 2, 5, 6, i}

Bi−j = {3, 4}
Bj−i = {1, 2, 5}

σ(1,2︸︷︷︸
Ai−j

, 3,4,5︸ ︷︷ ︸
Aj−i

) 7→ (4,3︸︷︷︸
Bi−j

, 5,1,2︸ ︷︷ ︸
Bj−i

)

Figure 2 The trade (i, j, σ) between nodes i and j only considers edges to the disjoint neigh-
bours {1, . . . , 5}. For the reassigned disjoint neighbours we use the short-hand Bi−j := {x | x ∈
Dij , rankσ(x) ≤ |Ai−j |} and Bj−i := {x | x ∈ Dij , rankσ(x) > |Ai−j |}. The triangle (i, j, 6) is
omitted as trading any of its edges would either introduce parallel edges, self loops, or result in no
change at all. Then, the given σ exchanges four edges.

from A to adjacency list B is defined by two nodes i and j, and a permutation σ : Dij → Dij

where Ai−j := Ai \ (Aj ∪ {j}) and Dij := Ai−j ∪Aj−i. As shown in Fig. 2, performing t on
G results in Bi = (Ai\Ai−j) ∪ {x | x ∈ Dij , rankσ(x) ≤ |Ai−j |} and Bj = (Aj\Aj−i) ∪ {x |
x ∈ Dij , rankσ(x) > |Ai−j |}. Since edges are undirected, symmetry has to be preserved: for
all u ∈ Ai\Bi the label j in adjacency list Bu is changed to i and analogously for Aj \Bj .

Simple Undirected Curveball randomises a graph by repeatedly selecting a node pair
{i, j} and permutation σ on the disjoint neighbours uniformly at random. Its Markov chain
is irreducible, aperiodic and symmetric and hence converges to the uniform distribution [6].

3.3 Undirected Global Trades
Trade sequences typically consist of pairs in which each constituent is drawn uniformly at
random. While it is a well-known fact3 that Θ(n logn) trades are required in expectation
until each node is included at least once, there is no apparent reason why this should be
beneficial; in fact, experiments in section 5 suggest the contrary.

Carstens et al. propose the notion of global trades for directed or bipartite graphs as a
2-partition of all nodes implicitly forming n/2 node pairs to be traded in a single step [6].
This concept is not applicable to undirected graphs where in general the two directions (u, v)
and (v, u) of an edge {u, v} cannot be processed independently in a single step. We hence
extend global trades to undirected graphs by interpreting them as a sequence of n/2 single
trades which together target each node exactly once (we assume n to be even; if this is
not the case we add an isolated node). Dependencies are then resolved by the order of this
sequence.

I Definition 2 (Undirected Global trade). Let G = (V,E) be a simple graph and π : V → V

be a permutation on the set of nodes. A global trade T = (t1, . . . , t`) for ` = bn/2c is a
sequence of trades ti = {π(v2i−1), π(v2i), σi}. By applying T to G we mean that the trades
t1, . . . , t` are applied successively starting with G.

Theorem 3 allows us to use global trades as a substitute for a sequence of single trades,
as global trades preserve the stationary distribution of Curveball’s Markov chain. The proof
extends [6], which shows convergence of global trades in bipartite or directed graphs, to
undirected graphs and uses similar techniques.

3 For instance studied as the coupon collector problem.

ESA 2018

11:6 Randomisation of Massive Networks using Global Curveball Trades

I Theorem 3. Let G = (V,E) be an arbitrary simple undirected graph, and let ΩG be the
set of all simple directed graphs that have the same degree sequence as G. The Curveball
algorithm with global trades and started at G converges to the uniform distribution on ΩG.

Proof. In order to prove the claim, we have to show irreducibility and aperiodicity of the
Markov chain as well as symmetry of the transition probabilities.

For the first two properties it suffices to show that whenever there exists a single trade from
state A to B, there also exists a global trade from A to B (see [4] for a similar argument).4
Observe that there is a non-zero probability that a single trade does not change the graph,
e.g. by selecting σi as the identity. Hence there is a non-zero probability that . . .

a global trade does not alter the graph at all. This corresponds to a self-loop at each
state of the Markov chain and hence guarantees aperiodicity.
all but one single trade of a global trade do not alter the graph. In this case, a global
trade degenerates to a single trade and the irreducibility shown in [4] carries over.

It remains to show that the transition probabilities are symmetric. Let T gAB be the set of
global trades that transform state A to state B. Then the transition probability between
A and B equals the sum of probabilities of selecting a trade sequence from T gAB. That is
PAB =

∑
T∈T g

AB
PA(T) where PA(T) denotes the probability of selecting global trade T in

state A.
The probability PA(t) of selecting a single trade t = (i, j, σ) from state A to state B

equals the probability PB(t̃) of selecting the reverse trade t̃ = (i, j, σ−1) from state B to
A [6]. We now define the reverse global trade of T = (t1, . . . , t`) as T̃ = (t̃`, . . . , t̃1). It is
straight-forward to check that this gives a bijection between the sets T gAB and T gBA.

It remains to show that the middle equality holds in

PAB =
∑

T∈T g
AB

PA(T) !=
∑

T̃∈T g
BA

PB(T̃) = PBA.

Let T = (t1, . . . , t`) be a global trade from A to B as implied by π and A=A1, . . . , A`+1=B
be the intermediate states. We denote the reversal of T and π as T̃ and π̃ respectively
and obtain PA(T) = P(π)PA1(t1) . . .PA`

(t`) = P(π̃)PB(t̃`) . . .PA2(t̃1) = PB(T̃). Clearly
P(π) = P(π̃) as we are picking permutations uniformly at random. The second equality
follows from PA(t) = PB(t̃) for a single trade between A and B. J

4 Novel Curveball algorithms for undirected graphs

In this section we present the related algorithms EM-CB, IM-CB, EM-GCB and EM-PGCB.
The algorithms receive a simple graph G and a trade sequence T = [{ui, vi}]`i=1 as input
and compute the result of carrying out the trade sequence T (see section 3.2) in order.

EM-CB and IM-CB are sequential solutions suited to process arbitrary trade sequences T .
For our analysis, we assume T ’s constituents to be drawn uniformly at random (as expected
in typical applications). Both algorithms share a common design, but differ in the data
structures used. EM-CB is an I/O-efficient algorithm while IM-CB is optimised for small
graphs allowing for unstructured accesses to main memory. In contrast, EM-GCB and
EM-PGCB process global trades only. This restricted input model allows us to represent the
trade sequence T implicitly by hash functions which further accelerates trading.

4 Since each global trade can be emulated by its n/2 decomposed single trades, the reverse is true for a
hop of n/2 single trade steps. Due to dependencies however the transition probabilities generally do not
match, see V = {1, 2, 3, 4} and E = {[1, 2], [3, 4]} for a simple counterexample.

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:7

Algorithm 1: EM-CB.
Data: Trade sequence T , simple graph G = (V,E) by edge list E
// Preprocessing: Compute Dependencies

1 foreach trade ti = (u, v) ∈ T for increasing i do
2 Send messages 〈u, ti〉 and 〈v, ti〉 to Sorter SorterTtoV
3 Sort SorterTtoV lexicographically // All trades of a node are next to each other
4 foreach node u ∈ V do
5 Receive S(u) = [t1, . . . , tk] from k messages addressed to u in SorterTtoV
6 Set tk+1 ←∞ // t1 =∞ iff u is never active
7 Send 〈ti, u, ti+1〉 to SorterDepChain for i ∈ [k]
8 foreach directed edge (u, v) ∈ E do
9 if u < v then

10 Send message 〈v, u, t1〉 via PqVtoV
11 else
12 Receive tv1 from unique message received via PqVtoV

13
if t1 ≤ tv1 then Send message 〈t1, u, v, tv1〉 via PqTtoT
else Send message 〈tv1 , v, u, t1〉 via PqTtoT

14 Sort SorterDepChain
// Main phase – Currently at least the first trade has all information it needs

15 foreach trade ti = (u, v) ∈ T for increasing i do
16 Receive successors τ(u) and τ(v) via SorterDepChain
17 Receive neighbours AG(u), AG(v) and their successors τ(·) from PqTtoT
18 Randomly reassign disjoint neighbours, yielding new neighbours A′G(u) and A′G(v).
19 foreach (a, b) ∈ ({u} ×A′G(u)) ∪ ({v} ×A′G(v)) do

20

if τa =∞ and τb =∞ then Output final edge {a, b}
else if τa ≤ τb then Send message 〈τa, a, b, τb〉 via PqTtoT
else Send message 〈τb, b, a, τa〉 via PqTtoT

At core, all algorithms perform trades in a similar fashion: In order to carry out the
i-th trade {ui, vi}, they retrieve the neighbourhoods Aui and Avi , shuffle5 them, and then
update the graph. Once the neighbourhoods are known, trading itself is straight-forward.
We compute the set of disjoint neighbours D = (Aui ∪ Avi) \ (Aui ∩ Avi) and then draw
|Aui

∩D| nodes from D for ui uniformly at random while the remaining nodes go to vi. If
Aui

and Avi
are sorted this requires only O(|Aui

|+ |Avi
|) work and scan(|Aui

|+ |Avi
|) I/Os

(see also proof of Lemma 6 if the neighbourhoods fit into RAM). Hence we focus on the
harder task of obtaining and updating the adjacency information.

4.1 EM-CB: A sequential I/O-efficient Curveball algorithm
EM-CB is an I/O-efficient Curveball algorithm to randomise undirected graphs as detailed
in Alg. 1. This basic algorithm already contains crucial design principles which we further
explore with IM-CB, EM-GCB and EM-PGCB in sections 4.2 and 4.4 respectively.

The algorithm encounters the following challenges. After an undirected trade {u, v} is
carried out, it does not suffice to only update the neighbourhoods Au and Av: consider the
case that edge {u, x} changes into {v, x}. Then this switch also has to be reflected in the
neighbourhood of Ax. Here, we call u and v active nodes while x is a passive neighbour.

5 In contrast to Definition 2, we do not consider the permutation σ of disjoint neighbours as part of
the input, but let the algorithm choose one randomly for each trade. We consider this design decision
plausible as the set of disjoint neighbours only emerges over the course of the execution.

ESA 2018

11:8 Randomisation of Massive Networks using Global Curveball Trades

In the EM setting another challenge arises for graphs exceeding main memory; it is
prohibitively expensive to directly access the edge list since this unstructured pattern triggers
Ω(1) I/Os for each edge processed with high probability.

EM-CB approaches these issues by abandoning a classical static graph data structure
containing two redundant copies of each edge. Following the TFP principle, we rather
interpret all trades as a sequence of points over time that are able to receive messages.
Initially, we send each edge to the earliest trade one of its endpoints is active in.6 This way,
the first trade receives one message from each neighbour of the active nodes and hence can
reconstruct Au1 and Av1 . After shuffling and reassigning the disjoint neighbours, EM-CB
sends each resulting edge to the trade which requires it next. If no such trade exists, the
edge can be finalised by committing it to the output.

The algorithm hence requires for each (actively or passively) traded node u, the index of
the next trade in which u is actively processed. We call this the successor of u and define it to
be∞ if no such trade exists. The dependency information is obtained in a preprocessing step;
given T = [{ui, vi}]`i=1, we first compute for each node u the monotonically increasing index
list S(u) of trades in which u is actively processed, i.e. S(u) :=

[
i |u ∈ ti for i ∈ [`]

]
◦ [∞].

I Example 4. Let G = (V,E) be a simple graph with V = {v1, v2, v3, v4} and trade sequence
T = [t1: {v1, v2}, t2: {v3, v4}, t3: {v1, v3}, t4: {v2, v4}, t5: {v1, v4}]. Then, the successors S

follow as S(v1) = [1, 3, 5,∞], S(v2) = [1, 4,∞], S(v3) = [2, 3,∞], S(v4) = [2, 4, 5,∞].

This information is then spread via two channels:
After preprocessing, EM-CB scans S and T conjointly and sends 〈ti, ui, tui 〉 and 〈ti, vi, tvi 〉
to each trade ti. The messages carry the successors tui and tvi of the trade’s active nodes.
When sending an edge as described before, we augment it with the successor of the
passive node. Initially, this information is obtained by scanning the edge list E and S

conjointly. Later, it can be inductively computed since each trade receives the successors
of all nodes involved.

I Lemma 5. For an arbitrary trade sequence T of length `, EM-CB has a worst-case I/O
complexity of O[sort(`) + sort(n) + scan(m) + `dmax/B logM/B(m/B)]. For r global trades,
the worst case I/O complexity is O(r[sort(n) + sort(m)]).

Proof. Refer to the full article [7] for the proof. J

4.2 IM-CB: An internal memory version of EM-CB
While EM-CB is well-suited if memory access is a bottleneck, we also consider the modified
version IM-CB. As shown in section 5, IM-CB is typically faster for small graph instances.
IM-CB uses the same algorithmic ideas as EM-CB but replaces its priority queues and
sorters7 by unstructured I/O into main memory (see [7] for details):

Instead of sending neighbourhood information in a TFP-fashion, we now rely on a classical
adjacency vector data structure AG (an array of arrays). Similarly to EM-CB, we only

6 If an edge connects two nodes that are both actively traded we implicitly perform an arbitrary tie-break.
7 The term sorter refers to a container with two modes of operation: in the first phase, items are pushed

into the write-only sorter in an arbitrary order by some algorithm. After an explicit switch, the filled
data structure becomes read-only and the elements are provided as a lexicographically non-decreasing
stream which can be rewound at any time. While a sorter is functionally equivalent to filling, sorting and
reading back an EM vector, the restricted access model reduces constant factors in the implementation’s
runtime and I/O-complexity [3].

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:9

v3

π1(1)
v1

π1(2)
v2

π1(3)
v5

π1(4)
v4

π1(5)
v6

π1(6)
v6

π2(1)
v3

π2(2)
v5

π2(3)
v1

π2(4)
v2

π2(5)
v4

π2(6)

current trade

,v1 v2new edge produced: { }

〈round: 2, slot: 4, neighbour: v2〉

Figure 3 During the trade j=1, i1=3, i2=4 the edge {v1, v2} is produced; the arrows indicate
positions considered as successors. Since v1 and v2 are already processed in round j=1, π2 is used
to compute the successor. Then, the message is sent to v1 in round 2 as v1 is processed before v2.

keep one directed representation of an undirected edge. As an invariant, an edge is always
placed in the neighbourhood of the incident node traded before the other. To speed-up
these insertions, IM-CB maintains unordered neighbourhood buffers.
IM-CB does not forward successor information, but rather stores S in a contiguous block
of memory. The algorithm additionally maintains the vector Sidx[1 . . . n] where the i-th
entry points to the current successor of node vi. Once this trade is reached, the pointer
is incremented giving the next successor.

I Lemma 6. For a random trade sequence T of length `, IM-CB has an expected running
time of O(n+ `+m+ `m/n). In the case of r many global trades (each consisting of n/2
normal trades) the running time is given by O(n+ rm).

Proof. Refer to the full article [7] for the proof. J

4.3 EM-GCB: An I/O-efficient Global Curveball algorithm

EM-GCB builds on EM-CB and exploits the regular structure of global trades to simplify
and accelerate the dependency tracking. As discussed in section 3.3, a global trade can
be encoded as a permutation π : [n] → [n] by interpreting adjacent ranks as trade pairs,
i.e. Tπ = [{vπ(2i−1), vπ(2i)}]n/2

i=1. In this setting, a sequence of global trades is given by r
permutations [πj]rj=1. The model simplifies dependencies as it is not necessary to explicitly
gather S and communicate successors.

As illustrated in Fig. 3, we also change the addressing scheme of messages. While EM-CB
sends messages to specific nodes in specific trades, EM-GCB exploits that each node vi is
actively traded only once in each round j and hence can be addressed by its position πj(i).
Successors can then be computed in an ad hoc fashion; let a trade of adjacent positions
i1 < i2 of the j-th global trade produce (amongst others) the edge {vx, vy}. The successor of
vx (and analogously the one of vy) is Sj,i2 [vx] = (j, πj(x)) if vx is processed later in round j
(i.e. πj(x)/2 > i2) and otherwise Sj,i2 [vx] = (j+1, πj+1(x)). Here we imply an untraded
additional function πr+1(x) = x which avoids corner cases and generates an ordered edge list
as a result of the r-th global trade.

To reduce the computational cost of the successor computation, EM-GCB supports fast
injective functions f : X → Y where [n] ⊆ X and [n] ⊆ Y . In contrast to the original
permutations, their relevant image { f(x) | x ∈ [n] } may contain gaps which are simply
skipped by EM-GCB. This requires minor changes in the addressing scheme.

In practice, we use functions from the family of linear congruential maps Hp :=
{ha,b | 1 ≤ a < p and 0 ≤ b < p } with ha,b(x) ≡ [(ax + b) mod p] where p is the smal-
lest prime number p ≥ n. Random choices from Hp are well suited for EM-GCB since they

ESA 2018

11:10 Randomisation of Massive Networks using Global Curveball Trades

1 k 1 k

In EM
In IM (front block)

current round next round

1 z

macrochunk

1 p

batch
the p microchunks in a batch are processed in parallel

Figure 4 EM-PGCB splits each global trade into k macrochunks and maintains an external
memory queue for each. Before processing a macrochunk, the buffer is loaded into IM and sorted,
and further subdivided into z batches each consisting of p microchunks. A type (ii) message is
visualised by the red intra-batch arrow.

are 2-universal8 and contain only O(log(n)) gaps (see [7] for details). They are also bijections
with an easily computable inverse h−1

a,b that allows EM-GCB to determine the active node
h−1
a,b(i) traded at position i; this operation is only performed once for each traded position.

EM-GCB also supports non-invertible functions. This can be implemented with messages
〈h(i), i〉 that are generated for 1 ≤ i ≤ n and delivered using TFP.

4.4 EM-PGCB: An I/O-efficient parallel Global Curveball algorithm
EM-PGCB adds parallelism to EM-GCB by concurrently executing multiple sequential trades.
As in Fig. 4, we split a global trade into microchunks each containing a similar number of
node pairs and then execute a batch of p such subdivisions in parallel. The batch’s size is a
compromise between intra-batch dependencies (messages are awaited from another processor)
and overhead caused by synchronising threads at the batch’s end (see [7] for details).

EM-PGCB processes each microchunk similarly as in EM-CB but differentiates between
messages that are sent (i) within a microchunk, (ii) between microchunks of the same batch
(iii) and microchunks processed later. Each class is transported using an optimised data
structure (see below) and only type (ii) messages introduce dependencies between parallel
executions and are resolved as follows: each processor retrieves the messages that are sent
to its next trade and checks whether all information required is available by comparing the
number of messages to the active nodes’ degrees. If data is missing the trade is skipped and
later executed by the processor that adds the last missing neighbour.

For graphs with m = O(M2/B) edges9, we optimise the communication structure for
type (iii) messages. Observe that EM-PGCB sends messages only to the current and
the subsequent round. We partition a round into k macrochunks each consisting of Θ(n/k)
contiguous trades. An external memory queue is used for each macrochunk to buffer messages
sent to it; in total, this requires Θ(kB) internal memory. Before processing a macrochunk, all
its messages are loaded into IM, subsequently sorted and arranged such that missing messages
can be directly placed to the position they are required in. This can also be overlapped
with the processing of the previous macrochunk. The number k of macrochunks should be
as small as possible to reduce overheads, but sufficiently large such that all messages of a
macrochunk fit into main memory (see [7] for details).

I Theorem 7. EM-PGCB requires O(r · [sort(n) + sort(m)]) I/Os to perform r global trades.

Proof. Observe that we can analyse each of the r rounds individually. A constant amount
of auxiliary data is needed per node to provision gaps for missing data, to detect whether a

8 i.e. given one node in a single trade, the other is uniformly chosen among the remaining nodes.
9 Even with as little as 1 GiB of internal memory, several billion edges are supported.

https://github.com/hthetran/networkit
https://github.com/hthetran/networkit
https://github.com/massive-graphs/extmem-lfr

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:11

20 21 22 23

Thinning

10−2

10−1

1
-

m
in

(i
n

d
ep

en
d

en
ce

ra
te

) [MaxDeg 25] Maximum dependent edges

ES

CBU

CBG

20 21 22 23

Thinning

10−2

10−1

[MaxDeg 750] Maximum dependent edges

ES

CBU

CBG

Figure 5 Fraction of edges still correlated as a function of the thinning parameter k for graphs
with n = 2·103 nodes and degree distribution Pld ([a, b), γ) with γ = 2, a = 5, and b ∈ {25, 750}.
The (not thinned) long Markov chains of edge switching (ES), uniform Curveball (CBU) and global
Curveball (CBG) contain 6000 super steps each.

trade can be executed and (if required) to invert the permutation. This accounts for Θ(n)
messages requiring sort(n) I/Os to be delivered. Using an ordinary PQ, the analysis of
EM-CB (see Lemma 5) carries over, requiring sort(m) I/Os for a global trade. J

5 Experimental Evaluation

In this section we evaluate the quality of the proposed algorithms and analyse the runtime
of our C++ implementations.10 EM-CB, IM-CB, EM-GCB are designed as modules of
NetworKit [33]; due to their superior performance, only the latter two were added to
the library and are available since release 4.6. EM-PGCB’s implementation is developed
separately and facilitates external memory data structures and algorithms of STXXL [9].

Intuitively, graphs with skewed degree distributions are hard instances for Curveball since
it shuffles and reassigns the disjoint neighbours of two trading nodes. Hence, limited progress
is achieved if a high-degree node trades with a low-degree node. Since our experiments
support this hypothesis, we focus on graphs with powerlaw degree distributions as difficult
but highly relevant graph instances. Our experiments use two parameter sets:

(lin) − The maximal possible degree scales linearly as a function of the number n of
nodes. The degree distribution Pld ([a, b), γ) is chosen as a = 10, b = n/20 and γ = 2.
(const) − The extremal degrees are kept constant. In this case the parameters are chosen
as a = 50, b = 10000 and γ = 2.

We select these configurations to be comparable with [15] where both parameter sets are
used to evaluate EM-ES. The first setting (lin) considers the increasing average degree
of real-world networks as they grow. The second setting (const) approximates the degree
distribution of the Facebook network in May 2011 (refer to [14] for details). Runtimes are
measured on the following off-the-shelf machine: Intel Xeon E5-2630 v3 (8 cores at 2.40GHz),
64GB RAM, 2× Samsung 850 PRO SATA SSD (1 TB), Ubuntu Linux 16.04, GCC 7.2.

5.1 Mixing of Edge-Switching, Curveball and Global Curveball
We are not aware of any practical theoretical bounds on the mixing time of Markov chains of
Curveball, Global Curveball or edge switching (see section 3). Hence, we quantitatively study
the progress made by Curveball trades compared to edge switching and approximate the

10Code used for the presented benchmarks can be found at our fork https://github.com/hthetran/
networkit (IM-CB and EM-CB) and https://github.com/massive-graphs/extmem-lfr (EM-PGCB).

ESA 2018

11:12 Randomisation of Massive Networks using Global Curveball Trades

mixing time of the underlying Markov chains by a method developed in [30]. This criterion
is a more sensitive proxy to the mixing time than previously used alternatives, such as the
local clustering coefficient, triangle count and degree assortativity [14].

Intuitively, one determines the number of Markov chain steps required until the correlation
to the initial state decays. Starting from an initial graph G0, the Markov chain is executed
for a large number of steps, yielding a sequence (Gt)t≥0 of graphs evolving over time. For
each occurring edge e, we compute a boolean vector (Ze,t)t≥0 where a 1 at position t indicates
that e exists in graph Gt. We then derive the k-thinned series (Zke,t)t≥0 only containing
every k-th entry of the original vector (Ze,t)t≥0 and use k as a proxy for the mixing time.

To determine if k Markov chain steps suffice for edge e to lose the correlation to the
initial graph, the empirical transition probabilities of the k-thinned series (Zke,t)t≥0 are fitted
to both an independent and a Markov model respectively. If the independent model is a
better fit, we deem edge e to be independent.

The results presented here consider only small graphs due to the high computational cost
involved. However, additional experiments suggest that the results hold for graphs at least
one order of magnitude larger which is expected as powerlaw distributions are scale-free.

We compare a sequence of uniform (single) trades, global trades and edge switching
and visually align the results of these schemes by defining a super step. Depending on the
algorithm a super step corresponds to either a single global trade, n/2 uniform trades or m
edge-swaps. Comparing n/2 uniform trades with a global trade seems sensible since a global
trade consists of exactly n/2 single trades, furthermore randomising with n/2 single trades
considers the state of 2m edges which is also true for m edge-swaps. The alignment accounts
for the fact that a single Curveball Markov chain step may execute multiple neighbour
switches, thus easily outperforming ESMC in a step-by-step comparison.

Fig. 5 contains a selection of results obtained for small powerlaw graph instances using
this method (see [7] for the complete dataset). Progress is measured by the fraction of edges
that are still classified as correlated, i.e. the faster a method approaches zero the better the
randomisation. We omit an in-depth discussion of uniform trades and rather focus on global
trades which consistently outperform the former (cf. section 3.2).

In all settings ESMC shows the fastest decay. The gap towards global trades growths
temporarily as the maximal degree is increased which is consistent with our initial claim
that skewed degree distributions are challenging for Curveball. The effect is however limited
and in all cases performing 4 global trades for each edge switching super step gives better
results. This is a pessimistic interpretation since typically 10m to 100m edge switches are
used to randomise graphs in practice; in this domain global trades perform similarly well
and 20 global trades consistently give at least the quality of 10m edge switches.

5.2 Runtime performance benchmarks
We measure the runtime of the algorithms proposed in section 4 and compare them to two
state-of-the-art edge switching schemes (using the authors’ C++ implementations):

VL-ES is a sequential IM algorithm with a hashing-based data structure optimised for
efficient neighbourhood queries and updates [37]. To achieve comparability, we removed
connectivity tests, fixed memory management issues, and adopted the number of swaps.
EM-ES is an EM edge switching algorithm and part of EM-LFR’s toolchain [15].

We carry out experiments using the (const) and (lin) parameter sets, and limit the
problem sizes for internal memory algorithms to avoid exhaustion of the main memory. For

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:13

106 107 108 109 1010

Number m of edges

102

103

T
im

e
/

ed
ge

/
su

p
er

st
ep

[n
s]

Parameter set: (const)

EM-CB

EMG-CB

IM-CB

VL-ES

EM-ES

EM-PGCB

105 106 107 108 109 1010

Number m of edges

102

103

Parameter set: (lin)

Figure 6 Runtime per edge and super step (global trade or m edge swaps) of the proposed
algorithms IM-CB, EM-CB and EM-PGCB compared to state-of-the-art IM edge switching VL-ES
and EM edge switching EM-ES. Each data point is the median of S ≥ 5 runs over 10 super steps
each. The left plot contains the (const)-parameter set, the right one (lin). Observe that the super
steps of different algorithms advance the randomisation process at different speeds (see discussion).

each data point we carry out 10 super steps (i.e. 10 global trades or 10m edge swaps) on a
graph generated with Havel-Hakimi from a random powerlaw degree distribution.

Figure 6 presents the walltime per edge and super step including pre-computation11
required by the algorithms but excluding the initial graph generation process. The plots
include (mostly small) errorbars corresponding to the unbiased estimation of the standard
deviation of S repetitions per data point (with different random seeds).

The number k of macrochunks does not significantly affect EM-PGCB’s performance
for small graphs due to comparably high synchronisation cost. In contrast, adjusting k for
larger graphs can noticeably increase the performance of EM-PGCB. We thus experimentally
determined the value k = 32 for both (const) and (lin) with n = 107 nodes and use that
value for all other instances.

All Curveball algorithms outperform their direct competitors significantly – even if we
pessimistically executed two global trades for each edge switching super step (see section 5.1).
For large instances of (const) EM-PGCB carries out one super step 14.3 times faster than
EM-ES and 5.8 times faster for (lin). EM-PGCB also shows a superior scaling behaviour
with an increasing speed-up for larger graphs. Similarly, IM-CB processes super steps up to
6.3 times faster than VL-ES on (const) and 5.1 times on (lin).

On our test machine, the implementation of IM-CB outperforms EM-CB in the internal
memory regime; EM-GCB is faster for large graphs. As indicated in [7], this changes
qualitatively for machines with slower main memory and smaller cache; on such systems the
unstructured I/O of IM-CB and VL-ES is more significant rendering EM-CB and EM-GCB
the better choice with a speed-up factor exceeding 8 compared to VL-ES.

6 Conclusion and outlook

We applied global Curveball trades to undirected graphs simplifying the algorithmic treatment
of dependencies and showed that the underlying Markov chain converges to a uniform
distribution. Experimental results show that global trades yield an improved quality compared
to a sequence of uniform trades of the same size.

11For VL-ES we report only the swapping process and the generation of the internal data structures.

ESA 2018

11:14 Randomisation of Massive Networks using Global Curveball Trades

We presented IM-CB and EM-CB, the first efficient algorithms for Simple Undirected
Curveball algorithms; they are optimised for internal and external memory respectively.
Our I/O-efficient parallel algorithm EM-PGCB exploits the properties of global trades and
executes a super step 14.3 times faster than the state-of-the-art edge switching algorithm
EM-ES; for IM-CB we demonstrate speed-ups of up to 6.3 (in a conservative comparison the
speed-ups should be halved to account for the differences in mixing times of the underlying
Markov chains). The implementations of all three algorithms are freely available and are in
the process of being incorporated into EM-LFR and considered for NetworKit.

References

1 A. Aggarwal, J. Vitter, et al. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

2 L. Arge. The buffer tree: A new technique for optimal I/O-algorithms, pages 334–345.
Springer Berlin Heidelberg, 1995. doi:10.1007/3-540-60220-8_74.

3 A. Beckmann, R. Dementiev, and J. Singler. Building a parallel pipelined external memory
algorithm library. In IPDPS’09, 2009. doi:10.1109/IPDPS.2009.5161001.

4 C. J. Carstens. Proof of uniform sampling of binary matrices with fixed row sums and
column sums for the fast curveball algorithm. Physical Review E, 91:042812, 2015.

5 C. J. Carstens. Topology of Complex Networks: Models and Analysis. PhD thesis, RMIT
University, January 2016.

6 C. J. Carstens, A. Berger, and G. Strona. Curveball: a new generation of sampling al-
gorithms for graphs with fixed degree sequence. CoRR, 2016. arXiv:1609.05137.

7 C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. Parallel
and I/O-efficient randomisation of massive networks using global curveball trades. CoRR,
abs/1804.08487, 2018.

8 G. W. Cobb and Y.-P. Chen. An application of markov chain monte carlo to community
ecology. The American Mathematical Monthly, 110(4):265–288, 2003.

9 R. Dementiev, L. Kettner, and P. Sanders. STXXL: standard template library for XXL
data sets. Software: Practice and Experience, 38(6):589–637, 2008. doi:10.1002/spe.844.

10 R. B. Eggleton and D. A. Holton. Simple and multigraphic realizations of degree sequences,
pages 155–172. Springer Berlin Heidelberg, 1981. doi:10.1007/BFb0091817.

11 P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 1959.
12 C. Greenhill. A polynomial bound on the mixing time of a markov chain for sampling

regular directed graphs. The Electronic Journal of Combinatorics, 18(1):P234, 2011.
13 C. Greenhill. The switch markov chain for sampling irregular graphs: Extended abstract.

In Proceedings of SODA ’15, pages 1564–1572, 2015.
14 M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner. I/O-efficient generation

of massive graphs following the LFR benchmark. CoRR, 2017. arXiv:1604.08738.
15 M. Hamann, U. Meyer, M. Penschuck, and D. Wagner. I/O-efficient generation of massive

graphs following the LFR benchmark. In ALENEX, 2017. doi:10.1137/1.9781611974768.
16 F. Iorio, M. Bernardo-Faura, A. Gobbi, T. Cokelaer, G. Jurman, and J. Saez-Rodriguez.

Efficient randomization of biological networks while preserving functional characterization
of individual nodes. BMC bioinformatics, 17(1):542, 2016.

17 S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. Subgraphs in random networks.
Physical review E, 68:026127, Aug 2003. doi:10.1103/PhysRevE.68.026127.

18 A. Lancichinetti and S. Fortunato. Benchmarks for testing community detection algorithms
on directed and weighted graphs with overlapping communities. Phys. Rev. E, 80:016118,
Jul 2009. doi:10.1103/PhysRevE.80.016118.

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1007/3-540-60220-8_74
http://dx.doi.org/10.1109/IPDPS.2009.5161001
http://arxiv.org/abs/1609.05137
http://dx.doi.org/10.1002/spe.844
http://dx.doi.org/10.1007/BFb0091817
http://arxiv.org/abs/1604.08738
http://dx.doi.org/10.1137/1.9781611974768
http://dx.doi.org/10.1103/PhysRevE.68.026127
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1007/3-540-36574-5

C. J. Carstens, M. Hamann, U. Meyer, M. Penschuck, H. Tran, and D. Wagner 11:15

19 A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community
detection algorithms. Phys. Rev. E, 78:046110, 2008. doi:10.1103/PhysRevE.78.046110.

20 D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American
Mathematical Society, Providence, Rhode Island, 2009.

21 A. Maheshwari and N. Zeh. A Survey of Techniques for Designing I/O-Efficient Algorithms,
pages 36–61. Springer Berlin Heidelberg, 2003.

22 U. Meyer, P. Sanders, and J. Sibeyn. Algorithms for Memory Hierarchies: Advanced Lec-
tures. Springer Berlin Heidelberg, 2003. doi:10.1007/3-540-36574-5.

23 C. G. M. Mihail and E. Zegura. The markov chain simulation method for generating
connected power law random graphs. In Proceedings of ALENEX ’03. SIAM, 2003.

24 R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform
generation of random graphs with prescribed degree sequences. CoRR, 2003. arXiv:
cond-mat/0312028.

25 M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence.
Random Struct. Algorithms, 6(2/3):161–179, 1995.

26 M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review,
45(2):167–256, 2003. doi:10.1137/S003614450342480.

27 M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distributions and their applications. Phys. Rev. E, 64:026118, Jul 2001. doi:10.1103/
PhysRevE.64.026118.

28 R. Pagh. Basic external memory data structures, pages 36–61. Springer Berlin Heidelberg,
2003.

29 J. Ray, A. Pinar, and C. Seshadhri. Are We There Yet? When to Stop a Markov Chain
while Generating Random Graphs, pages 153–164. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-30541-2_12.

30 J. Ray, A. Pinar, and C. Seshadhri. A stopping criterion for markov chains when generating
independent random graphs. J. of Compl. Net., 3(2), 2015. doi:10.1093/comnet/cnu041.

31 W. E. Schlauch, E. Á. Horvát, and K. A. Zweig. Different flavors of randomness: comparing
random graph models with fixed degree sequences. Social Network Analysis and Mining,
5(1):1–14, 2015. doi:10.1007/s13278-015-0267-z.

32 W. E. Schlauch and K. A. Zweig. Influence of the null-model on motif detection. In
ASONAM’15, NY, USA, 2015. ACM. doi:10.1145/2808797.2809400.

33 C. L. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: A tool suite for large-scale
complex network analysis. Network Science, 4(04), 2016. doi:10.1017/nws.2016.20.

34 S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268, 2001.
35 G. Strona, D. Nappo, F. Boccacci, S. Fattorini, and J. San-Miguel-Ayanz. A fast and

unbiased procedure to randomize ecological binary matrices with fixed row and column
totals. Nature Communications, 5:4114–, 2014. doi:10.1038/ncomms5114.

36 N. D. Verhelst. An efficient MCMC algorithm to sample binary matrices with fixed mar-
ginals. Psychometrika, 73(4):705–728, 2008.

37 F. Viger and M. Latapy. Fast generation of random connected graphs with prescribed
degrees. CoRR, feb 2005. Source code available at https://www-complexnetworks.lip6.
fr/~latapy/FV/generation.html. arXiv:cs/0502085.

ESA 2018

http://arxiv.org/abs/cond-mat/0312028
http://arxiv.org/abs/cond-mat/0312028
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1007/978-3-642-30541-2_12
http://dx.doi.org/10.1093/comnet/cnu041
http://dx.doi.org/10.1007/s13278-015-0267-z
http://dx.doi.org/10.1145/2808797.2809400
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1038/ncomms5114
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
https://www-complexnetworks.lip6.fr/~latapy/FV/generation.html
http://arxiv.org/abs/cs/0502085

Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of ESA 2018
(LIPIcs, volume 112, http://www.dagstuhl.de/dagpub/978-3-95977-081-1 published in
August, 2018), in which the concept of global trades is now correctly attributed to Carstens,
Berger, Strona. Curveball: a new generation of sampling algorithms for graphs with fixed degree
sequence. arXiv:1609.05137.

Dagstuhl Publishing – August 27, 2018.

Space-Optimal Quasi-Gray Codes with
Logarithmic Read Complexity
Diptarka Chakraborty
Computer Science Institute of Charles University, Prague, Czech Republic
diptarka@iuuk.mff.cuni.cz

Debarati Das
Computer Science Institute of Charles University, Prague, Czech Republic
debaratix710@gmail.com

Michal Koucký
Computer Science Institute of Charles University, Prague, Czech Republic
koucky@iuuk.mff.cuni.cz

Nitin Saurabh
Max-Planck-Institut für Informatik, Saarbrücken, Germany
nsaurabh@mpi-inf.mpg.de

Abstract
A quasi-Gray code of dimension n and length ` over an alphabet Σ is a sequence of distinct words
w1, w2, . . . , w` from Σn such that any two consecutive words differ in at most c coordinates, for
some fixed constant c > 0. In this paper we are interested in the read and write complexity of
quasi-Gray codes in the bit-probe model, where we measure the number of symbols read and
written in order to transform any word wi into its successor wi+1.

We present construction of quasi-Gray codes of dimension n and length 3n over the ternary
alphabet {0, 1, 2} with worst-case read complexity O(logn) and write complexity 2. This gener-
alizes to arbitrary odd-size alphabets. For the binary alphabet, we present quasi-Gray codes of
dimension n and length at least 2n − 20n with worst-case read complexity 6 + logn and write
complexity 2. This complements a recent result by Raskin [Raskin ’17] who shows that any
quasi-Gray code over binary alphabet of length 2n has read complexity Ω(n).

Our results significantly improve on previously known constructions and for the odd-size
alphabets we break the Ω(n) worst-case barrier for space-optimal (non-redundant) quasi-Gray
codes with constant number of writes. We obtain our results via a novel application of algebraic
tools together with the principles of catalytic computation [Buhrman et al. ’14, Ben-Or and
Cleve ’92, Barrington ’89, Coppersmith and Grossman ’75].

2012 ACM Subject Classification Theory of computation → Cell probe models and lower
bounds

Keywords and phrases Gray code, Space-optimal counter, Decision assignment tree, Cell probe
model

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.12

Related Version [8], https://arxiv.org/abs/1712.01834

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC
Grant Agreement no. 616787. The third author was also partially supported by the Center
of Excellence CE-ITI under the grant P202/12/G061 of GA ČR.

© Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin Saurabh;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@iuuk.mff.cuni.cz
mailto:debaratix710@gmail.com
mailto:koucky@iuuk.mff.cuni.cz
mailto:nsaurabh@mpi-inf.mpg.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.12
https://arxiv.org/abs/1712.01834
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

Acknowledgements Authors would like to thank Gerth Stølting Brodal for bringing the problem
to our attention, and to Petr Gregor for giving a talk on space-optimal counters in our seminar,
which motivated this research. Authors thank Meena Mahajan and Venkatesh Raman for pointing
out the result in [39]. We also thank anonymous reviewers for helpful suggestions that improved
the presentation of the paper.

1 Introduction

One of the fundamental problems in the domain of algorithm design is to list down all the
objects belonging to a certain combinatorial class. Researchers are interested in efficient
generation of a list such that an element in the list can be obtained by a small amount of
change to the element that precedes it. One of the classic examples is the binary Gray code
introduced by Gray [23], initially used in pulse code communication. The original idea of a
Gray code was to list down all binary strings of length n, i.e, all the elements of Zn2 , such
that any two successive strings differ by exactly one bit. The idea was later generalized
for other combinatorial classes (e.g. see [37, 28]). Gray codes have found applications in a
wide variety of areas, such as information storage and retrieval [9], processor allocation [10],
computing the permanent [37], circuit testing [41], data compression [40], graphics and
image processing [1], signal encoding [32], modulation schemes for flash memories [26, 22, 44]
and many more. Interested reader may refer to an excellent survey by Savage [42] for a
comprehensive treatment on this subject.

In this paper we study the construction of Gray codes over Znm for any m ∈ N. Originally,
Gray codes were meant to list down all the elements from its domain but later studies
(e.g. [20, 38, 5, 6]) focused on the generalization where we list ` distinct elements from the
domain, each two consecutive elements differing in one position. We refer to such codes
as Gray codes of length ` [20]. When the code lists all the elements from its domain it is
referred to as space-optimal. It is often required that the last and the first strings appearing
in the list also differ in one position. Such codes are called cyclic Gray codes. Throughout
this paper we consider only cyclic Gray codes and we refer to them simply as Gray codes.
Researchers also study codes where two successive strings differ in at most c positions, for
some fixed constant c > 0, instead of differing in exactly one position. Such codes are called
quasi-Gray codes [5]1 or c-Gray codes.

We study the problem of constructing quasi-Gray codes over Znm in the cell probe
model [43], where each cell stores an element from Zm. The efficiency of a construction is
measured using three parameters. First, we want the length of a quasi-Gray code to be as
large as possible. Ideally, we want space-optimal codes. Second, we want to minimize the
number of coordinates of the input string the algorithm reads in order to generate the next
(or, previous) string in the code. Finally, we also want the number of cells written in order
to generate the successor (or, predecessor) string to be as small as possible. Since our focus
is on quasi-Gray codes, the number of writes will always be bounded by a universal constant.
We are interested in the worst-case behavior and we use decision assignment trees (DAT) of
Fredman [20] to measure these complexities.

The second requirement of the above is motivated from the study of loopless generation
of combinatorial objects. In the loopless generation we are required to generate the next
string from the code in constant time. Different loopless algorithms to generate Gray codes

1 Readers may note that the definition of quasi-Gray code given in [20] was different. The code referred
as quasi-Gray code by Fredman [20] is called Gray code of length ` where ` < mn, in our notation.

D. Chakraborty, D. Das, M. Koucký, and N. Saurabh 12:3

are known in the literature [17, 4, 28]. However, those algorithms use extra memory cells
in addition to the space required for the input string which makes it impossible to get a
space-optimal code from them. More specifically, our goal is to design a decision assignment
tree on n variables to generate a code over the domain Znm. If we allow extra memory cells
(as in the case of loopless algorithms) then the corresponding DAT will be on n+ b variables,
where b is the number of extra memory cells used.

Although there are known quasi-Gray codes with logarithmic read complexity and
constant write complexity [20, 38, 5, 6], none of these constructions is space-optimal. The
best result misses at least 2n−t strings from the domain when having read complexity
t+O(logn) [6]. Despite of an extensive research under many names, e.g., construction of Gray
codes [20, 36, 16, 24], dynamic language membership problem [19], efficient representation of
integers [38, 6], so far we do not have any quasi-Gray code of length 2n−2εn, for some constant
ε < 1, with worst-case read complexity o(n) and write complexity o(n). The best worst-case
read complexity for space-optimal Gray code is n− 1 [21]. Recently, Raskin [39] showed that
any space-optimal quasi-Gray code over the domain Zn2 must have read complexity Ω(n).
This lower bound is true even if we allow non-constant write complexity. It is worth noting
that this result can be extended to the domain Znm when m is even.

In this paper we show that such lower bound does not hold for quasi-Gray codes over Znm,
when m is odd. In particular, we construct space-optimal quasi-Gray codes over {0, 1, 2}n
with read complexity 4 log3 n and write complexity 2. As a consequence we get an exponential
separation between the read complexity of space-optimal quasi-Gray code over Zn2 and that
over Zn3 .

I Theorem 1. Let m ∈ N be odd and n ∈ N be such that n ≥ 15. Then, there is a space-
optimal quasi-Gray code C over Znm for which, the two functions next(C,w) and prev(C,w)
can be implemented by inspecting at most 4 logm n cells while writing only 2 cells.

In the statement of the above theorem, next(C,w) denotes the element appearing after
w in the cyclic sequence of the code C, and analogously, prev(C,w) denotes the preceding
element. Using the argument as in [20, 36] it is easy to see a lower bound of Ω (logm n) on
the read complexity when the domain is Znm. Hence our result is optimal up to some small
constant factor.

Raskin shows Ω(n) lower bound on the read complexity of space-optimal binary quasi-
Gray codes. The existence of binary quasi-Gray codes with sub-linear read complexity of
length 2n − 2εn, for some constant ε < 1, was open. Using a different technique than that
used in the proof of Theorem 1 we get a quasi-Gray code over the binary alphabet which
enumerates all but O(n) many strings. This result generalizes to the domain Znq for any
prime power q.

I Theorem 2. Let n ≥ 15 be any natural number. Then, there is a quasi-Gray code C of
length at least 2n − 20n over Zn2 , such that the two functions next(C,w) and prev(C,w) can
be implemented by inspecting at most 6 + logn cells while writing only 2 cells.

We remark that the points that are missing from C in the above theorem are all of the
form {0, 1}O(logn)0n−O(logn).

If we are allowed to read and write constant fraction of n bits then Theorem 2 can be
adapted to get a quasi-Gray code of length 2n −O(1) (see Section 5). In this way we get a
trade-off between length of the quasi-Gray code and the number of bits read in the worst-case.
All of our constructions can be made uniform.

Using the Chinese Remainder Theorem (cf. [14]), we also develop a technique that allows
us to compose Gray codes over various domains. Hence, from quasi-Gray codes over domains

ESA 2018

12:4 Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

Znm1
,Znm2

, . . . ,Znmk
, where mi’s are pairwise co-prime, we can construct quasi-Gray codes

over Zn′

m , where m = m1 ·m2 · · ·mk. Using this technique on our main results, we get a
quasi-Gray code over Znm for any m ∈ N that misses only O(n · on) strings where m = 2`o
for an odd o, while achieving the read complexity similar to that stated in Theorem 1. It is
worth mentioning that if we get a space-optimal quasi-Gray code over the binary alphabet
with non-trivial savings in read complexity, then we will have a space-optimal quasi-Gray
code over the strings of alphabet Zm for any m ∈ N with similar savings.

The technique by which we construct our quasi-Gray codes relies heavily on simple algebra
which is a substantial departure from previous mostly combinatorial constructions. We view
Gray codes as permutations on Znm and we decompose them into k simpler permutations on
Znm, each being computable with read complexity 3 and write complexity 1. Then we apply
a different composition theorem, than mentioned above, to obtain space-optimal quasi-Gray
codes on Zn′

m , n′ = n+ log k, with read complexity O(1) + log k and write complexity 2.
The main issue is the decomposition of permutations into few simple permutations. This is
achieved by techniques of catalytic computation [7] going back to the work of Coppersmith
and Grossman [13, 2, 3].

It follows from the work of Coppersmith and Grossman [13] that our technique is incapable
of designing a space-optimal quasi-Gray code on Zn′

2 as any such code represents an odd
permutation. The tools we use give inherently only even permutations. However, we can
construct quasi-Gray codes from cycles of length 2n− 1 on Zn2 as they are even permutations.
Indeed, that is what we do for our Theorem 2. We note that any efficiently computable odd
permutation on Zn2 , with say read complexity (1 − ε)n and write complexity O(1), could
be used together with our technique to construct a space-optimal quasi-Gray code on Zn′

2
with read complexity at most (1− ε′)n′ and constant write complexity. This would represent
a major progress on space-optimal Gray codes. (We would compose the odd permutation
with some even permutation to obtain a full cycle on Zn2 . The size of the decomposition of
the even permutation into simpler permutations would govern the read complexity of the
resulting quasi-Gray code.)

Interestingly, Raskin’s result relies on showing that a decision assignment tree of sub-linear
read complexity must compute an even permutation.

1.1 Related works
The construction of Gray codes is central to the design of algorithms for many combinatorial
problems [42]. Frank Gray [23] first came up with a construction of Gray code over binary
strings of length n, where to generate the successor or predecessor strings one needs to read
n bits in the worst-case. The type of code described in [23] is known as binary reflected
Gray code. Later Bose et al. [5] provided a different type of Gray code construction, namely
recursive partition Gray code which attains O(logn) average case read complexity while
having the same worst-case read requirements. The read complexity we referred here is in
the bit-probe model. It is easy to observe that any space-optimal binary Gray code must
read logn+ 1 bits in the worst-case [20, 36, 21]. Recently, this lower bound was improved to
n/2 in [39]. An upper bound of even n− 1 was not known until very recently [21]. This is
also the best known so far.

Fredman [20] extended the definition of Gray codes by considering codes that may not
enumerate all the strings (though presented in a slightly different way in [20]) and also
introduced the notion of decision assignment tree (DAT) to study the complexity of any
code in the bit-probe model. He provided a construction that generates a Gray code of
length 2c·n for some constant c < 1 while reducing the worst-case bit-read to O(logn). Using

D. Chakraborty, D. Das, M. Koucký, and N. Saurabh 12:5

Table 1 Taxonomy of construction of Gray/quasi-Gray codes over Zn
m.

Reference Value of m length Worst-case cell read Worst-case cell write
[23] 2 2n n 1
[20] 2 2Θ(n) O(log n) O(1)
[19] 2 Θ(2n/n) log n + 1 log n + 1
[38] 2 2n−1 log n + 4 4
[5] 2 2n − O(2n/nt) O(t log n) 3
[6] 2 2n − 2n−t log n + t + 3 2
[6] 2 2n − 2n−t log n + t + 2 3
[21] 2 2n n − 1 1

Theorem 2 2 2n − O(n) log n + 4 2
[12] any m mn n 1

Theorem 1 any odd m mn 4 logm n + 3 2

the idea of Lucal’s modified reflected binary code [31], Munro and Rahman [38] got a code
of length 2n−1 with worst-case read complexity only 4 + logn. However in their code two
successive strings differ by 4 coordinates in the worst-case, instead of just one and we refer
to such codes as quasi-Gray codes following the nomenclature used in [5]. Brodal et al.
[6] extended the results of [38] by constructing a quasi-Gray code of length 2n − 2n−t for
arbitrary 1 ≤ t ≤ n− logn− 1, that has t+ 3 + logn bits (t+ 2 + logn bits) worst-case read
complexity and any two successive strings in the code differ by at most 2 bits (3 bits).

In contrast to the Gray codes over binary alphabets, Gray codes over non-binary alphabets
received much less attention. The construction of binary reflected Gray code was generalized
to the alphabet Zm for any m ∈ N in [18, 12, 27, 40, 28, 25]. However, each of those
constructions reads n coordinates in the worst-case to generate the next element. As
mentioned before, we measure the read complexity in the well studied cell probe model [43]
where we assume that each cell stores an element of Zm. The argument of Fredman in [20]
implies a lower bound of Ω(logm n) on the read complexity of quasi-Gray code on Znm. To
the best of our knowledge, for non-binary alphabets, there is nothing known similar to the
results of Munro and Rahman or Brodal et al. [38, 6]. We summarize the previous results
along with ours in Table 1.

Additionally, many variants of Gray codes have been studied in the literature. A particular
one that has garnered a lot of attention in the past 30 years is the well-known middle levels
conjecture. See [33, 34, 35, 24], and the references therein. It has been established only
recently [33]. The conjecture says that there exists a Hamiltonian cycle in the graph induced
by the vertices on levels n and n + 1 of the hypercube graph in 2n + 1 dimensions. In
other words, there exists a Gray code on the middle levels. Mütze et al. [34, 35] studied the
question of efficiently enumerating such a Gray code in the word RAM model. They [35]
gave an algorithm to enumerate a Gray code in the middle levels that requires O(n) space
and on average takes O(1) time to generate the next vertex. In this paper we consider the
bit-probe model, and Gray codes over the complete hypercube. It would be interesting to
know whether our technique can be applied for the middle level Gray codes.

1.2 Our technique
Our construction of Gray codes relies heavily on the notion of s-functions defined by
Coppersmith and Grossman [13]. An s-function is a permutation τ on Znm defined by
a function f : Zsm → Zm and an (s + 1)-tuple of indices i1, i2, . . . , is, j ∈ [n] such that

ESA 2018

12:6 Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

τ(〈x1, x2, . . . , xn〉) = (〈x1, x2, . . . , xj−1, xj + f(xi1 , . . . , xis), xj+1, . . . , xn〉), where the addi-
tion is inside Zm. Each s-function can be computed by some decision assignment tree that
given a vector x = 〈x1, x2, . . . , xn〉, inspects s+ 1 coordinates of x and then it writes into a
single coordinate of x.

A counter C (quasi-Gray code) on Znm can be thought of as a permutation on Znm. Our
goal is to construct some permutation α on Znm that can be written as a composition of
2-functions α1, . . . , αk, i.e., α = αk ◦ αk−1 ◦ · · · ◦ α1.

Given such a decomposition, we can build another counter C ′ on Zr+n
m , where r = dlogm ke,

for which the function next(C ′, x) operates as follows. The first r-coordinates of x serve as an
instruction pointer i ∈ [mr] that determines which αi should be executed on the remaining n
coordinates of x. Hence, based on the current value i of the r coordinates, we perform αi on
the remaining coordinates and then we update the value of i to i + 1. (For i > k we can
execute the identity permutation which does nothing.)

We can use known Gray codes on Zrm to represent the instruction pointer so that when
incrementing i we only need to write into one of the coordinates. This gives a counter C ′
which can be computed by a decision assignment tree that reads r+ 3 coordinates and writes
into 2 coordinates of x. (A similar composition technique is implicit in Brodal et al. [6].) If C
is of length ` = mn − t, then C ′ is of length mn+r − tmr. In particular, if C is space-optimal
then so is C ′.

Hence, we reduce the problem of constructing 2-Gray codes to the problem of designing
large cycles in Znm that can be decomposed into 2-functions. Coppersmith and Grossman [13]
studied precisely the question of, which permutations on Zn2 can be written as a composition
of 2-functions. They show that a permutation on Zn2 can be written as a composition of
2-functions if and only if the permutation is even. Since Zn2 is of even size, a cycle of length
2n on Zn2 is an odd permutation and thus it cannot be represented as a composition of
2-functions. However, their result also implies that a cycle of length 2n − 1 on Zn2 can be
decomposed into 2-functions.

We want to use the counter composition technique described above in connection with a
cycle of length 2n − 1. To maximize the length of the cycle C ′ in Zn+r

2 , we need to minimize
k, the number of 2-functions in the decomposition. By a simple counting argument, most
cycles of length 2n − 1 on Zn2 require k to be exponentially large in n. This is too large for
our purposes. Luckily, there are cycles of length 2n − 1 on Zn2 that can be decomposed into
polynomially many 2-functions, and we obtain such cycles from linear transformations.

There are linear transformations Zn2 → Zn2 which define a cycle on Zn2 of length 2n − 1.
For example, the matrix corresponding to the multiplication by a fixed generator of the
multiplicative group F∗2n of the Galois field GF [2n] is such a matrix. Such matrices are full
rank and they can be decomposed into O(n2) elementary matrices, each corresponding to a
2-function. Moreover, there are matrices derived from primitive polynomials that can be
decomposed into at most 4n elementary matrices.2 We use them to get a counter on Zn′

2
of length at least 2n′ − 20n′ whose successor and predecessor functions are computable by
decision assignment trees of read complexity ≤ 6+logn′ and write complexity 2. Such counter
represents 2-Gray code of the prescribed length. For any prime q, the same construction
yields 2-Gray codes of length at least qn′ − 5q2n′ with decision assignment trees of read
complexity ≤ 6 + logq n′ and write complexity 2.

2 Primitive polynomials were previously also used in a similar problem, namely to construct shift-register
sequences (see e.g. [28]).

D. Chakraborty, D. Das, M. Koucký, and N. Saurabh 12:7

The results of Coppersmith and Grossman [13] can be generalized to Znm as stated in
Richard Cleve’s thesis [11].3 For odd m, if a permutation on Znm is even then it can be
decomposed into 2-functions. Since mn is odd, a cycle of length mn on Znm is an even
permutation and so it can be decomposed into 2-functions. If the number k of those functions
is small, so the logm k is small, we get the sought after counter with small read complexity.
However, for most cycles of length mn on Znm, k is exponential in n.

We show though, that there is a cycle α of length mn on Znm that can be decomposed
into O(n3) 2-functions. This in turn gives space-optimal 2-Gray codes on Zn′

m with decision
assignment trees of read complexity O(logm n′) and write complexity 2.

We obtain the cycle α and its decomposition in two steps. First, for i ∈ [n], we consider
the permutation αi on Znm which maps each element 0i−1ay onto 0i−1(a+ 1)y, for a ∈ Zm
and y ∈ Zn−im , while other elements are mapped to themselves. Hence, αi is a product of
mn−i disjoint cycles of length m. We show that α = αn ◦ αn−1 ◦ · · · ◦ α1 is a cycle of length
mn. In the next step we decompose each αi into O(n2) 2-functions.

For i ≤ n − 2, we can decompose αi using the technique of Ben-Or and Cleve [3] and
its refinement in the form of catalytic computation of Buhrman et al. [7]. We can think of
x ∈ Znm as content of n memory registers, where x1, . . . , xi−1 are the input registers, xi is
the output register, and xi+1, . . . , xn are the working registers. The catalytic computation
technique gives a program consisting of O(n2) instructions, each being equivalent to a 2-
function, which performs the desired adjustment of xi based on the values of x1, . . . , xi−1
without changing the ultimate values of the other registers. (We need to increment xi iff
x1, . . . , xi−1 are all zero.) This program directly gives the desired decomposition of αi, for
i ≤ n− 2. (Our proof in Section 6 uses the language of permutations.)

The technique of catalytic computation fails for αn−1 and αn as the program needs at
least two working registers to operate. Hence, for αn−1 and αn we have to develop entirely
different technique. This is not trivial and quite technical but it is nevertheless possible,
thanks to the specific structure of αn−1 and αn.

2 Preliminaries

In the rest of the paper we only present constructions of the successor function next(C,w)
for our codes. Since all the operations in those constructions are readily invertible, the same
arguments also give the predecessor function prev(C,w).

Notation: We use the standard notions of groups and fields, and mostly we will use only
elementary facts about them (see [15, 30] for background.). By Zm we mean the set of
integers modulo m, i.e., Zm := Z/mZ. Throughout this paper whenever we use addition and
multiplication operation between two elements of Zm, then we mean the operations within
Zm that is modulo m. For any m ∈ N, we let [m] denote the set {1, 2, . . . ,m}. Unless stated
otherwise explicitly, all the logarithms we consider throughout this paper are based 2.

Now we define the notion of counters used in this paper.

I Definition 3 (Counter). A counter of length ` over a domain D is any cyclic sequence
C = (w1, . . . , w`) such that w1, . . . , w` are distinct elements of D. With the counter C we
associate two functions next(C,w) and prev(C,w) that give the successor and predecessor
element of w in C, that is for i ∈ [`], next(C,wi) = wj where j − i = 1 mod `, and
prev(C,wi) = wk where i − k = 1 mod `. If ` = |D|, we call the counter a space-optimal
counter.

3 Unfortunately, there is no written record of the proof.

ESA 2018

12:8 Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

Often elements in the underlying domain D have some “structure” to them. In such cases,
it is desirable to have a counter such that consecutive elements in the sequence differ by a
“small” change in the “structure”. We make this concrete in the following definition.

I Definition 4 (Gray Code). Let D1, . . . ,Dn be finite sets. A Gray code of length ` over the
domain D = D1 × · · · × Dn is a counter (w1, . . . , w`) of length ` over D such that any two
consecutive strings wi and wj , j − i = 1 mod `, differ in exactly one coordinate when viewed
as an n-tuple. More generally, if for some constant c ≥ 1, any two consecutive strings wi and
wj , j − i = 1 mod `, differ in at most c coordinates such a counter is called a c-Gray Code.

By a quasi-Gray code we mean c-Gray code for some unspecified fixed c > 0. In the
literature sometimes people do not place any restriction on the relationship between w` and
w1 and they refer to such a sequence a (quasi)-Gray code. In their terms, our codes would
be cyclic (quasi)-Gray codes. If ` = |D|, we call the codes space-optimal (quasi-)Gray codes.

Decision Assignment Tree: The computational model we consider in this paper is called
Decision Assignment Tree (DAT). The definition we provide below is a generalization of that
given in [20]. It is intended to capture random access machines with small word size.

Let us fix an underlying domain Dn whose elements we wish to enumerate. In the
following, we will denote an element in Dn by 〈x1, x2, . . . , xn〉. A decision assignment tree is
a |D|-ary tree such that each internal node is labeled by one of the variables x1, x2, . . . , xn.
Furthermore, each outgoing edge of an internal node is labeled with a distinct element of
D. Each leaf node of the tree is labeled by a set of assignment instructions that set new
(fixed) values to chosen variables. The variables which are not mentioned in the assignment
instructions remain unchanged.

The execution on a decision assignment tree on a particular input vector 〈x1, . . . , xn〉 ∈ Dn
starts from the root of the tree and continues in the following way: at a non-leaf node labeled
with a variable xi, the execution queries xi and depending on the value of xi the control passes
to the node following the outgoing edge labeled with the value of xi. Upon reaching a leaf,
the corresponding set of assignment statements is used to modify the vector 〈x1, x2, . . . , xn〉
and the execution terminates. The modified vector is the output of the execution.

Thus, each decision assignment tree computes a mapping from Dn into Dn. We are
interested in decision assignment trees computing the mapping next(C, 〈x1, x2, . . . , xn〉) for
some counter C. When C is space-optimal we can assume, without loss of generality, that
each leaf assigns values only to the variables that it reads on the path from the root to the
leaf. (Otherwise, the decision assignment tree does not compute a bijection.) We define the
read complexity of a decision assignment tree T , denoted by READ(T), as the maximum
number of non-leaf nodes along any path from the root to a leaf. Observe that any mapping
from Dn into Dn can be implemented by a decision assignment tree with read complexity n.
We also define the write complexity of a decision assignment tree T , denoted by WRITE(T),
as the maximum number of assignment instructions in any leaf.

Instead of the domain Dn, we will sometimes also use domains that are a cartesian
product of different domains. The definition of a decision assignment tree naturally extends
to this case of different variables having different domains.

For any counter C = (w1, . . . , w`), we say that C is computed by a decision assignment
tree T if and only if for i ∈ [`], next(C,wi) = T (wi), where T (wi) denotes the output
string obtained after an execution of T on wi. Note that any two consecutive strings in the
cyclic sequence of C differ by at most WRITE(T) many coordinates. For a small constant
c ≥ 1, some domain D, and all large enough n, we will be interested in constructing cyclic
counters on Dn that are computed by decision assignment trees of write complexity c and
read complexity O(logn). By definition such cyclic counters will necessarily be c-Gray codes.

D. Chakraborty, D. Das, M. Koucký, and N. Saurabh 12:9

2.1 Construction of Gray codes
For our construction of quasi-Gray codes on a domain Dn with decision assignment trees of
small read and write complexity we will need ordinary Gray codes on a domain DO(logn).
Several constructions of space-optimal binary Gray codes are known where the oldest one is
the binary reflected Gray code [23]. This can be generalized to space-optimal (cyclic) Gray
codes over non-binary alphabets (see e.g. [12, 28]).

I Theorem 5 ([12, 28]). For any m,n ∈ N, there is a space-optimal (cyclic) Gray code over
Znm.

3 Chinese Remainder Theorem for Counters

Below we describe how to compose decision assignment trees over different domains to get a
decision assignment tree for a larger mixed domain. For all the details and proofs we refer
the reader to the full version of this paper [8].

I Theorem 6 (Chinese Remainder Theorem for Counters). Let r, n1, . . . , nr ∈ N be integers, and
let D1,1, . . . ,D1,n1 ,D2,1, . . . ,Dr,nr

be some finite sets of size at least two. Let `1 ≥ r−1 be an
integer, and `2, . . . , `r be pairwise co-prime integers. For i ∈ [r], let Ci be a counter of length `i
over Di = Di,1×· · ·×Di,ni

computed by a decision assignment tree Ti over ni variables. Then,
there exists a decision assignment tree T over

∑r
i=1 ni variables that implements a counter C

of length
∏r
i=1 `i over D1 × · · · × Dr. Furthermore, READ(T) = n1 + max{READ(Ti)}ri=2,

and WRITE(T) = WRITE(T1) + max{WRITE(Ti)}ri=2.

We remark that if Ci’s in the theorem are space-optimal then so is C. The proof of the
theorem constructs a special type of a counter where we always read the first coordinate,
increment it, and further depending on its value, we may update the value of another
coordinate. Note, for such type of a counter the co-primality condition is necessary at least
for `1 = 2, 3 (see the full version [8]).

As a corollary of the above theorem, to get a decision assignment tree implementing
space-optimal quasi-Gray codes over Zm for any m ∈ N, we only need decision assignment
trees implementing space-optimal quasi-Gray codes over Z2 and Zm, for odd m.

4 Permutation Group and Construction of Counters

We start this section with some basic notation and facts about the permutation group which
we will use heavily in the rest of the paper. The set of all permutations over a domain D
forms a group under the composition operation, denoted by ◦, which is defined as follows:
for any two permutations σ and α, σ ◦ α(x) = σ(α(x)), where x ∈ D. The corresponding
group, denoted SN , is the symmetric group of order N = |D|. We say, a permutation σ ∈ SN
is a cycle of length ` if there are distinct elements a1, . . . , a` ∈ [N] such that for i ∈ [`− 1],
ai+1 = σ(ai), a1 = σ(a`), and for all a ∈ [N] \ {a1, a2, . . . , a`}, σ(a) = a. We denote such a
cycle by (a1, a2, · · · , a`).

Roughly speaking, a counter of length ` over D, in the language of permutations, is
nothing but a cycle of the same length in S|D|. We now make this correspondence precise
and give a construction of a decision assignment tree that implements such a counter.

We state our key lemma to construct Gray codes from a decomposition of a permutation.

I Lemma 7. Let D = D1 × · · · × Dr be a domain. Suppose σ1, . . . , σk ∈ S|D| are such that
σ = σk ◦σk−1 ◦ · · · ◦σ1 is a cycle of length `. Let T1, . . . , Tk be decision assignment trees that
implement σ1, . . . , σk respectively. Let D′ = D′1 × · · · × D′r′ be a domain such that |D′| ≥ k,

ESA 2018

12:10 Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

and let T ′ be a decision assignment tree that implements a counter C ′ of length k′ over D′
where k′ ≥ k.

Then, there exists a decision assignment tree T that implements a counter of length
k′` over D′ × D such that READ(T) = r′ + max{READ(Ti)}ki=1, and WRITE(T) =
WRITE(T ′) + max{WRITE(Ti)}ki=1.

Proof sketch. Suppose C ′ = (a1, . . . , ak′). Now let us consider the following procedure P :
on any input 〈x1, x2〉 ∈ D′×D, if x1 = aj for some j ∈ [k], set x2 ← σj(x2). Next, increment
the first coordinate, i.e., set x1 ← next(C ′, x1).

Read and write complexity of the statement follows immediately. The correctness also
follows from some basic property of permutation group together with the fact that σ is a
cycle of length `. J

In the next two sections we describe the construction of σ1, · · · , σk ∈ SN whereN = mn for
somem,n ∈ N and how the value of k depends on the length of the cycle σ = σk◦σk−1◦· · ·◦σ1.

5 Counters via Linear Transformation

The construction in this section is based on linear transformations. Consider the vector space
Fnq , and let L : Fnq → Fnq be a linear transformation. A basic fact in linear algebra says that
if L has full rank, then the mapping given by L is a bijection. Thus, when L is full rank, the
mapping can also be thought of as a permutation over Fnq . Throughout this section we use
many basic terms related to linear transformation without defining them, for the details of
which we refer the reader to any standard text book on linear algebra (e.g. [29]).

A natural way to build counter out of a full rank linear transformation is to fix a starting
element, and repeatedly apply the linear transformation to obtain the next element (cf. [28]).
Clearly this only list out elements in the cycle containing the starting element. Therefore, we
would like to choose the starting element such that we enumerate the largest cycle. Ideally,
we would like the largest cycle to contain all the elements of Fnq . However this is not possible
because any linear transformation fixes the all-zero vector. But there do exist full rank
linear transformations such that the permutation given by them is a single cycle of length
qn − 1. Such a linear transformation would give us a counter over a domain of size qn that
enumerates all but one element. Clearly, a trivial implementation of the aforementioned
argument would lead to a counter that reads and writes all n coordinates in the worst-case.
In the rest of this section, we will develop an implementation and argue about the choice of
linear transformation such that the read and write complexity decreases exponentially.

It is well known that every linear transformation L is associated with some matrix
A ∈ Fn×nq such that applying the linear transformation is equivalent to the left multiplication
by A. Furthermore, L has full rank iff A is invertible over Fq.

I Definition 8 (Elementary matrices). An n × n matrix over a field F is said to be an
elementary matrix if it has one of the following forms:
(a) The off-diagonal entries are all 0. For some i ∈ [n], (i, i)-th entry is a non-zero c ∈ F.

Rest of the diagonal entries are 1.
(b) The diagonal entries are all 1. For some i and j, 1 ≤ i 6= j ≤ n, (i, j)-th entry is a

non-zero c ∈ F. Rest of the off-diagonal entries are 0.

From the definition it is easy to see that left multiplication by an elementary matrix of
the first type is equivalent to multiplying the i-th row with c, and by an elementary matrix
of the second type it is equivalent to adding c times j-th row to the i-th row.

D. Chakraborty, D. Das, M. Koucký, and N. Saurabh 12:11

I Proposition 9. Let A ∈ Fn×n be invertible. Then A can be written as a product of k
elementary matrices such that k ≤ n2 + 4(n− 1).

The proof follows from Gaussian elimination.

5.1 Construction of the counter
Let A be a full rank linear transformation from Fnq to Fnq such that when viewed as permutation
it is a single cycle of length qn − 1. More specifically, A is an invertible matrix in Fn×nq such
that for any x ∈ Fnq where x 6= (0, . . . , 0), Ax,A2x, . . . , A(qn−1)x are distinct. Such a matrix
exists, for example, take A to be the matrix of a linear transformation that corresponds to
multiplication from left by a fixed generator of the multiplicative group of Fqn under the
standard vector representation of elements of Fqn . Let A = EkEk−1 · · ·E1 where Ei’s are
elementary matrices.

I Theorem 10. Let q, A, and k be as defined above. Let r ≥ logq k. There exists a quasi-
Gray code on the domain (Fq)n+r of length qn+r−qr that can be implemented using a decision
assignment tree T such that READ(T) ≤ r + 2 and WRITE(T) ≤ 2.

Proof. The proof follows readily from Lemma 7, where Ei’s play the role of σi’s, and noting
that the permutation given by any elementary matrix can be implemented using a decision
assignment tree that reads at most two coordinates and writes at most one. For the counter
C ′ on (Fq)r we chose a Gray code of trivial read complexity r and write complexity 1. J

Thus, we obtain a counter on a domain of size roughly kqn that misses at most qk
elements. Clearly, we would like to minimize k. A trivial bound on k is O(n2) that follows
from Proposition 9. We now discuss the choice of A so that k becomes O(n) based on
primitive polynomials over finite fields.

Let p(z) be a primitive polynomial of degree n over Fq, where p(z) = zn + cn−1z
n−1 +

cn−2z
n−2 + · · · + c1z + c0. The matrix A defined as follows is the matrix representing

multiplication by some generator (a root of p(z)) of the multiplicative group of Fqn :
−cn−1 1 0 · · · 0
−cn−2 0 1 · · · 0

...
...

...
. . .

...
−c1 0 0 · · · 1
−c0 0 0 · · · 0

 .

It is easy to see that A can be written as a product of at most n + 4(n − 1) elementary
matrices. (In case, q is a power of 2, then the number of elementary matrices in the product
is at most n+ 3(n− 1).) Hence, from the discussion above and using Theorem 10, we obtain
the following corollaries. Setting r = dlog(4n− 3)e in Theorem 10 gives:

I Corollary 11. For any n′ ≥ 2, and n = n′+ dlog(4n′− 3)e, there exists a counter on (Z2)n
that misses at most 8n strings and can be implemented by a decision assignment tree that
reads at most 4 + logn bits and writes at most 2 bits.

By doubling the number of missed strings and increasing the number of read bits by
one we can construct given counters for any Zn2 , where n ≥ 15. For the general case, when
q is a prime power, we obtain the following corollary by setting r to dlogq(5n − 4)e or
1 + dlogq(5n− 4)e in Theorem 10.

ESA 2018

12:12 Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

I Corollary 12 (Generalization of Theorem 2). Let q be any prime power. For n ≥ 15, there
exists a counter on Znq that misses at most 5q2n strings and that is computed by a decision
assignment tree with read complexity at most 6 + logq n and write complexity 2.

6 Space-optimal Counters over Zn
m for any Odd m

In this section we sketch a proof of Theorem 1. We want to use Lemma 7. Set n′ = n−c · logn
for a suitable constant c > 0. We define permutations α1, · · · , αn′ ∈ SN , for N = mn′ , such
that α = αn′ ◦ · · · ◦ α1 is a cycle of length mn′ . We will show that each of these αi’s can be
further decomposed into αi,1, · · · , αi,j ∈ SN for some j, such that each of αi,r for r ∈ [j] can
be implemented using DAT with read complexity 3 and write complexity 1. Finally we use
Lemma 7 by considering all these αi,r’s as σ1, · · · , σk, where k is O(mn′3).

For any i ∈ [n′], define αi as follows: for any 〈x1, · · · , xn′〉 ∈ Zn′

m , if xj = 0 for all
j = 1, · · · , i− 1, then xi ← xi + 1 mod m. Observe, α = αn′ ◦ · · · ◦ α1 is a cycle of length
mn′ . Notice each αi is a (i− 1)-function on Zn′

m (see Section 1.2 for their definition). Now if
for any i ∈ [n′] we can find a set of 2-functions αi,1, · · · , αi,ki

such that αi = αi,ki
◦ · · · ◦ αi,1,

then we can use them as σj ’s in Lemma 7. As a result the complexity in Theorem 1 follows.
Note α1, α2 and α3 are already 2-functions. In the case of αi for 4 ≤ i ≤ n′ − 2, we

can directly adopt the technique from [3, 7] to generate the desired set of 2-functions. For
i = n′ − 1, it is possible to generalize the proof technique of [13] to decompose αn′−1 but we
have to develop a new technique to decompose αn′ .

I Lemma 13. For any 4 ≤ i ≤ n′ − 2, one can construct a set of 2-functions αi,1, · · · , αi,ki

such that αi = αi,ki
◦ · · · ◦ αi,1 where ki ≤ c1 · (i− 1)2 for some constant c1 > 0.

It remains to decompose αn′−1 and αn′ . A key tool is the following lemma.

I Lemma 14. Suppose there are two cycles, σ = (t, a1, · · · , a`−1) and τ = (t, b1, · · · , b`−1),
of length ` ≥ 2 such that ai 6= bj for every i, j ∈ [`− 1]. Then, (σ ◦ τ)` ◦ (τ ◦ σ)` = σ2.

Let us now consider αn′ , the case of αn′−1 is analogous. For a = (m+ 1)/2, we define
σ = (〈00 · · · 0(0 · a)〉, 〈00 · · · 0(1 · a)〉, · · · , 〈00 · · · 0((m− 1) · a)〉), and τ = (〈(0 · a)00 · · · 0〉, 〈(1 ·
a)00 · · · 0〉, · · · , 〈((m− 1) · a)00 · · · 0〉), where the multiplication is in Zm. In other words, we
define σ by adding a to the value of the last coordinate when all other coordinates are set to
0, and we define τ by adding a to the value of the first coordinate when all other coordinates
are set to 0. Since m is co-prime with (m+ 1)/2, σ and τ are cycles of length m. (Here we
use the fact that m is odd.) Observe that σ2 = αn′ , so by applying Lemma 14 to σ and τ
we get αn′ . It might seem we didn’t make much progress towards decomposition, as now
instead of one (n′ − 1)-function αn′ we have to decompose two (n′ − 1)-functions σ and τ .
However, we will not decompose σ and τ directly, but rather we obtain a decomposition for
(σ ◦ τ)m and (τ ◦ σ)m. Surprisingly this can be done using a generalization of Lemma 13.

We consider an (n′ − 3)-function σ′ whose cycle decomposition contains σ as one of
its cycles. Similarly we consider a 3-function τ ′ whose cycle decomposition contains τ as
one of its cycles. We carefully choose these σ′ and τ ′ such that (σ′ ◦ τ ′)m = (σ ◦ τ)m and
(τ ′ ◦ σ′)m = (τ ◦ σ)m. We will decompose σ′ and τ ′ to get the desired decomposition.

I Lemma 15. For any i ∈ {n′ − 1, n′}, one can construct a set of 2-functions αi,1, · · · , αi,ki

such that αi = αi,ki
◦ · · · ◦ αi,1 where ki ≤ c2 ·m · (i− 1)2 for some constant c2 > 0.

D. Chakraborty, D. Das, M. Koucký, and N. Saurabh 12:13

References
1 D. J. Amalraj, N. Sundararajan, and Goutam Dhar. Data structure based on Gray code

encoding for graphics and image processing. In Proceedings of the SPIE: International
Society for Optical Engineering, pages 65–76, 1990.

2 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences, 38:150–164,
1989.

3 Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number
of registers. SIAM J. Comput., 21(1):54–58, 1992. doi:10.1137/0221006.

4 James R. Bitner, Gideon Ehrlich, and Edward M. Reingold. Efficient generation of the
binary reflected Gray code and its applications. Commun. ACM, 19(9):517–521, 1976.

5 Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin, and Michiel H. M.
Smid. Improved methods for generating quasi-Gray codes. In Algorithm Theory - SWAT
2010, 12th Scandinavian Symposium and Workshops on Algorithm Theory, Bergen, Norway,
June 21-23, 2010. Proceedings, pages 224–235, 2010. doi:10.1007/978-3-642-13731-0_
22.

6 Gerth Stølting Brodal, Mark Greve, Vineet Pandey, and Srinivasa Rao Satti. Integer
representations towards efficient counting in the bit probe model. J. Discrete Algorithms,
26:34–44, 2014. doi:10.1016/j.jda.2013.11.001.

7 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.
Computing with a full memory: catalytic space. In Symposium on Theory of Comput-
ing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 857–866, 2014.
doi:10.1145/2591796.2591874.

8 Diptarka Chakraborty, Debarati Das, Michal Koucký, and Nitin Saurabh. Optimal quasi-
Gray codes: Does the alphabet matter? CoRR, 2017. arXiv:1712.01834.

9 C. C. Chang, H. Y. Chen, and C. Y. Chen. Symbolic Gray code as a data allocation scheme
for two-disc systems. The Computer Journal, 35(3):299–305, 1992. doi:10.1093/comjnl/
35.3.299.

10 M. S. Chen and K. G. Shin. Subcube allocation and task migration in hypercube multi-
processors. IEEE Transactions on Computers, 39(9):1146–1155, 1990. doi:10.1109/12.
57056.

11 Richard Cleve. Methodologies for Designing Block Ciphers and Cryptographic Protocols.
PhD thesis, University of Toronto, April 1989.

12 Martin Cohn. Affine m-ary Gray codes. Information and Control, 6(1):70–78, 1963.
13 Don Coppersmith and Edna Grossman. Generators for certain alternating groups with

applications to cryptography. SIAM J. Appl. Math., 29(4):624–627, 1975.
14 C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem: Applications in Computing,

Coding, Cryptography. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 1996.
15 David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley & Sons, 2004.
16 Tomáš Dvořák, Petr Gregor, and Václav Koubek. Generalized Gray codes with prescribed

ends. Theor. Comput. Sci., 668:70–94, 2017. doi:10.1016/j.tcs.2017.01.010.
17 Gideon Ehrlich. Loopless algorithms for generating permutations, combinations, and other

combinatorial configurations. J. ACM, 20(3):500–513, 1973. doi:10.1145/321765.321781.
18 Ivan Flores. Reflected number systems. IRE Transactions on Electronic Computers, EC-

5(2):79–82, 1956.
19 Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word

problems. J. ACM, 44(2):257–271, 1997. doi:10.1145/256303.256309.
20 Michael L. Fredman. Observations on the complexity of generating quasi-Gray codes. SIAM

J. Comput., 7(2):134–146, 1978. doi:10.1137/0207012.

ESA 2018

http://dx.doi.org/10.1137/0221006
http://dx.doi.org/10.1007/978-3-642-13731-0_22
http://dx.doi.org/10.1007/978-3-642-13731-0_22
http://dx.doi.org/10.1016/j.jda.2013.11.001
http://dx.doi.org/10.1145/2591796.2591874
http://arxiv.org/abs/1712.01834
http://dx.doi.org/10.1093/comjnl/35.3.299
http://dx.doi.org/10.1093/comjnl/35.3.299
http://dx.doi.org/10.1109/12.57056
http://dx.doi.org/10.1109/12.57056
http://dx.doi.org/10.1016/j.tcs.2017.01.010
http://dx.doi.org/10.1145/321765.321781
http://dx.doi.org/10.1145/256303.256309
http://dx.doi.org/10.1137/0207012

12:14 Space-Optimal Quasi-Gray Codes with Logarithmic Read Complexity

21 Zachary Frenette. Towards the efficient generation of Gray codes in the bitprobe model.
Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada, 2016.

22 E. Gad, M. Langberg, M. Schwartz, and J. Bruck. Constant-weight Gray codes for local
rank modulation. IEEE Transactions on Information Theory, 57(11):7431–7442, 2011. doi:
10.1109/TIT.2011.2162570.

23 F. Gray. Pulse code communication, 1953. US Patent 2,632,058. URL: http://www.google.
com/patents/US2632058.

24 Petr Gregor and Torsten Mütze. Trimming and gluing Gray codes. In 34th Symposium
on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover,
Germany, pages 40:1–40:14, 2017. doi:10.4230/LIPIcs.STACS.2017.40.

25 Felix Herter and Günter Rote. Loopless Gray code enumeration and the tower of bucharest.
In 8th International Conference on Fun with Algorithms, FUN 2016, June 8-10, 2016, La
Maddalena, Italy, pages 19:1–19:19, 2016.

26 A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank modulation for flash memo-
ries. IEEE Transactions on Information Theory, 55(6):2659–2673, 2009. doi:10.1109/
TIT.2009.2018336.

27 James T. Joichi, Dennis E. White, and S. G. Williamson. Combinatorial Gray codes. SIAM
J. Comput., 9(1):130–141, 1980. doi:10.1137/0209013.

28 Donald E. Knuth. The Art of Computer Programming. Volume 4A: Combinatorial Algo-
rithms, Part 1. Addison-Wesley Professional, 2011.

29 Serge Lang. Linear Algebra. Undergraduate Texts in Mathematics. Springer New York,
1987.

30 Rudolf Lidl and Harald Niederreiter. Finite Fields. Encyclopedia of Mathematics and its Ap-
plications. Cambridge University Press, 2 edition, 1996. doi:10.1017/CBO9780511525926.

31 H. M. Lucal. Arithmetic operations for digital computers using a modified reflected binary
code. IRE Transactions on Electronic Computers, EC-8(4):449–458, 1959.

32 J. Ludman. Gray code generation for mpsk signals. IEEE Transactions on Communications,
29(10):1519–1522, 1981. doi:10.1109/TCOM.1981.1094886.

33 Torsten Mütze. Proof of the middle levels conjecture. Proceedings of the London Mathe-
matical Society, 112(4):677–713, 2016.

34 Torsten Mütze and Jerri Nummenpalo. Efficient computation of middle levels Gray codes.
In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September
14-16, 2015, Proceedings, pages 915–927, 2015.

35 Torsten Mütze and Jerri Nummenpalo. A constant-time algorithm for middle levels Gray
codes. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2238–
2253, 2017.

36 Patrick K. Nicholson, Venkatesh Raman, and S. Srinivasa Rao. A survey of data structures
in the bitprobe model. In Space-Efficient Data Structures, Streams, and Algorithms -
Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, pages 303–318,
2013. doi:10.1007/978-3-642-40273-9_19.

37 Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, 1978.
38 M. Ziaur Rahman and J. Ian Munro. Integer representation and counting in the bit probe

model. Algorithmica, 56(1):105–127, 2010. doi:10.1007/s00453-008-9247-2.
39 Mikhail Raskin. A linear lower bound for incrementing a space-optimal integer representa-

tion in the bit-probe model. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 88:1–88:12, 2017.

40 Dana Richards. Data compression and Gray-code sorting. Information Processing Letters,
22(4):201–205, 1986. doi:10.1016/0020-0190(86)90029-3.

http://dx.doi.org/10.1109/TIT.2011.2162570
http://dx.doi.org/10.1109/TIT.2011.2162570
http://www.google.com/patents/US2632058
http://www.google.com/patents/US2632058
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.40
http://dx.doi.org/10.1109/TIT.2009.2018336
http://dx.doi.org/10.1109/TIT.2009.2018336
http://dx.doi.org/10.1137/0209013
http://dx.doi.org/10.1017/CBO9780511525926
http://dx.doi.org/10.1109/TCOM.1981.1094886
http://dx.doi.org/10.1007/978-3-642-40273-9_19
http://dx.doi.org/10.1007/s00453-008-9247-2
http://dx.doi.org/10.1016/0020-0190(86)90029-3

D. Chakraborty, D. Das, M. Koucký, and N. Saurabh 12:15

41 J. P. Robinson and M. Cohn. Counting sequences. IEEE Transactions on Computers,
C-30(1):17–23, 1981. doi:10.1109/TC.1981.6312153.

42 Carla Savage. A survey of combinatorial Gray codes. SIAM review, 39(4):605–629, 1997.
43 Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28(3):615–628, 1981. doi:

10.1145/322261.322274.
44 Y. Yehezkeally and M. Schwartz. Snake-in-the-box codes for rank modulation. IEEE Trans-

actions on Information Theory, 58(8):5471–5483, 2012. doi:10.1109/TIT.2012.2196755.

ESA 2018

http://dx.doi.org/10.1109/TC.1981.6312153
http://dx.doi.org/10.1145/322261.322274
http://dx.doi.org/10.1145/322261.322274
http://dx.doi.org/10.1109/TIT.2012.2196755

A Framework for In-place Graph Algorithms
Sankardeep Chakraborty1

The University of Tokyo, Japan
sankardeep@me2.mist.i.u-tokyo.ac.jp

Anish Mukherjee
Chennai Mathematical Institute, India
anish@cmi.ac.in

Venkatesh Raman
The Institute of Mathematical Sciences, HBNI, India
vraman@imsc.res.in

Srinivasa Rao Satti
Seoul National University, South Korea
ssrao@cse.snu.ac.kr

Abstract
Read-only memory (ROM) model is a classical model of computation to study time-space tradeoffs
of algorithms. A classical result on the ROM model is that any algorithm to sort n numbers
using O(s) words of extra space requires Ω(n2/s) comparisons for lg n ≤ s ≤ n/ lg n2 and the
bound has also been recently matched by an algorithm. However, if we relax the model, we do
have sorting algorithms (say Heapsort) that can sort using O(n lg n) comparisons using O(lg n)
bits of extra space, even keeping a permutation of the given input sequence at anytime during
the algorithm.

We address similar relaxations for graph algorithms. We show that a simple natural relaxation
of ROM model allows us to implement fundamental graph search methods like BFS and DFS
more space efficiently than in ROM. By simply allowing elements in the adjacency list of a vertex
to be permuted, we show that, on an undirected or directed connected graph G having n vertices
and m edges, the vertices of G can be output in a DFS or BFS order using O(lg n) bits of extra
space and O(n3 lg n) time. Thus we obtain similar bounds for reachability and shortest path
distance (both for undirected and directed graphs). With a little more (but still polynomial)
time, we can also output vertices in the lex-DFS order. As reachability in directed graphs (even
in DAGs) and shortest path distance (even in undirected graphs) are NL-complete, and lex-DFS
is P-complete, our results show that our model is more powerful than ROM if L 6= P.

En route, we also introduce and develop algorithms for another relaxation of ROM where
the adjacency lists of the vertices are circular lists and we can modify only the heads of the
lists. Here we first show a linear time DFS implementation using n + O(lg n) bits of extra space.
Improving the extra space exponentially to only O(lg n) bits, we also obtain BFS and DFS albeit
with a slightly slower running time. Both the models we propose maintain the graph structure
throughout the algorithm, only the order of vertices in the adjacency list changes. In sharp
contrast, for BFS and DFS, to the best of our knowledge, there are no algorithms in ROM that
use even O(n1−ε) bits of extra space; in fact, implementing DFS using cn bits for c < 1 has been
mentioned as an open problem. Furthermore, DFS (BFS, respectively) algorithms using n + o(n)
(o(n), respectively) bits of extra use Reingold’s [JACM, 2008] or Barnes et al’s reachability
algorithm [SICOMP, 1998] and hence have high runtime. Our results can be contrasted with the
recent result of Buhrman et al. [STOC, 2014] which gives an algorithm for directed st-reachability
on catalytic Turing machines using O(lg n) bits with catalytic space O(n2 lg n) and time O(n9).

1 This work was partially supported by JST CREST Grant Number JPMJCR1402, Japan.
2 We use lg to denote logarithm to the base 2.

© Sankardeep Chakraborty, Anish Mukherjee, Venkatesh Raman, and Srinivasa Rao Satti;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sankardeep@me2.mist.i.u-tokyo.ac.jp
mailto:anish@cmi.ac.in
mailto:vraman@imsc.res.in
mailto:ssrao@cse.snu.ac.kr
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Framework for In-place Graph Algorithms

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Models of computation

Keywords and phrases DFS, BFS, in-place algorithm, space-efficient graph algorithms, logspace

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.13

Related Version A full version of the paper can be found at [21], https://arxiv.org/abs/1711.
09859.

1 Introduction

Motivated by the rapid growth of huge data set (“big data”), space efficient algorithms
are becoming increasingly important than ever before. The proliferation of specialized
handheld devices and embedded systems that have a limited supply of memory provide
another motivation to consider space efficient algorithms. To design space-efficient algorithms
in general, several models of computation have been proposed. Among them, the following
two computational models have received considerable attention in the literature.

In the read-only memory (ROM) model, we assume that the input is given in a read-only
memory. The output of an algorithm is written on a separate write-only memory, and the
output can not be read or modified again. In addition to the input and output media, a
limited random access workspace is available. Early work on this model was on designing
lower bounds [14, 15, 16], for designing algorithms for selection and sorting [26, 38, 43,
49, 50, 52] and problems in computational geometry [6, 9, 12, 25, 30]. Recently there has
been interest on space-efficient graph algorithms [7, 10, 11, 22, 23, 24, 37, 44, 45].
In the in-place model, the input elements are given in an array, and the algorithm may
use the input array as working space. Hence the algorithm may modify the array during
its execution. After the execution, all the input elements should be present in the array
(maybe in a permuted order) and the output maybe put in the same array or sent to an
output stream. The extra space usage during the execution of the algorithm is limited to
O(lg n) bits. A prominent example of an in-place algorithm is the classic heap-sort. Other
than in-place sorting [42], searching [40, 51] and selection [47], many in-place algorithms
were designed in areas such as computational geometry [17] and stringology [41].

Apart from these models, researchers have also considered (semi)-streaming models [3,
39, 49] for designing space-efficient algorithms. Very recently the following two new models
were introduced in the literature with the same objective.

Chan et al. [27] introduced the restore model which is a more relaxed version of read-only
memory (and a restricted version of the in-place model), where the input is allowed to be
modified, but at the end of the computation, the input has to be restored to its original
form. They also gave space efficient algorithms for selection and sorting on integer arrays
in this model. This has motivation, for example, in scenarios where the input (in its
original form) is required by some other application.
Buhrman et al. [18, 19, 46] introduced and studied the catalytic-space model where a
small amount (typically O(lg n) bits) of clean space is provided along with some large
additional auxiliary space, with the condition that the additional space is initially in an
arbitrary, possibly incompressible, state and must be returned to this state when the
computation is finished. The input is assumed to be given in ROM. Thus this model can
be thought of as having an auxiliary storage that needs to be ‘restored’ in contrast to the
model by Chan et al. [27] where the input array has to be ‘restored’. They show various

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.13
https://arxiv.org/abs/1711.09859
https://arxiv.org/abs/1711.09859

S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti 13:3

interesting complexity theoretic consequences in this model and designed space-efficient
algorithms in comparison with the ROM model for a few combinatorial problems.

1.1 Previous work on space efficient graph algorithms

Even though these models were introduced in the literature with the aim of designing
and/or implementing various algorithms space efficiently, space efficient graph algorithms
have been designed only in the (semi)-streaming and the ROM model. In the streaming and
semi-streaming models, researchers have studied several basic and fundamental algorithmic
problems such as connectivity, minimum spanning tree, matching. See [48] for a comprehensive
survey in this field. Research on these two models (i.e., streaming and semi-streaming) is
relatively new and has been going on for the last decade or so whereas the study in ROM
could be traced back to almost 40 years. In fact there is already a rich history of designing
space efficient algorithms in the read-only memory model. The complexity class L is the class
containing decision problems that can be solved by a deterministic Turing machine using only
logarithmic amount of work space for computation. There are several important algorithmic
results [31, 34, 35, 36] for this class, the most celebrated being Reingold’s method [55] for
checking st-reachability in an undirected graph, i.e., to determine if there is a path between
two given vertices s and t. NL is the non-deterministic analogue of L and it is known that
the st-reachability problem for directed graphs is NL-complete (with respect to log space
reductions). Using Savitch’s algorithm [5], this problem can be solved in nO(lgn) time using
O(lg2 n) bits of extra space. Savitch’s algorithm is very space efficient but its running time
is superpolynomial. Among the deterministic algorithms running in polynomial time for
directed st-reachability, the most space efficient algorithm is due to Barnes et al. [13] who
gave a slightly sublinear space (using n/2Θ(

√
lgn) bits) algorithm for this problem running in

polynomial time. We know of no better polynomial time algorithm for this problem with
better space bound. Moreover, the space used by this algorithm matches a lower bound on
space for solving directed st-reachability on a restricted model of computation called Node
Naming Jumping Automata on Graphs (NNJAG’s) [28, 33]. This model was introduced
especially for the study of directed st-reachability and most of the known sublinear space
algorithms for this problem can be implemented on it. Thus, to design any polynomial time
ROM algorithm taking space less than n/2Θ(

√
lgn) bits requires radically new ideas. Recently

there has been some improvement in the space bound for some special classes of graphs like
planar and H-minor free graphs [8, 20]. A drawback for all these algorithms using small
space i.e., sublinear number of bits, is that their running time is often some polynomial of
high degree. This is not surprising as Tompa [57] showed that for directed st-reachability, if
the number of bits available is o(n) then some natural algorithmic approaches to the problem
require super-polynomial time.

Motivated by these impossibility results from complexity theory and inspired by the
practical applications of these fundamental graph algorithms, recently there has been a surge
of interest in improving the space complexity of the fundamental graph algorithms without
paying too much penalty in the running time i.e., reducing the working space of the classical
graph algorithms to O(n) bits with little or no penalty in running time. Thus the goal is to
design space-efficient yet reasonably time-efficient graph algorithms on the ROM. Generally
most of the classical linear time graph algorithms take O(n lg n) bits. Recently Asano et
al. [7] gave an O(m lg n) time algorithm using O(n) bits, and another implementation taking
n + o(n) bits (using Reingold’s or Barnes et al’s reachability algorithm) but using high
polynomial running time. Later, time bound was improved to O(m lg lg n) still using O(n)

ESA 2018

13:4 A Framework for In-place Graph Algorithms

bits in [37]. For sparse graphs, the time bound is further improved in [10, 22] to optimal O(m)
using still O(n) bits of space. Improving on the classical linear time implementation of BFS
which uses O(n lg n) bits of space, recent space efficient algorithms [10, 37, 44] have resulted
in a linear time algorithm using n lg 3 + o(n) bits. We know of no algorithm for BFS using
n + o(n) bits and O(m lgc n) (or even O(mn)) time for some constant c in ROM. The only
BFS algorithm taking sublinear space uses n/2Θ(

√
lgn) bits [13] and has a high polynomial

runtime. A few other space efficient algorithms for fundamental graph problems like checking
strong connectivity [37], biconnectivity and performing st-numbering [22], recognizing chordal
and outerplanar graphs [24, 45] were also designed very recently.

1.2 In-place model for graph algorithms
In order to break these inherent space bound barriers and obtain reasonably time and space
efficient graph algorithms, we want to relax the limitations of ROM. And the most natural
and obvious candidate in this regard is the classical in-place model. Thus our main objective
is to initiate a systematic study of efficient in-place (i.e., using O(lg n) bits of extra space)
algorithms for graph problems. To the best of our knowledge, this has not been done in
the literature before. Our first goal towards this is to properly define models for in-place
graph algorithms. As in the case of the standard in-place model, we need to ensure that the
graph (adjacency) structure remains intact throughout the algorithm. Let G = (V, E) be
the input graph with n = |V |, m = |E|, and assume that the vertex set V of G is the set
V = {1, 2, · · · , n}. To describe these models, we assume that the input graph representation
consists of two parts: (i) an array V of length n, where V [i] stores a pointer to the adjacency
list of vertex i, and (ii) a list of singly linked lists, where the i-th list consists of a singly
linked list containing all the neighbors of vertex i with V [i] pointing to the head of the list.
In the ROM model, we assume that both these components cannot be modified. In our
relaxed models, we assume that one of these components can be modified in a limited way.
This gives rise to two different models which we define next.

Implicit model. The most natural analogue of in-place model allows any two elements in
the adjacency list of a vertex to be swapped (in O(1) time assuming that we have access to
the nodes storing those elements in the singly linked list). The adjacency “structure” of the
representation does not change; only the values stored can be swapped. (One may restrict
this further to allow only elements in adjacent nodes to be swapped. Most of our algorithms
work with this restriction.) We call it the implicit model inspired by the notion of implicit
data structures [51].

Rotate model. In this model, we assume that only the pointers stored in the array V can
be modified, that too in a limited way - to point to any node in the adjacency list, instead of
always pointing to the first node. In space-efficient setting, since we do not have additional
space to store a pointer to the beginning of the adjacency list explicitly, we assume that
the second component of the graph representation consists of a list of circular linked lists
(instead of singly linked lists) – i.e., the last node in the adjacency list of each vertex points
to the first node (instead of storing a null pointer). We call the element pointed to by the
pointer as the front of the list, and a unit cost rotate operation changes the element pointed
to by the pointer to the next element in the list.

Thus the rotate model corresponds to keeping the adjacency lists in read-only memory
and allowing (limited) updates on the pointer array that points to these lists. And, the
implicit model corresponds to the reverse case, where we keep the pointer array in read-only

S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti 13:5

memory and allow swaps on the adjacency lists/arrays. A third alternative especially for the
implicit model is to assume that the input graph is represented as an adjacency array, i.e.,
adjacency lists are stored as arrays instead of singly linked lists (see [22, 37, 45] for some
results using this model); and we allow here that any two elements in the adjacency array
can be swapped. In this model, some of our algorithms have improved performance in time.

1.3 Definitions, computational complexity and notations
We study some basic and fundamental graph problems in these models. In what follows we
provide the definitions and state the computational complexity of these problems. For the
DFS problem, there have been two versions studied in the literature. In the lexicographically
smallest DFS or lex-DFS problem, when DFS looks for an unvisited vertex to visit in an
adjacency list, it picks the “first” unvisited vertex where the “first” is with respect to the
appearance order in the adjacency list. The resulting DFS tree will be unique. In contrast
to lex-DFS, an algorithm that outputs some DFS numbering of a given graph, treats an
adjacency list as a set, ignoring the order of appearance of vertices in it, and outputs a
vertex ordering T such that there exists some adjacency ordering R such that T is the
DFS numbering with respect to R. We say that such a DFS algorithm performs general-
DFS. Reif [54] has shown that lex-DFS is P-complete (with respect to log-space reductions)
implying that a logspace algorithm for lex-DFS results in the collapse of complexity classes
P and L. Anderson et al. [4] have shown that even computing the leftmost root-to-leaf path
of the lex-DFS tree is P-complete. For many years, these results seemed to imply that the
general-DFS problem, that is, the computation of any DFS tree is also inherently sequential.
However, Aggarwal et al. [1, 2] proved that the general-DFS problem can be solved much
more efficiently, and it is in RNC. Whether the general-DFS problem is in NC is still open.

As is standard in the design of space-efficient algorithms [10, 37], while working with
directed graphs, we assume that the graphs are given as in/out (circular) adjacency lists
i.e., for a vertex v, we have the (circular) lists of both in-neighbors and out-neighbors of v.
We assume the word RAM model of computation where the machine consists of words of
size w in Ω(lg n) bits and any logical, arithmetic and bitwise operation involving a constant
number of words takes O(1) time. We count space in terms of number of extra bits used by
the algorithm other than the input, and this quantity is referred as “extra space” and “space”
interchangeably throughout the paper. By a path of length d, we mean a simple path on d

edges. By deg(x) we mean the degree of the vertex x. In directed graphs, it should be clear
from the context whether that denotes out-degree or in-degree. By a BFS/DFS traversal
of the input graph G, as in [7, 10, 22, 37, 44], we refer to reporting the vertices of G in the
BFS/DFS ordering, i.e., in the order in which the vertices are visited for the first time.

1.4 Our Results
Depth-first Search. In the rotate model, we show the following in Sections 2.1, 2.2 and 2.3.

I Theorem 1. Let G be a directed or an undirected graph, and ` ≤ n be the maximum depth
of the DFS tree starting at a source vertex s. Then in the rotate model, the vertices of G can
be output in
(a) the lex-DFS order in O(m + n) time using n lg 3 + O(lg2 n) bits of extra space,
(b) a general-DFS order in O(m + n) time using n + O(lg n) bits of extra space, and
(c) a general-DFS order in O(m2/n + m`) time for an undirected graph and in O(m(n + `2))

time for directed graphs using O(lg n) bits of extra space. For this algorithm, we assume
that s can reach all other vertices.

ESA 2018

13:6 A Framework for In-place Graph Algorithms

In the implicit model, we obtain polynomial time implementations for lex-DFS and general-
DFS using O(lg n) bits of extra space. For lex-DFS, this is conjectured to be unlikely in
ROM as the problem is P-complete [54]. In particular, we show the following in Section 4.

I Theorem 2. Let G be a directed or an undirected graph with a source vertex s and ` ≤ n

be the maximum depth of any DFS tree starting at s that can reach all other vertices. Then
in the implicit model, using O(lg n) bits of extra space, the vertices of G can be output in
(a) the lex-DFS order in O(m3/n2 + `m2/n) time if G is given in adjacency list and in

O(m2 lg n/n) time if G is given in adjacency array for undirected graphs. For directed
graphs our algorithm takes O(m2(n + `2)/n) time if G is given in adjacency list and
O(m lg n(n + `2)) time if G is given in adjacency array;

(b) a general-DFS traversal order in O(m2/n) time if the input graph G is given in an
adjacency list and in O(m2(lg n)/n + m` lg n)) time if it is given in an adjacency array.

In sharp contrast, for space efficient algorithms for DFS in ROM, the landscape looks
markedly different. To the best of our knowledge, there are no DFS algorithms in general
graphs in ROM that use O(n1−ε) bits. In fact, an implementation of DFS taking cn bits for
c < 1 has been proposed as an open problem in [7].

Breadth-first Search. In the rotate model, we show the following.

I Theorem 3. (♠)3 Let G be a directed or an undirected graph, and ` ≤ n be the depth of
the BFS tree starting at the source vertex s. Then in the rotate model, the vertices of G can
be output in a BFS order in
(a) O(m + n`2) time using n + O(lg n) bits of extra space, and
(b) O(m` + n`2) time using O(lg n) bits of extra space. Here we assume that the source

vertex can reach all other vertices.

In the implicit model, we can match the runtime of BFS from rotate model, and do better
in some special classes of graphs. In particular, we show the following.

I Theorem 4. (♠) Let G be a directed or an undirected graph with a source vertex that can
reach all other vertices by a distance of at most ` ≤ n. Then in the implicit model, using
O(lg n) bits of extra space, the vertices of G can be output in a BFS order in
(a) O(m + n`2) time;
(b) the runtime can be improved to O(m + n`) time if there are no degree 2 vertices;
(c) the runtime can be improved to O(m) if the degree of every vertex is at least 2 lg n + 3.

Similar to DFS, to the best of our knowledge, there are no polynomial time BFS algorithms
in ROM that use even O(n1−ε) bits. On the other hand, we don’t hope to have a BFS
algorithm (for both undirected and directed graphs) using O(lg n) bits of extra space in
ROM as the problem is NL-complete [5].

Minimum Spanning Tree (MST). We also study the problem of reporting the edges of a
MST of a given undirected connected graph G and we show the following.

3 Proofs of results marked with (♠) appear in the full version [21].

S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti 13:7

I Theorem 5. (♠) A minimum spanning tree of a given undirected weighted graph G can be
found using O(lg n) bits of extra space and in
(a) O(mn) time in the rotate model,
(b) O(mn2) time in the implicit model if G is given in an adjacency list, and
(c) O(mn lg n) time in the implicit model when G is represented in an adjacency array.

Note that by the results of [53, 55], we already know log-space algorithms for MST in
ROM but again the drawback of those algorithms is their large time complexity. On the
other hand, our algorithms have relatively small polynomial running time, simplicity, making
it an appealing choice in applications with strict space constraints.

1.5 Techniques
Our implementations follow (variations of) the classical algorithms for BFS and DFS that use
three colors (white, gray and black), but avoid the use of stack (for DFS) and queue (for BFS).
In the rotate model, we first observe that in the usual search algorithms one can dispense with
the extra data structure space of pointers maintaining the search tree (while retaining the
linear number of bits and a single bit per vertex in place of the full unvisited/visited/explored
array) simply by rotating each circular adjacency lists to move the parent or a (typically
the currently explored) child to the beginning of the list to help navigate through the tree
during the forward or the backtracking step, i.e. by changing the pointer from the vertex
to the list of its adjacencies by one node at a time. This retains the basic efficiency of the
search strategies. The nice part of this strategy is that the total number of rotations also
can be bounded. To reduce the extra space from linear to logarithmic, it is noted that one
can follow the vertices based on the current rotations at each vertex to determine the visited
status of a vertex, i.e. these algorithms use the rotate operation in a non-trivial way to
move elements within the lists to determine the color of the vertices as well. However, the
drawback is that to do so could require moving up (or down) the full height of the implicit
search tree. This yields polynomial rather than (near-)linear time algorithms.

In the implicit model, we use the classical bit encoding trick used in the development of
the implicit data structures [51]. We encode one (or two) bit(s) using a sequence of two (or
three respectively) distinct numbers. To encode a single bit b using two distinct values x and
y with x < y, we store the sequence x, y if b = 0, and y, x otherwise. Similarly, permuting
three distinct values x, y, z with x < y < z, we can represent six combinations. We can
choose any of the four combinations to represent up to 4 colors (i.e. two bits). Generalizing
this further, we can encode a pointer taking lg n bits using 2 lg n distinct elements where
reading or updating a bit takes constant time, and reading or updating a pointer takes
O(lg n) time. This also is the reason for the requirement of vertices with degree at least 3 or
2 lg n + 3 for faster algorithms, which will become clear in the description of the algorithms.

1.6 Consequences of our BFS and DFS results
There are many interesting and surprising consequences of our results for BFS and DFS in
both the rotate and implicit model. In what follows, we mention a few of them. See the full
version [21] for the complete discussion on the consequences of our results.

For directed st-reachability, as mentioned previously, the most space efficient polynomial
time algorithm [13] uses n/2Θ(

√
lgn) bits. In sharp contrast, we obtain efficient (timewise)

log-space algorithms for this problem in both the rotate and implicit models (as a corollary
of our directed graph DFS/BFS results). In terms of workspace this is exponentially

ESA 2018

13:8 A Framework for In-place Graph Algorithms

better than the best known polynomial time algorithm [13] for this problem in ROM.
For us, this provides one of the main motivations to study this model. A somewhat
incomparable result obtained recently by Buhrman et al. [18, 46] where they designed an
algorithm for directed st-reachability on catalytic Turing machines in space O(lg n) with
catalytic space O(n2 lg n) and time O(n9).
Problems like directed st-reachability [5], distance [56] which asks whether a given G

(directed, undirected or even directed acyclic) contains a path of length at most k from s

to t, are NL-complete i.e., no deterministic log-space algorithm is known. But in both the
rotate and implicit models, we design log-space algorithms for them. Assuming L 6= NL,
these results show that probably both our models with log-space are stronger than NL.
The lex-DFS problem (both in undirected and directed graphs) is P-complete [54], and
thus polylogarithmic space algorithms are unlikely to exist in the ROM model. But we
show an O(lg n) space algorithm in the implicit model for lex-DFS. This implies that,
probably the implicit model is even more powerful than the rotate model. It could even
be possible that every problem in P can be computed using log-space in the implicit
model. A result of somewhat similar flavor is obtained recently Buhrman et al. [18, 46]
where they showed that any function in TC1 can be computed using catalytic log-space,
i.e., TC1 ⊆ CSPACE(lg n). Note that TC1 contains L, NL and even other classes that are
conjectured to be different from L.
For a large number of NP-hard graph problems, the best algorithms in ROM run in
exponential time and polynomial space. We show that using just logarithmic amount of
space, albeit using exponential time, we can design algorithms for those NP-hard problems
in both of our models under some restrictions. This gives an exponential improvement
over the ROM space bounds for these problems. In constrast, no NP-hard problem can
be solved in the ROM model using O(lg n) bits unless P=NP. We discuss the details in
the full version [21].

2 DFS algorithms in the rotate model

We first describe our space-efficient algorithms for DFS in the rotate model proving Theorem 1.

2.1 Proof of Theorem 1(a) for undirected graphs
We begin by describing our algorithm for undirected graphs, and later mention the changes
required for directed graphs. In the normal exploration of DFS (see for example, Cormen et
al. [29]) we use three colors. Every vertex v is white initially while it has not been discovered
yet, becomes gray when DFS discovers v for the first time, and is colored black when it is
finished i.e., all its neighbors have been explored completely.

We maintain a color array C of length n that stores the color of each vertex at any
point in the algorithm. In the rest of the paper, when we say we scan the adjacency list of
some vertex v, what we mean is, we create a temporary pointer pointing to the current first
element of the list and move this temporary pointer until we find the desired element. Once
we get that element we actually rotate the list so that the desired element now is at the front
of the list. We start DFS at the starting vertex, say s, changing its color from white to gray
in the color array C. Then we scan the adjacency list of s to find the first white neighbor,
say w. We keep rotating the list to bring w to the front of s’s adjacency list (as the one
pointed to by the head V [s]), color w gray in the color array C and proceed to the next step
(i.e. to explore w’s adjacency list). This is the first forward step of the algorithm. In general,
at any step during the execution of the algorithm, whenever we arrive at a gray vertex u

S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti 13:9

(either from one of u’s black children or when u’s color is changed from white to gray in the
current step), we scan u’s adjacency list to find the first white vertex. (i) If we find such a
vertex, say v, then we rotate u’s list to make v as the first element, and change the color of v

to gray. (ii) If we do not find any white vertex, then we change the color of u to black, and
backtrack to its parent. To identify u’s parent, we use the following lemma.

I Lemma 6. (♠) Suppose w is a node that just became black. Then its parent p is the unique
vertex in w’s list which is (a) gray and (b) whose current list has w in the first position.

So, the parent can be found by scanning the w’s list, to find a neighbor p that is colored
gray such that the first element in p’s list is u. This completes the description of the
backtracking step. Once we backtrack to p, we find the next white vertex (as in the forward
step) and continue until all the vertices of G are explored. Other than some constant number
of variables, clearly the space usage is only for storing the color array C. Since C is of length
n where each element has 3 possible values, C can be encoded using n lg 3 + O(lg2 n) bits,
so that the i-th element in C can be read and updated in O(1) time [32]. So overall space
required is n lg 3 + O(lg2 n) bits. It is easy to see that at most two full rotations of each of
the list may happen during the execution of the algorithm (first one to explore all the white
neighbors and the second one to determine that there are no more white neighbors) resulting
in a linear time lex-DFS algorithm. We discuss the lex-DFS algorithm for the directed graphs
in the full version of the paper [21].

2.2 Proof of Theorem 1(b) for undirected graphs
To improve the space further, we replace the color array C with a bit array visited[1, . . . , n]
which stores a 0 for an unvisited vertex (white), and a 1 for a visited vertex (gray or black).
First we need a test similar to that in the statement of Lemma 6 without the distinction of
gray and black vertices to find the parent of a node. Due to the invariant we have maintained,
every internal vertex of the DFS tree will point to (i.e. have as first element in its list) its
current last child. So the nodes that could potentially have node w in its first position are
its parent, and any of its children which is a leaf. Hence we modify the forward step in the
following way.

Whenever we visit an unvisited vertex v for the first time from another vertex u (hence,
u is the parent of v in the DFS tree and u’s list has v in the first position), we, as before,
mark v as visited and in addition to that, we rotate v’s list to bring u to the front (during
this rotation, we do not mark any intermediate nodes as visited). Then we continue as before
(by finding the first unvisited vertex and bringing it to the front) in the forward step. Now
the following invariants are easy to see and are useful.

Invariants: During the exploration of DFS, in the (partial) DFS tree
1. any internal vertex has the first element in its list as its current last child; and
2. for any leaf vertex of the DFS tree, the first element in its list is its parent.
The first invariant is easy to see as we always keep the current explored vertex (child) as the
first element in the list. For leaves, the first time we encounter them, we make its parent as
the first element in the forward direction. Then we discover that it has no unvisited vertices
in its list, and so we make a full rotation and bring the parent to the front again. The
following lemma provides a test to find the parent of a node.

I Lemma 7. (♠) Let w be a node that has just become black. Then its parent p is the first
vertex x in w’s list whose current adjacency list has w in the first position.

ESA 2018

13:10 A Framework for In-place Graph Algorithms

Once we backtrack to p, we find the next white vertex, and continue until all the vertices
of G are explored. Overall this procedure takes linear time. As we rotate the list to bring
the parent of a node, before exploring its white neighbors, we are not guaranteed to explore
the first white vertex in its original list, and hence we loose the lexicographic property. We
provide our DFS algorithm for directed graphs in the full version [21].

2.3 Proof of Theorem 1(c) for undirected graphs
Now to decrease the space to O(lg n), we dispense with the color/visited array, and give tests
to determine white, gray and black vertices. For now, assume that we can determine the color
of a vertex. The forward step is almost the same as before except performing the update
in the color array. I.e., whenever we visit a white vertex v for the first time from another
vertex u (hence u is the parent of v), we rotate v’s list to bring u to the front. Then we
continue to find the first white vertex to explore. We maintain the following invariants. (i)
any gray vertex has the first element in its list as its last child in the (partial) DFS tree; (ii)
any black vertex has its parent as the first element in its list. We also store the depth of the
current node in a variable d, which is incremented by 1 every time we discover a white vertex
and decremented by 1 whenever we backtrack. We maintain the maximum depth the DFS
has attained using a variable max. At a generic step during the execution of the algorithm,
assume that we are at a vertex x’s list, let p be x’s parent and let y be a vertex in x’s list.
We need to determine the color of y and continue the DFS based on the color of y. We use
the following characterization.

I Lemma 8. (♠) Suppose the DFS has explored starting from a source vertex s, up to a
vertex x at level d. Let p be x’s parent. Note that both s and x are gray in the normal coloring
procedure. Let max be the maximum level of any vertex in the partial DFS exploration. Let
y be a vertex in x’s list. Then,
1. y is gray (i.e., (x, y) is a back edge, and y is an ancestor of x) if and only if we can reach

y from s by following through the gray child (which is at the front of a gray node’s list)
path in at most d steps.

2. y is black (i.e., (x, y) is a back edge, and x is an ancestor of y) if and only if
there is a path P of length at most (max − d) from y to x (obtained by following
through the first elements of the lists of every vertex in the path, starting from y), and
let z be the node before x in the path P . The node z appears after p in x’s list.

3. y is white if y is not gray or black.

Now, if we use the above claim to test for colors of vertices, testing for gray takes at
most d steps. Testing for black takes at most (max − d) steps to find the path, and at
most deg(x) steps to determine whether p appears before. Thus for each vertex in x’s list,
we spend time proportional to max + deg(x). So, the overall runtime of the algorithm is∑

v∈V deg(v)(deg(v) + `) = O(m2/n + m`), where ` is the maximum depth of DFS tree.
Maintaining the invariants for the gray and black vertices are also straightforward. We
provide the details of our log-space algorithm for directed graphs in the full version [21].

3 Simulation of algorithms for rotate model in the implicit model

The following result captures the overhead incurred while simulating any rotate model
algorithm in the implicit model.

S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti 13:11

I Theorem 9. (♠) Let D be the maximum degree of G. Then any algorithm running in
t(m, n) time in the rotate model can be simulated in the implicit model in (i) O(D · t(m, n))
time when G is given in an adjacency list, and (ii) O(lg D · t(m, n)) time when G is given
in an adjacency array. Furthermore, let rv(m, n) denote the number of rotations made in
v’s (whose degree is dv) list, and f(m, n) be the remaining number of operations. Then any
algorithm running in t(m, n) = f(m, n) +

∑
v∈V rv(m, n) time in the rotate model can be

simulated in the implicit model in (i) O(f(m, n) +
∑
v∈V rv(m, n) · dv) time when G is given

in an adjacency list, and (ii) O(f(m, n) +
∑
v∈V rv(m, n) lg dv) time when G is given in an

adjacency array.

Most of our algorithms in the implicit model use these simulations often with some enhance-
ments and tricks to obtain better running time bounds for some specific problems.

4 DFS algorithms in the implicit model – proof of Theorem 2

To obtain a lex-DFS algorithm, we implement the O(lg n)-bit DFS algorithm in the rotate
model, described in Section 2.3, with a simple modification. First, note that in this algorithm
(in the rotate model), we bring the parent of a vertex to the front of its adjacency list (by
performing rotations) when we visit a vertex for the first time. Subsequently, we explore
the remaining neighbors of the vertex in the left-to-right order. Thus, for each vertex, if its
parent in the DFS were at the beginning of its adjacency list, then this algorithm would result
in a lex-DFS algorithm. Now, to implement this algorithm in the implicit model, whenever
we need to bring the parent to the front, we simply bring it to the front without changing
the order of the other neighbors. Subsequently, we simulate each rotation by moving all
the elements in the adjacency list circularly. As mentioned in Section 3, this results in an
algorithm whose running time is O(

∑
v∈V dv(dv + `) · dv) = O(m3/n2 + `m2/n) if the graph

is given in an adjancecy list and in O(
∑
v∈V dv(dv + `) · lg dv) = O(m2(lg n)/n + m` lg n))

when the graph is given in the form of an adjacency array. This proves Theorem 2(a) for
undirected graphs. The results for the directed case follow from simulating the corresponding
results for the directed graphs.

To prove the result mentioned in Theorem 2(b), we implement the linear-time DFS
algorithm of Theorem 1 for the rotate model that uses n + O(lg n) bits. This results in an
algorithm that runs in O(

∑
v∈V d2

v + n) = O(m2/n) time (or in O(
∑
v∈V dv lg dv + n) =

O(m lg m + n) time, when the graph is given as an adjacency array representation), using
n + O(lg n) bits. We reduce the space usage of the algorithm to O(lg n) bits by encoding the
visited/unvisited bit for each vertex with degree at least 2 within its adjacency list (and not
maintaining this bit for degree-1 vertices). We describe the details below.

Whenever a node is visited for the first time in the algorithm for the rotated list model,
we bring its parent to the front of its adjacency list. In the remaining part of the algorithm,
we process each of its other adjacent vertices while rotating the adjacency list, untill the
parent comes to the front again. Thus, for each vertex v with degree dv, we need to rotate
v’s adjacency list O(dv) times. In the implicit model, we also bring the parent to the front
when a vertex is visited for the first time, for any vertex with degree at least 3. We use
the second and third elements in the adjacency list to encode the visited/unvisited bit. But
instead of rotating the adjacency list circularly, we simply scan through the adjacency list
from left to right everytime we need to find the next unvisited vertex in its adjacency list.
This requires O(dv) time for a vertex v with degree dv. We show how to handle vertices with
degree at most 2 separately.

ESA 2018

13:12 A Framework for In-place Graph Algorithms

As before, we can deal with the degree-1 vertices without encoding visited/unvisited bit
as we encounter those vertices only once during the algorithm. For degree-2 vertices, we
initially (at preprocessing stage) encode the bit 0 using the two elements in their adjacency
arrays – to indicate that they are unvisited. When a degree-2 vertex is visited for the first
time from a neighbor x, we move to its other neighbor – continuing the process as long as we
encounter degree-2 vertices until we reach a vertex y with degree at least 3. If y is already
visited, then we output the path consisting of all the degree-2 vertices and backtrack to x. If
y is not visited yet, then we output the path up to y, and continue the search from y, and
after marking y as visited. In both cases, we also mark all the degree-2 nodes as visited (by
swapping the two elements in each of their adjacency arrays).

During the preprocessing, for each vertex with degree at least 3, we ensure that the
second and third elements in its adjacency list encode the bit 0 (to mark it unvisited). We
maintain the invariant that for any vertex with degree at least 3, as long as it is not visited,
the second and third elements in its adjacency array encode the bit 0; and after the vertex is
visited, its parent (in the DFS tree) is at the front of its adjacency array, and the second
and third elements in its adjacency array encode the bit 1. Thus, when we visit a node v

with degree at least 3 for the first time, we bring its parent to the front, and then swap the
second and third elements in the adjacency list, if needed, to mark it as visited. The total
running time of this algorithm is bounded by

∑
v∈V d2

v = O(m2/n).
We can implement the above DFS algorithm even faster when the input graph is given in

an adjacency array representation. We deal with vertices with degree at most 2 exactly as
before. For a vertex v with degree at least 3, we bring its parent to the front and swap the
second and third elements to mark the node as visited (as before) whenever v is visited for
the first time. We then sort the remaining elements, if any, in the adjacency array, in-place
(using the linear-time in-place radix sort algorithm [42]), and implement the rotations on the
remaining part of the array as described in Section 3. The total running time of this algorithm
is bounded by

∑
v∈V dv lg dv = O(m lg m + n). This completes the proof of Theorem 2(b).

5 Concluding remarks

Our initial motivation was to get around the limitations of ROM to obtain a reasonable
model for graphs in which we can obtain space efficient algorithms. We achieved that by
introducing two new frameworks and obtained efficient (of the order of O(n3 lg n)) algorithms
using O(lg n) bits of space for fundamental graph search procedures. We also discussed
various applications of our DFS/BFS results, and it is not surprising that many corollaries
would follow as they are the backbone of many algorithms. We showed that some of these
results also translate to improved space efficient algorithms in ROM (by simulating the rotate
model algorithms in ROM with a pointer per list). With some effort, we can obtain log
space algorithm for MST. These results can be contrasted with the state of the art results in
ROM that take almost linear bits for some of these problems other than having large runtime
bounds. We believe that our work is the first step towards designing efficient in-place graph
algorithms and it will inspire further investigation into designing such algorithms for other
graph problems. One future direction would also be to improve the running times of our
algorithms. As in the case of most of the earlier space-efficient graph algorithms, we only
consider adjacency list and array representation. It’s not clear how to define in-place model
for adjacency matrix. Another challenging direction would be to design efficient algorithms
that also restore the initial input representation at the end of the execution of the algorithm.

S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti 13:13

Surprisingly we could design log-space algorithm for some P-complete problems, and so it
is important to understand the power of our models. Towards that we discovered that we
can even obtain log-space algorithms for some NP-hard graph problems. More specifically,
we defined graph subset problems and obtained log-space exponential time algorithms for
problems belonging to this class in [21]. One interesting future direction would be to
determine the exact computational power of these models along with exploring the horizon of
interesting complexity theoretic consequences of problems in these models. Unlike the ROM
model, it’s not clear how one can define an in-place model which is closed under composition.
We leave this as a challenging open problem.

References
1 A. Aggarwal and R. J. Anderson. A random NC algorithm for depth first search. Combin-

atorica, 8(1):1–12, 1988. doi:10.1007/BF02122548.
2 A. Aggarwal, R. J. Anderson, and M. Kao. Parallel depth-first search in general directed

graphs. SIAM J. Comput., 19(2):397–409, 1990. doi:10.1137/0219025.
3 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.1545.
4 R. J. Anderson and E. W. Mayr. Parallelism and the maximal path problem. Inf. Process.

Lett., 24(2):121–126, 1987. doi:10.1016/0020-0190(87)90105-0.
5 S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?
isbn=9780521424264.

6 T. Asano, K. Buchin, M. Buchin, M.Korman, W. Mulzer, G. Rote, and A. Schulz. Reprint
of: Memory-constrained algorithms for simple polygons. Comput. Geom., 47(3):469–479,
2014. doi:10.1016/j.comgeo.2013.11.004.

7 T. Asano, T. Izumi, M. Kiyomi, M. Konagaya, H. Ono, Y. Otachi, P. Schweitzer, J. Tarui,
and R. Uehara. Depth-first search using O(n) bits. In 25th ISAAC, pages 553–564, 2014.

8 T. Asano, D. G. Kirkpatrick, K. Nakagawa, and O. Watanabe. Õ(
√
n)-space and

polynomial-time algorithm for planar directed graph reachability. In 39th MFCS LNCS
8634, pages 45–56, 2014. doi:10.1007/978-3-662-44465-8_5.

9 T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric
problems. JoCG, 2(1):46–68, 2011. URL: http://jocg.org/index.php/jocg/article/
view/30.

10 N. Banerjee, S. Chakraborty, and V. Raman. Improved space efficient algorithms for
BFS, DFS and applications. In 22nd COCOON, 2016. URL: http://arxiv.org/abs/
1606.04718.

11 N. Banerjee, S. Chakraborty, V. Raman, S. Roy, and S. Saurabh. Time-space tradeoffs for
dynamic programming in trees and bounded treewidth graphs. In 21st COCOON, volume
9198, pages 349–360. springer, LNCS, 2015.

12 L. Barba, M. Korman, S. Langerman, K. Sadakane, and R. I. Silveira. Space-time
trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015. doi:10.1007/
s00453-014-9893-5.

13 G. Barnes, J. Buss, W. Ruzzo, and B. Schieber. A sublinear space, polynomial time
algorithm for directed s-t connectivity. SIAM J. Comput., 27(5):1273–1282, 1998. doi:
10.1137/S0097539793283151.

14 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM
J. Comput., 20(2):270–277, 1991. doi:10.1137/0220017.

15 A. Borodin and S. A. Cook. A time-space tradeoff for sorting on a general sequential model
of computation. SIAM J. Comput., 11(2):287–297, 1982. doi:10.1137/0211022.

ESA 2018

http://dx.doi.org/10.1007/BF02122548
http://dx.doi.org/10.1137/0219025
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1016/0020-0190(87)90105-0
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://dx.doi.org/10.1016/j.comgeo.2013.11.004
http://dx.doi.org/10.1007/978-3-662-44465-8_5
http://jocg.org/index.php/jocg/article/view/30
http://jocg.org/index.php/jocg/article/view/30
http://arxiv.org/abs/1606.04718
http://arxiv.org/abs/1606.04718
http://dx.doi.org/10.1007/s00453-014-9893-5
http://dx.doi.org/10.1007/s00453-014-9893-5
http://dx.doi.org/10.1137/S0097539793283151
http://dx.doi.org/10.1137/S0097539793283151
http://dx.doi.org/10.1137/0220017
http://dx.doi.org/10.1137/0211022

13:14 A Framework for In-place Graph Algorithms

16 A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa. A time-space
tradeoff for sorting on non-oblivious machines. J. Comput. Syst. Sci., 22(3):351–364, 1981.
doi:10.1016/0022-0000(81)90037-4.

17 H. Brönnimann, T. M. Chan, and E. Y. Chen. Towards in-place geometric algorithms and
data structures. In Proceedings of the 20th ACM Symposium on Computational Geometry,
Brooklyn, New York, USA, June 8-11, 2004, pages 239–246, 2004. doi:10.1145/997817.
997854.

18 H. Buhrman, R. Cleve, M. Koucký, B. Loff, and F. Speelman. Computing with a full
memory: catalytic space. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 857–866, 2014. doi:10.1145/2591796.2591874.

19 H. Buhrman, M.l Koucký, B. Loff, and F. Speelman. Catalytic space: Non-determinism and
hierarchy. In 33rd STACS 2016, February 17-20, 2016, Orléans, France, pages 24:1–24:13,
2016. doi:10.4230/LIPIcs.STACS.2016.24.

20 D. Chakraborty, A. Pavan, R. Tewari, N. V. Vinodchandran, and L. Yang. New time-space
upperbounds for directed reachability in high-genus and h-minor-free graphs. In FSTTCS,
pages 585–595, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.585.

21 S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti. Frameworks for designing
in-place graph algorithms. CoRR, abs/1711.09859, 2017. arXiv:1711.09859.

22 S. Chakraborty, V. Raman, and S. R. Satti. Biconnectivity, chain decomposition and st-
numbering using O(n) bits. In 27th ISAAC, pages 22:1–22:13, 2016. doi:10.4230/LIPIcs.
ISAAC.2016.22.

23 S. Chakraborty, V. Raman, and S. R. Satti. Biconnectivity, st-numbering and other
applications of DFS using O(n) bits. J. Comput. Syst. Sci., 90:63–79, 2017. doi:
10.1016/j.jcss.2017.06.006.

24 S. Chakraborty and S. R. Satti. Space-efficient algorithms for maximum cardinality search,
stack bfs, queue BFS and applications. In Computing and Combinatorics - 23rd Inter-
national Conference, COCOON 2017, Hong Kong, China, August 3-5, 2017, Proceedings,
pages 87–98, 2017. doi:10.1007/978-3-319-62389-4_8.

25 T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete & Computational
Geometry, 37(1):79–102, 2007. doi:10.1007/s00454-006-1275-6.

26 T. M. Chan, J. I. Munro, and V. Raman. Faster, space-efficient selection algorithms in read-
only memory for integers. In Algorithms and Computation - 24th International Symposium,
ISAAC 2013, Hong Kong, China, December 16-18, 2013, Proceedings, pages 405–412, 2013.
doi:10.1007/978-3-642-45030-3_38.

27 T. M. Chan, J. I. Munro, and V. Raman. Selection and sorting in the "restore" model. In
25th-SODA, pages 995–1004, 2014. doi:10.1137/1.9781611973402.74.

28 S. A. Cook and C. Rackoff. Space lower bounds for maze threadability on restricted ma-
chines. SIAM J. Comput., 9(3):636–652, 1980. doi:10.1137/0209048.

29 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (3. ed.). MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

30 O. Darwish and A. Elmasry. Optimal time-space tradeoff for the 2d convex-hull problem.
In 22th ESA, pages 284–295, 2014. doi:10.1007/978-3-662-44777-2_24.

31 S. Datta, N. Limaye, P. Nimbhorkar, T. Thierauf, and F. Wagner. Planar graph isomorph-
ism is in log-space. In 24th CCC, pages 203–214, 2009. doi:10.1109/CCC.2009.16.

32 Y. Dodis, M. Patrascu, and M. Thorup. Changing base without losing space. In Proceedings
of the 42nd ACM Symposium on Theory of Computing (STOC), pages 593–602, 2010. doi:
10.1145/1806689.1806770.

http://dx.doi.org/10.1016/0022-0000(81)90037-4
http://dx.doi.org/10.1145/997817.997854
http://dx.doi.org/10.1145/997817.997854
http://dx.doi.org/10.1145/2591796.2591874
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.24
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.585
http://arxiv.org/abs/1711.09859
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.22
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.22
http://dx.doi.org/10.1016/j.jcss.2017.06.006
http://dx.doi.org/10.1016/j.jcss.2017.06.006
http://dx.doi.org/10.1007/978-3-319-62389-4_8
http://dx.doi.org/10.1007/s00454-006-1275-6
http://dx.doi.org/10.1007/978-3-642-45030-3_38
http://dx.doi.org/10.1137/1.9781611973402.74
http://dx.doi.org/10.1137/0209048
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.1007/978-3-662-44777-2_24
http://dx.doi.org/10.1109/CCC.2009.16
http://dx.doi.org/10.1145/1806689.1806770
http://dx.doi.org/10.1145/1806689.1806770

S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti 13:15

33 J. Edmonds, C. K. Poon, and D. Achlioptas. Tight lower bounds for st-connectivity
on the NNJAG model. SIAM J. Comput., 28(6):2257–2284, 1999. doi:10.1137/
S0097539795295948.

34 M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of bodlaender
and courcelle. In 51th FOCS, pages 143–152, 2010. doi:10.1109/FOCS.2010.21.

35 M. Elberfeld and K. Kawarabayashi. Embedding and canonizing graphs of bounded genus
in logspace. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 383–392, 2014. doi:10.1145/2591796.2591865.

36 M. Elberfeld and P. Schweitzer. Canonizing graphs of bounded tree width in logspace. In
33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20,
2016, Orléans, France, pages 32:1–32:14, 2016. doi:10.4230/LIPIcs.STACS.2016.32.

37 A. Elmasry, T. Hagerup, and F. Kammer. Space-efficient basic graph algorithms. In 32nd
STACS, pages 288–301, 2015. doi:10.4230/LIPIcs.STACS.2015.288.

38 A. Elmasry, D. D. Juhl, J. Katajainen, and S. R. Satti. Selection from read-only memory
with limited workspace. Theor. Comput. Sci., 554:64–73, 2014. doi:10.1016/j.tcs.2014.
06.012.

39 J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a
semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005. doi:10.1016/j.tcs.
2005.09.013.

40 G. Franceschini and J. Ian Munro. Implicit dictionaries with O(1) modifications per update
and fast search. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 404–413, 2006.

41 G. Franceschini and S. Muthukrishnan. In-place suffix sorting. In Automata, Languages
and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July
9-13, 2007, Proceedings, pages 533–545, 2007. doi:10.1007/978-3-540-73420-8_47.

42 G. Franceschini, S. Muthukrishnan, and M. Patrascu. Radix sorting with no extra space.
In Algorithms - ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10,
2007, Proceedings, pages 194–205, 2007. doi:10.1007/978-3-540-75520-3_19.

43 G. N. Frederickson. Upper bounds for time-space trade-offs in sorting and selection. J.
Comput. Syst. Sci., 34(1):19–26, 1987. doi:10.1016/0022-0000(87)90002-X.

44 T. Hagerup and F. Kammer. Succinct choice dictionaries. CoRR, abs/1604.06058, 2016.
URL: http://arxiv.org/abs/1604.06058, arXiv:1604.06058.

45 F. Kammer, D. Kratsch, and M. Laudahn. Space-efficient biconnected components and
recognition of outerplanar graphs. In 41st MFCS, 2016.

46 M. Koucký. Catalytic computation. Bulletin of the EATCS, 118, 2016. URL: http:
//eatcs.org/beatcs/index.php/beatcs/article/view/400.

47 T. W. Lai and D. Wood. Implicit selection. In SWAT 88, 1st Scandinavian Workshop
on Algorithm Theory, Halmstad, Sweden, July 5-8, 1988, Proceedings, pages 14–23, 1988.
doi:10.1007/3-540-19487-8_2.

48 A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

49 J. I. Munro and M. Paterson. Selection and sorting with limited storage. Theor. Comput.
Sci., 12:315–323, 1980. doi:10.1016/0304-3975(80)90061-4.

50 J. I. Munro and V. Raman. Selection from read-only memory and sorting with minimum
data movement. Theor. Comput. Sci., 165(2):311–323, 1996. doi:10.1016/0304-3975(95)
00225-1.

51 J. Ian Munro. An implicit data structure supporting insertion, deletion, and search in
O(log2 n) time. J. Comput. Syst. Sci., 33(1):66–74, 1986. doi:10.1016/0022-0000(86)
90043-7.

ESA 2018

http://dx.doi.org/10.1137/S0097539795295948
http://dx.doi.org/10.1137/S0097539795295948
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1145/2591796.2591865
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.32
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.288
http://dx.doi.org/10.1016/j.tcs.2014.06.012
http://dx.doi.org/10.1016/j.tcs.2014.06.012
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1007/978-3-540-73420-8_47
http://dx.doi.org/10.1007/978-3-540-75520-3_19
http://dx.doi.org/10.1016/0022-0000(87)90002-X
http://arxiv.org/abs/1604.06058
http://arxiv.org/abs/1604.06058
http://eatcs.org/beatcs/index.php/beatcs/article/view/400
http://eatcs.org/beatcs/index.php/beatcs/article/view/400
http://dx.doi.org/10.1007/3-540-19487-8_2
http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1016/0304-3975(80)90061-4
http://dx.doi.org/10.1016/0304-3975(95)00225-1
http://dx.doi.org/10.1016/0304-3975(95)00225-1
http://dx.doi.org/10.1016/0022-0000(86)90043-7
http://dx.doi.org/10.1016/0022-0000(86)90043-7

13:16 A Framework for In-place Graph Algorithms

52 J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In 39th Annual Sym-
posium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto,
California, USA, pages 264–268, 1998. doi:10.1109/SFCS.1998.743455.

53 J. H. Reif. Symmetric complementation. J. ACM, 31(2):401–421, 1984. doi:10.1145/62.
322436.

54 J. H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229–234,
1985. doi:10.1016/0020-0190(85)90024-9.

55 O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008. doi:10.1145/
1391289.1391291.

56 T. Tantau. Logspace optimization problems and their approximability properties. Theory
Comput. Syst., 41(2):327–350, 2007. doi:10.1007/s00224-007-2011-1.

57 M. Tompa. Two familiar transitive closure algorithms which admit no polynomial time,
sublinear space implementations. SIAM J. Comput., 11(1):130–137, 1982. doi:10.1137/
0211010.

http://dx.doi.org/10.1109/SFCS.1998.743455
http://dx.doi.org/10.1145/62.322436
http://dx.doi.org/10.1145/62.322436
http://dx.doi.org/10.1016/0020-0190(85)90024-9
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1007/s00224-007-2011-1
http://dx.doi.org/10.1137/0211010
http://dx.doi.org/10.1137/0211010

Self-Assembly of Any Shape with Constant Tile
Types using High Temperature
Cameron Chalk1

Department of Electrical and Computer Engineering, University of Texas - Austin, Austin, TX,
USA
ctchalk@utexas.edu

Austin Luchsinger2

Department of Computer Science, University of Texas - Rio Grande Valley, Edinburg, TX, USA
austin.luchsinger01@utrgv.edu

Robert Schweller3

Department of Computer Science, University of Texas - Rio Grande Valley, Edinburg, TX, USA
robert.schweller@utrgv.edu

Tim Wylie4

Department of Computer Science, University of Texas - Rio Grande Valley, Edinburg, TX, USA
timothy.wylie@utrgv.edu

Abstract
Inspired by nature and motivated by a lack of top-down tools for precise nanoscale manufacture,
self-assembly is a bottom-up process where simple, unorganized components autonomously com-
bine to form larger more complex structures. Such systems hide rich algorithmic properties –
notably, Turing universality – and a self-assembly system can be seen as both the object to be
manufactured as well as the machine controlling the manufacturing process. Thus, a benchmark
problem in self-assembly is the unique assembly of shapes: to design a set of simple agents which,
based on aggregation rules and random movement, self-assemble into a particular shape and
nothing else. We use a popular model of self-assembly, the 2-handed or hierarchical tile assembly
model, and allow the existence of repulsive forces, which is a well-studied variant. The technique
utilizes a finely-tuned temperature (the minimum required affinity required for aggregation of
separate complexes).

We show that calibrating the temperature and the strength of the aggregation between the
tiles, one can encode the shape to be assembled without increasing the number of distinct tile
types. Precisely, we show one tile set for which the following holds: for any finite connected
shape S, there exists a setting of binding strengths between tiles and a temperature under which
the system uniquely assembles S at some scale factor. Our tile system only uses one repulsive
glue type and the system is growth-only (it produces no unstable assemblies). The best previous
unique shape assembly results in tile assembly models use O(K(S)

logK(S)) distinct tile types, where
K(S) is the Kolmogorov (descriptional) complexity of the shape S.

2012 ACM Subject Classification Theory of computation → Self-organization

Keywords and phrases self-assembly, molecular computing, tiling, tile, shapes

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.14

1 This author’s research was supported in part by National Science Foundation Grants CCF-1618895 and
CCF-1652824.

2 This author’s research was supported in part by National Science Foundation Grant CCF-1817602.
3 This author’s research was supported in part by National Science Foundation Grant CCF-1817602.
4 This author’s research was supported in part by National Science Foundation Grant CCF-1817602.

© Cameron Chalk, Austin Luchsinger, Robert Schweller, and Timothy Wylie;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ctchalk@utexas.edu
mailto:austin.luchsinger01@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:timothy.wylie@utrgv.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

1 Introduction

Due to the limited tool set for precise fabrication at the nanoscale, the bottom-up approach
of self-assembly is an attractive area of research. Such bottom-up approaches, such as DNA
origami [17], allow for the assembly of nanoscale materials with detailed, precisely designed
shapes and patterns. Abstract self-assembly models are used to predict the behavior of
systems wherein simple, separate entities form larger complex structures based on a simple
rule set for movement and/or attachment using only local interactions and no global leader.
Such systems include swarm robotics and molecular self-assembly, particularly self-assembling
nucleic acid structures such as DNA tiles [9].

A common benchmark in such models, which aims at the manufacture of precise nanoscale
structures, is the self-assembly of shapes. In our case, a shape is defined simply as a finite,
connected subset of Z2. The model studied herein is the two-handed tile assembly model
(also called the hierarchical tile assembly model) [1]. In this model, the separate entities
are tiles, adorned with glues. The intuition is that tiles wander about randomly, and when
tiles with matching glues meet, the tiles bind to form a larger assembly; further, such larger
structures wander about and may bind to other larger assemblies or tiles.

The main measure of complexity is the number of unique types of tiles necessary and
sufficient to uniquely assemble the shape, termed the tile complexity. The temperature of
a system, denoted by τ , is the minimum required binding strength between two entities
to enforce a stable attachment; the sum of the strengths between the shared glues of two
assemblies must meet or exceed the temperature. Some studies of the model include negative-
strength glues [2, 8, 12–15,20], which are repulsive forces which act against a particular bond
between two assemblies. Studies of these repulsive forces are motivated by experimental
implementation of self-assembly systems which exhibit this behavior [16].

Our contributions. We give one tile set with a constant number of distinct tile types which
satisfies the following: given any finite connected shape S ⊂ Z2, there exists an assignment of
strengths between glues (a glue function) and a temperature τ such that the system uniquely
assembles S. The system encodes the shape in its temperature parameter τ and its glue
function. Then, by utilizing the inclusion of one negative-strength glue type, the system
assembles a width-τ assembly. This width-τ assembly is utilized as a seed for a tile set
designed by [23] which “runs” the program encoded by the seed to assemble the shape. This
work is the first to show that any shape can be built with a constant number of distinct
tile types (where the glues are a function of τ) at any scale without a staged model5, i.e.,
it is the first to achieve this in a fully “hands-off” model which requires no experimenter
intervention during the assembly process.

Previous results. For self-assembling a shape S, we list the previously known results, which
do not use negative glues and use O(1) temperature unless otherwise specified. Let K(S) be
the Kolmogorov complexity6 of S, and let T (S) be the (smallest) runtime of a Kolmogorov-
optimal program outputting S. A tile complexity of Θ

(
K(S)

logK(S)

)
is known, using a scale

factor of T (S) [23]. With negative-strength glues, a tile complexity of Θ
(

K(S)
logK(S)

)
is known,

5 In the staged self-assembly model, the results of [3] give a construction which can effectively use O(1)
tile types to assemble the shape by increasing the number of bins and stages used.

6 The Kolmogorov complexity of S is the number of bits in the smallest program which outputs S w.r.t.
a universal Turing machine. For more information on Kolmogorov complexity, see [11].

C. Chalk, A. Luchsinger, R. Schweller, and T. Wylie 14:3

using a O(1) scale factor [12]. In a staged version of the model, where several self-assembly
systems are run in parallel across a series of bins and then mixed together in stages, a tile
complexity of Θ

(
K(S)

logK(S)

)
at scale factor T (S) is known for O(1) bins and O(1) stages along

with a method for (optimally) reducing the number of sufficient and necessary tile types by
increasing the number of bins and stages [3].

In another staged version of the model, where tiles are partitioned into DNA and RNA types,
and RNA types may be “washed away” at a given stage, a tile complexity of Θ

(
K(S)

logK(S)

)
at

scale factor O(log |S|) is known [7]. In a staged model where the self-assembly process is
controlled by a chemical reaction network which activates and deactivates tiles’ binding sites,
a tile plus reaction network complexity of Θ

(
K(S)

logK(S)

)
at scale factor O(1) is known [19].

Related work in high-temperature7 self-assembly. The first studies of utilizing temperat-
ure to encode information involved the “online”, mid-assembly-process changing of temper-
atures [10,24]. Our result utilizes a high temperature bonding threshold for self-assembly
attachment, which we leverage to encode precise information for guiding the self-assembly
process through precisely set glue strengths. A number of recent related works have also
studied the effects of higher temperature self-assembly systems within various models. Within
the aTAM, larger temperatures have been shown to affect the possible behavior of systems [4],
and the tile complexity of self-assembled shapes [22]. Within the 2HAM, unique-assembly
verification has been shown to be hard for high-temperature systems [21], while the dynamics
of certain higher-temperature systems have been shown to be impossible to simulate at lower
temperatures [6].

2 Definitions and Model

In this section we first define the two-handed tile self-assembly model with both negative
and positive strength glue types. We also formulate the problem of designing a tile assembly
system that constructs a constant-scaled shape given the optimal description of that shape.

Tiles and Assemblies. A tile is an axis-aligned unit square centered at a point in Z2, where
each edge is labeled by a glue selected from a glue set Π. A strength function str : Π→ Z
denotes the strength of each glue. Two tiles equal up to translation have the same type.
A positioned shape is any subset of Z2. A positioned assembly is a set of tiles at unique
coordinates in Z2, and the positioned shape of a positioned assembly A is the set of those
coordinates. For a given positioned assembly Υ, define the bond graph GΥ to be the weighted
grid graph in which each element of Υ is a vertex and the weight of an edge between tiles is
the strength of the matching coincident glues or 0.8 A positioned assembly C is τ -stable for
positive integer τ provided the bond graph GC has min-cut at least τ .

For a positioned assembly A and integer vector ~v = (v1, v2), let A~v denote the positioned
assembly obtained by translating each tile in A by vector ~v. An assembly is a translation-free

7 We say high-temperature self-assembly for consistency with previous literature. The term high temperat-
ure may be misleading; e.g., we are not attempting to model what happens in DNA-based self-assembly
systems when the literal temperature of the system is raised to high values. Intuitively, higher tem-
perature in this model implies more fine-grained glue strengths. Another natural way to think of high
temperature is to fix the temperature to one, but allow rational glue strengths.

8 Note that only matching glues of the same type contribute a non-zero weight, whereas non-equal glues
always contribute zero weight to the bond graph. Relaxing this restriction has been considered [5].

ESA 2018

14:4 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

A B

A B

(a) C X

C X
D D E E

(b)

Figure 1 The black lines between two tiles indicate unique unimportant τ -strength bonds.
If τ = 2, str(A) = 1 and str(B) = 1, then the two assemblies in (a) are τ -combinable, since
str(A) + str(B) ≥ τ and the positioned assemblies may be translated such that the A and B

glues are aligned – such a combination is termed cooperative binding, since neither the A nor B
glue are alone sufficient to satisfy τ -combination. In (b), we consider two cases concerning the
negative strength glue X. If τ = 2, str(C) = 2, and str(X) = −1, then the assemblies in (b)
are not τ -combinable since str(C) + str(X) < τ . If τ = 1, str(C) = 2, str(D) = 2, str(E) = 1
and str(X) = −1, then the assemblies are τ -combinable since str(C) + str(X) ≥ τ ; however, the
resultant assembly is unstable, since a cut along the X and E glue has strength str(X) + str(E) < τ ;
this violates the valid growth-only system definition.

version of a positioned assembly, formally defined to be a set of all translations A~v of a
positioned assembly A. An assembly is τ -stable if and only if its positioned elements are
τ -stable. A shape is the set of all integer translations for some subset of Z2, and the shape of
an assembly A is defined to be the set of the positioned shapes of all positioned assemblies
in A. The size of either an assembly or shape X, denoted as |X|, refers to the number of
elements of any positioned element of X.

Combinable Assemblies. Two assemblies are τ -combinable provided they may attach along
a border whose strength sums to at least τ . Formally, two assemblies A and B are τ -
combinable into an assembly C provided GC′ for any C ′ ∈ C has a cut (A′, B′) of strength
at least τ for some A′ ∈ A and B′ ∈ B. We call C a combination of A and B. Figure 1 gives
examples of combinable and not combinable assemblies.

Two Handed Assembly Model: Growth-only Version

A two-handed tile assembly system (2HAM system) is an ordered pair (T, τ) where T is a set
of single tile assemblies, called the tile set, and τ ∈ N is the temperature. In the growth-only
model, assembly proceeds by repeated combination of assembly pairs to form new assemblies
starting from the initial tile set. The producible assemblies are those constructed in this way.

I Definition 1 (2HAM Producibility (growth-only)). For a given 2HAM system Γ = (T, τ),
the set of producible assemblies of Γ, denoted PRODΓ, is defined recursively:

(Base) T ⊆ PRODΓ
(Combinations) For any A,B ∈ PRODΓ such that A and B are τ -combinable into C, then
C ∈ PRODΓ.

The inclusion of negative glues, in general, allows for unstable assemblies to be producible.
In previous literature, such assemblies “detach”, forming two new producible assemblies.
We impose the following constraint on growth-only systems which disallows production of
unstable assemblies which would fall apart. Satisfying the growth-only constraint argues
that the system has simpler kinetics than a non-growth-only system since the system does
not rely on detachment events.

For a system Γ = (T, τ), we say A →Γ
1 B for assemblies A and B if A is τ -combinable

with some producible assembly to yield B, or if A = B. Intuitively this means that A may
grow into assembly B through one or fewer combination. We define the relation →Γ to be
the transitive closure of →Γ

1 , ie., A→Γ B means that A may grow into B through a sequence
of combinations.

C. Chalk, A. Luchsinger, R. Schweller, and T. Wylie 14:5

Figure 2 A simplified overview of the growing step. Si is a width-Θ(i), height-Θ(2i) assembly
with particular exposed edge glues. Si nondeterministically assembles one of two assemblies; a top
and bottom. The top and bottom share one glue of strength 2τ − 1 shown in yellow, and i many
−1 strength glues shown in red. Thus, the top and bottom bind with strength 2τ − i− 1, which is
τ -stable only if i < τ . The resultant assembly adds two width and doubles the height of Si, so its
dimensions are Θ(i+ 1)×Θ(2i+1). Further, its exposed glues allow the process to repeat.

I Definition 2 (Valid Growth-Only System). A 2HAM system Γ = (T, τ) is a valid growth-only
system if for all A ∈ PRODΓ, A is τ -stable.

I Definition 3 (Terminal Assemblies). A terminal assembly of a valid growth-only 2HAM
system is a producible assembly that cannot combine with any other producible assembly.
Formally, an assembly A ∈ PRODΓ of a 2HAM system Γ = (T, τ) is terminal provided A is
not τ -combinable with any producible assembly of Γ.

We formalize what it means for a 2HAM system to uniquely build a given assembly or a
given shape.

I Definition 4 (Unique Assembly). A 2HAM system uniquely produces an assembly A if all
producible assemblies have a growth path towards the terminal assembly A. Formally, a
2HAM system Γ = (T, τ) uniquely produces an assembly A provided that A is terminal, and
for all B ∈ PRODΓ, B →Γ A.

I Definition 5 (Unique Shape Assembly9). A 2HAM system uniquely produces a shape S if
all producible assemblies have a growth path to a terminal assembly of shape S. Formally, a
2HAM system Γ = (T, τ) uniquely assembles a finite shape S if for every A ∈ PRODΓ, there
exists a terminal A′ ∈ PRODΓ of shape S such that A→Γ A′.

3 Assembly of General Shapes with Constant Tiles

Here we give the main construction of the paper. First presented is our key contribution –
assembly of a precise-width rectangle – detailed in Subsection 3.1, followed by its composition
with established techniques from [23] for the main result in Subsection 3.2.

3.1 Key idea: precise-width rectangle using O(1) tile types
Here, we present a construction for building a precise-width rectangle from a constant-bounded
set of tile types. Note that the convention in this paper is width × height. Formally,

9 Some previous literature calls this strict self-assembly, typically to contrast another definition, weak
self-assembly; we choose the name unique shape assembly to contrast unique assembly.

ESA 2018

14:6 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

E

n

E

E

R

W

L

g n n n n

L

W

X X

q

(a)

W

L

L
G N N N N N

W

R

E

E

E

E

E

W

W

X X

Q

(b)

Figure 3 The base assembly, shown in two separate subassemblies; (a) shows the top subassembly,
and (b) the bottom. The two subassemblies combine using cooperative binding at the strength-d τ2 e
glues labeled X. The dotted line indicates distinct tile types which attach along the path with full τ
strength glues. The snaking pattern ensures that each subassembly is complete before both X glues
are available. Once these two subassemblies bind, the resultant assembly satisfies S0.

I Lemma 6. Given a temperature τ > 2, there exists a negative glue, growth-only 2HAM
tile system Γ = {T, τ} such that |T | = O(1) and Γ uniquely produces an assembly which is a
(18 + 4τ)× (2τ+5 − 6) rectangle.

Proof. We give a proof by construction. Unless explicitly stated otherwise, all glues have
strength d τ2 e, so at least two matching glues are required for a τ -stable attachment. This is
called cooperative binding. The construction is split into two steps: growing and finishing.
Figure 2 shows a simplified overview of the growing step. The growing step of the construction
concerns producing an assembly with width 7+2τ , through a process consisting of τ iterations
of growth, each adding a constant-bounded width to the assembly. The i+ 1th iteration of
growth is initiated by a combination of two assemblies with total binding strength 2τ − i− 1;
thus, after the τ th iteration of growth, the binding strength which would initiate the next
iteration of growth has total binding strength 2τ − τ − 1 < τ , and growth halts.

The finishing step involves the system’s “detecting” that the growth process has completed.
This is achieved using the following technique: by adding a total strength of 1 shared between
two assemblies at each iteration of growth, once the assemblies have completed τ repetitions
of growth, they bind with strength τ . This step also gives the system its property of unique
assembly of an assembly whose shape is a rectangle (and not just unique shape assembly).
That is, there is exactly one terminal assembly of the system – as opposed to several terminal
assemblies with the correct rectangular shape. Maintaining this property in this lemma is
required to achieve the same property in Theorem 7.

3.1.1 Growing
The construction is described and proven correct via induction. The induction is on iterations
of rectangular assemblies with well-defined exposed glues, termed Si. Formally, Si refers to a
(7 + 2i)× (2i+4 − 6) rectangular assembly with the following exposed glue labels, written as
strings built by concatenating the glue labels in left-to-right/top-to-bottom order):

North glues: qpigni+5

East glues: E2i+3−5R2E2i+3−3

South glues: QP iGN i+5

West glues: LW 2i+3−7LW 4LW 2i+3−7L

C. Chalk, A. Luchsinger, R. Schweller, and T. Wylie 14:7

E

n

E

E

R

W

L

g n

L

W

L

L
G N N

W

W

R

E

E

E

E

E

W

W

P

p n

N

n

N

n

N

n

N

n

N

... ...

......

...
... ...

...

W E

W E

d

d

R

R

m

k

E

E

u

u

R

R
m

k
E

E

L

L

W

W

W

W

P3

P4

W

W

P

p

Q

q

Figure 4 An assembly satisfying Si. The dots indicate an omitted set of repeated tiles; e.g., the
dots between the tiles exposing p indicate the omission of the i glues with label p. On the right are
the keystones, which attach cooperatively using R glues. Only one keystone may attach, introducing
nondeterminism; this is how the producibility of two assemblies, a top and bottom assembly, are
implied by the production of one assembly satisfying Si.

The goal is to show that if an assembly satisfying Si is producible, then an assembly satisfying
Si+1 is producible iff i < τ . Further, only O(1) tile types are used in the inductive step.
Then it suffices to show that S0 is producible in O(1) tile types, implying Sτ is producible,
which has width × height as in the lemma statement.

Base case. An assembly satisfying S0 is shown to be trivially assembled by a set of O(1)
tile types in Figure 3.

Inductive step. The next three paragraphs describe the inductive step. The goal is to show
that if Si is producible, then a top and bottom assembly are producible which can bind to
produce Si+1 iff i < τ . Consider an assembly with exposed glues satisfying Si. The two
R glues exposed allow attachment of a keystone assembly via cooperative binding as seen
in Figure 4. There are two keystone types: up and down. Only one may attach. The L
glues in the middle of the west-side exposed glues, spaced by four W glues, also allow the
attachment of a supertile using cooperative binding. Once the keystone or west-side supertile
has attached, a single tile type suffices to attach tiles along any long set of repeating glues
on the assembly (e.g., the E glues on the east side), until the glue is no longer available,
as seen in Figure 5. This type of single tile type attaching along arbitrary walls is termed
propagation of a tile.

The tiles which propagate to the corners of the west side of the assembly allow the
attachment of three tiles around the corner which allow propagation of tiles along the north
and south faces of the assembly. Once these tiles propagate, depending on which keystone was
attached to the assembly, the attachment of a tooth occurs on the corresponding face (e.g., on

ESA 2018

14:8 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

E

n

E

E

R

W

L

g n

L

W

L

L
G N N

W

W

R

E

E

E

E

E

W

W

P

p n

N

n

N

n

N

n

N

n

N

... ...

......

...
... ...

...

W E

W E

u

u

R

R
m

k
E

E

k

E
k
E

k

E
k
E

m

E
m

E

m

E
m

E

L

L

W

W

W

W

P3

P4

W

W

WW

P3

P3

WW

P4

P4

WW

P4

P4

WW

P3

P3
...

...

...

...

P

pq

Q

Figure 5 Once the keystone and supertile on the left have attached, a sequence of single tile
attachments may occur using cooperative binding at newly available glues. The tiles are designed
such that they may attach along arbitrarily long faces, as long as the appropriate glue is exposed
(e.g., a W glue in the top-left tile’s case).

the north face if the up keystone was attached) as shown in Figure 6. The tooth is a supertile
with a specific geometry which will be motivated later on. The tooth initiates a propagation
of tiles along the corresponding face. The result is the production of two assemblies, one
having attached the up keystone and attached all previously discussed propagating tiles and
supertiles, and one having attached the down keystone and similar tiles. We refer to the
former as a top assembly, and the latter as a bottom assembly.

When a top assembly and bottom assembly attach, the result is an assembly satisfying
Si+1. A top assembly and bottom assembly are designed to attach iff i < τ . When i ≥ τ , the
binding strength between a top and bottom assembly is τ − 1, and thus is insufficient. This
design can be seen in Figure 7. Note that the −1 glues are propagated via the N -labeled
glues from the base assembly. Since Si has i + 5 many N glues exposed, 5 of which are
covered by the tooth, the bottom/top assembly which assembles from Si exposes i many −1
glues. Then the bonding strength between top and bottom assemblies is 2τ − 1− i, which
is less than τ iff i ≥ τ . The complementary geometry of the teeth ensure that a top and
bottom assembly which are assembled from Si and Sj respectively, with i 6= j, cannot align
their a glues and will not attach.

Dimensions of Si. The base assembly satisfying S0 is 7 × 10. When a top and bottom
assembly attach, both have added 2 width in tiles; one tile width propagated on the west side,
and one on the east. Then the width of Si is 7 + 2i. A top and bottom assembly which have

C. Chalk, A. Luchsinger, R. Schweller, and T. Wylie 14:9

E

n

E

E

R

W

L

g n

L

W

L

L
G N N

W

W

R

E

E

E

E

E

W

W

P

p n

N

n

N

n

N

n

N

n

N

... ...

......

...
... ...

...
W E

W E

u

u

R

R
m

k
E

E

k

E
k
E

k

E
k
E

m

E
m

E

m

E
m

E

L

L

W

W

W

W

P3

P4

W

W

WW

P3

P3

WW

P4

P4

WW

P4

P4

WW

P3

P3

m

E
m

E

m

E
m

E

m

E
m

E

m

E
m

E

k

E
k
E

k

E
k
E

p

P3

L t

W

t

P4

L

W

t t

P

P

t t t t t t

p

p g

g

n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
N

N

t t
N

N

t t
N

N

t t
N

N

t t
N

N

t t
N

N

k

t
K1

E

m

t E

K1n

R

E

E
B

C

n1

n
B B

n1

n
B B...A

g
B B

p
BB

p
BB ...W

P1

B

pp

-1

CC
n1

-1

CC
n1A

a

C CC

P1

+2

CC
p

+2

CC
p

q

q

q
q

P

Q
Q

p

t t

p

p

P

t t

P

P

W

N

Q
t t
G

G

t t
N

N

Figure 6 At the top-right and bottom-right corners, tiles attach which indicate that the left-hand
side tile propagation has reached the right-hand side of the assembly. In the case of an assembly
which has attached an up keystone, the tooth attaches on the top side of the assembly, and initiates
a propagation of tiles along the top face. A tooth with complementary geometry will attach on the
bottom side of the assembly if a down keystone attaches instead, as can be seen in Figure 7.

combined add 6 height in tiles on top of doubling in height: 2 via tile propagation on the top
and bottom, and 4 along where the top and bottom assemblies attach. Then the height of Si,
h(i), is defined by the recurrence h(i) = 2h(i− 1) + 6 with h(0) = 10. Solving the recurrence
gives a height of 2i+4 − 6. Then consider a combination of a top and bottom assembly which
formed from some assembly satisfying Si−1; the resultant dimension is (7 + 2i)× (2i+4 − 6).

3.1.2 Finishing
When a top and bottom assembly combine to form an assembly satisfying Sτ , the growing
step shows that the process will not continue to produce Sτ+1. However, the attachment
of a supertile on the west side, a keystone, and the resultant tile propagation still occurs.

ESA 2018

14:10 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

E

n

E

E

R

W

L

g n

L

W

L

L
G N N

W

W

R

E

E

E

E

E

W

W

P

p n

N

n

N

n

N

n

N

n

N

... ...

......

...
... ...

...

W E

W E

u

u

R

R
m

k
E

E

k

E
k
E

k

E
k
E

m

E
m

E

m

E
m

E

L

L

W

W

W

W

P3

P4

W

W

WW

P3

P3

WW

P4

P4

WW

P4

P4

WW

P3

P3

m

E
m

E

m

E
m

E

m

E
m

E

m

E
m

E

k

E
k
E

k

E
k
E

p

P3

L t

W

t

P4

L

W

t t

P

P

t t t t t t

p

p g

g

n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
N

N

t t
N

N

t t
N

N

t t
N

N

t t
N

N

t t
N

N

k

t
K1

E

m

t E

n1

n
B B

n1

n
B B

A

g
B B

p
BB

p
BB

pp

-1

CC
n1

-1

CC
n1A

a

C C

+2

CC
p

q

q
q

P

Q
Q

p

t t

p

p

P

t t

P

P NQ

K1n

R

E

E
B

C

p
BB

p

+2

CC
p

W

P1

B
q

C

P1

W

+2

CC
p

t t
G

G

t t
N

N

E

n

E

E

R

W

L

g n

L

W

L

L
G N N

W

W

R

E

E

E

E

E

W

W

P

p n

N

n

N

n

N

n

N

n

N

... ...

......
...

... ...
...

W E

W E

P

p

Q

q

d

d

R

R

m

k

E

E

m

E
m

E

m

E
m

E

m

E
m

E

m

E
m

E

k

E
k
E

k

E
k
E

k

E
k
E

k

E
k
E

k

E
k
E

k

E
k
E

K2N

RB

C

L

L

W

W

W

W

P3

P4

W

W

WW

P3

P3

WW

P4

P4

WW

P4

P4

WW

P3

P3

p

P3

L t

W

t

P4

L

W

t t

P

P

t t t t t t

p

p g

g

n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
n

n

t t
N

N

t t
N

N

t t
N

N

t t
N

N

t t
N

N

t t
N

N

q

q

P

Q

t t

p

p

t t

P

PQ

k

K2

t E

t E
m

n

A

B B

-1

CC

A

a
C C

N

B B

N

N

t t
G

G

t t
N

N

-1

CC

N

B B

N

N

G

B

P

B
P

B

P

B
P

B

P

B
P

W

P2

B

Q

L C
P2

+2'

CC

P

+2'

CC

P

+2'

CC

P

-1

CC
n1

-1

CC
n1A

a

C C

+2

CC
p

+2

CC
p

C

P1

W

+2

CC
p

-1

CC

A

a
C C

N

-1

CC

N

L C
P2

+2'

CC

P

+2'

CC

P

+2'

CC

P...
... ...

...

Figure 7 A bottom assembly (left) and top assembly (right). At the top of the figure are the tiles
whose glues bond a bottom and top assembly; in particular, the a and −1 glues, with str(a) = 2τ − 1
and str(−1) = −1. A top and bottom assembly grown from an assembly Si each expose i glues
with strength −1. Then the strength of the attachment between them is 2τ − i− 1, and is sufficient
when i < τ but insufficient when i = τ . Note that +2 and +2′ glues do not match; their purpose is
described later in the finishing step.

The teeth attach and so do the tiles which propagate resulting from the attachment of a
tooth. Then an assembly satisfying Sτ implies the production of the corresponding top and
bottom assemblies. These assemblies are not rectangular. This step involves detecting that
the iterative process has reached τ repetitions, and the system should finish its rectangle.

Figure 8 gives an overview of the finishing step. The technique discussed in the growing
phase is employed by two disjoint tile sets, one called system 1 and the other system 2. The
sets of glues on the tiles in the two systems are disjoint except for two glues: the −1 glue,
and the +2 glue described but not used in the growing phase. In the growing phase, recall
that on the north face of a bottom assembly of system 1 which assembled from Si, there
are i many strength 2 glues labeled +2 exposed which are not used (recall Figure 7). These
glues are designed to match with the corresponding glues in system 2. Then the strength
of binding between these shared glues is 2i− i = i. Thus, only when i ≥ τ is this binding
τ -stable. Similarly, system 1’s top assembly attaches with the system 2’s bottom assembly
under the same constraint. These resultant assemblies expose cooperative binding locations
which were not present before this attachment, allowing these two new assemblies to combine,
and then fill into a rectangle using a O(1)-sized tile set. Next, we give the dimensions of
the completed rectangular assembly: system 1’s top and system 2’s bottom assembly, once
attached, form a (7 + 2(τ + 1)) = (9 + 2τ)× (2(τ+1)+4 − 6) = (2τ+5 − 6) assembly – this can
be derived from the combination of two assemblies satisfying Sτ assembling into an assembly
satisfying Sτ+1 not in exposed glues, but in size. System 1’s top and system 2’s bottom
are combined with system 1’s bottom and system 2’s top into one via a width-two column,
resulting in a 2(9 + 2τ) + 2 = 18 + 4τ × 2τ+5 − 6 assembly. J

C. Chalk, A. Luchsinger, R. Schweller, and T. Wylie 14:11

System 1
Top

System 2
Bottom

System 2
Top

System 1
Bottom

Figure 8 An overview of the finishing step. The system described in the growing step, denoted
here as system 1, is repeated, denoted system 2, such that the only matching glues between the
two systems are a strength-2 glue type and the one strength-(−1) glue type. Between a system 1
top/bottom and system 2 bottom/top assembled from Si, the number of shared strength-2 glues
and strength-(−1) glues is i, so the sum of strengths between shared glues is 2i− i = i. This allows
the top/bottom assembly of system 1 to make a τ -stable attachment to the bottom/top of system 2
only after each system assembles Sτ , thus detecting when the rectangle has Θ(τ) width. Once these
tops and bottoms attach, new cooperative binding locations initiate a constant-sized set of tiles to
bind the two rectangles, simply to satisfy unique assembly of the rectangle.

3.2 From rectangle to shape
To assemble the target shape, a technique is combined with Lemma 6. The technique, shown
by Soloveichik and Winfree [23], first assembles a seed block bearing a representation (a series
of exposed glues) of a Kolmogorov-optimal program which computes the spanning tree of S.
A O(1)-sized tile set is used to “run” the program (via Turing machine (TM) simulation)
from the seed block. The seed block assembles into a c× c assembly, logically representing
one coordinate of S. Assembly proceeds from the seed block in a subset of the four cardinal
directions depending on the spanning tree computed by the program. If the spanning tree
has an edge in a direction to a coordinate adjacent to the seed block, a c× c growth block is
assembled in that direction. Each time a growth block is assembled, the program is run again
to determine which adjacent coordinates (w.r.t. the growth block) are connected by edges in
the spanning tree; if so, a growth block is assembled in that direction. After assembling all
growth blocks, the unique assembly is a c× c scaled version of S.

The seed block of [23] is assembled using O(K(S)
logK(S)) tile types. In our case, the seed

block is assembled using the O(1)-sized tile set of Lemma 6: we assemble a rectangle of
width n where n is the length of a unary encoding of the Kolmogorov-optimal program. This
seed is combined with the O(1)-sized tile set which runs the program and assembles the
shape. Figure 9 is a simplified overview of constructing a seed block compatible with a TM
simulating tileset. The formal result is as follows:

I Theorem 7. Given a shape S, there exists a negative glue, growth-only 2HAM tile system
Γ = {T, τ} with |T | = O(1) whose unique assembly has shape S at some scale factor.

Proof. The system is a union of the Lemma 6 system and a subset of the TM simulating
tile set of [23]. If the entire TM simulating tile set is added to the system, depending on
the seed block, some tiles may never bind to the seed block, and thus do not grow into
the target shape and violate unique assembly definition. We include the subset of the TM
simulating tile set which will be used by the program encoded by the seed block. Observe
that the unique assembly produced by the system of Lemma 6 is not a square, nor does
it have any exposed glues designed to bind with the TM simulation tile set. In order to
assemble a square from the terminal assembly of Lemma 6, two such rectangular assemblies

ESA 2018

14:12 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

Figure 9 The combination of two Lemma 6 constructions into a seed block. The two-tile assembly
in the first subfigure initializes the attachment of the set of white tiles, which indicate a constant-sized
set of filler tiles which are used to fill in a full square. Once the square is filled in, new cooperative
binding locations are exposed where the filler tiles meet the non-filler tiles. At this location, tiles
begin to propagate, adding a one-tile perimeter to the assembly. The orange tiles on the outmost
perimeter of the rightmost figure demarcate the beginning and ending of glues exposing the unary
program which constructs the shape S via the TM simulation of [23]. The rest of the perimeter
exposes glues which the TM simulation ignores.

are assembled in parallel, one which is rotated 90 degrees – this “rotation” is w.r.t. the
other rectangular assembly and the way the two assemblies will bind. These two assemblies
combine and then “fill-in” to a square trivially using a constant-sized tile set – similar to
propagation of tiles along an edge, cooperative binding can be used to add tiles between two
assembled rectangles to assemble a square (technique first used in [18]). Once assembly of
the square is complete, more tile propagation via another constant-sized tile set assembles a
one-tile perimeter which exposes glues – described in the following paragraph – which allow
the assembly to act as a seed block similar to the Soloveichik and Winfree construction [23].

Let P be the (binary) program used to assemble S via the construction of [23], R be
some mapping from binary strings to unary strings, and R′ be some mapping from unary
strings {1}i with i ∈ N to unary strings {1}j with j = 20 + 4m for m ∈ N – the intuition for
the mapping R′ is to map arbitrary unary strings to numbers which are widths of assemblies
assembled by Lemma 6.

Once the square seed block is assembled and a one-tile perimeter is attached, three glue
types are exposed: 1, b, and λ. Across the length of filler tiles (those in the square which are
not from the Lemma 6 construction), λ glues are placed; these symbols are ignored by the
TM simulating tile set. The b glues are placed at the beginnings and ends of the edges of the
square; these indicate where to start the TM simulation. Along the edges of the rectangles
from the Lemma 6 construction, glues labeled 1 are placed; these 1 glues are the relevant
glues logically. The TM simulation converts these to unary strings by R′−1, and then to P
by R−1. Then the TM simulation tiles run the program P which assembles the shape. J

4 Future Work

The most apparent direction for future work is to achieve the unique assembly of shapes at a
O(1) scale factor with O(1) tile types. This result may be achieved through a combination of
the techniques used in this work and in [12], which achieves O(1)-scale factor with O(K(S)

logK(S))

C. Chalk, A. Luchsinger, R. Schweller, and T. Wylie 14:13

tile types where K(S) is the Kolmogorov complexity of the shape S. Their construction
utilizes a dynamic behavior of negative glues not utilized in this work called “breaking”:
the combination of two assemblies may result in an unstable assembly, which then breaks
into two assemblies – a formal model and some usages of breakage may be seen in [2, 8, 20].
Their usage of breaking involves performing a computation – via a self-assembly process
which simulates a TM – which builds the shape pixel-by-pixel (using O(1)-sized assemblies
per pixel), and then breaks the TM simulating assembly into O(1)-sized pieces, leaving the
shape S at a O(1) scale factor (along with “small garbage” of O(1) size). That technique
may be applicable to the construction given in this work in order to break the precise-width
rectangles after they are used as input for the TM which outputs S.

Another direction might be to achieve the unique assembly of scaled shapes with O(1)
tile types using only positive-strength glues. We have briefly discussed previous positive-
strength results which use Θ

(
K(S)

logK(S)

)
tile types. Could this be lowered to O(1) tile types

by calibrating the temperature and glue strengths, or is there some super-constant lower
bound that cannot be breached?

References
1 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,

Robert Schweller, Scott M. Summers, and Andrew Winslow. Two hands are better than
one (up to constant factors): Self-assembly in the 2ham vs. atam. In Natacha Portier and
Thomas Wilke, editors, STACS, volume 20 of LIPIcs, pages 172–184. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.STACS.2013.172.

2 Cameron Chalk, Erik D. Demiane, Martin L. Demaine, Eric Martinez, Robert Schweller,
Luis Vega, and Tim Wylie. Universal shape replicators via self-assembly with attractive
and repulsive forces. In Proc. of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’17), 2017.

3 Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim
Wylie. Optimal staged self-assembly of general shapes. Algorithmica, May 2017. doi:
10.1007/s00453-017-0318-0.

4 H.-L. Chen, D. Doty, and S. Seki. Program size and temperature in self-assembly. Algorith-
mica, 72(3):884–899, 2015.

5 Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T. Schweller,
and Pablo Moisset de Espanés. Complexities for generalized models of self-assembly. SIAM
Journal on Computing, 34:1493–1515, 2005.

6 Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M.
Summers, and Damien Woods. The two-handed tile assembly model is not intrinsically
universal. Algorithmica, 74(2):812–850, 2016.

7 Erik D. Demaine, Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Self-
assembly of arbitrary shapes using rnase enzymes: Meeting the kolmogorov bound with
small scale factor (extended abstract). In Proc. of the 28th International Symposium on
Theoretical Aspects of Computer Science (STACS’11), 2011.

8 David Doty, Lila Kari, and Benoît Masson. Negative interactions in irreversible self-
assembly. Algorithmica, 66(1):153–172, 2013. doi:10.1007/s00453-012-9631-9.

9 Constantine Evans. Crystals that Count! Physical Principles and Experimental Investiga-
tions of DNA Tile Self-Assembly. PhD thesis, California Inst. of Tech., 2014.

10 Ming-Yang Kao and Robert T. Schweller. Reducing tile complexity for self-assembly
through temperature programming. In SODA 2006: Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 571–580, 2006.

ESA 2018

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.172
http://dx.doi.org/10.1007/s00453-017-0318-0
http://dx.doi.org/10.1007/s00453-017-0318-0
http://dx.doi.org/10.1007/s00453-012-9631-9

14:14 Self-Assembly of Any Shape with Constant Tile Types using High Temperature

11 M. Li and P. Vitanyi. An Introduction to Kolmogorov and Its Applications (Second Edition).
Springer Verlag, New York, 1997.

12 Austin Luchsinger, Robert Schweller, and Tim Wylie. Self-assembly of shapes at constant
scale using repulsive forces. In Matthew J. Patitz and Mike Stannett, editors, Unconven-
tional Computation and Natural Computation, pages 82–97, Cham, 2017. Springer Interna-
tional Publishing.

13 Matthew J. Patitz, Trent A. Rogers, Robert Schweller, Scott M. Summers, and Andrew
Winslow. Resiliency to multiple nucleation in temperature-1 self-assembly. In DNA Com-
puting and Molecular Programming. Springer International Publishing, 2016.

14 Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and turing
universality at temperature 1 with a single negative glue. In DNA Computing and Molecular
Programming, volume 6937 of LNCS, pages 175–189. Springer, 2011.

15 John H. Reif, Sudheer Sahu, and Peng Yin. Complexity of graph self-assembly in accretive
systems and self-destructible systems. Theoretical Comp. Sci., 412(17):1592–1605, 2011.
doi:10.1016/j.tcs.2010.10.034.

16 Paul W. K. Rothemund. Using lateral capillary forces to compute by self-assembly. Pro-
ceedings of the National Academy of Sciences, 97(3):984–989, 2000. doi:10.1073/pnas.97.
3.984.

17 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, March 2006. doi:10.1038/nature04586.

18 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In Proc. of the 32nd ACM Sym. on Theory of Computing,
STOC’00, pages 459–468, 2000.

19 Nicholas Schiefer and Erik Winfree. Universal Computation and Optimal Construction in
the Chemical Reaction Network-Controlled Tile Assembly Model, pages 34–54. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-21999-8_3.

20 Robert Schweller and Michael Sherman. Fuel efficient computation in passive self-assembly.
In SODA 2013: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 1513–1525. SIAM, 2013.

21 Robert Schweller, Andrew Winslow, and Tim Wylie. Complexities for high-temperature
two-handed tile self-assembly. In Robert Brijder and Lulu Qian, editors, DNA Computing
and Molecular Programming, pages 98–109, Cham, 2017. Springer International Publishing.

22 Sinnosuke Seki and Yasushi Ukuno. On the behavior of tile assembly system at high
temperatures. Computability, 2(2):107–124, 2013.

23 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal
on Computing, 36(6):1544–1569, 2007. doi:10.1137/S0097539704446712.

24 Scott M. Summers. Reducing tile complexity for the self-assembly of scaled shapes through
temperature programming. Algorithmica, 63(1):117–136, 2012.

http://dx.doi.org/10.1016/j.tcs.2010.10.034
http://dx.doi.org/10.1073/pnas.97.3.984
http://dx.doi.org/10.1073/pnas.97.3.984
http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1007/978-3-319-21999-8_3
http://dx.doi.org/10.1137/S0097539704446712

A Unified PTAS for Prize Collecting TSP and
Steiner Tree Problem in Doubling Metrics

T-H. Hubert Chan1

Department of Computer Science, The University of Hong Kong, Hong Kong, China
hubert@cs.hku.hk

Haotian Jiang2

Department of Physics, Tsinghua University, Beijing, China
jht14@mails.tsinghua.edu.cn

Shaofeng H.-C. Jiang
The Weizmann Institute of Science, Rehovot, Israel
shaofeng.jiang@weizmann.ac.il

https://orcid.org/0000-0001-7972-827X

Abstract
We present a unified (randomized) polynomial-time approximation scheme (PTAS) for the prize
collecting traveling salesman problem (PCTSP) and the prize collecting Steiner tree problem
(PCSTP) in doubling metrics. Given a metric space and a penalty function on a subset of points
known as terminals, a solution is a subgraph on points in the metric space, whose cost is the
weight of its edges plus the penalty due to terminals not covered by the subgraph. Under our
unified framework, the solution subgraph needs to be Eulerian for PCTSP, while it needs to be
a tree for PCSTP. Before our work, even a QPTAS for the problems in doubling metrics is not
known.

Our unified PTAS is based on the previous dynamic programming frameworks proposed in
[Talwar STOC 2004] and [Bartal, Gottlieb, Krauthgamer STOC 2012]. However, since it is
unknown which part of the optimal cost is due to edge lengths and which part is due to penalties
of uncovered terminals, we need to develop new techniques to apply previous divide-and-conquer
strategies and sparse instance decompositions.

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems

Keywords and phrases Doubling Dimension, Traveling Salesman Problem, Polynomial Time
Approximation Scheme, Steiner Tree Problem, Prize Collecting

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.15

Related Version A full version of the paper can be found at [11], https://arxiv.org/abs/1710.
07774.

1 This work was partially supported by the Hong Kong RGC under the grant 17217716.
2 This research is supported in part by the National Basic Research Program of China Grant 2015CB358700,

the National Natural Science Foundation of China Grant 61772297, 61632016, 61761146003, and a grant
from Microsoft Research Asia.

© T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hubert@cs.hku.hk
mailto:jht14@mails.tsinghua.edu.cn
mailto:shaofeng.jiang@weizmann.ac.il
https://orcid.org/0000-0001-7972-827X
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.15
https://arxiv.org/abs/1710.07774
https://arxiv.org/abs/1710.07774
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

1 Introduction

We study prize collecting versions of two important optimization problems: the prize collecting
traveling salesman problem (PCTSP) and the prize collecting Steiner tree problem (PCSTP).
In both problems, we are given a metric space and a set of points called terminals, and a
non-negative penalty function on the terminals. A solution for either problem is a connected
subgraph with vertex set from the metric. In addition, it needs to be an Eulerian (multi-
)graph3for PCTSP and a tree for PCSTP. The cost of a solution is the sum of the weights of
edges in the solution plus the sum of penalties due to terminals not visited by the solution.

Prize Collecting Problems in General Metrics. The prize collecting setting was first
considered by Balas [4], who proposed the prize collecting TSP. However, the version that
Balas considered is actually more general, in the sense that each terminal is also associated
with a reward, and the goal is to find a tour that minimizes the tour length plus the penalties,
and collects at least a certain amount of rewards. The setting that we consider was suggested
by Bienstock et al. [8], and they used LP rounding to give a 2.5-approximation algorithm for
the PCTSP and a 3-approximation for the PCSTP. Later on, a unified primal-dual approach for
several network design problems was proposed [17]; this approach improves the approximation
ratios for both PCTSP and PCSTP to 2 in general metrics. The 2-approximation had remained
the state of the art for more than a decade, until Archer et al. [1] finally broke the 2 barrier
for both problems. Subsequently, in a note [16], Goemans combined their argument with
other algorithms, and gave a 1.915-approximation for the PCTSP, which is the state of the
art.

Prize Collecting Problems in Bounded Dimensional Euclidean Spaces. PCTSP and PCSTP

are APX-hard in general metrics, because even the special cases, the TSP and the Steiner
tree problem, are APX-hard. Although the seminal result by Arora [2] showed that both TSP
and STP have PTAS’s in bounded dimensional Euclidean spaces, the prize collecting setting
was not discussed. However, we do believe that their approach may be directly applied to get
PTAS’s for the prize collecting versions of both problems, with a slight modification to the
dynamic programming algorithms. Later, A PTAS for the Steiner Forest Problem (which
generalizes the STP) was discovered by Borradaile et al. [9]. Based on this result, Bateni et
al. [7] studied the Prize Collecting Steiner Forest Problem, and gave a PTAS for the special
case when the penalties are multiplicative, but this does not readily imply a PTAS for the
PCTSP or the PCSTP.

Prize Collecting Problems in Special Graphs. Planar graphs is an important class of
graphs. Both problems are considered in planar graphs, and a PTAS is presented by Bateni
et al. [6] for PCTSP and PCSTP. Moreover, they noted that both problems are solvable in
polynomial time in bounded treewidth graphs, and their PTAS relies on a reduction to the
bounded treewidth cases. They also showed that the Prize Collecting Steiner Forest Problem,
which is a generalization of the PCSTP, is significantly harder, and it is APX-hard in planar
graphs and Euclidean instances. As for the minor forbidden graphs, which generalizes planar
graphs, there are PTAS’s for various optimization problems, such as TSP by Demaine et
al. [14]. However, the PTAS’s for prize collecting problems, to the best of our knowledge, are
unknown.

3 An undirected connected multi-graph is Eulerian, if every vertex has even degree.

T.H. Chan, H. Jiang, and S. Jiang 15:3

Generalizing Euclidean Dimension. Going beyond Euclidean spaces, doubling dimension [3,
13, 18] is a popular notion of dimensionality. It captures the bounded local growth of Euclidean
spaces, and does not require any specific Euclidean properties such as vector representation or
dot product. A metric space has doubling dimension at most k, if every ball can be covered
by at most 2k balls of half the radius. This notion generalizes the Euclidean dimension, in
that every subset of Rd equipped with `2 has doubling dimension O(d). Although doubling
metrics are more general than Euclidean spaces, recent results show that many optimization
problems have similar approximation guarantees for both spaces: there exist PTAS’s for
the TSP [5], a certain version of the TSP with neighborhoods [12], and the Steiner forest
problem [10], in doubling metrics.

Our Contributions. In this paper, we extend this line of research, and give a unified PTAS
framework for both PCTSP and PCSTP. We use PCX when the description applies to either
problem. Our main result is Theorem 1.

I Theorem 1. For any 0 < ε < 1, there exists an algorithm that, for any PCX instance
with n terminal points in a metric space with doubling dimension at most k, runs in time

nO(1)O(k)
· exp(

√
logn ·O(k

ε
)O(k)),

and returns a solution that is a (1 + ε)-approximation with constant probability.

Technical Issues. As a first trial, one might try to adapt the sparsity framework used in
previous PTAS’s for the TSP and Steiner forest problems [5, 12, 10] in doubling metrics.
The framework typically uses a polynomial-time estimator H on any ball B, which gives
a constant approximation for PCX on some appropriately defined sub-instance around B.
Intuitively, the estimator works because the local behavior of a (nearly) optimal solution
can be well estimated by looking at the sub-instance locally. In particular, the following
properties are needed in this framework:

If H(B) is large, then the optimal solution for the sub-instance induced on B is large;
moreover, any (nearly) optimal solution for the global instance would have a large part
of its cost due to B.
If H(B) is small, then for any (nearly) optimal solution F for the global instance, the
cost of F contributed by the sub-instance due to B should be small.

While the first property is somehow straightforward, the following example shows that
the second property is non-trivial to achieve in PCX.

Example Instance: Figure 1. The example is defined on the real line. The terminals are
grouped into two clusters. The left cluster contains 2m terminals, and the right cluster
contains m terminals. Within each cluster, the distance between adjacent terminals is 1.
The two clusters are at distance l apart. The penalty for each terminal is t. The parameters
are chosen such that l � mt and t� m. Observe that for PCX, the optimal solution is to
visit all the terminals in the left cluster with total edge weights O(m) and incur the penalty
mt for the terminals in the right cluster. The reason is that it will be too costly to add an
edge to connect terminals from different clusters, and it is better to visit the cluster with
more terminals and suffer the penalty for the cluster with fewer terminals.

ESA 2018

15:4 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Figure 1 Example instance for PCX.

Local Estimator Fails on the Example Instance. Suppose the estimator is applied around
a ball B centered at some terminal in the right cluster with radius r. Then, any constant-
approximate solution for the sub-instance needs to connect all Θ(r) terminals in the ball,
since the penalty for any single terminal is too large. This costs Θ(r). However, in the
optimal solution, no terminal in the right cluster is visited and all penalties are taken, which
has cost Ω(tr). Hence, the estimator fails to serve as an upper bound for the contribution by
ball B to the cost of an optimal solution.

The conclusion is that the optimal solution of a local sub-instance can differ a lot from
how an optimal global solution behaves for that sub-instance.

Our Insight: Trading between Weight and Penalty. Our example in Figure 1 shows that
what points a local optimal solution visits in a sub-instance can be very different from the
points in the sub-instance visited by a global optimal solution. Our intuition is that the
optimal cost of a sub-instance should reflect part of the cost in a global optimal solution
due to the sub-instance. In other words, if a sub-instance has large optimal cost, then any
global solution either (1) has a large weight within the sub-instance, or (2) suffers a large
penalty due to unvisited terminals in the sub-instance. This insight leads to the following
key ingredients to our solution.

1. Inferring Local Behavior from Estimator. In Lemma 5, we show that the value
returned by the local estimator (which consists of both the weight and the penalty) on
a ball B gives an upper bound on the weight w(F |B) of any (near) optimal solution F
inside ball B. We emphasize that this estimator is an upper bound for the weight w(F |B)
only, and is not an upper bound for both the weight and penalty of the optimal solution
inside the ball. In the example in Figure 1, a global optimal solution does not visit the
right cluster at all, and hence, the local estimator on the right cluster does give an upper
bound on the weight part of the global solution due to the right cluster. This turns out to
be sufficient because the sparsity of a solution is defined with respect to only the weight
part (and not the penalty part).
Hence, the local estimator can be used in the sparsity decomposition framework [5, 12, 10]
to identify a critical instance W1 (i.e., the local estimator reaches some threshold, but
still not too large) around some ball B. Since the instance W1 is sparse enough, an
approximate solution F1 can be obtained by the dynamic program framework. Then,
one can recursively solve for an approximate solution F2 for the remaining instance W2.
However, we need to carefully define W2 and combine the solutions F1 and F2, because,
as we remarked before, even if the approximate algorithm returns F1 for the instance W1,
a near optimal global solution might not visit any terminals in W1.

T.H. Chan, H. Jiang, and S. Jiang 15:5

2. Adaptive Recursion. In all previous applications of the sparsity decomposition frame-
work, after a critical ball B around some center u is identified, the original instance is
decomposed into sub-instances W1 and W2 that can be solved independently.
An issue in applying this framework is that after obtaining solutions F1 and F2 for the
sub-instances, in the case that F1 and F2 are far away from each other as in our example
in Figure 1 where it is too costly to connect them directly, it is not clear immediately
which of F1 and F2 should be the weight part of the global solution and which would
become the penalty part.
We use a novel idea of the adaptive recursion, in which W2 depends on the solution F1
returned for W1. The high level idea is that in defining the instance W2, we add an extra
terminal point at u, which becomes a representative for solution F1. The penalty of u
in W2 is the sum of the penalties of terminals in W1 minus the cost c(F1) of solution F1.
After a solution F2 for W2 is returned, if F2 does not visit the terminal u, then edges in F1
are discarded, otherwise the edges in F1 and F2 are combined to return a global solution.
We can see that in either case, the sum c(F1) + c(F2) of the costs of the two solutions
reflect the cost of the global solution. In the first case, F2 does not visit u and hence,
c(F2) contains the penalty due to u, which is the penalties of unvisited terminals in W1
minus c(F1). Therefore, when c(F1) is added back, the sum simply contains the original
penalties of unvisited terminals in W1.
In the second case, F2 does visit u and does not incur a penalty due to u. Therefore,
c(F1) + c(F2) does reflect the cost of the global solution after combining F1 and F2.

Revisiting the Sparsity Structural Lemma. Many PTAS’s in the literature for TSP-like
problems in doubling metrics rely on the sparsity structural lemma [5, Lemma 3.1]. Intuitively,
it says that if a solution is sparse, then there exists a structurally light solution that is
(1 + ε)-approximate. Hence, one can restrict the search space to structurally light solutions,
which can be explored by a dynamic program algorithm. Because of the significance of this
lemma, we believe that it is worthwhile to give it a more formal inspection, and in particular,
resolve some significant technical issues as follows.

Issue with Conditioning on the Randomness of Hierarchical Decomposition. Given a
hierarchical decomposition and a solution T , the first step is to reroute the solution such
that every cluster is only visited through some designated points known as portals. The
randomness in the hierarchical decomposition is used to argue that the expected increase
in cost to make the solution portal-respecting is small.
However, typically the randomness in the hierarchical decomposition is still needed in
subsequent arguments. Hence, if one analyzes the portal-respecting procedure as a
conceptually separate step, then subsequent uses of the randomness of the hierarchical
decomposition need to condition on the event that the portal-respecting step does not
increase the cost too much. Moreover, edges added in the portal-respecting step are
actually random objects depending on the hierarchical decomposition, and hence, will in
fact cross some clusters with probability 1. Unfortunately, even in the original paper by
Talwar [20] on the QPTAS for TSP in doubling metrics, these issues were not addressed
properly.
Issues with Patching Procedure. A patching procedure is typically used to reduce the
number of times a cluster is crossed. In the literature, after reducing the number of
crossings, the triangle inequality is used to implicitly add some shortcutting edges outside
the cluster. However, it is never argued whether these new shortcutting edges are still
portal-respecting. It is plausible that making them portal-respecting might introduce
new crossings.

ESA 2018

15:6 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

From the above discussion, it is evident that one should consider the portal-respecting
step and the patching procedure together, because they both rely on the randomness of
the hierarchical decomposition. To make our arguments formal, we need a more precise
notation to describe portals, and we actually revisit the whole randomized hierarchical
decomposition to make all relevant definitions precise. We analyze the portal-respecting step
and the patching procedure together through a sophisticated accounting argument so that
the patching cost is eventually charged back to the original solution (as opposed to stopping
at the transformed portal-respecting solution).

Moreover, we give a unified patching lemma that works for both PCTSP and PCSTP. Even
though our proofs use similar ideas as previous works, the charging argument is significantly
different. Specifically, our argument does not rely on the small MST lemma [20, Lemma 6],
which was also used in [5].

Paper Organization. Section 2 gives the formal notation and describes the outline of
the sparsity decomposition framework to solve PCX. Section 3 gives the properties of the
local sparsity estimator. Section 4 gives the technical details of the sparsity decomposition
and shows that approximate solutions in sub-instances can be combined to give a good
approximation to the global instance. Some proofs, together with other sections, are omitted
due to space limit, and they can be found in the full version [11].

2 Preliminaries

We consider a metric space M = (X, d) (see [15, 19] for more details on metric spaces), where
we refer to an element x ∈ X as a point or a vertex. For x ∈ X and ρ ≥ 0, a ball B(x, ρ) is the
set {y ∈ X | d(x, y) ≤ ρ}. The diameter Diam(Z) of a set Z ⊂ X is the maximum distance
between points in Z. For S, T ⊂ X, we denote d(S, T) := min{d(x, y) : x ∈ S, y ∈ T}, and
for u ∈ X, d(u, T) := d({u}, T). Given a positive integer m, we denote [m] := {1, 2, . . . ,m}.

A set S ⊆ X is a ρ-packing, if any two distinct points in S are at a distance more than ρ
away from each other. A set S is a ρ-cover for Z ⊆ X, if for any z ∈ Z, there exists x ∈ S
such that d(x, z) ≤ ρ. A set S is a ρ-net for Z, if S is a ρ-packing and a ρ-cover for Z. We
assume the access to an oracle that takes a series of balls {Bi}i where each Bi is identified by
the center and radius, and returns a point x ∈ X such that ∀i, x /∈ Si4. A greedy algorithm
can construct a ρ-net efficiently given the access to this oracle.

We consider metric spaces with doubling dimension [3, 18] at most k; this means that
for all x ∈ X, for all ρ > 0, every ball B(x, 2ρ) can be covered by the union of at most 2k
balls of the form B(z, ρ), where z ∈ X. The following fact captures a standard property of
doubling metrics.

I Fact 2 (Packing in Doubling Metrics [18]). Suppose in a metric space with doubling
dimension at most k, a ρ-packing S has diameter at most R. Then, |S| ≤ (2R

ρ)k.

Edges. An edge5 e is an unordered pair e = {x, y} ∈
(
X
2
)
whose weight w(e) = d(x, y) is

induced by the metric space (X, d). Given a set F of edges, its vertex set V (F) := ∪e∈F e ⊂ X
is the vertices covered (or visited) by the edges in F . If T ⊂ X is a set of vertices, we use
the shorthand T \ F := T \ V (F) to denote the vertices in T that are not covered by F .

4 Such an oracle is trivial to construct for finite metric spaces. It may also be efficiently constructed for
many special infinite metric spaces, such as bounded dimensional Euclidean spaces.

5 To have a complete description, we also need the notion of self-loop, which is simply a singleton {x}.

T.H. Chan, H. Jiang, and S. Jiang 15:7

Problem Definition. We give a unifying framework for the prize collecting traveling salesman
problem (PCTSP) and the prize collecting Steiner tree problem (PCSTP), and we use PCX

when the description applies to both problems. An instance W = (T, π) of PCX consists of a
set T ⊂ X of terminals (where |W | := |T | = n) and a penalty function π : T → R+. The goal
is to find a (multi-)set F ⊂

(
X
2
)
of edges with minimum cost6 cW (F) := w(F) + π(T \ F),

such that the following additional conditions are satisfied for each specific problem:
For PCTSP, the edges in the multi-set F form a circuit on V (F); for |V (F)| = 1, F
contains only a single self-loop (with zero weight).
For PCSTP, the edges F form a connected graph on V (F), where we also allow the
degenerate case when F is a singleton containing a self-loop. The vertices in V (F) \ T
are known as Steiner points.

Simplifying Assumptions and Rescaling Instance. Fix some constant ε > 0. Since we
consider asymptotic running time to obtain (1 + ε)-approximation for PCX, we consider
sufficiently large n > 1

ε . Since F can contain a self-loop, an optimal solution covers at least
one terminal u. Moreover, there is some terminal v (which could be the same as u) such that
the solution covers v and does not cover any terminal v′ with d(u, v′) > d(u, v). Since we aim
for polynomial time algorithms, we can afford to enumerate the O(n2) choices for u and v.

For some choice of u and v, suppose R := d(u, v). Then, R is a lower bound on the
cost of an optimal solution. Moreover, the optimal solution F has weight w(F) at most nR,
and hence, we do not need to consider points at distances larger than nR from u. Since F
contains at most 2n edges (because of Steiner points in PCSTP), if we consider an εR

32n2 -net
S for X and replace every point in F with its closest net-point in S, the cost increases by
at most ε ·OPT. Hence, after rescaling, we can assume that inter-point distance is at least
1 and we consider distances up to O(n

3

ε) = poly(n). By the packing property of doubling
dimension (Fact 2), we can hence assume |X| ≤ O(nε)O(k) ≤ O(n)O(k).

Hierarchical Nets. As in [5], we consider some parameter s = (logn) c
k ≥ 4, where 0 < c < 1

is a universal constant that is sufficiently small. Set L := O(logs n) = O(k logn
log logn). A greedy

algorithm can construct NL ⊆ NL−1 ⊆ · · · ⊆ N1 ⊆ N0 = N−1 = · · · = X such that for each
i, Ni is an si-net for Ni−1, where we say distance scale si is of height i.

Net-Respecting Solution. As defined in [5], a graph F is net-respecting with respect
to {Ni}i∈[L] and ε > 0 if for every edge {x, y} in F , both x and y belong to Ni, where
si ≤ ε · d(x, y) < si+1. By [5, Lemma 1.6], any graph F may be converted to a net-respecting
F ′ visiting all points that F visits, and w(F ′) ≤ (1 +O(ε)) · w(F).

Given an instance W of a problem, let OPT(W) be an optimal solution; when the context
is clear, we also use OPT(W) to denote the cost c(OPT(W)), which includes both its weight
and the incurred penalty; similarly, OPTnr(W) refers to an optimal net-respecting solution.

2.1 Overview

We achieve a PTAS for PCX by a unified framework, which is based on the framework of
sparse instance decomposition as in [5, 12, 10].

6 When the context is clear, we drop the subscript in cW (·).

ESA 2018

15:8 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Sparse Solution [5]. Given an edge set F and a subset S ⊆ X, F |S := {e ∈ F : e ⊆ S} is
the edges in F totally contained in S. An edge set F is called q-sparse, if for all i ∈ [L] and
all u ∈ Ni, w(F |B(u,3si)) ≤ q · si.

Sparsity Structural Property. An important technical lemma [5, Lemma 3.1] in this frame-
work states that if a (net-respecting) solution F is sparse, then with constant probability,
there is some (1 + ε)-approximate solution F̂ that is structurally light with respect to some
randomized hierarchical decomposition. Then, a bottom-up dynamic program based on
the hierarchical decomposition searches for the best solution with the lightness structural
property in polynomial time.
I Remark. We observe that this technical lemma is used crucially in all previous works on
PTAS’s for TSP variants in doubling metrics. Hence, we believe that its proof should be
verified rigorously. In Section 1, we outlined the technical issue in the original proof [5], and
this issue actually appeared as far as in the first paper on TSP for doubling metrics [20].
In the full version, we give a detailed description to complete the proof of this important
lemma.

Sparsity Heuristic. As in [5, 12, 10], we estimate the local sparsity of an optimal net-
respecting solution with a heuristic. For i ∈ [L] and u ∈ Ni, given an instance W , the
heuristic H(i)

u (W) is supposed to estimate the sparsity of an optimal net-respecting solution
in the ball B′ := B(u,O(si)). We shall see in Section 3 that the heuristic actually gives a
constant approximation to some appropriately defined sub-instance W ′ in the ball B′.

Divide and Conquer. Once we have a sparsity estimator, the original instance can be
decomposed into sparse sub-instances, whose approximate solutions can be found efficiently.
As we shall see, the partial solutions are combined with the following extension operator.
The algorithm outline is described in Figure 2.

I Definition 3 (Solution Extension). Given two partial solutions F and F ′ of edges, we define

the extension of F with F ′ at point u as F "u F
′ :=

{
F ∪ F ′, if u ∈ V (F) ∩ V (F ′);
F, otherwise.

Analysis of Approximation Ratio. We follow the inductive proof as in [5] to show that with
constant probability (where the randomness comes from DP), ALG(W) in Figure 2 returns
a solution with expected length at most 1+ε

1−ε · OPTnr(W), where expectation is over the
randomness of decomposition into sparse instances in Step 4.

As we shall see, in ALG(W), the subroutine DP is called at most poly(n) times (either
explicitly in the recursion or in the heuristic H(i)). Hence, with constant probability, all
solutions returned by all instances of DP have appropriate approximation guarantees.

Suppose F1 and F2 are solutions returned by DP(W1) and ALG(W2), respectively. We
use ci as a shorthand for cWi , for i = 1, 2, and c as a shorthand for cW . Since we assume that
W1 is sparse enough and DP behaves correctly, c1(F1) ≤ (1 + ε) · OPT(W1). The induction
hypothesis states that E[c2(F2)|W2] ≤ 1+ε

1−ε · OPTnr(W2).
In Step 4, equation (2) guarantees that E[OPT(W1)] ≤ 1

1−ε ·(OPTnr(W)−E[OPTnr(W2)]).
By equation (1), c(F2 "u F1) ≤ c1(F1) + c2(F2). Hence, it follows that

E[ALG(W)] ≤ E[c1(F1) + c2(F2)] ≤ 1 + ε

1− ε · OPTnr(W) = (1 +O(ε)) · OPT(W),

achieving the desired ratio.

T.H. Chan, H. Jiang, and S. Jiang 15:9

Generic Algorithm. We describe a generic framework that applies to PCX. Similar
framework is also used in [5, 12, 10] to obtain PTAS’s for TSP related problems. Given an
instance W , we describe the recursive algorithm ALG(W) as follows. This description is
mostly the same with that in [10], except that the decomposition in Step 4 is more involved.

1. Base Case. If |W | = n is smaller than some constant threshold, solve the problem by
brute force, recalling that |X| ≤ O(nε)O(k).

2. Sparse Instance. If for all i ∈ [L], for all u ∈ Ni, H(i)
u (W) is at most q0 · si, for some

appropriate threshold q0, call the subroutine DP(W) to return a solution, and terminate.
3. Identify Critical Instance. Otherwise, let i be the smallest height such that there

exists u ∈ Ni with critical H(i)
u (W) > q0 · si; in this case, choose u ∈ Ni such that

H(i)
u (W) is maximized.

4. Divide and Conquer. Define a sub-instance W1 from around the critical instance
(possibly using randomness). Loosely speaking, W1 is a sparse enough sub-instance
induced in the region around u at distance scale si. Since it is sparse enough, we apply
the dynamic programming algorithm on W1 and get solution F1.
We define an appropriate sub-instance W2 with the information of F1. Intuitively, W2
captures the remaining sub-problem not included in W1. We emphasize that as opposed
to previous work [5, 12, 10], W2 can depend on F1 (through the choice of the penalty
function). Moreover, we ensure that any solution F2 of W2 can be extended to F2 "u F1
as a solution for W , and the following holds:

cW (F2 "u F1) ≤ cW1(F1) + cW2(F2). (1)

We solve W2 recursively and suppose the solution is F2. We note that H(i)
u (W2) ≤ q0 · si,

and hence the recursion will terminate.
Moreover, the following property holds:

E[OPT(W1)] ≤ 1
1− ε · (OPTnr(W)−E[OPTnr(W2)]), (2)

where the expectation is over the randomness of the decomposition.
We return F := F2 "u F1 as a solution to W .

Figure 2 Algorithm Outline.

Analysis of Running Time. As mentioned above, if H(i)
u (W) is found to be critical, then in

the decomposed sub-instances W1 and W2, H(i)
u (W2) should be small. Hence, it follows that

there will be at most |X| · L = poly(n) recursive calls to ALG. Therefore, as far as obtaining
polynomial running times, it suffices to analyze the running time of the dynamic program
DP. The details are provided in the full version.

3 Sparsity Estimator for PCX

Recall that in the framework outlined in Section 2, given an instance W of PCX, we wish to
estimate the weight of OPTnr(W)|B(u,3si) with some heuristic H(i)

u (W). We consider a more
general sub-instance associated with the ball B(u, tsi) for t ≥ 1.

ESA 2018

15:10 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Auxiliary Sub-Instance. Given an instance W = (T, π), i ∈ [L], u ∈ Ni and t ≥ 1, the
sub-instance W (i,t)

u is characterized by terminal set W ∩B(u, tsi), equipped with penalties
given by the same π. Using the classical (deterministic) 2-approximation algorithms by
Goemans and Williamson for PCX [17], we obtain a 2-approximation and then make it
net-respecting to produce solution F (i,t)

u , which has cost c(F (i,t)
u) ≤ 2(1 +O(ε)) ·OPT(W (i,t)

u).

Defining the Heuristic. The heuristic is defined as H(i)
u (W) := c(F (i,4)

u).
In order to show that the heuristic gives a good upper bound on the local sparsity of an

optimal net-respecting solution, we need the following structural result in Proposition 4 [10,
Lemma 3.2] on the existence of long chain in well-separated terminals in a Steiner tree. As
we shall see, the corresponding argument for the case PCTSP is trivial.

Given an edge set F , a chain in F is specified by a sequence of points (p1, p2, . . . , pl) such
that there is an edge {pi, pi+1} in F between adjacent points, and the degree of an internal
point pi (where 2 ≤ i ≤ l − 1) in F is exactly 2.

I Proposition 4 (Well-Separated Terminals Contains A Long Chain). Suppose S and T are
sets in a metric space with doubling dimension at most k such that Diam(S ∪ T) ≤ D, and
d(S, T) ≥ τD, where 0 < τ < 1. Suppose F is an optimal net-respecting Steiner tree covering
the terminals in S ∪ T . Then, there is a chain in F with weight at least τ2

4096k2 ·D such that
any internal point in the chain is a Steiner point.

I Lemma 5 (Local Sparsity Estimator). Let F be an optimal net-respecting solution for an
instance W of PCX. Then, for any i ∈ [L], u ∈ Ni and t ≥ 1, we have

w(F |B(u,tsi)) ≤ c(F
(i,t+1)
u) +O(sktε)O(k) · si.

Proof. We follow the proof strategy in [10, Lemma 3.3], except that now a feasible solution
needs not visit all terminals and can incur penalties instead. We denote B := B(u, tsi) and
B̂ := B(u, (t+ 1)si).

Given an optimal net-respecting solution F for instance W of PCX, we shall construct
another net-respecting solution in the following steps.
1. Remove edges in F |B .
2. Add edges F (i,t+1)

u corresponding to some approximate solution to the instance W (i,t+1)
u

restricted to the ball B̂.
3. Let η := Θ(ε

(t+1)k2), where the constant in Theta depends on Proposition 4. Let j be the
integer such that sj ≤ max{1,Θ(ε

(t+1)k2) · si} < sj+1.
Add edges in a minimum spanning tree H of Nj ∩B(u, (t+ 2)si) and edges to connect H
to F (i,t+1)

u .
Convert each added edge into a net-respecting path if necessary. Observe that the weight
of edges added in this step is O(stkε)O(k) · si.

4. So far we have accounted for every terminal inside B̂, which is either visited or charged
with its penalty according to c(F (i,t+1)

u). We will give a more detailed description to
ensure that the terminals outside B̂ that are covered by F will still be covered by the new
solution.
For PCTSP, we will show that this step can be achieved by increasing the weight by at
most O(stkε)O(k) · si; for PCSTP, this can be achieved by replacing some edges without
increasing the weight.

Hence, after the claim in Step 4 is proved, the optimality of F implies the result.

T.H. Chan, H. Jiang, and S. Jiang 15:11

Ensuring Terminals Outside B̂ are accounted for. We achieve this by considering the
following steps.
1. Consider a connected component C in F \ (F |B). Recall that the goal is to make sure

that all terminals outside B̂ that are visited by C will also be visited in the new solution.
2. Pick some x in C ∩B. If no such x exists, this implies that we have the trivial situation

F |B = ∅. Let Ĉ ⊆ C be the maximal connected component containing x that is contained
within B̂. Define S := Ĉ∩B (which contains x) and T := {y ∈ Ĉ∩B̂ : ∃v /∈ B̂, {y, v} ∈ F},
which corresponds to the points that are connected to the outside B̂. Again, the case
that T = ∅ is trivial.

Case (a): There exists y ∈ T , d(u, y) ≤ (t + 1
2)si. In this case, this implies there is

some v /∈ B̂ such that {y, v} ∈ F and d(y, v) ≥ si

2 . Since F is net-respecting, this implies
that y ∈ Nj and hence, the component Ĉ (and also C) is already connected to H.

Case (b): For all y ∈ T , d(u, y) > (t + 1
2)si. We next show that there is a long chain

contained in Ĉ. For PCTSP, this is trivial, because we know that T contains only y, and Ĉ is
a chain from a = x to b = y of length at least d(x, y) ≥ si

2 .
For PCSTP, by the optimality of F , it follows that Ĉ is an optimal net-respecting Steiner

tree covering vertices in S ∪ T . Hence, using Proposition 4, Ĉ contains some chain from a to
b with length at least 4ηsi (where the constant in the Theta in the definition of η is chosen
such that this holds).

Once we have found this chain from a to b, we remove the edges in this chain. Hence, we
can use this extra weight to connect a and b to their corresponding closest points in Nj via a
net-respecting path; observe that for PCTSP, it suffices to connect only b = y to it closest
point in Nj .

Finally, observe that for PCTSP, it is possible to carry out the above procedures such that
all vertices with odd degrees are in the minimum spanning tree H. Therefore, extra edges are
added to ensure that the degree of every vertex is even to ensure the existence of an Euler
circuit. This has extra cost at most w(H) ≤ O(stkε)O(k) · si. This completes the proof. J

I Corollary 6 (Threshold for Critical Instance). Suppose F is an optimal net-respecting solution
for an instance W of PCX, and q ≥ Θ(skε)Θ(k). If for all i ∈ [L] and u ∈ Ni, H(i)

u (W) ≤ qsi,
then F is 2q-sparse.

4 Decomposition into Sparse Instances

In Section 3, we define a heuristic H(i)
u (W) to detect a critical instance around some point

u ∈ Ni at distance scale si. We next describe how the instance W of PCX can be decomposed
into W1 and W2 such that equations (1) and (2) in Section 2.1 are satisfied.

Decomposing a Critical Instance. We define a threshold q0 := Θ(skε)Θ(k) according to
Corollary 6. As stated in Section 2.1, a critical instance is detected by the heuristic when a
smallest i ∈ [L] is found for which there exists some u ∈ Ni such that H(i)

u (W) = c(F (i,4)
u) >

q0s
i. Moreover, in this case, u ∈ Ni is chosen to maximize H(i)

u (W). To achieve a running
time with an exp(O(1)k log(k)) dependence on the doubling dimension k, we also apply the
technique in [12] to choose the cutting radius carefully.

I Claim 7 (Choosing Radius of Cutting Ball). Denote T(λ) := c(F (i,4+2λ)
u). Then, there exists

0 ≤ λ < k such that T(λ+ 1) ≤ 30k · T(λ).

ESA 2018

15:12 PTAS for Prize Collecting TSP and Steiner Tree in Doubling Metrics

Proof. The proof is omitted and can be found in the full version. J

Cutting Ball and Sub-Instances. Suppose λ ≥ 0 is picked as in Claim 7, and sample
h ∈ [0, 1

2] uniformly at random. Define B := B(u, (4 + 2λ + h)si). The original instance
W = (T, π) is decomposed into instances W1 and W2 as follows:

For W1 = (T1, π1), the terminal set is T1 := (B ∩ T)∪ {u}, where for v 6= u π1(v) := π(v)
and π1(u) := +∞. We denote the cost function associated with W1 by c1.
Suppose F1 is the (random) solution for instance W1 (that covers u) returned by the
dynamic program for sparse instances (which can be found in the full version). Then,
instanceW2 = (T2, π2) is defined with respect to F1. The terminal set is T2 := (T \B)∪{u}.
For v ∈ T2 \ {u}, π2(v) := π(v) is the same; however, π2(u) := π(T ∩ B) − c1(F1) =
π(T ∩B ∩ F1)− w(F1).

Observe that the instance W2 depends on F1 through the choice of the penalty for u.

I Lemma 8 (Combining Solutions of Sub-Instances). Suppose instance W1 is defined with cost
function c1 and instance W2 is defined with respect to F1 of W1. Furthermore, suppose F̂2 is
a solution to instance W2, whose cost function is denoted as c2. Then, we have the following.
(i) Suppose F̂1 is any solution to W1 that contains u, and let F := F̂2 "u F̂1. If F̂2 covers

u, then F = F̂2 ∪ F̂1 is a solution to W with cost c(F) ≤ c1(F̂1) + c2(F̂2); if F2 does
not cover u, then F = F̂2 is a solution to W with cost c(F) ≤ c1(F1) + c2(F̂2). This
implies (1) in Section 2.1.

(ii) The sub-instance W2 does not have a critical instance with height less than i, and
H(i)
u (W2) = 0.

(iii) H(i)
u (W1) ≤ O(s)O(k) · q0 · si.

Proof. The proof is omitted and can be found in the full version. J

I Lemma 9 (Combining Costs of Sub-Instances). Suppose F is an optimal net-respecting
solution for instance W of PCX. Then, for any realization of the decomposed sub-instances W1
and W2 as described above, there exist (not necessarily net-respecting) solution F̂1 for W1 and
net-respecting solution F̂2 for W2 such that (1− ε) ·E

[
c1(F̂1)

]
+ E

[
c2(F̂2)

]
≤ cW (F), where

the expectation is over the randomness to generate W1 and W2. Recall that the randomness
to generate W1 and W2 involves the random ball B and the randomness used in the dynamic
program to generate F1 to produce instance W2 and its cost function c2.

Proof. The proof is omitted and can be found in the full version. J

References
1 Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Howard J.

Karloff. Improved approximation algorithms for prize-collecting steiner tree and TSP.
SIAM J. Comput., 40(2):309–332, 2011.

2 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM, 45(5):753–782, 1998.

3 P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111(4):429–448,
1983.

4 Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636,
1989.

5 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput.,
45(4):1563–1581, 2016.

T.H. Chan, H. Jiang, and S. Jiang 15:13

6 M Bateni, Chandra Chekuri, Alina Ene, Mohammad Taghi Hajiaghayi, Nitish Korula, and
Dániel Marx. Prize-collecting steiner problems on planar graphs. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1028–1049.
Society for Industrial and Applied Mathematics, 2011.

7 MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-collecting
steiner forest. Algorithmica, 62(3-4):906–929, 2012.

8 Daniel Bienstock, Michel X Goemans, David Simchi-Levi, and David Williamson. A note on
the prize collecting traveling salesman problem. Mathematical programming, 59(1):413–420,
1993.

9 Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approxima-
tion scheme for euclidean steiner forest. ACM Trans. Algorithms, 11(3):19:1–19:20, 2015.

10 T.-H. Hubert Chan, Shuguang Hu, and Shaofeng H.-C. Jiang. A PTAS for the steiner forest
problem in doubling metrics. In FOCS, pages 810–819. IEEE Computer Society, 2016.

11 T.-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang. A unified PTAS for prize
collecting TSP and steiner tree problem in doubling metrics. CoRR, abs/1710.07774, 2017.

12 T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality: Improved
PTAS for TSP (with neighborhoods) in doubling metrics. In SODA, pages 754–765. SIAM,
2016.

13 Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete & Computational
Geometry, 22(1):63–93, 1999. doi:10.1007/PL00009449.

14 Erik D Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Contraction
decomposition in h-minor-free graphs and algorithmic applications. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 441–450. ACM, 2011.

15 M. M. Deza and M. Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and
Combinatorics. Springer-Verlag, Berlin, 1997.

16 Michel X Goemans. Combining approximation algorithms for the prize-collecting tsp. arXiv
preprint arXiv:0910.0553, 2009.

17 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

18 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In FOCS, pages 534–543. IEEE Computer Society, 2003.

19 J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002.

20 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In STOC,
pages 281–290. ACM, 2004.

ESA 2018

http://dx.doi.org/10.1007/PL00009449

Near-Optimal Distance Emulator for Planar
Graphs
Hsien-Chih Chang1

University of Illinois at Urbana-Champaign, USA
hchang17@illinois.edu

Paweł Gawrychowski
University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Shay Mozes2

IDC Herzliya, Israel
smozes@idc.ac.il

Oren Weimann3

University of Haifa, Israel
oren@cs.haifa.ac.il

Abstract
Given a graph G and a set of terminals T , a distance emulator of G is another graph H (not
necessarily a subgraph of G) containing T , such that all the pairwise distances in G between
vertices of T are preserved in H. An important open question is to find the smallest possible
distance emulator.

We prove that, given any subset of k terminals in an n-vertex undirected unweighted planar
graph, we can construct in Õ(n) time a distance emulator of size Õ(min(k2,

√
k · n)). This is

optimal up to logarithmic factors. The existence of such distance emulator provides a straight-
forward framework to solve distance-related problems on planar graphs: Replace the input graph
with the distance emulator, and apply whatever algorithm available to the resulting emulator. In
particular, our result implies that, on any unweighted undirected planar graph, one can compute
all-pairs shortest path distances among k terminals in Õ(n) time when k = O(n1/3).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases planar graphs, shortest paths, metric compression, distance preservers,
distance emulators, distance oracles

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.16

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
01478.

Acknowledgements The authors would like to thank Timothy Chan, Jeff Erickson, Sariel Har-
Peled, and Yipu Wang for helpful discussions. The first author express special thanks to 施鴻逸
(Hong-Yi Shih) for discussion back in NTU in the early days that made this paper possible.

1 Supported partially by NSF grant CCF-1408763.
2 Supported partially by ISF grants 794/13 and 592/17
3 Supported partially by ISF grants 794/13 and 592/17

© Hsien-Chih Chang, Paweł Gawrychowski, Shay Mozes, and Oren Weimann;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hchang17@illinois.edu
mailto:gawry@cs.uni.wroc.pl
mailto:smozes@idc.ac.il
mailto:oren@cs.haifa.ac.il
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.16
https://arxiv.org/abs/1807.01478
https://arxiv.org/abs/1807.01478
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Near-Optimal Distance Emulator for Planar Graphs

1 Introduction

The planar graph metric is one of the most well-studied metrics in graph algorithms,
optimizations, and computer science in general. The planar graph metric compression
problem is to compactly represent the distances among a subset T of k vertices, called
terminals, in an n-vertex planar graph G. Without compression (and when G is unweighted)
these distances can be naïvely represented with O(min(k2 logn, n)) bits by either explicitly
storing the k × k distances or alternatively by storing the entire graph (naïvely, this takes
O(n logn) bits, but can be done with O(n) bits [60, 55, 24, 13]).

A natural way to compress G is to replace it by another graph H that contains T
as vertices, and the distances between vertices in T are preserved in H. In other words,
dG(x, y) = dH(x, y) holds for every pair of vertices x and y in T . Such graph H is called a
distance emulator of G with respect to T (or a distance preserver in the case where
H is required to be a subgraph of G). Distance emulators are appealing algorithmically,
since we can readily feed them into our usual graph algorithms. They have been studied as
compact representations of graphs [16, 26, 25, 15, 14, 8], and used as fundamental building
blocks in algorithms and data structures for distance-related problems [16, 28, 31, 1, 2, 3, 42].
Similar concepts like additive and multiplicative spanners [28, 40, 12, 57, 63, 11] and distance
labelings [39, 62, 53, 45, 34, 9, 35, 10] are popular topics with abundant results.

In planar graphs, an extensive study has been done for the case where the emulator H is
required to be a minor of G [40, 21, 30, 11, 32, 23, 38, 37, 51]. Restricting H to be a minor of
G has proven useful when H is only required to approximate the distances between vertices
in T , say, up to a (1 + ε) multiplicative error. For exact distances however, Krauthgamer,
Nguyen, and Zondiner [50] have shown a lower bound of Ω(k2) on the size of H, even when
G is an unweighted grid graph and H is a (possibly weighted) minor emulator.

In general, an emulator H does not have to be a subgraph or a minor of G. In fact, H
can be non-planar even when G is planar. Even in this setting, for weighted planar graphs,
we cannot beat the naïve bound because one can encode an arbitrary k × k binary matrix
using subset distances among 2k vertices in a weighted planar graph [34, 4]. Since we cannot
compress an arbitrary binary k × k matrix into less than k2 bits, we again have an Ω(k2)
lower bound.

What about unweighted planar graphs? Various distance-related problems in unweighted
graphs enjoy algorithms and techniques [28, 49, 12, 57, 63, 64, 61, 22, 65, 29] which outperform
their weighted counterparts. Indeed, for the metric compression problem in unweighted
planar graphs, Abboud, Gawrychowski, Mozes, and Weimann [4] have very recently shown
that we can in fact beat the O(k2) bound. They showed that the distances between any k
terminals can be encoded using Õ(min(k2,

√
k · n)) bits4. The encoding of Abboud et al. is

optimal up to logarithmic factors. However, it is not an emulator! Goranci, Henzinger, and
Peng [37] raised the question of whether such encoding can be achieved by an emulator. We
answer this question in the affirmative.

Our results. We show that the encoding of Abboud et al. can be turned into an emulator,
with no asymptotic overhead. Namely, we prove that any unweighted planar graph has a
near-optimal size distance emulator.

4 The Õ(·) notation hides polylogarithmic factors in n.

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:3

I Theorem 1. Let G be an n-vertex undirected unweighted planar graph, and let T be the
set of k terminals. A directed weighted graph H of size O(min(k2,

√
k · n log3 n)) can be

constructed in O(n log4 n) time as a distance emulator of G with respect to T ; all edge weights
of H are non-negative integers bounded by n.

Our theorem provides a practical framework for solving distance-related problems on
planar graphs: Replace the input graph G (or proper subgraphs of the right choice) with the
corresponding distance emulator H, and invoke whatever algorithm available on H rather
than on G. One concrete example of this is the computation of all-pairs shortest paths among
a subset T of k vertices. The algorithm by Cabello [19] can compute these Θ(k2) distances in
Õ(n4/3 + n2/3k4/3) time. Mozes and Sommer [54] improved the running time to Õ(n2/3k4/3)
when k = Ω(n1/4). Our emulator immediately implies a further improvement of the running
time to Õ(n+ n1/2k3/2) using an extremely simple algorithm: Replace G by the emulator H
and run Dijkstra’s single-source shortest-paths algorithm on H from every vertex of T . This
improves on previous results by a polynomial factor for essentially the entire range of k.

I Corollary 2. Let G be an undirected unweighted planar graph, and let T be a subset of k
terminals in G. One can compute the shortest path distances between all pairs of vertices in
T in O(n log4 n+ n1/2k3/2 log3 n log logn) time.

Techniques. The main novel idea is a graphical encoding of unit-Monge matrices. Our
emulator is obtained by plugging this graphical encoding into the encoding scheme of Abboud
et al. [4]. Their encoding consists of two parts. First, they explicitly store a set of distances
between some pairs of vertices of G (not necessarily of T). It is trivial to turn this part into an
emulator by adding a single weighted edge between every such pair. Second, they implicitly
store all-pairs distances in a set containing pairs of the form (X,Y) where X is a prefix of
a cyclic walk around a single face and Y is a subset of vertices of a cyclic walk around a
(possibly different) single face. For each such pair (X,Y), the X-to-Y distances are efficiently
encoded using only O((|X| + |Y |) · logn) bits (rather than the naïve O(|X| · |Y | · logn)
bits). This encoding follows from the fact that the X × Y distance matrix M is a triangular
unit-Monge matrix.

A matrix is Monge if for any i, j we have that

M [i+ 1, j]−M [i, j] ≤ M [i+ 1, j + 1]−M [i, j + 1].

A Monge matrix is unit-Monge if for any i, j we also have that

M [i+ 1, j]−M [i, j] ∈ {−1, 0, 1}.

A (unit-)Monge matrix is triangular if the above conditions are only required to hold for
i 6= j. In other words, when all four entries M [i, j],M [i + 1, j],M [i, j + 1],M [i + 1, j + 1]
belong to the upper triangle of M or to the lower triangle of M .

The Monge property has been heavily utilized in numerous algorithms for distance
related problems in planar graphs [33, 20, 54, 43, 48, 17, 18, 52] in computational geometry
[46, 36, 6, 7, 5, 47], and in pattern matching [56, 27, 41, 59]. However, prior to the work
of Abboud et al. [4], the stronger unit-Monge property has only been exploited in pattern
matching [59, 58].

The encoding of the X × Y unit-Monge matrix M is immediate: For any i, the sequence
of differences M [i+ 1, j]−M [i, j] is nondecreasing and contains only values from {−1, 0, 1},
so they can be encoded by storing the positions of the first 0 and the first 1. Storing these

ESA 2018

16:4 Near-Optimal Distance Emulator for Planar Graphs

positions for every i takes O(|X| · logn) bits. To encode M , we additionally store M [0, j] for
every j using O(|Y | · logn) bits. This encoding, however, is clearly not an emulator. Our
main technical contribution is in showing that it can be turned into an emulator with no
asymptotic overhead. Namely, in Section 2 we prove the following lemma.

I Lemma 3. Given an n × n unit-Monge or triangular unit-Monge matrix M , one can
construct in O(n logn) time a directed edge-weighted graph (emulator) H with O(n logn)
vertices and edges such that the distance in H between vertex i and vertex j is exactly M [i, j].

In Section 3 we describe how to plug the emulator of Lemma 3 into the encoding scheme
of Abboud et al.[4]. In their paper, the size of the encoding was the only concern and the
construction time was not analyzed. In our case, however, the construction time is crucial
for the application in Corollary 2. We achieve an O(n log4 n) time construction by making a
small modification to their encoding, based on the technique of heavy path decomposition.

Another difference is that in their construction once the encoding is computed, single-
source shortest-paths can be computed on the encoding itself using an algorithm by Fakchar-
oenphol and Rao [33]. More precisely (see [4, Section 5]), using a compressed representation
of unit-Monge matrices, the total size of their encoding is s = O(

√
k · n log2 n) words, running

the Fakcharoenphol and Rao algorithm requires accessing O(s log2 s) elements of the unit-
Monge matrices, and accessing each such element from the compressed representation requires
O(logn/ log logn) time (via a range dominance query, see Section 2)5. Overall, using our
O(n log4 n) construction together with the above single-source shortest-paths computations
from each terminal would result in a time bound of O(n log4 n+ n1/2k3/2 log5 n/ log logn)
in Corollary 2. Our approach on the other hand, runs Dijkstra’s classical algorithm on the
emulator H, leading to a faster (by a (logn/ log logn)2 factor) time bound for Corollary 2.
More precisely, our emulator H is of size O(

√
k · n log3 n), the edge-weights in H are encoded

explicitly (i.e. there is no need for a range dominance query), and the edge-weights are
integers in [1 .. n] so Dijkstra’s algorithm can use an O(log logn) time heap (using such fast
heap is not possible for Fakcharoenphol and Rao’s algorithm). Running Dijkstra therefore
takes O(

√
k · n log3 n log logn) time leading to the bound in Corollary 2.

2 Distance Emulators for Unit-Monge Matrices

2.1 The bipartite case

We next describe an O(n logn) space and time construction of a distance emulator for square
n× n unit-Monge matrices. The construction can be trivially extended to rectangular n×m
unit-Monge matrices (in O(max(n,m) log(max(n,m))) time and space) by duplicating the
last row or column until the matrix becomes square.

We begin by establishing a relation between unit-Monge matrices and right substochastic
binary matrices. A binary matrix P is right substochastic if every row of P contains
at most one nonzero entry. The following lemma can be established similarly to Abboud
et al. [4, Lemma 6.1].6

5 The O(log n/ log log n) factor was overlooked in [4]. It can be obtained by representing the unit-Monge
matrix with a range dominance data structure, such as the one in [44].

6 In Abboud et al. [4, Section 6] a unit-Monge matrix is defined to be one where every two adjacent
elements differ by at most 1, whereas here we only assume this for elements that are adjacent vertically
(that is, in the same column and between adjacent rows).

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:5




1 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







5 3 3 3 3 2 1
4 3 3 4 4 3 2
3 3 3 4 5 4 3
2 2 2 3 4 4 4




2

2

2

3

3
3

3
2

Figure 1 Unit-Monge distance matrix M , its corresponding row substochastic matrix P , and the
emulator H for the matrix P . In this example the two vectors given by Lemma 4 are U = [−3−2−10]
and V = [2 2 2 3 4 4 4]. The leftmost vertices in H are row vertices r[x], and the rightmost vertices
in H are column vertices c[y]. All gray directed edges without labels have weight 0, and all black
directed edges without labels have weight 1. For instance, the distance from r[2] to c[1] is equal to
the number of 1s in P dominated by the (2, 1)-entry, which is 5.

I Lemma 4 (Abboud et al. [4, Lemma 6.1]). For any n×m unit-Monge matrix M there is a
right substochastic 2(n− 1)× (m− 1) binary matrix P such that for all x and y,

M [x, y] = U [x] + V [y] +
∑

i≥2x−1
j≥y

P [i, j]

where U is a vector of length n and V is a vector of length m.

Our goal is to construct a small emulator (in terms of number of vertices and edges) for
M . By Lemma 4, it suffices to construct a graph H satisfying

dH [r[x], c[y]] =
∑
i≥x
j≥y

P [i, j],

where x and y range over the rows and columns of P , r[x] is a vertex corresponding to row
x of P , c[y] is a vertex corresponding to column y of P , and the r[x]-to-c[y] distance in H
equals the number of 1s in P dominated by entry P [x, y] (a 2-dimensional range dominance
counting). We assume that P is given as input, which is represented as a vector specifying,
for each row i of P , the index of the (at most) single one entry in that row. We refer to such
a graph H as an emulator for the right substochastic matrix P . To convert an emulator for
P into an emulator for M , add a new vertex r0[x] for each 1 ≤ x < n, and connect it with an
edge of weight U [x] to r[2x− 1]. Similarly, for each 1 ≤ y < m, connect c[y] to a new vertex
c0[y] with an edge of weight V [y]. In addition, add a new vertex c0[m] and connect each r0[x]
to c0[m] by an edge of weight U [x] + V [m]; and add a new vertex r0[n] and connect r0[n] to
each c0[y] by an edge of weight U [n] + V [y]. By Lemma 4, the r0[x]-to-c0[y] distance equals
M [x, y]. We therefore focus for the remainder of this section on constructing an emulator for
the right substochastic matrix P .

Recursive construction. We now describe how to construct an emulator for an n×αn right
substochastic matrix P recursively for arbitrary constant α ≥ 0.

When P has only a single row, we create a row vertex r for the single row and a column
vertex c[y] for each column y. Connect r to c[y] with a directed edge of weight

∑
j≥yP [1, j].

ESA 2018

16:6 Near-Optimal Distance Emulator for Planar Graphs




1 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




3

3
3

3
2

H ′

H ′′

y ′1 y ′2 y ′3

y ′′1 y ′′2 y ′′3

r ′[1]

r ′[2]

r ′[3]

r ′′[1]

r ′′[2]

r ′′[3]

c[1]

c[2]

c[3]

c[4]

c[5]

c[6]

c′[1]

c′[2]

c′[3]

c′′[1]

c′′[2]

c′′[3]

Figure 2 The top-level construction of the emulator. As an example, the edge from c′[2] to c[2]
exists because y′→ = 2 when y = 2, and the weight on the edge is equal to

∑
i>3,j≥2 P [i, j] = 3.

Otherwise, assume P has more than one single row. Divide P into the top bn/2c × αn
submatrix P↑ and the bottom dn/2e × αn submatrix P↓. Since P↑ is right substochastic,
P↑ has at most bn/2c columns that are not entirely zero; similarly P↓ has at most dn/2e
non-zero columns. Let P ′ and P ′′ be the submatrices of P↑ and P↓ respectively, induced
by their non-zero columns as well as their last column (if it’s a zero vector); denote the
number of columns of P ′ and P ′′ as n′ and n′′, respectively. Observe that both P ′ and P ′′
are still right substochastic matrices. Let y′1, . . . , y′n′ be the indices in P↑ (and thus in P)
corresponding to the columns of P ′, and let y′′1 , . . . , y′′n′′ be the indices in P↓ corresponding
to the columns of P ′′. Observe that for any row x, the sum∑

i≥x
j≥y

P↑[i, j]

is the same for all y ∈ (y′`−1 .. y
′
`] for any fixed `.7 This is because all the columns of P↑ in

the range (y′`−1 .. y
′
` − 1] are all zero. A similar observation holds for the matrix P↓. For each

y, we denote by y′→ the (unique) smallest index y′` ∈ {y′1, . . . , y′n′} no smaller than y, and
denote by y′′→ the smallest index y′′` ∈ {y′′1 , . . . , y′′n′′} no smaller than y.

We recursively compute emulators H ′ and H ′′ for P ′ and P ′′ respectively. Denote the
row and column vertices of H ′ as r′[x] and c′[y] where x and y range over the rows and
columns of P ′, respectively; similarly denote the row and column vertices of H ′′ as r′′[x] and
c′′[y] respectively. Take the row vertices of H ′ and H ′′ as the row vertices of H, respecting
the indices of P . For each column y of P we add a column vertex c[y] to H; connect vertex
c′′[y′′→] of H ′′ to c[y] with an edge of weight zero; and connect vertex c′[y′→] of H ′ to c[y]
with an edge of weight∑

i>bn/2c
j≥y

P [i, j].

Thus, since for each pair of indices (x, y) of P one has

dH′ [r[x], c′[y]] =
∑

x≤i≤bn/2c
j≥y

P↑[i, j] and dH′′ [r[x], c′′[y]] =
∑
i≥x
j≥y

P↓[i, j],

7 For simplicity, one assumes y′0 = y′′0 = −∞.

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:7

we have that

dH [r[x], c[y]] =
∑
i≥x
j≥y

P [i, j]

as desired. This completes the description of the construction of the emulator for square
right substochastic matrices. Observe that the obtained emulator is a directed acyclic graph
(dag) with a single path from each row vertex to each column vertex.

Size analysis. We next analyze the size of the emulator. Row vertices are created only
at the base of the recursion and there are n of them in total. The number of edges and
non-row vertices N(n) satisfies the recurrence N(n) ≤ 2N(n/2) +O(αn), so there are overall
O(n logn) vertices and edges in the emulator when the number of columns is linear to the
number of rows n.

Time analysis. As for the construction time, the only operation in the recursive procedure
that does not clearly require constant time is the computation of the edge weights. However,
it is not hard to see that computing all the edge weights of the form

wy :=
∑

i>bn/2c
j≥y

P [i, j]

in a single recursive call can be done in linear time. This is because wy is precisely the weight
of the unique path in the emulator H ′′ from the first row vertex to the y’th column vertex.
We can therefore simply maintain (with no asymptotic overhead), for every recursively built
emulator, the distances from its first row vertex to all its column vertices.

Making weights non-negative. The weight of every edge in our emulator for right sub-
stochastic matrix P is non-negative, but the vectors U and V might contain negative entries;
as a result the obtained emulator for M might contain negative edges even though every
entry in M is non-negative. This can be fixed by a standard reweighting strategy using a
price function. For the sake of computing the price function φ(·), add a super-source s and
connect s to each row vertex r[x] of the emulator of M by an edge of weight zero. Compute
the single-source shortest path tree rooted at s; since our emulator for P is a dag, this can
be done in time linear in the size of the emulator. Take the shortest path distances d(s, ·) as
the price function φ(·), and let the reduced weight wφ(uv) of edge uv be w(uv) + φ(u)− φ(v).
Finally increase the weight of every incoming edge to c[y] by the amount φ(y). Now all
modified weights are non-negative, and all shortest path distances from r[x] to c[y] are
preserved because φ(r[x]) = 0 holds for all row vertices r[x].

2.2 The non-bipartite case
Recall that the matrices that capture pairwise distances among consecutive vertices on the
boundary of a single face in a planar graph are not (unit-)Monge. In Abboud et al. [4]
this is handled by decomposing such a matrix recursively into (unit-)Monge submatrices,
which incurs a logarithmic overhead. We show how to avoid this logarithmic overhead by
constructing emulators for triangular (unit-)Monge matrices. Let v1, v2, . . . , vn be vertices on
the boundary of a single face. LetM be an n×n matrix such thatM [i, j] is the distance from
vi to vj . For any quadruple (i, i′, j, j′) satisfying i < i′ < j < j′, the shortest vi-to-vj path

ESA 2018

16:8 Near-Optimal Distance Emulator for Planar Graphs

must intersect the shortest vi′ -to-vj′ path. Therefore, M [i, j] +M [i′, j′] ≥M [i, j′] +M [i′, j].
Unfortunately, this does not necessarily hold for an arbitrary quadruple. We can, however,
define two n× n unit-Monge matrices Ml and Mu, such that

Ml[i, j] = M [i, j] for all n ≥ i > j ≥ 1, and
Mu[i, j] = M [i, j] for all 1 ≤ i < j ≤ n.

The other elements of Ml and Mu can be (implicitly) filled in so that both matrices are
unit-Monge. We would like to use an emulator for Ml and an emulator for Mu, but we need
to eliminate paths from ri to cj for i < j in Ml, and for i > j in Mu. To this end we modify
the construction of the emulator. For ease of presentation, we describe the construction for
an (n/2)× n right substochastic matrix P in which we want the distance from ci to rj to be
infinite for i > j. It is easy to modify the construction to work for (n/2)× αn matrices, for
2n× αn matrices, or for the case where the infinite distances are for i < j. The elements
of P are classified into two types: an element P [i, j] of P is artificial if i > j and original
otherwise (that is, the i’th row of P begins with a prefix of i− 1 artificial elements followed
by a suffix of original elements). In the following recursive algorithm, the type of elements is
always defined with respect to the full input matrix P (at the top level of the recursion).

We divide the (n/2)× n matrix P into two (n/4)× n matrices P↑ and P↓. Both P↑ and
P↓ have possibly empty prefix of columns containing just artificial elements (category I),
then an infix of columns containing both original and artificial elements (category II), and
finally a suffix of columns containing just original elements (category III). Let P ′ be the
submatrix of P↑ induced by all the columns of category II and by the columns of category
III that are not entirely zero. Define submatrix P ′′ of P↓ similarly. Note that, by definition
of artificial elements (with respect to the original top-level matrix), the number of columns
of category II is bounded by the number of rows in P↑ and P↓. Also, by definition of right
substochastic matrix, the number of columns of category III that are not entirely zero is also
bounded by the number of rows of P↑ and P↓. Hence, both P ′ and P ′′ are (n/4) × (n/2)
matrices for which we can recursively compute emulators H ′ and H ′′, respectively.

We construct the emulator H of P from the emulators H ′ and H ′′ as follows. For each
column y of P we add a vertex c[y] to H. If column y in P↑ consists of just artificial elements
(category I), we do nothing. If column y in P↑ is of category II, then column y is also present
in P ′, so it has a corresponding column vertex c′[y] in H ′. Connect c′[y] to c[y]. If column y
is of category III, connect vertex c′[y′→] of H ′ to c[y] with an edge of weight∑

i>bn/4c
j≥y

P [i, j].

Treat all the columns in P↓ similarly, except when column y is of category III, connect vertex
c′′[y′′→] of H ′′ to c[y] with an edge of weight zero. (For the definition of y′→ and y′′→ see the
proof of the bipartite case.) An easy inductive proof shows that in this construction ri is
connected to cj if and only if i < j.

The size of the emulator again satisfies the recurrence N(n) ≤ 2N(n/2) + O(n), and
therefore is of O(n logn) overall. This concludes the proof of Lemma 3.

3 Distance Emulators for Planar Graphs

In this section we explain how to incorporate the unit-Monge emulators of Lemma 3 into the
construction of planar graph emulators. The construction follows closely to the encoding
scheme of Abboud et al. [4]. The crucial difference is that their unit-Monge matrices

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:9

are represented by a compact non-graphical encoding, which we replace by the distance
emulator of Lemma 3. There are additional differences that stem from the fact that Abboud
et al. concentrated on the size of the encoding, and did not consider the construction
time. To achieve efficient construction time we have to modify the construction slightly.
These modifications are not directly related to the unit-Monge distance emulators. We will
describe the construction algorithm without going into details, which were treated in Abboud
et al. [4]. Instead, we attempt to give some intuition and describe the main components of
the construction and their properties. In the full version of this paper we give a self-contained
detailed description.

Compact representations of distances in planar graphs have been achieved in many
previous works by decomposing the graph using small cycle separators and exploiting the
Monge property (not the unit-Monge property) to compactly store the distances among the
vertices of the separators. The main obstacle in exploiting the unit-Monge property using
this approach is that small cycle separators do not necessarily exist in planar graphs with
face of unbounded size. In weighted graphs this difficulty is overcome by triangulating the
graph with edges with sufficiently large weights that do not affect distances. In unweighted
graphs, however, this does not work.

Slices. To overcome the above difficulty, Abboud et al. showed that any unweighted planar
graph contains a family of nested subgraphs (called components) with some desirable
properties. This nested family can be represented by a tree K, called the component tree,
in which the ancestry relation corresponds to enclosure in G. Each component K in K is
a subgraph of G that is enclosed by a simple cycle ∂K, called the boundary cycle of K.
The root component is the entire graph G, and its boundary cycle is the infinite face of G.
A slice K◦ is defined as the subgraph of G induced by all faces of G that are enclosed by
component K, and not enclosed by any descendant of K in K. The boundary cycle ∂K is
called the external hole or the boundary of K◦. The boundary cycles of the children of
K in K are called the internal holes of K◦. Note that a slice may have many internal holes.
Abboud et al. showed that, for any choice of w ∈ [n], there exists a component tree K such
that the total number of vertices in the boundaries of all the slices is O(n/w) [4, Lemma 3.1].
We present this proof in the full version of this paper.

Regions. Constructing distance emulator for each slice separately is not good enough
naïvely, as there could potentially be Ω(n/w) holes in a slice, and we cannot afford to store
distances between each pair of holes, even if we use the unit-Monge property. To overcome
this, each slice K◦ is further decomposed recursively into smaller subgraphs called regions.
A Jordan cycle separator is a closed curve in the plane that intersects the embedding only
at O(w) vertices. A slice K◦ is recursively decomposed in a process described by a binary
decomposition tree RK ; each node R of the tree RK is a region of K◦, with the root
being the entire slice K◦. There is a unique Jordan cycle separator CR corresponding to each
internal node R of RK . We abuse the terminology by referring to an internal hole of slice
K◦ lying completely inside region R as a hole of R. We say that a Jordan curve CR crosses
a hole H of R if CR intersects both inside and outside of ∂H. All Jordan cycle separators
discussed here are mutually non-crossing (but may share subcurves) and each crosses a hole
at most twice.

We next describe how the separators CR are chosen. Let K be a component, and let K ′
be the child component of K in K with the largest number of vertices. We designate the

ESA 2018

16:10 Near-Optimal Distance Emulator for Planar Graphs

hole ∂K ′ of the slice K◦ as the heavy hole of K◦.8 For any region R of K◦, let R• denote
the union of R and all the subgraphs of G enclosed by the internal holes of R except for the
heavy hole of K◦ (in other words, R• is the region R with all its holes except the heavy hole
“filled in”). For example, given a slice K◦, one has (K◦)• = K \ int(∂H∗), where int(∂H∗) is
the interior of the heavy hole H∗ of K◦ (if any). Abboud et al. [4, Lemma 3.4] proved that
for any region R one of the following must hold (and can be applied in time linear in the size
of R):

One can find a small Jordan cycle separator CR that crosses no holes of R and is balanced
with respect to the number of terminals in R•. That is, CR encloses a constant fraction
of the weight with respect to a weight function assigning each terminal in R unit weight
and each face corresponding to a non-heavy hole of R weight equal to the number of
terminals enclosed (in R•) by that hole. Such a separator is called a good separator.
There exists a hole H such that one can recursively separate R with small Jordan cycle
separators, each of which crosses H exactly twice, crosses no other hole, and is balanced
with respect to the number of vertices of ∂H in the region R. It is further guaranteed that
each resulting region R′ along this recursion satisfies that (R′)• contains at most half
the terminals in R•. The hole H is called a disposable hole, and the recursive process
is called the hole elimination process. The hole elimination process terminates if a
resulting region R′ either contains a constant number of vertices of the disposable hole
∂H, or if (R′)• contains no terminals. Thus, the hole elimination process is represented
by an internal subtree of RK of height O(logn).

We begin with the region consisting of the entire slice K◦. If a good separator is found,
we use it to separate a region R into two subregions, each containing at most a constant
fraction of the terminals in R•. If no good separator is found then we use the hole elimination
process on a disposable hole H. We stop the decomposition as soon as a region contains
at most one hole (other than the heavy hole) or at most one terminal. Thus, the overall
height of RK is O(log k · logn). We mentioned that it is guaranteed that each Jordan cycle
separator used crosses a hole at most twice. This implies that, within each region R, the
vertices of each hole ∂H of K◦ that belong to R can be decomposed into O(log k · logn)
intervals called ∂H-intervals; each Jordan cycle separator increases the number of such
intervals in each subregion by at most one. We refer to those intervals that belong to the
boundary cycle ∂K of K◦ or to the heavy hole ∂H∗ of K◦ as boundary intervals.

3.1 The construction
We are now ready to describe the construction of the distance emulator. We will build the
distance emulator of G from the leaves of the component tree K to the root (which is the
whole graph G). For each component K in K, we will associate an emulator that preserves
the following distances.

terminal-to-terminal distances in K between any two terminals in K.
terminal-to-boundary distances in K between any terminal in K and vertices of boundary
∂K.

We emphasize that the distances being preserved are those in K, not K◦. The distance
emulator for G can be recovered from the emulator associates with the root of the component
tree K.

8 This is the main difference compared with the encoding scheme of Abboud et al. [4]. We will see the
benefit of this technicality in Section 3.3.

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:11

We now describe the construction of the emulator associated with component K, assuming
all the emulators for the children of K in K have been constructed. The emulator of K is
constructed by adding the following edges and unit-Monge emulators from Lemma 3 to the
emulators obtained from the children of K.
1. Add unit-Monge emulators representing the distances in K◦ between all pairs of vertices

on the boundary ∂K of K or on the heavy hole ∂H∗ of K.
2. For each region R in the decomposition tree RK of the slice K◦, add the following edges

and the unit-Monge emulators according to the type of R.
(A) If R is an internal node of RK with separator CR (either good or hole-eliminating):

i. Add an edge between each terminal in R• and each vertex on the separator CR.
The weight of each edge is the distance in R• between the two vertices.

ii. For each of the two subregions R1 and R2 of R, add a unit-Monge emulator
representing the distance in R•i between the separator CR and each boundary
interval of Ri.

iii. If R corresponds to a cycle separator CR eliminating a disposable hole ∂H:
(a) If R is the root of the subtree of RK representing the hole-elimination

process of a hole H, add a unit-Monge emulator representing the distances
between ∂H and each boundary interval of R. The distances are in the
subgraph obtained from R• by removing the subgraph strictly enclosed by
∂H.

(b) For each of the two subregions R1 and R2 of R, add a unit-Monge emulator
representing the distance in R•i between the separator CR and each ∂H-
interval of Ri.

(B) If R is a leaf of RK and all terminals in R• are enclosed by a single non-heavy hole
∂H:
i. Add a unit-Monge emulator representing the distances between ∂H and each
boundary interval of R. The distances are in the subgraph obtained from R• by
removing the subgraph strictly enclosed by ∂H.

(C) If R is a leaf of RK that contains exactly one terminal t:
i. Add an edge between the only terminal t and each vertex on each boundary
interval of R. The weight of each edge is the distance in R• between the two
vertices.

The proof of correctness is essentially the same as that in Abboud et al. [4, Lemma 3.6].

3.2 Space analysis
The O(

√
k · n log3 n) space analysis is essentially the same as in Abboud et al. [4]. The main

difference in the algorithm is the introduction of the heavy hole as part of the boundary of
a slice. This will allow an efficient construction time and does not affect the construction
space because it increases the total size of the boundary by a constant factor.

Since a boundary cycle appears at most twice as a boundary of a slice (once as the
external boundary and once as the heavy hole), the total size for all unit-Monge emulators
for boundary-to-boundary distance (1) is O((n/w) logn).

We next bound the total space for terminal-to-separator distances (type 2(A)i) over all
slices. Whenever a terminal stores its distance to a separator, the total number of terminals
in its region R• decreases by a constant factor within O(logn) levels of the decomposition tree
(either immediately if the separator is a good separator, or within O(logn) levels of the hole
elimination process), so this can happen O(log2 n) times per terminal. Since each separator
has size O(w), the total space for representing distances of type 2(A)i is O(kw log2 n).

ESA 2018

16:12 Near-Optimal Distance Emulator for Planar Graphs

The space required to store a single unit-Monge distance emulator representing distances
between a separator CR and a boundary interval b (type 2(A)ii) is O(|CR|+ |b| log |b|) (The
rows of such an emulator correspond to the vertices of b, and the columns to vertices of CR.
Each row in the corresponding right sub-stochastic matrix has at most a single non-zero
entry). We note the following facts: (i) The size of any separator CR is O(w). (ii) The
depth of the recursion within each slice is O(log2 n). (iii) There are at most k regions at
each level of the recursion. (iv) The total number of boundary intervals in all regions at a
specific recursive level is within a constant factor from the number of regions at that level,
i.e., O(k). Thus, the total size of all boundary intervals at a fixed level of the recursion is
at most O(k) plus the size of the boundary of the slice (boundary intervals are internally
disjoint, and there are O(k) intervals in each region). (v) The total boundary size of all
slices combined is O(n/w). By the above facts, the total space for type 2(A)ii emulators is
O((kw + (k + n/w) logn) log2 n) = O((kw + n/w) log3 n).

Hole-to-boundary distances (types 2(A)iiia and 2(B)i) are stored for at most one hole in
each region along the recursion, and require O(|∂H|+|b| log |b|) space. By the same arguments
as above, and since the total size of hole boundaries ∂H is bounded by the total size of slice
boundaries, the total space for types 2(A)iiia and 2(B)i emulators is O((k + n/w) log3 n).

The space for separator-to-hole emulators (type 2(A)iiib) is bounded by the separator-to-
boundary distances (type 2(A)ii).

To bound the number of terminal-to-boundary edges (type 2(C)i) note that each terminal
stores distances to boundary intervals that are internally disjoint for distinct terminals. Since
the number of boundary terminals in a region is O(logn), the total space for type 2(C)i
distances is O(k logn+ n/w).

The overall space required is thus O((kw + n/w) log3 n); setting w =
√
k · n gives the

bound O(
√
k · n log3 n).

3.3 Time analysis
Recall that Lemma 3 assumes that the input is an n× n unit-Monge matrix represented in
O(n logn) bits as two arrays U and V , as well as an array P , specifying, for each row i of
the right substochastic 2(n− 1)× (n− 1) matrix P , the index of the (at most) single one
entry in that row (see Lemma 4). Lemma 3 will be invoked on various x × x unit-Monge
matrices that represent distances among a set of x vertices on the boundary of a single face
of a planar graph G with n vertices (or sometimes, on two sets of vertices on two distinct
faces).

I Lemma 5. Let G be a planar graph with n nodes. Let f be a face in G. One can compute
the desired representation of the unit-Monge matrix M representing distances among the
vertices of f in O(n) time.

Proof. We tweak the linear-time multiple source shortest paths (MSSP) algorithm of Eisentat
and Klein [29]. Along its execution, the MSSP algorithm maintains the shortest path trees
rooted at each vertex of a single distinguished face f , one after the other. This is done by
transforming the shortest path tree rooted at some vertex vi to the shortest path tree rooted
at the next vertex vi+1 in cyclic order along the distinguished face f . Let di(u) denote the
distance from the current root vi to v. The slack of an arc uw with respect to root vi is
defined as slacki(uw) := c(uw)+di(u)−di(w). Thus, for all arcs in the shortest path tree the
slack is zero, and for all arcs not in the shortest path tree the slack is non-negative. Eisenstat
and Klein show that throughout the entire execution of the algorithm there are O(n) changes

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:13

to the slacks of edges. Their algorithm explicitly maintains and updates the slacks of all
edges as the root moves along the distinguished face. By definition of the matrix P ,

P [i, j] = M [i+ 1, j + 1] +M [i, j]−M [i+ 1, j]−M [i, j + 1].

Consider an edge vjvj+1 along the distinguished face. Its slack with respect to root vi is
1 +M [i, j]−M [i, j + 1]. Its slack with respect to root vi+1 is 1 +M [i+ 1, j]−M [i+ 1, j + 1].
Therefore, P [i, j] = slacki(vjvj+1)− slacki+1(vjvj+1). It follows that one can keep track of
the nonzero entries of P by keeping track of the edges of the distinguished face whose slack
changes. The entries of the arrays U and V can be obtained in total O(n) time since they
only depend on the distances from a single vertex of f . J

We can now analyze the construction time. The boundary-to-boundary distances (type 1)
in a single slice are computed by a constant number of invocations of MSSP (Lemma 5) on
K•. We then compute the emulator for each unit-Monge matrix on x vertices in O(x log x)
time using Lemma 3. For the total MSSP time, we need to bound the total size of the
regions R• on which we invoke Lemma 5. This is where we use the fact that the heavy hole
of a slice K◦ contains at least half the vertices of K. Since K• does not include the heavy
hole of K, the standard heavy path argument implies that the number of slices in which a
vertex v participates in invocations of the MSSP algorithm is at most 1 plus O(logn) (the
number of non-heavy holes v belongs to). Thus, each vertex v participates in invocations
of MSSP for O(logn) slices. In each invocation of MSSP each vertex v is charged O(logn)
time, so the total time for all MSSP invocations is O(n log2 n). To bound the total time
of the invocations of Lemma 3, note that each boundary cycle appears at most twice as a
boundary of a slice (once as the external boundary and once as the heavy hole). Hence, the
total time for all invocations of Lemma 3 is O((n/w) logn). Overall we get that the total
time to compute all the emulators of type 1 is O(n log2 n+ (n/w) logn) = O(n log2 n).

The terminal-to-separator distances (type 2(A)i) are computed by running MSSP twice,
once for the interior of the separator CR in R• and once for the exterior of CR in R•. This
takes O(|R•| log |R•|) time. Then, we can report the distance, within each of these two
subgraphs of R•, from each vertex of CR to any other vertex in O(logn) time. Next, for
each terminal t in R•, we compute the distance from t to all w vertices of CR by running
FR-Dijkstra [33] on the graph consisting of the edges between t and the vertices of CR as
well as the two complete graphs representing the distances among the vertices of CR in the
interior and exterior. This takes O(w log2 w logn) time. The O(w log2 w) term is the running
time of FR-Dijkstra and the additional O(logn) factor is because each distance accesses by
FR-Dijkstra is retrieved on-the-fly from the MSSP data structure.

We analyze separately the total cost of all the MSSP computations and the total cost of
computing the edge weights. For the latter, we have argued in the analysis of the emulator’s
size that each terminal participates in the computation of edges of type 2(A)i in O(log2 n)
regions along the entire construction. Therefore, the total time to compute all such edges is
O(kw log2 w log3 n). For the total MSSP time, we need to bound the total size of the regions
R• on which we run MSSP. This is done in a similar manner to the bound on the time for
MSSP invocations for type 1 above, using the standard heavy path argument. We argued that
the number of slices in which a vertex v participates in invocations of the MSSP algorithm is
at most 1 plus O(logn) (the number of non-heavy holes v belongs to). Thus, each vertex v
participates in invocations of MSSP for O(logn) slices. Since the depth of the decomposition
tree of a slice is O(log2 n), each vertex participates in at most O(log3 n) invocations of MSSP
in the computation of edges of type 2(A)i. Each vertex is charged O(logn) time in each
invocation of MSSP it participates in, so the total time for all invocations of MSSP in the
process of computing edges of type 2(A)i is O(n log4 n).

ESA 2018

16:14 Near-Optimal Distance Emulator for Planar Graphs

To bound the time required to compute the emulators of type 2(A)ii (separator-to-
boundary distances), note that the appropriate unit-Monge matrices can be computed by
MSSP invocations within the same time bounds analyzed for the MSSP invocations for
terminal-to-separator edges above. Hence, we only need to account for the additional time
spent on constructing the emulators by invocations of Lemma 3, which is linear in the total
size of these emulators, which we have already shown above to be O((kw + n/w) log3 n).

The analysis for the time required for the hole-to-boundary emulators (types 2(A)iiia and
2(B)i) uses the same arguments as the analysis for type 2(A)ii. Again, the MSSP time is
O(n log4 n), and the time for invocations of Lemma 3 is linear in the size of these emulators,
which is O((k + n/w) log3 n).

The time to compute the separator-to-hole emulators (type 2(A)iiib) is bounded by the
time to compute the separator-to-boundary emulators (type 2(A)ii).

To compute the terminal-to-boundary edges we again need to invoke MSSP once on R•
for each leaf region R, and then query the distance in O(logn) time per distance. The time
for MSSP is dominated by the MSSP time accounted for in type 2(A)ii emulators, and since
we have shown that the total number of such edges is O(k+n/w), the total time to compute
them is O((k + n/w) logn).

The overall construction time is therefore dominated by the O(n log4 n) term. Combined
with the space analysis of Section 3.2, we establish Theorem 1.

References
1 Amir Abboud and Greg Bodwin. Error amplification for pairwise spanner lower bounds.

In 27th SODA, pages 841–854, 2016.
2 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. J. ACM,

64(4):28:1–28:20, 2017.
3 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear

additive spanners. In 28th SODA, pages 568–576, 2017.
4 Amir Abboud, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Near-optimal com-

pression for the planar graph metric. In 29th SODA, pages 530–549, 2018.
5 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.

Geometric applications of a matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987.
6 Alok Aggarwal and James K. Park. Notes on searching in multidimensional monotone

arrays (preliminary version). In 29th FOCS, pages 497–512, 1988.
7 Alok Aggarwal and Subhash Suri. Fast algorithms for computing the largest empty rect-

angle. In 3rd SoCG, pages 278–290, 1987.
8 Noga Alon. Testing subgraphs in large graphs. Random Struct. Algorithms, 21(3-4):359–

370, 2002.
9 Stephen Alstrup, Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Ely Porat. Sublinear

Distance Labeling. In 24th ESA, pages 5:1–5:15, 2016.
10 Stephen Alstrup, Cyril Gavoille, Esben Bistrup Halvorsen, and Holger Petersen. Simpler,

faster and shorter labels for distances in graphs. In 27th SODA, pages 338–350, 2016.
11 Amitabh Basu and Anupam Gupta. Steiner point removal in graph metrics. Unpublished

Manuscript, available from http://www.math.ucdavis.edu/˜abasu/papers/SPR.pdf, 2008.
12 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New constructions

of (α, β)-spanners and purely additive spanners. In 16th SODA, pages 672–681, 2005.
13 Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In 21st

CPM, pages 138–150, 2010.
14 Greg Bodwin. Linear size distance preservers. In 28th SODA, pages 600–615, 2017.

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:15

15 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. In 27th SODA, pages 855–872, 2016.

16 Béla Bollobás, Don Coppersmith, and Michael Elkin. Sparse distance preservers and ad-
ditive spanners. SIAM Journal on Discrete Mathematics, 19(4):1029–1055, 2005.

17 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. In 52nd FOCS, pages 170–179, 2011.

18 Glencora Borradaile, Piotr Sankowski, and Christian Wulff-Nilsen. Min st-cut oracle for
planar graphs with near-linear preprocessing time. In 51st FOCS, pages 601–610, 2010.

19 Sergio Cabello. Many distances in planar graphs. Algorithmica, 62(1-2):361–381, 2012.
20 Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances

in planar graphs. In 28th SODA, pages 2143–2152, 2017.
21 Hubert T.-H. Chan, Donglin Xia, Goran Konjevod, and Andréa W. Richa. A tight lower

bound for the steiner point removal problem on trees. In 9th APPROX, pages 70–81, 2006.
22 Hsien-Chih Chang and Hsueh-I Lu. Computing the girth of a planar graph in linear time.

SIAM Journal on Computing, 42(3):1077–1094, 2013.
23 Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. Graph minors for preserving

terminal distances approximately - lower and upper bounds. In 43rd ICALP, pages 131:1–
131:14, 2016.

24 Yi-Ting Chiang, Ching-Chi Lin, and Hsueh-I Lu. Orderly spanning trees with applications
to graph encoding and graph drawing. In Proc. 12th Symp. Discrete Algorithms, pages
506–515, 2001.

25 Eden Chlamtác, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating
spanners and directed steiner forest: Upper and lower bounds. In 28th SODA, pages 534–
553, 2017.

26 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM Journal on Discrete Mathematics, 20(2):463–501, 2006.

27 Maxime Crochemore, Gad. M. Landau, and Michal Ziv-Ukelson. A subquadratic se-
quence alignment algorithm for unrestricted scoring matrices. SIAM Journal on Computing,
32:1654–1673, 2003.

28 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal
on Computing, 29(5):1740–1759, 2000.

29 David Eisenstat and Philip N Klein. Linear-time algorithms for max flow and multiple-
source shortest paths in unit-weight planar graphs. In 45th STOC, pages 735–744, 2013.

30 Michael Elkin, Yuval Emek, Daniel A Spielman, and Shang-Hua Teng. Lower-stretch
spanning trees. SIAM Journal on Computing, 38(2):608–628, 2008.

31 Michael Elkin and Seth Pettie. A linear-size logarithmic stretch path-reporting distance
oracle for general graphs. ACM Trans. Algorithms, 12(4):50:1–50:31, 2016.

32 Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Racke, Inbal Talgam-
Cohen, and Kunal Talwar. Vertex sparsifiers: New results from old techniques. SIAM
Journal on Computing, 43(4):1239–1262, 2014.

33 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. Journal of Computer and System Sciences, 72(5):868–889,
2006.

34 Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs.
Journal of Algorithms, 53(1):85–112, 2004.

35 Paweł Gawrychowski, Adrian Kosowski, and Przemysław Uznański. Sublinear-space dis-
tance labeling using hubs. In 30th DISC, pages 230–242, 2016.

36 Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Submatrix maximum queries in
Monge matrices are equivalent to predecessor search. In 42nd ICALP, pages 580–592, 2015.

ESA 2018

16:16 Near-Optimal Distance Emulator for Planar Graphs

37 Gramoz Goranci, Monika Henzinger, and Pan Peng. Improved guarantees for vertex sparsi-
fication in planar graphs. In 25th ESA, pages 44:1–44:14, 2017.

38 Gramoz Goranci and Harald Räcke. Vertex sparsification in trees. In 14th WAOA, pages
103–115, 2016.

39 Ronald L Graham and Henry O Pollak. On embedding graphs in squashed cubes. In Graph
theory and applications, volume 303, pages 99–110. Springer, 1972.

40 Anupam Gupta. Steiner points in tree metrics don’t (really) help. In 12th SODA, pages
220–227, 2001.

41 Danny Hermelin, Gad M. Landau, Shir Landau, and Oren Weimann. A unified algorithm
for accelerating edit-distance via text-compression. Algorithmica, 65:339–353, 2013.

42 Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators, and
diameter-reducing shortcuts. In 16th SWAT, pages 26:1–26:12, 2018.

43 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Im-
proved algorithms for min cut and max flow in undirected planar graphs. In 43rd STOC,
pages 313–322, 2011.

44 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast al-
gorithms for multidimensional dominance reporting and counting. In 15th ISAAC, pages
558–568, 2004.

45 Sampath Kannan, Moni Naor, and Steven Rudich. Implicat representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603, 1992.

46 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum
queries in Monge matrices and Monge partial matrices, and their applications. In 23rd
SODA, pages 338–355, 2012.

47 M. M. Klawe and D J. Kleitman. An almost linear time algorithm for generalized matrix
searching. SIAM Journal Discrete Math., 3(1):81–97, 1990.

48 Philip Klein, Shay Mozes, and Oren Weimann. Shortest paths in directed planar graphs
with negative lengths: a linear-space O(n lg2 n)-time algorithm. ACM Transactions on
Algorithms, 6(2):2–13, 2010.

49 Lukasz Kowalik and Maciej Kurowski. Short path queries in planar graphs in constant
time. In 35th STOC, pages 143–148, 2003.

50 Robert Krauthgamer, Huy L Nguyen, and Tamar Zondiner. Preserving terminal distances
using minors. SIAM Journal on Discrete Mathematics, 28(1):127–141, 2014.

51 Robert Krauthgamer and Inbal Rika. Refined vertex sparsifiers of planar graphs. Preprint,
July 2017.

52 Jakub Lacki, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Single source
- all sinks max flows in planar digraphs. In 53rd FOCS, pages 599–608, 2012.

53 J. W. Moon. On minimal n-universal graphs. Glasgow Mathematical Journal, 7(1):32–33,
1965.

54 Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In 23rd
SODA, pages 209–222, 2012.

55 J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. In Proc. 38th Annual Symposium on Foundations of Computer
Science, pages 118–126, 1997.

56 Jeanette P. Schmidt. All highest scoring paths in weighted grid graphs and their application
to finding all approximate repeats in strings. SIAM Journal on Computing, 27(4):972–992,
1998.

57 Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance errors. In
17th SODA, pages 802–809, 2006.

58 Alexander Tiskin. Semi-local string comparison: algorithmic techniques and applications.
Arxiv 0707.3619, 2007.

H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann 16:17

59 Alexander Tiskin. Fast distance multiplication of unit-Monge matrices. In 21st SODA,
pages 1287–1296, 2010.

60 György Turán. On the succinct representation of graphs. Discrete Applied Mathematics,
8(3):289–294, 1984.

61 Oren Weimann and Raphael Yuster. Computing the girth of a planar graph in O(n logn)
time. SIAM J. Discrete Math., 24(2):609–616, 2010.

62 Peter M Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135–139,
1983.

63 David P Woodruff. Lower bounds for additive spanners, emulators, and more. In 47th
FOCS, pages 389–398, 2006.

64 Christian Wulff-Nilsen. Wiener index and diameter of a planar graph in subquadratic time.
In 25th EuroCG, pages 25–28, 2009.

65 Christian Wulff-Nilsen. Constant time distance queries in planar unweighted graphs with
subquadratic preprocessing time. Computational Geometry, 46(7):831–838, 2013.

ESA 2018

Approximation Schemes for Geometric Coverage
Problems
Steven Chaplick
Lehrstuhl für Informatik I, Universität Würzburg, Germany
steven.chaplick@uni-wuerzburg.de

https://orcid.org/0000-0003-3501-4608

Minati De1

Department of Mathematics, Indian Institute of Technology Delhi, India
minati@maths.iitd.ac.in

https://orcid.org/0000-0002-1859-8800

Alexander Ravsky
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Science of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

Joachim Spoerhase2

Lehrstuhl für Informatik I, Universität Würzburg, Germany; and
Institute of Computer Science, University of Wrocław, Poland
joachim.spoerhase@uni-wuerzburg

https://orcid.org/0000-0002-2601-6452

Abstract
In their seminal work, Mustafa and Ray [30] showed that a wide class of geometric set cover
(SC) problems admit a PTAS via local search – this is one of the most general approaches
known for such problems. Their result applies if a naturally defined “exchange graph” for two
feasible solutions is planar and is based on subdividing this graph via a planar separator theorem
due to Frederickson [17]. Obtaining similar results for the related maximum coverage problem
(MC) seems non-trivial due to the hard cardinality constraint. In fact, while Badanidiyuru,
Kleinberg, and Lee [4] have shown (via a different analysis) that local search yields a PTAS for
two-dimensional real halfspaces, they only conjectured that the same holds true for dimension
three. Interestingly, at this point it was already known that local search provides a PTAS for the
corresponding set cover case and this followed directly from the approach of Mustafa and Ray.

In this work we provide a way to address the above-mentioned issue. First, we propose a color-
balanced version of the planar separator theorem. The resulting subdivision approximates locally
in each part the global distribution of the colors. Second, we show how this roughly balanced
subdivision can be employed in a more careful analysis to strictly obey the hard cardinality
constraint. More specifically, we obtain a PTAS for any “planarizable” instance of MC and thus
essentially for all cases where the corresponding SC instance can be tackled via the approach of
Mustafa and Ray. As a corollary, we confirm the conjecture of Badanidiyuru, Kleinberg, and
Lee [4] regarding real halfspaces in dimension three. We feel that our ideas could also be helpful
in other geometric settings involving a cardinality constraint.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases balanced separators, maximum coverage, local search, approximation
scheme, geometric approximation algorithms

1 Partially supported by DST-INSPIRE Faculty Grant (DST-IFA-14-ENG-75)
2 Partially supported by Polish National Science Centre grant 2015/18/E/ST6/00456

© Steven Chaplick, Minati De, Alexander Ravsky, and Joachim Spoerhase;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:steven.chaplick@uni-wuerzburg.de
https://orcid.org/0000-0003-3501-4608
mailto:minati@maths.iitd.ac.in
https://orcid.org/0000-0002-1859-8800
mailto:alexander.ravsky@uni-wuerzburg.de
mailto:joachim.spoerhase@uni-wuerzburg
 https://orcid.org/0000-0002-2601-6452
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Approximation Schemes for Geometric Coverage Problems

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.17

Related Version A full version is available at https://arxiv.org/abs/1607.06665.

1 Introduction

The Maximum Coverage (MC) problem is one of the classic combinatorial optimization
problems which is well studied due to its wealth of applications. Let U be a set of ground
elements, F ⊆ 2U be a family of subsets of U and k be a positive integer. The Maximum
Coverage (MC) problem asks for a k-subset F ′ of F such that the number |

⋃
F ′| of ground

elements covered by F ′ is maximized.
Many real life problems arising from banking [13], social networks, transportation net-

work [28], databases [22], information retrieval, sensor placement, security (and others) can
be framed as an instance of MC problem. For example, the following are easily seen as MC
problems: placing k sensors to maximize the number of covered customers, finding a set of k
documents satisfying the information needs of as many users as possible [4], and placing k
security personnel in a terrain to maximize the number of secured regions.

From the result of Cornuéjols [13], it is well known that the greedy algorithm is a 1− 1/e
approximation algorithm for the MC problem. Due to wide applicability of the problem,
whether one can achieve an approximation factor better than 1− 1/e was subject of research
for a long period of time. From the result of Feige [16], it is known that if there exists a
polynomial-time algorithm that approximates maximum coverage within a ratio of 1−1/e+ ε

for some ε > 0 then P = NP. Better results can, however, be obtained for special cases of MC.
For example, Ageev and Sviridenko [1] show in their seminal work that their pipage rounding
approach gives a factor 1− (1− 1/r)r for instances of MC where every element occurs in
at most r sets. For constant r this is a strict improvement on 1 − 1/e but this bound is
approached if r is unbounded. For example, pipage rounding gives a 3/4-approximation
algorithm for Maximum Vertex Cover (MVC), which asks for a k-subset of nodes of a
given graph that maximizes the number of edges incident on at least one of the selected
nodes. Petrank [31] showed that this special case of MC is APX-hard.

In this paper, we study the approximability of MC in geometric settings where elements
and sets are represented by geometric objects. Such problems have been considered before
and have applications, for example, in information retrieval [4] and in wireless networks [15].

MC is related to the Set Cover problem (SC). For a given set U of ground elements
and a family F ⊆ 2U of subsets of U , this problem asks for a minimum cardinality subset
of F which covers all the ground elements of U . This problem plays a central role in
combinatorial optimization and in particular in the study of approximation algorithms. The
best known approximation algorithm has a ratio of lnn, which is essentially the best possible
[16] under a plausible complexity-theoretic assumption. A lot of work has been devoted to
beating the logarithmic barrier in the context of geometric set cover problems [6, 33, 8, 29].
Mustafa and Ray [30] introduced a powerful tool which can be used to show that a local
search approach provides a PTAS for various geometric SC problems. Their result applies
if a naturally defined exchange graph (whose nodes are the sets in two feasible solutions)
is planar and is based on subdividing this graph via a planar separator theorem due to
Frederickson [17]. In the same paper [30], they applied this approach to provide a PTAS for
the SC problem when the family F consists of either a set of halfspaces in R3, or a set of disks
in R2. Concurrently with Mustafa and Ray [30], Chan and Har-Peled [9] also introduced the
exchange graph concept, but for the independent set problem. Subsequently, many results

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.17
https://arxiv.org/abs/1607.06665

S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:3

have been obtained using this technique for problems in geometric settings [10, 14, 19, 26].
Some of these works extend to cases where the exchange graph is not planar but admits a
small-size separator [3, 7, 20, 21].

Beyond the context of SC, local search has also turned out to be a very powerful tool for
other geometric problems but the analysis of such algorithms is usually non-trivial and highly
tailored to the specific setting. Examples of such problems are Euclidean TSP, Euclidean
Steiner tree, facility location, k-median [12]. In some recent breakthroughs, PTASs for the
k-means problem in finite Euclidean dimension (and more general cases) via local search
have been published [11, 18].

In this paper, we study the effectiveness of local search for geometric MC problems. In
the general case, b-swap local search is known to yield a tight approximation ratio of 1/2
[24]. However, for special cases such as geometric MC problems local search is a promising
candidate for beating the barrier 1−1/e. It seems, however, non-trivial to obtain such results
using the technique of Mustafa and Ray [30]. In their analysis, each part of the subdivided
planar exchange graph (see above) corresponds to a feasible candidate swap that replaces
some sets of the local optimum with some sets of the global optimum and it is ensured that
every element stays covered due to the construction of the exchange graph. It is moreover
argued that if the global optimum is sufficiently smaller than the local optimum then one of
the considered candidate swaps would actually reduce the size of the solution.

It is possible to construct the same exchange graphs also for the case of MC. However,
the hard cardinality constraint given by input parameter k poses an obstacle. In particular,
when considering a swap corresponding to a part of the subdivision, this swap might be
infeasible as it may contain (substantially) more sets from the global optimum than from
the local optimum. Another issue is that MC has a different objective function than SC.
Namely, the goal is to maximize the number of covered elements rather than minimizing the
number of used sets. Finally, while for SC all elements are covered by both solutions, in
MC we additionally have elements that are covered by none or only one of the two solutions
requiring a more detailed distinction of several types of elements.

In fact, subsequent to the work of Mustafa and Ray on SC [30], Badanidiyuru, Kleinberg,
and Lee [4] studied geometric MC. They obtained fixed-parameter approximation schemes
for MC instances for the very general case where the family F consists of objects with
bounded VC dimension, but the running times are exponential in the cardinality bound
k. They further provided APX-hardness for each of the following cases: set systems of
VC-dimension 2, halfspaces in R4, and axis-parallel rectangles in R2. Interestingly, while
they have shown that for MC instances where F consists of halfspaces in R2 local search can
be used to provide a PTAS, they only conjecture that local search provides a PTAS when
F consists of halfspaces in R3. This underlines the observation that it seems non-trivial to
apply the approach of Mustafa and Ray to geometric MC problems as at that point a PTAS
for halfspaces in R3 for SC was already known via the approach of Mustafa and Ray.

The difficulty of analyzing local search under the presence of a cardinality constraint is
also known in other settings. For example, one of the main technical contributions of the
recent breakthrough for the Euclidean k-means problem [11, 18] is that the authors are able
to handle the hard cardinality constraint by the concept of so-called isolated pairs [11]. Prior
to these works approximation schemes have only been known for bicriteria variants where
the cardinality constraint may be violated or where there is no constraint but – analogously
to SC – the cardinality contributes to the objective function [5].

ESA 2018

17:4 Approximation Schemes for Geometric Coverage Problems

1.1 Our Contribution
We show a way to cope with the above-mentioned issue with a cardinality constraint. We
are able to achieve a PTAS for many geometric MC problems using the b-swap local search
approach given in Algorithm 1. At a high level we follow the framework of Mustafa and
Ray defining a planar (or more generally f-separable as formalized below) exchange graph
and subdividing it into a number of small parts each of them corresponding to a candidate
swap. As each part may be (substantially) imbalanced in terms of the number of sets of
the global optimum and local optimum, respectively, a natural idea is to swap-in only a
sufficiently small subset of the globally optimal sets. This idea alone is, however, not sufficient.
Consider, for example, the case where each part contains either only sets from the local or
only sets from the global optimum making it impossible to retrieve any feasible swap from
considering the single parts. To overcome this difficulty, in Section 2, we prove in a first step
a color-balanced version (Theorem 7) of the planar division theorem (Theorem 4 [17]). In
this theorem, the input is a planar (or more generally f-separable) graph whose nodes are
two-colored arbitrarily. The distinctions of our division theorem from the prior work, are
that our division theorem guarantees that all parts have roughly the same size (rather than
simply an upper limit on their size) and that the two colors are represented in each part in
roughly the same ratio as in the whole graph. This balancing property allows us to address
the issue of the above-mentioned infeasible swaps. In a second step, described in Section 3,
we employ this roughly color-balanced subdivision to establish a set of perfectly balanced
candidate swaps. We prove by a careful analysis (which turns out more intricate than for the
SC case) that local search also yields a PTAS for the wide class f -separable MC problems (see
Theorem 2). As a direct consequence, we obtain PTASs for essentially all cases of geometric
MC problems (see (Theorem 3)) where the corresponding SC problem can be tackled via the
approach of Mustafa and Ray. For example, this confirms the conjecture of Badanidiyuru,
Kleinberg, and Lee [4] regarding halfspaces in R3. We also obtain PTASs for Maximum
Dominating Set and Maximum Vertex Cover on f -separable and minor-closed graph
classes (as formalized below) which, to the best of our knowledge, were not known before.
We feel that our approach has the potential for further applications in similar cardinality
constrained settings.

In the remainder of this section we formalize our main theorem (providing the needed
definitions) and then present a set of applications of this theorem.

Definitions and the main theorem. For a number n, [n] denotes the set {1, . . . , n}. For
a graph G, a subset S of V (G) is an α-balanced separator when its removal breaks G into
two collections of connected components such that each collection contains at most an α
fraction of V (G) where α ∈ [1

2 , 1) and α is a constant. The size of a separator S is simply the
number of vertices it contains. Let f be a non-decreasing (strictly) sublinear function, that
is, f(x) = O(x1−δ) for some δ > 0. A class of graphs that is closed under taking subgraphs
is said to be f-separable if there is an α ∈ [1

2 , 1) such that for any n > 2, an n-vertex
graph in the class has an α-balanced separator whose size is at most f(n). In what follows,
whenever we discuss an f -separable graph classes we implicitly assume that the function f is
non-decreasing and has the form f(x) = O(x1−δ) for some δ > 0 – this is what we mean by
strictly sublinear. Note that, by the Lipton-Tarjan separator theorem [27], planar graphs
are a subclass of the

√
n-separable graphs. More generally, Alon, Seymour, and Thomas [2]

have shown that every graph class characterized by a finite set of forbidden minors is also a
subclass of the (c ·

√
n)-separable graphs (here, the constant c depends on the size of the

largest forbidden minor). In particular, from the graph minors theorem [32], every non-trivial

S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:5

Algorithm 1: b-swap local search on an MC instance with ground set U , set family
S, and parameter k.
b-LocalSearch(U,S, k)
F ← initialize with a greedy solution
while ∃ F ′ ⊆ F , ∃F∗ ⊂ S, such that b = |F∗| = |F ′| and
|
⋃
F| < |

⋃
((F \ F ′) ∪ F∗)| do

perform the swap, i.e., F ← (F \ F ′) ∪ F∗

return F

minor-closed graph class is a subclass of the (c ·
√
n)-separable graphs (for some constant c).

With this notion in mind, we define the concept of f -separable MC instances, then state our
main theorem (the proof is given in Section 3).

I Definition 1. A class C of instances of MC is f-separable (or in particular planarizable)
if for any two disjoint feasible solutions F and F ′ of any instance in C there exists an
f -separable (planar) graph G with node set F ∪ F ′ with the following exchange property.
For each element u ∈ U that is covered both by F and F ′, there is an edge (S, S′) in G with
S ∈ F and S′ ∈ F ′ with u ∈ S ∩ S′.

I Theorem 2. For any non-decreasing strictly sublinear function f , every f -separable class
of MC instances (closed under removing elements and sets) admits a PTAS via Algorithm 1.

Applications. We now describe several problems which are special instances of the MC
problem. Then, in Theorem 3, we state several PTASs for each of these problems that
can be obtained from our analysis of local search. As this latter part is essentially a direct
consequence of Theorem 2, the details will be provided in the full version.

I Problem 1. Let H be a set of ground elements, S ⊆ 2H be a set of ranges and k be a
positive integer. A range S ∈ S is hit by a subset H ′ of H if S ∩H ′ 6= ∅. The Maximum
Hitting (MH) problem asks for a k-subset H ′ of H such that the number of ranges hit by
H ′ is maximized.

I Problem 2. Let G = (V,E) be a graph and k be a positive integer. A vertex v ∈ V

dominates itself and all its neighbors. The Maximum Dominating (MD) problem asks for
a k-subset V ′ of V such that the number of vertices dominated by V ′ is maximized.

I Problem 3. Let T be a 1.5D terrain – an x-monotone polygonal chain in R2 consisting of
a set of vertices {v1, v2, . . . , vm} sorted in increasing order of their x-coordinate, and vi and
vi+1 are connected by an edge for all i ∈ [m− 1]. For any two points x, y ∈ T , we say that y
guards x if each point in xy lies above or on the terrain. Given finite sets X,Y ⊆ T and a
positive integer k, the Maximum Terrain Guarding (MTG) problem asks for a k-subset
Y ′ of Y such that the number of points of X guarded by Y ′ is maximized.

Let r be an even, positive integer. A set of regions in R2 (each bounded by a closed
Jordan curve), is called r-admissible if for any two such regions q1, q2, the curves bounding
them cross s ≤ r times for some even s and q1 \ q2 and q2 \ q1 are connected regions. A set
of regions are called pseudo-disks if it is 2-admissible (e.g., a set of disks or squares).

The below consequences of Theorem 2 hold since the corresponding SC problem is known
to be planarizable or by constructing the exchange graph as a minor of the input graph.

ESA 2018

17:6 Approximation Schemes for Geometric Coverage Problems

I Theorem 3. Local search gives a PTAS for:

(V) the MVC problem on f -separable and subgraph-closed graph classes,
(T) the MTG problem.

and the following classes of MC problems:
(C1) the set of ground elements is a set of points in R3, and the family of subsets is induced

by a set of halfspaces in R3.
(C2) the set of ground elements is a set of points in R2, and the family of subsets is induced

by a set of convex pseudodisks (a set of convex objects where any two objects can have at
most two intersections in their boundary).

and the following MH problems:
(H1) the set of ground elements is a set of points in R2, and the set of ranges is induced by a

set of r-admissible regions (this includes pseudodisks, same-height axis-parallel rectangles,
circular disks, translates of convex objects).

(H2) the set of ground elements is a set of points in R3, and the set of ranges is induced by
a set of halfspaces in R3.

and MD problems in each of the following graph classes:
(D1) intersection graphs of homothetic copies of convex objects (which includes arbitrary

squares, regular k-gons, translated and scaled copies of a convex object).
(D2) non-trivial minor-closed graph classes.

2 Color-Balanced Divisions

In this section we provide the main tool (see Theorem 7) used to prove our main result (i.e.,
Theorem 2). We first describe a new subtle strengthening (see Lemma 5) of the standard
division theorem on f -separable graph classes (see Theorem 4). This builds on the concept
of (r, f(r))-divisions (in the sense of Henzinger et al. [23]) of graphs in an f -separable graph
class. We then extend this strengthened division lemma by suitably aggregating the pieces of
the partition to obtain a two-color balanced version (see Theorem 7). This result generalizes
to more than two colors. However, as our applications stem from the two-colored version, we
defer the generalization to the full version.

Frederickson [17] introduced the notion of an r-division of an n-vertex graph G, namely,
a cover of V (G) by Θ(nr) sets each of size O(r) where each set has O(

√
r) boundary vertices,

i.e., O(
√
r) vertices in common with the other sets. Frederickson showed that, for any r, every

planar graph G has an r-division and that one can be computed in O(n logn) time. This
result follows from a recursive application of the Lipton-Tarjan planar separator theorem [27].
This notion was further generalized by Henzinger et al. [23] to (r, f(r))-divisions‡ where f is
a function in o(r) and each set has at most f(r) vertices in common with the other sets. They
noted that Frederickson’s proof can easily be adapted to obtain an (r, c · f(r))-division of any
graph G from a subgraph-closed f -separable graph class – as formalized in Theorem 4. Note
that we use an equivalent but slightly different notation than Frederickson and Henzinger
et al. in that we consider the “boundary” vertices as a single separate set apart from the
non-boundary vertices in each “region”, i.e., our divisions are actually partitions of the vertex
set. This allows us to carefully describe the number of vertices inside each “region”.

‡ They use a more general notion of (r, s)-division but we need the restricted version as described here.

S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:7

I Theorem 4 ([17, 23]). For any subgraph-closed f-separable class of graphs G, there are
constants c1, c2 such that every graph G in the class has an (r, c1 · f(r))-division for any r.
Namely, for any r ≥ 1, there is an integer t ∈ Θ(nr) such that V can be partitioned into t+ 1
sets X , V1, . . . , Vt where the following properties hold.
(i) N(Vi) ∩ Vj = ∅ for each i 6= j and X =

⋃
iN(Vi),

(ii) |Vi ∪N(Vi)| ≤ r for each i,
(iii) |N(Vi)| ≤ c1 · f(r) for each i (thus, |X | ≤

∑t
i=1 |N(Vi)| ≤ c2 · f(r)·n

r).
Moreover, such a partition can be found in O(g(n) logn) time where g(n) is the time required
to find an f -separation in G.

We obtain our color-balanced version of Theorem 4 via two steps. First, we strengthen
the notion of (r, f(r))-divisions to uniform (r, f(r))-divisions. A uniform (r, f(r))-division is
an (r, f(r))-division where the Θ(nr) sets have a uniform size. Namely, there are not only
O(r) many internal vertices (as in Theorem 4) but there are also Ω(r) many of them.

It is important to note that while this uniformity condition (i.e., that each region is
not too small – see Lemma 5(ii)) has not been needed in the past§, it is essential for our
analysis of local search as applied to MC problems in the next section. Moreover, to the
best of our knowledge, neither Frederickson’s construction nor more modern constructions
(e.g. [25]) of an r-division explicitly guarantee that the resulting r-division is uniform. To
be specific, Frederickson’s approach consists of two steps. The first step recursively applies
the separator theorem until each region together with its boundary is “small enough”. In
the second step, each region where the boundary is “too large” is further divided. This is
accomplished by applying the separator theorem to a weighted version of each such region
where the boundary vertices are uniformly weighted and the non-boundary vertices are
zero-weighted. Clearly, even a single application of this latter step may result in regions with
o(r) interior vertices. Modern approaches (e.g. [25]) similarly involve applying the separator
theorem to weighted regions where boundary vertices are uniformly weighted and interior
vertices are zero-weighted, i.e., regions which are too small are not explicitly avoided.

In the second step, we generalize the uniform (r, f(r))-divisions to two-color uniform
(r, f(r))-divisions of a two-colored graph (the coloring need not be proper in the usual sense).
A two-color uniform (r, f(r))-division of a two-colored graph is a uniform (r, f(r))-division
where each set has the “same” proportion of each color class (this is formalized in Theorem 7).

The remainder of this section is outlined as follows. We will first show that for every
f -separable graph class G there is a constant c such that every graph in G has a uniform
(r, c ·f(r))-division (see Lemma 5). We then use this result to show that for every f -separable
graph class G there is a constant c′ such that every two-colored graph in G has a two-color
uniform (rq, c′ · q · f(r))-division for any q – see Theorem 7. Our proofs are constructive
and lead to efficient algorithms that produce such divisions when there is a corresponding
efficient algorithm to compute an f -separation.

To prove the first result, we start from a given (r, f(r))-division and “group” the sets
carefully to obtain the desired uniformity. For the two-colored version, we start from a
uniform (r, f(r))-division and again regroup the sets via a reformulation of the problem as a
partitioning problem on two-dimensional vectors. Lemma 6 is used for this regrouping.

I Lemma 5. Let G be a subgraph-closed f -separable graph class and G be a sufficiently large
n-vertex graph in G. There are constants r0, x0 (depending only on f) such that for any

§ E.g., to analyse local search for SC problems [30], or for fast algorithms to find shortest paths [23].

ESA 2018

17:8 Approximation Schemes for Geometric Coverage Problems

r ∈ [r0,
n
x0

] there is an integer t ∈ Θ(nr) such that V (G) can be partitioned into t + 1 sets
X , V1, . . . , Vt where c1, c2 are constants (depending only on f) with the following properties.
(i) N(Vi) ∩ Vj = ∅ for each i 6= j and X =

⋃
iN(Vi),

(ii) |Vi| ≥ r
2
¶ and |Vi| ≤ 2r for each i,

(iii) |N(Vi)| ≤ c1 · f(r) for each i (thus, |X | ≤
∑t
i=1 |N(Vi)| ≤ c2·f(r)·n

r).
Moreover, such a partition can be found in O(h(n) + n) time where h(n) is the amount of
time required to produce an (r, f(r))-division of G.

Proof. We pick the constants c′1, c′2 as obtained from Theorem 4 for our f -separable subgraph-
closed graph class. We further pick r0 such that it is divisible by 8 and c∗ = 1− c′2 · f(r0

8) ·
(r0

8)−1 > 0. Now, let x0 = 3
c∗ , and assume r ∈ [r0,

n
x0

] in what follows.
Consider an (b r8c, c

′
1 · f(b r8c))-division U = (X , U1, . . . , U`) as given by Theorem 4 – note:

|X | ≤ c′2·f(b r
8 c)n

b r
8 c

. We further define c` so that ` = c` · 8·n
r . We will partition [`] into t

sets I1, . . . , It such that (X , V1, . . . , Vt) is a uniform (r, c · f(r))-division X , V1, . . . , Vt where
Vi =

⋃
j∈Ii

Uj . In order to describe the partitioning, we first observe some useful properties
of U1, . . . , U` where, without loss of generality, |U1| ≥ · · · ≥ |U`|. Let n∗ =

∑`
j=1 |Uj |, and

set t = dn
∗

r e. Note that:

n∗ =
∑̀
j=1
|Uj | = n− |X | ≥ n ·

(
1−

c′2 · f(b r8c)
b r8c

)
.

From our choice of t, the average size of the sets Vi is n
∗

t ∈ (r
1+ r

n∗
, r]. Additionally, n∗ ≥ c∗ ·n,

i.e., c∗ ≤ n∗

n . Thus, we have r ≤ n∗

3 , and the average size of our sets |Vi| is in [3r
4 , r].

Notice that `
t ≤ c` ·

8·n
r · (

n∗

r)−1 ≤ 8c`

c∗ . We build the sets Ii such that |Ii| ≤ 40 · c`

c∗ . This
provides |N(Vi)| ≤ 40 · c`

c∗ · c
′
1f(b r8c) ∈ O(f(r)). We build the sets Ii in two steps. In the

first step we greedily fill the sets Ii according to the largest unassigned set Uj as follows. For
each j∗ from 1 to `, we consider an index i∗ ∈ [t] where |Ii∗ | < 32 · c`

c∗ and |Vi∗ | is minimized.
If |Vi∗ | ≤ n∗

t , then we place j∗ into Ii∗ , that is, we replace Vi∗ with Vi∗ ∪ Uj∗ . Otherwise
(there is no such index i∗), we proceed to step two (below). Before discussing step two, we
first consider the state of the sets Vi at the moment when this greedy placement finishes. To
this end, let j∗ be the index of the first (i.e., the largest) Uj which has not been placed.

Claim 1: If |Vi| ≤ n∗

t for every i, then each set Uj has been merged into some Vi and the
Vi’s satisfy the conditions of the lemma.
First, suppose there is an unallocated set Uj . Since |Vi| ≤ n∗

t for each i ∈ [t], our greedy
procedure stopped due to having |Ii| = 32 · c`

c∗ for each i ∈ [t]. This contradicts the average
size of the Ii’s being `

t ≤ 8 · c`

c∗ . So, every set Uj must have been merged into some Vi. Thus,
since |Vi| ≤ n∗

t and the average of the |Vi|’s is n∗

t , we have that for every i ∈ [t], |Vi| = n∗

t .
Moreover, for each i ∈ [t], |Ii| ≤ 32 c`

c∗ . Thus the Vi’s satisfy the lemma.

Claim 2: For every i ∈ [t], |Vi| ≥ r
2 .

Suppose some index i has |Vi| < r
2 . Notice that, if |Ii| < 32 · c`

c∗ , then for every i′ ∈ [t],
|Vi′ | ≤ |Vi|+ r

8 ≤
3r
4 ≤

n∗

t , i.e., contradicting Claim 1. Thus, |Ii| = 32· c`

c∗ for each i ∈ [t] where
|Vi| < r

2 . For each i
′ ∈ [t], j′ ∈ [`], let Ij

′

i′ and V j
′

i′ be the states of Ii′ and Vi′(respectively)
directly after index j′ has been added to some set Ii′′ by the greedy algorithm.

¶ This lower bound is the difference from the known Theorem 4.

S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:9

We now let ĵ be the largest index in Ii, and assume (without loss of generality) that for
every i′ ∈ [t] \ {i}, if |V ĵi′ | < r

2 , then I
ĵ
i′ < 32 · c`

c∗ . Intuitively, i is the “first” index which
attains |Ii| = 32 · c`

c∗ while still having |Vi| < r
2 . Now, since |I

ĵ
i | = 32 · c`

c∗ , and |V
ĵ
i | < r

2 , we
have |Uĵ | < r · c∗

64c`
. Thus, for every iteration j > ĵ, we have |Uj | < r · c∗

64c`
. This means that

after iteration ĵ, the number of unallocated vertices is strictly less than:

∑̀
j=ĵ

Uj < ` · r · c∗

64c`
≤ t · 8 · c`

c∗
· r · c∗

64c`
= tr

8 .

In particular, this means that on average each set Vi can grow by less than r
8 . However, due

to our choice of i, we see that for every i′ ∈ [t] \ {i}, |V ĵi′ | ≤ |V
ĵ
i |+ r

8 <
r
2 + r

8 . This means
that even if we allocate all the remaining vertices, the average size of our sets Vi will be
strictly less than 3r

4 ≤
n∗

t , i.e., providing a contradiction and proving Claim 2.

Claim 3: If every j ∈ [`] is placed into some Ii, the Vi’s satisfy the conditions of the lemma.
First, note that |Ii| is at most 32 · c`

c∗ , i.e., |N(Vi)| ∈ O(f(r)). By Claim 2, we see that |Vi| ≥ r
2

for each i ∈ [t]. Additionally, from the greedy construction, we have that |Vi| ≤ n∗

t + r
8 .

Thus, |Vi| ∈ [r2 ,
9r
8] ⊂ [r2 , 2r].

We now describe the second step. By Claim 3, we assume there are unassigned sets
Uj . By Claim 2, for every i ∈ [t], |Vi| ≥ r

2 . Finally, by Claim 1, there is an index i′ where
|Vi′ | > n∗

t . Thus, since we have t = dn
∗

r e sets which partition at most n∗ elements, there
must be some index i′′ where |Vi′′ | ≤ n∗

t and |Ii′′ | = 32 · c`

c∗ , i.e., |Uj∗ | ≤
n∗

t ·(32 · c`

c∗)−1 ≤ r·c∗
32·c`

where Uj∗ is the largest unassigned set. Notice that there are at most ` ≤ t · 8 · c`

c∗ indices
which can be assigned and all the remaining sets contain at most |Uj∗ | vertices. If we spread
these remaining Uj ’s uniformly throughout our Vi’s, we will place at most 8 · c`

c∗ · |Uj∗ | ≤
r
4

vertices into each Vi. Thus, for each i ∈ [t], we have |Vi| ≤ n∗

t + r
8 + r

4 ≤ 2r. So, by
uniformly assigning these remaining indices, we have |Ii| ≤ 40 · c`

c∗ , |Vi| ∈ [r2 , 2r], and
|N(Vi)| ≤ 40 · c`

c∗ · c
′
1f(b r8c) ∈ O(f(r)), as needed.

We conclude with a brief discussion of the time complexity. First, we generate the
(b r8c, c

′
1f(b r8c))-division in h(n) time. We then sort the sets |U1| ≥ . . . ≥ |U`| (this can be

done in O(n) time via bucket sort). In the next step we greedily fill the index sets – this
takes O(n) time. Finally, we place the remaining “small” sets uniformly throughout the Vi’s
– taking again O(n) time. Thus, we have O(h(n) + n) time in total. J

We now prove a technical lemma which, together with the previous lemma regarding
uniform divisions, provides our uniform two-color balanced divisions (see Theorem 7).

I Lemma 6. Let c and c′ be positive constants, and A = {(a1, b1), . . . , (an, bn)} ⊆ (Q ∩
[0,∞))2 be a set of 2-dimensional vectors where ai + bi ∈ [c′, c] for each i ∈ [n], and α ∈ [0, 1]
such that

∑n
i=1 ai = α ·

∑n
i=1 bi. Then:

(?) There is a permutation p1, . . . , pn of [n] such that for any 1 ≤ i ≤ i′ ≤ n,
|
∑i′

j=i(apj − α · bpj)| ≤ 2 · c; and
(??) For any positive integer q′ such that q′(q′ + 1) ≤ n there is a partitioning of [n] into

subsets I1, . . . , Ik such that for each j ∈ [k]:
(i) q′ ≤ |Ij | ≤ q′ + 1 (thus, q′c′ ≤

∑
i∈Ij

ai + bi ≤ q′c+ c),
(ii) |

∑
i∈Ij

(ai − α · bi)| ≤ 2 · c.
Moreover, the permutation p1, . . . , pn and partition can be computed in O(n) time.

ESA 2018

17:10 Approximation Schemes for Geometric Coverage Problems

Proof. We first prove (?). To this end, we partition [n] into three sets A>0, A<0, and
A=0 according to whether the weighted difference di = ai − α · bi is positive, negative, or
0 (respectively). Note that,

∑n
i=1 di = 0 and for each i ∈ [n], |di| ≤ c. We pick indices

one-by-one from A>0, A<0, A=0 to form the permutation.
We now construct a permutation p1, . . . , pn on the indices [n] so that any consecutive

subsequence S has |
∑
i∈S dpi | ≤ 2 · c. For notational convenience, for each j ∈ [n], we use

δ<j to denote
∑j−1
i=1 dpi

. We now pick the pi’s so that for each j, |δ<j | ≤ c. We initialize
δ<1 = 0. For each j from 1 to n we proceed as follows. Assume that |δ<j | ≤ c. We further
assume that any index i ∈ {p1, . . . , pj−1} has been removed from the sets A>0, A<0, and
A=0. If δ<j is negative, A>0 must contain an index j∗ since

∑
i∈[n] di = 0. Moreover, if we

set pj = j∗, we have |δ<j+1| ≤ c as needed (we also remove the index j∗ from A>0 at this
point). Similarly, if δ<j is positive, we pick any index j∗ from A<0, remove it from A<0, and
set pj = j∗. Finally, when δ<j = 0, we take any index j∗ from A>0 ∪ A<0 ∪ A=0, remove
it from A>0 ∪A<0 ∪A=0, and set pj = j∗. Thus, in all cases, |δ<j+1| ≤ c. Notice that, for
any 1 ≤ j ≤ j′ ≤ n, we have |

∑j′

i=j dpi
| = |δ<j − δ<j′+1| ≤ |δ<j | + |δ<j′+1| ≤ 2 · c (thus,

establishing (?)).
We now prove (??) using (?). We partition [n] to form the sets I1, . . . , Ik by splitting

p1, . . . , pn into k consecutive subsequences of almost equal size. Namely, since n
q′ −

n
q′+1 ≥ 1,

we can pick a positive integer k ∈
[

n
q′+1 ,

n
q′

]
. Then q′k ≤ n ≤ (q′ + 1)k, so we can make the

sets I1, . . . , In−q′k with q′ + 1 indices each and the sets In−q′k+1, . . . , Ik with q′ indices each
by partitioning π into these sets in order. This is all easily accomplished in O(n) time. J

We will now use Lemmas 5 and 6 to prove Theorem 7. In particular, for a given two-
colored graph G where G belongs to an f -separable graph class, we first construct a uniform
(r, c · f(r))-division (X , V1, . . . , Vt) of G as in Lemma 5. From this division we can again
carefully combine the Vi’s to make new sets Wj where each Wj has roughly the same size
and contains roughly the same proportion of each color class as occurring in G. This follows
by simply imagining each region Vi of the uniform (r, c · f(r))-division as a two-dimensional
vector (according to its coloring) and then applying Lemma 6.

I Theorem 7. Let G be a subgraph-closed f-separable graph class and G be a 2-colored
n-vertex graph in G with color classes Γ1,Γ2 such that |Γ2| ≥ |Γ1|. For any q and r � n

where r is suitably large, there is an integer t ∈ Θ(n
q·r) such that V can be partitioned into

t + 1 sets X , V1, . . . , Vt where c1, c2 are constants (depending only on f) and there is an
integer q′ ∈ [q, 2q − 1] satisfying the following properties.
(i) N(Vi) ∩ Vj = ∅ for each i 6= j and X =

⋃
iN(Vi),

(ii) |Vi| ≥ q′·r
2 and |Vi| ≤ 2 · (q′ + 1) · r for each i,

(iii) |N(Vi)| ≤ c1 · q · f(r) for each i
(thus, |X | ≤

∑t
i=1 |N(Vi)| ≤ c2·f(r)·n

r),
(iv)

∣∣∣|Vi ∩ Γ1| − |Γ1|
|Γ2| · |Vi ∩ Γ2|

∣∣∣ ≤ 4 · r for each i.

Moreover, such a partition can be found in O(h(n) + n) time where h(n) is the amount
of time required to produce a uniform (r, c · f(r))-division of G.

3 Proof of Theorem 2: PTAS for f -Separable Maximum Coverage

Recall that, we have an f -separable instance of MC where f is strictly sublinear. Our
algorithm is based on local search. We fix a sufficiently large positive constant integer b ≥ 1.
Given an f -separable instance of MC, we pick an arbitrary initial solution A. We check if it

S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:11

is possible to replace 2b2 + 2b sets in A with the same number of sets from F so that the
total number of elements covered is increased. We perform such a replacement (swap) as
long as there is one. We stop if there is no profitable swap and output the resulting solution.

We will show that for sufficiently large b the above algorithm yields a (1− 8c1f(b)/b)-
approximate solution and that it runs in polynomial time (for constant b). Here, c1 is the
constant from Theorem 7. Setting b to be sufficiently large will complete this proof. Note
that, if c1 < 1, Theorem 7 also holds for c1 = 1. Thus, it suffices to consider c1 ≥ 1.

Since each step increases the number of covered elements, the number of iterations of the
above algorithm is at most |U |. In each iteration, we consider each of the

(
k
b

)(|F|
b

)
potential

b-swaps, and check whether it is an improvement. Therefore, the total running time of the
algorithm is polynomial for constant b.

It remains to establish the performance guarantee. Let O be an optimum solution to
the instance and let A be the (locally optimal) solution output by the algorithm. Let OPT,
ALG denote the number of elements covered by O, A, respectively.

Suppose that ALG <
(

1− 8c1f(b)
b

)
OPT. We will show that implies that there is a

profitable swap (contradicting the local optimality of A and hence completing the proof).
We claim that it suffices to consider the case when O,A are disjoint, which is justified as

follows. Assume that O ∩A 6= ∅. We remove the sets in O ∩A from F and all the elements
covered by these sets from U . Moreover, we decrease k by |O ∩A| and replace O with O \A
and A with A \ O. Since our class of instances is closed under removing sets and elements,
the resulting instance is still contained in the class. Moreover, |

⋃
A| <

(
1− 8c1f(b)

b

)
|
⋃
O|

(note that the number of elements covered by A and O, respectively, decreases by the same
amount as we remove the elements covered by A ∩O from the instance). Finally, a feasible
and profitable swap in the reduced instance implies that the same swap is also feasible and
profitable in the original.

Therefore, we assume from now on that A and O are disjoint. Since our instance is
f -separable, there exists an f -separable graph G with precisely 2k nodes for the two feasible
solutions O and A with the properties stated in Definition 1.

We now apply Theorem 7 to G with color classes Γ1 = O and Γ2 = A and with parameters
r = b and q = b. Here, we assume that the constant b has been picked sufficiently large as
required by Theorem 7. We further assume that the number 2k of nodes in the exchange
graph is substantially larger than b as the problem can be solved to optimality in polynomial
time for constant k. Since |O| = |A| = k, the two color classes in G are perfectly balanced.
Let Ai = A ∩ Vi, Oi = O ∩ Vi, NOi = N(Vi) ∩ O and Ōi = Oi ∪NOi for any part Vi with
i ∈ [t] of the resulting subdivision of G. Note that every set in O is in Ōi for some i ∈ [t].

The idea of the analysis is to consider for each i ∈ [t] a nearly balanced (but possibly
infeasible) candidate swap that replaces in A the sets Ai with Ōi. We will first show that
there exists a profitable candidate swap if ALG <

(
1− 8c1f(b)

b

)
OPT. Second, we will show

that even a feasible profitable swap can be obtained by adding only some of the sets in Ōi as
the candidate swap was nearly balanced.

For technical reasons we will define a set Z of elements that we (temporarily) disregard
from our calculations because they will remain covered and thus do not impact which of the
sets in Ōi we will pick for the feasible swap. Let Zi =

⋃
(A \ Ai) be the set of elements that

remain covered even if Ai is removed from A and let Z =
⋂t
i=1 Zi be the set of elements that

are covered by A but not exclusively by one of the Ai. In particular, Z contains all elements
in
⋃

(X ∩A). Let Li =
⋃
Ai \ Z be the set of elements that are “lost” when removing the

Ai from A. Moreover, let Wi =
⋃
Ōi \ Zi be the set of elements that are “won” when we

add all the sets of Ōi after removing Ai.

ESA 2018

17:12 Approximation Schemes for Geometric Coverage Problems

We claim that
∑t
i=1 |Li| ≤ ALG−|Z|. To this end, note that Z ⊆

⋃
A and that the

family {Li}i∈[t] contains pairwise disjoint sets because all elements that are not exclusively
covered by a single Ai are contained in Z and thus removed.

We further claim that
∑t
i=1 |Wi| ≥ OPT−|Z|. To see this, note first that every element

in Z contributes 0 to the left hand side and 0 or -1 to the right hand side. Every element
covered by O but not by A contributes at least 1 to the left hand side and precisely 1 to the
right hand side. Finally, consider an element u that is covered both by A and by O but does
not lie in Z. Since u /∈ Z there is no S ∈ X ∩ A covering u. This also implies that u lies in
a set S ∈ Ai for some unique i ∈ [t]. Thus, we even have u /∈ Zi. Since G is an exchange
graph, there is some set T ∈ O with u ∈ T and some set S′ ∈ A with u ∈ S′ such that S′
and T are adjacent in G. Since u /∈ Zi we have S′ ∈ Ai. Since T is adjacent to S′ ∈ Ai ⊆ Vi,
we have T ∈ N(Vi). Since T ∈ O, it follows that T ∈ NOi ⊆ Ōi. Thus u ∈

⋃
Ōi \ Zi = Wi.

Hence u contributes at least 1 to the left hand side and precisely 1 to the right hand side of∑t
i=1 |Wi| ≥ OPT−|Z|, which shows the claim.

By OPT > ALG ≥ |Z|, min
i∈[t]
|Wi|>0

|Li|
|Wi|

≤
∑t
i=1 |Li|∑t
i=1 |Wi|

≤ ALG−|Z|
OPT−|Z| ≤

ALG
OPT < 1−8c1f(b)

b
.

Hence, we pick i ∈ [t] so that |Li|
|Wi|

< 1− 8c1f(b)
b

. (1)

Recall that c1 ≥ 1 and assume that b is large enough so that f(b) ≥ 1. Then by
Properties (ii), (iii), and (iv) of Theorem 7 (respectively), we have that |Vi| ≥ b2/2,
|N(Vi)| ≤ c1b · f(b), and ||Ai| − |Oi|| ≤ 4b (respectively). Now, since |Ai|+ |Oi| = |Vi|, we
have |Ōi| ≤ 1

2 |Vi|+ 2b+ c1b · f(b) and |Ai| ≥ 1
2 |Vi| − 2b. Hence

|Ai|
|Ōi|

≥
1
2 |Vi| − 2b

1
2 |Vi|+ 2b+ c1b · f(b)

≥
(1

2 |Vi|+ 2b+ 4c1c2b · f(b))− 4b− 4c1c2b · f(b)
1
2 |Vi|+ 2b+ 4c1c2b · f(b)

(2)

|Vi|≥b2/2
≥ 1− 8c1f(b)

b
. (3)

We are now ready to construct our feasible and profitable swap. We inductively define an
order S1, . . . , S|Ōi| on the sets in Ōi where we require that

Sj = arg max
S∈Ōi

∣∣∣∣∣S \
(
Zi ∪

j−1⋃
`=1

S`

)∣∣∣∣∣ for any j = 1, . . . , |Ōi| where S1 maximizes |S \ Zi|.

Consider the following process of iteratively building a set W ′ starting with W ′ = ∅.
Suppose that we add to W ′ the sets (S1 \ Zi), . . . , (S|Ōi| \ Zi) in this order ending up with
W ′ = Wi. In doing so, the incremental gain is monotonically non-increasing due to the
definition of the order on Ōi and due to the submodularity of the objective function. Hence,

for any prefix of the first j sets we have that
∣∣∣∣∣
(

j⋃
`=1

S`

)
\ Zi

∣∣∣∣∣ ≥ j · |Wi|
|Ōi|

. (4)

Suppose that |Ōi| > |Ai| (otherwise due to (1), we can just add all sets in Ōi). Consider
the swap where we replace the |Ai| ≤ 1/2|Vi|+ 2b ≤ 2b2 + 2b many sets Ai from the local
optimum A with at most |Ai| many sets {S1, . . . , S|Ai|} from Ōi.

S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:13

We now analyze how this swap affects the objective function value. Notice that, by
removing the sets in Ai, the objective function value drops by

|Li|
(1)
<

(
1− 8c1f(b)

b

)
· |Wi|

(4)
≤
(

1− 8c1f(b)
b

)
|Ōi|
|Ai|

∣∣∣∣∣∣
|Ai|⋃
`=1

S`

 \ Zi
∣∣∣∣∣∣

(3)
≤

∣∣∣∣∣∣
|Ai|⋃
`=1

S`

 \ Zi
∣∣∣∣∣∣ .

The right hand side of this inequality is the increase of the objective function due to adding
the sets {S1, . . . , S|Ai|} after removing the sets in Ai.

Therefore the above described swap is feasible and also profitable and thus A is not a
local optimum leading to a contradiction (and completing the proof of Theorem 2).

References
1 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of construct-

ing algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328, 2004.
doi:10.1023/B:JOCO.0000038913.96607.c2.

2 Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar
graphs. J. of the American Mathematical Society, 3:801–808, 1990. doi:10.1090/
S0894-0347-1990-1065053-0.

3 Rom Aschner, Matthew J. Katz, Gila Morgenstern, and Yelena Yuditsky. Approximation
schemes for covering and packing. In 7th Int. Workshop on Algorithms and Computation
(WALCOM’13), pages 89–100, 2013.

4 Ashwinkumar Badanidiyuru, Robert Kleinberg, and Hooyeon Lee. Approximating low-
dimensional coverage problems. In Symp. Computational Geometry (SoCG’12), pages 161–
170, 2012. doi:10.1145/2261250.2261274.

5 Sayan Bandyapadhyay and Kasturi R. Varadarajan. On variants of k-means clustering. In
32nd Symp. Computational Geometry (SoCG’16), pages 14:1–14:15, 2016. doi:10.4230/
LIPIcs.SoCG.2016.14.

6 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-
dimension. Discrete & Computational Geometry, 14(4):463–479, 1995. doi:10.1007/
BF02570718.

7 Sergio Cabello and David Gajser. Simple PTAS’s for families of graphs excluding a minor.
Discrete Applied Mathematics, 189:41–48, 2015.

8 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted
capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In
23rd ACM-SIAM Symp. Discrete Algorithms (SODA’12), pages 1576–1585, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095116.2095241.

9 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum indepen-
dent set of pseudo-disks. In 25th ACM Symp. Computational Geometry (SoCG’09), pages
333–340, 2009. doi:10.1145/1542362.1542420.

10 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.
doi:10.1007/s00454-012-9417-5.

11 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approx-
imation schemes for k-means and k-median in Euclidean and minor-free metrics. In
57th IEEE Symp. Foundations of Computer Science (FOCS’16), pages 353–364, 2016.
doi:10.1109/FOCS.2016.46.

ESA 2018

http://dx.doi.org/10.1023/B:JOCO.0000038913.96607.c2
http://dx.doi.org/10.1090/S0894-0347-1990-1065053-0
http://dx.doi.org/10.1090/S0894-0347-1990-1065053-0
http://dx.doi.org/10.1145/2261250.2261274
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.14
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.14
http://dx.doi.org/10.1007/BF02570718
http://dx.doi.org/10.1007/BF02570718
http://dl.acm.org/citation.cfm?id=2095116.2095241
http://dx.doi.org/10.1145/1542362.1542420
http://dx.doi.org/10.1007/s00454-012-9417-5
http://dx.doi.org/10.1109/FOCS.2016.46

17:14 Approximation Schemes for Geometric Coverage Problems

12 Vincent Cohen-Addad and Claire Mathieu. Effectiveness of local search for geometric
optimization. In 31st Symp. Computational Geometry (SoCG’15), pages 329–343, 2015.
doi:10.4230/LIPIcs.SOCG.2015.329.

13 Gérard Cornuéjols, George L. Nemhauser, and Laurence A. Wolsey. Worst-case and prob-
abilistic analysis of algorithms for a location problem. Operations Research, 28(4):847–858,
1980. doi:10.1287/opre.28.4.847.

14 Minati De and Abhiruk Lahiri. Geometric dominating set and set cover via local search.
CoRR, abs/1605.02499, 2016. URL: http://arxiv.org/abs/1605.02499, arXiv:1605.
02499.

15 Thomas Erlebach and Erik Jan van Leeuwen. Approximating geometric coverage problems.
In 19th ACM-SIAM Symp. Discrete Algorithms (SODA’08), pages 1267–1276, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347220.

16 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

17 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput., 16(6):1004–1022, 1987.

18 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. In 57th IEEE Symp. Foundations of Computer
Science (FOCS’16), pages 365–374, 2016. doi:10.1109/FOCS.2016.47.

19 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier - (extended abstract). In 18th European Symp. Algorithms (ESA’10), pages
243–254, 2010. doi:10.1007/978-3-642-15775-2_21.

20 Sathish Govindarajan, Rajiv Raman, Saurabh Ray, and Aniket Basu Roy. Packing and
covering with non-piercing regions. In 24th European Symp. Algorithms (ESA’16), pages
47:1–47:17, 2016. doi:10.4230/LIPIcs.ESA.2016.47.

21 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion
and low-density graphs. In 23rd European Symp. Algorithms (ESA’15), pages 717–728,
2015.

22 Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implementing data cubes
efficiently. In ACM SIGMOD Int. Conference on Management of Data (ICDM’96), pages
205–216, 1996. doi:10.1145/233269.233333.

23 Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997. doi:
10.1006/jcss.1997.1493.

24 R. B. O. Kerkkamp and Karen Aardal. A constructive proof of swap local search worst-
case instances for the maximum coverage problem. Oper. Res. Lett., 44(3):329–335, 2016.
doi:10.1016/j.orl.2016.03.001.

25 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decom-
positions for planar graphs in linear time. In 45th Symp. Theory of Computing (STOC’13),
pages 505–514, 2013. doi:10.1145/2488608.2488672.

26 Erik Krohn, Matt Gibson, Gaurav Kanade, and Kasturi R. Varadarajan. Guarding terrains
via local search. J. of Computational Geometry, 5(1):168–178, 2014. URL: http://jocg.
org/index.php/jocg/article/view/128.

27 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
J. on Applied Mathematics, 36(2):177–189, 1979. doi:10.1137/0136016.

28 Steffen Mecke and Dorothea Wagner. Solving geometric covering problems by data re-
duction. In 12th European Symp. Algorithms (ESA’04), pages 760–771, 2004. doi:
10.1007/978-3-540-30140-0_67.

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.329
http://dx.doi.org/10.1287/opre.28.4.847
http://arxiv.org/abs/1605.02499
http://arxiv.org/abs/1605.02499
http://arxiv.org/abs/1605.02499
http://dl.acm.org/citation.cfm?id=1347082.1347220
http://dx.doi.org/10.1145/285055.285059
http://dx.doi.org/10.1109/FOCS.2016.47
http://dx.doi.org/10.1007/978-3-642-15775-2_21
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.47
http://dx.doi.org/10.1145/233269.233333
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1006/jcss.1997.1493
http://dx.doi.org/10.1016/j.orl.2016.03.001
http://dx.doi.org/10.1145/2488608.2488672
http://jocg.org/index.php/jocg/article/view/128
http://jocg.org/index.php/jocg/article/view/128
http://dx.doi.org/10.1137/0136016
http://dx.doi.org/10.1007/978-3-540-30140-0_67
http://dx.doi.org/10.1007/978-3-540-30140-0_67

S. Chaplick, M. De, A. Ravsky, and J. Spoerhase 17:15

29 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation
scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM J. Comput.,
44(1):1650–1669, 2015. doi:10.1137/14099317X.

30 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

31 Erez Petrank. The hardness of approximation: Gap location. Comput. Complexity, 4:133–
157, 1994. doi:10.1007/BF01202286.

32 Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture. J. of Com-
binatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

33 Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In
42nd ACM Symp. Theory of Computing (STOC’10), pages 641–648, 2010. doi:10.1145/
1806689.1806777.

ESA 2018

http://dx.doi.org/10.1137/14099317X
http://dx.doi.org/10.1007/BF01202286
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1145/1806689.1806777
http://dx.doi.org/10.1145/1806689.1806777

Amortized Analysis of Asynchronous Price
Dynamics
Yun Kuen Cheung1

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
ycheung@mpi-inf.mpg.de

https://orcid.org/0000-0002-9280-0149

Richard Cole2

Courant Institute, NYU, New York, USA
cole@cs.nyu.edu

https://orcid.org/0000-0002-5885-0222

Abstract
We extend a recently developed framework for analyzing asynchronous coordinate descent al-
gorithms to show that an asynchronous version of tatonnement, a fundamental price dynamic
widely studied in general equilibrium theory, converges toward a market equilibrium for Fisher
markets with CES utilities or Leontief utilities, for which tatonnement is equivalent to coordinate
descent.

2012 ACM Subject Classification Theory of computation → Market equilibria

Keywords and phrases Asynchronous Tatonnement, Fisher Market, Market Equilibrium, Amort-
ized Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.18

Related Version A full version is available at https://arxiv.org/abs/1806.10952.

Acknowledgements We thank several anonymous reviewers for their helpful suggestions.

1 Introduction

As is well known, it is PPAD-hard to compute equilibria for general games and markets [21, 9,
18, 8, 37, 10]. By viewing the players and the environment collectively as implicitly performing
a computation, these hardness results indicate that, in general, a game or market cannot reach
an equilibrium quickly (assuming no unexpected complexity results such as PPAD = FP). As
a result, a lot of attention has been given to the design of polynomial-time algorithms to
compute equilibria, either exactly or approximately, for specific families of games and markets.
Most of these algorithms can be categorized as either simplex-like (e.g., Lemke-Howson [30]),
numerical methods (e.g., the interior-point method [40] or the ellipsoid method [27]), or
some carefully-crafted combinatorial algorithms (e.g., flow-based algorithms for computing
an equilibrium of a market with agents having linear utility functions [22, 33, 24]).

1 Part of the work done while this author was at the Courant Institute, NYU and at the Faculty of
Computer Science, University of Vienna. He was supported in part by NSF Grant CCF-1217989, and
the Vienna Science and Technology Fund (WWTF) project ICT10-002. Additionally the research
leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement no. 340506.

2 This work was supported in part by NSF grant CCF-1527568.

© Yun Kuen Cheung and Richard Cole;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ycheung@mpi-inf.mpg.de
https://orcid.org/0000-0002-9280-0149
mailto:cole@cs.nyu.edu
https://orcid.org/0000-0002-5885-0222
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.18
https://arxiv.org/abs/1806.10952
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Amortized Analysis of Asynchronous Price Dynamics

However, it seems implausible that these algorithms describe the implicit computations
in games or markets. In particular, many markets appear to have a highly distributed
environment. This would appear to preclude computations which require centralized co-
ordination, which is essential for the three categories of algorithms above. Consequently, in
order to justify equilibrium concepts, we want natural algorithms which could plausibly be
running (in an implicit form) in the associated distributed environments. Moreover, since it
is preferable not to assume centralized timing or coordination, a desirable feature of such
natural algorithms is robustness against asynchrony, which means such algorithms should
remain effective even in situations where information transfer takes time and agents make
decisions (i.e., perform computations) with possibly outdated information.

A first candidate for a natural algorithm in markets is tatonnement: it adjusts the
price of a good upward if there is too much demand, and downward if too little. Indeed,
tatonnement was proposed alongside the concept of a market equilibrium by Walras [38]
in 1874. Since then, studies of market equilibria and tatonnement have received much
attention in economics, operations research, and most recently in computer science; we
list a small sample of the voluminous literature, focusing mainly on computer science
works [2, 36, 23, 17, 19, 20, 14, 13, 35]. Underlying many of these works is the issue of what
are plausible price adjustment mechanisms and in what types of markets they attain a market
equilibrium.

The tatonnements studied in prior work have mostly been continuous, or discrete and
synchronous. Cole and Fleischer [19] observed that real-world market dynamics are highly
distributed and hence presumably asynchronous. They argued that any realistic price
dynamics must involve out-of-equilibrium trade in order to induce the imbalances leading
to price updates. Further, they argued that simple rules with relatively low information
requirements were more plausible. The lowest imaginable level of information would be for
each seller to only know the demand for the good it was selling, and for any price updating
to occur in a non-coordinated manner, i.e., asynchronously. Accordingly, they introduced
the Ongoing market model, a model of a repeating market incorporating update dynamics,
and they analyzed the performance of an asynchronous tatonnement in this market. The
market also incorporated warehouses (buffers) to cope with supply and demand imbalances.

Cheung, Cole and Devanur [13] showed that tatonnement is equivalent to coordinate
descent on a convex function for several classes of Fisher markets, and consequently that a
suitable synchronous tatonnement converges toward the market equilibrium in three general
classes of markets: complementary-CES Fisher markets3, substitute-CES Fisher markets,
and Leontief Fisher markets; Cheung [11] extended this to all nested-CES Fisher markets. In
this paper, we show that this equivalence enables us to perform an amortized analysis to show
that the corresponding asynchronous version of tatonnement converges toward the market
equilibrium in these classes of markets; indeed, our analysis also covers Fisher markets in
which some buyers have substitute-CES utility functions and others have complementary
ones. We also note that the tatonnement for Leontief Fisher markets analyzed in [13] had an
unnatural constraint on the step sizes; our analysis removes that constraint.

Finally, we remark that it is by no means obvious that the existence of a convergence
result for synchronous updating implies an analogous result for asynchronous updating. An
example of a setting where an asynchronous result has yet to be achieved is proportional
response dynamics [41, 4, 15].

3 i.e., markets in which the buyers all have complementary CES utilities.

Y.K. Cheung and R. Cole 18:3

Technique of Analysis, and Comparison with the Companion Paper [16]. In a companion
paper [16], we analyzed several versions of asynchronous coordinate descent. The analyses
in both papers follow a common framework. We use an amortized analysis which relates
the actual progress to the desired progress, where the desired progress is a constant fraction
of the progress achieved with synchronous updating. The amortization is used to hide the
difference between these two measures of progress by amortizing it over multiple updates.
As we shall see, this difference is bounded by the squares of appropriate excess demand
(resp. gradient) differences, and using Lipschitz gradient parameters, these can in turn be
bounded by sum of the squares of recent changes to the prices (resp. coordinates). The final
ingredient is to show that the progress is an upper bound on the square of the change to the
updated price. Combining these ingredients yields a lower bound on the rate of progress.

In [16], it was assumed that the underlying convex function has some global finite Lipschitz
gradient parameters, which is a common assumption in optimization and machine learning.
The main focus there is on the maximum possible degree of parallelism which permits linear
speedup, and on a number of challenges to devising rigorous and complete analyses which
handle the subtle interplay between randomness (choices of coordinates) and asynchrony.

However, in the asynchronous tatonnement setting we analyze here, there are no global
finite Lipschitz gradient parameters. Instead, we use local Lipschitz gradient parameters,
as was done implicitly in [13]; the consequence is that the rate of convergence depends
on the starting point. Also, the only acceptable degree of parallelism is the maximal one,
i.e., all sellers are adjusting prices independently in parallel. The challenge is to devise an
asynchronous analysis while keeping the price update rule reasonable, i.e., having the step
size be an absolute constant which is independent of the number of goods. This calls for a
somewhat different potential function and analysis from the one used for the asynchronous
coordinate descent analysis in [16]; the analysis also differs quite substantially from the
synchronous tatonnement analyses in [13].

Relevance to Theoretical Computer Science. Iterative procedures and dynamical systems
are pervasive across multiple disciplines; a non-exhaustive list of such systems which have
interested theorists includes bandwidth sharing (e.g., proportional response [39, 41, 15]), SDD
linear system solvers [28, 29], distributed load balancing [26, 3], bird flocking [6], influence
systems [7] and the spread of information memes across the Internet [31].

There have been many analyses of these systems, but one issue that has received relatively
little attention is the timing of agents’ actions. In most prior analyses, amenable timing
schemes (e.g., synchronous or round robin updates) and perfect information retrieval were
assumed, perhaps because they were more readily analyzed. However, typically these
assumptions are unrealistic, and to better understand how these systems really behave, it is
important to obtain asynchronous analyses of such systems. We believe the insight from our
amortization framework may be useful in obtaining such analyses.

Other Related Work. In a similar spirit to our analysis, Cheung, Cole and Rastogi [14]
analyzed asynchronous tatonnement in certain Fisher markets. This earlier work employed a
potential function which drops continuously when there is no update and does not increase
when an update is made. This approach could be followed for the current market setting, but
in the current work, we instead use a discrete analysis which has more in common with our
asynchronous coordinate descent analyses in [16]. Our work differs from [14] in two aspects.
First, the update rule in [14] is more restricted: they use average excess demand for updates,
while our update rule allows an arbitrary value between the maximum and minimum excess

ESA 2018

18:4 Amortized Analysis of Asynchronous Price Dynamics

demands. Second, while the high-level idea is similar, our potential function is substantially
different from (and more sophisticated than) the one in [14], and the classes of markets
covered by the two analyses are quite different.

In a recent work, Dvijotham et al. [25] study a different asynchronous dynamics. In their
setting sellers are boundedly rational and buyers are myopic (i.e., best responding). More
specifically, the base (zero) level for the sellers is to be best responding, and level k + 1 is
obtained by best responding to level k sellers. They show that this system converges linearly
to the market equilibrium in suitable Fisher markets including substitute-CES markets.

For the closely related topic of learning dynamics in games, where updates are based
on the payoffs received by agents, again, the classical approach assumes synchronous or
round-robin updates with up-to-date payoffs; models with stochastic update schedules were
also studied previously (e.g., in [5, 1, 32]), while learning dynamics with delayed payoffs [34]
were studied recently.

2 Preliminaries and Results

Fisher Market. In a Fisher market, there are n perfectly divisible goods and m buyers.
Without loss of generality, the supply of each good is normalized to be one unit. Each
buyer i has a utility function ui : Rn+ → R, and a budget of size ei. At any given price
vector p ∈ Rn+, each buyer purchases a maximum utility affordable collection of goods. More
precisely, xi ∈ Rn+ is said to be a demand of buyer i if xi ∈ arg maxx′: x′·p≤ei ui(x

′).
A price vector p∗ ∈ Rn+ is called a market equilibrium if at p∗, there exists a demand xi

of each buyer i such that

p∗j > 0 ⇒
m∑
i=1

xij = 1 and p∗j = 0 ⇒
m∑
i=1

xij ≤ 1.

We note that in the markets we studied here, the demand at any price vector is unique.
In these markets, we let zj :=

∑m
i=1 xij − 1 denote the excess demand for good j.

CES utilities. In this paper, each buyer i’s utility function is of the form

ui(xi) =

 n∑
j=1

aij · (xij)ρi
1/ρi

,

for some −∞ ≤ ρi < 1, where each aij is a non-negative number. ui(xi) is called a Constant
Elasticity of Substitution (CES) utility function. They are a class of utility functions often
used in economic analysis. The limit as ρi → −∞ is called a Leontief utility, usually written
as ui(xi) = minj xijcij

4; and the limit as ρi → 0 is called a Cobb-Douglas utility, usually
written as

∏
j xij

aij , with
∑
j aij = 1. The utilities with ρi ≤ 0 capture goods that are

complements, and those with ρi ≥ 0 goods that are substitutes. Accordingly, when ρi ≤ 0,
we say the utility function is a complementary CES utility function, and when ρi ≥ 0 we say
it is a substitute CES utility function.

4 The utility function ui(x) = minj xijcij can be seen as the limit of ui(x) =
(∑

j

(
xij
cij

)ρi) 1
ρi as ρi ↘ −∞.

Y.K. Cheung and R. Cole 18:5

Directly Related Prior Results and Our Results. Cheung, Cole and Devanur [13] showed
that tatonnement is equivalent to coordinate descent on a convex function φ for Fisher
markets with buyers having complementary-CES or Leontief utility functions (and in a later
version of the paper, substitute-CES utility functions too). To be specific, [13] showed that
for the convex function

φ(p) =
n∑
k=1

pk +
m∑
i=1

ei · log ûi(p),

where ûi(p) is the optimal utility that buyer i attains at price vector p with a unit of
spending, we have that ∇jφ(p) = −zj(p). The corresponding update rule is

p′j ← pj · [1 + λ ·min{zj , 1}] , (1)

where λ > 0 is a suitable constant. As the update rule is multiplicative, they assumed that
the initial prices were positive.

As argued in [19], when the economic activity is occurring over time, it is natural to base
each price update for a good on the excess demand observed by its seller since the time
of the last price update to her good (possibly weighted toward more recent sales). This
perceived excess demand can be written as the product of the length of the time interval
with an instantaneous excess demand at some specific time in this interval, which yields the
following modification of update rule (1).

p′j ← pj · [1 + λ ·min{z̃j , 1} · (t− αj(t))] , (2)

where αj(t) denotes the time of the latest update to price j strictly before time t, z̃j is a
value between the minimum and maximum instantaneous excess demands during the time
interval (αj(t), t), and λ > 0 is a suitable constant. We assume that t − αj(t) ≤ 1 for all
t ≥ 0 and for all goods j.

As we will see, having λ ≤ 1/25.5 suffices. In comparison, in the synchronous version [13],
λ ≤ 1/6 suffices. This implies that the step sizes of the asynchronous tatonnement can be
kept at a constant fraction of those used in its synchronous counterpart.

I Theorem 1. For λ ≤ 1/25.5, asynchronous tatonnement price updates using rule (2)
converge linearly toward the market equilibrium in any complementary-CES market, and they
converge in any Leontief Fisher market.

I Theorem 2. Let M be a Fisher market in which buyers have CES utility functions.
Suppose that ρ := maxi ρi < 1 and mini ρi > −∞ in M. Let E := max {1/(1− ρ) , 1}.
Then for λ ≤ 1/(26E), asynchronous tatonnement price updates using rule (2) converge
linearly toward the market equilibrium.

Here, we focus on the result concerning complementary-CES Fisher markets; the analyses
for the other cases are deferred to the full version. The analysis for Theorem 2 is just a small
modification of the complementary case. For the Leontief Fisher markets, while the first part
of the analysis is identical to the complementary case, this is not enough to demonstrate
convergence, and to do so requires substantially more effort.

In an earlier version of this paper [12] on arXiv, we proved Theorem 1 (except that λ was
slightly larger) using a potential function which decreases continuously over time, as was the
case for the analyses in [20, 14] also. We believe the current analysis is considerably simpler.
The main advantage of the prior analysis at this point is that we extended it to account for
the warehouses in the Ongoing market model, albeit with a quite non-trivial argument. This
seems possible with the potential function in the present paper too, but we suspect it would
be of interest to at most a few specialists.

ESA 2018

18:6 Amortized Analysis of Asynchronous Price Dynamics

Standard Notation in Coordinate Descent. Let ej denote the unit vector along coordinate
(in our context, price) j. A function F is L-Lipschitz-smooth if for any p,∆p ∈ Rn,
‖∇F (p+∆p)−∇F (p)‖ ≤ L ·‖∆p‖. For any coordinates j, k, a function F is Ljk-Lipschitz-
smooth if for any p ∈ Rn and r ∈ R, |∇kF (p + r · ej) −∇kF (p)| ≤ Ljk · |r|. Also, as is
standard, Lj denotes Ljj .

3 Key Ideas and Lemmas

For simplicity, we assume that at any particular time t, there is at most one update to one
good. In general, since there is no coordination between price updates of different goods, it
is possible that the prices of two goods are updated at the same moment; but by using any
arbitrary tie-breaking (perturbation) rule, our analysis extends to such cases.

Recall update rule (2). For the purposes of our analysis, for each update we now need
to know the elapsed time since the previous update to the same coordinate, or since time
0 if it is the first update to that coordinate; for the update at time τ , we denote this by
∆tτ . As explained in [19], in the Ongoing market model, all the sellers need to know is the
size of their warehouse stock at the times of the current update and the previous update,
which seem to be very natural information. We let αj(τ) denote the time of the most recent
update to pj strictly before time τ , or time 0 if there is no previous update to this price. We
let α(τ) denote the time of the most recent update to any price strictly before time τ , or
time 0 if there is no previous update to any price. And we let δτ := τ − α(τ), the elapsed
time since the most recent previous update to any price.

Suppose there is an update at time t. We let pkt denote the price updated at time t,
we let ptkt denote its updated value, and pt−kt its value right before this update; note that
pt−kt ≡ p

α(t)
kt
≡ pt−δtkt

. Let ∆ptkt := ptkt − p
t−
kt
. Also, we let z̃tkt denote the value of the excess

demand used in the update to price pkt at time t. Finally, we let Γtkt := max{1, z̃tkt}/(λp
t−
kt

).
Then update rule (2) can be rewritten in the following form:

ptkt ← pt−kt + 1
Γtkt
· z̃tkt ·∆t. (3)

In our analysis, when we write
∑
τ∈I , where I is a time interval, the summation is

summing over all updates that occurred in time interval I.
Let ztk be the instantaneous excess demand for good k right before a price update at

time t. We note that ztk = −∇kφ(pα(t)). For each update τ , let zmax,τ
k and zmin,τ

k denote
the maximum and minimum of accurate excess demand values of good k in the time interval
(αkτ (τ), τ).

We also need to define local Lipschitz parameters: L[τa,τb]
jk is an upper bound on the

Lipschitz gradient parameter Ljk of the function φ within a rectangular hull of those prices
which might appear in the time interval [τa, τb]. Observe that in update rule (2), since
|min{z̃j , 1}| ≤ 1 always, the above-mentioned rectangular hull is finitely bounded, and
furthermore, it shrinks as λ gets smaller.

We use the following three lemmas. Lemma 3 is modified from a standard lemma in
coordinate descent to accommodate local Lipschitz gradient continuity. Lemma 4 is a direct
consequence of the Power-Mean inequality. Lemma 5 is a simple algebra exercise. See the
full version for the missing proofs.

Y.K. Cheung and R. Cole 18:7

I Lemma 3. Suppose there is an update to coordinate kt at time t according to rule (2), and
suppose that λ ≤ 1/10. Recall that z̃kt is the value used in applying rule (2). Then

φ(pα(t))− φ(pt) ≥
Γtkt
4 ·

(∆ptkt)
2

∆t − 1
Γtkt
·
(
ztkt − z̃kt

)2 · |∆t|.
I Lemma 4. Suppose that w1, w2, · · · , w` and y1, y2, · · · , y` are non-negative numbers. Then(∑`

j=1 wjyj

)2
≤

(∑`
j=1 wj

)(∑`
j=1 wj · (yj)2

)
.

I Lemma 5. In Lemma 3, suppose that z̃′kt were used instead of z̃kt in update rule (3), but
with Γtkt unchanged. Let the new ∆pkt value be ∆′ptkt . Then

Γtkt ·
(∆ptkt)

2

∆t ≥
Γtkt
2 ·

(∆′ptkt)
2

∆t − 1
Γtkt
· (z̃kt − z̃′kt)

2 ·∆t.

In the RHS of the inequality in Lemma 3, we call the first term, Γtkt
4 ·

(∆ptkt)
2

∆t , a progress
term, and we call the second term, − 1

Γt
kt

·
(
ztkt − z̃kt

)2 · |∆t|, an error term. The progress term
is cut into two halves. The first half will be used to demonstrate progress of the convergence,
while the second half will be saved to compensate for the error terms in subsequent updates.
Accordingly, we design a potential function Φ(t) of the form Φ(t) := φ(pt) + A(t), where
A(t) ≥ 0 for all t and A(0) = 0. We call A(t) the amortization bank; its purpose is to save
portions of the progress terms for future compensations.

By showing that Φ(t) reduces by a constant fraction ε in every O(1) time units, we can
deduce that φ(pt) ≤ Φ(t) ≤ Φ(0) · (1− ε)Θ(t) = φ(p◦) · (1− ε)Θ(t), as desired.

We define the function A(t) as follows:

A(t) = c1
∑

τ∈(t−1,t]

∑
k 6=kτ

(1 + 1[E(k, τ, t)]) · L[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ
·
(
∆pτkτ

)2
∆tτ

,

where c1 > 0 is a constant we will determine later, and E(k, τ, t) denotes the event that price
k is not updated during the time interval (τ, t].

4 Analysis

Suppose there is an update at time t ≥ 2. We let ta denote the time of the latest update
strictly before time (t− 2), if any; otherwise, we let ta = 0. We let tb denote the time of the
earliest update in the time interval [t− 1, t]. By Lemma 3,∑

τ∈(ta,t]

[Φ(α(τ))− Φ(τ)]

≥
∑

τ∈(ta,t]

[
Γτkτ
4 ·

(∆pτkτ)2

∆tτ
− 1

Γτkτ
(zτkτ − z̃

τ
kτ)2 ·∆tτ

]
+ A(ta)−A(t)

(∗)
≥

∑
τ∈(ta,t]

[
Γτkτ
4 ·

(∆pτkτ)2

∆tτ
− 1

Γτkτ
(zmax,τ
kτ

− zmin,τ
kτ

)2 ·∆tτ

]
+ A(ta)−A(t). (4)

Inequality (∗) holds because in the tatonnement setting, both the accurate excess demand
zτkτ and the inaccurate excess demand z̃τkτ must lie between zmax,τ

kτ
and zmin,τ

kτ
.

ESA 2018

18:8 Amortized Analysis of Asynchronous Price Dynamics

For any ν ∈ (αkτ (τ), τ), let ∆′pνkτ denote the ∆pkτ value if there were an update at time
ν to price pkτ using the accurate excess demand zνkτ . By Lemma 5, for each τ ∈ (ta, t],

Γτkτ
8 ·

(∆pτkτ)2

∆tτ

≥
∑

ν∈(max{ta,αkτ (τ)},τ]

[
Γτkτ
16 ·

(∆′pνkτ)2

∆tτ
· δν∆tτ

− 1
8Γτkτ

(zνkτ − z̃
τ
kτ)2 · δν

]

≥
Γτkτ
16

 ∑
ν∈(max{ta,αkτ (τ)},τ]

(∆′pνkτ)2

(∆tτ)2 · δν

 − 1
8Γτkτ

· (zmax,τ
kτ

− zmin,τ
kτ

)2. (5)

For any k and any time ν, let βk(ν) denote the time of the earliest update to price k on
or after time ν. Combining (4) and (5) yields∑

τ∈(ta,t]

[Φ(α(τ))− Φ(τ)]

≥
∑

τ∈(ta,t]

∑
ν∈(max{ta,αkτ (τ)},τ]

Γτkτ
16 ·

(∆′pνkτ)2

(∆tτ)2 · δν

+

 ∑
τ∈(ta,t]

Γτkτ
8 ·

(∆pτkτ)2

∆tτ
+A(ta)−A(t)

 − ∑
τ∈(ta,t]

9
8Γτkτ

· (zmax,τ
kτ

− zmin,τ
kτ

)2

≥ 1
16

∑
ν∈(ta,tb]

δν

n∑
k=1

Γβk(ν)
k · (∆′pνk)2

(∆tβk(ν))2 −
∑

τ∈(ta,t]

9
8Γτkτ

· (zmax,τ
kτ

− zmin,τ
kτ

)2

+

 ∑
τ∈(ta,t]

Γτkτ
8 ·

(∆pτkτ)2

∆tτ
+ A(ta)−A(t)


≥ 1

16
∑

ν∈(ta,tb]

δν

[
n∑
k=1

Γβk(ν)
k (∆′pνk)2

(∆tβk(ν))2 + c2 ·A(α(ν))
]
−

∑
τ∈(ta,t]

9
8Γτkτ

· (zmax,τ
kτ

− zmin,τ
kτ

)2

+

 ∑
τ∈(ta,t]

Γτkτ
8 ·

(∆pτkτ)2

∆tτ
+ A(ta) − A(t) − c2

16
∑

ν∈(ta,tb]

δν ·A(α(ν))

 ,
for some small constant c2 > 0 we will determine later.

In [13], it was proved that the function φ is strongly convex in any region bounded away
from zero prices, and that the maximum Γ value throughout the tatonnement is upper
bounded by a finite constant which depends on the starting price p◦.5 We denote the finite
upper bound on all Γ’s by Γ, and the strong convexity parameter of φ by µφ, which also
depends on the starting prices. We let ε := µφ/Γ. Then it is a standard fact in optimization
that

n∑
k=1

Γβk(ν)
k (∆′pνk)2

(∆tβk(ν))2 =
n∑
k=1

1
Γβk(ν)
k

· (zνk)2 ≥
n∑
k=1

1
Γ
· (zνk)2 ≥ ε · φ(pα(ν)).

5 Their argument concerned the synchronous setting, but it can be reused without change for the
asynchronous setting.

Y.K. Cheung and R. Cole 18:9

Setting ε′ = min{ε, c2}/16 yields∑
τ∈(ta,t]

[Φ(α(τ))− Φ(τ)]

≥ ε′
∑

ν∈(ta,tb]

δν · Φ(α(ν)) −
∑

τ∈(ta,t]

9
8Γτkτ

· (zmax,τ
kτ

− zmin,τ
kτ

)2

+

 ∑
τ∈(ta,t]

Γτkτ
8 ·

(∆pτkτ)2

∆tτ
+ A(ta) − A(t) − c2

16
∑

ν∈(ta,tb]

δν ·A(α(ν))

 . (6)

In the subsections below, we will prove that for a suitable choice of the Γ parameters
and c1, c2, the final two terms of (6), in sum, are non-negative. Also, we will show that Φ is
decreasing over time. With these, the above inequality implies that

Φ(ta)− Φ(t) =
∑

τ∈(ta,t]

[Φ(α(τ))− Φ(τ)] ≥ ε′
∑

ν∈(ta,tb]

δν · Φ(α(ν)) ≥ ε′ · Φ(t),

and hence Φ(t) ≤ Φ(ta)/(1 + ε′). By iterating this (note that t > ta ≥ t− 3), we obtain

φ(pt) ≤ Φ(t) ≤ (1 + ε′)−(t/3−1) · Φ(0) = (1 + ε′)−(t/3−1) · φ(p◦),

thus demonstrating linear convergence.

4.1 Φ is a Decreasing Function
For any time τ at which there is an update, by Lemma 3 and the definition of A, we have

Φ(α(τ))− Φ(τ)

≥
Γτkτ
4 ·

(∆pτkτ)2

∆tτ
− 1

Γτkτ
(zτkτ − z̃

τ
kτ)2 ·∆tτ + c1

∑
ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kνkτ

·
pτ−kτ
pν−kν
·
(
∆pνkν

)2
∆tν

− 2c1
∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ
·
(
∆pτkτ

)2
∆tτ

.

Next,(
zmax,τ
kτ

− zmin,τ
kτ

)2

≤

 ∑
ν∈(αkτ (τ),τ)

L
[ν,τ]
kν ,kτ

∣∣∆pνkν ∣∣
2

=

 ∑
ν∈(αkτ (τ),τ)

(
L

[ν,τ]
kν ,kτ

·∆tν ·
pν−kν
pν−kτ

)
·

(∣∣∆pνkν ∣∣
∆tν

·
pν−kτ
pν−kν

)2

≤

 ∑
ν∈(αkτ (τ),τ)

L
[ν,τ]
kν ,kτ

·∆tν ·
pν−kν
pν−kτ

 ∑
ν∈(αkτ (τ),τ)

L
[ν,τ]
kν ,kτ

·
pν−kτ
pν−kν
·
(
∆pνkν

)2
∆tν


(by Lemma 4)

≤

 ∑
ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ]
kν ,kτ

·∆tν ·
pν−kν
pτ−kτ

 ∑
ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
pτ−kτ
pν−kν
·
(
∆pνkν

)2
∆tν

 . (7)

ESA 2018

18:10 Amortized Analysis of Asynchronous Price Dynamics

Combining the above two equations and recalling that ∆tτ ≤ 1 yields

Φ(α(τ))− Φ(τ)

≥

Γτkτ
4 − 2c1

∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ

 (∆pτkτ)2
∆tτ

+

c1 − 1
Γτkτ

∑
ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ]
kν ,kτ

·∆tν ·
pν−kν
pτ−kτ


·

 ∑
ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
pτ−kτ
pν−kν
·
(
∆pνkν

)2
∆tν

 . (8)

Thus, for Φ to be decreasing, we impose the following conditions (the second one is
stronger than what is needed at this point):

Γτkτ ≥ 8c1
∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ
and Γτkτ ≥

2
c1

∑
ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ]
kν ,kτ

·∆tν ·
pν−kν
pτ−kτ

. (9)

4.2 The Sum of the Last Two Terms in (6) is Non-negative
It remains to show that the sum of the last two terms in (6) is non-negative, i.e.,

∑
τ∈(ta,t]

Γτkτ
8 ·

(∆pτkτ)2

∆tτ
− c2

16
∑

ν∈(ta,tb]

δν ·A(α(ν)) + A(ta)−A(t)

≥
∑

τ∈(ta,t]

9
8Γτkτ

· (zmax,τ
kτ

− zmin,τ
kτ

)2. (10)

We first simplify the LHS using the definition of A:

∑
τ∈(ta,t]

Γτkτ
8 ·

(∆pτkτ)2

∆tτ
− c2

16
∑

ν∈(ta,tb]

δν ·A(α(ν)) + A(ta) − A(t)

≥
∑

τ∈(ta,t]

Γτkτ
8 ·

(∆pτkτ)2

∆tτ
− c2

16
∑

ν∈(ta−1,tb]

4c1
∑
k 6=kν

L
[ν,ν+1]
kν ,k

· p
ν
k

pν−kν
·
(
∆pνkν

)2
∆tν

+ c1
∑

ν∈(ta−1,ta]

∑
k 6=kν

L
[ν,ν+1]
kν ,k

· p
ν
k

pν−kν
·
(
∆pνkν

)2
∆tν

− 2c1
∑

ν∈(t−1,t]

∑
k 6=kν

L
[ν,ν+1]
kν ,k

· p
ν
k

pν−kν
·
(
∆pνkν

)2
∆tν

≥
(
c1 −

c1c2
4

) ∑
ν∈(ta−1,ta]

∑
k 6=kν

L
[ν,ν+1]
kν ,k

· p
ν
k

pν−kν
·
(
∆pνkν

)2
∆tν

+
∑

τ∈(ta,t]

Γτkτ
8 −

(c1c2
4 + 2c1

) ∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ

 (∆pτkτ)2

∆tτ
.

By imposing the requirement that Γτkτ ≥ 8c3
∑
k 6=kτ L

[τ,τ+1]
kτ ,k

· p
τ
k

pτ−
kτ

, for some constant

Y.K. Cheung and R. Cole 18:11

c3 > 0 which we will determine later, we obtain

∑
τ∈(ta,t]

Γτkτ
8

(∆pτkτ)2

∆tτ
− c2

16
∑

ν∈(ta,tb]

δν ·A(α(ν)) + A(ta) − A(t)

≥ min
{
c1 −

c1c2
4 , c3 −

c1c2
4 − 2c1

}
·

∑
τ∈(ta−1,t]

∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ

(∆pτkτ)2

∆tτ
.

On the other hand, by (7) and by the second condition imposed in (9),

∑
τ∈(ta,t]

9
8Γτkτ

· (zmax,τ
kτ

− zmin,τ
kτ

)2 ≤ 9c1
16

∑
τ∈(ta,t]

∑
ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
pτ−kτ
pν−kν
·
(
∆pνkν

)2
∆tν

= 9c1
16

∑
τ∈(ta,t]

∑
ν∈(αkτ (τ),τ)

L
[ν,ν+1]
kν ,kτ

·
pνkτ
pν−kν
·
(
∆pνkν

)2
∆tν

≤ 9c1
16

∑
ν∈(ta−1,t]

∑
k 6=kν

L
[ν,ν+1]
kν ,k

· p
ν
k

pν−kν

(∆pνkν)2

∆tν
.

By the above two inequalities, to satisfy (10), it suffices to have 9c1
16 ≤ min

{
c1 − c1c2

4 ,

c3 − c1c2
4 − 2c1

}
. There are multiple possible choices for c1, c2, c3. We choose c3 = 21c1/8

and c2 = 1/4. To summarize, we need the Γ parameters to satisfy

Γτkτ ≥ 21c1
∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ
and Γτkτ ≥

2
c1

∑
ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ]
kν ,kτ

·∆tν ·
pν−kν
pτ−kτ

. (11)

Our remaining tasks are to derive upper bounds on the two summations in (11).

4.3 Upper Bounds on the Local Lipschitz Parameters, and
Determining the Γ’s

Suppose in a Fisher market with buyers having CES utility functions, each buyer i has a
budget of ei, and her CES utility function has parameter ρi. For each i, let θi := ρi/(ρi − 1).
As we have discussed in Section 2, at any given price vector p ∈ Rn+, buyer i computes
the demand-maximizing bundle of goods costing at most ei; we let xi`(p) denote buyer i’s
demand for good ` at price vector p.

In a Fisher market with buyers having complementary-CES utility functions, the following
properties are well-known. (See [14].)
1. For any k 6= j,∣∣∣∣ ∂2φ

∂pj ∂pk
(p)
∣∣∣∣ =

m∑
i=1

θi xij(p) xik(p)
ei

≤
m∑
i=1

xij(p) xik(p)
ei

.

2. Given positive price vector p, for any 0 < r1 < r2, let p′ be prices such that for all `,
r1p` ≤ p′` ≤ r2p`. Then for all `, 1

r2
x`(p) ≤ x`(p′) ≤ 1

r1
x`(p).

I Lemma 6. If the parameter λ in update rule (2) is at most 1/10, then

∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ
≤ e4λ(λ+1) · xkτ (pτ−)

pτ−kτ

ESA 2018

18:12 Amortized Analysis of Asynchronous Price Dynamics

and

∑
ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ]
kν ,kτ

·∆tν ·
pν−kν
pτ−kτ

≤ 2e8λ(λ+1) · xkτ (pτ−)
pτ−kτ

.

Proof. Let λ′ = 2λ(λ+ 1). Since λ ≤ 1/10, it is easy to observe that for any ν ∈ [τ, τ + 1]
and for any k (including coordinate kτ),

e−λ
′
· pτ−k ≤ pνk ≤ eλ

′
· pτ−k , (12)

on noting that the ∆tν terms span up to 2 time units.
Accordingly, let P̃ :=

{
(p̃1, p̃2, · · · , p̃n)

∣∣∣ ∀k ∈ [n], e−λ′ · pτ−k ≤ p̃k ≤ eλ
′ · pτ−k

}
. Then,

∑
k 6=kτ

L
[τ,τ+1]
kτ ,k

· p
τ
k

pτ−kτ
≤ 1

pτ−kτ

∑
k 6=kτ

(
max
p̃∈P̃

∣∣∣∣ ∂2φ

∂pkτ ∂pk
(p̃)
∣∣∣∣) · pτk

≤ 1
pτ−kτ

∑
k 6=kτ

m∑
i=1

(eλ′xikτ (pτ−)) · (eλ′xik(pτ−))
ei

· pτ−k (by Properties 1 and 2)

(13)

≤ e2λ′

pτ−kτ

m∑
i=1

xikτ (pτ−)
∑
k 6=kτ

xik(pτ−) · pτ−k
ei

≤ e2λ′

pτ−kτ

m∑
i=1

xikτ (pτ−) (the second summation ≤ 1, due to the budget constraint)

= e2λ′ · xkτ (pτ−)
pτ−kτ

. (14)

For the time range ν ∈ [αkτ (τ), τ], inequality (12) also holds. Thus,

∑
ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ]
kν ,kτ

·∆tν ·
pν−kν
pτ−kτ

≤ 1
pτ−kτ

∑
ν∈(αkτ (τ),τ)

L
[αkτ (τ),τ]
kν ,kτ

·∆tν · e2λ′ · pτ−kν

≤ e2λ′

pτ−kτ

∑
k 6=kτ

L
[αkτ (τ),τ]
k,kτ

· pτ−k ·
∑

ν∈(αkτ (τ),τ)

kν=k

∆tν

≤ 2e2λ′

pτ−kτ

∑
k 6=kτ

L
[αkτ (τ),τ]
k,kτ

· pτ−k . (observe that the
∑
ν

∆tν term is at most 2)

The summation
∑
k 6=kτ L

[αkτ (τ),τ]
k,kτ

· pτ−k above can be bounded as in (14), yielding an upper
bound of e2λ′ · xkτ (pτ−). J

To conclude, by (11) and Lemma 6, it suffices to have:

1
λpτ−kτ

·max{1, z̃kτ } = Γτkτ ≥ max
{

21c1e4λ(λ+1) ,
4
c1
· e8λ(λ+1)

}
· xkτ (pτ−)

pτ−kτ
,

Y.K. Cheung and R. Cole 18:13

or equivalently, λ ·max
{

21c1e4λ(λ+1) , 4
c1
· e8λ(λ+1)

}
≤ max{1,z̃kτ }

xkτ (pτ−) . The minimum possible
value of the RHS above is 1/(2e2λ(λ+1)). Thus, we need that

λ ·max
{

42c1e6λ(λ+1) ,
8
c1
· e10λ(λ+1)

}
≤ 1.

We choose c1 such that the two parameters in the max are equal, i.e., c1 = 2√
21 · e

2λ(λ+1).
Then the above inequality reduces to 4

√
21 · λ · e8λ(λ+1) ≤ 1; λ ≤ 1/25.5 suffices.

References
1 Carlos Alós-Ferrer and Nick Netzer. The logit-response dynamics. Games and Economic

Behavior, 68(2):413–427, 2010.
2 Kenneth J. Arrow, H. D. Block, and Leonid Hurwicz. On the stability of competitive

equilibrium, ii. Econometrica, 27(1):82–109, 1959.
3 Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul W. Goldberg, Zengjian Hu,

and Russell A. Martin. Distributed selfish load balancing. SIAM J. Comput., 37(4):1163–
1181, 2007. doi:10.1137/060660345.

4 Benjamin Birnbaum, Nikhil R. Devanur, and Lin Xiao. Distributed algorithms via gradient
descent for fisher markets. In Proceedings of the 12th ACM Conference on Electronic
Commerce, EC ’11, pages 127–136. ACM, 2011. doi:10.1145/1993574.1993594.

5 Lawrence E. Blume. The statistical mechanics of strategic interaction. Games and Eco-
nomic Behavior, 5(3):387–424, 1993.

6 Bernard Chazelle. Natural algorithms. In SODA, pages 422–431, 2009.
7 Bernard Chazelle. The dynamics of influence systems. In FOCS, pages 311–320, 2012.
8 X. Chen, D. Dai, Y. Du, and S. H. Teng. Settling the complexity of arrow-debreu equilibria

in markets with additively separable utilities. In 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, pages 273–282, 2009. doi:10.1109/FOCS.2009.29.

9 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-
player nash equilibria. J. ACM, 56(3):14:1–14:57, may 2009.

10 Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone
markets. J. ACM, 64(3):20:1–20:56, 2017. doi:10.1145/3064810.

11 Yun Kuen Cheung. Analyzing Tatonnement Dynamics in Economics Markets. PhD thesis,
Courant Institute of Mathematical Sciences, New York University, Proquest Disserta-
tions Publishing, 2014. Available at https://cs.nyu.edu/media/publications/cheung_
yunkuen.pdf.

12 Yun Kuen Cheung and Richard Cole. Amortized analysis on asynchronous gradient descent.
CoRR, abs/1412.0159, 2014.

13 Yun Kuen Cheung, Richard Cole, and Nikhil Devanur. Tatonnement beyond gross sub-
stitutes? Gradient descent to the rescue. In STOC, pages 191–200, 2013. Full version
available at https://cims.nyu.edu/~ykcheung/publication/STOC13_full_paper.pdf.
doi:10.1145/2488608.2488633.

14 Yun Kuen Cheung, Richard Cole, and Ashish Rastogi. Tatonnement in ongoing markets
of complementary goods. In EC, pages 337–354, 2012. doi:10.1145/2229012.2229039.

15 Yun Kuen Cheung, Richard Cole, and Yixin Tao. Dynamics of distributed updating in fisher
markets. In Proceedings of the 2018 ACM Conference on Economics and Computation,
Ithaca, NY, USA, June 18-22, 2018, EC ’18, pages 351–368, 2018. doi:10.1145/3219166.
3219189.

16 Yun Kuen Cheung, Richard Cole, and Yixin Tao. A unified approach to analyzing asyn-
chronous coordinate descent — standard and partitioned. Submitted, 2018.

ESA 2018

http://dx.doi.org/10.1137/060660345
http://dx.doi.org/10.1145/1993574.1993594
http://dx.doi.org/10.1109/FOCS.2009.29
http://dx.doi.org/10.1145/3064810
https://cs.nyu.edu/media/publications/cheung_yunkuen.pdf
https://cs.nyu.edu/media/publications/cheung_yunkuen.pdf
https://cims.nyu.edu/~ykcheung/publication/STOC13_full_paper.pdf
http://dx.doi.org/10.1145/2488608.2488633
http://dx.doi.org/10.1145/2229012.2229039
http://dx.doi.org/10.1145/3219166.3219189
http://dx.doi.org/10.1145/3219166.3219189

18:14 Amortized Analysis of Asynchronous Price Dynamics

17 Bruno Codenotti, Benton McCune, and Kasturi Varadarajan. Market equilibrium via the
excess demand function. In STOC, pages 74–83, 2005. doi:10.1145/1060590.1060601.

18 Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. Leontief economies
encode nonzero sum two-player games. In Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithm, SODA ’06, pages 659–667. Society for Industrial
and Applied Mathematics, 2006.

19 Richard Cole and Lisa Fleischer. Fast-converging tatonnement algorithms for one-time
and ongoing market problems. In STOC, pages 315–324, 2008. doi:10.1145/1374376.
1374422.

20 Richard Cole, Lisa Fleischer, and Ashish Rastogi. Discrete price updates yield fast conver-
gence in ongoing markets with finite warehouses. CoRR, 2010.

21 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complex-
ity of computing a nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

22 Nikhil R. Devanur, Christos H. Papadimitriou, Amin Saberi, and Vijay V. Vazirani. Market
equilibrium via a primal-dual algorithm for a convex program. J. ACM, 55(5):22:1–22:18,
2008.

23 Akitaka Dohtani. Global stability of the competitive economy involving complementary
relations among commodities. Journal of Mathematical Economics, 22(1):73–83, 1993.

24 Ran Duan and Kurt Mehlhorn. A combinatorial polynomial algorithm for the linear arrow-
debreu market. Inf. Comput., 243:112–132, 2015. doi:10.1016/j.ic.2014.12.009.

25 Krishnamurthy Dvijotham, Yuval Rabani, and Leonard J. Schulman. Convergence of
incentive-driven dynamics in fisher markets. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 554–567. Society for
Industrial and Applied Mathematics, 2017.

26 Eyal Even-Dar, Alexander Kesselman, and Yishay Mansour. Convergence time to nash
equilibrium in load balancing. ACM Trans. Algorithms, 3(3):32, 2007. doi:10.1145/
1273340.1273348.

27 K. Jain. A polynomial time algorithm for computing the arrow-debreu market equilibrium
for linear utilities. In Forty Fifth Annual IEEE Symposium on Foundations of Computer
Science, FOCS’04, pages pp. 286–294, Rome, Italy, 2004.

28 Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,
combinatorial algorithm for solving SDD systems in nearly-linear time. In STOC, pages
911–920, 2013.

29 Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In FOCS, pages 147–156, 2013.

30 C. E. Lemke and J. T. Howson Jr. Equilibrium points of bimatrix games. Journal of the
Society for Industrial and Applied Mathematics, 12(2):413–423, 1964.

31 Jure Leskovec, Lars Backstrom, and Jon M. Kleinberg. Meme-tracking and the dynamics
of the news cycle. In KDD, pages 497–506, 2009.

32 Jason R. Marden and Jeff S. Shamma. Revisiting log-linear learning: Asynchrony, com-
pleteness and payoff-based implementation. Games and Economic Behavior, 75(2):788–808,
2012.

33 James B. Orlin. Improved algorithms for computing Fisher’s market clearing prices. In Pro-
ceedings of the Forty Second Annual ACM Symposium on Theory of Computing, STOC’10,
pages 291–300, 2010.

34 Siddharth Pal and Richard J. La. Simple learning in weakly acyclic games and convergence
to Nash equilibria, 2015. URL: http://www.ece.umd.edu/~hyongla/PAPERS/ALLERTON15.
pdf.

35 Christos H. Papadimitriou and Mihalis Yannakakis. An impossibility theorem for price-
adjustment mechanisms. PNAS, 5(107):1854–1859, 2010.

http://dx.doi.org/10.1145/1060590.1060601
http://dx.doi.org/10.1145/1374376.1374422
http://dx.doi.org/10.1145/1374376.1374422
http://dx.doi.org/10.1016/j.ic.2014.12.009
http://dx.doi.org/10.1145/1273340.1273348
http://dx.doi.org/10.1145/1273340.1273348
http://www.ece.umd.edu/~hyongla/PAPERS/ALLERTON15.pdf
http://www.ece.umd.edu/~hyongla/PAPERS/ALLERTON15.pdf

Y.K. Cheung and R. Cole 18:15

36 Hirofumi Uzawa. Walras’ tatonnement in the theory of exchange. Review of Economic
Studies, 27(3):182–194, 1960.

37 Vijay V. Vazirani and Mihalis Yannakakis. Market equilibrium under separable, piecewise-
linear, concave utilities. J. ACM, 58(3):10:1–10:25, 2011.

38 LéonWalras. Eléments d’ Economie Politique Pure. Corbaz, 1874. (Translated as: Elements
of Pure Economics. Homewood, IL: Irwin, 1954.).

39 Fang Wu and Li Zhang. Proportional response dynamics leads to market equilibrium. In
Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC
’07, pages 354–363. ACM, 2007. doi:10.1145/1250790.1250844.

40 Yinyu Ye. A path to the arrow-debreu competitive market equilibrium. Math. Program.,
111(1-2):315–348, 2008. doi:10.1007/s10107-006-0065-5.

41 Li Zhang. Proportional response dynamics in the fisher market. Theor. Comput. Sci.,
412(24):2691–2698, 2011.

ESA 2018

http://dx.doi.org/10.1145/1250790.1250844
http://dx.doi.org/10.1007/s10107-006-0065-5

Cycles to the Rescue! Novel Constraints to
Compute Maximum Planar Subgraphs Fast
Markus Chimani
Theoretical Computer Science, Osnabrück University, Germany
markus.chimani@uni-osnabrueck.de

https://orcid.org/0000-0002-4681-5550

Tilo Wiedera
Theoretical Computer Science, Osnabrück University, Germany
tilo.wiedera@uni-osnabrueck.de

https://orcid.org/0000-0002-5923-4114

Abstract
The NP-hard Maximum Planar Subgraph problem asks for a planar subgraph H of a given
graph G such that H has maximum edge cardinality. For more than two decades, the only
known non-trivial exact algorithm was based on integer linear programming and Kuratowski’s
famous planarity criterion. We build upon this approach and present new constraint classes –
together with a lifting of the polyhedron – to obtain provably stronger LP-relaxations, and in turn
faster algorithms in practice. The new constraints take Euler’s polyhedron formula as a starting
point and combine it with considering cycles in G. This paper discusses both the theoretical as
well as the practical sides of this strengthening.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization,
Mathematics of computing → Graph theory, Theory of computation → Linear programming

Keywords and phrases algorithm engineering, graph algorithms, integer linear programming,
maximum planar subgraph

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.19

Related Version https://arxiv.org/abs/1806.08283

Funding Supported by the German Research Foundation (DFG) project CH 897/2-1.

1 Introduction

The NP-hard Maximum Planar Subgraph (MPS) problem is an established question in graph
theory, already discussed in the classical textbook by Garey and Johnson [14,20]. Given a
graph G, we ask for a largest subset F ⊆ E(G) of edges such that F induces a planar graph.
By contrast, the closely related maximal planar subgraph problem asks for a set of edges
that we cannot extend without violating planarity and is trivially solvable in polynomial
time. The inverse measure of MPS that counts the minimum number of edges that must be
removed to obtain a planar subgraph, is called the skewness of G and denoted by skew(G).

There are several reasons why this problem has received a good deal of attention:
Graph theoretically, skewness is a very natural and common measure of non-planarity (like
crossing number or genus). Algorithmically, finding a large planar subgraph is central to the
planarization method [1, 5] that is heavily used in graph drawing: one starts with a large
(favorably maximum) planar subgraph and re-inserts the deleted edges, typically to obtain a
low number of overall crossings. In fact, this gives an approximation of the crossing number

© Markus Chimani and Tilo Wiedera;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:markus.chimani@uni-osnabrueck.de
https://orcid.org/0000-0002-4681-5550
mailto:tilo.wiedera@uni-osnabrueck.de
https://orcid.org/0000-0002-5923-4114
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.19
https://arxiv.org/abs/1806.08283
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

with ratio roughly O
(
∆ · skew(G)

)
[9], where ∆ is the maximum node degree. Furthermore,

several graph problems become easier when the input’s skewness is small or constant. E.g.,
we can compute a maximum flow in time O

(
skew(G)3 · |V (G)| log |V (G)|

)
[16]1 – the same

runtime complexity as on planar graphs if the skewness is constant.
There are several practical heuristic approaches to tackle the problem [10]. However, MPS

is MaxSNP-hard, i.e., there is an upper bound < 1 on the obtainable approximation ratio
unless P = NP [2], and there are further limits known for specific algorithmic approaches [3,7].
Already a spanning tree gives an approximation ratio of 1/3, the best known ratio is 4/9 [2],
and only recently a practical 13/33-approximation algorithm emerged [3].

Considering exact algorithms, options are scarce. Over two decades ago, an integer linear
program based on Kuratowski’s characterization of planarity was introduced in [23], which
remained the only non-trivial exact algorithm. Only very recently, [8] showed the existence
of potentially feasible alternatives to the Kuratowski-based approach, but the former still
constitutes the practically by far most efficient (and theoretically most thoroughly explored)
model. All known ILP models (including those discussed in this paper) can also directly
solve the weighted MPS, i.e., identify the heaviest planar subgraph w.r.t. given edge weights.

Contribution. In this paper, we strengthen the Kuratowski model by introducing new
constraints and supplementary variables, based on analyzing the cycles occurring in the
solutions; see Section 3. In particular, we show in Section 3.2 that starting with the original
Kuratowski model and considering cycles of growing lengths yields a natural hierarchy of ever
stronger LP-relaxations. In Section 3.3, we establish additional constraint classes using our
cycle variables to further strengthen the LP-relaxations, both theoretically and practically.
We show the latter property in an experimental evaluation in Section 4. We skip the proofs
of some lemmata, in which case we mark the lemma with ‘?’.

2 Preliminaries

Graph Notation. Our non-planar input graph is called G. Generally, we consider an
undirected graph H, with nodes V (H) and edges E(H), which are cardinality-2 subsets
of V (H). We use δH(v) to denote all edges incident to node v in H and define the node
degree degH(v) := |δH(v)|. If H is a subgraph of G, we write H ⊆ G. A (sub)graph is
a cycle if it is connected and all its nodes have degree 2. The girth γ(H) of H is the
length of its smallest cycle. The union of two (non-disjoint) graphs H1, H2 is denoted by
H1tH2 := (V (H1)∪V (H2), E(H1)∪E(H2)). ForW ⊆ V (H) and F ⊆ E(H) we define node-
and edge-induced subgraphs H[W] := (W, {e ∈ E(H) | e ⊆W}) and H[F] :=

(⋃
e∈F e, F

)
,

respectively. We further use H − e := H[E(H) \ {e}].
Given a planar drawing D of some planar graph H, the cyclic adjacency order around

each node in D defines an embedding π of H. The disjoint regions bounded by edges in D
correspond to the faces of π; the infinite region, bounded only on the inside, is called outer
face. The degree deg(f) of any face f is the number of half-edges (“sides” of edges) that
occur on the boundary of f ; a bridge occurs twice on the same face.

Linear Programming. A Linear Program (LP) is a vector c ∈ Rd and a set of linear
inequalities (constraints) that define a polyhedron P in Rd; we ask for an element x ∈ P
that maximizes cᵀx. An Integer Linear Program (ILP) additionally requires the components

1 [16] considers the crossing number; the algorithm trivially works also for the stronger parameter skewness.

M. Chimani and T. Wiedera 19:3

of x to be integral. For a given problem, one can establish different ILPs, so-called models.
To solve an ILP model, one uses branch-and-bound, where dual bounds are obtained from
(fractional) solutions to the LP-relaxation, i.e., the ILP without the integrality requirements.
Clearly, strong such LP-bounds are desired. We say a model N is at least as strong as a
model M , if N ’s LP-relaxation gives no worse bounds than M ’s. We say N is stronger than
M if, additionally, there is an instance where N gives a strictly better bound. If, in this case,
N arises from M by adding some constraints C, we say C strengthen M .

It is often beneficial to consider only a relevant subset of constraints in the solving process,
in particular when the class of constraints is (exponentially) large. The procedure is referred
to as separation. We employ it on (fractional) LP-solutions for selected constraint classes.

Kuratowski Model (ε-Model). The following ILP is due to Mutzel [23]. Jünger and Mutzel
showed that both constraint classes below form facets of the planar subgraph polytope [17].
We use solution variables se ∈ {0, 1} (for all e ∈ E(G)) that are 1 if and only if edge e is
deleted, i.e., not in the planar subgraph. (In [23], equivalent variables xe := 1− se are used.)
The objective minimizes the skewness – thus maximizes the planar subgraph – and is given by

min
∑

e∈E(G)
w(e) se.

Thereby, we may consider edge weights w; they are 1 in case of the traditional unweighted
MPS problem. For a given subset F ⊆ E(G) of edges, we define s(F) :=

∑
e∈F se as a

shorthand. We can always use Euler’s bound on the number of edges in planar graphs:

s
(
E(G)

)
≥ |E(G)| − (3n− 6) + 1G is bipartite(n− 2). (1)

By Kuratowski’s theorem [19], a graph is planar if and only if it neither contains a subdivision
of a K5 nor of a K3,3. Hence, it suffices to ask for any member of the (exponentially large)
set K(G) of all Kuratowski subdivisions that at least one of its edges is deleted:

s
(
E(K)

)
≥ 1 ∀K ∈ K(G). (2)

Clearly, (2) are too many constraints to use all explicitly. Instead, we identify a sufficient
subset of constraints via a (heuristic) separation procedure: we round the fractional solution
and obtain a graph that can be tested for planarity. If it is non-planar, we extract a
Kuratowski subdivision. This method does neither guarantee to always find a violated
constraint if there is any, nor that the identified subdivision in fact corresponds to a violated
Kuratowski constraint. Still, since it has these guarantees on integral solutions, it suffices to
obtain an exact algorithm. Over the years, the performance of this approach was improved
by strong preprocessing [4], finding multiple Kuratowski subdivision in linear time [11], and
strong primal heuristics [10]. We use all these identically in all considered algorithms.

The Kuratowski-model forms the basis of our extensions. As such, we denote it, without
any of the below extensions, by ‘ε-model’.

3 Stronger Constraints Based on Cycles

We now present new constraints for the planar subgraph polytope (or a lifted version thereof).
All but the first class require the introduction of new variables based on cycles, leading to
the cycle model. For each constraint class we first give some motivation and intuition for its
feasibility, before discussing its technical details. We then describe – provided the class is
large – separation routines that quickly identify violated constraints, and usually show that
it strengthens our ILP model.

ESA 2018

19:4 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

Generalized Euler Constraints. We know from [17] that inequality |E(G)| ≤ 2|V (G)| − 4
is facet-defining for complete biconnected graphs. We are interested in a class of similar
constraints for dense subgraphs with large girth. The following lemma is folklore:
I Lemma 1. A planar graph G has at most

(
|V (G)| − 2

)
γ(G)/

(
γ(G)− 2

)
edges.

Proof. Let n := |V (G)|, m := |E(G)|, and π denote an embedding of G. For any face of
π we require at least γ(G) half-edges. Thus, the number f of faces in π is bounded by
f ≤ 2m/γ(G). Using Euler’s formula, we obtain n−m+ (2m/γ(G)) ≤ 2, the claimed results
follows when solving for m. J

We can thus derive a feasible generalized Euler constraint for any subgraph H ⊆ G:

|E(H)| − s
(
E(H)

)
≤
(
|V (H)| − 2

)
γ(H)/

(
γ(H)− 2

)
∀H ⊆ G (3)

We note that this bound can sometimes be improved: for constraints (3) to be satisfied
with equality it is necessary that V (H) ≡ 2 (mod γ(H) − 2) if γ(H) is odd and V (H) ≡
2
(
mod (γ(H)− 2)/2

)
otherwise [13]. However, we did not implement this in our algorithms.

I Lemma 2.? The generalized Euler constraints (3) strengthen the ε-model.

Proof sketch. K3,3,1 contains a K3,4 that prohibits the otherwise feasible solution 3/2. J

We separate constraints (3) heuristically by seeking dense, high-girth subgraphs using
two different methods. First, using the current fractional solution, we assign weight 1− se to
each edge e and approximate a maximum cut [22, Section 6.3], obtaining a girth-4 subgraph.
If (after postprocessing, see below) this does not yield a violated constraint, we try a second
method: We set a target girth µ and iteratively add edges in ascending order of their LP-value
to an initially empty graph, while updating the shortest paths between all node pairs. Upon
adding an edge e, we check whether e would create a cycle of length < µ, in which case we
discard e instead. We may repeat this process for different values of µ. After each of the above
attempts, we apply a postprocessing: Let H denote a girth-µ subgraph. The contribution
of a node v ∈ V (H) is defined by |δH(v)| −

∑
e∈δH (v) se − µ/(µ− 2). We iteratively remove

nodes with negative contribution from H. In particular, this will remove all degree-1 nodes.

3.1 Cycle Model
We now want to bound the number of edges in the planar subgraph by the number of its
small faces. Even though compelling from a theoretical standpoint, it is infeasible to generate
all potential faces of all planar subgraphs of a given graph (already for bounded length).
However, we know that traversing the border of any face of a spanning subgraph H traverses
at least one cycle if H is not a tree. We will relate the number of small faces in any planar
subgraph of a graph G to the number of small cycles in G. One may also view this as a way
to further generalize Euler constraints: many – in particular sparse – graphs have low girth
only due to very few cycles of small length.

We may assume any (maximal) primal solution to be connected and non-outerplanar as it
could be trivially improved otherwise. Also observe that we cannot require faces to uniquely
map to cycles in general. Consider for example a cycle graph (two faces with the same cycle)
or a non-biconnected graph (each cut-node occurs twice in at least one face; cycles contain
nodes at most once) Note that there are biconnected graphs that have no biconnected MPS.
I Lemma 3. For every connected, planar but non-outerplanar subgraph H of G, there exists
an embedding of H such that we can assign a unique cycle α to every face f where all edges
of α occur on the boundary of f .

M. Chimani and T. Wiedera 19:5

Proof. Let H ⊂ G be as defined in the claim. There exists some biconnected component B?
of H that is neither a cycle nor an edge since H is not outerplanar. Choose an embedding of
H and pick some face of B? as the outer one. For every biconnected component B that is not
just an edge, we iterate over the inner faces of B. Each inner face f of B directly corresponds
to a cycle as a biconnected graph contains neither cut-nodes nor bridges. (Observe that an
inner face of B might in fact be much larger in H since we ignore other components nested
in this face.) Ultimately, we assign the cycle induced by the outer face in H to the (last
remaining) outer face. Since B? is not a cycle we do not assign any cycle twice. J

We denote the number of faces whose degree satisfies some property P by fP .

I Lemma 4. Given a connected, planar graph H on n nodes andm edges, for each embedding
of H with exactly f=d faces of degree d ∈ {3, 4 . . . , 2m}, we have

m = 3n− 6−
∑2m

d=3
(d− 3)f=d. (4)

Proof. Every face in any embedding of H has degree at least 3 and at most 2m. For every
face f of degree d we can add d− 3 edges that split f into d− 2 triangles without violating
planarity. After performing this operation for each face we obtain a planar triangulated
graph, i.e., a graph that has exactly 3n− 6 edges. J

Let Cd(G) denote all cycles of length d in G. We set D ≥ 3 to the maximum cycle length
that we want to investigate; this parameter will control the number of additionally generated
variables. Let C≤D(G) denote the set of cycles with length at most D. For every cycle
α ∈ C≤D(G) we generate a variable cα ∈ {0, 1}.2 We force such a variable to 0 if any edge of
the respective cycle is removed and allow at most two cycles per edge in the MPS:∑

α∈C≤D(G) : e∈E(α)
cα ≤ 2 (1− se) ∀e ∈ E(G) (5)

Note that constraints (5) resemble the requirement for each edge to appear in at most two
faces (subject to Lemma 3). We discuss its correctness below. Let c(d) :=

∑
α∈Cd(G) cα.

I Lemma 5. For every connected, planar but non-outerplanar subgraph H of G, there exists
an embedding π of H and a feasible assignment w.r.t. (5) of cycle variables such that for
each d ≤ D the number f=d of faces with degree d in π is bounded from above by

f≤d ≤
∑d

k=3
c(k), or equivalently f=d ≤

∑d

k=3
c(k)− f<d.

Proof. We assign cycle variables following the proof of Lemma 3. Hence, there is a unique
cycle variable assigned to each face such that the length of the cycle is at most the degree of
its face. The variable assignment is feasible since we pick only edges contained in H and
pick at most two cycles incident with any such edge. J

I Theorem 6. For any maximum planar subgraph of a graph G on n nodes and m edges
there exists a feasible variable assignment that satisfies (5) and the cycle constraint

(D − 1)
(
m− s(E(G))

)
≤ (D + 1)(n− 2) +

∑D

d=3
(D + 1− d)c(d). (6)

2 Intuitively, we want cα = 1 if and only if α is (part of) a face, see below for details. In terms of
correctness, we need not but can actively force these variables to be binary, cf. Section 4.

ESA 2018

19:6 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

Proof. Starting with (4) on any connected, planar subgraph of G that has m − s(E(G))
edges, we relax the equality by using the same coefficient for all faces of large degree as in

m− s(E(G)) ≤ 3n− 6−
∑D

d=3
(d− 3)f=d − (D − 2)f>D.

By replacing f>D in Euler’s formula, (f>D + f≤D) + n−
(
m− s(E(G))

)
= 2, we obtain

(D − 1)
(
m− s(E(G))

)
≤ (D + 1)(n− 2) +

∑D

d=3
(D + 1− d)f=d. (7)

The claimed cycle constraint is finally obtained by applying Lemma 5 to iteratively replace
f=D′ for D′ = D,D − 1, . . . , 4, 3 by the upper bound (note that f<3 = 0), as sketched below
for the (generalized, iteratively re-appearing) rightmost summand of (7):∑D′

d=3
(D′ + 1− d)f=d ≤

∑D′−1

d=3

(
(D′ − 1) + 1− d

)
f=d +

∑D′

d=3
c(d) J

3.2 Relaxations and D-Hierarchy
We now turn our attention to LP-relaxations of the cycle model. We show that there is a
hierarchy of gradually stronger LPs induced by the maximum cycle length D. Let the cycle
model CMD consist of the ε-model, the cycle variables for cycle lengths up to D, and the
corresponding constraints (5),(6). If D = 2 were allowed, CM2 would be exactly the ε-model.
I Lemma 7. For any solution to the relaxation of CMD, it holds that∑D

d=3
(d− 2)c(d) ≤ 2n− 4.

Proof. Assume the contrary,
∑D
d=3(d − 2)c(d) > 2n − 4. It follows that

∑D
d=3 dc(d) >

2n−4+2
∑D
d=3 c(d) and hencem−s(E(G)) > n−2+

∑D
d=3 c(d) by the sum of constraints (5).

Plugging this bound on the number of edges into the cycle constraint (6), we obtain∑D
d=3(d− 2)c(d) < 2n− 4, a contradiction. J

It is not immediately clear, that decreasing the maximum cycle length maintains LP-
feasibility, as some variables are removed and the cycle constraint is replaced. By employing
Lemma 7, we can show the following fact.
I Lemma 8.? Model CMD+1 is at least as strong as CMD.
I Lemma 9. Model CMD+1 is stronger than CMD.

Proof. Consider the complete graph Kk on k ≥ 5 nodes. Pick any number µ ≥ D + 1. We
subdivide every edge of Kk using ξ := bµ/3c additional nodes. The resulting graph Kµ

k

has girth at least µ, i.e., it has no cycles of length ≤ D. We observe that skew(Kµ
n) =

skew(Kk) = k(k − 1)/2− 3k + 6, independent of µ. We show that increasing the maximum
cycle length from D to D + 1 cuts off all previously optimal LP solution.

Since Kµ
k has girth µ there can be at most (|V (Kµ

k)| − 2)µ/(µ− 2) edges in any planar
subgraph. As there are no cycle variables, the cycle constraint (6) approaches this value
from above for increasing D. Any feasible solution that tightly satisfies the cycle constraint
is an optimal one. The Kuratowski constraints (2) on the other hand are already satisfied by
deleting each edge partially with se = 1/(9ξ) ∀e ∈ E(Kµ

n), since each subdivision requires at
least 9ξ edges, still allowing LP-solutions with value k(k − 1)/18. J

Overall, increasing the maximum cycle length strengthens our LP relaxations (leading to
fewer LP-computations), but this comes at the cost of increasing the variable space (leading
to slower LP-computations). It is imperative to find a good trade-off between these two.

M. Chimani and T. Wiedera 19:7

3.3 Strengthening the Cycle Model
We now extend the cycle model further by introducing new constraint classes. Only the first
such extension requires yet additional variables.

Pseudo-Tree Extension. Observe that degree-1 nodes in the solution deteriorate the cycle
constraint’s bound: given a face f that contains a degree-1 node, we can set the variable of
a cycle with length at most deg(f)− 2 to 1. We introduce new variables tv ∈ {0, 1} for all
v ∈ V (G) and tvw ∈ {0, 1} for all v, w ∈ V (G) with {v, w} ∈ E(G). They label nodes and
directed edges (arcs) as pseudo-trees: any node with at most one unlabeled neighbor (in
particular any degree-1 node) is to be labeled. This can be achieved by:

tvw + twv ≤ 1− s{v,w} ∀{v, w} ∈ E (8)∑
w∈N(v)

tvw ≥ tv ∀v ∈ V (G) (9)

tv + degG(v)−
∑

w∈N(v)
twv −

∑
w∈N(v)

svw ≥ 2 ∀v ∈ V (G) (10)

Constraints (8) allow at most one tree-arc for any edge and none for deleted edges. We force
tree nodes to propagate along one outgoing arc by constraints (9). Finally, constraints (10)
label degree-1-nodes and nodes where all (but one) neighbor is labeled. Now, we may subtract∑
v∈V (G) tv nodes (and the same number of edges) from (6) to obtain a stronger bound:

I Corollary 10. The extended cycle constraint, given below, is feasible.

(D − 1)
(
m− s(E(G))

)
≤ (D + 1)(n− 2) +

∑D

d=3
(D + 1− d)c(d)− 2

∑
v∈V (G)

tv (11)

Alternatively, we may use a less sophisticated approach that does not model propagation but
labels only degree-1-nodes. In this case, it suffices to add variables tv ∈ {0, 1}, ∀v ∈ V (G),
and constraints (10), assuming

∑
w∈N(v) twv = 0.

I Lemma 11. ? The pseudo-tree extension, i.e., constraints (8)–(11) together with the
t-variables, strengthens CM3. This already holds for the approach without propagation.

Proof sketch. We use the graph given in Fig. 1a: any MPS of it has a degree-1 node. J

All following constraint classes deal with excluding combinations of cycles and paths that
either induce non-planarity, or result in cycle-variables not assignable to any face in the
planar subgraph (Lemma 5). They are independent of but compatible with the pseudo-tree
extension.

Cycle-Edge Constraints. Considering integral solutions and constraints (5), a cycle cannot
be picked if any of its edges is deleted. W.r.t. fractional solutions we can additionally require

se + cα ≤ 1 ∀α ∈ C≤D, e ∈ E(α). (12)

Although there are only O(D|C≤D|) such constraints, preliminary benchmarks showed that
adding all of them does not pay off. Instead, we straight-forwardly separate them by iterating
over the edges of each cycle that has a non-zero variable.
I Lemma 12.? The cycle-edge constraints (12) strengthen CM3.

Proof sketch. Use a graph (Fig. 1b) that has 3 edges each incident to only 1 triangle. J

ESA 2018

19:8 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

K8

(a) Pseudo-Tree, Lemma 11

K7

(b) Cycle-Edge, Lemma 12

K8

(c) Two-Cycles-Path, Lemma 14

Figure 1 Graphs in strength proofs. Bold edges in (a) have large weight (or are edge bundles).

Two-Cycles-Path Constraints. Given two cycles α, β, we denote their set of inner nodes
by ν(α, β) := {v ∈ V (α) ∩ V (β) | δα(v) = δβ(v)}. Let ψ(α, β) denote the set of non-empty
paths that connect ν(α, β) to V (α t β) without using any edge in E(α t β).
I Lemma 13. The two-cycles-path constraints, given below, are feasible.

s
(
E(p)

)
≥ cα + cβ − 1 ∀α, β ∈ C≤D; p ∈ ψ(α, β) (13)

Proof. Assume an embedding π of α t β where each of α, β corresponds to a face in π. By
inserting p into π, we either split face α or face β. Hence, even in a supergraph of α t β t p
two such faces cannot exist. Otherwise, if no such π exists, we have 1 ≥ cα + cβ . J

I Lemma 14.? The two-cycles-path constraints (13) strengthen CM4.

Proof sketch. We use the graph of Fig. 1c as input. J

To identify violated two-cycles-path constraints, we consider each edge e. We collect the
set C(e) = {α ∈ C≤D | e ∈ E(α) ∧ cα > 0}, and check, for each pair α, β ∈ C(e), whether its
sum of LP-values is > 1. If so, we compute the set of inner nodes ν := ν(α, β) and cache the
result for future lookup. If ν 6= ∅, we iteratively compute shortest paths following either
of two patterns: the combined approach searches for shortest paths from ν to V (α t β) \ ν,
whereas the separate one searches for paths from v to V (α t β) \ {v}, separately for each
v ∈ ν. Note that the latter variant will always identify a violated constraint, if one exists,
whereas the former ignores paths connecting two inner nodes. After identifying a new path p,
an edge in E(p) with maximal LP-value is discarded and the search at v starts anew.

We point out that there is a natural generalization of this constraint class by using k
instead of only 2 cycles. If the k cycles fully enclose a common node v (like any 2 cycles
enclose their inner nodes), any other path from v to the same block is forbidden.

Cycle-Two-Paths Constraints. We say that two paths p1, p2 are conflicting w.r.t. a cycle α
if and only if they each start and end on nodes of V (α) but are otherwise disjoint from α

and from one another, and p2 connects the components of α[V (α) \ V (p1)].
I Lemma 15. The cycle-two-paths constraints, given below, are feasible.

s
(
E(p1 t p2)

)
≥ cα ∀α ∈ C≤D,∀ conflicting paths p1, p2 w.r.t. α (14)

Proof. Given an embedding π of α, we cannot insert both paths p1, p2 into the same face
of π. Hence, we must split both faces in π. Consequently, no embedding of any supergraph
of α t p1 t p2 exists, where there is a face incident with all of α. J

While this constraint class may be stronger than the two-cycles-path constraints, we did
not implement it: its separation is complex as we ask for two paths depending on each other.

M. Chimani and T. Wiedera 19:9

Kuratowski-Cycle Constraints. Starting with a Kuratowski constraint, we can replace
parts of its edges by cycles that contain them.

I Lemma 16. The Kuratowski-cycle constraints, given below, are feasible.

s({e ∈ E(K) | ∀α ∈ C : e 6∈ E(α)}) ≥
∑

α∈C
cα + 1− |C| ∀K ∈ K, C ⊆ C≤D (15)

Proof. If C = ∅, we simply obtain a Kuratowski constraint. Assuming integrality and
C 6= ∅, the right-hand side is 1 if all cycles in C are picked and ≤ 0 otherwise. In the former
case, the edges of C, together with the remaining edges of K that are not contained in C
contain a Kuratowski subdivision, and we need to remove an edge. J

I Lemma 17.? The Kuratowski-cycle constraints (15) strengthen CM4.

Proof sketch. We use the circulant on 16 nodes with jumps 1, 2, and 8 as input. J

For separation, we identify a Kuratowski subdivision K as for (2). We collect the set S
of cycles with LP-value > 0 incident with K. For each cycle in S, we compute its gain, i.e.,
the increase in violation (or decrease in slack) when adding that cycle to C. While there are
cycles with positive gain, we continue adding a cycle of S with maximal gain to C.

Cycle-Clique Constraints. Two cyclic orders π, π̄ on a set X are conflicting if and only if
π 6= π̄ and π 6= reverse(π̄). The restriction of π to Y ⊆ X is denoted by πY . A cycle α
induces a (up to reversal) unique cyclic order on its nodes V (α). Given two cycles α, β,
let πα, πβ be corresponding cyclic orders, and let W := V (α) ∩ V (β) be the common nodes.
We say that α and β are conflicting if and only if πWα and πWβ are conflicting.

I Lemma 18. The cycle-clique constraints, given below, are feasible.∑
α∈C

cα ≤ 1 ∀C ⊆ C≤D
s.t. all cycles in C are pairwise conflicting (16)

Proof. Consider any pair of conflicting cycles α, β ∈ C with πα, πβ , and W defined as
above. Since cyclic orders on three elements are unique up to reversal, we have |W | ≥ 4. By
transitivity there exists a set of exactly four common nodes X ⊆W , such that πXα and πXβ
are conflicting. The graph on X where we add an edge vw if and only if v is adjacent to w
in πXα or πXβ is the K4. Since the K4 is not outerplanar, there can neither be a face in K4
traversing all of X nor such a face in α t β. J

We create the conflict graph HC that contains a node for every cycle with LP-value > 0,
cache the conflict information for each pair of cycles, and add constraints for maximal cliques
in HC . In a less sophisticated variant, we only add constraints for cliques of size two.

4 Experiments

All algorithms are implemented in C++, compiled with GCC 6.3.0, and use the OGDF
(snapshot 2017-07-23) [6]. We use SCIP 4.0.1 for solving ILPs with CPLEX 12.7.1 as the
underlying LP solver [21]. Each MPS-computation uses a single physical core of a Xeon Gold
6134 CPU (3.2 GHz) with a memory speed of 2666 MHz. We employ a time limit of 20 minutes
and a memory limit of 8 GB per computation. Our instances and results, giving runtime
and skewness (if solved), are available for download at http://tcs.uos.de/research/mps.

ESA 2018

19:10 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

Instances and Algorithms. Analogously to the study [8], we consider three established
real-world benchmark sets: Rome [12], North [24], and (a subset of) SteinLib [18]. We know
from [7,8] that random regular graphs (which are expander graphs with high probability) are
especially hard to solve exactly. We use the same such instances as [8], but only consider
graphs with ≤ 100 nodes, as no known exact algorithm solves larger instances. There are 20
graphs for each parameterization (|V (G)|,∆) ∈ {10, 20, 30, 50, 100} × {4, 6, 10, 20, 40}, where
∆ < |V (G)| is the node-degree. For tuning of ε (e.g., heap size in separation) we rely on the
values identified in [15]. We use the notation below to encode algorithmic choices.

ε Do not use any extensions but the basic Kuratowski algorithm [23].
e Separate generalized Euler constraints (3).

c{r} Add cycle constraints (5), (6), and variables with the minimal value for D such that
there are variables for at least 100r cycles.

t{0|1} Use the pseudo-tree extension (8)–(11) with (=t1) or without (=t0) propagation.
i Enforce integrality of variables for cycles and pseudo-trees.
s Separate cycle-edge constraints (12).

w{0|1} Separate two-cycles-path constraints (13) using combined (=w0) or separate (=w1)
approach. Also enables separation on cycle-clique constraints (16) for 2-cliques.

k Separate Kuratowski-cycle constraints (15).
q Separate cycle-clique constraints (16).

Note that instead of providing D explicitly, we specify a minimum number r′ of cycle variables
to be generated. We increment D while there are less than r′ cycle variables.

Results. Table 1 shows the success rates (percentage of instances solved to proven optimality)
and average runtime per instance of our algorithmic variants. For non-solved instances we
assume the maximum runtime of 20 minutes – average runtimes are thus comparable only for
algorithms that achieve roughly equal success rates. We group the variants by the number of
used extensions and highlight variants that dominate their group in bold. The latter informs
our choice of which variants to consider in the next group.

The separation of generalized Euler constraints is clearly beneficial only on the North
graphs, but even there its improvements are marginal when compared to the cycle-based
approach. The latter works very well in practice, for all instance sets. In particular (cf.
Fig. 2), on Rome it allows us for the first time to compute the skewness of all instances.
Using variant c10 t0 i w0, we are able to solve all but grafo10958.98.lgr within the 20
minute time frame; this last instance required 103 minutes. North still contains instances too
hard to solve exactly (even when increasing runtime to a few days and memory to 32GB).
Nonetheless, we now solve 3/4 of the previously unsolved North graphs within our strict
limits. The second group of variants in Table 1 demonstrates that all of our extensions of the
cycle model, in particular the pseudo-tree approach, improve upon success rate and runtime
on all instance sets when applied to c10. As shown in the lower sections of the table, this
does not always apply when comparing models that simultaneously use multiple extensions.

Table 2 details the relative improvement for each of the three most promising algorithm
configurations over the state-of-the-art ε-model. We provide the success rate for the instances
not solved by ε and give the average relative speed-up (i.e., the runtime of ε divided by that
of variant X) over the instances solved by both ε and X. This common set is exactly those
solved by ε, except for a single ε-solved North-instance not solved by c10. On Rome, the pure
cycle model c10 without any further extensions achieves the best speed-up; for the seemingly
harder other instance sets, more sophisticated variants are worthwhile. Fig. 2 underlines that
the success rate of the algorithms is strongly correlated to the instance’s skewness.

M. Chimani and T. Wiedera 19:11

Table 1 Overview of performance for algorithmic variants: success rate and avg. runtime.

variant Rome North Expanders SteinLib
succ. [%] time [s] succ. [%] time [s] succ. [%] time [s] succ. [%] time [s]

ε 85.71 198.42 73.76 325.31 34.74 800.38 9.52 1 085.94
e 85.56 199.41 77.78 273.29 35.00 803.91 9.52 1 085.93
c5 98.91 21.60 84.40 201.42 53.95 567.52 31.43 859.40
c10 99.14 18.10 84.63 195.35 54.47 562.81 32.38 853.57
c20 99.14 19.58 83.92 197.86 55.00 573.82 31.43 861.47
c10 i 99.89 5.52 88.89 156.99 56.58 538.81 31.43 841.88
c10 s 99.79 6.66 88.42 165.54 58.68 515.13 35.24 821.00
c10 t0 99.95 3.36 92.43 112.82 57.37 535.46 37.14 789.26
c10 t1 99.92 3.74 93.14 111.94 56.32 539.04 37.14 785.89
c10 w0 99.79 7.07 87.23 165.36 55.53 549.94 31.43 837.52
c10 w1 99.82 6.63 86.52 179.48 55.00 553.38 31.43 833.81
c10 k 99.77 7.26 86.52 178.34 55.26 552.83 33.33 828.81
c10 q 99.73 7.51 85.82 185.84 55.53 550.55 31.43 841.77
c10 t0 i 99.95 3.22 93.14 109.61 57.37 529.93 38.10 782.72
c10 t0 s 99.98 3.08 93.62 95.46 58.95 509.01 39.05 760.70
c10 t0 w0 99.98 2.75 92.43 112.77 57.37 537.61 36.19 808.58
c10 t0 w1 99.98 2.92 92.20 109.37 57.11 537.76 37.14 780.83
c10 t0 k 99.92 3.57 92.67 104.55 56.84 535.97 38.10 785.46
c10 t0 q 99.95 3.58 92.67 109.71 57.37 538.19 37.14 789.05
c10 t1 i 99.96 3.32 92.91 106.39 57.11 533.51 37.14 788.52
c10 t1 s 99.98 2.75 92.43 112.77 58.68 537.61 37.14 808.58
c10 t1 w0 99.98 3.04 92.20 114.28 56.84 537.97 38.10 786.93
c10 t1 w1 99.98 3.19 91.96 113.03 56.84 540.39 37.14 783.09
c10 t1 k 99.92 3.65 92.20 112.61 56.84 538.91 37.14 784.30
c10 t1 q 99.92 3.86 93.14 113.89 56.05 540.23 37.14 788.07
c10 t0 i s 99.94 3.27 92.91 103.17 58.95 506.63 40.00 761.47
c10 t0 s w0 99.98 2.43 93.85 91.66 58.68 508.28 39.05 763.08
c10 t0 s w1 99.98 2.29 92.91 101.17 58.68 507.99 39.05 756.31
c10 t0 s k 99.96 3.03 93.38 98.06 58.68 504.54 39.05 765.08
c10 t0 s q 99.93 3.22 93.62 95.59 58.42 510.38 38.10 763.64
c10 t0 i w0 99.99 2.89 92.67 105.16 57.11 529.95 38.10 798.26
c10 t0 i s w0 99.96 2.72 94.33 93.99 59.47 502.30 39.05 754.46

Table 2 Relative improvement over ε for selected algorithmic variants. We give the the success
rate over the instances unsolved by ε, and the avg. runtime ratio over the commonly solved instances.

variant Rome North Expanders SteinLib
new [%] speed-up new [%] speed-up new [%] speed-up new [%] speed-up

c10 93.98 66.80 42.34 21.45 30.24 13.96 25.26 11.79
c10 t0 i w0 99.92 60.85 72.07 28.59 34.27 12.68 31.58 6.79
c10 t0 i s w0 99.75 59.58 78.38 34.03 37.90 23.21 32.63 5.42

Table 3 Average number of cycle variables and average values for maximum cycle length D.

variant Rome North Expanders SteinLib
min # var D # var D # var D # var D # var

c5 500 9.51 627 7.34 689 5.43 2 075 5.80 881
c10 1 000 10.51 1 168 8.01 1 213 5.73 2 816 6.64 3 658
c20 2 000 11.51 2 175 8.55 2 048 6.47 7 774 7.09 4 785

ESA 2018

19:12 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

0

500

1000

1500

in
st
an

ce
s

2 4 6 8 10 12 14 16 18 ≥20

0%

50%

100%

skewness

su
cc
es
s
ra
te

ε
c10
c10 t0 i w0

(a) Solved Rome graphs by skewness. c10 t0 i w0 solves all but 1 skew-22-graph within 20min.

0

50

100

in
st
a
n
ce
s

2 4 6 8 10 12 14 16 18 20 ≥23

0%

50%

100%

upper bound on skewness

su
cc
es
s
ra
te

ε
c10
c10 t0 i w0
c10 t0 i s w0

(b) Solved North graphs by best upper bound on skewness.

Figure 2 Detailed success rates for selected algorithmic variants.

Table 3 lists the average number of generated cycle variables and the respective average
values for D. We mention that instances with high D values typically generate few cycle
variables, close to the lower bound. However, there is a large deviation in the number
of generated cycle variables in any fixed instance set: some graphs contain less than the
requested number of cycles whereas others already contain roughly 10 000 triangles.

5 Conclusion and Open Questions

For over two decades, the strongest ILP model for MPS has not been improved. In this paper
we presented novel variables and constraints, based on cycles, to extend this model to finally
obtain both a theoretically stronger model, as well as a more efficient algorithm in practice.
We proved that there is a hierarchy of ever stronger LP-relaxations, induced by the maximal
considered cycle length, and a rich set of further strengthening cycle-based constraint classes.
For the first time, we are able to compute the skewness of all Rome graphs, solve 94% of the
North graphs (compared to 74% by the ε-model), and solve 40% instead of only 10% of our
SteinLib instances. Our extensions also help for the notoriously hard expander graphs.

Several of our proofs show the new constraint class’s strength w.r.t. a low-D cycle model.
We conjecture that most classes remain strengthening for high D, but to prove this, one has to
find and argue infinite families of graphs with the LP-properties of our currently hand-crafted
proof graphs. Furthermore, it is natural to ask if and which of the new constraint classes
form facets in the (lifted) planar subgraph polytope.

A problem inherent to our approach arises on inputs of non-homogeneous density: G
may have too dense subgraphs to raise D sufficiently, even when every planar subgraph of G
contains large regions consisting of high-degree faces. Is there a practical way to generalize
the cycle-based approach using an independent maximum cycle length for each edge?

M. Chimani and T. Wiedera 19:13

References
1 Carlo Batini, Maurizio Talamo, and Roberto Tamassia. Computer Aided Layout of Entity

Relationship Diagrams. J. Syst. Soft., 4(2-3):163–173, 1984. doi:10.1016/0164-1212(84)
90006-2.

2 Gruia Călinescu, Cristina Gomes Fernandes, Ulrich Finkler, and Howard Karloff. A Better
Approximation Algorithm for Finding Planar Subgraphs. J. Alg. in Cognition, Informatics
and Logic, 27(2):269–302, 1998. doi:10.1006/jagm.1997.0920.

3 Parinya Chalermsook and Andreas Schmid. Finding Triangles for Maximum Planar
Subgraphs. In Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, editors,
WALCOM: Algorithms and Computation, 11th International Conference and Workshops,
WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017, Proceedings., volume 10167 of
Lecture Notes in Computer Science, pages 373–384. Springer, 2017. doi:10.1007/
978-3-319-53925-6_29.

4 Markus Chimani and Carsten Gutwenger. Non-planar core reduction of graphs. Discrete
Mathematics, 309(7):1838–1855, 2009. doi:10.1016/j.disc.2007.12.078.

5 Markus Chimani and Carsten Gutwenger. Advances in the Planarization Method: Effective
Multiple Edge Insertions. J. Graph Algorithms Appl., 13(3):729–757, 2012. doi:10.7155/
jgaa.00264.

6 Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten
Klein, and Petra Mutzel. The Open Graph Drawing Framework (OGDF).
In Roberto Tamassia, editor, Handbook on Graph Drawing and Visualization,
pages 543–569. Chapman and Hall/CRC, 2013. URL: https://crcpress.com/
Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125.

7 Markus Chimani, Ivo Hedtke, and Tilo Wiedera. Limits of Greedy Approximation Algo-
rithms for the Maximum Planar Subgraph Problem. In Veli Mäkinen, Simon J. Puglisi, and
Leena Salmela, editors, Combinatorial Algorithms - 27th International Workshop, IWOCA
2016, Helsinki, Finland, August 17-19, 2016, Proceedings, volume 9843 of Lecture Notes in
Computer Science, pages 334–346. Springer, 2016. doi:10.1007/978-3-319-44543-4_26.

8 Markus Chimani, Ivo Hedtke, and Tilo Wiedera. Exact Algorithms for the Maximum Planar
Subgraph Problem: New Models and Experiments. In 17th International Symposium on
Experimental Algorithms, SEA 2018, June 27-29, 2018, L’Aquila, Italy, volume 103. LIPIcs,
2018. doi:10.4230/LIPIcs.SEA.2018.22.

9 Markus Chimani and Petr Hlinený. A tighter insertion-based approximation of the crossing
number. J. Comb. Optim., 33(4):1183–1225, 2017. doi:10.1007/s10878-016-0030-z.

10 Markus Chimani, Karsten Klein, and Tilo Wiedera. A Note on the Practicality of Maximal
Planar Subgraph Algorithms. In Yifan Hu and Martin Nöllenburg, editors, Proceedings
of the 24th International Symposium on Graph Drawing and Network Visualization (GD
2016), volume abs/1609.02443. CoRR, 2016. doi:10.1007/978-3-319-50106-2_28.

11 Markus Chimani, Petra Mutzel, and Jens M. Schmidt. Efficient Extraction of Multiple
Kuratowski Subdivisions. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors,
Graph Drawing, 15th International Symposium, GD 2007, Sydney, Australia, September
24-26, 2007. Revised Papers, volume 4875 of Lecture Notes in Computer Science, pages
159–170. Springer, 2007. doi:10.1007/978-3-540-77537-9_17.

12 Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele Tassi-
nari, and Francesco Vargiu. An experimental comparison of four graph drawing algo-
rithms. Computational Geometry. Theory and Applications, 7(5-6):303–325, 1997. 11th
ACM Symposium on Computational Geometry (Vancouver, BC, 1995). doi:10.1016/
S0925-7721(96)00005-3.

13 Manuel Fernández, Nicholas Sieger, and Michael Tait. Maximal Planar Subgraphs of Fixed
Girth in Ramdom Graphs. CoRR, 2018. arXiv:1706.06202.

ESA 2018

http://dx.doi.org/10.1016/0164-1212(84)90006-2
http://dx.doi.org/10.1016/0164-1212(84)90006-2
http://dx.doi.org/10.1006/jagm.1997.0920
http://dx.doi.org/10.1007/978-3-319-53925-6_29
http://dx.doi.org/10.1007/978-3-319-53925-6_29
http://dx.doi.org/10.1016/j.disc.2007.12.078
http://dx.doi.org/10.7155/jgaa.00264
http://dx.doi.org/10.7155/jgaa.00264
https://crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
https://crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
http://dx.doi.org/10.1007/978-3-319-44543-4_26
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.22
http://dx.doi.org/10.1007/s10878-016-0030-z
http://dx.doi.org/10.1007/978-3-319-50106-2_28
http://dx.doi.org/10.1007/978-3-540-77537-9_17
http://dx.doi.org/10.1016/S0925-7721(96)00005-3
http://dx.doi.org/10.1016/S0925-7721(96)00005-3
http://arxiv.org/abs/1706.06202

19:14 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

14 Michael R. Garey and David S. Johnson. Computers and intractability. A guide to the
theory of NP-completeness. W. H. Freeman and Co., San Francisco, Calif., 1979.

15 Ivo Hedtke. Minimum Genus and Maximum Planar Subgraph: Exact Algorithms and Gen-
eral Limits of Approximation Algorithms. PhD thesis, Osnabrück University, 2017. URL:
https://repositorium.ub.uos.de/handle/urn:nbn:de:gbv:700-2017082416212.

16 Jan M. Hochstein and Karsten Weihe. Maximum s-t-flow with k crossings in O(k3n logn)
time. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, SODA ’07, pages
843–847, 2007.

17 Michael Jünger and Petra Mutzel. Maximum Planar Subgraphs and Nice Embeddings:
Practical Layout Tools. Algorithmica, 16(1):33–59, 1996. doi:10.1007/s004539900036.

18 Thorsten Koch, Alexander Martin, and Stefan Voß. SteinLib: An updated library on
steiner tree problems in graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum
für Informationstechnik Berlin, Takustr. 7, Berlin, 2000. URL: http://elib.zib.de/
steinlib.

19 Kazimierz Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15:271–283, 1930.

20 P. C. Liu and R. C. Geldmacher. On the deletion of nonplanar edges of a graph. In
Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and
Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), Congress. Numer., XXIII–
XXIV, pages 727–738. Utilitas Math., Winnipeg, Man., 1979.

21 Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner,
Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias Mil-
tenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Sebas-
tian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Dieter Weninger, Jonas T.
Witt, and Jakob Witzig. The SCIP Optimization Suite 4.0. Technical Report 17-12, ZIB,
Takustr. 7, 14195 Berlin, 2017.

22 Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms
and probabilistic analysis. Cambridge University Press, 2005.

23 Petra Mutzel. The maximum planar subgraph problem. PhD thesis, Köln University, 1994.
24 Stephen C. North. 5114 directed graphs, 1995. Manuscript.

https://repositorium.ub.uos.de/handle/urn:nbn:de:gbv:700-2017082416212
http://dx.doi.org/10.1007/s004539900036
http://elib.zib.de/steinlib
http://elib.zib.de/steinlib

Parameterized Approximation Algorithms for
Bidirected Steiner Network Problems
Rajesh Chitnis1

University of Warwick, UK
rajeshchitnis@gmail.com

Andreas Emil Feldmann2

Charles University, Prague, Czechia
feldmann.a.e@gmail.com

Pasin Manurangsi3

University of California, Berkeley, USA
pasin@berkeley.edu

Abstract
The Directed Steiner Network (DSN) problem takes as input a directed edge-weighted
graph G = (V,E) and a set D ⊆ V × V of k demand pairs. The aim is to compute the cheapest
network N ⊆ G for which there is an s → t path for each (s, t) ∈ D. It is known that this
problem is notoriously hard as there is no k1/4−o(1)-approximation algorithm under Gap-ETH,
even when parameterizing the runtime by k [Dinur & Manurangsi, ITCS 2018]. In light of
this, we systematically study several special cases of DSN and determine their parameterized
approximability for the parameter k.

For the bi-DSNPlanar problem, the aim is to compute a planar optimum solution N ⊆ G in
a bidirected graph G, i.e. for every edge uv of G the reverse edge vu exists and has the same
weight. This problem is a generalization of several well-studied special cases. Our main result
is that this problem admits a parameterized approximation scheme (PAS) for k. We also prove
that our result is tight in the sense that (a) the runtime of our PAS cannot be significantly
improved, and (b) it is unlikely that a PAS exists for any generalization of bi-DSNPlanar, unless
FPT=W[1]. Additionally we study several generalizations of bi-DSNPlanar and obtain upper
and lower bounds on obtainable runtimes parameterized by k.

One important special case of DSN is the Strongly Connected Steiner Subgraph
(SCSS) problem, for which the solution network N ⊆ G needs to strongly connect a given set of
k terminals. It has been observed before that for SCSS a parameterized 2-approximation exists
when parameterized by k [Chitnis et al., IPEC 2013]. We show a tight inapproximability result:
under Gap-ETH there is no (2− ε)-approximation algorithm parameterized by k (for any ε > 0).
To the best of our knowledge, this is the first example of a W[1]-hard problem admitting a non-
trivial parameterized approximation factor which is also known to be tight! Additionally we show
that when restricting the input of SCSS to bidirected graphs, the problem remains NP-hard but
becomes FPT for k.

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems, Theory of computation → Fixed parameter tractability

Keywords and phrases Directed Steiner Network, Strongly Connected Steiner Subgraph, Para-
meterized Approximations, Bidirected Graphs, Planar Graphs

1 Supported by ERC grant 2014-CoG 647557. Part of this work was done while at Weizmann Institute of
Science, Israel and supported by Israel Science Foundation grant #897/13

2 Supported by the Czech Science Foundation GAČR (grant #17-10090Y), and by the Center for
Foundations of Modern Computer Science (Charles Univ. project UNCE/SCI/004).

3 This work was done while the author was visiting Weizmann Institute of Science.

© Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rajeshchitnis@gmail.com
mailto:feldmann.a.e@gmail.com
mailto:pasin@berkeley.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Parameterized Approximations for Bidirected Steiner Networks

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.20

Related Version A full version of this paper can be found in [12], https://arxiv.org/abs/
1707.06499.

Acknowledgements We would like to thank Petr Kolman and Hans Raj Tiwary for giving valu-
able feedback on a draft of this paper.

1 Introduction

In this paper we study the Directed Steiner Network (DSN) problem,4 in which
a directed edge-weighted graph G = (V,E) is given together with a set of k demands
D = {(si, ti)}k

i=1 ⊆ V ×V . The aim is to compute a minimum cost (in terms of edge weights)
network N ⊆ G containing a directed si → ti path for each i ∈ {1, . . . , k}. This well-studied
problem has applications in network design [38], and for instance models the setting where
nodes in a radio or ad-hoc wireless network connect to each other unidirectionally [10, 57].

The DSN problem is notoriously hard. First of all, it is NP-hard, and one popular way
to handle NP-hard problems is to efficiently compute an α-approximation, i.e., a solution
that is guaranteed to be at most a factor α worse than the optimum. For this paradigm we
typically demand that the algorithm computing such a solution runs in polynomial time in
the input size n = |V |. However for DSN it is known that even computing an O(2log1−ε n)-ap-
proximation is not possible [18] in polynomial time, unless NP ⊆ DTIME(npolylog(n)). It is
possible to obtain approximation factors O(n2/3+ε) and O(k1/2+ε) though [3, 9, 25]. For
settings where the number k of demands is fairly small, one may aim for algorithms that
only have a mild exponential runtime blow-up in k, i.e., a runtime of the form f(k) · nO(1),
where f(k) is some function independent of n. If an algorithm computing the optimum
solution with such a runtime exists for a computable function f(k), then the problem is
called fixed-parameter tractable (FPT) for parameter k. However it is unlikely that DSN is
FPT for this well-studied parameter, as it is known to be W[1]-hard [31] for k. In fact one
can show [14, 22] that under the Exponential Time Hypothesis (ETH) there is no algorithm
computing the optimum in time f(k) · no(k) for any function f(k) independent of n. ETH
assumes that there is no 2o(n) time algorithm to solve 3SAT [33, 34]. The best we can hope
for is therefore a so-called XP-algorithm computing the optimum in time nO(k), and this was
also shown to exist by Feldman and Ruhl [24].

None of the above algorithms for DSN seem satisfying though, either due to slow runtimes
or large approximation factors, and this is hardly surprising given the problem’s inherent
complexity. To circumvent the hardness of the problem, one may aim for parameterized
approximations, which have recently received increased attention for various problems (see
e.g. [5, 8, 11, 13, 23, 26, 42, 44, 46, 49, 59, 62, 21, 4, 37]). In this paradigm an α-approximation
is computed in time f(k) · nO(1) for parameter k, where f(k) again is a computable function
independent of n. Unfortunately, a recent result by Dinur and Manurangsi [17]5 excludes
significant improvements over the known polynomial time approximation algorithms [3, 9, 25],
even if allowing a runtime parameterized in k. More specifically, no k1/4−o(1)-approximation

4 Also sometimes called Directed Steiner Forest. Note however that in contrast to the undirected
Steiner Forest problem, an optimum solution to DSN is not necessarily a forest.

5 In a previous version of this work, we showed that no ko(1)-approximation is possible for DSN in
time f(k) · nO(1). This result in now subsumed by [17].

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.20
https://arxiv.org/abs/1707.06499
https://arxiv.org/abs/1707.06499

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:3

is possible in time f(k) · nO(1) for any function f(k) under the Gap Exponential Time
Hypothesis (Gap-ETH)6, which postulates that there exists a constant ε > 0 such that no
(possibly randomized) algorithm running in 2o(n) time can distinguish whether it is possible
to satisfy all or at most a (1− ε)-fraction of clauses of any given 3SAT formula [16, 48].

Given these hardness results, the main question we explore is: what approximation factors
and runtimes are possible for special cases of DSN when parametrizing by k? There are two
types of standard special cases that are considered in the literature:

Restricting the input graph G to some special graph class. A typical assumption for
instance is that G is planar.7
Restricting the pattern of the demands in D. For example, one standard restriction is to
have a set R ⊆ V of terminals, a fixed root r ∈ R, and demand set D = {(r, t) | t ∈ R},
which is the well-known Directed Steiner Tree (DST) problem.

In fact, an optimum solution to the DST problem is an arborescence (hence the name),
i.e., it is planar. Thus if an algorithm is able to compute (an approximation to) the cheapest
planar DSN solution in an otherwise unrestricted graph, it can be used for both the above
types of restrictions: it can of course be used if the input graph is planar as well, and it
can also be used if the demand pattern implies that the optimum must be planar. Taking
the structure of the optimum solution into account has been a fruitful approach leading to
several results on related problems, both for approximation and fixed-parameter tractability,
from which we also draw some of the inspiration for our results (cf. Section 1.2). A main
focus of our work is to systematically explore the influence of the structure of optimum
solutions on the complexity of the DSN problem. Formally, fixing a class K of graphs, we
define the DSNK problem, which asks for an optimum solution network N ⊆ G for k given
demands such that N ∈ K. The DSNK problem has been implicitly studied in several results
before for various classes K, in particular when K contains either planar graphs, or graphs of
bounded treewidth8 (cf. Table 1).

Another special case we consider is when the input graph G is bidirected, i.e., for every
edge uv of G the reverse edge vu exists in G as well and has the same weight as uv. This
naturally captures the problem variant between the notoriously hard DSN problem on
directed graphs and its undirected counterpart the Steiner Forest (SF) problem. As the
former does not allow any k1/4−o(1)-approximation in time f(k) · nO(1) under Gap-ETH [17],
while the latter is FPT [53, 27, 19] for parameter k, it is interesting to ask what happens
between these two extremes. Bidirected graphs also model the realistic setting [10, 57, 61, 43]
when the cost of transmitting from a node u to a node v in a wireless network is the same in
both directions, which for instance happens if the nodes all have the same transmitter model.

We meticulously study several special cases of DSN resulting from the above restrictions,
and prove matching upper and lower bounds on runtimes parameterized by k. We now give a
brief overview of the studied problems emphasizing the main insights, and refer to Section 1.1
for a detailed exposition of our obtained results.

bi-DSNPlanar, i.e., the DSNK problem on bidirected inputs, where K is the class of planar
graphs: For this problem we present our main result, which is that bi-DSNPlanar admits a
parameterized approximation scheme (PAS), i.e., an algorithm that for any ε > 0 computes

6 Gap-ETH follows from ETH given other standard conjectures, such as the existence of linear sized
PCPs or exponentially-hard locally-computable one-way functions. See [8, 2] for more details.

7 A directed graph is planar if the underlying undirected graph is.
8 Here the undirected treewidth is meant, i.e., the treewidth of the underlying undirected graph.

ESA 2018

20:4 Parameterized Approximations for Bidirected Steiner Networks

a (1 + ε)-approximation in f(ε, k) · ng(ε) time for some functions f and g. We also prove
that, unless FPT=W[1], no efficient parameterized approximation scheme (EPAS) exists,
i.e., there is no algorithm computing a (1 + ε)-approximation in f(ε, k) · nO(1) time for
any function f . Thus the runtime of our algorithm cannot be significantly improved.

bi-DSN, i.e., the DSN problem on bidirected inputs: The above PAS for the restricted
bi-DSNPlanar problem begs the question of whether a PAS also exists for any more
general problems, such as bi-DSN. However we prove that bi-DSN does not admit a PAS
under Gap-ETH. At the same time it is not too hard to obtain constant approximations
in parameterized or polynomial time, given known algorithms for SF. When aiming for
optimum solutions however, surprisingly we can show that bi-DSN is almost as hard as
DSN (with almost-matching runtime lower bound under ETH). Thus the complexity of
the in-between bidirected setting resembles that of the directed setting in terms of FPT
algorithms, while in terms of approximations it is more similar to the undirected setting.

Apart from the DST problem, another well-studied special case of DSN with restricted
demands is when the demand pairs form a cycle, i.e., we are given a set R = {t1, . . . , tk} of
k terminals and the set of demands is D = {(ti, ti+1)}k

i=1 where tk+1 = t1. Since this implies
that any optimum solution is strongly connected, this problem is accordingly known as the
Strongly Connected Steiner Subgraph (SCSS) problem. In contrast to DST, it is
implicit from [31] (by a reduction from the Clique problem) that optimum solutions to
SCSS do not belong to any minor-closed graph class. Thus SCSS is not easily captured by
some DSNK problem for a restricted class K. Nevertheless it is still possible to exploit the
structure of the optimum solution to SCSS, which results in the following findings.

SCSS: It is known that a 2-approximation is obtainable [13] when parametrizing by k. We
prove that the factor of 2 is best possible under Gap-ETH. To the best of our knowledge,
this is the first example of a W[1]-hard problem having a parameterized approximation
algorithm with non-trivial approximation factor (in this case 2), which is also known to
be tight!

bi-SCSS, i.e., the SCSS problem on bidirected inputs: As for bi-DSN, one might think
that bi-SCSS is easily solvable via its undirected version, i.e., the well-known Steiner
Tree (ST) problem, which is FPT [53, 19] for parameter k. However, it is not the
case that simply taking an optimum undirected solution twice in a bidirected graph will
produce a (near-)optimum solution to bi-SCSS (see Figure 1). Nevertheless we prove
that bi-SCSS is FPT for parameter k as well, while also being NP-hard. Our algorithm
is non-trivial and does not apply any methods used for undirected graphs. To the best of
our knowledge, bidirected inputs are the first example where SCSS remains NP-hard but
turns out to be FPT parameterized by k! Thus in contrast to bi-DSN, the complexity
of the in-between bi-SCSS problem resembles that of the undirected variant (the ST
problem) rather than the directed version (the SCSS problem).

1.1 Our results
Due to space constraints, almost all proofs of the following theorems are deferred to the full
version of the paper [12].

Bidirected inputs with planar solutions. Our main theorem implies the existence of a PAS
for bi-DSNPlanar, where the parameter is the number k of demands.

I Theorem 1. For any ε > 0, there is a max
{

2k2O(1/ε)

, n2O(1/ε)
}

time algorithm for
bi-DSNPlanar, that computes a (1 + ε)-approximation.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:5

Figure 1 A bi-SCSS instance where all vertices are terminals. Left: Black edges show a solution
which takes an undirected optimum twice. Right: The actual optimum solution is shown in black.

As bi-DSNPlanar is a rather restricted special case of DSN, one may at this point
rightfully ask: Should it not be possible to obtain better runtimes and/or should it not be
possible to even compute the optimum solution when parametrizing by k? And could it
not be that a similar result is true in more general settings, when for instance the input is
bidirected but the optimum is not restricted to a planar graph? We prove that both questions
can be answered in the negative.

First off, it is not hard to prove that a polynomial time approximation scheme (PTAS) is
not possible for bi-DSNPlanar, i.e., it is necessary to parametrize by k in Theorem 1. This is
implied by the following result, since (as mentioned before) a PTAS for bi-DSNPlanar would
also imply a PTAS for bi-DST, i.e., the DST problem on bidirected input graphs.

I Theorem 2. The bi-DST problem is APX-hard.

One may wonder however, whether parametrizing by k doesn’t make the bi-DSNPlanar
problem FPT, so that approximating the planar optimum as in Theorem 1 would in fact
be unnecessary. Furthermore, even if it is necessary to approximate, one may ask whether
the runtime given in Theorem 1 can be improved. In particular, note that the runtime we
obtain in Theorem 1 is similar to that of a PTAS, i.e., the exponent of n in the running time
depends on ε. Ideally we would like an EPAS, which has a runtime of the form f(k, ε) ·nO(1),
i.e., we would like to treat ε as a parameter as well. The following theorem shows that both
approximating and runtime dependence on ε are in fact necessary in Theorem 1.

I Theorem 3. The bi-DSNPlanar problem is W[1]-hard parameterized by k. Moreover,
under ETH, for any computable functions f(k) and f(k, ε), and parameters k and ε > 0, the
bi-DSNPlanar problem has no f(k) · no(

√
k) time algorithm to compute the optimum solution,

and has no f(k, ε) · no(
√

k) time algorithm to compute a (1 + ε)-approximation.

It stands out that to compute optimum solutions, this theorem rules out runtimes for
which the dependence of the exponent of n is o(

√
k), while for the general DSN problem,

as mentioned above, the both necessary and sufficient dependence of the exponent is linear
in k [24, 14]. Could it be that bi-DSNPlanar is just as hard as DSN when computing
optimum solutions? The answer is no, as the next theorem shows.

I Theorem 4. There is a 2O(k3/2 log k) · nO(
√

k) time algorithm to compute the optimum
solution for bi-DSNPlanar.

This result is an example of the so-called “square-root phenomenon”: planarity often
allows runtimes that improve the exponent by a square root factor in terms of the parameter
when compared to the general case [28, 50, 40, 47, 41, 52, 55, 54, 51]. Interestingly though,
Chitnis et al. [14] show that under ETH, no f(k) · no(k) time algorithm can compute the
optimum solution to DSNplanar. Thus assuming a bidirected input graph in Theorem 4 is
necessary (under ETH) to obtain a factor of O(

√
k) in the exponent of n.

ESA 2018

20:6 Parameterized Approximations for Bidirected Steiner Networks

Bidirected inputs. Since in contrast to bi-DSNPlanar, the bi-DSN problem does not restrict
the optimum solutions, one may wonder whether a parameterized approximation scheme as
in Theorem 1 is possible for this more general case as well. We answer this in the negative
by proving the following result, which implies that restricting the optima to planar graphs
was necessary for Theorem 1.

I Theorem 5. Under Gap-ETH, there exists a constant α > 1 such that for any computable
function f(k) there is no f(k) · nO(1) time algorithm that computes an α-approximation
for bi-DSN.

We leave open whether a similar inapproximability result can be obtained for the other
obvious generalization of bi-DSNPlanar, in which the input graph is unrestricted but we
need to compute the planar optimum, i.e., the DSNplanar problem. We conjecture that no
approximation scheme exists for this problem either.

What approximation factors can be obtained for bi-DSN when parametrizing by k, given
the lower bound of Theorem 5 on one hand, and the before-mentioned result [17] that rules
out a k1/4−o(1)-approximation for DSN in time parameterized by k on the other? It turns out
that it is not too hard to obtain a constant approximation for bi-DSN, given the similarity
of bidirected graphs to undirected graphs. In particular, relying on the fact that for the
undirected version of DSN, i.e. the SF problem, there is a polynomial time 2-approximation
algorithm [1], and an FPT algorithm based on [19], we obtain the following theorem, which
is also in contrast to Theorem 2.

I Theorem 6. The bi-DSN problem admits a 4-approximation in polynomial time, and a
2-approximation in 2O(k log k) · nO(1) time.

Even if Theorem 5 in particular shows that bi-DSN cannot be FPT under Gap-ETH, it
does not give a strong lower bound on the runtime dependence in the exponent of n. However
using the weaker ETH assumption we can obtain such a lower bound, as the next theorem
shows. Interestingly, the obtained lower bound implies that when aiming for optimum
solutions, the restriction to bidirected inputs does not make DSN much easier than the
general case, as also for bi-DSN the nO(k) time algorithm by [24] is essentially best possible.
This is in contrast to the bi-DSNPlanar problem where the square-root phenomenon takes
effect as shown by Theorem 4.

I Theorem 7. The bi-DSN problem is W[1]-hard parameterized by k. Moreover, under ETH
there is no f(k) · no(k/ log k) time algorithm for bi-DSN, for any computable function f(k).

Thus when considering bidirected inputs, which lie between directed and undirected
graphs, by Theorem 6 the complexity of the bi-DSN problem rather resembles the undirected
variant (the SF problem) in terms of approximations, while by Theorem 7 it resembles the
directed version (the DSN problem) in terms of FPT algorithms.

Strongly connected solutions. Just like the more general DSN problem, the SCSS problem
is W[1]-hard [31] parameterized by k, and is also hard to approximate as no polynomial
time O(log2−ε n)-approximation is possible [32], unless NP ⊆ ZTIME(npolylog(n)). However
it is possible to exploit the structure of the optimum to SCSS to obtain a 2-approximation
algorithm parameterized by k, as observed by Chitnis et al. [13]. This is because any strongly
connected graph is the union of two arborescences, and these form solutions to DST. The
2-approximation follows, since DST is FPT by the classic result of [19]. Thus in contrast to
DSN, for SCSS it is possible to beat any approximation factor obtainable in polynomial
time when parametrizing by k.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:7

I Theorem 8 ([13]). The SCSS problem admits a 2-approximation in 3k · nO(1) time.

An obvious question now is whether the approximation ratio of this rather simple algorithm
can be improved. Interestingly we are able to show that this is not the case. To the best
of our knowledge, this is the first example of a W[1]-hard problem having a parameterized
approximation algorithm with non-trivial approximation factor (in this case 2), which is also
known to be tight!

I Theorem 9. Under Gap-ETH, for any ε > 0 and any computable function f(k), there is
no f(k) · nO(1) time algorithm that computes a (2− ε)-approximation for SCSS.

Bidirected inputs with strongly connected solutions. In light of the above results for
restricted cases of DSN, what can be said about restricted cases of SCSS? It is implicit in
the work of Chitnis et al. [14] that SCSSPlanar, i.e., the problem of computing the optimum
strongly connected planar optimum, can be solved in 2O(k log k) · nO(

√
k) time, while under

ETH no f(k) · no(
√

k) time algorithm is possible. Hence SCSSPlanar is slightly easier than
DSNplanar where the exponent of n needs to be linear in k, as mentioned before. On the
other hand, the bi-SCSS problem turns out to be a lot easier to solve than bi-DSN. This is
implied by the next theorem, which stands in contrast to Theorem 5 and Theorem 7. In
particular, the in-between bi-SCSS problem behaves more like the undirected ST problem
than the directed SCSS problem.

I Theorem 10. There is a 2O(2k2−k) · nO(1) time algorithm for bi-SCSS, i.e., it is FPT for
parameter k.

Could it be that bi-SCSS is even solvable in polynomial time? We prove that this is not
the case, as it is NP-hard. To the best of our knowledge, the class of bidirected graphs is
the first example where SCSS remains NP-hard but turns out to be FPT parameterized
by k! Moreover, note that the above algorithm has a doubly exponential runtime in k2. We
conjecture that a single exponential runtime should suffice, and we also obtain a lower bound
result of this form, even if we restrict the optimum solutions to very simple planar graphs,
namely cycles.

I Theorem 11. The bi-SCSSCycle problem is NP-hard. Moreover, under ETH there is no
2o(k) · nO(1) time algorithm for bi-SCSSCycle.

I Remark. For ease of notation, throughout this paper we chose to use the number of
demands k uniformly as the parameter. Alternatively one might also consider the smaller
parameter |R|, where R =

⋃k
i=1{si, ti} is the set of terminals. Note for instance that in

case of the SCSS problem, k = |R|, while for DSN, k can be as large as Θ(|R|2) (cf. [22]).
However we always have k ≥ |R|/2, since the demands can form a matching in the worst
case. It is interesting to note that all our algorithms for DSN have the same running time
for parameter |R| as for parameter k. That is, we may set k = |R| in Theorem 1, 4, and 6.

1.2 Our techniques
It is already apparent from the above exposition of our results, that understanding the
structure of the optimum solution is a powerful tool when studying DSN and its related
problems (see Table 1). This is also apparent when reading the literature on these problems,
and we draw some of our inspiration from these known results, as described below.

ESA 2018

20:8 Parameterized Approximations for Bidirected Steiner Networks

Table 1 Summary of achievable runtimes for DSN and SCSS when parameterizing by k. Some
of the previous results are implicit and, in the papers, are rather stated for the case when the input
graphs are restricted to the same class as the optimum solutions. Non-bracketed reference numbers
refer to theorems of this paper.

algorithms lower bounds
problem approx. runtime ref. approx. runtime ref.

DSN – nO(k) [24] – f(k) · no(k) [31]

DSN O(k 1
2 +ε) nO(1) [9] k

1
4−o(1) f(k) · nO(1) [17]

DSNTW: ω – 2O(kω log ω) · nO(ω) [27] – f(k, ω) · no(ω) [27]

bi-DSNPlanar 1 + ε max{2k2O(1/ε)
, n2O(1/ε)

} 1 1 + ε f(ε, k) · no(
√

k) 3

bi-DSNPlanar – 2O(k3/2 log k) · nO(
√

k) 4 – f(k) · no(
√

k) 3

DSNPlanar – nO(k) [24] – f(k) · no(k) [14]

bi-DSN – nO(k) [24] – f(k) · no(k/ log k) 7

bi-DSN 2 2O(k log k) · nO(1) 6 α ∈ Θ(1) f(k) · nO(1) 5

bi-DSN 4 nO(1) 6 α ∈ Θ(1) nO(1) 2

SCSS – nO(k) [24] – f(k) · no(k/ log k) [14]

SCSS 2 3k · nO(1) [13] 2− ε f(k) · nO(1) 9

SCSSPlanar – 2O(k) · nO(
√

k) [14] – f(k) · no(
√

k) [14]

bi-SCSS – 2O(2k2−k) · nO(1) 10 – 2o(k) · nO(1) 11

For our approximation scheme for bi-DSNPlanar, we generalize the insights on the
structure of optimum solutions to the classical Steiner Tree (ST) problem for our main
result in Theorem 1. For the ST problem, an undirected edge-weighted graph is given together
with a terminal set R, and the task is to compute the cheapest tree connecting all k terminals.
For the ST problem only polynomial time 2-approximations were known [30, 60], until it
was taken into account [36, 56, 63, 58] that any optimum Steiner tree can be decomposed
into so-called full components, i.e., subtrees for which exactly the leaves are terminals. If a
full component contains only a small subset of size k′ of the terminals, it is the solution to
an ST instance, for which the optimum can be computed efficiently in time (2 + δ)k′ · nO(1)

for any constant δ > 0 using the algorithm of Mölle et al. [53]. A fundamental observation
proved by Borchers and Du [6] is that for any k′ there exists a solution to ST of cost at
most 1 + 1

blog2 k′c times the optimum, in which every full component contains at most k′

terminals. Thus setting k′ = 21/ε for some constant ε > 0, all full-components with at most
21/ε terminals can be computed in polynomial time, and among them exists a collection
forming a (1 + ε)-approximation. The key to obtain approximation ratios smaller than
2 for ST is to cleverly select a good subset of all computed full-components. This is for
instance done in [7] via an iterative rounding procedure, resulting in an approximation ratio
of ln(4) + ε < 1.39, which currently is the best one known.

Our main technical contribution is to generalize the Borchers-Du [6] Theorem to the
bi-DSNPlanar problem. In particular, to obtain our approximation scheme of Theorem 1,
we employ a similar approach by decomposing a bi-DSNPlanar solution into sub-instances,
each containing a small number of terminals. As bi-DSNPlanar is W[1]-hard by Theorem 3,
we cannot hope to compute optimum solutions to each sub-instance as efficiently as for ST.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:9

However, we provide an XP-algorithm with runtime 2O(k3/2 log k) · nO(
√

k) for bi-DSNPlanar
in Theorem 4. Thus if every sub-instance contains at most 21/ε terminals, each can be
solved in n2O(1/ε) time, and this accounts for the “non-efficient” runtime of our approximation
scheme. Since we allow runtimes parameterized by k, we can then exhaustively search for
a good subset of precomputed small optimum solutions to obtain a solution to the given
demand set D. For the latter solution to be a (1 + ε)-approximation however, we need to
generalize the Borchers-Du [6] Theorem for ST to bi-DSNPlanar (see Theorem 13 for the
formal statement). This constitutes the bulk of the work to prove Theorem 1.

For our exact algorithms for bi-DSNPlanar and bi-SCSS, we note that also from a
parameterized point of view, understanding the structure of the optimum solution to DSN
has lead to useful insights in the past. We will leverage one such recent result by Feldmann
and Marx [27]. In [27] the above mentioned standard special case of restricting the patterns of
the demands in D is studied in depth. The result is a complete dichotomy over which classes
of restricted patterns define special cases of DSN that are FPT and which are W[1]-hard
for parameter k. The high-level idea is that whenever the demand patterns imply optimum
solutions of constant treewidth, there is an FPT algorithm computing such an optimum. In
contrast, the problem is W[1]-hard whenever the demand patterns imply the existence of
optimum solutions of arbitrarily large treewidth. The FPT algorithm from [27] lies at the
heart of all our positive results, and therefore shows that the techniques developed in [27] to
optimally solve special cases of DSN can be extended to find (near-)optimum solutions for
other W[1]-hard special cases as well. It is important to note that the algorithm of [27] can
also be used to compute the cheapest solution of treewidth at most ω, even if there is an
even better solution of treewidth larger than ω (which might be hard to compute). Formally,
the result leveraged in this paper is the following.

I Theorem 12 (implicit in Theorem 5 of [27]). If K is the class of graphs with treewidth at
most ω, then the DSNK problem can be solved in time 2O(kω log ω) · nO(ω).

We exploit the algorithm given in Theorem 12 to prove our algorithmic results of
Theorem 4 and Theorem 10. In particular, we prove that any bi-DSNPlanar solution has
treewidth O(

√
k), from which Theorem 4 follows immediately. For bi-SCSS however, we

give an example of an optimum solution of treewidth Ω(k). Hence we cannot exploit the
algorithm of Theorem 12 directly to obtain Theorem 10. In fact on general input graphs, a
treewidth of Ω(k) would imply that the problem is W[1]-hard by the hardness results in [27]
(which was indeed originally shown by Guo et al. [31]). As this stands in stark contrast to
Theorem 10, it is particularly interesting that the problem on bidirected input graphs is
FPT. We prove this result by decomposing an optimum solution to bi-SCSS into instances of
bi-SCSSK, where K is the class of directed graphs of treewidth 1 (so-called poly-trees). For
each such sub-instance we can compute a solution in 2O(k) · nO(1) time by using Theorem 12
(for ω = 1), and then combine them into an optimum solution to bi-SCSS.

Our hardness proofs for bi-DSN are based on reductions from the Grid Tiling prob-
lem [15]. This problem is particularly suited to prove hardness for problems on planar graphs,
due to its grid-like structure. We first develop a specific gadget that can be exploited to
show hardness for bidirected graphs. This gadget however is not planar. We only exploit the
structure of Grid Tiling to show that the optimum solution is planar for Theorem 3. For
Theorem 7 we modify this reduction to obtain a stronger runtime lower bound, but in the
process we lose the property that the optimum is planar.

Our parameterized inapproximability result for SCSS is proved by combining a variant of
a known reduction by Guo et al. [31] with a recent parameterized hardness of approximation

ESA 2018

20:10 Parameterized Approximations for Bidirected Steiner Networks

result for Densest k-Subgraph [8]. Our inapproximability result for bi-DSN is shown by
combining our W[1]-hardness reduction with the same hardness of approximation result of
Densest k-Subgraph.

2 An approximation scheme for bi-DSNPlanar

In this section we prove Theorem 1. Note that since we have k demand pairs, it follows
that the number of terminals |R| is at most 2k, where R =

⋃k
i=1{si, ti}. Henceforth in this

section, we use the upper bound 2k on the number of terminals |R| for ease of presentation
(when instead we could replace k by |R| in the running time of Theorem 1). The bulk of the
proof is captured by the following result, which generalizes the corresponding theorem by
Borchers and Du [6] for the ST problem, and which is our main technical contribution. In
order to facilitate the definition of a sub-instance to DSN, we encode the demands of a DSN
instance using a pattern graph H, as also done in [27]: the vertex set of H is the terminal set
R, and H contains the directed edge st if and only if (s, t) is a demand. Hence the DSN
problem asks for a minimum cost network N ⊆ G having an s→ t path for each edge st of
H.

I Theorem 13. Let G be a bidirected graph, and H a pattern graph on R ⊆ V (G). Let
N ⊆ G be an optimum bi-DSNPlanar solution to H, i.e. N is planar. For any ε > 0, there
exists a set of patterns H such that for each H ′ ∈ H there is a feasible bi-DSNPlanar solution
NH′ ⊆ G and |V (H ′)| ≤ 2O(1/ε). Furthermore, the union

⋃
H′∈HNH′ of the these solutions

forms a feasible bi-DSNPlanar solution to H with
∑

H′∈H cost(NH′) ≤ (1 + ε) · cost(N).

Based on Theorem 13 our (1 + ε)-approximation algorithm proceeds as follows. The
first step is to compute an optimum solution for every possible pattern graph on at most
g(ε) = 2O(1/ε) terminals. Since any pattern graph has at most 2

(
g(ε)

2
)
< g(ε)2 edges, and

there is a total of 2
(2k

2
)
< 8k2 possible demands between the 2k terminals, the total number of

pattern graphs is O(k2g(ε)2) = k2O(1/ε) . For each pattern the algorithm computes the optimum
bi-DSNPlanar solution in time 2g(ε)3/2 log g(ε) · nO(

√
g(ε)) = n2O(1/ε) using the algorithm of

Theorem 4. This amounts to a total runtime of k2O(1/ε) · n2O(1/ε) up to this point. The
algorithm then proceeds by considering each subset H of the pattern graphs, and checking
whether the union of the precomputed optimum solutions to all H ′ ∈ H forms a feasible
solution to the input pattern H on R. As there are 2O(k2g(ε)2

) subsets H, and checking
whether a subset induces a feasible solution can be done in polynomial time, this takes
2O(k2g(ε)2

) ·nO(1) = 2k2O(1/ε)

·nO(1) time. Among all feasible unions the algorithm outputs the
solution with smallest cost. According to Theorem 13 this solution is a (1 +ε)-approximation,
and the total runtime is k2O(1/ε) ·n2O(1/ε) + 2k2O(1/ε)

·nO(1) = max
{

2k2O(1/ε)

, n2O(1/ε)
}
. Thus

we obtain Theorem 1.
Note that even though the output of the algorithm is a (1 + ε)-approximation to the

optimum bi-DSNPlanar solution, the computed solution may not be planar, as it is the union
of several planar graphs. Theorem 13 shows though that the structure of the optimum can
be exploited to compute a near-optimum solution. We also note that the Borchers-Du[6]
Theorem for the ST problem implies the existence of a polynomial-sized (1 + ε)-approximate
kernel for ST, as recently shown by Lokshtanov et al. [46]. By the same arguments this is
also true for bi-DSNPlanar, due to Theorem 13. We refer to [46] for more details.

I Corollary 14 (cf. [46]). The bi-DSNPlanar problem admits a polynomial-size approximate
kernelization scheme (PSAKS) parameterized by k.

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:11

It remains to prove Theorem 13. For this we assume we know the optimum planar
solution N ⊆ G, and first use a standard transformation on N , so that each terminal has
only 1 neighbour, each Steiner vertex has exactly 3 neighbours, and every pair of edges
uv and vu have unique costs. Furthermore, let GN be the graph spanned by the edge set
{uv, vu ∈ E(G) | uv ∈ E(N)}, i.e. it is the underlying bidirected graph of N after performing
the transformations on N . In particular, also in GN each terminal has only 1 neighbour,
each Steiner vertex has exactly 3 neighbours, and every pair of edges uv and vu have unique
costs. It is not hard to see that proving Theorem 13 for the obtained optimum solution
N in GN implies the same result for the original optimum solution in G, by reversing all
transformations.

The proof consists of two parts, of which the first exploits the bidirectedness of GN ,
while the second exploits that the optimum N is planar. The first part will identify paths
connecting each Steiner vertex to some terminal in such a way that the paths do not overlap
much. This will enable us to select a subset of these paths in the second part, so that the
total weight of the selected paths is an ε-fraction of the cost of the optimum solution. This
subset of paths will be used to connect terminals to the boundary vertices of small regions
into which we divide the optimum. These regions extended by the paths then form solutions
to sub-instances to DSN, which together have a cost of 1 + ε times the optimum. The first
part is captured by the next lemma, where cost(G′) denotes the total edge weight of a graph
G′.

I Lemma 15. Let N ⊆ GN be the optimum bi-DSNPlanar solution to a pattern graph H
on R ⊆ V (GN). For every Steiner vertex v ∈ V (N) \R of N there is a path Pv in GN , such
that Pv is a v → t path to some terminal t ∈ R, and the total cost

∑
v∈V (N)\R cost(Pv) of

these paths is O(cost(N)).

For the second part we give each vertex v of N a weight c(v), which is zero for terminals
and equal to cost(Pv) for each Steiner vertex v ∈ V (N) \R and corresponding path Pv given
by Lemma 15. We now divide the optimum solution N into regions of small size, such that
the boundaries of the regions have small total weight. Formally, a region is a subgraph of N ,
and an r-division is given by a partition of the edges of N , each spanning a region with
at most r vertices. A boundary vertex of an r-division is a vertex that lies in at least two
regions. In a weak r-division, as for instance defined in [35], we bound the total number of
boundary vertices and the number of regions (it is called “weak” since it does not bound the
boundary vertices of each region individually). For unweighted planar graphs it can be shown
that there is an r-division with only O(n/

√
r) boundary vertices and O(n/r) regions [35, 29].

To prove this, a separator theorem is applied recursively until each resulting region is small
enough. The bound on the number of boundary vertices follows from the well-known fact
that any planar graph has a small separator of size O(

√
n).

We however need to bound the total weight of the boundary vertices, i.e. we need a
weighted weak r-division. Unfortunately, separator theorems are not helpful here, since they
only bound the number of vertices in the separator but cannot bound their weight. Instead
we leverage techniques developed for the Klein-Plotkin-Rao (KPR) Theorem [45, 39] in order
to show that there is an r-division for which the total weight of all boundary vertices is an
O(1/ log r)-fraction of the total weight

∑
v∈V (N) c(v), if the graph has constant maximum

degree. We later set r = 21/ε in order to obtain an ε-fraction of the total weight. Even
though the obtained fraction is exponentially worse than the O(1/

√
r)-fraction for unweighted

graphs obtained in [35, 29], it follows from a lower bound result of Borchers and Du [6]
that for weighted graphs this is best possible, even if the graph is a tree. In contrast to the

ESA 2018

20:12 Parameterized Approximations for Bidirected Steiner Networks

unweighted case, we also do not guarantee any bound on the number of regions, and we do
not need such a bound either. Our proof follows the outlines of the proof given by Lee [45]
for the KPR Theorem. In the following, c(S) =

∑
v∈S c(v) for any set of vertices S.

I Lemma 16. Let N be a directed planar graph for which each vertex has at most 3 neighbours,
and let each vertex v of N have a weight c(v) ∈ R. For any r ∈ N there is a partition E
of the edges of N for which every set in E spans at most r vertices, and if B is the set of
boundary vertices of the regions spanned by the sets in E, then c(B) = O

(
c(V (N))

log r

)
.

We here only prove some parts of Lemma 15 (cf. [12] for the full version of the paper).

Proof of Lemma 15. We begin by analysing the structure of optimal DSN solutions in
bidirected graphs. Here a condensation graph of a directed graph results from contracting
each strongly connected component, which hence is a DAG. A poly-forest is obtained by
directing the edges of an undirected forest.

I Claim 17. For any solution N ⊆ GN to a pattern H, there is a solution M ⊆ GN to H
with cost(M) ≤ cost(N), such that the condensation graph of M is a poly-forest.

By Claim 17 we may assume w.l.o.g. that the condensation graph of the optimum solution
N is a poly-forest. Consider a weakly connected component C of N , i.e. inducing a connected
component of the underlying undirected graph 9

N . We first extend C to a strongly connected
graph C ′ as follows. Let F be the edges of C that do not lie in a strongly connected
component, i.e. they are the edges of the condensation graph of C. Let F̃ = {uv | vu ∈ F}
be the set containing the reverse edges of F , and let C ′ be the strongly connected graph
spanned by all edges of C in addition to the edges in F̃ . Note that adding F̃ to C increases
the cost by at most a factor of two as GN is bidirected, and the number of neighbours of
any vertex does not change. We claim that in fact C ′ is a minimal SCSS solution to the
terminal set RC ⊆ R contained in C, that is, removing any edge of C ′ will disconnect some
terminal pair of RC .

For this, consider any s→ t path of C ′ containing an edge e ∈ F̃ for some terminal pair
s, t ∈ RC . As the edges F of the condensation graph of C form a poly-tree, every path from
s to t in C ′ must pass through e. In particular there is no s→ t path in C, and thus there is
no edge st in the pattern graph H. Or conversely, for any terminal pair s, t ∈ RC for which
there is a demand st ∈ E(H), no s→ t path in C ′ passes through an edge of F̃ . Thus the
set of paths from s to t is the same in C ′ and C. Since every edge e of the weakly connected
component C is necessary for some such pair s, t ∈ RC with st ∈ E(H), the edge e is still
necessary in C ′. Moreover, for any of the added edges uv ∈ F̃ the reverse edge vu ∈ F was
necessary in C to connect some s ∈ RC to some t ∈ RC . As observed above, uv is necessary
to connect t to s in C ′, since the edges F of the condensation graph form a poly-tree.

As C ′ is a minimal SCSS solution to the terminals RC contained within, it is the union
of an in-arborescence Ain and out-arborescence Aout, both with the same root r ∈ RC and
leaf set RC \ {r}, since every terminal only has one neighbour in GN . A branching point of
an arborescence A is a vertex with at least two children in A. We let W ⊆ V (C ′) be the set
consisting of all terminals RC and all branching points of Ain and Aout. We will need that
any vertex of C ′ has a vertex of W in its close vicinity. That is, if ∆[v] = {u ∈ V (C ′) | u =
v ∨ uv ∈ E(C ′) ∨ vu ∈ E(C ′)} denotes the inclusive neighbourhood of a vertex v ignoring
directions of edges and ∆2[v] =

⋃
u∈∆[v] ∆[v], we prove the following.

I Claim 18. For every vertex v of C ′, there is a vertex of W in ∆2[v].

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:13

As the graph GN is bidirected, for any v-u path P in the underlying undirected graph 9
GN

of GN , there exists a corresponding directed v → u path in GN of the same cost. Therefore,
we can ignore the directions of the edges in C ′ and the arborescences Aout and Ain to identify
the paths Pv for Steiner vertices v of N . Thus we will only consider paths in the underlying
undirected graphs

9
C ′, 9A out, and

9
A in from now on. In particular, we exploit the following

observation found in [20] (and also used by [6]) on undirected trees.

I Claim 19 ([20, Lemma 3.2]). For any undirected tree T we can find a path Pv ⊆ T for
every branching point v, such that Pv leads from v to some leaf of T , and all these paths Pv

are pairwise edge-disjoint.

If a Steiner vertex v of C ′ is a branching point of Aout (Ain), we let Pv be the corresponding
path in 9

A out (
9
A in) given by Claim 19 from v to some leaf of Aout (Ain), which is a terminal.

Note that paths in 9
A in may overlap with paths in 9

A out. However any edge in the union of
all the paths Pv chosen so far is contained in at most two such paths, one for a branching
point of Aout and one for a branching point of Ain.

It remains to choose a path Pv for every Steiner vertex v that is neither a branching
point of Aout nor of Ain, i.e. for every vertex not in W . By Claim 18 for any such vertex
v /∈W there is a vertex u ∈ ∆2[v] for which u ∈W . If u is a terminal, then the path Pv is
simply the edge vu if u ∈ ∆[v] or the corresponding path vwu for some w ∈ ∆[v] otherwise.
If u is not a terminal but a branching point of Aout or Ain, then we chose a path Pu for u
above. In this case, Pv is the path contained in the walk given by extending the path Pu

by the edge vu or the path vwu, respectively. Note that, as any vertex of C ′ has at most
three neighbours, any terminal or branching point u ∈W can be used in this way for some
vertex v /∈ W at most nine times. Therefore any edge in the union of all chosen paths is
contained in O(1) paths. Consequently the total cost

∑
v∈V (N)\R cost(Pv) is O(cost(C ′)),

and as cost(C ′) ≤ 2 cost(C) we also get
∑

v∈V (N)\R cost(Pv) = O(cost(C)).
We may repeat these arguments for every weakly connected component of N to obtain

the lemma. J

References
1 Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algorithm

for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–
456, 1995.

2 Benny Applebaum. Exponentially-Hard Gap-CSP and Local PRG via Local Hardcore
Functions. In FOCS 2017, pages 836–847, 2017. doi:10.1109/FOCS.2017.82.

3 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner
forest. Information and Computation, 222:93–107, 2013.

4 Arnab Bhattacharyya, Suprovat Ghoshal, Karthik C. S., and Pasin Manurangsi. Paramet-
erized Intractability of Even Set and Shortest Vector Problem from Gap-ETH. To appear
in ICALP 2018, 2018. arXiv:1803.09717.

5 Edouard Bonnet, Bruno Escoffier, EunJung Kim, and Vangelis T. Paschos. On subexpo-
nential and FPT-time inapproximability. In IPEC, pages 54–65, 2013.

6 Al Borchers and Ding-Zhu Du. The k-Steiner Ratio in Graphs. SIAM Journal on Comput-
ing, 26(3):857–869, 1997.

7 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree
approximation via iterative randomized rounding. Journal of the ACM, 60(1):6, 2013.

ESA 2018

http://dx.doi.org/10.1109/FOCS.2017.82
http://arxiv.org/abs/1803.09717

20:14 Parameterized Approximations for Bidirected Steiner Networks

8 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manur-
angsi, Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-Inapproximability:
Clique, Dominating Set, and More. In To appear in FOCS, 2017.

9 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems
in undirected graphs and the directed Steiner network problem. ACM Transactions on
Algorithms, 7(2):18, 2011.

10 W-T Chen and N-F Huang. The strongly connecting problem on multihop packet radio
networks. IEEE Transactions on Communications, 37(3):293–295, 1989.

11 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized domin-
ating set problem. In FOCS, pages 505–514, 2016.

12 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized Approx-
imation Algorithms for Directed Steiner Network Problems. CoRR, abs/1707.06499, 2017.
arXiv:1707.06499.

13 Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Guy Kortsarz. Fixed-parameter and
approximation algorithms: A new look. In IPEC, pages 110–122, 2013.

14 Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight bounds for planar
strongly connected Steiner subgraph with fixed number of terminals (and extensions). In
SODA, pages 1782–1801, 2014.

15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

16 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.

17 Irit Dinur and Pasin Manurangsi. ETH-Hardness of Approximating 2-CSPs and Directed
Steiner Network. In ITCS, pages 36:1–36:20, 2018. doi:10.4230/LIPIcs.ITCS.2018.36.

18 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In
STOC 1999, pages 750–759, 1999.

19 S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,
1971.

20 Ding-Zhu Du, Yanjun Zhang, and Qing Feng. On better heuristic for Euclidean Steiner
minimum trees. In FOCS 1991, pages 431–439, 1991.

21 Pavel Dvorák, Andreas Emil Feldmann, Dusan Knop, Tomás Masarík, Tomas Toufar, and
Pavel Veselý. Parameterized approximation schemes for steiner trees with small number of
steiner vertices. In STACS, pages 26:1–26:15, 2018.

22 Eduard Eiben, Dušan Knop, Fahad Panolan, and Ondřej Suchý. Complexity of the steiner
network problem with respect to the number of terminals. arXiv preprint, 2018. arXiv:
1802.08189.

23 Eduard Eiben, Mithilesh Kumar, Amer E Mouawad, and Fahad Panolan. Lossy kernels for
connected dominating set on sparse graphs. arXiv preprint, 2017. arXiv:1706.09339.

24 Jon Feldman and Matthias Ruhl. The directed Steiner network problem is tractable for a
constant number of terminals. SIAM J. Comput., 36(2):543–561, 2006.

25 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for
directed steiner forest. J. Comput. Syst. Sci., 78(1):279–292, 2012. doi:10.1016/j.jcss.
2011.05.009.

26 Andreas Emil Feldmann. Fixed parameter approximations for k-center problems in
low highway dimension graphs. In ICALP, pages 588–600, 2015. doi:10.1007/
978-3-662-47666-6_47.

27 Andreas Emil Feldmann and Dániel Marx. The complexity landscape of fixed-parameter
directed steiner network problems. CoRR, abs/1707.06808, 2017. arXiv:1707.06808.

http://arxiv.org/abs/1707.06499
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.36
http://arxiv.org/abs/1802.08189
http://arxiv.org/abs/1802.08189
http://arxiv.org/abs/1706.09339
http://dx.doi.org/10.1016/j.jcss.2011.05.009
http://dx.doi.org/10.1016/j.jcss.2011.05.009
http://dx.doi.org/10.1007/978-3-662-47666-6_47
http://dx.doi.org/10.1007/978-3-662-47666-6_47
http://arxiv.org/abs/1707.06808

R. Chitnis, A. E. Feldmann, and P. Manurangsi 20:15

28 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
and Saket Saurabh. Subexponential Parameterized Algorithms for Planar and Apex-Minor-
Free Graphs via Low Treewidth Pattern Covering. In FOCS, pages 515–524, 2016. doi:
10.1109/FOCS.2016.62.

29 Greg N Frederickson and Joseph Ja’Ja’. Approximation algorithms for several graph aug-
mentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

30 E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathem-
atics, 16(1):1–29, 1968.

31 Jiong Guo, Rolf Niedermeier, and Ondrej Suchý. Parameterized complexity of arc-weighted
directed Steiner problems. SIAM J. Discrete Math., 25(2):583–599, 2011.

32 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In STOC,
pages 585–594, 2003.

33 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

34 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

35 Giuseppe F Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Im-
proved algorithms for min cut and max flow in undirected planar graphs. In STOC 2011,
pages 313–322, 2011.

36 Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for the Steiner
tree problem. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

37 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the Parameterized Complex-
ity of Approximating Dominating Set. To appear in STOC 2018, 2017. arXiv:1711.11029.

38 Hervé Kerivin and A Ridha Mahjoub. Design of survivable networks: A survey. Networks,
46(1):1–21, 2005.

39 Philip Klein, Serge A. Plotkin, and Satish Rao. Excluded Minors, Network Decomposition,
and Multicommodity Flow. In STOC 1993, pages 682–690, 1993.

40 Philip N. Klein and Dániel Marx. Solving Planar k -Terminal Cut in O(nc
√

k) Time. In
ICALP, pages 569–580, 2012. doi:10.1007/978-3-642-31594-7_48.

41 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset
TSP on planar graphs. In SODA, pages 1812–1830, 2014. doi:10.1137/1.9781611973402.
131.

42 R. Krithika, Pranabendu Misra, Ashutosh Rai, and Prafullkumar Tale. Lossy kernels
for graph contraction problems. In 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2016), volume 65, pages
23:1–23:14, Dagstuhl, Germany, 2016. doi:10.4230/LIPIcs.FSTTCS.2016.23.

43 Nhat X Lam, Trac N Nguyen, Min Kyung An, and Dung T Huynh. Dual power assign-
ment optimization and fault tolerance in WSNs. Journal of Combinatorial Optimization,
30(1):120–138, 2015.

44 Michael Lampis. Parameterized approximation schemes using graph widths. In ICALP,
pages 775–786, 2014.

45 James Lee. A simpler proof of the KPR theorem, 2012. URL: https://tcsmath.org/
2012/01/11/a-simpler-proof-of-the-kpr-theorem/.

46 Daniel Lokshtanov, Fahad Panolan, MS Ramanujan, and Saket Saurabh. Lossy Kerneliza-
tion. In STOC, pages 224–237, 2017.

47 Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential Parameterized
Odd Cycle Transversal on Planar Graphs. In FSTTCS, pages 424–434, 2012. doi:10.4230/
LIPIcs.FSTTCS.2012.424.

48 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Com-
plexity of Approximating Dense CSPs. In ICALP, pages 78:1–78:15, 2017.

ESA 2018

http://dx.doi.org/10.1109/FOCS.2016.62
http://dx.doi.org/10.1109/FOCS.2016.62
http://arxiv.org/abs/1711.11029
http://dx.doi.org/10.1007/978-3-642-31594-7_48
http://dx.doi.org/10.1137/1.9781611973402.131
http://dx.doi.org/10.1137/1.9781611973402.131
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.23
https://tcsmath.org/2012/01/11/a-simpler-proof-of-the-kpr-theorem/
https://tcsmath.org/2012/01/11/a-simpler-proof-of-the-kpr-theorem/
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.424
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.424

20:16 Parameterized Approximations for Bidirected Steiner Networks

49 Dániel Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

50 Dániel Marx. A Tight Lower Bound for Planar Multiway Cut with Fixed Number of
Terminals. In ICALP, pages 677–688, 2012. doi:10.1007/978-3-642-31594-7_57.

51 Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. On subexponential parameterized
algorithms for Steiner Tree and Directed Subset TSP on planar graphs. arXiv preprint
arXiv:1707.1707.02190, 2017.

52 Dániel Marx and Michal Pilipczuk. Optimal Parameterized Algorithms for Planar Facility
Location Problems Using Voronoi Diagrams. In ESA, pages 865–877, 2015. doi:10.1007/
978-3-662-48350-3_72.

53 Daniel Mölle, Stefan Richter, and Peter Rossmanith. A faster algorithm for the steiner tree
problem. In STACS, pages 561–570, 2006.

54 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs. In
STACS, pages 353–364, 2013. doi:10.4230/LIPIcs.STACS.2013.353.

55 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network
Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs. In FOCS, pages
276–285, 2014. doi:10.1109/FOCS.2014.37.

56 Hans Jürgen Prömel and Angelika Steger. A new approximation algorithm for the Steiner
tree problem with performance ratio 5/3. Journal of Algorithms, 36:89–101, 2000.

57 Ram Ramanathan and Regina Rosales-Hain. Topology control of multihop wireless net-
works using transmit power adjustment. In INFOCOM, volume 2, pages 404–413, 2000.

58 Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph Steiner tree approx-
imation. SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005.

59 Sebastian Siebertz. Lossy kernels for connected distance-r domination on nowhere dense
graph classes. arXiv preprint, 2017. arXiv:1707.09819.

60 Vijay Virkumar Vazirani. Approximation Algorithms. Springer-Verlag, 2001.
61 Chen Wang, Myung-Ah Park, James Willson, Yongxi Cheng, Andras Farago, and Weili Wu.

On approximate optimal dual power assignment for biconnectivity and edge-biconnectivity.
Theoretical Computer Science, 396(1-3):180–190, 2008.

62 Andreas Wiese. A (1 + ε)-approximation for unsplittable flow on a path in fixed-parameter
running time. In ICALP 2017, pages 67:1–67:13, 2017.

63 Alexander Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica, 9:463–470, 1993.

http://dx.doi.org/10.1007/978-3-642-31594-7_57
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.353
http://dx.doi.org/10.1109/FOCS.2014.37
http://arxiv.org/abs/1707.09819

Online Facility Location with Deletions
Marek Cygan
Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
cygan@mimuw.edu.pl

Artur Czumaj
Department of Computer Science and Centre for Discrete Mathematics and its Applications
(DIMAP), University of Warwick, Coventry CV4 7AL, United Kingdom
A.Czumaj@warwick.ac.uk

Marcin Mucha
Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
mucha@mimuw.edu.pl

Piotr Sankowski
Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
sank@mimuw.edu.pl

Abstract
In this paper we study three previously unstudied variants of the online Facility Location
problem, considering an intrinsic scenario when the clients and facilities are not only allowed to
arrive to the system, but they can also depart at any moment.

We begin with the study of a natural fully-dynamic online uncapacitated model where clients
can be both added and removed. When a client arrives, then it has to be assigned either to an
existing facility or to a new facility opened at the client’s location. However, when a client who
has been also one of the open facilities is to be removed, then our model has to allow to reconnect
all clients that have been connected to that removed facility. In this model, we present an optimal
O(log nact/ log log nact)-competitive algorithm, where nact is the number of active clients at the
end of the input sequence.

Next, we turn our attention to the capacitated Facility Location problem. We first
note that if no deletions are allowed, then one can achieve an optimal competitive ratio of
O(log n/ log log n), where n is the length of the sequence. However, when deletions are allowed,
the capacitated version of the problem is significantly more challenging than the uncapacitated
one. We show that still, using a more sophisticated algorithmic approach, one can obtain an
online O(logm+ log c log n)-competitive algorithm for the capacitated Facility Location prob-
lem in the fully dynamic model, where m is number of points in the input metric and c is the
capacity of any open facility.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases online algorithms, facility location, fully-dynamic online algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.21

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
03839.

Funding Research partially supported by the Royal Society International Exchanges Scheme
2013/R1, grant IE130346, by the Centre for Discrete Mathematics and its Applications (DIMAP),
by EPSRC awards EP/D063191/1, EP/N011163/1, and by the European Research Council re-
search and innovation programme (ERC grant agreement No 677651).

© Marek Cygan, Artur Czumaj, Marcin Mucha, and Piotr Sankowski;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cygan@mimuw.edu.pl
mailto:A.Czumaj@warwick.ac.uk
mailto:mucha@mimuw.edu.pl
mailto:sank@mimuw.edu.pl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.21
https://arxiv.org/abs/1807.03839
https://arxiv.org/abs/1807.03839
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Online Facility Location with Deletions

1 Introduction

The Facility Location is one of the central combinatorial optimization problem, extensively
studied in the literature for several decades, see, e.g., [5, 12, 14, 29, 37, 45] and the references
therein. The goal is to connect a given set of clients to a set of facilities such that the
service cost is optimized. A very natural setting for the Facility Location problem is the
online scenario, where clients arrive incrementally over time and need to be connected to
existing or newly opened facilities. Indeed, since it has been introduced over 15 years ago by
Meyerson [40], the online version of the Facility Location problem and its generalizations
received considerable amount of attention [3, 6, 7, 16, 17, 20, 21, 22, 25, 26, 33, 41, 42, 43, 48].
Typically in these models one assumes to be given a metric over a set of candidate points.
When a client appears, we are allowed to open a new facility in her location, paying some cost
for opening a new facility, and then we have to irrevocably connect the client to one of the
open facilities, paying for the connection the cost equal to the distance from the client to the
facility. In this paper, we study a more complex scenario and consider a natural extension of
this model allowing clients to be removed from the system, extending the standard dynamic
model to the fully dynamic setting. That is, in each time step either a new client arrives and
needs to be connected to one of the open facilities, or one of the clients already existing in
the system departs. Observe that if a client who has been also one of the open facilities is to
be removed, then our model has to allow to reconnect all clients that have been connected to
that removed facility.

The fully dynamic model is very natural in the context of the Facility Location
problem, where in a number of scenarios it is desirable to dynamically process the arrival
objects, and then to allow their departures. For example, if one wants to build and maintain
schools in a newly developing city, one wants to allow a steady arrival of new pupils to the
area, and also allow changes in the school demands when pupils population is declining.
Similarly, if one wants to maintain a construction of a network, where all clients are to be
connected to the servers (and pay connection costs) and each client is allowed to host a
server (and pay an opening cost), one may also want to allow the removal of some clients
and with that also a closure of some servers. Given that the relocation costs are often very
expensive, the decisions should be regarded as irrevocable, unless, as in the case of deletions,
are necessary. The framework considered in this paper is even more natural in complex
distributed settings, for example, in some more modern scenarios that have been recently
motivated by applications in peer-to-peer systems, when client and facility are coupled to
the same entity. Consider the so called p2p networks with super-peers [49] that were used
for filesharing as Gnutella [30] or can be used for decentralized online social networks [44],
distributed game systems [47], grid management systems [19] and distributed storage [34]. In
such case, some of the nodes decide to host the provided content. This decision incurs some
cost to this node, but can reduce the cost of serving other nodes. The main question asked
about such systems is about the needed ratio of superpeers to peers that guarantees that
enough capacity of superpeers is available to serve all clients [49]. This measure corresponds
exactly to competitive ratio in our models.

Before discussing our results and techniques further, let us first formally define the models
starting with the classical online variant.

1.1 The model
We study the performance of online algorithms for the Facility Location problem in the
standard framework of competitive analysis (cf. [11, 46]). A randomized algorithm for the
Facility Location problem is α-competitive if for any input sequence, its expected cost

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:3

is at most α times the optimal cost for the corresponding instance of the offline Facility
Location. Note that the corresponding instance of the offline problem contains only the
clients that are active at the end of the input sequence. We consider a standard special
version of the Facility Location problem, where the set of clients and the set of possible
facility locations are identical (see, e.g., [8, 23, 40]).

1.1.1 Online facility location
We consider the Facility Location problem, where points (from some metric space) arrive
in online fashion. When a point x arrives, we can first open a facility in x and then we
have to assign x to some open facility. These choices are irrevocable. We consider only
the Facility Location problem with uniform opening costs, which are all, without loss
of generality, equal to 1. The restriction to the study of uniform costs makes the problem
interesting, since without this assumption, no bounded competitive ratio can be obtained (as
described in the full version of this paper).

The cost of an obtained solution for a point set X is:

|F|+
∑
x∈X

dist(x, a(x)) ,

where F is the set of open facilities and a(x) is the open facility to which x is assigned. The
cost of a point x ∈ S is equal to its connecting cost (distance to the open facility assigned
to x) plus its opening cost (if x is an open facility then the opening cost is 1, and it is 0
otherwise).

The model defined here has been studied in the past, see e.g., Fotakis [23] for a survey or
Meyerson [40]. (One frequently assumes (see e.g., [40]) that the opening cost in any facility
is equal to some f , but simple scaling makes this problem equivalent to the one studied in
our paper, that is, with f = 1.)

1.1.2 Online facility location with deletions
In this paper, we consider a fully-dynamic online setting, in which in each time step either a
new point (from some metric space) arrives in an online fashion, or a point already in the
input is deleted. To cope with the case when an open facility is deleted, we have to allow
the input points to be reassigned, and possibly to open other facilities. We consider the
following, very natural model:

In the online process, the requests are arriving online, and each request is either an arrival
of a new demand point from a metric space, or a request to remove a previously inserted
demand point.
When a new demand point x arrives, the algorithm must at once and irrevocably decide
if a new facility will open at x, and then must assign x to some open facility (possibly to
itself, if a facility was open at x).
When a point x is requested to be removed, then x is deleted from the system and if x
was an open facility, then all points assigned to x will be immediately reassigned to other
facilities and some of these points may become open facilities.

1.1.3 Online capacitated facility location
We also consider a more general model of online capacitated Facility Location with
deletions, in which each open facility can handle at most c clients, that is, at any moment at
most c clients can be connected to any single facility. Again, we study only a uniform case

ESA 2018

21:4 Online Facility Location with Deletions

(in which each facility has the same capacity c), since otherwise no bounded competitive
ratio can be obtained (see full version of the paper).

The goal of an algorithm for the Facility Location in any of the models defined above
is to minimize the cost of the solution and to obtain an algorithm that is α-competitive for
α as small as possible. The performance of the algorithm may be a function of the length
of the input sequence n, the number of points nact active in a given moment, the size of the
input metric space m, and the capacity c.

We note that in the model of uncapacitated Facility Location, the known results (as
well as our new results) work for any metric space, even if it is unknown to the algorithm.
However, for the new algorithm for online capacitated Facility Location with deletions
(cf. Theorem 4.4), we will assume that the underlying metric is known to the algorithm in
advance.

1.2 Related work
As one of the fundamental problems in operations research and combinatorial optimization,
the Facility Location problem has been studied extensively in the past, see, e.g., the
standard exposition in [14] and more recent advances in [4, 5, 29, 45], and the references
therein. In the online setting, an early research focused on the k-median problem (see, e.g.,
[39]), which is a variant of the Facility Location problem where exactly k facilities have to
be opened. Soon after, Meyerson [40] designed a simple randomized online algorithm in the
uncapacitated model without deletion. His online algorithm is O(log n/ log log n)-competitive,
where n is the number of points in the input. (In fact, only a competitive ratio of O(log n)
was proven in [40], but Fotakis [22] extended the analysis from [40] to obtain a competitive
ratio of O(log n/ log log n).) Fotakis [22] later has shown that this bound is asymptotically
tight and no online algorithm is o(log n/ log log n)-competitive; the lower bound holds for
randomized algorithms against the oblivious adversary, for uniform facility costs, and for
very simple metric spaces, such as the real line. For more discussion about the history of the
online version of the uncapacitated Facility Location problem (including deterministic
online algorithms and incremental online algorithms), we refer to a survey by Fotakis [23].

The extension of the online model to deal with deletion of the facilities makes the
Facility Location problem significantly more challenging. While this model is very
natural, it requires a different approach that must permit to reverse some of the decisions
in the online algorithm, and we are not aware of any study of algorithms for the online
Facility Location problem in the fully dynamic setting, where deletions are allowed.

We note however, that similar fully dynamic models for optimization problems on graphs
have been considered in the past, though only in limited settings. For example, a number of
graph optimization problems have been considered in fully dynamic models in the setting
of data streams, in the so-called turnstile model. This model has been investigated in two
scenarios: in the context of geometric graph optimization problems (see, e.g., [15, 28, 35]), and
only very recently, in the context of standard graph optimization problems (see, e.g., a recent
survey [38] and the references therein). The main focus of these studies is to design algorithms
that process a stream of data (in this case, edge or vertex insertions and deletions) and using
very limited space, to maintain some basic graph features. For geometric graph optimization
problems, where the input is defined over a set of points in the discrete d-dimensional space
{1, 2, . . . ,∆}d, it has been shown that many basic properties (e.g., k-median, minimum
spanning tree, minimum weight matching, MaxCut) can be approximated very efficiently
even with poly-logarithmic space (see, e.g., [28, 24]). The uncapacitated Facility Location
problem has been studied in the context of data streaming, initiated with work of Indyk [28],

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:5

who gave a poly(log ∆)-space streaming algorithm that approximates the optimal cost of
the Facility Location problem within a factor of O(log2 ∆). The best currently known
streaming algorithm using poly(log ∆)-space gives an (1 + ε)-approximation for this problem
[15]. The research in data streaming for standard graph optimization problems has been
traditionally focusing on the insertion-only model, where one was aiming to design streaming
algorithms with O(n poly logn) space (cf. [38] and the references therein). Only very recently,
Ahn et al. [1] initiated the study of algorithms that allow both insertions and deletions
(see also [13]). This line of research led to a number of efficient data streaming algorithms
for fundamental graph problems, such as testing connectivity or bipartiteness, computing
spanning trees and various graph sparsifiers, maximum matching, that can be (approximately)
computed in small, O(n poly logn) space not only in the insertion only model, but also in
the model with deletions [1, 2, 31, 32, 38].

We also note that recently there has been some research on the standard online Steiner
tree problem with deletions, see e.g., [27, 36].

1.3 New results
The main contribution of this paper is the first thorough study of the online Facility
Location problem with deletions and design of new algorithms for this model in several
natural settings.

We begin with the study of the simplest, uncapacitated model. We present in Theorem
2.2 an online O(log nact/ log log nact)-competitive algorithm for the uncapacitated Facility
Location problem with deletions, where nact is the number of active clients at the end of the
input sequence; this bound gives an asymptotically optimal competitive ratio. Our algorithm
is an extension of the classical insertion-only algorithm for the Facility Location problem
due to Meyerson [40], and we show that one can modify the analysis from [40] to allow
deletions.

Next, we turn our attention to the capacitated Facility Location problem. We first
prove (Observation 3.1) that if no deletions are permitted, then a simple modification of
Meyerson’s algorithm for online Facility Location can be applied to achieve an optimal
competitive ratio of O(log n/ log log n). However, when deletions are allowed, then the
capacitated version of the problem is significantly more challenging than the uncapacitated
one. We show that still, using more involved approach incorporating hierarchically well-
separated trees, one can obtain an online O(logm + log c log n)-competitive algorithm for
the capacitated Facility Location problem with deletions, in the fully dynamic model,
where n is the number of queries, m is the number of points in the input metric, and c is the
capacity of the facilities (Theorem 4.4).

We notice that while the algorithms from Theorem 2.2 and Observation 3.1 do not need
to know the input metric, the result from Theorem 4.4 assumes that the input metric is
known to the algorithm.

Our work demonstrates that despite the fact that the online Facility Location problem
with deletion is clearly more complex than the classical online problem with insertions only,
the most natural variants of these problems, for both the uncapacitated and the capacitated
model for uniform facility costs, have very efficient online algorithms that achieve competitive
ratios matching or almost matching those of the insertion only variants of the problem.

2 Online uncapacitated facility location

We begin with the study of the simplest, uncapacitated model, and describe an insertion-only
online algorithm for uncapacitated Facility Location due to Meyerson [40].

ESA 2018

21:6 Online Facility Location with Deletions

Algorithm M:

When a new demand point x arrives then find its nearest open facility y and set dx =
min{dist(x, y), 1}. Next, with probability dx open a new facility at point x and assign x to
it; otherwise, assign x to y.

Meyerson [40] proved that Algorithm M is O(log n/ log log n)-competitive in the model
with insertions only (see also [22, 23]).

The most natural approach to obtain an online algorithm for the Facility Location
problem with deletions is to attempt to modify Algorithm M. Indeed, there is a simple
modification of Algorithm M that addresses the deletions. The following Algorithm M*
proceeds as in Algorithm M, except that when a facility is removed, it reprocesses all the
points that are now not assigned to any facility using the original algorithm.

Algorithm M*:

When a new demand point x arrives then find its nearest open facility y and set dx =
min{dist(x, y), 1}. Next, with probability dx open a new facility at point x and assign x to
it; otherwise, assign x to y.

When a point x that is an open facility is to be deleted, then reassign all points assigned
to x using the algorithm for the insertions.

While it is appealing to hope that Algorithm M* has performance similar to that of
Algorithm M for insertions only, but in fact asymptotically, it does no better than opening
facilities at all points.

I Claim 2.1. Algorithm M* has competitive ratio of Ω(nact).

Proof. For any k ∈ N+, consider a star metric with center o connected to points X =
{x1, . . . , xk} at distance ε = 1

k from o. Consider the following input sequence:
1. Add k2 clients a1, . . . , ak2 located at o.
2. For each i = 1, . . . , k add a client bi located at xi.
3. Remove the clients a1, . . . , ak2−1 in that order.

We will analyze the performance of algorithm M∗ in the above scenario. While doing
that, we assume that whenever clients are reassigned, they are reassigned in the order in
which they were originally assigned.

Consider the first two stages, when all the clients are added. In step 1, client a1 opens
a facility and then all other clients at o connect to a1. In step 2, each bi opens a facility
with probability ε and connects to a1 otherwise. For the remainder of the analysis, let us
assume that at least one of the clients bj opens a facility. This happens with probability
p1 = 1− (1− ε)k = Ω(1).

Next, we remove a1 and reassign all other clients assigned to a1. One by one, each client
at o flips a coin and with probability ε connects to one of the bi’s; otherwise it opens a facility.
As soon as some ai opens a facility, all other clients at o connect to ai, and each client at
X that has not yet opened a facility (and hence was initially connected to a1) does so with
probability ε; otherwise it connects to ai. If no ai opens a facility, then each client at X that
has not yet opened a facility, opens one with probability 2ε, and otherwise it connects to one
already open facility at some bj .

We then remove all other clients a2, . . . , ak2−1. Each time the client removed has a facility
opened, the scenario described in the previous paragraph repeats. Removal of a client with
no facility opened has, of course, no effect on the other clients.

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:7

Note that each time we remove a client at o that has a facility open, each of the bj ’s
opens a facility with probability at least ε, unless it has already opened a facility. How many
times does that happen? Let us count the number of ai’s with 2 ≤ i ≤ k2 − 1 that at some
moment open a facility (and then get removed). Each of the ai’s flips a coin exactly once
(which corresponds to the situation that at some moment we have already removed a1, . . . , aj

for some j < i, and there is no facility open at aj+1, . . . , ai−1, with points aj+1, . . . , ai−1
connected to facilities from X). Furthermore, the coin flip for ai is independent from coin flips
made by a2, . . . , ai−1, ai+1, . . . , ak2−1. Therefore the number of ai’s that at some moment
open a facility and then get removed has the binomial distribution with parameters k2 − 2
and ε. Hence, by Chernoff bound, with probability p2 ≥ 1− e−ε(k2−2)/6 = Ω(1), there are at
least ε(k2 − 2)/2 ≥ k/2− 1 of those clients. Therefore, we can conclude that each bj opens a
facility with probability at least p3 = 1− (1− ε)k/2−1 = Ω(1).

The optimal offline solution opens a facility at ak2 and connects all points b1, . . . , bk

to ak2 , and it has cost 1 + εk = 2. On the other hand, with probability p1p2 = Ω(1)
algorithm M∗ opens at least kp3 = Ω(k) facilities from b1, . . . , bk in expectation. This gives
an Ω(k) = Ω(nact) competitive ratio. So asymptotically M∗ does no better than just opening
facilities at all points. J

2.1 Asymptotically optimal competitive ratio for uncapacitated facility
location with deletions

Claim 2.1 shows one of the main challenges that online algorithms with deletions must cope
with: we cannot let points attempt to open a facility too frequently, since then we would
open too many facilities, and at the same time we have to be able to open some facilities
in the neighborhood of the facilities that we are closing. To address this challenge we have
to provide a delicate online strategy that will maintain a right balance between these two
desirables.

Algorithm 1:

Newly arriving points: When a new demand point x arrives then find its nearest open
facility y and set d′ = min{dist(x, y), 1}. With probability d′ open a new facility at point x
and assign x to it; otherwise, assign x to y and set px := d′. (The algorithm will memorize
px for future use.)

Deletion: When a point that is not an open facility is to be deleted, then just remove that
point.

When a point that is an open facility is to be deleted, then reassign all points assigned
to it: When a point x is to be reassigned, then find its nearest open facility y and set
d′ = min{dist(x, y), 1}. Let px be the last value used in the processing of x. If d′ ≤ 2px, then
assign x to y; otherwise with probability d′ open a new facility at x; else, with probability
1− d′ assign x to y and set px := d′.

The following theorem analyzes the performance of Algorithm 1.

I Theorem 2.2. Algorithm 1 is O(log nact/ log log nact)-competitive, where nact is the number
of active clients at the end of the input sequence (in particular, as n is the input length, we
have nact ≤ n).

Proof. We follow the approach of Meyerson [40], with special care taken to deal with
deletions.

ESA 2018

21:8 Online Facility Location with Deletions

Consider any optimal solution. For a fixed facility v, let S be the set of clients connected
to v in the optimal solution. Let d∗ be the average distance from the points of S to v. We
split S into h+ 1 subsets S0, S1, . . . , Sh, where h = d2 log |S|/ log log |S|e. Points in S0 are
at distance at most d∗ from v. For 1 ≤ i ≤ h, points in Si are at distance greater than
d∗(log |S|)(i−1)/2, but at most d∗(log |S|)i/2 from v. Note that each point is contained in
some Si, as d∗(log |S|)h/2 ≥ d∗|S|, and a single client at distance more than d∗|S| would
contradict the average distance d∗.

For each set Si we split the time into two epochs: the second epoch starts when the first
point in Si becomes an open facility in the solution of the algorithm – note that the second
epoch might never start.

Consider the first epoch of some Si. The part of the cost of the final solution incurred by
the points in Si during the first epoch is the total connection cost of these points at the end
of the first epoch plus possibly a single opening cost. The connection cost of a point x ∈ Si

is upper bounded by twice the probability of the last coin flip of x, regardless of whether
that connection was preceded by a coin flip or not. To bound the total connection cost of Si

in the first epoch it is therefore enough to bound the sum of the probabilities of all the coin
flips related to Si made during that epoch.

I Lemma 2.3. The expected value of the sum of the probabilities of the coin flips related to
points in Si and made before the first facility in Si opens is at most 1.

Proof. Let P1, P2, . . . , PM be the probabilities of all coin flips (with non-zero probabilities)
made for points in Si and let X1, X2, . . . , XM be the outcomes of these coin flips, so that
P [Xj = 1] = Pj (note that each Pj is a random variable, and not a constant since its value
might possibly depend on earlier coin flips). Also, add to both sequences a virtual „sentinel”
coin flip with PM+1 = 1, XM+1 = 1. Define Z0 = 0 and Zj+1 = Zj + Pj+1 − Xj+1 for
j = 1, . . . ,M + 1. Then the sequence {Zj} forms a martingale. Let T = min{j > 0 : Xj = 1}
be the position of the first heads in {Xj}. Note, that T is well defined, since XM+1 = 1.
Also note, that T = min{j > 0 : Zj ≤ Zj−1}, i.e., T is a stopping time for {Zj}. Since T is
bounded, from the Doob’s optional stopping time theorem we get that E[ZT] = E[Z0] = 0.
However, we also have

ZT =
T∑

j=1
Pj − 1,

and thus the claim follows. Note that the claim does not hold with equality, since the above
expression might include the virtual coin flip added to make T well defined. J

It follows that the total cost incurred by the points of Si during the first epoch is a
constant, so the overall cost of the first epoch is O(h).

Consider now the cost incurred by any point x ∈ Si in the second epoch. If x does not
make any coin flips in the second epoch, then any connection made by x has cost upper
bounded by 2d∗(log |S|)i/2, since there is an open facility in Si at this point. Consider now
the case when x does make a coin flip during the second epoch. We then upper bound the
cost of the last connection made by x by twice the probability of the last coin flip of x. We
also need to bound the cost of a facility that x might potentially open. The expected number
of facilities opened by x is the sum of the probabilities of all its coin flips. Each term in
this sum is at least twice the previous one, and so the expected number of facilities opened
by x is at most twice the probability of the last coin flip of x. This probability is at most
2d∗(log |S|)i/2 since there is an open facility in Si.

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:9

To sum up, the total cost incurred by x ∈ Si during the second epoch is at most
8d∗(log |S|)i/2. Consider first the case where Si is not the innermost layer, i.e., 0 < i ≤ h.
Any x ∈ Si is then connected to v in the optimum solution, and thus incurs a cost of at
least d∗(log |S|)(i−1)/2. Therefore, the cost incurred by such x in the second epoch is at most√

log |S| times the corresponding cost in the optimal solution. Consider now the innermost
layer. For any client in S0 Algorithm 1 pays at most O(d∗), leading to O(d∗|S0|) total cost
of the second epoch, which by the definition of d∗ is at most a constant factor more than the
connection cost payed by the optimal algorithm.

Note that in the analysis we completely ignore the cost generated by the clients, that are
removed during the course of the algorithm, as those clients in the end generate no cost to
Algorithm 1. J

Since even in the incremental model (when points can only arrive, not vanish) there is an
Ω(log n/ log log n)-lower bound (cf. [22]), Algorithm 1 is optimal up to a constant factor.

3 Capacitated online facility location (with insertions only)

Our result in Theorem 2.2 shows that for uncapacitated Facility Location with deletions,
one can extend the approach from earlier works (see [40] and also [22]) to design online
algorithms that achieve asymptotically optimal competitive ratio. However, the model
of capacitated Facility Location with deletions is significantly more complex. Still, in
the most basic case, the model with insertions only, we observe that Algorithm M can be
extended to the model of capacitated Facility Location. We run Algorithm M with a
single modification: the nearest facility y now is the nearest facility that is not fully saturated,
that is, that has still available capacity.

I Observation 3.1. Algorithm M in the capacitated case is O(log n/ log log n)-competitive in
the model with insertions only.

Proof. We only sketch the proof, since it is a straightforward modification of the original
proof of Meyerson [40] and Fotakis [22]. Similarly as described in the proof of Theorem 2.2,
we partition the set S of clients connected to some open facility v into subsets S0, . . . , Sh,
depending on their distance to v. What is different from the analysis of Meyerson and Fotakis
is the way in which we split time into epochs for each layer Si, as here the first and second
epoch can possibly interlace. Formally, the cost incurred by a client belongs to the first
epoch, if at the moment when the client appears there is no unsaturated open facility in the
layer Si. If there is an unsaturated open facility in the layer Si, then the cost incurred by
the client is classified to the second epoch.

The total cost of clients of the first epoch is bounded by Lemma 2.3, and is at most
` + n/c, where ` is the total number of sets Si, as at most n/c facilities may be saturated
during the course of the algorithm. Note that ` is exactly (h+ 1) = O(log n/ log log n) times
greater than the number of open facilities in the optimal solution. Also, as each facility can
serve only c clients, the term n/c is not greater than the cost of the optimal solution.

The cost of clients of the second epoch is bounded as in the proof of Theorem 2.2, i.e.,
Algorithm M pays at most d∗(log |S|)i/2 for each client from Si, whereas optimal solution
pays at least d∗(log |S|)(i−1)/2, assuming i > 0. The cost of clients from S0 is bounded
analogously as in the proof of Theorem 2.2. J

ESA 2018

21:10 Online Facility Location with Deletions

4 Capacitated facility location with deletions

The result in Section 3 may give a hope that also our result from Theorem 2.2 for uncapacitated
Facility Location with deletions can be easily extended to the model of capacitated
Facility Location with deletions. For example, let us think of a simple extension of
Algorithm 1 to the capacitated case. Perhaps the most natural idea is to let d be the distance
to the closest open unsaturated facility, i.e., a facility which still can serve additional clients.
Unfortunately this line of reasoning does not lead to a meaningful competitive ratio, because
in the case when all the clients arrive at the same location all the distances are equal to zero
and therefore such a modified version of Algorithm 1 would be deterministic. Playing against
a deterministic algorithm is very convenient for the adversary, as the adversary might remove
all the clients which were not turned into open facilities by the algorithm, leading to Ω(c)
competitive ratio.

One natural idea to introduce randomness to the algorithm is to increase the value of d,
so that even if the distance to the closest facility is zero, the client might still decide to open
a new facility. However, this idea alone does not seem to lead to any reasonable competitive
factor. Below, we present a typical hard example for one possible implementation of this
idea. (Note, that this competitive ratio is as bad as the one obtained by an algorithm that
opens facilities in all input points.)

I Claim 4.1. Let A be Algorithm 1 modified, so that d is the maximum of the distance to
the closest unsaturated facility and 10/c. Then, the competitive ratio of A is Ω(c).

Proof. Consider a star metric with the center o and the remaining 10c2 points at distance
1
2 from o. Let us analyze the performance of A on the following input sequence. First, we
repeat c times the following insertion: insert a point at o and then 10c points in different
leaves of the metric, and then, at the end, remove all points located in the leaves.

The optimal solution will have one open facility at one of the c points located at o, and
so the optimal cost is 1. We claim that the expected size of the solution found by A is Ω(c).

To see this, consider a single round of insertions. If at the beginning of the round, there
are no unsaturated facilities at o, then one is created with probability Θ(1). If that happens,
then each of the clients inserted at the leaves opens a facility with probability 1

2 + 10/c until
the facility is saturated. Since there are 10c such clients, w.h.p. the facility gets saturated.
It also follows, that for any round, w.h.p. there are no unsaturated facilities at o at the
beginning of the round.

The expected number of facilities opened at o is the sum over all rounds of insertions
of the probabilities that a facility is open at the beginning of the round. Based on the
observations of the previous paragraph, this probability is Θ(1) for each round, and the claim
follows. J

4.1 Hierarchically well-separated trees and facility location
We will present an online algorithm for the capacitated Facility Location problem in
the fully dynamic setting with low competitive ratio, with both insertions and deletions.
We begin with a brief overview. We will assume that (unlike in the rest of the paper) the
input metric is given in advance, V is the set of all points in the metric space, and m is the
number of points in the metric space, m = |V|. We use the embedding of the original metric
space into hierarchically well-separated trees (cf. [9, 10, 18]), on which we run our Facility
Location algorithm. Once we run the algorithm on a hierarchically well-separated tree
T, for every open facility, we will evenly split its capacity into h = O(log c) parts and then

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:11

allocate each partial capacity solely to the points in one of h areas we will define later. Then
we use a key property which ensures that every point v that would use an open facility u in
the offline uncapacitated optimal solution, to find a replacement facility with still available
capacity that is at the same distance from v in T as the distance from u to v in T.

Our approach relies on the concept of hierarchically well-separated trees (HSTs), which
are metric spaces defined on the leaves of weighted rooted trees (cf. [9, 10, 18]). It is known
(see [18]) that for every metric space, there is an HST with stretch O(logm). Let T be such
an HST for the metric given in our instance. Let the level of an internal node in the tree T

be the number of edges on the path to the root. Let ∆ denote the diameter of the resulting
metric space. In our paper, we will assume, without loss of generality, that the diameter of
the original metric space is ∆ = 1. (Indeed, if a pair of points is at distance larger than 1,
then in the Facility Location problem we will never allocate one of them to another, since
it is always cheaper to pay 1 to open a new facility; therefore, we can treat any distance
larger than 1 as equal to 1.) We also modify short distances in the metric, that is, for any
pair of points in the metric we assume their distance is at least 1/c. Note that as nact/c is a
lower bound on the cost of the optimum solution such modification of the metric increases
the cost of the optimum solution at most by a constant factor. Then using the framework
of HSTs, we will assume that the metric in the instance of capacitated online Facility
Location we are solving is a shortest paths metric in a tree T of depth h = log c, satisfying
the following conditions:

any edge connecting vertices of depth i and i+ 1 is of length 2−i,
the set of potential clients are leaves of T,
all leaves of T are at the same depth h.

I Definition 4.2. For two leaves u, v of T, define dist_log(u, v) = b− log distT(u, v)c.

Less formally, dist_log(u, v) is the depth of the lowest common ancestor of u and v in T,
which follows from the assumption that the weights of edges of T are powers of two depending
on their depth. From the triangle inequality we have the following property.

I Claim 4.3. For u, v, w ∈ V we have dist_log(u,w) ≥ min{dist_log(u, v), dist_log(v, w)}.

4.2 Algorithm for fully dynamic capacitated facility location in HSTs
In this section, we present an algorithm for fully dynamic capacitated Facility Location
in a hierarchically well-separated tree T, Algorithm 2. We will analyze its performance in
the next section.

We will assume the input metric space is the shortest path metric in a hierarchically
well-separated tree T, with all input points coming from the leaves of T, as defined in the
previous section. In the algorithm below, when a new facility is opened at a point v, then its
capacity c is evenly split into h parts, denoted as functions capi(v) for 0 ≤ i < h. We will
design the algorithm so that the capacity capi(v) will be used solely by clients u such that
dist_log(u, v) = i, that is, by the clients such that the lowest common ancestor of u and v in
T is of depth i. Apart from that constraint, the algorithm mimics Algorithm 1 from Section
2.1.

Algorithm 2:

insert v:
Call connect(v).

delete v:
For all clients of v (in arbitrary order) call connect(u).

ESA 2018

21:12 Online Facility Location with Deletions

connect v:
If maxv is undefined, then set maxv = 0.
Let u be the closest point to v such that capi(u) > 0, where i = dist_log(u, v).
If such u does not exist, then open(v) and exit.
p = min{1, distT(u, v) + 12 h ln n

c }.
If p ≤ 2 maxv, then connect v to u and decrease capi(u) by one.
Otherwise: (i) set maxv = p, (ii) with probability p open(v), and with probability
1− p connect v to u and decrease capi(u) by one.

open v:
Open a facility at v.
For each 0 ≤ i < h set capi(v) = bc/hc.

In the full version of this paper we prove the following main result for the capacitated
case of Facility Location with deletion.

I Theorem 4.4. There is an O(logm+log c log n)-competitive online algorithm for capacitated
Facility Location with deletions.

5 Conclusions

In this paper we present the first thorough study of natural variants of the online Facility
Location problem, when the clients and facilities are not only allowed to arrive to the system,
but they can also depart from the system at any moment. In this fully-dynamic online problem,
we study two fundamental settings: uncapacitated and capacitated Facility Location
for uniform facility costs. For uncapacitated Facility Location, we design an extension
of the classical insertion-only randomized algorithm for the Facility Location problem
due to Meyerson [40], and show that it achieves an asymptotically optimal competitive
ratio of O(log nact/ log log nact) (Theorem 2.2). The capacitated Facility Location is more
complex, and here we first show (Observation 3.1) that if no deletions are allowed, then
one can achieve an asymptotically optimal competitive ratio of O(log n/ log log n), the same
bound as it is known for the uncapacitated variant. When deletions are allowed, the task
is more challenging, but we still are able to incorporate the framework of hierarchically
well-separated trees to obtain an online O(logm + log c log n)-competitive algorithm for the
capacitated Facility Location problem with deletions (Theorem 4.4).

Our work demonstrates that despite the fact that the online Facility Location problem
with deletion is clearly more complex than the classical online problem with insertions only,
the most natural variants of these problems, for both the uncapacitated and the capacitated
model for uniform facility costs, have very efficient online algorithms that achieve competitive
ratios matching or almost matching those of the insertion only variants of the problem.
It is an interesting open problem whether one can improve the competitive ratio for the
capacitated case with deletions, in particular whether it is possible to remove the dependence
on m.

References
1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear

measurements. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’2012), pages 459–467. Society for Industrial and Applied Mathematics,
2012.

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:13

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dynamic
graph streams. In Proceedings of the 17th International Workshop on Approximation, Ran-
domization, and Combinatorial Optimization (RANDOM’2013), pages 1–10. Springer Ver-
lag, Berlin, Heidelberg, 2013.

3 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph (Seffi) Naor. A gen-
eral approach to online network optimization problems. ACM Transactions on Algorithms,
2(4):640–660, 2006. doi:10.1145/1198513.1198522.

4 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via
exponential clocks. ACM Transactions on Algorithms, 13(2):21:1–21:20, 2017. doi:10.
1145/2928272.

5 Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated facil-
ity location. SIAM Journal on Computing, 46(1):272–306, 2017. doi:10.1137/151002320.

6 Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pascal Van Hentenryck. A simple and
deterministic competitive algorithm for online facility location. Information and Computa-
tion, 194(2):175–202, 2004. doi:10.1016/j.ic.2004.06.002.

7 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Piotr Sankowski. On-
line network design with outliers. Algorithmica, 76(1):88–109, 2016. doi:10.1007/
s00453-015-0021-y.

8 Mihai Badoiu, Artur Czumaj, Piotr Indyk, and Christian Sohler. Facility location in sublin-
ear time. In Proceedings of the 32nd Annual International Colloquium on Automata, Lan-
guages and Programming (ICALP’2005), volume 3580 of Lecture Notes in Computer Sci-
ence, pages 866–877. Springer Verlag, Berlin, Heidelberg, 2005. doi:10.1007/11523468_
70.

9 Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applica-
tions. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science,
(FOCS’1996), pages 184–193. IEEE Computer Society, 1996. doi:10.1109/SFCS.1996.
548477.

10 Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the
30th Annual ACM Symposium on Theory of Computing (STOC’1998), pages 161–168. ACM
Press, 1998. doi:10.1145/276698.276725.

11 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

12 Jaroslaw Byrka and Karen Aardal. An optimal bifactor approximation algorithm for the
metric uncapacitated facility location problem. SIAM Journal on Computing, 39(6):2212–
2231, 2010. doi:10.1137/070708901.

13 Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In
Proceedings of the 24th ACM Symposium on Principles of Database Systems (PODS’2005),
pages 271–282. ACM, 2005. doi:10.1145/1065167.1065201.

14 Gérard Cornuéjols, George L. Nemhauser, and Lairemce A. Wolsey. The uncapacitated
facility location problem. In Pitu B. Mirchandani and Richard L. Francis, editors, Discrete
Location Theory, pages 119–171. John Wiley and Son, Inc., New York, 1990.

15 Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian Sohler. (1+ε)-
approximation for facility location in data streams. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’2013), pages 1710–1728. Society
for Industrial and Applied Mathematics, 2013. doi:10.1137/1.9781611973105.123.

16 Wenqiang Dai and Xianju Zeng. Incremental facility location problem and its competitive
algorithms. Journal of Combinatorial Optimization, 20(3):307–320, 2010. doi:10.1007/
s10878-009-9219-8.

ESA 2018

http://dx.doi.org/10.1145/1198513.1198522
http://dx.doi.org/10.1145/2928272
http://dx.doi.org/10.1145/2928272
http://dx.doi.org/10.1137/151002320
http://dx.doi.org/10.1016/j.ic.2004.06.002
http://dx.doi.org/10.1007/s00453-015-0021-y
http://dx.doi.org/10.1007/s00453-015-0021-y
http://dx.doi.org/10.1007/11523468_70
http://dx.doi.org/10.1007/11523468_70
http://dx.doi.org/10.1109/SFCS.1996.548477
http://dx.doi.org/10.1109/SFCS.1996.548477
http://dx.doi.org/10.1145/276698.276725
http://dx.doi.org/10.1137/070708901
http://dx.doi.org/10.1145/1065167.1065201
http://dx.doi.org/10.1137/1.9781611973105.123
http://dx.doi.org/10.1007/s10878-009-9219-8
http://dx.doi.org/10.1007/s10878-009-9219-8

21:14 Online Facility Location with Deletions

17 Gabriella Divéki and Csanád Imreh. Online facility location with facility movements. Cen-
tral European Journal of Operations Research, 19(2):191–200, June 2011. doi:10.1007/
s10100-010-0153-8.

18 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
November 2004. doi:10.1016/j.jcss.2004.04.011.

19 Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

20 Dimitris Fotakis. Incremental algorithms for facility location and k-median. Theoretical
Computer Science, 361(2-3):275–313, 2006. doi:10.1016/j.tcs.2006.05.015.

21 Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location. Journal
of Discrete Algorithms, 5(1):141–148, 2007. doi:10.1016/j.jda.2006.03.001.

22 Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–
57, 2008. doi:10.1007/s00453-007-9049-y.

23 Dimitris Fotakis. Online and incremental algorithms for facility location. SIGACT News,
42(1):97–131, 2011.

24 Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC’2005),
pages 209–217. ACM Press, 2005. doi:10.1145/1060590.1060622.

25 Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic anal-
yses for online combinatorial optimization problems. In Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’2008), pages 942–951. Society for
Industrial and Applied Mathematics, 2008. URL: http://dl.acm.org/citation.cfm?id=
1347082.1347185.

26 Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski,
and Mohit Singh. Set covering with our eyes closed. SIAM Journal on Computing,
42(3):808–830, 2013. doi:10.1137/100802888.

27 Anupam Gupta and Amit Kumar. Online Steiner tree with deletions. In Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’2014), pages 455–467.
Society for Industrial and Applied Mathematics, 2014. doi:10.1137/1.9781611973402.
34.

28 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing (STOC’2004), pages 373–380.
ACM Press, 2004. doi:10.1145/1007352.1007413.

29 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal
of the ACM, 48(2):274–296, 2001.

30 Gene Kan. Chapter 8: Gnutella. In Andy Oram, editor, Peer-to-Peer: Harnessing the
Benefits of a Disruptive Technology. O’Reilly & Associates, 2001.

31 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sid-
ford. Single pass spectral sparsification in dynamic streams. SIAM Journal on Computing,
46(1):456–477, 2017. doi:10.1137/141002281.

32 Michael Kapralov and David P. Woodruff. Spanners and sparsifiers in dynamic streams.
In Proceedings of the 33rd ACM Symposium on Principles of Distributed Computing
(PODC’2014), pages 272–281. ACM Press, 2014.

33 Peter Kling, Friedhelm Meyer auf der Heide, and Peter Pietrzyk. An algorithm for online
facility leasing. In Proceedings of the 19th International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO’2012), pages 61–72. Springer Verlag,
Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-31104-8_6.

http://dx.doi.org/10.1007/s10100-010-0153-8
http://dx.doi.org/10.1007/s10100-010-0153-8
http://dx.doi.org/10.1016/j.jcss.2004.04.011
http://dx.doi.org/10.1016/j.tcs.2006.05.015
http://dx.doi.org/10.1016/j.jda.2006.03.001
http://dx.doi.org/10.1007/s00453-007-9049-y
http://dx.doi.org/10.1145/1060590.1060622
http://dl.acm.org/citation.cfm?id=1347082.1347185
http://dl.acm.org/citation.cfm?id=1347082.1347185
http://dx.doi.org/10.1137/100802888
http://dx.doi.org/10.1137/1.9781611973402.34
http://dx.doi.org/10.1137/1.9781611973402.34
http://dx.doi.org/10.1145/1007352.1007413
http://dx.doi.org/10.1137/141002281
http://dx.doi.org/10.1007/978-3-642-31104-8_6

M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski 21:15

34 John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis
Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris
Wells, and Ben Zhao. OceanStore: An architecture for global-scale persistent storage.
SIGPLAN Notices, 35(11):190–201, 2000. doi:10.1145/356989.357007.

35 Christiane Lammersen and Christian Sohler. Facility location in dynamic geometric
data streams. In Proceedings of the 16th Annual European Symposium on Algorithms
(ESA’2008), pages 660–671. Springer Verlag, Berlin, Heidelberg, 2008. doi:10.1007/
978-3-540-87744-8_55.

36 Jakub Ła̧cki, Jakub Oćwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The
power of dynamic distance oracles: Efficient dynamic algorithms for the Steiner tree. In
Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’2015),
pages 11–20. ACM Press, 2015. doi:10.1145/2746539.2746615.

37 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013. doi:10.1016/j.ic.2012.01.007.

38 Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Record, 43(1):9–20,
2014. doi:10.1145/2627692.2627694.

39 Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM Journal on
Computing, 32(3):816–832, 2003. doi:10.1137/S0097539701383443.

40 Adam Meyerson. Online facility location. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science (FOCS’2001), pages 426–431. IEEE Computer Society,
2001. URL: http://dl.acm.org/citation.cfm?id=874063.875567.

41 Chandrashekhar Nagarajan and David P. Williamson. Offline and online facility leasing.
Discrete Optimization, 10(4):361–370, 2013. doi:10.1016/j.disopt.2013.10.001.

42 Daniel J. Rosenkrantz, Giri K. Tayi, and S.S. Ravi. Obtaining online approximation al-
gorithms for facility dispersion from offline algorithms. Networks, 47(4):206–217, 2006.
doi:10.1002/net.20109.

43 Mário César San Felice, David P. Williamson, and Orlando Lee. A randomized O(logn)-
competitive algorithm for the online connected facility location problem. Algorithmica,
76(4):1139–1157, 2016. doi:10.1007/s00453-016-0115-1.

44 Rajesh Sharma and Anwitaman Datta. Supernova: Super-peers based architecture for
decentralized online social networks. In Proceedings of the 4th Fourth International Con-
ference on Communication Systems and Networks, (COMSNETS’2012), pages 1–10. IEEE,
2012. doi:10.1109/COMSNETS.2012.6151349.

45 David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (STOC’1997), pages 265–274. ACM Press, 1997. doi:10.1145/258533.258600.

46 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

47 Jouni Smed, Timo Kaukoranta, and Harri Hakonen. Networking and multiplayer computer
games - the story so far. International Journal of Intelligent Games & Simulation, 2(2):101–
110, 2003.

48 Seeun Umboh. Online network design algorithms via hierarchical decompositions. In Pro-
ceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2015),
pages 1373–1387. Society for Industrial and Applied Mathematics, 2015. doi:10.1137/1.
9781611973730.91.

49 Beverly Yang and Hector Garcia-Molina. Designing a super-peer network. In Proceedings of
the 19th International Conference on Data Engineering (ICDE’2003), pages 49–60. IEEE
Computer Society, 2003.

ESA 2018

http://dx.doi.org/10.1145/356989.357007
http://dx.doi.org/10.1007/978-3-540-87744-8_55
http://dx.doi.org/10.1007/978-3-540-87744-8_55
http://dx.doi.org/10.1145/2746539.2746615
http://dx.doi.org/10.1016/j.ic.2012.01.007
http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1137/S0097539701383443
http://dl.acm.org/citation.cfm?id=874063.875567
http://dx.doi.org/10.1016/j.disopt.2013.10.001
http://dx.doi.org/10.1002/net.20109
http://dx.doi.org/10.1007/s00453-016-0115-1
http://dx.doi.org/10.1109/COMSNETS.2012.6151349
http://dx.doi.org/10.1145/258533.258600
http://dx.doi.org/10.1145/2786.2793
http://dx.doi.org/10.1137/1.9781611973730.91
http://dx.doi.org/10.1137/1.9781611973730.91

Improved Routing on the Delaunay Triangulation
Nicolas Bonichon
Université de Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Prosenjit Bose
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada

Jean-Lou De Carufel
University of Ottawa, 800 King Edward Ave, Ottawa, ON, Canada

Vincent Despré
Team Gamble, INRIA Nancy, 54600 Villers-lès-Nancy, France

Darryl Hill
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada

Michiel Smid
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada

Abstract
A geometric graph G = (P,E) is a set of points in the plane and edges between pairs of points,
where the weight of an edge is equal to the Euclidean distance between its two endpoints. In
local routing we find a path through G from a source vertex s to a destination vertex t, using only
knowledge of the current vertex, its incident edges, and the locations of s and t. We present an
algorithm for local routing on the Delaunay triangulation, and show that it finds a path between
a source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous
bound of 5.9|st|.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity prob-
lems, Mathematics of computing → Graph algorithms

Keywords and phrases Delaunay, local routing, geometric, graph

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.22

Funding This work was supported by the National Sciences and Engineering Research Council
of Canada (NSERC) and by the French ANR grant ASPAG (ANR-17-CE40-0017)

1 Introduction

A Euclidean geometric graph G = (P,E) is a set P of points embedded in the plane, and a
set E of edges, where each e ∈ E is a pair of points (u, v) in P , and the weight of e is the
Euclidean distance |uv|.

A local routing algorithm A is an algorithm that routes a packet through the geometric
graph G from a source vertex s to a target vertex t using only knowledge of the locations of
s and t, as well as the location of the current vertex and its adjacent vertices. Let P〈s, t〉 be
the path found in G from s to t using A. The routing ratio of A for any two points s and t
in the geometric graph G is the ratio of the length of P〈s, t〉 to the Euclidean distance from
s to t. An algorithm A has a routing ratio c for a class of geometric graphs G, if, for any two
vertices s and t in G ∈ G, |P〈s, t〉| ≤ c · |st|.

A graph G = (P,E) is a c-spanner if for any pair of points u and v in P the shortest path
in G is not longer than c|uv|. The value c is referred to as the stretch factor or spanning

© Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and
Michiel Smid;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Improved Delaunay Routing

Table 1 Spanning and Routing Ratios of Delaunay Triangulations. Tight results are shown in
bold.

Graph Spanning Ratio Routing Ratio
TD-Delaunay 2 [8] 5/

√
3 ≈ 2.89 [5]

L1 and L∞-Delaunay
√

4 + 2
√

2 ≈ 2.61 [3]
√

10 ≈ 3.16 [7]
Hexagon-Delaunay 2 [9]
L2-Delaunay 1.998 [13] 3.56 (this paper)

ratio of G. The stretch factor of G is thus a lower bound on the routing ratio of G for any
routing algorithm A, and the routing ratio is an upper bound on the spanning ratio of G.
Geometric spanners are described in detail in the book by Narasimhan and Smid [12].

A notable geometric graph is the Delaunay triangulation. Given a set P of points in the
plane, we construct the Delaunay triangulation of P as follows. For each triple (p, q, r) of
points in P , let C be the circle through p, q, and r. If there are no points of P in the interior
of C, then we connect p, q, and r by edges to form a triangle. In this paper we assume that
P is in general position: no 3 points are colinar and no 4 points are cocircular.

The Delaunay triangulation was first proven to be a spanner by Dobkin et al. [10], who
showed an upper bound of 5.08 on the spanning ratio. This was subsequently improved to
2.42 by Keil and Gutwin [11], and then to 1.998 by Xia [13]. Xia and Zhang proved later
that there exist Delaunay triangulations with spanning ratio greater than 1.59 [14].

Bose and Morin [6] explored some of the theoretical limitations of routing, and provided
some of the first deterministic routing algorithms with constant routing ratio on the Delaunay
triangulation. They denoted the spanning ratio found by Dobkin et al. [10] as cdfs ≈ 5.08.
They showed that it is possible to locally route on the Delaunay triangulation with a routing
ratio of 9 · cdfs ≈ 45.749. Bose et al. [4] further improved this bound to ≈ 15.479. Then,
Bonichon et al. [2] showed that we can locally route on the Delaunay triangulation with a
routing ratio of at most 5.9. In the same paper it was shown that the routing ratio of any
deterministic local algorithm is at least 1.70 for the Delaunay triangulation.

Efforts to evaluate the spanning ratio and routing ratio have been made for Delaunay
triangulations defined on other metrics. We can define these metrics by taking a convex
shape and translating and scaling it until it intersects three vertices but contains no points of
P in its interior. When we use a circle we obtain the L2, or classical Delaunay triangulation.
When the metric is not specified (as in the rest of this paper), then we are referring to the
L2-Delaunay triangulation. The L1-Delaunay triangulation uses an axis aligned square, while
the L∞-Delaunay triangulation uses a square tipped at 45 degrees. By rotating the point set
45 degrees, it is easy to show that the L1 and L∞ triangulations are equivalent. Bonichon et
al. [3] showed that the L1 and L∞ Delaunay triangulations are

√
4 + 2

√
2 ≈ 2.61-spanners,

and they showed that this bound is tight. On this triangulation, Chew [7] proposed a routing
algorithm with routing ratio

√
10. Moreover, the routing ratio of any deterministic local

algorithm is at least 2.70 for this class of graph [1]. The TD-Delaunay triangulation is
constructed using an equilateral triangle. Chew [8] showed that they are 2-spanners. Bose et
al. [5] proposed a routing algorithm of routing ratio

√
5/3 ≈ 2.89 and they show that this

ratio is the best possible. Recently Dennis, Perkovic and Duru [9] showed that the stretch
factor of Hexagon-Delaunay triangulation is 2 and this is tight.

In this paper we present a local routing algorithm, called MixedChordArc, for the L2-
Delaunay triangulation, with a routing ratio of 3.56. This improves the current best routing
ratio of 5.9 [1]. Table 1 shows our result in the context of spanning and routing ratios of
other Delaunay triangulations.

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:3

In Section 2 we define a local algorithm that achieves this routing ratio. In Section 3 we
prove the result for a special case, called balanced configurations. In Section 4 we extend the
technique presented in Section 3 to prove the main result in the general case. In Section 5
we present our conclusions and our ideas for future directions for this line of research.

2 The MixedChordArc Algorithm

Let P be a finite set of points in the plane, and let DT (P) be the Delaunay triangulation of
P . We want to route a packet between two vertices of P along edges of DT (P) using only
local knowledge and knowledge of our start and destination vertices.

Let s and t be the start and terminal vertices respectively, and assume, without loss
of generality, that s and t are on the x-axis with s to the left of t. Our general position
assumption ensures that no other vertex lies on st. Consider two triangles T and T ′ whose
interior is cut by st. We say that T is to the left of T ′, and T ′ is to the right of T , if, by
following st starting at s we intersect T before T ′. If uv is the edge shared by T and T ′,
then our general position assumption ensures that u and v are on opposite sides of st.

Let C be a circle that intersects st. We denote by tC the rightmost point of C on st.
Let u and v be two points on C. We denote by AC(u, v) the clockwise arc of C from u to
v, and by BC(u, v) the counter-clockwise arc of C from u to v. We denote the length of a
continuous curve S by |S|.

Let p 6= t be the vertex representing the current location of the packet. We assume s to
be above st, and we assume t to be on the opposite side of st from the current vertex. Let T
be the rightmost triangle with p as a vertex whose interior is cut by st. Let a 6= p be the
vertex of T that is above st, and let b 6= p be the vertex of T that is below st. Let C be the
circumcircle of T .

Here is the algorithm MixedChordArc. First assume that p = s. If |AC(s, tC)| ≤
|BC(s, tC)|, set p = a, otherwise set p = b. See Fig. 1a. If p 6= s, we repeat the following
until p = t.

1. If p is above st:
a. If |AC(p, tC)| ≤ |pb|+ |BC(b, tC)|, set p = a

b. Else set p = b.
2. If p is below st:

a. If |BC(p, tC)| ≤ |pa|+ |AC(a, tC)|, set p = b

b. Else set p = a.

Note that assuming that t is on the opposite side of st from p ensures that when t is a
neighbour of the current vertex, the algorithm will forward the packet directly to t.

The possible choices are illustrated in Fig. 1. Let P〈s, t〉 = (s = p0, p1, ..., pn = t) be
the sequence of vertices produced by the algorithm. In this paper we prove the following
theorem.

I Theorem 1. The MixedChordArc Algorithm finds a path P〈s, t〉 from s to t whose length
|P〈s, t〉| is not more than µ|st|, where µ =

√
2

1−sin(1) < 3.56.

In some cases, the path produced by our algorithm is a balanced configuration. In such
cases, the analysis of the length of P〈s, t〉 is much easier. In Section 3 we define what a
balanced configuration is, and analyze the length of P〈s, t〉 for this specific case. Then, in
Section 4, we analyze the length of P〈s, t〉 for the general case.

ESA 2018

22:4 Improved Delaunay Routing

tC
p, s

a

b

C

(a) From p = s, the blue arc is
shorter than the red arc, so we
forward to a.

p
a

b

tC

C

(b) From p, the blue path is
shorter than the red path, so
we forward to a.

p

tC

a

b
C

(c) From p, the blue path is
shorter than the red path, so
we forward to a.

Figure 1 Illustrating one step of the algorithm.

3 Bounding |P〈s, t〉| in a Balanced Configuration

Let us consider a path P〈s, t〉 of vertices such that p0 = s, pn = t and pi−1pi is an edge of
the rightmost triangle Ti of pi−1 that has a non-empty intersection with st. Let ai and bi

be the other two vertices of Ti, where ai is above st, and bi is below st. Thus pi = ai or
pi = bi. Let s = p0 = a0 = b0 and let t = pn = an = bn. Let Ci be the circumcircle of Ti, let
ri be its radius and let ci be its center. Let C0 be the circle centered at s with radius r0 = 0.
Let T = (T1, T2, ..., Tn), and let C = (C0, C1, ..., Cn) be the sequence of circles starting at
C0, followed by the circumcircles of T . Note that the vertex of Ti that is on the opposite
side of st to pi−1 may not be at the intersection of Ci−1 and Ci. Thus we define a second
intersection point of Ci−1 and Ci as follows (pi−1 being one intersection point). If pi−1 is
above st, then qi is the lowest intersection of Ci and Ci−1 (where "lowest" is defined by the
point having the least y-coordinate). If pi−1 is below st, let qi be the highest intersection
of Ci−1 and Ci (where "highest" is defined by the point having the greatest y-coordinate).
Note that it is possible to have Ci−1 and Ci intersect in two points, and still have qi = pi−1.
See circle C4 in Fig. 2. Observe that if Ti and Ti−1 share an edge, then qi is the vertex of Ti

on the opposite side of st from pi−1. See circles C1, C2, C3, and C5 in Fig. 2. To simplify the
notation, we write ti instead of tCi

, and we write Ai(u, v) and Bi(u, v) instead of ACi
(u, v)

and BCi
(u, v), respectively.

We say that a pair of consecutive circles Ci−1 and Ci is balanced if |Ai(pi−1, ti)| =
|pi−1qi|+ |Bi(qi, ti)| when pi−1 is above st, and if |Bi(pi−1, ti)| = |pi−1qi|+ |Ai(qi, ti)| when
pi−1 is below st. A path P〈s, t〉 on a point set P is a balanced configuration when Ci−1 and
Ci are balanced for all 1 ≤ i ≤ n.

3.1 Analysis Technique
I Lemma 2. Let Ci−1 and Ci be arbitrary circles of C, where 1 ≤ i ≤ n. Then
1. |pi−1bi|+ |Bi(bi, ti)| ≤ |pi−1qi|+ |Bi(qi, ti)| when pi−1 is above st, and
2. |pi−1ai|+ |Ai(ai, ti)| ≤ |pi−1qi|+ |Ai(qi, ti)| when pi−1 is below st.

Proof. By the triangle inequality we have |pi−1bi| ≤ |pi−1qi| + |Bi(qi, bi)|, from which 1
follows. Case 2 is symmetric. J

For the rest of this section, we assume that P〈s, t〉 is a balanced configuration. Consider
the case when pi−1 is above st (the case when pi−1 is below st is symmetric). If qi = bi then
|Ai(pi−1, ti)| = |pi−1bi|+ |Bi(bi, ti)|, and the algorithm proceeds to ai. If qi 6= bi, observe that
|pi−1bi| ≤ |pi−1qi|+ |Bi(qi, bi)| by the triangle inequality (see circles C4 and C5 in Fig. 2).
Thus we have |pi−1bi|+ |Bi(bi, ti)| < |pi−1qi|+ |Bi(qi, ti)| = |Ai(pi−1, ti)|, and the algorithm

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:5

q0, p0,
t0, s

p1, a1

C1

C2
C3

C4

p2, a2

p3, a3, q4

b1, b2, b3, q1, q2, q3

b4, p4

a4
q5

b5, p5,
t5, t

t1 t2
t3

t4

C5
a5

Figure 2 Sequence of circles in a balanced configuration and the path in blue. The dotted circles
are circumcircles of triangles intersected by st but not in T .

proceeds to bi. Thus a balanced configuration allows for steps that cross st and steps that do
not cross st. It also allows us to use |Ai(pi−1, ti)| as an upper bound on |pi−1bi|+ |Bi(bi, ti)|
in the case where pi−1pi crosses st.

Let x(v) and y(v) be the x and y-coordinates of a point v, respectively. Let si be a point
on st such that x(si) = x(ti)− 2ri. We define the following potential function that we use to
bound the length of P〈s, t〉.

I Definition 3. If pi−1 is above st, then

Φ(Ci−1, Ci) = |Ai(pi−1, ti)| − |Ai−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|.

Otherwise, if pi−1 is below st, then

Φ(Ci−1, Ci) = |Bi(pi−1, ti)| − |Bi−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|,

where λ =
(

1+sin(1)
cos(1) − π/2− 1

)
/2 ≈ 0.42 and µ =

√
2

1−sin(1) < 3.56 .

See Fig. 2 and 3 for a complete example and an illustration of the potential functions. See
Fig. 4 for an illustration of Φ(Ci−1, Ci). Three lemmas are used to prove Theorem 1 for
balanced configurations. The proof of Lemma 4 is found in Section 3.3 while the proof of
Lemma 5 is in Section 3.2.

I Lemma 4. Given a pair of balanced circles Ci−1 and Ci,

Φ(Ci−1, Ci) ≤ 0.

I Lemma 5. For any balanced configuration P〈s, t〉,
∑n

i=1 |si−1si| ≤ |st|.

I Lemma 6. For any C, x(ti−1) < x(ti) for all 1 ≤ i ≤ n, and
∑n

i=1 |ti−1ti| ≤ |st|.

Proof. We prove that x(ti−1) < x(ti), that is, ti is right of ti−1 for all 1 ≤ i ≤ n, by
contradiction. Assume that x(ti−1) ≥ x(ti). If qi is to the same side of st as pi−1, then
Ci−1 must contain the vertex of Ti on the opposite side of st. If qi is on the opposite side of

ESA 2018

22:6 Improved Delaunay Routing

s, s0,
s1, t0

p1

C1

C2
C3

C4

p2

p4

p5, tt1 t2
t3

t4

C5

s2 s3
s4

s5

D1

D2

D3

D4

p3

Figure 3 Illustrating the non-zero potential functions Di, 1 ≤ i ≤ 4 of a balanced configuration.

st as pi−1, then Ci−1 contains the vertex of Ti on the same side of st as pi−1. Both cases
contradict the construction of a Delaunay triangulation. This, together with the fact that
t0 = s and tn = t implies the second part of the lemma. J

I Lemma 7. For 1 ≤ i ≤ n, if pi−1 is above st, then
1. a. |Ai(pi−1, ti)| > |pi−1pi|+ |Ai(pi, ti)| if pi is above st, and

b. |Ai(pi−1, ti)| > |pi−1pi|+ |Bi(pi, ti)| if pi is below st

otherwise pi−1 is below st and
2. a. |Bi(pi−1, ti)| > |pi−1pi|+ |Bi(pi, ti)| if pi is below st, and

b. |Bi(pi−1, ti)| > |pi−1pi|+ |Ai(pi, ti)| if pi is above st.

Proof. Case 1a is because |Ai(pi−1, pi)| > |pi−1pi|, and Case 1b is because if pi is below st,
then the algorithm chose to cross st, which implies 1b. Case 2 is symmetric. J

Theorem 1 follows from Lemmas 4, 5, 6, and 7:

Proof. We first analyze the case when pi−1 is above st. Recall that in this case, Φ(Ci−1, Ci)
is defined as

Φ(Ci−1, Ci) = |Ai(pi−1, ti)| − |Ai−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|.

If pi is above st (same side of st as pi−1), then |Ai(pi−1, ti)| > |pi−1pi| + |Ai(pi, ti)| by
Lemma 7. In this case, let Di = Ai(pi, ti). If pi is below st, then |Ai(pi−1, ti)| > |pi−1pi|+
|Bi(pi, ti)| by Lemma 7. In this case, let Di = Bi(pi, ti). In both cases we have |Ai(pi−1, ti)| >
|pi−1pi|+ |Di|.

Let Φ′(Ci−1, Ci) be the function defined by

Φ′(Ci−1, Ci) = |pi−1pi|+ |Di| − |Di−1| − λ|si−1si| − (µ− λ)|ti−1ti|.

Observe that Φ′(Ci−1, Ci) ≤ Φ(Ci−1, Ci). By Lemma 4, Φ(Ci−1, Ci) ≤ 0, thus Φ′(Ci−1, Ci) ≤
0. When pi−1 is below st, a symmetric proof again shows us that Φ′(Ci−1, Ci) ≤ 0. Recall

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:7

pi−1

Ci−1 Ci

Di−1

Ai(pi−1, ti)

qi

ti−1 ti
sisi−1

Figure 4 Illustrating the function Φ(Ci−1, Ci): blue minus green is charged to red to obtain an
upper bound on the routing ratio.

that p0 = t0 = s, and pn = tn = t, which means |D0| = |Dn| = 0. Therefore we have

n∑
i=1

Φ′(Ci−1, Ci) ≤ 0

from which we get:
n∑

i=1
(|pi−1pi|+ |Di| − |Di−1|) ≤

n∑
i=1

(λ|si−1si|+ (µ− λ)|ti−1ti|)

|P〈s, t〉| − |D0|+ |Dn| ≤ (λ+ µ− λ)|st| (1)
|P〈s, t〉| ≤ µ|st|.

The right hand side of (1) is due to Lemmas 5 and 6. J

Lemma 5 is discussed in the next section. Lemma 4 is discussed in Section 3.3.

3.2 Proof of Lemma 5
Lemma 5 uses the following supporting result:

I Lemma 8. Let Ci−1 and Ci be balanced. Let si−1 be the point on st where x(si−1) =
x(ti−1)− 2ri−1 and let si be the point on st where x(si) = x(ti)− 2ri. Then x(si−1) ≤ x(si).

Proof. See Fig. 5. Let ui−1 be the point on Ci−1 that is diametrically opposed to ti−1 and
let ui be the point on Ci that is diametrically opposed to ti. We will show the case when
pi−1 is above st; the case when it is below st is symmetric. Since Ci−1 and Ci are balanced,
we have that |Ai(pi−1, ti)| = |pi−1qi| + |Bi(qi, ti)| which implies that |Ai(pi−1, ti)| ≤ πri

and |Bi(qi, ti)| ≤ πri. Since |Ai(ui, ti)| = |Bi(ui, ti)| = πri, ui is not on the open interval
Ai(pi−1, ti) or Bi(qi, ti), which implies that either ui is on the arc of Ci between pi−1 and
qi that does not contain ti, or ui = pi−1 = qi. Lemma 6 implies that ti is not inside Ci−1,
which implies that ui must be on or inside Ci−1. Let Oi be the circle centered at ti with
radius |tiui| = 2ri. Thus Oi and Ci are tangent at ui, and Oi intersects st at si. Let Oi−1
be the circle centered at ti−1 with radius 2ri−1. Thus Oi−1 and Ci−1 are tangent at ui−1,
and Oi−1 intersects st at si−1. We prove the lemma by contradiction, thus assume that
x(si) < x(si−1). In the proof of Lemma 6, we showed that x(ti) > x(ti−1). Therefore, it
must be that Oi−1 is in the interior of Oi, and thus they do not intersect. Since ui is on or

ESA 2018

22:8 Improved Delaunay Routing

s t

Ci

ti

ui

pi−1

qi

Ci−1

sisi−1

ti−1

OiOi−1

ui−1

Figure 5 Oi must intersect Oi−1 if Ci−1 and Ci are path balanced, which implies that x(si−1) ≤
x(si).

inside Ci−1, and Oi intersects ui, Oi must intersect Ci−1. But Ci−1 is contained in Oi−1
except for the point ui−1, and Oi−1 is contained in Oi, and thus Oi cannot intersect Ci−1,
which is a contradiction. See Fig. 5. J

We can now prove Lemma 5:

Proof of Lemma 5. Follows from Lemma 8 and the fact that x(s0) = x(s) and x(sn) <
x(t). J

3.3 Proof of Lemma 4
To show that Φ(Ci−1, Ci) ≤ 0 when Ci−1 and Ci are balanced, we set up the following
coordinate system. We show the proof for the case when pi−1 is above st; the case when
pi−1 is below st is symmetric. Let ci−1 and ci lie along the x-axis, and let pi−1 and qi lie
along the y-axis. See Fig. 6. Lemma 4 follows from the following two lemmas:

I Lemma 9. When Ci−1 and Ci are balanced, if y(ti−1) ≤ 0, then Φ(Ci−1, Ci) ≤ 0.

I Lemma 10. When Ci−1 and Ci are balanced, if y(ti−1) > 0, then Φ(Ci−1, Ci) ≤ 0.

The main tool to prove these two lemmas is the following transformation, which is similar
to a transformation used by Xia [13].

I Transformation 11. Fix pi−1 and qi, and translate ci to the left along the x-axis until
ci = ci−1. Moreover keep Ci−1 unchanged and maintain Ci as the circle with center ci with
pi−1 on its boundary.

Observe that, after we have completed Transformation 11, we have Ci = Ci−1 and thus
Φ(Ci−1, Ci) = 0. If we can show that Φ(Ci−1, Ci) is increasing while x(ci) decreases, then it
must be that Φ(Ci−1, Ci) ≤ 0 before Transformation 11. Thus we wish to find the change in
Φ(Ci−1, Ci) with respect to the change in x(ci) during Transformation 11. Formally:

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:9

Ci−1

Ci

st

Di−1

pi−1

qi

si

si−1 ci−1 ci

ti−1

ti

Ai(pi−1, ti)

Figure 6 Coordinate system for analyzing Φ(Ci−1, Ci).

I Lemma 12. If dΦ(Ci−1,Ci)
dx(ci) ≤ 0 during Transformation 11, then Φ(Ci−1, Ci) ≤ 0.

Proof. At the end of Transformation 11 we have that Φ(Ci−1, Ci) = 0. If dΦ(Ci−1,Ci)
dx(ci) ≤ 0

then Φ(Ci−1, Ci) is not decreasing during Transformation 11, and thus Φ(Ci−1, Ci) ≤ 0
before Transformation 11. J

The analysis of this function is similar to Xia’s approach [13]. To ensure that this
transformation is well-defined, we require qi to be below st. We observe that Φ(Ci−1, Ci) is
maximized when st is on or above ci−1, and this assumption implies qi is below st (or on st,
in the case where pi−1 = qi). Full details of this analysis, the transformation analysis, and
the proofs for Lemmas 9 and 10 have been left out due to space constraints.

4 Bounding P〈s, t〉 in the General Case

In Section 3, we proved Theorem 1 for the case when the path produced by our algorithm
results in a balanced configuration. In this section, we prove Theorem 1 for the general case.
Given a sequence C of circles that intersect st, no series of transformations were found that
could achieve a balanced configuration, while simultaneously providing a provable upper
bound on the length of |pi−1, pi|. However, we were able to find two sequences of circles to
substitute for C. To represent each Ci in C, we have a potential circle CP

i and a bounding
circle CB

i . Like Ci, both CP
i and CB

i have ti as their rightmost intersection with st. However,
Ci intersects both pi and pi−1, while CB

i is only required to intersect pi−1, and CP
i is only

required to intersect pi. If we look at a bounding circle CB
i and the previous potential

circle CP
i−1, which intersect at pi−1, they are balanced, and we can thus apply the function

Φ(CP
i−1, C

B
i) to relate the lengths of the arcs of these circles to |st|. Finally, when analyzed

properly, they provide an upper bound on the length |pipi−1|.
Formally, let CP

0 be the circle centered at s = p0 with radius rP
0 = 0, and let CP

n

be the circle centered at t with radius rP
n = 0. Assuming we have defined CP

i−1, we will
define CB

i and CP
i . If pi−1 is above st, let CB

i be the circle through pi−1 and ti for
which |ACB

i
(pi−1, ti)| = |pi−1q

′
i| + |BCB

i
(q′i, ti)|, where q′i is the bottommost intersection

of CP
i−1 and CB

i . If pi−1 is below st, let CB
i be the circle through pi−1 and ti for which

|BCB
i

(pi−1, ti)| = |pi−1q
′
i| + |ACB

i
(q′i, ti)|, where q′i is the topmost intersection of CP

i−1 and
CB

i . That is, CP
i−1 and CB

i are balanced. Let rB
i be the radius of CB

i . The potential circle
CP

i is the circle through pi, whose rightmost intersection with st is ti, and whose radius is

ESA 2018

22:10 Improved Delaunay Routing

s t

(a) The sequence of triangles T intersected by st, along with their circumcircles C, and the path P〈s, t〉
found by the algorithm in bold.

t, p6, t6

p1

p2

p3

p4
p5

s, p0

AB
1 (p0, t1)

AB
2 (p1, t2) AB

3 (p2, t3)

BB
4 (p3, t4)

AB
5 (p4, t5)

BB
6 (p5, t6)

DP
1

DP
2

DP
3

DP
4

DP
5

t1 t2
t3

t4 t5

(b) The complete set of bounding arcs and potential arcs used in the function Φ(CP
i−1, C

B
i), used to bound

the routing ratio in the general case.

Figure 7 The initial circumcircles in 7a, and the construction of the potential circles and bounding
circles in the general case in 7b.

given by rP
i = min{ri, r

B
i } (with the exception of rP

n = 0). Let sP
i be the point on st with

x(sP
i) = x(ti)− 2rP

i , and let sB
i be the point on st with x(sB

i) = x(ti)− 2rB
i .

To simplify notation, for points u and v on CP
i , instead of writing ACP

i
(u, v) and BCP

i
(u, v)

to indicate clockwise and counter-clockwise arcs of CP
i from u to v, respectively, we write

AP
i (u, v) and BP

i (u, v). Likewise, for points u and v on CB
i , instead of writing ACB

i
(u, v)

and BCB
i

(u, v), we write AB
i (u, v) and BB

i (u, v).
See Figs. 7a and 7b for an example of the initial sequences T and C and the resulting

bounding and potential arcs that we are interested in.
Since CP

i−1 and CB
i are balanced, Φ can be extended to CP

i−1 and CB
i , and thus we have

Φ(CP
i−1, C

B
i) = |AB

i (pi−1, ti)| − |AP
i−1(pi−1, ti−1)| − λ|sP

i−1s
B
i | − µ|ti−1ti|

when pi−1 is above st and

Φ(CP
i−1, C

B
i) = |BB

i (pi−1, ti)| − |BP
i−1(pi−1, ti−1)| − λ|sP

i−1s
B
i | − µ|ti−1ti|

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:11

when pi−1 is below st. Lemma 4 tells us that Φ(CP
i−1, C

B
i) ≤ 0. To prove Theorem 1 in the

general case, it is sufficient to prove the following two lemmas. Lemma 13 is a generalization
of Lemma 5, whereas Lemma 14 is a generalization of Lemma 7.

I Lemma 13.
∑n

i=1 |sP
i−1s

B
i | ≤ |st|.

Proof. Since CP
i−1 and CB

i are balanced, Lemma 8 tells us that x(sP
i−1) ≤ x(sB

i). We know
that x(sP

i) = x(ti) − 2rP
i and x(sB

i) = x(ti) − 2rB
i , thus the fact that rP

i = min{ri, r
B
i }

implies that x(sB
i) ≤ x(sP

i). Thus |sP
i−1s

B
i | ≤ |sP

i−1s
P
i |, and it is sufficient to show that∑n

i=1 |sP
i−1s

P
i | ≤ |st|. The fact that x(sP

i−1) ≤ x(sB
i) implies that x(sP

i−1) ≤ x(sP
i), and CP

0
is the circle centered at s with radius 0, and thus sP

0 = s. Since x(sP
n) ≤ x(t), this completes

the proof. J

Due to space constraints, we omit the proof of the following lemma.

I Lemma 14. For 1 ≤ i ≤ n, if pi−1 is above st, then
1. a. |AB

i (pi−1, ti)| ≥ |pi−1pi|+ |AP
i (pi, ti)| if pi is above st, and

b. |AB
i (pi−1, ti)| ≥ |pi−1pi|+ |BP

i (pi, ti)| if pi is below st

otherwise pi−1 is below st and
2. a. |BB

i (pi−1, ti)| ≥ |pi−1pi|+ |BP
i (pi, ti)| if pi is below st, and

b. |BB
i (pi−1, ti)| ≥ |pi−1pi|+ |AP

i (pi, ti)| if pi is above st.
Theorem 1 follows from Lemmas 4, 6, 13, and 14.

Proof of Theorem 1. If pi is above st, let DP
i = AP

i (pi, ti). If pi is below st, let DP
i =

BP
i (pi, ti). Let Φ′(CP

i−1, C
B
i) = |pi−1pi|+ |DP

i | − |DP
i−1| − λ|sP

i−1s
B
i | − (µ− λ)|ti−1ti|. Lem-

mas 14 and 4 imply that Φ′(CP
i−1, C

B
i) ≤ Φ(CP

i−1, C
B
i) ≤ 0. Using Φ′(CP

i−1, C
B
i) we get:

n∑
i=1

Φ′(Ci−1, Ci) ≤ 0

n∑
i=1

(
|pi−1pi|+ |DP

i | − |DP
i−1|

)
≤

n∑
i=1

(λ|sP
i−1s

B
i |+ (µ− λ)|ti−1ti|)

|P〈s, t〉| − |DP
0 |+ |DP

n | ≤ (λ+ µ− λ)|st| (2)
|P〈s, t〉| ≤ µ|st|.

Line (2) follows from Lemmas 6 and 13. J

We give some insight into the selection of rP
i . Assume that pi−1 is above st (when

pi−1 is below st the explanation is symmetric). The purpose of |AB
i (pi−1, ti)| is to bound

|pi−1pi|+ |AP
i (pi, ti)|, as expressed in Lemma 14. This lemma is also the reason for selecting

the radius of CP
i as rP

i = min{ri, r
B
i }. It would be simpler to let rP

i = rB
i , since then we

would have sP
i = sB

i . However, if we allow rP
i > ri, it can happen that the arc |AB

i+1(pi, ti+1)|
on the next bounding circle is not large enough to cover |pipi+1| + |AP

i+1(pi+1, ti+1)|. See
Fig. 8. Thus Lemma 14 would not hold. To account for this, we ensure that CP

i has radius
at most ri.

5 Conclusion and Future Work

Consider the algorithm presented in Section 2, along with two variations. To keep the
algorithms simple, assume we are at a vertex p above st. Otherwise all assumptions are the
same as in Section 2.

ESA 2018

22:12 Improved Delaunay Routing

CP
i−1

Ci−1 Cipi−1

bi

ti

ai, pi

ti−1

(a) Ci−1, Ci, and CP
i−1.

Notice that rP
i−1 > ri−1.

CP
i−1

Ci−1
Ci

CB
i

pi−1

bi q′i

ti

ai, pi

(b) CB
i and its intersection with

CP
i−1.

CB
i

pi−1

q′i

ti

AP
i (pi, ti)

AB
i (pi−1, ti)

CP
i

ai, pi

CP
i−1

(c) |AB
i (pi−1, ti)| < |pi−1, pi|+

|AP
i (pi, ti)|.

Figure 8 The reasoning behind rP
i = min{ri, r

B
i }. In this diagram, rP

i > ri, and we show why
it is detrimental to our analysis. Notice that |AB

i (pi−1, ti)| < |pi−1, pi|+ |AP
i (pi, ti)|. Thus the arc

AB
i (pi−1, ti) of the bounding circle is not long enough to pay for |pi−1, pi|+ |AP

i (pi, ti)| .

A) BestChord: If |pa|+ |AC(a, tC)| ≤ |pb|+ |AC(b, tC)| then p = a else p = b.
B) MixedChordArc: If |AC(p, tC)| ≤ |pb|+ |AC(b, tC)| then p = a else p = b.
C) MinArc: If |AC(p, tC)| ≤ πr then p = a else p = b.

The algorithm presented in this paper is MixedChordArc. Following the techniques
used in [1] we are able to show that the routing ratio of MinArc is between 3.20 and 3.96.
Since the routing ratio of 3.56 of MixedChordArc is better, we do not present the details of
MinArc.

We suspect that BestChord is an improvement on MixedChordArc. It seems plausible
that we can modify the proofs presented in this paper to obtain the same upper bound
for BestChord as for MixedChordArc, but for now that remains unverified. Whether
or not BestChord is asymptotically superior to MixedChordArc, or whether they are
asymptotically the same is still unknown.

Although we have improved the upper bound of the routing ratio on the L2-Delaunay
triangulation, it is not clear how tight our analysis is. The upper bound on the analysis is
where our potential function is the weakest. A more clever potential function could lower the
routing ratio using a comparable analysis. Or perhaps one of the algorithms above would
respond to a completely different style of analysis.

Furthermore, the lower bound on MixedChordArc is still the same as the lower bound
on routing on the L2-Delaunay triangulation in general, which is approximately 1.70 [1]. So it
seems there is still much room for improvement. The question remains, what other algorithms
or analysis can we use to improve the routing ratio of the Delaunay triangulation? And given
that the upper and lower bounds on the spanning ratio of the L2-Delaunay triangulation
are 1.998 [13] and 1.5932 [14] respectively, is there a separation of the spanning and routing
ratios of the Delaunay triangulation?

References

1 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perković, and André
van Renssen. Upper and lower bounds for online routing on Delaunay triangulations. In
Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, volume 9294 of Lecture
Notes in Computer Science, pages 203–214. Springer Berlin Heidelberg, 2015. doi:10.
1007/978-3-662-48350-3_18.

http://dx.doi.org/10.1007/978-3-662-48350-3_18
http://dx.doi.org/10.1007/978-3-662-48350-3_18

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:13

2 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perković, and André van
Renssen. Upper and lower bounds for online routing on Delaunay triangulations. Discrete
& Computational Geometry, 58(2):482–504, Sep 2017. doi:10.1007/s00454-016-9842-y.

3 Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perković. Tight stretch
factors for L1 and L∞ Delaunay triangulations. Computational Geometry, 48(3):237–250,
2015. doi:10.1016/j.comgeo.2014.10.005.

4 Prosenjit Bose, Jean-Lou De Carufel, Stephane Durocher, and Perouz Taslakian. Compet-
itive online routing on Delaunay triangulations. In R. Ravi and Inge Li Gørtz, editors,
Algorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copen-
hagen, Denmark, July 2-4, 2014. Proceedings, volume 8503 of Lecture Notes in Computer
Science, pages 98–109. Springer, 2014. doi:10.1007/978-3-319-08404-6_9.

5 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competitive
routing in the half-theta-6-graph. In Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages 1319–1328. SIAM, 2012. URL: http:
//dl.acm.org/citation.cfm?id=2095116.2095220.

6 Prosenjit Bose and Pat Morin. Online routing in triangulations. In Algorithms and Compu-
tation, volume 1741 of Lecture Notes in Computer Science, pages 113–122. Springer Berlin
Heidelberg, 1999. doi:10.1007/3-540-46632-0_12.

7 L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proceedings
of the Second Annual Symposium on Computational Geometry, SCG ’86, pages 169–177,
New York, NY, USA, 1986. ACM. doi:10.1145/10515.10534.

8 L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal
of Computer and System Sciences, 39(2):205–219, 1989. doi:10.1016/0022-0000(89)
90044-5.

9 Michael Dennis, Ljubomir Perković, and Duru Türkoglu. The stretch factor of hexagon-
Delaunay triangulations. CoRR, abs/1711.00068, 2017. arXiv:1711.00068.

10 David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are
almost as good as complete graphs. Discrete & Computational Geometry, 5(1):399–407,
1990. doi:10.1007/BF02187801.

11 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete
euclidean graph. Discrete & Computational Geometry, 7(1):13–28, 1992. doi:10.1007/
BF02187821.

12 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, New York, NY, USA, 2007.

13 Ge Xia. Improved upper bound on the stretch factor of Delaunay triangulations. In
Proceedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG
’11, pages 264–273, New York, NY, USA, 2011. ACM. doi:10.1145/1998196.1998235.

14 Ge Xia and Liang Zhang. Toward the tight bound of the stretch factor of Delaunay trian-
gulations. In Proceedings of the Canadian Conference on Computational Geometry, CCCG
’11, 2011.

ESA 2018

http://dx.doi.org/10.1007/s00454-016-9842-y
http://dx.doi.org/10.1016/j.comgeo.2014.10.005
http://dx.doi.org/10.1007/978-3-319-08404-6_9
http://dl.acm.org/citation.cfm?id=2095116.2095220
http://dl.acm.org/citation.cfm?id=2095116.2095220
http://dx.doi.org/10.1007/3-540-46632-0_12
http://dx.doi.org/10.1145/10515.10534
http://dx.doi.org/10.1016/0022-0000(89)90044-5
http://dx.doi.org/10.1016/0022-0000(89)90044-5
http://arxiv.org/abs/1711.00068
http://dx.doi.org/10.1007/BF02187801
http://dx.doi.org/10.1007/BF02187821
http://dx.doi.org/10.1007/BF02187821
http://dx.doi.org/10.1145/1998196.1998235

On Geometric Prototype and Applications
Hu Ding
Department of Computer Science and Engineering, Michigan State University
East Lansing, USA; and
School of Computer Science and Technology, University of Science and Technology of China
Hefei, China
huding@msu.edu, huding@ustc.edu.cn

Manni Liu
Department of Computer Science and Engineering, Michigan State University
East Lansing, USA
liumanni@msu.edu

Abstract
In this paper, we propose to study a new geometric optimization problem called the “geometric
prototype” in Euclidean space. Given a set of patterns, where each pattern is represented by
a (weighted or unweighted) point set, the geometric prototype can be viewed as the “average
pattern” minimizing the total matching cost to them. As a general model, the problem finds
many applications in real-world, such as Wasserstein barycenter and ensemble clustering. The
dimensionality could be either constant or high, depending on the applications. To our best
knowledge, the general geometric prototype problem has yet to be seriously considered by the
theory community. To bridge the gap between theory and practice, we first show that a small core-
set can be obtained to substantially reduce the data size. Consequently, any existing heuristic
or algorithm can run on the core-set to achieve a great improvement on the efficiency. As a new
application of core-set, it needs to tackle a couple of challenges particularly in theory. Finally,
we test our method on both image and high dimensional clustering datasets; the experimental
results remain stable even if we run the algorithms on core-sets much smaller than the original
datasets, while the running times are reduced significantly.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases prototype, core-set, Wasserstein barycenter, ensemble clustering

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.23

Related Version A full version of the paper is available at [21], https://arxiv.org/abs/1804.
09655.

Acknowledgements The research of this work was supported in part by NSF through grant
CCF-1656905 and a start-up fund from Michigan State University. The authors also want to
thank the anonymous reviewers for their helpful comments and suggestions for improving the
paper.

1 Introduction

Given a set of points in Euclidean space, we can easily use the geometric mean or median
point to represent them. However, if they are replaced by a set of point sets where each
point set denotes a “pattern”, the problem of finding their representation will be much more
challenging. We call it the “geometric prototype” problem. Before introducing its formal
definition, we need to define the matching cost between two patterns first.

© Hu Ding and Manni Liu;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:huding@msu.edu, huding@ustc.edu.cn
mailto:liumanni@msu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.23
https://arxiv.org/abs/1804.09655
https://arxiv.org/abs/1804.09655
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 On Geometric Prototype and Applications

I Definition 1 (M(A,B)). Given two point sets A = {a1, a2, · · · , ak} and B = {b1, b2, · · · ,
bk} in Rd,

M(A,B) = min
π∈Π

k∑
j=1
||aj − bπ(j)||2 (1)

where Π contains all the possible permutations of {1, 2, · · · , k}.

M(A,B) is in fact the problem of geometric matching which can be optimally solved
by the Hungarian algorithm [16]. When the dimensionality is constant, a number of effi-
cient approximation algorithms have been developed in past years (see more discussion in
Section 1.1).

I Definition 2 (Geometric Prototype). Given a set of point sets P = {P1, P2, · · · , Pn} with
each Pi containing k points {pi1, pi2, · · · , pik} ⊂ Rd, the geometric prototype is a new point
set g(P) having k points such that

n∑
i=1
M(Pi, g(P)) (2)

is minimized. Note that g(P) can be a new pattern not from P. Also, any k-point set
achieving at most c times the minimum value of (2) is called a c-approximation with ∀c ≥ 1.

I Remark. It is easy to see that when k = 1, the geometric prototype is simply the mean
point. Actually, the problem of geometric prototype can be viewed as a “chromatic k-means
clustering”. The kn points of ∪ni=1Pi form k clusters where the k points of each Pi should be
assigned to the k clusters separately; to minimize the objective function (2), the k points of
g(P) should be the mean points of the resulting clusters.

In Definition 2, the dimension d could be either constant or high depending on the
applications, and n usually is large (k could be not constant, but often much smaller than
n in the applications). To our best knowledge, the general geometric prototype problem
has never been systematically studied in the area of computational geometry (except some
special cases; see Section 1.1), but finds many real-world applications recently. Below, we
introduce two important applications in low and high dimension, respectively.

(1) Wasserstein Barycenter. Given a large set of images, finding their average yields
several benefits in practice. For example, if all the images are taken from the same object
but have certain extents of noise, their average image could serve as a robust pattern to
represent them; also, this is an efficient way to compress large image datasets. In computer
vision, Earth Mover’s Distance (EMD) [39] is widely used to measure the difference between
two images; the average image minimizing the total EMDs to all the images is defined as
the Wasserstein Barycenter [9, 10,17,29,46]. In addition, Ding and Xu [20,24] considered
the case allowing rigid/affine transformations for each image. Wasserstein Barycenter can
also be applied to Bayesian inference [43]. Note that the geometric prototype defined above
is not exactly equivalent to Wasserstein Barycenter, because the latter one requires each
point having a non-negative weight and EMD is to minimize the max flow cost; however, the
techniques proposed in this paper can be easily extended to handle EMD and we will discuss
it later.

H. Ding and M. Liu 23:3

Figure 1 d = 10 and k = 3. The three clusters are mapped to 3 binary vectors in R10.

(2) Ensemble Clustering. Given a number of different clustering solutions for the same
set of items, the problem about finding a unified clustering solution minimizing the total
differences to them is called ensemble clustering [28]. This problem has attracted a great
deal of attention, especially for the applications in big data and crowdsourcing [27,35,42,44].
For example, due to the proliferation of networked sensing systems, we can use a large
number of sensors to record the same environment and each sensor can generate an individual
clustering for the same set of objects. However, most of existing approaches rely on algebraic
or graphic models and need to solve complicated optimizations with high complexities (such
as semi-definite programming [42]).

Recently, Ding et al. [22] presented a novel high dimensional geometric model for the
problem of ensemble clustering: suppose there are d items and each clustering solution has
k clusters on these items (if less than k, we can add some dummy empty clusters); then,
each single cluster is mapped to a binary vector in Rd where each dimension indicates the
membership of an individual item (see Figure 1); so each clustering solution is mapped to
a k-point set in Rd; the size of the symmetric difference between two clusters is equal to
their squared distance in Rd, and thus the difference between two clustering solutions is
always equal to half of their matching cost (Definition 1) in Euclidean space. Therefore,
finding the final clustering solution minimizing the total differences to the given solutions is
equivalent to computing the geometric prototype of the resulting k-point sets in Rd. Please
find more details in [22]. Note that the obtained geometric prototype may result in fractional
clustering memberships, because the points of the geometric prototype are not necessarily
binary vectors. So the approximation result in [22] does not violate the APX-hardness for
strict ensemble/consensus clustering [11]. Actually fractional clustering memberships are
acceptable and make sense in practice; for instance, we may claim that one object belongs to
class 1, 2, and 3 with probabilities of 70%, 20%, and 10%, respectively.

1.1 Our Main Contributions and Related Work
Due to the non-convex nature of the geometric prototype problem, most of the aforementioned
approaches for Wasserstein barycenter [9,10,17,29,46] and large-scale ensemble clustering [22]
are iterative algorithms, such as alternating minimization and Alternating Direction Method
of Multipliers (ADMM) [12], which can converge to some local optimums. Those approaches
could be very slow for large datasets, because they may run many rounds and each round
usually needs to conduct some complicated update or optimization. This is also the main
motivation of our work, that is, replacing the original large input by a small core-set to speed
up the computation of existing algorithms.

In this paper, our contribution is twofold in the aspects of theory and applications. In
theory, we show that a small core-set can be obtained for the problem of geometric prototype.
More importantly, our core-set is independent of any geometric prototype algorithm; namely,
we can run any available algorithm as a black box on the core-set, instead of the original

ESA 2018

23:4 On Geometric Prototype and Applications

instance P, to achieve a similar result. Although core-set has been extensively studied for
many applications before [3,38], we still need to tackle several significant challenges when
constructing the core-set for geometric prototype. In practice, we test our method for solving
the applications Wasserstein barycenter and ensemble clustering. The experiment shows that
running the existing algorithms on core-sets can achieve almost the same results while the
running times are substantially reduced.

Related work. The general geometric prototype problem has yet to be seriously considered
by the theory community (to our best knowledge), however, some special cases were studied
before. Based on the remark below Definition 2, we know that finding the geometric prototype
is also a chromatic clustering problem. Motivated by the application of managing traffic
flows, Arkin et al. [8] studied a variety of chromatic 2-center clustering in 2D and gave
both exact and approximate solutions. In addition, Ding and Xu [23,25] studied chromatic
clustering in high dimension; however, their method assumes that k is constant and thus it
is unable to be extended to our general geometric prototype problem.

Computing the geometric matchingM(A,B) is a sub-problem of geometric prototype.
Besides the Hungarian algorithm [16], the computational geometry community has extensively
studied its approximation algorithms for the case in constant dimension [2, 4, 7, 40,41], and
some of them can achieve nearly linear running time.

The rest of the paper is organized as follows. First, we introduce some basic results and
useful tools in Section 2. Then we show our core-set construction and analysis in Section 3.
Finally, we implement our algorithm and test it on multiple datasets in Section 4. Due to
the space limit, we omit some proofs and the reader can find more details in the full version
of our paper [21].

2 Preliminaries

The hardness. Actually, we are able to show that finding the optimal geometric prototype
of a given instance is NP-hard and has no FPTAS even if k = 2 in high dimensional space,
unless P=NP. Our proof makes use of the construction by Dasgupta for the NP-hardness
proof of the 2-means clustering problem in high dimension [18].

The following lemma, which can be easily obtained via Definition 1, is repeatedly used in
our analysis.

I Lemma 3. Given three k-point sets A, B, and C in Rd,

M(A,B) ≤ 2M(A,C) + 2M(C,B). (3)

Using Markov inequality and Lemma 3, Ding et al. [22] showed that a constant approx-
imation can be achieved with constant probability.

I Theorem 4 ([22]). Let α > 1. Given an instance P of the geometric prototype problem, if
we randomly pick a point set Pi0 from P, then with probability at least 1− 1

α ,M(Pi0 , g(P))
is no larger than α

n

∑n
i=1M(Pi, g(P)) and Pi0 yields a (2α+ 2)-approximation.

I Remark. To boost the success probability, we can try multiple times and select the one
yielding the lowest objective value. For example, if we try t times, the success probability
will be 1− 1

αt .

According to Theorem 4, the selected Pi0 could serve as a good initialization for the
geometric prototype. To further improve the approximation ratio, the algorithm in [22]

H. Ding and M. Liu 23:5

adopts a simple alternating minimization procedure, i.e., alternatively updating the prototype
and matchings round by round. The main drawback of this algorithm is that it needs to
repeatedly compute the matchings between the prototype and all the given point sets in each
round, and thus the running time is high especially when some or all of n, k, and d are large
(as discussed at the beginning of Section 1.1).

In addition, we are able to apply the well known Johnson-Lindenstrauss (JL) lemma [1]
to reduce the dimensionality before running the algorithm; also, the obtained geometric
prototype in the lower dimension can be efficiently mapped back to the original space [22].

I Theorem 5 ([22]). Let 0 < ε < 1 and c ≥ 1. Suppose we randomly project a given instance
P of the geometric prototype problem from Rd to RO(log(nk)/ε2) and obtain a new instance P′
in the lower dimension. Then, with high probability, we can convert any c-approximation for
P′ to a c(1+ε

1−ε)
2-approximation for P in Rd, in O(nkd) time.

The following lemma is a key tool in our analysis. In fact, it can be viewed as an
interesting supplement of Lemma 3.

I Lemma 6. Let A, B, and C be three k-point sets in Rd. Then for any ε > 0,∣∣∣M(A,B)−M(A,C)
∣∣∣ ≤ (1 + 1

ε
)M(B,C) + εM(A,B) (4)

3 Core-set for Reducing the Data Size

Langberg and Schulman [32] introduced a framework of core-set (it was called “ε-approximator”
in their paper) to compress data for several geometric shape fitting problems; further, Feldman
and Langberg [26] improved the core-set size for a large class of clustering problems. Here, we
consider constructing a core-set of the instance P so as to reduce the data size and running
time. Formally, our objective is to find a small sample S ⊂ P and assign a weight wl for each
Pl ∈ S, such that for any k-point set Q ⊂ Rd,∣∣∣ ∑

Pl∈P
M(Pl, Q)−

∑
Pl∈S

wlM(Pl, Q)
∣∣∣ ≤ O(ε)

∑
Pl∈P
M(Pl, Q) (5)

with certain probability and small enough ε > 0. Moreover, we want to keep each weight wl
to be non-negative so as to easily run any existing algorithm or heuristic on the core-set.

Unfortunately, we cannot directly apply the existing ideas to the problem of geometric
prototype, because the points from ∪ni=1Pi are not independent from each other (due to the
matching constraint in Definition 1; also see our remark below Definition 2) and it would
be much more challenging to build the connection between the sampled core-set and P.
Instead, we regard each Pi as an “abstract point” and compute a core-set on these n abstract
points. Though these abstract points can form some metric space with the matching costs
being their pairwise (squared) distances, it is still quite different to metric clustering studied
by [14, 26, 32], since the prototype g(P) is not necessarily from P and could appear anywhere
in the Euclidean space.

Conceptually, the core-set construction is a random sampling process: first, compute an
upper bound on the sensitivity σP(Pi) of each Pi (we will formally define the sensitivity later);
then take a sample from P with probabilities proportional to σP(Pi) to form the core-set. To
implement this construction, we have to develop new ideas for resolving the following two
issues. (I) How to compute σP(Pi), or its upper bound, so as to generate the probability
distribution for sampling. (II) What sample size is needed to ensure our core-set yields a
sufficient approximation. We consider these two issues in Section 3.1 and 3.2, respectively.

ESA 2018

23:6 On Geometric Prototype and Applications

The final result for core-set construction of geometric prototype is presented in Theorem 13.
We also discuss some extensions on other metrics (e.g., l1 norm and earth mover’s distance)
and the time complexity in Section 3.3 and 3.4, respectively.

3.1 Solving Issue I
Following [32], the sensitivity of each Pi ∈ P is defined as follows:

σP(Pi) = supQ
M(Pi, Q)∑
Pl∈PM(Pl, Q) (6)

where Q is restricted to be k-point set in Rd. Intuitively, the sensitivity measures the
importance of each Pi among all the patterns of P. Directly obtaining the value of σP(Pi)
could be challenging and also needless, thus we often turn to compute an upper bound for it.

Recall that g(P) is the optimal geometric prototype of P, and let ∆ =
∑
Pl∈PM(Pl, g(P))

for convenience.

I Lemma 7. For any Pi ∈ P, σP(Pi) ≤ 2M(Pi,g(P))
∆ + 16

n .

Proof. First, we consider M(Pi,Q)∑
Pl∈P

M(Pl,Q)
with a fixed Q in (6). Through Lemma 3, we know

that the numeratorM(Pi, Q) is bounded by 2M(Pi, g(P))+2M(g(P), Q). Then, we consider
two cases: (1) M(g(P), Q) ≤ 8

n∆ and (2) M(g(P), Q) > 8
n∆.

Since ∆ ≤
∑
Pl∈PM(Pl, Q), we directly have

M(Pi, Q)∑
Pl∈PM(Pl, Q) ≤ 2M(Pi, g(P)) + 2M(g(P), Q)∑

Pl∈PM(Pl, Q)

≤
2M(Pi, g(P)) + 16

n ∆
∆

= 2M(Pi, g(P))
∆ + 16

n
(7)

for case (1).
Now, we assume that case (2) is true. Denote by P′ the set {Pl ∈ P | M(Pl, g(P)) ≤ 2

n∆},
and Markov inequality implies |P′| ≥ n

2 . Applying Lemma 3 again, we have∑
Pl∈P
M(Pl, Q) ≥

∑
Pl∈P′

M(Pl, Q) ≥
∑
Pl∈P′

(1
2M(g(P), Q)−M(g(P), Pl)

)
≥

∑
Pl∈P′

(1
2M(g(P), Q)− 2

n
∆
)
≥ n

2

(1
2M(g(P), Q)− 2

n
∆
)

= n

4M(g(P), Q)−∆. (8)

As a consequence,

M(Pi, Q)∑
Pl∈PM(Pl, Q) ≤

2M(Pi, g(P)) + 2M(g(P), Q)
n
4M(g(P), Q)−∆ . (9)

Since bothM(Pi, g(P)) and ∆ are independent of Q, the right-hand side of (9) can be viewed
as a function onM(g(P), Q). Through a simple calculation and the assumption of case (2)
(i.e.,M(g(P), Q) > 8

n∆), we know that it is always less than 2M(Pi,g(P))
∆ + 16

n .
Overall, we have σP(Pi) ≤ 2M(Pi,g(P))

∆ + 16
n for both cases. J

H. Ding and M. Liu 23:7

However, only Lemma 7 is not enough to compute the upper bound for σP(Pi), because
neitherM(Pi, g(P)) nor ∆ is known. Therefore, we need to compute an approximation to
replace the upper bound given by Lemma 7.

I Lemma 8. Suppose Pi0 is randomly picked from P, and let ∆̃ =
∑
Pl∈PM(Pl, Pi0) and

α > 1. Then with probability 1− 1
α , for all 1 ≤ i ≤ n, σP(Pi) ≤ 8(α+ 1)M(Pi,Pi0)

∆̃ + 4α+16
n .

Proof. According to Theorem 4, we know thatM(Pi0 , g(P)) ≤ α
n∆ and ∆̃ ≤ 2(α+ 1)∆ with

probability at least 1− 1
α . Then we have

σP(Pi) ≤ 2M(Pi, g(P))
∆ + 16

n
≤ 4M(Pi, Pi0) + 4M(Pi0 , g(P))

∆ + 16
n

≤ 4M(Pi, Pi0)
1

2(α+1)∆̃
+ 4M(Pi0 , g(P))

∆ + 16
n

≤ 8(α+ 1)M(Pi, Pi0)
∆̃

+ 4α+ 16
n

, (10)

where the first inequality comes from Lemma 7. So the proof is completed. J

Lemma 8 indicates that once Pi0 is selected, we can obtain an upper bound for each
σP(Pi) by computing the valuesM(Pi, Pi0) and ∆̃.

3.2 Solving Issue II
Let tP(Pi) and T denote the obtained upper bound of σP(Pi) from Lemma 8 and their sum,
respectively. It is easy to know that T =

∑
Pi∈P tP(Pi) ≤ 8(α+ 1) + 4α+ 16 which is constant

if α is constant. For the sake of simplicity, we always assume T = O(1) in our analysis below.
We have the following theorem from [32,45] (we slightly modify their statements to fit

our problem better).

I Theorem 9 ([32,45]). Let Q be any fixed k-point set in Rd. i. If we take a sample Pi from
P according to the distribution tP(Pi)

T , the expectation of T
tP(Pi)M(Pi, Q) is

∑
Pl∈PM(Pl, Q).

ii. If we take a sample S of size of r from P according to the same distribution, and let ε > 0,

Pr

[∣∣ ∑
Pl∈P
M(Pl, Q)− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣ ≤ ε∑
Pl∈P
M(Pl, Q)

]
≥ 1− 2e−

2rε2
T2 . (11)

In particular, (11) is an application of Hoeffding’s inequality because each T
tP(Pi)M(Pi, Q) is

a random variable between 0 and T
∑
Pl∈PM(Pl, Q) (see Lemma 2.2 of [45] for more details).

Moreover, (11) shows that the sample S together with the weight wl = 1
r

T
tP(Pl) for each Pl ∈ S

will form a core-set of P with respect to the fixed Q (see (5)). But (5) should hold for an
infinite number of possible candidates for the geometric prototype, rather than one single Q,
in the space. Hence, we need to determine an appropriate sample size (i.e., issue (II)).

Our basic idea is to discretize the space and generate a finite number of representations
for them; then we can take a union bound for the final success probability through (11).
Note [45] also used discretization to determine the sample size for projective clustering
integer points; but our idea and analysis are quite different due to the different natures of the
problems. Also, [26,32] defined the “dimension” of the clustering problems so as to bound
their sample sizes. Here, we avoid using their approach due to two reasons: first, it will be
very complicated to define and compute the dimension of the geometric prototype problem;
second, the framework in [26] would result in a more complicated sampling process and
even may cause negative weights, however, we prefer to keep our sampling process simple

ESA 2018

23:8 On Geometric Prototype and Applications

as described in Theorem 9 (especially when using any available algorithm or heuristic as a
black box on the core-set). We elaborate on our analysis below.

By Theorem 4, we assume that a randomly picked Pi0 yields a (2α+ 2)-approximation
and denote by L the resulting cost

∑
Pl∈PM(Pl, Pi0). The following lemma reveals that we

just need to consider the k-point sets which are not too far from Pi0 .

I Lemma 10. For any k-point set Q withM(Q,Pi0) > 4L
n , the resulting cost

∑
Pl∈PM(Pl, Q)

is always higher than
∑
Pl∈PM(Pl, Pi0).

Proof. Using Lemma 3, we have∑
Pl∈P
M(Pl, Q) ≥

∑
Pl∈P

(1
2M(Q,Pi0)−M(Pl, Pi0)) > 1

24L− L =
∑
Pl∈P
M(Pl, Pi0). (12)

So the proof is completed. J

Because we already have the initial solution Pi0 , we are only interested in the solutions
having lower costs. Thus, we focus on the k-point set Qs with M(Q,Pi0) ≤ 4L

n based
on Lemma 10. Let Q = {q1, q2, · · · , qk} ⊂ Rd and R = L/n. W.l.o.g, we assume the
induced permutation ofM(Q,Pi0) in Definition 1 is π(j) = j for 1 ≤ j ≤ k. The constraint
M(Q,Pi0) ≤ 4L

n directly implies that ||qj − pi0j || ≤ 2
√
R for each 1 ≤ j ≤ k. We use

B(x, ρ) to denote the ball centered at the point x with the radius ρ. Then we draw k balls
B(pi0j , 2

√
R) for each 1 ≤ j ≤ k; inside each ball, we build a uniform grid Gj with the grid

side length ε
√

R
kd . Let Γ be the Cartesian product G1×G2×· · ·×Gk. It is easy to know that

Γ contains O
(

(4
√
kd
ε)kd

)
k-point sets in total. Therefore, we can apply (11) of Theorem 9 to

obtain a union bound over all the k-point sets of Γ (recall T = O(1)).

I Lemma 11. If the sample S in Theorem 9 has the size of O(kdε2 log kd
ε), and each Pl ∈ S

has the weight wl = 1
r

T
tP(Pl) , then with constant probability the inequality (5) holds for each

Q ∈ Γ.

Next we consider the k-point set Q = {q1, q2, · · · , qk} /∈ Γ. Again, w.l.o.g, we assume
the induced permutation of M(Pi0 , Q) is π(j) = j for 1 ≤ j ≤ k. Also, due to our above
assumption, we know that each qj is covered by the ball B(pi0j , 2

√
R). To help our analysis,

we take its “nearest neighbor” from Γ, N (Q) = {N (q1),N (q2), · · · ,N (qk)} with each N (qj)
being the nearest grid point of qj in Gj . So we have

||qj −N (qj)|| ≤ ε
√
R

k
for 1 ≤ j ≤ k. (13)

For the sake of convenience, let X1 =
∣∣∣∑Pl∈PM(Pl, Q)−

∑
Pl∈PM(Pl,N (Q))

∣∣∣, X2 =∣∣∣∑Pl∈PM(Pl,N (Q)) − 1
r

∑
Pl∈S

T
tP(Pl)M(Pl,N (Q))

∣∣∣, X3 =
∣∣∣ 1r∑Pl∈S

T
tP(Pl)M(Pl, N (Q))

− 1
r

∑
Pl∈S

T
tP(Pl)M(Pl, Q)

∣∣∣. It is easy to see∣∣∣ ∑
Pl∈P
M(Pl, Q)− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣∣ ≤ X1 +X2 +X3 (14)

where X2 is bounded by Lemma 11. So the remaining issue is to prove that the other two
items X1 and X3 in (14) are small as well. That is, Lemma 11 can be extended from N (Q)
to Q.

H. Ding and M. Liu 23:9

Note X1 ≤
∑
Pl∈P

∣∣M(Pl, Q) − M(Pl,N (Q))
∣∣, so we consider each item

∣∣M(Pl, Q)
−M(Pl,N (Q))

∣∣ separately. Using Lemma 6, we have∣∣M(Pl, Q)−M(Pl,N (Q))
∣∣ ≤ (1 + 1

ε
)M(Q,N (Q)) + εM(Pl, Q). (15)

In addition, we haveM(Q,N (Q)) ≤ k
(
ε
√

R
k

)2
= ε2R by (13). Therefore, we have∣∣∣ ∑

Pl∈P
M(Pl, Q)−

∑
Pl∈P
M(Pl,N (Q))

∣∣∣ ≤ ∑
Pl∈P

∣∣M(Pl, Q)−M(Pl,N (Q))
∣∣

≤ (1 + 1
ε

)nM(Q,N (Q)) + ε
∑
Pl∈P
M(Pl, Q)

≤ O(ε)nR+ ε
∑
Pl∈P
M(Pl, Q)

= O(ε)
∑
Pl∈P
M(Pl, Q), (16)

where the last equality comes from nR = L which is a constant approximation of the optimal
objective value. (16) also implies that(

1−O(ε)
) ∑
Pl∈P
M(Pl, Q) ≤

∑
Pl∈P
M(Pl,N (Q)) ≤

(
1 +O(ε)

) ∑
Pl∈P
M(Pl, Q). (17)

Next, we consider the last item X3 in (14). It is a little more complicated because the
coefficient T

tP(Pl) could be large. We need the following lemma first.

I Lemma 12. For each Pl ∈ P, tP(Pl) > 1
4n .

Proof. Fix one Pl ∈ P. We select Pl′ that has the largest matching cost to Pl, i.e.,
M(Pl, Pl′) = maxPi∈PM(Pl, Pi), and set Q = Pl′ . Using Lemma 3, we have M(Pi, Q) ≤
2M(Pi, Pl) + 2M(Pl, Q) ≤ 4M(Pl, Q) for any 1 ≤ i ≤ n. Therefore, based on the fact
that tP(Pl) is the upper bound of σP(Pl) in (6), we know that it should be at least

M(Pl,Q)
(1+4(n−1))M(Pl,Q) >

1
4n . J

Using Lemma 12 and the same idea for (16), we have∣∣∣1
r

∑
Pl∈S

T

tP(Pl)
M(Pl,N (Q))− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣∣
≤ 1

r

∑
Pl∈S

T

tP(Pl)

∣∣∣M(Pl,N (Q))−M(Pl, Q)
∣∣∣

≤ 1
r

∑
Pl∈S

T

tP(Pl)

(
(1 + 1

ε
)M(N (Q), Q) + εM(Pl,N (Q))

)
≤ max

Pl∈S
{ T

tP(Pl)
} · (1 + 1

ε
)M(N (Q), Q) + ε

1
r

∑
Pl∈S

T

tP(Pl)
M(Pl,N (Q))

≤ O(ε)nR+ ε
1
r

∑
Pl∈S

T

tP(Pl)
M(Pl,N (Q)), (18)

where the last inequality comes from Lemma 12 and T = O(1). In addition, Lemma 11
guarantees that ε 1

r

∑
Pl∈S

T
tP(Pl)M(Pl,N (Q)) = O(ε)

∑
Pl∈PM(Pl,N (Q)). Applying the

ESA 2018

23:10 On Geometric Prototype and Applications

triangle inequality (14) with the bounds (16), (17) and (18), we have∣∣∣ ∑
Pl∈P
M(Pl, Q)− 1

r

∑
Pl∈S

T

tP(Pl)
M(Pl, Q)

∣∣∣
≤ O(ε)

∑
Pl∈P
M(Pl, Q) +O(ε)

∑
Pl∈P
M(Pl,N (Q))

= O(ε)
∑
Pl∈P
M(Pl, Q). (19)

Consequently, we have the final theorem for core-set.

I Theorem 13. Let Pi0 be the k-point set randomly selected by Theorem 4, and S be the sample
from P according to the distribution tP(Pi)

T . If the sample S has the size of r = O(kdε2 log kd
ε)

and each Pl ∈ S has the weight wl = 1
r

T
tP(Pl) , then with constant probability the inequality (5)

holds for any k-point set Q ⊂ Rd withM(Q,Pi0) ≤ 4L
n .

Recall that Theorem 5 tells us that the dimension can be reduced by Johnson-Lindenstrauss
(JL)-transform. Thus, we directly have the following corollary.

I Corollary 14. Given a high dimensional instance P (e.g., d� logn, log k), we can obtain
a sample S having the size of Õ(kε4), where with constant probability the inequality (5) holds
for any k-point set Q ⊂ Rd withM(Q,Pi0) ≤ 4L

n . Õ(·) ignores the logarithmic factors logn
and log k.

3.3 Some Extensions

Here, we briefly introduce some extensions of our core-set construction on other metrics.
(1). Our core-set construction can be extended to l1 norm, i.e., the squared distances are
replaced by absolute distances in the matching cost (1). Actually, the analysis for l1 norm is
even easier than that for l2 norm, since we can directly use the triangle inequality rather than
Lemma 3 or Lemma 6 when solving the aforementioned two issues, bounding the sensitivities
and discretizing the space of candidates for geometric prototype.

A remaining issue for future work is that the dimension reduction result of Theorem 5
is not applicable to l1 norm, due to the fact that it is much harder to compute geometric
median (Fermat-Weber point) than mean point [15]. Fortunately, the high dimensional
application, ensemble clustering, mentioned in Section 1 only uses l2 norm, because the
symmetric difference between two clusters corresponds to their squared distance in the space.
(2). We can also consider the case with weighted point sets for both l1 and l2 norm, i.e.,
each point of Pi has a non-negative weight. To make the problem meaningful in practice,
we require that each Pi and the desired geometric prototype have the same total weight
W > 0; we can further assume W and all the weights are integers by scaling and rounding
in practice. Thus, the computation on the matching between two point sets becomes the
problem of earth mover’s distance (EMD) [39]. Fortunately, the triangle inequality still holds
for EMD because we assume they have equal total weight; as a consequence, we can bound
the sensitivities for issue (I). For issue (II), we still discretize the space and build the set of
k-point sets Γ with the same cardinality of the unweighted case; the only difference is that
we need to consider the total O(W k) possible distributions of the total weight W over the k
points of each k-point set, which increases the size of the core-set with an extra O(k logW

ε2).

H. Ding and M. Liu 23:11

3.4 The Time Complexity
Suppose the complexity of computingM(A,B) is h(k, d), then the running time for computing
the core-set is simply O(h(k, d) · n) because we just need to compute eachM(Pi, Pi0) so as
to obtain the sensitivities for sampling (see Lemma 8). For simplicity, we can just use the
Hungarian algorithm [16] so that h(k, d) = O(k2d+ k3), where the term k2d is for building
the bipartite graph. In fact, this can be further improved by our following two observations.
First, we just need to know the matching costs, rather than the matchings, for computing
the upper bounds of the sensitivities in Lemma 8. Second, it is not necessary to always
have the optimal matching costs. For example, if we compute a valueM′(Pi, Pi0) for each
M(Pi, Pi0) instead, such thatM(Pi, Pi0) ≤M′(Pi, Pi0) ≤ cM(Pi, Pi0) with some constant
c ≥ 1, the resulting T and each tP(Pi) will increase by some appropriate constant factors
correspondingly; in other words, the sample size in Theorem 13 will increase by only a
constant factor. Some algorithms [13,30,31] are designed for approximately estimating the
matching cost, and their running times can be nearly linear if the dimension d is constant; in
practical fields, several heuristic algorithms [37] are also proposed for this purpose.

For the high dimensional case, we can apply JL-transform in advance, to reduce the
dimensionality to be O(log(nk)/ε2) (Theorem 5 and Corollary 14). A naive implementation
of the JL-transform by matrix multiplication has the complexity O

(1
ε2nkd log(nk)

)
[19], and

several even faster and practical algorithms have been studied before [1, 6, 34].

4 Experiments

To show the advantage of using core-sets for the problem of geometric prototype, we study
the two important applications introduced in Section 1, Wasserstein barycenter and ensemble
clustering. For each application, we run the existing algorithm on the original dataset and
core-sets with different size levels. In general, our experiments suggest that running the
algorithm on a small core-set can achieve very close performance and greatly reduce the
running time. All of the experimental results were obtained on a Windows workstation with
2.4GHz Intel Xeon E5-2630 v3 CPU and 32GB DDR4 2133MHz Memory; the algorithms are
implemented in Matlab R2016b.

Wasserstein barycenter. MNIST [33] is a popular benchmark dataset of handwritten digits
from 0 to 9. For each digit, we generate a set of 3000 28× 28 grayscale images including 10%
noise (i.e., 300 images randomly selected from the other 9 digits). First, we represent the
28× 28 pixels by 60 weighted 2D points via k-means clustering [36]: group the pixels into 60
clusters and each cluster is represented by its cluster center; each center has the weight equal
to the total pixel values of the cluster. Therefore the problem of Wasserstein barycenter
becomes an instance of geometric prototype with n = 3000, k = 60, and d = 2.

Ensemble clustering. To construct an instance of ensemble clustering, we generate a
synthetic dataset of 2000 points randomly sampled from k = 50 Gaussian distributions in
R100; we apply k-means clustering 1000 times, where each time has a different initialization
for the k mean points, to generate 1000 different clustering solutions. According to the
model introduced by [22], each instance is a geometric prototype problem with 1000 different
50-point sets in R2000. We apply JL-transform to reduce the dimensionality from 2000 to
100, before constructing the core-set and running the algorithm; we just use the simplest
random matrix multiplication to implement JL-transform [19] (actually this step takes about
only 5% of the whole running time in the experiments).

ESA 2018

23:12 On Geometric Prototype and Applications

Figure 2 Normalized objective value. Figure 3 Normalized running time.

Figure 4 Percentage of misclustered items. Figure 5 Matching cost to ground truth.

For both applications, we construct the core-sets using the method in Section 3; we vary
the core-set size from 5% to 30% of the input size. To construct the core-set, we need to
compute the matching costM(Pi, Pi0) as discussed in Section 3.4: for the high dimensional
application (i.e., ensemble clustering), we just use the Hungarian algorithm [16]; for the
low dimensional application (i.e., Wasserstein barycenter), we use two existing popular
algorithms for computing EMD, Network simplex algorithm [5] and the heuristic but faster
algorithm FastEMD [37]. As the black box for computing the geometric prototype, we use
the alternating minimization approach [22]. For each application, we consider three criteria:
running time, objective value (in Definition 2), and difference to ground truth. For ensemble
clustering, we compute the percentage of misclustered items of the obtained prototype as the
difference to ground truth. For Wasserstein barycenter, since it is difficult to determine a
unique ground truth for each handwritten digit, we directly use the prototype obtained from
the original input dataset as the ground truth; then we compute its matching cost to the
prototype obtained from core-set, denoted by x, as well as the average matching cost over
the input images to the ground truth, denoted by Ave; finally, we obtain the ratio x/Ave. In
general, the lower the ratio x/Ave, the closer the obtained prototype to the ground truth
(comparing with the input images).

Results. For each application, we run 50 trials and report the average results. Figure 2
shows the obtained normalized objective values over the base line (i.e., the objective value
obtained on the original input dataset), which are all lower than 1.2; that means our core-sets
are good approximations for the original data. More importantly, the running times are
significantly reduced in Figure 3, e.g., for the core-set having 5% of the input data size, the
algorithm (containing the core-sets construction) only runs within 10%-17% of the original
time. In addition, our obtained prototypes are very close to the corresponding ground truths,
even for the core-set at the level 5%. Figure 4 provides the percentages of misclustered
items for ensemble clustering, which are around 8%-12%. Figure 5 shows the values of
x/Ave, which are around 0.25. For Wasserstein barycenter, we can see the Network simplex
algorithm and FastEMD algorithm achieve very similar qualities, but FastEMD only takes
about 60% of the running time of the Network simplex algorithm.

H. Ding and M. Liu 23:13

5 Future Work

Following our work, several interesting problems for geometric prototype deserve to be
explored. For example, is there any algorithm achieving a better approximation ratio than
Theorem 4? In addition, we leave the hardness for the low dimensional case of geometric
prototype as an open problem in future work.

References
1 Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with

binary coins. Journal of computer and System Sciences, 66(4):671–687, 2003.
2 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen

Xiao. Faster algorithms for the geometric transportation problem. In 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia,
pages 7:1–7:16, 2017.

3 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approxima-
tion via coresets. Combinatorial and Computational Geometry, 52:1–30, 2005.

4 Pankaj K. Agarwal and Kasturi R. Varadarajan. A near-linear constant-factor approx-
imation for euclidean bipartite matching? In Proceedings of the 20th ACM Symposium
on Computational Geometry, Brooklyn, New York, USA, June 8-11, 2004, pages 247–252,
2004.

5 Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,
algorithms, and applications. Prentice Hall, 1993.

6 Nir Ailon and Bernard Chazelle. The fast Johnson—Lindenstrauss transform and approx-
imate nearest neighbors. SIAM Journal on computing, 39(1):302–322, 2009.

7 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583, 2014.

8 Esther M Arkin, José Miguel Díaz-Báñez, Ferran Hurtado, Piyush Kumar, Joseph S.B.
Mitchell, Belén Palop, Pablo Pérez-Lantero, Maria Saumell, and Rodrigo I Silveira. Bichro-
matic 2-center of pairs of points. Computational Geometry, 48(2):94–107, 2015.

9 Marcus Baum, Peter Willett, and Uwe D. Hanebeck. On wasserstein barycenters and
MMOSPA estimation. IEEE Signal Process. Lett., 22(10):1511–1515, 2015.

10 Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
Iterative bregman projections for regularized transportation problems. SIAM Journal on
Scientific Computing, 37(2):A1111–A1138, 2015.

11 Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and Tao Jiang. On the approxim-
ation of correlation clustering and consensus clustering. Journal of Computer and System
Sciences, 74(5):671–696, 2008.

12 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends® in Machine learning, 3(1):1–122, 2011.

13 Sergio Cabello, Panos Giannopoulos, Christian Knauer, and Günter Rote. Matching point
sets with respect to the earth mover’s distance. Computational Geometry, 39(2):118–133,
2008.

14 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

15 Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, pages 9–21. ACM, 2016.

ESA 2018

23:14 On Geometric Prototype and Applications

16 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

17 Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In Inter-
national Conference on Machine Learning, pages 685–693, 2014.

18 Sanjoy Dasgupta. The hardness of k-means clustering. Technical Report, 2008.
19 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and

Lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.
20 Hu Ding, Ronald Berezney, and Jinhui Xu. k-prototype learning for 3d rigid structures. In

Advances in Neural Information Processing Systems, pages 2589–2597, 2013.
21 Hu Ding and Manni Liu. On geometric prototype and applications. CoRR, abs/1804.09655,

2018. arXiv:1804.09655.
22 Hu Ding, Lu Su, and Jinhui Xu. Towards distributed ensemble clustering for networked

sensing systems: a novel geometric approach. In Proceedings of the 17th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2016, Paderborn, Ger-
many, July 4-8, 2016, pages 1–10, 2016.

23 Hu Ding and Jinhui Xu. Solving the chromatic cone clustering problem via minimum
spanning sphere. In Proceedings of the International Colloquium on Automata, Languages,
and Programming (ICALP), pages 773–784, 2011.

24 Hu Ding and Jinhui Xu. Finding median point-set using earth mover’s distance. In Twenty-
Eighth AAAI Conference on Artificial Intelligence, 2014.

25 Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without
locality property. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1471–1490, 2015.

26 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6-8 June 2011, pages 569–578, 2011.

27 Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei Han. Graph-based consensus
maximization among multiple supervised and unsupervised models. In Advances in Neural
Information Processing Systems, pages 585–593, 2009.

28 Joydeep Ghosh and Ayan Acharya. Cluster ensembles: Theory and applications. In Data
Clustering: Algorithms and Applications, pages 551–570. CRC, 2013.

29 Alexandre Gramfort, Gabriel Peyré, and Marco Cuturi. Fast optimal transport averaging
of neuroimaging data. In International Conference on Information Processing in Medical
Imaging, pages 261–272. Springer, 2015.

30 Piotr Indyk. A near linear time constant factor approximation for euclidean bichromatic
matching (cost). In Proceedings of the eighteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 39–42. Society for Industrial and Applied Mathematics, 2007.

31 Piotr Indyk and Nitin Thaper. Fast color image retrieval via embeddings. In Workshop on
Statistical and Computational Theories of Vision (at ICCV), 2003.

32 Michael Langberg and Leonard J Schulman. Universal ε-approximators for integrals. In Pro-
ceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages
598–607. SIAM, 2010.

33 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

34 Edo Liberty and Steven W Zucker. The mailman algorithm: A note on matrix–vector
multiplication. Information Processing Letters, 109(3):179–182, 2009.

35 Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. Multi-view clustering via joint nonnegative
matrix factorization. In Proc. of SDM, volume 13, pages 252–260, 2013.

36 Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

http://arxiv.org/abs/1804.09655

H. Ding and M. Liu 23:15

37 Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In Computer
vision, 2009 IEEE 12th international conference on, pages 460–467. IEEE, 2009.

38 Jeff M. Phillips. Coresets and sketches. Computing Research Repository, 2016.
39 Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a

metric for image retrieval. International journal of computer vision, 40(2):99–121, 2000.
40 R. Sharathkumar and Pankaj K. Agarwal. Algorithms for the transportation problem in

geometric settings. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 306–317,
2012.

41 R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm
for geometric bipartite matching. In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 385–
394, 2012.

42 Vikas Singh, Lopamudra Mukherjee, Jiming Peng, and Jinhui Xu. Ensemble clustering us-
ing semidefinite programming with applications. Machine learning, 79(1-2):177–200, 2010.

43 Matthew Staib, Sebastian Claici, Justin Solomon, and Stefanie Jegelka. Parallel streaming
wasserstein barycenters. arXiv preprint arXiv:1705.07443, 2017.

44 Alexander Strehl and Joydeep Ghosh. Cluster ensembles-a knowledge reuse framework for
combining partitionings. In AAAI/IAAI, pages 93–99, 2002.

45 Kasturi R. Varadarajan and Xin Xiao. A near-linear algorithm for projective clustering
integer points. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1329–1342,
2012.

46 Jianbo Ye, Panruo Wu, James Z Wang, and Jia Li. Fast discrete distribution clustering
using wasserstein barycenter with sparse support. IEEE Transactions on Signal Processing,
65(9):2317–2332, 2017.

ESA 2018

Improved Bounds for Multipass Pairing Heaps and
Path-Balanced Binary Search Trees
Dani Dorfman
Blavatnik School of Computer Science, Tel Aviv University, Israel
dannatand@mail.tau.ac.il

Haim Kaplan1

Blavatnik School of Computer Science, Tel Aviv University, Israel
haimk@post.tau.ac.il

László Kozma2

Eindhoven University of Technology, The Netherlands
lkozma@gmail.com

Seth Pettie3

University of Michigan
pettie@umich.edu

Uri Zwick4

Blavatnik School of Computer Science, Tel Aviv University, Israel
zwick@tau.ac.il

Abstract
We revisit multipass pairing heaps and path-balanced binary search trees (BSTs), two classical
algorithms for data structure maintenance. The pairing heap is a simple and efficient “self-
adjusting” heap, introduced in 1986 by Fredman, Sedgewick, Sleator, and Tarjan. In the multi-
pass variant (one of the original pairing heap variants described by Fredman et al.) the minimum
item is extracted via repeated pairing rounds in which neighboring siblings are linked.

Path-balanced BSTs, proposed by Sleator (cf. Subramanian, 1996), are a natural alternative
to Splay trees (Sleator and Tarjan, 1983). In a path-balanced BST, whenever an item is accessed,
the search path leading to that item is re-arranged into a balanced tree.

Despite their simplicity, both algorithms turned out to be difficult to analyse. Fredman et al.
showed that operations in multipass pairing heaps take amortized O(logn · log logn/ log log logn)
time. For searching in path-balanced BSTs, Balasubramanian and Raman showed in 1995 the
same amortized time bound of O(logn · log logn/ log log logn), using a different argument.

In this paper we show an explicit connection between the two algorithms and improve both
bounds to O

(
logn · 2log∗ n · log∗ n

)
, respectively O

(
logn · 2log∗ n · (log∗ n)2), where log∗(·) de-

notes the slowly growing iterated logarithm function. These are the first improvements in more
than three, resp. two decades, approaching the information-theoretic lower bound of Ω(logn).

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases data structure, priority queue, pairing heap, binary search tree

1 Research supported by The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11),
Israel Science Foundation grant no. 1841-14.

2 Supported by ERC grant no. 617951. Work done while at Tel Aviv University, research supported by
The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11).

3 Supported by NSF grants CCF-1514383 and CCF-1637546.
4 Research supported by BSF grant no. 2012338 and by The Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11).

© Dani Dorfman, Haim Kaplan, László Kozma, Seth Pettie, and Uri Zwick;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dannatand@mail.tau.ac.il
mailto:haimk@post.tau.ac.il
mailto:lkozma@gmail.com
mailto:pettie@umich.edu
mailto:zwick@tau.ac.il
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Improved Bounds for Multipass Pairing Heaps & Path-Balanced Binary Search Trees

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.24

Related Version A full version of the paper is available at https://arxiv.org/abs/1806.
08692.

1 Introduction

Binary search trees (BSTs) and heaps are the canonical comparison-based implementations
of the well-known dictionary and priority queue data types.

In a balanced BST all standard dictionary operations (insert, delete, search) take O(logn)
time, where n is the size of the dictionary. Early research has mostly focused on structures
that are kept (approximately) balanced throughout their usage. (AVL-, red-black-trees, and
randomized treaps are important examples, see e.g., [11, § 6.2.2]). These data structures
re-balance themselves when necessary, guided by auxiliary data stored in every node.

By contrast, Splay trees (Sleator, Tarjan, 1983 [17]) achieve O(logn) amortized time
per operation without any explicit balancing strategy and with no bookkeeping whatsoever.
Instead, Splay trees re-adjust the search path after every access, in a way that depends only
on the shape of the search path, ignoring the global structure of the tree. Besides the O(logn)
amortized time, Splay trees are known to satisfy stronger, adaptive properties (see [9, 3] for
surveys). They are, in fact, conjectured to be optimal on every sequence of operations (up to
a constant factor); this is the famous “dynamic optimality conjecture” [17]. Splay trees and
data structures of a similar flavor (i.e., local restructuring, adaptivity, no auxiliary data) are
called “self-adjusting”.

The efficiency of Splay trees is intriguing and counter-intuitive. They re-arrange the
search path by a sequence of double rotations (“zig-zig” and “zig-zag”), bringing the accessed
item to the root. It is not hard to see that this transformation results in “approximate
depth-halving” for the nodes on the search path; the connection between this depth-halving
and the overall efficiency of Splay trees is, however, far from obvious.

An arguably more natural approach for BST re-adjustment would be to turn the search
path, after every search, into a balanced tree.5 This strategy combines the idea of self-
adjusting trees with the more familiar idea of balancedness. Indeed, this algorithm was
proposed early on by Sleator (see e.g., [19, 1]). We refer to BSTs maintained in this way as
path-balanced BSTs (see Figure 1).

Path-balanced BSTs turn out to be surprisingly difficult to analyse. In 1995, Balasub-
ramanian and Raman [1] showed the upper bound of O(logn · log logn/ log log logn) on the
cost of operations in path-balanced BSTs. This bound has not been improved since. Thus,
path-balanced BSTs are not known to match the O(logn) amortized cost (let alone the
stronger adaptive properties) of Splay. This is surprising, because broad classes of BSTs
are known to match several guarantees of Splay trees [19, 2], path-balanced BSTs, however,
fall outside these classes.6 Without evidence to the contrary, one may even conjecture
path-balanced BSTs to achieve dynamic optimality; yet our current upper bounds do not
even match those of a static balanced tree. This points to a large gap in our understanding
of a natural heuristic in the fundamental BST model.

5 The restriction to touch only the search path is natural, as the cost of doing this is proportional to the
search cost. (A BST can be changed into any other BST with a linear number of rotations [16].)

6 Intuitively, path-balance is different, and more difficult to analyse than Splay, because it may increase
the depth of a node by an additive O(logn), whereas Splay may increase the depth of a node by at
most 2. In a precise sense, path-balance is not a local transformation (see [2]).

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.24
https://arxiv.org/abs/1806.08692
https://arxiv.org/abs/1806.08692

D. Dorfman, H. Kaplan, L. Kozma, S. Pettie, and U. Zwick 24:3

a

b

c

d

e

f

A

B

C D

E

F

G

a

b

c

d

e

f

A B C D E F

G

Figure 1 Access in a path-balanced BST. Search path (f, a, e, d, b, c) from root f to accessed
item c is re-arranged into a balanced tree with subtrees (denoted by capital letters) re-attached.

In this paper we show that the amortized time of an access7 in a path-balanced BST is
O
(

logn · (log∗ n)2 · 2log∗ n
)
. The result, probably not tight, comes close to the information-

theoretic lower bound of Ω(logn). Closing the gap remains a challenging open problem.

Priority queues support the operations insert, delete-min, and possibly meld, decrease-
key and others. Pairing heaps, a popular priority queue implementation, were proposed
in the 1980s by Fredman, Sedgewick, Sleator, and Tarjan [5] as a simpler, self-adjusting
alternative to Fibonacci heaps [6]. Pairing heaps maintain a multi-ary tree whose nodes
(each with an associated key) are in heap order. Similarly to Splay trees, pairing heaps only
perform key-comparisons and simple local transformations on the underlying tree, with no
auxiliary data stored. Fredman et al. showed that in the standard pairing heap all priority
queue operations take O(logn) time. They also proposed a number of variants, including the
particularly natural multipass pairing heap. In multipass pairing heaps, the crucial delete-min
operation is implemented as follows. After the root of the heap (i.e., the minimum) is deleted,
repeated pairing rounds are performed on the new top-level roots, reducing their number until
a single root remains. In each pairing round, neighboring pairs of nodes are linked. Linking
two nodes makes the one with the larger key the leftmost child of the other (Figure 2).

Pairing heaps perform well in practice [18, 14, 12]. However, Fredman [4] showed that all
of their standard variants (including the multipass described above) fall short of matching the
theoretical guarantees of Fibonacci heaps (in particular, assuming O(logn) cost for delete-
min, the average cost of decrease-key may be Ω(log logn), in contrast to the O(1) guarantee
for Fibonacci heaps). The exact complexity of the standard pairing heap on sequences of
intermixed delete-min, insert, and decrease-key operations remains an intriguing open problem,
with significant progress through the years (see e.g., [8, 15]). However, for the multipass
variant, even the basic question of whether deleting the minimum takes O(logn) amortized
time remains open, the best upper bound to date being the O(logn · log logn/ log log logn)
originally shown by Fredman et al. Similarly to the case of path-balanced BSTs, we have
thus a basic combinatorial transformation on trees, whose complexity is not well-understood.

In this paper we show that in multipass pairing heaps delete-min8 takes amortized time
O
(
logn · log∗ n · 2log∗ n), the first improvement since the original paper of Fredman et al.

The improvement is, from a practical perspective, not significant. Nonetheless, it reduces the
gap to the theoretical optimum from (≈ log(2) n) to less than log(k) n for any fixed k.

7 We only focus on successful search operations (i.e., accesses). The results can be extended to other
operations at the cost of technicalities. For simplicity, we assume that the keys in the tree are unique.

8 To keep the presentation simpler, we only focus on delete-min operations, omitting the extension of the
result to other operations.

ESA 2018

24:4 Improved Bounds for Multipass Pairing Heaps & Path-Balanced Binary Search Trees

A
2

B
5

C
4

D
1

E
3

G
6

F
7

D
1

C
4

E
3

A
2

B
5

F
7

G
6

A

2

B

5

C

4

D

1

E

3

G

6
F

7

AB

5

C

4

D

1

E

3

G

26

F

7

Figure 2 Delete-min in a multipass pairing heap. (above) state after deleting the root, with list
of siblings; (below) state after three pairing rounds, with links (2, 5), (4, 1), (3, 7), (2, 1), (3, 6), (1, 3).
(left) multi-ary view; (right) binary view. Numbers denote keys, capital letters denote subtrees.

The reader may notice that the old bounds for multipass pairing heaps and path-balanced
BSTs are the same. The two data structures are, indeed, quite similar: if one views multipass
pairing heaps as binary trees (see e.g., [10, § 2.3.2]), the multipass re-adjustement is equivalent
to balancing the right-spine of a binary tree.9 The multipass analysis, however, does not
immediately transfer to path-balanced BSTs; the fact that the BST search path may be
arbitrary (not necessarily right-leaning) complicates the argument for path-balanced BSTs.

Our analysis of multipass pairing heaps (§ 2) is based on a new, fine-grained scaling of
the sum-of-logs potential function used by Sleator and Tarjan in the analysis of Splay trees,
and by Fredman et al. in the analysis of pairing heaps. At a high level, we argue that certain
link operations are information-theoretically efficient, and that such links happen sufficiently
often. The subsequent, rather intricate analysis notwithstanding, we believe that the ideas
of the proof may have further applications in the analysis of data structures.

In § 3 we show our result for path-balanced BSTs. Informally, we decompose the path-
balancing operation into several stages, each of which resembles the multipass transformation,
allowing us to adapt and reuse the result of § 2. For lack of space, we omit several proofs
(marked ?) in this version of the paper and refer to the longer preprint10 for details and
additional illustrations.

2 Multipass pairing heaps

A pairing heap is a multi-ary heap, storing a key in each node, with the regular (min)heap-
condition: the key of a node is smaller than the keys of its children. Priority queue operations
are implemented using the unit-cost linking step. Given nodes x, y, link(x, y) “hangs” the
node with the larger key as the leftmost child of the other. The operations insert, meld, and
decrease-key can be implemented in a straightforward way using a single link (we refer to [5]
for details). The only nontrivial operation is delete-min. Here, after deleting the root, we are
left with a number of top-level nodes, which we combine into a single tree via a sequence
of links. In multipass pairing heaps we achieve this by performing repeated pairing rounds,
until a single top-level node remains (i.e., the new root of the heap). A single pairing round

9 We note that the previous analysis of path-balanced BSTs [1] did not use this correspondence. By
connecting the two data structures, we also simplify (to some extent) the proof of [1].

10 https://arxiv.org/abs/1806.08692

https://arxiv.org/abs/1806.08692

D. Dorfman, H. Kaplan, L. Kozma, S. Pettie, and U. Zwick 24:5

A

B C

C

BA

... ...

...

Figure 3 Left: link(x, y) in binary tree view. Dots (...) indicate the sequence of nodes that have
already been linked in the current round, subtree C contains the yet-to-be-linked nodes. Arrows
indicate possible switching depending on the outcome of the comparison between x and y. The
roots of A,B, and C are denoted xA, xB , and xC . Right: i-th link in a round (between xi and yi).
The subtree rooted at the right child of yi is denoted Ci; observe that Ci contains Ci+1.

is as follows. Let x1, . . . , x` be the top-level nodes, ordered left-to-right, before the round.
For all 1 ≤ i ≤ b`/2c we perform link(x2i−1, x2i). Observe that if ` is odd, then the rightmost
node is unaffected in the current round. The number of rounds is dlog(k)e, where k is the
number of children of the (deleted) root.11 (See Figure 2.)

We now analyse delete-min operations implemented by multipass pairing heaps. Let k
be the number of children of the deleted root, defined to be the real cost of the operation
(observe that the number of links is exactly k − 1). Let n be the size of the heap before the
operation. We use the binary tree view of multi-ary heaps, where the leftmost child and next
sibling pointers are interpreted as left child and right child. A single link operation is shown
in Figure 3. Let a, b, c denote the sizes of subtrees A, B, and C, respectively.

We define a potential function that refines the Sleator-Tarjan “sum-of-logs” potential [17].
Let Φ =

∑
x∈T φ(x), over all nodes x of the heap T , where

φ(x) = H(x)
log2 (2 +H(x))

, and H(x) = log
(
s(p(x))
s(x)

)
,

where s(x) denotes the size of the subtree rooted at x, and p(x) is the parent of x.12 Note
that both subtrees and parents are meant in the binary tree view.

For convenience, define the functions

f(x) = log x/ log2 (2 + log x), and g(x) = x/ log2 (2 + x).

With this notation, f(x) = g(log (x)), and φ(x) = f

(
s(p(x))
s(x)

)
. Clearly, both f(x) and g(x)

are positive, monotone increasing, and concave, for all x ≥ 1, respectively, x ≥ 0.
By simple arithmetic, the increase in potential due to a single link (as in Figure 3) is:

∆Φ = f

(
a+ b+ 1

a

)
+ f

(
a+ b+ 1

b

)
+ f

(
a+ b+ c+ 2
a+ b+ 1

)
+ f

(
a+ b+ c+ 2

c

)
−f
(
a+ b+ c+ 2

a

)
− f

(
a+ b+ c+ 2
b+ c+ 1

)
− f

(
b+ c+ 1

b

)
− f

(
b+ c+ 1

c

)
. (1)

11The function log(·) is base 2 everywhere, the base e logarithm is written as ln(·).
12Using φ(x) = H(X) instead, would essentially recover the original “sum-of-logs” potential. Such an
“edge-based” potential function was used earlier, e.g., in [7, 13].

ESA 2018

24:6 Improved Bounds for Multipass Pairing Heaps & Path-Balanced Binary Search Trees

For a suitably large constant γ (for concreteness let γ = 3000), we consider the quantities
γ2a, γb, and c, i.e., the scaled sizes of the subtrees A, B, and C. We distinguish different
kinds of links, depending on the ordering of the three quantities (breaking ties arbitrarily).
We first look at the cases when γ2a or γb is the largest (called respectively type-(1) and
type-(2) links), and show that the possible increase in potential due to such links is small.
In particular, for type-(1) links, ∆Φ is dominated by a term f(a/c), and for type-(2) links
the positive and negative contributions cancel out, leaving ∆Φ = O(1). The proofs (omitted
here) use standard (although somewhat delicate) analysis.

I Lemma 1 (?). A type-(1) link (γ2a ≥ max {γb, c}) increases the potential Φ by at most
2 · g

(
log (a/c) +O(1)

)
, where the O(1) term is a constant independent of a, b, c, n, and k.

I Lemma 2 (?). A type-(2) link (γb ≥ max {γ2a, c}) increases Φ by at most O(1).

The case when c is the greatest of the three quantities (called type-(3) link) is the most
favorable. Here, the potential of xA, xB before the linking is (roughly) the logarithm of s(xC)
(very large) divided by s(xA), s(xB); after the linking, the potential becomes (essentially)
the logarithm of the ratio between s(xA) and s(xB) (much smaller), resulting in a significant
saving in potential. We use this saving to “pay” for the operations. First we make the
following, easier claim.

I Lemma 3 (?). A type-(3) link (c ≥ max {γ2a, γb}) can not increase Φ.

It remains to balance the decrease in potential due to type-(3) links and the increase in
potential due to all other links. First, we show that almost all links are type-(3).

I Lemma 4. There are at most O(logn) type-(1) and type-(2) links within a pairing round.

Proof. Let ai, bi, ci denote the subtree-sizes corresponding to the i-th link from left to right,
see Figure 3(right). Let the subsequences ait , bit , cit , t = 1, . . . ,m be the subtree-sizes
corresponding to type-(1) and type-(2) links. Observe that ci1 ≥ · · · ≥ cim . If the i-th link is
of type-(1) or type-(2), then ci−1 = 2 + ai + bi + ci ≥ (1 + 1/γ2) · ci, since in each of these
cases ai ≥ 1/γ2ci or bi ≥ 1/γ2ci. Since ci1 ≤ n, and cim ≥ 1 the claim follows. J

I Lemma 5. All type-(1) and type-(2) links within a single pairing round increase the
potential by at most O(logn).

Proof. Look at a single round of pairing. Let ait , bit , cit (t = 1, . . . ,m) be as in the proof of
Lemma 4 and recall that m = O(logn). If the it-th link is type-(1), then by Lemma 1, the
increase in potential is at most 2 · g

(
log (ait/cit) +O(1)

)
.

Otherwise, if the it-th link is type-(2), then by Lemma 2, the increase in potential is at
most O(1), which we can write as 2 · g(c′), for a suitable constant c′.

Let qt denote log (ait/cit) +O(1), or c′, corresponding to the it-th link (according to its
type). We have

∑
qi ≤ α · logn (for a fixed constant α ≥ 1), since the sum of the log (ai/ci)

terms telescopes, and the additive O(1) (or c′) terms appear at most m = O(logn) times.
The total increase in potential is at most ∆Φ = 2 ·

∑m
t=1 g(qt). By the concavity of g(·),

∆Φ is maximized if all of the arguments of g(·) are equal. We thus obtain a bound on the
total increase in potential in the pairing round.

∆Φ ≤ 2m · g
(
α · logn
m

)
= 2α logn

log2 (2 + α · (logn)/m)
= O (logn) . J

The last proof yields, in fact, the following stronger claim.

D. Dorfman, H. Kaplan, L. Kozma, S. Pettie, and U. Zwick 24:7

I Lemma 6. All type-(1) and type-(2) links within the last (log logn) pairing rounds increase
the potential by at most O(logn).

Proof. Observe that for j < log logn, the j-th to the last pairing round has at most
m ≤ 2j < logn links. Thus, as in Lemma 5, we obtain:

∆Φ ≤ 2α logn
log2 (2 + α · (logn)/m)

≤ 2α logn
log2 (α · (logn)/2j)

= 2α logn
((log logn+ logα)− j)2 .

Note that the second inequality holds since 2j < logn. The sum of this expression over
all (log logn) levels j is O(logn). (Using the fact that

∑
k 1/k2 converges to a constant.) J

Now we estimate more carefully the decrease in potential due to type-(3) links. Let xA and
xB be nodes as denoted in Figure 3. We want to express the potential-change in terms of
HA = H(xA) and HB = H(xB) (before the link operation). Recall that HA = log

(
a+b+c+2

a

)
and HB = log

(
b+c+1
b

)
.

Among type-(3) links (c ≥ max {γ2a, γb}) we distinguish two subtypes: type-(3A) (γ2a ≥
γb), and type-(3B) (γb ≥ γ2a). We have the following two (symmetric) observations:

I Lemma 7 (?). A type-(3A) link (c ≥ γ2a ≥ γb) decreases the potential by at least

Ω(1) · HA

log2 (2 +HB)
−O(1).

It follows that for some constant d1, if HA ≥ d1 · log2 (2 +HB), then ∆Φ ≤ −1.

I Lemma 8 (?). A type-(3B) link (c ≥ γb ≥ γ2a) decreases the potential by at least

Ω(1) · HB

log2 (2 +HA)
−O(1).

It follows that for some constant d2, if HB ≥ d2 · log2 (2 +HA), then ∆Φ ≤ −1.

I Corollary 9. There exists a constant d (= max(d1, d2)) such that all type-(3A) links with
HA ≥ d · log2 (2 +HB) and all type-(3B) links with HB ≥ d · log2 (2 +HA) decrease the
potential by at least 1.

We now define the category of a node with respect to its H(·) value. Intuitively, nodes of
the same category are those that, when linked, release the most potential. Let us denote
h(x) = d · log2 (2 + x). Using the notation of function composition, let

h(0)(x) = x, h(i)(x) = h
(
h(i−1)(x)

)
.

The category of a node is based on the values h(i)(logn), i = 1, . . . , log∗ n. Note that
h(0)(logn) = logn, h(1)(logn) = d · log2 (2 + logn), . . . , h(log∗ n)(logn) = O(1), where the
O(1) depends on d, since (using the star notation) h∗(n) ≤

(
log3)∗ (n)+O(1) = log∗ n+O(1).

I Definition 10 (Category). Let u be a node. For i = 1, . . . , log∗ n, we let cat(u) = i if:

H(u.left) ∈ (h(i)(logn), h(i−1)(logn)].

If H(u.left) ≤ h(log∗ n)(logn) we say that u is of category 0.

The following crucial observations connect categories and savings in potential.

ESA 2018

24:8 Improved Bounds for Multipass Pairing Heaps & Path-Balanced Binary Search Trees

I Lemma 11. Let link(u, v) be type-(3). If cat(u) = cat(v) 6= 0, then the link decreases the
potential by at least 1.

Proof. Note that if i = cat(u) = cat(v) 6= 0 then

H(u.left) ≥ h(i) (logn) ≥ d · log2 (2 +H(v.left)),

H(v.left) ≥ h(i) (logn) ≥ d · log2 (2 +H(u.left)).

Thus, by Corollary 9, the claim follows. J

I Lemma 12. In each pairing round there are at most O(logn) nodes of category 0.

Proof. Let x be of category 0, then H(x.left) = O(1). Denoting a = s(x.left), c = s(x.right),
we get H(x.left) = log a+c+1

a = O(1). Therefore, a = Ω(c), an occurrence that can happen
at most O(logn) times in each round (by the same argument as in Lemma 4). J

I Lemma 13. Let w denote the “winner” of linking x and y (neither of category 0), i.e., w
is the one with the smaller key. Then cat(w) ≥ max{cat(x), cat(y)}.

Proof. Let y = x.right, a = s(x.left), b = s(y.left), c = s(y.right) as in Figure 3. We have
that H(x.left) = log a+b+c+2

a , H(y.left) = log b+c+1
b , and H(link(x, y).left) = log a+b+c+2

a+b+1 .
Clearly a+b+c+2

a+b+1 ≤ min{a+b+c+2
a , b+c+1

b }, finishing the proof. J

As seen in Figure 2, a delete-min operation transforms the “spine” of the heap (in binary
view) into a balanced tree. We denote this tree by T . Each level of T corresponds to a pairing
round; specifically, level i of T consists of nodes at distance i from the leaves, containing the
losers of the i-th pairing round. The following lemma captures the potential reduction that
yields the main result.

I Lemma 14. Let T ′ be a subtree of T of depth log∗ n, whose leaves correspond to 2log∗ n

consecutive link operations. If T ′ contains only type-(3) links and no links involving nodes of
category 0, then the total decrease in potential caused by the links of T ′ is at least 1.

Proof. Assume towards contradiction that there is no link between two nodes of the same
category in T ′. By Lemma 13 in each round the minimal overall category increases by at
least 1, leaving us with two nodes of maximal category in the last round, a contradiction. By
Lemma 11, a link between nodes of equal category decreases the potential by at least 1. J

I Theorem 15. The amortized time of delete-min in multipass pairing heaps is O(logn ·
log∗ n · 2log∗ n).

Proof. Let the real cost (number of link operations) be k. Note that there are at most
dlog ke pairing rounds.

Thus, if k ≤ logn · log∗ n · 2log∗ n, then there are at most log logn+ log log∗ n+ log∗ n+ 1
rounds. Using Lemma 5 we get that the first log log∗ n + log∗ n + 1 = O(log∗ n) pairing
rounds increase the potential by at most O(logn · log∗ n). Also, as shown in Lemma 6, the
total increase in potential for the last log logn levels is O(logn). Thus, the total potential
increase is at most O(logn) + O(logn · log∗ n).

To analyse the case k > logn · log∗ n · 2log∗ n, we use the potential decrease of type-(3)
links. First, we look at the first log∗ n pairing rounds.

By Lemma 14, the links in every complete subtree of T of depth log∗ n, in which there
are only type-(3) links and no category-0 nodes, decrease the potential by at least 1.

D. Dorfman, H. Kaplan, L. Kozma, S. Pettie, and U. Zwick 24:9

In the first log∗ n levels of T we can find k
2log∗ n disjoint subtrees of this size. In these

levels there are at most O(log∗ n · logn) type-(1),(2) links, or links containing category-0
nodes (Lemmas 4 and 12). Thus, at least k

2log∗ n −O (log∗ n · logn) of the subtrees answer
the conditions of Lemma 14, decreasing the potential by at least k

2log∗ n −O (log∗ n · logn).
Also, the total increase in potential caused by type-(1),(2) links is at most O(logn · log∗ n)
(Lemma 5). Therefore, the first log∗ n levels give us a decrease in potential of at least

k
2log∗ n −O (log∗ n · logn).

Note that by using the same argument on the next log∗ n levels, we get a decrease in
potential of at least k′

2log∗ n−O (log∗ n · logn), where k′ is the number of links in level log∗ n+1.
Thus, levels which contain Ω

(
logn · log∗ n · 2log∗ n) links only decrease the potential.

We repeat this argument until we reach a level in T containing k̃ ≤ logn · log∗ n · 2log∗ n

links. Now, applying the same argument as for the first case, we get that the total increase in
potential for the last log k̃ levels (starting from the level of k̃ links) is at most O(logn · log∗ n).

Summarizing, the total amortized time (in both cases) is at most

k +O(logn · log∗ n)−
(

k

2log∗ n − log∗ n · logn
)
.

Scaling the potential by 2log∗ n, we get that the amortized time is O(logn · log∗ n ·2log∗ n). J

3 Path-balanced binary search trees

Consider the operation of accessing a node x in a BST T with n nodes (we refer interchangeably
to a node and its key). Let Px denote the search path to x (i.e., the path from the root of
T to x). The path-balance method re-arranges Px into a complete balanced BST (with all
levels complete, except possibly the lowest). Subtrees hanging off Px are re-attached in the
unique way given by the key-order (Figure 1). There are multiple ways to implement this
transformation such that the number of pointer moves and pointer changes is linear in the
length of the search path. For instance, we may first rotate the search path into a monotone
path, then apply a multipass transformation (described next) to this monotone path.

Multipass transformation. A multipass transformation of a monotone path P (of which
the deepest node might not be a leaf) converts P into a balanced tree (in which the last level
may be incomplete) by a sequence of pairing rounds. In each pairing round we rotate every
other edge in a prefix of P (i.e., a subpath of the shallowest nodes on P). Each rotation
pushes one node off P. We denote by Pi the path remaining of P after i pairing rounds.
The pairing rounds are defined as follows. We assume that the path consists of right child
pointers; in the case it consists of left child pointers everything is symmetric.

Let `(P) denote the length of P (i.e., the number of nodes on P). In the first round we
do just enough rotations so that the length of the path after the round (i.e., P1) is one less
than a power of 2. Specifically, we do α rotations where α is the smallest integer such that
`(P1) = `(P) − α = 2j − 1. In the second round we do 2j−1 − 1 rotations on P1, and in
round i > 1 we do 2j−i+1 − 1 rotations on Pi−1. We maintain the invariant that after i+ 1
rounds all the nodes that were pushed off P (excluding those that were pushed off P at the
first round) are arranged in balanced binary trees of height (i− 1), hanging as children of
the nodes of Pi+1.

The proof of the following theorem is analogous to the proof of Theorem 15 (one can
verify that all steps of the proof still hold for the slightly modified pairing rounds of the
multipass transformation, replacing rotations by links).

ESA 2018

24:10 Improved Bounds for Multipass Pairing Heaps & Path-Balanced Binary Search Trees

I Theorem 16. For every monotone path P with `(P) = k, the change in Φ caused by applying
a multipass transformation on P is bounded by ∆Φ ≤ c(n, k) := − k

2log∗ n +O(logn · log∗ n),
where n is the size of the subtree of the root of P.

Warm-up: a simplified path-balance. We first look at an easier-to-analyse variant of path-
balance, where, instead of a complete balanced tree, we build an almost balanced tree out of
the search path Px, as follows: we first make the accessed item x the root, then turn the
parts of Px containing items smaller (resp. larger) than x into balanced subtrees rooted at
the left (resp. right) child of x. The depth of this tree is at most one larger than the depth
of a complete balanced tree built from Px.

For the purpose of the analysis, we view the simplified path-balance transformation as a
two-step process. The actual implementation may be different but the analysis applies as
long as the transformation takes time O (`(Px)).

Step 1. Rotate the accessed element x all the way to the root. (Observe that after this
step, Px is split into two monotone paths, P<x to the left of x consisting only of “right child”
pointers, and P>x to the right of x, consisting only of “left child” pointers.)

Step 2. Apply a multipass transformation to P>x and to P<x.
We show that the amortized time of an access using simplified path-balance is O(logn ·

log∗ n · 2log∗ n). We use the same potential function as in § 2, and we assume the two-step
implementation described above. We first state an easy observation.

I Lemma 17. Let P be a path in T rooted at a node r, then Φ (P) = O(log s(r)), where
Φ(P) =

∑
x∈P φ(x) and s(r) is the size of the subtree of r.

Proof. Denote ` = `(P). Let a1 ≤ ... ≤ a` = s(r) be the subtree-sizes of the nodes on P
from the deepest node to r. Then

Φ(P) =
`−1∑
k=1

f

(
ak+1

ak

)
=

`−1∑
k=1

g

(
log ak+1

ak

)
≤ ` · g

(
log s(r)

`

)
= O(log s(r)),

due to g’s concavity and since the terms log ak+1
ak

sum to log s(r)− log a1 ≤ log s(r). J

We proceed with the analysis. We argue that rotating x to the root (Step 1) increases Φ
by at most O(logn). To see this, observe first, that the potential of nodes hanged on the
nodes of Px excluding x, can only decrease. This is because their subtree remains the same,
whereas the subtree of their parent (a node on the search path) can only lose elements. The
two children of x may increase the potential by at most O(logn).

For nodes on the search path, we look at the potential after the transformation. We have
two separate paths, and by Lemma 17 the potential of each path is bounded by O(logn).
This concludes the analysis for Step 1.

In Step 2, as we apply the multipass transformation to both P<x and P>x, Theorem 16
applies. Thus, ∆Φ is at most c(s(x.left), `(P<x)) + c(s(x.right), `(P>x)) where c(n, k) is
defined in Theorem 16. The claim on the amortized running time follows by scaling ∆Φ by
2log∗ n and adding it to the actual cost (the length of Px). This concludes the proof.

Analysis of path-balance. The original path-balance heuristic (where we insist on building
a complete balanced tree) is trickier to analyse. Here, instead of moving the accessed item x

to the root, we move the median item m of the search path Px to the root. Here, “median”
is meant with respect to the ordering of keys; m is, in general, not the node with median

D. Dorfman, H. Kaplan, L. Kozma, S. Pettie, and U. Zwick 24:11

depth on Px. It is instructive to prove the earlier O(logn · log logn/ log log logn) result first,
by re-using parts of the Fredman et al. proof for multipass. We defer this to the full version
of the paper. In the remainder of this section we prove the new, stronger result.

I Theorem 18. The amortized time of search in a path-balanced BST of size n is
O
(

logn · (log∗ n)2 · 2log∗ n
)
.

For the purpose of the analysis, we view the path-balance transformation as a sequence
of recursive calls on search paths in some subtree of T . The total real cost is proportional
to the original length of the search path to x which we denote by k. We define a threshold
τ = logn, and distinguish between recursive calls on paths shorter than τ (“short paths”)
and recursive calls on paths longer than τ (“long paths”).

A long path Px is processed as follows. Rotate the median m of the nodes on Px to the
root, splitting Px into two paths of equal lengths. One of these paths contains the path from
m to x in Px, and the other path, which is monotone, contains either the elements smaller
than m on Px or the elements larger than m on Px (depending on whether x is in the right
or left subtree of m). In the sequel we assume without loss of generality that the monotone
part contains all elements larger than m and denote it by P>m. Let Qx denote the other
(non-monotone) path that ends with x. We perform a multipass transformation on P>m,
and make a recursive call on Qx (i.e., Qx becomes the P x of the next recursive call).

A short path Px is transformed into a balanced binary tree in two phases, as follows.
In the first phase, rotate up the median m1 of Px = P1 until it becomes the root of the
subtree rooted at the shallowest node of P1. This decomposes P1 into a monotone path and
a general path P2, one starting at the left child of m1 and the other at the right child of
m1. We repeat this recursively with the median m2 of P2, and so on, until we get a general
path P` of length 1. After this transformation, the medians mj form a path, each mj having
the next median mj+1 as one child and a monotone path as the other child. The lengths of
these monotone paths decrease exponentially by a factor of 2. In the second phase we apply
a multipass transformation on each monotone path, obtaining a complete balanced tree.

Before we analyse each case, we argue that Theorem 16 also holds with a modified
potential Φ (defined below). As we only use the new potential from now on, there is no risk
of confusion. The modification consists in changing the exponent of the logarithmic term in
the denominator from 2 to 3, and changing the additive constant inside the log(·) to make
sure Φ is still increasing everywhere.

Formally, Φ =
∑
x∈T φ(x), where φ(x) = H(x)

log3 (4+H(x)) , and H(x) = log s(p(x))
s(x) . As earlier,

s(x) is the size of the subtree rooted at x, and p(x) is the parent of x.
It can be shown that the entire analysis in § 2 extends to this new potential. Therefore,

Theorem 16 holds also for the modified potential function Φ. Now, the analysis of transforming
long paths is straightforward. For short paths, we need two new observations.

I Lemma 19. The total increase in potential for performing multipass transformation on a
path P of length k < logn where n is the size of the subtree of the root of P, is at most

log k∑
j=1

O(logn)
(log logn+ 1− j)3 .

The proof is identical to that of Lemma 6. As before, the sum can be bounded as O(logn),
but here we use the quantity explicitly inside another sum where the exponent 3 in the
denominator will be crucial. The next observation can be shown in a way similar to Lemma 17.

ESA 2018

24:12 Improved Bounds for Multipass Pairing Heaps & Path-Balanced Binary Search Trees

I Lemma 20 (?). Given a search path P of length k < logn, the total increase in Φ due to
recursively rotating all medians m1,m2, . . . of P to the root is O(logn).

We are ready to prove Theorem 18. We split the proof into three cases according to the
length of the search path, denoted by k.

Short paths (k ≤ τ = logn). Notice that log k ≤ log logn. Recall that in the first phase,
we repeatedly rotate up the medians, decomposing the path into monotone paths of lengths
1, 2, 4, . . . , 2j , where j < log logn. By Lemma 20 the total increase in potential due to this
transformation is at most O(logn).

In the second phase, we do a multipass transformation on each of these monotone paths.
By Lemma 19, a multipass transformation on a monotone path of length 2j increases Φ by at
most

∑j
i=1 α · logn/(log logn+ 1− i)3, for some fixed α. Thus, the j < log logn multipass

transformations increase the potential by at most

log logn∑
j=1

j∑
i=1

α · logn
(log logn+ 1− i)3 =

log logn∑
s=1

α · logn
s2 = O(logn).

The first equality holds since the term α·logn
s3 appears in the above sum exactly s times

(1 ≤ s ≤ log logn). Thus, the total increase in Φ is, in this case, O(logn).

Longish paths (τ < k ≤ logn · log∗ n · 2log∗ n). Notice that log k ≤ log logn+ 2 · log∗ n.
We perform 2 · log∗ n recursive calls and a final call on a search path of length k′ ≤ τ . The

final call increases Φ by at most O(logn), by the analysis in the previous case. The recursive
calls consist of rotating the current median up to the root and applying the multipass
transformation on a monotone path. As before, rotating the median up increases Φ by
at most O(logn). Also, each multipass transformation is performed on a path of length
≤ logn · log∗ n · 2log∗ n. By Theorem 16, the increase in potential is at most O(logn · log∗ n).
Therefore, the 2 · log∗ n recursive calls increase Φ by at most O

(
logn · (log∗ n)2

)
, which also

bounds the total increase in Φ.

Long paths (k = Ω
(
logn · log∗ n · 2log∗ n

)
). We look at the potential change due to

the first recursive call. Again, rotating the median m to the root increases Φ by at most
O(logn). The path splits into P>m and Qx, of which P>m is monotone. By Theorem 16,
the multipass transformation on P>m decreases Φ by k/2

2log∗ (n) −O (log∗ (n) · logn).
By the same argument, Φ decreases during all of the subsequent recursive calls on paths

of size Ω
(
logn · log∗ n · 2log∗ n).

We continue until we have a recursive call on a path of size at most
(
logn · log∗ n · 2log∗ n),

which, by the previous case, increases Φ by at most O
(

logn · (log∗ n)2
)
. Thus, we obtain

that the total decrease in Φ in this case is at least k/2
2log∗ (n) −O

(
logn · (log∗ n)2

)
.

Combining the three cases, after scaling the potential by 2 · 2log∗ n, we conclude that the
amortized time of the access is k+ 2 · 2log∗ n ·∆Φ = O

(
logn · 2log∗ n · (log∗ n)2

)
, as required.

References
1 R. Balasubramanian and Venkatesh Raman. Path balance heuristic for self-adjusting

binary search trees. In Proceedings of FSTTCS, pages 338–348, 1995. doi:10.1007/
3-540-60692-0_59.

http://dx.doi.org/10.1007/3-540-60692-0_59
http://dx.doi.org/10.1007/3-540-60692-0_59

D. Dorfman, H. Kaplan, L. Kozma, S. Pettie, and U. Zwick 24:13

2 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Self-adjusting binary search trees: What makes them tick? In ESA 2015, pages
300–312, 2015. doi:10.1007/978-3-662-48350-3_26.

3 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. The landscape of bounds for binary search trees. CoRR, abs/1603.04892, 2016.
arXiv:1603.04892.

4 Michael L. Fredman. On the efficiency of pairing heaps and related data structures. J.
ACM, 46(4):473–501, 1999. doi:10.1145/320211.320214.

5 Michael L. Fredman, Robert Sedgewick, Daniel Dominic Sleator, and Robert Endre Tarjan.
The pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.
doi:10.1007/BF01840439.

6 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In 25th Annual Symposium on Foundations of Computer
Science, West Palm Beach, Florida, USA, 24-26 October 1984, pages 338–346, 1984. doi:
10.1109/SFCS.1984.715934.

7 George F. Georgakopoulos and David J. McClurkin. Generalized template splay: A basic
theory and calculus. Comput. J., 47(1):10–19, 2004. doi:10.1093/comjnl/47.1.10.

8 John Iacono. Improved upper bounds for pairing heaps. In Algorithm Theory - SWAT
2000, 7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, July 5-7, 2000,
Proceedings, pages 32–45, 2000. doi:10.1007/3-540-44985-X_5.

9 John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data
Structures, Streams, and Algorithms, volume 8066 of Lecture Notes in Computer Science,
pages 236–250. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-40273-9_16.

10 Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

11 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

12 Daniel H. Larkin, Siddhartha Sen, and Robert Endre Tarjan. A back-to-basics empirical
study of priority queues. In 2014 Proceedings of the Sixteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2014, Portland, Oregon, USA, January 5, 2014,
pages 61–72, 2014. doi:10.1137/1.9781611973198.7.

13 Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, volume 1 of
EATCS Monographs on Theoretical Computer Science. Springer, 1984. doi:10.1007/
978-3-642-69672-5.

14 Bernard M. E. Moret and Henry D. Shapiro. An empirical analysis of algorithms for
constructing a minimum spanning tree, pages 400–411. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1991. doi:10.1007/BFb0028279.

15 Seth Pettie. Towards a final analysis of pairing heaps. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA,
USA, Proceedings, pages 174–183, 2005. doi:10.1109/SFCS.2005.75.

16 Daniel D. Sleator, William P. Thurston, and Robert Endre Tarjan. Rotation dis-
tance,triangulations,and hyperbolic geometry. Technical Report CS-TR-131-88, Princeton
University (NJ US), 1988. URL: http://opac.inria.fr/record=b1019357.

17 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J.
ACM, 32(3):652–686, 1985. doi:10.1145/3828.3835.

18 John T. Stasko and Jeffrey Scott Vitter. Pairing heaps: Experiments and analysis. Com-
mun. ACM, 30(3):234–249, 1987. doi:10.1145/214748.214759.

19 Ashok Subramanian. An explanation of splaying. J. Algorithms, 20(3):512–525, 1996.
doi:10.1006/jagm.1996.0025.

ESA 2018

http://dx.doi.org/10.1007/978-3-662-48350-3_26
http://arxiv.org/abs/1603.04892
http://dx.doi.org/10.1145/320211.320214
http://dx.doi.org/10.1007/BF01840439
http://dx.doi.org/10.1109/SFCS.1984.715934
http://dx.doi.org/10.1109/SFCS.1984.715934
http://dx.doi.org/10.1093/comjnl/47.1.10
http://dx.doi.org/10.1007/3-540-44985-X_5
http://dx.doi.org/10.1007/978-3-642-40273-9_16
http://dx.doi.org/10.1137/1.9781611973198.7
http://dx.doi.org/10.1007/978-3-642-69672-5
http://dx.doi.org/10.1007/978-3-642-69672-5
http://dx.doi.org/10.1007/BFb0028279
http://dx.doi.org/10.1109/SFCS.2005.75
http://opac.inria.fr/record=b1019357
http://dx.doi.org/10.1145/3828.3835
http://dx.doi.org/10.1145/214748.214759
http://dx.doi.org/10.1006/jagm.1996.0025

Improved Time and Space Bounds for Dynamic
Range Mode
Hicham El-Zein
Cheriton School of Computer Science, University of Waterloo, Canada
helzein@uwaterloo.ca

Meng He
Faculty of Computer Science, Dalhousie University, Canada
mhe@cs.dal.ca

J. Ian Munro
Cheriton School of Computer Science, University of Waterloo, Canada
imunro@uwaterloo.ca

Bryce Sandlund
Cheriton School of Computer Science, University of Waterloo, Canada
bcsandlund@uwaterloo.ca

Abstract
Given an array A of n elements, we wish to support queries for the most frequent and least
frequent element in a subrange [l, r] of A. We also wish to support updates that change a
particular element at index i or insert/ delete an element at index i. For the range mode problem,
our data structure supports all operations in O(n2/3

) deterministic time using only O(n) space.
This improves two results by Chan et al. [3]: a linear space data structure supporting update
and query operations in Õ(n3/4

) time and an O(n4/3
) space data structure supporting update

and query operations in Õ(n2/3
) time. For the range least frequent problem, we address two

variations. In the first, we are allowed to answer with an element of A that may not appear in
the query range, and in the second, the returned element must be present in the query range. For
the first variation, we develop a data structure that supports queries in Õ(n2/3

) time, updates
in O(n2/3

) time, and occupies O(n) space. For the second variation, we develop a Monte Carlo
data structure that supports queries in O(n2/3

) time, updates in Õ(n2/3
) time, and occupies

Õ(n) space, but requires that updates are made independently of the results of previous queries.
The Monte Carlo data structure is also capable of answering k-frequency queries; that is, the
problem of finding an element of given frequency in the specified query range. Previously, no
dynamic data structures were known for least frequent element or k-frequency queries.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases dynamic data structures, range query, range mode, range least frequent,
range k-frequency

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.25

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
03827.

1 Introduction

The mode of a sample is a fundamental data statistic along with median and mean. Given an
ordered sequence, the range mode of interval [l, r] is the mode of the subsequence from index
l to r. Building a data structure to efficiently compute range modes allows data analysis to

© Hicham El-Zein, Meng He, J. Ian Munro, and Bryce Sandlund;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 25; pp. 25:1–25:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:helzein@uwaterloo.ca
mailto:mhe@cs.dal.ca
mailto:imunro@uwaterloo.ca
mailto:bcsandlund@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.25
https://arxiv.org/abs/1807.03827
https://arxiv.org/abs/1807.03827
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Improved Time and Space Bounds for Dynamic Range Mode

Table 1 Known static and dynamic range query upper bounds.

Query Type Query Time Update Time Space Citation

Sum O(1) - O(n) trivial
O(lg n) O(lg n) O(n) [15]

Min/ Max O(1) - O(n) [9]
O(lg n/ lg lg n) O(lg1/2+ε n) O(n) [5]

Median O(lg n/ lg lg n) - O(n) [2]
O((lg n/ lg lg n)

2
) O((lg n/ lg lg n)

2
) O(n) [13]

Majority O(1) - O(n) [7]
O(lg n/ lg lg n) O(lg n) O(n) [7, 10]

Mode

O(nε lg lg n) - O(n2−2ε
) [14]

O(1) - O(n2 lg lg n/ lg n) [14]
O(

√
n/ lg n) - O(n) [3]

O(n3/4 lg n/ lg lg n) O(n3/4 lg lg n) O(n) [3]
O(n2/3 lg n/ lg lg n) O(n2/3 lg n/ lg lg n) O(n4/3

) [3]
O(n2/3

) O(n2/3
) O(n) new

Least Frequent O(
√

n) - O(n) [4]
O(n2/3 lg n lg lg n) O(n2/3

) O(n) new
k-Frequency O(n2/3

) O(n2/3 lg n) O(n) new

be conducted over any window of one-dimensional data. Techniques to answer such queries
are relevant to the design of database systems.

The range least frequent problem can be seen as a low-frequency variant of range mode.
Instead of searching for the most frequent element in an interval of the sequence, we query
for an element that occurs the fewest number of times. We may either restrict our attention
to elements that occur at least once in the query range or allow the answer to be an element
that occurs zero times in the interval but is present elsewhere in the sequence.

A third range frequency query we consider in this paper is the problem of identifying an
element with given frequency k in the specified query interval. This problem has been called
the range k-frequency problem.

Both range mode query and range least frequent query have theoretical connections to
matrix multiplication. In particular, the ability to answer n range mode queries on an array
of size O(n) in faster than O(nω/2) time, where ω is the constant in the exponent of the
running time of matrix multiplication, would imply a faster algorithm for boolean matrix
multiplication [3, 4]. Upon closer examination, this lower bound also applies to the range
k-frequency problem.

The range mode, range least frequent, and range k-frequency problems are part of a set
of questions one can ask on a subrange of a sequence. Other queries in this area include:

Sum: Return the sum of elements in the query range.
Min/ Max: Return the minimum/ maximum in the query range.
Median: Determine the median element in the query range.
Majority: Return the element that occurs more than 1/2 the time, if such an element
exists.

Note that the mean of a range can be reduced to the range sum problem. Table 1 gives an
overview of known upper bounds on related static and dynamic range query data structures.

H. El-Zein, M. He, I. Munro, and B. Sandlund 25:3

1.1 Our Results
We improve the results of Chan et al. [3] by giving a dynamic range mode data structure
that takes O(n) space and supports updates and queries in O(n2/3) time. This improves
the query/ update time of their linear space data structure by a polynomial factor and
additionally improves the query/ update time of their O(n4/3) space data structure by a
O(log n/ log log n) factor. We also include in our update procedures the ability to insert or
delete elements in the middle of the array, an operation not addressed in previous dynamic
range mode data structures.

Our improvements are based on the observation that knowing how many of a type
of element occur in an interval can be as valuable as knowing the elements themselves.
Specifically, instead of storing the frequency counts of elements per span, we store the number
of elements with a particular frequency count per span. This information can be dynamically
maintained, and uses O(log n) bits per frequency per span, rather than O(log n) bits per
unique element per span.

Our technique is general enough to also apply to the range least frequent problem in a
dynamic setting. To our knowledge, this is the first data structure to do so. In the version
of the problem where we allow an answer to not occur in the specified query interval, our
data structure supports queries in O(n2/3 log n log log n) time, updates in O(n2/3) time, and
occupies O(n) space. In the version where the least frequent element must be present in the
query interval, we develop a Monte Carlo data structure that supports queries in O(n2/3)

time, updates in O(n2/3 log n) time, and occupies O(n log2 n) space. This data structure is
correct with high probability for any polynomial sequence of updates and queries, with the
restriction that updates are made independently of the results of previous queries. Notably,
if the set of queries and updates is fixed in advance or given to the algorithm all at once,
this property holds.

Furthermore, our Monte Carlo data structure is powerful enough to apply to the dynamic
range k-frequency problem, also supporting queries in O(n2/3) time, updates in O(n2/3 log n)

time, and occupying O(n log2 n) space. This data structure can be augmented to count
the number of elements below, above, or at a given frequency, supporting both queries
and updates in O(n2/3) time and using O(n) space, without the need for an independence
assumption.

We organize our results as follows. In Section 2, we review previous work on static and
dynamic range mode and least frequent element queries. In Section 3, we briefly give some
notation that will be used for the rest of the paper. In Section 4, we give the basic setup
of the O(n) space data structure. Section 5 describes how to answer a range mode query
in O(n2/3) time. Section 6 explains how to support updates to our base data structures in
O(n2/3) time. In Section 7, we discuss how to answer range least frequent queries in Õ(n2/3)

time. Section 8 describes how to find an element of a given frequency in a specified range in
O(n2/3) time. Here we also mention additional frequency operations our data structure can
support. Due to space limitations, we will not describe how the data structure can be made
to support insertion and deletion of elements in the conference version of this paper.

2 Previous Work

2.1 Static Range Mode Query
The static range mode query problem was first studied by Krizanc et al. [14]. Their focus
is primarily on subquadratic solutions with fast queries, achieving O(n2−2ε) space and
O(nε log n) query time, with 0 < ε ≤ 1/2, and O(n2 log log n/ log n) space and O(1) query

ESA 2018

25:4 Improved Time and Space Bounds for Dynamic Range Mode

time. If we set ε = 1/2 with the first approach, this gives a linear space static range mode
data structure with query time O(

√
n log n). By substituting an O(log log n) data structure

for predecessor search, such as van Emde Boas trees, the query time can immediately be
improved to O(

√
n log log n).

Chan et al. [3] focus on linear space solutions to static range mode. They achieve a clever
array-based solution with O(n) space and O(

√
n) query time. By using bit-packing tricks

and more advanced data structures, they reduce the query time to O(
√

n/ log n).
As with many range query data structures, the range mode problem has also been studied

in an approximate setting [12, 1].

2.2 Static Range Least Frequent Query
The range least frequent problem was first studied by Chan et al. [4]. They again focus on
linear-space solutions, this time achieving O(n) space and O(

√
n) time query. In their paper,

they focus on the version of range least frequent element where the element must occur in
the query range.

2.3 Dynamic Range Mode
Chan et al. [3] also study the dynamic range mode problem. They give a solution tradeoff
that at linear space, achieves O(n3/4 log n/ log log n) worst-case time range mode query and
O(n3/4 log log n) amortized expected time update. At minimal update/ query time, this
tradeoff gives O(n4/3) space and O(n2/3 log n/ log log n) worst-case time range mode query
and amortized expected time update.

2.4 Lower Bounds
Both [3] and [4] give conditional lower bounds for range mode and range least frequent
problems, respectively. Chan et al. [3] reduces multiplication of two

√
n ×

√
n boolean

matrices to n range mode queries in an array of size O(n). This indicates that with current
knowledge, preprocessing an O(n)-sized range mode query data structure and answering n

range mode queries cannot be done in better than O(nω/2) time, where ω is the constant in
the exponent of the running time of matrix multiplication. With ω = 2.3727 [17], this implies
with current knowledge that a range mode data structure must either have preprocessing
time at least Ω(n1.18635) or query time at least Ω(n0.181635). Since we may choose to update
an array rather than initializing it, this lower bound also indicates that a dynamic range
mode data structure must have update/ query time at least Ω(nω/2−1).

In [3], Chan et al. also give another conditional lower bound for dynamic range mode.
They reduce the multiphase problem of Pǎtraşcu [16] to dynamic range mode. A reduction
from 3-SUM (given n integers, find three that sum to zero) is given by Pǎtraşcu [16] to the
multiphase problem. Based on the conjecture that the 3-SUM problem cannot be solved in
O(n2−ε) time for any positive constant ε, this chain of reductions implies a dynamic range
mode data structure must have polynomial time query or update.

The reduction of
√

n ×
√

n boolean matrix multiplication to n O(n)-sized range mode
queries can be adopted to achieve the same conditional lower bound for the range least frequent
problem [4]. Upon examination, the conditional lower bound also applies to k-frequency
queries.

An unconditional lower bound also exists in the cell probe model for the range mode and
k-frequency problem. Any range mode/ k-frequency data structure that uses S memory cells
of w-bit words needs Ω(

log n
log(Sw/n)

) time to answer a query [12].

H. El-Zein, M. He, I. Munro, and B. Sandlund 25:5

3 Preliminaries

Before we discuss the technical details of our results, it will be helpful to develop some
notation.

As in [3, 4], we will denote the subarray of A from index i to index j as A[i ∶ j] and
use array notation A[i] to denote the element of A at index i. We will assume zero-based
indexing throughout this paper.

Furthermore, for range frequency data structures, the actual type that array A stores
is irrelevant; we only care about how many times each element occurs. It will be useful to
think of the identity of an element as a color. Therefore, we may say the color c occurs with
frequency f in range A[l ∶ r]. This is to distinguish that we are not referring to a particular
index but rather the identity of multiple indices in the range.

For simplicity, we will assume the number of elements n is a perfect cube; however, the
results discussed easily generalize for arbitrary n. All log’s in this paper are assumed to be
base 2.

In all our proofs, we analyze space cost in words, that is, O(log n) collections of bits.

4 Data Structure Setup

The idea of our data structure will be to break up array A into O(n1/3) evenly-spaced
endpoints, so that there are O(n2/3) elements between each endpoint. We will use capital
letters L and R when referring to particular endpoints. We will also occasionally refer to
the elements between two consecutive endpoints as a segment; therefore, there are O(n1/3)

segments in A.
Each color that occurs in A will be split into the following two disjoint categories:
Frequent Colors: Any color that appears more than n1/3 times in A.
Infrequent Colors: Any color that appears at most n1/3 times in A.

Note that there can be at most n/n1/3 = n2/3 frequent colors in A at any point in time.
Our data structure will need to use dynamic arrays as auxiliary data structures. These

dynamic arrays will be a modification of the simple two-level version of the data structure
described by Goodrich and Koss [11]. We have the following lemma regarding the performance
of these dynamic arrays:

I Lemma 1. There is a dynamic array data structure D that occupies O(n) space and
supports:
1. D[i]: Retrieve/ Set the element at rank i, in O(1) time.
2. Insert(i, x): Insert the element x at rank i, in O(

√
n) time.

3. Delete(i, x): Delete the element x at rank i, in O(
√

n) time.
4. Rank(ptr): Determine the rank of the element pointed to by ptr, in O(1) time.

The modified data structure will be discussed in the full version of this paper. If desired,
the data structure can be replaced by a balanced binary search tree, at the cost of additional
logarithmic factors in the query times of our data structure.

We can now describe the base set of auxiliary data structures used throughout the paper:
1. Arrays BL,R, for all pairs of endpoints L, R, indexed from 0 to n1/3, so that

BL,R[i] ∶= The number of infrequent colors with frequency i in A[L ∶ R].

ESA 2018

25:6 Improved Time and Space Bounds for Dynamic Range Mode

2. Dynamic arrays Dc, for every color c, so that

Dc[i] ∶= The index in A of the ith occurrence of color c.

3. An array E parallel to A so that

E[i] ∶= A pointer to the location in memory of index i in dynamic array DA[i].

4. A binary search tree F of endpoints. At each endpoint R, we store

F [R] ∶= A binary search tree on frequent colors, giving their frequency in A[0 ∶ R].

In regards to BL,R, we will sometimes refer to the set of elements between endpoints L

and R as the span of L and R.
We now analyze the space complexity and construction time.

I Lemma 2. The base data structures take O(n) space.

Proof. The arrays BL,R have size O(n1/3) and there are O(n2/3) of them, so in total these
take O(n) space. Every index of A is present in exactly one of the Dc arrays, and each
dynamic array takes linear space. Therefore, in total all Dc arrays take O(n) space. Array
E has exactly the same size as A and thus takes O(n) space. The binary search trees in each
node of F have size equal to the number of frequent colors, which is at most n2/3. Since
there are O(n1/3) endpoints and thus nodes of F , this structure takes O(n) space. J

I Lemma 3. The base data structures can be initialized in O(n4/3) time.

Proof. We can count the number of occurrences of each color in O(n log n) time and determine
for each color whether it is frequent or infrequent. Let A′ be the array A without any frequent
colors. We can scan A′ n1/3 times, starting from each endpoint, to build the arrays BL,R.
This will be done as follows. For each scan, we maintain an array T so that T [c] denotes
the number of occurrences of color c found so far. We also maintain the array BL,∗ which is
the array B with endpoint L and a variable right endpoint, that is maintained as elements
are scanned. When A[i] = c, we check the number of occurrences of c to update BL,∗ to
the correct state. In total, each element scanned results in O(1) operations, until we reach
a right endpoint. When we reach a right endpoint, we write BL,∗ to array BL,R, where R

denotes the right endpoint just encountered. In this way, for all endpoints L, R, we spend
O(n1/3) time to create the array. Thus the element scan dominates the time complexity,
requiring O(n4/3) time to create all BL,R arrays.

The dynamic arrays Dc can be built in linear time overall by walking through A and
appending indices to the ends of Dc arrays. At this same time E can be built. The BSTs
for all endpoints in F can also be built in linear time overall, since there are at most n2/3

frequent colors per list, there are n1/3 lists in total, and counting each frequent element in
each interval can be done at the same time in one scan through A. J

Throughout the next few sections, we will use the following Lemma, as in [3]:

I Lemma 4. Let A[i] = c. Then, given frequency f and right endpoint j, our base data
structures may answer the following questions in constant time:

Does color c occur at least f times in A[i ∶ j]? (1)
Does color c occur at most f times in A[i ∶ j]? (2)
Does color c occur exactly f times in A[i ∶ j]? (3)

H. El-Zein, M. He, I. Munro, and B. Sandlund 25:7

Proof. We call rank(E[i]) on Dc to get the rank r of i in Dc. Since array Dc stores the
indices of every occurrence of color c in A, the values of Dc[r+f] and Dc[r+f −1] determine
the answers to the above questions. J

A similar strategy can be used to answer the above questions given an index j and left
endpoint i.

5 Range Mode Query

The range mode query will make use of the following lemma, originating from [14] and also
used by [3]:

I Lemma 5 (Krizanc et al. [14]). Let A1 and A2 be any multisets. If c is a mode of A1 ∪A2
and c ∉ A1, then c is a mode of A2.

The query algorithm can be summarized as follows:

Algorithm 1 Range Mode Query in A[l ∶ r].

Let L and R be the first and last endpoints in [l, r], respectively.
1. Check the frequency of every frequent color in A[L ∶ R] via BSTs F [R] and F [L]. Let f

be the highest frequency found so far.
2. Ask question (1) for all colors in A[l ∶ L − 1] ∪A[R + 1 ∶ r] with frequency f and right

endpoint r/ left endpoint l. If (1) is answered in the affirmative for color c, linearly scan
Dc to count the number of occurrences of color c in [l, r], update f , and continue.

3. Find the largest nonzero index of BL,R. If this is larger than f , update f and do the
following:
a. Find the next endpoint R′ to the left of R.
b. Check BL,R′[f]. If BL,R′[f] < BL,R[f], search A[R′ + 1 ∶ R] for a color that occurs f

times in A[L ∶ R], via question (3) with left endpoint L.
c. Otherwise, repeat from step (a) with R ← R′.

4. Return f and the corresponding color found from either step 1, 2, or 3(b).

I Theorem 6. Algorithm 1 finds the current range mode of A[l ∶ r] in O(n2/3) time.

Proof. Endpoints L and R can be found from [l, r] by appropriate floors and ceilings in
constant time.

In step 1, we can iterate through F [R] and F [L] in O(n2/3) time, determining frequency
counts for all frequent elements.

In step 2, answering question (1) takes O(1) time per element via Lemma 4. Note that
we use left endpoint l for elements in range A[R + 1 ∶ r] and right endpoint r for elements in
range A[l ∶ L − 1]. Although we do not check (1) for the full range [l, r], we will check the
first/ last occurrence of any color in A[l ∶ L− 1] ∪A[R+ 1 ∶ r], thereby effectively checking for
all of [l, r]. When (1) is answered in the affirmative at index i, we linearly scan Dc, starting
at Dc[i + f + 1] (Dc[i − f − 1] if i ∈ [R + 1 ∶ r]) to determine a new highest frequency. Let us
determine the cost of these linear scans. Let c be the most frequent color found from steps 1
and 2. If c is an infrequent color, it cannot occur more than n1/3 times, so the total cost of
the linear scans is no more than O(n1/3). If it is a frequent color, its frequency cannot have
increased by more than O(n2/3), since its frequency was checked in step 1 and only O(n2/3)

elements exist in A[l ∶ L− 1] ∪A[R + 1 ∶ r]. Thus the total cost of the linear scans is no more
than O(n2/3). In either case, step 2 takes O(n2/3) time.

ESA 2018

25:8 Improved Time and Space Bounds for Dynamic Range Mode

For step 3, finding the largest nonzero index of BL,R takes O(n1/3) time. If this is larger
than the frequencies found in steps 1 or 2, we execute steps 3(a) - 3(c). We can only repeat
the steps at most O(n1/3) times. The condition BL,R′[f] < BL,R[f] will happen for one of
these iterations, since eventually R′ = L in which case there are no elements accounted for
in the interval. When BL,R′[f] < BL,R[f], this implies a color with frequency f in range
[L, R] appears somewhere in A[R′ + 1 ∶ R]. There are only O(n2/3) elements in A[R′ + 1 ∶ R].
Checking if color c occurs exactly f times in A[L ∶ R] can be done by asking question (3).

For the correctness of the value returned in step 4, note that the mode of A[l ∶ r] is either
an element in A[l ∶ L− 1] ∪A[R+ 1 ∶ r] or the mode of A[L ∶ R], by Lemma 5. The frequency
of all colors in A[l ∶ L − 1] ∪A[R + 1 ∶ r] is checked. Further, the frequency of infrequent and
frequent colors for interval A[L ∶ R] is also checked in steps 1 and 3, respectively. Therefore
the color and frequency returned in step 4 must be the mode of A[l ∶ r]. Putting it together,
we see Algorithm 1 is correct and takes O(n2/3) time. J

6 Update Operation

The update operation will require us to keep the base data structures up to date. Given
update A[i] ← c, there are two similar procedures that must occur: adjusting the data
structures for the removal of current color A[i] and adjusting the data structures for the
addition of color c at index i.

The following algorithm can be used for both procedures. We note that if either the
color removed is the last occurrence of its type or the color added is a new color, the list Dc

will have to also be constructed/ deleted and BL,R should be modified to only reflect colors
present in A. For simplicity we omit these details from Algorithm 2.

Algorithm 2 Update Base Data Structures for Addition/ Removal of Color c at Index i.

1. If color c is infrequent prior to this operation, count how many times c occurs in each
span via Dc, decrementing the corresponding index of each B array.

2. Adjust Dc by adding/ removing i. If this is an add operation, set E[i] to the memory
location of i in Dc.

3. If color c remains or becomes infrequent after step 2, again count how many times c

occurs in each span via Dc, incrementing the corresponding index of each B array.
4. If color c became infrequent in step 2, delete its entry in all nodes of F . If color c

became frequent after step 2, add its frequencies to F . If color c remained frequent after
step 2, increment the frequencies of all prefixes including index i in F .

I Theorem 7. Algorithm 2 updates the base data structures for addition/ removal of color c

at index i in O(n2/3) time.

Proof. If c is an infrequent color prior to the update, step 1 removes its contribution to
all B arrays. Counting the frequency of color c in each interval can be done via O(n1/3)

searches through Dc, each taking O(n1/3) time. We first start at the beginning, finding its
frequency for all right endpoints with left endpoint fixed, then move the left endpoint to the
next endpoint and repeat, etc. Step 1 in total takes O(n2/3) time.

Adding or removing i from Dc takes O(
√

n) time, as given in Lemma 1. Adjusting E[i]

can be done during this operation, so in total step 2 takes O(
√

n) time. The analysis of step
3 is identical to step 1. In step 4, adding, deleting, or modifying the entry of color c in all/

H. El-Zein, M. He, I. Munro, and B. Sandlund 25:9

some nodes of F takes O(n1/3 log n) time, since each node stores the list of frequent colors
and their frequency counts in a BST. If color c just became frequent, it only occurs O(n1/3)

times in A, and thus counting its frequency from the beginning to each endpoint can be done
in O(n1/3) time. In total, step 4 takes at most O(n1/3 log n) time.

After the completion of Algorithm 2, B arrays, dynamic array Dc, array E, and binary
search tree F has been updated to reflect the current state of array A. Since all steps execute
in no more than O(n2/3) time, Algorithm 2 is correct and runs in O(n2/3) time. J

7 Range Least Frequent Query, Allowing Zero

To answer range least frequent queries, we require the use of one more auxiliary data structure:
an array CL,R for all pairs of endpoints L, R, indexed from 1 to n1/3. At index CL,R[i] we
store a list of all colors that occur i times in A such that the smallest span enclosing all
occurrences is [L, R].

Since each infrequent color is represented exactly once in the CL,R lists and there are
O(n2/3 ⋅ n1/3) = O(n) total indices present, this data structure takes linear space. It can also
be initialized in linear time, and we can modify the update procedure of Algorithm 2 to
update CL,R at the same time as BL,R for no additional time cost.

It is additionally worth noting that since the Range Least Frequent Query will require
Õ(n2/3) time, the use of dynamic arrays for data structures Dc is not necessary for this
section. Instead, we can use binary search trees, augmented to support lookup by index
in O(log n) time, or Dietz’ data structure [6]. For the best time complexity, we will use
augmented binary search trees to count occurrences of colors in a specific range and an
augmented dynamic linear-space van Emde Boas tree to count occurrences of colors between
endpoints. The van Emde Boas tree stores a single node for any endpoint R that a color
appears in, which keeps the number of occurrences of that color from the beginning to
endpoint R. The van Emde Boas tree can be updated in O(n1/3 log log n) time upon insertion
or removal and via predecessor/ successor queries, can support counting the number of
occurrences of any color between any two endpoints in O(log log n) time.

Algorithm 3 Range Least Frequent Query in A[l ∶ r], Allowing Zero.

Let L and R be the first and last endpoints in [l, r], respectively.
1. Check the frequency of every frequent color in A[l ∶ r] via Dc. Let f be the lowest

frequency found so far.
2. Find the set of all infrequent colors that occur in A[l ∶ L − 1] ∪A[R + 1 ∶ r]; call it U .

Count the frequencies of all colors of U in range A[l ∶ r] and update f with the lowest
frequency found so far.

3. Compute B′

L,R, the array BL,R updated to erase the contribution of all colors in U .
4. If the smallest positive-valued index of B′

L,R is less than f , update f and check if any list
CL′,R′[f], [L′, R′] ⊆ [L, R], is non-empty. If so, return a color from the appropriate list.
Otherwise, binary search from R to the last endpoint of A in the following way:
a. Let R′ be a value in the middle of the search range. If B′

L,R′[f] < B′

L,R[f], let R′ be
the new upper bound; otherwise, continue the search in the half of the range after R′.

b. When the search range is two consecutive endpoints, we search the range for a color
that occurs f times in A[L ∶ R] and return its identity.

c. If the condition in a. is never satisfied, we must repeat a binary search on the other
side, with an initial search range of the beginning of A to L.

ESA 2018

25:10 Improved Time and Space Bounds for Dynamic Range Mode

I Theorem 8. Algorithm 3 finds the least frequent element of A[l ∶ r], allowing zero, in
O(n2/3 log n log log n) time.

Proof. We can find a list of frequent colors in any node of the F BST. Using an augmented
binary search tree for Dc, step 1 can then be done in O(n2/3 log n) time. In step 2, since
there are O(n2/3) elements in A[l ∶ L− 1] ∪A[R+ 1 ∶ r], we can find color set U and complete
step 2 similarly to step 1 in O(n2/3 log n) time. Step 3 requires counting the frequency of
each color of U in range A[L ∶ R] and decrementing the corresponding index to make B′

L,R;
thus it can also be done in O(n2/3 log log n) time using the augmented van Emde Boas tree.

In step 4 we are looking for a least frequent element of A[L ∶ R] that does not occur in
A[l ∶ L − 1] ∪A[R + 1 ∶ r]. All colors of A[l ∶ L − 1] ∪A[R + 1 ∶ r] are represented in set U ,
found in step 3. We effectively erase the contribution of colors of U via computing B′

L,R;
therefore, we can proceed as if colors of U do not exist in A. We will refer to A′ as array A

without any colors of U .
If the least frequent color in A′[L ∶ R] does not exist elsewhere in A, then its identity will

be stored in a list CL′,R′[f], [L′, R′] ⊆ [L, R]. Note colors of U need not be special-cased for
this lookup, since by appearing in A[l ∶ L − 1] ∪A[R + 1 ∶ r], they will not be present in any
of the searched lists. Otherwise, we know the least frequent color in A′[L ∶ R] must occur
somewhere else in A′.

Now, amongst all colors in A′, we know frequency f is minimal in range A′[L ∶ R].
Therefore if we increase the range to A′[L ∶ R′], the frequency of colors can only increase.
For this property to hold, we must allow f = 0.

In each iteration, the smallest positive-valued index of B′

L,R′ will be f or greater and
B′

L,R′[f] will be no more than B′

L,R[f]. If it is less, we know one of the colors that occurred
f times in A′[L ∶ R] now occurs more than f times in A′[L ∶ R′]. Therefore we may find it
in the half of the search range before R′. If it is the same, we know none of the colors that
occurred f times in A′[L ∶ R] appear in the half of the search range before R′. Either way
we decrease the search range by a factor of 2. When the range represents two consecutive
endpoints, we can search it for a color that occurs f times in A[l ∶ r] in O(n2/3 log n) time.

However, if R′ is the end of the array and B′

L,R′[f] = B′

L,R[f], then none of the colors
that appear f times in A′[L ∶ R] appear to the right of R in A′. In this case, we can repeat
the same binary search on the other side, decreasing a left endpoint L′ and checking the
same condition. Since the least frequent color in A′[L ∶ R] must occur elsewhere in A, as it
was not present in any of the lists CL′,R′[f], the search on this side must identify a color
that appears f times in A′[L ∶ R].

The time complexity of step 4 can be analyzed as follows. Checking the lists CL′,R′

takes O(n2/3) time, since there can be O(n2/3) endpoints [L′, R′] ⊆ [L, R]. The binary
search is on endpoints, of which there are O(n1/3). Thus, there are O(log(n1/3)) = O(log n)

iterations of the binary search, and in each iteration we must compute B′

L,R′ or B′

L′,R. This
computation takes O(n2/3 log log n) time as in step 3. Therefore the binary search process
takes O(n2/3 log n log log n) time. In total, step 4 takes O(n2/3 log n log log n) time.

For correctness, the least frequent element in A[l ∶ r] is either a frequent or infrequent
color. If it is a frequent color, it is identified in step 1. If it is an infrequent color, we have
two cases. Either the color occurs in A[l ∶ L − 1] ∪A[R + 1 ∶ r], and thus set U , or it does
not occur in set U . Step 2 accounts for all infrequent colors in set U . Steps 3 and 4 account
for the last case. By the above, these steps find an infrequent color in A[L ∶ R] that does
not occur in A[l ∶ L − 1] ∪A[R + 1 ∶ r] in O(n2/3 log n log log n) time. Thus, Algorithm 3 is
correct and finds the least frequent element of A[l ∶ r], allowing zero, in O(n2/3 log n log log n)

time. J

H. El-Zein, M. He, I. Munro, and B. Sandlund 25:11

8 Range k-Frequency Query

The previous two sections make use of a monotonicity property to find a color of given
frequency in a range: for range mode, we know the frequency of the most frequent element
can only decrease if the query range is decreased; furthermore, for range least frequent, we
know the frequency of the least frequent element can only increase if the query range is
increased. For this monotonicity condition to hold for least frequent elements, we must allow
answering with an element of frequency zero. To force our answer to be an element that
occurs in the query range, we must use an additional data structure that allows retrieval of
colors by frequency in the BL,R arrays. To achieve Õ(n) space, we cannot afford to store
a list of colors at each index BL,R[i], and storing a single color at each index will run into
issues during updates. Instead, we will use the following data structure which is similar to
randomized data structures in the dynamic streaming literature [8]:

I Lemma 9. There is a Monte Carlo data structure that occupies expected O(log2 n) space
and supports:

1. Insert(x): Insert element x into the collection, in O(log n) expected time.

2. Delete(x): Delete element x from the collection, in O(log n) expected time.

3. Retrieve(): Return an element in the collection, in O(1) expected time.

The data structure requires the Delete(x) operation is executed independently of the results
of Retrieve().

The low-space data structure will be described in the full version of this paper. With it, we
can answer the general problem of finding an element of given frequency in a query range.
The additional auxilliary data structures needed will be as follows:

1. An array GL,R parallel to BL,R. At index GL,R[i], we store the number of infrequent
colors with frequency i in A[L ∶ R], excluding colors that appear in segments immediately
left of L or right of R.

2. An array HL,R, parallel to GL,R, so that at index HL,R[i], we store a collection of colors
counted in GL,R[i] in the data structure of Lemma 9.

The array GL,R is similar to the item (ii) stored in table D of [4]. During preprocessing, G

arrays can be built similarly to B; however, when we fix left endpoint, we check all colors that
occur in the segment to the left. We avoid counting such colors. Similarly, before we finalize
the count for GL,R, we move the right endpoint out as if to count the next range, keeping
track of colors encountered. We subtract the frequency of such colors in GL,R. Whenever we
add to/ subtract from GL,R, we can insert or delete the color from HL,R.

As explained above, our space cost now becomes Õ(n). Furthermore, our updates to G

and H can be done alongside the update to B; however, since each insertion takes O(log n)

time, the update procedure now takes O(n2/3 log n) time. With this we have:

ESA 2018

25:12 Improved Time and Space Bounds for Dynamic Range Mode

Algorithm 4 Range k-Frequency Query in A[l ∶ r].

Let L and R be the first and last endpoints in [l, r], respectively.
1. For color c at index i in the segment left of L, check via Dc to see if i is the first index of

color c to appear in range [l, r], or, if outside [l, r], the next occurrence of color c lies in
range [l, r]. If so, ask question (3) for the occurrence of color c in [l, r] with frequency k

and right endpoint r. If answered in the affirmative, return color c. Do the same,
symmetrically, for colors in the segment right of R.

2. For each frequent color not addressed in step 1, check its frequency in A[L ∶ R] via BSTs
F [R] and F [L]. If any occur with frequency k, return the color.

3. If no color is found from step 1, check if GL,R[k] > 0. If so, return HL,R[k].Retrieve().
If not, return that no color has frequency k in range A[l ∶ r].

I Theorem 10. Algorithm 4 returns an element of frequency k in A[l ∶ r] or indicates no
such element exists, assuming update operations have been executed independently of results
of query operations, in O(n2/3) time.

Proof. In step 1, we look at two full segments of O(n2/3) total elements. For color c at
index i, if i ∈ [l, r], we must determine if index i is the first occurrence of color c in [l, r].
Let m = Dc.rank(E[i]). Index i is the first occurrence of color c in [l, r] if Dc[m − 1] is
outside [l, r]. Similarly, if i ∉ [l, r], we can again define m = Dc.rank(E[i]), then check if
Dc[m + 1] is in [l, r]. In any case, for any color that occurs in segments immediately left
of L or right of R, one of the indices will be the first outside [l, r] or the first within [l, r].
Thus the frequency of the color will be checked in A[l ∶ r]. Since we do a constant number of
constant time operations for O(n2/3) elements, step 1 takes O(n2/3) time.

As in Algorithm 1, step 2 takes O(n2/3) time. Step 3 takes O(1) time. In any case,
in step 1 we check all elements in segments immediately left of L or right of R to see if
they occur k times in A[l ∶ r]. Furthermore, in steps 2 and 3, we check every frequent and
infrequent color that occurs in A[L ∶ R] but not in segments immediately left of L or right of
R, via array G. Thus we have checked every color if it occurs k times in A[l ∶ r]. Since no
step takes more than O(n2/3) time, this proves Theorem 10. J

Algorithm 4 can be easily modified to return the least frequent element present in the
query range with the same time complexity and independence assumption. It can also be
modified to count the number of elements above, below, or at a given frequency, as well as
only determine the frequency of the least frequent element. Since these queries do not ask
for a color, arrays HL,R are not needed. This reduces the space cost to O(n), update cost to
O(n2/3), and requires no independence assumption.

References
1 Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate range mode

and range median queries. In Annual Symposium on Theoretical Aspects of Computer
Science, 2005.

2 Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter Sanders. To-
wards optimal range medians. Theoretical Computer Science, 412(24):2588–2601, 2011.

3 Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T.
Wilkinson. Linear-space data structures for range mode query in arrays. Theory of Com-
puting Systems, 55:719–741, 2014.

H. El-Zein, M. He, I. Munro, and B. Sandlund 25:13

4 Timothy M. Chan, Stephane Durocher, Matthew Skala, and Bryan T. Wilkinson. Linear-
space data structures for range minority query in arrays. Algorithmica, 72:901–913, 2015.

5 Timothy M Chan and Konstantinos Tsakalidis. Dynamic orthogonal range searching on
the ram, revisited. In LIPIcs-Leibniz International Proceedings in Informatics, volume 77.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

6 Paul F. Dietz. Optimal algorithms for list indexing and subset rank. In Workshop on Data
Structures and Algorithms, pages 39–46, 1989.

7 Amr Elmasry, Meng He, J Ian Munro, and Patrick K Nicholson. Dynamic range majority
data structures. In International Symposium on Algorithms and Computation, pages 150–
159. Springer, 2011.

8 Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams and
applications. International Journal of Computational Geometry & Applications, 18(1/2):3–
28, 2008.

9 Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and related techniques
for geometry problems. In Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 135–143, 1984.

10 Travis Gagie, Meng He, and Gonzalo Navarro. Compressed dynamic range majority data
structures. In Data Compression Conference (DCC), 2017, pages 260–269. IEEE, 2017.

11 Michael T. Goodrich and John G. Koss II. Tiered vectors: Efficient dynamic arrays for
rank-based sequences. In Workshop on Data Structures and Algorithms, 1999.

12 Mark Greve, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen, and Jakob Truelsen. Cell
probe lower bounds and approximations for range mode. In International Colloquium on
Automata, Languages, and Programming, 2010.

13 Meng He, J. Ian Munro, and Patrick K. Nicholson. Dynamic range selection in linear space.
In International Symposium on Algorithms and Computation, 2011.

14 Danny Krizanc, Pat Morin, and Michiel Smid. Range mode and range median queries
on lists and trees. In International Symposium on Algorithms and Computation., pages
517–526, 2003.

15 Mihai Pătraşcu and Emanuele Viola. Cell-probe lower bounds for succinct partial sums.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pages 117–122. Society for Industrial and Applied Mathematics, 2010.

16 Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proceedings
of the forty-second annual ACM symposium on Theory of computing, pages 603–610, 2010.

17 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the fourty-fourth annual symposium on theory of computing, 2012.

ESA 2018

Online Makespan Scheduling with Job Migration
on Uniform Machines
Matthias Englert
DIMAP and Department of Computer Science, University of Warwick, Coventry, UK
m.englert@warwick.ac.uk

David Mezlaf
Department of Computer Science, TU Dortmund, Dortmund, Germany
david.mezlaf@tu-dortmund.de

Matthias Westermann
Department of Computer Science, TU Dortmund, Dortmund, Germany
matthias.westermann@cs.tu-dortmund.de

Abstract
In the classic minimum makespan scheduling problem, we are given an input sequence of n jobs
with sizes. A scheduling algorithm has to assign the jobs to m parallel machines. The objective
is to minimize the makespan, which is the time it takes until all jobs are processed. In this
paper, we consider online scheduling algorithms without preemption. However, we allow the
online algorithm to reassign up to k jobs to different machines in the final assignment.

For m identical machines, Albers and Hellwig (Algorithmica, 2017) give tight bounds on the
competitive ratio in this model. The precise ratio depends on, and increases with, m. It lies
between 4/3 and ≈ 1.4659. They show that k = O(m) is sufficient to achieve this bound and no
k = o(n) can result in a better bound.

We studym uniform machines, i.e., machines with different speeds, and show that this setting
is strictly harder. For sufficiently large m, there is a δ = Θ(1) such that, for m machines with
only two different machine speeds, no online algorithm can achieve a competitive ratio of less
than 1.4659 + δ with k = o(n).

We present a new algorithm for the uniform machine setting. Depending on the speeds of
the machines, our scheduling algorithm achieves a competitive ratio that lies between 4/3 and
≈ 1.7992 with k = O(m). We also show that k = Ω(m) is necessary to achieve a competitive
ratio below 2.

Our algorithm is based on a subtle imbalance with respect to the completion times of the
machines, complemented by a bicriteria approximation algorithm that minimizes the makespan
and maximizes the average completion time for certain sets of machines.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases online algorithms, competitive analysis, minimum makespan scheduling,
job migration

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.26

1 Introduction

In the classic minimum makespan scheduling problem, we are given an input sequence of n
jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel machines. The
objective is to minimize the makespan, which is the time it takes until all jobs are processed.
This problem is NP-hard in the strong sense [20]. In this paper, we consider online scheduling
without preemption. An online algorithm does not have knowledge about the input sequence

© Matthias Englert, David Mezlaf, and Matthias Westermann;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.englert@warwick.ac.uk
mailto:david.mezlaf@tu-dortmund.de
mailto:matthias.westermann@cs.tu-dortmund.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Online Makespan Scheduling with Job Migration on Uniform Machines

in advance. Instead, it gets to know the input sequence job by job without knowledge about
the future. An online algorithm is called c-competitive if the makespan of the algorithm is at
most c times the makespan of an optimal offline solution.

Extensive work has been done to narrow the gap between lower and upper bounds on
the competitive ratio for online minimum makespan scheduling. Increasingly sophisticated
algorithms and complex analyses were developed. Nevertheless, even for the most basic
case of identical machines, in which each job has the same processing time, i.e., its size, on
every machine, there is still a gap between the best known lower and upper bounds on the
competitive ratio of 1.880 [30] and 1.9201 [18], respectively. In the setting with uniform
machines, in which different machines may run at different speeds, the best known lower and
upper bounds on the competitive ratio are 2.564 [13] and 5.828 [6], respectively.

In this work, we study to what extent the ability to migrate a limited number of jobs can
help an online algorithm in terms of the competitive ratio in the uniform machine setting.
In this model, the online algorithm has to assign jobs to machines as they arrive. However,
after all jobs have arrived, the algorithm may remove up to k jobs from the machines and
reassign them to different machines.

Job migration in scheduling has been studied previously, see for example [8, 12, 27, 32, 33,
34], but in particular, Albers and Hellwig [2] studied this problem for m identical machines1
and gave tight bounds on the competitive ratio for this case. Roughly speaking, k = Θ(m)
job migrations are sufficient and necessary to achieve this tight bound. Allowing more job
migrations does not result in further improvements as long as k = o(n), where n denotes the
total number of arriving jobs.

We provide related results for the more general setting of uniform machines, which
introduces new technical challenges. Our contribution also implies new results on a different
but related problem: online reordering for scheduling. In this model, a so-called reordering
buffer can be used to reorder the input sequence of jobs in a restricted fashion. Arriving
jobs are first stored in the reordering buffer which has capacity to store up to k jobs. When
the buffer is full, the online scheduling algorithm has to decide which of the jobs to remove
from the buffer and to assign (irrevocably) to a machine. When no more jobs arrive, all jobs
remaining in the buffer have to be assigned to machines as well.

This model was introduced by Englert, Özmen, and Westermann [14] and the work by
Albers and Hellwig [2] generalizes their results for identical machines to the setting were no
buffer is used, but a limited number of job migrations are permitted. It is not known what the
relationship between the two models is in general. However, Albers and Hellwig note that any
online algorithm for the job migration model that satisfies a certain monotonicity property
can be transformed into an online algorithm for the corresponding reordering buffer problem
which has the same competitive ratio. If the algorithm migrates k jobs, the transformed
algorithm requires a buffer of size k. The aforementioned monotonicity property is as follows:
if the algorithm would not migrate a job at time t if we pretend that the input sequence
ends at that time, then the algorithm does not migrate the job at any later time either.

Both the algorithm by Albers and Hellwig and the algorithm we present in this work
satisfy the monotonicity property. Therefore, our results also directly imply an improved
upper bound for the online minimum makespan scheduling problem with a reordering buffer
on uniform machines.

1 Technically, they allow job migration to be performed before all jobs have arrived as long as the total
number of migration is still bounded by k. However, performing all migrations at the end cannot
increase the competitive ratio.

M. Englert, D. Mezlaf, and M. Westermann 26:3

1.1 The model and our contribution
We present a lower bound on the competitive ratio showing that the problem is strictly
harder for uniform machines than for identical machines. We give the first online algorithm
for uniform machines with job migration. Depending on the speeds of the m machines, our
scheduling algorithm achieves a competitive ratio that lies between 4/3 and ≈ 1.7992 and
performs O(m) job migrations. In addition, we show that Ω(m) job migrations are necessary
to achieve a competitive ratio of less than 2.

For the corresponding problem of online minimum makespan scheduling with a reordering
buffer, Englert, Özmen, and Westermann [14] present a greedy algorithm that achieves a
competitive ratio of 2 (or 2 + ε if the algorithm is supposed to be efficient) with a reordering
buffer of size m. Subsequently, Ding et al. [9] improved the competitive ratio to 2 − 1/m
with a buffer of size m+ 1.2 Therefore, we also obtain a significant improvement over these
previously known results for the reordering buffer version of the problem, since our upper
bound translates to this model as well.

Before we explain our contribution in more detail, we define the model more formally
and introduce some useful notation and definitions. The m ≥ 2 machines are denoted by
M0, . . . ,Mm−1. For each 0 ≤ i ≤ m − 1, the speed of machine Mi is denoted by si, with
min{s0, . . . , sm−1} = 1. The sum of speeds is denoted by S =

∑m−1
i=0 si. The size of a job J

is denoted by p(J). The load L(Mi) of a machine Mi is defined as the sum of the sizes of the
jobs assigned to machine Mi. The completion time of a machine Mi is defined as the load
L(Mi) of machine Mi divided by the speed si of machine Mi. The objective is to minimize
the makespan, i.e., the maximum completion time.

As in previous works of Englert, Özmen, and Westermann [14] and Albers and Hellwig
[2], our algorithm attempts to maintain a specific (and not balanced) load distribution on
the machines. The desired load on a machine Mi is defined by the so-called weight wi of the
machine. The weight is defined as

wi =

si ·
rs0,...,sm−1

S , if 0 ≤
∑i−1

j=0 sj ≤
rs0,...,sm−1−1

rs0,...,sm−1
· S

si ·
rs0,...,sm−1−1∑i−1

j=0
sj

, if rs0,...,sm−1−1
rs0,...,sm−1

· S <
∑i−1

j=0 sj < S
.

Now, rs0,...,sm−1 is the smallest positive solution to
∑m−1

i=0 wi = 1, i.e., we ensure that the
weights of all machines sum up to 1. Such a solution always exists. (Due to space limitations,
the proof of this claim is omitted.) Note that, if s0 = · · · = sm−1 = 1, the weights match
those in [2, 14] and that rs0,...,sm−1 =: rm is equal to the competitive ratio achieved in [2, 14]
for m identical machines.

Unfortunately, we do not know a closed-form formula for rs0,...,sm−1 , but the value can be
calculated for any given s0, . . . , sm−1 and 1 < rs0,...,sm−1 ≤W−1(−1/e2)/(1+W−1(−1/e2)) ≈
1.4659.3 (Due to space limitations, the proof of this claim is omitted.) Note that, for the
optimal competitive ratio rm for m identical machines, 4/3 ≤ rm ≤ W−1(−1/e2)/(1 +
W−1(−1/e2)). Depending on the speeds of the machines, rs0,...,sm−1 can be significantly
smaller than rm.

2 Note that in this and several of the following papers, the model differs from the model in [14] in that
arriving jobs can bypass the buffer and may directly be assigned to a machine. This is equivalent to
increasing the buffer size in the model from [14] by 1. We express buffer sizes in terms of the model
from [14] here.

3 W−1 is the lower branch of the Lambert W function, i.e., W−1(−1/e2) is the smallest real solution to
x · ex = −1/e2.

ESA 2018

26:4 Online Makespan Scheduling with Job Migration on Uniform Machines

Our results are as follows.
We prove that a δ = Θ(1) exists such that, for m uniform machines with only two different
machine speeds, m sufficiently large, no online algorithm can achieve a competitive
ratio less than W−1(−1/e2)/(1 + W−1(−1/e2)) + δ ≈ 1.4659 + δ while migrating o(n)
jobs. Recall that, for the optimal competitive ratio rm for m identical machines, rm ≤
W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659. Hence, the more general problem of uniform
machines is strictly harder than the special case of identical machines.
The lower bound construction differs from the previous ones for identical machines in
[2, 14]. The previous constructions used a very large number, say about 1/ε, of very
small jobs, say of size ε, which the online algorithm has to schedule on the machines.
The adversary then identifies a machine with load of at least wi, i.e., a machine with a
load that is not below the “target load” and, roughly speaking, produces just enough
large jobs so that one of them has to be assigned to a machine with load wi. Migrating
small jobs is ineffective and the large jobs cannot all avoid a machine with load wi.
This technique alone however is no longer sufficient to obtain a lower bound that is strictly
larger than the known one. Using a larger number of possible continuations of the initial
input, we can show that to handle these additional continuations, the online algorithm
would have to have a significant number of machines with load strictly less than, and
bounded away from, wi. But then another machine must have load strictly above wi

(rather than just equal to wi).
We remark that the same lower bound can be constructed for the reordering buffer model
with uniform machines.
We show that, for m uniform machines, Ω(m) migrations are necessary to achieve a
competitive ratio of less than 2. Specifically, for c = d− ln(2− r)/ ln re ≥ 2 and m ≥ c2,
no online algorithm can achieve a competitive ratio less than r ∈ (1, 2) while migrating at
most bm/c2c − 1 jobs. For example, r ≈ 1.8393 > W−1(−1/e2)/(1 + W−1(−1/e2)) + 1/3
if at most bm/9c − 1 job migrations are allowed.
Again, we remark that the same lower bound can be constructed for the reordering buffer
model with uniform machines.
For m uniform machines with speeds 1 = s0 ≤ · · · ≤ sm−1, our online algorithm
achieves a competitive ratio of rs0,...,sm−1 + 1/3 with O(m) job migrations. If an efficient
algorithm is desired, there is an additional additive loss of ε in the competitive ratio
due to the use of a PTAS by Hochbaum and Shmoys [24] in a subroutine. Note that
1 < rs0,...,sm−1 ≤W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659, i.e., the competitive ratio is
at most an additive 1/3 larger than in the identical machines case. However, depending
on the speeds of the machines, rs0,...,sm−1 can also be significantly smaller than rm in
which case the difference between the competitive ratios can also be smaller than 1/3.
The basic structure of our algorithm is similar to the algorithm for the special case of
identical machines [2]: Jobs are classified into small and large jobs according to their
relative size compared to the total load on all machines. Ignoring the contribution of
large jobs, the small jobs are scheduled in such a way that an imbalance with respect to
the completion times of the machines is maintained. Roughly speaking, faster machines
are kept at lower completion times than slower ones.
After all jobs have arrived, some jobs are migrated. The rough intuition is that the
largest jobs should be reassigned to improve the solution. For this, we first remove some
jobs from machines. Then, we schedule the largest ones optimally on m empty virtual
machines M ′0, . . . ,M ′m−1 with L(M ′0) ≤ · · · ≤ L(M ′m−1). As a consequence, for each
0 ≤ i ≤ m− 1, the completion time of machine M ′i is less than or equal to the average

M. Englert, D. Mezlaf, and M. Westermann 26:5

completion time of the machines M ′i , . . . ,M ′m−1, which is a crucial property for achieving
the optimal competitive ratio for identical machines. In the more general case of uniform
machines, this is not always the case. For example, if M ′0 has speed 1 and M ′1, . . . ,M ′m−1
have speed 3/2, then m jobs of size 1 are optimally scheduled with makespan 1, but the
completion time of M ′0 is 1, which is strictly greater than the average completion time of
the machines M ′0, . . . ,M ′m−1.
To address this, our algorithm contains a crucial additional balancing step in which the
average completion time for certain sets of virtual machines is increased at the cost of a
small increase in the maximum completion time (which is responsible for the additive
loss of 1/3).
Finally, the smaller jobs that were removed from their machines, are reassigned greedily
one by one. The analysis of this step is also more involved than the corresponding one
for identical machines because a more straightforward naive argument would introduce a
factor of sm−1/s0 into the number of job migrations.
Obviously, once we determine which jobs to migrate, we could just assign those jobs
optimally to the existing machines. However, it is not clear how to analyze such a
procedure directly. We state a specific algorithm for the reassignment step because it
provides us with important properties that enable us to analyze the competitive ratio.

1.2 Related work

Minimum makespan scheduling has been extensively studied. See the survey by Pruhs,
Sgall, and Torng [29] for an overview. For m identical machines, the currently best upper
and lower bounds are 1.9201 [18] and 1.880 [30], respectively. These bounds were the
last ones in a long series of successive improvements for general or specific values of m
[1, 4, 5, 7, 17, 21, 22, 25, 31].

For uniform machines, Aspnes et al. [3] present the first algorithm that achieves a constant
competitive ratio. Due to Berman, Charikar and Karpinski [6], the best known upper bound
on the competitive ratio is 5.828, and, due to Ebenlendr and Sgall [13], the best known lower
bound on the competitive ratio is 2.564.

In a semi-online variant of the problem the jobs arrive in decreasing order of their size.
The greedy LPT algorithm, which assigns each job to a machine with minimum load, was
considered in this setting. For m identical machines, Graham [23] shows that the LPT
algorithm achieves a competitive ratio of 4/3 − 1/(3m). For uniform machines, the LPT
algorithm achieves a competitive ratio of 1.66 and a lower bound of 1.52 on its competitive
ratio is known [19]. A detailed and tight analysis for two uniform machines is given by
Mireault, Orlin, and Vohra [28] and Epstein and Favrholdt [15].

For m identical machines, Albers and Hellwig [2] present an algorithm that is rm-
competitive, which is optimal as long as at most o(n) jobs can be migrated. For m ≥ 11, the
algorithm migrates at most 7m jobs. For smaller m, 8m to 10m jobs may be migrated. They
further give some results on the trade-off between the number of job migrations and the
competitive ratio. For example, 2.5 ·m job migrations are sufficient to achieve a competitive
ratio of 1.75.

Tan and Yu [33] study two identical machines. They give a tight bound of 4/3 on the
competitive ratio and this bound is achievable by migrating a single job. They also explore
two other models. One in which, at the end, for each machine, the last job that was assigned
to the machine may be migrated. And another in which, at the end, the k jobs that arrived
last in the input may be migrated.

ESA 2018

26:6 Online Makespan Scheduling with Job Migration on Uniform Machines

Chen et al. [8] give an optimal algorithm for two uniform machines. Using independent
techniques and algorithms, Wang et al. [34] show bounds which are similar, but not quite
optimal for all machine speeds. Both improve upon work by Liu et al. [27].

Dósa et al. [12] consider a variant in which up to k jobs can be migrated after every job
arrival, which is a relaxation of online scheduling with a reordering buffer of size k. Sanders,
Sivadasan, and Skutella [32] introduce another model in which, after every job arrival, a
number of jobs can be reassigned as long as the total size of the reassigned jobs is bounded
as some linear function of the size of the arriving job.

Numerous variants related to online minimum makespan scheduling with reordering buffers
have been studied. Kellerer et al. [26] present, for two identical machines, an algorithm
that achieves an optimal competitive ratio of 4/3 with a reordering buffer of size 2, i.e., the
smallest buffer size allowing reordering.

For m identical machines, Englert, Özmen, and Westermann [14] present a tight and, in
comparison to the problem without reordering, improved bound on the competitive ratio for
minimum makespan scheduling with reordering buffers. Depending on m, their scheduling
algorithm achieves the optimal competitive ratio rm with a buffer of size Θ(m). Further,
they show that larger buffer sizes do not result in an additional advantage and that a buffer
of size Ω(m) is necessary to achieve this competitive ratio.

Ding et al. [9] give, for m identical machines, a 1.5-competitive algorithm with a buffer
of size 1.5m+ 1 and, for three identical machines, a (15/11)-competitive algorithm with a
buffer of size 7.

Dósa and Epstein [10] study minimum makespan scheduling on two uniform machines
with speed ratio s ≥ 1. They show that, for any s > 1, a buffer of size 3 is sufficient to
achieve an optimal competitive ratio and, in the case s ≥ 2, a buffer of size 2 already allows
to achieve an optimal ratio.

Dósa and Epstein [11] further study preemptive scheduling, as opposed to non-preemptive
scheduling, on m identical machines with a reordering buffer. They present a tight bound on
the competitive ratio for any m. This bound is 4/3 for even values of m and slightly lower
for odd values of m. They show that a buffer of size Θ(m) is sufficient to achieve this bound,
but a buffer of size o(m) does not reduce the best overall competitive ratio of e/(e− 1) that
is known for the case without reordering.

Epstein, Levin, and van Stee [16] study the objective to maximize the minimum completion
time. For m identical machines, they present an upper bound on the competitive ratio of
Hm−1 + 1 for a buffer of size m and a lower bound of Hm for any fixed buffer size. For m
uniform machines, they show that a buffer of size m+ 2 is sufficient to achieve the optimal
competitive ratio m.

2 Lower bounds

Due to space limitations, the proofs of the following two theorems are omitted.

I Theorem 1. A δ = Θ(1) exists such that, for m uniform machines with only two machine
speeds, m sufficiently large, no online algorithm can achieve a competitive ratio of less than
W−1(−1/e2)/(1 + W−1(−1/e2)) + δ ≈ 1.4659 + δ while migrating o(n) jobs, where n denotes
the total number of arriving jobs.

I Theorem 2. For c = d− ln(2 − r)/ ln re ≥ 2 and m ≥ c2 uniform machines, no online
algorithm can achieve a competitive ratio of less than r ∈ (1, 2) while migrating at most
bm/c2c − 1 jobs.

M. Englert, D. Mezlaf, and M. Westermann 26:7

3 Scheduling algorithm

For m uniform machines with speeds 1 = s0 ≤ · · · ≤ sm−1, our algorithm consists of two
phases: In the scheduling phase, arriving jobs are assigned to (or scheduled on) machines
online. In the migration phase, which starts after all jobs have arrived, some jobs are removed
from their machines and reassigned to other machines.

More specifically, the scheduling phase consists of steps 1, . . . , n, where n denotes the
total number of arriving jobs. In step t, the t-th job arrives and is assigned to a machine.
For t > 1, let Tt denote the total size of the t− 1 jobs that have arrived up to and including
step t− 1. In addition, define T1 = 0. A job J is called small in step t, if p(J) ≤ Tt/(b ·m),
where b is a constant that will be defined later. Otherwise, J is called large in step t. Note
that during the scheduling phase, a job that is large in step t can become small in step t+ 1.

Further, let T s
t denote the total size of the jobs that have arrived up to and including

step t− 1 and that are small in step t. Finally, let Lt(Mi) denote the total size of the jobs
that are scheduled on machine Mi at the end of step t − 1, i.e., after the (t − 1)-th job is
assigned to a machine, and let Ls

t (Mi) denote the total size of the jobs that are scheduled
on machine Mi at the end of step t− 1 and that are small in step t. For simplicity, define
r = rs0,...,sm−1 .

We use two different algorithms. The first algorithm, which is used when sm−1 > 3/4 · S,
schedules every job on machine Mm−1 and does not migrate any jobs. The second algorithm,
which is used when sm−1 ≤ 3/4 · S, is more interesting and works as follows.

Scheduling phase: The t-th arriving job J is scheduled in step t as follows.
If J is small in step t, J is assigned to a machine Mi with Ls

t (Mi) ≤ wi · T s
t . (Since∑m−1

j=0 wi = 1 and
∑m−1

i=0 Ls
t (Mi) = T s

t , such a machine always exists.)
If J is large in step t, J is assigned to a machine Mi that has minimum completion
time Lt(Mi)/si among all machines.

Migration phase: Throughout the migration phase, we remove jobs from machines and
reassign them. At any point during this process, let L(Mi) denote the load of machine Mi

at that point, i.e., the L(Mi) values are dynamically changing throughout the migration
phase.
At the start of the migration phase, after all n jobs have arrived, we have, for each
0 ≤ i ≤ m− 1, L(Mi) = Ln+1(Mi). Then do the following. For each machine Mi, as long
as L(Mi) > wi · T s

n+1 and L(Mi) > (r − 1) · Tn+1 · si/S, remove the job of largest size
from Mi.
The removed jobs can now be reassigned optimally to the machines, i.e., in such a way
that the resulting makespan is minimized. However, as stated before, it is difficult to
analyze the resulting makespan directly. In the following, we therefore present a more
specific procedure for this reassignment step which provides us with certain properties
that enable us to analyze the competitive ratio. The resulting bound is of course also an
upper bound on the competitive ratio achieved through an optimal reassignment.

(1) Those removed jobs that are large at time n + 1 are scheduled on m empty virtual
machines M ′0, . . . ,M ′m−1 with speeds 1 = s0 ≤ · · · ≤ sm−1:

(1a) The jobs are scheduled on the virtual machines optimally, i.e., to minimize the
makepsan of the virtual machines.4 Call the resulting makespan on the virtual
machines OPT′. We assume that the resulting loads of the virtual machines

4 If computational efficiency is a concern, the PTAS by Hochbaum and Shmoys [24] may be used instead,
resulting in an additive loss of ε in the competitive ratio.

ESA 2018

26:8 Online Makespan Scheduling with Job Migration on Uniform Machines

are sorted, i.e., L(M ′0) ≤ · · · ≤ L(M ′m−1), and that, for each 1 ≤ i ≤ m − 1,
L(M ′i)/si > OPT′/2 if L(M ′i−1) > 0. (See the following Observation 3 items (1)
and (2).)

(1b) Each machine M ′i , with

i ∈ C =

0 ≤ i ≤ m− 1 :
m−1∑
j=0

L(M ′j) ≤
(
L(M ′i)
si

− OPT′

3

)
·

m−1∑
j=i

sj

 ,

is called critical. If C 6= ∅, all jobs from the machines M ′0, . . . ,M ′c, with c =
max(C) < m− 1, are reassigned to the machines M ′c+1, . . . ,M

′
m−1.

For i = 0, . . . , c do the following:
Find the largest ` ≥ c+ 1 such that (L(M ′i) + L(M ′`))/s` ≤ 4/3 ·OPT′. (Due to
the following Observation 3 item (3), such a machine always exists.)
Reassign all jobs from M ′i to M ′`, i.e., L(M ′`) is increased by L(M ′i) and L(M ′i)
is set to 0.
Resort the loads of the machines such that L(M ′0) ≤ · · · ≤ L(M ′m−1) again. (See
the following Observation 3 item (1).)

Finally, for each 0 ≤ i ≤ m− 1, assign the jobs from M ′i to the real machine Mi.
(2) Those removed jobs that are small at time n+ 1 are scheduled according to the greedy

algorithm that assigns a job to a machine finishing it first.

Due to space limitations, the proof of the following observation is omitted.

I Observation 3. For the migration phase, the following observations can be made.
(1) Sorting according to the load does not increase the makespan.
(2) We can assume that, for each 1 ≤ i ≤ m− 1, L(M ′i)/si > OPT′/2 if L(M ′i−1) > 0.
(3) If C 6= ∅, {c+ 1 ≤ j ≤ m− 1 : (L(M ′i) + L(M ′j))/sj ≤ 4/3 ·OPT′} 6= ∅.
(4) For each 0 ≤ i ≤ m− 1, L(M ′i)/si ≤ 4/3 ·OPT′.

3.1 Analysis of the algorithm
The analysis of the algorithm consists of two parts. The first part provides a bound on the
number of migrated jobs. The second part provides a bound on the competitive ratio of the
algorithm. These two parts together give the following theorem.

I Theorem 4. For m uniform machines with speeds 1 = s0 ≤ · · · ≤ sm−1, our online
algorithm achieves a competitive ratio of rs0,...,sm−1 + 1/3 with O(m) job migrations.

3.1.1 Bounding the number of migrated jobs
The following lemma gives an upper bound on the number of jobs removed from a single
machine.

I Lemma 5. For each 0 ≤ i ≤ m−1, in the migration phase, at most r/(r−1) ·b ·m ·si/S+1
jobs are removed from machine Mi.

Proof. If the final load ofMi at the end of the scheduling phase satisfies Ln+1(Mi) ≤ wi ·T s
n+1

or Ln+1(Mi) ≤ (r − 1) · Tn+1 · si/S, no job is removed from Mi. Otherwise, let t be the last
time at which Ls

t (Mi) ≤ wi · T s
n+1 or Lt(Mi) ≤ (r − 1) · Tn+1 · si/S. Such a time t exists

because the condition is met for t = 1.
It is sufficient to remove the following jobs from Mi to guarantee L(Mi) ≤ wi · T s

n+1 or
L(Mi) ≤ (r − 1) · Tn+1 · si/S.

M. Englert, D. Mezlaf, and M. Westermann 26:9

(a) All jobs that are large at time t and are scheduled on Mi before the arrival of the t-th
job and

(b) all jobs assigned to Mi in step t or after.

At any time t′ (before the arrival of the t′-th job), there are at most b ·m · si/S jobs that
are large at time t′ scheduled on Mi. Suppose this is not true and let t′ be the first time
at which this is not true. Then there were b ·m · si/S jobs of size greater than Tt′/(b ·m)
scheduled on Mi at time t′ − 1 and in step t′ − 1 one more such job J is assigned to Mi.
However, before the assignment of J , the load of Mi is Lt′−1(Mi) > Tt′ · si/S ≥ Tt′−1 · si/S.
Then Mi cannot be a machine with minimum completion time among all machines in step t′
and therefore a large job J would not be assigned to it. We conclude that, due to (a), at
most b ·m · si/S jobs are removed.

To bound the number of jobs removed due to (b), we observe that in steps t+ 1, . . . , n our
algorithm only allocates jobs to Mi that are large at the time of allocation. This is due to the
fact that by definition of t, for each t′ ≥ t+1, Ls

t′(Mi) > wi ·T s
t′ . Therefore, whenever a job J is

assigned toMi in a step t′ ≥ t+1, it is a large job, which is assigned to a machine of minimum
completion time. But then, for each 0 ≤ j ≤ m−1, Lt′(Mj) > (r−1) ·Tn+1 ·sj/S, because we
also have Lt′(Mi) > (r− 1) · Tn+1 · si/S. Hence Tt′ =

∑m−1
j=0 Lt′(Mj) > (r− 1) · Tn+1. Since

job J is large at the time of assignment, its size has to be greater than (r − 1) · Tn+1/(b ·m).
After assigning b ·m · si/(S · (r − 1)) such jobs to Mi in steps after t, the load of Mi exceeds
Tn+1 · si/S. After that, no further such jobs are assigned to Mi, because a machine with
load greater than Tn+1 · si/S can never be a machine that has the smallest completion time
among all machines. We conclude that, due to (b), at most b ·m · si/(S · (r− 1)) + 1 jobs are
removed, where the additive 1 is due to the job that is assigned to machine Mi in step t.

In total, it is sufficient to remove these b · m · si/S + b · m · si/(S · (r − 1)) + 1 =
r/(r − 1) · b ·m · si/S + 1 many jobs, and, because the algorithm removes jobs from Mi in
decreasing order of size, the number of jobs removed is bounded by the same number. J

Recall, that we only migrate jobs when sm−1 ≤ 3/4 · S, as otherwise, we simply schedule
all jobs on machineMm−1. If sm−1 ≤ 3/4·S, 18/17 ≤ r ≤W−1(−1/e2)/(1+W−1(−1/e2)) ≈
1.4659. (Due to space limitations, the proof of this claim is omitted.) Hence, due to Lemma 5,
the total number of jobs migrated is bounded by

m−1∑
i=0

(
r

r − 1 · b ·m ·
si

S
+ 1
)

=
(

r

r − 1 · b+ 1
)
·m = Θ(m) .

3.1.2 Bounding the competitive ratio
If sm−1 > 3/4 · S, we assign all jobs to machine Mm−1. The resulting makespan is
Ln+1(Mm−1)/sm−1 = Tn+1/sm−1 < 4/3 · Tn+1/S ≤ 4/3 · OPT, where OPT denotes the
optimal makespan. Hence the competitive ratio is bounded by 1 + 1/3.

For the reminder of the paper, we consider the case sm−1 ≤ 3/4 ·S. The following lemma
shows that, at the end of step (1b), there are no critical machines. In fact, it gives a lower
bound on

∑m−1
j=0 L(M ′j).

I Lemma 6. At the end of step (1b), for each 0 ≤ j ≤ m− 1,

m−1∑
k=0

L(M ′k) ≥
(
L(M ′j)
sj

− OPT′

3

)
·

m−1∑
k=j

sk ≥
(
L(M ′j)
sj

− OPT
3

)
·

m−1∑
k=j

sk .

ESA 2018

26:10 Online Makespan Scheduling with Job Migration on Uniform Machines

Proof. The second inequality is true because OPT′ ≤ OPT (optimally scheduling a subset
of all jobs can only result in a smaller makespan than optimally scheduling all jobs). In
the following, we prove the first inequality. If C = ∅, the lemma is true by definition of C.
In the following, we consider the case C 6= ∅. At the end of step (1b), for each 0 ≤ j ≤ c,
L(M ′i) = 0 and, as a consequence, the lemma is true for these machines. In the following, we
show that the lemma is true for M ′c+1, . . . ,M

′
m−1 after each reassignment in step (1b), if it

is true for these machines before this reassignment.
Initially, at the beginning of step (1b), for each c+ 1 ≤ j ≤ m− 1, M ′j is not critical by

definition of c, i.e., the lemma is true for M ′j .
Now, consider a reassignment in step (1b). For each 0 ≤ j ≤ m− 1, let L(M ′i) and L̂(M ′i)

denote the load of machine M ′i before and after this reassignment, respectively. Assume that
the lemma is true for M ′c+1, . . . ,M

′
m−1 before this reassignment.

In this reassignment, all jobs from M ′i , with 0 ≤ i ≤ c, are reassigned to M ′`, with

` = max
{
c+ 1 ≤ j ≤ m− 1 :

L(M ′i) + L(M ′j)
sj

≤ 4
3 ·OPT′

}
.

Then, resort the loads of the machines again. In detail,

z = max
{
` ≤ j ≤ m− 1 : L(M ′j) < L(M ′i) + L(M ′`)

}
,

i.e., after resorting, L̂(M ′z) = L(M ′i)+L(M ′`), and, for each ` ≤ j ≤ z−1, L̂(M ′j) = L(M ′j+1).
In addition, for each j ∈ {c+ 1, . . . ,m− 1} \ {`, . . . , z}, L̂(M ′j) = L(M ′j). Note that, for each
c+ 1 ≤ j ≤ m− 1, L(M ′j) ≤ L̂(M ′j) and, if j + 1 ≤ m− 1, L̂(M ′j) ≤ L(M ′j+1).

It remains to show that the lemma is true for M ′`, . . . ,M ′z. Consider machine M ′x with
` ≤ x ≤ z. If L̂(M ′x)/sx ≤ OPT′, then

m−1∑
j=0

L̂(M ′
j) ≥

m−1∑
j=x

L̂(M ′
j) ≥ L̂(M ′

x)
sx

· sx +
m−1∑

j=x+1

2
3 · OPT′ · sj ≥

(
L̂(M ′

x)
sx

− OPT′

3

)
·

m−1∑
j=x

sj ,

since, by definition of `, for each ` + 1 ≤ j ≤ m − 1, L̂(M ′j)/sj ≥ L(M ′j)/sj ≥ (L(M ′i) +
L(M ′j))/(2sj) > 2/3 ·OPT′.

In the following, we consider the case L̂(M ′x)/sx > OPT′. Due to space limitations, the
proof of the following observation is omitted.

I Observation 7. For each x+ 1 ≤ j ≤ m− 1, L(M ′j)/sj ≥ 4/5 ·OPT′.

Due to the fact that M ′c is critical,
m−1∑
j=c

L(M ′j) ≤
m−1∑
j=0

L(M ′j) ≤
(
L(M ′c)
sc

− OPT′

3

)
·

m−1∑
j=c

sj .

As a consequence,
m−1∑

j=c+1
L(M ′j) ≤

(
L(M ′c)
sc

− OPT′

3

)
·

m−1∑
j=c+1

sj ≤
2
3 ·OPT′ ·

m−1∑
j=c+1

sj ,

since L(M ′c)/sc −OPT′/3 ≤ L(M ′c)/sc ≤ OPT′.
Due to Observation 3 item (2),

∑x
j=c+1 L(M ′j) ≥ 1/2 · OPT′ ·

∑x
j=c+1 sj and, due to

Observation 7,
∑m−1

j=x+1 L(M ′j) ≥ 4/5 ·OPT′ ·
∑m−1

j=x+1 sj . Hence,

2
3 ·OPT′ ·

 x∑
j=c+1

sj +
m−1∑

j=x+1
sj

 ≥ m−1∑
j=c+1

L(M ′j) ≥ 1
2 ·OPT′ ·

x∑
j=c+1

sj + 4
5 ·OPT′ ·

m−1∑
j=x+1

sj ,

M. Englert, D. Mezlaf, and M. Westermann 26:11

i.e.,
∑x

j=c+1 sj ≥ 4/5 ·
∑m−1

j=x+1 sj .
Altogether,

m−1∑
j=0

L̂(M ′j) ≥
x−1∑

j=c+1
L(M ′j) + L̂(M ′x) +

m−1∑
j=x+1

L(M ′j)

≥ 1
2 ·OPT′ ·

x−1∑
j=c+1

sj + 1
3 ·OPT′ · sx +

(
L̂(M ′x)
sx

− OPT′

3

)
· sx

+ 4
5 ·OPT′ ·

m−1∑
j=x+1

sj

≥ 1
3 ·OPT′ ·

x∑
j=c+1

sj +
(
L̂(M ′x)
sx

− OPT′

3

)
· sx + 4

5 ·OPT′ ·
m−1∑

j=x+1
sj

≥

(
L̂(M ′x)
sx

− OPT′

3

)
· sx +

(
1
3 ·

4
5 + 4

5

)
·OPT′ ·

m−1∑
j=x+1

sj

≥

(
L̂(M ′x)
sx

− OPT′

3

)
·

m−1∑
j=x

sj ,

since L̂(M ′x)/sx ≤ 4/3 ·OPT′ due to Observation 3 item (4). J

Next, we give a bound on the makespan at the end of step (1) of the migration phase.
We distinguish two cases.

L(Mi) ≤ (r − 1) · Tn+1 · si/S after the removal of jobs:
Then, L(Mi) ≤ (r − 1) · Tn+1 · si/S ≤ (r − 1) · OPT · si. The completion time of
machine Mi at the end of step (1) of the migration phase is (L(Mi) + L(M ′i))/si ≤
(r − 1) ·OPT + 4/3 ·OPT ≤ (r + 1/3) ·OPT, since L(M ′i)/si ≤ 4/3 ·OPT′ ≤ 4/3 ·OPT
due to Observation 3 item (4).
L(Mi) > (r − 1) · Tn+1 · si/S after the removal of jobs:
Then, L(Mi) ≤ wi · T s

n+1 after the removal of jobs. We distinguish two sub-cases.
wi = si · r/S:
By definition of wi,

∑i−1
j=0 sj ≤ (r − 1)/r · S and, as a consequence,

m−1∑
j=i

sj = S −
i−1∑
j=0

sj ≥ S −
r − 1
r
· S = S

r
.

Then we can bound the completion time of machine Mi at the end of step (1) of the
migration phase as follows:

L(Mi)
si

≤ wi

si
·

S ·OPT−
m−1∑
j=0

L(M ′j)

+ L(M ′i)
si

≤ r

S
·

S ·OPT−max
{

0, L(M ′i)
si

− OPT
3

}
·

m−1∑
j=i

sj

+ L(M ′i)
si

≤ r

S
·
(
S ·OPT−max

{
0, L(M ′i)

si
− OPT

3

}
· S
r

)
+ L(M ′i)

si

≤ r ·OPT + 1
3 ·OPT .

ESA 2018

26:12 Online Makespan Scheduling with Job Migration on Uniform Machines

wi = si · (r − 1)/
∑i−1

j=0 sj :
By definition of wi,

r − 1
r
· S ≤

i−1∑
j=0

sj .

Then we can bound the completion time of machine Mi at the end of step (1) of the
migration phase as follows:

L(Mi)
si

≤ wi

si
·

(
S · OPT −

m−1∑
j=0

L(M ′
j)

)
+ L(M ′

i)
si

≤ r − 1∑i−1
j=0 sj

·

(
S · OPT − max

{
0,

L(M ′
i)

si
− OPT

3

}
·

(
S −

i−1∑
j=0

sj

))
+ L(M ′

i)
si

≤ r − 1∑i−1
j=0 sj

· S ·
(

OPT − max
{

0,
L(M ′

i)
si

− OPT
3

})
+ (r − 1) · max

{
0,

L(M ′
i)

si
− OPT

3

}
+ L(M ′

i)
si

≤ r · OPT − max
{

0,
L(M ′

i)
si

− OPT
3

}
+ L(M ′

i)
si

≤ r · OPT + 1
3 · OPT ,

since
∑m−1

j=i sj = S−
∑i−1

j=0 sj and 4/3 ·OPT−L(M ′i)/si ≥ 4/3 ·OPT′−L(M ′i)/si ≥ 0
due to Observation 3 item (4).

In all cases, the makespan is at most (r + 1/3) ·OPT at the end of step (1) of the migration
phase.

Finally, we analyze the makespan at the end of step (2) of the migration phase. We start
with the following observation. Due to space limitations, the proof of this observation is
omitted.

I Observation 8. There exists a machine Mi with mb + 1 ≤ i ≤ m− 1 and completion time
of at most (

√
b+ 1)/

√
b ·OPT, where

mb = max

0 ≤ i ≤ m− 1 :
i∑

j=0
sj <

S√
b+ 1

 < m− 1 .

Consider a removed job J that is scheduled in step (2) of the migration phase. Since J is
small at time n + 1, p(J) ≤ Tn+1/(b ·m) ≤ OPT · S/(b ·m). According to Observation 8,
there exists a machine Mi with mb + 1 ≤ i ≤ m − 1 and completion time of at most
(
√
b+ 1)/

√
b ·OPT. Since

∑mb+1
j=0 sj ≥ S/(

√
b+ 1), si ≥

∑i
j=0 sj/(i+ 1) ≥ S/((

√
b+ 1) ·m).

In step (2) of the migration phase, J is assigned to a machine finishing it first. Then, we can
bound the completion time of this machine after J is assigned to it as follows:

L(Mi)
si

+ p(J)
si
≤
√
b+ 1√
b
·OPT + OPT · S

b ·m
· (
√
b+ 1) ·m
S

=
(√

b+ 1√
b

)2

·OPT .

At the end of the migration phase, the makespan is at most max{r+1/3, (1+1/
√
b)2}·OPT.

Recall that 1 < r ≤W−1(−1/e2)/(1 + W−1(−1/e2)) ≈ 1.4659. For example, for b = 8.5827,
(1 + 1/

√
b)2 ≤ 1.4659 + 1/3, and, for b = 41.7847, (1 + 1/

√
b)2 ≤ 4/3.

M. Englert, D. Mezlaf, and M. Westermann 26:13

References
1 Susanne Albers. Better bounds for online scheduling. SIAM Journal on Computing,

29(2):459–473, 1999.
2 Susanne Albers and Matthias Hellwig. On the value of job migration in online makespan

minimization. Algorithmica, 79(2):598–623, 2017.
3 James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line routing

of virtual circuits with applications to load balancing and machine scheduling. Journal of
the ACM, 44(3):486–504, 1997.

4 Yair Bartal, Amos Fiat, Howard J. Karloff, and Rakesh Vohra. New algorithms for an
ancient scheduling problem. Journal of Computer and System Sciences, 51(3):359–366,
1995.

5 Yair Bartal, Howard J. Karloff, and Yuval Rabani. A better lower bound for on-line
scheduling. Information Processing Letters, 50(3):113–116, 1994.

6 Piotr Berman, Moses Charikar, and Marek Karpinski. On-line load balancing for related
machines. Journal of Algorithms, 35(1):108–121, 2000.

7 Bo Chen, André van Vliet, and Gerhard J. Woeginger. New lower and upper bounds for
on-line scheduling. Operations Research Letters, 16(4):221–230, 1994.

8 Xin Chen, Yan Lan, Attila Benko, György Dósa, and Xin Han. Optimal algorithms for
online scheduling with bounded rearrangement at the end. Theoretical Computer Science,
412(45):6269–6278, 2011.

9 Ning Ding, Yan Lan, Xin Chen, György Dósa, He Guo, and Xin Han. Online minimum
makespan scheduling with a buffer. International Journal of Foundations of Computer
Science, 25(5):525–536, 2014.

10 György Dósa and Leah Epstein. Online scheduling with a buffer on related machines.
Journal of Combinatorial Optimization, 20(2):161–179, 2010.

11 György Dósa and Leah Epstein. Preemptive online scheduling with reordering. SIAM
Journal on Discrete Mathematics, 25(1):21–49, 2011.

12 György Dósa, Yuxin Wang, Xin Han, and He Guo. Online scheduling with rearrangement
on two related machines. Theoretical Computer Science, 412(8-10):642–653, 2011.

13 Tomás Ebenlendr and Jirí Sgall. A lower bound on deterministic online algorithms
for scheduling on related machines without preemption. Theory of Computing Systems,
56(1):73–81, 2015.

14 Matthias Englert, Deniz Özmen, and Matthias Westermann. The power of reordering
for online minimum makespan scheduling. SIAM Journal on Computing, 43(3):1220–1237,
2014.

15 Leah Epstein and Lene M. Favrholdt. Optimal preemptive semi-online scheduling to minim-
ize makespan on two related machines. Operations Research Letters, 30(4):269–275, 2002.

16 Leah Epstein, Asaf Levin, and Rob van Stee. Max-min online allocations with a reordering
buffer. SIAM Journal on Discrete Mathematics, 25(3):1230–1250, 2011.

17 Ulrich Faigle, Walter Kern, and György Turán. On the performance of on-line algorithms
for partition problems. Acta Cybernetica, 9(2):107–119, 1989.

18 Rudolph Fleischer and Michaela Wahl. On-line scheduling revisited. Journal of Scheduling,
3(6):343–353, 2000.

19 Donald K. Friesen. Tighter bounds for LPT scheduling on uniform processors. SIAM
Journal on Computing, 16(3):554–560, 1987.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

21 Todd Gormley, Nick Reingold, Eric Torng, and Jeffery Westbrook. Generating adversaries
for request-answer games. In Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 564–565, 2000.

ESA 2018

26:14 Online Makespan Scheduling with Job Migration on Uniform Machines

22 Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(1):1563–1581, 1966.

23 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

24 Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM Journal on
Computing, 17(3):539–551, 1988.

25 David R. Karger, Steven J. Phillips, and Eric Torng. A better algorithm for an ancient
scheduling problem. Journal of Algorithms, 20(2):400–430, 1996.

26 Hans Kellerer, Vladimir Kotov, Maria Grazia Speranza, and Zsolt Tuza. Semi on-line
algorithms for the partition problem. Operations Research Letters, 21(5):235–242, 1997.

27 Ming Liu, Yinfeng Xu, Chengbin Chu, and Feifeng Zheng. Online scheduling on two uniform
machines to minimize the makespan. Theoretical Computer Science, 410(21-23):2099–2109,
2009.

28 Paul Mireault, James B. Orlin, and Rakesh V. Vohra. A parametric worst case analysis of
the LPT heuristic for two uniform machines. Operations Research, 45(1):116–125, 1997.

29 Kirk Pruhs, Jiri Sgall, and Eric Torng. Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, chapter Online Scheduling. CRC Press, 2004.

30 John F. Rudin III. Improved Bound for the Online Scheduling Problem. PhD thesis, Uni-
versity of Texas at Dallas, 2001.

31 John F. Rudin III and R. Chandrasekaran. Improved bound for the online scheduling
problem. SIAM Journal on Computing, 32(3):717–735, 2003.

32 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Mathematics of Operations Research, 34(2):481–498, 2009.

33 Zhiyi Tan and Shaohua Yu. Online scheduling with reassignment. Operations Research
Letters, 36(2):250–254, 2008.

34 Yuxin Wang, Attila Benko, Xin Chen, György Dósa, He Guo, Xin Han, and Cecilia Sik-
Lányi. Online scheduling with one rearrangement at the end: Revisited. Information
Processing Letters, 112(16):641–645, 2012.

Truthful Prompt Scheduling for Minimizing Sum
of Completion Times
Alon Eden
Tel Aviv University, Israel
alonarden@gmail.com

Michal Feldman
Tel Aviv University and Microsoft Research, Israel
michal.feldman@cs.tau.ac.il

Amos Fiat
Tel Aviv University, Israel
fiat@tau.ac.il

Tzahi Taub
Tel Aviv University, Israel
tzahita@gmail.com

Abstract
We give a prompt online mechanism for minimizing the sum of [weighted] completion times.
This is the first prompt online algorithm for the problem. When such jobs are strategic agents,
delaying scheduling decisions makes little sense. Moreover, the mechanism has a particularly
simple form of an anonymous menu of options.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms, Theory of
computation → Algorithmic mechanism design

Keywords and phrases Scheduling, Mechanism design, Online algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.27

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1804.
03244.

Funding This work was partially supported by the European Research Council under the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number
337122, by the ISF (grant number 317/17), and by the ISF (grant number 1841/14).

1 Introduction

The setting herein includes [multiple] service queues and selfish agents that arrive online
over time and can be processed on one of m machines. Agents may have some (private)
processing time p and/or some private weight w.

The goal is to improve service as much as possible. Minimizing the sum of [weighted]
completion times is one measure of how good (or bad) service really is.

This problem has long been studied, as a pure optimization problem, without strategic
considerations [11]. Given a collection of jobs, processing times, and weights, the shortest
weighted processing time order [26], also known as Smith’s rule, produces a minimal sum of
weighted completion times with a non-preemptive schedule on a single machine.

© Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alonarden@gmail.com
mailto:michal.feldman@cs.tau.ac.il
mailto:fiat@tau.ac.il
mailto:tzahita@gmail.com
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.27
https://arxiv.org/abs/1804.03244
https://arxiv.org/abs/1804.03244
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

Schedules can be preemptive (where jobs may be stopped and restarted over time) or
non-preemptive (where a job, once execution starts, cannot be stopped until the job is done).

To the best of our knowledge, all online algorithms for this problem have the following
property: when a job arrives, there are no guarantees as to when it will finish. If preemption
is allowed, even if the job starts, there is no guarantee that it will not be preempted, or for
how long. If preemption is disallowed, the online algorithm keeps the job “hanging about” for
some unknown length of time, until the algorithm finally decides that it is time to start it.

Essentially, this means that when one requests service, the answer is “OK – just hang
around and you will get service at some unknown future date”. It is in fact impossible to
achieve any bounded ratio for the sum of [weighted] completion times if one has to start
processing the job as soon as possible1. Some delay is inevitable. However, the issue we
address is “does the job know when it will be served?”. All of these issues are fundamental
when considering that every such “job” is a strategic agent. It is not only that one avoids
uncertainty, knowing the future schedule allows one to make appropriate plans for the interim.
Consider a setting where you call up to arrange a 2 hour dental appointment and you are
told: “Show up ASAP but there are no guarantees as to when the dentist will see you.”
This is a non-prompt schedule. It has some disadvantages when compared with the prompt
alternative: “Show up at 17:00 and the dentist will see you immediately then.”

In this paper we present prompt online algorithms that immediately determine as to
when an incoming job will be processed (without preemption). The competitive ratio is the
best possible, amongst all prompt online algorithms, even if randomization is allowed (the
algorithm is in fact deterministic). The competitive ratio compares the sum of completion
times of the online algorithm with the [harder to achieve] sum of completion times of an
optimal preemptive schedule. Moreover, viewed in the context of jobs being strategic agents,
our algorithms are also dominant strategy incentive compatible, and have a particularly
simple form. We describe the algorithms in the strategic setting, but – even ignoring strategic
issues – no non-trivial online algorithm for the problem of prompt scheduling of jobs was
known prior to this study.

Upon arrival, agents are presented with a menu of possible options, where a menu entry
is of the form ([b, e], q, π). This means that the period from b to e is available on machine q
and will cost the agent π. These menus are anonymous and do not depend on the agent that
arrives. The agent then chooses one of the options. Rational agents will never choose an
interval that is shorter than the processing time. (If so the agent cost is ∞).

The cost to the agent is the sum of two components: (a) The time spent waiting, weighted
by the agents’ [private] weight. I.e., highly impatient agents will have high weight, less
impatient agents will have lower weight. (b) The price, π, associated with an option on the
menu. Agents seek to minimize their cost.

Consider the case of a single queue, a selfish agent will simply join the queue immediately
upon arrival, there is no reason to delay. Thus, jobs will be processed in first-in-first-out
(FIFO) order. However, this may be quite bad in terms of the sum of completion times.
Imagine a job with processing time L, arriving at time zero, followed by

√
L jobs of processing

time 1, all of which arrive immediately after the first.
As the first job will only be done at time L, the sum of completion times for these 1 +

√
L

jobs is about L3/2. Contrariwise, if the
√
L size one jobs were processed before the size L

job, the sum of completion times would be about 2L. Obviously it seems a good idea to
delay longer jobs and expedite shorter jobs.

1 This is illustrated in the introduction of the full version [6].

A. Eden, M. Feldman, A. Fiat, and T. Taub 27:3

Similarly, consider a first batch of L jobs, each of size 1 and weight 1, immediately
followed by a single job of size 1 and weight W . For FIFO processing, the weighted sum
of completion times is L2/2 (for the weight 1 jobs) plus (L+ 1) ·W (for the job of weight
W). Optimally, the weight W job should be processed first, followed by the size 1 jobs.
The weighted sum of completion times is then about W + L2/2. For any constant L and
sufficiently large W , the ratio between the two sums approaches L+ 1.

The main question addressed in this paper is how to produce such dynamic menus so
as to incentivize selfish agents towards behavior that achieves some desirable social goal,
specifically, minimizing the sum of completion times. The dynamic menu is produced based
on the past decisions of the previous agents and the current time2.

We measure the quality of the solution achieved by the competitive ratio, the ratio
between the sum of completion times of the selfish agents, when presented with the dynamic
menus, and the minimal sum of completion times, when the future arrivals and their private
values are known and there are no incentive considerations. In fact, the comparison is
with the optimal preemptive schedule (which could definitely be better than the optimal
non-preemptive schedule).

We consider several scenarios:
1. All agents have weight 1 and arbitrary processing times, nothing known apriori on the

processing times. This models cases where all agents are equally impatient but have
different processing requirements. The underlying idea here is to offer menu options that
delay longer jobs so that they do not overly delay many shorter jobs that arrive later.

2. All agents have processing time 1 and arbitrary weight, nothing known apriori on the
weights. The underlying idea here is to set prices so as to delay jobs of small weight and
thus to allow later jobs of large weight to finish early.

3. Jobs with arbitrary processing times and weights bounded by a known bound Bmax. This
means that we have to delay long jobs and simultaneously have to leave available time
slots for jobs with large weights.

The competitive ratios for the different scenarios appear in Table 1. We remark that the
lower bounds hold even if one assumes that the machines used are arbitrarily faster than the
machines used by the optimal schedule that minimizes the sum of weighted completion times.

1.1 Related Work
For one machine, weighted jobs, available at time zero, ordering the jobs in order of weight/-
processing time minimizes the sum of competition times [26]. For one machine, unweighted
jobs with release times, a preemptive schedule that always processes the job with the minimal
remaining processing time minimizes the sum of weighted completion times [24, 23]. As
an offline problem, where jobs cannot be executed prior to some earliest time, finding an
optimal non-preemptive schedule is computationally hard [12].

For parallel machines, where jobs arrive over time, a preemptive schedule that always
processes the jobs with the highest priority – weight divided by remaining processing
time – is a 2 approximation [20]. This algorithm is called weighted shortest remaining
processing time (WSRPT). If all weights are one this preemptive algorithm is called shortest
remaining processing time (SRPT). Other online and offline algorithms to minimize the sum
of completion times appear in [1, 25, 12].

2 For clarity we describe the menu as though it was infinite. In fact, one can think of the process as
though the menu is presented entry by entry. The selfish job will provably choose an option early on.

ESA 2018

27:4 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

Table 1 Competitive Ratios of our Dynamic Menus, and associated lower bounds. Pmax is the
longest job processing time in the input sequence, it is not known apriori. Wmax is the maximal job
weight in the sequence, it is not known apriori. Bmax is an apriori upper bound on Wmax.

Processing
Time

Job
Weight

Menu
entries

Upper
Bound

(Deterministic)

Lower
Bound
(Randomized)

pj ∈ Z+ wj = 1
intervals
(various lengths)
no prices

O(log Pmax) Ω(log Pmax)

pj = 1 wj ∈ Z+
unit length
intervals
with prices

O

(
log Wmax·
(log log Wmax + log n)

)
Ω(log Wmax)

pj ∈ Z+ wj ∈ Z+
intervals
(various lengths)
with prices

O

(
log Bmax·
(log Pmax + log n)

)
Ω
(

max
(

log Bmax,

log Pmax

))

[22] show how to convert a preemptive online algorithm into a non-preemptive online
algorithm while increasing the completion time of the job by no more than a constant factor.
This transformation strongly depends on not determining immediately when the job will
be executed. This is in comparison to a prompt algorithm that determines when the job is
executed immediately upon the job‘s arrival.

When selfish agents are involved, it is valuable to keep things simple [13]. Offering
selfish agents an anonymous menu of options is an example of such a simple process. More
complicated mechanisms require trust on the part of the agents.

Recently, [7] considered a similar question to ours, where a job with private processing time
had to choose between multiple FIFO queues, where the servers had different speeds. Here,
dynamic posted prices were associated with every queue, with the goal of [approximately]
minimizing the makespan, the length of time until the last job would finish. Shortly thereafter,
[15] used dynamic pricing to minimize the maximal flow time. Dynamic pricing schemes
were considered for non-scheduling cost minimization problems in [3].

A constant approximation mechanism for minimizing sum of completion times for selfish
jobs was considered in [9], where the setting was an offline setting, the processing time was
known in advance and the weight was private information. In an online setting, [14] show a
constant approximation preemptive mechanism that gives an O(1/ε2) approximation to the
sum of flow times when using machines that are faster by a factor of 1 + ε.

Online mechanisms were considered in [17, 8], whereas prompt online mechanisms are
defined in [4].

In this paper our goals are pricing schemes that affect agents as to behave in a manner
that [approximately] minimizes the sum of weighted completion times.

There is a vast body of work on machine scheduling problems, in offline and online
settings, with strategic agents involved and not, and in a host of models. It is impossible to
do justice to this body of work but a very short list of additional relevant papers includes
[10, 19, 11, 18, 21, 2, 16].

1.2 Organization of this paper
In Section 2 we describe our model. In Section 3 we give an optimal O(logPmax)-competitive
menu based mechanism for the case of arbitrary [unknown] lengths and identical weights, and
in Section 4 we show a matching Ω(logPmax) lower bound that holds for any [randomized,
non-truthful] prompt online algorithm. In the full version [6] we handle the case of arbitrary
weighted jobs with identical processing times and give a O(logWmax(log logWmax + logn))-
competitive pricing menu. An Ω(Wmax) lower bound for this case is given.

A. Eden, M. Feldman, A. Fiat, and T. Taub 27:5

2 The Model

We consider a job scheduling setting with m machines and n jobs that arrive in real time,
where pj , wj , and rj are, respectively, the processing time, weight, and release time of the
jth job to arrive. It may be that rj = rj+1, i.e., more than one job arrive at the same time.
However, job decisions are made sequentially in index order.

A valid input for this problem can be described as a sequence of jobs

σ = (r1, w1, p1), (r2, w2, p2), . . . , (rn, wn, pn),

where the release time ri ≤ ri+1 for i = 1, . . . , n− 1, the job weight wi ≥ 1 for i = 1, . . . , n,
and the job processing time pi ≥ 1 for i = 1, . . . , n. We refer to the jth job in this sequence
as job j. We use the terms size and processing time interchangeably. Let σ[1..`] be the length
` prefix of σ. The total volume of a set of jobs D, denoted vol(D) is the sum of processing
times of the jobs in D, i.e., vol(D) =

∑
j∈D pj .

Let sj ≥ rj be the time at which job j starts processing (on some machine 1 ≤ q ≤ m).
The completion time of job j is cj = sj + pj .

The objective considered in this paper is to minimize the sum of [weighted] completion
times; i.e., we wish to minimize

∑n
j=1 wj · cj .

For jobs j, j′, with j < j′ and with rj = rj′ , job j is assigned (or chooses) machine qj at
time sj before job j′ is assigned machine qj′ at sj′ . We say that (qj , sj) and (qj′ , sj′) overlap,
if qj = qj′ and (sj ≤ sj′ < cj = sj + pj or sj′ ≤ sj < cj′ = sj′ + pj′).

A valid (non-preemptive) schedule for an input σ is a sequence

(m1, s1), (m2, s2), . . . , (mn, sn)

where no overlaps occur. An online algorithm determines (mj , sj) after seeing σ[1 . . . j] and
before seeing job j + 1.

We consider online mechanisms where jobs are selfish agents, processing times and weights
are private information, and job j is presented with a menu of options upon arrival. Every
option on the menu is of the form (I, q, π) where (i) I is a time interval [b(I), e(I)], with
integer endpoints, and where b(I) ≥ rj , (ii) 1 ≤ q ≤ m is some machine, and (iii) π is the
price for choosing this entry. The menu of options presented to job j is computed after jobs
1, . . . , j − 1 have all made their choices and also depends on the release time of job j, rj

(because one cannot process a job in the past). We assume no feedback from jobs after they
choose their menu options, i.e., if a job of size p chooses an interval I of length |I| > p on
some machine, we do not know the interval is only partly used, and specifically, cannot offer
the |I| − p remaining to future jobs.

For job j that chooses menu entry ([b(I), e(I)], q, π) we use the following notation (i) I(j)
for the interval chosen by job j, [b(I), e(I)], (ii) M(j) for the machine chosen by job j, q,
and (iii) Π(j) for the price of the entry chosen by j, π.

Although the menus we describe are infinite, one can present the menu items sequentially.
With unit weight jobs, a job of processing time p will make its choice within the first log p
options presented. With unit length jobs, a job of weight w will make its choice within
the first logw options presented. With arbitrary lengths and arbitrary weights, a job of
processing time p and of weight w will make its choice within the first log p · logw options
presented.

The cost to job j with weight wj and processing time pj for choosing the menu entry
([b, e], q, π) is ∞ if the time interval is too short: e− b < pj . If e− b ≥ pj then the cost to
job j is a cost of wj for every unit of time until job j starts processing, plus the extra price

ESA 2018

27:6 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

from the menu. I.e., the cost to job j with release time rj , processing time pj and weight wj ,
for choosing menu entry ([b, e], q, π), e− b ≥ pj , is

(b+ pj) · wj + π.

For the specialized cases of weight one jobs or unit length jobs the general model above
is somewhat simpler:

2.1 Modeling weight one jobs with arbitrary Processing times
If jobs have weight one, we give (optimal) menus that do not require pricing menu entries.
Any entry on the menu is available for free. Therefore, we can simplify the menu structure as
follows: The job chooses a time interval and a machine from a menu with entries of the form
([b, e], 1 ≤ q ≤ m) where the first entry is a time interval, and the second entry is a machine3.

Jobs choose from the menu one of the entries immediately upon arrival. As above, we say
that job j chooses menu entry (I(j),M(j)) where I(j) is an interval, and 1 ≤M(j) ≤ m.

For job j with arrival time rj , and processing time pj the cost associated with choosing
the menu item ([b, e], 1 ≤ q ≤ m) is ∞ if pj > e− b and (b+ pj) otherwise. Jobs always seek
to minimize their cost.

2.2 Modeling unit length jobs of arbitrary weight
Every job requires one unit of processing time on one of m different processors. Every job j
is a selfish agent that has a private weight wj , the cost to the job of one unit of delay.

The job chooses a machine and time slot from a menu with entries of the form ([i, i+1], 1 ≤
q ≤ m,π) where the first entry is a time slot, the second entry is a machine, and the third
entry is the price of this time slot on the machine.

Jobs choose from the menu one of the entries immediately upon arrival. Job j is said to
choose menu item (I(j),M(j),Π(j)) where I(j) is a length one interval, 1 ≤M(j) ≤ m, and
Π(j) is the price to be paid for choosing this option.

For job j with arrival time rj , and weight wj the cost associated with choosing the menu
item ([i, i+ 1], 1 ≤ q ≤ m,π) is wj(i+ 1) + π. Jobs always seek to minimize their cost.

3 Dynamic Menu for Jobs with Heterogeneous Processing Times

In this section we introduce a dynamic menu based mechanism, for jobs of weight one
and heterogeneous processing times, with competitive ratio O(logPmax), where Pmax is the
maximal job processing time among all jobs. Due to lack of space, the analysis of the
mechanism is deferred to the full version [6].

In Section 3.1 we provide integer sequences and corresponding interval sequences that
serve as a building block for our dynamic menu mechanism, which is presented in Section 3.2.

3.1 The Sk Integer and Interval Sequences
We define sequences of integers Sk, k = 0, 1, . . ., as follows: Let S0 = 〈1〉 and for k > 0 let
Sk = Sk−1‖Sk−1‖〈2k〉 where ‖ denotes concatenation. Ergo,

S0 = 〈1〉; S1 = S0‖S0‖〈21〉 = 〈1, 1, 2〉; S2 = S1‖S1‖〈22〉 = 〈1, 1, 2, 1, 1, 2, 4〉; · · ·

3 Although the general setting allows pricing menu items, it turns out that for weight 1 jobs the optimal
menu does not need to differentiate entries by price.

A. Eden, M. Feldman, A. Fiat, and T. Taub 27:7

Let nk = 2k+1 − 1 denote the length of Sk (follows inductively from n0 = 1 and
nk = 2nk−1 + 1). Let Sk[i], i = 1, . . . , nk be the ith element of Sk. Let S∞ be an infinite
sequence whose length nk prefix is Sk (for all k):

S∞ = 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 16, 1, . . .〉.

Let S∞[i], i = 1, 2, . . . be the ith element of S∞. Note that Sk[i] = Sk′ [i] for all k ≤ k′ and
all i = 1, . . . , nk, ergo, Sk is a prefix of Sk′ for k ≤ k′.

I Lemma 1. For all d ≥ 0, for all 0 ≤ k ≤ d, the sum of all the 2k value items in Sd is
equal 2d. That is,

∑
1≤i≤nd:Sd[i]=2k

2k = 2d.

We use the Sk sequences to define interval sequences. Let γi be the sum of the first i
entries in S∞, γi =

∑i
j=1 S∞[j] (i.e., γ1 = 1, γ2 = 2, γ3 = 4, etc.).

We define Sk(t), t ≥ 0, to be a sequence of nk consecutive intervals, the first of which
starts at time t, and where the length of the jth interval equals Sk[j]. I.e.,

Sk(t) = 〈[t, t+ γ1], [t+ γ1, t+ γ2], . . . , [t+ γnk−1, t+ γnk
]〉 .

For example

S2(2) = 〈[2, 3], [3, 4], [4, 6], [6, 7], [7, 8], [8, 10], [10, 14]〉. (1)

For any interval sequence S let b(S) be the start of the first interval in S and let e(S) be
the end of the last interval in S. For example, b(S2(2)) = 2 and e(S2(2)) = 14.

We say that Sk appears in Sd(t) if there exists some t′ such that the interval sequence
Sk(t′) is a contiguous subsequence of Sd(t). In this case we also say that Sk(t′) appears
in Sd(t). Note that while Sk is a sequence of integers, both Sk(t′) and Sd(t) are interval
sequences.

By construction, for any k and any t 6= t′ if Sk(t) and Sk(t′) appear in some Sd(t̃), then
[b(Sk(t)), e(Sk(t))] and [b(Sk(t′)), e(Sk(t′))] are disjoint except for, possibly, their endpoints.
Let I be an interval of length 2k that appears in S∞(t). Then there is a unique t′ such that
Sk(t′) appears in S∞(t) and I is the last interval of Sk(t′). It follows from Lemma 1 that

I Corollary 2. For all k ≤ d, for all t,
1. Sk appears in Sd(t) 2d−k times.
2. The sum of the lengths of the intervals in Sd(t) is (d+ 1)2d.

The interval sequences defined above suggests a new possible static algorithm. Divide the
timeline of each machine into intervals as in S∞(0), and let any job that arrives occupy the
first unoccupied interval it fits in. Unfortunately, when the competitive ratio is evaluated as
a function of Pmax alone, this algorithm is Ω

(√
Pmax

)
competitive4 (When the competitive

ratio may be a function of Pmax and n, this algorithm is O (logPmax + logn) competitive as
analyzed in Theorem 5 of the full version).

I Definition 3. A state is a vector of consecutive interval sequences of the form

A = 〈A1, A2, · · · , A`〉 where
Ai = Ski(ti) for every 1 ≤ i ≤ `,

for some ` (which we refer to as the length of A) and integers ki for 1 ≤ i ≤ `, and where
e(Ai) = e(Ski(ti)) ≤ ti+1 = b(Ai+1) for 1 ≤ i ≤ `−1. This means that the interval sequences
are disjoint and ordered by their starting times. Note that there might be gaps between two
consecutive state entries, i.e., e(Ai) < b(Ai+1) for some 1 ≤ i ≤ `− 1.

4 This is shown in Appendix B in the full version [6].

ESA 2018

27:8 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

3.2 O(log Pmax) Competitive Dynamic Menu
When job j + 1 arrives the algorithm is in some configuration ψj =

(
Aj , Xj

)
, where Aj is

some state of length `j , and Xj is the set of intervals occupied by the previous j jobs. State
Aj represents every machines’ division of

[
0,maxi∈[j] ci

]
into time intervals (same division

for all machines). This division will be kept at any future time. For every i < `j , Aj
i is

fixed and will be a part of every future state, while Aj
`j

might be subject to change. We
refer to Aj

`j
as the tentative sequence of state Aj . Xj keeps track of all previously allocated

intervals (in all machines): ([b, e], q) ∈ Xj means that some job j′ ≤ j chose the interval [b, e]
on machine 1 ≤ q ≤ m. Note that the size of job j′, pj′ , might be strictly smaller than the
length of the interval (e− b), yet it is still considered occupied.

We note that our mechanism has the property that, roughly, every time interval in state
Aj has a 1

log Pmax
fraction of its volume allocated to “small” jobs.

Generating the Dynamic Menu
Given a state A = (A1, A2, . . . , A`) and a time t, we define an interval sequence τ as follows:

τ(A, t) =
{
A1‖A2‖ . . . ‖A`‖S∞(t) t ≥ e (A`)
A1‖A2‖ . . . ‖A`−1‖S∞(b (A`)) t < e (A`)

τ is used to create the menu presented to a job j. We present an algorithm for the creation
of the menu, based on the previous configuration ψj−1, and the current time t.

Let τ j = τ
(
Aj−1, rj

)
.

Set d1 to be the length of the first time interval in τ j beginning at time b1 ≥ t.
Add ([b1, b1 + d1], q) to the menu for all machines 1 ≤ q ≤ m in which [b1, b1 + d1] is
unoccupied (i.e, ([b1, b1 + d1], q) /∈ Xj−1).
Set i = 1
Repeat until job j chooses an interval:

Let di+1 be the length of the first interval longer than di in τ j that starts at time
bi+1 ≥ t (it follows that bi+1 > bi).
Add ([bi+1, bi+1 + di+1], q) to the menu for all machines 1 ≤ q ≤ m in which
[bi+1, bi+1 + di+1] is unoccupied (i.e., ([bi+1, bi+1 + di+1], q) /∈ Xj−1).
Set i = i+ 1.

By construction, no job will ever choose a time interval that starts before the job arrival
time, nor will it ever choose a slot that has already been chosen.

A selfish job of length pj always chooses a menu entry of the form ([b, e], q) where b is
the earliest menu entry with pj ≤ e− b.

Updating States
After job j makes its choice of menu entry, (I(j),M(j)), we update the configuration from
ψj−1 =

(
Aj−1, Xj−1) to ψj =

(
Aj , Xj

)
. Clearly, Xj = Xj−1 ∪ {(I(j),M(j))}. In the rest

of this section we describe how to compute Aj .
Recall that a state is a vector of consecutive and disjoint interval sequences. Initially,

A0 = 〈〉 with length `0 = 0 and A0
`0

is an empty sequence with b
(
A0

`0

)
= e

(
A0

`0

)
= 0. Aj

always contains all of Aj−1’s interval sequences except possibly the tentative sequence Aj−1
`j−1

.
When job j of size 2k chooses an interval, the new tentative sequence Aj

`j
can be one of the

following:

A. Eden, M. Feldman, A. Fiat, and T. Taub 27:9

Table 2 Update rules: After job j makes its choice (and cj is determined), the new state Aj is a
function of (i) Aj−1, (ii) release time rj , (iii) processing time pj = 2k, and (iv) completion time cj .

`j Aj
`j

cj ≤ e
(

Aj−1
`j−1

)
rj ≥ e

(
Aj−1

`j−1

)
Aj−1

`j−1
= Sd(t)

k ≤ d

1 `j−1 Aj−1
`j−1

True - -
2 `j−1 + 1 Sk(rj) False True -

3 `j−1 + 1 Sk

(
e
(

Aj−1
`j−1

))
False False True

4 `j−1 Sk

(
b
(

Aj−1
`j−1

))
False False False

1. Unchanged from former: The new tentative sequence in Aj is the same as the former
tentative sequence in Aj−1, i.e., Aj

`j
= Aj−1

`j−1
. This happens when I(j) ∈ Aj−1, see entry

1 in Table 2.
2. Disjoint from former: The former tentative sequence, Aj−1

`j−1
becomes fixed, and the new

tentative sequence Aj
`j

is disjoint from the former. The tentative sequence in Aj−1, Aj−1
`j−1

,
is the `j−1th element in all future states Ai, for i ≥ j. See entries 2 and 3 in Table 2.

3. Extension of former: The new tentative sequence is an extension of the former tentative
sequence. I.e., if Aj−1

`j−1
= Sd(t) then `j = `j−1 and Aj

`j
= Sk(t), k > d. See entry 4 in

Table 2.

Let Aj
i , A

j
i+1 be two consecutive interval sequences in a state Aj . If b

(
Aj

i+1

)
> e

(
Aj

i

)
,

we say the interval
[
e
(
Aj

i

)
, b
(
Aj

i+1

)]
is a gap.

Figure 1 is an example with 5 jobs that arrive over time, and the matching configuration
changes. The jobs in Figure 1 illustrate cases 1–4 from Table 2 in the following order: case 2
for job 1, case 1 for job 2, case 3 for job 3, case 4 for job 4 and case 2 for job 5.

3.2.1 High level overview of the analysis
Due to lack of space, we only give a high level overview of the analysis. The full analysis
appears in Section 3.4 of the full version [6]. We first show that w.l.o.g. one may assume
that all job lengths are powers of 2 and that the adversary’s schedule never includes gaps. In
our analysis, we compare the completion time of each job under our mechanism with the
completion time of the same job under SRPT. Let j be a job in the input sequence. We
define D(j) = {j′ ≤ j|pj′ ≤ pj} to be the set of all jobs that arrived no later than job j

and that are no bigger (note j ∈ D(j)). These jobs are all completed no later than job j
both under our mechanism and under SRPT, implying c∗j ≥ 1

mvol(D(j)) (where c∗j is the
completion time of job j under SRPT). Our analysis is based upon this observation. We
show that the mechanism depicted above ensures that cj = O(logPmax) · c∗j for every job j.
Since SRPT is an O(1)-competitive algorithm, this immediately implies the following.

I Theorem 4. Our mechanism is O(logPmax)-competitive.

3.3 Arbitrary processing times, weight ≤ Bmax

The static algorithm suggested at the end of Section 3.1 used for weight one jobs of arbitrary
sizes can be easily adapted to weights in some predetermined range from 1 to Bmax. Replicate
every interval in the sequence S∞(0) logBmax + 1 times. For ` = 0, . . . , logBmax, the `th
copy is designed to hold only jobs of weight ≥ 2`. To achieve this, one associates prices with

ESA 2018

27:10 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

Figure 1 Changing Menus of the Dynamic Menu Algorithm, as jobs arrive and make choices.
The two bottom rows in the tables represents two machines. An X in a machine cell represents
an (interval,machine) entry in the currently presented menu. A dashed line marks the release time
of the current job. Gray cells represent choices previously made by jobs. A gap is represented by
a rectangle filled with vertical lines. A rectangle outline in the top row of a table represents the
tentative sequence before job j makes it choice, i.e., Aj−1

`j−1
. Note that this example does not make

the simplicity assumptions made in the analysis.

A. Eden, M. Feldman, A. Fiat, and T. Taub 27:11

such intervals, as done in Section 5 of the full version. The analysis preformed in Appendix
A of the full version holds when multiplying every element with logBmax + 1, implying a
competitive ratio of O ((logPmax + logn) · logBmax).

4 Lower Bound on the Competitive Ratio for any Prompt Online
Algorithm, Arbitrary Lengths

We now show that any prompt online scheduling algorithm must have a competitive ratio of
Ω (logPmax), even if randomization is allowed.

Let c be the competitive ratio of some algorithm ALG as a function of Pmax. Consider
the following sequence, for PPP to be determined later:

For i = 0, . . . , 16c:
ni = 2i jobs of size Pi = PPP

2i arrive one after the other (at time 0).
If the expected number of Pi sized jobs with completion time greater than 8cPPP is at
least ni/2, stop the sequence. Let j be the last iteration.

Note that for every i = 0, . . . , 16c it holds that ni · Pi = PPP .

I Lemma 5. There must be an iteration j ∈ {0, . . . , 16c} for which in expectation more than
half of the jobs have completion time greater than 8cPPP .

Proof. Let Xi be a random variable representing the number of size Pi jobs, with completion
time greater than 8cPPP . If for all i ∈ {0, . . . , 16c}, E [Xi] ≤ ni/2, then the total expected
volume of jobs completed before time 8cPPP is at least

16c∑
i=0

E [(ni −Xi) · Pi] ≥
16c∑
i=0

ni

2 · Pi =
16c∑
i=0

PPP

2 > 8cPPP ,

a contradiction. J

I Theorem 6. Any random prompt online algorithm must be Ω (logPmax) competitive for
the above sequence.

Proof. According to Lemma 5, there must be some j ∈ {0, . . . , 16c} for which in expectation
at least half of the jobs are completed after time 8cPPP . Given this j, we give bounds on both
OPT and ALG. Let Xi be as in Lemma 5. In ALG, E [Xj] > nj/2, thus:

E [Cost(ALG)] > E [Xj · 8cPPP] > 8cPPP · nj

2 = 4cPPP · nj . (2)

In OPT, the jobs are scheduled from the smallest one (of size Pj) to the biggest one (of size
P0 = PPP). The kth job of size Pi to be scheduled, is completed after all jobs smaller than it
(of sizes Pi+1, . . . , Pj) and after k − 1 jobs of size Pi, and therefore has a completion time of(

j∑
`=i+1

n` · P`

)
+ Pi · (k − 1) + Pi = Pi · k +

j∑
`=i+1

n` · P`.

ESA 2018

27:12 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

Summing over all jobs of all sizes, we have

Cost(OPT) =
j∑

i=0

(
ni∑

k=1

(
Pi · k +

j∑
`=i+1

n` · P`

))

=
nj∑

k=1
Pj · k︸ ︷︷ ︸
(i)

+
j−1∑
i=0

ni∑
k=1

Pi · k︸ ︷︷ ︸
(ii)

+
j−1∑
i=0

(
j∑

`=i+1
n` · P`

)
· ni︸ ︷︷ ︸

(iii)

. (3)

We now bound each term of Cost(OPT) separately.

(i) : Pj

nj∑
k=1

k < Pj · n2
j = PPP · nj . (4)

(ii) :
j−1∑
i=0

Pi

ni∑
k=1

k <

j−1∑
i=0

Pi · n2
i = PPP ·

j−1∑
i=0

2i ≤ PPP · 2j = PPP · nj . (5)

For (iii) we have

(iii) :
j−1∑
i=0

(
j∑

`=i+1
n` · P`

)
· ni =

j−1∑
i=0

j∑
`=i+1

PPP · 2i = PPP

j−1∑
i=0

(j − i)2i = PPP

j∑
i=1

i · 2j−i

= PPP · 2j

j∑
i=1

i

2i
≤ 2PPP · nj . (6)

From Equations (4), (5) and (6), we get that Cost(OPT) ≤ 4PPP · nj . Therefore,

E [Cost(ALG)/Cost(OPT)] > c,

in contradiction to the assumption that ALG is c-competitive.
For the input sequence to be valid, it must be that Pj ≥ 1. As j ≤ 16c, it is sufficient that

c (PPP) ≤ 1
16 logPPP , as in this case, P16c = PPP

216c ≥ 1. So for every competitive ratio function c
such that c (Pmax) = o (logPmax) there exists a sufficiently large PPP for which c (PPP) ≤ 1

16 logPPP ,
and our input is a valid counter example. J

References
1 J. Bruno, E. G. Coffman, Jr., and R. Sethi. Scheduling independent tasks to reduce mean

finishing time. Commun. ACM, 17(7):382–387, 1974. doi:10.1145/361011.361064.
2 George Christodoulou, Elias Koutsoupias, and Akash Nanavati. Coordination mechan-

isms. In Automata, Languages and Programming: 31st International Colloquium, IC-
ALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, pages 345–357, 2004. doi:
10.1007/978-3-540-27836-8_31.

3 Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Lukasz Jez. Pricing online decisions:
Beyond auctions. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 73–91. SIAM, 2015. doi:10.1137/1.9781611973730.7.

4 Richard Cole, Shahar Dobzinski, and Lisa Fleischer. Prompt mechanisms for online auc-
tions. In Proceedings of the 1st International Symposium on Algorithmic Game The-
ory, SAGT ’08, pages 170–181, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/
978-3-540-79309-0_16.

http://dx.doi.org/10.1145/361011.361064
http://dx.doi.org/10.1007/978-3-540-27836-8_31
http://dx.doi.org/10.1007/978-3-540-27836-8_31
http://dx.doi.org/10.1137/1.9781611973730.7
http://dx.doi.org/10.1007/978-3-540-79309-0_16
http://dx.doi.org/10.1007/978-3-540-79309-0_16

A. Eden, M. Feldman, A. Fiat, and T. Taub 27:13

5 Constantinos Daskalakis, Moshe Babaioff, and Hervé Moulin, editors. Proceedings of the
2017 ACM Conference on Economics and Computation, EC ’17, Cambridge, MA, USA,
June 26-30, 2017. ACM, 2017.

6 Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub. Prompt scheduling for selfish
agents. CoRR, abs/1804.03244, 2018. arXiv:1804.03244.

7 Michal Feldman, Amos Fiat, and Alan Roytman. Makespan minimization via posted prices.
In Daskalakis et al. [5], pages 405–422. doi:10.1145/3033274.3085129.

8 Eric J. Friedman and David C. Parkes. Pricing wifi at starbucks: Issues in online mechanism
design. In Proceedings of the 4th ACM Conference on Electronic Commerce, EC ’03, pages
240–241, New York, NY, USA, 2003. ACM. doi:10.1145/779928.779978.

9 Vasilis Gkatzelis, Evangelos Markakis, and Tim Roughgarden. Deferred-acceptance auc-
tions for multiple levels of service. In Daskalakis et al. [5], pages 21–38. doi:10.1145/
3033274.3085142.

10 R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

11 Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optim-
ization and approximation in deterministic sequencing and scheduling: a survey. In Annals
of discrete mathematics, volume 5, pages 287–326. Elsevier, 1979.

12 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms. Math. Oper. Res.,
22(3):513–544, 1997. doi:10.1287/moor.22.3.513.

13 Jason D. Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In Proceed-
ings 10th ACM Conference on Electronic Commerce (EC-2009), Stanford, California, USA,
July 6–10, 2009, pages 225–234, 2009. doi:10.1145/1566374.1566407.

14 Sungjin Im and Janardhan Kulkarni. Fair online scheduling for selfish jobs on heterogeneous
machines. In Christian Scheideler and Seth Gilbert, editors, Proceedings of the 28th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State
Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 185–194. ACM, 2016. doi:10.
1145/2935764.2935773.

15 Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein. Minimizing maximum flow
time on related machines via dynamic posted pricing. In Kirk Pruhs and Christian Sohler,
editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017,
Vienna, Austria, volume 87 of LIPIcs, pages 51:1–51:10. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.51.

16 Nicole Immorlica, Li (Erran) Li, Vahab S. Mirrokni, and Andreas S. Schulz. Coordination
mechanisms for selfish scheduling. Theor. Comput. Sci., 410(17):1589–1598, 2009. doi:
10.1016/j.tcs.2008.12.032.

17 Ron Lavi and Noam Nisan. Competitive analysis of incentive compatible on-line auctions.
In Proceedings of the 2Nd ACM Conference on Electronic Commerce, EC ’00, pages 233–
241, New York, NY, USA, 2000. ACM. doi:10.1145/352871.352897.

18 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990. doi:10.1007/
BF01585745.

19 J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling
problems. In P.L. Hammer, E.L. Johnson, B.H. Korte, and G.L. Nemhauser, editors, Stud-
ies in Integer Programming, volume 1 of Annals of Discrete Mathematics, pages 343–362.
Elsevier, 1977. doi:10.1016/S0167-5060(08)70743-X.

20 Nicole Megow and Andreas S. Schulz. On-line scheduling to minimize average completion
time revisited. Oper. Res. Lett., 32(5):485–490, 2004. doi:10.1016/j.orl.2003.11.008.

ESA 2018

http://arxiv.org/abs/1804.03244
http://dx.doi.org/10.1145/3033274.3085129
http://dx.doi.org/10.1145/779928.779978
http://dx.doi.org/10.1145/3033274.3085142
http://dx.doi.org/10.1145/3033274.3085142
http://dx.doi.org/10.1287/moor.22.3.513
http://dx.doi.org/10.1145/1566374.1566407
http://dx.doi.org/10.1145/2935764.2935773
http://dx.doi.org/10.1145/2935764.2935773
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.51
http://dx.doi.org/10.1016/j.tcs.2008.12.032
http://dx.doi.org/10.1016/j.tcs.2008.12.032
http://dx.doi.org/10.1145/352871.352897
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1016/S0167-5060(08)70743-X
http://dx.doi.org/10.1016/j.orl.2003.11.008

27:14 Truthful Prompt Scheduling for Minimizing Sum of Completion Times

21 Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic
Behavior, 35(1-2):166–196, 2001.

22 Cynthia Phillips, Clifford Stein, and Joel Wein. Minimizing average completion time in
the presence of release dates. Mathematical Programming, 82(1):199–223, Jun 1998. doi:
10.1007/BF01585872.

23 Linus Schrage. Letter to the editor-a proof of the optimality of the shortest remaining
processing time discipline. Operations Research, 16(3):687–690, 1968.

24 Linus E. Schrage and Louis W. Miller. The queue m / g /1 with the shortest remaining
processing time discipline. Operations Research, 14(4):670–684, 1966.

25 David B. Shmoys, Joel Wein, and David P. Williamson. Scheduling parallel machines
on-line. SIAM J. Comput., 24(6):1313–1331, 1995. doi:10.1137/S0097539793248317.

26 Wayne E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3(1-2):59–66, 1956. doi:10.1002/nav.3800030106.

http://dx.doi.org/10.1007/BF01585872
http://dx.doi.org/10.1007/BF01585872
http://dx.doi.org/10.1137/S0097539793248317
http://dx.doi.org/10.1002/nav.3800030106

Weighted Model Counting on the GPU by
Exploiting Small Treewidth

Johannes K. Fichte
International Center for Computational Logic, TU Dresden, 01062 Dresden, Germany
johannes.fichte@tu-dresden.de

https://orcid.org/0000-0002-8681-7470

Markus Hecher
Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Wien, Austria
hecher@dbai.tuwien.ac.at

https://orcid.org/0000-0003-0131-6771

Stefan Woltran
Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Wien, Austria
woltran@dbai.tuwien.ac.at

https://orcid.org/0000-0003-1594-8972

Markus Zisser
Institute of Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Wien, Austria
markus.zisser@student.tuwien.ac.at

Abstract
We propose a novel solver that efficiently finds almost the exact number of solutions of a Boolean
formula (#Sat) and the weighted model count of a weighted Boolean formula (WMC) if the
treewidth of the given formula is sufficiently small. The basis of our approach are dynamic
programming algorithms on tree decompositions, which we engineered towards efficient parallel
execution on the GPU. We provide thorough experiments and compare the runtime of our system
with state-of-the-art #Sat and WMC solvers. Our results are encouraging in the sense that also
complex reasoning problems can be tackled by parameterized algorithms executed on the GPU
if instances have treewidth at most 30, which is the case for more than half of counting and
weighted counting benchmark instances.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Theory of computation → Complexity theory and logic, Computer systems
organization→ Single instruction, multiple data, Hardware→ Theorem proving and SAT solving,
Computing methodologies → Graphics processors

Keywords and phrases Parameterized Algorithms, Weighted Model Counting, General Pur-
pose Computing on Graphics Processing Units, Dynamic Programming, Tree Decompositions,
Treewidth

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.28

Funding The work has been supported by the Austrian Science Fund (FWF), Grants Y698 and
P26696, and the German Science Fund (DFG), Grant HO 1294/11-1. The first and second author
are also affiliated with the University of Potsdam, Germany.

© Johannes K. Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johannes.fichte@tu-dresden.de
https://orcid.org/0000-0002-8681-7470
mailto:hecher@dbai.tuwien.ac.at
https://orcid.org/0000-0003-0131-6771
mailto:woltran@dbai.tuwien.ac.at
https://orcid.org/0000-0003-1594-8972
mailto:markus.zisser@student.tuwien.ac.at
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Weighted Model Counting on the GPU by Exploiting Small Treewidth

1 Introduction

Many computational problems in modern society account to probabilistic reasoning, statistics,
and combinatorics. Examples of such problems are identifying the reliability of energy
infrastructure [16] or learning preference distributions [10]. Several of these real-world
problems can be solved by representing the question in (Boolean) formulas [42, 15, 47] and
associating the number of solutions of the formula directly with the answer to the question.
The task to compute the number of solutions of a formula is usually referred to as the problem
#Sat, which is theoretically of high worst case complexity (#P-hard [38]), and generalizes
the problem of deciding whether a formula has a solution (Sat). If in addition each literal
in the formula has an associated weight and we are interested in the sum of weights of all
solutions, where the weight of a truth assignment is the product of the weights of its literals,
we speak about weighted model counting (WMC).

One approach to tackle these problems origins in parameterized algorithms, which are
based on the assumption that certain structural restrictions in the input allow for efficient
solving of problems that are hard in general. A seminal example in this direction is to exploit
small treewidth for Sat and #Sat [40]. Treewidth roughly measures the tree-likeness of an
input graph and is defined in terms of certain decompositions of the graph. For Boolean
formulas one takes a graph representation of the input formula, namely the primal or incidence
graph. In order to solve #Sat, dynamic programming on a tree decomposition of the graph
representation [40] is used. There one traverses the decomposition in post-order (bottom-up
traversal) and computes at each node information stored in a table. The runtime heavily
depends on the size of the table, which is bounded by a function in the treewidth. Recent
competitions in parameterized complexity [14] reveal that exact parameterized algorithms
are not just a vibrant theoretical research area, but their implementations are also able to
outperform up-to-date Sat solvers when determining treewidth.

State-of-the-art #Sat or WMC engines so far rely on standard techniques from Sat-
solving [44, 41, 26], knowledge compilation [33], or approximate solving [7, 8] by means of
sampling using Sat solvers. There is few work on parallelizing certain aspects of modern
Sat solving on Graphics Progressing Units (GPUs), e.g., [11]. However, a core technique
of Sat solving, conflict driven clause learning (CDCL), has inherent sequential aspects and
does not parallelize well [3, 22, 24, 34]. In contrast, many problems in artificial intelligence
and machine learning have significantly benefited from parallelization. In particular, running
algorithms on GPUs or using special purpose processing units such as Tensor Processing
Units (TPUs) can speedup standard AI tasks by more than two orders [28].

Parallel algorithms can be implemented on shared-memory or distributed-memory ma-
chines. Shared-memory based systems concern parallelizing one machine, whereas distributed-
memory based systems involve several machines. Compared to distributed-memory based
systems (as for example dCountAntom [6]) consisting of a massive amount of units, we rely
on shared-memory based (used for instance in countAntom [5]) techniques, i.e., in particular
plain consumer processors and graphics cards. Distributed units build on fast communication
networks, and when designing such systems, the goal is to avoid communication overhead
where possible to reduce the bottleneck induced by the transport channel. Shared-memory
systems on the other hand – though limited by synchronization necessities – do not directly
suffer from this issue and are in a sense incomparable to distributed-memory based systems.
Consequently, we purposely focus on shared-memory based systems in this paper.

J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser 28:3

New Contribution

In this paper, we show that computationally involved problems such as #Sat or WMC
benefit in practice from parallelization when the input instance has small treewidth. To this
end, we implement the aforementioned dynamic programming approach for the first time on
a GPU and provide an experimental evaluation. More specifically, our contributions are:
1. We engineer a novel architecture for GPU-based parameterized algorithms that allow

for parallel solving of #Sat and WMC and where the runtime depends on the size of
the computed decomposition of the graph representation of the formula. To this end,
we traverse a tree decomposition similar to a sequential algorithm, but distribute the
computation of tables among different computation units such that each potential row
runs in one thread of the GPU, which is key for an efficient parallelization in practice.

2. We provide an OpenCL implementation gpusat1 of two parameterized algorithms for the
GPU. We highlight crucial algorithm engineering steps such as handling non-nice tree
decompositions and specialized procedures that adjust the table sizes to the available
number of computation units.

3. We provide rigorous experimental work where we consider an extensive number of
dedicated #Sat and WMC instances and compare gpusat with a wide range of related
solvers. We present upper bounds on the primal and incidence treewidth for our entire
set of benchmark instances and compare the solving time with state-of-the-art solvers.
In particular, our results show that gpusat is the fastest, precise solver for instances of
treewidth up to 30 and is even able to solve certain instances of treewidth up to 45.

2 Solving #SAT by Dynamic Programming

Boolean Satisfiability and Weighted Model Counting

A literal is a Boolean variable x or its negation ¬x. A clause is a finite set of literals,
interpreted as the disjunction of these literals. We say that a clause is unit if it is singleton.
A (CNF) formula is a finite set of clauses, interpreted as the conjunction of its clauses. Let
F be a formula. A sub-formula S of F consists of subsets of clauses of F . For a clause c ∈ F ,
var(c) consists of all variables that occur in c and var(F) :=

⋃
c∈F var(c). An assignment

is a mapping α : var(F) → {0, 1} and 2var(F) the set of all assignments of F . F (α) is the
formula F under assignment α obtained by removing all clauses c from F that contain a
literal set to 1 by α and removing from the remaining clauses all literals set to 0 by α. An
assignment α is satisfying if F (α) = ∅. The problem #Sat asks to output the number of
satisfying assignments of a formula. Let w be function that maps each literal of F to a real
between 0 and 1. We call w(`) the weight of literal `. The weight of α is the product over
the weights of its literals, i.e., w(α) := Πv∈α−1(1)w(v) ·Πv∈α−1(0)w(¬v). The weighted model
count of F is the sum of weights over all its satisfying assignments, i.e., Σα∈2var(F),F (α)=∅w(α).
The problem WMC asks to output the weighted model count of F .

Tree Decomposition and Treewidth

A tree decomposition (TD) of a graph G is a pair T = (T, χ) where T is a rooted tree
(arborescence) and χ is a mapping that assigns to each node t ∈ V (T) a set χ(t) ⊆ V (G),
called a bag, such that the following conditions hold: (i) V (G) =

⋃
t∈V (T) χ(t) and E(G) ⊆

1 Our solver is available at github.com/daajoe/GPUSAT.

ESA 2018

https://github.com/daajoe/GPUSAT/releases/tag/v0.815-pre

28:4 Weighted Model Counting on the GPU by Exploiting Small Treewidth

d a
c b {a, b, c}

t1
{a, d}

t2
{a}t3

Figure 1 Primal graph PF of F from Example 1 (left) with a tree decomposition T of the
graph PF (right).

⋃
t∈V (T){ {u, v} | u, v ∈ χ(t) }; and (ii) for each r, s, t ∈ T , such that s lies on the path from r

to t, we have χ(r) ∩ χ(t) ⊆ χ(s). The width of T , denoted width(T), is maxt∈V (T) |χ(t)| − 1.
The treewidth tw(G) of G is the minimum width(T) over all tree decompositions T of G. For
arbitrary but fixed w ≥ 1, it is feasible in linear time to decide if a graph has treewidth at
most w and, if so, to compute a tree decomposition of width w [4]. Graphs that originate in
the real-world often admit tree decompositions of small width [14]. Interestingly, one can use
GPU-based implementations to compute the treewidth [46]. However, we use htd together
with min-fill heuristics to compute TDs [1]. In that case, the width might not be minimal.
In order to simplify cases in the theoretical algorithms, one uses for theoretical descriptions
so-called nice TDs, which we can compute in linear time without increasing the width [29].

We need dedicated graph representations for satisfiability problems. The primal graph
of a formula F has as vertices its variables and two variables are joined by an edge if they
occur together in a clause of F . For a given node s of a TD (T, χ) of the primal graph of F ,
we let Fs := { c | c ∈ F, var(c) ⊆ χ(s) }, i.e., clauses entirely covered by χ(s). The set F≤s
denotes the union over Ft for all descendant nodes t ∈ V (T) of s. The incidence graph of
a formula F is the bipartite graph on the clauses and variables of F , where a clause and a
variable are joined by an edge if the variable occurs in the clause. We call the treewidth of
the primal or incidence graph the primal treewidth or incidence treewidth, respectively.

I Example 1. Consider the formula F := {c1 := a ∨ b ∨ ¬c, c2 := ¬b ∨ ¬a, c3 := a ∨ ¬d}.
The primal graph PF of formula F and a TD T of PF are depicted in Figure 1. Intuitively,
T allows to evaluate formula F in parts. Later when evaluating F≤t3 , we split into F≤t1 and
F≤t2 , which refer to {c1, c2} and {c3}, respectively.

Dynamic Programming on TDs

A #SAT or WMC solver based on dynamic programming (DP) evaluates the input formula F
in parts along a given TD of F . For each node of the tree decomposition results are stored
in tables. The algorithm works as outlined in Figure 2 and performs the following steps:
1. Construct a primal graph or incidence graph G of F .
2. Heuristically compute a tree decomposition (T, χ) of G.
3. DP: For every node t in post-order of V (T), we run an algorithm A ∈ {PRIM, INC}

that outputs a table τt and takes as input the node t, its bag χ(t), sub-formula Ft, and
previously computed child tables C-Tabs of t (empty at the leaves).

4. Print the result by interpreting the table for root n of T .

We provide a brief intuition on PRIM. For details and algorithm PRIM and INC, we refer
to the original source [40]. The main idea of PRIM is to store in table τt only assignments,
which are restricted to bag χt depending on nice case distinctions of the node type, and its
counters. From the count stored together with an assignment in the table at node t, we can
read the number of satisfying assignments of the formula F≤t for the induced sub-tree of T
rooted at t. In the end, we can simply read the solution from the table at the root. INC

J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser 28:5

1. Build graph G of F
Store results
in table τt

Apply A to Ft

2. Create TD T of G
done?

no

yes

Visit next node t
of T in post-order

4. Output count
3. Dynamic Programming

Figure 2 Architecture of solvers based on dynamic programming on the CPU where an algorithm A
modifies tables.

1. Build graph Add results
to table τt

Apply K to Ft

for each row in C

2. Create TD T
nodes done?

no

yes

Visit next node t
of T in post-order chunks done?

yes

no Get next
chunk C of τt

C done?

Get next child ta-
ble chunks C-Tabs

yes

no

4. Output count

2b. Preprocess T

3. DP on GPUs 3a. Table splitter 3b. Chunk handler

Figure 3 Architecture of our dynamic programming solver on the GPU where kernel K modifies
each row individually and in parallel.

works similar, but requires more complex data structures. Both algorithms can be modified
for computing the weighted model count.

3 GPU-based DP Architecture

Over the last decade there has been significant effort in the consumer market on graphics
processing units (GPU) dedicated to render 3D graphics. GPUs are highly specialized in
processing geometry and image information independent and in parallel. When one compares
the actual computation power of such units to CPUs, GPUs are extremely cost efficient [28].
Recently, there is also increasingly strong interest in using such units for general purposes of
parallelizable tasks in artificial intelligence and computation intensive applications such as
number crunching [43].

In this section, we present an architecture for parallel dynamic programming on the
GPU. In the dynamic programming algorithm, as outlined in Figure 2, nodes only depend
on child nodes and in the table algorithm (PRIM) rows in a table are entirely independent
of each other. Consequently, there are two imminent ways to parallelize the execution. The
first way is to compute tables for multiple nodes in parallel. This, however, does not allow
for immediate massive parallelization due to dependencies to the child nodes. The second
way is to distribute rows among different computation units. This allows with the right
hindsight for massive parallelization, in particular, because the computation of a specific row
is independent of any other row in the same table.

We would like to emphasize that the crucial tricks are (i) the way how we parallelize and
(ii) a direct way to represent potential assignments (as explained below). Implementation
techniques on the GPU and its parallelization follow a straight-forward programming paradigm
and require in contrast to distributed-memory based systems [6] no parameter tuning.

The Kernel

Figure 3 outlines our dynamic programming approach on the GPU. It replaces Step 3 in the
sequential dynamic programming approach above. The core of our solver is the procedure K,

ESA 2018

28:6 Weighted Model Counting on the GPU by Exploiting Small Treewidth

which considers all possibly resulting rows at node t; even rows where the assignment in the
row might not satisfy the sub-formula Ft, as we do not know the satisfiability in advance.
For a node t, we call the table that consists of all possible rows exhaustive table (at node t).
On the GPU a potential row can be seen as an output pixel that has to be computed. For
all rows we take as common input the sub-formula Ft and specific to the row (assignment)
corresponding rows in the tables of children of t. In terms of the methodology of programming
on the GPU, procedure K is called a kernel. In our case, we spawn a (computation) thread at
the GPU for each potential row of the exhaustive table with kernel K. All threads have the
same instructions K, but start on different data. The underlying principle of the architecture
is usually called single instruction multiple threads (SIMT). The kernel K depends on the
type of the node just as before. For example, from the algorithm PRIM would still obtain
several case distinctions but only for the different node types. In practice, however, we do
not work on nice tree decompositions and therefore have case distinctions of mixed form.
Further, it is crucial to tune our implementation towards simplicity and efficiency, which
requires extensive bit-twiddling [2]. In particular, we need to reduce the number of execution
paths, which we obtain by avoiding conditional jumps if possible. In other words, we prefer
bit operations over if then else constructions to optimize for the underlying hardware. The
GPU computation outputs counts of assignments that satisfy the sub-formula Ft. Processing
all rows at once on the GPU allows us to compute the entire table in one GPU call, if the
number of threads on the GPU and the available video RAM (VRAM) suffices, otherwise we
run multiple “rounds” of computation.

Table Splitting

Even though running the kernel on the GPU allows us to obtain a parallel version of dynamic
programming, our main memory (RAM) requirements are quite extensive and the required
RAM might exceed the capacity of the VRAM on the GPU. Hence, we need to split large
tables into smaller partitions of exhaustive tables (chunks). For a node t, this affects tables
of the children of t as well as the exhaustive table at node t. We split the exhaustive table
by a table splitter in Step 3a of Figure 3. A chunk handler then takes relevant chunks of the
exhaustive table and spawns kernels depending on chunks of corresponding child tables as in
Step 3b of Figure 3. The resulting counts for one exhaustive table chunk of this step are
summed up accordingly and stored in table τt as previously explained.

TD Preprocessing

Orthogonally, in order to utilize the entire computation power of one cycle on the GPU, we
merge several nodes of the tree decomposition into one node to obtain larger exhaustive
tables. This reduces overhead caused by IO operations between the RAM and the VRAM
and caused by spawning and deallocating GPU threads. Therefore, we run a preprocessing
operation on the tree decomposition that merges small bags. This step may result in a
tree decomposition that is not nice. Hence, we need to implement more complex kernel
algorithms. Further, we obtain an even better GPU utilization by handling certain cases
(introduce, remove, and leaf [40]) in one case and merging small bags, which share introduced
and removed variables or clauses.

Data Types and Precision

In contrast to programs that are executed on the CPU, the instruction set for procedures on
the GPU (kernels) is very limited and only a few data structures are available. In particular,

J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser 28:7

there is no established data type for storing big numbers as directly offered in common
programming languages [27, 48]. Still, we need dedicated data types to represent large
numbers to express counts of satisfying assignments. Unfortunately, storing the exact number
of solutions in each row of each table can be too expensive on the VRAM. Instead, we use
the data type double. Hence, we cannot expect an exact solution when solving #Sat or
WMC. However, we can use an extended type (double4) that combines four plain double
types to increase the precision. Then, we can balance between a faster running time or higher
precision. When solving #SAT we may run into a double or double4 overflow. Then, we
can relax the instance into a weighted model count instance where all literals have the same
weight, but less than 1, and reconstruct the original count at the end of the computation.

Implementation

We implemented our approach for dynamic programming on the GPU and kernels for the
table algorithms PRIM and INC into our prototypical solver gpusat. We used OpenCL1.2 [37],
which is a universal vendor and hardware independent computation framework, and C++11
for our implementation. Currently, we only use very limited formula preprocessing and
simplifications during the search. Prior solving, we once propagate unit clauses in the usual
way. If there is a table that does not contain any solution, we terminate and output that
there is no solution. At a node t, we compute the sub-formula Ft using the CPU and start one
GPU thread for each possible assignment. Kernels are compiled only once. The assignment
is tied to the memory address, which then requires only memory for counts on the VRAM.
We statically split tables based on the available memory on the GPU. We merge bags of
small size as long as we obtain at most 14 variables in one bag.

4 Experimental Results

We performed an extensive series of experiments using several benchmark sets among
them instances that originate in model counting and weighted model counting questions.
All benchmarks as well as detailed results including raw data are publicly available2.
Theoretically, we do not expect to solve formulas with graph representations of high treewidth.
Therefore, we restricted the sets to instances where we were able to find tree decompositions
of width below 30 using standard heuristic decomposers [1]. Nonetheless, we provide upper
bounds on the treewidth for all instances of our benchmark sets. Since our benchmarks require
entirely different type of hardware, we can only use wall clock time as a time measurement.
Note that we used cheap consumer hardware for gpusat; whereas we used a very recent server
hardware configuration for all other solvers.

Hardware

Our results were gathered on Ubuntu 16.04 LTS Linux machines kernel 4.4.0-101 and 4.14.0-
041400, respectively, both pre-Spectre and pre-Meltdown kernels3. We ran non-GPU solvers
on a cluster of 9 nodes. Each node is equipped with two Intel Xeon E5-2650 CPUs consisting
of 12 physical cores each at 2.2 GHz clock speed and 256 GB RAM. Hyper threading was
disabled. For gpusat we used a machine equipped with a consumer GPU: Intel Core i3-3245
CPU operating at 3.4 GHz, 16 GB RAM, and one Sapphire Pulse ITX Radeon RX 570 GPU

2 See: Benchmark repository (including used tree decompositions) [19] and results/raw data [20].
3 See: spectreattack.com

ESA 2018

https://spectreattack.com/

28:8 Weighted Model Counting on the GPU by Exploiting Small Treewidth

Table 1 Overview on upper bounds of the primal treewidth for considered benchmarks. #
represents counting and W represents weighted model counting, number N of instances, number n

of variables, median t Mdn of the runtime in seconds, maximum runtime t, and median Mdn and
percentiles of the upper bounds on the treewidth.

set origin N n Mdn t[s] Mdn (max.) Mdn 50% 80% 95%

W Dqmr Cachet 660 140 0.0 (1.6) 28 28 42 44
W Grid Cachet 420 1825 0.2 (1.3) 29 29 39 71
W Plan Cachet 11 812 2.9 (9.3) 73 85 399 na
Mixed c2d 14 1287 3.8 (15.9) 57 63 399 540
Basic fre/meel 92 604 1.0 (9.3) 26 37 64 352
Proj. fre/meel 308 62586 120.3 (880.4) 273 328 1084 na
Weig. fre/meel 1080 200 0.1 (1.6) 28 28 40 48

running at 1.24 GHz with 32 compute units, 2048 shader units, and 4GB VRAM using driver
amdgpu-pro 17.10.

Solvers

We benchmarked c2d [12], d4 [33], DSHARP [35], miniC2D [36], cnf2eadt [30], bdd_minisat_
all [45], and sdd [13], which are based on knowledge compilation techniques. We also included
recent approximate solvers ApproxMC [7] and sts [17], as well as pure CDCL-based solvers
Clasp [25], Cachet [41], sharpCDCL4 and sharpSAT [44]. Further, we considered the recent
multi-core solver countAntom [5] utilizing exclusively all 12 physical cores, and DP based
solvers on tree decompositions from related domains that allow with slight modifications
for #Sat solving, i.e., dynasp [18] and dynQBF 1.1.1 [9]. We used all solvers with default
options and ran gpusat with uniform weights 0.78 for #SAT experiments. All solvers allow
for #SAT solving and sts, gpusat, miniC2D, and Cachet in addition support WMC5.

Setup and Limits

In order to draw conclusions about the efficiency of gpusat, we mainly inspected the wall
clock time including decomposition time and number of timeouts. We set a timeout of 900
seconds and limited available RAM to 8 GB per instance. For each instance we only used
one tree decomposition, which was obtained by setting a random seed for the decomposer.
All the tree decompositions together with the experimental data are provided as well2. Note
that we avoid IO access on the CPU solvers whenever possible, i.e., we extract instances into
the RAM before starting solving.

Benchmark Instances

We considered a selection of 2585 instances from various publicly available benchmark sets
for model counting and weighted model counting, consisting of Cachet benchmarks6 (1091
instances), fre/meel benchmarks7(1451 instances), and c2d benchmarks8 (14 instances).

4 See: tools.computational-logic.org
5 Note that in principle using a d-DNNF reasoner one can also use c2d and d4 to solve WMC.
6 See: cs.rochester.edu/u/kautz/Cachet
7 See: tinyurl.com/countingbenchmarks
8 See: reasoning.cs.ucla.edu/c2d

http://reasoning.cs.ucla.edu/c2d/download.php
http://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/minic2d/
http://www.cril.univ-artois.fr/KC/eadt.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://www.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
http://reasoning.cs.ucla.edu/sdd/
https://bitbucket.org/kuldeepmeel/approxmc
http://cs.stanford.edu/~ermon/code/STS.zip
https://github.com/potassco/clasp
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://tools.computational-logic.org/content/sharpCDCL.php
https://sites.google.com/site/marcthurley/sharpsat
https://github.com/daajoe/dynasp
https://github.com/gcharwat/dynqbf/releases/tag/v1.1.1
http://tools.computational-logic. org/content/sharpCDCL.php
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/index.html
http://tinyurl.com/countingbenchmarks
http://reasoning.cs.ucla.edu/c2d/results.html

J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser 28:9

0-20
21-30

31-40
41-50

51-60
61-70

71-80
81-100

101-150
151-300

301-500
>500

0

200

400

600

800

1000

N

W:Cachet (DQMR)
W:Cachet (Grid)
W:Cachet (Plan)
#:c2d (Mixed)
#:fre/meel (Basic)
#:fre/meel (Proj.)
#:fre/meel (Weig.)

Figure 4 Distribution of instances in upper bound intervals on the primal treewidth over our
benchmarks. The x-axis labels the intervals. The y-axis labels the number of observed instances.

Table 2 Number of WMC instances solved. Intervals are given with respect to primal graph.
abs err indicates the absolute error. best indicates the number of instances the solver solved the
fastest. † absolute weighted model counts were rounded to 3 decimal places. ∗ indicates a significant
(≥ 0.2 on average) absolute error.

solver abs err 0-20 21-30 31-40 41-50 51-60 >60 best
∑

Cachet 0.0 92 448 108 105 2 9 476 764
gpusat(i) ±0.0 127 487 83 101 0 0 42 798
gpusat(i4) ±0.0 127 432 75 90 0 0 0 724
gpusat(p) ±0.0 128 526 88 104 0 0 296 846
gpusat(p4) ±0.0 127 478 80 96 0 0 0 781
miniC2D †±0.0 126 513 143 110 5 6 143 903
sts∗ †±0.2 121 533 200 152 1 6 ∗na ∗1013

Treewidth

We computed upper bounds on the primal and incidence treewidth for our benchmarks.
The sets contain instances that have the same graph representation. Upper bounds on the
treewidth and running times to obtain a decomposition were quite similar for both the primal
graph and the incidence graph, except for instances of the set Proj. Hence, we focus on an
upper bound of the treewidth of the primal graph only and state them in intervals. Table 1
provides statistics on the benchmarks, including runtime of the decomposer to obtain a
decomposition. Further, the decomposer ran 0.034s in median (max 1.57s) for instances
of width 0–30, 0.132s (max 2.503s) for instances of width 31–40, and 0.054s (max 900.0s)
over all instances. The decomposer did not output a decomposition within 900 seconds for
41 instances. Table 1 also states the median of the width of the obtained decompositions
and its percentiles, which is the width below a given percentage the instances have. When
considering the set Dqmr, even 99% of the instances have treewidth below 45. In contrast, the
decomposer outputted only decompositions of very high width for instances from the set Proj.
Figure 4 illustrates the distribution of number of instances (y-axis) and their respective upper
bounds (x-axis) for primal treewidth. Considering all sets 54% of the instances have primal
treewidth below 30, 70% of the instances have treewidth below 40, and 88% of the instances
have treewidth below 150, and for 1% of the instances we obtained no result within the limit.

ESA 2018

28:10 Weighted Model Counting on the GPU by Exploiting Small Treewidth

Table 3 Number of counting instances solved by sum of the top ten counting solvers and gpusat.
The symbol ∗ indicates that this gpusat configuration was not among the top ten.

solver 0-20 21-30 31-40 41-50 51-60 >60 best
∑

c2d 164 519 175 116 20 118 120 1112
Cachet 133 421 91 109 8 58 13 820
d4 169 510 156 119 23 162 191 1139
gpusat(i) 169 490 79 97 0 0 1 835
gpusat(i4) 168 427 70 89 0 0 1 ∗761
gpusat(p) 169 523 79 104 0 0 88 875
gpusat(p4) 169 478 79 97 0 0 0 823
miniC2D 167 491 137 103 8 67 2 973
sharpSAT 136 465 136 112 11 124 483 984
sts 162 448 101 146 10 45 252 912

Solved Instances, Runtime, and Error (WMC)

Table 2 gives an overview on the number of solved instances for weighted model counting
benchmarks (Cachet) and the average error on the weighted model count of the solver. The
absolute error is the difference of the weighted model count of the solver and the one obtained
by Cachet. The configuration gpusat(p) and gpusat(i) refer to the primal and incidence graph
implementation, respectively. gpusat(i4) or gpusat(p4) indicates that this configuration uses
extended data type precision (double4). gpusat(p) solved the most instances in interval 0–20
and second most instances in interval 21–31 on benchmark sets for WMC; in interval 0–30
gpusat(p) solved the same number of instances as sts. However, gpusat(p) produced almost
no absolute error on average (±1.42 · 10−5). sts produced a very high absolute error on
average (± 0.2, stdev 0.8; avg relative error 1037) and had a relative error of more than one
order on 56 instances (even when rounding weighted model counts to 3 decimal places). For
example, sts outputted a weighted model count of 1.5 (0.873 Cachet) on instance 90-12-
3-q.cnf and 0.316 (0.001 Cachet) on instance or-50-5-4-UC-20.cnf. Slightly increasing the
number of sampling iterations and samples per level resulted in slower runtimes than gpusat
at similar error. Considering all instances gpusat(p) still solved the second most instances at
sufficiently high accuracy. The double4 precision versions solved 65 and 74 less instances at
negligible accuracy improvement, both versions provide at least the precision that Cachet
offers. Figure 5 (top) illustrates runtime results on weighted model counting instances of
width between 0 and 30 as cactus plot. When we directly compare gpusat(i) and gpusat(p),
gpusat(i) solved 18 instances, which could not be solved by gpusat(p), and 70 instances vice
versa. gpusat(i) was on 120 instances faster than gpusat(p) and 815 vice versa.

Solved Instances, Runtime, and Error (#SAT)

Table 3 gives an overview on the number of solved counting instances. gpusat(p) solved
the most instances in interval 0–30. Considering all instances gpusat(p) solved the sixth
most instances and surprisingly many instances in the interval 31–50. The double4 precision
versions solved 52 (p) and 74 (i) less instances. In our experiments we observed on average an
error of 4 · 10−13 for double and 2 · 10−32 for double4 when comparing to sharpSAT. Hence,
we consider the precision error negligible. Without using a uniform weight for gpusat, we
ran 80 (p) and 56 (i) times into a double overflow at similar runtime. Figure 5 (bottom)
illustrates runtime results (in seconds) on instances of interval 0–30 as cactus plot.

J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser 28:11

0 50 100 200 300 400 500 600 700

0
20

0
40

0
60

0
80

0

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●
●●●
●●
●●●●

●
●●●
●●●●●

●●
●●●
●
●
●
●
●●
●●●●●●

●
●●
●

●
●

●
●

●

●

●

●

●●−

●

vbest
sts
gpusat(p)
miniC2D
gpusat(i)
gpusat(p4)
gpusat(i4)
Cachet

0 50 150 250 350 450 550 650 750

0
20

0
40

0
60

0
80

0

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●

●●●
●●
●●
●
●●●
●●●●

●
●●●
●
●

●●
●●●●●

●

●

●

●●

●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●●●
●●●●

●●
●●

●●
●
●●
●

●●
●●
●
●●●
●●

●●

●●
●●

●

●
●
●

●

●●

●

●●●

●●
●●●●●●

●●●●
●●●
●●●
●●
●●
●●
●●

●

●
●●

●

●

●●

●

●●

●●●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●

●●●●
●●●
●●●●●●

●
●●
●●
●
●

●
●●

●●
●●●
●●●
●
●

●

●
●●
●●
●●
●●

●
●

●●

●
●
●
●

●

●
●

●

●
●

●●●

●●●
●●●●●●●●●●

●●●●●●●
●●●●●

●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●
●●
●
●●●

●
●●

●●
●
●

●●
●
●

●

●
●

●

●
●

●
●●

●

●

●

●●●−
●

●

●

●

●

●

vbest
gpusat(p)
c2d
d4
countAntom
miniC2D
gpusat(i)
gpusat(p4)
sts
sharpSAT
gpusat(i4)
Cachet
dsharp
sdd
dynQBF
dynasp(i)
cnf2eadt
approxmc
clasp
bdd_minisat_all
sharpCDCL

Figure 5 (Top): Runtime on WMC instances (Cachet) of primal treewidth at most 30 as cactus
plot. (Bottom): Runtime on counting instances (c2d, fre/meel) of primal treewidth at most 30 as a
cactus plot. vbest refers to the virtual best solver, i.e., the best runtime result among all solvers.
The x-axis labels consecutive integers that identify instances. The instances are ordered by running
time, individually for each solver. Hence, the figure does not provide insights on the solving time of
the individual instances and solvers might solve instances fast, which is usually indicated by the
virtual best solver. The y-axis labels the runtime (in seconds).

Runtime deviation

We tested gpusat with five different TDs (computed via htd [1]) to draw conclusions about
runtime stability. The results indicate that the best, the average, and the median among
those five tree decomposition still yield good runtime results. Regarding the number of tested
instances it is practically quite unlikely to obtain the worst case behavior.

ESA 2018

28:12 Weighted Model Counting on the GPU by Exploiting Small Treewidth

Discussion and Summary

Our results on upper bounds of the primal and incidence treewidth of WMC and #Sat
benchmark instances, show that more than half of the instances have treewidth below 30
and more than two third have treewidth below 40. We observed that table splitting was
necessary at width above 26. Since gpusat solved the vast majority of the instances in
interval 0–30 (only 22 of the 670 WMC instances and 23 of the 721 #Sat instances were not
solved), gpusat is highly suitable for the majority of the instances. It turns out that instances
in interval 30–40 are still in reach for our solver, even certain instances of width upper
bound 45 were solved. Overall gpusat was the fastest virtually exact solver in interval 0–30
for considered WMC and #Sat instances. Our results show that gpusat(p) solves more
instances than gpusat(i) and instances often faster, which indicates that gpusat(p) benefits
from its simpler algorithms. Using data types of higher precision does obviously not pay off.
However, relaxing a #Sat instance into a WMC instance with uniform weights gives almost
no precision loss. From our analysis, gpusat is not yet a general propose solver, but highly
competitive if the treewidth is below 30. Since we can often find tree decompositions of small
width in well below a second, it makes gpusat perfectly suitable for a portfolio approach.

5 Conclusion & Future Work

We introduced the OpenCL-based solver gpusat, which allows for solving #Sat and WMC
using dynamic programming on tree decompositions running on consumer GPUs. Our
solver parallelizes the computation of each table, vaguely speaking, a partial model count is
represented by a pixel. Further, we provide insights on tuning parameterized algorithms for
the GPU, including balancing VRAM utilization. We carried out rigorous experimental work,
including establishing upper bounds for treewidth of commonly used benchmarks and compar-
ing to most recent solvers. Our findings indicate that a majority of benchmark instances have
treewidth below 30. Then, we can also heuristically compute tree decompositions in less than
a second. Since gpusat is competitive on those instances, we show that implementations of
parameterized algorithms on the GPU are a promising attempt to solve WMC. Hence, those
algorithms are not just an interesting theoretical research direction, but its implementations
are also competitive in practice. In our opinion, a wide range of applications [8, 15], even
suggests to establish dedicated #Sat or WMC competitions, in particular, to obtain a wider
picture on which method pays off for which domain.

The results of this paper give rise to several research questions. For instance, it would be
interesting to determine the effect of formula preprocessing [32, 31] on the treewidth and
solver runtimes. We conducted initial experiments, which suggest that preprocessors might
drastically reduce the treewidth and hence increase the applicability of gpusat. Further, it
might be fruitful to investigate on obtaining decompositions that have smaller width [21]
or that are customized to improve efficiency of the dynamic programming algorithm [1].
An interesting further research direction is to study whether efficient data representation
techniques can be combined with dynamic programming similar to techniques for QBF [9]
and even be run in parallel on the GPU. Concerning potential overflows of counters for
counting-only problems, we aim at analyzing and implementing further improvements as for
example storing logarithmic counters [23]. At the same time we want to elaborate on ways
to provide high-precision counter (libraries). Finally, parameterized algorithmics suggests
recent parameters similar to treewidth [39], which can however be arbitrarily smaller than
treewidth. We also aim for implementing these algorithms in OpenCL.

J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser 28:13

References

1 Michael Abseher, Nysret Musliu, and Stefan Woltran. htd – a free, open-source framework
for (customized) tree decompositions and beyond. In Domenico Salvagnin and Michele Lom-
bardi, editors, Proceedings of the 14th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR’17),
volume 10335 of Lecture Notes in Computer Science, pages 376–386, Padova, Italy, jun 2017.
Springer Verlag. doi:10.1007/978-3-319-59776-8_30.

2 Sean Eron Anderson. Bit twiddling hacks. https://graphics.stanford.edu/~seander/
bithacks.html, 2009.

3 Sander Beckers, Gorik De Samblanx, Floris De Smedt, Toon Goedemé, Lars Struyf, and
Joost Vennekens. Parallel hybrid SAT solving using OpenCL. In Nico Roos, Mark Winands,
and Jos Uiterwijk, editors, Proceedings of the 24th Benelux Conference on Artificial Intelli-
gence (BNAIC’12), pages 11–18, Maastricht, The Netherlands, 2012. Maastricht University.

4 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

5 Jan Burchard, Tobias Schubert, and Bernd Becker. Laissez-faire caching for parallel #SAT
solving. In Marijn Heule and Sean Weaver, editors, Proceedings of the 18th International
Conference on Theory and Applications of Satisfiability Testing (SAT’15), volume 9340 of
Lecture Notes in Computer Science, pages 46–61, Austin, TX, USA, 2015. Springer Verlag.
doi:10.1007/978-3-319-24318-4_5.

6 Jan Burchard, Tobias Schubert, and Bernd Becker. Distributed parallel #sat solving. In
Bronis R. de Supinski, editor, Proceedings of the 2016 IEEE International Conference on
Cluster Computing (CLUSTER’16), pages 326–335, 2016. doi:10.1109/CLUSTER.2016.20.

7 Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y.
Vardi. Distribution-aware sampling and weighted model counting for SAT. In Carla E.
Brodley and Peter Stone, editors, Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI’14), pages 1722–1730, Québec City, QC, Canada, 2014. The AAAI
Press.

8 Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Improving approximate
counting for probabilistic inference: From linear to logarithmic sat solver calls. In Subbarao
Kambhampati, editor, Proceedings of 25th International Joint Conference on Artificial
Intelligence (IJCAI’16), pages 3569–3576, New York City, NY, USA, jul 2016. The AAAI
Press. URL: https://bitbucket.org/kuldeepmeel/approxmc.

9 Günther Charwat and Stefan Woltran. Dynamic programming-based QBF solving. In Flo-
rian Lonsing and Martina Seidl, editors, Proceedings of the 4th International Workshop on
Quantified Boolean Formulas (QBF’16), volume 1719, pages 27–40. CEUR Workshop Pro-
ceedings (CEUR-WS.org), 2016. co-located with 19th International Conference on Theory
and Applications of Satisfiability Testing (SAT’16).

10 Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. Tractable learning for structured
probability spaces: A case study in learning preference distributions. In Qiang Yang, editor,
Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI’15).
The AAAI Press, 2015.

11 Alessandro Dal Palu, Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Cud@SAT:
SAT solving on GPUs. Journal of Experimental & Theoretical Artificial Intelligence, 27(3),
2015.

12 Adnan Darwiche. New advances in compiling CNF to decomposable negation normal form.
In Ramon López De Mántaras and Lorenza Saitta, editors, Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI’04), pages 318–322, Valencia, Spain, 2004. IOS
Press.

ESA 2018

http://dx.doi.org/10.1007/978-3-319-59776-8_30
https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html
http://dx.doi.org/10.1007/978-3-319-24318-4_5
http://dx.doi.org/10.1109/CLUSTER.2016.20
https://bitbucket.org/kuldeepmeel/approxmc

28:14 Weighted Model Counting on the GPU by Exploiting Small Treewidth

13 Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases.
In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI’11), pages 819–826, Barcelona, Catalonia, Spain, jul 2011. AAAI
Press/IJCAI.

14 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The pace 2017
parameterized algorithms and computational experiments challenge: The second iteration.
In Daniel Lokshtanov and Naomi Nishimura, editors, Proceedings of the 12th International
Symposium on Parameterized and Exact Computation (IPEC’17), Leibniz International
Proceedings in Informatics (LIPIcs), pages 30:1—-30:13. Dagstuhl Publishing, 2017. doi:
10.4230/LIPIcs.IPEC.2017.30.

15 Carmel Domshlak and Jörg Hoffmann. Probabilistic planning via heuristic forward search
and weighted model counting. Journal of Artificial Intelligence Research, 30, 2007. doi:
10.1613/jair.2289.

16 Leonardo Dueñas-Osorio, Kuldeep S. Meel, Roger Paredes, and Moshe Y. Vardi. Counting-
based reliability estimation for power-transmission grids. In Satinder P. Singh and Shaul
Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence (AAAI’17), pages 4488–4494, San Francisco, CA, USA, feb 2017. The AAAI Press.

17 Stefano Ermon, Carla P. Gomes, and Bart Selman. Uniform solution sampling using a
constraint solver as an oracle. In Nando de Freitas and Kevin Murphy, editors, Proceedings
of the 28th Conference on Uncertainty in Artificial Intelligence (UAI’12), pages 255–264,
Catalina Island, CA, USA, aug 2012. AUAI Press.

18 Johannes K. Fichte, Markus Hecher, Michael Morak, and Stefan Woltran. Answer set solv-
ing with bounded treewidth revisited. In Marcello Balduccini and Tomi Janhunen, editors,
Proceedings of the 14th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’17), volume 10377 of Lecture Notes in Computer Science, pages 132–
145, Espoo, Finland, jul 2017. Springer Verlag. doi:10.1007/978-3-319-61660-5_13.

19 Johannes K. Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser. A Benchmark
Collection of #SAT Instances and Tree Decompositions (Benchmark Set), 2018. doi:10.
5281/zenodo.1299752.

20 Johannes K. Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser. Analyzed Bench-
marks and Raw Data on Experiments for gpusat (Dataset), jun 2018. doi:10.5281/zenodo.
1299742.

21 Johannes K. Fichte, Neha Lodha, and Stefan Szeider. Sat-based local improvement for
finding tree decompositions of small width. In Serge Gaspers and Toby Walsh, editors,
Proceedings on the 20th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’17), pages 401–411, Melbourne, VIC, Australia, aug 2017. Springer
Verlag. doi:10.1007/978-3-319-66263-3_25.

22 Ferdinando Fioretto, Enrico Pontelli, William Yeoh, and Rina Dechter. Accelerating exact
and approximate inference for (distributed) discrete optimization with GPUs. Constraints,
23(1):1–23, 2017. doi:10.1007/s10601-017-9274-1.

23 Philippe Flajolet. Approximate counting: A detailed analysis. BIT Numerical Mathematics,
25(1):113–134, 1985. doi:10.1007/BF01934993.

24 Hironori Fujii and Noriyuki Fujimoto. Gpu acceleration of bcp procedure for sat algorithms.
In Hamid R. Arabnia, Hiroshi Ishii, Minoru Ito Kazuki Joe, and Hiroaki Nishikawa, editors,
Proceedings of the 24th International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’12), pages 10–16, Las Vegas, NV, USA, 2012. CSREA
Press.

25 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer set
solving: From theory to practice. Artificial Intelligence, 187-188:52–89, 2012. doi:10.
1016/j.artint.2012.04.001.

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30
http://dx.doi.org/10.1613/jair.2289
http://dx.doi.org/10.1613/jair.2289
http://dx.doi.org/10.1007/978-3-319-61660-5_13
http://dx.doi.org/10.5281/zenodo.1299752
http://dx.doi.org/10.5281/zenodo.1299752
http://dx.doi.org/10.5281/zenodo.1299742
http://dx.doi.org/10.5281/zenodo.1299742
http://dx.doi.org/10.1007/978-3-319-66263-3_25
http://dx.doi.org/10.1007/s10601-017-9274-1
http://dx.doi.org/10.1007/BF01934993
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1016/j.artint.2012.04.001

J. K. Fichte, M. Hecher, S. Woltran, and M. Zisser 28:15

26 Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Chapter 20: Model counting. In
Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pages 633–
654. IOS Press, Amsterdam, Netherlands, 2009. doi:10.3233/978-1-58603-929-5-633.

27 Torbjörn Granlund, Gunnar Sjödin, Hans Riesel, Richard Stallman, Brian Beuning, Doug
Lea, Paul Zimmermann, Ken Weber, Per Bothner, Joachim Hollman, Bennet Yee, Andreas
Schwab, Robert Harley, David Seal, Torsten Ekedahl, Linus Nordberg, Kevin Ryde, Kent
Boortz, Steve Root, Gerardo Ballabio, Jason Moxham, Niels Möller, Alberto Zanoni, Marco
Bodrato, David Harvey, Martin Boij, Marc Glisse, David S Miller, Mark Sofroniou, and
Ulrich Weigand. The GNU multiple precision arithmetic library. https://gmplib.org,
2016.

28 Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramin-
der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz,
Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy
Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas
Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and
Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing unit. In David
Brooks, editor, Proceedings of the 44th International Symposium on Computer Architecture
(ISCA’17), pages 1–12, Toronto, ON, Canada, jun 2017. doi:10.1145/3079856.3080246.

29 Ton Kloks. Treewidth. Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer Verlag, 1994. doi:10.1007/BFb0045375.

30 Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas. Knowledge
compilation for model counting: Affine decision trees. In Francesca Rossi and Sebastian
Thrun, editors, Proceedings of the 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI’13), Beijing, China, aug 2013. The AAAI Press.

31 Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Improving model counting
by leveraging definability. In Subbarao Kambhampati, editor, Proceedings of 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’16), pages 751–757, New York
City, NY, USA, 2016. The AAAI Press.

32 Jean-Marie Lagniez and Pierre Marquis. Preprocessing for propositional model counting.
In Carla E. Brodley and Peter Stone, editors, Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI’14), pages 2688–2694, Québec City, QC, Canada, 2014. The
AAAI Press.

33 Jean-Marie Lagniez and Pierre Marquis. An improved decision-DDNF compiler. In Carles
Sierra, editor, Proceedings of the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI’17), pages 667–673, Melbourne, VIC, Australia, 2017. The AAAI Press.

34 Norbert Manthey. Towards next generation sequential and parallel SAT solvers. KI -
Kuenstliche Intelligenz, 30(3-4):339–342, 2016. doi:10.1007/s13218-015-0406-8.

35 Sheila A. Muise, Christian J .and McIlraith, J. Christopher Beck, and Eric I. Hsu. Dsharp:
Fast d-DNNF compilation with sharpSAT. In Leila Kosseim and Diana Inkpen, editors,
Proceedings of the 25th Canadian Conference on Artificial Intelligence (AI’17), volume

ESA 2018

http://dx.doi.org/10.3233/978-1-58603-929-5-633
https://gmplib.org
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1007/s13218-015-0406-8

28:16 Weighted Model Counting on the GPU by Exploiting Small Treewidth

7310 of Lecture Notes in Computer Science, pages 356–361, Toronto, ON, Canada, 2012.
Springer Verlag. doi:10.1007/978-3-642-30353-1_36.

36 Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams.
In Qiang Yang and Michael Wooldridge, editors, Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI’15), pages 3141–3148. The AAAI Press, 2015.

37 Jonathan Passerat-Palmbach and David Hill. OpenCL: A suitable solution to simplify
and unify high performance computing developments, chapter 8. Saxe-Coburg Publications,
2013.

38 Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1–2), 1996.
doi:10.1016/0004-3702(94)00092-1.

39 Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle. Solving #SAT and MAXSAT
by dynamic programming. Journal of Artificial Intelligence Research, 54:59–82, 2015.

40 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. Journal
of Discrete Algorithms, 8(1):50—-64, 2010. doi:10.1016/j.jda.2009.06.002.

41 Tian Sang, Fahiem Bacchus, Paul Beame, Henry Kautz, and Toniann Pitassi. Combining
component caching and clause learning for effective model counting. In Holger H. Hoos
and David G. Mitchell, editors, Online Proceedings of the 7th International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), Vancouver, BC, Canada, 2004.

42 Tian Sang, Paul Beame, and Henry Kautz. Performing bayesian inference by weighted
model counting. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proceedings
of the 29th National Conference on Artificial Intelligence (AAAI’05). The AAAI Press,
2005.

43 Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The first
collision for full sha-1. In Jonathan Katz and Hovav Shacham, editors, Proceedings of the
37th Annual International Cryptology Conference (Advances in Cryptology – CRYPTO’17),
volume 10401 of Lecture Notes in Computer Science, pages 570–596, Santa Barbara, CA,
USA, 2017. Springer Verlag. doi:10.1007/978-3-319-63688-7_19.

44 Marc Thurley. sharpSAT – counting models with advanced component caching and implicit
BCP. In Armin Biere and Carla P. Gomes, editors, Proceedings of the 9th International
Conference Theory and Applications of Satisfiability Testing (SAT’06), pages 424–429, Seat-
tle, WA, USA, 2006. Springer Verlag. doi:10.1007/11814948_38.

45 Takahis Toda and Takehide Soh. Implementing efficient all solutions SAT solvers. ACM
Journal of Experimental Algorithmics, 21:1.12, 2015. Special Issue SEA 2014, Regular
Papers and Special Issue ALENEX 2013.

46 Tom C. van der Zanden and Hans L. Bodlaender. Computing treewidth on the GPU. In
Daniel Lokshtanov and Naomi Nishimura, editors, Proceedings of the 12th International
Symposium on Parameterized and Exact Computation (IPEC’17), volume 89 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 29:1–29:13, Dagstuhl, Germany,
2018. Dagstuhl Publishing. doi:10.4230/LIPIcs.IPEC.2017.29.

47 Yexiang Xue, Arthur Choi, and Adnan Darwiche. Basing decisions on sentences in decision
diagrams. In Jörg Hoffmann and Bart Selman, editors, Proceedings of the 26th AAAI
Conference on Artificial Intelligence (AAAI’12), Toronto, ON, Canada, 2012. The AAAI
Press.

48 Moshe Zadka and Guido van Rossum. PEP 237 – unifying long integers and integers.
https://www.python.org/dev/peps/pep-0237/, 2001.

http://dx.doi.org/10.1007/978-3-642-30353-1_36
http://dx.doi.org/10.1016/0004-3702(94)00092-1
http://dx.doi.org/10.1016/j.jda.2009.06.002
http://dx.doi.org/10.1007/978-3-319-63688-7_19
http://dx.doi.org/10.1007/11814948_38
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.29
https://www.python.org/dev/peps/pep-0237/

Light Spanners for High Dimensional Norms via
Stochastic Decompositions
Arnold Filtser1

Ben-Gurion University of the Negev, Beer-Sheva, Israel
arnoldf@cs.bgu.ac.il

Ofer Neiman2

Ben-Gurion University of the Negev, Beer-Sheva, Israel
neimano@cs.bgu.ac.il

Abstract
Spanners for low dimensional spaces (e.g. Euclidean space of constant dimension, or doubling
metrics) are well understood. This lies in contrast to the situation in high dimensional spaces,
where except for the work of Har-Peled, Indyk and Sidiropoulos (SODA 2013), who showed that
any n-point Euclidean metric has an O(t)-spanner with Õ(n1+1/t2) edges, little is known.

In this paper we study several aspects of spanners in high dimensional normed spaces. First,
we build spanners for finite subsets of `p with 1 < p ≤ 2. Second, our construction yields a
spanner which is both sparse and also light, i.e., its total weight is not much larger than that of
the minimum spanning tree. In particular, we show that any n-point subset of `p for 1 < p ≤ 2
has an O(t)-spanner with n1+Õ(1/tp) edges and lightness nÕ(1/tp).

In fact, our results are more general, and they apply to any metric space admitting a certain
low diameter stochastic decomposition. It is known that arbitrary metric spaces have an O(t)-
spanner with lightness O(n1/t). We exhibit the following tradeoff: metrics with decomposability
parameter ν = ν(t) admit an O(t)-spanner with lightness Õ(ν1/t). For example, n-point Euc-
lidean metrics have ν ≤ n1/t, metrics with doubling constant λ have ν ≤ λ, and graphs of genus
g have ν ≤ g. While these families do admit a (1 + ε)-spanner, its lightness depend exponentially
on the dimension (resp. log g). Our construction alleviates this exponential dependency, at the
cost of incurring larger stretch.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Spanners, Stochastic Decompositions, High Dimensional Euclidean
Space, Doubling Dimension, Genus Graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.29

Acknowledgements We would like to thank an anonymous reviewer for useful comments.

1 Introduction

1.1 Spanners
Given a metric space (X, dX), a weighted graph H = (X,E) is a t-spanner of X, if for every
pair of points x, y ∈ X, dX(x, y) ≤ dH(x, y) ≤ t · dX(x, y) (where dH is the shortest path
metric in H). The factor t is called the stretch of the spanner. Two important parameters of
interest are: the sparsity of the spanner, i.e. the number of edges, and the lightness of the

1 Partially supported by the Lynn and William Frankel Center for Computer Sciences, ISF grant 1817/17,
and by BSF Grant 2015813.

2 Partially supported by ISF grant 1817/17, and by BSF Grant 2015813.

© Arnold Filtser and Ofer Neiman;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnoldf@cs.bgu.ac.il
mailto:neimano@cs.bgu.ac.il
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Light Spanners for High Dimensional Norms via Stochastic Decompositions

spanner, which is the ratio between the total weight of the spanner and the weight of the
minimum spanning tree (MST).

The tradeoff between stretch and sparsity/lightness of spanners is the focus of an intensive
research effort, and low stretch spanners were used in a plethora of applications, to name
a few: Efficient broadcast protocols [8, 9], network synchronization [6, 49, 8, 9, 48], data
gathering and dissemination tasks [14, 60, 22], routing [61, 49, 50, 57], distance oracles and
labeling schemes [47, 58, 53], and almost shortest paths [19, 52, 23, 25, 28].

Spanners for general metric spaces are well understood. The seminal paper of [4] showed
that for any parameter k ≥ 1, any metric admits a (2k − 1)-spanner with O(n1+1/k) edges,
which is conjectured to be best possible. For light spanners, improving [17, 24], it was shown
in [18] that for every constant ε > 0 there is a (2k− 1)(1 + ε)-spanner with lightness O(n1/k)
and at most O(n1+1/k) edges.

There is an extensive study of spanners for restricted classes of metric spaces, most
notably subsets of low dimensional Euclidean space, and more generally doubling metrics.3
For such low dimensional metrics, much better spanners can be obtained. Specifically, for n
points in d-dimensional Euclidean space, [54, 59, 21] showed that for any ε ∈ (0, 1

2) there is
a (1 + ε)-spanner with n · ε−O(d) edges and lightness ε−O(d) (further details on Euclidean
spanners could be found in [45]). This result was recently generalized to doubling metrics
by [12], with ε−O(ddim) lightness and n · ε−O(ddim) edges (improving [55, 30, 29]). Such
low stretch spanners were also devised for metrics arising from certain graph families. For
instance, [4] showed that any planar graph admits a (1 + ε)-spanner with lightness O(1/ε).
This was extended to graphs with small genus4 by [31], who showed that every graph with
genus g > 0 admits a spanner with stretch (1 + ε) and lightness O(g/ε). A long sequence
of works for other graph families, concluded recently with a result of [13], who showed
(1 + ε)-spanners for graphs excluding Kr as a minor, with lightness ≈ O(r/ε3).

In all these results there is an exponential dependence on a certain parameter of the input
metric space (the dimension, the logarithm of the genus/minor-size), which is unfortunately
unavoidable for small stretch (for all n-point metric spaces the dimension/parameter is at
most O(logn), while spanner with stretch better than 3 requires in general Ω(n2) edges
[58]). So when the relevant parameter is small, light spanners could be constructed with
stretch arbitrarily close to 1. However, in metrics arising from actual data, the parameter
of interest may be moderately large, and it is not known how to construct light spanners
avoiding the exponential dependence on it. In this paper, we devise a tradeoff between
stretch and sparsity/lightness that can diminish this exponential dependence. To the best of
our knowledge, the only such tradeoff is the recent work of [34], who showed that n-point
subsets of Euclidean space (in any dimension) admit a O(t)-spanner with Õ(n1+1/t2) edges
(without any bound on the lightness).

1.2 Stochastic Decompositions
In a (stochastic) decomposition of a metric space, the goal is to find a partition of the
points into clusters of low diameter, such that the probability of nearby points to fall into
different clusters is small. More formally, for a metric space (X, dX) and parameters t ≥ 1

3 A metric space (X, d) has doubling constant λ if for every x ∈ X and radius r > 0, the ball B(x, 2r) can
be covered by λ balls of radius r. The doubling dimension is defined as ddim = log2 λ. A d-dimensional
`p space has ddim = Θ(d), and every n point metric has ddim = O(logn).

4 The genus of a graph is minimal integer g, such that the graph could be drawn on a surface with g
“handles”.

A. Filtser and O. Neiman 29:3

and δ = δ(|X|, t) ∈ [0, 1], we say that the metric is (t, δ)-decomposable, if for every ∆ > 0
there is a probability distribution over partitions of X into clusters of diameter at most t ·∆,
such that every two points of distance at most ∆ have probability at least δ to be in the
same cluster.

Such decompositions were introduced in the setting of distributed computing [7, 43], and
have played a major role in the theory of metric embedding [10, 51, 26, 38, 39, 1], distance
oracles and routing [44, 2], multi-commodity flow/sparsest cut gaps [41, 37] and also were
used in approximation algorithms and spectral methods [15, 36, 11]. We are not aware of any
direct connection of these decompositions to spanners (except spanners for general metrics
implicit in [44, 2]).

Note that our definition is slightly different than the standard one. The probability δ
that a pair x, y ∈ X is in the same cluster may depend on |X| and t, but unlike previous
definitions, it does not depend on the precise value of dX(x, y) (rather, only on the fact
that it is bounded by ∆). This simplification suits our needs, and it enables us to capture
more succinctly the situation for high dimensional normed spaces, where the dependence
of δ on dX(x, y) is non-linear. These stochastic decompositions are somewhat similar to
Locality Sensitive Hashing (LSH), that were used by [34] to construct spanners. The main
difference is that in LSH, far away points may be mapped to the same cluster with some
small probability, and more focus was given to efficient computation of the hash function. It
is implicit in [34] that existence of good LSH imply sparse spanners.

A classic tool for constructing spanners in normed and doubling spaces is WSPD (Well
Separated Pair Decomposition, see [16, 56, 35]). Given a set of points P , a WSPD is a set of
pairs {(Ai, Bi)}i of subsets of P , where the diameters of Ai and Bi are at most an ε-fraction
of d(Ai, Bi), and such that for every pair x, y ∈ P there is some i with (x, y) ∈ Ai ×Bi. A
WSPD is designed to create a (1 +O(ε))-spanner, by adding an arbitrary edge between a
point in Ai and a point in Bi for every i (as opposed to our construction, based on stochastic
decompositions, in which we added only inner-cluster edges). An exponential dependence on
the dimension is unavoidable with such a low stretch, thus it is not clear whether one can
use a WSPD to obtain very sparse or light spanners in high dimensions.

1.3 Our Results
Our main result is exhibiting a connection between stochastic decompositions of metric spaces,
and light spanners. Specifically, we show that if an n-point metric is (t, δ)-decomposable,
then for any constant ε > 0, it admits a (2 + ε) · t-spanner with Õ(n/δ) edges and lightness
Õ(1/δ). (Abusing notation, Õ hides polylog(n) factors.)

It can be shown that Euclidean metrics are (t, n−O(1/t2))-decomposable, thus our results
extends [34] by providing a smaller stretch (2 + ε) · t-spanner, which is both sparse – with
Õ(n1+O(1/t2)) edges – and has lightness Õ(nO(1/t2)). For d-dimensional Euclidean space,
where d = o(logn) we can obtain lightness Õ(2O(d/t2)) and Õ(n·2O(d/t2)) edges. We also show
that n-point subsets of `p spaces for any fixed 1 < p < 2 are (t, n−O(log2 t/tp))-decomposable,
which yields light spanners for such metrics as well.

In addition, metrics with doubling constant λ are (t, λ−O(1/t))-decomposable [33, 1], and
graphs with genus g are (t, g−O(1/t))-decomposable [40, 3], which enables us to alleviate the
exponential dependence on ddim and log g in the sparsity/lightness by increasing the stretch.
See Table 1 for more details. (We remark that for graphs excluding Kr as a minor, the
current best decomposition achieves probability only 2−O(r/t) [3]; if this will be improved to
the conjectured r−O(1/t), then our results would provide interesting spanners for this family
as well.)

ESA 2018

29:4 Light Spanners for High Dimensional Norms via Stochastic Decompositions

Table 1 In this table we summarize some corollaries of our main result. The metric spaces have
cardinality n, and Õ hides (mild) polylog(n) factors. The stretch t is a parameter ranging between 1
and logn.

Stretch Lightness Sparsity

Euclidean space O(t) Õ(n1/t2) Õ(n1+1/t2) Corollary 6
O(
√

logn) Õ(1) Õ(n)

`p space, 1 < p < 2 O(t) Õ(n log2 t/tp) Õ(n1+ log2 t/tp) Corollary 7
O((logn · log logn)1/p) Õ(1) Õ(n)

Doubling constant λ O(t) Õ(λ1/t) Õ(n · λ1/t) Corollary 8
O(log λ) Õ(1) Õ(n)

Graph with genus g O(t) Õ(g1/t) O(n+ g) Corollary 9
O(log g) Õ(1) O(n+ g)

Note that up to polylog(n) factors, our stretch-lightness tradeoff generalizes the [18]
spanner for general metrics, which has stretch (2t− 1)(1 + ε) and lightness O(n1/t). Define
for a (t, δ)-decomposable metric the parameter ν = 1/δt. Then we devise for such a metric a
(2t− 1)(1 + ε)-spanner with lightness O(ν1/t).

For example, consider an n-point metric with doubling constant λ = 2
√

logn. No spanner
with stretch o(logn/ log logn) and lightness Õ(1) for such a metric was known. Our result
implies such a spanner, with stretch O(

√
logn).

We also remark that the existence of light spanners does not imply decomposability.
For example, consider the shortest path metrics induced by bounded-degree expander
graphs. Even though these metrics have the (asymptotically) worst possible decomposability
parameters (they are only (t, n−Ω(1/t))-decomposable [42]), they nevertheless admit 1-spanners
with constant lightness (the spanner being the expander graph itself).

2 Preliminaries

Given a metric space (X, dX), let T denote its minimum spanning tree (MST) of weight L.
For a set A ⊆ X, the diameter of A is diam(A) = maxx,y∈A dX(x, y). Assume, as we may,
that the minimal distance in X is 1.

By Oε we denote asymptotic notation which hides polynomial factors of 1
ε , that is

Oε(f) = O(f) · poly(1
ε). Unless explicitly specified otherwise, all logarithms are in base 2.

Nets. For r > 0, a set N ⊆ X is an r-net, if (1) for every x ∈ X there is a point y ∈ N with
dX(x, y) ≤ r, and (2) every pair of net points y, z ∈ N satisfy dX(y, z) > r. It is well known
that nets can be constructed in a greedy manner. For 0 < r1 ≤ r2 ≤ · · · ≤ rs, a hierarchical
net is a collection of nested sets X ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Ns, where each Ni is an ri-net. Since
Ni+1 satisfies the second condition of a net with respect to radius ri, one can obtain Ni from
Ni+1 by greedily adding points until the first condition is satisfied as well. In the following
claim we argue that nets are sparse sets with respect to the MST weight.

I Claim 1. Consider a metric space (X, dX) with MST of weight L, let N be an r-net, then
|N | ≤ 2L

r .

Proof. Let T be the MST of X, note that for every x, y ∈ N , dT (x, y) ≥ dX(x, y) > r. For a
point x ∈ N , BT (x, b) = {y ∈ X | dT (x, y) ≤ b} is the ball of radius b around x in the MST
metric. We say that an edge {y, z} of T is cut by the ball BT (x, b) if dT (x, y) < b < dT (x, z).

A. Filtser and O. Neiman 29:5

Consider the set B of balls of radius r/2 around the points of N . We can subdivide5 the
edges of T until no edge is cut by any of the balls of B. Note that the subdivisions do not
change the total weight of T nor the distances between the original points of X.

If both the endpoints of an edge e belong to the ball B, we say that the edge e is internal
to B. By the second property of nets, and since BT (x, b) ⊆ BX(x, b), the set of internal
edges corresponding to the balls B are disjoint. On the other hand, as the tree is connected,
the weight of the internal edges in each ball must be at least r/2. As the total weight is
bounded by L, the claim follows. J

Stochastic Decompositions. Consider a partition P of X into disjoint clusters. For x ∈ X,
we denote by P(x) the cluster P ∈ P that contains x. A partition P is ∆-bounded if for every
P ∈ P, diam(P) ≤ ∆. If a pair of points x, y belong to the same cluster, i.e. P(x) = P(y),
we say that they are clustered together by P.

I Definition 2. For metric space (X, dX) and parameters t ≥ 1, ∆ > 0 and δ ∈ [0, 1], a
distribution D over partitions of X is called a (t,∆, δ)-decomposition, if it fulfills the following
properties.

Every P ∈ supp(D) is t ·∆-bounded.
For every x, y ∈ X such that dX(x, y) ≤ ∆, PrD [P(x) = P(y)] ≥ δ.

A metric is (t, δ)-decomposable, where δ = δ(|X|, t), if it admits a (t,∆, δ)-decomposition for
any ∆ > 0. A family of metrics is (t, δ)-decomposable if each member (X, dX) in the family
is (t, δ)-decomposable.

We observe that if a metric (X, dX) is (t, δ(|X|, t))-decomposable, then also every
sub-metric Y ⊆ X is (t, δ(|X|, t))-decomposable. In some cases Y is also (t, δ(|Y |, t))-
decomposable (we will exploit these improved decompositions for subsets of `p). The
following claim argues that sampling O(logn

δ) partitions suffices to guarantee that every pair
is clustered at least once.

I Claim 3. Let (X, dX) be a metric space which admits a (t,∆, δ)-decomposition, and let
N ⊆ X be of size |N | = n. Then there is a set {P1, . . . ,Pϕ} of t ·∆-bounded partitions of N ,
where ϕ = 2 lnn

δ , such that every pair x, y ∈ N at distance at most ∆ is clustered together by
at least one of the Pi.

Proof. Let {P1, . . . ,Pϕ} be i.i.d partitions drawn from the (t,∆, δ)-decomposition of X.
Consider a pair x, y ∈ N at distance at most ∆. The probability that x, y are not clustered
in any of the partitions is bounded by

Pr [∀i, Pi(x) 6= Pi(y)] ≤ (1− δ)(2 lnn)/δ ≤ 1
n2 .

The claim now follows by the union bound. J

3 Light Spanner Construction

In this section we present a generalized version of the algorithm of [34], depicted in Algorithm 1.
The differences in execution and analysis are: (1) Our construction applies to general
decomposable metric spaces – we use decompositions rather than LSH schemes. (2) We

5 To subdivide an edge e = {x, y} of weight w the following steps are taken: (1) Delete the edge e. (2)
Add a new vertex ve. (3) Add two new edges {x, ve}, {ve, y} with weights α ·w and (1−α) ·w for some
α ∈ (0, 1).

ESA 2018

29:6 Light Spanners for High Dimensional Norms via Stochastic Decompositions

Algorithm 1 H = Spanner-From-Decompositions((X, dX), t, ε).
1: Let N0 ⊇ N1 ⊇ · · · ⊇ Nlog1+ε L be a hierarchical net, where Ni is ε ·∆i = ε · (1 + ε)i-net

of (X, dX).
2: for i ∈

{
0, 1, . . . , log1+ε L

}
do

3: For parameters ∆ = (1 + 2ε)∆i and t, let P1, . . . ,Pϕi be the set of t · ∆-bounded
partitions guaranteed by Claim 3 on the set Ni.

4: for j ∈ {1, . . . , ϕi} and P ∈ Pj do
5: Let vP ∈ P be an arbitrarily point.
6: Add to H an edge from every point x ∈ P \ {vP } to vP .
7: end for
8: end for
9: return H.

analyze the lightness of the resulting spanners. (3) We achieve stretch t · (2 + ε) rather than
O(t).

The basic idea is as follows. For every weight scale ∆i = (1 + ε)i, construct a sequence
of t ·∆i-bounded partitions P1, . . . ,Pϕ such that every pair x, y at distance ≤ ∆i will be
clustered together at least once. Then, for each j ∈ [ϕ] and every cluster P ∈ Pj , we pick an
arbitrary root vertex vP ∈ P , and add to our spanner edges from vP to all the points in P .
This ensures stretch 2t · (1 + ε) for all pairs with dX(x, y) ∈ [(1− ε)∆i,∆i]. Thus, repeating
this procedure on all scales i = 1, 2, . . . provides a spanner with stretch 2t · (1 + ε).

However, the weight of the spanner described above is unbounded. In order to address
this problem at scale ∆i, instead of taking the partitions over all points, we partition only
the points of an ε∆i-net. The stretch is still small: x, y at distance ∆i will have nearby net
points x̃, ỹ. Then, a combination of newly added edges with older ones will produce a short
path between x to y. The bound on the lightness will follow from the observation that the
number of net points is bounded with respect to the MST weight.

I Theorem 4. Let (X, dX) be a (t, δ)-decomposable n-point metric space. Then for every ε ∈
(0, 1/8), there is a t·(2+ε)-spanner for X with lightness Oε

(
t
δ · log2 n

)
and Oε

(
n
δ · logn · log t

)
edges.

Proof. We will prove stretch t · (2 +O(ε)) instead of t · (2 + ε). This is good enough, as post
factum we can scale ε accordingly.

Stretch Bound. Let c > 1 be a constant (to be determined later). Consider a pair x, y ∈ X
such that (1 + ε)i−1 < dX(x, y) ≤ (1 + ε)i. We will assume by induction that every pair x′, y′
at distance at most (1 + ε)i−1 already enjoys stretch at most α = t · (2 + c · ε) in H. Set
∆i = (1 + ε)i, and let x̃, ỹ ∈ Ni be net points such that dX(x, x̃), dX(y, ỹ) ≤ ε ·∆i. By the
triangle inequality dX(x̃, ỹ) ≤ (1 + 2ε) ·∆i = ∆. Therefore there is a t ·∆-bounded partition
P constructed at round i such that P(x̃) = P(ỹ). In particular, there is a center vertex
v = vP(x̃) such that both {x̃, v} , {ỹ, v} were added to the spanner H. Using the induction
hypothesis on the pairs {x, x̃} and {y, ỹ}, we conclude

dH (x, y) ≤ dH (x, x̃) + dH (x̃, v) + dH (v, ỹ) + dH (ỹ, y)
≤ α · ε∆i + (1 + 2ε)t∆i + (1 + 2ε)t∆i + α · ε∆i

(∗)
<

α

1 + ε
·∆i ≤ α · dX (x, y) ,

where the inequality (∗) follows as 2(1 + 2ε)t < α(1
1+ε − 2ε) for large enough constant c,

using that ε < 1/8.

A. Filtser and O. Neiman 29:7

Sparsity bound. For a point x ∈ X, let sx be the maximal index such that x ∈ Nsx . Note
that the number of edges in our spanner is not affected by the choice of “cluster centers” in
line 5 in Algorithm 1. Therefore, the edge count will be still valid if we assume that vP ∈ P
is the vertex y with maximal value sy among all vertices in P .

Consider an edge {x, y} added during the i’s phase of the algorithm. Necessarily x, y ∈ Ni,
and x, y belong to the same cluster P of a partition Pj . W.l.o.g, y = vP , in particular
sx ≤ sy. The edge {x, y} will be charged upon x. Since the partitions at level i are t ·∆
bounded, we have that dX(x, y) ≤ t · ∆ = t · (1 + 2ε) · (1 + ε)i. Hence, for i′ such that
ε · (1 + ε)i′ > t · (1 + 2ε) · (1 + ε)i, i.e. i′ > i+Oε(log t), the points x, y cannot both belong to
Ni′ . As sx ≤ sy, it must be that x /∈ Ni′ . We conclude that x can be charged in at most
Oε (log t) different levels. As in level i each vertex is charged for at most ϕi ≤ O(logn

δ) edges,
the total charge for each vertex is bounded by Oε(logn·log t

δ).

Lightness bound. Consider the scale ∆i = (1 + ε)i. As Ni is an ε ·∆i-net, Claim 1 implies
that Ni has size ni ≤ 2L

ε·∆i
, and in any case at most n. In that scale, we constructed

ϕi = 2
δ logni ≤ 2

δ logn partitions, adding at most ni edges per partition. The weight of each
edge added in this scale is bounded by O(t ·∆i).

Let H1 consist of all the edges added in scales i ∈ {log1+ε
L
n , . . . , log1+ε L}, while H2

consist of edges added in the lower scales. Note that H = H1 ∪H2.

w (H1) ≤
∑

i∈{log1+ε
L
n ,...,log1+ε L}

O (t ·∆i) · ni · ϕi

= O

 t

δ
· logn ·

∑
i∈{log1+ε

L
n ,...,log1+ε L}

∆i ·
L

ε ·∆i

 = Oε

(
t

δ
· log2 n

)
· L .

w (H2) ≤
∑

∆i∈Ln ·{(1+ε)−1,(1+ε)−2,...,}

O (t ·∆i) · ni · ϕi

= O

 t

δ
· logn ·

∑
i≥1

1
(1 + ε)i

 · L = Oε

(
t

δ
· logn

)
· L .

The bound on the lightness follows. J

4 Corollaries and Extensions

In this section we describe some corollaries of Theorem 4 for certain metric spaces, and show
some extensions, such as improved lightness bound for normed spaces, and discuss graph
spanners.

4.1 High Dimensional Normed Spaces
Here we consider the case that the given metric space (X, d) satisfies that every sub-metric
Y ⊆ X of size |Y | = n is (t, δ)-decomposable for δ = n−β , where β = β(t) ∈ (0, 1) is a
function of t. In such a case we are able to shave a logn factor in the lightness.

I Theorem 5. Let (X, dX) be an n-point metric space such that every Y ⊆ X is (t, |Y |−β)-
decomposable. Then for every ε ∈ (0, 1/8), there is a t · (2 + ε)-spanner for X with lightness
Oε

(
t
β · n

β · logn
)
and sparsity Oε

(
n1+β · logn · log t

)
.

ESA 2018

29:8 Light Spanners for High Dimensional Norms via Stochastic Decompositions

Proof. Using the same Algorithm 1, the analysis of the stretch and sparsity from Theorem 4
is still valid, since the number partitions taken in each scale is smaller than in Theorem 4.
Recall that in scale i we set ∆i = (1+ε)i, and the size of the ε ·∆i-net Ni is ni ≤ max{ 2L

ε∆i
, n}.

The difference from the previous proof is that Ni is (t, n−βi)-decomposable, so the number of
partitions taken is ϕi = O(nβi logni). In each partition we might add at most one edge per
net point, and the weight of this edge is O(t ·∆i). We divide the edges of H to H1 and H2,
and bound the weight of H2 as above (using that ni ≤ n). For H1 we get,

w (H1) ≤
∑

i∈{log1+ε
L
n ,...,log1+ε L}

O (t ·∆i) · ni · ϕi

= O

t · ∑
i∈{log1+ε

L
n ,...,log1+ε L}

∆i ·
L

ε ·∆i
·
(

L

ε ·∆i

)β
log L

ε ·∆i


= Oε

t · ∑
i∈{log1+ε

L
n ,...,log1+ε L}

(
L

∆i

)β
· log L

∆i

 · L
= Oε

t · ∑
i∈{0,...,log1+ε n}

(i+ 1) ·
(

(1 + ε)β
)i · L .

Set the function f(x) =
∑k
i=0 (i+ 1) ·xi, on the domain (1,∞), with parameter k = log1+ε n.

Then,

f(x) =
(∫

fdx

)′
=
(

k∑
i=0

xi+1

)′
=
(
xk+2 − x
x− 1

)′
=
(
(k + 2)xk+1 − 1

)
(x− 1)−

(
xk+2 − x

)
(x− 1)2 ≤ (k + 2)xk+1

x− 1 .

Hence,

w (H1) = Oε
(
t · f

(
(1 + ε)β

))
· L

= Oε

t · log1+ε n ·
(

(1 + ε)β
)log1+ε n

(1 + ε)β − 1

 · L = Oε

(
t

β
· nβ · logn

)
· L .

We conclude that the lightness of H is bounded by Oε
(
t
β · n

β · logn
)
. J

In Section 5 we will show that any n-point Euclidean metric is (t, n−O(1/t2))-decomposable,
and that for fixed p ∈ (1, 2), any n-point subset of `p is (t, n−O(log2 t/tp))-decomposable. The
following corollaries are implied by Theorem 5 (rescaling t by a constant factor allows us to
remove the O(·) term in the exponent of n, while obtaining stretch O(t)).

I Corollary 6. For a set X of n points in Euclidean space, t > 1, there is an O(t)-spanner
with lightness O

(
t3 · n1/t2 · logn

)
and O

(
n1+1/t2 · logn · log t

)
edges.

I Corollary 7. For a constant p ∈ (1, 2) and a set X of n points in `p space, there is an
O(t)-spanner with lightness O

(
t1+p

log2 t
· n log2 t/tp · logn

)
and O

(
n1+ log2 t/tp · logn · log t

)
edges.

A. Filtser and O. Neiman 29:9

I Remark. Corollary 6 applies for a set of points X ⊆ Rd, where the dimension d is
arbitrarily large. If d = o(logn) we can obtain improved spanners. Specifically, n-point
subsets of d-dimensional Euclidean space are (O(t), 2−d/t2)-decomposable (see Section 6).
Applying Theorem 4 we obtain an O(t)-spanner with lightness Oε

(
t · 2d/t2 · log2 n

)
and

Oε
(
n · 2d/t2 · logn · log t

)
edges.

4.2 Doubling Metrics
It was shown in [1] that metrics with doubling constant λ are (t, λ−O(1/t))-decomposable (the
case t = Θ(log λ) was given by [33]). Therefore, Theorem 4 implies:

I Corollary 8. For every metric space (X, dX) with doubling constant λ, and t ≥ 1, there
exist an O(t)-spanner with lightness O

(
t · log2 n · λ1/t

)
and O

(
n · λ1/t · logn · log t

)
edges.

4.3 Graph Spanners
In the case where the input is a graph G, it is natural to require that the spanner will
be a graph-spanner, i.e., a subgraph of G. Given a (metric) spanner H, one can define a
graph-spanner H ′ by replacing every edge {x, y} ∈ H with the shortest path from x to y
in G. It is straightforward to verify that the stretch and lightness of H ′ are no larger than
those of H (however, the number of edges may increase).

Consider a graph G with genus g. In [3] it was shown that (the shortest path metric of)
G is

(
t, g−O(1/t))-decomposable. Furthermore, graphs with genus g have O(n+ g) edges [32],

so any graph-spanner will have at most so many edges. By Theorem 4 we have:

I Corollary 9. Let G be a weighted graph on n vertices with genus g. Given a parameter
t ≥ 1, there exist an O(t)-graph-spanner of G with lightness O

(
t · log2 n · g1/t

)
and O(n+ g)

edges.

For general graphs, the transformation to graph-spanners described above may arbitrarily
increase the number of edges (in fact, it will be bounded by O(

√
|EH | ·n), [20]). Nevertheless,

if we have a strong-decomposition, we can modify Algorithm 1 to produce a sparse spanner. In
a graph G = (X,E), the strong-diameter of a cluster A ⊆ X is maxv,u∈A dG[A](v, u), where
G[A] is the induced graph by A (as opposed to weak diameter, which is computed w.r.t the
original metric distances). A partition P of X is ∆-strongly-bounded if the strong diameter
of every P ∈ P is at most ∆. A distribution D over partitions of X is (t,∆, δ)-strong-
decomposition, if it is (t,∆, δ)-decomposition and in addition every partition P ∈ supp(D) is
∆-strongly-bounded. A graph G is (t, δ)-strongly-decomposable, if for every ∆ > 0, the graph
admits a (∆, t ·∆, δ)-strong-decomposition.

I Theorem 10. Let G = (V,E,w) be a (t, δ)-strongly-decomposable, n-vertex graph with
aspect ratio Λ = maxe∈E w(e)

mine∈E w(e) . Then for every ε ∈ (0, 1), there is a t · (2 + ε)-graph-spanner
for G with lightness Oε

(
t
δ · log2 n

)
and Oε(nδ · logn · log Λ) edges.

Proof. We will execute Algorithm 1 with several modifications:
1. The for loop (in Line 2) will go over scales i ∈ {0, . . . , log1+ε Λ} (instead {0, . . . , log1+ε L}).
2. We will use strong-decompositions instead of regular (weak) decompositions.
3. The partitions created in Line 3 will be over the set of all vertices V , rather then only

net points Ni (as otherwise it will be impossible to get strong diameter).
However, the requirement from close pairs to be clustered together (at least once), is still
applied to net points only. Similarly to Claim 3, ϕi = (2 lnni)/δ repetitions will suffice.

ESA 2018

29:10 Light Spanners for High Dimensional Norms via Stochastic Decompositions

4. In Line 6, we will no longer add edges from vP to all the net points in P ∈ Pj . Instead,
for every net point x ∈ P ∩Ni, we will add a shortest path in G[P] from vP to x. Note
that all the edges added in all the clusters constitute a forest. Thus we add at most n
edges per partition.

We now prove the stretch, sparsity and lightness of the resulting spanner.

Stretch. By the triangle inequality, it is enough to show small stretch guarantee only
for edges (that is, only for x, y ∈ V s.t. {x, y} ∈ E.) As we assumed that the minimal
distance is 1, all the weights are within [1,Λ]. In particular, every edge {x, y} ∈ E has
weight (1 + ε)i−1 < w ≤ (1 + ε)i for i ∈ {0, . . . , log1+ε Λ}. The rest of the analysis is similar
to Theorem 4, with the only difference being that we use a path from vP to x̃ rather than
the edge {x̃, vP }. This is fine since we only require that the length of this path is at most
(t · (1 + 2ε) ·∆), which is guaranteed by the strong diameter of clusters.

Sparsity. We have Oε(log Λ) scales. In each scale we had at most ϕi ≤ 2
δ logn partitions,

where for each partition we added at most n edges. The bound on the sparsity follows.

Lightness. Consider scale i. We have ni net points. For each net point we added at most
one shortest path of weight at most O(t ·∆i) (as each cluster is O(t ·∆i)-strongly bounded).
As the number of partitions is ϕi, the total weight of all edges added at scale i is bounded
by O(t ·∆i) · ni · ϕi. The rest of the analysis follows by similar lines to Theorem 4 (noting
that Λ < L). J

5 LSH Induces Decompositions

In this section, we prove that LSH (locality sensitive hashing) induces decompositions. In
particular, using the LSH schemes of [5, 46], we will get decompositions for `2 and `p spaces,
1 < p < 2.

I Definition 11. (Locality-Sensitive-Hashing) Let H be a family of hash functions mapping
a metric (X, dX) to some universe U . We say that H is (r, cr, p1, p2)-sensitive if for every
pair of points x, y ∈ X, the following properties are satisfied:
1. If dX(x, y) ≤ r then Prh∈H [h(x) = h(y)] ≥ p1.
2. If dX(x, y) > cr then Prh∈H [h(x) = h(y)] ≤ p2.

Given an LSH, its parameter is γ = log 1/p1

log 1/p2
. We will implicitly always assume that

p1 ≥ n−γ (n = |X|), as indeed will occur in all the discussed settings. Andoni and Indyk [5]
showed that for Euclidean space (`2), and large enough t > 1, there is an LSH with parameter
γ = O

(1
t2

)
. Nguyen [46], showed that for constant p ∈ (1, 2), and large enough t > 1, there

is an LSH for `p, with parameter γ = O
(

log2 t
tp

)
. We start with the following claim.

I Claim 12. Let (X, dX) be a metric space, such that for every r > 0, there is an (r, t·r, p1, p2)-
sensitive LSH family with parameter γ. Then there is an

(
r, t · r, n−O(γ), n−2)-sensitive LSH

family for X.

Proof. Set k =
⌈
log 1

p2
n2
⌉
≤ O(logn)

log 1
p2

, and let H be the promised (r, t ·r, p1, p2)-sensitive LSH
family. We define an LSH family H ′ as follows. In order to sample h ∈ H ′, pick h1, . . . , hk
uniformly and independently at random from H. The hash function h is defined as the

A. Filtser and O. Neiman 29:11

concatenation of h1, . . . , hk. That is, h(x) = (h1(x), . . . , hk(x)).
For x, y ∈ X such that dX(x, y) ≥ t · r it holds that

Pr [h(x) = h(y)] = Πi Pr [hi(x) = hi(y)] ≤ pk2 ≤ n−2 .

On the other hand, for x, y ∈ X such that dX(x, y) ≤ r, it holds that

Pr [h(x) = h(y)] = Πi Pr [hi(x) = hi(y)] ≥ pk1 = 2
− log 1

p1
·O(logn)

log 1
p2 = n−O(γ) . J

I Lemma 13. Let (X, dX) be a metric space, such that for every r > 0, there is a (r, t ·
r, p1, p2)-sensitive LSH family with parameter γ. Then (X, dX) is (t, n−O(γ))-decomposable.

Proof. Let H ′ be an
(
r, tr, n−O(γ), n−2)-sensitive LSH family, given by Claim 12. We will use

H ′ in order to construct a decomposition forX. Each hash function h ∈ H ′ induces a partition
Ph, by clustering all points with the same hash value, i.e. Ph(x) = Ph(y) ⇐⇒ h(x) = h(y).
However, in order to ensure that our partition will be t · r-bounded, we modify it slightly.
For x ∈ X, if there is a y ∈ Ph(x) with dX(x, y) > t · r, remove x from Ph(x), and create
a new cluster {x}. Denote by P ′h the resulting partition. P ′h is clearly t · r-bounded, and
we argue that every pair x, y at distance at most r is clustered together with probability at
least n−O(γ). Denote by χx (resp., χy) the probability that x (resp., y) was removed from
Ph(x) (resp., Ph(y)). By the union bound on the at most n points in Ph(x), we have that
both χx, χy ≤ 1/n. We conclude

Pr
P′
h

[P ′h(x) = P ′h(y)] ≥ Pr
h∼H

[h(x) = h(y)]− Pr
h

[χx ∨ χy] ≥ n−O(γ) − 2
n

= n−O(γ) . J

Using [5], Lemma 13 implies that `2 is (t, n−O(1/t2))-decomposable. Moreover, using [46]
for constant p ∈ (1, 2), Lemma 13 implies that `p is (t, n−O(log2 t/tp))-decomposable.

6 Decomposition for d-Dimensional Euclidean Space

In Section 5, using a reduction from LSH, we showed that `2 is (t, n−O(1/t2))-decomposable.
Here, we will show that for dimension d = o(logn), using a direct approach, better decom-
position could be constructed.

Denote by Bd(x, r) the d dimensional ball of radius r around x (w.r.t `2 norm). Vd(r)
denotes the volume of Bd(x, r) (note that the center here is irrelevant). Denote by Cd(u, r)
the volume of the intersection of two balls of radius r, the centers of which are at distance u
(i.e. for ‖x− y‖2 = u, Cd(u, r) denotes the volume of Bd(x, r) ∩Bd(y, r)). We will use the
following lemma which was proved in [5] (based on a lemma from [27]).

I Lemma 14. ([5]) For any d ≥ 2 and 0 ≤ u ≤ r

Ω
(

1√
d

)
·
(

1−
(u
r

)2
) d

2

≤ Cd(u, r)
Vd(r)

≤
(

1−
(u
r

)2
) d

2

.

Using Lemma 14, we can construct better decompositions:

I Lemma 15. For every d ≥ 2 and 2 ≤ t ≤
√

2d/ln d, `d2 is O(t, 2−O(d
t2

))-decomposable.

Proof. Consider a set X of n points in `d2, and fix r > 0. Let B be some box which includes all
of X and such that each x ∈ X is at distance at least t ·r from the boundary of B. We sample
points s1, s2 . . . uniformly at random from B. Set Pi = BX(si, t·r2) \

⋃i−1
j=1BX

(
sj ,

t·r
2
)
. We

ESA 2018

29:12 Light Spanners for High Dimensional Norms via Stochastic Decompositions

sample points until X =
⋃
i≥1 Pi. Then, the partition will be P = {P1, P2,} (dropping

empty clusters).
It is straightforward that P is t·r-bounded. Thus it will be enough to prove that every pair

x, y at distance at most r, has high enough probability to be clustered together. Let si be the
first point sampled in Bd

(
x, t·r2

)
∪Bd

(
y, t·r2

)
. By the minimality of i, x, y /∈

⋃i−1
j=1Bd

(
sj ,

t·r
2
)

and thus both are yet un-clustered. If si ∈ Bd
(
x, t·r2

)
∩ Bd

(
y, t·r2

)
then both x, y join Pi

and thus clustered together. Using Lemma 14 we conclude,

Pr
P

[P(x) = P(y)] = Pr
[
si ∈ Bd

(
x,
t · r
2

)
∩Bd

(
y,
t · r
2

)
∣∣∣si is first in Bd(x, t · r2

)
∪Bd

(
y,
t · r
2

)]

≥
Cd(‖x− y‖2, t·r2)

2 · Vd(t·r2)

= Ω
(

1√
d

)(
1−

(
‖x− y‖2

t·r
2

)2
) d

2

= Ω
(

1√
d

)(
1− 4

t2

) d
2

= Ω
(
e−

2d
t2
− 1

2 ln d
)

= 2−O(d/t2) . J

References
1 Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory.

Advances in Mathematics, 228(6):3026–3126, 2011. doi:10.1016/j.aim.2011.08.003.
2 Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman. Ramsey

spanning trees and their applications. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, Louisiana, USA,
January 7-10, 2018.

3 Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops,
robbers, and threatening skeletons: padded decomposition for minor-free graphs. In Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 79–88, 2014. doi:10.1145/2591796.2591849.

4 Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993.
doi:10.1007/BF02189308.

5 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Pro-
ceedings, pages 459–468, 2006. doi:10.1109/FOCS.2006.49.

6 Baruch Awerbuch. Communication-time trade-offs in network synchronization. In Proc. of
4th PODC, pages 272–276, 1985.

7 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.
doi:10.1145/4221.4227.

8 Baruch Awerbuch, Alan E. Baratz, and David Peleg. Cost-sensitive analysis of commu-
nication protocols. In Proceedings of the Ninth Annual ACM Symposium on Principles of
Distributed Computing, Quebec City, Quebec, Canada, August 22-24, 1990, pages 177–187,
1990. doi:10.1145/93385.93417.

http://dx.doi.org/10.1016/j.aim.2011.08.003
http://dx.doi.org/10.1145/2591796.2591849
http://dx.doi.org/10.1007/BF02189308
http://dx.doi.org/10.1109/FOCS.2006.49
http://dx.doi.org/10.1145/4221.4227
http://dx.doi.org/10.1145/93385.93417

A. Filtser and O. Neiman 29:13

9 Baruch Awerbuch, Alan E. Baratz, and David Peleg. Efficient broadcast and light-weight
spanners. Manuscript, 1991.

10 Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In Proc. of 37th FOCS, pages 184–193, 1996.

11 Punyashloka Biswal, James R. Lee, and Satish Rao. Eigenvalue bounds, spectral partition-
ing, and metrical deformations via flows. J. ACM, 57(3), 2010. doi:10.1145/1706591.
1706593.

12 Glencora Borradaile, Hung Le, and Christian Wulff-Nilsen. Greedy spanners are optimal
in doubling metrics. CoRR, abs/1712.05007, 2017. arXiv:1712.05007.

13 Glencora Borradaile, Hung Le, and Christian Wulff-Nilsen. Minor-free graphs have light
spanners. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 767–778, 2017. doi:10.1109/FOCS.
2017.76.

14 R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat. Opus: an overlay peer
utility service. In Prof. of 5th OPENARCH, 2002.

15 Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for
the 0-extension problem. SIAM J. Comput., 34(2):358–372, 2005. doi:10.1137/
S0097539701395978.

16 P. B. Callahan and S. R. Kosaraju. A decomposition of multi-dimensional point-sets with
applications to k-nearest-neighbors and n-body potential fields. In Proc. of 24th STOC,
pages 546–556, 1992.

17 B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph
spanners. Int. J. Comput. Geometry Appl., 5:125–144, 1995.

18 Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. In Proc. of 27th
SODA, pages 883–892, 2016.

19 Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. SIAM
J. Comput., 28(1):210–236, 1998. doi:10.1137/S0097539794261295.

20 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM J. Discrete Math., 20(2):463–501, 2006. doi:10.1137/050630696.

21 Gautam Das, Paul J. Heffernan, and Giri Narasimhan. Optimally sparse spanners in
3-dimensional euclidean space. In Proceedings of the Ninth Annual Symposium on Com-
putational GeometrySan Diego, CA, USA, May 19-21, 1993, pages 53–62, 1993. doi:
10.1145/160985.160998.

22 Amin Vahdat Dejan Kostic. Latency versus cost optimizations in hierarchical overlay net-
works. Technical Report CS-2001-04, Duke University, 2002.

23 Michael Elkin. Computing almost shortest paths. ACM Trans. Algorithms, 1(2):283–323,
2005. doi:10.1145/1103963.1103968.

24 Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. In Proc. of 41th ICALP,
pages 442–452, 2014.

25 Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1+epsilon, beta)-
spanners in the distributed and streaming models. Distributed Computing, 18(5):375–385,
2006. doi:10.1007/s00446-005-0147-2.

26 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, STOC ’03, pages 448–455, New York, NY, USA, 2003. ACM.
doi:10.1145/780542.780608.

27 Uriel Feige and Gideon Schechtman. On the optimality of the random hyperplane rounding
technique for max cut. Random Struct. Algorithms, 20(3):403–440, 2002. doi:10.1002/
rsa.10036.

ESA 2018

http://dx.doi.org/10.1145/1706591.1706593
http://dx.doi.org/10.1145/1706591.1706593
http://arxiv.org/abs/1712.05007
http://dx.doi.org/10.1109/FOCS.2017.76
http://dx.doi.org/10.1109/FOCS.2017.76
http://dx.doi.org/10.1137/S0097539701395978
http://dx.doi.org/10.1137/S0097539701395978
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1137/050630696
http://dx.doi.org/10.1145/160985.160998
http://dx.doi.org/10.1145/160985.160998
http://dx.doi.org/10.1145/1103963.1103968
http://dx.doi.org/10.1007/s00446-005-0147-2
http://dx.doi.org/10.1145/780542.780608
http://dx.doi.org/10.1002/rsa.10036
http://dx.doi.org/10.1002/rsa.10036

29:14 Light Spanners for High Dimensional Norms via Stochastic Decompositions

28 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the streaming model: the value of space. In Proc. of 16th SODA, pages
745–754, 2005.

29 Arnold Filtser and Shay Solomon. The greedy spanner is existentially optimal. In Proceed-
ings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 9–17, 2016. doi:10.1145/2933057.2933114.

30 Lee-Ad Gottlieb. A light metric spanner. In Proc. of 56th FOCS, pages 759–772, 2015.
31 Michelangelo Grigni. Approximate TSP in graphs with forbidden minors. In Proc. of 27th

ICALP, pages 869–877, 2000.
32 Jonathan L. Gross and Thomas W. Tucker. Topological Graph Theory. Wiley-Interscience,

New York, NY, USA, 1987.
33 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,

and low-distortion embeddings. In Proc. of 44th FOCS, pages 534–543, 2003.
34 Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners in high

dimensions. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
804–809, 2013. doi:10.1137/1.9781611973105.57.

35 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional met-
rics and their applications. SIAM J. Comput., 35(5):1148–1184, 2006. doi:10.1137/
S0097539704446281.

36 Jonathan A. Kelner, James R. Lee, Gregory N. Price, and Shang-Hua Teng. Higher eigen-
values of graphs. In FOCS, pages 735–744, 2009. doi:10.1109/FOCS.2009.69.

37 Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In STOC, pages 682–690, 1993. doi:10.1145/167088.167261.

38 Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured descent:
A new embedding method for finite metrics. In Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 434–443, Washington, DC, USA,
2004. IEEE Computer Society. doi:10.1109/FOCS.2004.41.

39 J. R. Lee and A. Naor. Extending lipschitz functions via random metric partitions. Inven-
tiones Mathematicae, 160(1):59–95, 2005.

40 James R. Lee and Anastasios Sidiropoulos. Genus and the geometry of the cut graph. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 193–201, 2010. doi:10.
1137/1.9781611973075.18.

41 Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. J. ACM, 46:787–832, November 1999. doi:
10.1145/331524.331526.

42 N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its al-
gorithmic applications. Combinatorica, 15(2):215–245, 1995.

43 Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993. (Preliminary version in 2nd SODA, 1991).

44 Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. Journal
of the European Mathematical Society, 9(2):253–275, 2007.

45 Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge Uni-
versity Press, 2007.

46 Huy L. Nguyen. Approximate nearest neighbor search in `p. CoRR, abs/1306.3601, 2013.
arXiv:1306.3601.

47 David Peleg. Proximity-preserving labeling schemes and their applications. In Graph-
Theoretic Concepts in Computer Science, 25th International Workshop, WG ’99, As-

http://dx.doi.org/10.1145/2933057.2933114
http://dx.doi.org/10.1137/1.9781611973105.57
http://dx.doi.org/10.1137/S0097539704446281
http://dx.doi.org/10.1137/S0097539704446281
http://dx.doi.org/10.1109/FOCS.2009.69
http://dx.doi.org/10.1145/167088.167261
http://dx.doi.org/10.1109/FOCS.2004.41
http://dx.doi.org/10.1137/1.9781611973075.18
http://dx.doi.org/10.1137/1.9781611973075.18
http://dx.doi.org/10.1145/331524.331526
http://dx.doi.org/10.1145/331524.331526
http://arxiv.org/abs/1306.3601

A. Filtser and O. Neiman 29:15

cona, Switzerland, June 17-19, 1999, Proceedings, pages 30–41, 1999. doi:10.1007/
3-540-46784-X_5.

48 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia,
PA, 2000.

49 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM J.
Comput., 18(4):740–747, 1989. doi:10.1137/0218050.

50 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J.
ACM, 36(3):510–530, 1989.

51 Satish B. Rao. Small distortion and volume preserving embeddings for planar and Euclidean
metrics. In SOCG, pages 300–306, 1999.

52 L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proc. of 32nd ESA,
pages 580–591, 2004.

53 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In Automata, Languages and Programming, 32nd Interna-
tional Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pages
261–272, 2005. doi:10.1007/11523468_22.

54 J. S. Salowe. Construction of multidimensional spanner graphs, with applications to min-
imum spanning trees. In Proc. of 7th SoCG, pages 256–261, 1991.

55 Michiel H. M. Smid. The weak gap property in metric spaces of bounded doubling dimen-
sion. In Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His
60th Birthday, pages 275–289, 2009. doi:10.1007/978-3-642-03456-5_19.

56 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL,
USA, June 13-16, 2004, pages 281–290, 2004. doi:10.1145/1007352.1007399.

57 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. of 13th SPAA, pages
1–10, 2001.

58 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
doi:10.1145/1044731.1044732.

59 P. M. Vaidya. A sparse graph almost as good as the complete graph on points in k

dimensions. Discrete & Computational Geometry, 6:369–381, 1991.
60 Jürgen Vogel, Jörg Widmer, Dirk Farin, Martin Mauve, and Wolfgang Effelsberg. Priority-

based distribution trees for application-level multicast. In Proceedings of the 2nd Workshop
on Network and System Support for Games, NETGAMES 2003, Redwood City, California,
USA, May 22-23, 2003, pages 148–157, 2003. doi:10.1145/963900.963914.

61 Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. Light graphs with small routing cost.
Networks, 39(3):130–138, 2002. doi:10.1002/net.10019.

ESA 2018

http://dx.doi.org/10.1007/3-540-46784-X_5
http://dx.doi.org/10.1007/3-540-46784-X_5
http://dx.doi.org/10.1137/0218050
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1007/978-3-642-03456-5_19
http://dx.doi.org/10.1145/1007352.1007399
http://dx.doi.org/10.1145/1044731.1044732
http://dx.doi.org/10.1145/963900.963914
http://dx.doi.org/10.1002/net.10019

On the Tractability of Optimization Problems on
H-Graphs
Fedor V. Fomin1

Department of Informatics, University of Bergen, Norway
fedor.fomin@ii.uib.no

https://orcid.org/0000-0003-1955-4612

Petr A. Golovach2

Department of Informatics, University of Bergen, Norway
petr.golovach@ii.uib.no

https://orcid.org/0000-0002-2619-2990

Jean-Florent Raymond3

Technische Universität Berlin, Germany
raymond@tu-berlin.de

https://orcid.org/0000-0003-4646-7602

Abstract
For a graph H, a graph G is an H-graph if it is an intersection graph of connected subgraphs
of some subdivision of H. These graphs naturally generalize several important graph classes like
interval graphs or circular-arc graph. This notion was introduced in the early 1990s by Bíró,
Hujter, and Tuza. Recently, Chaplick et al. initiated the algorithmic study of H-graphs by
showing that a number of fundamental optimization problems like Clique, Independent Set,
or Dominating Set are solvable in polynomial time on H-graphs. We extend and complement
these algorithmic findings in several directions.

First we show that for every fixed H, the class of H-graphs is of logarithmically-bounded
boolean-width. We also prove that H-graphs are graphs with polynomially many minimal separ-
ators. Pipelined with the plethora of known algorithms on graphs of bounded boolean-width and
graphs with polynomially many minimal separators, this describes a large class of optimization
problems that are solvable in polynomial time on H-graphs.

The most fundamental optimization problems among those solvable in polynomial time on
H-graphs are Clique, Independent Set, and Dominating Set. We provide a more refined
complexity analysis of these problems from the perspective of parameterized complexity. We
show that Independent Set and Dominating Set are W[1]-hard being parameterized by the
size of H plus the size of the solution. On the other hand, we prove that when H is a tree,
Dominating Set is fixed-parameter tractable (FPT) parameterized by the size of H. Besides,
we show that Clique admits a polynomial kernel parameterized by H and the solution size.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Graph algorithms analysis

Keywords and phrases H-topological intersection graphs, parameterized complexity, minimal
separators, boolean-width, mim-width

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.30

1 Supported by the Research Council of Norway via the project “MULTIVAL”.
2 Supported by the Research Council of Norway via the project “CLASSIS”.
3 Supported by the European Research Council (ERC) via the ERC consolidator grant DISTRUCT-648527.
This research was partly done while the author was supported by the Polish National Science Centre
grant PRELUDIUM DEC-2013/11/N/ST6/02706.

© Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fedor.fomin@ii.uib.no
https://orcid.org/0000-0003-1955-4612
mailto:petr.golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:raymond@tu-berlin.de
https://orcid.org/0000-0003-4646-7602
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 On the Tractability of Optimization Problems on H-Graphs

Related Version A full version of the paper is available at [13], https://arxiv.org/abs/1709.
09737.

Acknowledgements We thank Saket Saurabh for bringing H-graphs to our attention.

1 Introduction

The notion of H-graph was introduced in the work of Bíró, Hujter, and Tuza [4] on precoloring
extensions of graphs. H-graphs nicely generalize several popular and widely studied classes
of graphs. For example, the classical definition of an interval graph is as a graph which
is an intersection graph4 of intervals of a line. Equivalently, a graph is interval if it is an
intersection graph of some subpaths of a path. Or, equivalently, if it is an intersection graph
of some subgraphs of some subdivision (that is a graph obtained by placing vertices of degree
2 on the edges) of P2, the graph with two adjacent vertices. More generally, for a fixed graph
H, an H-graph is an intersection graph of some connected subgraphs of some subdivision of
H. Thus for example, an interval graph is a P2-graph, a circular-arc graph is a C2-graph,
where C2 is a double-edge with two endpoints, a split graph is a K1,d-graph for some d ≥ 0,
where K1,d is a star with d leaves, a chordal graph is a T -graph for some tree T , etc..

The main motivation behind the study of H-graphs is the following. It is well-known
that on interval, chordal, circular-arc, and other graphs with “simple” intersection models
many NP-hard optimization problems are solvable in polynomial time, see e.g. the book
of Golumbic [17] for an overview. It is a natural question whether at least some of these
algorithmic results can be extended to more general classes of intersection graphs. Chaplick
et al. [8, 9] initiated the systematic study of algorithmic properties of H-graphs. They
showed that a number of fundamental optimization problems like Independent Set and
Dominating Set are solvable in polynomial time on H-graphs for any fixed H. Most of
their algorithms run on H-graphs in time nf(H), where n is the number of vertices in the
input graph and f is some function. In other words, being parameterized by H most of the
problems are known to be in the class XP. Our work is driven by the following question.

Are there generic explanations why many problems admit polynomial time algorithms on
H-graphs?

We address the first question by proving the following combinatorial results. We show
first that every n-vertex H-graph has boolean-width at most 2|E(H)| · logn, and that a
decomposition of this width can be found in polynomial time. This combinatorial result
extends the results of Belmonte and Vatshelle [2, 1] on the boolean-width of interval and
circular-arc graphs to H-graphs. Together with the algorithms for a vast class of problems
called LC-VSP problems [6, 2], and for problems related to induced paths [21], this implies
immediately that all these problems are solvable in polynomial time on H-graphs. The
illustrative problems where this approach is successful are Weighted Independent Set,
Weighted Dominating Set, Total Dominating Set, Induced Matching, Longest
Induced Path and Disjoint Induced Paths, and many others.

Then we prove that every n-vertex H-graph has at most (2n+ 1)|E(H)| + |E(H)| · (2n)2

minimal separators.5 Pipelining the bound on the number of minimal separators in H-graphs
with meta-algorithmic results of Fomin, Todinca and Villanger [14], we obtained another
wide class of problems solvable in polynomial time on H-graphs. Examples of such problems

4 The intersection graph of a family S of sets has vertex set S and edge set {SS′, S ∩ S′ 6= ∅}.
5 It was reported to us by Steven Chaplick and Peter Zeman that they also obtained this result independ-
ently and that it will be included in the journal version of their paper.

https://arxiv.org/abs/1709.09737
https://arxiv.org/abs/1709.09737

F. V. Fomin, P. A. Golovach, and J.-F. Raymond 30:3

are Treewidth, Feedback Vertex Set, Maximum Induced Subgraph excluding a
planar minor, and various packing problems.

All these generic algorithmic results provide XP algorithms when parameterized by the
size of H. This brings us to the second question defining the direction of our research.

What is the parameterized complexity of the fundamental optimization problems being
parameterized by the size of H?

The first steps in this direction were done by Chaplick et al. in [8] who showed that
Dominating Set is fixed-parameter tractable (FPT) on K1,d-graphs parameterized by d.
In this paper we show that Dominating Set is W[1]-hard parameterized by the size of
H plus the solution size. Thus the existence of an FPT algorithm for a general graph H
is very unlikely. (We refer to books [11, 10] for definitions from parameterized complexity
and algorithms.) We also prove a similar lower bound for Independent Set parameterized
by the size of H plus the solution size. Combined with our combinatorial results, these
lower-bounds show that Independent Set and Dominating Set are also W[1]-hard when
parameterized by mim-width (a graph parameter to be defined in the corresponding section)
of the input and the solution size. The technique we develop to establish lower bounds on
H-graphs found applications beyond the topic of this paper [20, 21].

On the positive side, we show that when H is a tree, then Dominating Set is FPT
parameterized by the size of H. This significantly extends the result from [8] for stars to
arbitrary trees. We actually prove a slightly more general result, namely that Dominating
Set is FPT on chordal graphs G parameterized by the leafage of the graph, i.e. the minimum
number of leaves in the clique tree of G.

Finally we show that Clique admits a polynomial kernel when parameterized by the size
of H plus the solution size. This strengthens the result of Chaplick et al. [8] who showed
that Clique is FPT for such a parameterization.

Organization of the paper. We give hereafter the necessary definitions. In Section 2, we
upper-bound the boolean-width ofH-graphs and provide algorithmic applications. We address
minimal separators of H-graphs in Section 3, again with algorithmic consequences. Last,
Section 4 contains our results on the parameterized complexity of some classic optimization
problems on H-graphs. Due to space constraints, the proofs of the statements marked with
(F) are omitted and some other proofs are just sketched. The full details can be found in
the complete version of the paper [13].

Definitions. All graphs in this paper are finite, undirected, loopless, and may have multiple
edges. If G is a graph, we denote by |G| and ‖G‖, respectively, its numbers of vertices and
edges (counting multiplicities). If X,Y ⊆ V (G), X is the complement of X in V (G) (i.e.
X = V (G) \X), G[X] is the subgraph of G induced by the vertices of X, and G[X,Y] is the
bipartite subgraph of G induced by those edges that have one endpoint in X and the other
in Y . Unless otherwise stated, logarithms are binary.

In this paper H is always a fixed (multi)graph. We say that a graph G is an H-graph if
there is a subdivision H ′ of H and a collectionM = {Mv}v∈V (G) (called an H-representation
or, simply, representation) of subsets of V (H ′), each inducing a connected subgraph, such
that G is isomorphic to the intersection graph ofM. To avoid confusion, we refer to the
vertices of H and H ′ as nodes. We also say that the nodes of H are branching nodes of
H ′ and the other nodes are subdivision nodes. If v is a vertex of G, then Mv is the model
of v in the representation M. For every set A ⊆ V (G), we define MA =

⋃
v∈AMv. For

every node u of H ′, we denote by Vu the set of vertices of G whose model contains u, i.e.
Vu = {v ∈ V (G), u ∈Mv}.

ESA 2018

30:4 On the Tractability of Optimization Problems on H-Graphs

2 H-graphs have logarithmic boolean-width

Boolean-width is a graph invariant that has been introduced in [6] and which is related to
the number of different neighborhoods along a cut. Belmonte and Vatshelle showed in [2]
that n-vertex interval graphs and circular-arc graphs have boolean-width O(logn). In this
section, we generalize their result by proving that, for any fixed graph H, n-vertex H-graphs
have boolean-width O(logn). Using the results of [7, 21], we obtain polynomial algorithms
for a vast class of optimization problems on H-graphs. Before we proceed with the proofs,
we need to introduce some notions specific to this section.

An induced matching in a graph G is a set of vertices that induces a disjoint union of
edges. If X ⊆ V (G), mim(X) denotes the maximum number of edges of an induced matching
in G[X,X].

Let d ∈ N and and let A ⊆ V (G). Two subsets X,Y ⊆ A are said to be d-neighborhood
equivalent, what we denote by X ≡dA Y , if min(d, |X ∩N(v)|) = min(d, |Y ∩N(v)|) holds for
every v ∈ A. We write necd(A) for the number of equivalence classes of the relation ≡dA.

A carving decomposition of a graph G is a pair (T, δ) where T is a full binary rooted
tree (that is, every non-leaf vertex has degree 3) and δ is a bijection from the leaves of T
to the vertices of G. A carving decomposition (T, δ) is a caterpillar decomposition if T can
be obtained from a path by adding a vertex of degree one adjacent to every internal vertex.
If w ∈ V (T), we define Vw as the set of vertices of G in bijection with the leaves of the
subtree of T rooted at w. We also denote by mim(T, δ) (resp. necd(T, δ), and boolw(T, δ))
the maximum of mim(Vw) (resp. max{necd(Vw),necd(Vw)}, and log(nec1(Vw))) taken over
all w ∈ V (T).

The boolean-width of (T, δ) is the value boolw(T, δ) and the boolean-width of G, denoted
by boolw(G), is the minimum boolean-width of a carving decomposition of G.

The following lemma relates maximum induced matchings to neighborhood equivalence.

I Lemma 1 ([2, Lemma 1 and Lemma 2]). For every n-vertex graph G and A ⊆ V (G),
1. mim(A) ≤ k iff for every S ⊆ A there is a R ⊆ S s.t. R ≡1

A S and |R| ≤ k;
2. necd(A) ≤ nd·mim(A).

Our results on the boolean-width of H-graphs follow from the next result.

I Theorem 2. For every n-vertex H-graph G with n ≥ 2 whose intersection model is given,
we can compute in polynomial time a caterpillar decomposition (T, δ) with mim(T, δ) ≤ 2‖H‖.

Proof. Let F be the subdivision of H in which G can be realized and let {Mv}v∈V (G) be
the intersection model of G. Let us arbitrarily fix a branching node r of F . Let v1, . . . , vn be
an ordering of V (G) by non-decreasing distance of Mvi

’s to r.

I Claim 3. For every prefix A of v1, . . . , vn and every S ⊆ A, there is a set R ⊆ S of size
at most 2‖H‖ such that R ≡1

A S.

Proof. Let A be a prefix of v1, . . . , vn and let S ⊆ A. Let MA =
⋃
v∈AMv and similarly

for MA and MS . Let us consider the path Pe corresponding to some edge e ∈ E(H). Let
x1, . . . , xp be the vertices of Pe in the same order.

Let v ∈ A and notice that since, by definition, G[Mv] is connected, the vertex set
Mv ∩V (Pe) induces at most two connected components in Pe. Indeed if Mv ∩V (Pe) induced
more than two connected components, then one of them would not contain any endpoint
of Pe, and thus this component would not be connected to other vertices of Mv in G[Mv].
Let us assume that it induces at least one connected component and let xi and xj be the

F. V. Fomin, P. A. Golovach, and J.-F. Raymond 30:5

first and last vertices (wrt. the ordering x1, . . . , xp) of this component. If {x1, . . . , xi−1} is
disjoint from MA, we say that v is a left-protector of Pe. If j is maximum among all vertices
that protects the left of Pe, then v is a rightmost left-protector. (Informally, it extends the
most to the right.) Similarly, v is a right-protector the right of Pe if {xj+1, . . . , xp} is disjoint
from MA and is a leftmost right-protector if i is minimal.

Let Ze be a set containing one (arbitrarily chosen) rightmost left-protector and one
leftmost right-protector of e if some exist, and let R =

⋃
e∈E(H) Ze. Clearly |R| ≤ 2‖H‖. Let

us now show that N(S) ∩A ⊆ N(R) ∩A. We consider a vertex u ∈ N(S) ∩A and we show
that it also belongs to N(R). Let v be a neighbor of u in S. As u and v are adjacent, Mu

and Mv have non-empty intersection. Let e be an edge of H such that Mu and Mv meet on
Pe, i.e. Mu ∩Mv ∩ V (Pe) 6= ∅. Again, we denote by x1, . . . , xp the vertices of Pe.

I Claim 4 (F). Let w ∈ A. If Mw ∩ V (Pe) = {xi, . . . , xj} with 1 ≤ i ≤ j ≤ p, then one of
{xk, 1 ≤ k < i} and {xk, j < k ≤ p} is disjoint from MA.

As Mu intersects Mv on Pe, it intersects the vertex set C of one component induced by
Mv on Pe (recall that there are either one or two such components). In the case where there
are two components, we assume without loss of generality that this is the “left” one (i.e. that
with smallest indices). In the case where there is one component, we assume that v is a
left-protector of Pe (according to Claim 4, v is a left-protector or a right-protector of Pe).
Observe that in both cases, v is a left-protector of Pe. Let z be the rightmost left-protector
of Pe that belongs to R and let xk, . . . xk′ be the vertices of the corresponding component of
Pe[Mz ∩ V (Pe)] (that is, the component used in the definition of left-protector).

Notice that C ⊆ {x1, . . . , xk′}, by maximality of z (informally, because it is “rightmost”).
As z is a left-protector, Mu ∩ {x1, . . . , xk−1} = ∅. Since Mu and C intersect, they intersect
in {xk, . . . , xk′}. Therefore Mu ∩Mz 6= ∅: z is adjacent to u. As z ∈ R, we are done. J

We construct a caterpillar decomposition that follows the ordering v1, . . . , vn. If n = 2, then
we define T to be the tree with the two vertices and δ maps them to v1 and v2. Assume
that n ≥ 3. We construct a path x2 . . . xn−1 and n vertices y1, . . . , yn. Then we make y1, y2
adjacent to x2, yi is made adjacent to xi if 3 ≤ i ≤ n−2, and yn1 , yn is adjacent to xn−1. We
define δ(yi) = vi for i ∈ {1, . . . , n}. In both cases the root is chosen arbitrarily. According to
Claim 3 and Lemma 1.(1), this caterpillar decomposition satisfies mim(T, δ) ≤ 2‖H‖. J

The next result follows from the application to the decomposition provided by Theorem 2
of Lemma 1.(2), with the fact that mim(A) = mim(A) for every A ⊆ V (G).

I Corollary 5. For every n-vertex H-graph G with n ≥ 2 whose intersection model is given, we
can compute in polynomial time a caterpillar decomposition (T, δ) with necd(T, δ) ≤ nd·2‖H‖.

From the definition of boolean-width, we also get:

I Corollary 6. Every n-vertex H-graph with n ≥ 2 has boolean-width at most 2‖H‖ · logn.

By choosing H to be a single or double edge, we recover the results of [2] on the boolean-width
of interval and circular-arc graphs, respectively, as special cases of Corollary 6. Apart of
the degenerate case where H is edgeless (in which case H-graphs are disjoint unions of
cliques), every interval graph is an H-graph. Hence the Ω(logn) lower bound of [2] shows
that Corollary 6 is tight up to a constant factor.

ESA 2018

30:6 On the Tractability of Optimization Problems on H-Graphs

Algorithmic applications. Boolean-width and necd have been used in [6, 7] to design
parameterized algorithms for the problems Weighted Independent Set, Weighted
Dominating Set, and a vast class of problems, called LC-VSP problems, that includes
fundamental problems as Independent Set, Independent Dominating Set, Total
Dominating Set, Induced Matching, and many others (see [7]). The main result of [7]
is the following.

I Theorem 7 ([7]). For every LC-VSP problem Π, there are constants d and q such that Π
can be solved in time O(n4 · q · necd(T, δ)3q) if a decomposition (T, δ) of the input is given.

Recently, Jaffke, Kwon, and Telle obtained polynomial-time algorithms on graphs of
bounded mim-width for problems that are not LC-VSP.

I Theorem 8 ([21]). The problems Longest Induced Path, Induced Disjoint Paths,
and H-Induced Subdivision6 can be solved in time nO(mim(T,δ)) if a decomposition (T, δ)
of the input is given.

Combining Theorem 2 with Theorem 8 and Corollary 5 with Theorem 7, we get the
following meta-algorithmic consequences.

I Theorem 9. Let H be a graph and let Π be either a LC-VSP problem or one of Longest
Induced Path, Induced Disjoint Paths, and H-Induced Subdivision. Then Π can be
solved in polynomial time on H-graphs if an H-representation of the input is provided.

3 H-graphs have few minimal separators

Let G be a graph. A set X ⊆ V (G) is a minimal separator of G if G \X has more connected
components than G, and X is inclusion-minimal with this property. The study of minimal
separators is an active line of research that found many algorithmic applications (see e.g.
[22, 3, 5, 14]). In general, the number of minimal separators of a graph may be as large
as exponential in its number of vertices. We prove in this section that in an H-graph, this
number is upper-bounded by a polynomial (Theorem 10). Combining this finding with the
meta-algorithmic results of [14], we deduce that a wide class of optimization problems can
be solved in polynomial time on H-graphs (Corollary 16).

I Theorem 10. Every H-graph G has at most (2|G| + 1)‖H‖ + ‖H‖ · (2|G|)2 minimal
separators.

Proof (sketch). Let G be a H-graph and let F be a subdivision of H where G can be
represented as the intersection graph of {Mv, v ∈ V (G)}. For every subset V ⊆ V (G),
the border edges of V are the edges of F with one endpoint in MV and one endpoint in
V (F) \MV . Let R be the union of border edges over {Mv, v ∈ V (G)}. Observe that for
every V ⊆ V (G), the set of border edges of V is a subset of R. For every S ⊆ E(F), let VS
be the set of all vertices of G whose model contain some edge of S.

I Claim 11 (F). For every minimal separator X in G, there is a S ⊆ R such that X = VS.

From Claim 11 we can already deduce that the number of minimal separators of G is at
most the number of subsets of R. To get better bounds, we need other observations. The
next claim follows from the fact that F [MV] is connected.

6 We refer the reader to [21] for an accurate definition of these problems.

F. V. Fomin, P. A. Golovach, and J.-F. Raymond 30:7

. . .

. . .

. . .

. . .

k

Figure 1 A θ4-graph.

I Claim 12. For every V ⊆ V (G) such that MV induces a connected subgraph of F , and
every e ∈ E(H), the set MV has at most two border edges in E(Pe). Hence, |R| ≤ 2|G| · ‖H‖.

I Claim 13. For every minimal separator X of G, if S ⊆ R is the subset of edges of F
defined in the proof of Claim 11, then either |S| = 2 and S ⊆ E(Pe) for some e ∈ E(H), or
|S ∩ E(Pe)| ≤ 1 for every e ∈ E(H).

Proof (sketch). Let A,B be two connected components of G\X such that N(A) = N(B) =
X. From Claim 12 we get |S ∩E(Pe)| ≤ 2 for every e ∈ E(H). Intuitively, if |S ∩E(Pe)| = 2
for some e ∈ E(H) then one of MA and MB contains only interior vertices of Pe. From the
definition of S we deduce |S| = 2. J

Therefore, for every minimal separator X of G, there is a set S ⊆ R such that:
1. either |S ∩ E(Pe)| ≤ 1 for every e ∈ E(H);
2. or |S| = 2 and S ⊆ E(Pe) for some e ∈ E(H);

In order to upper-bound the number of possible minimal separators of G, we can con-
sequently upper-bound the number of sets S ⊆ R that satisfy one of the two conditions
above, and (using Claim 12) obtain the bound of (2|G|+ 1)‖H‖ + ‖H‖ · (2|G|)2. J

For every r ∈ N, let θr be the graph with 2 vertices and r parallel edges. Lemma 14 shows
that the exponential contribution of ‖H‖ in Theorem 10 cannot be avoided. Figure 1 shows
an example of a θ4-graph as in its proof, with at least k4 minimal separators.

I Lemma 14 (F). For every r ∈ N, there is a θr-graph G with at least
(
|G|−2
r

)r
minimal

separators.

Algorithmic applications. Let us consider the following generic problem described in [14].

Optimal Induced Subgraph for P and t (OIS(P, t) for short)
Input: A graph G;
Task: Find sets X ⊆ F ⊆ V (G) such that X is of maximum size, the induced subgraph

G[F] is of treewidth at most t, and P(G[F], X) is true.

Fomin, Todinca, and Villanger proved that when the property P can be expressed in
Counting Monadic Second Order logic (CMSOL, see [14]), the problem OIS(P, t) can be
easily solved on classes of graphs that have a polynomial number of minimal separators.
This includes natural optimization problems like Treewidth, Feedback Vertex Set,
Maximum Induced Subgraph excluding a planar minor, and various packing problems.

I Theorem 15 ([14]). For any fixed t and CSMO property P, OIS(P, t) on an n-vertex
graph G with s minimal separators, is solvable in time O(s2 ·nt+4 ·f(t,P)), for some function
f of t and P only. In particular, the problem is solvable in polynomial time for classes of
graphs whose number of minimal separator is upper-bounded by a polynomial function of
their order.

ESA 2018

30:8 On the Tractability of Optimization Problems on H-Graphs

ui uj

x(i,j)
p

y
(i,j)
1 y

(j,i)
1y(i,j)

p

x(j,i)
p

wi,j

y(j,i)
p

x
(i,j)
2

x
(i,j)
1

x
(j,i)
1

x
(j,i)
2

u2

w1,3
u1

w2,3

u3

w1,2

b)

a)

Figure 2 The construction of H for k = 3 and the subdivision of its edges.

We deduce the following result about H-graphs.

I Corollary 16. Let H be a graph. For any fixed t and CSMO property P, OIS(P, t) can be
solved in polynomial time O(nO(|V (H)|) · nt+4 · f(t,P)) on H-graphs.

4 Parameterized complexity of basic problems for H-graphs

In this section we investigate the parameterized complexity of some basic graph problems for
H-graphs: Dominating Set, Independent Set and Clique.

4.1 Hardness of of Dominating Set and Independent Set for H-graphs
Recall that Dominating Set and Independent Set, given a graph G and a positive integer
k, ask whether G has a dominating set of size at most k and independent set of size at least k
respectively. In this section we prove W[1]-hardness of Dominating Set and Independent
Set for H-graphs (Theorem 17). Our proofs use a reduction from the Multicolored
Clique problem. This problem, given a graph G and a k-partition V1, . . . , Vk of V (G), asks
whether G has a k-clique with exactly one vertex in each Vi for i ∈ {1, . . . , k}. The problem
is well-known to be W[1]-complete when parameterized by k [12, 23].

I Theorem 17. Dominating Set and Independent Set are W[1]-hard for H-graphs
when parameterized by k + ‖H‖, even if an H-representation of G is given.

Proof (sketch). Let us show the W[1]-hardness for Independent Set. Let (G,V1, . . . , Vk)
be an instance of Multicolored Clique. We assume that k ≥ 2 and |Vi| = p for
i ∈ {1, . . . , k}. Denote by vi1, . . . , vip the vertices of Vi for i ∈ {1, . . . , k}.
We construct the multigraph H as follows:
(i) Construct k nodes u1, . . . , uk.
(ii) For every 1 ≤ i < j ≤ k, construct a node wi,j and two pairs of parallel edges uiwi,j

and ujwi,j .
(See Figure 2 a).) Note that |V (H)| = k(k + 1)/2 and |E(H)| = 2k(k − 1).

Then we construct the subdivision H ′ of H obtained by subdividing each edge p times.
We denote the subdivision nodes for 4 edges of H constructed for each pair 0 ≤ i < j ≤ k in
(ii) by x(i,j)

1 , . . . , x
(i,j)
p , y(i,j)

1 , . . . , y
(i,j)
p , x(j,i)

1 , . . . , x
(j,i)
p and y(j,i)

1 , . . . , y
(j,i)
p as it is shown in

Figure 2 b).
To simplify notations, we assume that ui = x

(i,j)
0 = y

(i,j)
0 , uj = x

(j,i)
0 = y

(j,i)
0 and

wi,j = x
(i,j)
p+1 = y

(i,j)
p+1 = x

(j,i)
p+1 = y

(j,i)
p+1 . Now we construct the H-graph G′ by defining its

F. V. Fomin, P. A. Golovach, and J.-F. Raymond 30:9

H-representationM = {Mv}v∈V (G′) where the model of each vertex is a connected subset
of V (H ′). Recall that G is the graph of the original instance of Multicolored Clique.
1. For each i ∈ {1, . . . , k} and s ∈ {1, . . . , p}, construct a vertex zis with the model

Mzi
s

= ∪j∈{1,...,k},j 6=i({x
(i,j)
0 , . . . , x

(i,j)
s−1 } ∪ {y

(i,j)
0 , . . . , y

(i,j)
p−s }).

2. For each edge visv
j
t ∈ E(G) for s, t ∈ {1, . . . , p} and 1 ≤ i < j ≤ k, construct a vertex

r
(i,j)
s,t with the model

M
r

(i,j)
s,t

= ({x(i,j)
s , . . . , x

(i,j)
p+1}) ∪ ({y(i,j)

p−s+1, . . . , y
(i,j)
p+1 })

∪ ({x(j,i)
t , . . . , x

(j,i)
p+1}) ∪ ({y(j,i)

p−t+1, . . . , y
(j,i)
p+1}).

Finally, we define k′ = k(k + 1)/2. We claim that (G,V1, . . . , Vk) is a yes-instance of
Multicolored Clique if and only if G′ has an independent set of size k′. The proof is
based on the following crucial property of our construction, that can be easily checked.

I Claim 18. For every 0 ≤ i < j ≤ k, a vertex zih ∈ V (G′) (a vertex zjh ∈ V (G′)) is not
adjacent to a vertex r(i,j)

s,t ∈ V (G′) corresponding to the edge visv
j
t ∈ E(G) if and only if h = s

(h = t, respectively).

Let {v1
h1
, . . . , vkhk

} be a clique of G. Consider the set I = {z1
h1
, . . . , zkhk

} ∪ {r(i,j)
hi,hj

| 0 ≤
i < j ≤ k} of vertices of G′. It is straightforward to verify using Claim 18 that I is an
independent set of size k′ in G′. Suppose now that G′ has an independent set I of size
k′. For each i ∈ {1, . . . , k}, the set Zi = {zih | 1 ≤ h ≤ p} is a clique of G′, and for each
1 ≤ i < j ≤ k, the set Ri,j = {r(i,j)

s,t | 1 ≤ s, t ≤ p, visv
j
t ∈ E(G)} is also a clique of G′. Since

all these k +
(
k
2
)

= k(k + 1)/2 = k′ cliques form a partition of V (G′), we have that for each
i ∈ {1, . . . , k}, there is a unique zihi

∈ Zi ∩ I, and for every 1 ≤ i < j ≤ k, there is a unique
r

(i,j)
si,sj ∈ Ri,j ∩ I. Since r(i,j)

si,sj is not adjacent to zihi
and zjhj

, we obtain that si = hi and
sj = hj by Claim 18. It implies that vihi

vjhj
∈ E(G). Since it holds for every 1 ≤ i < j ≤ k,

{v1
h1
, . . . , vkhk

} is a clique in G.
This completes the W[1]-hardness proof for Independent Set. Our proof can be

modified to show the W[1]-hardness of Dominating Set. J

We proved in Theorem 2 that for every fixed H, every H-graph has mim-width at most
2‖H‖. We deduce from the negative results above the following corollary.

I Corollary 19. Dominating Set and Independent Set are W[1]-hard when parameterized
by the solution size plus the mim-width of the input.

We note that the construction in the proof of Theorem 17 has been adapted in [19] to show
that the Feedback Vertex Set problem is W[1]-hard on H-graphs when parameterized
by the solution size plus the number of edges of H.

4.2 Dominating Set for T -graphs
In this section we show that Dominating Set is FPT for chordal graphs when the problem
is parameterized by the leafage of the input graph, that is, by the minimum number of leaves
in a clique tree for the input graph. This result is somehow tight since Dominating Set is
well-known to be W[2]-hard for split graphs when parameterized by the solution size [24].
Recall also that Independent Set is polynomial-time solvable for chordal graphs [15, 17]
and, therefore, for H-graphs if H is a tree.

ESA 2018

30:10 On the Tractability of Optimization Problems on H-Graphs

Let G be a graph. As it is standard, we say that u ∈ V (G) (resp. D ⊆ V (G)) dominates
v ∈ V (G) if v ∈ NG[u] (resp. v ∈ NG[D]) and u (resp. D) dominates a setW ⊆ V (G) if every
vertex of W is dominated by u (resp. some vertex of D). Let K be the set of (inclusion-wise)
maximal cliques of G and let Kv ⊆ K be the set of maximal cliques containing v ∈ V (G). A
tree T whose node set is K such that Kv induce a subtree of T for every v ∈ V (G) is called
a clique tree of G. It is well-known [16] that G is a chordal graph if and only if G has a
clique tree T . Moreover, if T is a clique tree of G, then G is an intersection graph of subtrees
of T , that is, G is a T -graph. Note that a clique tree of a chordal graph is not necessarily
unique. For a connected chordal graph G, the leafage `(G) of G is the minimum number of
leaves in its clique tree. It was shown by Habib and Stacho in [18] that given a connected
chordal graph G, we can construct in polynomial time its clique tree T with `(G) leaves and
a T -representation of G.

Let T be a tree and let G be a connected T -graph with its T -representation M =
{Mv}v∈V (G) with respect to a subdivision T ′ of T . For nonempty U ⊆ V (T), we say that
v ∈ V (G) is a U-vertex if Mv ∩ V (T) = U . If U = {u}, we write u-vertex instead of
{u}-vertex. We denote the set of U -vertices by VG(U) and VG(u) if U = {u}. We also denote
by VG(T) the set of all U -vertices of G for all nonempty U ⊆ V (T). For e ∈ E(T), v ∈ V (G)
is an e-vertex if Mv contains only subdivision nodes of T ′ from the path in T ′ corresponding
to e in T . The set of e-vertices is denoted by VG(e).

We use the following lemma to upper bound the number of vertices in a minimum
dominating set whose models contain given nodes of T .

I Lemma 20 (F). Let D be a minimum dominating set of G. Let X ⊆ V (T) be an inclusion
maximal set of nodes of T such that i) for every x ∈ X, there is u ∈ D with x ∈ Mu

and ii) for every xy ∈ E(T) with x, y ∈ X, there is u ∈ D with x, y ∈ Mu. Then the set
U = {u ∈ D | X ∩Mu 6= ∅} contains at most |NT [X]| vertices.

In particular, since |NT (X)| is at most the number of leaves `, we have that |U | ≤ |X|+ `.
We use Lemma 20 to obtain an upper bound for the number of vertices in a minimum
dominating set whose models contain nodes of T . The next lemma is crucial for our
algorithm as it allows to restrict the choice of vertices in a dominating set whose models
contain branching vertices. Observe that the models of other vertices form a union of disjoint
interval graphs.

I Lemma 21 (F). Let D be a minimum dominating set of G. Then |D∩VG(T)| ≤ 3|V (T)|−2.

We consider the following auxiliary problem for T -graphs.

Dominating Set Extension
Input: A tree T and a graph G with a given T -representation, positive integers k and d,

a labeling function c :
⋃
x∈V (T) VG(x)→ N, and a collection of sets {Cx}x∈V (T) of size

at most d where each Cx ⊆ c(VG(x)) (some sets could be empty) such that for every
dominating set D of G of minimum size with the properties that
1. D has at most d x-vertices for x ∈ V (T), and
2. for each x ∈ V (T), Cx ⊆ c(D ∩ VG(x)),
it holds that the number of nodes x ∈ V (T) such that D contains an x-vertex is
maximum and for each x ∈ V (T), Cx = c(D ∩ VG(x)).

Task: Decide whether there is a dominating set D′ of G of size at most k containing at
most d x-vertices for x ∈ V (T) such that for each x ∈ V (T), Cx = c(D′ ∩ VG(x)).

Note that Dominating Set Extension is a promise problem: we are promised that there
is D with the described properties but D itself is not given. Moreover, the promise could

F. V. Fomin, P. A. Golovach, and J.-F. Raymond 30:11

be false but we are not asked to verify it. The labeling c in the statement of the problem
and the promise define, in fact, the choice of the vertices in a dominating set whose models
contain branching vertices.

We use dynamic programming to solve this problem, but we are solving it only for graphs
with special representations. LetM = {Mv}v∈V (G) be a T -representation of G with respect
to a subdivision T ′. We say that M is nice if |Mv ∩ V (T)| ≤ 1 for v ∈ V (G), i.e., each
set Mv contains at most one branching node of T ′. This considerably simplifies handling
of the vertices whose models contain branching nodes that are selected to be included in
a dominating set by our dynamic programming algorithm. As it is standard for dynamic
programming, we pick a root r in T that defines the parent-child relation on V (T) and V (T ′).

I Lemma 22 (F). Given a nice r-rooted T -representation of the input graph where T is a
tree with ` leaves, Dominating Set Extension can be solved in time 2O((d+`) log d)nO(1).
Moreover, it can be done by an algorithm that either returns a correct yes-answer or (possible
incorrect) no-answer even if the promise is false.

To be able to make a given T -representation nice, we define contractions of edges of T
that transforms G as well. For an edge e ∈ E(T), we say that G′ is obtained by contracting
e in T if G′ is the (T/e)-graph with the model obtained as follows:
1. contract xy in T and, respectively, the (x, y)-path P in T ′, and denote the node obtained

from x and y by z,
2. delete all e-vertices of G,
3. for each remaining vertex u ∈ V (G), delete from Mu the subdivision nodes of P and

replace x and y by z if at least one of these nodes is in Mu.
Note that V (G′) ⊆ V (G) and G[V (G′)] is a subgraph of G′ but not necessarily induced since
two vertices of G′ that are not adjacent in G could be adjacent in G′.

Now we are ready to explain how we solve Dominating Set for chordal graphs of
bounded leafage.

I Theorem 23. Dominating Set can be solved in time 2O(`2) · nO(1) for connected chordal
graphs with leafage at most `.

Proof (sketch). Let (G, k) be an instance of Dominating Set where G is a connected
chordal graph.

We use the algorithm of Habib and Stacho [18] to compute its leafage `(G). If `(G) > `,
we stop and return a no-answer. Otherwise, we consider the clique tree T ′ of G constructed
by the algorithm. We construct the tree T from T ′ by dissolving nodes of degree two, that
is, for a node x of degree two with the neighbors y and z, we delete x and make y and z
adjacent. Observe that since T is a tree with at most ` leaves that has no node of degree two,
|V (T)| ≤ 2`− 2. We have that G is a T -graph. Note also that the algorithm of Habib and
Stacho [18] gives us a T -representationM = {Mv}v∈V (G) where Mv ∈ V (T ′) for v ∈ V (G).

We consider 2|V (T)| − 1 ≤ 22`−2 − 1 nonempty subsets of V (T) and construct a coloring
c : VG(T) → {1, . . . , 2|V (T)|} such that for u, v ∈ VG(T), c(u) = c(v) if and only if u and v
are U -vertices for the same U ⊆ V (T).

By Lemma 21, a minimum dominating set of G contains at most 3|V (T)| − 2 ≤ 6`− 8
vertices of VG(T). Clearly, these vertices can have at most 6`− 8 distinct colors. We consider
all sets C ⊆ {1, . . . , 2|V (T)|} of distinct colors of size at most 6`− 8 and for each C, we aim
to find a minimum dominating set of G whose vertices in VG(T) are colored by the maximum
number of distinct colors and are colored exactly by the colors of C. Since we consider all
possible choices of C, it holds for some C. Toward this aim, we apply the following rule.

ESA 2018

30:12 On the Tractability of Optimization Problems on H-Graphs

Rule 1. If there is an xy-vertex w of G for xy ∈ E(T) such that i) x, y /∈Mu for u ∈ VG(T)
with c(u) ∈ C and ii) there is v ∈ VG(T) such that x, y ∈Mv, then discard the choice of C.

Now we are looking for a dominating set D of minimum size such that c(D∩VG(T)) = C.
We use the following rule.

Rule 2. If there is a U -vertex u of G for nonempty U ⊆ V (T) such that i) c(u) /∈ C and ii)
there is c ∈ C such that for every v ∈ VG(T) with c(v) = c, v dominates u, then delete u.

Our next aim is to construct a nice representation. Let

A = {xy ∈ E(T) |x, y ∈Mu for some u ∈ VG(T) such that c(u) ∈ C},
A′ = {xy ∈ E(T) |x, y ∈Mu for some u ∈ VG(T) such that c(u) /∈ C and

x, y /∈Mv for v ∈ VG(T) such that c(v) ∈ C}.

Because of Rule 1, there is no e-vertex for e ∈ A′. We contract the edges e ∈ A∪A′. Let T̂
(resp. T̂ ′) be the tree obtained from T (resp. T ′) by contracting the paths that correspond to
the contracted edge. We also construct the graph Ĝ that is obtained from G by contracting
these edges of T and we also construct its T̂ -representation M̂ = {M̂v}v∈V (Ĝ) where
M̂v ∈ V (T̂ ′) for v ∈ V (Ĝ). We set ĉ = c|V (Ĝ) and let Cx = {c, ∃u ∈ VĜ(x) s.t. ĉ(u) = c} for
x ∈ V (T̂). Observe that M̂ is a nice T̂ -representation of Ĝ. Indeed, for every xy ∈ E(T)
such that x, y ∈Mu for u ∈ VG(T) we have that xy ∈ A if c(u) ∈ C and xy ∈ A′ if c(u) /∈ C
because of Rule 2, and all such edges xy are contracted.

We show that the contraction of the edges of A ∪ A′ is safe in the sense that D is a
minimum dominating set with C = c(D ∩ VG(T)) if and only if D is a minimum dominating
set of G′such that C = ĉ(D∩VĜ(T̂)). Note that the condition C = ĉ(D∩VĜ(T̂)) is equivalent
to the condition that for every x ∈ V (T̂), Cx = ĉ(D ∩ VĜ(x)), because the T̂ -representation
of Ĝ is nice and Cx ∩ Cy = ∅ for distinct x, y ∈ V (T̂). We set d = |V (T)|+ ` ≤ 3`− 2 and
apply the next rule.

Rule 3. If there is x ∈ V (T̂) with |Cx| > d, then discard the current choice of C.
By Lemma 20, we have that if a set of nodes X of T is contracted into a single vertex x

of T̂ , then D has at most |X|+ ` vertices whose models contain a vertex of X and, therefore,
the number of vertices colored by the colors of Cx in D is at most d.

We select arbitrarily a node r to be the root of T̂ and T̂ ′ respectively. Then we apply
Lemma 22 for the instance (T̂ , k, d, ĉ, {Cx}x∈V (T̂)) of Dominating Set Extension.

Recall that Dominating Set Extension is a promise problem. If the algorithm from
Lemma 22 returns a yes-answer, it means that there is a dominating set D of Ĝ of size at
most k such that for each x ∈ V (T̂), Cx = c(D ∩ VĜ(x)). It means that the input graph G
has a dominating set of size at most k. Still, if the promise is false, the algorithm can return
an incorrect no-answer. Recall that the promise of Dominating Set Extension is the
following: for every dominating set D of Ĝ of minimum size with the properties that
1. D has at most d x-vertices for x ∈ V (T̂), and
2. for each x ∈ V (T̂), Cx ⊆ c(D ∩ VG(x̂)),
it holds that the number of nodes x ∈ V (T̂) such that D contains an x-vertex is maximum
and for each x ∈ V (T̂), Cx = c(D ∩ VG(x̂)). We prove that if C is chosen in such a way that
G has a minimum dominating set D that has the maximum number of vertices of VG(T) and
whose vertices in VG(T) are colored exactly by the colors of C, then this promise holds for
the corresponding instance of Dominating Set Extension constructed for this choice of
C. Therefore, if (G, k) is a yes-instance of Dominating Set, then for some choice of C, we
obtain a yes-answer. J

F. V. Fomin, P. A. Golovach, and J.-F. Raymond 30:13

The theorem immediately gives the following corollary for T -graphs.

I Corollary 24. Dominating Set can be solved in time 2O(|T |2) · nO(1) for T -graphs if T is
a tree.

4.3 A polynomial kernel for Clique
It was observed in [8] that the Clique problem is FPT for H-graphs when parameterized by
the solution size k and ‖H‖ (even when no H-representation of G is given). We show that
Clique admits a polynomial kernel when a representation is given.

I Theorem 25 (F). The Clique problem for H-graphs admits a kernel with at most
(k − 1)|V (H)| vertices if an H-representation of the input graph is given.

References
1 Rémy Belmonte and Martin Vatshelle. On graph classes with logarithmic boolean-width.

arXiv preprint, 2010. arXiv:1009.0216.
2 Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and

algorithmic applications. Theoretical Computer Science, 511:54–65, 2013. doi:10.1016/j.
tcs.2013.01.011.

3 Anne Berry, Jean-Paul Bordat, and Olivier Cogis. Generating All the Minimal Separators
of a Graph, pages 167–172. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. doi:
10.1007/3-540-46784-X_17.

4 M. Biró, M. Hujter, and Zs. Tuza. Precoloring extension. I. Interval graphs. Discrete
Mathematics, 100(1):267–279, 1992. doi:10.1016/0012-365X(92)90646-W.

5 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the
minimal separators. SIAM Journal on Computing, 31(1):212–232, 2001. doi:10.1137/
S0097539799359683.

6 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of graphs. The-
oretical Computer Science, 412(39):5187–5204, 2011. doi:10.1016/j.tcs.2011.05.022.

7 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theoretical Computer
Science, 511:66–76, 2013. Exact and Parameterized Computation. doi:10.1016/j.tcs.
2013.01.009.

8 Steven Chaplick, Martin Töpfer, Jan Voborník, and Peter Zeman. On H-topological in-
tersection graphs. In International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 167–179. Springer, 2017. arXiv:1608.02389.

9 Steven Chaplick and Peter Zeman. Combinatorial problems on H-graphs. In The European
Conference on Combinatorics, Graph Theory and Applications (EUROCOMB’17), Elec-
tronic Notes in Discrete Mathematics, volume 61, pages 223–229, 2017. arXiv:1706.00575.
doi:10.1016/j.endm.2017.06.042.

10 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Dániel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

12 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

13 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of
optimization problems on h-graphs. CoRR, abs/1709.09737, 2017. arXiv:1709.09737.

ESA 2018

http://arxiv.org/abs/1009.0216
http://dx.doi.org/10.1016/j.tcs.2013.01.011
http://dx.doi.org/10.1016/j.tcs.2013.01.011
http://dx.doi.org/10.1007/3-540-46784-X_17
http://dx.doi.org/10.1007/3-540-46784-X_17
http://dx.doi.org/10.1016/0012-365X(92)90646-W
http://dx.doi.org/10.1137/S0097539799359683
http://dx.doi.org/10.1137/S0097539799359683
http://dx.doi.org/10.1016/j.tcs.2011.05.022
http://dx.doi.org/10.1016/j.tcs.2013.01.009
http://dx.doi.org/10.1016/j.tcs.2013.01.009
http://arxiv.org/abs/1608.02389
http://arxiv.org/abs/1706.00575
http://dx.doi.org/10.1016/j.endm.2017.06.042
http://dx.doi.org/10.1016/j.tcs.2008.09.065
http://arxiv.org/abs/1709.09737

30:14 On the Tractability of Optimization Problems on H-Graphs

14 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via
triangulations and CMSO. SIAM J. Comput., 44(1):54–87, 2015. arXiv:1309.1559.
doi:10.1137/140964801.

15 Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM J. Comput., 1(2):180–187,
1972. doi:10.1137/0201013.

16 Fănică Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
J. Combinatorial Theory Ser. B, 16:47–56, 1974.

17 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57 of Annals
of Discrete Mathematics. Elsevier Science B.V., Amsterdam, second edition, 2004. With a
foreword by Claude Berge.

18 Michel Habib and Juraj Stacho. Polynomial-time algorithm for the leafage of chordal graphs.
In Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science,
pages 290–300. Springer, 2009. doi:10.1007/978-3-642-04128-0_27.

19 L. Jaffke, O. Kwon, and J. A. Telle. A note on the complexity of Feedback Vertex Set
parameterized by mim-width. arXiv preprint, 2017. arXiv:1711.05157. arXiv:1711.
05157.

20 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. A note on the complexity of feedback vertex
set parameterized by mim-width. CoRR, abs/1711.05157, 2017. arXiv:1711.05157.

21 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Polynomial-time algorithms for the longest
induced path and induced disjoint paths problems on graphs of bounded mim-width. arXiv
preprint, 2017. arXiv:1708.04536.

22 Ton Kloks, H Bodlaender, Haiko Müller, and Dieter Kratsch. Computing treewidth and
minimum fill-in: All you need are the minimal separators. Algorithms—ESA’93, pages
260–271, 1993.

23 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. Comput. Syst. Sci.,
67(4):757–771, 2003. doi:10.1016/S0022-0000(03)00078-3.

24 Venkatesh Raman and Saket Saurabh. Short cycles make W[1]-hard problems hard: FPT
algorithms for W[1]-hard problems in graphs with no short cycles. Algorithmica, 52(2):203–
225, 2008. doi:10.1007/s00453-007-9148-9.

http://arxiv.org/abs/1309.1559
http://dx.doi.org/10.1137/140964801
http://dx.doi.org/10.1137/0201013
http://dx.doi.org/10.1007/978-3-642-04128-0_27
http://arxiv.org/abs/1711.05157
http://arxiv.org/abs/1711.05157
http://arxiv.org/abs/1711.05157
http://arxiv.org/abs/1711.05157
http://arxiv.org/abs/1708.04536
http://dx.doi.org/10.1016/S0022-0000(03)00078-3
http://dx.doi.org/10.1007/s00453-007-9148-9

On the Optimality of Pseudo-polynomial
Algorithms for Integer Programming

Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
fomin@ii.uib.no

Fahad Panolan
Department of Informatics, University of Bergen, Norway
fahad.panolan@ii.uib.no

M. S. Ramanujan
University of Warwick, United Kingdom
R.Maadapuzhi-Sridharan@warwick.ac.uk

Saket Saurabh
Institute of Mathematical Sciences, HBNI, Chennai, India and University of Bergen, Norway
saket@imsc.res.in

Abstract
In the classic Integer Programming (IP) problem, the objective is to decide whether, for a given
m × n matrix A and an m-vector b = (b1, . . . , bm), there is a non-negative integer n-vector x
such that Ax = b. Solving (IP) is an important step in numerous algorithms and it is important
to obtain an understanding of the precise complexity of this problem as a function of natural
parameters of the input.

The classic pseudo-polynomial time algorithm of Papadimitriou [J. ACM 1981] for instances
of (IP) with a constant number of constraints was only recently improved upon by Eisenbrand
and Weismantel [SODA 2018] and Jansen and Rohwedder [ArXiv 2018]. We continue this line
of work and show that under the Exponential Time Hypothesis (ETH), the algorithm of Jansen
and Rohwedder is nearly optimal. We also show that when the matrix A is assumed to be
non-negative, a component of Papadimitriou’s original algorithm is already nearly optimal under
ETH.

This motivates us to pick up the line of research initiated by Cunningham and Geelen [IPCO
2007] who studied the complexity of solving (IP) with non-negative matrices in which the number
of constraints may be unbounded, but the branch-width of the column-matroid corresponding to
the constraint matrix is a constant. We prove a lower bound on the complexity of solving (IP)
for such instances and obtain optimal results with respect to a closely related parameter, path-
width. Specifically, we prove matching upper and lower bounds for (IP) when the path-width of
the corresponding column-matroid is a constant.

2012 ACM Subject Classification Theory of computation → Integer programming

Keywords and phrases Integer Programming, Strong Exponential Time Hypothesis, Branch-
width of a matrix, Fine-grained Complexity

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.31

Related Version A full version of the paper is available at https://arxiv.org/abs/1607.
05342.

© Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 31; pp. 31:1–31:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fomin@ii.uib.no
mailto:fahad.panolan@ii.uib.no
mailto:R.Maadapuzhi-Sridharan@warwick.ac.uk
mailto:saket@imsc.res.in
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.31
https://arxiv.org/abs/1607.05342
https://arxiv.org/abs/1607.05342
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 On the Optimality of Pseudo-polynomial Algorithms for IP

1 Introduction

In the classic Integer Programming problem, the input is an m× n integer matrix A, and
an m-vector b = (b1, . . . , bm). We consider the feasibility version of the problem, where
the objective is to find a non-negative integer n-vector x (if one exists) such that Ax = b.
Solving this problem, denoted by (IP), is a fundamental step in numerous algorithms and
it is important to obtain an understanding of the precise complexity of this problem as a
function of natural parameters of the input. Throughout the paper we denote ∆ for the
largest absolute value of the entries of A.

(IP) is known to be NP-hard. However, there are two classic algorithms due to Lenstra
[13] and Papadimitriou [16] solving (IP) in polynomial or pseudo-polynomial time for two
important cases when the number of variables and the number of constraints are bounded.
These algorithms in some sense complement each other.

The algorithm of Lenstra shows that (IP) is solvable in polynomial time when the number
of variables is bounded. Actually, the result of Lenstra is even stronger: (IP) is fixed-parameter
tractable parameterized by the number of variables. However, the running time of Lenstra’s
algorithm is doubly exponential in n. Later, Kannan [12] provided an algorithm for (IP)
running in time nO(n). Deciding whether the running time nO(n) can be improved to 2O(n)

is a long-standing open question.
Our work is motivated by the complexity analysis of the complementary case when the

number of constraints is bounded. (IP) is NP-hard already for m = 1 (the Knapsack
problem) but solvable in pseudo-polynomial time. In 1981, Papadimitriou [16] extended this
result by showing that (IP) is solvable in pseudo-polynomial time on instances for which the
number of constraints m is a constant. The algorithm of Papadimitriou consists of two steps.
The first step is combinatorial, showing that if the entries of A and b are from {0,±1, . . . ,±d},
and (IP) has a solution, then there is also a solution which is in {0, 1, . . . , n(md)2m+1}n.
The second, algorithmic step shows that if (IP) has a solution with the maximum entry at
most B, then the problem is solvable in time O((nB)m+1). Thus the total running time of
Papadimitriou’s algorithm is O(n2m+2 · (md)(m+1)(2m+1)), where d = max{∆, ‖b‖∞}. There
was no algorithmic progress on this problem until the very recent breakthrough of Eisenbrand
and Weismantel [6]. They proved the following result.

I Proposition 1 (Theorem 2.2, Eisenbrand and Weismantel [6]). (IP) with m× n matrix A is
solvable in time (m ·∆)O(m) · ‖b‖2

∞.

Then, Jansen and Rohwedder improved Proposition 1 and gave a matching lower bound
very recently [10].

I Proposition 2 (Jansen and Rohwedder [10]). (IP) with m× n matrix A is solvable in time
O(m∆)m log(∆) log(∆ + ‖b‖∞). Assuming the Strong Exponential Time Hypothesis (SETH),
there is no algorithm for (IP) running in time nO(1) · O(m(∆ + ‖b‖∞))m−δ for any δ > 0.

SETH is the hypothesis that CNF-SAT cannot be solved in time (2 − ε)nmO(1) on n-
variable m-clause formulas for any constant ε. ETH is the hypothesis that 3-SAT cannot be
solved in time 2o(n) on n-variable formulas. Both ETH and SETH were first introduced in
the work of Impagliazzo and Paturi [8], which built upon earlier work of Impagliazzo, Paturi
and Zane [9]. One of the natural question is whether the exponential dependence of ‖b‖∞
can be improved significantly at the cost of super polynomial dependence on n. Our first
theorem provides a conditional lower bound indicating that any significant improvements are
unlikely.

F. V. Fomin, F. Panolan, M. S. Ramanujan, and S. Saurabh 31:3

I Theorem 3. Unless the Exponential Time Hypothesis (ETH) fails, (IP) with m × n

matrix A cannot be solved in time no(m
logm) · ‖b‖o(m)

∞ even when the constraint matrix A is
non-negative and each entry in any feasible solution is at most 2.

Let us note that since the bound in Theorem 3 holds for a non-negative matrix A, we
can always reduce (in polynomial time) the original instance of the problem to an equivalent
instance where the maximum value ∆ in the constraint matrix A does not exceed ‖b‖∞.
Thus Theorem 3 also implies the conditional lower bound no(m

logm) · (∆ · ‖b‖∞)o(m). When
m = O(n), our bound also implies the lower bound (n · m)o(m

logm) · (∆ · ‖b‖∞)o(m). We
complement Theorem 3 by turning our focus to the dependence of algorithms solving (IP)
on m alone, and obtaining the following theorem.

I Theorem 4. Unless ETH fails, (IP) with m × n matrix A cannot be solved in time
f(m) · (n · ‖b‖∞)o(m

logm) for any computable function f . The result holds even when the
constraint matrix A is non-negative and each entry in any feasible solution is at most 1.

Although Theorem 3 provides a better dependence on ‖b‖∞, Theorem 4 provides much
more information on how the complexity of the problem depends on m. Since several
parameters are involved in this running time estimation, a natural objective is to study the
possible tradeoffs between them. For instance, consider the O(m∆)m log(∆) log(∆ + ‖b‖∞)
time algorithm (Proposition 2) for (IP). A natural follow up question is the following. Could
it be that by allowing a significantly worse dependence (a superpolynomial dependence) on n
and ‖b‖∞ and an arbitrary dependence on m, one might be able to improve the dependence
on ∆ alone? Theorem 4 provides a strong argument against such an eventuality. Indeed, since
the lower bound of Theorem 4 holds even for non-negative matrices, it rules out algorithms
with running time f(m) ·∆o(m

logm) · (n · ‖b‖∞)o(m
logm). Therefore, obtaining a subexponential

dependence of ∆ on m even at the cost of a superpolynomial dependence of n and ‖b‖∞
on m, and an arbitrarily bad dependence on m is as hard as obtaining a subexponential
algorithm for 3-SAT.

We now motivate our remaining results. It is straightforward to see that when the
matrix A happens to be non-negative, the algorithm of Papadimitriou [16] runs in time
O((n · ‖b‖∞)m+1). Due to Theorems 3 and 4, the dynamic programming step of the
algorithm of Papadimitriou for (IP) when the maximum entry in a solution as well as in
the constraint matrix is bounded, is already close to optimal. Consequently, any quest for
“faster” algorithms for (IP) must be built around the use of additional structural properties of
the matrix A. Cunningham and Geelen [1] introduced such an approach by considering the
branch decomposition of the matrix A. They were motivated by the fact that the result of
Papadimitriou can be interpreted as a result for matrices of constant rank and branch-width
is a parameter which is upper bounded by rank plus one. For a matrix A, the column-matroid
of A denotes the matroid whose elements are the columns of A and whose independent
sets are precisely the linearly independent sets of columns of A. We postpone the formal
definitions of branch decomposition and branch-width till the next section. For (IP) with a
non-negative matrix A, Cunningham and Geelen [1] showed that when the branch-width of
the column-matroid of A is constant, (IP) is solvable in pseudo-polynomial time.

I Proposition 5 (Cunningham and Geelen [1]). (IP) with a non-negative m× n matrix A
given together with a branch decomposition of its column matroid of width k, is solvable in
time O((‖b‖∞ + 1)2kmn+m2n).

We analyze the complexity of (IP) parameterized by the branch-width of A, by making
use of SETH.

ESA 2018

31:4 On the Optimality of Pseudo-polynomial Algorithms for IP

I Theorem 6. Unless SETH fails, (IP) with a non-negative m×n constraint matrix A cannot
be solved in time f(bw)(‖b‖∞+ 1)(1−ε)bw(mn)O(1) or f(‖b‖∞)(‖b‖∞+ 1)(1−ε)bw(mn)O(1), for
any computable function f . Here bw is the branchwidth of the column matroid of A.

In recent years, SETH has been used to obtain several tight conditional bounds on the
running time of algorithms for various optimization problems on graphs of bounded treewidth
[14]. In fact, Theorem 6 follows from stronger lower bounds we prove using the path-width
of A as our parameter of interest instead of the branch-width. The parameter path-width is
closely related to the notion of trellis-width of a linear code, which is a parameter commonly
used in coding theory [7]. For a matrix A ∈ Rm×n, computing the path-width of the column
matroid of A is equivalent to computing the trellis-width of the linear code generated by
A. Roughly speaking, the path-width of the column matroid of A is at most k, if there is a
permutation of the columns of A such that in the matrix A′ obtained from A by applying
this column-permutation, for every 1 ≤ i ≤ n − 1, the dimension of the subspace of Rm
obtained by taking the intersection of the subspace of Rm spanned by the first i columns
with the subspace of Rm spanned by the remaining columns, is at most k − 1.

The value of the parameter path-width is always at least the value of branch-width and
thus Theorem 6 follows from the following theorems.

I Theorem 7. Unless SETH fails, (IP) with even a non-negative m×n constraint matrix A
cannot be solved in time f(k)(‖b‖∞ + 1)(1−ε)k(mn)O(1) for any computable function f and
ε > 0, where k is the path-width of the column matroid of A.

I Theorem 8. Unless SETH fails, (IP) with even a non-negative m× n constraint matrix
A cannot be solved in time f(‖b‖∞)(‖b‖∞ + 1)(1−ε)k(mn)O(1) for any computable function f
and ε > 0, where k is the path-width of the column matroid of A.

Although the proofs of both lower bounds have a similar structure, we believe that there
are sufficiently many differences in the proofs to warrant stating and proving them separately.

Note that although there is still a gap between the upper bound of Cunningham and
Geelen from Proposition 5 and the lower bound provided by Theorem 6, the lower bounds
given in Theorems 8 and 7 are asymptotically tight in the following sense. The proof of
Cunningham and Geelen in [1] actually implies the upper bound stated in Theorem 9. We
provide a self-contained proof in the appended full version of the paper for the reader’s
convenience.

I Theorem 9. (IP) with non-negativem×n matrix A given together with a path decomposition
of its column matroid of width k is solvable in time O((‖b‖∞ + 1)k+1mn+m2n).

Then by Theorem 7, we cannot relax the (‖b‖∞ + 1)k factor in Theorem 9 even if we allow
in the running time an arbitrary function depending on k, while Theorem 8 shows a similar
lower bound in terms of ‖b‖∞ instead of k. Put together the results imply that no matter
how much one is allowed to compromise on either the path-width or the bound on ‖b‖∞, it
is unlikely that the algorithm of Theorem 9 can be improved.

The path-width of matrix A does not exceed its rank and thus the number of constraints
in (IP). Hence, similar to Proposition 5, Theorem 9 generalizes the result of Papadimitriou
when restricted to non-negative matrices. Also we note that the assumption of non-negativity
is unavoidable (without any further assumptions such as a bounded domain for the variables)
in this setting because (IP) is NP-hard when the constraint matrix A is allowed to have
negative values (in fact even when restricted to {−1, 0, 1}) and the branchwidth of the
column matroid of A is at most 3. A close inspection of the instances they construct in their
NP-hardness reduction shows that the column matroids of the resulting constraint matrices
are in fact direct sums of circuits, implying that even their path-width is bounded by 3.

F. V. Fomin, F. Panolan, M. S. Ramanujan, and S. Saurabh 31:5

2 Preliminaries

We use Z≥0 and R to denote the set of non negative integers and real numbers, respectively.
For any positive integer n, we use [n] and Zn to denote the sets {1, . . . , n} and {0, 1, . . . , n−1},
respectively. For convenience, we say that [0] = ∅. For any two vectors b, b′ ∈ Rm and
i ∈ [m], we use b[i] to denote the ith coordinate of b and we write b′ ≤ b, if b′[i] ≤ b[i] for all
i ∈ [m]. We often use 0 to denote the zero-vector whose length will be clear from the context.
For a matrix A ∈ Rm×n, I ⊆ [m] and J ⊆ [n], A[I, J] denote the submatrix of A obtained
by the restriction of A to the rows indexed by I and columns indexed by J . The notion
of the branch-width of graphs, and implicitly of matroids, was introduced by Robertson
and Seymour in [17]. Let M = (U,F) be a matroid with universe set U and family F of
independent sets over U . We use rM to denote the rank function of M . That is, for any
S ⊆ U , rM (S) = maxS′⊆S,S′∈F |S′|. For X ⊆ U , the connectivity function of M is defined
as λM (X) = rM (X) + rM (U \X)− rM (U) + 1.

For matrix A ∈ Rm×n, we use M(A) to denote the column-matroid of A. In this case
the connectivity function λM(A) has the following interpretation. For E = {1, . . . , n} and
X ⊆ E, we define S(A,X) = span(A|X) ∩ span(A|E \X), where A|X is the set of columns
of A restricted to X and span(A|X) is the subspace of Rm spanned by the columns A|X. It
is easy to see that the dimension of S(A,X) is equal to λM(A)(X)− 1.

A tree is cubic if its internal vertices all have degree 3. A branch decomposition of matroid
M with universe set U is a cubic tree T and mapping µ which maps elements of U to leaves
of T . Let e be an edge of T . Then the forest T − e consists of two connected components
T1 and T2. Thus every edge e of T corresponds to the partitioning of U into two sets Xe

and U \Xe such that µ(Xe) are the leaves of T1 and µ(U \Xe) are the leaves of T2. The
width of edge e is λM (Xe) and the width of branch decomposition (T, µ) is the maximum
edge width, where maximum is taken over all edges of T . Finally, the branch-width of M is
the minimum width taken over all possible branch decompositions of M .

The path-width of a matroid is defined as follows. Recall that a caterpillar is a tree
which is obtained from a path by attaching leaves to some vertices of the path. Then the
path-width of a matroid is the minimum width of a branch decomposition (T, µ), where T is
a cubic caterpillar. Let us note that every mapping of elements of a matroid to the leaves of
a cubic caterpillar corresponds to an ordering of these elements. Jeong, Kim, and Oum [11]
gave a constructive fixed-parameter tractable algorithm to construct a path decomposition
of width at most k for a column matroid of a given matrix.

For q ≥ 3, let δq be the infimum of the set of constants c for which there exists an
algorithm solving q-SAT with n variables and m clauses in time 2cn ·mO(1). The Exponential-
Time Hypothesis (ETH) and Strong Exponential-Time Hypothesis (SETH) are then formally
defined as follows. ETH conjectures that δ3 > 0 and SETH that limq→∞ δq = 1.

3 ETH lower bounds on pseudopolynomial solvability of (IP)

In this section we prove Theorem 4. Here, we give a brief overview of the reduction
and the intuition behind it. We use the ETH based lower bound result of Marx [15] for
Partitioned Subgraph Isomorphism. For two graphs G and H, a map φ : V (G) 7→ V (H)
is called a subgraph isomorphism from G to H, if φ is injective and for any {u, v} ∈ E(G),
{φ(u), φ(v)} ∈ E(H). In the Partitioned Subgraph Isomorphism problem, the input
consists of two graphs G,H, a bijection cG : V (G) 7→ [`] and a function cH : V (H) 7→ [`],
where ` = |V (G)| and the objective is to decide whether there a subgraph isomorphism φ

from G to H such that for any v ∈ V (G), cG(v) = cH(φ(v)).

ESA 2018

31:6 On the Optimality of Pseudo-polynomial Algorithms for IP

I Lemma 10 ([15]). If Partitioned Subgraph Isomorphism can be solved in time
f(G)no(k

log k), where f is an arbitrary function, n = |V (H)| and k = |E(G)|, then ETH fails.

To prove Theorem 4 we give a polynomial time reduction from Partitioned Sub-
graph Isomorphism to (IP) such that for every instance (G,H, cG, cH) of Partitioned
Subgraph Isomorphism the reduction outputs an instance of (IP) where the constraint
matrix has dimension O(|E(G)|)×O(|E(H)|) and the largest value in the target vector is
max{|E(H)|, |V (H)|}.

Let (G,H, cG, cH) be an instance of Partitioned Subgraph Isomorphism. Let
k = |E(G)| and n = |V (H)|. We construct an instance Ax = b of (IP) from (G,H, cG, cH) in
polynomial time. Without loss of generality we assume that [n] = V (H) and that there are
no isolated vertices in G. Hence, the number of vertices in G is at most 2k. Let m = |E(H)|.
For each e ∈ E(H) we assign a unique integer from [m]. Let α : E(H) 7→ [m] be the bijection
which represents the assignment mentioned above. For any i, j ∈ [`], we use EH(i, j) as a
shorthand for the set of edges of H between c−1

H (i) and c−1
H (j). Finally, for ease of presentation

we let {v1, . . . , v`} = V (G) and cG(vi) = i for all i ∈ [`], where ` = |V (G)|.
We now formally define the (IP) instance output by our reduction. The set of indeterm-

inants x of the (IP) instance is {x({a, b}, cH(a), cH(b)) : {a, b} ∈ E(H)}. Notice that for any
{a, b} ∈ E(H), there are two indeterminants x({a, b}, cH(a), cH(b)) and x({a, b}, cH(b), cH(a))
associated with it. Thus the cardinality of x is upper bounded by 2|E(H)| = 2m. Recall
that {v1, . . . , v`} = V (G) and cG(vi) = i for all i ∈ [`], where ` = |V (G)|. For each
vi ∈ V (G) we define 2dG(vi)− 1 many constraints as explained below. Let r = dG(vi) and
NG(vi) = {vj1 , . . . , vjr}. The constraints for vi ∈ V (G) are the following. For all q ∈ [r],∑

e∈EH(i,jq)

x(e, i, jq) = 1 (1)

The constraints of the form above encode the “selection” constraint in Partitioned
Subgraph Isomorphism, which says that for every edge {i, j} in G, we must pick an edge
in H which has one endpoint in color class i and the other in color class j. For all q ∈ [r− 1],

∑
{a,b}∈EH(i,jq)

a∈c−1
H

(i)

a · x({a, b}, i, jq) +
∑

{a,b′}∈EH(i,jq+1)
a∈c−1

H
(i)

(n− a) · x({a, b′}, i, jq+1) = n (2)

For each {vi, vj} ∈ E(G) with i < j, we define the following constraint in the (IP)
instance.∑
{a,b}∈EH(i,j)
a∈c−1

H
(i)

α({a, b}) · x({a, b}, i, j) +
∑

{a,b}∈EH(i,j)
b∈c−1

H
(j)

(m− α({a, b})) · x({a, b}, j, i) = m (3)

The two sets of constraints above enforce the property that for any color class i in H,
the set of edges that we have selected in the solution among those with exactly one endpoint
in i, in fact have the same endpoint in the color class i. Together these constraints allow
one to reconstruct the solution to the Partitioned Subgraph Isomorphism instance
from a feasible solution for the resulting (IP) instance. Clearly, the number of rows in A is
|E(G)|+

∑
v∈V (G) 2dG(v)− 1 ≤ 5k and number of columns in A is 2m. In order to prove

Theorem 4, we first show that (G,H, cG, cH) is a Yes instance of Partitioned Subgraph
Isomorphism if and only if Ax = b, x ≥ 0 is feasible and if Ax = b, x ≥ 0 is feasible, then
for any solution x∗, each entry of x∗ belongs to {0, 1}.

F. V. Fomin, F. Panolan, M. S. Ramanujan, and S. Saurabh 31:7

4 Path-width parameterization: SETH bounds

We prove Theorems 7 and 8 by giving reductions from CNF-SAT. At this point, one might
be tempted to start the reduction from k-CNF SAT as seen in [2]. However, the fact that
in our case we also need to control the path-width of the reduced instance poses serious
technical difficulties if one were to take this route. Therefore, we take a different route and
reduce from CNF-SAT which allows us to construct appropriate gadgets for propagation
of consistency in our instance while simultaneously controlling the path-width. Moreover,
the parameters in the reduced instances are required to obey certain strict conditions. For
example, the reduction we give to prove Theorem 7 must output an instance of (IP), where
the path-width of the column matroid M(A) of the constraint matrix A is a constant and the
upper bound on the largest entry in b depends on the path-width. Similarly, in the reduction
used to prove Theorem 8, we need to construct an instance of (IP) where the largest entry
in the target vector is upper bounded by a constant. These stringent requirements on the
parameters make the SETH-based reductions quite challenging. However, reductions under
SETH are allowed to take super polynomial time – they can even take 2(1−ε)n time for some
ε > 0, where n is the number of variables in the instance of CNF-SAT. This freedom to avail
exponential time in SETH-based reductions is used crucially in the proofs of Theorems 7
and 8.

Now we give an overview of the reduction used to prove Theorem 7. Let ψ be an instance
of CNF-SAT with n variables and m clauses. Given ψ and a fixed constant c ≥ 2, we
construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0 of (IP) satisfying certain properties. Since for
every c ≥ 2, we have a different A(ψ,c) and b(ψ,c), this can be viewed as a family of instances
of (IP). In particular our main technical lemma is the following.

I Lemma 11. Let ψ be an instance of CNF-SAT with n variables andm clauses. Let c ≥ 2 be
a fixed integer. Then, in time O(m22nc), we can construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0,
of (IP) with the following properties.
(a.) ψ is satisfiable if and only if A(ψ,c)x = b(ψ,c), x ≥ 0 is feasible.
(b.) The matrix A(ψ,c) is non-negative and has dimension O(m)×O(m2nc).
(c.) The path-width of the column matroid of A(ψ,c) is at most c+ 4.
(d.) The largest entry in b(ψ,c) is at most 2dnc e − 1.

Once we have Lemma 11, we prove Theorem 7 using the fact that if we have an algorithm
A solving (IP) in time f(k)(‖b‖∞ + 1)(1−ε)k(mn)a for some ε, a > 0, then we can use this
algorithm to refute SETH. In particular, given an instance ψ of CNF-SAT, we choose an
appropriate c depending only on ε and a, construct an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of
(IP), and run A on it. Our careful choice of c will imply a faster algorithm for CNF-SAT,
refuting SETH. More formally, we choose c to be an integer such that (1− ε) + 4(1−ε)

c + a
c < 1.

Then the total running time to test whether ψ is satisfiable, is the time require to construct
A(ψ,c)x = b(ψ,c), x ≥ 0 plus the time required by A to solve the constructed instance of (IP).
That is, the time required to test whether ψ is satisfiable is

O(m22nc) + f(c+ 4)2nc (1−ε)(c+4)2 a·nc mO(1) = 2
(

(1−ε)+ 4(1−ε)
c + a

c

)
n
mO(1) = 2ε

′nmO(1),

where ε′ < 1 is a constant depending on the choice of c. It is important to note that the
utility of the reduction described in Lemma 11 is extremely sensitive to the value of the
numerical parameters involved. In particular, even when the path-width blows up slightly,
say up to δc, or when the largest entry in b(ψ,c) blows up slightly, say up to 2δ nc , for some
δ > 1, then the calculation above will not give us the desired refutation of SETH. Thus, the

ESA 2018

31:8 On the Optimality of Pseudo-polynomial Algorithms for IP

challenging part of the reduction described in Lemma 11 is making it work under these strict
restrictions on the relevant parameters and we focus on this part in the extended abstract.

As stated in Lemma 11, in our reduction, we need to obtain a constraint matrix with
small path-width. An important first step towards this is understanding what a matrix of
small path-width looks like. We first give an intuitive description of the structure of such
matrices. Let A be a m×n matrix of small path-width and let M(A) be the column matroid
of A. For any i ∈ {1, . . . , n − 1}, let A|{1, . . . i} denote the set of columns (or vectors) in
A whose index is at most i (that is, the first i columns) and let A|{i + 1, . . . n} denote
the set of columns with index strictly greater than i. The path-width of M(A) is at most
maxi dim〈span(A|{1, . . . , i}) ∩ span(A|{i+ 1, . . . , n})〉+ 1. Consequently, in order to obtain
a bound on the pathwidth, it is sufficient to bound dim〈span(A|{1, . . . , i}) ∩ span(A|{i +
1, . . . , n})〉 for every i ∈ [n].

The construction used in Lemma 11 takes as input an instance ψ of CNF-SAT with n
variables and a fixed integer c ≥ 2, and outputs an instance A(ψ,c)x = b(ψ,c), x ≥ 0, of (IP),
that satisfies all four properties of the lemma. Let X denote the set of variables in the input
CNF-formula ψ = C1 ∧C2 ∧ . . .∧Cm. For the purposes of the present discussion we assume
that c divides n. We partition the variable set X into c blocks X0, . . . , Xc−1, each of size n

c .
Let Xi, i ∈ {0, . . . , c − 1}, denote the set of assignments of variables corresponding to Xi.
Set ` = n

c and L = 2`. Clearly, the size of Xi is upper bounded by 2nc = 2` = L. We denote
the assignments in Xi by φ0(Xi), φ1(Xi), . . . , φL−1(Xi). To construct the matrix A(ψ,c), we
view “each of these assignments as a different assignment for each clause”. In other words we
have separate sets of variables in the constraints corresponding to different pairs (Cr, Xi),
where Cr is a clause and Xi is a block in the partition of X. That is for each clause Cr and
block Xi, we have variables {yCr,i,a a ∈ Z2L }. In other words for each Cr and assignment
φa(Xi), a ∈ ZL, we have two variables yCr,i,2a and yCr,i,2a+1. For any clause Cr, i ∈ Zc and
a ∈ Z2L, assigning value 1 to yC,i,a corresponds to choosing an assignment φb a2 c(Xi) for Xi.
In our reduction we will create the following set of constraints.∑

i∈[c],a∈Z2L such that
a is even and

φb a2 c
(Xi) satisfies C

yC,i,a = 1 for all C ∈ C (4)

∑
a∈Z2L

yC,i,a = 1 for all C ∈ C and i ∈ Zc (5)

Equation (4) takes care of satisfiability of clauses, while Equation (5) allows us to pick
only one assignment from {φ0(Xi), φ1(Xi), . . . , φL−1(Xi)} per clause C and block Xi. Note
that this implies that we will choose an assignment in Xi for each clause Cr. That way we
might choose m assignments from Xi corresponding to m different clauses. However, for the
backward direction of the proof, it is important that we choose the same assignment from Xi
for each clause. This will ensure that we have selected an assignment to the variables in Xi.
Towards this we will have a third set of constraints as follows.∑

a∈Z2L

(
ba2 c · yCr,i,a

)
+
(

(L− 1− ba2 c)yCr+1,i,a

)
= L− 1 ∀r ∈ [m− 1] , i ∈ Zc (6)

Equation (6) enforce consistencies of assignments of blocks across clauses in a sequential
manner. That is, for any block Xi, we make sure that the two variables set to 1 corresponding
to (Cr, Xi) and (Cr+1, Xi) are consistent for any r ∈ {1, . . . ,m− 1}, as opposed to checking
the consistency for every pair (Cr, Xi) and (Cr′ , Xi) for r 6= r′. Thus in some sense these

F. V. Fomin, F. Panolan, M. S. Ramanujan, and S. Saurabh 31:9

consistencies propagate. Furthermore, the idea of making consistency in a sequential manner
also allows us to bound the path-width of column matroid of A(ψ,c) by c+ 4.

The proof technique for Theorem 8 is similar to that for Theorem 7. This is achieved
by modifying the matrix A(ψ,c) constructed in the reduction described for Lemma 11. The
largest entry in A(ψ,c) is 2nc −1 (see Equation (6)). So each of these values can be represented
by a binary string of length at most ` = n

c . We remove each row, say row indexed by γ,
with entries greater than 1 and replace it with n

c rows, γ1, . . . , γ`. Where, for any j, if the
value A(ψ,c)[γ, j] = W then A(ψ,c)[γk, j] = ηk, where ηk is the kth bit in the `-sized binary
representation of W . This modification reduces the largest entry in A(ψ,c) to 1 and increases
the path-width from constant to approximately n. Finally, we set all the entries in b(ψ,c) to
be 1. This concludes the overview of our reductions.

4.1 Proof of Theorem 7
In this section we give a more detailed sketch of the proof of Theorem 7. Towards this, we
first present the main details in the proof of our most technical lemma (Lemma 11).

Let ψ = C1 ∧ C2 ∧ . . . ∧ Cm be an instance of CNF-SAT with variable set X =
{x1, x2, . . . , xn} and let c ≥ 2 be a fixed constant given in the statement of Lemma 11. We
construct the instance A(ψ,c)x = b(ψ,c), x ≥ 0 of (IP) as follows.

Construction. Let C = {C1, . . . , Cm}. Without loss of generality, we assume that n is
divisible by c, otherwise we add at most c dummy variables to X such that |X| is divisible by
c. We divide X into c blocks X0, X1, . . . , Xc−1. That is Xi = {x i·n

c +1, x i·nc +2, . . . , x (i+1)·n
c

}
for each i ∈ Zc. Let ` = n

c and L = 2`. For each block Xi, there are exactly 2` assignments.
We denote these assignments by φ0(Xi), φ1(Xi), . . . , φL−1(Xi).

Now, we create m · c · 2`+1 variables; they are named yC,i,a, where C ∈ C, i ∈ Zc and
a ∈ Z2L = Z2`+1 . In other words, for a clause C, a block Xi and an assignment φa(Xi), we
create two variables; they are yC,i,2a and yC,i,2a+1. Then, we create the (IP) constraints
given by Equations (4), (5), and (6).

This completes the construction of (IP) instance. Let A(ψ,c)y = b(ψ,c) be the (IP)
instance defined using Equations (4), (5), and (6). The purpose of Equation (4) is to ensure
satisfiability of all the clauses. Because of Equation (5), for each clause C and for each
block Xi, we select only one assignment. Notice, that, so far it is allowed to choose many
assignments from a block Xi, for different clauses. To ensure the consistency of assignments
in each block across clauses, we added a system of constraints (Equation (6)). Equation (6)
ensures the consistency of assignments in the adjacent clauses (in the order C1, . . . , Cm).
Thus, the consistency of assignments propagates in a sequential manner. Notice that number
constraints defined by Equations (4), (5), and (6) are m, m · c and (m− 1) · c, respectively.
The number of variables is m · c · 2`+1. Also notice that all the coefficients in Equations (4),
(5) and (6) are non-negative. This implies that A(ψ,c) is non-negative and has dimension
O(m) × O(m2nc). Thus, the property (b.) of Lemma 11 is satisfied. The largest entry in
b(ψ,c) is L − 1 = 2dnc e − 1 (see Equation (6)) and hence the property (d.) of Lemma 11 is
satisfied. The complete details for the proof of property (a.) can be found in the appended
full version. Moving forward, we simplify the notation by using A instead of A(ψ,c) and b
instead of b(ψ,c).

Now we need to prove property (c.) of Lemma 11. That is the path-width of A is at most
c+ 4. Towards that we need to understand the structure of matrix A. We decompose the
matrix A into m disjoint submatrices B1, . . . Bm which are disjoint and cover all the non-zero

ESA 2018

31:10 On the Optimality of Pseudo-polynomial Algorithms for IP

entries in the matrix A. First we define some notations and fix the column indices of A
corresponding the the variables in the constraints. Let Y denote the set {yC,i,a | C ∈ C, i ∈
Zc, a ∈ Z2L} of variables in the constraints defined by Equations (4), (5) and (6). These
variables can be partitioned into

⊎
C∈C YC , where YC = {yC,i,a | i ∈ Zc, a ∈ Z2L}. Further

for each C ∈ C, YC can be partitioned into
⋃
i∈Zc YC,i, where YC,i = {yC,i,a | a ∈ Z2L}. The

set of columns indexed by [r · c2̇`+1] \ [(r− 1) · c · 2`+1], for any r ∈ [m], corresponds to the set
of variables in YCr . Among the set of columns corresponding to YC , the first 2`+1 columns
corresponds to the variables in YC,1, second 2`+1 columns corresponds to the variables in
YC,2, and so on. Among the set of columns corresponds to YC,i for any C ∈ C and i ∈ Zc,
the first two columns corresponds to the variable yC,i,0 and yC,i,1, and second two columns
corresponds to the variables yC,i,2 and yC,i,3, and so on.

Now we move to the description of Bj , j ∈ [m]. The matrix Bj will cover the coefficients of
YCj in Equations (4), (5) and (6). In other words Bj covers the non-zero entries in the columns
corresponding to YCj , i.e, in the columns of A indexed by [j · c · 2`+1] \ [(j− 1) · c · 2`+1]. Now
we explain these submatrices. Each matrix Bj has c · 2`+1 columns; each of them corresponds
to a variable in YCj . Each row in A corresponds to a constraint in the system of equations
defined by Equations (4), (5) and (6). So we use notations f(C1), . . . f(Cm) to represents the
constraints defined by Equations (4). Similarly we use notations {s(C, i) | C ∈ C, i ∈ Zc}
and {t(C, i) | C ∈ C, i ∈ Zc} to represent the constraints defined by Equations (5) and (6),
respectively.

Matrices Br for 1 < r < m. Matrix Br is of dimension (3c + 1) × (c · 2`+1). The first c
rows are defined by Equation (6). For j ∈ [c], in ith row, we have coefficients of YCr from
t(Cr−1, i). In the (c+ 1)st row of Br, we have coefficients of YCr from f(Cr). For i ∈ [c], the
rows indexed by c+ 1 + i and 2c+ 1 + i are defined as follows. In the (c+ 1 + i)th row of
Br, we have coefficients of YCr from s(Cr, i) while in the (2c+ 1 + i)th row of Br, we have
coefficients of YCr from t(Cr, i). This completes the definition of Br. By their role in the
reduction, the matrix Br is partitioned in to four parts. The part composed of the first c rows
is called the predecessor matching part. The part composed of the row indexed by c+ 1 is
called the evaluation part of B1. The part composed of rows indexed by c+ 2, c+ 3, . . . , 2c+ 1
is called selection part and the part composed of last c rows is called successor matching part.
That is the entries of B1 are as follows, where i ∈ Zc and a ∈ ZL.

The predecessor matching part is defined by

Br[i+ 1, i · 2`+1 + 2a+ 1] = Br[i+ 1, i · 2`+1 + 2a+ 2] = L− 1− a. (7)

The evaluation part is defined by

Br[c+ 1, i · 2`+1 + 2a+ 2] = 0, (8)

and

Br[c+ 1, i · 2`+1 + 2a+ 1] =
{

1, if φa(Xi) satisfies Cr,
0, otherwise. (9)

The selection part for Br is defined as

Br[c+ 2 + i, i · 2`+1 + 2a+ 1] = Br[c+ 2 + i, i · 2`+1 + 2a+ 2] = 1, (10)

The successor matching part for Br is defined as

Br[2c+ 2 + i, i · 2`+1 + 2a+ 1] = Br[2c+ 2 + i, i · 2`+1 + 2a+ 2] = j. (11)

F. V. Fomin, F. Panolan, M. S. Ramanujan, and S. Saurabh 31:11

All other entries in Br, which are not listed above, are zero. That is, for all i, i′ ∈ Zc and
g ∈ [2`+1] such that i 6= i′,

Br[i+ 1, i′ · 2`+1 + g] = 0, (12)
Br[c+ 2 + i, i′ · 2`+1 + g] = 0, and (13)
Br[2c+ 2 + i, i′ · 2`+1 + g] = 0. (14)

Matrices B1 and Bm. These have a slightly different structure. Informally, B1 and Bm can
be defined like Br, 1 < r < m, but we delete first c rows to get B1 and delete last c rows to
get Bm. A brief description of B1 and Bm is given below.

Matrix B1 is of dimension (2c+ 1)× (c · 2`+1). In the first row of B1, we have coefficients
of YC1 from f(C1). For i ∈ Zc, the rows indexed by 2 + i and c+ 2 + i are defined as follows.
In the (2 + i)th row of B1, we have coefficients of YC1 from s(C1, i) while in the (c+ 2 + i)th
row of B1, we have coefficients of YC1 from t(C1, i).

Matrix Bm is of dimension (2c+1)× (c ·2`+1). For j ∈ [c], in ithe row, we have coefficients
of YCm from t(Cm−1, i). In the (c+ 1)st row of Br, we have coefficients of YCm from f(Cm).
In the (c+ 1 + i)th row of Bm, we have coefficients of Yr from s(Cm, i).

Matrix A. Now we explain how the matrix A is formed from B1, . . . , Bm. The matrices
B1, . . . , Bm are disjoint submatrices of A and they cover all non zero entries of A. Informally,
the submatrices B1, . . . , Bm form a chain such that the rows corresponding to the successor
matching part of Br will be the same as the rows in the predecessor matching part of Br+1
(because of Equation (6)). Formally, let I1 = [2c + 1] and Im = [(m − 1)(2c + 1) + (c +
1)] \ [(m− 1)(2c+ 1)− c]. For every 1 < r < m, let Ir = [r(2c+ 1)] \ [(r − 1)(2c+ 1)− c],
and for r ∈ [m], let Jr = [r · c · 2`+1] \ [(r − 1) · c · 2`+1]. Now for each r ∈ [m], the matrix
A[Ir, Jr] := Br. All other entries of A not belonging to any of the submatrices A[Ir, Jr] are
zero.

Towards upper bounding the path-width of A, we start with some notations. We partition
the set of columns of A into m parts J1, . . . , Jm (we have already defined these sets) with
one part per clause. For each r ∈ [m], Jr is the set of columns associated with YCr . We
further divide Jr into c equal parts, one per variable set YCr,i. These parts are

Pr,i = {(r − 1)c · 2`+1 + i · 2`+1 + 1, . . . , (r − 1)c · 2`+1 + (i+ 1) · 2`+1}, i ∈ Zc.

In other words, Pr,i is the set of columns corresponding to YCr,i and |Pr,i| = 2`+1. We also
put n′ = m · c · 2`+1 to be the number of columns in A.

I Lemma 12. The path-width of the column matroid of A is at most c+ 4

Proof. Recall that n′ = m · c · 2`+1, is the number of columns in A and m′ the number of
rows in A. To prove that the path-width of A is ≤ c + 4, it suffices to show that for all
j ∈ [n′ − 1],

dim〈span(A|{1, . . . , j}) ∩ span(A|{j + 1, . . . , n′})〉 ≤ c+ 3. (15)

The idea for proving Equation (15) is based on the following observation. For V ′ =
A|{1, . . . , j} and V ′′ = A|{j + 1, . . . , n′}, let I = {q ∈ [m′] | there exist v′ ∈ V ′ and v′′ ∈
V ′′ such that v′[q] 6= v′′[q] 6= 0}. Then the dimension of span(V ′) ∩ span(V ′′) is at most |I|.
Thus to prove (15), for each j ∈ [n′ − 1], we construct the corresponding set I and show that
its cardinality is at most c+ 3.

We proceed with the details. Let v1, v2, . . . , vn′ be the column vectors of A. Let j ∈ [n′−1].
Let V1 = {v1, . . . , vj} and V2 = {vj+1, . . . , vn′}. We need to show that dim〈span(V1) ∩

ESA 2018

31:12 On the Optimality of Pseudo-polynomial Algorithms for IP

span(V2)〉 ≤ c+ 3. Let I ′ = {q ∈ [m′] | there exists v ∈ V1 and v′ ∈ V2 such that v[q] 6= 0 6=
v′[q]}. We know that [n′] is partitioned into parts Pr′,i′ , r′ ∈ [m], i′ ∈ Zc. We fix r ∈ [m] and
i ∈ Zc such that j ∈ Pr,i.

Let j = (r− 1)c · 2`+1 + i · 2`+1 + g, where g ∈ [2`+1]. Let q1 = max{0, (r− 1)(2c+ 1)− c},
q2 = r(2c+1), j1 = (r−1) ·c ·2`+1, and j2 = r ·c ·2`+1. Then [q2]\ [q1] = Ir and [j2]\ [j1] = Jr
(recall the definition of sets Ir and Jr).

By the decomposition of matrix A, for every q > q2 and for every vector v ∈ V1, we have
v[q] = 0. Also, for every q ≤ q1 and for any v ∈ V2, we have that v[q] = 0. This implies that
I ′ ⊆ [q2] \ [q1] = Ir. Now we partition Ir into 4 parts: R1, R, S, and R2, These parts are
defined as follows.

R1 =
{
∅, if r = 1,
{(r − 2)(2c+ 1) + i′ | i′ ∈ Zc}, otherwise,

R = {(r − 1)(2c+ 1) + 1}, (16)
S = {(r − 1)(2c+ 1) + 2 + i′ | i′ ∈ Zc]},

R2 =
{
∅, if r = m,

{(r − 1)(2c+ 1) + c+ 2 + i′ | i′ ∈ Zc}, otherwise

We complete the proof of the lemma by proving the following series of claims. We first
show that for each r′ ∈ [m] such that q /∈ Ir′ and j′′ ∈ Jr′ , vj′′ [q] = 0. Following that,
we show that |I ′ ∩ R1| ≤ c − (i − 1). The final two claims in this series of claims are (i)
|I ′ ∩R2| ≤ i, and (ii) |I ′ ∩ S| ≤ 1.

With the help of these claims, we can conclude the following. |I ′| = |I ′ ∩ Ir| (since
I ′ ⊆ Ir) and |I ′ ∩ Ir| = |I ′ ∩ R1| + |I ′ ∩ R| + |I ′ ∩ S| + |I ′ ∩ R2| (by (16)), which implies
that |I ′| ≤ c− (i− 1) + 1 + 1 + i = c+ 3. This completes the proof of the lemma. J

5 Conclusion

While Theorems 3 and 4 come close to the bound of Proposition 1, the precise multivariate
complexity of (IP) with respect to the parameters n, m, ∆, and ‖b‖∞ is not fully clear and
our work leaves some unanswered questions regarding the landscape of tradeoffs between
the parameters. For instance, is it possible to solve (IP) in time (m · n ·∆)o(m) · (‖b‖∞)O(1),
or (m · n ·∆ · ‖b‖∞)o(m)? Or could one improve our lower bound results to rule out such
algorithms? While our SETH-based lower bounds for (IP) with non-negative constraint
matrix are tight for path-width parameterization, there is a “(‖b‖∞ + 1)k to (‖b‖∞ + 1)2k

gap” between lower and upper bounds for branch-width parameterization. Closing this gap
is a natural question.

The bottleneck in the algorithm of Cunningham and Geelen is the following subproblem.
We are given two vector sets A and B of partial solutions, each set of size at most (‖b‖∞+1)k.
We need to construct a new vector set C of partial solutions, where the set C will have size
at most (‖b‖∞ + 1)k and each vector from C is the sum of a vector from A and a vector
from B. Thus to construct the new set of vectors, one has to go through all possible pairs of
vectors from both sets A and B, which takes time roughly (‖b‖∞ + 1)2k.

A tempting approach towards speeding up this particular step could be the use of fast
subset convolution or matrix multiplication tricks, which work very well for “join” operations
in dynamic programming algorithms over tree and branch decompositions of graphs [5, 18, 4],
see also [3, Chapter 11]. Unfortunately, we have reason to suspect that these tricks may not
help for matrices: solving the above subproblem in time (‖b‖∞+ 1)(1−ε)2knO(1) for any ε > 0
would imply that 3-SUM is solvable in time n2−ε, which is believed to be unlikely.

F. V. Fomin, F. Panolan, M. S. Ramanujan, and S. Saurabh 31:13

References
1 William H. Cunningham and Jim Geelen. On integer programming and the branch-width

of the constraint matrix. In Proceedings of the 12th International Conference on Integer
Programming and Combinatorial Optimization (IPCO), volume 4513 of Lecture Notes in
Comput. Sci., pages 158–166. Springer, 2007.

2 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems
as hard as CNF-SAT. In Proceedings of the 27th IEEE Conference on Computational
Complexity (CCC), pages 74–84. IEEE, 2012. doi:10.1109/CCC.2012.36.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

4 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 150–159. IEEE, 2011.

5 Frederic Dorn. Dynamic programming and fast matrix multiplication. In Proceedings of
the 14th Annual European Symposium on Algorithms (ESA), volume 4168 of Lecture Notes
in Comput. Sci., pages 280–291. Springer, Berlin, 2006.

6 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the steinitz lemma. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 808–816. SIAM, 2018.

7 G. B. Horn and Frank R. Kschischang. On the intractability of permuting a block code
to minimize trellis complexity. IEEE Trans. Information Theory, 42(6):2042–2048, 1996.
doi:10.1109/18.556701.

8 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Computer
and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

9 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. J. Computer and System Sciences, 63(4):512–530, 2001.

10 K. Jansen and L. Rohwedder. On Integer Programming and Convolution. ArXiv e-prints,
2018. arXiv:1803.04744.

11 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width
of matroids. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 1695–1704. SIAM, 2016. doi:10.1137/1.9781611974331.ch116.

12 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of operations research, 12(3):415–440, 1987.

13 Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of operations research, 8(4):538–548, 1983.

14 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on
bounded treewidth are probably optimal. In Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 777–789. SIAM, 2011.

15 Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010. arXiv:
toc:v006/a005.

16 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–
768, 1981. doi:10.1145/322276.322287.

17 Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
J. Combinatorial Theory Ser. B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-N.

18 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Proceedings of the
17th Annual European Symposium on Algorithms (ESA), volume 5757 of Lecture Notes in
Comput. Sci., pages 566–577. Springer, 2009.

ESA 2018

http://dx.doi.org/10.1109/CCC.2012.36
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1109/18.556701
http://dx.doi.org/10.1006/jcss.2000.1727
http://arxiv.org/abs/1803.04744
http://dx.doi.org/10.1137/1.9781611974331.ch116
http://arxiv.org/abs/toc:v006/a005
http://arxiv.org/abs/toc:v006/a005
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1016/0095-8956(91)90061-N

Symmetry Exploitation for Online Machine
Covering with Bounded Migration

Waldo Gálvez
IDSIA, USI-SUPSI
Lugano, Switzerland
waldo@idsia.ch

José A. Soto
Departamento de Ingeniería Matemática & CMM, Universidad de Chile
Santiago, Chile
jsoto@dim.uchile.cl

José Verschae
Facultad de Matemáticas & Escuela de Ingeniería, Pontificia Universidad Católica de Chile
Santiago, Chile
jverschae@uc.cl

Abstract
Online models that allow recourse are highly effective in situations where classical models are
too pessimistic. One such problem is the online machine covering problem on identical machines.
In this setting, jobs arrive one by one and must be assigned to machines with the objective of
maximizing the minimum machine load. When a job arrives, we are allowed to reassign some
jobs as long as their total size is (at most) proportional to the processing time of the arriving
job. The proportionality constant is called the migration factor of the algorithm.

By rounding the processing times, which yields useful structural properties for online packing
and covering problems, we design first a simple (1.7+ε)-competitive algorithm using a migration
factor of O(1/ε) which maintains at every arrival a locally optimal solution with respect to the
Jump neighborhood. After that, we present as our main contribution a more involved (4/3 + ε)-
competitive algorithm using a migration factor of Õ(1/ε3). At every arrival, we run an adaptation
of the Largest Processing Time first (LPT) algorithm. Since the new job can cause a complete
change of the assignment of smaller jobs in both cases, a low migration factor is achieved by
carefully exploiting the highly symmetric structure obtained by the rounding procedure.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms, Theory of
computation → Online algorithms

Keywords and phrases Machine Covering, Bounded Migration, Online, Scheduling, LPT

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.32

Related Version A full version of the paper is available at [9], https://arxiv.org/abs/1612.
01829.

Funding This work was partially supported by SNSF Grant APXNET 200021_159697/1 and
CONICYT-Chile through projects FONDECYT 1181527 and 1181180, PCI PII 20150140 and
PIA AFB170001.

© Waldo Gálvez, José A. Soto, and José Verschae;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:waldo@idsia.ch
mailto:jsoto@dim.uchile.cl
mailto:jverschae@uc.cl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.32
https://arxiv.org/abs/1612.01829
https://arxiv.org/abs/1612.01829
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Symmetry exploitation for Online Machine Covering

1 Introduction

We consider a fundamental load balancing problem where n jobs need to be assigned to m
identical parallel machines. Each job j is fully characterized by a non-negative processing
time pj . Given an assignment of jobs, the load of a machine is the sum of the processing
times of jobs assigned to it. The machine covering problem asks for an assignment of jobs to
machines maximizing the load of the least loaded machine.

This problem is well known to be strongly NP-hard and allows for a polynomial-time
approximation scheme (PTAS) [21]. A well studied algorithm for this problem is the Largest
Processing Time First rule (LPT), that sorts the jobs non-increasingly and assigns them
iteratively to the least loaded machine. Deuermeyer et al. [5] show that LPT is a 4

3 -
approximation and that this factor is asymptotically tight; later, Csirik et al. [4] refine the
analysis giving a tight bound for each m.

In the online setting jobs arrive one after another, and at the moment of an arrival, we
must decide on a machine to assign the arriving job. This natural problem does not admit a
constant competitive ratio. Deterministically, the best possible competitive ratio is m [21],
while randomization allows for a Õ(

√
m)-competitive algorithm, which is the best possible

up to logarithmic factors [1].

Dynamic model. These negative facts motivate the study of a relaxed online scenario with
bounded migration. Unlike the classic online model, when a new job j arrives we are allowed
to reassign other jobs. More precisely, given a constant β > 0, we can migrate jobs whose
total size is upper bounded by βpj . The value β is called the migration factor and it accounts
for the robustness of the computed solutions. In one extreme, we can model the usual online
framework by setting β = 0. In the other extreme, setting β = ∞ allows to compute the
optimal offline solution in each iteration. Our main interest is to understand the exact
trade-off between the migration factor β and the competitiveness of our algorithms. Besides
being a natural problem with an interesting theoretical motivation, its original purpose was
to find good algorithms for a problem in the context of Storage Area Networks (SAN) [17].

Local search and migration. The local search method has been extensively used to tackle
different hard combinatorial problems, and it is closely related to online algorithms where
recourse is allowed. This comes from the fact that simple local search neighborhoods allow to
get considerably improved solutions while having accurate control over the recourse actions
needed, and in some cases even a bounded number of local moves leads to substantially
improved solutions (see [15, 10, 14] for examples in network design problems).

Related Work. Sanders et al. [17] develop online algorithms for load balancing problems
with migration. For the makespan minimization objective, where the aim is to minimize
the maximum load, they give a (1 + ε)-competitive algorithm with 2Õ(1/ε). A mayor open
problem in this area is to determine whether a migration factor of poly(1/ε) is achievable.

The landscape for the machine covering problem is somewhat different. Sanders et
al. [17] give a 2-competitive algorithm with migration factor 1, and this is until now the best
competitive ratio known for any algorithm with constant migration factor. On the negative
side, Skutella and Verschae [19] show that it is not possible to maintain arbitrarily near
optimal solutions using a constant migration factor, giving a lower bound of 20/19 for the
best competitive ratio achievable in that case. The lower bound is based on an instance
where arriving jobs are very small, not allowing to migrate other jobs. This motivated

W. Gálvez, J. A. Soto, and J. Verschae 32:3

1 2 3 4 5
6 7 8 9

13 12 11 10

14 15 16 17

j∗

(a) LPT for the original instance
and arriving job j∗.

1 2 3 4 5
j∗ 6 7 8

12 11 10 9

17 16 15 14 13

(b) LPT for the new instance. Thick items
correspond to migrated jobs.

Figure 1 Ω(m) migration factor needed to maintain LPT at the arrival of j∗.

the study of an amortized version, called reassignment cost model, where they develop a
(1 + ε)-competitive algorithm using a constant reassignment factor. They also show that if
all arriving jobs are larger than ε ·OPT, then there is a (1 + ε)-competitive algorithm with
constant migration factor.

Similar migration models have been studied for other packing and covering problems.
For example, Epstein & Levin [6] design a (1 + ε)-competitive algorithm for the online bin
packing problem using a migration factor of 2Õ(1/ε2), which was improved later by Jansen &
Klein [12] to poly(1/ε) migration factor, and then further refined by Berndt et al. [2]. Also,
for makespan minimization with preemption and other objectives, Epstein & Levin [7] design
a best-possible online algorithm using a migration factor of

(
1− 1

m

)
.

Regarding local search applied to load balancing problems, many neighborhoods have
been studied such as Jump, Swap, Push and Lexicographical Jump in the context of makespan
minimization on related machines [18], makespan minimization on restricted related machines
[16], and also multi-exchange neighborhoods for makespan minimization on identical parallel
machines [8]. For the case of machine covering, Chen et al. [3] study the Jump neighborhood
in a game-theoretical context, proving that every locally optimal solution is 1.7-approximate
and that this factor is tight.

Our Contribution. Our main result is a (4/3 + ε)-competitive algorithm using poly(1/ε)
migration factor. This is achieved by running a carefully crafted version of LPT at the arrival
of each new job. We would like to stress that, even though LPT is a simple and well studied
algorithm in the offline context, directly running this algorithm in each time step in the
online context yields an unbounded migration factor; see Figure 1 for an illustrative example.

To overcome this barrier, we first adapt a less standard procedure to round processing
times in the online framework. The rounding reduces the possible number of sizes of jobs
larger than Ω(εOPT) (where OPT is the offline optimum value) to Õ(1/ε) many numbers,
and furthermore these values are multiples of a common number g ∈ Θ(ε2OPT). This implies
that the number of possible loads for machines having only big jobs is constant since they
are multiples of g as well. Unlike known techniques used in previous work that yield similar
results (see e.g. [13]), our rounding is well suited for online algorithms and helps simplifying
the analysis as it does not depend on OPT (which varies through iterations).

In order to show the usefulness of the rounding procedure, we first present a simple
(1.7 + ε)-competitive algorithm using a migration factor of O(1/ε). This algorithm maintains
through the arrival of new jobs a locally optimal solution with respect to Jump for large
jobs and a greedy assignment for small jobs on top of that. Although for general instances
this can induce a very large migration factor as discussed before, for rounded instances we
can have a very accurate control on the jumps needed to reach a locally optimal solution by
exploiting the fact that there are constant many possible processing times for large jobs.

ESA 2018

32:4 Symmetry exploitation for Online Machine Covering

In the second part of the paper we proceed with the analysis of our (4/3 + ε)-competitive
algorithm. Here we crucially make use of the properties obtained by the rounding procedure
to create symmetries. After a new job arrival we re-run the LPT algorithm for the new
instance. While assigning a job to a current least loaded machine, since there is a constant
number of possible machine loads, there will usually be multiple least loaded machines
to assign the job. All options lead to different (but symmetric) solutions in terms of job
assignments, all having the same load vector and thus the same objective value. Broadly
speaking, the algorithm will construct one of these symmetric schedules, trying to maintain
as many machines with the same assignments as in the previous time step. The analysis
of the algorithm will rely on monotonicity properties implied by LPT which, coupled with
rounding, implies that for every job size the increase in the number of machines with different
assignments (w.r.t the solution of the previous time step) is constant. This finally yields
a migration factor that only grows polynomially in 1/ε. Finally, we give a lower bound of
17/16 for the best competitive ratio achievable by an algorithm with constant migration,
improving the bound on [19].

Due to space constraints, we defer most of the proofs to the full version [9].

2 Preliminaries

Consider a set of n jobs J and a set of m machines M. In our problem, a solution or
schedule S : J → M corresponds to an assignment of jobs to machines. The set of jobs
assigned to a machine i is then S−1(i) ⊆ J . The load of machine i in S corresponds to
`i(S) =

∑
j∈S−1(i) pj . The minimum load is denoted by `min(S) = mini∈M `i(S), and a

machine i is said to be least loaded in S if `i(S) = `min(S).
For an algorithm A and an instance (J ,M), we denote by SA(J ,M) the schedule

returned by A when run on (J ,M). Similarly, SOPT(J ,M) denotes the optimal schedule,
being OPT(J ,M) its minimum load. When it is clear from the context, we will drop the
dependency on J orM.

2.1 Algorithms with robust structure
An important fact used in the robust PTAS for makespan minimization from Sanders et
al. [17] is that small jobs can be assigned greedily almost without affecting the approximation
guarantee. This is however not the case for machine covering; see, e.g. [19] or [9]. A way to
avoid this inconvenience is to develop algorithms that are oblivious to the arrival of small
jobs, that is, algorithms where the assignment of big jobs is unaffected by arriving small job.
I Definition 1. Let h ∈ R+. An algorithm A has robust structure at level h if, for any
instance (J ,M) and j∗ /∈ J such that pj∗ < h, SA(J ,M) and SA(J ∪ {j∗},M) assign to
the same machines all the jobs in J with processing time at least h.

This definition highlights also the usefulness of working with the LPT rule, since the
addition of a new small job to the instance does not affect the assignment of larger jobs.
Indeed, it is easy to see the following.
I Remark. For any h ∈ R+, LPT has robust structure at level h.

We proceed now to define relaxed solutions where, roughly speaking, small jobs are added
greedily on top of the assignment of big jobs.
I Definition 2. Let A be an α-approximation algorithm for the machine covering problem,
with α constant, k1, k2 ∈ R+ constants, 1 ≤ k1 ≤ k2 and ε > 0. Given a machine covering
instance (J ,M), a schedule S is a (k1, k2)-relaxed version of SA if:

W. Gálvez, J. A. Soto, and J. Verschae 32:5

1. jobs with processing time at least k1εOPT are assigned exactly as in SA, and
2. for every machine i ∈M, if S assigns at least one job of size less than k1εOPT to i, then

`i(S) ≤ `min(S) + k2εOPT.

The following lemma shows that we can consider relaxed versions of known algorithms or
solutions while almost not affecting the approximation factor. This will be helpful to control
the migration of small jobs.

I Lemma 3. Let A be an α-approximation, α ≥ 1 constant, k1, k2 ∈ R+ constants, 1 ≤ k1 ≤
k2, 0 < ε < 1

2k2α
and (J ,M) a machine covering instance. Every (k1, k2)-relaxed version of

SA is an (α+O(ε))-approximate solution.

The described results allow us to significantly simplify the analysis of the designed
algorithms. For example, consider LPT and suppose that at the arrival of jobs with
processing time at least some specific value h = Θ(εOPT) we can construct relaxed versions
of solutions constructed by LPT. Dealing with an arriving job of size smaller than h becomes
a simple task since assigning it to the current least loaded machine does not affect the
assignment of big jobs, and we can prove that, for suitable constants k1, k2, a (k1, k2)-relaxed
version of a solution constructed by LPT is maintained that way, almost preserving then
its approximation ratio. It is important to remark that this approach is useful only if
the algorithm has robust structure as, in general, the arrival of small jobs does not allow
migration of big jobs and their structure may need to be changed because of these arrivals in
order to maintain the approximation factor.

2.2 Rounding procedure
Another useful tool is rounding the processing times to simplify the instance and create
symmetries while affecting the approximation factor only by a negligible value. Let us
consider 0 < ε < 1 such that 1/ε ∈ Z. We use the following rounding technique which
is a slight modification of the one presented by Hochbaum and Shmoys in the context of
makespan minimization on related machines [11]. For any job j, let ej ∈ Z be such that
2ej ≤ pj < 2ej+1. We then round down pj to the previous number of the form 2ej + kε2ej

for k ∈ N, that is, we define p̃j := 2ej +
⌊
pj−2ej
ε2ej

⌋
ε2ej .

Observe that pj ≥ p̃j ≥ pj − ε2ej ≥ (1 − ε)pj . Hence, an α-approximation algorithm
for a rounded instance has an approximation ratio of α/(1− ε) = α+O(ε) for the original
instance. From now on we work exclusively with the rounded processing times.

Consider an upper bound UB on OPT such that OPT ≤ UB ≤ 2OPT. This can be
computed by any 2-approximation for the problem such as LPT. Consider the index set

Ĩ(UB) :=
{
i ∈ Z : εUB ≤ 2i < UB

}
= {`, . . . , u}. (1)

We classify jobs as small if p̃j < 2`, big if p̃j ∈ [2`, 2u+1), and huge otherwise. Notice that
small jobs have size at most 2εUB and huge jobs have size at least UB. As we will see, our
main difficulty will be given by big jobs; small and huge jobs are easy to handle. Notice that
in every solution S constructed using LPT, if we ignore small jobs, huge jobs are assigned to
a machine on their own and every machine i ∈M without huge jobs has load at most 2UB.
This is because i either has a big job alone, which has size at most 2UB, or it has load at
most `min(S) + p̃j ≤ 2`min(S) ≤ 2UB, where j is the smallest job assigned to i. Let

P̃ =
{

2i + kε2i : i ∈ {`, . . . , u}, k ∈ {0, 1, . . . , (1/ε)− 1}
}
, (2)

ESA 2018

32:6 Symmetry exploitation for Online Machine Covering

be the set of all (rounded) processing times that a big job may take. The next lemma
highlights the main properties of our rounding procedure.

I Lemma 4. Consider the rounded job sizes p̃j for all j. Then it holds that,
1. |P̃ | ∈ O((1/ε) log(1/ε)), and
2. for each big and huge job j it holds that p̃j = h · ε2` for some h ∈ N0.

Unlike other standard rounding techniques (e.g. [19, 13]), the rounded sizes do not depend
on OPT (or UB). This avoids possible migrations provoked by new rounded values, greatly
simplifying our techniques.

3 A simple (1.7 + ε)-competitive algorithm with O(1/ε) migration.

In this section we will adapt a local search algorithm for Machine Covering to the online
context with migration, using the properties of instances rounded as described in Section 2.2
to bound the migration factor.

In the context of online load balancing with migration, it is a good strategy to look for
local search algorithms with good approximation guarantees and efficient running times. The
main reason is that the migrated load corresponds to the sum of the migrated jobs in each
local move, and for simplified instances (rounded, for example) the number of local moves
until a locally optimal solution is found is usually a constant. That is the case for two natural
neighborhoods used in local search algorithms for load balancing problems: Jump and Swap.
Two solutions S,S ′ are jump-neighbors if they assign the jobs to the same machines (up to
relabeling of machines or jobs of equal size) except for at most one job, and swap-neighbors
if they assign the jobs to the same machines (up to relabeling of machines or jobs of equal
size) except for at most two jobs and, if they differ in exactly two jobs j1, j2 then they are
in swapped machines, i.e., S(j1) = S ′(j2) and S(j2) = S ′(j1). The weight of a solution
is defined through a two-dimensional vector having the minimum load of the schedule as
first coordinate and the number of non-least loaded machines as second one. We compare
the weight of two solutions lexicographically1. In other words, a solution is jump-optimal
(respectively swap-optimal) if the migration of a single job (resp. the migration of a job
or the swapping of two jobs) does not increase the minimum load and, if it maintains the
minimum load, then it does not reduce the number of least loaded machines. The following
lemma characterizes jump-optimal solutions for machine covering.

I Lemma 5. Given (J ,M) a machine covering instance, a schedule S is jump-optimal if
and only if for any machine i ∈M and any job j ∈ S−1(i), we have that `i(S)−pj ≤ `min(S).

Chen et al. [3] proved tight bounds for the approximability of jump-optimal solutions.
Their result is stated in a game theoretical framework, where jump-optimal solutions are
equivalent to pure Nash equilibria for the Machine Covering game (see for example [20]). In
this game, each job is a selfish agent trying to minimize the load of its own machine and the
minimum load is the welfare function to be maximized. Through a small modification these
bounds can be generalized to swap-optimal solutions as well (notice that a swap-optimal
solution is jump-optimal by definition). We summarize the result in the following theorem
which will be useful for our purposes.

1 Just using the minimum load does not lead to good approximation ratios: think for example of m > 2
machines and m jobs of size 1; it is swap-optimal to assign all of them to the same machine.

W. Gálvez, J. A. Soto, and J. Verschae 32:7

Algorithm 1 Online jump-optimality.
Input: Instances (J ,M) and (J ′,M) such that J ′ = J ∪ {j∗}; a schedule S(J ,M).
1: run LPT on input J ′ and let τ be the minimum load. Set UB← 2τ . Define P̃ , `, and u

based on this upper bound UB using (1) and (2).
2: set S ′ ← S
3: if p̃j∗ < 2` then. . Arriving job is small.
4: assign j∗ to a least loaded machine in S ′.
5: else
6: set QB ← {j∗}. . Set with unassigned big jobs.
7: set Qs ← ∅. . Set with unassigned small jobs.
8: while QB 6= ∅ do
9: let j be the largest job in QB . Set QB ← QB \ {j}.
10: in S ′B, use Push to assign j to a least loaded machine m∗, obtaining its output

set Q. Update S ′B to be the output solution of this procedure.
11: reassign jobs in S ′ such that the assignment of (big) jobs in S ′ and S ′B coincides.
12: while m∗ contains a small job w.r.t. UB and `m∗(S ′) > `min(S ′) + 2` do
13: remove the smallest job in S ′−1(m∗) and add it to Qs.
14: end while
15: QB ← QB ∪Q.
16: end while
17: assign the jobs in Qs to S ′ using list-scheduling.
18: end if
19: return S ′.

I Theorem 6 (from [3]). Any locally optimal solution with respect to Jump (resp. Swap)
for Machine Covering is 1.7-approximate. Moreover, there are instances showing that the
approximation ratio of jump-(resp. swap-)optimality is at least 1.7.

3.1 Online jump-optimality.
Using the rounding procedure from Section 2.2, jump-optimality can be adapted to the online
context using a migration factor of O

(1
ε

)
. Our algorithm, described in detail in Algorithm 1,

is called every time a new job j∗ arrives to the system, and receives as input the current
solution S for (J ,M), initialized as empty if J = ∅. It will output a (k, k)-relaxed version
of a jump-optimal solution for some k ≤ 4. We use the concept of a list-scheduling algorithm,
that refers to assigning jobs iteratively (in any order) to some machine of minimum load.
Given a schedule S, SB denotes the restriction of schedule S to big jobs.

The general idea of Algorithm 1 is to first round the instance, and assign the incoming
job to a least loaded machine using an auxiliary algorithm called Push (see Algorithm 2).
Push assigns a given job j into a given machine i and then iteratively removes the jobs in i
that break jump-optimality according to Lemma 5, storing them in a set Q which is part
of the output. Jobs removed by Push need to be reassigned, which we do by iteratively
applying Push on each one of them which is big to assign them to the current least loaded
machine until only small jobs are left to be assigned. At each iteration jump-optimality is
preserved in a relaxed way, and as a last step all the unassigned small jobs are reassigned
using list-scheduling. Notice that, since Push only removes jobs of size strictly smaller than
the inserted job, each job is migrated at most once.

ESA 2018

32:8 Symmetry exploitation for Online Machine Covering

Algorithm 2 Push.
Input: Schedule S for (J ,M), i ∈M, j /∈ J
Output: Q ⊆ J , schedule S ′ for ((J ∪ {j}) \Q,M)
1: Q← ∅.
2: S ′ ← S.
3: assign j to machine i in S ′.
4: for k ∈ S−1(i) do
5: if `i(S ′)− p̃k > `min(S ′) then
6: take out k from i in S ′.
7: Q← Q ∪ {k}.
8: end if
9: end for

10: return Q, S ′.

I Lemma 7. For any h ∈ R+, Algorithm 1 has robust structure at level h. Furthermore,
Algorithm 1 is (1.7 +O(ε))-competitive and has polynomial running time.

Proof idea. Robust structure of Algorithm 1 comes from the fact that Push removes jobs
that are only smaller than the inserted job. We can then show that our solution is a (k, 2k)-
relaxed version of a jump-optimal solution for k = 2`/(εOPT′) ≤ 4, and we can conclude
the first part of the result by using Theorem 6 and Lemma 3. Polynomial running time is
implied by the fact that each job is migrated at most once. J

To analyze the migration factor, we define the migration tree of the algorithm as a node-
weighted tree G = (V,E), where V is the set of migrated jobs together with the incoming job
j∗ /∈ J , and the weight of each v ∈ V is the processing time of the corresponding job p̃v. The
tree is constructed by first adding j∗ as root. For each node (job) v in the tree, its children
are defined as all the jobs migrated at the insertion of v. It is easy to see that this process
does not create any loops as each job is migrated at most once. By definition, the leaves of
the tree are the jobs not inducing migration, and thus any small job in the tree is a leaf. In
the context of local search, the number of nodes in the tree corresponds to the number of
iterations of the specific local search procedure. By analyzing the migration tree level by
level, and together with the already discussed ideas, we can show the following result.

I Lemma 8. Algorithm 1 uses migration factor O((1/ε) log(1/ε)).

Proof idea. Let wi be the total processing time of jobs in level i of the migration tree. Every
time a job j is inserted using Push, the total load of removed jobs in Q is strictly less than p̃j ,
which means that wi is strictly decreasing. Since wi is strictly decreasing and jobs of size at
most 2` do not induce migration, the tree has at most |P̃ | ∈ O((1/ε) log(1/ε)) levels, each of
them having total load at most p̃j∗ . This implies that the total load of migrated big jobs is at
most O((1/ε) log(1/ε)p̃j∗) and hence the migration factor is at most O((1/ε) log(1/ε)). J

The analysis of the migration factor can be further refined to get a tight bound of O (1/ε).
The details can be found in the full version [9].

I Theorem 9. Given ε > 0, Algorithm 1 is a polynomial time (1.7 +ε)-competitive algorithm
with migration factor O (1/ε). Moreover, there are instances for which this factor is Ω (1/ε).

W. Gálvez, J. A. Soto, and J. Verschae 32:9

4 LPT online with migration Õ(1/ε3).

In this section we present our main contribution which is an approximate online adaptation
of LPT using poly(1/ε) migration factor. In order to analyze it, we will first show some
structural properties of the solutions constructed by LPT and how they behave when the
instance is perturbed by a new job.

Algorithm 1 presented in Section 3 already gives some of the features and properties that
our online version of LPT fulfills. However, now in the analysis we will crucially exploit
the symmetry of instances rounded according to the procedure described in Section 2.2, in
particular the fact that the load of each machine is a multiple of some fixed value. Since
LPT takes decisions based solely on the machine loads, having a bounded number of values
for them allows us to accurately control the set of machines where the assignment of big jobs
can be kept unchanged after the arrival of a big job while maintaining the structure of the
solution. Unless stated otherwise, for the rest of this section machine loads are considered
with respect to the rounded processing times p̃j .

Load Monotonicity. Here we describe in more detail the useful structural properties of
solutions constructed using LPT.

I Definition 10. Given a schedule S, its load profile, denoted by load(S), is an Rm≥0-vector
(t1, . . . , tm) containing the load of each machine sorted so that t1 ≤ t2 ≤ . . . ≤ tm.

The following lemma shows that after the arrival of a job, the load profile of solutions
constructed using LPT can only increase. This property only holds if the vector of loads is
sorted, as it can be seen in Figure 1. This monotonicity property is essential for our analysis.

I Lemma 11. Let (J ,M) be a machine covering instance and j∗ /∈ J a job. Then,
it holds that load(SLPT(J ,M)) ≤ load(SLPT(J ′,M)), where the inequality is considered
coordinate-wise and J ′ = J ∪ {j∗}.

This lemma together with our rounding procedure allow us to show that the difference (in
terms of the Hamming distance) of the load profiles of two consecutive solutions consisting
purely of big jobs, is bounded by a small constant. This property will be important to
obtain a poly(1/ε) migration factor and here we crucially exploit the fact that the load of
the machines is always multiple of a fixed value.

I Lemma 12. Consider two instances (J ,M) and (J ′,M) with J ′ = J ∪ {j∗}, where
J ′ contains only big or huge jobs w.r.t UB. Then the vectors load(SLPT(J ,M)) and
load(SLPT(J ′,M)) differ in at most p̃j∗

ε2` ∈ O(1/ε2) many coordinates.

Proof. Due to Lemma 11, we have that load(SLPT(J ,M)) = (t1, . . . , tm) ≤ (t′1, . . . , t′m) =
load(SLPT(J ′,M)). Also, if ti < t′i for some i, then t′i ≥ ti + ε2` since all values
tj , tj′ are integer multiples of ε2` because of Lemma 4. Since ||load(SLPT(J ′,M)) −
load(SLPT(J ,M))||1 = p̃j∗ , we obtain that the number of coordinates in which the load
profiles differ is at most p̃j∗

ε2` . Finally, recalling that j∗ is big, then p̃j∗ ≤ 2u ≤ UB ≤ 2`/ε,
and we can bound the number of different coordinates by p̃j∗

ε2` ≤ 1/ε2. J

Description of Online LPT. Consider two instances (J ,M) and (J ′,M) such that J ′ =
J ∪ {j∗}, and let OPT and OPT′ be their optimal values respectively. In what follows, for
a given list-scheduling algorithm, we will refer to a tie-breaking rule as a rule that decides
a particular machine for assigning a job when faced with multiple least loaded machines.

ESA 2018

32:10 Symmetry exploitation for Online Machine Covering

We say that an assignment is an LPT-solution if there is some tie-breaking rule such that
LPT yields such assignment. We will compute an upper bound UB on OPT′ by computing
an LPT-solution and duplicating the value of its minimum load. For this upper bound, we
compute its respective set P̃ with (1) and (2). In the algorithm, we will label elements in
P̃ = {q1, . . . , q|P̃ |} such that q1 > q2 > · · · > q|P̃ |. Let Jh ⊆ J (respectively J ′h ⊆ J ′) be
the set of jobs of size qh in J (respectively J ′), for qh ∈ P̃ . Similarly, we define J0 (resp.
J ′0) to be the set of jobs in J (resp. J ′) of sizes larger than q1, that is, all huge jobs in J
(resp. J ′). Also, let Sh (resp. S ′h) be the solution S (resp. S ′) restricted to jobs of size qh or
larger. Finally, S0 and S ′0 are the respective solutions restricted to jobs in J0.

In what follows, x+ denotes the positive part of x ∈ R, i.e., x+ = max{x, 0}. To
understand the algorithm, it is useful to have the following observation in mind.

I Observation 13. Consider a solution S for jobs in J and let K be a set of jobs with
J ∩ K = ∅ and all jobs in K have the same size p. Consider a solution SLS constructed
by adding the jobs from K in S using list-scheduling, and let λ = `min(SLS). Notice that
λ is independent of the tie-breaking rule used in list-scheduling. Consider any solution S ′
that is constructed starting from S and adding jobs in K in some arbitrary way. Then, S ′
corresponds to a solution obtained by adding jobs from K with a list-scheduling procedure
(for some tie-breaking rule) if and only if the number of jobs in K added to each machine i
is: (i)

⌈
(λ−`i(S))+

p

⌉
if (λ−`i(S))+

p is not an integer, and either (λ−`i(S))+
p or (λ−`i(S))+

p + 1 if
(λ−`i(S))+

p is a non-negative integer.

Our main procedure is called every time that we get a new job j∗ (where J ′ = J ∪ {j∗})
and receives as input the current solution S for (J ,M). If J = ∅, then S is trivially
initialized as empty. The exact description is given in Algorithm 3.

Broadly speaking, the algorithm works in phases h ∈ {0, . . . , |P̃ |}, where for each h

it assigns jobs in J ′h. First, we assign jobs exactly as in Sh for machines in which the
assignment of Sh−1 and S ′h−1 coincide. The set of such machines is denoted byM=

h−1 and
the set of remaining machines is denoted byM6=h−1. As we will see, this is consistent with
LPT by the previous observation and Lemma 11. The remaining jobs in J ′h are assigned
using list-scheduling. Crucially, we will break ties in favor of machines where the assignment
of Sh−1 and S ′h−1 differ. This is necessary to avoid creating new machines with different
assignments. After assigning huge and big jobs, small jobs are added exactly as in S in
machines where the assignment of big jobs in S and S ′ coincides. The rest of small jobs are
added greedily. In the last part, the algorithm rebalances small jobs by moving them from
machines of load higher than `i(S ′) + 2` to the least loaded machines.

We can prove the following lemma in a very similar way to Lemma 7.

I Lemma 14. Algorithm 3 is (4/3 +O(ε))-competitive.

Bounding the migration factor. To analyze the migration factor of the algorithm, we will
show that |M6=|P̃ || is upper bounded by a constant. This will be done inductively by first
bounding |M 6=h \M

6=
h−1| for each h and then using the fact that |P̃ | ∈ O((1/ε) log(1/ε)). A

description of the overall idea can be found in Figure 2.
Let us consider huge jobs w.r.t UB (i.e. jobs in J ′0). Notice that all these jobs are larger

than OPT′ ≥ OPT, and hence in S ′0 each one is assigned alone to one machine. The same
situation happens in solution S restricted to jobs in J0. Thus, none of these jobs are migrated.
Hence, we can assume w.l.o.g. for the sake of the analysis of the migration that all jobs are
big or small w.r.t UB (including j∗). Additionally, we can assume that j∗ is not small, since
otherwise there is no migration.

W. Gálvez, J. A. Soto, and J. Verschae 32:11

Algorithm 3 Online LPT.
Input: Instances (J ,M) and (J ′,M) such that J ′ = J ∪ {j∗}; a schedule S(J ,M).
1: run LPT on input J ′ and let τ be the minimum load of the constructed solution. Set

UB← 2τ . Define P̃ , `, and u based on this upper bound UB using (1) and (2).
2: setM=

−1 ←M andM6=−1 ← ∅.
3: for h = 0, 1, . . . , |P̃ | do . Assignment of big and huge jobs
4: for each machine i ∈M=

h−1, assign all jobs in Jh ∩ S−1(i) to i in S ′.
5: for jobs in J ′h still not assigned in S ′, apply list-scheduling (with an arbitrary order

of jobs). If there is more than one least loaded machine break ties in favor ofM 6=h−1.
6: defineM=

h as the set of machines i such that S−1
h (i) = S ′−1

h (i) andM6=h ←M\M=
h .

7: end for
8: for machines i ∈M=

|P̃ | do . Assignment of small jobs

9: assign all small jobs w.r.t to UB in J ∩ S−1(i) to i in S ′.
10: end for
11: assign the remaining jobs using list-scheduling.
12: setM to be the set of machines containing a small job w.r.t UB.
13: while there exists i ∈M s.t. `i(S ′) > `min(S ′) + 2` do
14: consider a machine i ∈M of maximum load. Reassign the smallest job in S ′−1(i) to

any least loaded machine.
15: updateM to be the set of machines containing a small job w.r.t UB.
16: end while
17: return S ′.

Let J =
h be the set of jobs assigned by Step 5 to machines inM=

h−1. Notice that the jobs
in J =

h correspond to the jobs in J ′h that S ′ assigns to a machine inM=
h−1 but S processes

inM6=h−1. The next lemma is the main technical contribution of this section.

I Lemma 15. For all h ∈ {1, . . . , |P̃ |} it holds that |M 6=h \M
6=
h−1| ∈ O(p̃j∗

ε2`).

The strategy to prove this lemma is first to show that |J =
h | ∈ O(p̃j∗

ε2`); this is the main
difficulty and for the proof we use lemmas 11 and 12. Having this, since jobs in J =

h are the
only jobs assigned in a given iteration h that can cause one new machine to have different
assignments in Sh and S ′h, then |M

6=
h \M

6=
h−1| ≤ |J =

h | and the lemma holds.
Let SLPT,h be an LPT-solution for jobs in J0 ∪ . . . ∪ Jh, and similarly S ′LPT,h for jobs

in J ′0 ∪ . . . ∪ J ′h. Let us fix h ≥ 1 and consider the target values λ = `min(SLPT,h) and
λ′ = `min(S ′LPT,h). Notice that by Lemma 11, λ ≤ λ′. In order to bound |J =

h |, we first show
in the following lemma that, if a job is actually assigned by Step 5 to some machine inM=

h−1,
then many jobs from the stage must be assigned to machines inM6=h−1.

I Lemma 16. Assume that J =
h 6= ∅. For each machine i ∈ M 6=h−1, if λ − `i(S ′h−1) ≥ 0

solution S ′h assigns to i at least
⌊

(λ−`i(S′h−1))+
qh

⌋
+ 1 many jobs from Jh.

Now we can sketch the proof that |J =
h | ∈ O(p̃j∗

ε2`) (a detailed proof can be found in [9]).

I Lemma 17. It holds that |J =
h | ∈ O(p̃j∗

ε2`).

Proof Sketch. Assume w.l.o.g. thatM 6=h−1 = {1, . . . ,m′} and that `1(S ′h−1) ≤ `2(S ′h−1) ≤
· · · ≤ `m′(S ′h−1). Consider also a permutation σ :M6=h−1 →M

6=
h−1 such that `σ(1)(Sh−1) ≤

ESA 2018

32:12 Symmetry exploitation for Online Machine Covering

M6=h−1 M=
h−1

. . .

Figure 2 Depiction of a possible situation at the end of iteration h− 1. The machines on the
right side correspond to machines inM=

h−1 and therefore process the same jobs in Sh−1 and S ′h−1.
Assume, possibly erroneously and just as a thought experiment, that the machines inM6=h−1 can be
sorted non-decreasingly by load for Sh−1 and S ′h−1 simultaneously. The two solutions are depicted
simultaneously in the picture, where the difference of loads on machines inM 6=h−1 corresponds to
the dashed area. The total dashed load equals to p̃j∗ , which is spread in only constantly many
machines by Lemma 12. When assigning jobs in Jh, the algorithm first assigns a number of jobs to
each machine inM=

h−1 (Step 4), and then fills machines inM 6=h−1. Notice that while the algorithm
does not assign another job to a machine inM=

h−1, no new machine will enterM6=h \M
6=
h−1. On

the other hand, the number of such jobs can be bounded by a number proportional to p̃j∗ (and
1/ε), which then also bounds the number of machines inM 6=h \M

6=
h−1. In reality, however, it is not

true that the machines inM6=h−1 can be sorted non-decreasingly on the loads for Sh−1 and S ′h−1
simultaneously. This provokes a number of technical difficulties that we avoid by using a different
permutation of machines for each solution and invoking Lemma 11.

`σ(2)(Sh−1) ≤ · · · ≤ `σ(m′)(Sh−1). By using Lemma 11, we can show that `σ(i)(Sh−1) ≤
`i(S ′h−1) for all i ∈M6=h−1. Let us consider sets

T− = {i ∈M6=h−1 : `i(S ′h−1) ≤ λ}, and

T+ = {i ∈M6=h−1 : `σ(i)(Sh−1) ≤ λ and `i(S ′h−1) > λ}.

Lemma 16 implies that the total number of jobs from J ′h assigned by S ′h to machines in
M6=h−1 is at least∑

i∈T−

(⌊
(λ−`i(S′h−1))+

qh

⌋
+ 1
)

=
∑

i∈T−∪T+

(⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
+ 1
)

−
∑
i∈T+

(⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
+ 1
)

+
∑
i∈T−

⌊
(λ−`i(S′h−1))+

qh

⌋
−
⌊

(λ−`σ(i)(Sh−1))+
qh

⌋
.

Since T− ∪ T+ contains all indices i ∈ M 6=h−1 such that `σ(i)(Sh−1) ≤ λ, we have that∑
i∈T−∪T+

(⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
+ 1
)
≥ |J =

h | − 1. With a bit of work we get that

|J =
h | ≤ 1 + |T+|+

∑
i∈T+

⌊
(λ−`i(S′h−1))+

qh

⌋
+

∑
i∈T−∪T+

⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
−
⌊

(λ−`i(S′h−1))+
qh

⌋
,

which can be simplified even more since
∑
i∈T+

⌊
(λ−`i(S′h−1))+

qh

⌋
= 0. Finally, if we consider

T6= = {i ∈M6=h−1 : `σ(i)(Sh−1) 6= `i(S ′h−1)}, the last expression is at most

|J =
h | ≤ 1 + |T+|+

∑
i∈(T−∪T+)∩T 6=

⌊
(λ−`σ(i)(Sh−1))+

qh

⌋
−
⌊

(λ−`i(S′h−1))+
qh

⌋
≤ 1 + |T+|+ |T6=|+

∑
i∈T 6=

`i(S′h−1)−`σ(i)(Sh−1)
qh

,

which concludes the proof since |T6=| ≤
p̃j∗

ε2` (Lemma 12) and the last sum is at most p̃j∗

ε2` . J

W. Gálvez, J. A. Soto, and J. Verschae 32:13

I Theorem 18. Online LPT is a polynomial time (4/3 +O(ε))-competitive algorithm with
O((1/ε3) log(1/ε)) migration factor.

We complement this result by improving the lower bound on the best possible competitive
ratio for an algorithm with constant migration factor (details can be found in [9]).

I Lemma 19. For any ε > 0, there is no
(17

16 − ε
)
-competitive algorithm using constant

migration factor for the online machine covering problem with migration.

References
1 Y. Azar and L. Epstein. On-line machine covering. J. Sched., 1:67–77, 1998.
2 S. Berndt, K. Jansen, and K. Klein. Fully dynamic bin packing revisited. In AP-

PROX/RANDOM 2015, pages 135–151, 2015.
3 Xujin Chen, Leah Epstein, Elena Kleiman, and Rob van Stee. Maximizing the minimum

load: The cost of selfishness. Theor. Comput. Sci., 482:9–19, 2013.
4 J. Csirik, H. Kellerer, and G. Woeginger. The exact LPT-bound for maximizing the min-

imum completion time. Oper. Res. Lett., 11:281–287, 1992.
5 B. Deuermeyer, D. Friesen, and M. Langston. Scheduling to maximize the minimum pro-

cessor finish time in a multiprocessor system. SIJADM, 3:190–196, 1982.
6 L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. Math.

Program., 119:33–49, 2009.
7 L. Epstein and A. Levin. Robust algorithms for preemptive scheduling. Algorithmica,

69:26–57, 2014.
8 A. Frangioni, E. Necciari, and M. Scutellà. A multi-exchange neighborhood for minimum

makespan parallel machine scheduling problems. J. Comb. Optim., 8:195–220, 2004.
9 Waldo Gálvez, José A. Soto, and José Verschae. Symmetry exploitation for online machine

covering with bounded migration. CoRR, 2016. arXiv:1612.01829.
10 A. Gu, A. Gupta, and A. Kumar. The power of deferral: Maintaining a constant-

competitive steiner tree online. SIAM J. Comput., 45:1–28, 2016.
11 D. Hochbaum and D. Shmoys. A polynomial approximation scheme for scheduling on

uniform processors: Using the dual approximation approach. SIAM J. Comput., 17:539–
551, 1988.

12 K. Jansen and K. Klein. A robust AFPTAS for online bin packing with polynomial migra-
tion. In ICALP 2013, pages 589–600, 2013.

13 K. Jansen, K. Klein, and J. Verschae. Closing the gap for makespan scheduling via sparsi-
fication techniques. In ICALP 2016, pages 1–13, 2016.

14 J. Łacki, J. Oćwieja, M. Pilipczuk, P. Sankowski, and A. Zych. The power of dynamic
distance oracles: Efficient dynamic algorithms for the steiner tree. In STOC 2015, pages
11–20, 2015.

15 N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for online MST
and TSP. SIAM J. Comput., 45:859–880, 2016.

16 D. Recalde, C. Rutten, P. Schuurman, and T. Vredeveld. Local Search Performance Guar-
antees for Restricted Related Parallel Machine Scheduling. LATIN 2010, pages 108–119,
2010.

17 P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.
Math. Oper. Res., 34:481–498, 2009.

18 P. Schuurman and T. Vredeveld. Performance guarantees of local search for multiprocessor
scheduling. INFORMS J. Comput., 19:52–63, 2007.

19 M. Skutella and J. Verschae. Robust polynomial-time approximation schemes for parallel
machine scheduling with job arrivals and departures. Math. Oper. Res., 41:991–1021, 2016.

ESA 2018

http://arxiv.org/abs/1612.01829

32:14 Symmetry exploitation for Online Machine Covering

20 B. Vöcking. Selfish load balancing. In Algorithmic Game Theory, pages 517–542. Cambridge
University Press, 2007.

21 G. Woeginger. A polynomial-time approximation scheme for maximizing the minimum
machine completion time. Oper. Res. Lett., 20:149–154, 1997.

Edit Distance with Block Operations

Michał Gańczorz
Institute of Computer Science, University of Wrocław, Poland
mga@cs.uni.wroc.pl

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry1@gmail.com

Artur Jeż
Institute of Computer Science, University of Wrocław, Poland
aje@cs.uni.wroc.pl

Tomasz Kociumaka
Institute of Informatics, University of Warsaw, Poland
kociumaka@mimuw.edu.pl

Abstract
We consider the problem of edit distance in which block operations are allowed, i.e. we ask for
the minimal number of (block) operations that are needed to transform a string s to t. We
give O(logn) approximation algorithms, where n is the total length of the input strings, for
the variants of the problem which allow the following sets of operations: block move; block
move and block delete; block move and block copy; block move, block copy, and block uncopy.
The results still hold if we additionally allow any of the following operations: character insert,
character delete, block reversal, or block involution (involution is a generalisation of the reversal).
Previously, algorithms only for the first and last variant were known, and they had approximation
ratios O(logn log∗ n) and O(logn(log∗ n)2), respectively. The edit distance with block moves is
equivalent, up to a constant factor, to the common string partition problem, in which we are
given two strings s, t and the goal is to partition s into minimal number of parts such that they
can be permuted in order to obtain t. Thus we also obtain an O(logn) approximation for this
problem (compared to the previous O(logn log∗ n)).

The results use a simplification of the previously used technique of locally consistent parsing,
which groups short substrings of a string into phrases so that similar substrings are guaranteed to
be grouped in a similar way. Instead of a sophisticated parsing technique relying on a determin-
istic coin tossing, we use a simple one based on a partition of the alphabet into two subalphabets.
In particular, this lowers the running time from O(n log∗ n) to O(n). The new algorithms (for
block copy or block delete) use a similar algorithm, but the analysis is based on a specially tuned
combinatorial function on sets of numbers.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases Edit distance, Block operations, Common string partition

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.33

Funding The work of the first and third author was supported under National Science Centre,
Poland, project number 2014/15/B/ST6/00615. The work of the fourth author was supported
under National Science Centre, Poland, project number number 2014/13/B/ST6/00770.

© Michał Gańczorz, Paweł Gawrychowski, Artur Jeż, and Tomasz Kociumaka;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mga@cs.uni.wroc.pl
mailto:gawry1@gmail.com
mailto:aje@cs.uni.wroc.pl
mailto:kociumaka@mimuw.edu.pl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Edit Distance with Block Operations

1 Introduction

In the edit distance problem, which is one of the most iconic problems in the field of string
algorithms, we are given two strings and a set of allowed operations, and we ask for the
minimum number of operations needed to transform one of the strings into the other.
Classically, we allow single-letter operations (usually: character insert, delete, and replace),
but it seems that block operations, in which the whole substrings of the input can be edited
in one operation, are as important and practical.

In the classical setting, when character operations are allowed, edit distance is computable
in quadratic time, and achieving strongly subquadratic time is unlikely [2]. Allowing block
deletion does not make the problem substantially harder, and a polynomial-time algorithm
for this variant is known [21, 20].

The variant with other block operations was first considered by Lopresti and Tomkins [13],
who showed NP-hardness of edit distance with block moves, as well as with block moves
and block deletions. The former problem was approximated within an O(logn poly(log∗ n))
factor [7], which was later improved to O(logn log∗ n) [6]. A slightly worse approximation
ratio of O(logn(log∗ n)2) is known when we allow block move, block copying, block uncopying
and block reversal [15, 16]; while all those algorithms did not explicitly allow character edits
(insert, delete, replace), it is clear from their analysis that those can also be accommodated.
A variant with block move and block delete was considered and some structural properties
were shown [20], but in the end no approximation algorithm was given.

The three mentioned approximation algorithms are all based on the locally sensitive
parsing technique, which has roots in the deterministic coin tossing by Cole and Vishkin [5]
and was used previously in the context of string algorithms in general [18] and comparing
strings in particular [17, 14, 1]. In this method, we partition the string into constant-length
blocks such that for each letter we can decide whether it begins or ends a block based only on
the O(log∗ n)-size neighbourhood of this letter. Then we label the blocks with new symbols
and iterate the process. It turns out that to approximate the edit distance between two
strings, it is enough to count the difference between the numbers of labels that appear during
this (iterated) process; this is turn can be abstracted as calculating the `1 norm between
embeddings into a vector space.

Surprisingly, allowing both block deletion and block copy makes approximation of the edit
distance simpler: there are O(1) approximation algorithms for this problem [8, 19]. Those
are based on a different approach, though: in essence they parse the target into phrases using
the LZ77 algorithm, copy the phrases from the source, and then delete the source.

The edit distance with move operations problem is equivalent (up to a constant coefficient)
to a common string partition problem, which was investigated on its own due to its connections
with the computational biology, however, often in variants that are not so well motivated
in terms of edit distance. For instance, it was shown to be fixed parameter tractable [3]
and its restricted variant is known to be NP-hard but at the same time approximable up to
a constant factor [10]; heuristics for this problem were also analysed [4].

Our contribution. We present O(logn) approximation algorithms for the edit distance
problem with the following set of (block) operations: block move; block move and block
delete; block move and block copy; block move, block copy and block uncopy. Our algorithms
work also when an arbitrary subset of the following operations is also allowed: character insert,
character delete, character replace, block involution. (Involution, also known as antimorphism,
is a generalisation of reverse: it reverses the string and then replaces each letter a with

M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:3

f(a), where f is a given bijection on the letters such that f(f(a)) = a, note that f can
be the identity.) The first algorithm improves upon the previously known O(logn log∗ n)
approximation ratio [6], while the last one – the O(logn(log∗)2n) ratio [15, 16]. The second
variant was considered to no avail [20]; to the best of our knowledge, the third variant has
not been considered before.

The algorithms for the cases when only block move or block move, copy and uncopy are
allowed, are similar as before [6, 15, 16], but instead of the sophisticated locally consistent
parsing based on the deterministic coin tossing, we use a simpler one which is based on
a partition of the alphabet into two parts. Such approaches were recently investigated [11, 9].

The presented version of the parsing is much simpler than previously used and allows
for the removal of the multiplicative log∗ n factors from the approximation ratios. It also
enables a more general treatment of involution instead of reversal.

The algorithm for block moves and block delete is almost the same as in the case when
only block moves are allowed. However, the analysis employs complex combinatorial functions
defined on sets of lengths of letter repetitions. Unlike the previously used embedding to `1
spaces, this function depends on both strings and cannot be computed separately for each of
them. The algorithm for the variant with block move and block copy uses the same function
in the analysis, but in contrast to other presented algorithms (as well as the previously known
ones), it is no longer a simple greedy algorithm. It constructs the sequence of operations in
two steps: in the second one, the earlier copy operations may be revoked and move operations
may be forced.

Our algorithms can be generalised to the case when the input is given in a grammar-
compressed form: then its running time becomes O(n logN), when n is the compressed size
of the input and N the sum of lengths of the decompressed strings.

To streamline the presentation, in the extended abstract we give the algorithms in the
variant when the involution is not allowed. The generalisation to the case with involution is
natural, though tedious.

2 Definitions and basic reductions

A string is a sequence of elements, called letters, from a finite set, called alphabet and usually
denoted by Σ, and it is denoted as w = w1w2 · · ·wk, where each wi is a letter; the length
|w| of such a string w is k. For any two strings w = w1 · · ·wk and w′ = wk+1 · · ·wk+`, their
concatenation is ww′ = w1 · · ·wk+`. A string v is a substring of w if there exist strings w′, w′′
such that w = w′vw′′, it is a prefix if w = vw′′ and a suffix if w = w′v. The empty string, i.e.
the one of length 0, is denoted by ε. For a letter a and a string w, the number of occurrences
of a in w is denoted |w|a.

Given two strings s, t their edit distance is the minimum number of operations needed
to transform s to t. The usual operations are insert (ins) and delete (del): the former turns
a string s = s1s2 to s1as2 and the latter s′ = s1as2 to s1s2 for arbitrary letter a and strings
s1, s2. Replace, which replaces a single letter with another, is usually considered as well, but
it can be simulated by insert and delete, so we ignore it later on. Other operations include
block copy (called copy for short, cp), block move (called move for short, mv) and block
delete (b-del), which can transform s = s1s2s3s4 to, respectively, s1s2s3s2s4 or s1s3s2s3s4,
s1s3s2s4 and s1s3s4, for arbitrary strings s1, s2, s3, s4. The block uncopy (called uncopy for
short, uncp) is the inverse operation to copy, i.e. it can transform any s1s2s3s2s4 to s1s2s3s4
or s1s3s2s4 for arbitrary strings s1, . . . , s4. By EDOp(s, t) we denote the minimal number of
operations from the set Op that transform s to t, where Op ⊆ {ins, del, cp,mv, uncp, b-del},

ESA 2018

33:4 Edit Distance with Block Operations

and the edit distance with operations Op problem asks, for given strings s and t, to find
the sequence of EDOp(s, t) operations that transforms s to t. Note that the “edit distance”
is a distance only when block deletion is not allowed and for each operation its inverse is
also allowed. Nevertheless, in each case ED does satisfy the (directed) triangle inequality:
EDOp(s, t) + EDOp(t, `) ≥ EDOp(s, `). Still, we use the name distance for historic reasons.

For two strings s and t, their common partition with operations is a representation
s = s1s2 · · · sds

and t = t1t2 · · · tdt
with two sets of indices Is ⊆ [1 . . ds] and It ⊆ [1 . . dt]

(equal to [1 . . ds] and [1 . . dt], respectively, unless otherwise stated), and a bijection f : Is → It

such that si = tf(i) for each i ∈ Is; we say that parts si and tf(i) are matched. The size of
such a partition is ds + dt. Depending on the allowed operations, we may relax some of those
requirements and give new ones:
delete If deletion of single letters is allowed (del), then we allow Is 6= [1 . . ds] but require

that |si| = 1 for i /∈ Is. We say that such letters are deleted.
insert If insertion of single letters is allowed (ins), then we allow It 6= [1 . . dt] but require

that |ti| = 1 for i /∈ It. We say that such letters are inserted.
block-delete If block-deletion is allowed (b-del), then we allow Is 6= [1 . . ds]. This operation

supersedes deletion. We say that such blocks are deleted.
By CPOp(s, t) for Op ⊆ {del, ins, b-del}, we denote the minimal size of the common partition
with operations Op for s and t. In the minimum common string partition with operations
Op problem, we want to compute, for the given strings s and t, their partition of minimal
size and the corresponding function f .

Note that the different names for deletion and insertion of letters are chosen for consistency
between the common partition and the edit distance problems. In the later sections, we will
consider a common string partition (without operations) problem generalised to two sets of
strings, which is defined in the obvious way.

It is folklore knowledge that edit distance with move operations corresponds to a common
partition; more precisely, it is within constant factor of the minimal common partition.
Moreover, the same holds when block deletion and/or character operations are allowed.

I Lemma 1. For any set of operations Op ⊆ {del, ins, b-del}, there is a constant cOp such
that for any strings s, t:

ED{mv}∪Op(s, t) ≤ CPOp(s, t) ≤ cOp ED{mv}∪Op(s, t) .

Moreover, this correspondence is effective: given a sequence of d operations from Op that
transform s to t, we can compute the common partition with Op of s and t of size at most
cOpd, and given a common partition with Op of size d, we can compute a sequence of d
operations from Op that transform s to t.

As approximation algorithms given in this work have approximation factors O(log |st|),
due to Lemma 1 we will content ourselves with considering one or the other problem of edit
distance or common partition, depending on whichever is easier to argue about.

3 Locally consistent parsing

A parsing of a string s is a sequence s1, . . . , sk such that s = s1s2 · · · sk; the strings s1, . . . , sk

are called phrases, the integer k is the size of this parsing, and we say that s is parsed into
s1, . . . , sk. Given a substring t of s, we say that it is parsed into si, . . . , sj when si · · · sj

contain this occurrence of t while si+1 · · · sj and si · · · sj−1 do not. A parsing scheme is a
way of producing parsings for strings. We consider parsing schemes given by a pair of disjoint
alphabets Σ0,Σ1 ⊆ Σ. This defines a parsing in the following way:

M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:5

repetitions We group into a phrase each maximal repetition a` with a ∈ Σ and ` > 1.
pairs We group each ab ∈ Σ0Σ1 into a phrase.
All the remaining letters form length-1 phrases.

Next, we construct a new alphabet which has a letter for each constructed phrase.
Using the new alphabet, a parsing of w gives raise to a new string w′, which is obtained

by replacing phrases of length greater than 1 by their new symbols. This is called a signature
of the string w and denoted by sig(w). Note that the signature depends on the parsing
scheme (i.e. Σ0 and Σ1) as well as on the chosen symbols; the former is always clear from the
context and the latter is ignored as the exact choice is irrelevant as long as it is consistent.

Given a letter a, its expansion exp(a) is the phrase that it replaced and its full expansion
Exp(a) is the substring of the original text that it represents, which is obtained by iterative
application of exp. This is generalised to strings in the obvious way.

Given two strings, we can find in linear time a parsing scheme which replaces those string
with signatures that are shorter by a constant fraction.

I Lemma 2. Given two strings s, t over an alphabet Σ we can find in time O(|s|+ |t|+ |Σ|)
a parsing scheme of size at most 11

12 |st|+
1
3 and produce the corresponding signatures.

The proof is a variant of a known construction [11, 9]. The idea is that when Σ is randomly
partitioned into Σ0 and Σ1, then among every two consecutive letters, with constant probab-
ility at least one is going to be parsed into a phrase of length two or more. Case inspection
shows that the claim holds in expectation, and we can derandomise the procedure using the
conditional expectations.

We call the parsing from Lemma 2 the parsing for s, t; given that there could be many
such parsings, we choose one arbitrarily. We iterate the parsing process for two strings
until they are reduced to single letters: an iterated parsing scheme is a sequence of parsing
schemes (Σ0,1,Σ1,1), (Σ0,2,Σ1,2), . . . , (Σ0,`,Σ1,`); its height is `. Given a string s, an iterated
parsing scheme defines a sequence of signatures s = sig0(s), sig1(s), sig2(s), . . . , sig`(s), in
which sigi(s) is the signature of sigi−1(s) according to parsing scheme (Σ0,i−1,Σ1,i−1), where
sigi−1(s) is a string over Σi−1 = Σ0,i−1 ∪ Σ1,i−1. Note that Σi and Σj for i 6= j are not
necessarily disjoint and in constructions they are usually not: not all letters from a string
are replaced with their signatures, and so we want to replace them later on. We say that a
letter a is from the ith level, or simply an i-letter, if a ∈ Σi \

⋃
j<i Σj .

I Lemma 3. Given two strings s, t, there is an iterated parsing scheme of height O(log |st|)
such that sig`(s) and sig`(t) are letters.

We call this parsing scheme the parsing scheme for s, t.
A parsing scheme is locally consistent if different occurrences of v (in the same or different

strings) are parsed into the same phrases, possibly except O(1) beginning and ending phrases.
Formally, if different occurrences of v are parsed into s1, . . . , si and s′1, . . . , s′i′ , then there
are b, b′, e, e′ ∈ O(1) such that the sequences of phrases s1+b, . . . , sj−e and s′1+b′ , . . . , s′j′−e′

are equal (in particular they have the same length).

I Lemma 4. A parsing scheme defined by a partition of the alphabet are locally consistent.

4 Approximation via embedding into normed vector spaces

Idea. While different occurrences of the same substring in s, t may be parsed differently by
an iterated parsing scheme, the same symbol always fully expands to the same substring of
the original strings s, t. This leads to a natural meta-algorithm for the common partition

ESA 2018

33:6 Edit Distance with Block Operations

(and the edit distance with block moves) for s, t, which was first proposed by Cormode and
Muthukrishnan [6] (earlier work [7] used a similar though more involved approach): given
s, t calculate their iterated parsing scheme and set of signatures s0, . . . , sk and t0, . . . , tk,
where k = O(log(st)), and then iteratively look at i-symbols for i = k, k − 1, If there are
common symbols in si and ti, then make corresponding full expansions in s, t as parts and
match them to each other. For the remaining symbols, expand them to phrases in si−1 and
ti−1. The algorithm depends only on the number of occurrences of each i-symbol in si an
ti; thus, we can represent s, t as vectors of counts of occurrences of letters in appropriate
signatures. Amortised analysis shows that the size of the resulting partition (the number
of edit moves) is within a constant factor of the `1 norm of the difference of the vectors for
s and t. As a last step, one argues that this difference is at most O(k) times the size of
the minimal common partition (the edit distance), which is shown by induction on the edit
distance value. Adding insertion and deletion as allowed operations keeps the whole scheme
more or less the same; in particular, we still use the `1 norm.

Unfortunately, allowing more operations (and in particular their combinations) distorts
this approach. The needed modifications are explained at appropriate places.

Embedding to normed vector spaces. Given a string s and an iterated parsing scheme
(Σ0,i,Σ1,i)k

i=1, let s = s0, . . . , sk be the sequence of its signatures and let Σi = Σ0,i ∪ Σ1,i.
We embed s into a vector space whose coordinates are indexed with elements of

⋃k
i=0 Σi:

for an i-letter a, we set V (s)[a] = |si|a, i.e. the number of occurrences of the letter a in
the appropriate signature of s (the first one to use letter a). Define a symmetric difference
V (s)4 V (t) of such vectors as

(V (s)4 V (t))[a] = d|V (s)[a]− V (t)[a]|e .

Note that taking the ceiling is not needed, as coordinates are natural numbers, but it is used
for vectors defined later on. We also define the support sup(v) of a vector, in which every non-
zero component of v is replaced with 1, i.e. sup(v)[a] ∈ {0, 1} and sup(v)[a] = 0 ⇐⇒ v[a] = 0.
Lastly, the standard `1 norm is the sum of its coordinates (which are all non-negative):
‖V (s)‖1 =

∑
a V (s)[a]. Define also Vi(s) that restricts V (s) to coordinates in

⋃
j≤i Σj

Algorithms. We now give the algorithms for several variants of the edit distance with
operations and bound their sizes in terms of vectors related to input strings. The basic case
is when the move operation is allowed; it serves as a model for other algorithms.

Common partitions for repetitions. Our algorithms try to match identical symbols in two
signatures, yet it is more beneficial to match long repetitions instead of single letters, i.e.
partition repetitions into subrepetitions such that those of larger lengths can be matched
using less parts. It turns out that this is a variant of the original common partition problem;
we state the simple result for later reference.

I Lemma 5. For two sets S, T of a repetitions with, respectively, nS and nT repetitions and
having the same sum of lengths of repetitions, there exists a common partition between S

and T of size at most 2nS + 2nT .

It is enough to match any repetition from one set to a prefix in the other.

M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:7

Move. AlgMove works as follows: We compute the iterated parsing scheme for s, t, the
corresponding signatures s0, . . . , sk and t0, . . . , tk, and the vectors V (s) and V (t). In the
same time bounds, we can also create the list of occurrences of a in si and ti for each i-letter
a. Also, for each letter in the signature, we compute the beginning and the end of the
corresponding full expansions in the original string.

During the algorithm, we consider the strings si, ti for i = k, . . . , 1, 0. We colour some
letters of si, ti black, such that the multisets of black coloured letters in si, ti are the same.

Initially, there are no coloured letters in sk, tk. For each i we proceed as follows: first, we
consider si, ti with the coloured letters removed, which yields two sets of strings, called S
and T , respectively. For each i-letter a, take the sets of all maximal a-repetitions in S and T
(which includes those of length 1, i.e. single letters a). Let their total sum of lengths be `s, `t,
respectively, and let ` = min(`s, `t). Choose among those two sets (sub)repetitions with total
length ` (we take all repetitions from one of the sets, while in the other we may need to
split one repetition). Let the numbers of the chosen repetitions be ns, nt, respectively. Using
Lemma 5, we find a common partition for them of size at most 2(ns + nt). We then colour
those letters black, remove them from S, T and declare their full expansions in s and t as
parts and map the ones in s to t. If the removal happens in the middle of some string in
S ∪ T , then this string is split into two strings and both are added back to the appropriate
set. After that, we expand each i-letter to the corresponding phrase in si−1 or ti−1; the
expansion is black coloured if and only if this letter is black coloured.

After processing 0-letters, the final actions depend on the allowed operations: if there
are any uncoloured letters in s0 = s, then we delete them or reject if deletion is not allowed;
similarly, if there are any uncoloured letters in t0 = t, then we insert them or reject if
insertion is not allowed.

I Lemma 6 (cf. [6]). Given an iterated parsing scheme for strings s and t, AlgMove constructs
in linear time a common partition of size O(‖V (s)4 V (t)‖1).

Proof.

I Claim. When the algorithm processes si, for each a the number of black coloured letters a
in si and ti is the same.

This is true when there are no coloured letters; we show that this number changes in the
same way for s and t. When we expand the letters, by the inductive assumption the multiset
of black-coloured letters is the same in si and ti. Each such letter is replaced with the same
expansion, so the claim holds also after the expansion. When we colour letters, we do it on
the same (multi)sets of letters in si, ti.

Claim 4 implies that after processing an i-letter a, but before the expansion, the number
of uncoloured a’s in si, ti is exactly (V (s)4 V (t))[a]: those uncoloured letters are exactly in
one of si, ti and the coloured letters have the same number of occurrences in si and ti.

Concerning the cost, we assume that the creation of one part in the common partition
consumes one unit of credit. We keep the invariant that right before processing i-letters,
each repetition in S and T (including length-1 repetitions) has 2 units of credit. The credit
is spent when the partition is formed: The common partition of repetitions costs on average
2 per paired repetition, which is paid by the credit on this repetition. After the processing,
the unused credit on the repetitions of i-letters is discarded and 4 fresh units of credit are
issued to each i-level symbol that has not been removed (i.e., coloured black). Recall that a
fixed i-letter a has exactly (V (s)4 V (t))[a] such occurrences, so in in total 4 ‖V (s)4 V (t)‖1
units of credit are issued.

ESA 2018

33:8 Edit Distance with Block Operations

If i > 0, this credit freshly assigned to an i-letter a is then reassigned to letters in the
expansion of a: if exp(a) is a repetition, 4 units are reassigned to this repetition, if it is a
pair, 2 units of credit is given to each of those letters.

In case of i = 0, we observe that each remaining symbol is a 0-letter and has 4 units of
fresh credit, which can be used to pay for the final operations of delete and insert. J

The second step of the analysis is to show that ‖V (s)4 V (t)‖1 indeed upper bounds the
edit distance (multiplied by O(logn)).

I Lemma 7 (cf. [6]). Let s, t be two strings and let {mv} ⊆ Op ⊆ {ins, del,mv}. Fix
an iterated parsing scheme of height k. Then ‖V (t)4 V (s)‖1 = O(d(k + 1)), where d =
EDOp(s, t).

Proof. As ‖· 4 ·‖1 satisfies the triangle inequality, it is enough to give the proof for d = 1.
Let s = s0, . . . , sk and t = t0, . . . , tk be the consecutive signatures for s, t according to the

parsing scheme and V0(s), . . . , Vk(s) and V0(t), . . . , Vk(t) be the corresponding vectors. We
first show by induction on k a stronger claim for move and then adapt it to other operations:

I Claim. There are at most 3 substrings in sk and at most 3 substrings in tk, called difference
strings, of total length `k, such that the multisets of substrings of sigk(s) and sigk(t) obtained
after the removal of the difference strings are equal and 4`k + ‖Vk(s)4 Vk(t)‖1 = O(k + 1).

For the base of the induction, if s = w1w2w3w4 is turned to t = w1w3w2w4, let the
difference substrings be length-2 substrings on the boundary between each wi and subsequent
wj . We merge the chosen substrings if they overlap or are adjacent, which results in
at most 3 such substrings in s0 and t0; their total length is at most `0 = 12. Clearly,
(V0(s)4 V0(t))[a] = 0 as no letters are removed nor added.

For the induction step, consider how sk and tk are parsed. Define the difference strings in
sk+1 and tk+1 as those whose expansions are contained in the difference strings in sk, tk or
form the O(1) phrases around the difference substrings that may be parsed differently; see
Lemma 4. So the increase `k+1 from `k is upper bounded by O(1), but it can also decrease
if there are phrases in the difference strings that are longer than 1.

Consider the multisets of strings obtained from sk+1, tk+1 after the removal of the
difference strings. By the choice of the difference strings, their expansions were parsed
in the same way (see Lemma 4), and thus those multisets are identical. Consider now
Vk+1(s)4 Vk+1(t) and new letters (compared to Vk(s)4 Vk(t)). Those are (k + 1)-letters
and they are in the difference strings of sk+1, tk+1. Either they are one of the O(1) letters
that replaced phrases that were parsed differently or letters whose phrases consists of the
letters in the difference strings for sk, tk. But each of the latter letters decreases `k+1 when
compared to `k by at least 1: difference strings for sk, tk did not include any (k + 1)-letters
and each such a letter corresponds to a phrase of length at least 2.

For del and ins, the difference strings on the 0-th level include the deleted (or inserted)
letter and otherwise the proof is only simpler (as there are fewer substrings after the removal
of the difference strings and they are in the same order). J

I Theorem 8. AlgMove gives an O(logn) approximation of common partition problem with
a set of operations which is any subset of insert, delete. Its running time is linear assuming
integer sorting runs in linear time. The same applies to the edit distance with set of operations
that include block move and any subset of operations of insert, delete.

M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:9

Move and block delete. We now investigate the case in which we allow move as well as
block delete operation. This makes the situation asymmetric with respect to s and t. The
algorithm is almost the same as AlgMove, though the analysis becomes more involved.

The differences between AlgBdel and AlgMove are as follows: the first is the treatment
of the remaining uncoloured letters in s0 after processing level-0 letters: we delete each
maximal string of such letters using block delete. The second is that we make the common
partition for repetitions in a more clever way (though it is still a valid one for AlgMove): for
a fixed letter a, consider the a-repetitions in S, T (recall that those are the sets of uncoloured
a-repetitions in si, ti, respectively); let them have lengths M = {mi}i∈I and N = {ni}i∈J .
We make the common partition for a-(sub)repetitions in a two-step process. First, we match
the a-repetitions of length 1: Consider the 1’s that are common in M and N ; we colour
the corresponding a’s in S, T black, remove them from S, T and make their full expansions
parts in common partition, and update N,M by removing the common 1’s. Note, that now
M ∩N = ∅: if there is a` in both of them, then this a` was expanded from the same letter
in si+1 and ti+1. But this is not possible, as we colour all such letters black.

For the remaining a-repetitions in S, T , let `s be the total length of a-repetitions in
S (i.e. `s =

∑
p∈M p), let `t be the corresponding total length of a-repetitions in T , and

let ` = min(`s, `t). Choose a-repetitions in S with a total length `, preferring the longer
repetitions. We make the common partition between the chosen repetitions in S and the
ones in T of length `.

Concerning the analysis, it is clear that ‖V (s)4 V (t)‖1 cannot be used, as for t = ε

it is useless; ‖V (t) \ V (s)‖1 is a natural candidate, but it is not subtle enough: consider
s = (ab)` and t = a`. It is clear that at least ` operations are needed to transform s to t, yet
‖V (t) \ V (s)‖1 = O(1). The problem is that several short a-repetitions from s are needed to
form one long a-repetition in t. On the other hand, identical a-repetitions should be “for
free”: when s = t, then we should not impose any cost.

Motivated by those examples, we define a new cost function for s, t. It is somehow related
to Wassersteiner (“earth mover”) distance, but it is directed and applies to sets with different
sums as well. Let us first define it on multisets of natural numbers: given two such multisets
{xi}i∈I and {yi}i∈J , we first exclude from those sets their common part and look for the
smallest number of elements in {xi}i∈I whose sum is at least the sum of {yi}i∈J ; if {xi}i∈I

is not enough, we pad it with an arbitrary number of 1’s. Formally, let I ′ ⊆ I and J ′ ⊆ J be
such that {xi}i∈I′ = {xi}i∈I \({xi}i∈I ∩{yi}i∈J) and {yi}i∈J′ = {yi}i∈J \({xi}i∈I ∩{yi}i∈J),
define x =

∑
i∈I′ xi, y =

∑
i∈J′ yi. Then the SD({xi}i∈I′ , {yi}i∈J′) is defined as follows:

if x < y, then it is (y − x) + |I ′|; otherwise, it is the smallest m such that the sum of
the largest m elements in {xi}i∈I′ is at least y. Lastly, we set SD({xi}i∈I , {yi}i∈J) as
SD({xi}i∈I′ , {yi}i∈J′).

I Lemma 9. SD satisfies the directed triangle inequality.

Then for the input strings s, t and a j-letter a, we define SD(s, t)[a] as SD({xi}i∈I , {yi}i∈J),
where {xi}i∈I , {yi}i∈J are the multisets of lengths of a-repetitions in sj and tj , respectively.
Note that, unlike embedding to vectors, SD(s, t) cannot be computed for s and t separately;
it is defined for a pair s, t.

The following two lemmata are the counterparts of Lemma 6 and Lemma 7 in case when
block delete is allowed; their proofs are similar.

I Lemma 10. Let {b-del,mv} ⊆ Op ⊆ {b-del,mv, del, ins, uncp}. Given an iterated parsing
string for strings s and t, AlgBdel construct a partition of size O(‖V (t) \ V (s)‖1+‖SD(s, t)‖1).
Moreover, it runs in linear time.

ESA 2018

33:10 Edit Distance with Block Operations

I Lemma 11. Let s, t be two strings and let {b-del,mv} ⊆ Op ⊆ {mv, b-del, ins, del, uncp}.
Fix an iterated parsing scheme of height k. Then ‖V (t) \ V (s)‖1, ‖SD(s, t)‖1 ∈ O(d(k + 1)),
where d = EDOp(s, t).

I Theorem 12. AlgBdel is an O(logn) approximation of edit distance for a set of operations
that include block move, block delete, and any subset of block uncopy, insert, delete. Its
running time is linear assuming integer sorting running time is linear.

Move and copy. We now give an algorithm that deals with the scenario in which both
block move and block copy are allowed. As a simple example, consider s = an and t = am,
where m ≥ n; the easiest way to obtain t is to repeatedly “square” the string dlog(m/n)e
times.

Thus, if copy is allowed, we need also to take into the account the lengths of maximal
repetitions. To model this in the analysis,1 given an iterated parsing scheme, we define
a vector LMax(s), indexed by letters of

⋃
i Σi, so that LMax(s)[a] for an i-letter a is the

logarithm of the longest a-repetition in si; we set LMax(s)[a] = 0 if there is no such repetition.
As a second part of the intuition, we note that having copied a symbol, after some

expansions we may realise that it would be better to perform moves instead. Imagine that an
i-letter a occurs twice in ti and we declare one occurrence to be a copy of the other. Later
on, a is expanded to bc, and it turns out that in si−1 there are two uncoloured copies of b
and c. In this case, it is better to cancel the copying and move two b’s and two c’s into ti−1.

AlgBcp proceeds similarly as AlgMove: for i = k, k − 1, . . . , 0, we consider si, ti. We
construct move and copy operations: the move operations are performed in the order in
which AlgBcp constructs them, their sources are always in si and targets in ti; we copy only
within ti and those operations are performed in the reverse order (compared to how the
algorithm constructs them) after all the other operations. This should be intuitively clear:
when in ti we declare one occurrence of a substring t′ to be a copy of another occurrence,
then it may be that we still do not know how t′ is constructed from the substrings of s.

The target of a copy operation is coloured grey and this colour is preserved by expansions.
However, we may always change our mind and uncolour any grey substring. To simulate this,
we split the target into (at most 3) shorter blocks, replacing the original copy operation by
more such operations, and we cancel one of them. In fact, we uncolour only to make room for
the target of a move operation, so the uncoloured symbols are immediately coloured black.

Let the multisets of uncoloured letters in si, ti be S, T , respectively. For each i-letter a,
we list all a-repetitions in S, T : let `s and `t be the total length of a-repetitions in S and T .

If `s ≥ `t, then we use Lemma 5 to make a common partition of repetitions from S

of total length `t and all repetition in T , colour those letters black, remove them from
S, T , and move their full expansions from s0 to t0. If there are repetitions of a left in
si, then we look whether there are any grey a-repetitions in ti and we proceed as in
Lemma 10, but in the other direction: we first match single a-repetitions in S and single
a-repetitions coloured grey (so in T). After this operation, it cannot be that a repetition
ak has an uncoloured occurrence in si and a grey one in ti, as this would mean that the
(i+ 1)-letter representing ak had such occurrences in si+1 and ti+1, which is not possible.
Then we take the longest grey a-repetitions, enough to make the common partition with
the repetitions in S, or all grey a-repetitions, if there are not enough of them. We make
a common partition for those repetitions, recolouring the matched grey letters black and
move the corresponding full expansions from s to t.

1 This can be also solved by ensuring that the symbol that replaced ak is not grouped in the next log k
phases of the iterated parsing scheme [15]; this moves the burden from the analysis to the algorithm.

M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:11

If `s < `t, then we choose repetitions in T of total length `s, including the longest
repetition of T or, if it is longer than `s, including its prefix of length `s. We colour
the corresponding letters black and then move their full expansions from s to t. Next,
we make sure that the longest repetition in ti is fully coloured (except the first letter
if `s = 0). For this, we iteratively copy its longest coloured prefix to its following part,
colouring the latter grey, which doubles the length of the coloured prefix of this repetition;
if the longest repetition is fully uncoloured (i.e., if `s = 0), then we begin with copying
its first letter to the second. Finally, if there is any other uncoloured (sub)repetition left
in T , then we colour it grey and mark it as a copy of the prefix of the longest repetition.

After processing all 0-letters, we perform the final operations as in AlgMove: when
insertion is allowed, we insert all remaining letters in t (or reject, when insertion is not
allowed) and delete all remaining letters in s, (or reject, when deletion is not allowed).

As before, the analysis has two steps: on one hand we estimate the cost in terms of
various functions based on V (s), V (t) (see Lemma 13) and on the other we show that those
functions are bounded by O(d(k + 1)), where k is the height of the parsing scheme for s, t.
When the appropriate functions are known, the proofs follow similarly as in Lemma 6 and 7
(recall that for a vector v the sup(v) changes each v’s non-zero component to 1).

I Lemma 13. Let {cp,mv} ⊆ Op ⊆ {cp,mv, ins, del}. Given an iterated parsing scheme for
strings s and t, AlgBcp returns a sequence of O(‖V (s) \ V (t)‖1 + ‖sup(V (t)) \ sup(V (s))‖1 +
‖LMax(t) \ LMax(s)‖1 + ‖SD(t, s)‖1) operations from Op that transform s to t. Moreover,
it runs in linear time.

I Lemma 14. Let s, t be two strings and let {cp,mv} ⊆ Op ⊆ {cp,mv, ins, del} with
a fixed iterated parsing scheme of height k. Then ‖V (s) \ V (t)‖1, ‖sup(V (t)) \ sup(V (s))‖1,
‖LMax(s)4 LMax(t)‖1 and ‖SD(t, s)‖1 are in O(d(k + 1)), where d = EDOp(s, t).

I Theorem 15. AlgBcp gives an O(logn) approximation of the edit distance for operations
that include block copy and move and any operations from: insert, delete. Its running time is
linear assuming integer sorting runs in linear time.

Copy and uncopy. We now investigate the case in which both copy and uncopy operations
are allowed. Although the move can be simulated by them, we still use the move operation as
it makes the description of the algorithm and the analysis more similar to those of previous
algorithms. As previously, AlgBcpuncp can deal also with letter insertions and deletions.

AlgBcpuncp, as AlgBcp, colours the letters grey or black to represent that they are already
dealt with. Initially all letters are uncoloured. When we expand a letter, its expansion
gets coloured if and only if the letter was coloured. While we construct the sequences of all
operations in parallel, we in fact perform first all uncopy operations, then all moves and
lastly all copy operations. Uncopying is always done witin si, those operations are performed
in order of their construction. In such a case, we colour the uncopied grey letters. We move
elements from si to ti and those operations are performed in the order in which the algorithm
constructs them; we colour both the source and target letters of this operation black. We
copy only within ti and those operations are performed in the reverse order (compared to
how the algorithms constructs them). Targets of the copy (uncopy) operation are coloured
grey. Concerning other operations, insertion and deletions are done all at once, after all
uncopy and move operations but before copy operations.

We compute the iterated parsing scheme and process the strings si, ti in phases for
i = k, k − 1, . . . , 0. In the ith phase, we consider each i-letter a and introduce some move,

ESA 2018

33:12 Edit Distance with Block Operations

copy, and uncopy operations to make sure that if a occurs in both si and ti, then all the
occurrences are coloured; otherwise, exactly one occurrence shall be uncoloured. Let the
lengths of the longest a-repetition in si and ti be `s and `t, respectively (these values can be
equal to 0 if a does not occur in si or ti). Fix some occurrences of those longest a-repetitions,
preferring black, then uncoloured, and then grey. We uncopy each uncoloured a-repetition in
si (except the chosen one) from the chosen one and, symmetrically, copy each uncoloured
a-repetition in ti (except the chosen one) from the chosen one; the targets of those operations
are coloured grey. Now the actions depends on whether those chosen repetitions are coloured.
To streamline the argument for min(`s, `t) = 0, we assume that an empty repetition is black.

If they are both coloured, then we do nothing: all a-repetitions in both si, ti are coloured.
If they are both uncoloured, then we move min(`s, `t) letters a from si to ti. If `s > `t,
then using dlog(`s/`t)e uncopy operations we colour the rest of the chosen repetition in
si; if `t > `s, then, symmetrically, the rest of this longest a-repetition in ti is coloured
grey using dlog(`t/`s)e copy operations.
If the one in si is coloured and the one in ti is not, then the one in si must be black by
the choice of the longest repetition (grey last): it is impossible that all repetitions a`s in
si are grey. Furthermore, it can be shown that there is a black repetition a`s in ti. Since
we chose uncoloured repetition in ti, by the choice strategy (black first) it holds that
`t > `s. If `s > 0, we copy the chosen uncoloured repetition a`t from the black repetition
a`s in t, using 1 + dlog(`t/`s)e copy operations. Otherwise, we leave the first character of
a`t uncoloured and colour the remaining letters grey using dlog `te copy operations.
If the one in ti is coloured and the one in si is not, the algorithm is symmetric to the
previous case.

I Lemma 16 (cf. [15, 16]). Let {cp, uncp} ⊆ Op ⊆ {cp, uncp,mv, ins, del}. Given an iter-
ated parsing scheme for strings s and t, one can construct in linear time a sequence of
O(‖LMax(s)4 LMax(t)‖1 + ‖sup(V (s))4 sup(V (t))‖1) operations from Op that transform
s to t.

The bound of O(d(k + 1)) on ‖sup(V (t))4 sup(V (s))‖1 and ‖LMax(t)4 LMax(s)‖1
follows already from Lemmata 7, 11, and 14.

I Theorem 17. AlgBcpuncp is an O(logn) approximation of the edit distance with set of
operations that include block copy and uncopy and any subset of insert, delete, block move.
Its running time is linear assuming integer sorting runs in linear time.

5 Compressed Input

A Straight-Line Programme (SLP) is a context-free grammar that produces exactly one string
and is treated as a compressed representation of this string. Its size is the sum of lengths of
the right-hand sides of the productions.

The presented algorithms can be also implemented, when the input (i.e. strings s, t)
are given as SLPs. In such a case, the running time increases to O(n logN) and the
approximation ratio is O(logN), where n is the size of the SLPs representing s, t in the input
and N = max(|s|, |t|) is the maximum of the lengths of strings defined by those SLPs.

The algorithms require only an implementation of the iterated parsing scheme for strings
given as SLPs, which is known; see for instance [9, 12]. This is no surprise, as such techniques
were introduced and are developed mostly in the context of grammar-compressed data.

M. Gańczorz, P. Gawrychowski, A. Jeż, and T. Kociumaka 33:13

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic

texts. In David B. Shmoys, editor, 11th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2000, pages 819–828. ACM/SIAM, 2000. URL: http://dl.acm.org/
citation.cfm?id=338219.338645.

2 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 51–58. ACM,
2015. doi:10.1145/2746539.2746612.

3 Laurent Bulteau and Christian Komusiewicz. Minimum common string partition parameter-
ized by partition size is fixed-parameter tractable. In Chandra Chekuri, editor, 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 102–121. SIAM, 2014.
doi:10.1137/1.9781611973402.8.

4 Marek Chrobak, Petr Kolman, and Jirí Sgall. The greedy algorithm for the minimum
common string partition problem. ACM Transactions on Algorithms, 1(2):350–366, 2005.
doi:10.1145/1103963.1103971.

5 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to op-
timal parallel list ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/
S0019-9958(86)80023-7.

6 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Transactions on Algorithms, 3(1):2:1–2:19, 2007. doi:10.1145/1219944.
1219947.

7 Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin. Commu-
nication complexity of document exchange. In David B. Shmoys, editor, 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pages 197–206. ACM/SIAM,
2000. URL: http://dl.acm.org/citation.cfm?id=338219.338252.

8 Funda Ergün, S. Muthukrishnan, and Süleyman Cenk Sahinalp. Comparing sequences with
segment rearrangements. In Paritosh K. Pandya and Jaikumar Radhakrishnan, editors,
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2003,
volume 2914 of Lecture Notes in Computer Science, pages 183–194. Springer, 2003. doi:
10.1007/978-3-540-24597-1_16.

9 Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and Piotr
Sankowski. Optimal dynamic strings. In Artur Czumaj, editor, 29th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1509–1528. SIAM, 2018.
doi:10.1137/1.9781611975031.99.

10 Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum common string partition
problem: Hardness and approximations. Electronic Journal of Combinatorics, 12, 2005.
URL: http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html.

11 Artur Jeż. Approximation of grammar-based compression via recompression. Theoretical
Computer Science, 592:115–134, 2015. doi:10.1016/j.tcs.2015.05.027.

12 Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Transactions
on Algorithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

13 Daniel P. Lopresti and Andrew Tomkins. Block edit models for approximate string match-
ing. Theoretical Computer Science, 181(1):159–179, 1997. doi:10.1016/S0304-3975(96)
00268-X.

14 Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997. doi:10.1007/
BF02522825.

15 S. Muthukrishnan and Süleyman Cenk Sahinalp. Approximate nearest neighbors and se-
quence comparison with block operations. In F. Frances Yao and Eugene M. Luks, editors,

ESA 2018

http://dl.acm.org/citation.cfm?id=338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1137/1.9781611973402.8
http://dx.doi.org/10.1145/1103963.1103971
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1145/1219944.1219947
http://dx.doi.org/10.1145/1219944.1219947
http://dl.acm.org/citation.cfm?id=338219.338252
http://dx.doi.org/10.1007/978-3-540-24597-1_16
http://dx.doi.org/10.1007/978-3-540-24597-1_16
http://dx.doi.org/10.1137/1.9781611975031.99
http://www.combinatorics.org/Volume_12/Abstracts/v12i1r50.html
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1016/S0304-3975(96)00268-X
http://dx.doi.org/10.1016/S0304-3975(96)00268-X
http://dx.doi.org/10.1007/BF02522825
http://dx.doi.org/10.1007/BF02522825

33:14 Edit Distance with Block Operations

32nd Annual ACM Symposium on Theory of Computing, STOC 2000, pages 416–424. ACM,
2000. doi:10.1145/335305.335353.

16 S. Muthukrishnan and Süleyman Cenk Sahinalp. Simple and practical sequence nearest
neighbors with block operations. In Alberto Apostolico and Masayuki Takeda, editors, Com-
binatorial Pattern Matching, CPM 2002, volume 2373 of LNCS, pages 262–278. Springer,
2002. doi:10.1007/3-540-45452-7_22.

17 Süleyman Cenk Sahinalp and Uzi Vishkin. On a parallel-algorithms method for string
matching problems. In Maurizio A. Bonuccelli, Pierluigi Crescenzi, and Rossella Petres-
chi, editors, Algorithms and Complexity, CIAC 1994, volume 778 of LNCS, pages 22–32.
Springer, 1994. doi:10.1007/3-540-57811-0_3.

18 Süleyman Cenk Sahinalp and Uzi Vishkin. Symmetry breaking for suffix tree con-
struction. In Frank Thomson Leighton and Michael T. Goodrich, editors, 26th Annual
ACM Symposium on Theory of Computing, STOC 1994, pages 300–309. ACM, 1994.
doi:10.1145/195058.195164.

19 Dana Shapira and James A. Storer. Edit distance with move operations. Journal of Discrete
Algorithms, 5(2):380–392, 2007. doi:10.1016/j.jda.2005.01.010.

20 Dana Shapira and James A. Storer. Edit distance with block deletions. Algorithms, 4(1):40–
60, 2011. doi:10.3390/a4010040.

21 Esko Ukkonen. Algorithms for approximate string matching. Information and Control,
64(1-3):100–118, 1985. doi:10.1016/S0019-9958(85)80046-2.

http://dx.doi.org/10.1145/335305.335353
http://dx.doi.org/10.1007/3-540-45452-7_22
http://dx.doi.org/10.1007/3-540-57811-0_3
http://dx.doi.org/10.1145/195058.195164
http://dx.doi.org/10.1016/j.jda.2005.01.010
http://dx.doi.org/10.3390/a4010040
http://dx.doi.org/10.1016/S0019-9958(85)80046-2

A QPTAS for Gapless MEC
Shilpa Garg
Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
sgarg@mpi-inf.mpg.de

https://orcid.org/0000-0002-1825-0097

Tobias Mömke1

University of Bremen and Saarland University, Saarland Informatics Campus, Germany
moemke@cs.uni-saarland.de

https://orcid.org/0000-0002-2509-6972

Abstract
We consider the problem Minimum Error Correction (MEC). A MEC instance is an n × m

matrix M with entries from {0, 1,−}. Feasible solutions are composed of two binary m-bit
strings, together with an assignment of each row of M to one of the two strings. The objective
is to minimize the number of mismatches (errors) where the row has a value that differs from
the assigned solution string. The symbol “−” is a wildcard that matches both 0 and 1. A MEC
instance is gapless, if in each row of M all binary entries are consecutive.

Gapless-MEC is a relevant problem in computational biology, and it is closely related to
segmentation problems that were introduced by [Kleinberg–Papadimitriou–Raghavan STOC’98]
in the context of data mining.

Without restrictions, it is known to be UG-hard to compute an O(1)-approximate solution
to MEC. For both MEC and Gapless-MEC, the best polynomial time approximation algo-
rithm has a logarithmic performance guarantee. We partially settle the approximation status
of Gapless-MEC by providing a quasi-polynomial time approximation scheme (QPTAS). Addi-
tionally, for the relevant case where the binary part of a row is not contained in the binary part
of another row, we provide a polynomial time approximation scheme (PTAS).

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis,
Theory of computation → Dynamic programming

Keywords and phrases approximation algorithms, QPTAS, minimum error correction, segmen-
tation, computational biology

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.34

Acknowledgements We would like to thank Tobias Marschall for helpful discussions.

1 Introduction

The minimum error correction problem (MEC) is a segmentation problem where we have
to partition a set of length m strings into two classes. A MEC instance is given by a set
of n strings over {0, 1,−} of length m, where the symbol “−” is a wildcard symbol. The
strings are represented by an n × m matrix M , where the ith string determines the ith
row Mi,∗ of M . The distance dist of two symbols a, a′ from {0, 1,−} is dist(a, a′) := 1 if
a = 0, a′ = 1 or a = 1, a′ = 0 and dist(a, a′) := 0 otherwise.

For two strings s, s′ from {0, 1,−}m where sj , s′j denotes the j-th symbol of the respective
string, dist(s, s′) :=

∑m
j=1 dist(sj , s′j). A feasible solution to MEC is a pair of two strings

1 Deutsche Forschungsgemeinschaft grant MO2889/1-1

© Shilpa Garg and Tobias Mömke;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 34; pp. 34:1–34:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sgarg@mpi-inf.mpg.de
https://orcid.org/0000-0002-1825-0097
mailto:moemke@cs.uni-saarland.de
https://orcid.org/0000-0002-2509-6972
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 A QPTAS for Gapless MEC

σ, σ′ from {0, 1}m. The optimization goal is to find a feasible solution (σ, σ′) that minimizes
costM (σ, σ′) :=

∑n
i=1 min{dist(Mi,∗, σ), dist(Mi,∗, σ

′)}. If M is clear from the context, we
sometimes skip the index.

A MEC instance is called gapless if in each of the n rows of M , all entries from {0, 1}
are consecutive. (As regular expression, a valid row is a word of length m from the language
−∗{0, 1}∗−∗). The MEC problem restricted to gapless instances is Gapless-MEC.

Our motivation to study Gapless-MEC stems from its applications in computational
biology. Humans are diploid, and hence there exist two versions of each chromosome.
Determining the DNA sequences of these two chromosomal copies – called haplotypes – is
important for many applications ranging from population history to clinical questions [17, 18].
Many important biological phenomena such as compound heterozygosity, allele-specific
events like DNA methylation or gene expression can only be studied when haplotype-resolved
genomes are available [11].

Existing sequencing technologies cannot read a chromosome from start to end, but instead
deliver small pieces of the sequences (called reads). Like in a jigsaw puzzle, the underlying
genome sequences are reconstructed from the reads by finding the overlaps between them.

The upcoming next-generation sequencing technologies (e.g., Pacific Biosciences) have
made the production of relatively long contiguous sequences with sequencing errors feasible,
where the sequences come from both copies of chromosome. These sequences are aligned
to a reference genome or to a structure called contig. We can formulate the result of this
process as a Gapless-MEC instance: the sequences are the contiguous strings and the
contig determines the columns of the strings.

Gapless-MEC is a generalization of a problem called Binary-MEC, the version of
MEC with only instances M where all entries of M are in {0, 1}. Finding an optimal
solution to Binary-MEC is equivalent to solving the hypercube 2-segmentation problem
(H2S) which was introduced by Kleinberg, Papadimitriou, and Raghavan [9, 10] and which is
known to be NP-hard [4, 10]. The optimization version of Binary-MEC differs from H2S in
that we minimize the number of mismatches instead of maximizing the number of matches.
Binary-MEC allows for good approximations. Ostravsky and Rabiny [13] obtained a PTAS
for Binary-MEC based on random embeddings. Building on the work of Li et al. [12], Jiao
et al. [8] presented a deterministic PTAS for Binary-MEC.

Gapless-MEC was shown to be NP-hard by Cilibrasi et al. [3].2 Additionally, they
showed that allowing a single gap in each string renders the problem APX-hard. More
recently, Bonizzoni et al. [2] showed that it is unique games hard to approximate MEC
with constant performance guarantee, whereas it is approximable within a logarithmic factor
in the size of the input. To our knowledge, previous to our result their logarithmic factor
approximation was also the best known approximation algorithm for Gapless-MEC.

1.1 Our results
Our main result is the following theorem.

I Theorem 1. There is a QPTAS for Gapless-MEC.

Thus we partially settle the approximability for this problem: Gapless-MEC is not APX-
hard unless NP ⊆ QP (cf. [16]). Thus our result reveals a separation of the hardness of the
gapless case and the case where we allow a single gap. Furthermore, already Binary-MEC is

2 Their result predates the hardness result of Feige [4] for H2S. The proof of the claimed NP-hardness of
H2S by Kleinberg, Papadimitriou, and Raghavan [9] was never published.

S. Garg and T. Mömke 34:3

q0

W
q1

I

W

Figure 1 Subinterval-free instance. Blocks represented by ranges shown in red on an instance M

and the blue lines are the columns, I and W shows the empty interval and central region respectively.

strongly NP-hard since the input does not contain numerical values. Therefore we can exclude
the existence of an FPTAS for both Binary-MEC and Gapless-MEC unless P = NP.

Additionally, we address the class of subinterval-free Gapless-MEC instances where
no string is contained in another string. More precisely, for each pair of rows from M we
exclude that the set of columns with binary entries from one row is a strict subset of the set
of columns with binary entries from the other row.

I Theorem 2. There is a PTAS for Gapless-MEC restricted to instances such that no
string is the substring of another string.

1.2 Overview of our approach
Our algorithm is a dynamic program (DP) that is composed of several levels. Given a general
Gapless-MEC instance, we decompose the rows of the instance into length classes according
to the length of the contiguous binary parts of the rows. For each length class we consider a
well-selected set of columns such that each row crosses at least one column and at most two.
(Row i crosses a column j, if Mi,j ∈ {0, 1}.)

We decompose each length class into two sub-classes, one that crosses exactly one column
and one that crosses exactly two columns. For the second class, it is sufficient to consider
every other column, which leaves us with many rooted instances. Thus for each sub-instance
there is a single column (the root) which is crossed by all rows of the instance.

We further decompose rooted sub-instances into the left hand side and the right hand
side of the root. Since the two sides are symmetric, we can arrange the rows and columns of
these sub-instances in such a way that all rows cross the first column. We call this type of
sub-instance SWC-instance (for “simple wildcards”). We order the rows from top to bottom
by increasing length in order to be able to further decompose the instance.

The first level of our DP solves these highly structured SWC-instances. The basic idea
that we would like to apply is that we select a constant number of rows from the instance that
represents the solution. Without further precautions, however, this strategy fails because of
differing densities within the instance: the selected rows have to represent both the entries of
columns crossed by many short rows and entries of arbitrarily small numbers of rows crossing
many columns. To resolve this issue, we observe that computing the solution strings σ and
σ′ is equivalent to finding a partition of M into two row sets, one assigned to σ and the other
assigned to σ′. If we assume to have the guarantee that for both solution strings σ and σ′ an
ε fraction of rows of the matrix M forms a Binary-MEC sub-instance, we show that the
basic idea works.

This insight motivates to separate SWC-instances from left to right into sub-instances
with the required property and to assemble them from left to right using a DP. There are,
however, several complications. In order to choose the right sub-instances, we have to take

ESA 2018

34:4 A QPTAS for Gapless MEC

into account that the choice depends on which rows are assigned to σ and which are assigned
to σ′. Therefore the DP has to take special care when identifying the sub-instances.

Furthermore, in order to stitch sub-instances together to form a common solution, the
solution computed in the left sub-instance has to compute a set of candidate solutions
oblivious of the choices of the right sub-instance. This means that we have to compute
a solution to the left sub-instance without looking at a fraction of rows. We present an
algorithm for these sub-instances in Section 2.

In order to combine the sub-instances, we face further technical complications due to
having distinct sub-instances for those rows assigned to σ and those rows assigned to σ′. In
Section 2.1, we introduce a DP whose DP cells are pairs of simpler DP cells, one for σ and
one for σ′.

Before we consider general instances, in Section 3 develop our techniques by considering
subinterval-free instances which are easier to handle (see Fig. 1). Observe that the instances
considered until now are special rooted sub-interval-free instances. We show how to solve
arbitrary rooted sub-interval-free instances by combining the DP with additional information
about the sub-problems that contain the root. We then introduce the notion of domination
in order to combine rooted sub-interval-free instances with a DP proceeding from left to
right. The main idea is that a dominant sub-problem dictates the solution. At the interface
of two sub-instances, there can be a (contiguous) region where none of the two sub-problems
is dominant. We show that these regions can be solved directly by considering a constant
number of rows (using the results from Section 2).

Until this point, all parts of our algorithm run in polynomial time. We lose this property
when considering length classes, in Section 4.1. The length classes allow us to separate an
instance into rooted sub-instances. The difficulty is that the left hand side of a separating
column may have a completely different structure than the right hand side of that column.
We do not know how to combine the two sides by considering only a polynomial number of
possibilities. If we allow, however, quasipolynomial running time, we can solve the problem.
We use that each of the two sub-instances (the one on the left and the one on the right) is
composed of at most logarithmically many parts. Considering all parts simultaneously allows
us to take care of dependencies between the left hand side and the right hand side and still
solve them as if they were separate instances. Combining such rooted instances from left to
right then can be done in the same spirit as combining rooted sub-interval-free instances. To
solve the entire length-class, we combine both solutions by running a new DP that considers
quadruples of DP cells.

Finally, in Section 4.2, we are able to handle all length classes simultaneously. We solve
general instances in the same spirit as the combined sub-instances of a single length class.
Instead of considering quadruples of cells, however, we form collections of quadruples that
are – figuratively speaking – stacked on top of each other. The key insight is that there are
only O(log(n)) different length classes and each collection has at most one quadruple of each
length class. Considering all possible collections adds another power of log(n) to the running
time, which is still quasi-polynomial.

1.3 Further related work
Binary-MEC is a variant of the Hamming k-Median Clustering Problem when k = 2 and
there are PTASs known [8, 13]. Li, Ma, and Wang [12] provided a PTAS for the general
consensus pattern problem which is closely related to MEC. Additionally, they provided a
PTAS for a restricted version of the star alignment problem aligning with at most a constant
number of gaps in each sequence.

S. Garg and T. Mömke 34:5

Alon and Sudakov [1] provided a PTAS for H2S, the maximization version of Binary-
MEC and Wulff, Urner and Ben-David [19] showed that there is also a PTAS for the
maximization version of MEC. For MEC, He et al. [7] studied the fixed-parameter tractabil-
ity in the parameter of fragment length with some restrictions. These restrictions allow their
dynamic programming algorithm to focus on the reconstruction of a single haplotype and,
hence, to limit the possible combinations for each column. There is an FPT algorithm param-
eterized by the coverage [14, 6]. Bonizzoni et al. [2] provided FPT algorithms parameterized
by the fragment length and the total number of corrections for MEC. There are some tools
which can be used in practice to solve MEC instances [15, 14].

Most research in haplotype phasing deals with exact and heuristic approaches to solve
MEC. Exact approaches, which solve the problem optimally, include integer linear program-
ming [5] and fixed-parameter tractable algorithms [7, 15].

1.4 Preliminaries and notation
We consider a Gapless-MEC instance, which is a matrix M ∈ {0, 1,−}n×m. The ith row
of M is the vector Mi,∗ ∈ {0, 1,−}1×m and the jth column is the vector M∗,j ∈ {0, 1,−}n×1.
The length of the binary part in Mi,∗ is |Mi,∗|. We say that the ith row of M crosses the
jth column if Mi,j ∈ {0, 1}.

For each feasible solution (σ, σ′) for M , we specify an assignment of rows Mi,∗ to solution
strings. The default assignment is specified as follows. For a row Mi,∗, we assign Mi,∗ to σ if
dist(σ,Mi,∗) ≤ dist(σ′,Mi,∗). Otherwise we assign Mi,∗ to σ′. For the rows of M assigned
to σ we write σ(M) and for the rows assigned to σ′ we write σ′(M). For a given instance,
Opt = (τ, τ ′) denotes an optimal solution. Observe that knowing Opt allows us to obtain an
optimal assignments τ(M) and τ ′(M) by assigning each row to the solution string with fewest
errors and knowing τ(M) and τ ′(M) allows us to obtain an optimal solution by selecting the
column-wise majority values.

2 Simple instances with wildcards

We consider instances of Gapless-MEC where all entries of column one inM are zero or one,
i.e., Mi,1 ∈ {0, 1} for each index i. Observe that the wildcards now have a simple structure
which we refer to as SWC-structure. An instance with SWC-structure is an SWC-instance.

I Definition 3 (Standard ordering of SWC-instances). We define the standard ordering of
rows in M such that |Mi,∗| ≤ |Mi+1,∗| for each i, i.e., we order them from top to bottom in
increasing length of the binary part.

I Definition 4 (Good SWC-instances). We call an SWC-instance M good, if it is in standard
ordering and there are at least ε|τ(M)| rows of τ(M) and at least ε|τ ′(M)| rows of τ ′(M)
that have only entries from {0, 1}.

To solve good SWC-instances, we generalize the PTAS for Binary-MEC by Jiao et
al. [8]. Our algorithm requires partitions of the set of rows. In the following two definitions,
the required number of rows may be a fractional number. To solve the problem, we allow
the assignment of fractional rows, i.e., for a row i, we can choose an x ∈ [0, 1] and assign an
x fraction of i to one set and a 1− x fraction to the other set.

The following two definitions allow us to introduce a structured view on optimal solutions.

ESA 2018

34:6 A QPTAS for Gapless MEC

Algorithm 1: SWCδ.
Input :Row sets Ui, Li, U ′i and L′i of a good SWC-instance M , numbers r, r′.

Optional: selection of rows Ũi, L̃i, Ũ ′i , L̃′i, see below.
Output :A pair of solution strings (σ, σ′).
Run the algorithm for each possible selection of the following type and keep the best
outcome (minimum number of errors); // If provided as input, skip
selection.

For each i, select (with repetition) a multi-set Ũi of 1/δ rows from Ui and L̃i from Li;
For each i, select (with repetition) a multi-set Ũ ′i of 1/δ rows from U ′i and L̃′i from L′i
such that Ũ ′ ∩ Ũ = L̃′ ∩ L̃ = ∅;

// Ũ :=
⋃
i Ũi. The values Ũ ′, L̃, and L̃′ are defined analogously.

For each column j, set σj := Majorityj(Ũ , L̃) and σ′j := Majorityj(Ũ ′, L̃′);
For each row i of M , determine the value di := dist(σ,Mi,∗)− dist(σ′,Mi,∗);
Assign the r rows with minimal values di to σ and the remaining r′ rows to σ′.

I Definition 5 (Trisection). An ε-trisection of an instance M for τ is a partition of the rows
into three consecutive ranges that have the following properties.
1. The first range U contains row M1,∗ and (1− ε)|τ(M)| rows of τ(M).
2. The second range L is consecutive to first row set containing (ε− ε2)|τ(M)| rows of τ(M).
3. The third range X contains the remaining rows in M .
To avoid ambiguity, we choose L and X such that the first row is in τ(M).

We define an ε-trisection U ′, L′, and X ′ for τ ′ analogously, replacing τ(M) by τ ′(M).

I Definition 6 (Subdivision of trisections). We consider the rows sets U,L,U ′, L′ from
Definition 5 and additionally, we divide each of these sets into 1/ε2 disjoint subsets denoted
as Ui, Li, U ′i , L′i. For each i, Ui contains ε2 · |U | rows from τ(M) and Li contains ε2 · |L| rows
from τ(M). Analogously, each U ′i contains ε2 · |U ′| rows from τ ′(M) and L′i contains ε2 · |L′|
rows from τ ′(M). To avoid ambiguity, each set Ui and Li starts with a (fractional) row of
τ(M) and each set U ′i and L′i starts with a (fractional) row of τ ′(M).

We introduce a new algorithm SWCδ for our setting. For an instance M , we consider the
rows sets U,L,U ′, L′ from the ε-trisections of M and their subsets according to Definition 6.
Additionally, we select a multi-set of rows from U ′i ∩τ ′(M) and L′i∩τ ′(M). We then compute
the majority weighting according to Definition 7 for each column j using multisets based on
the minimum number of errors. The main idea is to find two small row sets that represent
the whole instance M . The intuitive meaning is that we select rows from the upper part
with a much lower density then the rows of the lower part. We therefore introduce a bias
such that all rows are equally important.

I Definition 7 (Weighted majority). Let j be an integer and let Ũ and L̃ be two matrices
with at least j columns. In Ũ∗,j and L̃∗,j , we replace all zeros by −1 and then all wildcard
symbols by zero. We then compute the number ν :=

∑
i′∈Ũi,j

(1− ε)i′/(ε− ε2) +
∑
i′∈L̃i,j

i′.
Then Majorityj(Ũ , L̃) = 0 if ν < 0 and Majorityj(Ũ , L̃) = 1 if ν ≥ 0.

With this preparation, we are now ready to present the algorithm. The input has a long list
of parameters that will allow our dynamic programs later on to control the execution. The
reason is that we do not know τ and τ ′. Therefore the algorithm takes guesses of row sets as
input. The values r and r′ are guesses of |τ(M)| and |τ ′(M)|.

S. Garg and T. Mömke 34:7

Observe that for small (i.e., constant) values of r or r′, the algorithm SWCδ can be
replaced by an exact algorithm since we know τ(M) if and only if we know τ ′(M), and we
are able to guess constantly many rows.

I Lemma 8. Let M be a good SWC-instance. For sufficiently large r = |τ(M)| and r′ =
|τ ′(M)|, let Ui, Li, U ′i , L′i be a subdivision (Definition 6) of an ε-trisection U,L,X,U ′, L′, X ′
of M . Then SWCε3 is a (1 +O(ε))-approximation algorithm for M .

The proof is based on a randomized argument using Chernoff bounds. In Lemma 8, we
cannot control which rows of X and X ′ are assigned to which solution string. For our
dynamic programs, we need a stronger statement. We would like to be able to compute a
solution for an instance and afterwards change a fraction of assignments (guessing candidates
for τ(X), τ ′(X ′)) without losing the approximation guarantee. The next lemma is a key
ingredient of our result.

I Lemma 9. Let M be a good SWC-instance and ε > 0 sufficiently small. Let U,L,X be
an ε-trisection for τ(M) and U ′, L′, X ′ an ε-trisection for τ ′, with subdivisions Ui, Li, U ′i , L′i
according to Definition 6. Let (σ, σ′) be the solution computed by SWCε3 with r = |τ(M)|,
r′ = |τ ′(M)|. Then re-assigning the rows σ(X) to τ(X) and σ′(X ′) to τ ′(X ′) gives a
(1 +O(ε))-approximation for the instance M .

Proof. For ease of presentation, we assume that all appearing numbers are integers. It is
easy to adapt the proof by rounding fractional numbers appropriately.

We first analyze the computed solution string σ. Let η be the total number of errors of
(τ, τ ′) within M and let ηP be the total number of errors of (σ, σ′) within P := U ∪ L. Due
to Lemma 8, we have ηP ≤ (1 +O(ε))η.

We may assume r ≥ r′ since otherwise we can simply rename the two strings τ , τ ′.
Additionally, by renaming of σ and σ′, we may assume that |σ(P) ∩ τ(P)| ≥ |σ′(P) ∩ τ(P)|.
Therefore |τ(P)| ≥ n/3 and |σ(P)∩ τ(P)| ≥ n/6. (Recall that the matrix M has n rows and
m columns. The value n/3 is a safe bound on n/2− ε2n, for ε2 ≤ 1/6.)
I Claim 1. There is a set I of m− 25η/n indices j such that σj = τj for all j ∈ I.

Proof of Claim. We concentrate on the columns of M where both strings τ and σ have at
most n/12 errors within P . By counting the errors, there are at most 12η/n columns where
τ has at least n/12 errors. Similarly, there are at most 12(1 + O(ε))ηP /n < 13η/n many
columns where σ has at least n/12 errors. Therefore there is a set I of at least m− 25η/n
columns where simultaneously both τ and σ have less than n/12 errors each.

Now suppose that the claim was not true and there was an index j ∈ I with τj 6= σj . Then,
since |τ(P) ∩ σ(P)| ≥ n/6, either σj or τj is erroneous in at least n/12 rows of τ(P) ∩ σ(P),
a contradiction. ♦

Next we analyze σ′ for the columns I. Let j be a column (i.e., an index) from I. By
symmetry, we may assume σj = τj = 0. We aim to show that an optimal solution has always
sufficiently many errors to pay for wrong entries of σ′.

Let ηj be the number of errors of (τ, τ ′) in column j of M and let ηP,j be the number of
errors of (σ, σ′) in column j of P . Let η′′j = ηj + ηP,j .
I Claim 2. For each column j of I, either σ′j = τ ′j or η′′j ≥ (ε− ε2)|τ ′(M)|/2.

Proof of Claim. We distinguish two cases. We first assume τ ′j = 0. If also σ′j = 0, we are
done. We therefore assume σ′j = 1. If there are more than |τ ′(L′)|/2 ones in column j of
L′, (τ, τ ′) has more than |τ ′(L′)|/2 errors in column j and thus ηj ≥ |τ ′(L′)|/2. Otherwise

ESA 2018

34:8 A QPTAS for Gapless MEC

σ′(L′) has at least |τ ′(L′)|/2 zeros in column j and therefore ηP,j ≥ |τ ′(L′)|/2. We obtain
η′′j ≥ |τ ′(L′)|/2 ≥ (ε− ε2)|τ ′(M)|/2 as claimed.

In the second case, τ ′j = 1 and we assume that σ′j = 0. If there are more than r′/2 ones
in column j of U ′, (σ, σ′) has more than r′/2 errors in column j and thus ηP,j ≥ |τ ′(U ′)|/2.
Otherwise τ ′(U ′) has at least r′/2 zeros in column j and therefore ηj ≥ |τ ′(U ′)|/2. Again,
we obtain η′′j ≥ |τ ′(U ′)|/2 ≥ (1− ε)|τ ′(M)|/2 as claimed. ♦

Since by our assumption |τ ′(X ′)| < ε2|τ ′(M)|, Claim 2 implies that within I, after
reassigning the rows we still have a (1 +O(ε))-approximation.

To finish the proof, we argue that η is large enough to pay for all errors in X and X ′
outside of I. Let ηI be the number of errors due to assigning σ to τ(X) and σ′ to τ ′(X ′)
within the interval I. Then, using the size of I stated in Claim 1, the total number of errors
of (σ, σ′) in M is at most (1 +O(ε))η + ηI + ε2n · 25η/n, i.e., the errors of SWCε3 within P ,
the errors within X and X ′ in the columns of I, and all other entries of X ∪X ′. The obtained
approximation ratio is ((1 +O(ε))η+ ηI + ε2n · 25η/n/η ≤ (η+O(ε)η+ 25ε2η)/η = 1 +O(ε).

The first inequality uses that for some constant k, (1 + kε)η ≥ η + ηI . J

2.1 A DP for SWC-instances
Let M be an SWC-instance with rows {1, 2, . . . n}. We define starti to be the start and endi
the end of string number i of M , i.e., the column number of the matrix where the binary
part starts and ends. For a sub-matrix M ′ of M , startM ′ determines the index of the first
column of M ′ and endM ′ the index of the last column of M ′. We next specify the parts of
which the DP cells are composed. We divide the input instance into blocks defined as follows.

I Definition 10 (Block). Given a good SWC-instance M , a block B is a sub-instance
determined by three numbers 1 ≤ a < b < c ≤ n as follows. The first column of B is column
1 of M . The last column of B is endb. The first row of B is a and the last row is n. We
write UB for the rows from a to b− 1, LB for the rows from b to c− 1, and XB for the rows
from c to n.

The idea is that a block determines a trisection. We subdivide each block into chunks and
select rows from these chunks. Chunks are closely related to subdivisions of trisections, but
we do not assume the knowledge of (τ, τ ′).

I Definition 11 (Chunk). Let B be a block determined by the numbers a, b, c. We partition
B into 2/ε2 many chunks (ranges or rows). These chunks are determined by numbers
a = a1 < a2 < · · · < a1/ε2+1 = b = b1 < b2 < · · · < b1/ε2+1 = c. The `th chunk of UB is the
submatrix composed of the rows a` to a`+1 − 1 and the `th chunk of LB is the submatrix
composed of the rows b` to b`+1 − 1.

I Definition 12 (Selection). For each block B with a set of chunks C, we consider multiset
T of rows of size 2/ε5. We require that T contains 1/ε3 rows from each chunk in C.

The selection T will take the role of Ũ and L̃ in SWCδ.

I Definition 13 (DP cell). For each block B, each set of chunks C of B and each selection
T of rows from B, there is a DP cell represented by D(B,C, T). A DP cell D(B,C, T) is a
predecessor of D(B̂, Ĉ, T̂) if the following conditions hold.

â = b and b̂ = c, where b, c, â, b̂ are the numbers from Definition 10.
The chunks from C between b and c are exactly the chunks from Ĉ between â to b̂.

S. Garg and T. Mömke 34:9

For each pair of chunks from T × T̂ with the same range of rows, the selections T and T̂
restricted to the pair are the same.

The value of D(B,C, T) will be an approximation of the minimum number of errors that
we can have in M until the last column of B.

We now describe the dynamic program for a pair of solution strings (σ, σ′) by using joint
DP cells (ζ, ζ ′). For σ′, we use the same notation as in Definitions 10, 11 and 12, but we use
the symbol prime (·′) for all occurring variables.

I Definition 14 (DP cell for a pair). A joint DP cell (ζ, ζ ′) = (D(B,C, T), D′(B′, C ′, T ′)) is
composed of two single cells defined as in Definition 13. We require that

the rows of C and C ′ where chunks start are pairwise distinct, and
T ∩ T ′ = ∅.

I Definition 15 (Predecessor of a joint DP cell). A DP cell (ζ̂, ζ̂ ′) is a predecessor of (ζ, ζ ′) if
(i) ζ̂ = ζ and ζ̂ ′ is a predecessor of ζ ′; or (ii) ζ̂ is a predecessor of ζ and ζ̂ ′ = ζ ′.

Algorithm (SWCσ,σ
′
). The general idea of the algorithm is to guess trisections. Suppose

we initially chose blocks B,B′ that are the trisections of the entire matrix M for τ and τ ′.
Then we obtain an approximation of the prefix of (τ, τ ′) restricted to B,B′ (whichever ends
first) by sampling rows of UB ,LB ,UB′ , and LB′ . The sampled rows for LB and LB′ provide
the interface to the next step. Suppose LB′ starts at an earlier row than LB . Then we guess
the trisection of M for τ restricted to the rows of LB′ and XB′ . Let B′′ be that block of our
algorithm. Then UB′′ = LB and we sample rows of LB′′ in order to approximate a new infix
of τ . More precisely, the DP does the following.

We globally guess a number r that represent |τ(M)|. Thus r′ := n− r represents |τ ′(M)|.
We split the processing into an initialization phase and an update phase. In the initialization
phase, we assign values to each DP cell (ζ, ζ ′) based on SWCε3 with the following parameters.
We obtain Ui, Li from the chunks C and U ′i , L

′
i from the chunks C ′. In the execution of

SWCε3 , we use the selections T, T ′ instead of trying all possible selections, i.e., T and T ′
determine all Ũi, L̃i, Ũ ′i , and L̃′i in the algorithm. Let B̃ be the matrix with rows from 1 to
the min{c−1, c′−1} and columns one to min{endB , endB′}. The solution of the computation
is a pair of strings (σζ,ζ′ , σ′ζ,ζ′), the prefixes of the two computed strings until endB̃. The
value of (ζ, ζ ′) is costB̃(σζ,ζ′ , σ′ζ,ζ′).

In the update phase, we compute the value and the pair of strings of the DP cell (ζ, ζ ′)
as follows. We inductively assume that all DP cells for predecessors of (ζ, ζ ′) have been
updated already. We try all predecessor pairs of DP cells and keep the one that gives the
best result. Let (ζ, ζ ′) be a predecessor of (ζ, ζ ′). By symmetry, we assume without loss
of generality that b′ < b. There are two cases how the two pairs interact. The first case is
ζ = ζ. We run SWCε3 on the columns end

B
′ + 1 to endB with the parameters from (ζ, ζ ′)

(see initialization). To obtain the full solution, we append the computed string for B′ to the
string σ′

ζ,ζ
′ (which is one of the solution strings of the predecessor pair). Let B̃ be the matrix

with rows from 1 to the min{c− 1, c′ − 1} and columns one to endB′ . The solution of the
computation is a pair of strings (σζ,ζ′ , σ′ζ,ζ′), the prefixes of the two computed strings from
column one to endB̃ . The potential new value of (ζ, ζ ′) is costB̃(σζ,ζ′ , σ′ζ,ζ′). We replace the
stored solution with the potential new solution if the cost has decreased.

The second case is ζ ′ = ζ. This case is the crux of the joint DP, since we have a “switch”
of the role of σ and σ′. We run SWCε3 on the columns endB to endB′ with the parameters
from (ζ, ζ ′) (see initialization). To obtain the full solution, we then append the computed

ESA 2018

34:10 A QPTAS for Gapless MEC

string for B to the string σζ,ζ′ (which is one of the solution strings of the predecessor pair).
Let B̃ be the matrix with rows from 1 to the min{c− 1, c′ − 1} and columns one to endB′ .
The solution of the computation is a pair of strings (σζ,ζ′ , σ′ζ,ζ′), the prefixes of the two
computed strings until endB̃′ . The potential new value of (ζ, ζ ′) is costB̃(σζ,ζ′ , σ′ζ,ζ′). We
replace the stored solution with the potential new solution if the cost has decreased.

For the last strings, we additionally consider special cells that are defined as before, but
with c = n or c′ = n. Intuitively, we use these cells when only at most 1/ε4 rows of τ(M)
or τ ′(M) are left. For pairs of cells containing such ζ or ζ ′, our computation considers the
optimal solution within the computation instead of SWCε3 .

I Theorem 16. The algorithm SWCσ,σ′
is a PTAS for SWC-instances.

3 Subinterval-free instances

We show how to generalize the results of the previous section in order to handle instances
where no interval of a string s is a proper subinterval of a string s′ and thus show Theorem 2.
To this end, we first show how to handle the rooted version of sub-interval free instances,
where there is one column j such that each string of the instance crosses j.

We order the rows of a subinterval-free instance M from top to bottom such that for each
pair i, i′ of rows with the binary part of i starting on the left of the binary part of i′, i is
above i′. In other words, the binary strings are ordered from top to bottom with increasing
starting position (i.e., column). Observe that the sub-string freeness property ensures that
the last binary entry of i′ is not on the left of the last binary entry of i.

I Lemma 17. Let M be a Gapless-MEC instance such that no string is the substring of
another string. Furthermore we assume that there is a column j of M such that each string
of the instance crosses j. Then there is a PTAS for M .

General sub-interval-free instances. We use Lemma 17 to handle general sub-interval free
instances. Instead of a single column j crossed by all strings, we determine a sequence
q = (q1, q2, . . .) of columns with the property that each string crosses exactly one of them.
Let s1 be the first string in M . Then we choose q1 to be the column of the last entry of s1.

We recursively specify the remaining columns. For a given j such that we know qj , let si
be the last (i.e., bottom-most) string that crosses qj . Then we choose qj+1 to be the last
(i.e., rightmost) column of string si+1.

A simple induction shows that by the no-substring property and the chosen order of
strings, each string crosses at least one column of q and none of them crosses more than
two. In particular, for each j, the solution on the left hand side of qj depends on rows of M
disjoint from the rows that determine the solution on the right hand side of qj+1.

In order to combine the solution on the right hand side of qj with the solution on the left
hand side of qj+1, we introduce a notion of dominance.

I Definition 18 (Dominance). We say that a submatrix V1 of M τ -dominates a submatrix
V2 of M if for each column c that is in both V1 and V2, either at least one of the two matrices
has no binary entries or the number of binary entries in τ(V1) is at least 1/ε2 times the
number in τ(V2). We say that V1 is τ -dominant over V2 for a column c, if the one column
submatrix of V1 determined by c dominates V2. We analogously define τ ′-dominance.

Consider a submatrix −→V of M that only contains rows that cross qi and a submatrix ←−V
of M that only contains rows that cross qi+1. We observe that if −→V is τ -dominant over ←−V

S. Garg and T. Mömke 34:11

for some column c, it is also τ -dominant for all columns on the left hand side of c: until qi is
reached, when moving to the left the number of binary entries of τ(−→V) increases and the
number of binary entries of τ(←−V) decreases. Analogously, if ←−V is τ -dominant over −→V for
some column c, it is also τ -dominant for all columns on the right hand side of c.

We therefore have a possibly empty interval I without τ -dominance such that the columns
of −→V on the left hand side of I are τ -dominant and the columns of ←−V on the right hand side
of I are τ -dominant. (See also Figure 1.)

I Definition 19 (Dominance region). The dominance region of −→V with respect to ←−V is the
set of columns where −→V is dominant over ←−V , and vice versa.

Within the dominance region, our old DP can simply compute solutions without considering
interferences: the dominated set of rows is small enough to be ignored, applying Lemma 9.

Within the interval I, the DP cells on both sides of I have to “cooperate.” We obtain
a Binary-MEC block in the middle with additional rows on the top and bottom. This
sub-instance can be solved directly.

4 A QPTAS for general instances

To solve the general instances, the main observation is that we divide the rows into their
at most log2(m) length classes Λi, and the ith length class Λi is the set of all strings of
length ` with ` ∈ (m/2i+1,m/2i]. First we present an algorithm to solve each length class
Λi separately by constructing their corresponding columns.

4.1 Length classes
We show how we can handle length classes of strings. To this end, let us assume w.l.o.g. that
m (i.e., the number of columns in M) is a power of 2. Then for each i ≥ 0, the ith length
class Λi is the set of all strings of length ` with ` ∈ (m/2i+1,m/2i]. We observe the following
known property of length classes.

I Lemma 20. For each i ≥ 0 there is a set qi = {qi,1, qi,2, . . . } of columns such that (a)
each string in Λi crosses at least one column from qi and (b) no string from Λi crosses more
than two columns from qi. Furthermore, we can choose the sets such that qi ⊆ qi+1.

Proof. At level i, for each k with 1 ≤ k ≤ 2i+1 we select the column with index k ·m/2i+1.
We observe that the distance between two consecutive columns from qi is m/2i+1, which
matches the shortest length of strings in Λi: if a minimal string starts right after a column
of qi, its last entry will cross the next column of qi.

Since strings do not start before column 1 and column m is contained in each qi, claim
(a) follows. To see (b), observe that a maximum length string of Λi is at most m/2i. Let j
be an index. The number of columns from qi,j to the column right before qi,j+1 and from
qi,j+1 to right before qi+2 are exactly m/2i+1 . If the string starts directly at a column qi,j
from qi, it would cross column qi,j+1 and end right before column qi,j+2. The last claimed
property follows directly from the construction of the sets qi. J

For each i, we now separate Λi into two sub-instances. One sub-instance Λ′i is formed
by those rows from Λi that only cross one column of qi and the second sub-instance Λ′′i is
formed by those rows that cross exactly two columns of Λi.

ESA 2018

34:12 A QPTAS for Gapless MEC

I Definition 21 (DP for a length class Λi). For each index j let ξ′j be the sets of DP cells
for Λ′i and for the odd indices j let ξ′′j be the set of cells for Λ′′i . We define a super-cell that
starts in j, (Z ′j , Z ′′j , Z ′j+1, Z

′′
j+2) ∈ ξ′j × ξ′′j × ξ′j+1 × ξ′′j+2 and the super-cell that ends in j,

(Z ′j−1, Z
′′
j−2, Z

′
j , Z

′′
j) ∈ ξ′j−1 × ξ′′j−2 × ξ′j × ξ′′j .

I Lemma 22. There is a QPTAS for Gapless-MEC if all strings are in the same class Λi.

4.2 The general QPTAS
Finally we combine our insights to an algorithm for general instances by combining different
length classes. For different length classes Λi, we construct their corresponding columns as
explained in the previous section. The main idea is that for each column j, we only have to
consider those quadruple of super-cells according to Definition 21 that cross j from all the
length classes simultaneously. We therefore consider at most O(log(n)) quadruples of super-
cells simultaneously. In the dynamic program, we consider a joint quadruple of super-cells
from all the length classes. Then the overall complexity of a joint cell is quasi-polynomial:
the number of different cells is

(
nO(logn))O(logn) = nO(log2 n).

Let Qi,j be the set of quadruples of length class i crossing column j such that the strings
are ordered from shortest length class to the longest. For each length class i, a quadruple
q ∈ Qi,j is the set of rows starting at j, cross j, or end in j. If j is the index of qi,`, the
quadruple q starts in j if it is formed by cells (Z ′`, Z ′′` , Z ′`+1, Z

′′
`+2) and ends in j if it is formed

by (Z ′`−1, Z
′′
`−2, Z

′
`, Z
′′
`) (see Definition 21). If j lies between qi,` and qi,`+1, j crosses those

quadruples that contain Z ′` and Z ′`+1. If none of the cases are true, we do not consider q in
the cells for column j.

Let us consider a log(n) vector of quadruples v, with one quadruple Qi,j for each i and,
consider quadruples starting at, ending at, or crossing column j for length class i. We require
that if for some i, the quadruple q ∈ Qi,j ends at j, then for all the length classes Λk with
k > i the same condition holds (with index larger than i). This also implies that if for some
i, the quadruple of length class i starts at j, then the same also holds for all quadruples of
shorter length classes (with index larger than i). In particular, in order to be able to combine
neighboring vectors of quadruples, we do not allow to mix starting and ending quadruples.
Let φ be the set of all log(n) vectors of tuples as described above (with one tuple of each
length class). The tuple for each length class is defined as in Lemma 22 and the DP for
general instances follows the ideas of Lemma 22: We move from left to right column by
column. In the initialization step, the joint DP cell is initialized based on Algorithm 1 using
φ. We guess the blocks, chunks and selections from each length class and consider them
jointly in a DP cell.

For column j, let us consider a vector v ∈ φ. We distinguish whether v has starting or
ending quadruples. (One of the two cases must apply due to the shortest length class.) For a
v ∈ φ with starting quadruples, let d be the smallest number such that there is a quadruple
of length class d starting at j. To compute v we consider all v′ ∈ φ with the following
properties. (a) v′ has the same quadruples for all length classes d′ < d and (b) for d′ ≥ d,
the right hand sides of the quadruples of length class d′ in v′ compatible the left hand sides
of the quadruples of v. The super-cells from the left and right hand side are compatible if
the intersecting strings from the left and right hand side are assigned to the same types of
solution string σ or σ′.

For a v ∈ φ with ending quadruples, let d be the smallest number such that there is a
quadruple of length class d ending at j − 1. (In the very first column of the instance, we do
not need this value.) To compute v we consider all v′ ∈ φ with the following properties. (a)

S. Garg and T. Mömke 34:13

v′ has the same quadruples for all length classes d′ < d and (b) for d′ ≥ d, the right hand
sides of the quadruples of length class d′ in v′ match the left hand sides of the quadruples of
v in column j − 1. Then the value of v is the sum of the minimum value over all such v′ and
the number of errors in column j obtained by applying SWCε3 exactly as in the proof of
Lemma 22.

The approximation ratio follows by arguing that the expected number of errors at each
column is at most (1 +O(ε)) of OPT (see Lemma 22). This finishes the proof of Theorem 1.

References
1 Noga Alon and Benny Sudakov. On two segmentation problems. Journal of Algorithms,

33(1):173–184, 1999.
2 Paola Bonizzoni, Riccardo Dondi, Gunnar W Klau, Yuri Pirola, Nadia Pisanti, and Simone

Zaccaria. On the minimum error correction problem for haplotype assembly in diploid and
polyploid genomes. Journal of Computational Biology, 2016.

3 Rudi Cilibrasi, Leo van Iersel, Steven Kelk, and John Tromp. The Complexity of the
Single Individual SNP Haplotyping Problem. Algorithmica, 49(1):13–36, aug 2007. doi:
10.1007/s00453-007-0029-z.

4 Uriel Feige. NP-hardness of hypercube 2-segmentation. CoRR, abs/1411.0821, 2014.
5 Pierre Fouilhoux and A. Ridha Mahjoub. Solving VLSI design and DNA sequencing

problems using bipartization of graphs. Computational Optimization and Applications,
51(2):749–781, 2012. doi:10.1007/s10589-010-9355-1.

6 Shilpa Garg, Marcel Martin, and Tobias Marschall. Read-based phasing of related individ-
uals. Bioinformatics, 32(12):i234–i242, 2016.

7 Dan He, Arthur Choi, Knot Pipatsrisawat, Adnan Darwiche, and Eleazar Eskin. Opti-
mal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics,
26(12):i183–i190, 2010. doi:10.1093/bioinformatics/btq215.

8 Yishan Jiao, Jingyi Xu, and Ming Li. On the k-closest substring and k-consensus pattern
problems. In CPM, volume 3109 of Lecture Notes in Computer Science, pages 130–144.
Springer, 2004.

9 Jon M. Kleinberg, Christos H. Papadimitriou, and Prabhakar Raghavan. Segmentation
problems. In STOC, pages 473–482. ACM, 1998.

10 Jon M. Kleinberg, Christos H. Papadimitriou, and Prabhakar Raghavan. Segmentation
problems. J. ACM, 51(2):263–280, 2004.

11 Danny Leung, Inkyung Jung, Nisha Rajagopal, Anthony Schmitt, Siddarth Selvaraj,
Ah Young Lee, Chia-An Yen, Shin Lin, Yiing Lin, Yunjiang Qiu, et al. Integrative analysis
of haplotype-resolved epigenomes across human tissues. Nature, 518(7539):350–354, 2015.

12 Ming Li, Bin Ma, and Lusheng Wang. Finding similar regions in many sequences. J.
Comput. Syst. Sci., 65(1):73–96, 2002.

13 Rafail Ostrovsky and Yuval Rabani. Polynomial-time approximation schemes for geometric
min-sum median clustering. J. ACM, 49(2):139–156, 2002.

14 Murray Patterson, Tobias Marschall, Nadia Pisanti, Leo van Iersel, Leen Stougie, Gun-
nar W. Klau, and Alexander Schönhuth. WhatsHap: Weighted haplotype assembly for
future-generation sequencing reads. Journal of Computational Biology, 22(6):498–509, feb
2015. doi:10.1089/cmb.2014.0157.

15 Yuri Pirola, Simone Zaccaria, Riccardo Dondi, Gunnar W. Klau, Nadia Pisanti, and Paola
Bonizzoni. HapCol: accurate and memory-efficient haplotype assembly from long reads.
Bioinformatics, page btv495, aug 2015. doi:10.1093/bioinformatics/btv495.

16 Jan Remy and Angelika Steger. Approximation schemes for node-weighted geometric
steiner tree problems. Algorithmica, 55(1):240–267, 2009.

ESA 2018

http://dx.doi.org/10.1007/s00453-007-0029-z
http://dx.doi.org/10.1007/s00453-007-0029-z
http://dx.doi.org/10.1007/s10589-010-9355-1
http://dx.doi.org/10.1093/bioinformatics/btq215
http://dx.doi.org/10.1089/cmb.2014.0157
http://dx.doi.org/10.1093/bioinformatics/btv495

34:14 A QPTAS for Gapless MEC

17 Matthew W Snyder, Andrew Adey, Jacob O Kitzman, and Jay Shendure. Haplotype-
resolved genome sequencing: experimental methods and applications. Nature Reviews Ge-
netics, 16(6):344–358, 2015.

18 Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J Topol, and Nicholas J Schork. The
importance of phase information for human genomics. Nature Reviews Genetics, 12(3):215–
223, 2011.

19 Sharon Wulff, Ruth Urner, and Shai Ben-David. Monochromatic bi-clustering. In ICML
(2), volume 28 of JMLR Workshop and Conference Proceedings, pages 145–153. JMLR.org,
2013.

FPT Algorithms for Embedding into Low
Complexity Graphic Metrics
Arijit Ghosh
The Institute of Mathematical Sciences, HBNI, Chennai, India
arijitiitkgpster@gmail.com

Sudeshna Kolay
Eindhoven University of Technology, Eindhoven, Netherlands
s.kolay@tue.nl

Gopinath Mishra
Indian Statistical Institute, Kolkata, India
gopianjan117@gmail.com

Abstract
The Metric Embedding problem takes as input two metric spaces (X,DX) and (Y,DY), and
a positive integer d. The objective is to determine whether there is an embedding F : X →
Y such that the distortion dF ≤ d. Such an embedding is called a distortion d embedding.
In parameterized complexity, the Metric Embedding problem is known to be W-hard and
therefore, not expected to have an FPT algorithm. In this paper, we consider the Gen-Graph
Metric Embedding problem, where the two metric spaces are graph metrics. We explore the
extent of tractability of the problem in the parameterized complexity setting. We determine
whether an unweighted graph metric (G,DG) can be embedded, or bijectively embedded, into
another unweighted graph metric (H,DH), where the graph H has low structural complexity.
For example, H is a cycle, or H has bounded treewidth or bounded connected treewidth. The
parameters for the algorithms are chosen from the upper bound d on distortion, bound ∆ on the
maximum degree of H, treewidth α of H, and the connected treewidth αc of H.

Our general approach to these problems can be summarized as trying to understand the
behavior of the shortest paths in G under a low distortion embedding into H, and the structural
relation the mapping of these paths has to shortest paths in H.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Metric spaces, metric embedding, FPT, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.35

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1801.
03253.

1 Introduction

Given metric spaces (X,DX) and (Y,DY), an embedding F : X → Y is an injective
mapping from X to Y . The expansion eF and contraction cF of F are defined as eF =
maxx1,x2(6=x1)∈X

DY (F (x1),F (x2))
DX(x1,x2) and cF = maxx1,x2(6=x1)∈X

DX(x1,x2)
DY (F (x1),F (x2)) , respectively. The

distortion dF = eF · cF . Observe that dF ≥ 1. An embedding F : X → Y is non-contracting
if cF ≤ 1.

The problem of low distortion embedding of a metric space into a simple metric space has
been extensively studied in Mathematics and Computer Science (see [1, 11, 13, 14, 15]). Low
distortion embedding algorithms have also found wide applications in other problems like

© Arijit Ghosh, Sudeshna Kolay, and Gopinath Mishra;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 35; pp. 35:1–35:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arijitiitkgpster@gmail.com
mailto:s.kolay@tue.nl
mailto:gopianjan117@gmail.com
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.35
https://arxiv.org/abs/1801.03253
https://arxiv.org/abs/1801.03253
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 FPT Algorithms for Graphic Embeddings

Sparsest Cut, Nearest Neighbor Search, Clustering, Multicommodity Flow,
Multicut, Small Balanced Separators (see [1, 9, 10, 13, 15]).

The need to obtain small distortion embeddings into simpler spaces naturally led to the
question of finding a minimum distortion embedding of (X,DX) into (Y,DY) when both the
metric spaces have shortest path metrics on graphs with positive weights, and (Y,DY) has a
simple topology as in paths, cycles, trees etc. Kenyon et al. [12] showed that this problem is
APX-hard even when both the graphs are unweighted, have the same number of vertices,
and one of the graphs is a simple wheel graph. Badoiu et al. [3] also proved APX-hardness
when both the graphs are unweighted and (Y,DY) is the metric space of a path. Badoiu
et al. [2] showed that computing the minimum distortion is hard to approximate up to a
factor polynomial in |X|, even when (X,DX) is a weighted tree with polynomial spread and
(Y,DY) is a path. Fellows et al. [7] showed that the problem of embedding a weighted graph
metric into a path with distortion at most d > 2 is NP-complete.

Badoiu et al. [3] gave the first algorithm for deciding if an unweighted graph metric has a
non-contracting embedding into a path with distortion d. The running time of their algorithm
was n4d+2 ·dO(1), where n denotes the number of vertices in the graph. Fellows et al. [7] gave
the first fixed parameter tractable(FPT) algorithm with running time O

(
nd4(2d+ 1)2d) for

finding a non-contracting embedding of an n vertex unweighted graph metric into a path
with distortion at most d (d is the parameter of the algorithm). They also showed that their
FPT algorithm can be extended to get an FPT algorithm for the case of non-contracting
embeddings of weighted graphs into paths, where the parameters to the algorithm are both
the distortion and the maximum weight of an edge in the graph. Nayyeri et al. [16] gave
improved exact algorithms for embedding weighted path metrics into weighted paths.

Kenyon et al. [12] gave the first FPT algorithm for finding a bijective embedding f of an
unweighted graph metric on n vertices into a tree with maximum degree bounded by ∆ in
O(n2 · 2∆µ3

) time, where µ = max {ef , cf}. Fellows et al. [7] extended this result to give an
algorithm for the problem of finding a non-contracting embedding of unweighted graphs into
bounded degree trees with distortion at most d in O(n2 · |V (T)|) · 2O((5d)∆d+1

·d) time, where
V (T) denotes the vertex set of the tree and where the maximum degree in T is bounded by
∆. In a follow-up paper, Nayyeri et al. [17] gave the first (1 + ε)-approximation algorithm to
embed weighted graphs with spread Σ into graphs on m vertices with bounded treewidth
α and doubling dimension λ in mO(1) · nO(α) · (doptΣ)α·(1/ε)λ+2·λ·(O(dopt))2λ time, where dopt
denotes the minimum distortion.

Our Contributions. In this paper, we further investigate the problem of embedding a general
graph metric (G,DG) into a low complexity graph metric (H,DH) with distortion at most d.
We will denote by n and N the number of vertices in graphs G and H, respectively. Also, we
denote distortion by d, and the maximum degree of H by ∆. We denote by `g the length of
a largest induced cycle, or geodesic cycle, in H. We approach the metric embedding problem
by trying to understand the behavior of the shortest paths in G under a low distortion
embedding into H, and what relation the mapping of these paths has to shortest paths in H.
Careful analysis of this connection helps us solve a number of problems in this area, in the
parameterized setting. All the algorithmic results mentioned below are regarding
non-contracting bounded distortion embeddings. However, all these results can
be extended to find bounded distortion embeddings, without the assumption on
non-contraction. For all the results, if the running time of the stated algorithm
is T , then the running time of finding a bounded distortion embedding will be
(nN)O(1) · T .

A. Ghosh, S. Kolay, and G. Mishra 35:3

We first begin by proving the following open question in [7]. Independently, a similar
result on the same problem was obtained in same time by Carpenter et al. [4].

I Theorem 1.1. Given an undirected unweighted graph G on n vertices, a cycle C and
a distortion parameter d, there exists an algorithm that either finds a non-contracting
distortion d embedding of G into C or decides that there does not exist such an embedding in
O(n3 · d2d+3 · (4d(2d+ 2))4d+4) time.

Due to the existence of the large geodesic cycle that is the graph H, techniques from the
previous papers, like pushing embeddings [7], do not work and some new ideas are required
to solve this problem. Moreover, our FPT algorithm can be extended to the case when the
input graph G is a weighted graph, and we can parameterize by the distortion d and the
maximum edge weight in G. We also show that the problem is NP-Complete when we do
not take the maximum edge weight as a parameter for any distortion d > 2.

Observe that the treewidth of a cycle is 2, but the connected treewidth of a cycle is Ω(n)
(see the definitions of treewidth and connected treewidth in Section 2). These two parameters
(treewidth and connected treewidth of graphs) play important roles in this paper. In this
direction, we first extend the result of Kenyon et al. [12] for bijection into bounded degree
trees.

I Theorem 1.2. Let G,H be two given graphs such that |V (G)| = |V (H)| = n, the maximum
degree of H is ∆ and the graph H has treewidth tw(H) ≤ α. Then there exists an algorithm
that either finds a bijective non-contracting distortion d embedding of G into H or decides
no such embedding exists in O(α2nα+3) ·∆d+1 · (α∆d+1)∆O(αd2) time.

Note that the algorithm in Theorem 1.2 is not an FPT algorithm if tw(H) is an input
parameter to the problem. Therefore, it is natural to ask if we can still get FPT algorithms
for a more general case, where tw(H) is considered as a parameter instead of a constant. In
this context, we prove the following result:

I Theorem 1.3. Let G,H be two given graphs with n and N vertices, respectively, such
that the maximum degree of H is ∆, treewidth tw(H) ≤ α and the length of the longest
geodesic cycle in H is `g. Then there exists an algorithm that either finds a non-contracting
distortion d embedding of G into H or decides no such embedding exists in running time
O(n2 ·N) · (α ·∆d+1)∆O(µ·d+d2) · 2O((4(µ+d))α

2·∆d+1
), where µ = 4(α+

(
α
2
)
(`g(α− 2)− 1)).

This result crucially uses the result in [6] that a graph has bounded connected treewidth if
and only if the graph has bounded treewidth and no long geodesic cycle. It is to be noted
that a wheel graph has constant connected treewidth, and by a result in [12], embedding into
wheel graphs is NP-hard even when the distortion d = 2. However, when the wheel graph
has bounded degree, then the number of vertices in the wheel graph becomes bounded, and
we obtain a trivial FPT algorithm parameterized by the degree and the distortion d. This
motivated us to consider the above variant of metric embedding. Our FPT algorithm extends
the result of Fellows et al. [7] for embedding into trees with bounded degree. Controlling
the behavior of shortest paths in the graph G under a low distortion embedding into the
class of graphs with bounded degree and bounded connected treewidth is algorithmically
considerably harder than the case of bounded degree trees.

We also investigate bounded distortion embedding into generalized theta graphs: defined
by the union of k internally vertex-disjoint paths all of which have common endpoints s and
t. We prove the following result for generalized theta graphs.

ESA 2018

35:4 FPT Algorithms for Graphic Embeddings

I Theorem 1.4. Metric Embedding into generalized theta graphs is FPT parameterized
by distortion d and number k of s− t paths. The algorithm runs in time O(N) + n5 · k2k+1 ·
(kd+ 1)(2d)O(kd) · dO(d2), where n and N are the number of vertices in the input and output
graph metrics, respectively.

As mentioned earlier, it was shown in [6] that a graph has bounded connected treewidth if and
only if the graph has bounded treewidth and no long geodesic cycle. In general, embedding
into graphs with large geodesic cycles is not amenable to known algorithmic techniques in
the parameterized settings. Intuitively, all known techniques for designing FPT algorithms
in this area used the fact that if a low distortion embedding F exists, then the embedding of
a shortest path between two vertices u, v ∈ V (G) and the shortest path in H between F (u)
and F (v) are somewhat structurally related. With the presence of large geodesic cycles this
structural relation may completely break down: although the two paths have similar lengths,
structurally they could be completely different. This poses a problem for designing dynamic
programming algorithms, a staple for FPT algorithms in this area. The class of generalized
theta graphs has treewidth 2, but may have large geodesic cycles. Hence, these graphs
are more general than cycles and have constant treewidth, but they do not have bounded
connected treewidth. Even for this very structured graph class, by virtue of the graphs
having long geodesic cycles, we needed to develop completely new ideas in order to find
low distortion embeddings into generalized theta graphs via FPT algorithms. The problem
arises from the fact that any two geodesic cycles of a generalized theta graph intersect at at
least two vertices, and there are many pairs of geodesic cycles with large intersections. Our
algorithm is still a dynamic programming algorithm, but a more involved one. The way to
work around the apparent barriers is to investigate more closely the structural properties of
an input graph G that can be embedded with small distortion into a generalized theta graph.
Independently, a generalization of this result was obtained in same time by Carpenter et al.
[4]. We would like to mention that our algorithms for embedding into cycles and generalized
theta graphs have better time complexity.

This is an extended abstract. For full details please refer to the full version of the
paper [8].

2 Preliminaries

General Notation. We denote {1, . . . , t} as [t]. For a set S, |S| denotes the number of
elements present in S. Given a function f : U ′ → D′ and a function F : U → D, where
U ′ ⊆ U and D′ ⊆ D, we say that F extends f if for all x ∈ U ′, F (x) = f(x). For a set
of functions Π = {fi : Ai → Bi, i ∈ [t]} such that for any i, j ∈ [t], x ∈ Ai ∩ Aj implies

fi(x) = fj(x), we define ΦΠ :
t⋃
i=1

Ai →
t⋃
i=1

Bi such that ΦΠ(x) = fi(x) for i ∈ [t], x ∈ Ai.

A graph is denoted by G while its vertex set and edge set are denoted by V (G) and E(G),
respectively. We denote the set of neighbours of a vertex v ∈ V (G) as NG(v). The degree of
a vertex v ∈ V (G) is denoted as degG(v). We also define ∆(G) = max

v∈V (G)
degG(v). We also

define the set B(v, r) = {u ∈ V (H) | DH(u, v) ≤ r}, and refer to it as an r-ball around v.
For a subgraph G′ of G, v ∈ V (G) \ V (G′) is said to be a neighbour of G′ if there is a vertex
u ∈ V (G′) such that (u, v) ∈ E(G). A subgraph G′ of G is said to be an induced subgraph if
E(G′) = {(u, v) ∈ E(G)|u, v ∈ V (G′)}. An induced cycle in a graph is also called a geodesic
cycle.

A. Ghosh, S. Kolay, and G. Mishra 35:5

A generalized theta graph is the union of k paths P = {P1, P2, . . . Pk} such that the
endpoints of all the paths are two vertices s and t, while every pair of paths are internally
vertex and edge disjoint. Such a graph will also be referred to as a generalized theta graph
defined at s,t, and the family P is said to define the generalized theta graph.

Treewidth. A tree decomposition [5] of a graph G is a tuple T = (T, {Xu}u∈V (T)), where
T is a tree in which each vertex u ∈ V (T) has an assigned set of vertices Xu ⊆ V (G)
(called a bag) such that the following properties hold: (i)

⋃
u∈V (T)Xu = V (G), (ii) for any

(x, y) ∈ E(G), there exists a u ∈ V (T) such that x, y ∈ Xu, (iii) if x ∈ Xu and x ∈ Xv, then
x ∈ Xw for all w on the path from u to v in T .

The treewidth twT of a tree decomposition T is the size of the largest bag of T minus one.
A graph may have several distinct tree decompositions. The treewidth tw(G) of a graph G
is defined as the minimum of treewidths over all possible tree decompositions of G. Note
that for the tree T of a tree decomposition, we denote a vertex of V (T) in bold font.

A tree decomposition T = (T, {Xu}u∈V (T))) is called a nice tree decomposition if T is
a tree rooted at some node r where Xr = ∅, each node of T has at most two children, and
each node is of one of the following kinds: (i) Introduce node: a node u that has only one
child u′ where Xu ⊃ Xu′ and |Xu| = |Xu′ | + 1, (ii) Forget vertex node: a node u that
has only one child u′ where Xu ⊂ Xu′ and |Xu| = |Xu′ | − 1, (iii) Join node: a node u with
two children u1 and u2 such that Xu = Xu1 = Xu2 , (iv) Leaf node: a node u that is a leaf
of T , and Xu = ∅.

One can show that a tree decomposition of width w can be transformed into a nice tree
decomposition of the same width w and with O(w|V (G)|) nodes, see e.g. [5]. For a node
u ∈ V (T), let Tu denote the subtree rooted at u and Hu denote the subgraph induced by⋃
v∈V (Tu)

Xv. The set B(u, r) =
⋃

x∈Xu

B(x, r)

A connected tree decomposition is a tree decomposition where the vertices in every bag
induce a connected subgraph of G [6]. The connected treewidth ctw(G) of a graph G is
defined as the minimum of treewidths over all possible connected tree decompositions of G.

Given a graph G, the function DG : V (G)× V (G)→ R is the shortest distance function
defined on G; for any pair u, v ∈ V (G), DG(u, v) is the length of the shortest path between
u and v in the graph G. When we talk of a graph metric, then we denote it as the tuple
(G,DG). In this paper, unless otherwise mentioned, a graph metric is that of an unweighted
undirected graph.

Metric Embedding. A metric embedding of a graph metric (G,DG) into a graph metric
(H,DH) is a function F : V (G)→ V (H). When the graph metrics are clear, we also use the
terminology that the metric embedding is that of G into H, or that G is embedded into H.
We also denote (G,DG) as the input metric space and (H,DH) as the output metric space.
A non-contracting distortion d metric embedding implies that the expansion is at most d.
Therefore, for any pair u, v ∈ V (G), DG(u, v) ≤ DH(F (u), F (v)) ≤ d ·DG(u, v).

We consider the following two problems in this paper.

Gen-Graph Metric Embedding
Input: Two graph metrics (G,DG) and (H,DH), where G is a connected graph, and a
positive integer d
Question: Is there a distortion d metric embedding of (G,DG) into (H,DH)?

ESA 2018

35:6 FPT Algorithms for Graphic Embeddings

Graph Metric Embedding
Input: Two graph metrics (G,DG) and (H,DH), where G is a connected graph, and a
positive integer d
Question: Is there a non-contracting distortion d metric embedding of (G,DG) into
(H,DH)?
The bijective versions of the above problems takes the same input but aims to determine

whether the distortion d embedding is a bijective function. The Gen-Graph Metric
Embedding problem or the Graph Metric Embedding problem for a graph class G is
a variant where the output metric space (H,DH) is such that H ∈ G. In this extended
abstract, we present results for the Graph Metric Embedding problem.

Parameterized Complexity. The instance of a parameterized problem/language is a pair
containing the problem instance of size n and a positive integer k, which is called a parameter.
The problem is said to be in FPT if there exists an algorithm that solves the problem in
f(k)nO(1) time, where f is a computable function. Readers are requested to refer [5] for
more details on Parameterized Complexity.

3 Graph Metric Embedding for Generalized Theta graphs

In this section, we design an FPT algorithm for embedding unweighted graphs into generalized
theta graphs. Our FPT algorithm is parameterized by the distortion d and the number k
of paths in the generalized theta graph. The strategy for the algorithm is still the same:
that of putting together partial embeddings to obtain a non-contracting distortion d metric
embedding. For this algorithm, we also observe structural properties of graphs that are
embeddable into generalized theta graphs. We exploit these properties to obtain an FPT
algorithm to compute a set of partial embeddings, and then use a dynamic programming
algorithm to put together partial embeddings from the set to obtain the solution metric
embedding. This makes the notion of partial embeddings more involved in this algorithm.

Let (G,DG) be the graph metric that we want to embed into the graph metric (H,DH).
Here H is a generalized theta graph defined at s,t and let P be the family of s − t paths
that define H. To begin with, we try to guess the non-contracting distortion d embedding of
(G,DG) into (H,DH), when restricted to a d-ball around s and around t.

I Definition 3.1. Let F be a non-contracting distortion d embedding of G into H. Define
Bs = {v ∈ V (H) |DH(v, s) ≤ d} and Bt = {v ∈ V (H) |DH(v, t) ≤ d}. For an embedding F :
V (G)→ V (H), define DomF

s = {u ∈ V (G) | F (u) ∈ Bs} and DomF
t = {u ∈ V (G) | F (u) ∈

Bt}.

The following observation talks about the degree bound on the vertices of a graph that is
embeddable into a generalized theta graph.

I Observation 3.2. If there exists a non-contracting distortion d embedding F of G into H,
then:
(i) Each vertex in DomF

s can have degree at most (k+ 1)d. Similarly, each vertex in DomF
t

can have degree at most (k + 1)d,
(ii) All other vertices of G can have degree at most 2d.

I Observation 3.3. The number of possible non-contracting distortion d embeddings of
some U ⊆ V (G) into Bs ∪Bt is at most n2 · (kd+ 1)(2d)O(kd) .

A. Ghosh, S. Kolay, and G. Mishra 35:7

We prove several properties of graphs that are embeddable into generalized theta graphs.
For the given input graph G, let F be a non-contracting distortion d embedding and
Ψ : DomF

s ∪ DomF
t → Bs ∪Bt be the restriction of F to Bs ∪Bt. Let C1, C2, . . . Ca be the

components of G \ (DomF
s ∪ DomF

t).
I Remark. For simplicity of the presentation, we will assume the following:
1. For all i ∈ [a], we have |Ci| > 2kd2 + 1, and
2. for all j ∈ [k], we have |Pj | > 2k(2kd2 + 1) + 3d.
The details of the general case is handled in the full version [8].

We will derive certain properties of G with the help of the embedding F . For each i ∈ [k],
let P ′i = Pi \ (Bs ∪Bt). If P ′i is a non-empty path, let si be the endpoint of P ′i that has an
edge to Bs while ti be the endpoint of P ′i that has an edge to Bt. Let Si (Ti) denote the set
of vertices of DomF

s (DomF
t) that are mapped into Pi.

I Observation 3.4. Let F be a non-contracting distortion d embedding, Ψ : DomF
s ∪

DomF
t → Bs ∪Bt be the restriction of F to Bs ∪Bt, and C1, C2, . . . Ca be the components

of G \ (DomF
s ∪DomF

t). Then each component of G \ (DomF
s ∪DomF

t) can have it’s vertices
mapped into exactly one P ′i , i ∈ [k]. One the other hand, each P ′i , i ∈ [k], can have at
most 2 connected components of G \ (DomF

s ∪DomF
t) mapped into it, in the non-contracting

distortion d embedding F .

Thus, there can be at most 2k components of G \ (DomF
s ∪ DomF

t).

I Definition 3.5. Let F be a non-contracting distortion d embedding. An empty subpath of
F is a subpath of the generalized theta graph where none of the vertices have any preimage.
If a path P ′i , i ∈ [k], has an empty subpath with one endpoint at ti, then such a subpath is
called a t-empty subpath. Similarly, if a path P ′i has an empty subpath with one endpoint at
si, then such a subpath is called a s-empty subpath. If a path P ′i contains an empty subpath
that coincides with neither si nor ti, then such a subpath is called an internal-empty subpath.
Finally, it is possible that the path P ′i itself is an empty subpath and then P ′i is called a
fully-empty subpath.

Note that a path P ′i can have at most one empty subpath with respect to F . Similarly,
we classify the components of G \ (DomF

s ∪ DomF
t).

I Definition 3.6. Let F be a non-contracting distortion d embedding. A component in
G\ (DomF

s ∪DomF
t) is called an s-component if it has neighbours to DomF

s and not to DomF
t .

Similarly, we define a t-component. A full component is a component that has neighbours to
both DomF

s and DomF
t .

Since F is a non-contracting distortion d embedding, the following observation is true.

I Observation 3.7. Let F be a non-contracting distortion d embedding. Any path Pi,
P ′i 6= ∅, can be one of the following forms: (i) form-1: It has an s-component mapped into it
by F , and a t-empty subpath, (ii) form-2: It has a t-component mapped into it by F , and
an s-empty subpath, (iii) form-3: It has an s-component and a t-component mapped into it
by F , and an internal-empty subpath, (iv) form-4: It has a full component mapped into it
by F , and (v) form-5: It contains a fully-empty subpath.

If we refer Pi to be of form- st , then Pi is of form-1 or form-2 or form-3. The objective
is to find a non-contracting distortion d embedding F , if it exists. Although we do not know
about F , we want to store a snapshot of F .

ESA 2018

35:8 FPT Algorithms for Graphic Embeddings

I Definition 3.8. A configuration X is a tuple (Ψ,P ′, P̂) where:
(i) Let U ⊆ V (G) be such that G\U creates a set of components {C1, C2, . . . , Ca}, a ≤ 2k.

Ψ : U → Bs ∪Bt is a non-contracting distortion d embedding of U .
(ii) P ′ ⊆ P,
(iii) P̂ is a family of |P \ P ′| tuples such that for each path Pi ∈ P \ P ′, there is a tuple

(formi, CPi , compi) with the following information: (a) formi assigns the name of a form
to Pi, (b) The set CPi is a set of at most 2 components of G \U that are assigned to P ′i
and to no other P ′j , j 6= i, (c) The function compi indicates for each C ∈ CPi whether it
is an s-component or a t-component or full-component, with respect to Ψ.

(iv)
⋃
Pi∈P\P′ CPi has all the components of G \ U .

For any fixed Ψ, the total number of configurations is O(k2k). Next, we define feasible
configurations that can be associated with metric embeddings.

I Definition 3.9. A configuration X = (Ψ,P ′, P̂) is said to be feasible with respect to a
non-contracting distortion d embedding F of G into H if the following hold:
(i) Ψ : DomF

s ∪ DomF
t → Bs ∪Bt is the restriction of F to DomF

s ∪ DomF
t .

(ii) P ′i = Pi \ (Bs ∪Bt) is empty for each Pi ∈ P ′ ⊆ P. ,
(iii) For each Pi that is non-empty with respect to F , P̂ contains a tuple (formi, CPi , compi)

with the following information: (a) formi is the form of Pi in F , (b) The set CPi is the
set of at most 2 components of G \U that are embedded into P ′i by F , (c) The function
compi indicates for each C ∈ CPi whether it is an s-component or a t-component or
full-component, with respect to F .

(iv)
⋃
Pi∈P\P′ CPi has all the components of G \ (DomF

s ∪ DomF
t).

We denote a configuration feasible with respect to F as X (F).

Next, we define the notion of a last vertex for a component of G \ (DomF
s ∪ DomF

t) with
respect to the embedding F .

I Definition 3.10. Let F be a non-contracting distortion d embedding. Let C be a j-
component, j ∈ {s, t}. A vertex ` in C is the last vertex of C with respect to embedding F
if DH(j, F (`)) ≥ DH(j, F (x)) for all x ∈ C.

The following Lemma gives a bound on the potential last vertices of a component of
G \ (DomF

s ∪ DomF
t) if G is embeddable into H.

I Lemma 3.11. Let F be a family of non-contracting distortion d embedding of G into H
such that X (F1) = X (F2) for any F1, F2 ∈ F . Then for any form- st path Pi and any
s(t)-component C ∈ CPi , there are dO(d2) vertices that are candidates for being the last vertex
of C with respect to some F ∈ F .

Next, we define the notion of a shortest embedding of a component in a path of P.

I Definition 3.12. Let Y be a feasible configuration such that Y = X (F) for a non-
contracting distortion d embedding F . Let Pi be a form- st path, C ∈ CPi be a s-component
of G \ (DomF

s ∪ DomF
t) and ` ∈ C be a candidate to be the last vertex of C with respect F .

Recall that Si is the set of vertices of DomF
s that are mapped into Pi. Let A be a family

of non-contracting and distortion d embedding of C ∪ Si into Pi such that the following
conditions hold: (i) f1|Si = f2|Si for any f1, f2 ∈ A, (ii) For each f ∈ A, f(x) is a vertex
of P ′i for any x ∈ C, (iii) For each f ∈ A, F |C∪Si = f and ` is the last vertex of C with
respect to F , and (iv) For each f ∈ A, for any x ∈ DomF

s ∪ DomF
t , the path between f(`)

and f(x) is non-contracting with expansion at most d.

A. Ghosh, S. Kolay, and G. Mishra 35:9

Then the shortest embedding of C ∪ Si into Pi with respect to Y and `, is an embedding
f ∈ A such that DH (s, f(`)) ≤ DH (s, f ′(`)) for all f ′ ∈ A. If C is a t-component, Ti is
taken to be the set of vertices of DomF

t that are mapped into Pi and we can define the
shortest embedding of C ∪ Ti with respect to Y and ` in a similar way.

We can extend the notion of shortest embedding of a component into a path of P to that
of a non-contracting distortion d embedding of G into H that has shortest embeddings for
all s-components and t-components.

I Definition 3.13. Let us consider a non-contracting distortion d embedding F of G into
H. We say F is a special embedding with respect to feasible configuration X (F) if for every
path Pi of form- st and s (t)-component C ∈ CP , the following holds: F |C∪Si (F |C∪Ti) is
the shortest embedding of C ∪ Si (C ∪ Ti) into Pi with respect to the feasible configuration
X (F) and the last vertex of C with respect to F .

The next lemma shows that it is enough to look for a special embedding of G into H.

I Lemma 3.14. If there exists a non-contracting distortion d embedding of G into H, then
there exists a special embedding of G into H with respect to some configuration.

Therefore, we have shown that if G is embeddable into H then it is enough to find a
special embedding. We design an FPT algorithm for finding a special embedding.

Proof Sketch of Theorem 1.4. By Lemma 3.14, it is sufficient to look for special embedding
with respect to some configuration. We find ∆(G) and if ∆(G) > (k + 1)d, then we report
NO. This is correct by Observation 3.2.

We first compute DH(s, u) and DH(t, u) for all u ∈ V (H). We store this distance
information in a matrix Dst, such that the look-up time for the distance from any u ∈ V (H)
to s or t is O(1). Next, let us fix a non-contracting distortion d embedding Ψ of U ⊆ V (G)
into Bs ∪ Bt and a configuration Y containing Ψ. If the degree of any vertex in G \ U is
more than 2d, then we decide that there does not exist any desired embedding with respect
to Y. Otherwise, we proceed as follows. Let F be the special embedding of G into H with
respect to Y that we want to find, if one exists. Note that U = DomF

s ∪ DomF
t .

(i) If a path Pi is of form-5, we don’t have to do anything for that.
(ii) Let a path Pi be of form-4, and suppose C ∈ CPi is the only full component mapping

into Pi. Then we find a non-contracting distortion d embedding fC , if possible, of
C ∪ Si ∪ Ti into Pi such that fC |Si = Ψ|Si and fC |Ti = Ψ|Ti . Such an algorithm is
described in the full version of the paper. If we cannot find such an embedding, then
there does not exist any special embedding of G into H with respect to Y.

(iii) Let Pi be a form- st path and C ∈ CPi be an (a) s (t)-component. Without loss of
generality, assume that C is an s-component. Here, our objective is to find the shortest
embedding f of C ∪ Si into Pi with respect to Y and some `, where ` is the last vertex
of C with respect to F . We guess a vertex ` ∈ C, as the last vertex. By Lemma 3.11,
the total number of candidates for the last vertex of C with respect to F is dO(d2). It
is easy to see that |C ∪ Si| ≤ DH(f(`), f(a)) ≤ 2d. |C ∪ Si|. Thus, the length of the
shortest embedding of C ∪ Si, where ` is the last vertex, is also in this range. For
each possible length |C ∪ Si| ≤ len ≤ 2d. |C ∪ Si|, we try to find a non-contracting
distortion d embedding flen of C ∪ Si into a path Plen = {1, 2, . . . , len} such that flen
restricted to the first |Si| vertices is same as the mapping by Ψ, and for each u ∈ C ∪Si,
DPlen(1, flen(u)) ≤ DPlen(1, flen(`)). Such an algorithm is described in the full version of

ESA 2018

35:10 FPT Algorithms for Graphic Embeddings

the paper. If the algorithm returns no for all lengths, for every candidate ` for the last
vertex, then there does not exist any special embedding of G into H with respect to Y .
Otherwise, assume that for the current guess `, fC is an embedding that the algorithm
returns for the shortest length.

Let F = ΦΠ be the function such that Π = {Ψ} ∪ {fC | C is a component of G \U}. We
verify whether the obtained F is a non-contracting distortion d embedding from G to H. If
yes, we are done. If not, then there does not exist any special embedding with respect to Y.
Observe that the distance between two given points in H, can be computed in O(1) time
using Dst.

Note that in the worst case, we have to run the above steps for all possible configurations.
If we decide that there does not exist a special embedding with respect to all configurations,
then we report that G does not admit the desired embedding of G into H. The correctness
of the algorithm follows from Lemma 3.14. J

4 Graph Metric Embedding and connected treewidth

In this Section, we will look at the Graph Metric Embedding problem with respect to
the added parameters of treewidth and longest geodesic cycle of the output graph metric.
Let (G,DG) be the input connected graph metric to be embedded into (H,DH). We
show that this problem is FPT, when parameterized by the distortion d, the treewidth
tw(H) = α, the length `g of the longest geodesic cycle of H, and the maximum degree
∆(H) = ∆. From [6] it can be shown that for a graph with longest geodesic cycle `g, a tree
decomposition of treewidth α′ can be converted into a connected tree decomposition of width
α′ +

(
α′

2
)
(`g(α′ − 2)− 1) in polynomial time. Since trees have constant connected treewidth,

our algorithm is a generalization of the FPT algorithm for Graph Metric Embedding for
trees, parameterized by distortion d and maximum degree ∆ [7]. As before, we employ a
dynamic programming to build a non-contracting distortion d metric embedding using a set
of partial embeddings that are computed in FPT time.

Before we give the details of the algorithm, we want to make the following remark about
bijective Graph Metric Embedding. We extended the algorithm of Kenyon et al [12] for
bijective embedding of unweighted graphs into bounded maximum degree trees to the case
of graphs with bounded maximum degree and bounded treewidth (see Theorem 1.2). The
techniques we use for the results in this section are a generalization of the techniques used to
prove Theorem 1.2. For the details of the proof, please refer to the full version of the paper
[8].

Let (G,DG) be a graph metric to be embedded into (H,DH). Here the parameters are
the treewidth α of H, the length of the longest geodesic cycle `g in H, the distortion d and
the maximum degree ∆ of H. Let T be a nice tree decomposition of H with width µ. Since
from [6] H has a connected tree decomposition of width µ, we may assume that the nice
tree decomposition is derived from the connected tree decomposition [5] and therefore the
maximum distance between any two vertices inside a bag in T is Γ ≤ µ.

Ensuring non-contraction for a non-contracting distortion d metric embedding F is more
elaborate. Local non-contraction no longer implies global non-contraction. This problem
was dealt with in [7] by introducing the notion of types. For our algorithm too, for a vertex
u ∈ V (T) we need to define a type for every vertex of V (G) that is mapped into the subgraph
Hu, to indicate how it behaves with the rest of the graph. Informally, the types store
information of the interaction of vertices of the graph seen so far with the boundary vertices,
and this is enough to ensure global non-contraction.

A. Ghosh, S. Kolay, and G. Mishra 35:11

I Definition 4.1. Let u ∈ V (T), fu be a feasible partial embedding and Xu = {u1, . . . , uk},
1 ≤ k ≤ αc. Then:
(i) For v ∈ NT (u) and ui ∈ Xu, [fu,v, ui] type is a function tui : Domfu(v) → {∞, 2Γ +

3d+ 3,Γ + d+ 1, . . . ,−(Γ + d+ 1)},
(ii) A [fu,v] type t is a tuple (tui , . . . , tuk), where tui is a [fu,v, ui] type, and
(iii) A [fu,v] type-list is a set of [fu,v] types.

Intuitively, we want to define a type corresponding to each vertex mapped into Hu.
However, this blows up the number of types. In order to handle this, it can be shown that
we do not need to remember the type of each vertex, and that it is enough to only remember
the type of vertices “close to” the vertices in Xu. Now we present the formal arguments.
To bound the total number of possible types, we define a function β as follows: β(k) = k if
k < 2Γ + 3d+ 3, and β(k) =∞ otherwise. In the following definitions, treat β(k) = k and
the definition of β will be clear while we prove our claims.

I Definition 4.2. Let us consider u ∈ V (T), v ∈ NT (u). Let fu be a feasible partial
embedding and L be a [fu,v] type-list. Then L is said to be compatible with Domfu(v) if
the following condition is satisfied: For each x ∈ Domfu(v) there exists a type t ∈ L, such
that for each y ∈ Domfu(v), for all ui ∈ Xu DH(fu(x), ui)−DG(x, y) = tui(y).

I Definition 4.3. Let u ∈ V (T) and fu be a feasible partial embedding. Also consider
v,w ∈ NT (u) along with a [fu,v] type-list L1 and a [fu,w] type-list L2 such that v 6= w.
Then L1 and L2 agree if the following condition is satisfied for all ui ∈ Xu: For every t1 ∈ L1
and t2 ∈ L2, there exists x ∈ Domfu(v) and y ∈ Domfu(w) such that tui1 (x) + tui2 (y) ≥
DG(x, y) for all ui ∈ Xu.

Next, we define a state with respect to a vertex in T .

I Definition 4.4. Let u ∈ V (T). A u-state constitutes of a feasible partial embedding fu, a
[fu,v] type-list L[fu, v] for each v ∈ NT (u).

Notice that it is no longer enough to consider feasibility and succession of partial embed-
dings. We also need to take care of the types of vertices. Therefore, we define feasibility and
succession of states.

I Definition 4.5. A u-state is said to be feasible if the following conditions are satisfied:
(i) L[fu,v] is compatible with Domfu(v), for each v ∈ NT (u), and
(ii) L[fu,v] agrees with L[fu,w], for any v,w ∈ NT (u) and v 6= w.

I Definition 4.6. Let u ∈ V (T) and v ∈ CT (u). Let Su,Sv be feasible u-state and v-state,
respectively. Sv is said to succeed Su if the following properties hold.
(i) fv succeeds fu.
(ii) For every w ∈ NT (v) \ u and a type t1 ∈ L[fv,w] there exists a type t2 ∈ L[fu,v]

satisfying the following conditions: (a) ∀x ∈ Domfu(v) ∩ Domfv(w) and a ∈ Xu ∩
Xv, ta2(x) = ta1(x). (b) ∀x ∈ Domfu(v) ∩ Domfv(w) and a ∈ Xu \ Xv, ta2(x) =
β(min
b∈Xv

(DH(a, b) + tb1(x))). (c) ∀x ∈ Domfu(v) \ Domfv(w) and a ∈ Xu ∩Xv, ta2(x) =
β(max
y∈Domfv (w)

(ta1(y))−DG(x, y))). (d) ∀x ∈ Domfu(v) \ Domfv(w) and a ∈ Xu \Xv,

ta2(x) = β(max
y∈Domfv (w)

(min
b∈Xv

(DH(a, b) + tb1(y))−DG(x, y))).

(iii) For everyw ∈ NT (u)\v and a type t1 ∈ L[fu,w] there exists a type t2 ∈ L[fv,u] satisfy-
ing the following conditions: (a) ∀x ∈ Domfv(u)∩Domfu(w) and a ∈ Xu∩Xv, ta2(x) =
ta1(x). (b) ∀x ∈ Domfv(u) ∩ Domfu(w) and a ∈ Xv \Xu, ta2(x) = β min

b∈Xu
(DH(a, b) +

ESA 2018

35:12 FPT Algorithms for Graphic Embeddings

tb1(x)). (c) ∀x ∈ Domfv(u) \ Domfu(w) and a ∈ Xu ∩ Xv, ta2(x) = ta1(x). (d)
∀x ∈ Domfv(u) \ Domfu(w) and a ∈ Xv \Xu, ta2(x) = β(max

y∈Domfu (w)
(min
b∈Xu

(DH(a, b) +

tb1(y))−DG(x, y))).

Now, we define the embeddability of a set of feasible states.

I Definition 4.7. For u ∈ V (T), let Su denote a u-state. The set {Su : u ∈ V (T)} is said to
be an embeddable set of feasible states if the following conditions are satisfied: (i) For each
u ∈ V (T), Su is a feasible state, and (ii) For u ∈ V (T) and v ∈ CT (u), Sv succeeds Su.

The above definitions are enough to show the relation between the existence of a non-
contracting distortion d embedding of G into H and the existence of an embeddable set
of feasible states. This is proved over the following two Lemmas. Lemma 4.9 is the most
important structural Lemma for the design of this algorithm. We give a brief sketch of this
Lemma and refer to the full details in the full version. For the proof of Lemma 4.8 refer to
the full version.

I Lemma 4.8. Let F be a non-contracting and distortion d embedding of G into H. Then
there exists an embeddable set of feasible states.

I Lemma 4.9. Let Π = {fu : u ∈ V (T)} be an embeddable set of feasible states. Then there
exists a non-contracting and distortion d embedding of G into H.

Proof Sketch. To prove this lemma we first show the following:
1. For every x ∈ V (G), there exists a feasible u-state such that x ∈ Domfu , and
2. The subgraph of T induced by Ax = {u ∈ V (T) : x ∈ Domfu} is connected. Moreover,

x ∈ Domfu ∩ Domfv implies fu(x) = fv(x).

Next, using the family Π, we construct an embedding F that satisfies the following (Please
refer to the full version for this construction):
(i) F is a metric embedding with expansion at most d,
(ii) Consider a path P = u1u2 . . .uk from u = u1 to v = vk in T . Then for every

x ∈ Domfv , at least one of the following properties hold.
Prop-1: There exists a uj ∈ P and y ∈ Domfuj

such that DH(F (x), u′)−DG(x, y) ≥
2Γ + 3d+ 3 for all u′ ∈ Xuj .

Prop-2: There exists a type tx ∈ L[fu,u2] such that tu
′

x (y) = DH(F (x), u′)−DG(x, y)
for all y ∈ Domfu(u2) and u′ ∈ Xu.

(iii) Consider a path P = u1u2 . . .uk from u to v in T , where u = u1 and v = uk. Then F
restricted to

⋃
ui∈P

Domfui
is non-contracting.

Now we will be done if we prove that F is a non-contracting embedding for any two vertices
x, y ∈ V (G). Note that each of F (x) and F (y) is in some bag. Fix u,v ∈ V (T) such
that F (x) ∈ Xu and F (y) ∈ Xv. Consider the path P = u1u2 . . .uk from u to v in T ,
where u = u1 and v = uk. We can show that the shortest path between F (x) to F (y) is
non-contracting as x, y ∈

⋃
ui∈P

Domfui
. J

Proof Ideas for Theorem 1.3. A graph that is embeddable into the given H must have
bounded maximum degree. This helps in proving bounds for the total number of feasible
partial embeddings and the total number of feasible states. After this, the proof of Theorem
1.3 uses the standard dynamic programming approach over a bounded tree-decomposition of
a graph. J

A. Ghosh, S. Kolay, and G. Mishra 35:13

5 Open Questions

The parameterized complexity of embedding into trees of unbounded degree, asked in [7], still
remains open. A generalization of that question is to determine the parameterized complexity
of Graph Metric Embedding for bounded treewidth graphs, and this is also open.

References
1 I. Abraham, Y. Bartal, and O. Neiman. Advances in metric embedding theory. Advances

in Mathematics, 228(6):3026–3126, 2011.
2 M. Badoiu, J. Chuzhoy, P. Indyk, and A. Sidiropoulos. Low-Distortion Embeddings of

General Metrics into the Line. In Proc. of STOC, pages 225–233, 2005.
3 M. Badoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Räcke, R. Ravi, and A. Sidiro-

poulos. Approximation Algorithms for Low-Distortion Embeddings into Low-Dimensional
spaces. In Proc. of SODA, pages 119–128, 2005.

4 T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos. Algorithms
for low-distortion embeddings into arbitrary 1-dimensional spaces. CoRR, abs/1712.06747,
2017. To appear in SoCG, 2018.

5 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized algorithms. Springer, 5(4):16:1–16:20, 2015.

6 Reinhard Diestel and Malte Müller. Connected tree-width. Combinatorica, 2017.
7 M. R. Fellows, F. V. Fomin, D. Lokshtanov, E. Losievskaja, F. A. Rosamond, and S. Saur-

abh. Distortion is Fixed Parameter Tractable. ACM Transactions on Computation Theory,
5(4):16:1–16:20, 2013.

8 A. Ghosh, S. Kolay, and G. Mishra. FPT algorithms for embedding into low complexity
graphic metrics. CoRR, 2018. arXiv:1801.03253.

9 A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair. Cuts, Trees and l1-Embeddings of
Graphs. Combinatorica, 24(2):233–269, 2004.

10 P. Indyk. Algorithmic Applications of Low-Distortion Geometric Embeddings. In Proc. of
FOCS 2001, pages 10–33, 2001.

11 P. Indyk and J. Matoušek. Low-Distortion Embeddings of Finite Metric Spaces. In Hand-
book of Discrete and Computational Geometry, Second Edition., pages 177–196. CRC, 2004.

12 C. Kenyon, Y. Rabani, and A. Sinclair. Low Distortion Maps Between Point Sets. SIAM
Journal on Computing, 39(4):1617–1636, 2010. Peliminary version in Proc. of STOC, 2004.

13 N. Linial, E. London, and Y. Rabinovich. The Geometry of Graphs and Some of its
Algorithmic Applications. Combinatorica, 15(2):215–245, 1995.

14 J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., 2002.
15 J. Matoušek. Lecture Notes on Metric Embeddings, 2013.
16 A. Nayyeri and B. Raichel. Reality Distortion: Exact and Approximate Algorithms for

Embedding into the Line. In Proc. of FOCS, pages 729–747, 2015.
17 A. Nayyeri and B. Raichel. A Treehouse with Custom Windows: Minimum Distortion

Embeddings into Bounded Treewidth Graphs. In Proc. of SODA, pages 724–736, 2017.

ESA 2018

http://arxiv.org/abs/1801.03253

The Stochastic Score Classification Problem

Dimitrios Gkenosis
Department of Informatics and Telecommunications, University of Athens, Athens, Greece
gkenosis.dimitrios@math.uoa.gr

Nathaniel Grammel
Department of Computer Science, University of Maryland, College Park, Maryland, USA
ngrammel@cs.umd.edu

Lisa Hellerstein
Department of Computer Science and Engineering, NYU Tandon School of Engineering,
Brooklyn, NY, USA
lisa.hellerstein@nyu.edu

Devorah Kletenik1

Department of Computer and Information Science, Brooklyn College, CUNY, Brooklyn, New
York, USA
kletenik@sci.brooklyn.cuny.edu

Abstract
Consider the following Stochastic Score Classification Problem. A doctor is assessing a patient’s
risk of developing a certain disease, and can perform n tests on the patient. Each test has a binary
outcome, positive or negative. A positive result is an indication of risk, and a patient’s score is
the total number of positive test results. Test results are accurate. The doctor needs to classify
the patient into one of B risk classes, depending on the score (e.g., LOW, MEDIUM, and HIGH
risk). Each of these classes corresponds to a contiguous range of scores. Test i has probability
pi of being positive, and it costs ci to perform. To reduce costs, instead of performing all tests,
the doctor will perform them sequentially and stop testing when it is possible to determine
the patient’s risk category. The problem is to determine the order in which the doctor should
perform the tests, so as to minimize expected testing cost. We provide approximation algorithms
for adaptive and non-adaptive versions of this problem, and pose a number of open questions.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases approximation algorithms, symmetric Boolean functions, stochastic prob-
ing, sequential testing, adaptivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.36

Related Version Full version on arXiv [9], https://arxiv.org/abs/1806.10660.

Funding The authors were partially supported by NSF Award IIS-1217968.

Acknowledgements We thank Zach Pomerantz for experiments that gave us useful insights into
goal functions. We thank the ESA referees for helpful comments.

1 Partially supported by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and
The City University of New York

© Dimitrios Gkenosis, Nathaniel Grammel, Lisa Hellerstein, and Devorah Kletenik;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 36; pp. 36:1–36:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gkenosis.dimitrios@math.uoa.gr
mailto:ngrammel@cs.umd.edu
mailto:lisa.hellerstein@nyu.edu
mailto:kletenik@sci.brooklyn.cuny.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.36
https://arxiv.org/abs/1806.10660
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 The Stochastic Score Classification Problem

1 Introduction

We consider the following Stochastic Score Classification (SSClass) problem. A doctor wants
to assess a patient’s risk of developing a certain disease, and can perform n tests on the patient.
Each test has a binary outcome, positive or negative. A positive result is an indication of risk,
and a patient’s score is the total number of positive test results. Test results are accurate.
The doctor needs to classify the patient into one of B risk classes, depending on the score
(e.g., LOW, MEDIUM, and HIGH risk). Each of these classes corresponds to a contiguous
range of scores. Test i has probability pi of being positive, and it costs ci to perform. To
reduce costs, instead of performing all tests, the doctor will perform them sequentially and
stop testing when it is possible to determine the risk category for the patient.

To reduce costs, instead of performing all tests and computing an exact score, the doctor
will perform them sequentially, stopping when the class becomes a foregone conclusion. For
example, suppose there are 10 tests and the MEDIUM class corresponds to a score between
4 and 7 inclusive. If the doctor performed 8 tests, of which 5 were positive, the doctor
would not perform the remaining 2 tests, because the patient’s risk class will be MEDIUM
regardless of the outcome of the 2 remaining tests. The problem is to determine the optimal
(adaptive or non-adaptive) order in which to perform the tests, so as to minimize expected
cost.

Formally, the Stochastic Score Classification problem is as follows. Given B + 1 integers
0 = α1 < α2 < . . . < αB < αB+1 = n + 1, let class j correspond to the scoring interval
[αj , αj + 1, . . . , αj+1 − 1]. The αj define an associated pseudo-Boolean score classification
function f : {0, 1}n → {1, . . . , B}, such that f(X1, . . . , Xn) is the class whose scoring interval
contains the score

∑
i Xi. Thus B is the number of classes. Each variable Xi is independently

1 with given probability pi, where 0 < pi < 1, and is 0 otherwise. The value of Xi can
only be determined by asking a query (or performing a test), which incurs a given positive,
real-valued cost ci.

An evaluation strategy for f is a sequential adaptive or non-adaptive order in which to
ask the queries. Querying must continue until the value of f can be determined, i.e., until the
value of f would be the same, no matter how the remainder of the n queries were answered.
In an adaptive evaluation strategy, the choice of the next query can depend on the outcomes
of previous queries. An adaptive strategy corresponds to a decision tree, although we do
not require the tree to be output explicitly (it may have exponential size). A non-adaptive
strategy is a permutation of the queries. With a non-adaptive strategy, querying proceeds in
the order specified by the permutation until the value of f can be determined.

Repeated queries always receive the same response, so it is never useful to ask a particular
query more than once. The goal is to design an evaluation strategy for f with minimum
expected total query cost. We consider both adaptive and non-adaptive versions of the
problem, in which we are restricted to adaptive or non-adaptive strategies respectively.

We also consider a weighted variant of the problem, where query i has given integer weight
ai, the score is

∑
i aiXi, and α1 < α2 < . . . < αB < αB+1 where α1 equals the minimum

possible value of the score
∑

i aiXi, and αB+1 − 1 equals the maximum possible value. We
refer to the standard version of the problem, with score

∑
i Xi, as the unweighted version.

While we have described the problem above in the context of assessing disease risk, score
classification is also used in other contexts, such as assigning letter grades to students, giving
a quality rating to a product, or deciding whether a person charged with a crime should
be released on bail. In Machine Learning, the focus is on learning the score classification
function [25, 23, 15, 27, 26]. In contrast, here our focus is on reducing the cost of evaluating

D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik 36:3

the classification function. We note that the SSClass problem differs from many other
stochastic probing problems previously considered (e.g. [22, 14]) because of the requirement
that testing must continue until the unique interval containing the score has been determined.

Restricted versions of the weighted and unweighted SSClass problem have been studied
previously. In the algorithms literature, Deshpande et al. presented two approximation
algorithms solving the Stochastic Boolean Function Evaluation (SBFE) problem for linear
threshold functions [8]. The general SBFE problem is similar to the adaptive SSClass
problem, but instead of evaluating a given score classification function f defined by inputs
αj , you need to evaluate a given Boolean function f . The SBFE problem for linear threshold
functions is equivalent to the weighted adaptive SSClass problem. One of the two algorithms
of Deshpande et al. achieves an O(logW)-approximation factor for this problem using the
submodular goal value approach; it involves construction of a goal utility function and
application of the Adaptive Greedy algorithm of Golovin and Krause to that function [10].
Here W is the sum of the magnitudes of the integer weights ai. The other algorithm achieves
a 3-approximation by applying a dual greedy algorithm to the same goal utility function.

A k-of-n function is a Boolean function f such that f(x) = 1 iff x1 + . . . + xn ≥ k.
The SBFE problem for evaluating k-of-n functions is equivalent to the unweighted adaptive
SSClass problem, with only two classes (B = 2). It has been studied previously in the VLSI
testing literature. There is an elegant algorithm for the problem that computes an optimal
strategy [19, 4, 20, 6].

The unweighted adaptive SSClass problem for arbitrary numbers of classes was studied
in the information theory literature [7, 1, 17], but only for unit costs. The main novel
contribution there was to establish an equivalence between verification and evaluation, which
we discuss below.

2 Results and open questions

We give approximation results for adaptive and non-adaptive versions of the SSClass problem.
We describe most of our results here, but leave description of some others to the full version
of our paper [9]. Omitted proofs also appear there. A table with all our bounds can be found
at the end of this paper.

We begin by using the submodular goal value approach of Deshpande et al. to obtain
an O(logW) approximation algorithm for the weighted adaptive SSClass problem. This
immediately gives an O(logn) approximation for the unweighted adaptive problem. We also
present a simple alternative algorithm achieving a B − 1 approximation for the unweighted
adaptive problem, and a 3(B−1)-approximation algorithm for the weighted adaptive problem,
again using an algorithm of Deshpande et al.

We then present our two main results, which are both for the case of unit costs. The first
is a 4-approximation algorithm for the adaptive and non-adaptive versions of the unweighted
SSClass problem. The second is a ϕ-approximation for a special case of the non-adaptive
unweighted version, where the problem is to evaluate what we call the Unanimous Vote
function. Here ϕ = 1+

√
5

2 ≈ 1.618 is the golden ratio. The Unanimous Vote function outputs
POSITIVE if X1 = . . . = Xn = 1, NEGATIVE if X1 = . . . = Xn = 0, and UNCERTAIN
otherwise. Equivalently, it is a score classification function with B = 3 and scoring intervals
{0}, {1, . . . , n − 1} and {n}. The proofs of our two main results imply upper bounds of 4
and ϕ for the adaptivity gaps of the corresponding problems.

ESA 2018

36:4 The Stochastic Score Classification Problem

We use both existing techniques and new ideas in our algorithms. We use the submodular
goal value approach of Deshpande et al. to get our O(logW) bound for the weighted adaptive
SSClass problem. This approach cannot yield a bound better than O(logn) for SSClass
problems, since they involve evaluating a function of n relevant Boolean variables [3].

For some of our other bounds, we exploit the exact algorithm for k-of-n evaluation, and
the ideas used in its analysis. To obtain non-adaptive algorithms for the unit-cost case, we
perform a round robin between 2 subroutines, one performing queries in increasing order of
ci/pi, while the second performs them in increasing order of ci/(1− pi). For arbitrary costs,
instead of standard round robin, we use the modified round robin approach of Allen et al [2].
As has been repeatedly shown, the ci/pi ordering and the ci/(1− pi) ordering are optimal
for evaluation of the Boolean OR (1-of-n) and AND (n-of-n) functions respectively (cf. [24]).
Intuitively, the first ordering (for OR) favors queries with low cost and high probability of
producing the value 1, while the second (for AND) favors queries with low cost and high
probability of producing the value 0. The proof of optimality follows from the fact that given
any ordering, swapping two adjacent queries that do not follow the designated increasing
order will decrease expected evaluation cost.

While the algorithm for our first main result is very simple, the proof of its 4-approximation
bound is not. It uses ideas from the existing analysis of the k-of-n algorithm, but that analysis
is simpler because B = 2. We perform a new, careful analysis to obtain our 4-approximation
result. Unlike the analysis of the k-of-n algorithm, our analysis only works for unit costs.

To develop our ϕ-approximation for the Unanimous Vote function, we first note that
for such a function, if you perform the first query and observe its outcome, the optimal
ordering of the remaining queries can be determined by evaluating a Boolean OR function,
or a Boolean AND function. We then address the problem of determining an approximately
optimal permutation, given the first query. A standard round robin alternating between
the ci/pi = 1/pi ordering, and the 1/(1− pi) ordering, yields a factor of 2 approximation.
To obtain the ϕ factor, we stop the round robin at a carefully chosen point and commit to
one of the two orderings, abandoning the other. Our full algorithm for the Unanimous Vote
function works by trying all n possible first queries. For each, we generate the approximately
optimal permutation given that first choice, and algebraically compute its expected cost.
Finally, out of these n permutations, we choose the one with lowest expected cost.

We note that although our algorithms are designed to minimize expected cost for in-
dependent queries, the goal value function used to achieve the O(logW) approximation
result can also be used to achieve a worst-case bound, and a related bound in the Scenario
model [10, 12, 16].

A recurring theme in work on SSClass problems has been the relationship between the
evaluation problems and their associated verification problems. In the verification problem,
you are given the output class (i.e., the value of the score classification function) before
querying, and just need to perform enough tests to verify that the given output class is
correct. Thus optimal expected verification cost lower bounds optimal expected evaluation
cost. Surprisingly, the result of Das et al. [7] showed that for the adaptive SSClass problem in
the unit-cost case, optimal expected verification cost equals optimal expected evaluation cost.
Prior work already implied this was true for evaluating k-of-n functions, even for arbitrary
costs (cf. [5]). We give a counterexample in the full paper [9] showing that this relationship
does not hold for the adaptive SSClass problem with arbitrary costs. Thus algorithmic
approaches based on optimal verification strategies may not be effective for this problem.

There remain many intriguing open questions related to SSClass problems. The first, and
most fundamental, is whether the (adaptive or non-adaptive) SSClass problem is NP-hard.

D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik 36:5

This is open even in the unit-cost case. It is unclear whether this problem will be easy to
resolve. It is easy to show that the weighted variants are NP-hard: this follows from the
NP-hardness of the SBFE problem for linear threshold functions, which is proved by a simple
reduction from knapsack [8]. However, the approach used in that proof is to show that the
deterministic version of the problem (where query answers are known a-priori) is NP-hard,
which is not the case in the SSClass problem. Further, NP-hardness of evaluation problems
is not always easy to determine. The question of whether the SBFE problem for read-once
formulas is NP-hard has been open since the 1970’s (cf. [13]).

Another main open question is whether there is a constant-factor approximation algorithm
for the weighted SSClass problem. Our bounds depend on n or B. Other open questions
concern lower bounds on approximation factors, and bounds on adaptivity gaps.

3 Further definitions and background

A partial assignment is a vector b ∈ {0, 1, ∗}n. We use f b to denote the restriction of function
f(x1, . . . , xn) to the bits i with bi = ∗, produced by fixing the remaining bits i according
to their values bi. We call f b the function induced from f by partial assignment b. We use
N0(b) to denote |{i|bi = 0}|, and N1(b) to denote |{i|bi = 1}|.

A partial assignment b′ ∈ {0, 1, ∗}n is an extension of b, written b′ � b, if b′i = bi for all i
such that bi 6= ∗. We use b′ � b to denote that b′ � b and b′ 6= b.

A partial assignment encodes what information is known at a given point in a sequential
querying (testing) environment. Specifically, for partial assignment b ∈ {0, 1, ∗}n, bi = ∗
indicates that query i has not yet been asked, otherwise bi equals the answer to query i. We
may also refer to query i as test i, and to asking query i as testing or querying bit xi,

Suppose the costs ci and probabilities pi for the n queries are fixed. We define the
expected costs of adaptive evaluation and verification strategies for f : {0, 1}n → {0, 1}
or f : {0, 1}n → {1, . . . , B} as follows. (The definitions for non-adaptive strategies are
analogous.) Given an adaptive evaluation strategy A for f , and an assignment x ∈ {0, 1}n,
we use C(A, x) to denote the sum of the costs of the tests performed in using A on x. The
expected cost of A is

∑
x∈{0,1}n C(A, x)p(x), where p(x) =

∏n
i=1 p

xi(1− p)1−xi . We say that
A is an optimal adaptive evaluation strategy for f if it has minimum possible expected cost.

Let L denote the range of f , and for ` ∈ L, let X` = {x ∈ {0, 1}n : f(x) = `}. An adaptive
verification strategy for f consists of |L| adaptive evaluation strategies A` for f , one for each
` ∈ L. The expected cost of the verification strategy is

∑
`∈L

(∑
x∈X`

C(A`, x)p(x)
)
and it

is optimal if it minimizes this expected cost.
If A is an evaluation strategy for f , we call

∑
x∈X`

C(A, x)p(x) the `-cost of A. For ` ∈ L,
we say that A is `-optimal if it has minimum possible `-cost. In an optimal verification
strategy for f , each component evaluation strategy A` must be `-optimal.

A function g : {0, 1, ∗}n → Z≥0 is monotone if g(b′) ≥ g(b) whenever b′ � b. It is
submodular if for b′ � b, i such that b′i = bi = ∗, and k ∈ {0, 1}, we have g(b′i←k)− g(b′) ≤
g(bi←k)− g(b). Here bi←k denotes the partial assignment produced from b by setting bi to k,
and similarly for b′i←k.

4 Algorithms for the weighted adaptive SSClass problem

Our first algorithm solves the weighted adaptive SSClass Problem using the goal value
approach of Deshpande et al., a method of designing approximation algorithms for SBFE
problems [8]. The approach can easily be extended to problems of evaluating pseudo-Boolean

ESA 2018

36:6 The Stochastic Score Classification Problem

functions. It requires construction of a utility function g : {0, 1, ∗}n → Z≥0, called a goal
function, associated with the function f being evaluated. Function g must be monotone and
submodular. The maximum value of g must be an integer Q ≥ 0 such that g(b) = Q iff f(x)
has the same value for all x ∈ {0, 1}n such that x � b. We call Q the goal value of g.

An adaptive strategy for evaluating f can then be obtained by applying the Adaptive
Greedy algorithm of Golovin and Krause to solve the Stochastic Submodular Cover problem
on goal function g [10]. This algorithm greedily chooses the test with highest expected
increase in utility, as measured by g, per unit cost. It follows from the bound of Deshpande
et al. on applying Adaptive Greedy to the Stochastic Submodular Cover problem, that this
strategy is an O(logQ)-approximation to the optimal adaptive strategy for evaluating f [8].2

We construct g as follows. Let r(x) = a1x2 + . . .+ anxn. Consider an associated score
classification function f defined by α1, . . . , αB+1 and the ai. For simplicity, we assume
here that the ai are non-negative. (The general case is similar.) We refer to the values
α2, . . . , αB as cutoffs. For each cutoff αj , let fj denote the Boolean linear threshold function
fj : {0, 1}n → {0, 1} where fj(x) = 1 if r(x) ≥ αj , and fj(x) = 0 otherwise.

Consider a fixed cutoff αj . Let ω = (
∑

i ai) − αj + 1. For b ∈ {0, 1, ∗}n, let r1(b) =
min{αj ,

∑
i:bi=1 ai} and r0(b) = min{ω,

∑
i:bi=0 ai}. Note that r1(b) = αj iff fj(x) = 1 for

all x � b, and r0(b) = ω iff fj(x) = 0 for all x � b. As shown in [8] the following function gj

is a goal function for linear threshold function fj , with goal value ωαj :

gj(b) = ωαj − (αj − r1(b))(ω − r0(b)). (1)

We combine the B − 1 goal functions gj using the standard “AND construction” for
utility functions (cf. [8]), which yields a goal function g for score classification function f ,
where g(x) =

∑B−1
i=1 gi(x). Its goal value is at most (B − 1)W 2 where W =

∑
i ai.

To evaluate f , we apply the Adaptive Greedy algorithm to g. By the O(logQ) approxi-
mation bound on Adaptive Greedy, this constitutes an algorithm for the weighted adaptive
SSClass problem with approximation factor O(logBW 2), which is O(logW) since B ≤W .
In the unweighted adaptive SSClass problem, W = n, so the approximation factor is O(logn).

We now describe our simple B − 1 approximation algorithm for the adaptive unweighted
SSClass problem, which takes a very different approach. It runs the k-of-n function evaluation
algorithm B−1 times, each time setting k to be a different cutoff αj . The resulting evaluations
are sufficient to determine the correct output class. The proof that this algorithm achieves
a B − 1 approximation bound is based on the observation that any strategy solving the
adaptive SSClass problem is implicitly a strategy for solving each of the B− 1 induced k-of-n
problems. Since we use an optimal algorithm for solving each of those problems, this implies
the B−1 approximation bound. We note that although we could easily modify this algorithm
to use binary search, we do not know how to prove that it results in an approximation bound
that is better than B − 1.

When B is small, as for, e.g., k-of-n functions and the Unanimous Vote function, B− 1 is
a good approximation. Otherwise, the O(logn) approximation achieved with the goal value
approach may be better.

By similar arguments, the following is a 3(B−1) approximation for the weighted adaptive
problem. For each cutoff αj , use the 3-approximation algorithm of Deshpande et al. to
evaluate linear threshold function fj .

2 Golovin and Krause originally claimed an O(log Q) bound for Stochastic Submodular Cover [10], but the
proof was recently found to have an error [18]. They have since posted a new proof with an O(log2 Q)
bound [11]. Deshpande et al. proved an O(log Q) bound using a different proof technique [8].

D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik 36:7

Combining the above results, we have the following theorem.

I Theorem 1. There are two different polynomial-time approximation algorithms, achieving
approximation factors of O(logW) and 3(B − 1) respectively, for the weighted adaptive
SSClass problem. There is a polynomial-time algorithm that achieves a B − 1-approximation
for the unweighted adaptive SSClass problem.

5 Constant-factor approximations for unit-cost problems

We begin by reviewing relevant existing techniques.

5.1 Adaptive Evaluation of k-of-n Functions
An optimal adaptive strategy, when f is a k-of-n function, was given by Salloum, Ben-Dov,
and Breuer [19, 4, 20, 6, 21]. The difficulty in finding an optimal strategy is that you do not
know a-priori whether the value of f will be 1 or 0. If 1, then (ignoring cost) it seems it
would be better to choose tests with high pi, since you want to get k 1-answers. Similarly, if
0, it seems it would be better to choose tests with low pi. The algorithm of Salloum et al. is
based on showing that when f is a k-of-n function, a 1-optimal strategy is to test the bits
in increasing order of ci/pi until getting k 1’s, while a 0-optimal strategy is to test them in
increasing order of ci/(1− pi) until getting n− k + 1 0’s.

Since the 1-optimal strategy must perform at least the first k tests before terminating,
these can be reordered within this strategy without affecting its optimality. Similarly, the
first n− k+ 1 queries of the 0-optimal strategy can be reordered without affecting optimality.

The strategy of Salloum et al. is as follows. If n = 1, test the one bit. Else let S1
denote the set of the k bits with smallest ci/pi values. Let S0 denote the set of the
n − k + 1 bits with smallest ci/(1 − pi) values. Since |S0| + |S1| = n + 1, by pigeonhole
S0∩S1 6= ∅. Test a bit in S0∩S1. If it is 1, the problem is reduced to evaluating the function
f1 : {0, 1}n−1 → {0, 1} where f1(x) = 1 iff N1(x) ≥ k − 1. If it is 0, the problem is reduced
to evaluating f0 : {0, 1}n−1 → {0, 1} where f0(x) = 1 iff N1(x) ≥ k. Recursively evaluate f1

or f0 as appropriate. Optimality follows from the fact that the chosen bit is an optimal first
bit to test in both 0-optimal and 1-optimal strategies.

5.2 Modified Round Robin
Allen et al. [2] presented a modified round robin protocol, which is useful in designing
non-adaptive strategies when test costs are not all equal. Suppose that in a sequential
testing environment with n tests, we have M conditions on test outcomes, corresponding
to M predicates on the partial assignments in {0, 1, ∗}n. For example, in the k-of-n testing
problem, we are interested in the following M = 2 predicates on partial assignments: (1)
having at least k 1’s and (2) having at least n− k + 1 0’s. Suppose we are given a testing
strategy for each of the M predicates; a strategy stops testing when its predicate is satisfied
(by the partial assignment representing test outcomes), or all tests have been performed. Let
Alg1, . . . ,AlgM denote those M strategies. The modified round robin algorithm of Allen
et al. interleaves execution of these strategies. We present a version of their algorithm in
Algorithm 1; the difference is that their algorithm terminates as soon as one of the predicates
is satisfied, while Algorithm 1 terminates when all are satisfied.

Allen et al. showed that the modified round robin incurs a cost on x that is at most M
times the cost incurred by Algj on x. We will use variations on this algorithm and this
bound to derive approximation factors for our SSClass problems.

ESA 2018

36:8 The Stochastic Score Classification Problem

Algorithm 1 Modified Round Robin of M Strategies.
Let Ci ← 0 for i = 1, . . . ,M ; let d← (∗n)
while at least one of the M testing strategies has not terminated do
Let j1, . . . , jM be the next tests of Alg1, . . . ,AlgM respectively
Let i∗ ← arg min

i∈{1,...,M}
(Ci + cji

)

Let t← ji∗ ; let Ci∗ ← Ci∗ + ct

Perform test t and set dt to the newly determined value of bit t
end while

Algorithm 2 Non-adaptive Round Robin Algorithm for SSClass.
Let C0 ← 0, C1 ← 0
Let d← ∗n

repeat
Let j0 ← next bit from Alg0
Let j1 ← next bit from Alg1
Let j∗ ← arg mini∈{0,1} Ci + cji

Query bit i∗ and set dj∗ to the discovered value
until induced function fd is a constant function
return The constant value of fd

5.3 A Round Robin Approach to Non-adaptive Evaluation
We now present an algorithm for the unit-cost case of the non-adaptive, unweighted SSClass
problem. The pseudocode is presented in Algorithm 2, with Alg1 denoting the strategy
performing tests in increasing order of ci/pi and Alg0 denoting the strategy performing tests
in increasing order of ci/(1− pi). We prove the following theorem.

I Theorem 2. When all tests have unit cost, the expected cost incurred by the non-adaptive
Algorithm 2 is at most 4 times the expected cost of an optimal adaptive strategy for the
unweighted adaptive SSClass problem.

By Theorem 2, Algorithm 2 is a 4-approximation for the adaptive and non-adaptive
versions of the unit-cost unweighted SSClass problem. The theorem also implies an upper
bound of 4 on the adaptivity gap for this problem. A simpler analysis shows that for arbitrary
costs, Algorithm 2 achieves an approximation factor of 2(B − 1) for the non-adaptive version
of the problem. Since the k-of-n functions are essentially equivalent to score classification
functions with B = 2, the 2(B − 1)-approximation is a 2-approximation for non-adaptive
k-of-n function evaluation.

5.4 The Unanimous Vote Function: Adaptive Setting
Adaptive evaluation of the Unanimous Vote function can be done optimally using the following
simple idea. Recall that querying the bits in increasing ci/pi order is optimal for evaluating
OR, while querying in increasing ci/(1− pi) is optimal for AND. Now consider the problem
of adaptively evaluating the Unanimous Vote function. Suppose we know the optimal choice
for the first test. After the first test, we have an induced SSClass problem on the remaining
bits. If the first test has value 0, the induced function is equivalent to Boolean OR (mapping
UNCERTAIN to 1, and NEGATIVE to 0). The subtree rooted at the root node’s 0-child
should be the optimal tree for evaluating OR. Specifically, the remaining bits should be tested

D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik 36:9

x0

x1

x2

...

xn−1

xn−1

xn−2

...

x1

Figure 1 Decision tree T representing optimal adaptive strategy with root x0.

in increasing order of ci/pi. If, instead, the first bit is 1, the induced function is equivalent
to AND (mapping UNCERTAIN to 0 and POSITIVE to 1) and the remaining bits should
be queried in increasing order of ci/(1− pi).

Since we don’t actually know the first bit, we can just try each bit as the root and build
the rest of the tree according to the optimal OR and AND strategies. We can then calculate
the expected cost of each tree, and output the tree with minimum expected cost.

For succinctness, the optimal OR and AND strategies can be represented by paths,
because each performs tests in a fixed order. Figure 1 shows an example of the strategy
computed by the algorithm, where the root is labeled x0 and the OR permutation is the
reversal of the AND permutation (which occurs, for example, with unit costs).

5.5 A Non-adaptive ϕ-approximation for the Unanimous Vote Function
A simple modification of the round robin makes the algorithm from the previous section
non-adaptive, yielding a 2-approximation. But we now show how to achieve a non-adaptive
ϕ-approximation in the unit-cost case, where ϕ = 1+

√
5

2 ≈ 1.618 is the golden ratio. We
call the algorithm Truncated Round Robin. We describe the algorithm by describing a
subroutine which generates a permutation of input bits to query, given an initial (root) bit.
The algorithm then tries all possible bits for the root and chooses the resulting permutation
that achieves the lowest expected cost.

Without loss of generality, assume the first bit (the root node) is x0, and the rest are
x1, . . . , xn−1, and 1 > p1 ≥ p2 ≥ · · · ≥ pn−1 > 0. Fix c to be a constant such that 0 < c < 1

2 .

The subroutine is shown in Algorithm 3. “Evaluation unknown” means tests so far
were insufficient to determine the output of the Unanimous Vote function. (The output,
POSITIVE, NEGATIVE, or UNCERTAIN, is not shown.)

Given x0 as the root, the optimal adaptive strategy continues with the OR strategy
(increasing 1/pi) when x0 = 0, and the AND strategy (increasing 1/(1− pi)) when x0 = 1.
This is shown in Figure 1, where x0 = 0 is the left branch and x0 = 1 is the right. On the
left, we stop querying when we find a bit with value 1 (or all bits are queried). On the right,
we stop when we find a bit with value 0.

Let “level l” refer to the tree nodes at distance l from the root; namely, xl and xn−l.
When all costs are 1, the standard round robin technique of the previous section in effect
tests, for l = 1 . . . dn−1

2 e, the bit xl followed by xn−l. Note that the algorithm will terminate
by level dn−1

2 e because at this point all bits will have been queried. Thus in the algorithm,
pl ≥ pn−l.

ESA 2018

36:10 The Stochastic Score Classification Problem

Algorithm 3 Truncated Round Robin Subroutine for Unanimous Vote Fn.
Require: 1 > p1 ≥ p2 ≥ · · · ≥ pn−1
Query bit x0
Let level l← 1
while pn−l < 1− c and pl > c and evaluation unknown do

if |pl − 0.5| < |pn−l − 0.5| then
Query xl followed by xn−l

else
Query xn−l followed by xl

end if
l← l + 1

end while{first phase: alternate branches of tree}
while evaluation unknown do

if pl ≥ pn−l ≥ 1− c then
Query xn−l

else if c ≥ pl ≥ pn−l then
Query xl

end if
l← l + 1

end while{second phase: single branch in tree}

In the Truncated Round Robin, we proceed level by level, in two phases. The first phase
concludes once we reach a level l where pl > pn−l ≥ 1− c or c ≥ pl > pn−l. Let ` denote this
level. In the first phase, we test both xl and xn−l, testing first the variable whose probability
is closest to 1

2 . In the second phase, we abandon the round robin and instead continue down
a single branch in the adaptive tree. Specifically, in the second phase, if pl > pn−l ≥ 1− c,
then we continue down the right branch, testing the remaining variables in increasing order of
pi. If c ≥ pl > pn−l, then we continue down the left branch, testing the remaining variables
in decreasing order of pi. Fixing c = 3−

√
5

2 ≈ 0.381966 in the algorithm, the following holds.

I Theorem 3. When all tests have unit cost, the Truncated Round Robin Algorithm achieves
an approximation factor of ϕ for non-adaptive evaluation of the Unanimous Vote function.

Proof. Consider the optimal adaptive strategy T . It tests a bit x0 and then follows the
optimal AND or OR strategy depending on whether x0 = 1 or x0 = 0. Assume the other
bits are indexed so p1 ≥ p2 ≥ . . . ≥ pn−1. Thus T is the tree in Figure 1. Let C∗adapt be
the expected cost of T . Let C∗non−adapt be the expected cost of the optimal non-adaptive
strategy. Let Ci,T RR be the cost of running the TRR subroutine in (Algorithm 3) with
root xi. We use x0 to denote the root of T . Since the TRR algorithm tries all possible
roots, its output strategy has expected cost mini Ci,T RR. We will prove the following claim:
C0,T RR ≤ ϕC∗adapt. Since the expected cost of the optimal adaptive strategy is bounded
above by the expected cost of the optimal non-adaptive strategy, the claim implies that
mini Ci,T RR ≤ C0,T RR ≤ ϕC∗adapt. Further, C∗adapt ≤ C∗non−adapt, which proves the theorem.

We now prove the claim. We will write the expected cost of the TRR (with root x0) as
C0,T RR = 1 + E1 + (1− P1)E2. Here, E1 is the expected number of bits tested in T in the
first phase (i.e. in levels l < `), E2 is the expected number of variables tested among levels in
T in the second phase (levels l ≥ `), given that the second phase is reached, and P1 is the
probability of ending during the first phase. Note that the value of ` is determined only by
the values of the pi, and it is independent of the test outcomes.

D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik 36:11

We will write the expected cost of T (the adaptive tree which is optimal w.r.t all trees
with root x0) as C∗adapt = 1 + E′1 + (1 − P ′1)E′2 where E′1 is the expected number of bits
queried in T before level `, P ′1 is the probability of ending before level `, and E′2 is the
expected number of bits queried in levels ` and higher, given that ` was reached.

To prove our claim, we will upper bound the ratio α := 1+E1+(1−P1)E2
1+E′1+(1−P ′1)E′2

. Recall that since
c < 1/2, we have c < 1 − c. Also, the first phase ends if all bits have been tested, which
implies that for all l in the first phase, l ≤ d(n− 1)/2e so pn−l ≤ pl. We break the first phase
into two parts: (1) The first part consists of all levels l where pn−l ≤ c < 1− c ≤ pl. (2) The
second part consists of all levels l where pl ∈ (c, 1− c) or pn−l ∈ (c, 1− c), or both.

Let us rewrite the expected cost E1 as E1 = E1,1 + (1 − P1,1)E1,2. where E1,1 is the
expected cost of the first part of phase 1, E1,2 is the expected cost of the second part of phase
1, and P1,1 is the probability of terminating during the first part of phase 1. Analogously
for the cost on tree T , we can rewrite E′1 = E′1,1 + (1− P ′1,1)E′1,2. Then, the ratio we wish
to upper bound becomes α = 1+E1,1+(1−P1,1)E1,2+(1−P1)E2

1+E′1,1+(1−P ′1,1)E′1,2+(1−P ′1)E′2
which we will upper bound by

examining the three ratios

θ1 := 1 + E1,1

1 + E′1,1
θ2 := (1− P1,1)E1,2

(1− P ′1,1)E′1,2
θ3 := (1− P1)E2

(1− P ′1)E′2
For ratio θ1, notice that the TRR does at most two tests for every tree level, so E1,1 ≤

2E′1,1, and thus 1+E1,1
1+E′1,1

≤ 1+2E′1,1
1+E′1,1

. Also, d
d x

(
1+2x
1+x

)
= 1

(1+x)2 > 0 for x > 0. For each path in
tree T , for the levels in the first part of the first phase, the probability of getting a result that
causes termination is at least 1− c. This is because in the first part, pl ≥ 1− c > c ≥ pn−l.
If we are taking the left branch (because x0 = 0) we terminate when we get a test outcome
of 1, and on the right (x0 = 1), we terminate when we get a test outcome of 0. Each bit
queried is an independent Bernoulli trial, so E′1,1 ≤ 1

1−c . Because
1+2x
1+x is increasing, we can

assert that

θ1 = 1 + E1,1

1 + E′1,1
<

1 + 2(1− c)−1

1 + 1(1− c)−1 = 3− c
2− c .

Next we will upper bound the second ratio θ2. Let P (l) represent the probability of
reaching level l in the TRR. Further, let ql represent the probability of querying the second
bit in level l given that we have reached level l. Then, observe that (1− P1,1)E1,2 can be
written as the sum over all levels l in phase 1, part 2 of P (l)(1 + ql). Note that in phase 1,
the first bit queried is the bit xi such that pi is closest to 0.5. Notice also that in the second
part of the first phase, each level has at least one variable xi such that pi ∈ (c, 1− c). This
also means that 1 − pi ∈ (c, 1 − c). This means that the first test performed in any given
level in phase 1, part 2 will cause the TRR to terminate with probability at least c. This
means that for each level l in this part of the TRR, we will have ql ≤ 1− c.

Similarly, (1− P ′1,1)E′1,2 is the sum over all levels l which comprise phase 1, part 2 in the
TRR of P ′(l). Here, P ′(l) is defined as the probability of reaching level l in tree T . We do
not multiply by 1 + ql since in the evaluation of T we only perform one test at each level.

Consider the evaluation of tree T on an assignment. If the evaluation terminates upon
reaching level l in the tree, for l < `, then the evaluation using the TRR must terminate at a
level l′ ≤ l. That is, the TRR will terminate at level l or earlier for the same assignment.
Thus, we get that P (l) ≤ P ′(l). Using this, we can achieve the following bound on the second
ratio (letting S2 denote the set of all levels included in the second part of phase 1):

θ2 = (1− P1,1)E1,2

(1− P ′1,1)E′1,2
=
∑

l∈S2
P (l)(1 + ql)∑

l∈S2
P ′(l) ≤

∑
l∈S2

P (l)(1 + 1− c)∑
l∈S2

P (l) = 2− c.

ESA 2018

36:12 The Stochastic Score Classification Problem

Finally, we wish to upper bound the last ratio, θ3 = (1−P1)E2
(1−P ′1)E′2

. Let l∗ = ` denote the
first level included in the second phase of the TRR. Without loss of generality, assume that
c ≥ pl∗ ≥ pn−l∗ so that in the TRR, the second phase queries the remaining bits in decreasing
order of pi. Thus, all bits xi queried in the second phase satisfy pi ≤ c. (The argument is
symmetric for the case where pl∗ ≥ pn−l∗ ≥ 1− c).

In this case, any assignments that do not cause termination in the TRR during the first
phase, and that have x0 = 0 (i.e., they would go down the left branch of T), will follow the
same path through the nodes in left branch, for levels l∗ and higher, that they would have
followed in the optimal strategy T . (In fact, tests from the right branch of the tree that were
previously performed in phase 1 of the TRR do not have to be repeated.)

The numerator of the third ratio θ3 is equal to the sum, over all assignments x reaching
level l∗ in the TRR, of Pr(x)C2(x), where C2(x) is the total cost of all bits queried in phase
2 for assignment x. Let Q0 be the subset of assignments reaching level l∗ in the TRR which
have x0 = 0 and let Q1 be the subset of assignments reaching level l∗ in the TRR which
have x0 = 1. Let D0 represent the sum over all assignments in Q0 of Pr(x)C2(x) and let D1
represent the sum over all assignments in Q1 of Pr(x)C2(x). Then, letting Sl∗ represent the
set of assignments reaching level l∗ in the TRR, we can rewrite the numerator of the third
ratio as

∑
x∈Sl∗

Pr(x)C2(x) =
∑

x∈Q0
Pr(x)C2(x) +

∑
x∈Q1

Pr(x)C2(x) = D0 +D1.
The denominator of the third ratio is the sum, over all assignments x reaching level l∗ in

the tree, of Pr(x)C ′2(x), where C ′2(x) is the total cost of all bits queried in tree T at level l∗ and
below. Let S′l∗ denote the set of assignments x reaching level l∗ in tree T . Next, observe that
Sl∗ ⊆ S′l∗ since any assignment that reaches level l∗ in the TRR must also reach level l∗ in the
tree. We can again rewrite the denominator as

∑
x∈S′

l∗
Pr(x)C ′2(x) ≥

∑
x∈Sl∗

Pr(x)C ′2(x) =
B0 +B1 where B0 =

∑
x∈Q0

Pr(x)C ′2(x) and B1 =
∑

x∈Q1
Pr(x)C ′2(x). The third ratio θ3

can thus be upper bounded by θ3 ≤ (1−P1)E2
(1−P1)E2

≤ D0+D1
B0+B1

.
For any x ∈ Q0, the number of bits queried in level l∗ or below in the TRR is less than

or equal to the number of bits queried on x in level l∗ or below in the tree. Thus D0 ≤ B0.
For x ∈ Q1, the number of bits queried at level l∗ or below is at least one. Thus B1 ≥ J1,

where J1 is the probability that a random assignment x has x0 = 1 and reaches level l∗.
Note that TRR will terminate on an assignment with x0 = 1 when it first tests a bit that

has value 0. Also note that each bit xi in level l∗ and below has probability pi ≤ c of having
value 1 and thus probability 1− pi ≥ 1− c of having value 0 and ending the TRR. Since each
bit queried is an independent trial, the expected number of bits queried before termination
is at most (1 − c)−1. Thus, D1 ≤ (1 − c)−1J1. Together with the fact that D0 ≤ B0, we
get D0+D1

B0+B1
≤ B0+(1−c)−1J1

B0+J1
. Finally, we observe that since B0

B0
= 1 and (1−c)−1J1

J1
≤ 1

1−c , it
follows from our earlier upper bound on θ3, namely θ3 ≤ D0+D1

B0+B1
, that

θ3 ≤
D0 +D1

B0 +B1
≤ 1

1− c .

Thus, we have three upper bounds: (1) θ1 ≤ 3−c
2−c , (2) θ2 ≤ 2− c, and (3) θ3 ≤ 1

1−c . This
gives us an upper bound on the ratio of the expected cost of the TRR to the tree T , and thus
an upper bound on the approximation factor. This bound is simply the maximum of the three
upper bounds: 1+E1+(1−P1)E2

1+E′1+(1−P ′1)E′2
≤ max

{
3−c
2−c , 2− c,

1
1−c

}
. Setting c = 3−

√
5

2 ≈ 0.381966 causes

all three upper bounds to equal ϕ. Thus, running the TRR algorithm with c = 3−
√

5
2 produces

an expected cost of no more than ϕ times the expected cost of an optimal strategy. J

D. Gkenosis, N. Grammel, L. Hellerstein, and D. Kletenik 36:13

Table 1 Results for the Adaptive SSClass Problem.

unit costs arbitrary costs
weighted O(log W)-approx [Section 4];

3(B − 1) [Section 4]
O(log W)-approx [Section 4];

3(B − 1) [Section 4]
unweighted 4-approx [Section 5.3];

(B − 1)-approx [Section 4]
O(log n)-approx;

(B − 1)-approx [Section 4]
k-of-n function exact algorithm [known] exact algorithm [known]

Unanimous Vote function exact algorithm [Section 5.4] exact algorithm [Section 5.4]

Table 2 Results for the Non-Adaptive SSClass Problem.

unit costs arbitrary costs
weighted open open

unweighted 4-approx [Section 5.3] 2(B − 1)-approx [Section 5.3]
k-of-n function 2-approx [Section 5.3] 2-approx [Section 5.3]

Unanimous Vote function ϕ-approx [Section 5.5] 2-approx [Section 5.5]

References

1 Jayadev Acharya, Ashkan Jafarpour, and Alon Orlitsky. Expected query complexity of sym-
metric Boolean functions. In IEEE 49th Annual Allerton Conference on Communication,
Control, and Computing, pages 26–29, 2011.

2 Sarah R. Allen, Lisa Hellerstein, Devorah Kletenik, and Tonguç Ünlüyurt. Evaluation of
monotone dnf formulas. Algorithmica, 77(3):661–685, 2017.

3 Eric Bach, Jérémie Dusart, Lisa Hellerstein, and Devorah Kletenik. Submodular goal value
of boolean functions. Discrete Applied Mathematics, 238:1–13, 2018. doi:10.1016/j.dam.
2017.10.022.

4 Yosi Ben-Dov. Optimal testing procedure for special structures of coherent systems. Man-
agement Science, 1981.

5 Endre Boros and Tonguç. Ünlüyurt. Diagnosing double regular systems. Annals of Math-
ematics and Artificial Intelligence, 26(1-4):171–191, September 1999. doi:10.1023/A:
1018958928835.

6 Ming-Feng Chang, Weiping Shi, and Kent Fuchs, W.˙ Optimal diagnosis procedures for
k-out-of-n structures. IEEE Transactions on Computers, 39(4):559–564, April 1990.

7 Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, Shengjun Pan, and Ananda Theertha
Suresh. On the query computation and verification of functions. In IEEE International
Symposium on Information Theory (ISIT), pages 2711–2715, 2012.

8 Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation algorithms for
stochastic submodular set cover with applications to boolean function evaluation and min-
knapsack. ACM Trans. Algorithms, 12(3):42:1–42:28, April 2016. doi:10.1145/2876506.

9 Dimitrios Gkenosis, Nathaniel Grammel, Lisa Hellerstein, and Devorah Kletenik. The
stochastic score classification problem. CoRR, 2018. arXiv:1806.10660.

10 Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications
in active learning and stochastic optimization. Journal of Artificial Intelligence Research,
42:427–486, 2011.

11 Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to active
learning and stochastic optimization (version 5). CoRR, abs/1003.3967, 2017. arXiv:
1003.3967.

ESA 2018

http://dx.doi.org/10.1016/j.dam.2017.10.022
http://dx.doi.org/10.1016/j.dam.2017.10.022
http://dx.doi.org/10.1023/A:1018958928835
http://dx.doi.org/10.1023/A:1018958928835
http://dx.doi.org/10.1145/2876506
http://arxiv.org/abs/1806.10660
http://arxiv.org/abs/1003.3967
http://arxiv.org/abs/1003.3967

36:14 The Stochastic Score Classification Problem

12 Nathaniel Grammel, Lisa Hellerstein, Devorah Kletenik, and Patrick Lin. Scenario sub-
modular cover. In Proceedings of the 14th International Workshop on Approximation and
Online Algorithms, pages 116–128. Springer, 2016.

13 Russell Greiner, Ryan Hayward, Magdalena Jankowska, and Michael Molloy. Finding opti-
mal satisficing strategies for and-or trees. Artificial Intelligence, 170(1):19–58, 2006.

14 Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applica-
tions. In International Conference on Integer Programming and Combinatorial Optimiza-
tion, pages 205–216. Springer, 2013.

15 Jongbin Jung, Connor Concannon, Ravi Shroff, Sharad Goel, and Daniel G Goldstein.
Simple rules for complex decisions. arXiv preprint arXiv:1702.04690, 2017.

16 Prabhanjan Kambadur, Viswanath Nagarajan, and Fatemeh Navidi. Adaptive submodular
ranking. In International Conference on Integer Programming and Combinatorial Opti-
mization, pages 317–329. Springer, 2017.

17 Hemant Kowshik and PR Kumar. Optimal computation of symmetric boolean functions in
collocated networks. IEEE Journal on Selected Areas in Communications, 31(4):639–654,
2013.

18 Feng Nan and Venkatesh Saligrama. Comments on the proof of adaptive stochastic set cover
based on adaptive submodularity and its implications for the group identification problem
in "group-based active query selection for rapid diagnosis in time-critical situations". IEEE
Trans. Information Theory, 63(11):7612–7614, 2017. doi:10.1109/TIT.2017.2749505.

19 Salam Salloum. Optimal testing algorithms for symmetric coherent systems. PhD thesis,
University of Southern California, 1979.

20 Salam Salloum and Melvin Breuer. An optimum testing algorithm for some symmetric
coherent systems. Journal of Mathematical Analysis and Applications, 101(1):170 – 194,
1984. doi:10.1016/0022-247X(84)90064-7.

21 Salam Salloum and Melvin A. Breuer. Fast optimal diagnosis procedures for k-out-of-n:g
systems. IEEE Transactions on Reliability, 46(2):283–290, Jun 1997. doi:10.1109/24.
589958.

22 Sahil Singla. The price of information in combinatorial optimization. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2523–2532.
SIAM, 2018.

23 Truyen Tran, Wei Luo, Dinh Phung, Jonathan Morris, Kristen Rickard, and Svetha
Venkatesh. Preterm birth prediction: Deriving stable and interpretable rules from high
dimensional data. In Conference on Machine Learning in Healthcare, LA, USA, 2016.

24 Tonguç Ünlüyurt. Sequential testing of complex systems: a review. Discrete Applied
Mathematics, 142(1-3):189–205, 2004.

25 Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized medical
scoring systems. Machine Learning, 102(3):349–391, 2016.

26 Berk Ustun and Cynthia Rudin. Optimized risk scores. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1125–
1134. ACM, 2017.

27 Jiaming Zeng, Berk Ustun, and Cynthia Rudin. Interpretable classification models for
recidivism prediction. Journal of the Royal Statistical Society: Series A (Statistics in
Society), 180(3):689–722, 2017.

http://dx.doi.org/10.1109/TIT.2017.2749505
http://dx.doi.org/10.1016/0022-247X(84)90064-7
http://dx.doi.org/10.1109/24.589958
http://dx.doi.org/10.1109/24.589958

Improved Space-Time Tradeoffs for kSUM
Isaac Goldstein1

Bar-Ilan University, Ramat Gan, Israel
goldshi@cs.biu.ac.il

Moshe Lewenstein2

Bar-Ilan University, Ramat Gan, Israel
moshe@cs.biu.ac.il

Ely Porat3

Bar-Ilan University, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
In the kSUM problem we are given an array of numbers a1, a2, ..., an and we are required to
determine if there are k different elements in this array such that their sum is 0. This problem
is a parameterized version of the well-studied SUBSET-SUM problem, and a special case is
the 3SUM problem that is extensively used for proving conditional hardness. Several works
investigated the interplay between time and space in the context of SUBSET-SUM. Recently,
improved time-space tradeoffs were proven for kSUM using both randomized and deterministic
algorithms.

In this paper we obtain an improvement over the best known results for the time-space
tradeoff for kSUM. A major ingredient in achieving these results is a general self-reduction from
kSUM to mSUM where m < k, and several useful observations that enable this reduction and its
implications. The main results we prove in this paper include the following: (i) The best known
Las Vegas solution to kSUM running in approximately O(nk−δ

√
2k) time and using O(nδ) space,

for 0 ≤ δ ≤ 1. (ii) The best known deterministic solution to kSUM running in approximately
O(nk−δ

√
k) time and using O(nδ) space, for 0 ≤ δ ≤ 1. (iii) A space-time tradeoff for solving

kSUM using O(nδ) space, for δ > 1. (iv) An algorithm for 6SUM running in O(n4) time using
just O(n2/3) space. (v) A solution to 3SUM on random input using O(n2) time and O(n1/3)
space, under the assumption of a random read-only access to random bits.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases kSUM, space-time tradeoff, self-reduction

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.37

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
03718.

1 Introduction

In the kSUM problem we are given an array of numbers a1, a2, ..., an and we are required to
determine if there are k different elements in this array such that their sum equals 0. This is a
parameterized version of SUBSET-SUM, one of the first well-studied NP-complete problems,

1 This research is supported by the Adams Foundation of the Israel Academy of Sciences and Humanities.
2 This work was partially supported by an ISF grant #1278/16, BSF grant 2010437 and a GIF grant

1147/2011.
3 This work was partially supported by an ISF grant #1278/16.

© Isaac Goldstein, Moshe Lewenstein, and Ely Porat;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 37; pp. 37:1–37:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:goldshi@cs.biu.ac.il
mailto:moshe@cs.biu.ac.il
mailto:porately@cs.biu.ac.il
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.37
https://arxiv.org/abs/1807.03718
https://arxiv.org/abs/1807.03718
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Improved Space-Time Tradeoffs for kSUM

which also can be thought of as a special case of the famous KNAPSACK problem [18]. A
special case of kSUM is the 3SUM problem which is extensively used to prove conditional lower
bounds for many problems, including: string problems [3, 5, 14, 19], dynamic problems [2, 21],
computational geometry problems [9, 13], graph problems [1, 4, 19] etc.

The kSUM problem can be trivially solved in O(nk) time using Õ(1) space (for constant
k), or in O(ndk/2e) time using O(ndk/2e) space. It is known that there is no solution to kSUM
with no(k) running time, unless the Exponential Time Hypothesis is false [22]. However, a
central goal is to find the best tradeoff between time and space for kSUM. Specifically, it is
interesting to have a full understanding of questions like: What is the best running time we
can achieve by allowing at most linear space? How can the running time be improved by
using O(n2), O(n3) or O(n10) space? Can we get any improvement over O(nk) running time
for almost constant space or use less space for O(ndk/2e) time solution? What is the best
time-space tradeoff for interesting special cases like 3SUM? Questions of this type guided a
line of research work and motivate our paper.

One of the first works on the time-space tradeoff of kSUM and SUBSET-SUM is by
Shamir and Schroeppel [23]. They showed a simple reduction from SUBSET-SUM to kSUM.
Moreover, they presented a deterministic solution to 4SUM running in O(n2) time using O(n)
space. They used these solution and reduction to present an O∗(2n/2) time and O∗(2n/4)
space algorithm for SUBSET-SUM. Furthermore, they demonstrate a space-time tradeoff
curve for SUBSET-SUM by a generalized algorithm. More recently, a line of research work
improved the space-time tradeoff of Shamir and Schroeppel by using randomization. This
includes works by Howgrave-Graham and Joux [17], Becker et al. [10] and Dinur et al. [12] on
random instances of SUBSET-SUM, and a matching tradeoff curve for worst-case instances
of SUBSET-SUM by Austrin et al. [6].

Wang [24] used randomized techniques to improve the space-time tradeoff curve for
kSUM. Specifically, he presented a Las Vegas randomized algorithm for 3SUM running in
Õ(n2) time using just Õ(

√
n) space. Moreover, for general k he demonstrated a Monte

Carlo algorithm for kSUM that uses O(nδ) space using approximately O(nk−δ
√

2k) time, for
0 ≤ δ ≤ 1. Lincoln et al. [20] achieved O(n2) time and Õ(

√
n) space deterministic solution

for 3SUM. For general kSUM (k ≥ 4), they obtained a deterministic algorithm running in
O(nk−3+4/(k−3)) time using linear space and O(nk−2+2/k) time using O(

√
n) space.

Very recently, Bansal et al. [7] presented a randomized solution to SUBSET-SUM running
in O∗(20.86n) time and using just polynomial space, under the assumption of a random
read-only access to exponentially many random bits. This is based on an algorithm that
determines whether two given lists of length n with integers bounded by a polynomial in n
share a common value. This problem is closely related to 2SUM and they proved it can be
solved using O(logn) space in significantly less than O(n2) time if no value occurs too often
in the same list (under the assumption of a random read-only access to random bits). They
also used this algorithm to obtain an improved solution for kSUM on random input.

Finally, it is worth mentioning that recent works by Goldstein et al. [15, 16] consider the
space-time tradeoff of data structures variants of 3SUM and other related problems.

1.1 Our Results
In this paper we improve the best known bounds for solving kSUM in both (Las Vegas)
randomized and deterministic settings. A central component in our results is a general
self-reduction from kSUM to mSUM for m < k:

I. Goldstein, M. Lewenstein, and E. Porat 37:3

I Theorem 1. There is a self-reduction from one instance of kSUM with n integers in each
array to O(n(k/m−1)(m−δ)) instances of mSUM (reporting) with n integers in each array
and O(n(k/m−1)(m−δ)) instances of d kmeSUM with nδ integers in each array, for any integer
m < k and 0 < δ ≤ m.

Moreover, we present several crucial observations and techniques that play central role in
this reduction and other results of this paper.

For general kSUM we obtain the following results:
Using our self-reduction scheme and the ideas by Lincoln et al. [20], we obtain a determ-

inistic solution to kSUM that significantly improves over the deterministic algorithm by
Lincoln at al. [20] that runs in O(nk−3+4/(k−3)) time using linear space and O(nk−2+2/k)
time using O(

√
n) space:

I Theorem 2. For k ≥ 2, kSUM can be solved by a deterministic algorithm that runs in
O(nk−δg(k)) time using O(nδ) space, for 0 ≤ δ ≤ 1 and g(k) ≥

√
k − 2.

By allowing randomization we have the following result:

I Theorem 3. For k ≥ 2, kSUM can be solved by a Las Vegas randomized algorithm that
runs in O(nk−δf(k)) time using O(nδ) space, for 0 ≤ δ ≤ 1 and f(k) ≥

√
2k − 2.

Our Las Vegas algorithm has the same running time and space as Wang’s [24] Monte
Carlo algorithm. The idea is to modify his algorithm using the observations and techniques
from our self-reduction scheme.

We also consider solving kSUM using O(nδ) space for δ > 1. Using our self-reduction
technique and the algorithm from Theorem 3, we prove the following:

I Theorem 4. For k ≥ 2, kSUM can be solved by a Las Vegas algorithm that runs in
O(nk−

√
δf(k)) time using O(nδ) space, for k

4 ≥ δ > 1 and f(k) ≥
√

2k − 2.

Our self-reduction technique can also be applied directly to obtain improvements on the
space-time tradeoff for special cases of kSUM. Especially interesting is the case of 6SUM
which can be viewed as a combination of the "easy" 4SUM and the "hard" 3SUM. We obtain
randomized algorithms solving 6SUM in O(n3) time using O(n2) space and in O(n4) time
using just O(n2/3) space (and not O(n) as known by previous methods [24]).

Finally, combining our techniques with the techniques by Bansal et al. [7] we obtain
improved space-time tradeoffs for some special cases of kSUM on random input, under the
assumption of a random read-only access to random bits. One notable result of this flavour
is a solution to 3SUM on random input that runs in O(n2) time and O(n1/3) space, instead
of the O(n1/2) space solutions known so far [20, 24]. The last results regarding kSUM on
random input appear in the full version of this paper.

2 Preliminaries

In the basic definition of kSUM the input contains just one array. However, in a variant
of this problem, which is commonly used, we are given k arrays of n numbers and we are
required to determine if there are k elements, one from each array, such that their sum equals
0. It is easy to verify that this variant is equivalent to kSUM in terms of time and space
complexity. We also note that the choice of 0 is not significant, as it can be easily shown that
the problem is equivalent in terms of time and space complexity even if we put any other
constant t, called the target number, instead of 0. Throughout this paper we consider kSUM

ESA 2018

37:4 Improved Space-Time Tradeoffs for kSUM

with k arrays and a target value t. We also consider the reporting version of kSUM in which
we need to report all subsets of k elements that sum up to 0 or some other constant t.

All the randomized algorithms in this paper solve kSUM on input arrays that contain
integer numbers. The target number t is also assumed to be an integer. This assumption was
also used in previous papers considering the space-time tradeoff for kSUM (see [24]). The
deterministic solution we present is the only one that works even for kSUM on real numbers.

Let H be a family of hash functions from [u] to [m] ([u] is some unbounded universe). H is
called linear if for any h ∈ H and any x1, x2 ∈ [u], we have h(x1)+h(x2) ≡ h(x1+x2) (modm).
H is called almost-linear if for any h ∈ H and any x1, x2 ∈ [u], we have either h(x1)+h(x2) ≡
h(x1 + x2) + ch (modm), or h(x1) + h(x2) ≡ h(x1 + x2) + ch + 1 (modm), where ch is an
integer that depends only on the choice of h. Throughout this paper we will assume that h is
linear as almost linearity will just add a constant factor cost to the running time and a change
in the offsets which can be easily handled. For a function h : [u] → [m] and a set S ⊂ [u]
where |S| = n, we say that i ∈ [m] is an overflowed value of h if |{x ∈ S : h(x) = i}| > 3n/m.
H is called almost-balanced if for a random h ∈ H and any set S ⊂ [u] where |S| = n, the
expected number of elements from S that are mapped to overflowed values is O(m) (for
more details see [8, 11, 19, 24]). There are concrete constructions of hash families that are
almost-linear and almost-balanced [19, 24]. In the Las Vegas algorithms in this paper, we
assume, in order for the presentation to be clear, that an almost-balanced hash function can
become balanced (which means that there are no overflowed values at all). The full details
of how this can be done in our Las Vegas algorithm appear in the full version of this paper.

3 Self-Reduction From kSUM to mSUM

We demonstrate a general efficient reduction from a single instance of kSUM to many
instances of mSUM (reporting) and d kmeSUM for m < k:

I Theorem 1. There is a self-reduction from one instance of kSUM with n integers in each
array to O(n(k/m−1)(m−δ)) instances of mSUM (reporting) with n integers in each array and
O(n(k/m−1)(m−δ)) instances of d kmeSUM with O(nδ) integers in each array, for any integer
m < k and 0 < δ ≤ m.

Proof. Given an instance of kSUM that contains k arrays A1, A2, ..., Ak with n integers in
each of them and a target number t, we do the following (for now, we assume that k is a
multiple of m. Notice that k and m are considered as constants):
1. Partition the k arrays into k/m groups of m arrays. We denote the ith group in this

partition by Gi.
2. Pick an almost-linear almost-balanced hash function h : [u] → [nm−δ] and apply it to

each element in every array ([u] is some unbounded universe).
3. For each possible choice of t1, t2, ..., tk/m−1 ∈ [nm−δ]:

3.1 Find in each group Gi all m-tuples (aj1
(i−1)m+1, a

j2
(i−1)m+2, ..., a

jm

im), where ajx is the
jth element in Ax, such that h(aj1

(i−1)m+1 + aj2
(i−1)m+2 + ...+ ajm

im) = ti. We can find
these m-tuples by solving mSUM reporting with group Gi (after applying h) and
the target number ti. All m-tuples that are found are saved in a list Li (Li contains
m-tuples that are found for a specific choice of ti, after this choice is checked, as
explained below, they are replaced by m-tuples that are found for a new choice of ti).

3.2 For Gk/m, find all m-tuples (aj1
k−m+1, a

j2
k−m+2, ..., a

jm

k), such that
h(aj1

k−m+1 + aj2
k−m+2 + ... + ajm

k) = tk/m. We can find these m-tuples by solving
mSUM reporting with group Gk/m (after applying h) and the target number tk/m.

I. Goldstein, M. Lewenstein, and E. Porat 37:5

All m-tuples that are found are saved in the list Lk/m. The value of the target number
tk/m is fully determined by the values of ti we choose for the other groups, as the
overall sum must be h(t) in order for the original sum of elements to be t. Therefore,
for Gk/m the target value is tk/m = h(t)−

∑k/m−1
i=1 ti.

3.3 For every i ∈ [k/m], create an array Bi. For each m-tuple in Li, add the sum of the
elements of this tuple to Bi.

3.4 Solve a k
mSUM instance with arrays B1, B2, ..., Bk/m and the target value t. If there

is a solution to this k
mSUM instance return 1 - there is a solution to the original

kSUM instance.
4. Return 0 - there is no solution to the original kSUM instance.

Correctness. If the original kSUM instance has a solution a1 + a2 + ...+ ak = t such that
ai ∈ Ai for all i ∈ [k], then this solution can be partitioned to k/m sums: a1+a2+...+am = t′1,
am+1 + am+2 + ... + a2m = t′2,..., ak−m+1 + ak−m+2 + ... + ak = t′k/m for some integers
t′1, t

′
2, ...t

′
k/m such that t′k/m = t−

∑k/m−1
i=1 t′i. Therefore, by applying a hash function h, there

is a solution to the original kSUM instance only if there are t1, t2, ..., tk/m−1 ∈ [nm−δ] such
that: (a) h(a1 +a2 + ...+am) = t1, h(am+1 +am+2 + ...+a2m) = t2,..., h(ak−m+1 +ak−m+2 +
...+ak) = tk/m (b) For all i, ti = h(t′i). This is exactly what is checked in step 3. However, as
the hash function h may cause false-positives (that is, we may have t1, t2, ..., tk/m−1 ∈ [nm−δ]
such that their sum is h(t) and h(a1 +a2 + ...+am) = t1, h(am+1 +am+2 + ...+a2m) = t2,...,
h(ak−m+1 + ak−m+2 + ...+ ak) = tk/m, but a1 + a2 + ...+ ak 6= t), we need to verify each
candidate solution. This is done in step (3.4).

The correctness of using mSUM (reporting) in steps (3.1) and (3.2) is due to the linearity
property of h (see the note in Section 2). This linearity implies that finding all m-tuples in
Gi such that h(aj1

(i−1)m+1 + aj2
(i−1)m+2 + ...+ ajm

im) = ti is equivalent to finding all m-tuples
in Gi such that h(aj1

(i−1)m+1) + h(aj2
(i−1)m+2) + ...+ h(ajm

im) = ti.
Regarding steps (3.3) and (3.4) we have the following observation:

I Observation 1. The number of m-tuples that are saved in steps (3.1) and (3.2) in some
Li for each possible value of ti is no more than O(nδ).

The total number of m-tuples in some group Gi is nm. As h is an almost-balanced hash
function (that can become balanced as it is explained in detail in the full version of this
paper) with range [nm−δ], the number of m-tuples that h applied to the sum of their elements
equals ti is expected to be at most O(nδ). However, this is true only if all these m-tuples
have a different sum of elements. Unfortunately, there may be many m-tuples that the
sum of their elements is equal, so all these m-tuples are mapped by h to the same value ti.
Nevertheless, tuples with equal sum of elements are all the same for our purposes (we do
not need duplicate elements in any Bi), as we are interested in the sum of elements from all
arrays no matter which specific elements sum up to it.

That being said, in steps (3.1) and (3.2) we do not add to Li every m-tuple that the
sum of the elements of this tuple is ti. Instead, for each m-tuple that h over the sum of its
elements equals ti, we check if there is already a tuple with the same sum of elements in Li
and only if there is no such tuple we add our m-tuple to Li. In order to efficiently check for
the existence of an m-tuple with the same sum in Li, we can save the elements of Li in a
balanced search tree or use some dynamic perfect hashing scheme. We call the process of
removing m-tuples with same sum from Li the removing duplicate sums process.

ESA 2018

37:6 Improved Space-Time Tradeoffs for kSUM

The total number of mSUM and k
mSUM instances is determined by the number of

possible choices for t1, t2, ..., tk/m−1 that is O(n(k/m−1)(m−δ)). Notice that k and m are fixed
constants.

Modifications in the self-reduction for k that is not a multiple of m. In case k is not a
multiple of m, we partition the k arrays into dk/me groups such that some of them have m
arrays and the others have m−1 arrays. In any case when we partition into groups of unequal
size the range of the hash function h is determined by the smallest group. If the smallest
group has d arrays then we use h : [u]→ [nd−δ]. Using this h for groups of size d, we get all
d-tuples that h applied to their sum of elements equals some constant ti. We expect O(nδ)
such tuples (if we exclude d-tuples with the same sum as explained previously). However, for
groups with more than d arrays, say d+ `, we expect the number of (d+ `)-tuples that h
applied to their sum of elements equals ti to be O(n`+δ). Therefore, in order to just save all
these tuples we must spend more space than we can afford to use. Therefore, we will only
save O(nδ) of them in each time.

However, in order to be more efficient, we do not start solving (d+ `)SUM reporting for
every O(nδ) tuples we report on. Instead, we solve (d+ `)SUM reporting once for all the
expected O(n`+δ) (d+ `)-tuples that h applied to their sum of elements equals ti. We do so
by pausing the execution of (d+ `)SUM reporting whenever we report on O(nδ) tuples. After
handling the reported tuples we resume the execution of the paused (d+ `)SUM reporting.
We call this procedure of reporting on demand a partial output of the recursive calls, the
paused reporting process.

As noted before, the number of (d+ `)-tuples that h applied to their sum of elements
equals ti may be greater than O(n`+δ), because there can be many (d+ `)-tuples that the
sum of their elements is equal. We argued that we can handle this by saving only those
tuples that the sum of their elements is unequal. However, in our case we save only O(nδ)
tuples out of O(n`+δ) tuples, so we do not have enough space to make sure we do not save
tuples that their sums were already handled. Nevertheless, the fact that we repeat handling
tuples with the same sum of elements is not important since we anyway go over all possible
tuples in our (d+ `)SUM instance. The only crucial point is that in the last group that its
target number is fixed, we have only O(nδ) elements for each tdk/me. This is indeed what
happens if we take that group to be the group with the d arrays (the smallest group). We
call this important observation the small space of fixed group observation. That being
said, our method can be applied even in case we partition to groups of unequal number of
arrays. J

Using this self-reduction scheme we obtain the following Las Vegas solution to kSUM:

I Lemma 5. For k ≥ 2, kSUM can be solved by a Las Vegas algorithm following a self-
reduction scheme that runs in O(nk−δf(k)) time using O(nδ) space, for 0 ≤ δ ≤ 1 and
f(k) ≥

∑log log k
i=1 k1/2i − log log k − 2.

Proof. Using our self-reduction from Theorem 1, we can reduce a single instance of kSUM to
many instances of mSUM and k

mSUM for m < k. These instances can be solved recursively
by applying the reduction many times.

Solving the base case. The base case of the recursion is 2SUM that can be solved in the
following way: Given two arrays A1 and A2, each containing n numbers, our goal is to find
all pairs of elements (a1, a2) such that a1 ∈ A1, a2 ∈ A2 and a1 + a2 = t. This can be done
easily in Õ(n) time and O(n) space by sorting A2 and finding for each element in A1 a

I. Goldstein, M. Lewenstein, and E. Porat 37:7

matching element in A2 using binary search. If we want to use only O(nδ) space we can do it
by sorting only O(nδ) elements from A2 each time and finding among the elements of A1 a
matching pair. This is done by scanning all elements of A1 and binary searching the sorted
portion of A2. The total time for this procedure is Õ(n2−δ). Using hashing, following the
general scheme we described previously, we can also obtain the same space-time tradeoff. We
apply h : [u]→ [n1−δ] to all elements of A1 and A2. For each value t1 ∈ [n1−δ] we find all
elements ai ∈ A1 such that h(ai) = t1 and all elements ai ∈ A2 such that h(ai) = h(t)− t1.
These elements form two arrays with O(nδ) elements in expectation, as we use an almost
balanced hash function. These arrays serve as a 2SUM instance with O(nδ) elements, which
we can solve by the regular (almost) linear time and linear space algorithm mentioned before.
That being said, we get an Õ(n2−δ) time and O(nδ) space algorithm to solve 2SUM for any
0 ≤ δ ≤ 1.

We now analyse the running time of this solution. Denote by T (k, n, s) the time needed
to solve kSUM on input arrays of size n with space usage at most O(s). The full recursive
process we have described to solve kSUM uses O(nδ) space (notice that the number of levels in
the recursion depends only on k that is considered constant) with the following running time:
T (k, n, nδ) = n(k/m−1)(m−δ)(T (m,n, nδ) + T (k/m, nδ, nδ)). In order to solve the running
time recursion, we start by solving it for the case that δ = 1. For this case we have that
T (k, n, n) = n(k/m−1)(m−1)(T (m,n, n) + T (k/m, n, n)). The best running time in this case
is obtained by balancing the two expressions within the parenthesis, which is done by setting
m =

√
k. We have that T (k, n, n) = 2n(

√
k−1)(

√
k−1)T (

√
k, n, n) = 2nk−2

√
k+1T (

√
k, n, n).

Solving this recursion we get that T (k, n, n) = O(nk−
∑log log k

i=1
k1/2i

+log log k).
Now, that we have solved the linear space case we can obtain a solution for any δ < 1 by

plugging in this last result in our recursion. We have that T (k, n, nδ) =
n(k/m−1)(m−δ)(T (m,n, nδ) + T (k/m, nδ, nδ)) =
n(k/m−1)(m−δ)(T (m,n, nδ) + O(nδ(k−

∑log log k

i=1
k1/2i

+log log k))). It turns out that the best
running time is obtained by setting m = 1. For this value of m we have that T (k, n, nδ) =
n(k−1)(1−δ)(T (1, n, nδ) +O(nδ(k−

∑log log k

i=1
k1/2i

+log log k))) =
n(k−1)(1−δ)(O(n) + O(nδ(k−

∑log log k

i=1
k1/2i

+log log k))) = O(nk−δ
∑log log k

i=1
k1/2i

+δ(log log k+1)−1).
J

Our self-reduction for the case m = 1 becomes identical to the one presented by Wang [24].
However, the reduction by Wang is a reduction from kSUM to kSUM on a smaller input
size, whereas our reduction is a general reduction from kSUM to mSUM for any m < k.
Therefore, Wang has to present a different algorithm (discussed later in this paper) to solve
kSUM using linear space. However, as this algorithm is Monte Carlo the whole solution is
Monte Carlo. Using our generalized self-reduction we obtain a complete solution to kSUM.
We have a linear space solution by choosing m =

√
k and then we can use it to obtain a Las

Vegas solution to kSUM for any δ ≤ 1 by choosing m = 1.

Regarding the self-reduction and its implications we should emphasize three points. The
first one concerns our removing duplicate sums process. We emphasize that each time we
remove a duplicate sum we regard to the original values of the elements within that sum. An
important point to observe is that duplicate sums that are caused by any hash function along
the recursion, which are not duplicate sums according to the original values, do not affect
the running time of our reduction. This is because the range of a hash function in a higher
level of the recursion is larger than the total number of tuples we have in lower levels of the
recursion. Thus, the number of duplicate sums that are caused by some hash function along

ESA 2018

37:8 Improved Space-Time Tradeoffs for kSUM

the recursion is not expected to be more than O(1). The second issue that we point out is
the reporting version of kSUM and the output size. In our reduction in the top level of the
recursion we solve kSUM without the need to report on all solutions. In all other levels of the
recursion we have to report on all solutions (expect for duplicate sums). In our analysis we
usually omit all references to the output size in the running time (and interchange between
kSUM and its reporting variant). This is because the total running time that is required in
order to report on all solutions is no more than O(nm) (for all levels of recursion), which
does not affect the total running time as m ≤ k/2. The third issue concerns rounding issues.
In the proof of the general self-reduction we presented a general technique of how to handle
the situation where k is not a multiple of m. In order to make presentation clear we omit
any further reference to this issue in the proof of the last lemma and the theorem in the
next section. However, we emphasize that in the worst case the rounding issue may cause an
increase by one in the exponent of the running time of the linear space algorithm. This is
justified by the fact that the running time of the linear space algorithm is increased by one
in the exponent or remains the same as we move from solving kSUM to solving (k + 1)SUM.
Moreover, the gap between two values of k, that the exponent of the running time does not
change as we move from solving kSUM to (k + 1)SUM, increases as a function of k. With
that in mind, we decrease by one the lower bound on f(k) and g(k) in last lemma and the
next theorem.

In the following sections we present other benefits of our general self-reduction scheme.

4 Improved Deterministic Solution for kSUM

Using the techniques of [20] our randomized solution can be transformed to a deterministic
one by imitating the hash function behaviour in a deterministic way. This way we get the
following result:

I Theorem 2. For k ≥ 2, kSUM can be solved by a deterministic algorithm that runs in
O(nk−δg(k)) using O(nδ) space, for 0 ≤ δ ≤ 1 and g(k) ≥

√
k − 2.

Proof. We partition the k arrays into k/m groups of m arrays. We denote the ith group
in this partition by Gi. For every group Gi, there are nm sums of m elements, such that
each element is from a different array of the m arrays in Gi. We denote by SUMSGi

the
array that contains all these sums. A sorted part of a group Gi is a continuous portion of
the sorted version of SUMSGi

. The main idea for imitating the hash function behaviour in
a deterministic way is to focus on sorted parts of size nδ, one for each of the first k/m− 1
groups. Then the elements from the last group that are candidates to complete the sum to
the target number are fully determined. Each time we pick different nδ elements out of these
elements and form an instance of (km)SUM such that the size of each array is nδ. The crucial
point is that the total number of these instances will be O(n(k/m−1)(m−δ)) as in the solution
that uses hashing techniques. This is proven based on the domination lemma of [20] (see the
full details in Section 3.1 of [20]). Lincoln et al. [20] present a corollary of the domination
lemma as follows: Given a kSUM instance L, suppose L is divided into g groups L1, ..., Lg
where |Li| = n/g for all i, and for all a ∈ Li and b ∈ Li+1 we have a ≤ b. Then there are
O(k · gk−1) subproblems L′ of L such that the smallest kSUM of L′ is less than zero and the
largest kSUM of L′ is greater than zero. Following our scheme, g in this corollary equals
nm−δ in our case (there are g groups of size nδ in each SUMSGi

) and the k in the corollary
is in fact k/m in our case. Therefore, we get that the total number of instances that have to
be checked is indeed O(n(k/m−1)(m−δ)).

I. Goldstein, M. Lewenstein, and E. Porat 37:9

In order for this idea to work, we need to obtain a sorted part of size nδ from each group
Gi. In this case, we do not have the recursive structure as in the randomized solution because
we no longer seek for m elements in each group that sum up to some target number, but
rather we would like to get a sorted part of each group. However, we can still gain from the
fact that we have only O(n(k/m−1)(m−δ)) instances of (km)SUM.

Lincoln et al. [20] presented a simple data structure that obtains a sorted part of size
O(S) from an array with n elements using O(n) time and O(S) space. We can use this data
structure in order to obtain a sorted part of nδ elements for each group Gi by considering
the elements of the array SUMSGi

. Consequently, a sorted part of nδ elements from Gi can
be obtained using O(nm) time and O(nδ) space.

Putting all parts together we have a deterministic algorithm that solves kSUM with
the following running time: T (k, n, nδ) = n(k/m−1)(m−δ)(nm + T (k/m, nδ, nδ)). By setting
m =

√
k we have T (k, n, nδ) = nk−

√
k−
√
kδ+δ(n

√
k + T (

√
k, nδ, nδ)). Solving kSUM using

linear space can be trivially done using nk time. Therefore, we get that T (k, n, nδ) =
nk−

√
k−
√
kδ+δ(n

√
k + nδ

√
k) = nk−

√
kδ+δ. J

The last theorem is a significant improvement over the previous results of Lincoln et
al. [20] that obtain just a small improvement of at most 3 in the exponent over the trivial
solution that uses nk time, whereas our solution obtains an improvement of almost

√
kδ in

the exponent over the trivial solution.

5 Las Vegas Variant of Wang’s Linear Space Algorithm

Wang [24] presented a Monte Carlo algorithm that solves (Tj + 1)SUM in O(nTj−1+1) time
and linear space, where Tj =

∑j
i=1 i. We briefly sketch his solution here in order to explain

how to modify it in order to obtain a Las Vegas algorithm instead of a Monte Carlo algorithm.
Given an instance of kSUM with k arrays A1, A2, ..., Ak such that k = Tj + 1, he partitions
the arrays into two groups. The left group contains the first j arrays and the right group all
the other arrays. An almost-linear almost-balanced hash function h is chosen, such that its
range is m′ = Θ(nj−1). The hash function h is applied to all elements in all input arrays.
Then, the algorithm goes over all possible values vl ∈ [m′]. For each such value, the first
array of the left group is sorted and for all possible sums of elements from the other j − 1
arrays (one element from each array) it is checked (using binary search) if there is an element
from the first array that completes this sum to vl. If there are j elements that their hashed
values sum up to vl they (the original values) are saved in a lookup table T . At most Θ(n)
entries are stored in T . After handling the left group the right group is handled. Specifically,
if the target value is t the sum of elements from the arrays in the right group should be
h(t)− vl (to be more accurate as our hash function is almost linear we have to check O(1)
possible values). To find the (k − j)-tuples from the right group that sum up to h(t)− vl
a recursive call is done on the arrays of the right group (using their hashed version) where
the target value is h(t)− vl. A crucial point is that the algorithm allows the recursive call
to return at most nTj−2+1 answers. For each answer that we get back from the recursion,
we check, in the lookup table T , if the original values of the elements in this answer can
be completed to a solution that sums up to the target value t. The number of answers the
algorithm returns is at most num which in this case is nTj−1+1. If there are more answers
than num the algorithm returns (to the previous level in the recursion).

In order for this algorithm to work, Wang uses a preliminary Monte Carlo procedure
that given an instance of kSUM creates O(logn) instances of kSUM such that if the original
instance has no solution none of these instances has a solution and if it has a solution at

ESA 2018

37:10 Improved Space-Time Tradeoffs for kSUM

least one of these instances has a solution but no more than O(1) solutions. The guarantee
that there are at most O(1) solutions is needed to ensure that each recursive call is expected
to return the right number of solutions. For example, if the algorithm does a recursive call as
explained before on k− j = Tj + 1− j = Tj−1 + 1 arrays, then we expect that for each value
of h(t)− vl out of the Θ(nj−1) possible values, at most O((Tj−1 + 1)/nj−1) = O(nTj−2+1)
answers will be returned from the recursive call. This is because of the almost-balanced
property of the hash function. However, if there are many (k − j)-tuples whose sum is equal
(in their original values), then they will be mapped to the same hash value due to the linearity
property of the hash function (to be more accurate, as our hash function is almost-linear
there are O(1) possible values that these elements can be mapped to). This is where Wang
uses the fact that the new instance of kSUM has no more than O(1) solutions. The number
of answers that is returned from the recursive call can be limited to the expected value, as
there are at most O(1) (k− j)-tuples that have equal sum and are part of a solution because
each one of these sums forms a different solution to our kSUM instance and there are at
most O(1) such solutions.

We now explain how to modify this algorithm in order to make it a Las Vegas algorithm.
The idea is to use the tools we presented for our general self-reduction. This is done in the
following theorem:

I Theorem 3. For k ≥ 2, kSUM can be solved by a Las Vegas algorithm that runs in
O(nk−δf(k)) time using O(nδ) space, for 0 ≤ δ ≤ 1 and f(k) ≥

√
2k − 2

Proof. We begin with the algorithm by Wang. The first modification to the algorithm is not
to limit the number of answers returned from the recursive call. Let us look at some point in
the recursion for which we have j arrays in the left group and k′− j in the right group where
the total number of arrays is k′ = Tj + 1. Wang limited the total number of answers we
receive from each of the nj−1 recursive calls to be nk′−j/nj−1 = nTj−j+1/nj−1 = nTj−2+1.
This is the expected number of answers we expect to get using a balanced hash function
where we do not expect to have many duplicate identical sums. However, even if we do not
limit the number of answers we get back from a recursive call the total number of answers we
receive back from all the nj−1 recursive calls is at most nTj−1+1. This is simply because the
number of arrays in the right group is Tj−1+1. As there can be duplicate sums in this right
group the number of answers that we receive from each recursive call (out of the Θ(nj−1)
recursive calls) can be much larger than the number of answers we get from another recursive
call. Nevertheless, the total number of answers is bounded by the same number as in Wang’s
algorithm. Now, considering the left group, for every possible value of vl ∈ Θ(nj−1) we expect
the number of j-tuples that are their hashed sum is vl to be O(n). This is true unless we
have many equal sums that, as explained before, are all mapped to the same value by h. In
order to ensure that we save only O(n) j-tuples in the lookup table T , we use our "removing
duplicate sums" process. That is, for each j-tuple that is mapped by h to some specific vl we
ensure that there is no previous j-tuple in T that has the same sum (considering the original
values of the elements).

Following this modification of the algorithm, we have that the left group is balanced as
we expect no more than O(n) entries in T for each possible value of vl, while the right group
may not be balanced. However, what is important is that one group is balanced and the
total number of potential solutions in the other groups is the same as in the balanced case.
Therefore, we can apply here our "small space of fixed group" observation (see Section 3) that
guarantees the desired running time. Verifying each of the answers we get from the right
group can be done using our lookup table in O(1) time. Since we have removed duplicate
sums (using original values) the expected number of elements that can complete an answer

I. Goldstein, M. Lewenstein, and E. Porat 37:11

from the right group to a solution to the original kSUM instance is no more than O(1).
This is because the number of elements mapped to some specific value of h and having the
same value by some h′ from some upper level of our recursion is not expected to be more
than O(1), as the range of h′ is at least nj and the number of j-tuples is nj . Therefore,
the total running time will be O(nTj−1+1) even for our modified algorithm. Moreover, the
expected number of answers that are returned by the algorithm for a specific target value is
O(nTj−2+1).

We note that the answers that are returned from the right group are returned following
the "paused reporting" scheme we have described in our self-reduction. We get answers one
by one by going back and forth in our recursion and pausing the execution each time we get
a candidate solution (it seems that it is also needed in Wang’s algorithm though it was not
explicitly mentioned in his description).

To conclude, by modifying Wang’s algorithm so that the number of the answers returned
to the previous level of recursion is not limited and by removing duplicates in the right group
(within every level of recursion) we obtained a Las Vegas algorithm that solves (Tj + 1)SUM
in O(nTj−1+1) time and linear space. Using the self-reduction with m = 1 we have a Las
Vegas algorithm that solves kSUM using O(nk−δf(k)) time, for f(k) ≥

√
2k − 2, and O(nδ)

space, for 0 ≤ δ ≤ 1. J

This Las Vegas algorithm has a better running time than an algorithm using the self-
reduction directly because of the additional

√
2 factor before the −

√
k in the exponent.

However, as we will explain in the following sections, there are other uses of our general
self-reduction approach.

6 Space-Time Tradeoffs for Large Space

We now consider how to solve kSUM for the case where we can use space which is O(nδ) for
δ > 1. We have two approaches to handle this case. The first one is a generalization of the
Las Vegas algorithm from the previous section. The second uses our general self-reduction
approach from Section 3.

We begin with the first solution and obtain the following result:

I Lemma 6. For k ≥ 2, kSUM can be solved by a Las Vegas algorithm that runs in
O(nk−

√
δf(k)) time using O(nδ) space, for integer k

4 ≥ δ > 1 and f(k) ≥
√

2k − 2.

Proof. The proof appears in the full version of this paper. J

The approach of the last theorem has one drawback - it gives no solution for the case
where we can use O(nδ) space for non integer δ > 1. To solve this case we use our general
self-reduction approach and obtain the following:

I Theorem 4. For k ≥ 2, kSUM can be solved by a Las Vegas algorithm that runs in
O(nk−

√
δf(k)) time using O(nδ) space, for k

4 ≥ δ > 1 and f(k) ≥
√

2k − 2.

Proof. Recall that the idea of the self-reduction is to split our kSUM instance into k/m
groups of m arrays. An almost-linear almost-balanced hash function h is applied to all
elements. Then, each group is solved recursively and the answers reported by all of these
k/m mSUM instances form an instance of (km)SUM. This approach leads to the following
recursive runtime formula: T (k, n, nδ) = n(k/m−1)(m−δ)(T (m,n, nδ) + T (k/m, nδ, nδ)) (see
the full details in Section 3). This approach works even for δ > 1. It turns out that
the best choice of m for δ > 1 is m = dδe, which coincides with our choice of m for

ESA 2018

37:12 Improved Space-Time Tradeoffs for kSUM

δ ≤ 1. Following this choice, we have that T (k, n, nδ) = n(k/dδe−1)(dδe−δ)(T (dδe, n, nδ) +
T (k/dδe, nδ, nδ)) = O(n(k/dδe−1)(dδe−δ)(ndδe + T (k/dδe, nδ, nδ))). If we plug in our Las
Vegas solution following Wang’s approach from Section 5, we get that the running time is
approximately O(n(k/dδe−1)(dδe−δ)(ndδe + nδ(k/dδe)−δ

√
2k/dδe)). Therefore, the running time

to solve kSUM using O(nδ) space for δ > 1 is O(nk−
√
δf(k)) for f(k) ≥

√
2k − 2. J

We see that for integer values of δ the last result coincides with the previous approach.
Using the self-reduction approach even for non integer values of δ, we get similar running
time behaviour. We note that using the same ideas from Theorem 3 and the results from
Section 4 we can have the same result as Theorem 3 for a deterministic algorithm but with
running time which is O(nk−

√
δf(k)) for f(k) ≥

√
k − 2.

7 Space Efficient Solutions to 6SUM

In this section we present some space efficient solutions to 6SUM that demonstrate the
usefulness of our general self-reduction in concrete cases. For 3SUM we do not know any
truly subquadratic time solution and for 4SUM we have an O(n2) time solution using linear
space, which seems to be optimal. Investigating 6SUM is interesting because in some sense
6SUM can be viewed as a problem that has some of the flavour of both 3SUM and 4SUM,
which is related to the fact that 2 and 3 are the factors of 6. Specifically, 6SUM has a trivial
solution running in O(n3) time using O(n3) space. However, when only O(n) space is allowed
6SUM can be solved in O(n4) time by Wang’s algorithm. More generally, using Wang’s
solution 6SUM can be solved using O(nδ) space in O(n5−δ) time for any δ ≤ 1. As one can
see, on the one hand 6SUM can be solved in O(n3) time that seems to be optimal, which is
similar to 4SUM. On the other hand, when using at most linear space no O(n4−ε) solution is
known for any ε > 0, which has some flavour of the hardness of 3SUM.

There are two interesting questions following this situation: (i) Can 6SUM be solved in
O(n3) time using less space than O(n3)? (ii) Can 6SUM be solved in O(n4) time using truly
sublinear space?. Using our techniques we provide a positive answer to both questions.

We begin with an algorithm that answer the first question and obtain the following result:

I Theorem 7. There is a Las Vegas algorithm that solves 6SUM and runs in O(n5−δ + n3)
time using O(nδ) space, for any δ ≥ 0.5.

Proof. The proof appears in the full version of this paper. J

By the last theorem we get a tradeoff between time and space which demonstrates in
one extreme that 6SUM can be solved in O(n3) time using O(n2) space instead of the O(n3)
space of the trivial solution.

The algorithm from the previous theorem runs in O(n4) time while using O(n) space,
this is exactly the complexity of Wang’s algorithm for 6SUM. We now present an algorithm
that runs in O(n4) time but uses truly sublinear space.

I Theorem 8. There is a Las Vegas algorithm that solves 6SUM and runs in O(n6−3δ + n4)
time using O(nδ) space, for any δ ≥ 0.

Proof. The proof appears in the full version of this paper. J

By setting δ = 2/3 in the last theorem, we have an algorithm that solves 6SUM in O(n4)
time while using just O(n2/3) space.

I. Goldstein, M. Lewenstein, and E. Porat 37:13

References
1 Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjecture. In

International Colloquium on Automata, Languages and Programming, ICALP 2013, pages
1–12, 2013.

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Foundations of Computer Science, FOCS 2014, pages
434–443, 2014.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In International Colloquium on Automata, Languages and Pro-
gramming, ICALP 2014, pages 39–51, 2014.

4 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Symposium on Theory of Comput-
ing, STOC 2015, pages 41–50, 2015.

5 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness of
jumbled indexing. In International Colloquium on Automata, Languages and Programming,
ICALP 2014, pages 114–125, 2014.

6 Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi Määttä. Space-time tradeoffs for
subset sum: An improved worst case algorithm. In International Colloquium on Automata,
Languages, and Programming, ICALP 2013, pages 45–56, 2013.

7 Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient
algorithms for subset sum and k-sum. In Symposium on Theory of Computing, STOC
2017, pages 198–209, 2017.

8 Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3SUM. In
Workshop on Algorithms and Data Structures, WADS 2005, pages 409–421, 2005.

9 Gill Barequet and Sariel Har-Peled. Polygon-containment and translational min-hausdorff-
distance between segment sets are 3sum-hard. In Symposium on Discrete Algorithms, SODA
1999, pages 862–863, 1999.

10 Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for
hard knapsacks. In Theory and Applications of Cryptographic Techniques, EUROCRYPT
2011, pages 364–385, 2011.

11 Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via
integer arithmetic without primes. In Symposium on Theoretical Aspects of Computer
Science, STACS 1996, pages 569–580, 1996.

12 Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection of com-
posite problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In Cryptology Conference, CRYPTO 2012, pages 719–740, 2012.

13 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995.

14 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How hard is it to find
(honest) witnesses? In European Symposium on Algorithms, ESA 2016, pages 45:1–45:16,
2016.

15 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower
bounds for space/time tradeoffs. In Algorithms and Data Structures Symposium, WADS
2017, pages 421–436, 2017.

16 Isaac Goldstein, Moshe Lewenstein, and Ely Porat. Orthogonal vectors indexing. In In-
ternational Symposium on Algorithms and Computation, ISAAC 2017, pages 40:1–40:12,
2017.

17 Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In
Theory and Applications of Cryptographic Techniques, EUROCRYPT 2010, pages 235–256,
2010.

ESA 2018

37:14 Improved Space-Time Tradeoffs for kSUM

18 Richard M. Karp. Reducibility among combinatorial problems. In Symposium on the
Complexity of Computer Computations, pages 85–103, 1972.

19 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. In Symposium on Discrete Algorithms, SODA 2016, pages 1272–1287, 2016.

20 Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams.
Deterministic time-space trade-offs for k-sum. In International Colloquium on Automata,
Languages, and Programming, ICALP 2016, pages 58:1–58:14, 2016.

21 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Symposium
on Theory of Computing, STOC 2010, pages 603–610, 2010.

22 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
Symposium on Discrete Algorithms, SODA 2010, pages 1065–1075, 2010.

23 Richard Schroeppel and Adi Shamir. A T sˆ2 = o(2ˆn) time/space tradeoff for certain
np-complete problems. In Foundations of Computer Science, FOCS 1979, pages 328–336,
1979.

24 Joshua R. Wang. Space-efficient randomized algorithms for K-SUM. In European Sym-
posium on Algorithms, ESA 2014, pages 810–829, 2014.

Dynamic Trees with Almost-Optimal Access Cost

Mordecai Golin
Hong Kong University of Science and Technology
golin@cse.ust.hk

John Iacono1

Université libre de Bruxelles and New York University
johniacono@gmail.com

Stefan Langerman2

Université libre de Bruxelles
sl@slef.org

J. Ian Munro
Cheriton School of Computer Science, University of Waterloo
imunro@uwaterloo.ca

Yakov Nekrich
Cheriton School of Computer Science, University of Waterloo
yakov.nekrich@googlemail.com

Abstract
An optimal binary search tree for an access sequence on elements is a static tree that minimizes
the total search cost. Constructing perfectly optimal binary search trees is expensive so the
most efficient algorithms construct almost optimal search trees. There exists a long literature of
constructing almost optimal search trees dynamically, i.e., when the access pattern is not known
in advance. All of these trees, e.g., splay trees and treaps, provide a multiplicative approximation
to the optimal search cost.

In this paper we show how to maintain an almost optimal weighted binary search tree under
access operations and insertions of new elements where the approximation is an additive constant.
More technically, we maintain a tree in which the depth of the leaf holding an element ei does
not exceed min(log(W/wi), logn) + O(1) where wi is the number of times ei was accessed and
W is the total length of the access sequence.

Our techniques can also be used to encode a sequence ofm symbols with a dynamic alphabetic
code in O(m) time so that the encoding length is bounded bym(H+O(1)), whereH is the entropy
of the sequence. This is the first efficient algorithm for adaptive alphabetic coding that runs in
constant time per symbol.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases Data Structures, Binary Search Trees, Adaptive Alphabetic Coding

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.38

Related Version A full version of the paper is available at [15], https://arxiv.org/abs/1806.
10498.

1 Supported by NSF grants CCF-1319648, CCF-1533564, a Fulbright Fellowship, and by the Fonds de la
Recherche Scientifique-FNRS under Grant no MISU F 6001 1.

2 Directeur de recherches du Fonds de la Recherche Scientifique-FNRS.

© Mordecai Golin, Stefan Langerman, John Iacono, J. Ian Munro, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 38; pp. 38:1–38:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:golin@cse.ust.hk
mailto:johniacono@gmail.com
mailto:sl@slef.org
mailto:imunro@uwaterloo.ca
mailto:yakov.nekrich@googlemail.com
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.38
https://arxiv.org/abs/1806.10498
https://arxiv.org/abs/1806.10498
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Dynamic Trees with Almost-Optimal Access Cost

1 Introduction

The dictionary problem is one of the most fundamental problems in computer science. It
requires maintaining a set of elements in a data structure and being able to efficiently search
for and find them when needed. In the comparison model, balanced binary search trees (BSTs)
provide an optimal worst case solution for this problem. We consider leaf-oriented binary
search trees, where all of the data is located in leaves and internal nodes store keys needed
to guide the search to the leaves. For a set of n elements, it is well known that the perfectly
balanced search tree has height dlog(n+ 1)e and dlog(n+ 1)e comparisons3 are required to
access an element, both in the worst and average cases. In many practical applications,
some elements are known to be accessed more frequently than others; unbalancing and
restructuring the tree so that more frequently accessed elements are stored higher up, can
lead to better search times. Let di be the depth of the ith element ei (stored at a leaf), wi
the frequency of accessing that element and W =

∑
i wi the total number of accesses. The

total access cost is
∑
i diwi; normalizing gives the tree cost which is 1

W

∑
i diwi. A tree that

minimizes the tree cost minimizes the total access cost and is an optimal BST.
There is a long literature on constructing optimal BSTs, both exactly and approximately4.

In the approximate case, there are algorithms that provide both multiplicative and additive
errors. In the dynamic version of the problem the frequencies wi are not known in advance
but are calculated cumulatively as accesses are made. The problem then is to update the
tree to be optimal for the current observed frequencies. Surprisingly, while there are many
results on dynamic approximately optimal BSTs with constant multiplicative-error, prior to
this paper there was not much known about constant additive-errors.

In this paper we revisit this problem and describe how to maintain dynamic approximately
optimal BSTs with constant additive-error (this will be formally defined in the next subsection).
The cost of re-building the tree after an access operation is bounded by O(log(f) n) for any
constant f , with the additive error growing linearly with f. As in standard BSTs, our
technique permits insertions of new elements to the dictionary at any time.

A variant of our approach can also be used to obtain an almost-optimal adaptive alphabetic
code with O(1) encoding cost.

Previous and Related Work

There are a number of data structures that maintain (unweighted) dynamic trees with
O(logn) depth, starting with the classic balanced trees of Adelson-Velski and Landis [1]
and other handbook solutions [7, 16]. These data structures maintain all leaves at height
O(logn) and thus support both searches and updates, i.e., insertions and deletions, in
O(logn) time. The k-neighbor tree of Maurer et al. [22] achieves tree depth (1 + δ) logn and
update cost O((1/δ) logn) for any positive δ > 0. Andersson [4] improved this result and
showed how to maintain a tree of height logn + O(k) in O(logn) time per update. Even
tighter bounds on constant and improved update times were described by Andersson and
Lai [6] and Fagerberg [11]. We refer to [5] for an extensive survey of results in this area.

Gilbert and Moore [14] introduced an O(n3) time algorithm for constructing optimal BSTs.
This was improved in 1971 by Knuth [21] to O(n2), which is still the best known method for
solving the general case of the problem. Those two algorithms assume that frequencies for

3 Throughout this paper log denotes the binary logarithm and log(f) is the log function iterated f times.
4 In this paper the term “optimal” refers to the optimality of the tree with respect to access frequencies.

Splay trees, for example, can utilize other features of the access sequence in addition to frequencies.

M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:3

both successful (elements in the tree) and unsuccessful (not in the tree) searches are given in
advance and optimize accordingly. If the problem is restricted to successful searches then
optimal BSTs can be constructed in in O(n logn) time using the Hu-Tucker algorithm and
its variants. [13, 18]. Klawe and Mumey [19] show that, under some general conditions as to
how the algorithms can operate, Ω(n logn) is the best possible construction time, although,
for certain restricted types of input, O(n) can be achieved [17,19].

Let pi = wi/W be the empirical probability of element i in the access sequence. The
Shannon Entropy of the sequence is H =

∑
i pi log(1/pi) which is known to be a lower

bound on the cost of tree in which all data is in the leaves5. If a tree was guaranteed
to have di ≤ c + log(1/pi) for all i then the total cost of all accesses would be at most∑
i wi(c+ log(1/pi)) = WH + cW , i.e., within a constant additive error per access. In the

static case multiple authors [2, 23,28] have provided O(n) time algorithms for constructing
such trees with c = 2.

Now consider the dynamic case, in which trees are rebuilt based on cumulative frequencies
viewed so far. Splay trees [25] and Treaps, [24] maintain static optimality, essentially keeping
element ei at depth di = O(log(1/pi)) for the current cumulative frequencies, in the amortized
sense. This guarantees constant multiplicative errors in the dynamic case. There was no
comparable result for maintaining almost optimal trees with additive errors, i.e., keeping
element ei at depth di = log(1/pi) +O(1). The best technique would be to rebuild the tree
from scratch at every step.

The dynamic (or adaptive) alphabetic coding problem is closely related to the dynamic
alphabetic tree problem just described. The coding problem is to produce an encoding for
a sequence of symbols S[1] . . . S[m] over an ordered alphabet { a1, . . . , an } so that (1) no
codeword is a prefix of any other and (2) the codeword for ai is lexicographically smaller
than the codeword for aj iff ai < aj . In the adaptive scenario the input sequence is not
known in advance; hence, we need to update the code every time a symbol is encoded.
Dynamic Huffman [20,26] and dynamic Shannon [12] algorithms solve this problem for the
non-alphabetic case. The algorithm of Gagie [12] maintains a dynamic alphabetic code, such
that the total encoding length is bounded by (H + 2)m and runs in O(m(H + 1)) time.

Alphabetic coding is related but not equivalent to the alphabetic trees problem. Any
alphabetic tree can be transformed into an alphabetic code in a straightforward way. Hence
any dynamic alphabetic tree structure provides us with an alphabetic coding method. But
this imposes a lower bound on the encoding time: if the code is represented by a tree, then
we have to encode the symbols bit-by-bit. Hence any tree-based alphabetic coding method
requires Ω(mH) time to encode the sequence. On the other hand, not every adaptive coding
method can be transformed into a method for maintaining an alphabetic tree. For example,
the method of Gagie [12] does not store the alphabetic tree and therefore can not be used to
implement a dynamic dictionary.

Notation

The weight w` of a leaf node ` is the total number of times that an element stored in ` was
accessed. We assume that every item is accessed at least once so w` ≥ 1 The weight of an
internal node u is the total weight of all leaves in the subtree of u; the weight of a subtree is
equal to the weight of its root. The total weight W of a tree T is the weight of its root node,
i.e., W =

∑
` w` where the sum is taken over all leaves `. This is also the total number of

accesses made.

5 When data can also be kept in internal nodes, as when three-way comparisons are allowed, the lower
bound decreases to H − log H [3].

ESA 2018

38:4 Dynamic Trees with Almost-Optimal Access Cost

When necessary we further denote by w(j)
` the number of accesses to ` during the first j

accesses. Thus W (t) =
∑
` w

(t)
` = t.

Relation Between Static and Dynamic Optimal Trees

Consider an optimal static binary search tree for a sequence of W accesses to n elements. As
previously noted, the average cost of such a tree is at most H + 2 where H is the entropy of
the access sequence.

I Lemma 1. Let a1, a2, . . . , aW with ai ∈ {1, 2, . . . , n} be a length W access sequence on the
elements, i.e., element eat is accessed at time t. Let H be the entropy corresponding to the
full access sequence. Then

W∑
t=1

log t

max
(
w

(t−1)
at , 1

) ≤W ·H + 2W.

The proof of this Lemma is straightforward and is therefore deferred to the full version of
this paper [15].

Suppose that we could build a tree T (t) such that the depth of ei after access t is
d

(t)
i ≤ log t

w
(t)
i

+ c. The access of at at time t would be in the previous tree T (t−1) with

cost d(t−1)
at . The only exception to the above is if time t is the first access to eat , so it was

not already in T (t−1). In that case the access cost would be d(t)
at , the depth of the location

into which ati would be inserted. Thus define d(t−1)
at = d

(t)
at . Since w

(t−1)
at = 0 and w(t)

at = 1,
d

(t−1)
at = d

(t)
at ≤ log t+ c = log t

max
(
w

(t−1)
at

, 1
) + c. The total cost of the accesses would then,

from Lemma 1, be∑
i

d(t−1)
at

≤W ·H + (2 + c)W,

i.e, within a constant additive error of optimal per access, where optimal defined as the cost
with the static optimal tree, is lower-bounded by W ·H.

Our approach to building almost optimal trees is therefore to maintain such trees T (t)

over the access sequences.

Our Results

Let f ≥ 1 be any fixed integer. In this paper we describe a dynamic tree structure that can
be maintained under access operations and insertions. The depth of the leaf that holds ei is
bounded by min(log(W/wi), logn) +O(f) where wi is the number of times ei was accessed
so far and W is the total length of the access sequence. Hence we can access any element ei
using at most min(logn, log(W/wi)) +O(1) comparisons. We can also insert new elements
into the tree. When an element is accessed (resp. when a new element is inserted), only
O(log(f) n) worst-case time will be needed to update the tree; this update procedure does not
require any comparisons. Thus our data structure enjoys the advantages of both the weighted
alphabetic tree and the perfect binary tree. At the same time, the cost of maintaining the
data structure is low.

This result is obtained by a combination of two ideas. First, our construction is based on
approximate weights of elements instead of exact weights. Second, we maintain an unweighted
binary tree T s with leaves “representing” approximate weights. Our dynamic tree is a subtree
of T s. We define the approximate weights in Section 3 and describe the tree T s in Section 4.

M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:5

Next, we show how updates of our data structure can be implemented by leaf insertions in T s

in Section 5. We reduce the update cost and make all time bounds worst-case in Sections 6
and 7 respectively.

Our second result, concerns the adaptive alphabetic coding problem. Our method enables
us to encode the sequence of m symbols with an adaptive alphabetic code in O(m) time,
constant time per symbol (in contrast to O(m(H + 1)) time in [12]). The length of encoding
is bounded by m(H + 1) +O(m) bits. Our solution is based on the same approach as our
dynamic tree structure, but we employ a different method to maintain the underlying tree.
This method is based on the list maintenance problem [8, 9, 27]. The full details of this
result are omitted from this extended abstract but are presented in the full version of this
paper [15], in section on alphabetic coding.

2 Preliminaries

An efficient solution for the unweighted search tree problem was presented by Maurer et
al. [22]. Their data structure, called a k-neighbor tree, is a tree of height (1 + δ) logn, where
δ denotes an arbitrarily small positive constant. A k-neighbor tree is a binary tree T such
that (1) all leaves in T have the same depth and (2) if a node u ∈ T has only one child,
then u has at least one right neighbor (on the same level), and (3) if a node u has l right
neighbors, then min(k, l) nearest right neighbors of u have two children.

Since this will be used later, we give a sketch of the insertion into such a tree below.

When a new leaf x is inserted into the tree, we find the node p such that the x must be
inserted below p and call a recursive procedure Insert(p, x). First, we make x a new child
of p. If p has two children, the insertion procedure is completed. If p has three children, we
look for a neighbor node q of p such that the distance between p and q is at most k and q
has only one child. If q is found, we call the procedure Move(p, q). If q is not found, we
create a new node p′ that has one child; the only child of p′ is the leftmost child of p. If p is
not the root node, then we call the procedure Insert(parent(p), p′); otherwise we create a
new root node rn and make both p and p′ the children of rn.

The arguments of the procedure Move(p, q) are two neighbor nodes, p and q, such that p
has three children and q has only one child. All nodes u between p and q have two children.
The procedure is applied to the children of all nodes u between p and q; every child node is
shifted by one position to the right or to the left. At the end p, q, and all nodes u have two
children. Thus Move(p, q) consists of d shifts, where d is the distance from p to q. Procedure
Move(p, q) needs O(k) time because every node shift takes O(1) time. When a new leaf is
inserted, we execute Move(p, q) only one time. Excluding the cost of Move(p, q), we spend
O(1) time on every tree level. Therefore a new leaf can be inserted into a tree in O(logn+ k)
time. A more detailed description of an insertion can be found in [4]. We can delete a leaf
using a symmetric procedure.

The height of a k-neighbor tree with n leaves does not exceed
⌊

logn
log(2− 1

k+1) + 1
⌋
. Using the

fact that for any k ≥ logn the height of the tree is bounded by logn+O(1), Andersson [4]
showed how, by using an appropriate value of k the tree height can be bounded by height
logn+ 2 using only O(logn+ k) = O(logn) time per operation. It is this version of the data
structure that we will use later.

ESA 2018

38:6 Dynamic Trees with Almost-Optimal Access Cost

e1ε1 e1 e2 e2

ε2

e2 e2 e3 e3

ε3

e3 e3 e3 e3 e3 e3

ε4

e4 ε1

ε2

ε3

ε4

Figure 1 Left: Balanced tree of approximate weights w′
1 = 1, w′

2 = 2, w′
3 = 4, and w′

4 = 1.
Elements e1, . . ., e4 are stored in nodes ε1, . . ., ε4 respectively. Pseudo-leaves are shown with dashed
lines. Internal nodes of T s that are not nodes of T are also drawn with dashed lines. Leaves of T are
shown with solid lines and internal nodes of T are depicted by filled circles. Right: Almost-optimal
tree corresponding to the tree on Fig. 1.

3 Approximate Weights

Consider an ordered weighted set of elements E = { e1 < e2 < . . . < en } let wi denote the
weight of ei and W =

∑n
j=1 wj . Define the approximate (or quantized) weight of an element

ei as w′i = dwi/τe for τ = W
n . Thus all approximate weights are integers between 1 and n.

Note that
∑ wi

τ = n
W

∑
i wi = n. Hence W ′ =

∑⌈
wi

τ

⌉
≤
∑
i
wi

τ + n = 2n ≤ 2W .

I Lemma 2. Suppose that the depth of a leaf `i in a tree T ′ does not exceed log(W ′/w′i) + c.
Then the depth of `i in T ′ does not exceed min(log(W/wi), logn) + c+ 1.

Proof. Since w′i ≥ 1 for all i, log(W ′/w′i) ≤ logW ′ ≤ logn+ 1. Furthermore W ′ · τ ≤ 2W
and w′i · τ ≥ wi. Hence W ′

w′
i

= W ′·τ
w′

i
·τ ≤

2W
wi

and log W ′

w′
i
≤ log W

wi
+ 1.

In summary log W ′

w′
i
≤ min(log W

wi
, logn) + 1. J

The problem of maintaining an almost-optimal tree T ′ for quantized weights {w′1, . . . , w′n }
is thus equivalent to the problem of maintaining an almost-optimal tree for exact weights
{w1, . . . , wn }. The tree T ′ has another important property: the depths of all leaves in T ′
are bounded by dlogne+O(1).

4 Warm-Up: Almost-Optimal Static Trees

In this section we introduce our approach and basic notions that will be used in the following
sections. By way of introduction we describe a method that produces an almost-optimal tree
for a static set of elements with fixed weights.

We keep weights of elements as entries in an array B of size m = 2W ′ ≤ 2n so that there
are two entries for each unit of weight. The first 2w′1 entries of B are assigned to e1, the
following 2w′2 entries are assigned to e2, and so on. In general we assign entries B[li], . . .,
B[ri] to the element ei where li = (2

∑i−1
j=1 w

′
i) + 1 and ri = 2

∑i
j=1 w

′
i. Let T s denote a

conceptual perfectly balanced tree on B. The i-th leaf of T s corresponds to the entry B[i]
of B, every internal node has two children, and the height of T is logm = logn+ 16. The
leaves of T s will be called pseudo-leaves. Leaves corresponding to entries in B[li..ri] will be
called pseudo-leaves of the element ei (or pseudo-leaves associated to ei).

6 To avoid tedious details, we assume in this section that m and n are powers of 2.

M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:7

I Fact 3. Consider a node u of height h ≥ blog rc for some r ≥ 1. Suppose that r leftmost
(rightmost) pseudo-leaves in the subtree of u are pseudo-leaves of ei. Then there is at least
one node v of height blog rc such that all pseudo-leaves in the subtree of v are pseudo-leaves
of ei.
Consequentially, if 2x entries are assigned to some element ei, then there is at least one node
v of height blog xc, such that all pseudo-leaves in the subtree of v are assigned to ei.

We define an almost-optimal tree T as a subtree of T s. Let εi denote an arbitrary node
of height blog(w′i)c such that all leaves in the subtree rooted at εi are i-nodes. Since we
assigned 2w′i pseudoleaves to ei, such a node εi always exists. All pseudoleaves below εi
correspond to some array entries in B[li..ri]. The tree T is a subtree of T s pruned at nodes
εi. That is, the nodes εi are the leaves of T and all proper ancestors of all εi are internal
nodes of T . We keep keys in the internal nodes of T that can be used for routing.

The depth of the leaf εi does not exceed log W ′

w′
i
by more than a constant: every leaf of

T s has depth at most logW ′ + 1. The depth of εi is then at most

log(W ′) + 1− (log(w′i) + 1) = log W
′

w′i
+ 2 ≤ log W

wi
+ 3.

Hence each εi has an almost-optimal depth in T . In addition T s is a perfectly balanced
tree with 2n nodes and the depth of any node in T s does not exceed logn+ 1. Summing up,
the depth of any leaf εi that holds the element ei does not exceed min(log(W/wi), logn) + 3.

An example tree T s and the corresponding almost-optimal tree T are shown on Fig. 1.
An interesting property of our method is that the tree T is not necessarily a full tree: it is
possible that some internal nodes have only one child. In the following sections we will show
how the tree T s can be dynamized.

5 Almost-Optimal Dynamic Trees

Our dynamic data structure maintains a balanced tree T s on a dynamic set B of pseudo-leaves.
This first version of the algorithm will work in phases. A phase will end when the total

weight W is increased by a factor of 2 or when the total number of elements is increased by
a factor of 2.

Unlike in the previous section, these pseudo leaves are not kept in an array. Instead, T s

is maintained as a k-neighbor tree data structure with k = logn [22] as described in Section
2. This method guarantees that all leaves of T s have the same depth and , since the total
number of pseudoleaves can at most double within a phase, the height of the tree is bounded
by log(4W ′) + 1 ≤ logn+ 4. An update of T s takes O(log2 n) time.

Each phase starts with a correct T s that had just been built from scratch using the
approach of Section 4. Set τ̄ = τ = W

n . This value stays constant within the phase.
During a phase, for every element ei we keep track of its weight wi and its approximate

weight w′i = dwi/τ̄e. Note that this implies that during a phase w′i can be increased
(incremented by 1 at a step) but not decreased.

When w′i is incremented by 1, the tree T s is updated: we identify the rightmost pseudo-
leaf `i associated to ei and insert two new pseudo-leaves, `n and `n+1, immediately after `i.
When a new element ef is inserted into a tree, we insert two new pseudo-leaves, `f and `f+1,
into T s. The leaf `f is inserted after the leaf `p, where ep is the largest element satisfying
ep < ef and `p is the rightmost leaf associated to ep. Every insertion of a pseudo-leaf results
in a modification of the tree T s.

ESA 2018

38:8 Dynamic Trees with Almost-Optimal Access Cost

.

Macro Tree TM

TS
1 TS

2
TS
3 TS

4 TS
5

TS
6

Macro leaf
corresponding to
mini-tree TS

3

T S

Figure 2 The partition of T S into macro tree T M and mini-trees T s
j . The leaves of T m are the

roots of the T s
j . All the T s

j have between log2 n and 2 log2 n pseudoleaves. T M and all of the T s
j are

maintained as dynamic almost-optimal trees for their sets of leaves using the technique of Section 5.

We maintain the almost-optimal tree T as a subset of T s using the approach of Section 4.
An internal node εi is an internal node of T s of height blog(w′i)c such that all leaves in its
subtree are associated to an element ei. Using the same calculations as in Section 4 the depth
of εi is then at most log W

w′
i

+ 4 (and not 3 because the calculation is using τ̄ and not τ .)
After an update of T s, some nodes of T s (and, hence, some nodes of T) can be moved. If

all leaves of a moved internal node u are associated to ej , we also update the internal node
εj , if necessary. Suppose that a node u was moved by one position to the left and the node
u′ to the right of u was also moved by one position to the left. If all leaf descendants of u
are associated with an element ei and all leaf descendants of u′ are associated with some
ej 6= ei, then we may have to update εi. If εi is an ancestor of u, we find the immediate left
neighbor ε′i of εi. Since there are 2w′i leaves associated to ei and the height of εi is log(w′i),
all leaf descendants of ε′i are associated to ei. Hence we can set εi := ε′i. We can find the εi
and ε′i for every moved node u in O(logn) time. At most O(logn) nodes of T s are moved
during every update [4]; hence, the total update cost is O(log2 n).

When the total weight W is increased by a factor 2 or when the total number of elements
is increased by a factor 2, we update the value of τ = W

n , compute the new values w′i and as
noted, re-build the tree from scratch. The amortized cost of rebuilding T s from scratch is
O(1) per step since the balanced tree can be built in linear time. When we re-build the tree
T s, we use the new value of k = logn.

I Lemma 4. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O(log2 n) amortized time. If an element ei was
accessed wi times over a sequence of W operations, then the depth of the leaf holding ei does
not exceed min(log(W/wi), logn) +O(1).

6 Faster Updates

We can reduce the update time by grouping pseudo-leaves in the tree T s. All pseudo-leaves
are divided into Θ(n/ log2 n) groups so that each group contains at least log2 n and at most
2 log2 n pseudo-leaves.

The tree T s is divided into two components: a macro-tree TMwith O(n/ log2 n) leaves
and O(n/ log2 n) mini-trees T s

j . See Fig. 2. Mini-trees correspond to groups of pseudo-leaves:

M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:9

all pseudo-leaves in the group Gj are stored in a mini-tree T s
j . The j’th leaf of macro-tree

TM is the root of mini-tree T s
j . As before, the almost-optimal tree T is a subtree of T s. An

element ei is assigned to a node εi of T , such that the height of εi in T s is log(w′i) (up to
an additive constant error) and all leaves in the subtree of εi are associated to ei. T is the
subtree of T s induced by nodes εi and their ancestors. The division of a tree into macro-trees
and mini-trees is a standard data structuring technique; see e.g., [6].

We now find the node εi for any element ei either in a mini-tree or in the macro-tree.
Recall that there are 2w′i pseudo-leaves associated to ei. Let g = 2 log2 n.

First suppose that w′i ≤ g; then the pseudo-leaves of ei are distributed among O(1)
subtrees. If all pseudo-leaves are in one subtree T s

j , then T s
j has at least one node u of height

blog(w′i)c such that all leaves below u are associated to ei. If pseudo-leaves of ei are in two
subtrees, T s

j and T s
j+1, then either w′i rightmost pseudo-leaves in T s

j are associated to ei or
w′i leftmost leaves in T s

j+1 are associated to ei. Hence either T s
j or T s

j+1 contains a node that
can be chosen as εi. If pseudo-leaves of ei are distributed among more than two mini-trees,
then there is at least one mini-tree T s

j with all pseudo-leaves associated to ei. In the latter
case we can choose the root of T s

j as εi.
Now suppose that kg ≤ w′i < (k + 1)g for some k ≥ 1. Then there are at least 2k − 1

mini-trees with all pseudo-leaves associated to ei. The roots of these mini-trees are macro-
leaves `j , . . ., `j+2k. There is at least one node u of height blog kc in the macro-tree, such
that all macro-leaves below u are among `j , . . ., `j+2k.

Using Lemma 4, we maintain the mini-tree T s
j for every group Gj . Since each mini-tree

has O(log2 n) leaves, updates on a mini-tree take O((log logn)2) time. The macro-tree is
updated only when a new mini-tree is inserted or a mini-tree is deleted. Hence the cost
of updating the macro-tree can be distributed among O(log2 n) insertions of pseudo-leaves.
Suppose that a new pseudo-leaf corresponding to an element ei is inserted. As in Section 5
we find the rightmost pseudo-leaf `′i corresponding to an element ei. The new pseudo-leaf `i
is inserted into the same mini-tree as `′i immediately to the right of `′i. Since every mini-tree
has O(log2 n) pseudo-leaves, we can insert a new pseudo-leaf in O((log logn)2) time. If
the number of pseudo-leaves in T s

j is equal to 2 log2 n, we split the mini-tree T s
j into two

mini-trees of size log2 n; then we insert a new macro-leaf into Tm. The cost of an insertion
into Tm is O(log2 n). We can also split a mini-tree into two mini-trees in O(log2 n) time.
Hence the amortized cost of maintaining the macro-tree is O(1).

The total height of a tree does not exceed the height of the macro-tree plus the maximum
height of a mini-tree. Since the number of mini-trees is bounded by 2W ′

(log2 n)/2 , the height
of the macro-tree does not exceed log(W ′) − 2 log logn + 3. The height of a mini-tree is
bounded by 2 log logn+ 1 +O(1) because it contains at most 2 log2 n pseudo-leaves. Hence
the total height of our tree does not exceed log(W ′) + 4. We already showed that the
height of a sub-tree rooted at the node εi is blog(w′i)c; hence the depth of εi in T is at most
log(W ′/w′i) +O(1).

I Lemma 5. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O((log logn)2) amortized time. If an element ei
was accessed wi times over a sequence of W operations, then the depth of the leaf holding ei
does not exceed min(log(W/wi), logn) +O(1).

The result of Lemma 5 can be further improved by bootstrapping. For any integer f ≥ 1
the following statement can be proved.

I Lemma 6. Suppose there exists a binary search tree T f , such that (1) the depth of a leaf
holding an element ei in T f does not exceed min(log(W/wi), logn) + O(1) + O(f) (2) the
amortized cost of updating T f after an element access or an insertion is O((log(f) n)2).

ESA 2018

38:10 Dynamic Trees with Almost-Optimal Access Cost

Then there is a binary search tree T f+1, such that (1) the depth of a leaf holding an element
ei in T f+1 does not exceed min(log(W/wi), logn) +O(1) +O(f + 1) (2) the amortized cost
of updating T f+1 after an element access or an insertion is O((log(f+1) n)2).

Proof. We divide the tree T s into the macro-tree and mini-trees in the same way as in
the proof of Lemma 5. Every mini-tree is implemented using the tree T f . Hence each
mini-tree can be updated in O((log(f)(logn))2) = O((log(f+1) n)2) time. The amortized
cost of maintaining the macro-tree is O(1). Hence the total amortized cost of updates is
O((log(f+1) n)2).

Suppose that εi is stored in the macro-tree. The depth of a node εi in the macro-tree is
bounded by log(min(W ′/w′i, n)) + O(1). Now suppose that εi is stored in some mini-tree.
The depth of εi in the mini-tree is bounded by log(min(W ′g/w′i, ni)) +O(f) +O(1), where
W ′g is the total sum of all quantized weights in the mini-tree and ng is the total number
of elements in the subtree. By the same argument as in Lemma 5, the depth of εi in T is
bounded by log(min(W ′/w′i, n)) +O(f + 1) +O(1). J

Our main result is obtained when we apply Lemma 6 f + 1 times for a parameter f ≥ 0.

I Theorem 7. For any f ≥ 1 there exists a binary search tree T f , such that the depth of
a leaf holding an element ei in T f does not exceed min(log(W/wi), logn) + O(f) and the
amortized cost of updating T f after an element access or an insertion is O(log(f) n+ f).

We remark that when we insert a new element ei, we need to update the search path for one
leaf. This may incur an additional cost of logn+O(1) operations.

Our data structure can also support two symmetric operations. We can decrement the
weight of an element and delete an element of weight 1. These operations can be implemented
in the same way as incrementing the weight of an element and an insertion of a new element.

7 Worst-Case Updates

Our construction can be modified to support updates with worst-case time guarantees. We
start by showing how the data structure from Section 5 can be changed. We run several
processes in the background; these processes adapt the tree structure to the changing value of
the parameter τ and maintain the correct number of pseudo-leaves for each element ei. The
value of τ is changed every time the total weight W for the number of elements is changed
by a constant factor (described below). Two background processes guarantee that the value
of τ used in T s is within a constant factor of its current value. Moreover pseudo-leaves are
stored in a k-neighbor tree data structure, but the parameter k = Θ(logn) must be changed
when the number of elements is increased or decreased by too much. We run another process
that modifies the tree when the parameter k needs to be changed.

Let W0 and n0 denote the total weight and the number of elements at some time t0.
Let τ0 = W0/n0 and let the delayed weight of an element ei be defined as wi = dwi/τ0e.
We maintain the invariant that w′i differs from wi by at most a constant factor. In the
worst-case construction delayed weights wi are used instead of w′i, i.e., an element ei is
assigned wi pseudo-leaves. Our re-building processes guarantee that W0 ≤ W ≤ (4/3)W0
and n0 ≤ n ≤ (4/3)n0. Therefore τ = (W/n) ≤ (4/3)τ0 and τ ≥ (3/4)τ0. For any element
ei, wi = wi

τ0
≤ (4/3)w′i and wi ≥ (3/4)w′i. Thus we have W

wi
≤ (16/9)W

′

w′
i
where W =

∑
i wi

and log(W/wi) < log(W ′/w′i) + 1 ≤ log(W/wi) + 2.
We move among three re-building processes. Each process is executed in the background

during at most n/18 insertions or accesses. The first process updates the value of W0. If

M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:11

v

u u1 u2 u3 u′

v

⇒
u1 u2 u3 u′

Figure 3 Example of procedure Consolidate(u, u′). Left: nodes u and u′ have one child. Right:
node u and its ancestors, up to a node v that has two children, are removed. Children of u1, u2, u3

are shifted one position to the right. Only relevant nodes and their children are shown.

W ≥ (7/6)W0, we set W1 = W , n1 = n, and compute τ1 = W1/n1. For every ei, we compute
the new value of wi = wi/τ1 and update the tree T s by removing some pseudo-leaves if
necessary. When the number of pseudo-leaves for all elements is adjusted in this way, we set
W0 = W1 and n0 = n1. The second process updates the value of n0. If n ≥ (7/6)n0, we also
compute the new τ1 = W1/n1 for W1 = W and n1 = n. Then for every element ei we set
wi = wi/τ1 and update the tree T s. The tree always contains O(n) leaves. Every time when
we access an element or insert a new element, our background process inserts or removes
O(1) pseudo-leaves. We can choose the constant in such a way that adjusting the value
of τ0 is distributed among n/18 update or access operations. Suppose that W ≥ (7/6)W0
or n ≥ (7/6)n0; the value of τ0 will be adjusted after at most n/6 operations. Hence
W ≤ (4/3)W0 and n ≤ (4/3)n0 at any time.

The third background process updates the parameter k in the k-neighbor tree. We set
k0 = 2(log(W0) + 1) and maintain a k0-neighbor tree on pseudo-leaves. When the number
of leaves in T s is increased by factor 2, we start the process of adjusting k. Internal nodes
on every level of the tree are divided into pieces, so that every piece consists of k0 + 2
consecutive nodes. We process pieces on the same level in the left-to-right order. Since T s

is already a k0-neighbor tree, the distance between any two 1-nodes (a 1-node is a node
with one child) is at least k0 + 1. Hence each piece contains at most two 1-nodes. If there
are two 1-nodes in the same piece P , then they are the leftmost and the rightmost nodes
in P . In this case, we execute the procedure Consolidate(u, u′), where u and u′ are
the 1-nodes in P . This procedure, that will be described below, removes the node u and
adds one additional child to u′. If P contains one 1-node, then we examine the preceding
piece P ′. If P ′ also contains a 1-node and the distance between the 1-nodes in P and P ′
is equal to k0 + 2, we start the procedure Consolidate(u′, u), where u is the 1-node in
P and u′ is the 1-node in the slide that precedes P . After all pieces on a tree level are
processed, every piece contains at most one 1-node and the distance between 1-nodes is at
least k + 2. We will show below that Consolidate requires O(k logn) move operations and
can be executed in O(k log2 n) = O(log3 n) time. Hence the third background process needs
O((n/k) log3 n) = O(n log2 n) time. Since an update takes O(log2 n) time, we can distribute
the third process among n/18 tree updates or accesses.

It remains to describe the procedure Consolidate(u, u′). Consolidate(u, u′) considers
the children of nodes u, u′, and the children of all nodes between u and u′. Every such node
is moved by one position to the left. As a result, the node has no children and all other
considered nodes have two children. Next, let v be the lowest ancestor of u that has two
children. The node u and all its ancestors that are below v have no leaf descendants now.
We remove the node u and all nodes between v and u. Now the node v is a 1-node. If v is
the root node, then we remove v. Otherwise, we check whether v has a neighbor v′, such

ESA 2018

38:12 Dynamic Trees with Almost-Optimal Access Cost

that the distance between v and v′ does not exceed k0 + 1 and v′ is a 1-node. If v′ exists,
we recursively call the procedure Consolidate(v, v′) (respectively (Consolidate(v′, v)).
There is at most one recursive call of our procedure per tree level. Our procedure shifts
O(k0) nodes by one position to the right and recursively calls itself on some higher tree level;
every time when some node in T s is shifted, we may have to move some leaf εi of T . Hence
the total time of Consolidate(u, u′) is O(k0 log2 n) = O(log3 n).

I Lemma 8. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O(log2 n) time. If an element ei was accessed wi
times over a sequence of W operations, then the depth of the leaf holding ei does not exceed
min(log(W/wi), logn) +O(1).

7.1 Fast Updates
Now we show how the data structure from Section 6 can be changed to support updates in
worst-case time. As in Section 6 the tree T s is divided into the macro-tree and mini-trees.
Each mini-tree contains O(log3 n) pseudo-leaves.

A new pseudo-leaf is inserted into a mini-tree; the cost of an insertion is O((log logn)2)
time by Lemma 8. We run an additional background process that maintains the sizes of
mini-trees. During each iteration we identify the largest mini-tree Tl among all subtrees
of size at least (7/4) log3 n. We split Tl into two mini-trees of almost-equal size. We also
identify the smallest mini-tree Tk of size at most (3/4) log3 n; we merge Tk with one of its
direct neighbors (i.e., with the mini-tree immediately to the left or immediately to the right
of Tk). If the resulting mini-tree is larger than , then we split it into two almost-equal parts.
We show in the full version [15] how a mini-tree can be split into two almost-equal parts
or merged with another mini-tree in less than O(log2 n) time. When we split or merge two
mini-trees, we also have to perform O(1) updates on the macro-tree. The cost of updates is
O(log2 n), hence each iteration takes O(log2 n(log logn)2) time. By Theorem 5 from [10], we
can organize our background process so that each mini-tree has no more than 2 log3 n and
no less than log3 n/2 pseudo-leaves.

I Lemma 9. We can implement a binary search tree so that access to an element and an
insertion of a new element are supported in O((log logn)2) amortized time. If an element ei
was accessed wi times over a sequence of W operations, then the depth of the leaf holding ei
does not exceed min(log(W/wi), logn) +O(1).

We can recursively apply Lemma 9 in the same way as described in Section 6. To obtain the
main result of this paper with worst-case guarantees, we apply Lemma 9 k + 1 times for a
parameter k > 1.

I Theorem 10. For any k ≥ 1 there exists a binary search tree T k, such that the depth of a
leaf holding an element ei in T k does not exceed min(log(W/wi), logn) +O(k) and the cost
of updating T k after an element access or an insertion is O(log(k) n+ k).

References
1 Georgy Adelson-Velsky and Evgenii Landis. An algorithm for the organization of informa-

tion. Soviet Mathematics – Doklady, 3:1259–1262, 1962.
2 Rudolf Ahlswede and Ingo Wegner. Search Problems. John Wiley and Sons, Chichester,

1987.
3 Brian Allen. On the costs of optimal and near-optimal binary search trees. Acta Informatica,

18:255–263, 1982.

M. Golin, S. Langerman, J. Iacono, J. I. Munro, and Y. Nekrich 38:13

4 Arne Andersson. Optimal bounds on the dictionary problem. In Proc. International Sym-
posium on Optimal Algorithms, pages 106–114, 1989.

5 Arne Andersson, Rolf Fagerberg, and Kim S. Larsen. Balanced binary search trees. In
Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Applications.
Chapman and Hall/CRC, 2004.

6 Arne Andersson and Tony W. Lai. Comparison-efficient and write-optimal searching and
sorting. In (Proc. 2nd International Symposium on Algorithms (ISA ’91), pages 273–282,
1991.

7 Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta
Informatica, 1(4):290–306, Dec 1972.

8 Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito.
Two simplified algorithms for maintaining order in a list. In Proc. 10th Annual European
Symposium on Algorithms (ESA 2002), pages 152–164, 2002.

9 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Tsvi Kopelowitz, and Pablo Montes.
File maintenance: When in doubt, change the layout! In Proc. 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2017), pages 1503–1522, 2017.

10 Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pages 365–372.
ACM, 1987.

11 Rolf Fagerberg. Binary search trees: How low can you go? In Proc. 5th Scandinavian
Workshop on Algorithm Theory (SWAT ’96), pages 428–439, 1996.

12 Travis Gagie. Dynamic shannon coding. In Proc. 12th Annual European Symposium on
Algorithms (ESA 2004), pages 359–370, 2004.

13 Adriano M. Garsia and Michelle L. Wachs. A New Algorithm for Minimum Cost Binary
Trees. SIAM Journal on Computing, 6(4):622–642, 1977.

14 E.N. Gilbert and E.F. Moore. Variable-length binary encodings. Bell System Technical
Journal, 38(4):933–967, 1959.

15 Mordecai Golin, John Iacono, Stefan Langerman, J. Ian Munro, and Yakov Nekrich. Dy-
namic trees with almost-optimal access cost. arXiv:1806.10498.

16 Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
19th Annual Symposium on Foundations of Computer Science (FOCS 1978), pages 8–21,
1978.

17 T. C. Hu, Lawrence L Larmore, and J David Morgenthaler. Optimal Integer Alphabetic
Trees in Linear Time. In 13th Annual European Symposium on Algorithms (ESA’05),
volume 3669, pages 226–237, 2005.

18 T. C. Hu and A. C. Tucker. Optimal Computer Search Trees and Variable-Length Alpha-
betical Codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.

19 Maria Klawe and Brendan Mumey. Upper and Lower Bounds on Constructing Alphabetic
Binary Trees. SIAM Journal on Discrete Mathematics, 8(4):638–651, 1995.

20 D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163–180, 1985.
21 Donald E. Knuth. Optimum binary search trees. Acta informatica, 1(1):14–25, 1971.
22 Hermann A. Maurer, Thomas Ottmann, and Hans-Werner Six. Implementing dictionaries

using binary trees of very small height. Information Processing Letters, 5(1):11–14, 1976.
23 Kurt Mehlhorn. A best possible bound for the weighted path length of binary search trees.

SIAM Journal on Computing, 6(2):235–239, 1977.
24 Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica, 16(4):464–

497, 1996.
25 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Jour-

nal of the ACM (JACM), 32(3):652–686, 1985.

ESA 2018

http://arxiv.org/abs/1806.10498

38:14 Dynamic Trees with Almost-Optimal Access Cost

26 J. S. Vitter. Design and analysis of dynamic Huffman codes. Journal of the ACM,
1987(4):825–845, 1987.

27 Dan E. Willard. A density control algorithm for doing insertions and deletions in a sequen-
tially ordered file in good worst-case time. Inf. Comput., 97(2):150–204, 1992.

28 R.W. Yeung. Alphabetic codes revisited. IEEE Transactions on Information Theory,
37(3):564–572, may 1991.

A Tree Structure For Dynamic Facility Location
Gramoz Goranci
University of Vienna, Faculty of Computer Science, Vienna, Austria
gramoz.goranci@univie.ac.at

Monika Henzinger
University of Vienna, Faculty of Computer Science, Vienna, Austria
monika.henzinger@univie.ac.at

Dariusz Leniowski
University of Vienna, Faculty of Computer Science, Vienna, Austria
dariusz.leniowski@univie.ac.at

Abstract
We study the metric facility location problem with client insertions and deletions. This setting
differs from the classic dynamic facility location problem, where the set of clients remains the
same, but the metric space can change over time. We show a deterministic algorithm that
maintains a constant factor approximation to the optimal solution in worst-case time Õ(2O(κ2))
per client insertion or deletion in metric spaces while answering queries about the cost in O(1)
time, where κ denotes the doubling dimension of the metric. For metric spaces with bounded
doubling dimension, the update time is polylogarithmic in the parameters of the problem.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases facility location, dynamic algorithm, approximation, doubling dimension

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.39

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement no. 340506.

1 Introduction

In the metric facility location problem, we are given a (possibly infinite) set V of potential
clients or points, a finite set C of (live clients), a finite set J ⊆ V of facilities with an opening
cost fj , for each facility j, and a metric d over V , such that d(i, j) is the cost of assigning
client i to facility j. The goal is to determine a subset J ′ ⊆ J of open facilities and to assign
each client to an open facility such as to minimize the total cost. Obviously it is best to
assign each live client to the closest open facility. Thus, the goal can be written as minimizing
the objective function

∑
j∈J′ fj +

∑
i∈C minj∈J′ d(i, j).

The facility location problem is one of the central problems in combinatorial optimization
and operations research [7], with many real-word applications. Typical examples include
placements of servers in a network, location planning for medical centers, fire stations,
restaurants, etc. From the computational perspective, this problem is NP-hard and it is even
hard to approximate to a factor better than 1.463 [13, 20]. The best-known polynomial-time
algorithm achieves a 1.488-approximation [17].

In many applications of facility location, problem data are continuously changing. This
has lead to the study of this problem in different settings, e.g., online [18, 3, 10, 4, 11, 19, 1],
streaming [15, 12, 16, 6] or dynamic [21, 5, 9, 8]. The focus of this paper is on the dynamic

© Gramoz Goranci, Monika Henzinger, and Dariusz Leniowski;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 39; pp. 39:1–39:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gramoz.goranci@univie.ac.at
mailto:monika.henzinger@univie.ac.at
mailto:dariusz.leniowski@univie.ac.at
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 A Tree Structure For Dynamic Facility Location

setting, motivated by mobile network applications, where the set of clients may change over
time, and we need to maintain the set of opened servers so as to obtain a solution of small
cost after each change.

Formally, in the dynamic facility location problem, the set of clients C evolves over time
and queries about both the cost as well as the set of opened facilities can be asked. Specifically,
at each timestep t, either a new client is added to C, a client is removed from C, a query is
made for the approximate cost of an optimal solution (cost query), or a query asks for the
entire current solution (solution query). The goal is to maintain a set of open facilities that
after each client update minimizes the above cost function. Thus, the cost fj of each facility
can be seen as a maintenance cost that has to be paid for each open facility between two
client updates.

Our contribution. In this paper we present a deterministic data-structure that maintains a
O(1)-factor approximation algorithm for the metric facility location problem, while supporting
insertions and deletions of clients in Õ(2O(κ2)) update time, and answering cost queries in
O(1) time, where κ is the doubling dimension1 of the metric space. As the running time
per client update is bounded by Õ(2O(κ2)), the number of changes in the client-facility
assignments is also bounded by this function. For metric spaces with bounded doubling
dimension, such as the Euclidean space, the running time is Õ(1). Formally, we have the
following theorem.

I Theorem 1. There exists a deterministic algorithm for the dynamic facility location problem
where clients and facilities live in a metric space with doubling dimension κ, such that at every
time step the solution has cost at most O(1) times the cost of an optimal solution at that time.
The worst-case update time for client insertion or deletion is O(2O(κ2) ·∆3 · (κ2 + log ∆)),
where ∆ is logarithmic in the paramters of the problem. A cost query can be answered in
constant time and a solution query in time linear in the size of the output.

Comparison with prior work. The closest work related to our problem is the streaming
algorithm for the metric facility location problem with uniform opening costs due to Lam-
mersen and Sohler [16]. Specifically, given a sequence of insert and deletion operations of
points (clients) from {1, . . . ,∆}d, they devise a Monte-Carlo randomized algorithm that
processes an insertion or deletion of a point in Õ(2O(d)) time, using poly-logarithmic space
and maintaining a Õ(2O(d))-factor approximation. Since the d-dimensional Euclidean space
has doubling dimension linear in d, we can also interpret the above result in terms of κ, i.e.,
the same bounds hold with d replaced by κ. An easy inspection of the algorithm in [16]
shows that the queries can also be answered anytime in the update sequence in O(1) time.
Note that this algorithm heavily relies on randomization and the fact that facilities have
uniform opening costs. In comparison our algorithm is (1) deterministic, (2) achieves a
O(1)-factor approximation (independent of doubling dimension) (3) generalizes to any metric
of bounded doubling dimension, and (4) supports non-uniform opening costs. Furthermore,
for the Euclidean plane, i.e. d = 2, there is a randomized streaming algorithm that achieves
a (1 + ε)-approximation with poly-logarithmic space [6]. However, it is not clear whether
this algorithm supports fast queries.

Regarding the dynamic facility location problem, multiple variants can be found in the
literature [21, 5, 9, 8]. All these variants are different from ours as they assume that the

1 The doubling dimension of a metric space (V, d) is bounded by κ if for any x ∈ V and any radius r, any
ball with center x and radius r in (V, d) can be completely covered by 2κ balls of radius r/2.

G. Goranci, M. Henzinger, and D. Leniowski 39:3

facilities and clients remain the same, and only the distance metric between clients and
facilities can change. Additionally, every time a client switches to a different facility, a
switching cost might be incurred and the goal is to minimize the above sum plus all the
switching costs. For the version proposed in [8], there exists a polynomial time constant
factor approximation algorithm [2].

There is also a large body of prior work on online facility location (see, e.g., [18, 3, 10,
4, 11, 19, 1]), where the clients arrive in an online fashion and have to be connected to a
facility, potentially opening new facilities. If earlier decisions cannot be reversed, then no
efficient constant factor approximation algorithm is possible [11]. If earlier decisions are,
however, not permanent, specifically if facilities are only opened for a given amount of time,
i.e. leased, and k different lease lengths are possible [4], the offline version of the problem
has a polynomial time 3-approximation algorithm [19], but the online setting cannot have an
approximation better than Ω(log k), even for randomized algorithms [18]. All of these results
are different from ours: (1) We have only one lease length, namely length 1, as each facility
can be closed or opened after each timestep, (2) we allow client arrival and departure, and
(3) our algorithm processes a client update in O(2O(κ2) ·∆3 · (κ2 + log ∆)) worst-case time
per operation, where ∆ is logarithmic in the parameters of the problem, while the running
time of the online algorithms is at least linear in the number of facilities [18, 3].

Technical contribution. From a technical point of view we modify and significantly extend
a hierarchical partition of a subset of the facilities that was recently introduced for a related
problem, called the dynamic sum-of-radii clustering problem [14]. In that work, a set of
facilities J and a dynamically changing clients C are given and the goal is to output a set
J ′ ⊆ J together with a radius Rj , for each j ∈ J ′, such that the J ′ covers C and the function∑
j∈J′(fj +Rj) is minimized. In [14] a O(22κ)-approximation algorithm with time Õ(26κ)

per client insertion or deletion is presented for metrics with doubling dimension κ. Note
that the function that is minimized is different from the function minimized in the facility
location problem, as the term

∑
i∈C minj∈J′ d(i, j) is replaced by

∑
j∈J′ Rj .

More specifically, the hierarchical decomposition of [14] picks a well-separated subset
of J with “small” cost, assigns one or multiple radii to the selected facilities, and then
hierarchically orders the pairs 〈j, R〉 in a tree structure, where j is a facility and R is a radius,
such that the children of every pair have a smaller radius and the “ball” of the given radius
of a child is fully contained in the “ball” of its parent with its radius. To achieve our result,
in Sections 2 and 3 we extend this decomposition as follows:
1. Abundance condition. Instead of selecting facilities with “small” cost, we introduce the

notion of an “abundance condition”: Facilities that have “enough nearby” clients fulfill
this condition, and we only open such facilities. This leads to following rough notion:
The abundance condition is fulfilled for a facility j and a radius R if the number of clients
within radius R of j is at least fj/R. The fundamental idea is then as follows: (A) We
assign a payment of R to each client within radius R of an open facility j, which implies
that the sum of fj plus the distances of these clients to j is upper bounded by twice the
sum of the payments of these clients. (B) We then show that (i) each client pays for
at most one facility and (ii) the sum of the client payments is linear in the cost of the
optimal solution.

2. Designated facilities. To further reduce the cost of the open facilities, we designate to
each facility j the “cheapest nearby” facility j∗, and if a facility j fulfills all conditions
to be opened, we open the facility j∗ instead. This allows us to modify the (rough)
abundance condition so that it is fulfilled for a facility j and a radius R if the number of

ESA 2018

39:4 A Tree Structure For Dynamic Facility Location

clients within radius R of j is at least fj∗/R. This modification increases the distance
of the clients only by a constant factor, but might significantly decrease the cost of the
open facilities. Note that our approach would not achieve a constant factor without
this technique: The hierarchical decomposition is based on a well-separated subset of
facilities whose construction ignores the facility costs. Thus it might happen that the
chosen facilities have high cost, even though there are “cheap” facilities nearby. These
cheap nearby facilities are now captured by the designated facilities.

3. Enabled facilities. The idea of not opening facilities that are “close” to an open facility
can be further combined with the hierarchical decomposition. More specifically, if facility
j with radius R and facility j′ with radius R′ are “close”, only one of them is opened,
namely the lowest-in-the-hierarchy facility that fulfills the abundance condition and has
no nearby facility of smaller radius that is already open. The advantage of this scheme is
that when a facility switches from open to closed or vice versa, we can bound the number
of facilities that are affected by this change by a function that only depends on κ. If we
had chosen to open the facility with larger radius, then the number of facilities that are
affected by opening or closing one facility might have been large, i.e., not bounded by a
function of κ alone.

4. Coloring. Recall that we need to guarantee that each client only pays for one open
facility. To do so, we assign a color to each pair 〈j, r〉 in the hierarchy such that no two
pairs 〈j, r〉 and 〈j′, r〉, where the distance between j and j′ is small, have the same color.
As the metric has bounded doubling dimension, 25κ + 1 colors suffice for this coloring.
Then we require that a facility is opened only if it fulfills the abundance condition, and
no facility of either smaller radius or the same radius but with “smaller” color is already
open. This requires to further relax the notion of “closeness” but reduces the number of
open facilities enough so that each client can be assigned to pay for at most one “close”
open facility and still every open facility has enough clients paying for its cost.

In Section 3, Theorem 24, we show that (a) for clients that are “close” to an open facility
j in the optimal solution the sum of their payments (in our solution) is linear in fj and (b)
for clients that are “far” from an open facility in the optimal solution their payments (in our
solution) are within a constant factor of their distance in the optimal solution. Additionally,
we give a data structure that maintains this solution efficiently under insertions and deletion
of clients (see Section 4). All missing proofs are deferred to the full version.

2 Preprocessing phase

Let W be the diameter of the metric space, i.e., d(i, j) ≤ W , for all i, j ∈ V , let fmax =
maxj∈J{fj} be the maximum facility opening cost, and let fmin = min{fj | j ∈ J, fj > 0} > 0
be the minimum opening cost of any facility with non-zero opening cost. This is w.l.o.g. as
all facilities with 0 opening cost are always kept open. Given the set of clients C ⊆ V , let
OPT = OPT(C) denote the cost of an optimum solution for C. In what follows, for the sake
of exposition, we also let C to refer to the current set of clients.

The algorithm will maintain a number n = 5blog5 |C|c, i.e., the largest power of 5 smaller
than |C|: Initally we set n to 0 and use this value of n during preprocessing. Whenever the
first client is inserted, we set n = 1. Afterwards, whenever the number of clients is a factor 5
larger, resp. smaller, than n, we update n by multiplying, resp. dividing it by 5.

G. Goranci, M. Henzinger, and D. Leniowski 39:5

Now let2 ρmin = dlog5 (fmin/max (|J |, n))e and let ρmax = dlog5 (max (W, fmax))e =
O(logW +log fmax). Note that a change of ρmin will require an update in our data structures,
but this will only happen after Θ(n) many client insertions or deletions. As we will see later,
the cost of this update will be charged against these client updates, and thus does not affect our
running times. A logradius is an integer r such that ρmin ≤ 5r ≤ ρmax. Let ∆ = ρmax−ρmin+1
be the number of different logradii. Note that ∆ = O(logW+log(fmax/fmin)+log |J |+log |C|).
Finally, let c1 = 20, c2 = 35, cX = 2c2 + 2 = 72, c3 = cX + c2 = 107, cY = 2c3 + c2 = 249
and c4 = cY + c2 = 284.

A large part of our data structure is concerned with reducing the number of facilities
that are potentially opened and finding an assignment of each client to at most one open
facility. This is done in multiple ways, as described next. Based on the approach of [14], we
construct a set of pairs Π ⊆ (J × [ρmin, ρmax]), consisting of facility-logradius pairs and a
laminar family of areas. Different from [14], we color pairs in Π, turning them into triplets,
and introduce designated facilities, before defining open, closed and enabled triplets.

Maximal subsets of distant facilities. The first step is to filter out facilities that are close
to other facilities. To achieve this, we greedily construct a set Π of pairs 〈j, r〉 where j is a
facility and r is a logradius, satisfying the following properties:
1. (Covering) For every facility j ∈ J and every logradius r, there exists a facility j′ ∈ Jr

with d(j, j′) ≤ c1 · 5r.
2. (Separating) For all distinct j, j′ ∈ Jr, d(j, j′) > c1 · 5r.
We construct Π as follows: For each logradius r ∈ [ρmin, ρmax], let Jr be a maximal subset
of J such that any two facilities in Jr are at distance strictly larger than c1 · 5r. Set
Π←

⋃
r{〈j, r〉 | j ∈ Jr}. Note that for r = ρmax, the set Jr contains just one facility.

Hierarchical decomposition of Π. We now construct a hierarchical decomposition of Π
and represent it by a tree T , using the following algorithm. Set the root of T to be the
unique pair 〈j, ρmax〉. For each r < ρmax and j ∈ Jr: (1) Set j′ ∈ Jr+1 be the facility closest
to j. (2) Set parent(j, r)← 〈j′, r + 1〉.

By construction, T has height at most ∆ and the parent of a pair 〈j, r〉 is a pair of the
form 〈j′, r + 1〉. The following three lemmata describe the crucial properties of the tree T .

I Lemma 2 (Nesting of balls). Let c∗ be any constant such that c∗ ≥ (5/4)c1. If parent(j, r) =
〈j′, r + 1〉, then d(j, j′) ≤ c1 · 5r+1 and B(j, c∗ · 5r) ⊆ B(j′, c∗ · 5r+1).

I Lemma 3 ([14]). For any point p, radius r and some number α > 0, the set of pairs
Π(p, r) = {〈j, r〉 ∈ Π | d(p, j) < 2αc1 · 5r} has at most 2(α+1)κ elements, where κ is the
doubling dimension of the metric space.

I Lemma 4 ([14]). A node 〈j, r〉 of T has at most 24κ children

Hierarchical decomposition of V into a laminar family of areas. The balls B(j, r) and
B(j′, r) with 〈j, r〉 and 〈j′, r〉 in Π might overlap, which is problematic for the mapping of
clients to facilities. To rectify this problem, we partition V into a laminar family of areas
such that no two same-logradius areas overlap, as follows: For each 〈j, r〉 ∈ Π, initialize
A(j, r)← ∅. Next, for each point p ∈ V : (1) Let r∗ be the smallest such that there exists
pairs 〈j, r∗〉 ∈ Π with p ∈ B(j, c2 · 5r

∗). (2) Among all such pairs, let 〈j∗, r∗〉 denote the

2 Note that ρmin could be negative, but it is well-defined as fmin > 0.

ESA 2018

39:6 A Tree Structure For Dynamic Facility Location

one minimizing d(p, j∗). (3) Add p to the set A(j∗, r∗) and to every set A(j′, r′) with (j′, r′)
ancestor of (j∗, r∗) in T .

The laminar family of areas fulfills the following lemmata.

I Lemma 5 ([14]). For each 〈j, r〉 ∈ Π, j ∈ A(j, r) ⊆ B(j, c2 · 5r) and if parent(j, r) =
〈j′, r + 1〉, then A(j, r) ⊆ A(j′, r + 1).

I Lemma 6. Let j ∈ J , r ∈ [ρmin, ρmax] and p ∈ B(j, 5r). Then there exists a pair 〈j′, r〉 ∈ Π
such that p ∈ A(j′, r) and d(j, j′) ≤ (c2 + 1) · 5r.

Additionally an even stronger statement regarding the points covered by areas versus points
covered by balls holds:

I Lemma 7. For each logradius r ∈ [ρmin, ρmax],
⋃
〈j,r〉∈Jr

A(j, r) =
⋃
〈j,r〉∈Jr

B(j, c2 · 5r).

Covering balls using unions of areas. To select which facilities with a pair 〈j, r〉 in Π to
open, we introduce below the abundance condition which measures how many clients are
“close” to j. For measuring “closeness”, we would like to say that a client i is close to a
facility j if i ∈ X(j, r) for some definition of X(j, r) that fulfills the crucial property that for
every 〈j, r〉 there exists a pair 〈j′, r〉 ∈ Π such that B(j, 5r) ⊆ X(j′, r). Note that this might
not hold if we use X(j, r) = A(j, r) and it does not follow from Lemma 6 as different points
of B(j, 5r) might belong to different areas A(j′, r), whose facilities might be up to distance
(2c2 + 2) · 5r apart. Thus, for any 〈j, r〉 ∈ Π, we define X(j, r) as follows:

X(j, r) =
⋃
{A(j′, r) | d(j, j′) ≤ cX · 5r}, where cX = 2c2 + 2,

and can now show the desired property for X(j, r):

I Lemma 8. Let j ∈ J with 〈j, r〉 6∈ Π. Then there exists 〈j∗, r〉 ∈ Π with B(j, 5r) ⊆ X(j∗, r).

Proof of Lemma 8. It suffices to show that there exists 〈j∗, r〉 ∈ Π such that for every area
A(j′, r) that intersects with the ball B(j, 5r), we get that A(j′, r) ⊆ X(j, r). First, by the
Covering property, there exists a pair 〈j∗, r〉 ∈ Π such that d(j, j∗) ≤ c1 ·5r. Next, let A(j′, r)
be any area such that A(j′, r)∩B(j, 5r) 6= ∅. By Lemma 6, we get that d(j′, j) ≤ (c2 + 1) · 5r.
It follows that d(j′, j∗) ≤ d(j′, j) + d(j, j∗) ≤ (c1 + c2 + 1) · 5r ≤ cX · 5r, which in tun implies
that A(j′, r) ⊆ X(j∗, r). J

It is crucial for the running time to get a bound on the number of areas used to construct
X(j, r). We do this in the following lemma, which is a simple corollary of Lemma 3.

I Lemma 9. For any 〈j, r〉 ∈ Π, X(j, r) is a union of at most 23κ areas.

We also need to bound how far any two points in X(j, r) can be apart:

I Lemma 10. It holds that X(j, r) ⊆ B(j, c3 · 5r).

To further reduce the set of open facilities, it is necessary to introduce a notion of
“closeness” between facilities that is more relaxed than the definition used for covering, where
we required two facilities to be at least c1 · 5r apart. Now we guarantee that if a facility
is open then no other facility within distance cY · 5r is opened, resulting in the following
definition of Y(j, r) for every 〈j, r〉 ∈ Π:

Y(j, r) =
⋃
{A(j′, r) |d(j, j′) ≤ cY · 5r}, where cY = 2cX + 3c2.

G. Goranci, M. Henzinger, and D. Leniowski 39:7

The constant cY is chosen so that we can make sure that there are never two pairs 〈j, r〉 and
〈j′, r′〉 such that both j and j′ are open and X(j, r) and X(j′, r′) intersect. Thus, a client
can always only belong to at most one set X(j, r), where 〈j, r〉 is open. The facility j will be
the facility that the client is assigned to. The following lemmata follow as before:

I Lemma 11. For any 〈j, r〉 ∈ Π, Y(j, r) is a union of at most 25κ areas.

I Lemma 12. It holds that Y(j, r) ⊆ B(j, c4 · 5r).

I Lemma 13. If 〈j′, r′〉 is an ancestor of 〈j, r〉 in T , then Y(j, r) ⊆ Y(j′, r′).

Coloring of pairs. We are now ready to define a tie-breaking rule based on colors. For any
〈j, r〉 ∈ Π, consider the set Π(j, r) = Jr ∩B(j, c4 · 5r). By Lemma 3 and since c4 < 16c1, it
follows that Π(j, r) contains at most 25κ pairs. We need to guarantee that at most one of
them will ever be opened. Thus we introduce a tie-breaking rule based on colors of pairs.
This guarantees that out of all pairs in Π(j, r) that fulfill the abundance condition only the
one with the “smallest” color is opened.

More formally, we perform a preprocessing step using a greedy approach to color pairs of
same log-radius in Π with 25κ + 1 colors from 0 to 25κ.

Specifically for each log-radius r ∈ [ρmin, ρmax], we greedily color every pair 〈j, r〉 of Jr
by one color s so that no two pairs 〈j, r〉, 〈j′, r〉 ∈ Jr with d(j, j′) ≤ c4 · 5r are colored with
the same color, and we refer to 〈j, r, s〉 as triplet. Let Jr,s := {〈j, r, s′〉 ∈ Jr | s′ = s}.

Designated facilities. Furthermore, even if a triplet 〈j, r, s〉 fulfills the condition to be
opened (which is explained in the next section) it will not be opened, if there is a “cheaper”
facility nearby. More formally, we precompute for each pair 〈j, r〉 in Π the following designated
facility: Let f∗〈j,r〉 be the minimum opening cost of any facility in X(j, r), i.e.,

f∗〈j,r〉 = min
{
fj′
∣∣ j′ ∈ J ∩X(j, r)

}
.

The designated facility j∗〈j,r〉 of 〈j, r〉 is the facility with minimum cost f∗〈j,r〉 in X(j, r) with
ties broken according to the minimum id-number, i.e., j∗〈j,r〉 = min

{
j′
∣∣ j′ ∈ J ∩X(j, r), fj′ =

f∗〈j,r〉
}
.

I Observation 14. For any 〈j, r〉 ∈ Π, d(j, j∗〈j,r〉) ≤ c3 · 5r and f∗〈j,r〉 ≤ fj.

If the triplet 〈j, r, s〉 fulfills the condition to be opened, we open j∗〈j,r〉 instead, or do nothing
if j∗〈j,r〉 is already open. Whenever all triplets for which a facility is designated are closed,
then the facility is closed.

3 Processing updates

After the preprocessing phase we are given a laminar family of triplets, where each triplet
〈j, r, s〉 is formed by an area A(j, r) along with its pre-defined color s. Depending on the set
of clients C, a triplet can be either disabled or enabled and either open or closed, where each
open triplet is also enabled. These properties of triplets are maintained dynamically as the
set C of clients changes. Initially C = ∅ and all triplets are closed and disabled. We now
proceed to the formal definitions.

ESA 2018

39:8 A Tree Structure For Dynamic Facility Location

Open triplets. We open a triplet 〈j, r, s〉 if there are enough clients in the set X(j, r) to
pay the opening cost and it has no strictly smaller-radius or no same-radius and strictly
smaller-color open triplet in its “neighborhood”. A triplet that is not open is closed. Formally
a triplet 〈j, r, s〉 is open if it belongs to the set Jopen

r,s (C), which is defined3 recursively as
follows.

Jopen
r,s (C) =

{
〈j, r, s〉 ∈ Jr,s

∣∣∣ 5r · |C ∩X(j, r)| ≥ f∗〈j,r〉 ∧ ∀〈r′, s′〉 <lex 〈r, s〉 :

Y(j, r) ∩ Jopen
r′,s′ (C) = ∅

}
.

We use Jopen
C =

⋃
r,s J

open
r,s (C) to denote the set of all open clients and IC to denote the set

of all open facilities, i.e., IC = {j∗〈j,r〉 ∈ J | 〈j, r, s〉 ∈ J
open
C }.

We call the following condition for 〈j, r, s〉, used in the definition of Jopen
r,s , the abundance

condition,

5r · |C ∩X(j, r)| ≥ f∗〈j,r〉. (1)

I Lemma 15. If |C| > 0 then there exists at least one open triplet.

When showing the bound on the approximation ratio, we need the property that for each
point i ∈ V there is at most one set X(j, r) associated with an open triplet such that i
belongs to. This is necessary to make sure that each client “pays” for at most one open
facility.

I Lemma 16. Each client i ∈ C belongs to at most one X(j, r) with 〈j, r, s〉 ∈ Jopen
C for some

color s.

Note, however, that is not true that each client i ∈ C is contained in at least one X(j, r)
associated with an open triplet for some r: even though there always exists a X(j, r) fulfilling
the abundance condition and containing i (namely X(jroot, ρmax)), the corresponding triplet
〈jroot, ρmax, s〉 might not be open due to a “nearby” open triplet of smaller logradius. To
deal with this issue we introduce enabled triplets and show that each client in C is contained
in at least one X(j, r) of an enabled triplet.

Enabled triplets. A triplet 〈j, r, s〉 is enabled if it belongs to the set Jenabled
r,s (C), which is

defined4 as follows:

Jenabled
r,s (C) =

{
〈j, r, s〉 ∈ Jr,s

∣∣∣∃〈r′, s′〉 ≤lex 〈r, s〉 : Y(j, r) ∩ Jopen
r′,s′ (C) 6= ∅

}
.

We use Jenabled
C =

⋃
r,s J

enabled
r,s (C) to denote the set of all enabled facilities. The following

observation follows from the definition.

I Observation 17. If a triplet is open, then it is also enabled.

Furthermore, as a corollary of Lemma 13 we have the following lemma.

I Lemma 18. If a triplet is enabled, then all its ancestors in T are also enabled.

3 Remark that to make the formula a bit simpler we slightly abuse notation here – Y(j, r) is a set of areas
(i.e., subsets of the metric space), while Jopen

r′,s′ (C) is a set of triples. Formally the intersection should be
understood as Y(j, r) ∩ {j′ ∈ J | 〈j′, r′, s′〉 ∈ Jopen

r′,s′ (C)}.
4 Similarly to the definition of Jopen

r,s (C) we mean here Y(j, r) ∩ {j′ ∈ J | 〈j′, r′, s′〉 ∈ Jopen
r′,s′ (C)}.

G. Goranci, M. Henzinger, and D. Leniowski 39:9

Since A(jroot, ρmax) = V , every point in V belongs to at least one X(j, r) associated with an
enabled triplet. To guarantee that at least one triplet is enabled, recall that Lemma 15 showed
that if |C| > 0, then there exist an open, and, thus, also enabled triplet (see Observation 17).
Lemma 18 implies that the root of T is enabled, implying the following lemma.

I Lemma 19. If |C| > 0 then every point in V belongs to at least one X(j, r) associated with
an enabled triplet.

The next lemma shows that the definition of enabled implies that any triplet that satisfies
the abundance definition is either open or enabled. This is a crucial observation for the proof
of the approximation ratio, as it will allow us to argue that for any facility that the optimal
solution opens, an enabled triplet must be nearby.

I Lemma 20. If 〈j, r, s〉 satisfies the abundance condition, then it is enabled.

Assignment of clients. We next describe how to assign each client i to an enabled triplet
〈j, r, s〉 and an open facility. If 〈j, r, s〉 is not open, we show how to find a close open triplet
of smallest radius. For this open triplet we know its designed facility that is open. This is
the facility that the client is finally assigned to.

We start with the assignment of i ∈ C to an enabled triplet. To this end, let rarea
i be the

minimum logradius of any enabled triplet such that i belongs to the area associated with the
triplet, i.e., rarea

i = min{r | 〈j, r, s〉 ∈ Jenabled
C , i ∈ A(j, r)}. Note that A(j, r) ⊆ X(j, r), and

let jarea
i be the center of the area with log-radius rarea

i and define 〈jarea
i , rarea

i , sarea
i 〉 to be

the corresponding triplet (recall that same-logradius areas are disjoint).
Once we determined the enabled triplet 〈jarea

i , rarea
i , sarea

i 〉 of i, we assign i to the open
triplet of minimum radius such that the corresponding facility belongs to Y(jarea

i , rarea
i) and

let jopen
i be the designated open facility of that open triplet. We assign i to it. Formally:

〈raux
i , saux

i , jaux
i 〉 = min

{
〈r′, s′, j′〉

∣∣∣ 〈j′, r′, s′〉 ∈ Jopen
C , 〈r′, s′〉 ≤lex 〈rarea

i , sarea
i 〉,

j′ ∈ Y(jarea
i , rarea

i)
}
,

jopen
i = j∗〈jaux

i
,raux

i
〉.

Finally we denote the set of all clients assigned to facility j by Cj = {i ∈ C | j = jopen
i }. Note

that jopen
i does not have to be the closest open facility, but as the next lemma shows it is

not far away from an open facility.

I Observation 21. Any i ∈ C is within (c2 + c3 + c4) · 5rarea
i of an open facility.

The value rarea
i is crucial for the cost estimate. Thus it is important to characterize this

value even further, as we do in the following lemma.

I Lemma 22. For any i ∈ C, if i ∈ X(j, r) and 〈j, r, s〉 ∈ Jopen
C for some color s, then

rarea
i = r.

Assume we open each facility in IC and each client is assigned to an open facility as described
above or an even closer one, if one exists. As a consequence of the above lemma and the
definition of open facilities we can now bound the total cost of the solution by O(

∑
i∈C 5rarea

i).

I Lemma 23. It holds that
∑
i∈C d(i, ji) +

∑
j∈IC fj ≤

∑
i∈C(c2 + c3 + c4 + 1) · 5rarea

i .

Now we are ready to prove the bound on the approximation ratio.

ESA 2018

39:10 A Tree Structure For Dynamic Facility Location

I Theorem 24. For any subset C ⊆ V of clients, assign each client i ∈ C to the facility
jopen
i . Then the cost of this solution is O(1) ·OPT, where OPT is the optimal solution for C.

Proof. Denote by I∗ an arbitrary optimal solution. For each i ∈ C define j∗i to be the
facility i is connected to. Moreover, for each j ∈ J let C∗j be the set of clients connected to j.
Formally, j∗i = min{j ∈ I∗ | d(i, j) = d(i, I∗)}, C∗j = {i ∈ C | j = j∗i }. Consider some j ∈ I∗
and let r ∈ [ρmin, ρmax] be the logradius such that

5r−1 · |C∗j ∩B(j, 5r−1)| < fj ≤ 5r · |C∗j ∩B(j, 5r)|. (2)

Note that r is well-defined as 5ρmax · |C∗j ∩B(j, 5ρmax)| ≥ fmax ≥ fj by the definition of ρmax
and fj ≥ fmin ≥ 5ρmin+log5 n−1 ≥ 5ρmin−1 · |C∗j ∩B(j, 5ρmin−1)| by the definition of ρmin.

To complete the proof we split C∗j into two sets, Clo
j and Chi

j , according to whether
i ∈ B(j, 5r−1) or not, i.e., d(i, j) ≤ 5r−1 or d(i, j) > 5r−1 respectively, and show that∑

i∈Clo
j

5r
area
i < 5 · fj , and (A)

∑
i∈Chi

j

5r
area
i ≤

∑
i∈Chi

j

5 · d(i, j). (B)

Before showing the above inequalities we first argue that they prove the bound on the
approximation ratio. Note that every client belongs to C∗j for some j ∈ I∗. Thus,∑

i∈C
5r

area
i ≤

∑
j∈I∗

5 · fj +
∑
i∈C

5 · d(i, j) ≤ 5 ·OPT.

Using Lemma 23 we get that∑
i∈C

d(i, jopen
i) +

∑
j∈IC

fj ≤
∑
i∈C

(c2 + c3 + c4 + 1) · 5r
area
i ≤ 5(c2 + c3 + c4 + 1) ·OPT.

We first show (A). Consider i ∈ Clo
j , or equivalently, i ∈ B(j, 5r−1). We claim that rarea

i ≤ r.
Indeed, if 〈j, r, s〉 ∈ Π for some color s, then X(j, r) ⊇ A(j, r) ⊇ B(j, 5r) along with (2) give

5r · |C ∩X(j, r)| ≥ 5r · |C∗j ∩B(j, 5r)| ≥ fj ≥ f∗〈j,r〉,

which in turn implies that 〈j, r, s〉 satisfies the abundance condition and so it is enabled
(Observation 20). By definition of rarea

i , we get rarea
i ≤ r. If 〈j, r, s〉 6∈ Π for any s, then

by Lemma 6, there exists a triplet 〈j′, r, s〉 such that i ∈ A(j′, r). Because d(j′, j) ≤
d(j′, i) + d(i, j) ≤ (c2 + 1) · 5r we have that B(j, 5r) ⊆ X(j′, r). This along with (2) imply
that

5r · |C ∩X(j′, r)| ≥ 5r · |C∗j ∩B(j, 5r)| ≥ fj ≥ f∗〈j′,r〉,

where the last inequality follows by definition of f∗〈j′,r〉. Similarly it follows that 〈j′, r, s〉 is
enabled and rarea

i ≤ r. Recalling that i ∈ B(j, 5r−1) we finally arrive at∑
i∈Clo

j

5r
area
i ≤

∑
i∈Clo

j

5r ≤ 5 · 5r−1 · |C∗j ∩B(j, 5r−1)| ≤ 5 · fj .

We next show (B). First, observe that for any ball B(j, 5r′′), r′′ ≥ r with i ∈ B(j, 5r′′), one
can prove similarly to the above that there exists an enabled triplet 〈j′′, r′′, s〉 such that

G. Goranci, M. Henzinger, and D. Leniowski 39:11

i ∈ A(j′′, r′′). We have that d(j′′, j) ≤ d(j′′, i) + d(i, j) ≤ (c2 + 1) · 5r′′ , thus X(j′′, r′′) ⊇
B(j, 5r′′) ⊇ B(j, 5r). This, together with (2) and f∗〈j′′,r′′〉 ≤ fj give the claim.

Now, consider i ∈ Chi
j . Since d(i, j) > 5r−1, we get that dlog5 d(i, j)e ≥ r and i ∈

B(j, 5dlog5 d(i,j)e). By the discussion above, there exists an enabled triplet 〈j′′, dlog5 d(i, j)e, s〉
such that X(j′′, dlog5 d(i, j)e) ⊇ B(j, 5dlog5 d(i,j)e), implying that rarea

i ≤ dlog5 d(i, j)e and so∑
i∈Chi

j

5r
area
i ≤

∑
i∈Chi

j

5 · d(i, j). J

4 Data Structure

In this section we devise a data structure for the dynamic metric facility location problem
that supports insertions and deletions of clients as well as returning (a) the approximate
cost of the optimal solution or (b) a set of open facilities that achieves this approximate
cost. We achieve this by maintaining the minimum cost solution restricted to pairs in Π. By
Theorem 24 this is a O(1) approximation to the cost of the optimal solution.

From the preprocessing phase the algorithm is given the set Π of facility-radius-color
triplets, as well as the laminar family of areas A with its dependency tree T using the
following representation. (1) A two-dimensional array of size (ρmax − ρmin + 1)× (25κ + 1),
keeping for each logradius r ∈ [ρmin, ρmax] and color s a list of all the facilities of Jr that
share the color s, and (2) the dependency tree T in a tree data structure. Whenever we use
the term subtree, child, or descendant in the following we refer to the dependency tree. (3) For
each triplet v = 〈j, r, s〉 ∈ Π, the list neighbors_above(v) of all triplets 〈j′, r′, s′〉 such that
(a) 〈r′, s′〉 >lex 〈r, s〉 and (b) j ∈ Y(j′, r′). (4) For each triplet v = 〈j, r, s〉 ∈ Π, the value
f∗〈j,r〉, which is the minimum opening cost among all facilities in X(j, r). Using the algorithm
in Subsection 4.1 each list neighbors_above and each value f∗〈j,r〉 can be computed in time
O(2O(κ)∆). Thus, the above data structure can be built in time O(|J | · 2O(κ)∆).

The algorithm will maintain a dynamic data structure, which can be viewed as an
annotated dependency tree that keeps for each node v = 〈j, r, s〉 of T the following information:
1. three bits Ox(v), Ex(v), Ax(v), which indicate whether the triplet 〈j, r, s〉 is open, enabled

and fulfils the abundance condition, respectively,
2. the number narea(v) of current clients that belong to the area A(j, r), i.e., narea(v) =
|C ∩A(j, r)|,

3. the number nx(v) of current clients that belong to X(j, r), i.e., nx(v) = |C ∩X(j, r)|,
4. the number openbelow(v) of all open triplets 〈j′, r′, s′〉 with 〈r′, s′〉 <lex 〈r, s〉 and their

corresponding facilities falling within Y(j, r), i.e.,

openbelow(v) =
∣∣∣{〈j′, r′, s′〉 ∈ Jopen

C
∣∣ 〈r′, s′〉 <lex 〈r, s〉, j′ ∈ Y(j, r)

}∣∣∣,
5. the number nenblbelow(v) of current clients that belong to areas below that are enabled,

i.e.,

nenblbelow(v) =
∣∣∣C ∩⋃{〈j′, r′, s′〉 ∈ Jenbl

C
∣∣A(j′, r′) ⊂ A(j, r)

}∣∣∣,
6. the value c(v) =

∑
{5rarea

i | i ∈ C ∩A(j, r)} (note that with the currently open facilities
the cost accrued for the clients in A(j, r) is O(c(v))),

7. the value y(v), which is the cost of the children of v, i.e., y(v) =
∑
u child of v c(u).

ESA 2018

39:12 A Tree Structure For Dynamic Facility Location

We next describe the usefulness of the information we keep. Points 1-2 are self-explanatory.
Point 3 provides information to test the abundance condition, and thus update the bits in
Point 1. Point 4 is useful when deciding whether we should open an area or not. Points 5-7
allow us to efficiently update the cost of the solution.

4.1 Finding all balls containing a given point
In this section we describe a crucial subroutine that we use repeatedly when handling updates.
It is given the hierarchy data structure for T , an arbitrary point p ∈ V and some constant
c∗ such that c∗ ≥ (5/4)c1 and returns all balls 〈j, r〉 ∈ Π that are at distance at most c∗ · 5r
from p, i.e., p ∈ B(j, c∗ · 5r). For r ∈ [ρmax, ρmin], let S(r) denote the set of such balls.

The algorithm FindBalls(p, c∗) performs a top-down traversal of the tree starting at
its root 〈j, ρmax〉. Note that by the definition of ρmax, all points belong to B(j, c∗ · 5ρmax)
and S(ρmax) = {〈j, ρmax〉}. For computing S(r), r = (ρmax − 1), it determines all children of
the root to find the pairs 〈j′, r〉 such that the distance of j′ and p is at most c∗ · 5r. This
step is repeated to compute the set S(`) for every level of the hierarchy, until we reach the
bottom-most level. Finally, we let S :=

⋃
{S(r) : r ∈ [ρmin, ρmax]}. A detailed description of

this procedure is deferred to the full version.
We next show that the algorithm correctly computes the set S(r), for every log-radius r.

Define children(S(r)) =
⋃
〈j,r〉∈S(r) children(j, r).

I Lemma 25. For each logradius r ∈ [ρmax, ρmin) assume S(r) is computed correctly. Then
it holds that S(r − 1) ⊆ children(S(r)).

Proof. Assume towards contradiction that there exists 〈j, r − 1〉 ∈ S(r − 1) such that
d(j, p) ≤ c∗ · 5r−1 but 〈j, r − 1〉 6∈ children(S(r)). Let 〈j′, r〉 be the parent of 〈j, r − 1〉 in T .
By Lemma 2, d(j, j′) ≤ c1 · 5r.

Now, since S(r) is correct, it follows that 〈j′, r〉 6∈ S(r), and thus d(p, j′) > c∗ · 5r.
However, by Lemma 2 we get that p ∈ B(j, c∗ ·5r−1) ⊆ B(j′, c∗ ·5r) and thus d(p, j′) ≤ c∗ ·5r,
which is a contradiction. Thus the lemma follows. J

Since cX ≥ (5/4)c1, let c∗ = cX . We now argue about the running time of FindBalls(p, c∗).
Note that for each logradius r, if p ∈ B(j, c∗ · 5r), then d(p, j) ≤ c∗ · 5r. By Lemma 3 and
the fact that c∗ ≤ 4c1 it follows that |S(r)| ≤ 23κ. Additionally, by Lemma 4 each pair in
S(r) has at most 24κ children in T and there are at most ∆ different radii. Thus the running
time of the algorithm and the size of the output set S are both bounded by 27κ ·∆.

I Lemma 26. The running time of FindBalls(p, c∗) and the size of the output set S are
both bounded by 27κ ·∆.

Repeatedly applying the FindBalls subroutine and updating the tree hierarchy in a bottom-
up fashion, we can show that insertions and deletions of clients can be handled in O(2O(κ2) ·
∆3 · (κ2 + log ∆)) time. Additionally note that under client updates, the value of n will
change, which in turn causes ρmin to either increase or decrease by one. This forces us
to either add or delete a bottom-level in the hierarchy, which can be implemented in
O((|J |+ |C|) · 2O(κ2) ·∆3 · (κ2 + log ∆)) time. Since such an update is required only after
Θ(n) operations, we get that the amortized time of our algorithm is still bounded by
O(2O(κ2) · ∆3 · (κ2 + log ∆)). By employing a standard global rebuilding technique we
achieve a worst-case update time, thus proving our main result in Theorem 1. Details on
implementing the above steps are deferred to the full version.

G. Goranci, M. Henzinger, and D. Leniowski 39:13

References
1 Sebastian Abshoff, Peter Kling, Christine Markarian, Friedhelm Meyer auf der Heide, and

Peter Pietrzyk. Towards the price of leasing online. Journal of Combinatorial Optimization,
4(32):1197–1216, 2015.

2 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via
exponential clocks. In Symposium on Discrete Algorithms (SODA), pages 708–721, 2015.

3 Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pascal Van Hentenryck. A simple and
deterministic competitive algorithm for online facility location. Information and Computa-
tion, 194(2):175–202, 2004.

4 Barbara Anthony and Anupam Gupta. Infrastructure leasing problems. International
Conference on Integer Programming and Combinatorial Optimization, pages 424–438, 2007.

5 Pierre Chardaire, Alain Sutter, and Marie-Christine Costa. Solving the dynamic facility
location problem. Networks, 28(2):117–124, 1996.

6 Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian Sohler. (1+ε)-
approximation for facility location in data streams. In Symposium on Discrete Algorithms
(SODA), pages 1710–1728, 2013.

7 Zvi Drezner and Horst W Hamacher. Facility location: applications and theory. Springer
Science & Business Media, 2001.

8 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving
metrics. In International Colloquium on Automata, Languages, and Programming (ICALP),
pages 459–470, 2014.

9 Reza Zanjirani Farahani, Maryam Abedian, and Sara Sharahi. Dynamic facility location
problem. In Facility Location, pages 347–372. Springer, 2009.

10 Dimitris Fotakis. A primal-dual algorithm for online non-uniform facility location. Journal
of Discrete Algorithms, 5(1):141–148, 2007.

11 Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–
57, 2008.

12 Dimitris Fotakis. Memoryless facility location in one pass. ACM Trans. Algorithms,
7(4):49:1–49:24, 2011.

13 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location al-
gorithms. Journal of Algorithms, 31(1):228–248, 1999.

14 Monika Henzinger, Dariusz Leniowski, and Claire Mathieu. Dynamic clustering to minimize
the sum of radii. In European Symposium on Algorithms (ESA), 2017.

15 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Symposium
on Theory of Computing (STOC), pages 373–380, 2004.

16 Christiane Lammersen and Christian Sohler. Facility location in dynamic geometric data
streams. In European Symposium on Algorithms (ESA), pages 660–671, 2008.

17 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013.

18 AdamMeyerson. Online facility location. In Symposim on Foundations of Computer Science
(FOCS), pages 426–431, 2001.

19 Chandrashekhar Nagarajan and David P Williamson. Offline and online facility leasing.
Discrete Optimization, 10(4):361–370, 2013.

20 Maxim Sviridenko. An improved approximation algorithm for the metric uncapacitated
facility location problem. In International Conference on Integer Programming and Com-
binatorial Optimization (IPCO), pages 240–257, 2002.

21 George O Wesolowsky. Dynamic facility location. Management Science, 19(11):1241–1248,
1973.

ESA 2018

Dynamic Effective Resistances and Approximate
Schur Complement on Separable Graphs

Gramoz Goranci
University of Vienna, Faculty of Computer Science, Vienna, Austria
gramoz.goranci@univie.ac.at

Monika Henzinger
University of Vienna, Faculty of Computer Science, Vienna, Austria
monika.henzinger@univie.ac.at

Pan Peng1

Department of Computer Science, University of Sheffield, Sheffield, UK
p.peng@sheffield.ac.uk

Abstract
We consider the problem of dynamically maintaining (approximate) all-pairs effective resistances
in separable graphs, which are those that admit an nc-separator theorem for some c < 1. We
give a fully dynamic algorithm that maintains (1 + ε)-approximations of the all-pairs effective
resistances of an n-vertex graph G undergoing edge insertions and deletions with Õ(

√
n/ε2) worst-

case update time and Õ(
√
n/ε2) worst-case query time, if G is guaranteed to be

√
n-separable (i.e.,

it is taken from a class satisfying a
√
n-separator theorem) and its separator can be computed in

Õ(n) time. Our algorithm is built upon a dynamic algorithm for maintaining approximate Schur
complement that approximately preserves pairwise effective resistances among a set of terminals
for separable graphs, which might be of independent interest.

We complement our result by proving that for any two fixed vertices s and t, no incremental
or decremental algorithm can maintain the s − t effective resistance for

√
n-separable graphs

with worst-case update time O(n1/2−δ) and query time O(n1−δ) for any δ > 0, unless the Online
Matrix Vector Multiplication (OMv) conjecture is false.

We further show that for general graphs, no incremental or decremental algorithm can main-
tain the s− t effective resistance problem with worst-case update time O(n1−δ) and query-time
O(n2−δ) for any δ > 0, unless the OMv conjecture is false.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic graph algorithms, effective resistance, separable graphs, Schur
complement, conditional lower bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.40

Related Version A full version of the paper is available at [17], https://arxiv.org/abs/1802.
09111.

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement no. 340506.

1 Work done in part while at the Faculty of Computer Science, University of Vienna, Austria

© Gramoz Goranci, Monika Henzinger, and Pan Peng;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gramoz.goranci@univie.ac.at
mailto:monika.henzinger@univie.ac.at
mailto:p.peng@sheffield.ac.uk
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.40
https://arxiv.org/abs/1802.09111
https://arxiv.org/abs/1802.09111
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Dynamic Effective Resistance on Separable Graphs

1 Introduction

Effective resistances and the closely related electrical flows are basic concepts for resistor
networks [12] and were found to be very useful in the design of graph algorithms, e.g., for
computing and approximating maximum flow [8, 36, 37], random spanning tree generation [38,
43], multicommodity flow [27], oblivious routing [18], and graph sparsification [44, 11]. They
also have found applications in social network analysis, e.g., for measuring the similarity
of vertices in social networks [33], in machine learning, e.g., for Gaussian sampling [7] and
in chemistry, e.g., for measuring chemical distances [28]. Previous research has studied the
problem of how to quickly compute and approximate the effective resistances (or equivalently,
energies of electrical flows; see the full version for more discussions), as such algorithms can
be used as a crucial subroutine for other graph algorithms. For example, one can (1 + ε)-
approximate the s− t effective resistance in Õ(m+ nε−2) [14] and Õ(m log(1/ε)) [9] time,
respectively, in any n-vertex m-edge weighted graph, for any two vertices s, t. (Throughout
the paper, we use Õ to hide polylogarithmic factors, i.e., Õ(f(n)) = O(f(n) · poly log f(n)).)
There are also algorithms that find (1 + ε)-approximations to the effective resistance between
every pair of vertices in Õ(n2/ε) time [24]. In order to exactly compute the s − t (or
single-pair) and all-pairs effective resistance(s), the current fastest algorithms run in times
O(nω) (by using the fastest matrix inversion algorithm [6, 21]) and O(n2+ω), respectively,
where ω < 2.373 is the matrix multiplication exponent [46]. In planar graphs, the algorithms
for exactly computing s− t and all-pairs effective resistance(s) run in times O(nω/2) (by the
nested dissection method for solving linear system in planar graphs [34]) and O(n2+ω/2),
respectively.

A natural algorithmic question is how to efficiently maintain the effective resistances
dynamically, i.e., if the graph undergoes edge insertions and/or deletions, and the goal is to
support the update operations and query for the effective resistances as quickly as possible,
rather than having to recompute it from scratch each time. Besides the potential applications
in the design of other (dynamic) algorithms, it is also of practical interest, e.g., to quickly
report the (dis)similarity between any two nodes in a social network in which its members
and their relationship are constantly changing. So far our understanding towards this
question is very limited: for exact maintenance, the only approach (for single-pair effective
resistance) we are aware of is to invoke the dynamic matrix inversion algorithm which gives
O(n1.575) update time and O(n0.575) query time or O(n1.495) update time and O(n1.495)
query time [42]; for (1 + ε)-approximate maintenance, we can maintain the spectral sparsifier
of size npoly(logn, ε−1) with poly(logn, ε−1) update time [3], while answering each query
will cost Θ(npoly(logn, ε−1)) time. (Subsequent to the Arxiv submission [17] of this paper,
Durfee et al. obtained a fully dynamic algorithm that maintains (1 + ε)-approximations
to all-pairs effective resistances of an unweighted, undirected multi-graph with Õ(m4/5ε−4)
expected amortized update and query time [13].)

In this paper, we study the problem of dynamically maintaining the (approximate) effective
resistances in separable graphs, which are those that satisfies an nc-separator theorem for
some c < 1. Interesting classes of separable graphs include planar graphs, minor free graphs,
bounded-genus graphs, almost planar graphs (e.g., road networks) [35], most 3-dimensional
meshes [40] as well as many real-world networks (e.g., phone-call graphs, Web graphs,
Internet router graphs) [5]. In the static setting, effective resistances (or electrical flows)
in planar/separable graphs have been utilized by Miller and Peng [39] to obtain the first
Õ(m

6/5

εΘ(1)) time algorithm for approximate maximum flow in such graphs, and have also been
studied by Anari and Oveis Gharan [4] in the analysis of an approximation algorithm for

G. Goranci, M. Henzinger, and P. Peng 40:3

Asymmetric TSP. We now give the necessary definitions to state our results.

Effective Resistances. Let G = (V,E,w) be a undirected weighted graph with w(e) > 0
for any e ∈ E. Let A denote its weighted adjacency matrix and D denote the weighted
degree diagonal matrix. Let L = D−A denote the Laplacian matrix of G. Let L† denote
the Moore-Penrose pseudo-inverse of the Laplacian of G. Let 1u ∈ RV denote the indicator
vector of vertex u such that 1u(v) = 1 if v = u and 0 otherwise. Let χs,t = 1s − 1t. Given
any two vertices u, v ∈ V , the s− t effective resistance is defined as RG(s, t) := χTs,tL†χs,t.

Separable Graphs. Let C be a class of graphs that is closed under taking subgraphs. We
say that C satisfies a f(n)-separator theorem if there are constants α < 1 and β > 0 such that
every graph in S with n vertices has a cut set with at most βf(n) vertices that separates the
graph into components with at most αn vertices each [35]. In this paper we are particularly
interested in the class of graphs that satisfies an n1/2-separator theorem, which include
the class of planar graphs, Kt-minor free graphs and bounded-genus graphs, etc., though
our approach can also be generalized to other class of graphs that satisfies a nc-separator
theorem, for some c < 1. In the following, we call a graph f(n)-separable if it is a member of
a class that satisfies an f(n)-separator theorem.

We would like to quickly maintain the exact or a good approximation of the s− t effective
resistances in a

√
n-separable graph that undergoes edge insertions and deletions, for all

pairs s, t ∈ V . We call this the dynamic all-pairs effective resistances problem. Our goal is
to solve this problem with both small update and query times. More precisely, our data
structure supports the following operations.

Insert(u, v, w): Insert the edge (u, v) of weight w to G, provided that the updated graph
remains

√
n-separable.

Delete(u, v): Delete the edge (u, v) from G.
EffectiveResistance(s, t): Return the exact or approximate value of the effective
resistance between s and t in the current graph G.

1.1 Our Results
We give a fully dynamic algorithm for maintaining (1 + ε)-approximations of all-pairs and
single-pair effective resistance(s) with small update and query times for any

√
n-separable

graph, if its separator can be computed fast. Throughout the paper, all the running times of
our algorithms are measured in worst-case performance. All our algorithms are randomized,
and the performance guarantees hold with probability at least 1− n−c for some c ≥ 1.

I Theorem 1. Let G denote a dynamic n-vertex graph under edge insertions and deletions.
Assume that G is

√
n-separable and its separator can be computed in s(n) time, throughout

the updates. There exist fully dynamic algorithms that maintain (1 + ε)-approximations of
the all-pairs effective resistances with Õ(

√
n
ε2 + s(n)√

n
) update time and Õ(

√
n
ε2) query time;

the s− t effective resistance with Õ(
√
n
ε2 + s(n)√

n
) update time and O(1) query time.

In particular, if s(n) = Õ(n), then our update times are Õ(
√
n
ε2).

By using the well known facts that a balanced separator of size O(
√
n) for planar graphs

(and bounded-genus graphs) can be computed in O(n) time [35], and for Kt-minor-free graphs
(for any fixed integer t > 0) in O(n1+δ) time, for any constant δ > 0 [26], we obtain dynamic
algorithms for the effective resistances for planar and minor-free graphs with Õ(

√
n/ε2) and

Õ(
√
n/ε2 + n1/2+δ) update time, respectively.

ESA 2018

40:4 Dynamic Effective Resistance on Separable Graphs

The performance of our dynamic algorithm in planar graphs almost matches the best-
known dynamic algorithm for (1+ε)-approximate all-pairs shortest path in planar graphs with
Õ(
√
n) update and query time [2], though our approaches are different. This is interesting as

the shortest path corresponds to flows with controlled `1 norm while the energy of electrical
flows (i.e., effective resistance) corresponds to those with minimum `2 norm.

In order to design a dynamic algorithm for effective resistances of separable graphs (i.e., to
prove Theorem 1), we give a fully dynamic algorithm that efficiently maintains an approximate
Schur complement [30, 31, 14] of such graphs (see Section 4.1), which might be of independent
interest. Approximate Schur complement can be treated as a vertex sparsifier that preserves
pairwise effective resistances among a set of terminals (see Section 3). Therefore, our
algorithm is a dynamic algorithm for vertex effective resistance sparsifiers with sublinear (in
n) update time for separable graphs. The problem of dynamically maintaining graph edge
sparsifiers has received attention very recently. For example, Abraham et al. presented fully
dynamic algorithms that maintain cut and spectral sparsifiers with poly-logarithmic update
times [3]. Formally, we prove the following theorem.

I Theorem 2. For an n-vertex
√
n-separable graph G whose separator can be computed

in s(n) time, and a terminal set K ⊆ V with |K| ≤ O(
√
n), there exists a fully dynamic

algorithm that maintains a (1 + δ)-approximate Schur complement with respect to K ′ such
that K ⊆ K ′ and |K ′| = O(

√
n), while achieving Õ(

√
n/δ2 + s(n)√

n
) update time. Furthermore,

our algorithm supports terminal additions as long as |K| ≤ O(
√
n).

We complement our algorithm by giving a conditional lower bound for any incremental
or decremental algorithm that maintains single-pair effective resistance of a

√
n-separable

graph. Our lower bound is established from the Online Matrix Vector Multiplication (OMv)
conjecture (see the full version).

I Theorem 3. No incremental or decremental algorithm can maintain the (exact) s − t
effective resistance in

√
n-separable graphs on n vertices with both O(n 1

2−δ) worst-case update
time and O(n1−δ) worst-case query time for any δ > 0, unless the OMv conjecture is false.

We note that there are very few conditional lower bounds for dynamic planar/separable
graphs, as most known reductions are highly non-planar. The only recent result that we are
aware of is by Abboud and Dahlgaard [1], who showed that under some popular conjecture,
no algorithm for dynamic shortest paths or maximum weight bipartite matching in planar
graphs has both updates and queries in amortized O(n1/2−δ) time, for any δ > 0.

We also give a stronger conditional lower bound for the same problem in general graphs,
which shows that it is hard to maintain effective resistances with both sublinear (in n) update
and query times for general graphs, even for the incremental or decremental setting.

I Theorem 4. No incremental or decremental algorithm can maintain the (exact) s − t
effective resistance in general graphs on n vertices with both O(n1−δ) worst-case update time
and O(n2−δ) worst-case query time for any δ > 0, unless the OMv conjecture is false.

We remark that both lower bounds for separable and general graphs hold for any algorithm
with sufficiently high accurate approximation ratio (see Section 5 and full version).

Comparison to [16]. In our previous work [16], we gave a fully dynamic algorithm for
(1 + ε)-approximating all-pairs effective resistances for planar graphs with Õ(r/ε2) update
time and Õ((r + n/

√
r)/ε2) query time, for any r larger than some constant. The algorithm

can also be generalized to
√
n-separable graphs, and we also provided a conditioned lower

G. Goranci, M. Henzinger, and P. Peng 40:5

bound for any approximation algorithm of the s− t effective resistance in general graphs in
the vertex-update model. However, besides the apparent improvement of the performance of
the dynamic algorithm (i.e., we reduce the best trade off between update time and query
time from Õ(n2/3) and Õ(n2/3) to Õ(n1/2) and Õ(n1/2)), our current work also improves
over and differs from [16] in the following perspectives.

I. Our algorithm dynamically maintains the approximate Schur complement of a separable
graphs by maintaining a separator tree of such graphs, rather than their r-divisions as
used in [16]. In fact, we do not believe purely r-divisions based algorithms will achieve the
performance as guaranteed by our new algorithm. This is evidenced by previous dynamic
algorithms for maintaining reachability in directed planar graphs by Subramanian [45],
(1 + ε)-approximating to all-pairs shortest paths by Klein and Subramanian [29], exactly
maintaining s− t max-flow in planar graphs by Italiano et al. [23], all of which are based on
r-divisions and have running times of order n2/3 (and some of which have been improved by
using other approaches).

II. Our current lower bound is much stronger than the previous one: the previous lower
bound only holds for general graphs and the vertex-update model, where nodes, not edges,
are turned on or off, and its proof was based on a simple relation between s− t connectivity
and s− t effective resistance RG(s, t) (i.e., if s, t is connected iff RG(s, t) is not infinity). In
contrast, our new lower bounds hold for separable graphs (and also general graphs) and
the edge-update model. The corresponding proofs exploit new reductions from the OMv
problem to the 5-length cycle detection and triangle detection problems in separable graphs
and general graphs, respectively, which might be of independent interest, and the latter
problems are related to the effective resistances (see Section 5).

1.2 Our Techniques
Our dynamic algorithm for maintaining an Approximate Schur complement (ASC) w.r.t.
a set of terminals for separable graphs is built upon maintaining a separator tree of such
graphs and two properties (called transitivity and composability) of ASCs. Such a tree can
be constructed very efficiently by recursively partitioning the subgraphs using separators.
Slightly more formally, each node in the tree corresponds to a subgraph of the original
graph and contains a subset of vertices as its boundary vertices which in turn are treated as
terminals. For each node H, we will maintain an ASC H ′ of H w.r.t its terminals. We will
guarantee throughout all the updates that the ASC of any node can be computed efficiently
in a bottom-up fashion, by the above two properties of ASCs. This stems from the fact
that we only need to recompute the ASCs of nodes that lie on a path from a constant
number leaves to the node of interest. Since each such path has length O(logn) and the
recomputation of ASC of one node takes time Õ(

√
n), the update time will be guaranteed

to be Õ(
√
n). For the detailed implementation, we need to overcome the difficulty that the

error in the approximation ratio might accumulate through this recursive computation and
an update might require to change the set of boundary vertices of many nodes, thus resulting
in a prohibitive running time. We remark that though the idea of using separator tree of
planar/separable graphs is standard (e.g., [15]), the main novelty of our algorithm is to use
such a tree as the backbone to dynamically maintain the approximate Schur complement.

To obtain our dynamic algorithms for all-pair effective resistance, we appropriately declare
and add new terminals whenever we get a new query, and then run the above dynamic
algorithm for ASC with respect to the corresponding terminal set.

ESA 2018

40:6 Dynamic Effective Resistance on Separable Graphs

To obtain our lower bound, we provide new reductions from the Online Boolean Matrix-
Vector Multiplication (OMv) problem to the incremental or decremental single-source effective
resistance problem. More specifically, given an OMv instance with vectors u,v and a matrix
M, we construct a

√
n-separable graph G such that uMv = 1 if and only if there exists a

cycle of length 5 incident to some vertex t in G. This 5-length cycle detection problem in
turn can be solved by inspecting the diagonal entry corresponding to t of the inverse of a
matrix that is defined from G. Furthermore, the diagonal entry of this matrix is inherently
related to the effective resistance [41]. By appropriately dynamizing the graph G and using
the time bounds for the OMv problem from the conjecture, we get the conditional lower
bound for separable graphs. For general graphs, the lower bound is proved in a similar way,
except that the constructed graph is different and we instead use a relation between effective
resistance and triangle detection problem. That is, we first reduce the OMv problem to the
t-triangle detection problem such that the OMv instance satisfies uMv = 1 if and only if
there exists a triangle incident to some vertex t in the constructed G. The latter problem
can again be solved by checking the diagonal entry corresponding to t of some matrix, which
in turn encodes the effective resistance of between t and a properly specified vertex s.

Other Related Work. Previous work on dynamic algorithms for planar or plane graphs
include: shortest paths [29, 2, 23], s − t min-cuts/max-flows [23], reachability in directed
graphs [45, 22, 10], (k-edge) connected components [15, 20], the best swap and the minimum
spanning forest [15]. There also exist work on dynamic algorithms for

√
n-separable graphs,

e.g., on transitive closure and (1 + ε)-approximation of all-pairs shortest paths [25].
As mentioned before, subsequent to our Arxiv submission, Durfee et al. [13] obtained a

dynamic all-pairs effective resistances algorithm with Õ(m4/5ε−4) expected amortized update
and query time, against an oblivious adversary. This algorithm uses ideas stemmed from
this paper, in particular, one of their key ideas is to dynamically maintain an approximate
Schur complement. If restricted to separable graphs, the running times of their algorithm are
worse than ours. It is also interesting to note that for the (simpler) offline dynamic effective
resistance problems, i.e., the sequence of updates and queries are given as an input, Li et
al. [32] recently gave an incremental algorithm with O(poly logn

ε2) amortized update and query
time for general graphs.

2 Basic Tools

Our algorithm is built upon two tools: separator trees and approximate Schur complement.

Separator Trees. Let G be a
√
n-separable graph. For an edge-induced subgraph H of G,

any vertex that is incident to vertices not in H is called a boundary vertex. We let ∂(H)
denote the set of boundary vertices belonging to H. A hierarchical decomposition of G is
obtained by recursively partitioning the graph using separators into edge-disjoint subgraphs
(called regions). This decomposition is represented by a binary (decomposition) tree T (G),
which we refer to as a separator tree of G. For any subgraph H of G, we use H ∈ T (G) to
denote that H is a node of T (G) (to avoid confusion with the vertices of G, we refer to the
vertices of T (G) as nodes). The height η(H) of a node is the number of edges in the longest
path between that node and a leaf. Let S(H) denote a balanced separator of the subgraph
H. Further details on the definition and properties of T (G) can be found in the full version.

G. Goranci, M. Henzinger, and P. Peng 40:7

(Approximate) Schur Complement (ASC). For a given connected graph G = (V,E) and
a set K ⊂ V of terminals with 1 ≤ |K| ≤ |V | − 1, let N = V \ K. The partition of V
into N and K naturally induces the following partition of the Laplacian L(G) into blocks:
L(G) =

(LN LM

LT
M LK

)
. We remark that since G is connected and N and K are non-empty, one

can show that LN is invertible. We have the following definition of Schur complement.

I Definition 5 (Schur Complement). The (unique) Schur complement of a graph Laplacian
L(G) with respect to a terminal set K is S(G,K) := LK − LTML−1

N LM .

It is known that the matrix S(G,K) is a Laplacian for some graph G′ with vertex set K.

I Definition 6 (Approximate Schur Complement (ASC)). Given a graph G = (V,E,w),
K ⊂ V and its Schur complement S(G,K), we say that a graph H = (K,EH ,wH) is a
(1 ± ε)-approximate Schur complement (abbr. (1 ± ε)-ASC) with respect to K if ∀x ∈
R|K|, (1− ε)xTS(G,K)x ≤ xTL(H)x ≤ (1 + ε)xTS(G,K)x.

In particular, if L(H) = S(G,K), then we say H is a 1-ASC of G w.r.t. K.

ASC can be computed efficiently as guaranteed in the following lemma.

I Lemma 7 ([14]). Fix ε ∈ (0, 1/2) and γ ∈ (0, 1), and let G = (V,E,w) be a graph with
K ⊂ V . There is an algorithm ApproxSchur(G,K, ε, γ) that computes a (1± ε)-ASC H

of G with respect to K such that the following statements hold with probability at least 1− γ:
(1) The graph H has O(|K|ε−2 log(n/γ)) edges. (2) The total running time for computing
H is Õ(m log3(n/γ) + nε−2 log4(n/γ)).

3 Useful Properties of Approximate Schur Complement

Approximate Schur Complement as Vertex Effective Resistance Sparsifier. To maintain
effective resistances efficiently, it will be useful to consider the following notion of vertex
sparsifier that preserves pairwise effective resistances among a set of terminals.

I Definition 8 (Vertex Resistance Sparsifier (VRS)). Given a graph G = (V,E,w) with
K ⊂ V , we say that a graph H = (K,EH ,wH) is an (1± ε)-vertex resistance sparsifier (abbr.
(1±ε)-VRS) of G with respect to K if ∀s, t ∈ K, (1−ε)RG(s, t) ≤ RH(s, t) ≤ (1+ε)RH(s, t).

The lemma below relates ASC and VRS (see the full version for the proof.)

I Lemma 9. Let G = (V,E,w) be a graph with K ⊂ V . If H is an (1± ε)-ASC of G with
respect to K, then H is an 1/(1± ε)-VRS of G with respect to K.

Transitivity and Composability of ASCs. We will prove a transitivity and a composability
property of ASCs, which will enable us to compute the ASCs of all nodes of T (G) in a
bottom-up fashion. The corresponding proofs are deferred in the full version.

I Lemma 10 (Transitivity of ASCs). If H ′ is an (1± ε)-ASC of G w.r.t. K ′, and H is an
(1± ε)-ASC of H ′ w.r.t. K, where K ′ ⊇ K, then H is an (1± ε)2-ASC of G w.r.t. K.

Let G1 = (V1, E1) and G2 = (V2, E2) be edge-disjoint graphs with terminals K1 and K2,
respectively. Furthermore, assume that (V1 ∩ V2) ⊂ Ki, for i = {1, 2}. The merge of G1 and
G2 is the graph G = (V1 ∪ V2, E1 ∪ E2) with terminals K1 ∪K2 formed by identifying the
terminals in V1 ∩ V2. We denote this operation by G := G1 ⊕G2.

I Lemma 11 (Composition of ASCs). Let G := G1 ⊕ G2. If H ′1 is an (1 ± ε)-ASC of G1
with respect to K1, and H ′2 is an (1± ε)-ASC of G2 with respect to K2, then H ′ := H ′1 ⊕H ′2
is an (1± ε)-ASC of G with respect to K.

ESA 2018

40:8 Dynamic Effective Resistance on Separable Graphs

Algorithm 1: ApproxSchurNode(H, ∂(H), δ′).
1 Set γ = 1/n3.
2 if H is a leaf then
3 Set H ′ ← ApproxSchur(H, ∂(H), δ′, γ).
4 if H is a non-leaf then
5 Let c1(H), c2(H) be the children of H.
6 Let ci(H)′ be the ASC of ci(H), for i = 1, 2.
7 Set R← c1(H)′ ⊕φ c2(H)′ and E(R)← E(R) ∪X(H).
8 Set H ′ ← ApproxSchur(R, ∂(H), δ′, γ).
9 return H ′.

4 Dynamic Algorithms for Effective Resistances in Separable Graphs

In this section, we first present our fully dynamic algorithm for maintaining an ASC of
a
√
n-separable graph and then show how to extend it to dynamic effective resistances

algorithm. For simplicity, we assume the separator of G can be computed in Õ(n) time. We
defer the discussion on the general case, some implementation details and analysis to the full
version.

4.1 Dynamic Approximate Schur Complement
Let δ ∈ (0, 1). Let K ⊂ V be a set of terminals with |K| ≤ O(

√
n). We give a data-structure

for maintaining a (1± δ)-ASC of a
√
n-separable graph G with respect to a set K ′ of

√
n

vertices (which contains the terminal set K) that supports Insert and Delete operations
as defined before. In addition, it supports the following operation:

AddTerminal(u): Add the vertex u to the terminal set K, as long as |K| ≤ O(
√
n).

Data Structure. We compute and maintain a balanced separator S(G) of G that contains
K and satisfies that |S(G)| ≤ O(

√
n). We let K ′ = S(G) and we will maintain a (1± δ)-ASC

of G w.r.t. K ′. By definition of boundary vertices, K ′ = ∂(G). Let δ′ = δ
c logn+1 for some

constant c. In our dynamic algorithm, we will maintain a separator tree T (G) (see the full
version) such that for each node H ∈ T (G), we maintain its separator S(H) and a set X(H)
of edges of H, which is initially empty, and an ASC H ′ of H w.r.t. ∂(H). Throughout the
updates, the set X(H) will denote the subset of edges which are only contained in H while
contained in neither of its children. Let D(G, δ) denote such a data-structure. We recompute
D(G, δ) every Θ(

√
n) operations using the initialization below.

Initialization. We show how to efficiently compute the ASC H ′ for each node H from
T (G). We do this in a bottom-up fashion by first calling Algorithm 1 on each leaf node
and then on the non-leaf nodes, where ApproxSchur is the procedure from Lemma 7. In
what follows, whenever we compute an ASC, we assume that procedure ApproxSchur
from Lemma 7 is invoked on the corresponding subgraph and its boundary vertices, with
approximation parameter δ′ and error probability γ = 1

n3 . We will also assume that all the
calls to ApproxSchur are correct.

The following lemma shows that after invoking Algorithm 1 in a bottom-up fashion, we
have computed the ASC for every node in T (G).

G. Goranci, M. Henzinger, and P. Peng 40:9

Algorithm 2: UpdateApproxSchur(Stack Q).
1 while Q 6= ∅ do
2 Set H ← Q.Pop().
3 Set H ′ ← ApproxSchurNode(H, ∂(H), ε).

I Lemma 12. Let H ∈ T (G) be a node of height η(H) ≥ 0 and X(H) = ∅. Then H ′ =
ApproxSchurNode(H, ∂(H), ε) is an (1± δ′)η(H)+1-ASC of H with respect to ∂(H).

Proof. We proceed by induction on η(H). For the base case, i.e., η(H) = 0, H is a leaf node.
By Lemma 7 and Algorithm 1, H ′ is indeed a (1± δ′)-ASC of H with respect to ∂(H).

Let H be a non-leaf node, i.e. η(H) > 0. Let c1(H), c2(H) and c′1(H), c′2(H) be
defined as in Algorithm 1. By properties (2), (3) and (4) of T (G) and the fact that
X(H) = ∅, we have H = c1(H)⊕ c2(H). By induction hypothesis, it follows that ci(H)′ is an
(1± δ′)η(ci(H))+1-ASC of ci(H), for i = 1, 2. Using Lemma 11 and since η(ci(H)) + 1 = η(H),
for i = 1, 2, we get that R := c1(H)′ ⊕ c2(H)′ is an (1± δ′)η(H)-ASC of H with respect to
V (R) := ∂(c1(H)) ∪ ∂(c2(H)). Now, since V (R) ⊇ ∂(H) by property (4) of T (G) and by
Lemma 7, it follows that H ′ is an (1± δ′)-ASC of R with respect to ∂(H). Finally, applying
Lemma 10 on R and H ′ we get that H ′ is an (1± δ′)η(H)+1-ASC of H. J

Since δ′ = δ
c logn+1 and η(G) = O(logn), the graph G′ is a (1± δ)-ASC of G w.r.t. ∂(G).

Handling Edge Insertions. We now describe the Insert operation. Let us consider the
insertion of an edge e = (u, v) of weight w. We maintain a stack Q, which is initially set to
empty. We then update the root node by adding (u, v) with weight w to G, and push G onto
Q. During the traversal of T (G), our procedure maintains two pointers that point to the
current node H (initially set to G) and a node N (if any exists) that represents the node for
which u and v belong to different children of N , respectively. As long as we have not found
such a node N , and the current node H is not a leaf, we proceed as follows.

We examine the child of H that contains both u and v (if there is more than one, then we
just pick one of them). If u and v belong to the same child, say c(H), then we add this edge
to c(H) and update the current node H to c(H). We then push H onto Q. If, however, u
and v belong to different children, then we set N to be the current node H and add the edge
(u, v) to X(N), since u and v cannot appear together in the nodes of the lower levels. At this
point, this forces u and v to become boundary vertices in N and all other nodes descending
from N that contain either u or v. We handle this by making use of the AddBoundary()
procedure, depicted in Algorithm 4. Finally, we recompute the ASCs of the affected nodes
in a bottom-up fashion using the stack Q (as shown in Algorithm 2). This procedure is
summarized in Algorithm 3. We remark that for simplicity, we let Q.Push(H) denote the
event of pushing the pointer to H to the stack Q, for any node H.

After the pre-processing step and after each insertion/deletion of an edge, our augmented
separator tree T (G) satisfies the following invariant.

I Invariant 13. For every edge e in the current graph G exactly one of the following two
holds: (1) there is a leaf node H ∈ T (G) such that e ∈ E(H), (2) there is an internal node
H ∈ T (G) such that e ∈ X(H).

The following lemma guarantees that the updated graph G′ (i.e., the sparsifier of the root
node G) is a good estimate to the Schur complement of G with respect to the boundary, after
the execution of Insert(u, v) in Algorithm 3, and its proof is deferred to the full version.

ESA 2018

40:10 Dynamic Effective Resistance on Separable Graphs

Algorithm 3: Insert(u, v, w).
1 Let Q be an initially empty stack.
2 Set E(G)← E(G) ∪ {(u, v)}, Q.Push(G), H ← G and N ← nil.
3 while N = nil and H is a non-leaf do
4 if there exists a child of H that contains both u and v then
5 Let c(H) denote any such a child.
6 Set E (c(H))← E (c(H)) ∪ {(u, v)}.
7 Set H ← c(H).
8 Q.Push(H).
9 else

10 Set N ← H.
11 Set X(N)← X(N) ∪ {(u, v)}.
12 AddBoundary(u,N), AddBoundary(v,N).

13 UpdateApproxSchur(Q). // Update the ASCs of the nodes in Q

Algorithm 4: AddBoundary(u,N).
1 Let Q be an initially empty stack.
2 while N = nil do
3 if u 6∈ ∂(H) then
4 Set ∂(H)← ∂(H) ∪ {u}.
5 Q.Push(H).
6 if H is a non-leaf then
7 Let c(H) be the unique child that contains u.
8 Set H ← c(H).

9 if H is a leaf then
10 Set H ← nil.

11 UpdateApproxSchur(Q). // Update the ASCs of the nodes in Q

I Lemma 14. Let G′ be the updated sparsifier of the root node G, after the insertion of edge
(u, v). Then G′ is an (1± δ)-ASC of G with respected to ∂(G).

Handling Terminal Additions to the Boundary. We now describe the AddTerminal(u)
operation. It is implemented by simply invoking AddBoundary(u,G), where G is the root
of T (G). For the procedure AddBoundary(u,H), we maintain a stack Q, which is initially
set to empty. As long as the current H is a node in T (G), we first check whether u ∈ ∂(H).
If this is the case, then we simply do nothing as the ASC H ′ of H with respect to ∂(H)
contains u. Otherwise, we add u to ∂(H), and push the node H to Q. Next, if H is not a
leaf-node, let c(H) be the unique child that contains u. We then set c(H) to be our current
node H and perform the same steps as above, until we reach some leaf-node, in which case
we set H to nil. Finally, we recompute the ASCs of the affected nodes in a bottom-up
fashion using the stack Q. This procedure is summarized in Algorithm 4. The correctness of
this procedure can be shown similarly to the correctness of Insert().

G. Goranci, M. Henzinger, and P. Peng 40:11

Handing Edge Deletions and Running Times. The operation of deleting an edge can be
handled in a symmetric way as for handling edge insertions (see the full version). For all
three operations (i.e., Insert, Delete, AddTerminal), the running times are guaranteed
to be Õ(

√
n/δ2). Their analysis are deferred to the full version.

4.2 Extension to Dynamic All-Pairs Effective Resistances
Our dynamic effective resistance algorithm uses the dynamic algorithm for maintaining a
(1 ± δ)-ASC as a subroutine. Formally, to maintain (1 + ε)-approximate effective resist-
ances, we will invoke the dynamic ASC algorithm with parameter δ = ε/4, to handle edge
insertions/deletions, and terminal additions.

We now describe the query operation (for the case of all-pairs effective resistances). Given
s and t, we start by calling AddTerminal(s) and AddTerminal(t) from the dynamic
ASC data-structure. This ensures that both s and t are boundary nodes at the root node
G (if they were not previously). Thus we obtain a (1± δ)-ASC, denoted as G′, of the root
node G w.r.t. ∂(G) and run on G′ a nearly linear time algorithm for estimating the s− t
effective resistance (see the full version). Let ψ be such an estimate. For the correctness, by
Lemma 9, we have that G′ preserves all-pair effective resistances among vertices in ∂(G) of
G up to an 1/(1± δ) ≈ (1± 2δ) factor. Since we ensured that s and t are included in ∂(G),
the s− t effective resistance is approximated within the same factor. By a known result (see
the full version), it follows that the estimate ψ approximates the effective resistance between
s and t in G′, up to a (1± δ) factor. Combining the above guarantees, we get ψ gives an
(1± 2δ)(1± δ) ≤ (1± ε)-approximation to RG(s, t), by the choice of δ. The query time will
be guaranteed to be Õ(

√
n/ε2). Further details are deferred to the full version.

5 Lower Bounds for Partially Dynamic Effective Resistances

We now give a conditional lower bound for incrementally maintaining the s − t effective
resistance in O(

√
n)-separable graphs and prove Theorem 3. Our proof actually holds for

any algorithm that maintains a (1 +O(1
n36))-approximation of s− t effective resistance. The

lower bounds for the decremental setting and general graphs are deferred to the full version.

The reduction. We reduce the uMv problem (see the definition in the full version) with
parameters n1 = n2 := n0 to the s− t effective resistance problem as follows. Let M be the
n0 × n0 Boolean matrix of the uMv problem. Let n = n2

0 + 2n0 + 2. Let κ = 3(n− 1)6.
Given the matrix M, we construct a graph GM = (VM, E) as follows. (1) For each pair

1 ≤ i, j ≤ n0, we create two vertices aij and bij , and add an edge (aij , bij) if and only if
Mij = 1. (2) For each row i, we create a vertex ui and add edge (ui, aik) for each 1 ≤ k ≤ n0.
For each column j, we create a vertex vj and add edge (vj , bkj) for each 1 ≤ k ≤ n0. This
finishes the definition of GM. Note that VM = {aij , bij , 1 ≤ i, j ≤ n0} ∪ {ui, 1 ≤ i ≤
n0} ∪ {vj , 1 ≤ j ≤ n0}. For any vertex x ∈ VM, let degGM

(x) denote the degree of x in GM.
Now we add two new vertices t and s to GM. For any x ∈ {aij , bij , 1 ≤ i, j ≤ n0}, add

an edge (s, x) with weight κ− degGM
(x). Denote the resulting graph by G and note that G

contains |VM ∪ {s, t}| = n2
0 + 2n0 + 2 = n vertices.

Assume that G is started in a dynamic effective resistance data structure. We also
maintain some counters in the data structure. That is, we initialize a global counter Y := 0.
For each vertex x ∈ {ui, 1 ≤ i ≤ n0} ∪ {vj , 1 ≤ j ≤ n0}, we maintain a counter c(x) which is
initialized to be 0. We now explain how we use this data structure to determine uMv.

ESA 2018

40:12 Dynamic Effective Resistance on Separable Graphs

Once u arrives, for any i such that ui = 1, we insert an edge (t, ui) with weight 1, increase
Y and c(ui) by 1.
Once v arrives, for any j such that vj = 1, we insert an edge (t, vj) with weight 1, increase
Y and c(vj) by 1.
Insert an edge (s, t) with weight κ− Y . For each vertex x ∈ {ui, 1 ≤ i ≤ n0} ∪ {vj , 1 ≤
j ≤ n0}, insert an edge (s, x) with weight κ− c(x)− degGM

(x).
Perform a query EffectiveResistance(s, t) to obtain the (approximate) s− t effective
resistance in the final graph. Let λ = EffectiveResistance(s, t). If λ ≤ 1

κ + Y
κ3 +

Y (n0+1)
κ5 − 1

κ6 , then return 1; otherwise, return 0.

Analysis. Note that throughout the whole sequence of updates (which are only edge
insertions) and queries, the dynamic graph G is always O(

√
n)-separable, with a balanced

separator set S := {u1, · · · , un0} ∪ {v1, · · · , vn0} ∪ {s, t} of size O(
√
n).

We have the following lemma that shows an important property of our reduction. The
proof of the lemma is deferred to the end of this section.

I Lemma 15. For κ = 3(n−1)6, assume that EffectiveResistance(s, t) returns the exact
value of the s− t effective resistance in the final graph G. Then the following holds: (1) If
uMv = 1, then λ ≤ 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1
κ6 ; (2) If uMv = 0, then λ > 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1
κ6 .

Note that by the above lemma, the uMv problem can be solved according to our estimator
λ. Thus, the lower bound for the incremental setting in Theorem 3 follows by a reduction
from OMv conjecture to the uMv problem (see [19] and the full version of the paper) and by
noting that the total number of updates is O(n0) = O(

√
n) and the total number of queries

is 1.
In the following we prove Lemma 15. The proof is based on a connection between the

5-length cycle detection problem and the effective resistance problem.

Proof of Lemma 15. Let G denote the final graph of our reduction. Let H := G[VM ∪ {t}]
denote the subgraph induced by vertex set VM ∪ {t}. We observe that in the graph H, there
is a cycle of length 5 containing vertex t if and only if uMv = 1.

On the other hand, we can use our estimator λ to distinguish if H contains a 5-length
cycle incident to t or not. We let A ∈ R(n−1)×(n−1) denote the adjacency matrix of the
graph H. Note that all entries in A are either 1 or 0.

The first claim relates the 5-length cycle detection to the trace of a matrix related to A.
Recall that we let Xuv denote the entry of matrix X with row index corresponding to vertex
u and column index corresponding to vertex v.

I Claim 16. Let B = κ · I−A. If H contains a 5-length cycle incident to t, then (B−1)tt ≤
1
κ + Y

κ3 + Y (n0+1)
κ5 − 1.1

κ6 . If H does not contain a 5-length cycle incident to t, then (B−1)tt ≥
1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6 .

Proof. First we note that B is invertible, as it is strictly symmetric diagonally dominant.
Furthermore, it holds that κ ·B−1 = (I− 1

κ ·A)−1 and thus by the Neumann series expansion,
we have κ ·B−1 = (I − 1

κ ·A)−1 =
∑∞
i=0(− 1

κ)i ·Ai. This further implies that

(κ ·B−1)tt = 1Tt (
∞∑
i=0

(− 1
κ

)i ·Ai)1t =
∞∑
i=0

(− 1
κ

)i · 1Tt (Ai)1t =
∞∑
i=0

(− 1
κ

)i · (Ai)tt.

G. Goranci, M. Henzinger, and P. Peng 40:13

Now observe that since κ = 3(n − 1)6, the first six terms of the above power series
dominate. More precisely, note that (Ai)tt is the number of i-length paths from t to t, which
is at most (n− 1)i. Thus

∑∞
i=6|(−

1
κ)i · (Ai)tt| ≤

∑∞
i=6

1
κi (Ai)tt ≤

∑∞
i=6

1
κi (n− 1)i ≤ 0.9

κ5 .

Now observe that (A0)tt = Itt = 1; that Att = 0 since H is a simple graph; that
(A2)tt = degH(t) = Y , where the last equation follows from the definition of Y ; that (A3)tt =
0 since there is no triangle containing t; and that (A4)tt =

∑
w:(w,t)∈E

∑
x:(x,w)∈E 1 =∑

w:(w,t)∈E degGM
(w) = detH(t) · (n0 + 1) = Y (n0 + 1). Therefore,

If H contains a 5-length cycle incident to t, then (A5)tt ≥ 2, and thus (κ · B−1)tt ≤
1 + Y

κ2 + Y (n0+1)
κ4 − 2

κ5 + 0.9
κ5 = 1 + Y

κ2 + Y (n0+1)
κ4 − 1.1

κ5

If H has no 5-length cycle incident to t, then (A5)tt = 0, and thus (κ · B−1)tt ≥
1 + Y

κ2 + Y (n0+1)
κ4 − 0.9

κ5

This completes the proof of the claim. J

The following claim relates s− t effective resistance to B−1. The proof almost follows
from Lemma 23 in [41] (see also the full version for the proof).

I Claim 17. Let Λ = EG(s, t) and B = κ · I−A. Then it holds that Λ = (B−1)tt.

Finally, by the above two claims, if uMv = 1, then H contains a 5-length cycle incident
to t, and thus Λ = (B−1)tt ≤ 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1.1
κ6 ; if uMv = 0, then H does not contain

any 5-length cycle incident to t, and thus Λ = (B−1)tt ≥ 1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6 . The
statement of the lemma then follows from our assumption that λ = Λ.

Note that our lower bound actually holds if λ is a 1 + 1
κ6 = 1 +O(1

n36)-approximation of
Λ, by the above analysis and the inequality 1

κ6 (1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6) < 0.1
κ6 . J

References
1 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar

graph algorithms. In Proc. of the 57th FOCS, pages 477–486, 2016.
2 Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance

oracles for planar graphs via forbidden-set distance labels. In Proc. of the 44th STOC,
pages 1199–1218, 2012.

3 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On
fully dynamic graph sparsifiers. In Proc. of the 57th FOCS, pages 335–344, 2016.

4 Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows, spectrally thin
trees, and asymmetric tsp. In Proc. of the 56th FOCS, pages 20–39, 2015.

5 Daniel K Blandford, Guy E Blelloch, and Ian A Kash. Compact representations of separ-
able graphs. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 679–688. Society for Industrial and Applied Mathematics, 2003.

6 James R Bunch and John E Hopcroft. Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation, 28(125):231–236, 1974.

7 Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Efficient sampling
for gaussian graphical models via spectral sparsification. In Conference on Learning Theory,
pages 364–390, 2015.

8 Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-
Hua Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow
in undirected graphs. In Proc. of the 43rd STOC, pages 273–282, 2011.

9 Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup B. Rao, and Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n time.
In Proc. of the 46th STOC, pages 343–352, 2014.

ESA 2018

40:14 Dynamic Effective Resistance on Separable Graphs

10 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In European Sym-
posium on Algorithms, pages 594–604. Springer, 2007.

11 Michael Dinitz, Robert Krauthgamer, and Tal Wagner. Towards resistance sparsifiers. In
Proc. of the 18th APPROX, pages 738–755, 2015.

12 Peter G Doyle and J Laurie Snell. Random Walks and Electric Networks. Carus Mathem-
atical Monographs. Mathematical Association of America, 1984.

13 David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. Fully Dynamic Effective
Resistances. ArXiv e-prints, apr 2018. arXiv:1804.04038.

14 David Durfee, Rasmus Kyng, John Peebles, Anup B Rao, and Sushant Sachdeva. Sampling
random spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 730–742. ACM, 2017.

15 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator
based sparsification. i. planary testing and minimum spanning trees. J. Comput. Syst.
Sci., 52(1):3–27, 1996.

16 Gramoz Goranci, Monika Henzinger, and Pan Peng. The power of vertex sparsifiers in
dynamic graph algorithms. In Proc. of the 25th ESA, volume 87, pages 45:1–45:14, 2017.

17 Gramoz Goranci, Monika Henzinger, and Pan Peng. Dynamic effective resistances and
approximate schur complement on separable graphs. CoRR, abs/1802.09111, 2018. arXiv:
1802.09111.

18 Prahladh Harsha, Thomas P Hayes, Hariharan Narayanan, Harald Räcke, and Jaikumar
Radhakrishnan. Minimizing average latency in oblivious routing. In Proceedings of the
nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 200–207. Society
for Industrial and Applied Mathematics, 2008.

19 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proc. of the 47th STOC, pages 21–30, 2015.

20 Jacob Holm, Giuseppe F Italiano, Adam Karczmarz, Jakub Łacki, Eva Rotenberg, and
Piotr Sankowski. Contracting a planar graph efficiently. In 25th European Symposium on
Algorithms, ESA 2017. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl
Publishing, 2017.

21 Oscar H Ibarra, Shlomo Moran, and Roger Hui. A generalization of the fast lup matrix
decomposition algorithm and applications. Journal of Algorithms, 3(1):45–56, 1982.

22 Giuseppe F Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski. Decremental
single-source reachability in planar digraphs. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1108–1121. ACM, 2017.

23 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Im-
proved algorithms for min cut and max flow in undirected planar graphs. In Proc. of the
43rd STOC, pages 313–322, 2011.

24 Arun Jambulapati and Aaron Sidford. Efficient Õ(n/ε) spectral sketches for the laplacian
and its pseudoinverse. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2487–2503. SIAM, 2018.

25 Adam Karczmarz. Decrementai transitive closure and shortest paths for planar digraphs
and beyond. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 73–92. SIAM, 2018.

26 Ken-ichi Kawarabayashi and Bruce Reed. A separator theorem in minor-closed classes. In
Proc. of the 51st FOCS, pages 153–162. IEEE, 2010.

27 Jonathan A Kelner, Gary L Miller, and Richard Peng. Faster approximate multicommodity
flow using quadratically coupled flows. In Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, pages 1–18. ACM, 2012.

http://arxiv.org/abs/1804.04038
http://arxiv.org/abs/1802.09111
http://arxiv.org/abs/1802.09111

G. Goranci, M. Henzinger, and P. Peng 40:15

28 Douglas J Klein and Milan Randić. Resistance distance. Journal of mathematical chemistry,
12(1):81–95, 1993.

29 Philip N. Klein and Sairam Subramanian. A fully dynamic approximation scheme for
shortest paths in planar graphs. Algorithmica, 22(3):235–249, 1998.

30 Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proc. of the 48th
STOC, 2016.

31 Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians -
fast, sparse, and simple. In Proc. of the 57th FOCS, pages 573–582, 2016.

32 Huan Li, Stacy Patterson, Yuhao Yi, and Zhongzhi Zhang. Maximizing the Number of
Spanning Trees in a Connected Graph. ArXiv e-prints, 2018. arXiv:1804.02785.

33 Huan Li and Zhongzhi Zhang. Kirchhoff index as a measure of edge centrality in weighted
networks: Nearly linear time algorithms. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2377–2396. SIAM, 2018.

34 Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized nested dissection.
SIAM Journal on Numerical Analysis, 16(2):346–358, 1979.

35 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

36 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Proc. of the 54th FOCS, pages 253–262, 2013.

37 Aleksander Madry. Computing maximum flow with augmenting electrical flows. In Proc.
of the 57th FOCS, pages 593–602, 2016.

38 Aleksander Mądry, Damian Straszak, and Jakub Tarnawski. Fast generation of random
spanning trees and the effective resistance metric. In Proceedings of the twenty-sixth annual
ACM-SIAM symposium on Discrete algorithms, pages 2019–2036. Society for Industrial and
Applied Mathematics, 2015.

39 Gary L. Miller and Richard Peng. Approximate maximum flow on separable undirected
graphs. In Proc. of the 24th SODA, pages 1151–1170, 2013.

40 Gary L Miller, Shang-Hua Teng, William Thurston, and Stephen A Vavasis. Separators
for sphere-packings and nearest neighbor graphs. Journal of the ACM (JACM), 44(1):1–29,
1997.

41 Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and David P.
Woodruff. Spectrum Approximation Beyond Fast Matrix Multiplication: Algorithms and
Hardness. LIPIcs, 94:8:1–8:21, 2018.

42 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse. In Proceedings
of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 509–517.
IEEE Computer Society, 2004.

43 Aaron Schild. An almost-linear time algorithm for uniform random spanning tree genera-
tion. arXiv preprint arXiv:1711.06455, 2017.

44 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011.

45 Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs.
In Proc. of the 1st ESA, pages 372–383, 1993.

46 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages
887–898. ACM, 2012.

ESA 2018

http://arxiv.org/abs/1804.02785

Buffered Count-Min Sketch on SSD: Theory and
Experiments
Mayank Goswami
Queens College, City University of New York
mayank.goswami@qc.cuny.edu

Dzejla Medjedovic
International University of Sarajevo
dzmedjedovic@ius.edu.ba

Emina Mekic
Sarajevo School of Science and Technology
emina.mekic@stu.ssst.edu.ba

Prashant Pandey
Stony Brook University, New York
ppandey@cs.stonybrook.edu

Abstract
Frequency estimation data structures such as the count-min sketch (CMS) have found numer-
ous applications in databases, networking, computational biology and other domains. Many
applications that use the count-min sketch process massive and rapidly evolving data sets. For
data-intensive applications that aim to keep the overestimate error low, the count-min sketch
becomes too large to store in available RAM and may have to migrate to external storage (e.g.,
SSD.) Due to the random-read/write nature of hash operations of the count-min sketch, simply
placing it on SSD stifles the performance of time-critical applications, requiring about 4-6 random
reads/writes to SSD per estimate (lookup) and update (insert) operation.

In this paper, we expand on the preliminary idea of the buffered count-min sketch (BCMS)
[Eydi et al., 2017], an SSD variant of the count-min sketch, that uses hash localization to scale
efficiently out of RAM while keeping the total error bounded. We describe the design and
implementation of the buffered count-min sketch, and empirically show that our implementation
achieves 3.7×-4.7× speedup on update and 4.3× speedup on estimate operations compared to
the traditional count-min sketch on SSD.

Our design also offers an asymptotic improvement in the external-memory model over the
original data structure: r random I/Os are reduced to 1 I/O for the estimate operation. For a
data structure that uses k blocks on SSD, w as the word/counter size, r as the number of rows,
M as the number of bits in the main memory, our data structure uses kwr/M amortized I/Os
for updates, or, if kwr/M > 1, 1 I/O in the worst case. In typical scenarios, kwr/M is much
smaller than 1. This is in contrast to O(r) I/Os incurred for each update in the original data
structure.

Lastly, we mathematically show that for the buffered count-min sketch, the error rate does
not substantially degrade over the traditional count-min sketch. Specifically, we prove that for
any query q, our data structure provides the guarantee: Pr[Error(q) ≥ nε(1 + o(1))] ≤ δ + o(1),
which, up to o(1) terms, is the same guarantee as that of a traditional count-min sketch.

2012 ACM Subject Classification Theory of computation → Data structures and algorithms
for data management, Theory of computation → Streaming models, Theory of computation →
Database query processing and optimization (theory)

Keywords and phrases Streaming model, Count-min sketch, Counting, Frequency, External
memory, I/O efficiency, Bloom filter, Counting filter, Quotient filter

© Mayank Goswami, Dzejla Medjedovic, Emina Mekic, and Prashant Pandey;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 41; pp. 41:1–41:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mayank.goswami@qc.cuny.edu
mailto:dzmedjedovic@ius.edu.ba
mailto:emina.mekic@stu.ssst.edu.ba
mailto:ppandey@cs.stonybrook.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Buffered Count-Min Sketch on SSD: Theory and Experiments

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.41

Acknowledgements We gratefully acknowledge support from CNS 1408695, CCF 1439084, IIS
1247726, CCF 1725543, SPX, CCF 1716252, CCF 1617618, CNS-1755615, CCF 1755791, and
from Sandia National Laboratories.

1 Introduction

Applications that generate and process massive data streams are becoming pervasive [3, 18,
19, 14, 25] across many domains in computer science. Common examples of streaming data
sets include financial markets, telecommunications, IP traffic, sensor networks, textual data,
etc [3, 10, 26, 7]. Processing fast-evolving and massive data sets poses a challenge to traditional
database systems, where commonly the application stores all data and subsequently does
queries on it. In the streaming model [3], the data set is too large to be completely stored
in the available memory, so every item is seen and processed once — an algorithm in this
model performs only one scan of data, and uses sublinear local space.

The streaming scenario exhibits some limitations on the types of problems we can solve
with such strict time and space constraints. A classic example is the heavy hitter problem
HH(k) on the stream of pairs (at, ct), where at is the item identifier, and ct is the count of
the item at timeslot t, with the goal of reporting all items whose frequency is at least n/k,
n =

∑T
t=1 ct. The general version of the problem with the exception of when k is a small

constant1, can not be exactly solved in the streaming model [22, 26], but the approximate
version of the problem, ε-HH(k), where all items of the frequency at least n/k − εn are
reported, and an item with larger error might be reported with small probability δ, is
efficiently solved with the count-min sketch [11] data structure. The count-min sketch
accomplishes this in O(ln(1/δ)/ε) space, usually far below linear space in most applications.

The count-min sketch [11] has been extensively used to answer heavy hitters, top k

queries and other popularity measure queries, the central problems in the streaming context,
where we are interested in extracting the essence from an impractically large amount of data.
Common applications include displaying the list of bestselling items, the most clicked-on
websites, the hottest queries on the search engine, most frequently occurring words in a large
text, and so on [24, 19, 27].

The count-min sketch (CMS) is a hashing-based, probabilistic, and lossy representation
of a multiset, that is used to answer the count of an item a (number of times a appears in a
stream). It has two error parameters: 1) ε, which controls the overestimation error, and 2) δ,
which controls the failure probability of the algorithm. The CMS provides the guarantee
that the estimation error for any item a is more than εn with probability at most δ. If we
set r = ln(1/δ) and c = e/ε, the CMS is implemented using r hash functions as a 2D array
of dimensions r · c.

When ε and δ are constants, the total overestimate grows proportionately with n, the
size of the count-min sketch remains small, and the data structure easily fits in smaller and
faster levels of memory. For some applications, however, the allowed estimation error of εn
is too high when ε is fixed. Consider an example of n = 230, where δ = 0.01 and ε = 2−26,
hence the overestimate is 16, and the total data structure size of 3.36GB, provided each
counter uses 4 bytes. However, if we double the data set size, then the total overestimate
also doubles to 32 if ε stays the same. On the other hand, if we want to maintain the fixed
overestimate of 16, then the data structure size doubles to 6.72GB.

1 When k ≈ 2 this problem goes by the name of majority element.

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.41

M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey 41:3

Figure 1 The effect of increasing the count-min sketch size on the update operation cost in RAM.

In this paper, we expand on the preliminary idea of the buffered count-min sketch
(BCMS) [13], an SSD variant of the traditional count-min sketch data structure, that scales
efficiently to large data sets while keeping the total error bounded. Our work expands on the
previous work by introducing a detailed design, implementation, and experiments, as well as
mathematical analysis of the new data structure (our original paper [13], which, to the best
of our knowledge is the only attempt thus far to scale the count-min sketch to SSD, contains
only the outline of the data structure). Our analysis is performed in the external-memory
model [1], which emphasizes the cost of I/O operations over CPU computation. In the
external-memory model, the unit cost is a block transfer of size B between the disk of infinite
size and the main memory of size M (for most input sizes N , M << N .)

To demonstrate the issues arising from a growing count-min sketch and storing it in lower
levels of memory, we run a mini in-RAM experiment for count-min sketch sizes 4KB-64MB.
In Figure 1, we see that to maintain the same error, the cost of update will increase as the
data structure is being stored in the lower levels of memory, even though we keep the number
of hash functions fixed for all data structure sizes. The appropriate peak in the cost is visible
at the border of L2 and L3 cache (at 3MB).

Asymptotically, storing the unmodified count-min sketch on SSD or a disk is inefficient,
given that each estimate and update operation needs r hashes, which results in O(r) random
reads/writes to SSD, far below the desired throughput for most time-critical streaming
applications.

Another context where we see the CMS becoming large even when ε is fixed is in some
text applications, where the number of elements inserted in the sketch is quadratic in the
original text size. For instance, [17] uses the CMS to record distributional similarity on the
web, where each pair of words is inserted as a single item into the CMS, and 90GB of text
requires a CMS of 8GB.

We focus on scenarios where the allowed estimation error is sublinear in n. For example,
what if we want the estimation error to be no larger than n/ logn, or

√
n? These scenarios

correspond to ε = 1/ logn or 1/
√
n, and now for even moderately large values of n, the

count-min sketch becomes too large to fit in main memory. Given more modest condition,
such as ε = o(1/M), where the memory is of size M , the count-min sketch is unlikely to fit
in memory. We will assume that 1/n ≤ ε << 1/M . Higher values of ε do not require the
count-min sketch to be placed on disk, and lower values of ε mean exact counts are desired.

ESA 2018

41:4 Buffered Count-Min Sketch on SSD: Theory and Experiments

1.1 Results
1. We describe the design and implementation of the buffered count-min sketch, and

empirically show that our implementation achieves 3.7×−4.7× the speedup on update
and 4.3× speedup on estimate operations.

2. Our design also offers an asymptotic improvement in the external-memory model [1]
over the original data structure: O(r) random I/Os are reduced to 1 I/O for estimate.
For a data structure that uses k blocks on SSD, w as the word/counter size, r as the
number of rows, M as the number of bits in main memory, our data structure uses
kwr/M amortized I/Os for updates, or, if kwr/M > 1, 1 I/O in the worst case. In typical
scenarios, kwr/M << 1. This is in contrast to O(r) I/Os incurred for each update in the
original data structure.

3. We mathematically show that for the buffered count-min sketch, the error rate does not
substantially degrade over the original count-min sketch. Specifically, we prove that for
any query q, our data structure provides the following guarantee:

Pr[Error(q) ≥ nε(1 + o(1))] ≤ δ + o(1).

2 Background

The streaming model represents many real-life situations where the data is produced rapidly
and on a constant basis. For example, sensor networks [19], monitoring web traffic [23],
analyzing text [17], and monitoring satellites orbiting the Earth [16], etc.

Heavy hitters, top-k queries, iceberg queries, and quantiles [25, 19, 3] are some of the
most central problems in the streaming context, where we wish to extract general trends
from a massive data set. The count-min sketch has proved useful in such contexts for its
space-efficiency and providing count estimates [11, 18].

The count-min sketch can be well illustrated using its connection to the Bloom filter [5, 6].
Both data structures are lossy and space-efficient representations and used to reduce disk
accesses in time-critical applications. The Bloom filter answers membership queries and
occasionally returns false positives while the count-min sketch answers frequency queries and
occasionally returns overestimates. Both data structures are hashing-based and suffer from
similar issues when placed directly on SSDs or rotating disks.

There have been earlier attempts to scale Bloom filters to SSD using buffering and hash
localization [8, 12]. Our paper employs similar methods to those in [8, 12]. The improvements,
both in our case and in the case of the Buffered Bloom filter [8] are achieved at the expense
of having an extra hash function that helps determine the page the item belongs to.

Work has also been done in designing counting filters [4, 20], such as the counting quotient
filter (CQF) and its SSD variant, the cascade filter (write-optimized quotient filter) [4].
However, there is an important distinction between counting filter data structures and the
count-min sketch. The CQF gives exact counts for most of the elements given that the
CQF has small false-positive error. However, since errors are independent, the CQF does
not offer guarantees on the overestimate. For example, two highly occurring elements in
a multiset can collide with each other and both will have large overcounts. On the other
hand, the count-min sketch does not give exact counts of elements but offers a guarantee
that overestimate will be smaller than εn with a probability of δ

A similar data structure to count-min sketch is count-sketch [9]. Count sketch offers
tighter error bounds than traditional count-min sketch, expressed through L2-norm as oppose
to L1-norm. However, the error is two-sided, and gains in accuracy require the factor of ε

M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey 41:5

blowup in space. The count-sketch can be advisable where the smaller ε is desired, however,
that would require a much larger data structure. Also, the count-min sketch is more widely
used and applicable and this is why we choose to analyze its SSD performance. One can also
hypothesize that extensions of the count-sketch to disk would benefit from the same hash
localization and buffering techniques as did the count-min sketch given their almost identical
structure.

2.1 External-Memory Model

We use the external-memory model or disk-acces machine (DAM) model [1] to analyze the
on-SSD performance of our data structure. DAM model captures the essential feature of
modern computers, where the CPU computation is orders-of-magnitude cheaper than moving
data between different levels of memory. This deems the cost of I/O transfers the main
bottleneck in many data-intensive applications. In the DAM model, memory is made up of
two levels, main memory of size M and disk of infinite size, and data is transferred between
the two levels using blocks of size B, where usually M = Θ(B2). Once data is in the memory,
all computations are free, and the performance is measured solely by the number of disk
transfers performed. Even though the DAM model only shows the communication between
RAM and disk, it is a useful analogy for any two levels of memory where one is small and fast
and the other one is large and slow (i.e., different cache levels). Therefore, the problem size
need not be that large for the I/O effects to kick in and the DAM model to be applicable.

2.2 Count-Min Sketch: Preliminaries

In the streaming model, we are given a stream A of pairs (ai, ci), where ai denotes the item
identifier (e.g., IP address, stock ID, product ID), and ci denotes the count of the item. Each
pair Xi = (ai, ci) is an item within a stream of length T , and the goal is to record total sum
of frequencies for each particular item ai.

For a given estimation error rate ε and failure probability δ, define r = ln(1/δ) and
c = e/ε. The count-min sketch is represented via a 2D matrix with c buckets (columns),
r rows, implemented using r hash functions (one hash function per row). CMS has two
operations: UPDATE(ai) and ESTIMATE(ai), the respective equivalents of insert and lookup,
and they are performed as follows:

1. UPDATE(ai) inserts the pair by computing r hash functions on ai and incrementing
appropriate slots determined by the hashes by the quantity ci. That is, for each hash
function hj , 1 ≤ j ≤ r, we set CMS[j][hj(ai)] = CMS[j][hj(ai)] + ci. Note that in this
paper, we use ci = 1, so every time an item is updated, it is just incremented by 1.

2. ESTIMATE(ai) reports the frequency of ai which can be an overestimate of the true
frequency. It does so by calculating r hashes and taking the minimum of the values found
in appropriate cells. In other words, we return min1≤j≤r(CMS[j][hj(ai)]). Because
different elements can hash to the same cells, the count-min sketch can return the
overestimated (never underestimated) value of the count, but in order for this to happen,
a collision needs to occur in each row. The estimation error is bounded; the data structure
guarantees that for any particular item, the error is within the range εn, with probability
at least 1− δ, i.e., Pr[Error(q) ≥ εn] ≤ δ.

ESA 2018

41:6 Buffered Count-Min Sketch on SSD: Theory and Experiments

3 Buffered Count-Min Sketch

In this section, we describe the buffered count-min sketch, an adaptation of the count-min
sketch to SSD. The traditional CMS, when placed on external storage, exhibits performance
issues due to random-write nature of hashing. Each update operation in the CMS requires
r = ln(1/δ) writes to different rows and columns of the CMS. On a large data structure, these
writes become destined to different pages on disk, causing the update to perform O(ln(1/δ))
random SSD page writes. For high-precision CMSs, where δ = 0.001%− 0.01%, this can be
between 5-7 writes to SSD, which is unacceptable in a high-throughput scenario.

To solve this problem, we implement, analyze, and empirically test the data structure
presented in [13] that outlines three adaptations to the original data structure:
1. Partitioning the CMS into pages and column-first layout: We logically divide the CMS on

SSD into pages of block size B. CMS with r rows, c columns, cell size w, and a total of
S = cr w-bit counters, contains k pages P1, P2, P3, . . . , Pk, where k = S/B and each page
spans contiguous B/r columns 2: Pi spans columns [B(i− 1)/r + 1, Bi/r]. To improve
cache-efficiency, the CMS is laid out on disk in column-first order which allows each
logical page to be laid out sequentially in memory. Thus, each read/write of a logical
page requires at most 2 I/Os.

2. Hash localization: We direct all hashes of an element to a single logical page in the CMS.
The page is determined by an additional hash function h0 : [1, k]. The subsequent r hash
functions map to the columns inside the corresponding logical page, i.e., the range of
h1, h2, . . . , hr for an element e is [B(h0(e)− 1)/r + 1, Bh0(e)/r]. This way, we direct all
updates and reads related to an element to one logical page.

3. Buffering: When an update operation occurs, the hashes produced for an element are
first stored inside an in-memory buffer. The buffer is partitioned into sub-buffers of
equal size S1, S2, . . . , Sk, and they directly correspond to logical pages on disk in that
Si stores the hashes for updates destined for page Pi. Each element first hashes using
h0, which determines in which sub-buffer the hashes will be temporarily stored for this
element. Once the sub-buffer Si becomes full, we read the page Pi from the CMS, apply
all updates destined for that page, and write it back to disk. The capacity of a sub-buffer
is M/k hashes, which is equivalent to M/kwr elements so the cost of an update becomes
kwr/M << 1 I/O.

Algorithm 1 shows the pseudocode for UPDATE(ai) operation and Algorithm 2 shows
the pseudocode for ESTIMATE(ai) operation. We use murmurhash [2] as our hash function.
In the buffered count-min sketch, there is no buffering in ESTIMATE(ai) operation and it
is optimized for the worst-case single lookups and mixed (i.e., simultaneous updates and
estimates) workloads. The ESTIMATE(ai) first computes the correct sub-buffer using h0, and
flushes the corresponding sub-buffer to SSD page in case some updates were present. Once it
applies the necessary changes to the page, it reads the corresponding CMS cells specified by
r hashes and returns the minimum estimate.

4 Analysis of Buffered Count-Min Sketch

In this section, we show that the buffering and hash localization do not substantially degrade
the error guarantee of the buffered count-min data structure. Fix a failure probability
0 < δ < 1 and let 0 < ε(n) < 1 be the function of n controlling the estimation error. Let

2 For most practical configurations the page size B is larger than the number of rows r.

M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey 41:7

Algorithm 1 Buffered Count-Min Sketch - UPDATE function.
1 Require : key , r
2 subbufferIndex i := murmur0(key);
3 for i:=1 to r do
4 hashes [i] := murmur i(key);
5 end for
6 AppendToBuffer (hashes , subbufferIndex);
7
8 if isSubbufferFull (subbufferIndex) then
9 bcmsBlock := readDiskPage (subbufferIndex);

10 for each entry in Subbuffer [subbufferIndex] do
11 for each index in entry do
12 pageStart := calculatePageStart (subbufferIndex);
13 offset := pageStart + entry[index];
14 bcmsBlock [offset][index]++;
15 end for
16 end for
17 writeBcmsPageBackToDisk (bcmsBlock);
18 clearBuffer (subbufferIndex);
19 end if

Algorithm 2 Buffered Count-Min Sketch - ESTIMATE function.
1 Require : key , k
2 subbufferIndex i := murmur0(key);
3 pageStart := calculatePageStart (subbufferIndex);
4 bcmsBlock := readDiskPage (subbufferIndex);
5
6 if isSubbufferNotEmpty (subbufferIndex) then
7 for each entry in Subbuffer [subbufferIndex] do
8 for each index in entry do
9 offset := pageStart + entry[index];

10 bcmsBlock [offset][index]++;
11 end for
12 end for
13 clearBuffer (subbufferIndex);
14 end if
15
16 for i:=1 to k do
17 value := murmur i(key);
18 offset := pageStart + value;
19 estimation := bcmsBlock [offset][i - 1];
20 estimates [i] := estimation ;
21 end for
22 writeBcmsPageBackToDisk (bcmsBlock);
23 return min(estimates)

ESA 2018

41:8 Buffered Count-Min Sketch on SSD: Theory and Experiments

Figure 2 UPDATE operation in the buffered count-min sketch. In-RAM buffer is divided into
sub-buffers and when a sub-buffer is full all updates are flushed to the corresponding page on disk.

r = ln(1/δ) and c = e/ε. The traditional count-min sketch uses S = cr = (e/ε) ln(1/δ)
counters/words of space. Recall that for our purposes, 1/n ≤ ε(n) << 1/M .

Let k = S/B be the number of blocks occupied by the buffered count-min sketch. We
assume a block can hold B counters. Our analysis will assume the following mild conditions:

Assumption 1: We assume that n is sufficiently larger than the number of blocks k,
n = ω(k(log k)3) suffices. Since k depends inversely on ε(n), this assumption essentially
means that ε(n) = ω(1/n).

Assumption 2: We assume that limn→∞ ε(n) = 0.
Both conditions are satisfied, e.g., when ε(n) = 1/ logn or 1/nc for any c < 1.
For brevity, we will drop the dependence of ε(n) on n, and write the error rate as just ε,

however it is important to note that ε is not a constant.

I Theorem 1. The Buffered-Count-Min-Sketch is a data structure that uses k blocks of space
on disk and for any query q,
1. returns ESTIMATE(q) in 1 I/O and performs UPDATE(q) in kwr/M I/Os amortized, or, if

kwr/M > 1, in one I/O worst case.
2. Let Error(q) = ESTIMATE(q) - TrueFrequency(q). Then for any C ≥ 1,

Pr[Error(q) ≥ nε(1 +
√

(2(C + 1)k log k)/n)] ≤ δ +O((εB/e)C).

Remark: By Assumption 1,
√

(2(C + 1)k log k)/n is o(1) (in fact, it is o(1/ log k)). By
Assumption 2, (εB/e)C is o(1). Thus we claim that the buffered count-min-sketch gives
almost the same guarantees as a traditional count-min sketch, while obtaining a factor r
speedup in queries. The guarantee for estimates taking 1 I/O is apparent from construction,
as only one block needs to be loaded3.

The proof is a combination of the classical analysis of CMS and the maximum load of
balls in bins when the number of bins is much smaller than the number of balls. Also, note
that unlike the traditional CMS, the errors for a query q in different rows are no longer
independent (in fact, they are positively correlated: a high error in one row implies more
elements were hashed by h0 to the same bucket as q).

3 In practice, we may need 2 I/Os due to block-page alignment, but never more than 2.

M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey 41:9

The hash function h0 maps into k buckets, each having size B (and so we will also call
them blocks). Each bucket can be thought of as a r ×B/r matrix. Note that r = ln(1/δ),
and B/r = e/(εk). We assume that h0 is a perfectly random hash function, and, abusing
notation, identify a bucket/block with a bin, where h0 assigns elements (balls) to one of the
k buckets (bins).

In this scenario we use Lemma 2(b) from [21] and adapt it to our setting.

I Lemma 2. (Lemma 2(b) from [21]) Let B(n, p) denote a Binomial distribution with
parameters n and p, and q = 1− p. If t = np+ o((pqn)2/3) and x := t−np√

pqn tends to infinity,
then

Pr[B(n, p) ≥ t] = e−x
2/2−log x− 1

2 logπ+o(1).

Let M(n, k) denote the maximum number of elements that fall into a bucket, when
hashed by h0.

I Lemma 3. Let C ≥ 1 and t = n/k +
√

2(C + 1)n log k
k . Then

Pr[M(n, k) ≤ t] ≥ 1− 1/kC .

Proof. We first check that t satisfies the conditions of Lemma 2. Since h0 is uniform, p = 1/k
(i.e., each bucket is equally probable), and np = n/k. We need to check that the extra
term in t,

√
2(C + 1)n log k

k is o((n(1 − 1/k)/k)2/3). This is precisely the condition that
n = ω(k(log k)3) (Assumption 1).

Next we apply Lemma 2. In our case,

x =

√
2(C + 1)n log k/k
n(1− 1/k)/k =

√
2(C + 1) log k(1 + 1/k − 1),

Now by assumption 2, ε(n) goes to zero as n goes to infinity, and so k ∝ 1/ε(n) goes to
infinity, and therefore x goes to infinity as n goes to infinity. Thus we have that the number
of elements in any particular bucket (which follows a B(n, 1/k) distribution) is larger than t
with probability e−x2/2−log x− 1

2 logπ+o(1) ≤ e−x2/2. Putting in x =
√

2(C + 1) log k(1 + 1
k−1),

we get x2/2 = (C + 1) log k(1 + 1/(k− 1) ≥ (C + 1) log k, and thus the probability is at most
e−(C+1) log k = 1/kC+1.

Thus the probability that the maximum number of balls in a bin is more than t is bounded
(by the union bound) by k ∗ (1/k)C+1 = (1/k)C , and the lemma is proved. J

Now that we know that with probability as least 1− 1/kC , no bucket has more than t
elements, we observe that a bucket serves as a “mini” CMS for the elements that hash to
it. In other words, let n(q) be the number of elements that hash to the same bucket as q
under h0. The expected error in the ith row of the mini-CMS for q (the entry for which is
contained inside the bucket of q), is E[Errori(q)] = n(q)/(B/r) = n(q)εk/e.

By Markov’s inequality Pr[Errori(q) ≥ n(q)kε] ≤ 1/e.
Let α = tεk/e = (n/k +

√
(2(C + 1)n log k)/k)εk/e = (nε/e)(1 +

√
(2(C + 1)k log k)/n).

We now compute the bound on the final error (after taking the min) as follows.

Pr(Error(q) ≥ eα) = Pr(Errori(q) ≥ eα ∀i ∈ {1, · · · , r})
= Pr(Errori(q) ≥ eα ∀i| n(q) ≤ t)Pr(n(q) ≤ t)
+ Pr(Errori(q) ≥ eα ∀i| n(q) ≥ t)Pr(n(q) ≥ t)
≤ (1/e)r + (1/k)C

= δ + 1/kC ,

ESA 2018

41:10 Buffered Count-Min Sketch on SSD: Theory and Experiments

where the second last equality follows from Markov’s inequality on Errori(q) and Lemma 3.
Finally, by observing that for a fixed δ, k = O(e/Bε), the proof of the theorem is complete.

5 Evaluation

In this section, we evaluate our implementation of the buffered count-min sketch. We compare
the buffered count-min sketch against the (traditional) count-min sketch. We evaluate each
data structure on two fundamental operations, update and estimate. We evaluate estimate
operation for a set of elements chosen uniformly at random.

In our evaluation, we address the following questions about how the performance of the
buffered count-min sketch compares to the count-min sketch:
1. How does the update throughput in the buffered count-min sketch compare to the

count-min sketch on SSD?
2. How does the estimate throughput in the buffered count-min sketch compare to the

count-min sketch on SSD?
3. What is the effect of hash localization in the buffered count-min sketch on the frequency

overestimate compared to the frequency overestimate in the count-min sketch?
4. What is the effect of changing the RAM-size-to-sketch-size ratio on the update and

estimate performance?

5.1 Experimental setup
To answer the above questions, we evaluate the performance of the buffered count-min sketch
and the (traditional) count-min sketch on SSD by scaling the sketch out of RAM. For SSD
benchmarks, we use four different RAM-size-to-sketch-size ratios: 2, 4, 8, and 16. The
RAM-size-to-sketch-size ratio is the ratio of the size of the available RAM and the size of the
sketch on SSD. To do this, we fix the size of the available RAM to ≈ 64MB and increase the
sketch size to manipulate the ratio. Note that even though 64MB is a rather modest RAM
size, we are primarily interested in observing the changes in performance when the ratio
between RAM and sketch on SSD changes — it is this ratio that determines the frequency
of flushing, and results on a 64MB RAM size should extend to any other RAM/SSD sizes,
if the ratio is preserved. The page size in all our benchmarks was set to 4096B. In all the
benchmarks, we measure the throughput (operations per second) to evaluate the update and
estimate performance.

To measure the update throughput, we first calculate the number of elements we can insert
in the sketch using calculations described in Section 5.2. During an update operation, we
generate 64-bit integers online from a uniform-random distribution using the pseudo-random
number generator in C++. This way, we do not use any extra memory to store the set of
integers to be added to the sketch. We then measure the total time taken to update the
given set of elements in the sketch. Note that for the buffered count-min sketch, we make
sure to flush all the remaining updates from the buffer to the sketch on SSD after the last
update and include the time to do that in the total time.

To measure the estimate throughput, we query for the estimate of elements drawn from a
uniform-random distribution and measure the throughput. The workload in the estimate
benchmark simulates a real-world query workload where some elements may not be present
in the sketch and the estimate operation will terminate early thereby requiring fewer I/Os.

For all the estimate benchmarks, we first perform the update benchmark and write the
sketch to SSD. After the update benchmark, we flush all caches (page cache, directory entries,
and inodes). We then map the sketch into RAM and perform estimate queries on the sketch.

M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey 41:11

Table 1 Size, width, and depth of the sketch and the number of elements inserted in count-
min sketch and buffered count-min sketch in our benchmarks (update, estimate, and overestimate
calculation).

Size Width Depth #elements

128MB 3355444 5 9875188

256MB 6710887 5 19750377

512MB 13421773 5 39500754

1GB 26843546 5 79001508

This way we make sure that the sketch is not already cached in kernel caches from the update
benchmark.

We compare the overestimates in the buffered count-min sketch and count-min sketch for
all the four sketch sizes for which we perform update and estimate benchmarks. To measure
the overestimates, we first perform the update benchmark. However, during the update
benchmark, we also store each inserted element in a multiset. Once updates are done, we
iterate over the multiset and query for the estimate of each element in the multiset. We then
take the difference of the count returned from the sketch and the actual count of the element
to calculate the overestimate.

For SSD-based experiments, we allocate space for the sketch by mmap-ing it to a file on
SSD. We then control the available RAM to the benchmarking process using cgroups. We
fix the RAM size for all the experiments to be ≈ 67MB. We then increase the size of the
sketch based on the RAM-size-to-sketch-size ratio of the particular experiment. For the
buffered count-min sketch, we use all the available RAM as the buffer. Paging is handled
by the operating system based on the disk accesses. The point of these experiments is to
evaluate the I/O efficiency of sketch operations.

All benchmarks were performed on a 64-bit Ubuntu 16.04 running Linux kernel 4.4.0-
98-generic. The machine has Intel Skylake CPU U (Core(TM) i7-6700HQ CPU @ 2.60GHz
with 4 cores and 6MB L3 cache) with 32 GB RAM and 1TB Toshiba SSD.

5.2 Configuring the sketch
In our benchmarks, we take as input δ, overestimate O (= εn), and the size of the sketch S
as configuration parameters. The depth of the sketch D is dln 1

δ e. The number of cells C is
S/CELL_SIZE. And width of the sketch is de/εe.

Given these parameters, we calculate the number of elements n to be inserted in the
sketch as C×O

D×e . In all our experiments, we fix δ to 0.01 and maximum overestimate to 8
and change the sketch size. Table 1 shows dimensions of the sketch and number of elements
inserted based on the size of the sketch.

5.3 Update Performance
Figure 3 shows the update throughput of the count-min sketch and buffered count-min sketch
with changing RAM-size-to-sketch-size ratios. The buffered count-min sketch is 3.7×–4.7×
faster compared to the count-min sketch in terms of update throughput on SSD.

The buffered count-min sketch performs less than one I/O per update operation because
all the hashes for a given element are localized to a single page on SSD. However, in the
count-min sketch the hashes for a given element are spread across the whole sketch. Therefore,

ESA 2018

41:12 Buffered Count-Min Sketch on SSD: Theory and Experiments

Figure 3 Update throughput of the count-min sketch and buffered count-min sketch with
increasing sizes. The available RAM is fixed to ≈ 64MB. With increasing sketch sizes (on x-axis)
the RAM-size-to-sketch-size is also increasing 2, 4, 8, and 16. (Higher is better.)

Figure 4 Estimate throughput of the count-min sketch and buffered count-min sketch with
increasing sizes. The available RAM is fixed to ≈ 64MB. With increasing sketch sizes (on x-axis)
the RAM-size-to-sketch-size is also increasing 2, 4, 8, and 16. (Higher is better.)

the update throughput of the buffered count-min sketch is 3.7× when the sketch is twice the
size of the RAM. And the difference in the throughput increases as the sketch gets bigger
and RAM size stays the same.

5.4 Estimate Performance

Figure 4 shows the estimate throughput of the count-min sketch and buffered count-min
sketch with changing RAM-size-to-sketch-size ratios. The buffered count-min sketch is ≈ 4.3×
faster compared to the count-min sketch in terms of estimate throughput on SSD.

The buffered count-min sketch performs a single I/O per estimate operation because
all the hashes for a given element are localized to a single page on SSD. In comparison,
count-min sketch may have to perform as many as h I/Os per estimate operation, where h is
the depth of the count-min sketch.

M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey 41:13

Figure 5 Maximum overestimate reported by the count-min sketch and buffered count-min sketch
for any inserted element for different sketch sizes. The blue line represents the average overestimate
reported by the count-min sketch and buffered count-min sketch for all the inserted elements. The
average overestimate is same for both the count-min sketch and buffered count-min sketch.

5.5 Overestimates
In Figure 5 we empirically compare overestimates returned by the count-min sketch and
buffered count-min sketch for all the four sketch sizes for which we performed update and
estimate benchmarks. And we found that the average and the maximum overestimate
returned from the count-min sketch and buffered count-min sketch are exactly the same.
This shows that empirically hash localization in the buffered count-min sketch does not have
any major effect on the overestimates.

6 Conclusion

In this paper we implemented and mathematically analyzed the buffered count-min sketch
and empirically showed that our implementation achieves 3.7×–4.7× the speedup on update
(insert) and 4.3× speedup on estimate (lookup) operations. Queries take 1 I/O, which is
optimal in the worst case if not allowed to buffer. However, we do not know whether the
update time is optimal. To the best of our knowledge, no lower bounds on the update time
of such a data structure are known (the only known upper bounds are on space, e.g., in [15]).
We leave the question of deriving update lower bounds and/or a SSD-based data structure
with faster update time for future work.

References
1 Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related

problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.
2 Austin Appleby. 32-bit variant of murmurhash3, 2011. URL: https://sites.google.com/

site/murmurhash/.
3 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Mod-

els and issues in data stream systems. In Proceedings of the Twenty-first ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’02, pages 1–16,
New York, NY, USA, 2002. ACM. doi:10.1145/543613.543615.

4 Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C.
Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane, and Erez

ESA 2018

http://dx.doi.org/10.1145/48529.48535
https://sites.google.com/site/murmurhash/
https://sites.google.com/site/murmurhash/
http://dx.doi.org/10.1145/543613.543615

41:14 Buffered Count-Min Sketch on SSD: Theory and Experiments

Zadok. Don’t thrash: How to cache your hash on flash. Proc. VLDB Endow., 5(11):1627–
1637, jul 2012. doi:10.14778/2350229.2350275.

5 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970. doi:10.1145/362686.362692.

6 Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
An improved construction for counting bloom filters. In Proceedings of the 14th Conference
on Annual European Symposium - Volume 14, ESA’06, pages 684–695, London, UK, UK,
2006. Springer-Verlag. doi:10.1007/11841036_61.

7 Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and zipf-
like distributions: Evidence and implications. In INFOCOM ’99. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies, pages 126–134, 1999.

8 Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Christian A. Lang, and
Kenneth A. Ross. Buffered bloom filters on solid state storage. In Rajesh Bordawekar
and Christian A. Lang, editors, ADMS@VLDB, pages 1–8, 2010. URL: http://dblp.
uni-trier.de/db/conf/vldb/adms2010.html#CanimMBLR10.

9 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Proceedings of the 29th International Colloquium on Automata, Languages and
Programming, ICALP ’02, pages 693–703, Berlin, Heidelberg, 2002. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=646255.684566.

10 Aiyou Chen, Yu Jin, Jin Cao, and Li Erran Li. Tracking long duration flows in net-
work traffic. In Proceedings of the 29th Conference on Information Communications,
INFOCOM’10, pages 206–210, Piscataway, NJ, USA, 2010. IEEE Press. URL: http:
//dl.acm.org/citation.cfm?id=1833515.1833557.

11 Graham Cormode and S. Muthukrishnan. An improved data stream summary: The count-
min sketch and its applications. J. Algorithms, 55(1):58–75, 2005. doi:10.1016/j.jalgor.
2003.12.001.

12 Biplob Debnath, Sudipta Sengupta, Jin Li, David J. Lilja, and David H. C. Du. Bloom-
flash: Bloom filter on flash-based storage. In Proceedings of the 2011 31st International
Conference on Distributed Computing Systems, ICDCS ’11, pages 635–644, Washington,
DC, USA, 2011. IEEE Computer Society. doi:10.1109/ICDCS.2011.44.

13 Ehsan Eydi, Dzejla Medjedovic, Emina Mekic, and Elmedin Selmanovic. Buffered count-
min sketch. In Mirsad Hadžikadić and Samir Avdaković, editors, Advanced Technologies,
Systems, and Applications II, pages 249–255, Cham, 2018. Springer International Publish-
ing.

14 Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data
streams: A review. SIGMOD Rec., 34(2):18–26, 2005. doi:10.1145/1083784.1083789.

15 Sumit Ganguly. Lower bounds on frequency estimation of data streams. In International
Computer Science Symposium in Russia, pages 204–215. Springer, 2008.

16 Michael Gertz, Quinn Hart, Carlos Rueda, Shefali Singhal, and Jie Zhang. A data and query
model for streaming geospatial image data. In Torsten Grust, Hagen Höpfner, Arantza Illar-
ramendi, Stefan Jablonski, Marco Mesiti, Sascha Müller, Paula-Lavinia Patranjan, Kai-Uwe
Sattler, Myra Spiliopoulou, and Jef Wijsen, editors, Current Trends in Database Technology
– EDBT 2006, pages 687–699, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

17 Amit Goyal, Jagadeesh Jagarlamudi, Hal Daumé, III, and Suresh Venkatasubramanian.
Sketch techniques for scaling distributional similarity to the web. In Proceedings of the
2010 Workshop on GEometrical Models of Natural Language Semantics, GEMS ’10, pages
51–56, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. URL:
http://dl.acm.org/citation.cfm?id=1870516.1870524.

18 Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. In Proceedings of the 28th International Conference on Very Large Data Bases,

http://dx.doi.org/10.14778/2350229.2350275
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1007/11841036_61
http://dblp.uni-trier.de/db/conf/vldb/adms2010.html#CanimMBLR10
http://dblp.uni-trier.de/db/conf/vldb/adms2010.html#CanimMBLR10
http://dl.acm.org/citation.cfm?id=646255.684566
http://dl.acm.org/citation.cfm?id=1833515.1833557
http://dl.acm.org/citation.cfm?id=1833515.1833557
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1109/ICDCS.2011.44
http://dx.doi.org/10.1145/1083784.1083789
http://dl.acm.org/citation.cfm?id=1870516.1870524

M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey 41:15

VLDB ’02, pages 346–357. VLDB Endowment, 2002. URL: http://dl.acm.org/citation.
cfm?id=1287369.1287400.

19 Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. Synopsis
diffusion for robust aggregation in sensor networks. In Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems, SenSys ’04, pages 250–262, New York,
NY, USA, 2004. ACM. doi:10.1145/1031495.1031525.

20 Prashant Pandey, Michael A. Bender, Rob Johnson, and Robert Patro. A general-purpose
counting filter: Making every bit count. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017, pages 775–787, 2017. doi:10.1145/3035918.3035963.

21 Martin Raab and Angelika Steger. “balls into bins”—a simple and tight analysis. Random-
ization and Approximation Techniques in Computer Science, pages 159–170, 1998.

22 Tim Roughgarden and Gregory Valiant. Cs168: The modern algorithmic toolbox lecture
#2: Approximate heavy hitters and the count-min sketch, 2018.

23 Tamás Sarlós, Adrás A. Benczúr, Károly Csalogány, Dániel Fogaras, and Balázs Rácz.
To randomize or not to randomize: Space optimal summaries for hyperlink analysis. In
Proceedings of the 15th International Conference on World Wide Web, WWW ’06, pages
297–306, New York, NY, USA, 2006. ACM. doi:10.1145/1135777.1135823.

24 Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity is everything: A
new approach to protecting passwords from statistical-guessing attacks. In Proceedings of
the 5th USENIX Conference on Hot Topics in Security, HotSec’10, pages 1–8, Berkeley, CA,
USA, 2010. USENIX Association. URL: http://dl.acm.org/citation.cfm?id=1924931.
1924935.

25 David P. Woodruff. New algorithms for heavy hitters in data streams. CoRR,
abs/1603.01733, 2016. URL: http://arxiv.org/abs/1603.01733, arXiv:1603.01733.

26 Yin Zhang, Sumeet Singh, Subhabrata Sen, Nick Duffield, and Carsten Lund. Online
identification of hierarchical heavy hitters: Algorithms, evaluation, and applications. In
Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, IMC ’04,
pages 101–114, New York, NY, USA, 2004. ACM. doi:10.1145/1028788.1028802.

27 Qi (George) Zhao, Mitsunori Ogihara, Haixun Wang, and Jun (Jim) Xu. Finding global
icebergs over distributed data sets. In Proceedings of the Twenty-fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’06, pages 298–
307, New York, NY, USA, 2006. ACM. doi:10.1145/1142351.1142394.

ESA 2018

http://dl.acm.org/citation.cfm?id=1287369.1287400
http://dl.acm.org/citation.cfm?id=1287369.1287400
http://dx.doi.org/10.1145/1031495.1031525
http://dx.doi.org/10.1145/3035918.3035963
http://dx.doi.org/10.1145/1135777.1135823
http://dl.acm.org/citation.cfm?id=1924931.1924935
http://dl.acm.org/citation.cfm?id=1924931.1924935
http://arxiv.org/abs/1603.01733
http://arxiv.org/abs/1603.01733
http://dx.doi.org/10.1145/1028788.1028802
http://dx.doi.org/10.1145/1142351.1142394

Scalable Katz Ranking Computation in Large
Static and Dynamic Graphs
Alexander van der Grinten
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
avdgrinten@hu-berlin.de

Elisabetta Bergamini
Karlsruhe Institute of Technology (KIT), Germany

Oded Green
School of Computational Science and Engineering, Georgia Institute of Technology, USA
ogreen@gatech.edu

David A. Bader
School of Computational Science and Engineering, Georgia Institute of Technology, USA
bader@gatech.edu

Henning Meyerhenke
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
meyerhenke@hu-berlin.de

Abstract
Network analysis defines a number of centrality measures to identify the most central nodes
in a network. Fast computation of those measures is a major challenge in algorithmic network
analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality
measures. In this paper, we consider the problem of computing rankings for Katz centrality.
In particular, we propose upper and lower bounds on the Katz score of a given node. While
previous approaches relied on numerical approximation or heuristics to compute Katz centrality
rankings, we construct an algorithm that iteratively improves those upper and lower bounds
until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while
maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm
outperforms both numerical approaches and heuristics with speedups between 1.5× and 3.5×,
depending on the desired quality guarantees. Our dynamic graph algorithm improves upon
the static algorithm for update batches of less than 10000 edges. We provide efficient parallel
CPU and GPU implementations of our algorithms that enable near real-time Katz centrality
computation for graphs with hundreds of millions of nodes in fractions of seconds.

2012 ACM Subject Classification Theory of computation→ Dynamic graph algorithms, Theory
of computation → Parallel algorithms

Keywords and phrases network analysis, Katz centrality, top-k ranking, dynamic graphs, parallel
algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.42

Related Version A full version of the paper is available at [20], https://arxiv.org/abs/1807.
03847.

Funding Most of the work was done while AvdG was affiliated with University of Cologne, Ger-
many, and HM with Karlsruhe Institute of Technology and University of Cologne. Additionally,
EB, AvdG and HM were partially supported by grant ME 3619/3-2 within German Research

© Alexander van der Grinten, Elisabetta Bergamini, Oded Green, David A. Bader, and Henning
Meyerhenke;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 42; pp. 42:1–42:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:avdgrinten@hu-berlin.de
mailto:ogreen@gatech.edu
mailto:bader@gatech.edu
mailto:meyerhenke@hu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.42
https://arxiv.org/abs/1807.03847
https://arxiv.org/abs/1807.03847
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Scalable Katz Ranking Computation in Large Static and Dynamic Graphs

Foundation (DFG) Priority Programme 1736. Funding was also provided by Karlsruhe House
of Young Scientists via the International Collaboration Package. Funding for OG and DB was
provided in part by the Defense Advanced Research Projects Agency (DARPA) under Contract
Number FA8750-17-C-0086. The content of the information in this document does not necessarily
reflect the position or the policy of the Government, and no official endorsement should be in-
ferred. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

1 Introduction

Finding the most important nodes of a network is a major task in network analysis. To
this end, numerous centrality measures have been introduced in the literature. Examples of
well-known measures are betweenness (which ranks nodes according to their participation in
the shortest paths of the network) and closeness (which indicates the average shortest-path
distance to other nodes). A major limitation of both measures is that they are based on
the assumption that information flows through the networks following shortest paths only.
However, this is often not the case in practice; think, for example, of traffic on street networks:
it is easy to imagine reasons why drivers might prefer to take slightly longer paths. On the
other hand, it is also quite unlikely that much longer paths will be taken.

Katz centrality [9] accounts for this by summing all walks starting from a node, but
weighting them based on their length. More precisely, the weight of a walk of length i is αi,
where α is some attenuation factor smaller than 1. Thus, naming ωi(v) the number of walks
of length i starting from node v, the Katz centrality of v is defined as

c(v) :=
∞∑
i=1

ωi(v)αi (1)

or equivalently: c =
(∑∞

i=1 A
i αi
)
~I, where A is the adjacency matrix of the graph and ~I

is the vector consisting only of 1s. This can be restated as a Neumann series, resulting in
the closed-form expression c = αA(I − αA)−1~I, where I is the identity matrix. Thus, Katz
centrality can be computed exactly by solving the linear system

(I − αA) z = ~I , (2)

followed by evaluating c = αA z. We call this approach the linear algebra formulation.
In practice, the solution to Eq. (2) is numerically approximated using iterative solvers for
linear systems. While these solvers yield solutions of good quality, they can take hundreds
of iterations to converge [17]. Thus, in terms of running time, those algorithms can be
impractical for today’s large networks, which often have millions of nodes and billions of
edges.

Instead, Foster et al.’s [7] algorithm estimates Katz centrality iteratively by computing
partial sums of the series from Eq. (1) until a stopping criterion is reached. Although very
efficient in practice, this method has no guarantee on the correctness of the ranking it finds,
not even for the top nodes. Thus, the approach is ineffective for applications where only a
subset of the most central nodes is needed or when accuracy is needed. As this is indeed the
case in many applications, several top-k centrality algorithms have been proposed recently for
closeness [2] and betweenness [13]. Recently, a top-k algorithm for Katz centrality [17] was
suggested. That algorithm still relies on solving Eq. (2); however, it reduces the numerical
accuracy that is required to obtain a top-k rating. Similarly, Zhan et al. [21] propose a
heuristic method to exclude certain nodes from top-k rankings but do not present algorithmic
improvements on the actual Katz computation.

A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Meyerhenke 42:3

Dynamic graphs. Furthermore, many of today’s real-world networks, such as social networks
and web graphs, are dynamic in nature and some of them evolve over time at a very quick
pace. For such networks, it is often impractical to recompute centralities from scratch after
each graph modification. Thus, several dynamic graph algorithms that efficiently update
centrality have been introduced for closeness [3] and betweenness [12]. Such algorithms
usually work well in practice, because they reduce the computation to the part of the
graph that has actually been affected. This offers potentially large speedups compared to
recomputation. For Katz centrality, dynamic algorithms have recently been proposed by
Nathan et al. [15, 16]. However, those algorithms rely on heuristics and are unable to
reproduce the exact Katz ranking after dynamic updates.

Our contribution. We construct a vertex-centric algorithm that computes Katz centrality
by iteratively improving upper and lower bounds on the centrality scores (see Section 3 for
the construction of this algorithm). While the computed centralities are approximate, our
algorithm guarantees the correct ranking. We extend (in Section 4) this algorithm to dynamic
graphs while preserving the guarantees of the static algorithm. An extensive experimental
evaluation (see Section 5) shows that (i) our new algorithm outperforms Katz algorithms
that rely on numerical approximation with speedups between 1.5× and 3.5×, depending on
the desired correctness guarantees, (ii) our algorithm has a speedup in the same order of
magnitude over the widely-used heuristic of Foster et al. [7] while improving accuracy, (iii)
our dynamic graph algorithm improves upon static recomputation of Katz rankings for batch
sizes of less than 10000 edges and (iv) efficient parallel CPU and GPU implementations of
our algorithm allow near real-time computation of Katz centrality in fractions of seconds
even for very large graphs. In particular, our GPU implementation achieves speedups of
more than 10× compared to a 20-core CPU implementation.

2 Preliminaries

2.1 Notation

Graphs. In the following sections, we assume that G = (V,E) is the input graph to our
algorithm. Unless stated otherwise, we assume that G is directed. For the purposes of
Katz centrality, undirected graphs can be modeled by replacing each undirected edge
with two directed edges in reverse directions. For a node x ∈ V , we denote the out-degree
of x by deg(x). The maximum out-degree of any node in G is denoted by degmax.

Katz centrality. The Katz centrality of the nodes of G is given by Eq. (1). With ci(v) we
denote the i-th partial sum of Eq. (1). Katz centrality is not defined for arbitrary values
of α. In general, Eq. (1) converges for α < 1

σmax
, where σmax is the largest singular value

of the adjacency matrix A (see [9]).
Katz centrality can also be defined by counting inbound walks in G [9, 18]. For this
definition, ωi(x) is replaced by the number of walks of length i that end in x ∈ V . Indeed,
for applications like web graphs, nodes that are the target of many links intuitively should
be considered more central than nodes that only have many links themselves1. However,
as inbound Katz centrality coincides with the outbound Katz centrality of the reverse
graph, we will not specifically consider it in this paper.

1 This is a central idea behind the PageRank [5] metric.

ESA 2018

42:4 Scalable Katz Ranking Computation in Large Static and Dynamic Graphs

2.2 Related work
Most algorithms that are able to compute Katz scores with approximation guarantees are
based on the linear algebra formulation and compute a numerical solution to Eq. (2). Several
approximation algorithms have been developed in order to decrease the practical running
times of this formulation (e.g. based on low-rank approximation [1]). Nathan et al. [17] prove
a relationship between the numerical approximation quality of Eq. (2) and the resulting Katz
ranking quality. While this allows computation of top-k rankings with reduced numerical
approximation quality, no significant speedups can be expected if full Katz rankings are
desired.

Foster et al. [7] present a vertex-centric heuristic for Katz centrality: They propose to
determine Katz centrality by computing the recurrence ci+1 = αA ci + ~I. The computation
is iterated until either a fixed point2 or a predefined number of iterations is reached. This
algorithm performs well in practice; however, due to the heuristic nature of the stopping
condition, the algorithm does not give any correctness guarantees.

Another paper from Nathan et al. [16] discusses an algorithm for a “personalized” variant
of Katz centrality. Our algorithm uses a similar iteration scheme but differs in multiple
key properties of the algorithm: Instead of considering personalized Katz centrality, our
algorithm computes the usual, “global” Katz centrality. While Nathan et al. give a global
bound on the quality of their solution, we are able to compute per-node bounds that can
guarantee the correctness of our ranking. Finally, Nathan et al.’s dynamic update procedure
is a heuristic algorithm without correctness guarantee, although its ranking quality is good
in practice. In contrast to that, our dynamic algorithm reproduces exactly the results of the
static algorithm.

3 Iterative improvement of Katz bounds

3.1 Per-node bounds for Katz centrality
The idea behind our algorithm is to compute upper and lower bounds on the centrality
of each node. Those bounds are iteratively improved. We stop the iteration once an
application-specific stopping criterion is reached. When that happens, we say that the
algorithm converges.

Per-node upper and lower bounds allow us to rank nodes against each other: Let `r(x)
and ur(x) denote respectively lower and upper bounds on the Katz score of node x after
iteration r. An explicit construction of those bounds will be given later in this section; for
now, assume that such bounds exist. Furthermore, let w and v be two nodes; without loss of
generality, we assume that w and v are chosen such that `r(w) ≥ `r(v). If `r(w) > ur(v),
then w appears in the Katz centrality ranking before v and we say that w and v are separated
by the bounds `r and ur. In this context, it should be noted that per-node bounds do not
allow us to prove that the Katz scores of two nodes are equal3. However, as the algorithm
still needs to be able to rank nodes x that share the same `r(x) and ur(x) values, we need a
more relaxed concept of separation. Therefore:

I Definition 1. In the same setting as before, let ε > 0. We say that w and v are ε-separated,
if and only if

`r(w) > ur(v)− ε . (3)

2 Note that a true fixed point will not be reached using this method unless the graph is a DAG.
3 In theory, the linear algebra formulation is able to prove that the score of two nodes is indeed equal.

However, in practice, limited floating point precision limits the usefulness of this property.

A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Meyerhenke 42:5

Intuitively, the introduction of ε makes the ε-condition easier to fulfill than the separation
condition: Indeed, separated pairs of nodes are also ε-separated for every ε > 0. In particular,
ε-separation allows us to construct Katz rankings even in the presence of nodes that have the
same Katz score: Those nodes are never separated, but they will eventually be ε-separated
for every ε > 0.

In order to actually construct rankings, it is sufficient to notice that once all pairs of
nodes are ε-separated, sorting the nodes by their lower bounds `r yields a correct Katz
ranking, except for pairs of nodes with a difference in Katz score of less than ε. Thus, using
this definition, we can discuss possible stopping criteria for the algorithm:
Ranking criterion. Stop once all nodes are ε-separated from each other. This guarantees

that the ranking is correct, except for nodes with scores that are very close to each other.
Top-k criterion. Stop once the top-k nodes are ε-separated from each other and from all

other nodes. For k = n this criterion reduces to the ranking criterion.
Score criterion. Stop once the difference between the upper and lower bound of each node

becomes less than ε. This guarantees that the Katz centrality of each node is correct up
to an additive constant of ε.

Pair criterion. Stop once two given nodes u and v are ε-separated.

First, we notice that a simple lower bound on the Katz centrality of a node v can be
obtained by truncating the series in Eq. (1) after r iterations, hence, `r(v) :=

∑r
i=1 ωi(v)αi

is a lower bound on c(v). For undirected graphs, this lower bound can be improved to∑r
i=1 ωi(v)αi + ωr(v)αr+1, as any walk of length r can be extended to a walk of length r+ 1

with the same starting point by repeating its last edge with reversed direction.

I Theorem 2. Let γ = degmax
1−α degmax

. For any r ≥ 1, v ∈ V and α < 1
degmax

, the value

ur(v) :=
r∑
i=1

αiωi(v) + αr+1ωr(v)γ

is an upper bound on c(v).

Proof. First, let Si(v) be the set of nodes x for which there exists a walk of length i starting
in v and ending in x. Each walk of length i+ 1 is the concatenation of a walk of length i
ending in x ∈ Si(v) and an edge (x, y), where y is some neighbor of x. Let ωi(v, x) denote
the number of walks of length i that start in v and end in x. Thus, we can write

ωi+1(v) =
∑

x∈Si(v)

deg(x) ωi(v, x) ≤
∑

x∈Si(v)

degmax ωi(v, x) = degmax ωi(v) . (4)

By applying induction to the previous inequality, it is easy to see that, for any j > 1,

ωi+j(v) ≤ (degmax)jωi(v) .

Discarding the first r terms of the sum in Eq. (1) then yields

∞∑
i=r+1

αiωi(v) ≤
∞∑
j=1

αr+j(degmax)jωr(v) = αrωr(v)
∞∑
j=1

(α degmax)j

= αrωr(v)
(

1
1− α degmax

− 1
)

= αr+1ωr(v)γ .

For the second to last equality, we rewrite the infinite series as a geometric sum. J

ESA 2018

42:6 Scalable Katz Ranking Computation in Large Static and Dynamic Graphs

The following lemma (proof in the full version of this paper [20]) shows that we can
indeed iteratively improve the upper and lower bounds for each node x ∈ V :

I Lemma 3. For each x ∈ V , `i(x) is non-decreasing in i and ui(x) is non-increasing in i.

Theorem 2 requires us to choose α < 1
degmax

, which is a restriction compared to the more
general requirement of α < 1

σmax
. For our experiments in the later sections of this paper,

we set α = 1
1+degmax

in order to satisfy this condition. Aside from enabling us to apply
the theorem, this choice of α has some additional advantages: First, because Theorem 2
gives an upper bound on Eq. (1), Katz centrality is guaranteed to converge for this value of
the α parameter4. degmax is also much easier to compute than σmax, an operation that is
comparable in complexity to computing the Katz centrality itself5. Finally, α = 1

1+degmax
is

widely-used in existing literature [4, 7], with Foster et al. calling it the “generally-accepted
default attenuation factor” [7].

It is worth remarking (proof in the full version of this paper [20]) that graphs exist for
which the bound from Theorem 2 is sharp:

I Lemma 4. If G is a complete graph, ui(x) = c(x) for all x ∈ V and i ∈ N.

3.2 Efficient rankings using per-node bounds
In the following, we state the description of our Katz algorithm for static graphs. As hinted
earlier, the algorithm estimates Katz centrality by computing ur(v) and `r(v). These upper
and lower bounds are iteratively improved by incrementing r until the algorithm converges.

To actually compute cr(v), we use the well-known fact that the number of walks of length
i starting in node v is equal to the sum of the number of walks of length i− 1 starting in the
neighbors of v, in other words:

ωi(v) =
∑

v→x∈E
ωi−1(x) . (5)

Thus, if we initialize ω1(v) to deg(v) for all v ∈ V , we can then repeatedly loop over the
edges of G and compute tighter and tighter lower bounds.

We focus here on the top-k convergence criterion. It is not hard to see how our techniques
can be adopted to the other stopping criteria mentioned at the start of the previous subsection.
To be able to efficiently detect convergence, the algorithm maintains a set of active nodes.
These are the nodes for which the lower and upper bounds have not yet converged. Initially,
all nodes are active. Each node is deactivated once it is ε-separated from the k nodes with
highest lower bounds `r. It should be noted that, because of Lemma 3, deactivated nodes
will stay deactivated in all future iterations. Thus, for the top-k criterion, it is sufficient
to check whether (i) only k nodes remain active and (ii) the remaining active nodes are
ε-separated from each other. This means that each iteration will require less work than its
previous iteration.

Algorithm 1 depicts the pseudocode of the algorithm. Computation of ωr(v) is done by
evaluating the recurrence from Eq. (5). After the algorithm terminates, the ε-separation
property guarantees that the k nodes with highest `r(v) form a top-k Katz centrality ranking
(although `r(v) does not necessarily equal the true Katz score).

4 This was already noticed by Katz [9] and can alternatively be proven through linear algebra.
5 Indeed, the popular power iteration method to compute σmax for real, symmetric, positive-definite
matrices has a complexity of Ω(r |E|), where r denotes a number of iterations.

A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Meyerhenke 42:7

Algorithm 1 Katz centrality bound computation for static graphs.
γ ← degmax /(1− α degmax)
Initialize c0(x)← 0 ∀x ∈ V
Initialize r ← 0 and ω0(x)← 1 ∀x ∈ V
Initialize set of active nodes: M ← V
while not converged() do

Set r ← r + 1 and ωr(x)← 0 ∀x ∈ V
for all v ∈ V do

for all v → u ∈ E do
ωr(v)← ωr(v) + ωr−1(u)

cr(v)← cr−1(v) + αrωr(v)
if G undirected then

`r(v)← cr(v) + αr+1ωr(v)
else

`r(v)← cr(v)
ur(v)← cr(v) + αr+1ωr(v)γ

function converged()
partialSort(M , k, `r, decreasing)
for all i ∈ {k + 1, . . . , |V |} do

if ur(M [i])− ε < `r(M [k]) then
M ←M \ {v}

if |M | > k then
return false

for all i ∈ {2, . . . ,min(|M |, k)} do
if ur(M [i])− ε ≥ `r(M [i− 1]) then

return false
return true

The converged procedure in Algorithm 1 checks whether the top-k convergence criterion
is satisfied. In this procedure, M denotes the set of active nodes. The procedure first partially
sorts the elements of M by decreasing lower bound `r. After that is done, the first k elements
of M correspond to the top-k elements in the current ranking (which might not be correct
yet). Note that it is not necessary to construct the entire ranking here; sorting just the
top-k nodes is sufficient. The procedure tries to deactivate nodes that cannot be in the top-k
and afterwards checks if the remaining top-k nodes are correctly ordered. These checks are
performed by testing if the ε-separation condition from Eq. (3) is true.

Complexity analysis. The sequential worst-case time complexity of Algorithm 1 is O(r |E|+
r C), where r is the number of iterations and C is the complexity of the convergence checking
procedure. It is easy to see that the loop over V can be parallelized, yielding a complexity of
O(r |V |p degmax +r C) on a parallel machine with p processors. The complexity of converged,
the top-k ranking convergence criterion, is dominated by the O(|V |+ k log k) complexity of
partial sorting. Both the score and the pair criteria can be implemented in O(1).

It should be noted that – for the same solution quality – our algorithm converges at least
as fast as the heuristic of Foster et al. that computes a Katz ranking without correctness
guarantee. Indeed, the values of cr yield exactly the values that are computed by the
heuristic. However, Foster et al.’s heuristic is unable to accurately assess the quality of its
current solution and might thus perform too many or too few iterations.

4 Updating Katz centrality in dynamic graphs

In this section, we discuss how our Katz centrality algorithm can be extended to compute
Katz centrality rankings for dynamically changing graphs. We model those graphs as an
initial graph that is modified by a sequence of edge insertions and edge deletions. We do not
explicitly handle node insertions and deletions as those can easily be supported by adding
enough isolated nodes to the initial graph.

Before processing any edge updates, we assume that our algorithm from Section 3 was
first executed on the initial graph to initialize the values ωi(x) for all x ∈ V . The dynamic
graph algorithm needs to recompute ωi(x) for i ∈ {1, . . . , r}, where r is the number of
iterations that was reached by the static Katz algorithm on the initial graph. The main
observation here is that if an edge u→ v is inserted into (or deleted from) the initial graph,
ωi(x) only changes for nodes x in the vicinity of u. More precisely, ωi(x) can only change if
u is reachable from x in at most i− 1 steps.

ESA 2018

42:8 Scalable Katz Ranking Computation in Large Static and Dynamic Graphs

Algorithm 2 Dynamic Katz update procedure.
E ← E \ D
S ← ∅, T ← ∅
for all w → v ∈ I ∪ D do

S ← S ∪ {w}
T ← T ∪ {v}

for all i ∈ {1, . . . , r} do
updateLevel(i)

for all w ∈ S do
Recompute `r(w) and ur(w) from cr(w)

for all w ∈ V do
if ur(w) ≥ minx∈M `r(x)− ε then

M ←M ∪ {w} . Reactivation
E ← E ∪ I
while not converged() do

Run more iterations of static algorithm

procedure updateLevel(i)
for all v ∈ S ∪ T do

ω′i(v)← ωi(v)
for all v ∈ S do

for all w → v ∈ E do
S ← S ∪ {w}
ω′i(w)← ω′i(w)− ωi−1(v) + ω′i−1(v)

for all w → v ∈ I do
ω′i(w)← ω′i(w) + ω′i−1(v)

for all w → v ∈ D do
ω′i(w)← ω′i(w)− ωi−1(v)

for all w ∈ S do
ci(w)← ci(w)− αiωi(w) + αiω′i(w)

Algorithm 2 depicts the pseudocode of our dynamic Katz algorithm. I denotes the set
of edges to be inserted, while D denotes the set of edges to be deleted. We assume that
I∩E = ∅ and D ⊆ E before the algorithm. Effectively, the algorithm performs a breadth-first
search (BFS) through the reverse graph of G and updates ωi for all nodes nodes that were
reached in steps 1 to i.

After the update procedure terminates, the new upper and lower bounds can be computed
from cr as in the static algorithm. We note that ω′i(x) matches exactly the value of ωi(x)
that the static Katz algorithm would compute for the modified graph. Hence, the dynamic
algorithm reproduces the correct values of cr(x) and also of `r(x) and ur(x) for all x ∈ V . In
case of the top-k convergence criterion, some nodes might need to be reactivated afterwards:
Remember that the top-k criterion maintains a set M of active nodes. After edge updates
are processed, it can happen that there are nodes x that are not ε-separated from all nodes
in M anymore. Such nodes x need to be added to M in order to obtain a correct ranking.
The ranking itself can then be updated by sorting M according to decreasing `r.

It should be noted that there is another related corner case: Depending on the convergence
criterion, it can happen that the algorithm is not converged anymore even after nodes have
been reactivated. For example, for the top-k criterion, this is the case if the nodes in M
are not ε-separated from each other anymore. Thus, after the dynamic update we have to
perform a convergence check and potentially run additional iterations of the static algorithm
until it converges again.

Assuming that no further iterations of the static algorithms are necessary, the complexity
of the update procedure is O(r |E|+ C), where C is the complexity of convergence checking
(see Section 3). In reality, however, the procedure can be expected to perform much better:
Especially for the first few iterations, we expect the set S of vertices visited by the BFS to
be much smaller than |V |. However, this implies that effective parallelization of the dynamic
graph algorithm is more challenging than the static counterpart. We mitigate this problem,
by aborting the BFS if |S| becomes large and just update the ωi scores unconditionally for
all nodes.

Finally, it is easy to see that the algorithm can be modified to update ω in-place instead
of constructing a new ω′ matrix. For this optimization, the algorithm needs to save the value
of ωi for all nodes of S before overwriting it, as this value is required for iteration i+ 1. For
readability, we omit this modification in the pseudocode.

A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Meyerhenke 42:9

Table 1 Performance of the Katz algorithm, ranking criterion.

ε ra) Runtimea) Separationb) ε ra) Runtimea) Separationb)

10−1 2.3 33.51 s 96.189974 % 10−7 7.2 78.74 s 99.994959 %
10−2 3.0 42.81 s 98.478250 % 10−8 7.9 83.28 s 99.998866 %
10−3 3.8 51.59 s 99.264726 % 10−9 8.6 85.10 s 99.998886 %
10−4 4.8 65.99 s 99.391884 % 10−10 9.2 89.03 s 99.998889 %
10−5 5.7 71.53 s 99.992908 % 10−11 9.8 99.43 s 99.998934 %
10−6 6.5 70.59 s 99.994861 % 10−12 10.4 96.86 s 99.998934 %

Foster 11.2 105.03 s - CG 12.0 117.24 s -
a) Average over all instances. r is the number of iterations.
b) Fraction of node pairs that are separated (and not only ε-separated). Lower bound

on the correctly ranked pairs. This is the geometric mean over all graphs.

5 Experiments

Implementation details. The new algorithm in this paper is hardware independent and
as such we can implement it on different types of hardware with the right type of software
support. Specifically, our dynamic Katz centrality requires a dynamic graph data structure.
On the CPU we use NetworKit [19]; on the GPU we use Hornet6. The Hornet data structure
is architecture independent, though at time of writing only a GPU implementation exists.

NetworKit consists of an optimized C++ network analysis library and bindings to access
this library from Python. NetworKit contains parallel shared-memory implementations of
many popular graph algorithms and can handle networks with billions of edges.

The Hornet [6], an efficient extension to the cuSTINGER [8] data structure, is a dynamic
graph and matrix data structure designed for large scale networks and to support graphs with
trillions of vertices. In contrast to cuSTINGER, Hornet better utilizes memory, supports
memory reclamation, and can be updated almost ten times faster.

In our experiments, we compare our new algorithm to Foster et al.’s heuristic and a
conjugate gradient (CG) algorithm (without preconditioning) that solves Eq. (2). The
performance of CG could be possibly improved by employing a suitable preconditioner;
however, we do not expect this to change our results qualitatively. Both of these algorithms
were implemented in NetworKit and share the graph data structure with our new Katz
implementation. We remark that for the static case, both CG and our Katz algorithm could
be implemented on top of a CSR matrix data structure to improve the data locality and
speed up the implementation.

Experimental setup. We evaluate our algorithms on a set of complex networks. The
networks originate from diverse real-world applications and were taken from SNAP [14]
and KONECT [11]. Details about the exact instances that we used can be found in the
full version of this paper [20]. In order to be able to compare our algorithm to the CG
algorithm, we turn the directed graphs in this test set into undirected graphs by ignoring
edge directions. This ensures that the adjacency matrix is symmetric and CG is applicable.
Our new algorithm itself would be able to handle directed graphs just fine.

6 Hornet can be found at https://github.com/hornet-gt, while NetworKit is available from https:
//github.com/kit-parco/networkit. Both projects are open source, including the implementations of
our new algorithm.

ESA 2018

https://github.com/hornet-gt
https://github.com/kit-parco/networkit
https://github.com/kit-parco/networkit

42:10 Scalable Katz Ranking Computation in Large Static and Dynamic Graphs

cit-Patents
soc-pokec...

com-lj
dimacs10-uk...

sx-stackoverflow
soc-LiveJournal1

com-orkut
com-friendster

twitter
wikipedia_link_en

0

2

4
No

rm
al

ize
d

ru
nt

im
e

 v
s.

 =
 1

0
¹

 = 10 ¹ = 10 ³ = 10 Foster CG

Figure 1 Katz performance on individual instances.

All CPU experiments ran on a machine with dual-socket Intel Xeon E5-2690 v2 CPUs
with 10 cores per socket7 and 128 GiB RAM. Our GPU experiments are conducted on
an NVIDIA P100 GPU which has 56 Streaming Multiprocessors (SMs) and 64 Streaming
Processors (SPs) per SM (for a total of 3584 SPs) and has 16GB of HBM2 memory. To
effectively use the GPU, the number of active threads need to be roughly 8 times larger than
the number of SPs. The Hornet framework has an API that enables such parallelization
(with load balancing) such that the user only needs to write a few lines of code.

5.1 Evaluation of the static Katz algorithm
In a first experiment, we evaluate the running time of our static Katz algorithm. In particular,
we compare it to the running time of the linear algebra formulation (i.e. the CG algorithm)
and Foster et al.’s heuristic. We run CG until the residual is less than 10−15 to obtain a
nearly exact Katz ranking (i.e. up to machine precision; later in this section, we compare
to CG runs with larger error tolerances). For Foster’s heuristic, we use an error tolerance
of 10−9, which also yields an almost exact ranking. For our own algorithm, we use the
ranking convergence criterion (see Section 3) and report running times and the quality of
our correctness guarantees for different values of ε. All algorithms in this experiment ran in
single-threaded mode.

Table 1 summarizes the results of the evaluation. The fourth column of Table 1 states the
fraction of separated pairs of nodes. This value represents a lower bound on the correctness
of ranking. Note that pairs of nodes that have the same Katz score will never be separated.
Indeed, this seems to be the case for about 0.001% of all pairs of nodes (as they are never
separated, not even if ε is very low). Taking this into account, we can see that our algorithm
already computes the correct ranking for 99% of all pairs of nodes at ε = 10−3. At this ε,
our algorithm outperforms the other Katz algorithms considerably.

Furthermore, Table 1 shows that the average running time of our algorithm is smaller
than the running time of the Foster et al. and CG algorithms. However, the graphs in our
instance set vastly differ in size and originate from different applications; thus, the average
running time alone does not give good indication for performance on individual graphs. In
Figure 1 we report running times of our algorithm for the ten largest individual instances.
ε = 10−1 is taken as baseline and the running times of all other algorithms are reported
relative to this baseline. In the ε ≤ 10−3 setups, our Katz algorithm outperforms the CG and

7 Hyperthreading was disabled for the experiments.

A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Meyerhenke 42:11

Top-1
Top-10

Top-100
Top-1000

Nathan Top-100

0

1

2

M
ea

n
sp

ee
du

p
vs

. f
ul

l r
an

ki
ng

Figure 2 Top-k speedup over full ranking.

100 101 102 103 104 105

Batch size

1

10

20

M
ea

n
sp

ee
du

p
 v

s.
re

co
m

pu
ta

tio
n

Figure 3 Dynamic update performance.

Foster et al. algorithms on all instances. Foster et al.’s algorithm is faster than our algorithm
for ε = 10−5 on three out of ten instances. On the depicted instances, CG is never faster
than our algorithm, although it can outperform our algorithm on some small instances and
for very low ε.

Finally, in Figure 2, we present results of our Katz algorithm while using the top-k
convergence criterion. We report (geometric) mean speedups relative to the full ranking
criterion. The figure also includes the approach of Nathan et al. [17]. Nathan et al. conducted
experiments on real-world graphs and concluded that solving Eq. (2) with an error tolerance
of 10−4 in practice almost always results in the correct top-100 ranking. Thus, we run CG
with that error tolerance. However, it turns out that this approach is barely faster than our
full ranking algorithm. In contrast to that, our top-k algorithm yields decent speedups for
k ≤ 1000.

5.2 Evaluation of the dynamic Katz algorithm
In our next experiment, we evaluate the performance of our dynamic Katz algorithm to
compute top-1000 rankings using ε = 10−4. We select b random edges from the graph,
delete them in a single batch and run our dynamic update algorithm on the resulting graph.
We vary the batch size b from 100 to 105 and report the running times of the dynamic
graph algorithm relative to recomputation. Similar to the previous experiment, we run the
algorithms in single-threaded mode. Note that while we only show results for edge deletion,
edge insertion is completely symmetric in Algorithm 2.

Figure 3 summarizes the results of the experiment. For batch sizes b ≤ 1000, our dynamic
algorithm offers a considerable speedup over recomputation of Katz centralities. As many of
the graphs in our set of instances have a small diameter, for larger batch sizes (b > 10000),
almost all of the vertices of the graph need to be visited during the dynamic update procedure.
Hence, the dynamic update algorithm is slower than recomputation in these cases.

5.3 Real-time Katz computation using parallel CPU and GPU
implementations

Our last experiment concerns the practical running time and scalability of efficient parallel
CPU and GPU implementations of our algorithm. For this, we compare the running times of
our shared-memory CPU implementation with different numbers of cores. Furthermore, we
report results of our GPU implementation. Because of GPU memory constraints, we could

ESA 2018

42:12 Scalable Katz Ranking Computation in Large Static and Dynamic Graphs

roadNet-PA roadNet-CA cit-Patents com-lj soc-LiveJournal1 com-orkut
0.00

0.25

0.50

0.75

1.00
No

rm
al

ize
d

ru
nt

im
e

 v
s.

CP
U

x1

CPU x1 CPU x2 CPU x4 CPU x8 CPU x16 GPU

Figure 4 Scalability of parallel CPU and GPU implementations.

not process all of the graphs on the GPU. Hence, we provide the results of this experiment
only for a subset of graphs that do fit into the memory of our GPU. The graphs in this
subset have between 1.5 million and 120 million edges. We use the top-10000 convergence
criterion with ε = 10−6.

Figure 4 depicts the results of the evaluation. In this figure, we consider the sequential
CPU implementation as a baseline. We report the relative running times of the 2, 4, 8 and
16 core CPU configurations, as well as the GPU configuration, to this baseline. While the
parallel CPU configurations yield moderate speedups over the sequential implementation, the
GPU gives a significant speedup over the 16 core CPU configuration8. Even compared to a
20 core CPU configuration (not depicted in the plots; see the full version of this paper [20]),
the GPU achieves a (geometric) mean speedup of 10×.

The CPU implementation achieves running times in the range of seconds; however, our
GPU implementation reduces this running time to a fraction of a second. In particular,
the GPU running time varies between 20 ms (for roadNet-PA) and 213 ms (for com-orkut),
enabling near real-time computation of Katz centrality even for graphs with hundreds of
millions of edges.

6 Conclusion

In this paper, we have presented an algorithm for Katz centrality that computes upper and
lower bounds on the Katz score of individual nodes. Experiments demonstrated that our
algorithm outperforms both linear algebra formulations and approximation algorithms, with
speedups between 150% and 350% depending on desired correctness guarantees.

Future work could try to provide stricter per-node bounds for Katz centrality to further
decrease the number of iterations that the algorithm requires to convergence. In particular, it
would be desirable to prove per-node bounds that do not rely on α < 1/ degmax. On the im-
plementation side, our new algorithm could be formulated in the language of GraphBLAS [10]
to enable it to run on a variety of upcoming software and hardware architectures.

8 At time of writing, our CPU implementation uses a sequential algorithm for partial sorting; this is a
bottleneck in the parallel CPU configurations.

A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Meyerhenke 42:13

References
1 E. Acar, D. M. Dunlavy, and T. G. Kolda. Link prediction on evolving data using matrix and

tensor factorizations. In 2009 IEEE International Conference on Data Mining Workshops,
pages 262–269, Dec 2009. doi:10.1109/ICDMW.2009.54.

2 Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and Hen-
ning Meyerhenke. Computing top-k closeness centrality faster in unweighted graphs.
In 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pages 68–80. Society for Industrial and Applied Mathematics, 2018.
doi:10.1137/1.9781611974317.6.

3 Patrick Bisenius, Elisabetta Bergamin, Eugenio Angriman, and Henning Meyerhenke. Com-
puting top-k closeness centrality in fully-dynamic graphs. In 2018 Proceedings of the Twenti-
eth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 21–35. Society
for Industrial and Applied Mathematics, 2018. doi:10.1137/1.9781611975055.3.

4 Francesco Bonchi, Pooya Esfandiar, David Gleich, Chen Greif, and Laks Lakshmanan. Fast
matrix computations for pairwise and columnwise commute times and katz scores. Internet
Mathematics, 8:73–112, 03 2012.

5 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search en-
gine. Computer Networks and ISDN Systems, 30(1):107–117, 1998. Proceedings of the Sev-
enth International World Wide Web Conference. doi:10.1016/S0169-7552(98)00110-X.

6 F. Busato, O. Green, N. Bombieri, and D.A. Bader. Hornet: An Efficient Data Structure
for Dynamic Sparse Graphs and Matrices on GPUs. In IEEE Proc. High Performance
Extreme Computing (HPEC), Waltham, MA, 2018.

7 Kurt C. Foster, Stephen Q. Muth, John J. Potterat, and Richard B. Rothenberg. A faster
katz status score algorithm. Computational & Mathematical Organization Theory, 7(4):275–
285, Dec 2001. doi:10.1023/A:1013470632383.

8 O. Green and D.A. Bader. cuSTINGER: Supporting Dynamic Graph Algorithms for GPUs.
In IEEE Proc. High Performance Embedded Computing Workshop (HPEC), Waltham, MA,
2016.

9 Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–
43, Mar 1953. doi:10.1007/BF02289026.

10 J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert, D. Hutchison,
M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan, C. Yang, J. D. Owens, M. Za-
lewski, T. Mattson, and J. Moreira. Mathematical foundations of the graphblas. In 2016
IEEE High Performance Extreme Computing Conference (HPEC), pages 1–9, Sept 2016.
doi:10.1109/HPEC.2016.7761646.

11 Jérôme Kunegis. Konect: The koblenz network collection. In Proceedings of the 22Nd
International Conference on World Wide Web, WWW ’13 Companion, pages 1343–1350,
New York, NY, USA, 2013. ACM. doi:10.1145/2487788.2488173.

12 Min-Joong Lee, Sunghee Choi, and Chin-Wan Chung. Efficient algorithms for updating
betweenness centrality in fully dynamic graphs. Information Sciences, 326:278–296, 2016.
doi:10.1016/j.ins.2015.07.053.

13 Min-Joong Lee and Chin-Wan Chung. Finding k-highest betweenness centrality vertices in
graphs. In Proceedings of the 23rd International Conference on World Wide Web, WWW
’14 Companion, pages 339–340, New York, NY, USA, 2014. ACM. doi:10.1145/2567948.
2577358.

14 Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

15 Eisha Nathan and David A. Bader. A dynamic algorithm for updating katz centrality in
graphs. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in

ESA 2018

http://dx.doi.org/10.1109/ICDMW.2009.54
http://dx.doi.org/10.1137/1.9781611974317.6
http://dx.doi.org/10.1137/1.9781611975055.3
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1023/A:1013470632383
http://dx.doi.org/10.1007/BF02289026
http://dx.doi.org/10.1109/HPEC.2016.7761646
http://dx.doi.org/10.1145/2487788.2488173
http://dx.doi.org/10.1016/j.ins.2015.07.053
http://dx.doi.org/10.1145/2567948.2577358
http://dx.doi.org/10.1145/2567948.2577358

42:14 Scalable Katz Ranking Computation in Large Static and Dynamic Graphs

Social Networks Analysis and Mining 2017, ASONAM ’17, pages 149–154, New York, NY,
USA, 2017. ACM. doi:10.1145/3110025.3110034.

16 Eisha Nathan and David A. Bader. Approximating personalized katz centrality in dynamic
graphs. In Roman Wyrzykowski, Jack Dongarra, Ewa Deelman, and Konrad Karczewski,
editors, Parallel Processing and Applied Mathematics, pages 290–302, Cham, 2018. Springer
International Publishing.

17 Eisha Nathan, Geoffrey Sanders, James Fairbanks, Van Emden Henson, and David A.
Bader. Graph ranking guarantees for numerical approximations to katz centrality. Procedia
Computer Science, 108:68–78, 2017. International Conference on Computational Science,
ICCS 2017, 12-14 June 2017, Zurich, Switzerland. doi:10.1016/j.procs.2017.05.021.

18 Mark Newman. Networks: An Introduction. Oxford University Press, Inc., New York, NY,
USA, 2010.

19 Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit: A tool
suite for large-scale complex network analysis. Network Science, 4(4):508–530, 2016. doi:
10.1017/nws.2016.20.

20 A. van der Grinten, E. Bergamini, O. Green, D.A. Bader, and Henning Meyerhenke.
Scalable Katz ranking computation in large static and dynamic graphs. arXiv, 2018.
arXiv:1807.03847.

21 Justin Zhan, Sweta Gurung, and Sai Phani Krishna Parsa. Identification of top-k nodes
in large networks using katz centrality. Journal of Big Data, 4(1):16, May 2017. doi:
10.1186/s40537-017-0076-5.

http://dx.doi.org/10.1145/3110025.3110034
http://dx.doi.org/10.1016/j.procs.2017.05.021
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1017/nws.2016.20
http://arxiv.org/abs/1807.03847
http://dx.doi.org/10.1186/s40537-017-0076-5
http://dx.doi.org/10.1186/s40537-017-0076-5

Round-Hashing for Data Storage: Distributed
Servers and External-Memory Tables

Roberto Grossi
Dipartimento di Informatica, Università di Pisa, Italy
grossi@di.unipi.it

Luca Versari
Dipartimento di Informatica, Università di Pisa, Italy
luca.versari@di.unipi.it

Abstract
This paper proposes round-hashing, which is suitable for data storage on distributed servers and
for implementing external-memory tables in which each lookup retrieves at most one single block
of external memory, using a stash. For data storage, round-hashing is like consistent hashing as
it avoids a full rehashing of the keys when new servers are added. Experiments show that the
speed to serve requests is tenfold or more than the state of the art. In distributed data storage,
this guarantees better throughput for serving requests and, moreover, greatly reduces decision
times for which data should move to new servers as rescanning data is much faster.

2012 ACM Subject Classification Theory of computation→ Sorting and searching, Information
systems → Data dictionaries

Keywords and phrases consistent hashing, external memory, hash tables

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.43

Acknowledgements Work supported by MIUR. We thank Rasmus Pagh for pointing us the
reference on AC0-RAM dictionaries, and the anonymous referees for their comments.

1 Introduction

We study the problem of consistent hashing for data storage, where the keys are web pages or
data items to be dynamically mapped to a set of m buckets, uniquely identified by integers
in [0 . . .m− 1]. At any time, we want to support the following operations (including init()
for the initialization) to increase or decrease the number of buckets (i.e. change mapping).

numBuckets(): Return the current number m of buckets.
findBucket(u): Given a key u, find its corresponding bucket identifier in [0 . . .m− 1].
newBucket(): Add a new bucket having identifier m, thus making the range [0 . . .m], and
return the identifiers of the buckets whose keys should be redistributed.
freeBucket(): Release the last bucket m− 1, thus making range [0 . . .m− 2], and return
the identifiers of the buckets whose keys should be redistributed.

Armed with the above operations, we can implement hashing by storing the keys in the
buckets indicated by findBucket(), deciding when it is necessary to increase or decrease the
number of buckets provided by numBuckets(): in the latter case, we have to redistribute the
keys in the buckets indicated by newBucket() and freeBucket().

© Roberto Grossi and Luca Versari;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 43; pp. 43:1–43:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grossi@di.unipi.it
mailto:luca.versari@di.unipi.it
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Round-Hashing for Data Storage: Distributed Servers and External-Memory Tables

Table 1 Performance of the hashing methods for m buckets (servers). Here s0 � m is a constant
slack parameter (typically s = 64 or 128), and α = (number of stored keys) /m is the load factor.
Although creating a new bucket moves O(α) keys on the average, each hashing method can take
different time to decide which keys should be moved: “local” means that few other buckets scan
their keys, while “distributed” means that all buckets scan their keys in parallel to decide which
ones have to move to the new bucket. The Õ() notation indicates an expected cost.

find bucket space new bucket notes
consistent hashing [13] O(logm) O(m) Õ(α+ logm) local
rendezvous hashing [24] O(logm) O(m) O(mα) distributed
jump consistent hash [14] Õ(logm) O(1) O(mα) distributed
linear hashing [15, 16] O(log(m/s0)) O(1) Õ(s0α) local
round-hashing (ours) O(1) O(1) Õ(s0α) local, no division

History and motivation

Consistent hashing was invented by Karger et al. [13] for shared web caching, and highest
random weight hashing (also known as rendezvous hashing) was invented by Thaler and
Ravishankar [24] for web proxy servers. Both hashing methods were conceived independently
around the mid 90s, and shared similar goals with different implementations: cached web
pages are assigned to servers, so that when a server goes down, its cached web pages are
reassigned to the other servers so as to preserve their load balancing; similarly, when a new
server is added, some cached web pages are moved to it from the others. In contrast, a
classical randomized load balancing scheme that uses hash mapping with modular operations
on m is more expensive, as it requires to reallocate most of the keys when m changes.

Consistent hashing, in its basic version, maps both web pages and servers to the circular
universe [0 . . . 2w − 1], where each hash value requires w bits: each web page starts from its
hash value in the circular universe and is assigned to the server whose hash value is clockwise
met first; this can be done in O(logm) time using a search data structure of size O(m) for
m servers. Rendezvous hashing, for a given web page p, applies hashing to the pairs 〈p, i〉 for
each server i, and then assigns p to the server i = i0 that gives the maximum hash value
among these pairs; this is computed in O(logm) time using a tree of size O(m) as discussed
by Wang and Ravishankar [26]. The first two rows of Table 1 report a summary of these
bounds. Both methods apply their rule above when a server is deleted or added. They have
been successfully exploited in the industry, e.g. Akamai, Microsoft’s CARP, Chord [23], and
Amazon’s Dynamo [8] to name a few.

Recently, Lamping and Veach presented jump consistent hashing [14] at Google, observing
that it can be tailored for data centers and data storage applications in general. In this
scenario, servers cannot disappear, as this would mean loss of valuable data; rather, they
can be added to increase storage capacity.1 As a result, the hash values “jump” to higher
values for the keys moved to a new bucket; moreover, the hash values are a contiguous
range [0 . . .m − 1] for m servers, rather than a subset of m integers from [0 . . . 2w − 1].
This has a dramatic impact on the performance of the jump consistent hash, as illustrated
in [14], observing that only balance and monotonicity should be guaranteed from the original
proposal in [13]. The auxiliary storage is just O(1), as shown in the third row of Table 1;
average query cost is the m-th harmonic number, so O(logm), with no worst case guarantee.

1 Data is split into shards, where each shard is handled by a cluster of machines with replication, thus it
is not acceptable for shards to disappear [14].

R. Grossi and L. Versari 43:3

We observe that linear hashing, introduced by Litwin [16] and Larson [15] at the beginning
of the 80s, can also be successfully employed in this scenario: as reported in the fourth row of
Table 1, the resulting cost is O(logm) time with O(1) space, where s0 ≤ m is a user-selectable
parameter that can be conveniently fixed to be s0 = O(1).

Looking at the first four rows in Table 1, when a new bucket is created, O(α) keys on
average are moved from the other buckets, where α is the load factor, namely, the number
of stored keys divided by the number m of buckets.2 However, the hashing methods take
different time to decide which keys should be move. Specifically, consistent hashing has to
examine the O(α) keys in the two neighbor servers in the worst case, and update the data
structure in O(logm) time.3 Rendezvous hashing requires that each bucket scans its keys
and test whether the new bucket is now the maximum for some of them. Hence all the keys
are scanned, O(mα), but only O(α) of them are moved in total. Jump consistent hashing
needs to perform a similar task, to see which keys “jump” to the new bucket. Linear hashing
requires to scan the keys in s0 = O(1) buckets to find the O(α) ones to move.

Our hashing scheme

In the scenario of consistent hashing for data storage, we present a new mapping scheme,
called round-mapping, to implement the operations init(), numBuckets(), findBucket(u),
newBucket(), and freeBucket() mentioned before. Based on this, we obtain round-hashing,
which computes the hash value of the given key and invokes round-mapping for this value
achieving O(1) time and space in the worst case, as shown in the last row of Table 1. This
is a desirable feature, as otherwise hashing with no worst-case guarantee can pose security
threats, such as algorithmic complexity attacks [3, 7] for low-bandwidth denial of service
exploiting its worst-case behavior. Our scheme adds new buckets in a round-robin fashion
by interleaving them with the existing buffers, so as to grow stepwise. For a constant slack
parameter s0 � m (typically s0 = 64 or 128), round-hashing can guarantee that the number
of keys in the most populated bucket is at most 1 + 1/s0 times the number of keys in the
least populated bucket.

Compared to the other schemes in Table 1, round-hashing is much simpler and faster
due to the fixed arithmetic scheme of round-mapping that avoids division. This brings us in
the realm of the cost of instructions on a commodity processor. To concretely illustrate our
points, we refer to Intel processors [11]. Here Euclidean division is not our friend: integer
division and modulo operations on 64-bit integers take 85–100 cycles, whereas addition takes
1 cycle (and can be easily pipelined). Interestingly, this goes in the direction of the so-called
AC0-RAM dictionaries (e.g. see Andersson et al. [2]) and Practical RAM (e.g. see Brodnik
et al. [4] and Miltersen [18]), where integer division and multiplication are not permitted,
among others. However, multiplication should be taken with a grain of salt as, surprisingly,
it takes 3–4 cycles (which becomes 1 cycle when it can be pipelined). Also, the modulo
operation for powers of two or for small constants proportional to s0, can be replaced with a
few shift and multiplication operations [10] as available, for instance, in the gcc compiler
from version 2.6. Our implementation of round-hashing avoids general integer division and
modulo operations because they are almost two orders of magnitude slower than the other
operations: using them could nullify the advantage of the O(1) time complexity. Furthermore,
adding buckets is also fast and a straight-forward modification of the scheme.

2 We are assuming, wlog, that the buckets have all the same size.
3 For the sake of discussion, we consider the basic version of consistent hashing, and refer the reader

to [13, 14] for the version with multiple hash values per server.

ESA 2018

43:4 Round-Hashing for Data Storage: Distributed Servers and External-Memory Tables

Distributed servers

Motivated by the application to distributed servers, we performed an experimental study
of the above hashing methods, applying our tuning wherever possible. The code is publicly
available at https://github.com/veluca93/round_hashing to replicate the experiments.

Our first observation addresses how balanced are the buckets filled with the hashing
methods in Table 1. By uniformly sampling all the possible keys, their hash values can be
used to estimate how far the number of keys in buckets are from the ideal load factor α,
reporting the least and the most populated buckets after the experiments. We observed that
jump consistent hashing is very close to α, ranging from 0.988α to 1.012α; the experimental
study in [14] shows that it compares favorably with consistent hashing (rendezvous hashing
is not directly compared). We can match this performance by setting s0 = 128 for linear
hashing and s0 = 64 for round-hashing.

As a result of our tuning, to find the bucket number for a key, round-hashing is almost an
order of magnitude faster than jump consistent hashing, and even much faster than the other
hashing methods in Table 1. This is crucial for the system throughput: first, round-hashing
can serve tenfold or more requests; second, when a new bucket number is added, it improves
the performance of rescanning the keys to decide which ones move to the new bucket. We
refer the reader to Section 3 for further details on our experimental study.

External-memory tables

It is interesting to apply round-hashing to high-throughput servers with many lookup requests,
relatively few updates, and where some keys can be kept in a stash in main memory. We
obtain a variant of dynamic hash tables, called round-table, and adopt the the EM model [1]
to evaluate the complexity. Let n be the number of keys currently stored in the table, and
B be the maximum number of keys that fit inside one block transfer, where a stash of k
keys can be kept in main memory. We measure space occupancy using the space utilization
1− ε, where 0 ≤ ε < 1, defined as the ratio of the number n of keys divided by the number
of external-memory blocks times B, hence the number of blocks is d n

B(1−ε)e. In other words,
ε represents the “waste” of space in external memory, so the lower ε, the better.

Round-table achieves the following bounds. Each lookup reads just 1 block from external
memory in the worst case, taking O(1) CPU time and thus requiring only O(1) words
from main memory. Each update (insertion or deletion) requires to access at most 4s0
blocks in external memory, in the worst case, taking O(s0(B + logn/ log logn)) CPU time
w.h.p. (expected time is O(s0B)) and using O(B) memory cells. The number of keys in the
stash is k ≈ n/ exp(B). Experiments in Section 4 confirm our estimation.

In the literature for external-memory hashing, Mirrokni et al. [19] provide a version
that keeps bucket load within a factor of 1 + ε, but cannot guarantee at most one memory
access. The optimal bounds in Jensen and Pagh [12] and Conway et al. [6] do not require
the stash, with no guarantee of at most one memory access. As for the work on tables with
one external-memory access, some results [17, 9] rely on perfect hashing, but are either
not dynamic or cannot reach arbitrarily high utilization. A recent cuckoo hashing based
approach [21], combined with in-memory Bloom filters to ensure that lookups access the
correct position, is not simple to dynamize. A general scheme [22] relies on perfect hashing to
store the stash on external memory, thus having higher worst-case cost for insertions. The
result in [5] achieves single-access lookups, but at the cost of O

(
n

B(1−ε)

)
internal memory. A

solution based on predecessor search needs O
(
n
B

)
internal memory, as discussed in [20].

https://github.com/veluca93/round_hashing

R. Grossi and L. Versari 43:5

0

1

2

(a) round q = 0

0

1

23

4

5

(b) round q = 1

0
1

2

6

8
103

4

5

7

9
11

(c) round q = 2

0 1 2
12
16
20
6

8
10

131721345
14

18
22
7
9
11

151923

(d) round q = 3

Figure 1 Example of round-mapping with s0 = 3, where the sequences of bucket numbers are
not actually materialized by our algorithm. Black colored bucket numbers represent those buckets
that have been added during round q.

2 Round-Mapping and Round-Hashing

Conceptually we map the range of our hash function onto a circle of unitary circumference,
starting from a fixed point 0. For a given integer s0 > 1, the circumference is then split into
arcs of length proportional to either 1/s or 1/(s+ 1) for some integer s (s0 ≤ s ≤ 2s0 − 1).
We refer to arcs of length proportional to 1/s (resp. 1/(s+ 1)) as long (resp. short) arcs. At
any time all the short arcs, if any, appear consecutively along the circumference, starting
from point 0 and proceeding clockwise (hence, also the long arcs appear consecutively).

Each arc has a corresponding arc number, which is simply its position along the circum-
ference, and bucket number, which is assigned at the moment of the creation of the arc and
maintained implicitly as the algorithm progresses. All elements whose hash value fall inside
a given arc are assigned to the corresponding bucket.

At the beginning, we set s = s0 and start with s0 long arcs. We also keep a counter for
the number of buckets, initially zero.

Operation numBuckets() simply returns the value of the above counter in O(1) time.
Operation findBucket(u) is more involved, and is discussed in Section 2.1.
Operation newBucket() is implemented in O(s0) time by looking at long arcs, as follows.

First, we check the border condition “all arcs are short”: in that case, if s < 2s0 − 1 then
we set s := s+ 1; else, we set s := s0; either way, all the arcs become long. Second, we run
step s to allocate a new bucket by taking the first s long arcs that are encountered clockwise
along the circumference, and by replacing them with new s+ 1 short arcs, say, a0, a1, . . . , as.
Their associated bucket numbers are mapped in the following way: the bucket numbers for
a0, a1, . . . , as−1 are inherited from the s long arcs that created them; the bucket number of
as is the value of the counter, which is then increased by 1.

I Lemma 1. At any time, the number of long arcs is always a multiple of s.

Figures 1 and 2 show an example when a sequence of calls to newBucket() is performed
(only some snapshots of the computation are presented). To understand the example, it helps
to introduce a couple of concepts. We say that a round starts when the condition s = s0
holds. Let the rounds be numbered as q = 0, 1, 2, . . ., and let the length len(q) = s0 2q of a
round q represent the number of buckets at the end of its step s = 2s0 − 1. For example,
choosing s0 = 3, the first rounds q = 0, 1, 2, 3 are shown in Figure 1. At step s = 4 of round
q = 4, shown in Figure 2, each call to newBucket() takes s consecutive bucket numbers and
inserts a new bucket number: after 0 1 2 24 it inserts 32, after 12 16 20 25 it inserts 33, after
6 8 10 26 it inserts 34, and so on. Note that 32, 33, 34, etc., are native of round q = 4 as

ESA 2018

43:6 Round-Hashing for Data Storage: Distributed Servers and External-Memory Tables

0 1 2

12
16

20

6

8
10

13
1721345

14
18

22

7

9
11

15
19 23

24

25

26

27

28

29

30

31

(a) end of step s = s0 = 3

0 1 2

12
16

20

6
8

10

24
32

25
33

26
34

13
1721345

14
18

19

7

9
11

15
19 23

27

28

29

33

31

(b) between step s = 3 and 4

0 1 2

12
16

20

6
8

10

13
1721

345

14
18

22

7
9
11

15
1923 2432

40

25
33
41

26
34

42

273543
2836

44

29
37
45

30
38

46

3139 47

(c) end of step s = 2s0 − 1 = 5

Figure 2 More detailed examples with s0 = 3 during round q = 4. Long arcs are thicker.

Algorithm 1: Mapping from arcs to buckets.
1 Function findBucket(u)
2 j ← arc hit by u
3 if j < s0 then return j

4 if j > p then j′ ← j − p+1
s+1 , s

′ = s

5 else j′ ← j, s′ = s+ 1
6 x← (j′ % s′) % s0

7 q′ ← q +
⌊
s′−1
s0

⌋
8 i =

(
1 +

⌊
s′−1
s0

⌋)
·
⌊
j′

s′

⌋
+
⌊
j′%s′

s0

⌋
9 return pos(i, x, q′)

10 Function pos(i, x, q)
11 e← position of the least significant bit 1 in i
12 return b (s0+x)2q+i

2e+1 c

they are created there. Black numbers in Figures 1 and 2 indicate which bucket numbers are
native for the round. After step s = 2s0 − 1, each round contains twice the bucket numbers
than the previous round. Also, the concatenation of every other chunk of s0 non-native
bucket numbers, produces exactly the outcome of the previous round. We will exploit this
regular pattern in the rest of the section.

Operation freeBucket() is simply the unrolling of the last newBucket() operation per-
formed, hence, it also requires O(s0) time.

2.1 Implementation of findBucket(u)
We exploit the invariant property that short arcs are numbered from 0 to p, and thus p+1 is a
multiple of s+1, where p is maintained as the last added short arc. We also use pow(a), where
a > 0, to denote the largest integer exponent e ≥ 0 such that 2e divides a (a.k.a. 2-adic order).
Equivalently, pow(a) is the position of the least significant bit 1 in the binary representation
of the unsigned integer a > 0.

First, consider the ideal situation: after the step s = 2s0 − 1 of round q, we have len(q)
buckets, numbered consecutively from 0 to len(q)− 1. We also have len(q) arcs on the circle,
numbered consecutively from 0 to len(q) − 1. As arc j is mapped to bucket number b(j)
using our scheme, we give a closed formula for b(j) that can be computed in O(1) time in
the word RAM model, where divisions and modulo operations involve just powers of two or
constants in the range [s0 . . . 2s0] (see Algorithm 1).

R. Grossi and L. Versari 43:7

Let j = s0 i+ x where x ∈ {0, 1, . . . , s0− 1}. If i = 0, then b(j) = b(x) = x. Thus b(j) = j

for 0 ≤ j < s0. Hence, let assume i > 0 in the rest of the section, and thus we need to
compute b(j) for j ≥ s0.

We say that the bucket number in position j belongs to chunk i (hence, a chunk is of
length s0). For odd values of i, the bucket number is native for round q. For even values of
i, the bucket number is native for round q − pow(i), as it can be checked in Figure 1: for
example, in round q after the last step, bucket number 9 is in position j = 37 = 3 · 12 + 1, so
i = 12 and 9 is native for round q − pow(i) = 4− 2 = 2. In general, as pow(i) = 0 when i
is odd, we can always say that the bucket number is native for round q − pow(i) for i > 0.
Another useful observation is that the smallest native number in round q is len(q − 1) by
construction (e.g. 24 in round q = 4).

In the ideal situation, we find the native round for the bucket number at position j: as its
chunk is preserved in the native round, we can use its offset x inside the chunk to recover the
value of that bucket number. In the native round q, each chunk i starts with bucket number
len(q − 1) as previously observed, increased by one for each such chunk, thus the first bucket
number in chunk i is len(q − 1) + bi/2c. Also, any two adjacent numbers in the chunk, differ
by 2q−1 by construction. Summing up, there are two cases for the bucket number for j:

i odd and thus native for round q: the bucket number is
⌊

(s0+x)2q+i
2

⌋
i even and thus native for round q − pow(i): the bucket number is

⌊
(s0+x)2q+i

2pow(i)+1

⌋
As pow(a) = 0 when a is odd, we can compactly write these positions in the ideal situation as

pos(i, x, q) =
⌊

(s0 + x)2q + i

2pow(i)+1

⌋
Second, consider the general situation, with an intermediate step s0 ≤ s ≤ 2s0 − 1 in

round q. Recall that we know the position p of the last created arc. This gives the following
picture. The first p+ 1 short arcs in clockwise order can be seen as p+1

s+1 consecutive groups,
each of s+ 1 arcs, and the remaining arcs are long and form groups of s arcs each. Let us
set s′ = s + 1 in the former groups, and s′ = s in the latter groups. In the following, we
equally say that each group contains s′ arcs or that each group contains s′ bucket numbers.
In general, we say s′ entries (arcs or bucket numbers) when it is clear from the context.

A common feature is that the first s0 entries of each group are inherited from the previous
round, and the last s′ − s0 entries in each group are those added in the current round: each
new entry is appended at the end of each group, so the entry in position p is the last in its
group.

Now, given a position j, we want to compute b(j), the corresponding bucket number. The
idea is to reduce this computation to the ideal situation analyzed before.

If j > p, we conceptually remove one entry for each group such that s′ = s+ 1. This is
equivalent to set j := j − p+1

s+1 and, consequently, p := p− p+1
s+1 . Now, we have all the groups

of the same size s′, which are sequentially numbered starting form 0.
Let i′ = bj/s′c be the number of the group that contains the entry corresponding to j.

We now decide whether j is one of the first s0 entries of its group or not. We have two cases,
according to the value of r = j % s′.

If r < s0, the wanted entry is one of the first s0 entries of its group. If we concatenate
those entries over all groups, we obtain the ideal situation of the previous round q− 1. There,
the wanted entry occupies position j′ = s0i

′ + r. Hence, b(j) = pos(i′, r, q − 1) in the ideal
situation.

If r ≥ s0, the wanted entry is one of the last s′ entries of its group. Analogously, if
we concatenate those entries over all groups, the position of the wanted entry becomes

ESA 2018

43:8 Round-Hashing for Data Storage: Distributed Servers and External-Memory Tables

28 210 212 214 216 218 220 222 224 226 228 230
0

25

50

75

100

125

150

175

200

225

250

275

number of buckets

tim
e
ra
tio

JumpHashing
LinearHashing
RoundHashing
RoundMapping

Figure 3 Time needed to compute a single hash as the number of buckets varies.

j′′ = (s′ − s0)i′ + r − s0, where x = r − s0 is the internal offset. However, we cannot solve
this directly. We use instead the observation that the futures entries that will contribute to
get the ideal situation for round q, will be appended at the end of each group. In this ideal
situation, the wanted entry correspond to arc 2i′+1 and is at position j′ = s0(2i′+1)+r−s0
for round q. Thus, b(j) = pos(2i′ + 1, r − s0, q) in the ideal situation.

We can summarize the entire computation of b(j) in an equivalent formula computed by
Algorithm 1 that can be computed in O(1) time.

I Lemma 2. findBucket() can be implemented in O(1) time using bitwise operations.

Interestingly, findBucket() is much faster than other approaches known in the literature
for consistent hashing, as we will see in the experiments.

I Theorem 3. Round-mapping with integer parameter s0 > 1 can be implemented using O(1)
words, so that init(), numBuckets() and findBucket() take O(1) time, and newBucket()
and freeBucket() take O(s0) time.

Round-hashing computes the hash value of the given key and invokes round-mapping
to obtain its bucket number. Whenever it decides to increase or decrease the number m of
buckets, it invokes again round-mapping to know the Θ(s0) buckets whose keys must be
redistributed. Letting α be the load factor, namely, the overall number of stored keys divided
m, we obtain the result in the last row of Table 1.

I Theorem 4. Round-hashing with integer parameter s0 > 1 requires O(1) working space
and takes O(1) time to find the bucket for the key to be searched, inserted or deleted, and
Õ(s0α) average time to add or remove a bucket whenever needed.

R. Grossi and L. Versari 43:9

3 Distributed Servers

We experimentally evaluated round-hashing and our C implementation of Algortihm 1, on
a commodity hardware based on Intel Xeon E3-1545M v5 CPU and 32Gb RAM, running
Linux 4.14.34, and using gcc 7.3.1 compiler. We give some implementation details on the
experimented algorithms, observing that we decided not to run consistent hashing [13] and
rendezvous hashing [24] as they are outperformed by jump consistent hashing as discussed in
detail in [14]. Specifically, we ran the following code.

Jump consistent hashing [14]: we employed the implementation provided by the authors’
optimized code.
Linear hashing [15, 16]: the pseudocode is provided but not the code, which we wrote
in C. As for the O(logm) hash functions, we followed the approach suggested in [15]: we
employed the fast and high-quality pseudo-random number generator in [25] using the
key to hash as a seed and the jth output as the outcome of the jth hash function. This
takes constant time per hash function. Moreover, we replaced all modulo operations with
the equivalent faster operations, as we did for round-mapping.
Round-hashing (this paper): we employed the first output from the pseudo-random
number generator in [25] as hash value. We chose the size of our hash range to be a power
of two, so that mapping a hash value to an arc number can be done without divisions: we
computed the product between the number of buckets and the hash value, divided by the
maximum possible hash value. Note that some care is required to compute the product
correctly as it may overflow.

It is worth noting that replacing the expensive division was very effective in our measure-
ments. In particular, we replaced the division by s′ in Algorithm 1 with the precomputed
equivalent combination of multiplication and shift: as s0 ≤ s′ ≤ 2s0, this can be done at
initialization time with a constant amount of work. This reduced the time per round-hashing
call from 14.02ns to 8.71ns, a 60% decrease, which is an interesting lesson that we learned.

Figure 3 shows the running times for the above implementations, when computing ten
million hash values, as the number of buckets varies on the x-axis. On the y-axis, the running
times are reported for jump consistent hashing, linear hashing, round-hashing and round-
mapping alone (i.e. given a position u in the circumference, return its bucket number). As
it can be seen, the costs of round-hashing and round-mapping are very close and constant
along the x-axis, outperforming the non-constant costs of jump consistent hashing and linear
hashing, which behave similarly when the number of buckets is large. Note that round-hashing
has at least an order of magnitude improvement at around 216 buckets and on, which indicates
that it scales well.

All the running times in Figure 3 were normalized by the time needed to compute the
sum of all the values. Looking at the absolute figures, the running time for the sum is about
0.4ns per element, and that of round mapping is 8–10ns per element (and the pseudo-random
number generator in [25] takes twice the cost of the sum).

Speed is not the whole story as it is important also how the hash values in the range are
distributed in the buckets. To this end, we show in Table 2 the results using 64-bit hash
values: as it was infeasible to compute the bucket for every possible hash value, we chose
109 values at regular intervals in the hash range of 264 values, and computed the bucket size
distribution for them.

The columns in the table report the parameters for 104 buckets, where the actual bucket
sizes are obtained by multiplying parameters in {min,max,1%,99%} by the load factor
α = 109/104. Specifically, s0 useful for linear hashing and round-hashing, the standard

ESA 2018

43:10 Round-Hashing for Data Storage: Distributed Servers and External-Memory Tables

Table 2 Statistics on how much hash space is assigned to a given bucket, with a total of 10000
buckets. Note that the actual bucket sizes are obtained by multiplying the numbers in columns min,
max, 1%, 99& by the load factor α. Extremal values and percentiles are a ratio from the ideal value.

s0
σ
µ

min max 1% 99% percentile ratio
jump consistent h. 0.316 0.988 1.012 0.993 1.007 1.014
round-hashing 1 29.325 0.610 1.221 0.610 1.221 2.001

2 20.272 0.814 1.221 0.814 1.221 1.500
4 7.192 0.977 1.221 0.977 1.221 1.250
8 4.465 0.976 1.085 0.976 1.085 1.112

16 2.560 0.976 1.028 0.976 1.028 1.053
32 0.613 0.976 1.002 0.976 1.002 1.027
64 0.421 0.989 1.002 0.989 1.002 1.013

128 0.277 0.995 1.002 0.995 1.002 1.007
linear hashing 1 29.329 0.602 1.232 0.605 1.228 2.030

2 20.274 0.803 1.234 0.808 1.228 1.520
4 7.203 0.964 1.232 0.969 1.225 1.264
8 4.476 0.965 1.095 0.970 1.090 1.124

16 2.583 0.965 1.041 0.970 1.034 1.066
32 0.685 0.968 1.014 0.973 1.009 1.037
64 0.527 0.980 1.014 0.984 1.009 1.025

128 0.417 0.985 1.014 0.990 1.009 1.019

error σ
µ where σ is the variance and µ is the average of the bucket sizes, the minimum and

maximum bucket size, the 1% and 99% percentiles of the size, and the ratio between the latter
two. This ratio is the most important parameter in the table as it shows how well-balanced
are buckets. It can be easily seen that both round-hashing and linear-hashing can match
almost perfectly, with round-hashing having a slightly better distribution. Based on this
table, we can see that round-hashing and linear-hashing have distribution properties that
are similar to jump consistent hashing, as long as we choose suitable values: s0 = 64 for
round-hashing and s0 = 128 for linear hashing. Figure 3 has been plotted using these values
of s0.

4 External-Memory Tables

Given a universe U of keys, and a random hashing function h : U → I, where I =
{0, 1, . . . , |I| − 1}, we build a hash table that keeps a stash of keys in main memory. Armed
with the round-hashing, we obtain a hash table called round-table that uses O(k+ 1) words in
main memory, where k denotes the number of stash keys. We consider the stash to be a set
of k keys, where notation stash[b] indicates the set {x ∈ stash : findBucket(h(x)/|I|) = b}
(e.g. a hash table in main memory with maximum size O(B + logn/ log logn) w.h.p. via a
classical load balancing argument). To check if x ∈ stash, we check if x ∈ stash[b] where
b = findBucket(x). Also, for a user given parameter ε, the guaranteed space utilization in
external memory is 1− ε.

The lookup algorithm is straightforward while the insertion algorithm is a bit more
complex. After checking that the key is not in the table, it proceeds with the insertion. For
this, we need to maintain the claimed space utilization of (1 − ε). That is, if d n

B(1−ε)e >

R. Grossi and L. Versari 43:11

Table 3 Percentage of elements on the stash as s0 and ε change, with B = 1024.

s0

ε

0 0.001 0.01 0.03 0.05 0.1
real est. real est. real est. real est. real est. real est.

1 17.2% 18.4% 17.1% 18.3% 16.7% 17.4% 15.9% 15.7% 15.1% 14.5% 13% 12%
4 5.6% 6.8% 5.5% 6.7% 5.1% 5.9% 4.2% 4.4% 3.4% 3.4% 1.7% 1.7%
16 1.8% 2.8% 1.7% 2.7% 1.3% 1.9% 0.7% 0.7% 0.3% 0.1% 0.01% 0.1%
32 1.4% 2% 1.3% 1.9% 0.9% 1.2% 0.4% 0.3% 0.1% 0.5% 0.003% 0.009%
64 1.3% 1.6% 1.2% 1.5% 0.8% 0.9% 0.3% 0.6% 0.1% 0.2% 0.003% 0.002%

256 1.3% 1.3% 1.2% 1.3% 0.8% 1% 0.3% 0.3% 0.08% 0.09% 0.003% 0.0005%
ideal - 1.2% - 1.2% - 0.8% - 0.3% - 0.07% - 0.0003%

numBuckets(), we need one more block. We invoke newBucket(), and receive a list of z < 2s0
block numbers. We have to distribute the keys stored in these z blocks over z + 1 blocks,
where the extra block has number numBuckets() as it is the latest allocated block number by
round-mapping. In the distribution, the keys from the stash are also involved, as described
below in the function distribute. After that, findBucket() finds the external-memory block
block() that should contain the key: if it is full, the key is added to the stash.

Function distribute(b0, b1, . . . , bz−1) takes these z block numbers from newBucket(),
knowing that bz = numBuckets() is the new allocated block number, and thus allocates
block(bz). Then it loads block(bz−1) and moves to block(bz) all keys x ∈ block(bz−1) such
that findBucket(x) = bz. Also, for each x ∈ stash[bz−1] such that findBucket(x) = bz, it
moves x to block(bz), if there is room, or to stash[bz] otherwise. Next, we repeat this task
for bz−2 and bz−1 while also taking care of moving keys from stash[bz−1] to block(bz−1)
if there is room, and so on. In this way, the cost of distribute is 2z + 1 block transfers,
using O(B) space in main memory, taking O(s0(B + logn/ log logn)) CPU time w.h.p., and
O(s0B) expected time.

The deletion algorithm is similar to the insertion one, and its performance can be bound
in the same way as above. We check the condition d n

B(1−ε)e < numBuckets()− 1 for n > 0 to
run freeBucket() using a slightly different distribute that proceeds in reverse. Note that
the rhs of the condition is numBuckets()− 1 to avoid newBucket() being called too soon.

We can show that as long as we choose s0 >
2
ε we have that the stash size of a hash table

implemented with round-hashing is similar to the behaviour we would get with an uniform
hash function (that would require rehashing). Thus, we recommend choosing s0ε > 2, as
confirmed by the experiments below. Moreover, we can show how to keep a copy of the
stash in external memory, without increasing space usage but increasing the number of block
operations per update to O(1 + εs0).

To evaluate our approach, we consider the worst-case stash size (over the number of keys)
across multiple values of n (going from 210B to 213B) for B = 512, 1024, 2048 as ε and s0
vary. The results are reported in Tables 3, where the left side of every column reports the
ratio predicted by the analysis and the right side shows the effective maximum ratio reported
during the experiment. As our analysis is substantially different when εs0 > 1, we reported
those values in bold to highlight them. Finally, the last row reports the best values one can
hope to achieve for that value of ε, that is, the values that our analysis predicts for a uniform
hash function.

Looking at these results, we can make some observations. First, the values predicted by
the analysis match the results fairly well, especially when s0ε� 1 or s0ε� 1. In particular,
it almost never happens that the analysis is wrong by more than a factor of 3. Second, when

ESA 2018

43:12 Round-Hashing for Data Storage: Distributed Servers and External-Memory Tables

Figure 4 Stash size (on the y-axis) as n grows (on the x-axis) for s0 = ε
2 and different values of ε.

2 · 107 4 · 107 6 · 107 8 · 107 1 · 108 1.2 · 108
0

1,000

2,000

3,000 ε = 0.1, S = 20

(a) ε = 0.1
2 · 107 4 · 107 6 · 107 8 · 107 1 · 108 1.2 · 108

0

20,000

40,000

60,000

80,000

1 · 105

ε = 0.05, S = 40

(b) ε = 0.05

2 · 107 4 · 107 6 · 107 8 · 107 1 · 108 1.2 · 108
0

1 · 105

2 · 105

3 · 105

4 · 105
ε = 0.03, S = 66

(c) ε = 0.03

2 · 107 4 · 107 6 · 107 8 · 107 1 · 108 1.2 · 108
0

2 · 105

4 · 105

6 · 105

8 · 105

1 · 106 ε = 0.01, S = 200

(d) ε = 0.01

s0 is small, stash size is fairly high, even for low space utilization. This is to be expected,
as in this case different buckets may have very different assignment probabilities. Third, as
s0 grows, stash size quickly approaches the one that we would expect from the ideal case.
Nonetheless, the improvement is fairly small when s0 goes over 32, even at low utilization.
We thus recommend s0 to be chosen near 32 for practical usage.

We also considered how stash size varies over time, as more elements are inserted. To
study that, we fixed s0 = 2

ε , as recommended in the analysis section, and plotted the size of
the stash against the number of elements in the table. The plots can be found in Figure 4.
These plots clearly show the “cyclic” behavior of round-table: when a new round begins,
the distribution of keys in buckets is further away from being uniform and, as a result, the
stash size increases. As more steps of the round are completed, the spikes in stash size get
progressively smaller as round-table balances keys in a better way, until a new round starts
again and the table reverts to its previous behavior.

5 Conclusions

We discussed a version of consistent hashing, called round-hashing, that scales well for large
data sets in distributed servers. A key tool is round-mapping, and it would be interesting to
see if it can have other applications, and if the number of changed buckets at each step can
be reduced while keeping the same guarantees. As an example, we discussed how to obtain a
dynamic hash table for external memory that guarantees at most one access to the external
memory in the worst case, (1− ε) space utilization, efficient updates, and small stash size in
main memory.

R. Grossi and L. Versari 43:13

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, sep 1988.
2 A. Andersson, P. B. Miltersen, S. Riis, and M. Thorup. Static dictionaries on AC0

RAMs: query time θ(
√

logn/ log logn) is necessary and sufficient. In Proceedings of
37th Conference on Foundations of Computer Science, pages 441–450, Oct 1996. doi:
10.1109/SFCS.1996.548503.

3 Noa Bar-Yosef and Avishai Wool. Remote algorithmic complexity attacks against random-
ized hash tables. In SECRYPT 2007, Proceedings of the International Conference on Secur-
ity and Cryptography, Barcelona, Spain, July 28-13, 2007, SECRYPT is part of ICETE -
The International Joint Conference on e-Business and Telecommunications, pages 117–124,
2007.

4 Andrej Brodnik, Peter Bro Miltersen, and J. Ian Munro. Trans-dichotomous algorithms
without multiplication—some upper and lower bounds. In Algorithms and Data Structures,
5th International Workshop, WADS ’97, Halifax, Nova Scotia, Canada, August 6-8, 1997,
Proceedings, pages 426–439, 1997.

5 F. Cesarini and G. Soda. Single access hashing with overflow separators for dynamic files.
BIT Numerical Mathematics, 33(1):15–28, Mar 1993. doi:10.1007/BF01990340.

6 Alexander Conway, Martin Farach-Colton, and Philip Shilane. Optimal hashing in external
memory. In Proc. Automata, Languages and Programming, 45th International Colloquium
(ICALP18), 2018.

7 Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic complexity attacks.
In USENIX Security Symposium. USENIX Association, 2003.

8 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: amazon’s highly available key-value store. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington,
USA, October 14-17, 2007, pages 205–220, 2007.

9 Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. Extendible
hashing - a fast access method for dynamic files. ACM Trans. Database Syst., 4(3):315–344,
1979. doi:10.1145/320083.320092.

10 T. Granlund and P. L. Montgomery. Division by invariant integers using multiplication.
ACM Sigplan Notices, 29:61–72, 1994.

11 Intel Co. Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel, order
248966-040, April 2018.

12 Morten Skaarup Jensen and Rasmus Pagh. Optimality in external memory hashing. Al-
gorithmica, 52(3):403–411, 2008.

13 David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel
Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM.
doi:10.1145/258533.258660.

14 John Lamping and Eric Veach. A fast, minimal memory, consistent hash algorithm. CoRR,
abs/1406.2294, 2014. arXiv:1406.2294.

15 Per-Åke Larson. Linear hashing with partial expansions. In VLDB, volume 6, pages 224–
232, 1980.

16 Witold Litwin. Linear hashing: a new tool for file and table addressing. In VLDB, volume 80,
pages 1–3, 1980.

17 Harry G Mairson. The program complexity of searching a table. In Foundations of Com-
puter Science, 1983., 24th Annual Symposium on, pages 40–47. IEEE, 1983.

ESA 2018

http://dx.doi.org/10.1109/SFCS.1996.548503
http://dx.doi.org/10.1109/SFCS.1996.548503
http://dx.doi.org/10.1007/BF01990340
http://dx.doi.org/10.1145/320083.320092
http://dx.doi.org/10.1145/258533.258660
http://arxiv.org/abs/1406.2294

43:14 Round-Hashing for Data Storage: Distributed Servers and External-Memory Tables

18 Peter Bro Miltersen. Lower bounds for static dictionaries on RAMs with bit operations
but no multiplication. In Automata, Languages and Programming, 23rd International
Colloquium, ICALP96, Paderborn, Germany, 8-12 July 1996, Proceedings, pages 442–453,
1996.

19 Vahab Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. Consistent hashing with
bounded loads. CoRR, 2016. URL: https://arxiv.org/pdf/1608.01350v1.

20 Rasmus Pagh. Basic external memory data structures. Algorithms for Memory Hierarchies,
pages 14–35, 2003.

21 Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. EMOMA: exact match
in one memory access. CoRR, abs/1709.04711, 2017. arXiv:1709.04711.

22 M. V. Ramakrishna and Walid R. Tout. Dynamic external hashing with guaranteed single
access retrieval, pages 187–201. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989. doi:
10.1007/3-540-51295-0_127.

23 Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for
Internet applications. IEEE/ACM Transactions on Networking, 11(1):17–32, 2003.

24 David Thaler and Chinya V. Ravishankar. Using name-based mappings to increase hit
rates. IEEE/ACM Trans. Netw, 6(1):1–14, 1998.

25 Sebastiano Vigna. xoroshiro128+: an extremely fast and well-distributed pseudo random
number generator. http://xoroshiro.di.unimi.it/, 2018.

26 Wei Wang and Chinya V. Ravishankar. Hash-based virtual hierarchies for scalable location
service in mobile ad-hoc networks. Mobile Networks and Applications, 14(5):625–637, 2009.

https://arxiv.org/pdf/1608.01350v1
http://arxiv.org/abs/1709.04711
http://dx.doi.org/10.1007/3-540-51295-0_127
http://dx.doi.org/10.1007/3-540-51295-0_127
http://xoroshiro.di.unimi.it/

Algorithmic Building Blocks for Asymmetric
Memories
Yan Gu
Carnegie Mellon University, Pittsburgh, PA, USA
yan.gu@cs.cmu.edu

Yihan Sun
Carnegie Mellon University, Pittsburgh, PA, USA
yihans@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University, Pittsburgh, PA, USA
guyb@cs.cmu.edu

Abstract
The future of main memory appears to lie in the direction of new non-volatile memory technolo-
gies that provide strong capacity-to-performance ratios, but have write operations that are much
more expensive than reads in terms of energy, bandwidth, and latency. This asymmetry can
have a significant effect on algorithm design, and in many cases it is possible to reduce writes
at the cost of more reads. This paper studies which algorithmic techniques are useful in design-
ing practical write-efficient algorithms. We focus on several fundamental algorithmic building
blocks including unordered set/map implemented using hash tables, comparison sort, and graph
traversal algorithms including breadth-first search and Dijkstra’s algorithm. We introduce new
algorithms and implementations that can reduce writes, and analyze the performance experi-
mentally using a software simulator. Finally, we summarize interesting lessons and directions in
designing write-efficient algorithms that can be valuable to share.

2012 ACM Subject Classification Theory of computation→ Models of computation, Theory of
computation → Design and analysis of algorithms

Keywords and phrases Asymmetric Memory, I/O Cost, Write-Efficient Algorithms, Hash Tables,
Graph-Traversal Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.44

Related Version The full version is available at [20], https://arxiv.org/abs/1806.10370.

Acknowledgements This work was supported by NSF grants CCF-1408940, CCF-1533858, CCF-
1629444 and CCF-1745331.

1 Introduction

The future of main memory appears to lie in the non-volatile memory technologies that
promise persistence, significantly lower energy costs, and higher density than the DRAM
technology used in today’s main memories [21, 24, 33, 43]. However, despite the advantages,
a key property of such memory technologies is their asymmetric read-write costs: compared
to reads, writes can be much more expensive in terms of latency, bandwidth, and energy.
Because bits are stored in these technologies as at rest “states” of the given material that can
be quickly read but require physical change to update, this asymmetry appears fundamental.

© Yan Gu, Yihan Sun, and Guy E. Blelloch;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yan.gu@cs.cmu.edu
mailto:yihans@cs.cmu.edu
mailto:guyb@cs.cmu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.44
https://arxiv.org/abs/1806.10370
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Algorithmic Building Blocks for Asymmetric Memories

This motivates the need for write-efficient algorithms that largely reduce the number of
writes compared to existing algorithms.

In the related work section, we review the literature on studying this read-write asymmetry
on NAND Flash chips [4, 17, 18, 35] and algorithms targeting database operators [12, 39, 40].
These works provide novel aspects on rethinking algorithm design. However, most of the
papers either treat NVMs as external memories, or are based on hardware simulators for
existing architecture, which may have many concerns that we will further discuss in the
related work section.

Blelloch et al. [5, 7, 8] formally defined and analyzed several sequential and parallel
computation models with good caching and scheduling guarantees. The models abstract
such asymmetry between reads and writes, and can be used to analyze algorithms on future
memory. The basic model, which is the Asymmetric RAM (ARAM), extends the well-known
external-memory model [1] and parameterizes the asymmetry using ω, which corresponds
to the cost of a write relative to a read to the non-volatile main memory. The cost of an
algorithm on the ARAM, the asymmetric I/O cost, is the number of write transfers to
the main memory multiplied by ω, plus the number of read transfers. This model captures
different system consideration (latency, bandwidth, or energy) by simply plugging in different
values of ω, and also allows algorithms to be analyzed theoretically. Based on this idea,
many interesting algorithms (and lower bounds) are designed and analyzed by various recent
papers [5, 6, 7, 8, 10, 25].

Unfortunately, all of the analyses of such write-efficient algorithms are asymptotic,
showing the upper and lower bounds on the complexity of these problems. Also, to prove
the bounds, the theoretical models simplify the real architecture (e.g., without considering
blocking of cache-lines or cache policies). It still remains unknown what the performance of
these algorithms are in practice. In this paper, our goal is to show such performance on a
number of fundamental algorithmic building blocks. We believe the lessons in designing and
implementing them are useful for our community to use new memory in the future.

Contribution of this paper

In this work, our goal is to bridge the gap between theory and practice. We try to study
and understand which algorithmic techniques are useful in designing practical write-efficient
algorithms. As the first paper of this kind, we focus on several of the most commonly-seen
algorithmic building blocks in modern programming. Due to the page limit, in this paper
we briefly discuss unordered set/map implemented using hash tables, and graph traversal
algorithms: breadth-first search for unweighted graphs and Dijkstra’s algorithm for
weighted graphs. In the full version of this work, we discuss more details of these algorithms,
as well as ordered set/map implemented using binary search trees and comparison sort.

Unfortunately, no non-volatile main memory is currently available, making it impossible to
get real timings. Furthermore, details about latency and other parameters of the memory and
how they will be incorporated into the architecture are also not available. This makes detailed
cycle-level simulation (e.g., PTLsim [36], MARSSx86 [34] or ZSim [38]) of questionable utility.
However, it is quite feasible to count the number of reads and write to main memory while
simulating a variety of cache configurations. For I/O-bounded algorithms, these numbers
can be used as reasonable proxies for both running time (especially when implemented in
parallel) and energy consumption.1 Moreover, conclusions drawn from these numbers can
likely give insights into tradeoffs between reads and writes among different algorithms.

1 The energy consumption of main memory is a key concern since it costs 25-50% energy on data
centers and servers [28, 32, 30].

Y. Gu, Y. Sun, and G. E. Blelloch 44:3

For these reasons, we propose a framework based on a software simulator that can
efficiently and precisely measure the number of read and write transfers of an algorithm
using different caching policies. We also consider variants in caching policies that might lead
to improvements when read and write are not the same.

We also note that designing write-efficient algorithms falls in a high dimensional parameter
space since the asymmetries on latency, bandwidth, and energy consumption between reads
and writes are different. Here we abstract this as a single value ω. This value together with
the cache size M and cache-line size B (set to be 64 bytes in this paper) form the parameter
space of an algorithm.

Our framework provides a simple, clean and hardware-independent method to analyze
and experiment the performance on the asymmetric memory. We investigate the algorithmic
techniques and learn lessons from the experiments that generally apply for a reasonably large
parameter space of ω, M and B. This framework also allows monitoring, reasoning and
debugging the code easily, so it can remain useful even after the new hardware is available.

With the framework, we design, implement and discuss many algorithms and data
structures and their write-efficient implementations. Although some of the implementations
are standard, like quicksort and hash tables, many others, including k-level hash tables,
sample sort and phased Dijkstra, require careful algorithmic design, analysis, and coding.
Under our measurement which is the asymmetric I/O cost and compared to the most
commonly-used ones on symmetric memories, we provide better alternatives to all problems
we studied in this paper.

With the algorithms and their experimental results, we draw many interesting algorithmic
strategies and guidance in designing write-efficient algorithms. A common theme is to trade
(more) reads for (fewer) writes (apparently it is hard to directly decrease the writes since this
can improve the performance on symmetric memory as well and should have been investigated
already). Some interesting lessons we learned and can be valuable to share are listed as
follows, which can suggest some potential directions to design and engineer write-efficient
algorithms in the future.
1. Indirect addressing is less problematic. In the classic setting, indirect addressing should

be avoided if possible, since each addressing can be a random access to the memory.
However, when writes are expensive, moving the entire data is costly, while indirect
addressing only modifies the pointers (at the cost of a possible random access per lookup).

2. Multiple candidate positions for a single entry in a data structure can help. It can be a
good option to use more reads per lookup but apply less frequent data movements, when
the size of a data structure changes significantly. This is a common strategy we have
applied in this paper to provide an algorithmic tradeoff between reads and writes.

3. It is usually worth to investigate existing algorithms that move or modify the data less.
These algorithms can be less efficient in the symmetric setting due to various reasons
(e.g., more random accesses, less balanced), but the property that they use fewer writes
can be useful in the asymmetric setting (like samplesort vs. quicksort, treap vs. AVL or
red-black tree).

4. In-cache data structures should draw more attention. Since the data structures are
kept in the cache (or small symmetric memory), the algorithm requires significantly less
writes to the large asymmetric memory, although may require extra reads to compensate
for less information we can keep within the data structure. In this paper, we discuss
Dijkstra’s algorithm on shortest-paths as an example, and such idea can also be applied
to computing minimum spanning tree, sorting, and many other problems.

ESA 2018

44:4 Algorithmic Building Blocks for Asymmetric Memories

2 Related Work

There exist a rich literature to show the read-write asymmetry on the new memories [2, 3,
7, 8, 11, 13, 15, 16, 22, 23, 26, 27, 31, 37, 41, 42, 44, 45]. Regarding adapting softwares for
such read-write asymmetry, some work has studied the system aspect. For example, there
exist many papers on how to balance the writes across the chip to avoid uneven wear-out of
locations in the context of NAND Flash chips [4, 17, 18, 35].

The early and inspirational attempts to design algorithms with fewer writes targeting
database operators: Chen et al. [12] and Viglas [39, 40] presented several write-efficient
sequential algorithms for searching, hash joins and sorting. However, their results are mainly
shown by assuming external memories rather than main memories, or on the cycle-based
simulators for existing architecture. For the latter case however, the prototypes of the new
memories are still under development, and yet nobody actually knows the exact parameters
of the new memories, or how they are incorporated into the actual architecture. As a result,
we believe that the results based on cycle-based simulator might not be very accurate. In the
meantime, the asymmetries on latency, bandwidth, and energy consumption between reads
and writes are different, and any of these constraints can be the bottleneck of an algorithm.
Hence, designing algorithms on asymmetric memory are in a multiple-dimension parameter
space, rather than just recording the running time from a simulator. Therefore, it is essential
to develop theoretical models and tools that account for, and abstract this asymmetry and
use them to analyze algorithms on future memory.

Blelloch et al. [5, 7, 8] formally defined several sequential and parallel computation models
that take asymmetric read-write costs into account. Based on the computational models,
many interesting algorithms (and lower bounds) are designed and analyzed in both sequential
and parallel settings, which includes sorting, permuting, matrix multiplication, FFT, list/tree
contraction, BFS/DFS and other graph algorithms, and many computational geometric and
dynamic programming problems [5, 6, 7, 8, 10, 25, 9, 19]. Carson et al. [11] also presented
write-efficient sequential algorithms for a similar model, as well as write-efficient parallel
algorithms (and lower bounds) on a distributed memory model with asymmetric read-write
costs, focusing on linear algebra problems and direct N-body methods. Although many
problems under the asymmetric setting have been studied, all the analyses are asymptotic
and only show the upper and lower bounds on the complexity of these problems.

3 Our Model and Simulator

To start with, we discuss how to measure the performance of algorithms on asymmetric
memories. We begin with the computational model that estimates the cost of an algorithm.
This model requires the numbers of read and write transfers between the non-volatile memory
and the cache, so later we introduce how the numbers of an algorithm can be simulated.

The Cost Model for Asymmetric Memory. The most commonly-used cost measure of an
algorithm is the time complexity based on the RAM model, which is the overall number of
instructions and memory accesses executed in this algorithm. Nowadays, since the latency of
an memory access is at least two orders of magnitudes more expensive than a CPU instruction,
the I/O cost based on the external-memory model [1] is widely used to analyze the cost of
an I/O-bounded algorithm. This model assumes a small-memory (cache) of size M ≥ 1,
and a unbounded-size large-memory. Both memories are organized in blocks (cache-lines)
of B words. The CPU can only access the small-memory (with no cost), and it takes unit

Y. Gu, Y. Sun, and G. E. Blelloch 44:5

cost to transfer one block between the small-memory and the large-memory. This cost
measure estimates the running time reasonably well for I/O-bounded algorithms, especially
in multi-core parallelism. An efficient algorithm in practice should achieve optimality in both
time complexity and I/O cost.

To account for more expensive writes on future memories, here we adopt the idea of an
(M,ω)-Asymmetric RAM (ARAM) [8]: similar to the external-memory model, transferring a
block from large-memory to small-memory takes unit cost; on the other direction, the cost is
either 0 if this block is clean and never modified, or ω � 1 otherwise. The asymmetric I/O
cost Q of an algorithm is the overall costs for all memory transfers. We abbreviate such
cost Q as the I/O cost throughout the paper, unless stated otherwise explicitly. Theoretical
results on this new model have been studied in [5, 6, 7, 8, 10, 25, 9, 19].

Cache Policies. Either the classic external-memory model or the new ARAM assumes
that we can explicitly manipulate the cache in the algorithm. This largely simplifies the
analysis, and in many cases is provably within a constant factor of a more realistic cache’s
performance. For example, the standard least-recent used (LRU) policy is 2-competitive
against the optimal offline cache-replacement sequence. However, the competitive ratio does
not hold in the asymmetric setting in the worst case. The overhead is proportional to ω,
which can be significant and problematic. In the full version of this paper [20], we discuss
several alternative solutions with worst-case performance guarantees. In this conference
version we show our experiment results based on the LRU policy, and the comparison to
other policies are covered in the full version of this paper.

The Cache Simulator. To capture the number of reads and writes to the main memory,
we developed a software simulator that can adapt to different cache policies. The cache
simulator is composed of an ordered map that keeps tracks of the time stamp of the last
visit to each cache-line in the current cache, and an unordered map that stores the mapping
from each cache-line to the corresponding location in the ordered map if this cache-line is
currently in the cache. Interestingly, the implementation of this cache simulator is a natural
application of the techniques discussed in this paper.

The cache simulator encapsulates a new structure Array that is used in coding algorithms
in this paper. It is like a regular array that can be dynamically allocated and freed, and
supports two functions: Read and Write to a specific location in this array. The Arrays
are responsible for reporting the memory accesses of the algorithm to the cache simulator,
and the cache simulator will update the state of the cache accordingly. Therefore, coding
using the Arrays is not different from regular programming much.

The memory accesses to loop variables and temporary variables are ignored, as well as
the call stack. This is because the number of such variables is small in all of the algorithms
in this paper (usually no more than 10). Meanwhile, the call stack of all algorithms in this
paper has size O(logn). The overall amount of uncaptured space is orders of magnitudes
smaller than the amount of fast memory in our experiments.

The cache simulator maintains two counters: the number of read transfers, and the
number of write transfers. When testing each algorithm on a specific input instance, the
cache is emptied at the beginning and flushed at the end. A read or write is free if the
location is already in the cache; otherwise, the corresponding cache-line is loaded, the counter
of read transfer increments by 1, and the least-recently-used cache-line in this pool is evicted.
Also, a write will mark the dirty-bit of the cache-line to be true. When evicting a dirty
cache-line, the counter of write transfer increments by 1. Notice that memory reads can
cause write transfers, and memory writes can lead to read transfers.

ESA 2018

44:6 Algorithmic Building Blocks for Asymmetric Memories

When simulating the Classic policy (i.e., the standard one), we also verified our simulated
results to ZSim (cycle-level simulator for current architecture), and the numbers always differ
by no more than 10% when the parameters are set correctly.

4 Unordered Sets and Maps

Sets and maps are two of the most commonly-used data types in modern programming. Most
programming languages either have them built in as basic types (e.g., python) or supply
them as standard libraries (C++, C#, Java, Scala, Haskell, ML). In this section, we discuss
efficient implementations of unordered sets and maps implemented using hash tables.

Our implementation of unordered sets and maps is based on hash tables that support
lookup, insertion, and deletion. The hash tables discussed in this section use open
addressing and linear probing, since the goal of the data structure is to try to minimize the
I/O cost focusing on smaller entries (accessing and reading larger entries are costly anyway so
different hash-table implementations make minor differences). For simplicity, we assume no
duplicate keys, and it is straightforward to handle the duplicates with minor modifications.
In this setting, each operation of the hash table reads a small number of cache-lines, and an
insertion or deletion will modify exactly one cache-line that contains the location of the key
and will be eventually written back to the large-memory.

The challenge emerges when the set size changes dynamically. For an efficient implement-
ation, we hope the overall size of the hash table to be neither too large nor too small. If the
load factor passes 80%, linear probing’s performance drastically degrades. On the other hand,
we want the hash table size to be reasonably small to better utilize the small-memory (cache),
since each cache-line holds more entries in this case. In practice, some implementations
keep the load factor up- and lower-bounded by some constant. For example, a typical
implementation keeps the occupancy of the hash table between 1/8 and 1/2, and the size
doubles or shrinks by half if the number of entries exceeds this range. Such resizing reinserts
p entries after at least p/2 insertions and deletions (where p is the set/map size). When
reads and writes have approximately the same cost, the extra cost for such resizing is small
compared to the query and update costs (e.g., the queries read from lots of memory locations).
In the asymmetric setting however, the reads cost much less, but the extra writes in resizing
can be significant: the resizing can incur at most twice (p/(p/2) = 2) the writes compared
to the initial insertions (3× writes in total). Hence, our goal is to discuss an alternative
approach that optimizes such extra writes.

4.1 The k-level Hash Table
Instead of keeping one hash table, our main idea is to maintain a small number k of hash
tables simultaneously, where k is a pre-determined parameter. In particular, the k-level hash
table HashTable is initialized with k arrays HashTable1,··· ,k with size 2c′+i for 1 ≤ i ≤ k (or
smaller in specific applications) and a constant c′. In practice we set c′ to be 5.

For insertions, when the overall load factor exceeds some threshold r, we allocate a new
chunk of memory with the double size of the largest current array, and the smallest hash
table is discarded after all elements in it have been reinserted back. Similarly for deletions, if
the occupancy of the hash tables drops below a threshold l, a small array with half size of
the current smallest hash table is allocated, and the largest table is freed after the entries in
it being reinserted. For instance, a valid k-level hash table may contain two arrays of size
215 = 32768 and 216 = 65536, when k = 2 and 30000 entries in the current configuration.
We show the pseudocode of the k-level hash table in Algorithm 1. The occupancy range

Y. Gu, Y. Sun, and G. E. Blelloch 44:7

Algorithm 1: The k-level hash table.
Input: Parameter k, occupancy range l and r

1 function Lookup(x)
2 for i← 1 to k do
3 p← HashTablei.Lookup(x)
4 if p 6= null then return (i, p)
5 return null

6 function Insert(x) // x is not in HashTable
7 for i← 1 to k do
8 if HashTablei.occupancy < r then
9 HashTablei.Insert(x)

10 return
11 Allocate HashTablek+1 of size 2 ·HashTablek.size
12 Relabel the hash tables with indices from 0 to k
13 foreach y ∈ HashTable0 do
14 Insert(y)
15 Free HashTable0

16 function Delete(x; i, p) // x is located p-th in HashTablei

17 HashTablei.Delete(x, p)
18 if Overall occupancy is less than l (and HashTable1.size > 1) then
19 Allocate HashTable0 of size HashTable1.size/2
20 Relabel the hash tables with indices between 1 to k + 1
21 foreach y ∈ HashTablek+1 do
22 Insert(y)
23 Free HashTablek+1

0 < l < r < 1 indicates when the resizing happens (an example of l and r can be 1/8 and
1/2). A classic implementation can be viewed as the special case of the k-level hash table
when k = 1.

We now analyze the I/O cost Q of the k-level hash table. Here we assume that the size
of the k-level hash table is larger than the small-memory and 1− r < 1/B, so on average,
one lookup, insertion or deletion in a single level in the hash table requires no more than
c < 2 cache-line loads to locate the position.

Lookup. In a k-level hash table, a lookup requires ck instead of c read transfers (c is the
constant just defined) in the worst case (can quit earlier once the entry is found). The cost
increases by a factor of k at most.

Insert. There are two definitions of insertions: an insertion that the key is known to be not
in the set/map, or an insertion that it is unknown whether the key is in this set/map. Both
cases are commonly-used. In this paper, we take the first definition and analyze the cost of
this type of insertions. The second type of insertion can be viewed as a lookup first, then an
insert if the lookup fails.

When inserting an element in a k-level hash table, we always try the smaller tables first.
Once all tables are full, we resize it. More details can be found in Algorithm 1.

The I/O cost Q of an insertion comes in two parts: the cost of the initial insertion to the
hash table, and the cost of this entry in future hash-table resizings. The cost of the initial
insertion is no more than c+ω, where c is the number of cache-line reads to find the position
to insert, plus ω, one cache-line write for the actual insertion. The cost of resizing is more
complicated to analyze.

ESA 2018

44:8 Algorithmic Building Blocks for Asymmetric Memories

We note that although a specific entry can be reinserted multiple times during different
resizing processes, the overall number of element reinsertion is bounded, and thus we can
a amortize the work. A resizing occurs when an insertion comes in and the hash table
contains exactly r · 2p(2k − 1) elements for some positive integer p. In this case, at most
r · 2p entries (the size of the smallest hash table), are reinserted during the resizing. The
total number of insertions from the last resizing is at least r · 2p−1(2k − 1) (assuming
4l ≤ r), so the amortized I/O cost Q of reinsertion for each insertion is upper bounded by

(c+ ω)r · 2p

r · 2p−1(2k − 1) = (c+ ω) · 2/(2k − 1).

In the asymmetric setting when ω � 1, the I/O cost of each insertion is approximately
ω · (1 + 2/(2k − 1)), indicating that compared to the classic implementation where k = 1, in
the worst-case the improvement when k = 2, 3, 4 is about 44%, 57% and 62% respectively.
The asymptotic improvement when k → +∞ is 67% (2

3).

Delete. A deletion in the k-level hash table is similar to an insertion except that a lookup
for the location is required (details in Algorithm 1). The cost of the initial deletion is ck + ω.
A resizing of the hash table can occur after at least l · 2p(2k − 1) deletions for some positive
integer p, and the current hash table keeps l · 2p(2k − 1) entries. However, it is possible that
all of these entries are in the last hash table so they are all reinserted. We note that when
reinserting the elements from the discarded array, we always try smaller arrays first. This
means that a reinserted entry, if not being deleted in the future, will not be reinserted again
in the next min(k − 1, log2 r/2l) shrinking resizings. Namely, the amortized extra cost of a
deletion in future resizings is about ω/k if l is set to be about 2−kr. The overall I/O cost for
a deletion is Q = ck + ω(1 + 1/k).

We have bounded of the I/O cost of each lookup, insertion or deletion, and the overall
cost Q can be estimated by summing the amount of each operation multiplied by the cost
of this operation. In practice, insertions and deletions can interleave. For example, when a
deletion comes after an insertion, the number of entries remains the same, which leads to no
further cost for these two updates afterward. The exact cost is also affected by the pattern
of the sequence of the operations, and we will show by experiments.

4.2 Experiments
We provide the full experiment of our k-level hash table in the full version of this paper [20].
We test the performance on various update/query patterns, and report the numbers of read
transfers and write transfers, as well as I/O costs. We also justify our result by comparing to
the wall-clock running time (in the full paper [20]). Due to the space limit, in this conference
version we only show one of the experiments here that contains insertions and queries.

In all experiments, we insert 1 million elements to an empty hash table. Each of the
element is a 4-byte integer, and we vary the number of queries. The simulated cache contains
10,000 cache-lines. The occupancy rate is set to be l = 0.2 and r = 0.8. We have tried other
parameters (r between 0.6 and 0.8 and l = r/4). The results slightly vary, but all general
conclusions in this section still hold.

Many applications, like webpage caching or the breadth-first searches, only insert but
never delete elements in a hash table. Our experiment starts with this simpler case. We
first show the relationship between k (the number of hash tables) and the numbers of read
transfers and write transfers for a variety of insertion/query ratios, and the results are shown
in Table 1. We fix the number of insertions to be one million, and query α times after each
insertion. We vary α from 0, 1/8, to 8 (α < 1 indicates one query per 1/α insertions). About

Y. Gu, Y. Sun, and G. E. Blelloch 44:9

Table 1 Numbers of read and write transfers of the k-level hash tables with different query/insert
ratios. Numbers of read and write transfers are divided by 106 (i.e., per insertion).

106 insertions, α× 106 queries where α is from 0 to 8, the cache contains 10,000 cache-lines.

α 0 1/8 1/4 1/2 1 2 4 8
RT WT RT WT RT WT RT WT RT WT RT WT RT WT RT WT

k=1 1.35 1.17 1.44 1.18 1.52 1.19 1.69 1.21 2.02 1.24 2.68 1.27 4.00 1.31 6.64 1.34
k=2 0.85 0.79 1.06 0.84 1.23 0.87 1.54 0.91 2.09 0.96 3.11 1.00 5.07 1.03 8.94 1.05
k=3 0.76 0.72 1.08 0.80 1.32 0.85 1.73 0.90 2.44 0.95 3.76 0.99 6.31 1.02 11.32 1.05
k=4 0.70 0.67 1.11 0.78 1.40 0.82 1.89 0.88 2.74 0.93 4.30 0.97 7.33 1.00 13.31 1.03

Table 2 The I/O costs of the k-level hash tables with different query/insert ratios. The write-read
ratio ω are selected to be typical projected values 10 (latency, bandwidth) and 100 (energy). Results
are based on the numbers in Table 1. The numbers in red with underlines indicate the best choice
of k that minimizes the I/O cost in this setting, and numbers in blue indicate better I/O costs
compared to the classic hash table implementation (i.e., k = 1).

The I/O costs of the k-level hash tables with the same configurations in Table 1.

ω = 10 ω = 100
α 0 1/8 1/4 1/2 1 2 4 8 0 1/8 1/4 1/2 1 2 4 8

k=1 13.0 13.2 13.4 13.8 14.4 15.4 17.1 20.0 117.9 119.3 120.5 122.7 125.8 129.9 134.8 140.5
k=2 8.8 9.5 10.0 10.7 11.7 13.1 15.4 19.5 79.9 85.1 88.4 92.8 97.7 102.9 108.2 114.4
k=3 8.0 9.1 9.8 10.7 11.9 13.7 16.5 21.8 73.1 81.4 85.8 91.3 97.0 102.7 108.7 116.3
k=4 7.4 8.9 9.6 10.7 12.0 14.0 17.4 23.6 67.9 78.6 83.8 89.6 95.5 101.3 107.7 116.1

(a) ω = 10

 0.4

 0.6

 0.8

 1

 1.2

0 1/8 1/4 1/2 1 2 4 8

R
el

at
iv

e
I/

O
 c

os
t

Query/insert ratio

 k=2
 k=3
 k=4

(b) ω = 100

 0.4

 0.6

 0.8

 1

 1.2

0 1/8 1/4 1/2 1 2 4 8

R
el

at
iv

e
I/

O
 c

os
t

Query/insert ratio

 k=2
 k=3
 k=4

Figure 1 Relative I/O cost of k-level hash table with different values of k. The I/O costs are
divided by the k = 1 case, so every data point below 1 indicates an improvement in such case.
Numbers are from Table 2.

50% query keys are in the hash table (this ratio affects the I/O cost since a successful query
can terminate earlier). The number of levels k varies from 1 to 4. In Table 2, we show the
overall I/O costs, which are the weighted sums assuming two typical values of the write-read
ratio ω, 10 and 100.

We first look at the number of write transfers. When there is no query (i.e., the first
column, just inserting 1 million entries), the numbers of writes are consistent with our
analysis for insertions in Section 4.1. The only exception here is that cache can hold a
constant fraction of the elements, which batches the writes and reduces the number of
memory transfers. However, the relative trend in each column remains unchanged. Namely,
the number of writes always decreases with the increase of k regardless of the ratio between
queries and updates. The number of writes is reduced by 33%, 40% and 43% when k = 2, 3, 4
respectively. Such improvement also shows up in the overall I/O cost in Table 2.

ESA 2018

44:10 Algorithmic Building Blocks for Asymmetric Memories

We note that more queries cause more reads, and larger k also leads to more reads. Since
these reads flush the cache-lines, the numbers of writes in these cases also marginally increase.
The optimal choice of k is decided by the update/query distribution as well as the write-read
ratio ω. In general, more queries lead to worse performance with larger k, and larger ω
prefers larger k. In Table 2, we underline the numbers indicating the best choice of k in that
specific setting. The experiment results indicate that picking k to be 2 or 3 is always a good
choice when ω = 10, and 3 or 4 when ω = 100.

4.3 Conclusions
We proposed a new data structure, the k-level hash table, to implement unordered set and
map that has the same space utilization compared to the classic open-addressing hash tables.
The key idea is to keep multiple instead of one level of hash tables. As a result, the algorithm
uses fewer writes during resizings, at the cost of more reads in other operations.

The best choice of k is decided by the ratio of updates and queries. Our experiment
shows that k = 2 always leads to a lower or similar I/O cost when the query/insert ratio is
no more than 8, compared to the classic k = 1 setting. For the ratio of write/read cost is
larger (like 100), larger values of k, like 3 or 4, are even more preferable than the k = 2 case.

5 Graph Traversal Algorithms

In this paper, we discuss two of the most commonly-used graph traversal algorithms: breadth-
first search (BFS), and Dijkstra’s algorithm. We show that using the new implementations
discussed in this paper, these algorithms use much fewer writes in most cases, compared to
the classic ones. Due to the page limit, we abstract our approaches and conclusions here in
this section, and provide the full details in the full version of this paper [20].

Given a graph G = (V,E), we assume n = |V | is the number of vertices, and m = |E| is
the number of edges.

5.1 Breadth-First Search
We discuss our implementations and experiment results on breadth-first searches (BFS) on
undirected graph traversing or searching. Our algorithms compute the single-source shortest
paths (SSSP) or pairwise shortest-paths (given the specific source and target) on unweighted
graphs, which can further apply to graph radii estimation, eccentricity estimation and
betweenness centrality, and act as a basic building block for other graph algorithms like graph
connectivity, reachability, biconnected components, and strongly connected components.

Implementations. The classic implementation of BFS keeps a vertex queue of size n, and
an array of boolean flags of size n indicating whether each vertex is visited or not during
the search. This implementation requires at most 2 writes per vertex, and the overall I/O
cost of BFS Q(n,m) = O(ωn+m) [8]. This bound is asymptotically optimal for arbitrary
graphs since the output size of BFS is Θ(n). However, a number of applications (e.g., s-t
shortest-path or connectivity, graph radii estimation or eccentricity estimation) have output
size O(1), which allows utilizing the small-memory and reducing the number of writes.

The key observation to improve the write-efficiency is that, at any time, we only need
the information of three consecutive frontiers (a frontier is the set of vertices with the same
distance to the source node). We hence use the k-level hash table discussed in Section 4 to
implement the frontiers. This avoids the writes to mark the visited flag of each vertex. We

Y. Gu, Y. Sun, and G. E. Blelloch 44:11

(a) ω = 10, sparse graphs

 0

 10

 20

 30

 40

 50

 60

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(b) ω = 10, social networks

 0
 10
 20
 30
 40
 50
 60
 70
 80

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(c) ω = 100, sparse graphs

 0
 50

 100
 150
 200
 250
 300
 350
 400

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

(d) ω = 100, social networks

 0
 50

 100
 150
 200
 250
 300
 350
 400

500 2000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic BFS
BFS on RA

Classic Bidir. BFS
Bidir. BFS on RA

Figure 2 The trends of the I/O costs of four different implementations of BFS. The new
implementations shown in this paper are the BFS and bidirectional BFS based on rotating arrays
(red and yellow bars). The graphs used in the experiment are shown in full paper [20] and categorized
into sparse (almost planar) graphs and social networks. We show the relative I/O cost based on
varied cache sizes, and each number is geometric mean of the four graphs in that category. We can
see the consistent advantages of the new BFS implementation on sparse graphs, and the improvement
of the new bidirectional version in all cases. Notice that in (b) and (d) some values exceed the
ranges of vertical axis.

note that once the frontier size fits into the small-memory, the algorithm does not require
any writes to traverse the newly visited vertices. In the full paper [20] we show the average
and maximum frontier sizes of the experiment graphs, which will help to understand the
performance on these graph instances. To the best of our knowledge, we are unaware of
any graph invariant to capture and predict the average and maximum frontier sizes, and we
believe that it can be an interesting topic for further study. This algorithm is referred to as
the BFS on RA (rotating arrays) in Figure 2, and more details of the implementation are
given in the full paper [20].

The previous algorithm works well on graphs with larger diameters, but not on small-
diameter graphs like social networks. We then introduce the bidirectional version (Bidir. BFS
on RA) when the queries are s-t (pairwise) shortest paths, that overcomes the disadvantages
of the previous algorithm. More analysis and details of this version are given in full version.

Experiment. Our experiment is based on eight graphs that are synthesized or from
SNAP [29]. We show a significant improvement on all eight graphs with various cache
sizes, compared to the classic queue-based implementations. Figure 2 is the bar charts that
show the trends of the four implementations. When ω = 10, our implementation shows an up-
to 8-fold improvement on SSSP, and an up-to 43-fold improvement on s-t shortest-paths. For
ω = 100, the improvement is more stable, which is 69 on SSSP and 71 on s-t shortest-paths.

ESA 2018

44:12 Algorithmic Building Blocks for Asymmetric Memories

(a) ω = 10, sparse
graphs

 0
 10
 20
 30
 40
 50
 60
 70
 80

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(b) ω = 10, social
networks

 0
 50

 100
 150
 200
 250
 300
 350
 400

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(c) ω = 100, sparse
graphs

 0

 100

 200

 300

 400

 500

 600

 700

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

(d) ω = 100, social
networks

 0

 500

 1000

 1500

 2000

100 1000 10000

(R
el

at
iv

e)
 I

/O
 c

os
t

Cache Size

Classic
Phased Dijkstra

Figure 3 The trends of the I/O costs of classic Dijkstra (grey) and phased Dijkstra (red) on
different graphs with varied cache sizes. The graphs used in the experiment are shown in the full
paper [20] and categorized into sparse (almost planar) graphs and social networks. Each number
of the I/O cost is geometric mean of the four graphs in that category. Phased Dijkstra performs
consistently better in all cases except when both the cache size and the asymmetry ω are small.

Conclusions. We discuss how to efficiently implement BFS in the asymmetric setting and
experiment the I/O performance for four implementations on a variety of undirected graphs.
We show that for s-t (pairwise) distance queries, our bidirectional BFS using rotating arrays
shows a significant advantage in all cases we tested. For single-source shortest-paths, the
unidirectional BFS using rotating arrays has a significant improvement when the cache can
hold every single frontier during the search.

5.2 Dijkstra’s Algorithm

Dijkstra’s Algorithm [14] computes single-source shortest paths on non-negative weighted
graphs. The classic heap-based implementation requires O(m log(nB/M)) reads and writes.

For the sake of write-efficiency, Blelloch et al. [8] discussed a variant called Phased Dijkstra.
This algorithm only requires linear writes, but the algorithm is just explained at a high level
and without much details. In this paper, we supplement the pseudocode, data structure
design, and implementation details (in the full paper [20]).

Based on our implementation, we conduct various experiment to show the asymmetric
I/O efficiency. In Figure 3, we show the trend of the relative I/O costs of the classic Dijkstra
and phased Dijkstra with various cache sizes on different graphs. We show that phased
Dijkstra outperforms classic Dijkstra in most cases except for the only case on social networks
with very small cache size, and the improvement on I/O cost in all cases is up to 3 and 7.6
when ω is 10 and 100. We also consider various cache policies and sets of parameters and
show that the improvement is consistent among all settings.

Summaries. We discuss phased Dijkstra and test its performance on a variety of graphs.
The high-level idea is to fit the heap of Dijkstra’s algorithm within the small-memory (i.e.,
the cache) and thus the algorithm applies no intermediate writes to the large asymmetry
memory to maintain the heap. The extra cost is that, the algorithm is run in multiple phases
each requiring O(m) reads, but we show that such price is worthwhile in most cases. The
experiments show that phased Dijkstra consistently outperforms the binary-heap version
on I/O costs, except for the combination of small ω (= 10), small cache size, and on social
networks. Although phased Dijkstra contains several parameters, we also show that they can
be chosen from a reasonably wide range and do not affect the superiority of phased Dijkstra.
The same conclusion also holds for different cache policies.

Y. Gu, Y. Sun, and G. E. Blelloch 44:13

We note that the idea of fitting the data structure or the computation in the small-memory
can also be applied to computing minimum spanning tree, sorting, and many other problems.

References
1 Alok Aggarwal and Jeffrey S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9), 1988. doi:10.1145/48529.48535.
2 Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajech K. Gupta, and Steven Swanson.

Onyx: A prototype phase change memory storage array. In USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage), 2011.

3 Manos Athanassoulis, Bishwaranjan Bhattacharjee, Mustafa Canim, and Kenneth A. Ross.
Path processing using solid state storage. In International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architectures (ADMS), 2012.

4 Avraham Ben-Aroya and Sivan Toledo. Competitive analysis of flash-memory algorithms.
In European Symposium on Algorithms (ESA), 2006.

5 Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu,
Charles McGuffey, and Julian Shun. Parallel algorithms for asymmetric read-write costs.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

6 Naama Ben-David, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Yan Gu,
Charles McGuffey, and Julian Shun. Implicit decomposition for write-efficient connectiv-
ity algorithms. In Proc. IEEE International Parallel & Distributed Processing Symposium
(IPDPS), 2018.

7 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Sorting
with asymmetric read and write costs. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2015.

8 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Ef-
ficient algorithms with asymmetric read and write costs. In European Symposium on Al-
gorithms (ESA), pages 14:1–14:18, 2016.

9 Guy E Blelloch, Phillip B Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. The
parallel persistent memory model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2018.

10 Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallel write-efficient algorithms
and data structures for computational geometry. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). ACM, 2018.

11 Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanantakool,
Oded Schwartz, and Harsha Vardhan Simhadri. Write-avoiding algorithms. In IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS), pages 648–658, 2016.

12 Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms for
phase change memory. In Conference on Innovative Data Systems Research (CIDR), 2011.

13 Sangyeun Cho and Hyunjin Lee. Flip-N-Write: A simple deterministic technique to improve
PRAM write performance, energy and endurance. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2009.

14 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1), 1959.

15 Xiangyu Dong, Norman P. Jouupi, and Yuan Xie. PCRAMsim: System-level performance,
energy, and area modeling for phase-change RAM. In ACM International Conference on
Computer-Aided Design (ICCAD), 2009.

16 Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai H. Li, and Yiran Chen. Circuit
and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal
memory replacement. In ACM Design Automation Conference (DAC), 2008.

ESA 2018

http://dx.doi.org/10.1145/48529.48535

44:14 Algorithmic Building Blocks for Asymmetric Memories

17 David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona. Wear
minimization for cuckoo hashing: How not to throw a lot of eggs into one basket. In ACM
International Symposium on Experimental Algorithms (SEA), 2014.

18 Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories. ACM
Computing Surveys, 37(2), 2005.

19 Yan Gu. Write-Efficient Algorithms (draft). PhD Thesis, 2018.
20 Yan Gu, Yihan Sun, and Guy E. Blelloch. Algorithmic building blocks for asymmetric

memories (full version). In arXiv preprint:1806.10370, 2018.
21 HP, SanDisk partner on memristor, ReRAM technology. http://www.bit-tech.net/news/

hardware/2015/10/09/hp-sandisk-reram-memristor, 2015.
22 Jingtong Hu, Qingfeng Zhuge, Chun Jason Xue, Wei-Che Tseng, Shouzhen Gu, and Ed-

win Sha. Scheduling to optimize cache utilization for non-volatile main memories. IEEE
Transactions on Computers, 63(8), 2014.

23 www.slideshare.net/IBMZRL/theseus-pss-nvmw2014, 2014.
24 Intel and Micron produce breakthrough memory technology. http://newsroom.intel.com/

community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-
memory-technology, 2015.

25 Riko Jacob and Nodari Sitchinava. Lower bounds in the asymmetric external memory
model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
247–254, 2017.

26 Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chu. Evaluating phase
change memory for enterprise storage systems: A study of caching and tiering approaches.
In USENIX Conference on File and Storage Technologies (FAST), 2014.

27 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable DRAM alternative. In ACM International Symposium on Computer
Architecture (ISCA), 2009.

28 Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler, and
Tom W Keller. Energy management for commercial servers. Computer, 36(12):39–48, 2003.

29 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,
2014.

30 Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and sub-
millisecond quality-of-service. In European Conference on Computer Systems, page 4. ACM,
2014.

31 Jasmina Malicevic, Subramanya Dulloor, Narayanan Sundaram, Nadathur Satish, Jeff Jack-
son, and Willy Zwaenepoel. Exploiting NVM in large-scale graph analytics. In Workshop
on Interactions of NVM/FLASH with Operating Systems and Workloads. ACM, 2015.

32 Krishna T Malladi, Ian Shaeffer, Liji Gopalakrishnan, David Lo, Benjamin C Lee, and Mark
Horowitz. Rethinking DRAM power modes for energy proportionality. In IEEE/ACM
International Symposium on Microarchitecture, pages 131–142, 2012.

33 Jagan S. Meena, Simon M. Sze, Umesh Chand, and Tseung-Yuan Tseng. Overview of
emerging nonvolatile memory technologies. Nanoscale Research Letters, 9, 2014.

34 MARSSx86. http://marss86.org.
35 Hyoungmin Park and Kyuseok Shim. FAST: Flash-aware external sorting for mobile data-

base systems. Journal of Systems and Software, 82(8), 2009. doi:10.1016/j.jss.2009.
02.028.

36 PTLsim. http://www.ptlsim.org.
37 Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase Change

Memory: From Devices to Systems. Morgan & Claypool, 2011.

http://dx.doi.org/10.1016/j.jss.2009.02.028
http://dx.doi.org/10.1016/j.jss.2009.02.028

Y. Gu, Y. Sun, and G. E. Blelloch 44:15

38 Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate microarchitectural simula-
tion of thousand-core systems. In ACM SIGARCH Computer Architecture News, volume 41,
pages 475–486. ACM, 2013.

39 Stratis D. Viglas. Adapting the B+-tree for asymmetric I/O. In East European Conference
on Advances in Databases and Information Systems (ADBIS), 2012.

40 Stratis D. Viglas. Write-limited sorts and joins for persistent memory. VLDB Endowment,
7(5), 2014.

41 Cong Xu, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. Design implications of
memristor-based RRAM cross-point structures. In IEEE Design, Automation and Test
in Europe (DATE), 2011.

42 Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and Byoung-
Gon Yu. A low power phase-change random access memory using a data-comparison write
scheme. In IEEE International Symposium on Circuits and Systems (ISCAS), 2007.

43 Yole Developpement. Emerging non-volatile memory technologies, 2013.
44 Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main

memory using phase change memory technology. In ACM International Symposium on
Computer Architecture (ISCA), 2009.

45 Omer Zilberberg, ShlomoWeiss, and Sivan Toledo. Phase-change memory: An architectural
perspective. ACM Computing Surveys, 45(3), 2013.

ESA 2018

On the Decision Tree Complexity of String
Matching
Xiaoyu He
Institute of Computing Technology, Chinese Academy of Sciences, China, and
University of Chinese Academy of Sciences, China
hexiaoyu14@mails.ucas.ac.cn

Neng Huang
University of Chinese Academy of Sciences, China
huangneng14@mails.ucas.ac.cn

Xiaoming Sun
Institute of Computing Technology, Chinese Academy of Sciences, China, and
University of Chinese Academy of Sciences, China
sunxiaoming@ict.ac.cn

Abstract
String matching is one of the most fundamental problems in computer science. A natural problem
is to determine the number of characters that need to be queried (i.e. the decision tree complexity)
in a string in order to decide whether this string contains a certain pattern. Rivest showed
that for every pattern p, in the worst case any deterministic algorithm needs to query at least
n− |p|+ 1 characters, where n is the length of the string and |p| is the length of the pattern. He
further conjectured that this bound is tight. By using the adversary method, Tuza disproved this
conjecture and showed that more than one half of binary patterns are evasive, i.e. any algorithm
needs to query all the characters (see Section 1.1 for more details).

In this paper, we give a query algorithm which settles the decision tree complexity of string
matching except for a negligible fraction of patterns. Our algorithm shows that Tuza’s criteria of
evasive patterns are almost complete. Using the algebraic approach of Rivest and Vuillemin, we
also give a new sufficient condition for the evasiveness of patterns, which is beyond Tuza’s criteria.
In addition, our result reveals an interesting connection to Skolem’s Problem in mathematics.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases String Matching, Decision Tree Complexity, Boolean Function, Algebraic
Method

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.45

Related Version Full version is available at https://arxiv.org/abs/1712.09738

Funding This work was supported in part by the National Natural Science Foundation of China
Grant 61433014, 61502449, 61602440, and the 973 Program of China Grants No.2016YFB1000201.

1 Introduction

The string matching problem is one of the most fundamental problems in computer science.
The goal of string matching problem is to find one or all occurrences of a pattern in an input
string. Lots of efficient algorithms have been discovered in the 20th century. For example, the
KMP algorithm [7], discovered by Knuth, Morris and Pratt, is able to locate all occurrences
of a pattern of length m in a string of length n in O(n+m) time. This is essentially the best

© Xiaoyu He, Neng Huang, and Xiaoming Sun;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 45; pp. 45:1–45:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hexiaoyu14@mails.ucas.ac.cn
mailto:huangneng14@mails.ucas.ac.cn
mailto:sunxiaoming@ict.ac.cn
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.45
https://arxiv.org/abs/1712.09738
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 On the Decision Tree Complexity of String Matching

possible since every algorithm needs Ω(n+m) time to process the input. Another elegant
algorithm is the Karp-Rabin algorithm [6], which uses hashing and can be used to search for
a set of patterns. A detailed treatment of these algorithms can be found in [3]. However,
the problem becomes subtler when we adopt a different complexity measure, which is the
number of characters that the algorithm has to examine in the input string given the prior
knowledge of the pattern string. When we confine the alphabet to {0, 1}, this measure is
exactly the decision tree complexity of boolean string matching problem. Recall that for a
binary function f , its decision tree complexity is the number of bits that we have to examine
in the worst case in any input x in order to compute f(x).

1.1 Notations and Previous Work
Let p be a pattern over alphabet Σ with |Σ| = σ. Throughout the paper, let p[i] be the i-th
character in p and p[i..j] be the substring of p indexed from i to j. Let Ap be a deterministic
string searching algorithm which searches for p in any given string s. Following Rivest [9],
we denote w(Ap, n) to be the maximum number of characters that Ap examines for any s
of length n. Let Dp(n) = minAp w(Ap, n), where Ap is taken over all deterministic string
searching algorithms. When the alphabet Σ = {0, 1}, Dp is exactly the boolean decision
tree complexity of string searching algorithm with pattern p. It is clear that this function is
monotone, since we can simply add some redundant characters at the end of the searched
text. We state this as the following proposition.

I Proposition 1. For every pattern p and n ∈ N, Dp(n) ≤ Dp(n+ 1).

We define the evasiveness of a pattern as follows.

I Definition 2. A pattern p is called evasive if there exists N0 ∈ N such that for all n > N0,
Dp(n) = n.

By this definition, a pattern p is evasive if for every algorithm A and every sufficiently
large n, there is a string s of length n such that A has to query every character of s in order
to determine whether s contains p as a substring. We are interested in determining what
patterns are evasive and what patterns are not.

Let |p| denote the length of a pattern p. Rivest gave the following linear lower bound on
Dp(n):

I Theorem 3 ([9]). For every pattern p, Dp(n) ≥ n− |p|+ 1 for all n ∈ N.

To prove this theorem, Rivest showed that for every n ∈ N, there exists an integer i
between 0 and |p| such that Dp(n+ i) = n+ i, then combined with Proposition 1, Theorem 3
follows. Based on this result, we define non-evasiveness as follows.

I Definition 4. A pattern p is called non-evasive if for every N0 ∈ N there exists n > N0
such that Dp(n) = n− |p|+ 1.

As discussed above, what Rivest proved in fact implies that it is impossible for a pattern
to achieve the lower bound in Theorem 3 on consecutive integers, which is the reason we
define non-evasiveness in this way. Rivest showed that the pattern p = 1k (and therefore
0k) is non-evasive. He further conjectured that all patterns are non-evasive. However, this
conjecture was later disproved by Tuza in [11]. We briefly summarize Tuza’s work here.
Given a string b, let BE(b) denote the set of patterns prefixed and suffixed by b, but other
than b. Also, for patterns u and v, let uv denote their concatenation. If p ∈ BE(b), then let
p(b) be the string ubv where, ub = bv = p. Tuza proved the following result.

X. He, N. Huang, and X. Sun 45:3

I Theorem 5 ([11]). Let p ∈ BE(b). If
1. p(b) does not contain a substring p′ of length |p| other than prefix or suffix of p(b) such

that p′ and p differ from each other in at most two characters, and
2. the pattern pp does not contain a substring p′ of length |p| other than prefix or suffix of

pp such that p′ and p differ from each other in at most four characters,
and n ≥ |p|(2|p| − |b|)/ gcd(|p|, |b|), then Dp(n) ≥ n− k, where k = n mod gcd(|p|, |b|).

If a pattern string p satisfies the conditions in Theorem 5 and gcd(|p|, |b|) = 1, then one
would have Dp(n) = n for all sufficiently large n. This implies that p is evasive and therefore
serves as a counterexample of Rivest’s conjecture. Tuza estimated the proportion of pattern
strings which satisfy the conditions in Theorem 5 and proved that when Σ = {0, 1}, there
exists more than 0.5061 · 2m evasive patterns of length m.

Beyond the worst case complexity, the average-case complexity has also been studied
previously, that is, finding out the numbers of characters that need to be examined on
average assuming that the input string is sampled from the uniform distribution. Yao [12]
showed that, for almost all patterns of large enough length m, an algorithm needs to examine
Θ(n logq m

m) characters on a uniformly random input string of length n > 2m, here q is the
size of the alphabet.

1.2 Our Contributions
In this paper we settle the decision tree complexity for almost every string except an o(1)
fraction. More precisely, we prove that Tuza’s lower bound, which is developed combinatorially,
is in fact tight for almost every string, by showing an algorithm which achieves this lower
bound. This algorithm is based on the periods of the pattern string.

I Definition 6 (Periods). Let p be a pattern of length m and k be a positive integer no
larger than m. We say that p is k-periodic, or p has a period k, if p[i] = p[i + k] for all
1 ≤ i ≤ n− k. Let Period(p) = {k|p is k-periodic} be the set of all periods of p.

The definition here is the same as in [4], in which it was used to develop a time-space optimal
algorithm. A similar idea can also be found in [11]. For set S ⊂ N, let gcd(S) denote the
greatest common divisor of all elements in S. Here is our main theorem.

I Theorem 7 (Main). Let p be a pattern of length m and c = gcd(Period(p)) be the greatest
common divisor of all p’s periods, then Dp(n) = n− (n mod c), except for an O(m5σ−m/2)
fraction of patterns.

Here, the fraction of patterns is computed in the following way. We first fix a pattern length
m, and then count the number of patterns of length m that satisfy some certain properties,
then compute its ratio to the total number of length-m patterns, which is σm. We then
investigate the asymptotic behavior of this ratio as m goes to infinity.

By Theorem 7, the fraction of patterns whose decision tree complexity we don’t know
goes to 0 as the pattern length goes to infinity.

Besides this result, we also use the algebraic approach to show the evasiveness of certain
family of patterns, for which Tuza’s method does not work. This algebraic approach was
first developed by Rivest and Vuillemin [10], and we extend it to our problem. Interestingly,
we find that this approach reveals a relation between our problem and the Skolem’s Problem.
We also define the characteristic polynomial of a pattern, which is again closely related to
the pattern’s periodic behaviors. This polynomial, besides its application in this problem, is
of independent interest on its own.

ESA 2018

45:4 On the Decision Tree Complexity of String Matching

2 Upper Bounds

In this section, we prove one direction of Theorem 7, which can be stated as the following
lemma.

I Lemma 8. Let p be a pattern of length m and c = gcd(Period(p)) be the greatest common
divisor of all p’s periods, then Dp(n) ≤ n− (n mod c).

To show this lemma, we will develop an algorithm whose behavior depends on the periods of
the pattern string.

2.1 Non-evasiveness of Bifix-free Patterns
We first look at the simple case where our pattern is bifix-free.

I Definition 9. A string s is called a bifix of a string t if s is both a prefix and a suffix of t.
A pattern p is called bifix-free if p has no bifix other than itself.

I Remark (Relations to combinatorics on words). The concepts of periods and bifixes are also
studied in the field of combinatorics on words under possibly different names. Bifixes are
usually referred to as borders in combinatorics on words, and bifix-free strings are usually
called unbordered words. For more details from viewpoint of combinatorics on words, see [2].

Bifix-free patterns have the following property in terms of periods.

I Lemma 10. A pattern p of length n has a bifix of length k < n if and only if it is
(n− k)-periodic. Furthermore, p is bifix-free if and only if it has only one period, which is n.

Proof. If a pattern p has a period k < n, then p[1..(n−k)] = p[(k+ 1)..n]. This is equivalent
to say that p has a prefix of length n− k which is equal to p’s suffix of length n− k. The
“furthermore” part follows directly. J

Then, for a bifix-free pattern p we have |p| = gcd(Period(p)). According to Lemma 8,
the following result is expected.

I Lemma 11. Let p be a bifix-free pattern of length m, then Dp(n) ≤ n− (n mod m) and p
is non-evasive.

Proof. Consider the algorithm in Figure 1. We claim that this algorithm can produce the
correct output after n− (n mod m) queries to the string. Suppose that in Line 11, we find
that s[i..j] is not equal to p, otherwise we can stop and output this occurrence. Note that
until Line 11 we have only queried m characters in s, which are s[i], s[i + 1], . . . , s[j]. We
show that for indices l with 1 ≤ l ≤ m, we have s[l..(l +m− 1)] 6= p.

1 ≤ l < i. In this case, there exists an index t with i ≤ t ≤ l + m − 1 such that
s[t..(l + m − 1)] is not a suffix of p, since otherwise s[l + m] would not be queried,
contradicting the fact that j = i+m− 1 ≥ l+m. And therefore we have s[l..(l+m− 1)]
is not suffix of p.
l = i. In this case we have by assumption that s[l..(l +m− 1)] = s[i..j] 6= p.
i < l ≤ m. Assume that s[l..(l+m− 1)] equals to p. Then for all indices t with l ≤ t ≤ j,
s[l..t] is a prefix of p, and therefore by bifix-freeness, is not a suffix of p. However, since
i < l, s[l − 1] is queried, so there must exists such an index t that s[l..t] is a suffix of p,
which is a contradiction. Hence s[l..(l +m− 1)] does not equal to p.

X. He, N. Huang, and X. Sun 45:5

Input: string s of length n, bifix-free pattern p of length m
Output: whether p is a substring of s
1: function Find(s, p)
2: if n < m then
3: return false

4: i← m, j ← m

5: query(s[m])
6: while j − i 6= m− 1 do
7: if s[i..j] is a suffix of p then
8: query(s[i− 1]), i← i− 1
9: else

10: query(s[j + 1]), j ← j + 1
11: if s[i..j] = p then
12: return true

13: else
14: return Find(s[m+ 1..n], p)
15: end function

Figure 1 Algorithm for bifix-free patterns.

Table 1 The table for the first three significant digits for bσ
∞ when σ ≤ 6.

σ 2 3 4 5 6
bσ

∞ 0.268 0.557 0.688 0.760 0.801

This shows that after querying m characters, we either find an occurrence of p in s, or reduce
the size of s by m. When the size of s is smaller than m, the algorithm trivially stops.
Therefore after n− (n mod m) queries, we will be able to determine whether s contains p.
This establishes an upper bound on Dp(n), namely Dp(n) ≤ n− (n mod m), which matches
Rivest’s lower bound. We conclude that bifix-free patterns are non-evasive. J

We note that the above algorithm is in fact applicable for all finite alphabets. For an
alphabet Σ of size σ, we define bσm to be the proportion of bifix-free strings in strings of
length m, that is,

bσm = |{p ∈ Σm|p is bifix-free}|
σm

, |Σ| = σ.

Nielsen [8] showed that the sequence {bσm}∞m=1 converges. Furthermore, he proved that

bσ∞ := lim
m→∞

bσm ≥ 1− σ−1 − σ−2.

Table 1 (from [8]) shows the first three significant digits for bσ∞ when σ ≤ 6.
From this we obtain that more than 26.7% of binary pattern strings of length m are

non-evasive, where m is sufficiently large. We also note that, as the size of the alphabet
increases, the percentage of patterns that are non-evasive tends to 1.

ESA 2018

45:6 On the Decision Tree Complexity of String Matching

Algorithm 1 Algorithm for general patterns.
Input: string s of length n, pattern p of length m
Output: whether p is a substring of s
1: function Find(s, p)
2: if n < m then return false

3: i← m, j ← m

4: query(s[m])
5: while j − i 6= m− 1 do
6: if s[i..j] is a suffix of p then
7: query(s[i− 1]), i← i− 1
8: else
9: query(s[j + 1]), j ← j + 1
10: if s[i..j] = p then
11: return true

12: l← m+ c

13: while l ≤ n do
14: i← l, j ← l

15: query(s[l])
16: repeat
17: if s[i..j] is a suffix of p then
18: query(s[i− 1]), i← i− 1
19: else
20: query(s[j + 1]), j ← j + 1
21: until c new characters have been queried OR j − i = m− 1
22: if s[(j −m+ 1)..j] = p then
23: return true

24: l← l + c

25: return false

26: end function

2.2 The General Case
In the previous section, we used bifix-freeness as a crucial tool in our algorithm. The property
stated in Lemma 10 is in fact playing an important role here. It is natural to ask that what
if a pattern has periods other than its own length? An intuition is that if a pattern has good
periodic behaviors, then a well-behaved algorithm must exist as well. We therefore formalize
this intuition and give the proof of Lemma 8.

Proof of Lemma 8. Let’s consider the algorithm in Algorithm 1, which is a generalization
of the algorithm for bifix-free patterns. Intuitively, this algorithm examines the string by
blocks of size c, which is the greatest common divisor of p’s periods. Note that for simplicity
we formulate this algorithm in a way that it may query the same character more than once.
In such cases, we can reuse the previous result and need not really query that character.
Our algorithm might also query a character in s with index larger than n. In such cases, we
assume that we obtain a character different than p[m], such that it cannot form the pattern
p with previous characters. We also assume that c > 1.

First of all, it is easy to see that this algorithm queries at most n− (n mod c) characters
in s. We now show that this algorithm returns the answer correctly. Our algorithm only

X. He, N. Huang, and X. Sun 45:7

returns true when it really see the pattern p, so it suffices to show that if there are occurrences
of p in s, then our algorithm will always be able to find one. Here we prove that it will
always find the first occurrence.

Assume that the first occurrence of p in s is s[k −m + 1..k] and k = hc + t for some
0 ≤ t < c. We want to show that, when our algorithm starts to examine the (hc)-th character
of the string at Line 15 (it could be that our algorithm will be able to locate p in the while
loop beginning at Line 5, but that case is even simpler), there are at most c characters in
s[k −m+ 1..k] which have not been queried yet. If this holds, then our algorithm will be
able to identify s[k −m+ 1..k] as p in at most c queries.

In fact, we prove a strong claim that whenever k−m < l ≤ k, in order for the repeat-until
loop at Line 16-21 to stop, we either either query c new characters in the range s[k−m+1..k],
or we have queried every character in the range s[k −m+ 1..l + t].

Suppose our algorithm is going to query a character with index smaller than k −m+ 1
when k−m < l ≤ k, then at some point our algorithm will query s[k−m] at Line 18. Clearly,
i = k −m+ 1 at that moment. Also, it must be that j = l + t, for when Line 18 is executed,
s[i..j] must be a suffix of p. But we also know that s[i..j] is a prefix of p. Thus the length of
s[i..j], which is j− k+m, must be a multiple of c, implying that j = l+ t (since l is always a
multiple of c). If our algorithm do not query a character with index smaller than k −m+ 1
when k −m < l ≤ k, then in order for the repeat-until loop at Line 16 to end, we have all
our c new characters in s[k −m+ 1..k]. This proves what we need, and the correctness of
our algorithm follows. J

3 Proof of Theorem 7

In this section, we give the proof of our main theorem. We have proved one direction in
Section 2. For the other direction, we use a similar analysis to Tuza’s in [11]. We first restate
(a stronger version of) Tuza’s theorem here.

I Theorem 12 ([11]). Assume that p ∈ BE(b1), p ∈ BE(b2), . . . , p ∈ BE(bl). If
1. for every 1 ≤ i ≤ l, p(bi) does not contain a substring p′ of length |p| other than prefix or

suffix of p(bi) such that p′ and p differ from each other in at most two characters, and
2. the pattern pp does not contain a substring p′ of length |p| other than prefix or suffix of

pp such that p′ and p differ from each other in at most four characters,
then for sufficiently large n, Dp(n) ≥ n− k, where k = n mod gcd({|p|, |b1|, |b2|, . . . , |bl|}).

We note that in Tuza’s language, p ∈ BE(b) essentially means that p has a bifix b. As is
shown in Lemma 10, it is equivalent to say that p is (|p| − |b|)-periodic. Thus the condition
p ∈ BE(b1), p ∈ BE(b2), . . . , p ∈ BE(bl) is simply saying that p has periods |p| − |b1|, |p| −
|b2|, . . . , |p|− |bl|, other than its own length |p|, and the expression gcd({|p|, |b1|, |b2|, . . . , |bl|}
is equivalent to gcd(Period(p)). To prove Theorem 7, we need the following two lemmas.
These two lemmas are generalizations of Lemma 11 and Lemma 12 in [11].

I Lemma 13. Let B1(n) be the set of patterns p such that |p| = n, p ∈ BE(b) for some b
and p(b) contains a substring p′ of length n other than prefix or suffix of p(b) such that p′
and p differ from each other in at most two characters. Then |B1(n)| = O(n4σn/2).

I Lemma 14. Let B2(n) be the set of patterns p such that |p| = n and the pattern pp contains
a substring p′ of length n other than prefix or suffix of pp such that p′ and p differ from each
other in at most four characters. Then |B2(n)| = O(n5σn/2).

ESA 2018

45:8 On the Decision Tree Complexity of String Matching

Proof of Theorem 7. Let p be a pattern of length m. If p /∈ B1(m) ∪ B2(m), then by
Theorem 12, Dp(n) ≥ n − k, where k = n mod gcd(Period(p)). Also, by Lemma 8,
Dp(n) ≤ n − k. Therefore Dp(n) = n − k for all p /∈ B1(m) ∪ B2(m). By Lemma 13 and
Lemma 14, |B1(m) ∪B2(m)| = O(m5σm/2), and hence Theorem 7 follows. J

For simplicity, from now on we say p(b) has property 1 if p ∈ BE(b) and p(b) contains a
substring p′ of length n other than prefix or suffix of p(b) such that p′ and p differ from each
other in at most two characters, and we say p has property 2 if the pattern pp contains a
substring p′ of length n other than prefix or suffix of pp such that p′ and p differ from each
other in at most four characters.

3.1 Proofs of the Two Lemmas

Now we prove Lemma 13 and Lemma 14. Tuza proved the case when Σ = {0, 1} in [11]. We
will adapt his proof to handle the case where Σ is any finite alphabet.

I Lemma 15. If p(b) has property 1 for some |b| > |p|/2, then we can find b′ with length at
most |p|/2 such that p(b′) has property 1 as well.

Proof. If p ∈ BE(b) for some |b| > |p|/2, then by definition, p[i] = p[i + |p| − |b|] for
every 1 ≤ i ≤ |b|. Assume that k(|p| − |b|) < |p| ≤ (k + 1)(|p| − |b|) for some k, then let
b′ = p[k(|p| − |b|) + 1..|p|]. It is straightforward to check that b′ is also a bifix of p and p(b′)
contains p(b) as a substring. Therefore p(b′) has property 1 if p(b) has property 1. J

Proof of Lemma 13. Let p ∈ B1(n). By definition and Lemma 15, for some |b| ≤ |p|/2, p(b)
contains a substring p′ of length n other than prefix or suffix of p(b) such that p′ and p differ
from each other in at most two characters. These at most two characters can be chosen in
(σ − 1)2n(n − 1)/2 + (σ − 1)n + 1 different ways. Assume that p′ starts in the (i + 1)-th
character in p(b), then after we fix these two erroneous locations, the first gcd(i, n − |b|)
characters in p(b) will uniquely determine p(b). Therefore we have

|B1(n)| ≤
n/2∑
|b|=1

n−|b|−1∑
i=1

((σ − 1)2n(n− 1)/2 + (σ − 1)n+ 1)σgcd(i,n−|b|)

≤ n2σ2
n/2∑
|b|=1

n−|b|−1∑
i=1

σgcd(i,n−|b|)

≤ n2σ2 · n2 · nσ
n/2

= n4

2 σn/2+2. J

Proof of Lemma 14. The proof is similar to that of Lemma 13. Let p ∈ B2(n). Then the
pattern pp has a substring p′ that differs from p in at most four characters. These at most
four characters can be chosen in at most |Σ|4n4 different ways. Assume that p′ starts in the
(i+ 1)-th position, then the first gcd(i, n) characters in p uniquely determines p. Therefore
we have

|B2(n)| ≤
n−1∑
i=1

σ4n4σgcd(i,n) ≤
n−1∑
i=1

σ4n4σn/2 ≤ n5σn/2+4. J

X. He, N. Huang, and X. Sun 45:9

q1start q2 q3 q4 q5

0

1 0

1

0

1 0

1
0, 1

Figure 2 The finite state automaton for pattern p = 1010.

4 A Sufficient Condition for Evasiveness

Now that we have finished the proof of Theorem 7, a natural question to ask is what patterns
lie outside the scope of Theorem 7? Rivest has given an example in [9], by showing that
the pattern 1n is non-evasive while gcd(Period(1n)) = 1 since every integer between 1 and
n is a period of 1n. In this section, we will use the algebraic method to develop a new
sufficient condition for evasiveness. We will assume that the alphabet Σ = {0, 1}. We first
introduce the notion of characteristic polynomial in Section 4.1 and then state our theorem
in Section 4.2. In Section 4.3, we will show the relationship between a pattern’s periods and
its characteristic polynomial, which allows for a convenient way to calculate the polynomial.

4.1 The KMP Automaton and the Transition Matrix
Following Rivest [9] we will make use of the finite state automaton constructed by the
Knuth-Morris-Pratt algorithm. Let p be a pattern string of length m, then the automaton
constructed will have m+ 1 states, where state q1 is the initial state and state qm+1 is the
only accepting state. The automaton reaches state qi if the previous i− 1 characters is a
prefix of p where i is the largest possible among such ones, and the pattern p is not found
already. The automation reaches state qm+1 as soon as the pattern p is found, and stays there
forever. See Figure 2 for an example of the KMP automaton when the pattern p = 1010.

Let Up(n, i) be the set of strings of length n on which the automaton ends in state qi.
Let gp(n, i) :=

∑
s∈Up(n,i) x

wt(s), where wt(s) is the number of 1’s in s. The following lemma
is used in [10] to show evasiveness of boolean functions.

I Lemma 16 ([10]). If Dp(n) ≤ n − l for some integer 1 ≤ l ≤ n, then (x + 1)l divides
gp(n,m+ 1).

A useful consequence of this lemma is the following corollary.

I Corollary 17. If there exists N0 ∈ N such that gp(n,m + 1) 6≡ 0 mod (x + 1) for all
n > N0, then Dp(n) = n, i.e. p is evasive.

By Lemma 16, we are only interested in the value of gp(n,m+ 1) modulo x+ 1. Note
that we always have

gp(n+ 1,m+ 1) = (x+ 1)gp(n,m+ 1) + y · gp(n,m),

where y equals 1 or x depending on the last bit of the pattern string. Taking modulus of
(x+ 1) on both sides, we obtain

gp(n+ 1,m+ 1) ≡ y · gp(n,m) mod (x+ 1).

Since y ≡ ±1 mod (x+ 1) (with the sign determined by the last bit of the pattern string),
we obtain the following lemma.

ESA 2018

45:10 On the Decision Tree Complexity of String Matching

I Lemma 18. gp(n+ 1,m+ 1) ≡ 0 mod (x+ 1) if and only if gp(n,m) ≡ 0 mod (x+ 1).
Moreover, if there exists N0 ∈ N such that gp(n,m) 6≡ 0 mod (x+ 1) for all n > N0, then p
is evasive.

Now we define the transition matrix. Given a pattern string p of length m, we can express
gp(n+ 1, 1), . . . , gp(n+ 1,m) in terms of gp(n, 1), . . . , gp(n,m). For example, when p = 1010,
according to the automata in Figure 2, we can write

gp(n+ 1, 1)
gp(n+ 1, 2)
gp(n+ 1, 3)
gp(n+ 1, 4)

 =


1 0 1 0
x x 0 x

0 1 0 0
0 0 x 0




gp(n, 1)
gp(n, 2)
gp(n, 3)
gp(n, 4)


Since we are only interested in these values modulo x+ 1, we may plug in x = −1 into all

these terms. We denote gp(n, i) to be the value obtained by plugging x = −1 into gp(n, i).
In the previous example where p = 1010, we will obtain

gp(n+ 1, 1)
gp(n+ 1, 2)
gp(n+ 1, 3)
gp(n+ 1, 4)

 =


1 0 1 0
−1 −1 0 −1
0 1 0 0
0 0 −1 0




gp(n, 1)
gp(n, 2)
gp(n, 3)
gp(n, 4)


We call the matrix on the right hand side of the above equation the transition matrix

of the pattern string p = 1010. In general, given a pattern string p, we write down the
recurrence relation of gp(n, i) in the matrix form and plug in x = −1, and the resulting
matrix will be our transition matrix. Let Tp denote the transition matrix for pattern p.

We will see later that the eigenvalues of Tp are of great use to us. We establish the
following lemma using the characteristic polynomial of Tp. In the remaining part of this
paper we will refer to the characteristic polynomial of Tp as characteristic polynomial of the
pattern p.

I Lemma 19. Let p be a pattern of length m. Let P (λ) = λm + cm−1λ
m−1 + · · ·+ c0 be the

characteristic polynomial of p, then we have the recurrence relation

gp(n+m,m) + cm−1gp(n+m− 1,m) + · · ·+ c0gp(n,m) = 0. (1)

Proof. By the Cayley-Hamilton theorem (see Theorem 5.2.3 in [1]), we have

Tmp + cm−1T
m−1
p + · · ·+ c0I = 0,

where I is the identity matrix. Right multiply both sides by column vector

gp(n) = (gp(n, 1), gp(n, 2), . . . , gp(n,m))t,

we obtain

gp(n+m) + cm−1gp(n+m− 1) + · · ·+ c0gp(n) = 0,

since Tpgp(n) = gp(n+1). Both sides of the equation above arem-dimensional column vectors,
and we get the desired recurrence relation by looking at the last row of both vectors. J

X. He, N. Huang, and X. Sun 45:11

4.2 The Skolem Problem and Finite Zeroes
Lemma 19 gives us a tool to get around gp(n, 1), . . . , gp(n,m− 1) and focus only on gp(n,m).
Now we are faced with the following problem:

Let {un} be a linear recurrent sequence. Does there exist N0 such that un is non-zero
for all n > N0?

This problem is very similar to the Skolem’s Problem, which can be stated as follows:

Let {un} be a linear recurrent sequence. Does there exist n such that un = 0?

For a detailed survey of the Skolem’s problem, readers are referred to [5]. We will use the
following result from [5], which partially solved our problem.

I Lemma 20 ([5]). Assume sequence {un}∞n=1 satisfies

un = am−1un−1 + · · ·+ a1un−m+1 + a0un−m,

where a0, a1, . . . , am−1 are fixed integers. Also assume that p(λ) = λm − am−1λ
m−1 − · · · −

a1λ− a0 has the decomposition

p(λ) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λr)mr ,

where λ1, . . . , λr ∈ C are distinct roots of p(λ) and |λ1| ≥ |λ2| ≥ · · · ≥ |λr|. Then there exists
N0 ∈ N such that un is non-zero for all n > N0 if one of the following cases holds:
1. |λ1| > |λ2|.
2. |λ1| = |λ2| > |λ3|, λ1 = λ2.
3. |λ1| = |λ2| = |λ3| > |λ4|, λ1 ∈ R, λ2 = λ3.

The proof of this lemma can be found in Proposition 4.1 in [5]. Note that our statement
is a little bit different. In [5] it is proved that the Skolem’s problem is decidable in these
cases, by showing that there exists an algorithmically computable constant N0 such that
un 6= 0 for all n ≥ N0, and therefore an algorithm for deciding the Skolem’s problem only
needs to check whether there are zeroes below the bound N0.

Using this lemma, we can show the evasiveness of some pattern strings. As an example,
we prove the following proposition.

I Proposition 21. The pattern p = 10k1 is evasive when k > 0.

Proof. To begin with, we calculate its characteristic polynomial, which is

p(λ) = det(λI − Tp) = λk+2 − λ+ 1.

We note that this is also the characteristic polynomial for the recurrence of g(n, k + 2) (here
|p| = k + 2). Now assume z = reiθ is a root of p(λ) = 0. Then we have |zk+2| = |z − 1|,
which implies

rk+2 =
√
r2 + 1− 2r cos θ.

This shows that for every r the value of cos θ is determined, and therefore there can be
at most 2 choices of θ. Thus, the pattern p either satisfies condition 1 or condition 2 in
Lemma 20. We conclude that p is evasive. J

I Remark. The evasiveness of pattern p = 10k1 is not covered by Tuza’s Theorem. Though
p ∈ BE(b) where b = 1, the pattern 10k110k1 has a substring p′ = 0k11 which differs from p

in only two positions, and thus violates the condition (b) in Theorem 5.

ESA 2018

45:12 On the Decision Tree Complexity of String Matching

4.3 The Characteristic Polynomial and Periods
Writing down the characteristic polynomial through the transition matrix can sometimes be
inefficient. Here we develop a faster way to calculate a pattern’s characteristic polynomial
and show some interesting connection to the periodic behavior of the pattern.

We give the following formula for a pattern’s characteristic polynomial in terms of the
pattern’s periods. The proofs of results in this subsection can be found in the full version of
this paper.

I Theorem 22. Let p be a pattern of length m. Let P (λ) be the characteristic polynomial of
p, then we have P (λ) = λm + cm−1λ

m−1 + · · ·+ c1λ+ c0, where for 1 ≤ k ≤ m,

cm−k =
{

(−1)wt(p[1..k]), if k is a period of p,
0, otherwise.

In proving the above theorem, the following two lemmas will be useful.

I Lemma 23. Let p be a pattern of length m. Assume that state qm of the KMP automaton
for p has a transition back to state qm−k+1 where k ≤ m.

If k = m, then all patterns of p[1..m− 1] are preserved. That is to say, if p[1..m− 1] is
l-periodic for some l, then p[1..m] is also l-periodic.
If k < m, then k is the smallest of the periods of p[1..m− 1] which are destroyed. That
is to say, p[1..m − 1] is k-periodic while p[1..m] is not k-periodic, and furthermore, if
p[1..m− 1] is l-periodic for some l < k, then p[1..m] is also l-periodic.

I Lemma 24. Let p be a pattern of length m. Let Pi(λ) be the characteristic polynomial of
the pattern p[1..i]. Assume that state qm of the KMP automaton for p has a transition back
to state qm−k+1 where 1 ≤ k ≤ m. Then

Pm(λ) =
{
λPm−1(λ)− (−1)wt(p[1..k])Pm−k(λ), if k < m,

λPm−1(λ) + (−1)wt(p[1..m]), if k = m.

5 Conclusions

In this paper, we determined the decision tree complexity of string matching problem for
almost every string, except for those string the adversary method fails to give a lower bound,
whose fraction is negligible.

The algebraic approach in Section 4 further proves that a few of these strings are evasive.
One open problem is to resolve the remaining cases.

The characteristic polynomial of a pattern p, which we encountered in Section 4.3, might
be of independent interest itself. We have shown that this polynomial is related to the
pattern’s periodic behaviour, and it will be interesting to investigate whether other properties
of strings can be related to it.

Another natural extension is to consider randomized algorithms. All algorithms proposed
in this paper are deterministic, and randomized complexity is still widely open.

X. He, N. Huang, and X. Sun 45:13

References
1 M. Artin. Algebra. Pearson Prentice Hall, 2011.
2 J. Berstel and J. Karhumäki. Combinatorics on words - a tutorial. Bulletin EATCS, pages

178–228, February 2003.
3 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction To Algorithms.

MIT Press, 2001.
4 Z. Galil and J. Seiferas. Time-space-optimal string matching. Journal of Computer and

System Sciences, 26(3):280–294, 1983. doi:10.1016/0022-0000(83)90002-8.
5 V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s problem - on the border

between decidability and undecidability. TUCS Technical Reports 683, 2005.
6 R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development, 31(2):249–260, 1987. doi:10.1147/rd.312.0249.
7 D. Knuth, J. Morris, and V. Pratt. Fast Pattern Matching in Strings. SIAM Journal on

Computing, 6(2):323–350, jun 1977. doi:10.1137/0206024.
8 P. Nielsen. A note on bifix-free sequences (Corresp.). IEEE Transactions on Information

Theory, 19(5):704–706, 1973. doi:10.1109/TIT.1973.1055065.
9 R. L. Rivest. On the Worst-Case Behavior of String-Searching Algorithms. SIAM Journal

on Computing, 6(4):669–674, 1977. doi:10.1137/0206048.
10 R. L. Rivest and J. Vuillemin. A Generalization and Proof of the Aanderaa-Rosenberg Con-

jecture. In Proceedings of the Seventh Annual ACM Symposium on Theory of Computing,
STOC ’75, pages 6–11, New York, NY, USA, 1975. ACM. doi:10.1145/800116.803747.

11 Z. Tuza. Worst-case behavior of string-searching algorithms. Journal of Statistical Planning
and Inference, 6(1):99–103, 1982. doi:10.1016/0378-3758(82)90060-X.

12 A. Yao. The Complexity of Pattern Matching for a Random String. SIAM Journal on
Computing, 8(3):368–387, 1979. doi:10.1137/0208029.

ESA 2018

http://dx.doi.org/10.1016/0022-0000(83)90002-8
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1109/TIT.1973.1055065
http://dx.doi.org/10.1137/0206048
http://dx.doi.org/10.1145/800116.803747
http://dx.doi.org/10.1016/0378-3758(82)90060-X
http://dx.doi.org/10.1137/0208029

Decremental SPQR-trees for Planar Graphs
Jacob Holm1

University of Copenhagen, Denmark
jaho@di.ku.dk

https://orcid.org/0000-0001-6997-9251

Giuseppe F. Italiano2

University of Rome Tor Vergata, Italy
giuseppe.italiano@uniroma2.it

https://orcid.org/0000-0002-9492-9894

Adam Karczmarz3

University of Warsaw, Poland
a.karczmarz@mimuw.edu.pl

https://orcid.org/0000-0002-2693-8713

Jakub Łącki4

Google Research, USA
jlacki@google.com

https://orcid.org/0000-0001-9347-0041

Eva Rotenberg
Technical University of Denmark, Denmark
erot@dtu.dk

https://orcid.org/0000-0001-5853-7909

Abstract
We present a decremental data structure for maintaining the SPQR-tree of a planar graph subject
to edge contractions and deletions. The update time, amortized over Ω(n) operations, isO(log2 n).
Via SPQR-trees, we give a decremental data structure for maintaining 3-vertex connectivity in
planar graphs. It answers queries in O(1) time and processes edge deletions and contractions in
O(log2 n) amortized time. The previous best supported deletions and insertions in O(

√
n) time.

2012 ACM Subject Classification Theory of computation→ Dynamic graph algorithms, Theory
of computation → Graph algorithms analysis, Theory of computation → Data structures design
and analysis

Keywords and phrases Graph embeddings, data structures, graph algorithms, planar graphs,
SPQR-trees, triconnectivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.46

Related Version A full version of the paper is available at [27], http://arxiv.org/abs/1806.
10772.

1 Jacob Holm is supported by Mikkel Thorup’s Advanced Grant DFF-0602-02499B from the Danish
Council for Independent Research under the Sapere Aude research career programme.

2 Giuseppe F. Italiano is partially supported by the Italian Ministry of Education, University and Research
under Project AMANDA (Algorithmics for MAssive and Networked DAta).

3 Adam Karczmarz is supported by the grants 2014/13/B/ST6/01811 and 2017/24/T/ST6/00036 of the
Polish National Science Center.

4 When working on this paper Jakub Łącki was partly supported by the EU FET project MULTIPLEX
no. 317532 and the Google Focused Award on “Algorithms for Large-scale Data Analysis” and Polish
National Science Center grant number 2014/13/B/ST6/01811. Part of this work was done while Jakub
Łącki was visiting the Simons Institute for the Theory of Computing.

© Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Eva Rotenberg;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaho@di.ku.dk
https://orcid.org/0000-0001-6997-9251
mailto:giuseppe.italiano@uniroma2.it
https://orcid.org/0000-0002-9492-9894
mailto:a.karczmarz@mimuw.edu.pl
https://orcid.org/0000-0002-2693-8713
mailto:jlacki@google.com
https://orcid.org/0000-0001-9347-0041
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.46
http://arxiv.org/abs/1806.10772
http://arxiv.org/abs/1806.10772
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Decremental SPQR-trees for Planar Graphs

1 Introduction

A graph algorithm is called dynamic if it is able to answer queries about a given property
while the graph is undergoing a sequence of updates, such as edge insertions and deletions. It
is incremental if it handles only insertions, decremental if it handles only deletions, and fully
dynamic if it handles both insertions and deletions. In designing dynamic graph algorithms,
one is typically interested in achieving fast query times (either constant or polylogarithmic),
while minimizing the update times. The ultimate goal is to perform fast both queries and
updates, i.e., to have both query and update times either constant or polylogarithmic. So
far, the quest for obtaining polylogarithmic time algorithms has been successful only in few
cases. Indeed, efficient dynamic algorithms with polylogarithmic time per update are known
only for few problems, such as dynamic connectivity, 2-connectivity, minimum spanning
tree and maximal matchings in undirected graphs (see, e.g., [6, 24, 25, 29, 37, 52, 54, 56]).
On the other hand, some dynamic problems appear to be inherently harder. For example,
the fastest known algorithms for basic dynamic problems, such as reachability, transitive
closure, and dynamic shortest paths, have updates that run in only polynomial time (see,
e.g., [9, 10, 11, 39, 49, 51, 55]).

A similar situation holds for planar graphs where dynamic problems have been studied
extensively, see e.g. [3, 14, 16, 18, 20, 21, 26, 34, 42, 43, 44, 45, 53]. Despite this long-time
effort, the best algorithms known for some basic problems on planar graphs, such as dynamic
shortest paths and dynamic planarity testing, still have polynomial update time bounds.
For instance, for fully dynamic shortest paths on planar graphs the best known bound per
operation is Õ(n2/3) amortized [19, 34, 36, 40] (using Õ-notation to hide polylogarithmic
factors), while for fully dynamic planarity testing the best known bound per operation is
O(
√
n) amortized [16].

In the last years, this exponential gap between polynomial and polylogarithmic bounds
has sparkled some new exciting research. On one hand, it was shown that there are
dynamic graph problems, including fully dynamic shortest paths, fully dynamic single-source
reachability and fully dynamic strong connectivity, for which it may be difficult to achieve
subpolynomial update bounds. This started with the pioneering work by Abboud and
Vassilevska-Williams [2], who proved conditional lower bounds based on popular conjectures.
Very recently, Abboud and Dahlgaard [1] proved polynomial lower bounds for the update
time for dynamic shortest paths also on planar graphs, again based on popular conjectures.

On the other hand, the question of improving the update bounds from polynomial to
polylogarithmic, has, for several other dynamic graph problems, received much attention
in the last years. For instance, there was a very recent improvement from polynomial to
polylogarithmic bounds for decremental single-source reachability (and strongly connected
components) on planar graphs: more precisely, the improvement was from O(

√
n) amor-

tized [42] to O(log2 n log logn) amortized [33] (both amortizations are over sequences of Ω(n)
updates). Other problems that received a lot of attention are fully dynamic connectivity and
minimum spanning tree in general graphs. Up to very recently, the best worst-case bound
for both problems was O(

√
n) per update [15]: since then, much effort has been devoted

towards improving this bound (see e.g., [37, 38, 47, 48, 57]).
In this paper, we follow the ambitious goal of achieving polylogarithmic update bounds

for dynamic graph problems. In particular, we show how to improve the update times from
polynomial to polylogarithmic for another important problem on planar graphs: decremental
3-vertex connectivity. Given a graph G = (V,E) and two vertices x, y ∈ V we say that x and

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:3

y are 2-vertex connected (or, as we say in the following, biconnected) if there are at least two
vertex-disjoint paths between x and y in G. We say that x and y are 3-vertex connected (or, as
we say in the following, triconnected) if there are at least three vertex-disjoint paths between
x and y in G. The decremental planar triconnectivity problem consists of maintaining a
planar graph G subject to an arbitrary sequence of edge deletions, edge contractions, and
query operations which test whether two arbitrary input vertices are triconnected. We
remark that decremental triconnectivity on planar graphs is of particular importance. Apart
from being a fundamental graph property, a triconnected planar graph has only one planar
embedding, a property which is heavily used in graph drawing, planarity testing and testing
for isomorphism [31, 32, 35]. Furthermore, our extended repertoire of operations, which
includes edge contractions, contains all operations needed to obtain a graph minor, which is
another important notion for planar graphs.

While polylogarithmic update bounds for decremental 2-edge and 3-edge connectivity,
and for decremental biconnectivity on planar graphs have been known for more than two
decades [20], decremental triconnectivity on planar graphs presents some special challenges.
Indeed, while connectivity cuts for 2-edge and 3-edge connectivity, and for biconnectivity have
simple counterparts in the dual graph or in the vertex-face graph (see Section 2 for a formal
definition of vertex-face graph), triconnectivity cuts (separation pairs, i.e., pairs of vertices
whose removal disconnects the graph) have a much more complicated structure in planar
graphs. Roughly speaking, maintaining 2-edge and 3-edge connectivity cuts in a planar graph
under edge deletions corresponds to maintaining respectively self-loops and cycles of length
2 (pairs of parallel edges) in the dual graph under edge contractions. Similarly, maintaining
biconnectivity and triconnectivity cuts in a planar graph under edge deletions corresponds to
maintaining, respectively, cycles of length 2 and cycles of length 4 in the vertex-face graph.
While detecting cycles of length 2 boils down to finding duplicates in the multiset of all edges,
detecting cycles of length 4 under edge contractions is far more complex. We believe that
this is the reason why designing a fast solution for decremental triconnectivity on planar
graphs has been an elusive goal, and the best bound known of O(

√
n) per update [17] has

been standing for over two decades.

Our results and techniques. Our main result is given in the following theorem.

I Theorem 1. There is a data structure that can be initialized on a planar graph G on n

vertices and O(n) edges in O(n logn) time, and support any sequence of Ω(n) edge deletions
or contractions in total time O(n log2 n), while supporting queries to pairwise triconnectivity
in worst-case constant time per query.

This is an exponential speed-up over the previous O(
√
n) long-standing bound [17]. To

obtain our bounds, we also need to solve decremental biconnectivity on planar graphs in
constant time per query and O(log2 n) amortized time per edge deletion or contraction. (A
better O(logn) amortized bound can be obtained if no contractions are allowed [26].) In the
description we assume that the graph is embedded in the plane (a so-called plane graph).
However, the data structure may handle an arbitrary planar (non-embedded) graph by first
embedding the initial graph in the plane in linear time. This choice of initial embedding has
no effect on either the queries, or on which edge deletions or contractions are possible.

Our results are obtained using two new tools, which may be of independent interest. The
first tool is an algorithm for efficiently detecting and reporting cycles of length 4 as they arise
in a dynamic plane graph subject to edge contractions and insertions. The algorithm works
for a graph with bounded face-degree, i.e, where each face is delimited by at most some

E S A 2 0 1 8

46:4 Decremental SPQR-trees for Planar Graphs

constant number of edges. Specifically, given a plane graph with bounded face-degree subject
to edge-contractions and edge-insertions across a face, we can maintain the set of edges lying
on cycles of length at most 4. The total running time is O(n logn). One of the challenges
that we face is that a plane graph may have as many as Ω(n2) distinct cycles of length 4.
Still, we give a surprisingly simple algorithm for solving this problem. The difficulty of the
algorithm lies in the analysis — in fact, this analysis is the most technically involved part of
this paper.

The second tool is a new data structure that maintains the SPQR-tree [12] of each
biconnected component of a planar graph subject to edge deletions and edge contractions, in
O(log2 n) amortized time per operation. While incremental algorithms for maintaining the
SPQR-tree were known for more than two decades [12, 13], to the best of our knowledge no
decremental algorithm was previously known.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2,
we introduce notation and definitions that we later use. Then, in Section 3 we present a
high-level overview of our results. Finally, in Section 4 we give more details of our algorithm
for maintaining an SPQR-tree under edge deletions and contractions.

Due to space constraints, the algorithm for detecting cycles of length 4 under contractions,
which is a key tool in maintaining an SPQR-tree, is deferred to the full version [27], along
with the detailed discussion of how to use the SPQR-trees to maintain information about
triconnectivity, and a selections of proofs omitted from Section 4.

2 Preliminaries

Throughout the paper we use the term graph to denote an undirected multigraph, that is,
we allow the graphs to have parallel edges and self-loops. Formally, each edge e of such a
graph is a pair ({u,w}, id(e)) consisting of a pair of vertices and a unique integer identifier
used to distinguish between the parallel edges. For simplicity, in the following we skip the
identifier and use just uw to denote one of the edges connecting vertices u and w. If the
graph contains no parallel edges and no self-loops, we call it simple.

Given a graph G, we use V (G) to denote the vertices, and E(G) to denote the edges of
G. For e ∈ E(G), we use G− e to denote the graph obtained from G by removing e. If e
is not a self-loop, we use G/e to denote the graph obtained by contracting e. A cycle C of
length |C| = k in a graph G is a cyclic sequence of edges C = e1, e2 . . . , ek where ei = uiui+1
for 1 ≤ i < k and ek = uku1. Note that this definition allows cycles of length 1 (a self-loop)
or 2 (a pair of parallel edges). A cycle is simple if id(ei) 6= id(ej) and ui 6= uj for i 6= j. We
sometimes abuse notation and treat a cycle as a set of edges or a cyclic sequence of vertices.

The components of a graph G are the minimal subgraphs H ⊆ G such that for every edge
uv ∈ E(G), u ∈ V (H) if and only if v ∈ V (H). The components of a graph partition the
vertices and edges of the graph. A graph G is connected if it consists of a single component.
For a positive integer k, a graph is k-vertex connected if and only if it is connected, has at
least k vertices, and stays connected after removing any set of at most k − 1 vertices. The
local vertex connectivity of a pair of vertices u, v, denoted κ(u, v), is the maximal number
of internally vertex-disjoint u, v-paths. By Menger’s Theorem [46], G is k-vertex connected
if and only if κ(u, v) ≥ k for every pair of non-adjacent vertices u, v. We say that u, v
are (locally) k-vertex connected if κ(u, v) ≥ k. We follow the common practice of using
biconnected as a synonym for 2-vertex connected and triconnected as a synonym for 3-vertex
connected. An articulation point v of G is a vertex whose removal increases the number of

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:5

x

y

S

P S

S

P

R

P

R

Figure 1 A biconnected graph and its SPQR-tree. Note that adding the edge xy would collapse
a path of SPQR-nodes into one. Deletion can thus result in the opposite transformation.

components of G. Thus, a graph is biconnected if and only if it is connected and has no
articulation points.

The structure of the biconnected components of a connected graph can be described by a
tree called the block-cutpoint tree [23, p. 36], or BC-tree for short. This tree has a vertex for
each biconnected component (block) and for each articulation point of the graph, and an
edge for each pair of a block and an articulation point that belongs to that block.

We recall that a graph G that is biconnected but not triconnected has at least one
separation pair, i.e., a pair of vertices that can be removed to disconnect G:

I Definition 2 (Hopcroft and Tarjan [30, p. 6]). Let {a, b} be a pair of vertices in a biconnected
multigraph G. Suppose the edges of G are divided into equivalence classes E1, E2, . . . , Ek,
such that two edges which lie on a common path not containing any vertex of {a, b} except
as an end-point are in the same class. The classes Ei are called the separation classes of G
with respect to {a, b}. If there are at least two separation classes, then {a, b} is a separation
pair of G unless (i) there are exactly two separation classes, and one class consists of a single
edge, or (ii) there are exactly three classes, each consisting of a single edge5.

The notion of the block cutpoint tree over biconnected components can be generalised to
an SPQR-tree over triconnected components as follows:

I Definition 3. The SPQR-tree for a biconnected multigraph G = (V,E) with at least 3
edges is a tree with nodes labeled S, P, or R, where each node x has an associated skeleton
graph Γ(x) with the following properties:

For every node x in the SPQR-tree, V (Γ(x)) ⊆ V .
For every edge e ∈ E there is a unique node x in the SPQR-tree such that e ∈ E(Γ(x)).
For every edge (x, y) in the SPQR-tree, V (Γ(x)) ∩ V (Γ(y)) is a separation pair {a, b} in
G, and there is a virtual edge ab in each of Γ(x) and Γ(y) that corresponds to (x, y).
For every node x in the SPQR-tree, every edge in Γ(x) is either in E or a virtual edge.
If x is an S-node, Γ(x) is a simple cycle with at least 3 edges.
If x is a P-node, Γ(x) consists of a pair of vertices with at least 3 parallel edges.
If x is an R-node, Γ(x) is a simple triconnected graph.
No two S-nodes are neighbors, and no two P-nodes are neighbors.

5 These two exceptions actually make it easier to state some properties related to separation pairs.

E S A 2 0 1 8

46:6 Decremental SPQR-trees for Planar Graphs

Figure 2 Left: a plane graph. Right: the corresponding vertex-face graph (red) and the underlying
graph (dashed).

The SPQR-tree for a biconnected graph is unique (see e.g. [12]). The (skeleton graphs
associated with) the SPQR-nodes are sometimes referred to as G’s triconnected components.

Let G be a plane graph (a planar graph embedded in the plane). For each component
H of G, let H∗ denote the dual graph of H, defined as the graph obtained by creating a
vertex for each face in the embedding of H, and an edge e∗ (called the dual edge of e),
connecting the two (not necessarily distinct) faces that e is incident to. Let G∗ denote the
graph obtained from G by taking the dual of each component.

Each face f in a plane graph is bounded by a (not necessarily simple) cycle called the
face cycle for f . We call the length of this cycle the face-degree of f . We call any other cycle
a separating cycle.

Let G be a connected plane multigraph with at least one edge. Define the set E�(G) of
corners6 of G to be the the set of ordered pairs of (not necessarily distinct) edges (e1, e2) such
that e1 immediately precedes e2 in the clockwise order around some vertex, denoted v(e1, e2).
Note that if (e1, e2) ∈ E�(G), then (e∗2, e∗1) ∈ E�(G∗). We denote by G� the vertex-face
graph7 of G (see Figure 2). This is a plane multigraph with vertex set V (G) ∪ V (G∗), and
an edge between v(e1, e2) and v(e∗2, e∗1) for each corner (e1, e2) ∈ E�(G). Abusing notation
slightly, we can write G� as = (V (G) ∪ V (G∗), E�(G)). We use the following well-known
facts about the vertex-face graph:
1. G� is bipartite and plane, with a natural embedding given by the embedding of G.
2. The vertex-face graphs of G and G∗ are the same: G� = (G∗)�.
3. There is a one-to-one correspondence between the edges of G and the faces of G� (in the

natural embedding, each face of G� contains exactly one edge of G interior, see Fig 2).
4. (G�)∗ (also known as the medial graph) is 4-regular.
5. G� is simple if and only if G is loopless and biconnected (See e.g. [8, Theorem 5(i)]).
6. G� is simple, triconnected and has no separating 4-cycles if and only if G is simple and

triconnected (See e.g. [8, Theorem 5(iv)]).

If v is an articulation point in G or has a self-loop, then in any planar embedding of G
there is at least one face f whose face cycle contains v at least twice. Any such f is either
an articulation point or has a self-loop in G∗, and v and f are connected by (at least) two
edges in G�.

The dynamic operations on G correspond to dynamic operations on G∗ and G�. Deleting
a non-bridge edge e of G corresponds to contracting e∗ in G∗, that is, (G − e)∗ = G∗/e∗.
Similarly, contracting an edge e corresponds to deleting e∗ from the dual, so (G/e)∗ = G∗−e∗.

6 For alternative definitions, see e.g. [28] and [50]. The latter uses angles for what we call corners.
7 A.k.a. the vertex-face incidence graph [7], the angle graph [50], and the radial graph [5].

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:7

Finally, deleting a non-bridge edge or contracting an edge corresponds to adding and then
immediately contracting an edge across a face of G� (and removing two duplicate edges).

Finally, the useful concept of a separation is well-defined, even for general graphs:

I Definition 4. Given a graph G = (V,E), a separation of G is a pair of vertex sets (V ′, V ′′)
such that the induced subgraphs G′ = G[V ′], G′′ = G[V ′′] contain all edges of G, and V ′ \V ′′
and V ′′ \ V ′ are both nonempty. A separation is balanced if max

{
|V ′| , |V ′′|

}
≤ α |V | for

some fixed constant 1
2 ≤ α < 1. If (V ′, V ′′) is a separation of G, the set S = V ′ ∩ V ′′ is

called a separator of G. A separator S is small if |S| = O(
√
|V |), and it is a cycle separator

if the subgraph of G induced by S is Hamiltonian.

Note that a separation, which is a pair of vertex sets, should not be confused with a
separation pair, which is a pair of vertices (see Definition 2).

3 Overview of Our Approach

The SPQR-tree naturally reflects the triconnected components of the graph, so it is perhaps
not surprising that an SPQR-tree can be augmented to answer pairwise triconnectivity
queries in constant time. The challenge is to update the SPQR-tree under decremental
updates. For this, we need a way to find all new separation pairs that arise. These separation
pairs are related to separating 4-cycles in the vertex-face graph, in which decremental updates
correspond to “collapsing” faces, i.e. the addition and immediate contraction of an edge
across a face. So, the core of our approach is an algorithm for detecting separating 4-cycles
in a particular kind of plane graph subject to valid edge insertions and contractions.

Detecting separating 4-cycles. A 4-cycle is a simple cycle of length 4. We say that a
4-cycle in a plane graph G is a face 4-cycle if it is a cycle bounding a face of G, and a
separating 4-cycle otherwise. There is a one-to-one correspondence between separation pairs
in G and separating 4-cycles in the vertex-face graph G�. (See [27] for details.)

Since no two parallel edges can lie on the same 4-cycle, and no self-loop can be contained
in a 4-cycle, we can assume the input graph is simple. However, when we contract edges,
new parallel edges and self-loops may arise. To handle this, we could detect and remove all
parallel edges, but it turns out that both the algorithm and the analysis become simpler if we
keep (most of) the additional edges, as long as no two parallel edges are consecutive in the
circular ordering around both their endpoints. This is captured by the following definition.

I Definition 5. A plane graph is quasi-simple if the dual of each non-simple component has
minimum degree 3. (In [41] these graphs are called semi-strict.)

Roughly speaking, a quasi-simple graph is obtained from a plane multigraph by merging
parallel edges that lie next to each other in the circular orderings around both their endpoints.

We build a structure for 4-cycle detection by recursively using balanced separators, and
by detecting, for each separator, the cycles that cross the separator. Detecting 4-cycles that
cross a separator is not trivial, and our analysis introduces a complicated potential function
which reflects how well connected the non-separator vertices are with the separator, that is,
how many neighbors on the separator they have. At the same time, we make sure that all
the work done can be paid with the decrease in the potential. Our analysis exploits the fact
that for a subset of vertices S in quasi-simple planar graph, at most O(|S|) vertices have 4
or more neighbors in S. Specifically, this holds when S is the set of separator vertices.

The recursive use of separators can be sketched as follows: Let S be a small balanced
separator in G = (V,E) that induces a separation (V1, V2), that is, V1 ∩ V2 = S and

E S A 2 0 1 8

46:8 Decremental SPQR-trees for Planar Graphs

V1 ∪ V2 = V . Moreover, let n = |V |. We observe that each 4-cycle is fully contained in V1
or V2, or consists of two paths of length 2 that connect vertices of S. This motivates the
following recursive approach. We compute a separator S of O(

√
n) vertices and then find all

paths of length 2 that connect vertices of S. Since the size of S is O(
√
n), there are only

O(n) pairs of vertices of S, and for each pair of vertices, we can easily check if the two-edge
paths connecting them form any separating 4-cycles. It then remains to find the 4-cycles
that are fully contained in either V1 or V2, which can be done recursively. Because S is a
balanced separator, the recursion has O(logn) levels.

This algorithm can be made dynamic under contractions and edge insertions that respect
the embedding of G. Contractions are easy to handle, as they preserve planarity. Moreover,
a separator S of a planar graph can be easily updated under contractions. Namely, whenever
an edge uw is contracted, the resulting vertex belongs to the separator iff any of u and w

did. Insertions that preserve planarity, however, are in general harder to accommodate. To
handle this we introduce a new type of separators that we call face-preserving separators,
which (like cycle-separators) always exist when the face-degree is bounded. These are still
preserved by contractions, but also ensure that any edge across a face can be inserted.

All in all, there are O(logn) levels of size O(n) each, where each level handles insertions
and contractions in constant time, leading to a total of O(n logn) time. (See [27] for details.)

I Theorem 6. Let G be an n-vertex connected quasi-simple plane graph with bounded face
degree. There exists a data structure that maintains G under contractions and embedding-
respecting insertions, and after each update operation reports edges that become members of
some separating 4-cycle. It runs in O(n logn) total time.

Maintaining SPQR-trees. The main challenge in maintaining an SPQR-tree is handling
the case when an edge within a triconnected component is deleted. First of all, the data
structure should be able to detect whether or not the component is still triconnected.

For the skeleton Γ of any R-node in the SPQR-tree of G, we maintain a 4-cycle detection
structure for the corresponding vertex-face graph Γ�. A separating 4-cycle in Γ� corresponds
to a separation pair in Γ, which would witness that Γ is no longer triconnected. The deletion
or contraction of the edge e in the triconnected component Γ of G corresponds to collapsing a
face in Γ� by the insertion and immediate contraction of an edge. By detecting new 4-cycles
in Γ�, we can therefor detect when the corresponding triconnected component falls apart.

However, this is not the only challenge. If Γ does indeed cease to be triconnected, the
SPQR-tree of (Γ − e) (or (Γ/e) when doing a contraction) is a path H. This is where we
need the 4-cycle detection structure to output the edges contained in separating 4-cycles.
Those edges correspond to a set of corners N of G. We use those corners to guide a search,
which identifies the non-largest components of the SPQR-path H. More specifically, if a
vertex v now belongs to two distinct triconnected components, there are two corners in N

that separate the edges incident to v into two groups of edges, each belonging to a distinct
triconnected component. We can afford to build a 4-cycle detection structure for Γ′� for
any non-largest triconnected component Γ′ on the path from scratch. To obtain the data
structure representing the largest component, we delete or contract the edges of the smaller
components from Γ, while updating Γ�. Since an edge only becomes part of a structure
built from scratch when its triconnected component size has been halved, this happens only
O(logn) times per edge. Since the time spent on building 4-cycle detection structures is
O(logn) per contributing edge, the total time becomes O(n log2 n).

Finally, since no two S-nodes can be neighbors and no two P -nodes can be neighbors,
some S- or P -nodes in H may have to be merged with their (at most 2) neighbors of the

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:9

same type outside H. To handle this step efficiently, we keep the SPQR-tree rooted in an
arbitrary node. While merging the skeleton graphs of two S- or P -nodes can be done in
constant time, it is more costly to update the parent pointers in the children of the merged
nodes. Hence, we move the children of the node with fewer children to the other node. This
way, each node changes parent at most O(logn) times before it is deleted or split. The total
number of distinct SPQR-nodes that exist throughout the lifetime of the data structure is
O(n), so the total time used for maintaining the parent pointers is O(n logn).

Since SPQR-trees are only defined for biconnected graphs, another challenge is to maintain
SPQR-trees for each biconnected component, even as the decremental update operations
cause the biconnected components to fall apart. We thus maintain also the BC-tree of the
graph (see Section 2). If the BC-tree is rooted arbitrarily at any block, each non-root block
has a unique articulation point separating it from its parent.

To handle updates, we notice that the SPQR-tree points to the fragile places where the
graph is about to cease to be biconnected: An edge deletion in an S-node will break up a
block in the BC-tree into a path, and an edge contraction in a P -node breaks a block in the
BC-tree into a star. Upon such an update, we remove the aforementioned S- or P -node from
the SPQR-tree, breaking it up into an SPQR-forest. Each tree corresponds to a new block
in the BC-tree. They form a path (or a star), and the ordering along the path, as well as the
articulation points, can be read directly from the SPQR-tree. (See Section 4 for details.)

On the other hand, in order to even know which SPQR-tree to modify during an update,
we can search in the BC-tree for the right SPQR-structure in which to perform the operation.

Bi- and triconnectivity. Finally, we use SPQR-trees to facilitate triconnectivity queries.
First of all, vertices need to be biconnected in order to be triconnected. In the rooted BC-tree,
assign each vertex to its root-nearest block. It is enough that each vertex knows the name
of its block, and each block knows the vertex separating it from its parent. Then, any two
vertices are biconnected if and only if they either have the same block, or one is the unique
vertex separating the block of the other from its parent.

For triconnectivity, the maintained information, as well as the query handling, is similar,
using the SPQR-tree in place of the BC-tree. Namely: each non-root node in the SPQR-tree
stores the virtual edge (see Definition 3) that separates it from its parent. Each vertex
knows the root-nearest node containing it, and, if this is an S-node, its at most two children
containing the vertex.

The main challenge is to handle updates. Note that the change to the SPQR-tree may
involve both the split and merge of nodes. In particular, we have one split and up to
several merges when a triconnected component falls apart into an SPQR-path. However,
upon a merge, we can afford to update the information regarding vertices in the non-largest
components, costing only an additive logn to the amortized running time. Similarly, upon a
split, we update any information that relates to vertices in the non-largest components only.

The total running time is thus O(n logn + f(n)), where f(n) is the running time for
maintaining the SPQR-tree. (See [27] for details.)

I Theorem 1. There is a data structure that can be initialized on a planar graph G on n

vertices and O(n) edges in O(n logn) time, and support any sequence of Ω(n) edge deletions
or contractions in total time O(n log2 n), while supporting queries to pairwise triconnectivity
in worst-case constant time per query.

E S A 2 0 1 8

46:10 Decremental SPQR-trees for Planar Graphs

Algorithm 1 Removing an edge e from a P -node x of T .
1: function removeP(e, x, T)
2: remove e from Γ(x)
3: if Γ(x) has two edges then
4: if Γ(x) has no virtual edges then
5: delete T
6: else if Γ(x) has one virtual edge then
7: y := the only neighbor of x
8: ex := the virtual edge in Γ(y) corresponding to x
9: replace ex by the non-virtual edge of Γ(x)

10: remove x from T

11: else if Γ(x) has two virtual edges then
12: {y, z} := neighbors of x in T

13: remove x from T , making y and z neighbors in T

14: if y and z are S-nodes then
15: merge y and z into one node

4 Decremental SPQR-trees

In this section, we use the data structure of Theorem 6 to maintain an SPQR-tree (see
Definition 3) for each biconnected component of G with at least 3 edges under arbitrary edge
deletions and contractions. We start with some useful facts.

I Lemma 7. Let G be a biconnected graph. If a 4-cycle C = (v1, f1, v2, f2) in G� is a
separating cycle, then v1, v2 is a separation pair of G and f1, f2 is a separation pair of G∗.

I Lemma 8. Let G be a loopless biconnected plane graph and u, w be a separation pair in
G. Consider the set of edges Ex incident to x ∈ {u,w}. Then, the edges of Ex belonging to
each separation class of u,w are consecutive in the circular ordering around both u and w.

I Lemma 9. Let G be a triconnected plane graph and e = uw ∈ E(G). Assume that G− e
is not triconnected. Then, the SPQR-tree of G− e is a path H (we call it an SPQR-path).
Moreover, given all edges that lie on 4-cycles in (G− e)�, we can compute all nodes of H
(i.e., their skeleton graphs) except for the largest one in time that is linear in their size.

For a planar graph, there is a nice duality, as proven by Angelini et al. [4, Lemma 1].
Define the dual SPQR-tree as the tree obtained from the SPQR-tree by interchanging S-
and P -nodes, and taking the dual of the skeletons.

I Lemma 10 (Angelini et al [4]). The SPQR-tree of G∗ is the dual SPQR-tree of G.

Let G be a connected plane graph. Since (G�)∗ is 4-regular, G� is quasi-simple and
has bounded face-degree. Furthermore, any edge deletion or contraction in G that leaves
G connected, corresponds to an edge insertion and immediate contraction in G�. Thus
by Theorem 6 we can maintain a data structure for G under connectivity-preserving edge
deletions and contractions, that after each update operation reports the corners that become
part of a separating 4-cycle in G�.

In the algorithm we maintain one SPQR-tree for each biconnected component with at
least 3 edges. We now describe how these trees are updated upon edge deletions. The
procedures, depending on the type of the SPQR-tree node are given as Algorithms 1, 2 and 3.
Note that the lines 4 and 5 in Algorithm 2 only introduce notation, that is the values of the
variables are not computed. (See [27] for a proof of correctness.)

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:11

Algorithm 2 Removing an edge e from an
R-node x of T .

1: function removeR(e, x, T)
2: remove e from Γ(x)
3: if Γ(x) has a separation pair then
4: X ′ := SPQR-path representing

Γ(x)
5: xbig := the node of X ′ st. Γ(xbig)

has the most edges
6: compute all nodes of X ′ \ xbig

7: remove and contract edges of
Γ(x) to obtain Γ(xbig)

8: replace x in T by X ′ (connect
each child of x to the cor-
rect node of X ′)

9: for each S- or P -node z ∈ X ′ do
10: for each neighbor z′ /∈ X ′ do
11: if z, z′ are same type then
12: merge z with z′

Algorithm 3 Removing an edge e from an
S-node x of T .

1: function removeS(e, x, T)
2: remove e from Γ(x)
3: remove x from T

4: for each edge e′ in Γ(x) do
5: Make a new BC-node z
6: if e′ is a virtual edge then
7: y := neighbor of x in T corre-

sponding to e′
8: Make the tree containing y the

SPQR-tree for the new BC-node
9: if y is a P -node then

10: removeP(y, e′, T)
11: else
12: removeR(y, e′, T)

We can now prove the main theorem of this section. Note that, as in the block-cutpoint
tree, we root each SPQR-tree in an arbitrary vertex.

I Theorem 11. There is a data structure that can be initialized on a simple planar graph G
on n vertices in O(n logn) time, and supports any sequence of edge deletions or contractions
in total time O(n log2 n), while maintaining an explicit representation of a rooted SPQR-tree
for each biconnected component with at least 3 edges, including all the skeleton graphs for
the triconnected components. Moreover, during updates, the total number of times a node of
an SPQR-tree changes its parent is O(n logn).

Proof. We first partition the graph into biconnected components, and, as sketched in
Section 3, maintain the block-cutpoint tree explicitly. Thus, given two vertices u, v, we can
in O(1) time access the biconnected component containing both of them, along with its
auxiliary data. Now, for each biconnected component Ci, we compute the SPQR-tree T .
This can be done in linear time due to [22]. We also root each SPQR-tree in an arbitrary
node, and keep the trees rooted as they are updated.

For each node x of T we maintain the graph Γ(x). Each virtual edge of Γ(x) has a pointer
to the neighbor of x it represents. Moreover, for each R-node r, we keep a data structure of
Theorem 6 for detecting separating 4-cycles in the vertex-face graph (Γ(r))�. By Lemma 7,
any separating 4-cycle in (Γ(r))� corresponds to a separation pair in Γ(r). Since r is an
R-node, there are no separating 4-cycles to begin with, but some may appear after an update.

Since the total size of the R-components is n, it follows from Theorem 6 that the entire
construction time is O(n logn).

Deletion. When an edge e is removed we find the node x of the SPQR-tree, such that e is
a non-virtual edge in x. Then, we proceed according to Algorithms 1, 2 and 3.

Whenever an edge fg is deleted from an R-node r, we update the corresponding 4-cycle
detection structure for (Γ(r))�. We first insert the dual edge (fg)∗ in the vertex-face graph,
and then contract along that edge. This allows us to detect whether Γ(r) has any separation
pairs after each edge deletion.

E S A 2 0 1 8

46:12 Decremental SPQR-trees for Planar Graphs

Let us now analyze the running time. When processing an edge deletion, the following
changes can take place in a SPQR-tree (all other changes can be handled in O(1) time):

an R-node is split into multiple nodes,
two P -nodes or S-nodes are merged,
an S- or P - node is deleted.

Note, a P - or S-node can never get split. So, though each edge may at first belong to nodes
that are split, once it becomes a part of a P - or S-node, its node only participates in merges.

When two S- or P -nodes are merged, we can merge their skeleton graphs in constant
time. These skeleton graphs have only two common nodes, and their lists of adjacent edges
can be merged in constant time thanks to Lemma 8. When nodes are merged, we also have
to update the parent pointers of their children. To bound the number of these updates, we
merge the node with fewer children into the node with more. Thus, the number of parent
updates caused by these merges is O(n logn), and so is the impact on the running time.

A similar analysis applies to the case when an R-node r is split into an SPQR-path. By
Lemma 9, we can compute all but the largest node of the SPQR-path in linear time. Since
the size of the skeleton graph in each of these nodes is at most half the size of Γ(r), each
edge takes part in this computation at most O(logn) times. For every new R-nodes, we also
initialize their associated data structures for detecting 4-cycles. We charge the running time
of each data structure to this initialization. From Theorem 6 we get that recomputing all
the nodes and data structures takes O(n log2 n) total time.

Taking care of the largest component of the SPQR-path is even easier, as we can simply
reuse the skeleton graph of r and its associated data structure for detecting 4-cycles. To
update the skeleton graph, we use the following lemma.

I Lemma 12. If G is triconnected, e ∈ E(G), and x is an R-node in the SPQR-tree for
G − e, then there exists a sequence of

∣∣E(G)
∣∣ − ∣∣E(Γ(x))

∣∣ edge deletions and contractions
that transform G− e into Γ(x) while keeping the graph connected at all times.

After an R-node r is split into a SPQR-path H we also need to update the parent pointers
in the children of r. However, the number of children to update is at most the number of
edges in the non-largest components of the SPQR-path. As we have argued, the total number
of such edges across all deletions is O(n logn).

Contraction. The contraction of an edge of the plane graph G corresponds to the deletion
of an edge of its dual graph, G∗. By Lemma 10, the SPQR-tree of G∗ is the dual SPQR-tree
of G. Thus, if the edge was in a P -node of the SPQR-tree, its contraction is handled like the
deletion of an edge in a S-node, and vice versa.

If the contracted edge e belongs to an R-node, that R node may expand to a path in the
SPQR-tree (because deletion in G∗ may expand an R-node into a path). In the vertex-face
graph, we may find all edges participating in new separating 4-cycles, corresponding to
separating corners of the graph. To find the new components, we simply apply Lemma 9 to
the dual graph and proceed analogously to a deletion. J

References
1 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar

graph algorithms. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages
477–486, 2016. doi:10.1109/FOCS.2016.58.

http://dx.doi.org/10.1109/FOCS.2016.58

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:13

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443,
2014. doi:10.1109/FOCS.2014.53.

3 Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance
oracles for planar graphs via forbidden-set distance labels. In Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May
19 - 22, 2012, pages 1199–1218, 2012. doi:10.1145/2213977.2214084.

4 Patrizio Angelini, Thomas Bläsius, and Ignaz Rutter. Testing mutual duality of pla-
nar graphs. Int. J. Comput. Geometry Appl., 24(4):325–346, 2014. doi:10.1142/
S0218195914600103.

5 Dan Archdeacon and R Bruce Richter. The construction and classification of self-dual
spherical polyhedra. J. Comb. Theory, Series B, 54(1):37–63, 1992. doi:10.1016/
0095-8956(92)90065-6.

6 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(logn) update time. SIAM J. Comput., 44(1):88–113, 2015. doi:10.1137/130914140.

7 Graham R. Brightwell and Edward R. Scheinerman. Representations of planar graphs.
SIAM J. Discrete Math., 6(2):214–229, 1993. doi:10.1137/0406017.

8 Gunnar Brinkmann, Sam Greenberg, Catherine Greenhill, Brendan D. Mckay, Robin
Thomas, and Paul Wollan. Generation of simple quadrangulations of the sphere. Dis-
crete Math., 305(1-3):33–54, 2005. doi:10.1016/j.disc.2005.10.005.

9 Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Łącki, and Nikos
Parotsidis. Decremental single-source reachability and strongly connected components in
Õ(m

√
n) total update time. In IEEE 57th Annual Symposium on Foundations of Computer

Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 315–324, 2016. doi:10.1109/FOCS.2016.42.

10 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

11 Camil Demetrescu and Giuseppe F. Italiano. Mantaining dynamic matrices for
fully dynamic transitive closure. Algorithmica, 51(4):387–427, 2008. doi:10.1007/
s00453-007-9051-4.

12 Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected compo-
nents with SPQR-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/BF01961541.

13 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996. doi:10.1137/S0097539794280736.

14 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Algorithms - ESA
2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
pages 594–604, 2007. doi:10.1007/978-3-540-75520-3_53.

15 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification
- a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.
doi:10.1145/265910.265914.

16 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification I: Planarity testing and minimum spanning trees. J. Comput. Syst. Sci.,
52(1):3–27, 1996. doi:10.1006/jcss.1996.0002.

17 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator-based
sparsification II: Edge and vertex connectivity. SIAM J. Comput., 28(1):341–381, 1998.
Announced at STOC ’93. doi:10.1137/S0097539794269072.

18 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms, 13(1):33–54, 1992. doi:10.1016/0196-6774(92)90004-V.

E S A 2 0 1 8

http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1145/2213977.2214084
http://dx.doi.org/10.1142/S0218195914600103
http://dx.doi.org/10.1142/S0218195914600103
http://dx.doi.org/10.1016/0095-8956(92)90065-6
http://dx.doi.org/10.1016/0095-8956(92)90065-6
http://dx.doi.org/10.1137/130914140
http://dx.doi.org/10.1137/0406017
http://dx.doi.org/10.1016/j.disc.2005.10.005
http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1007/s00453-007-9051-4
http://dx.doi.org/10.1007/s00453-007-9051-4
http://dx.doi.org/10.1007/BF01961541
http://dx.doi.org/10.1137/S0097539794280736
http://dx.doi.org/10.1007/978-3-540-75520-3_53
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1006/jcss.1996.0002
http://dx.doi.org/10.1137/S0097539794269072
http://dx.doi.org/10.1016/0196-6774(92)90004-V

46:14 Decremental SPQR-trees for Planar Graphs

19 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.
jcss.2005.05.007.

20 Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar
graphs. Algorithmica, 16(3):263–287, 1996. Announced at SWAT 1992. doi:10.1007/
BF01955676.

21 Jens Gustedt. Efficient union-find for planar graphs and other sparse graph classes. Theor.
Comput. Sci., 203(1):123–141, 1998. doi:10.1016/S0304-3975(97)00291-0.

22 Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of SPQR-Trees,
pages 77–90. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. doi:10.1007/
3-540-44541-2_8.

23 Frank Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addison Wesley,
1969.

24 Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Struct. Algorithms, 11(4):369–
379, 1997. doi:10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X.

25 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

26 Jacob Holm, Giuseppe F Italiano, Adam Karczmarz, Jakub Lacki, Eva Rotenberg, and
Piotr Sankowski. Contracting a planar graph efficiently. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 87. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

27 Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Eva Rotenberg.
Decremental SPQR-trees for Planar Graphs. ArXiv e-prints, 2018. arXiv:1806.10772.

28 Jacob Holm and Eva Rotenberg. Dynamic planar embeddings of dynamic graphs. Theory
of Computing Systems, Apr 2017. doi:10.1007/s00224-017-9768-7.

29 Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic mini-
mum spanning forest. In Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, Sept. 14-16, 2015, Proceedings, pages 742–753, 2015. doi:10.1007/
978-3-662-48350-3_62.

30 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

31 John E. Hopcroft and Robert Endre Tarjan. A V log V algorithm for isomorphism of
triconnected planar graphs. J. Comput. Syst. Sci., 7(3):323–331, 1973. doi:10.1016/
S0022-0000(73)80013-3.

32 John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs
(preliminary report). In Proceedings of the 6th Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pages 172–184, 1974. doi:
10.1145/800119.803896.

33 Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski. Decremental
single-source reachability in planar digraphs. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 1108–1121, 2017. doi:10.1145/3055399.3055480.

34 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Im-
proved algorithms for min cut and max flow in undirected planar graphs. In Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 313–322, 2011. doi:10.1145/1993636.1993679.

35 Goossen Kant. Algorithms for drawing planar graphs, 2001.

http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1007/BF01955676
http://dx.doi.org/10.1007/BF01955676
http://dx.doi.org/10.1016/S0304-3975(97)00291-0
http://dx.doi.org/10.1007/3-540-44541-2_8
http://dx.doi.org/10.1007/3-540-44541-2_8
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
http://dx.doi.org/10.1145/502090.502095
http://arxiv.org/abs/1806.10772
http://dx.doi.org/10.1007/s00224-017-9768-7
http://dx.doi.org/10.1007/978-3-662-48350-3_62
http://dx.doi.org/10.1007/978-3-662-48350-3_62
http://dx.doi.org/10.1137/0202012
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1145/3055399.3055480
http://dx.doi.org/10.1145/1993636.1993679

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:15

36 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum
queries in Monge matrices and Monge partial matrices, and their applications. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 338–355, 2012. URL: http://portal.
acm.org/citation.cfm?id=2095147&CFID=63838676&CFTOKEN=79617016.

37 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 1131–1142, 2013. doi:10.1137/1.9781611973105.81.

38 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster
worst case deterministic dynamic connectivity. In 24th Annual European Symposium on
Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, pages 53:1–53:15, 2016.
doi:10.4230/LIPIcs.ESA.2016.53.

39 Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In 40th Annual Symposium on Foundations of Com-
puter Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 81–91, 1999.
doi:10.1109/SFFCS.1999.814580.

40 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancou-
ver, BC, Canada, January 23-25, 2005, pages 146–155, 2005. URL: http://dl.acm.org/
citation.cfm?id=1070432.1070454.

41 Philip N. Klein and Shay Mozes. Optimization algorithms for planar graphs, 2017. URL:
http://planarity.org.

42 Jakub Łącki. Improved deterministic algorithms for decremental reachability and strongly
connected components. ACM Trans. Algorithms, 9(3):27:1–27:15, 2013. doi:10.1145/
2483699.2483707.

43 Jakub Łącki, Jakub Oćwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The
power of dynamic distance oracles: Efficient dynamic algorithms for the Steiner tree. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 11–20, 2015. doi:10.1145/
2746539.2746615.

44 Jakub Łącki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in
O(n log logn) time. In Algorithms - ESA 2011 - 19th Annual European Symposium,
Saarbrücken, Germany, September 5-9, 2011. Proceedings, pages 155–166, 2011. doi:
10.1007/978-3-642-23719-5_14.

45 Jakub Łącki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. In
32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015,
March 4-7, 2015, Garching, Germany, pages 608–621, 2015. doi:10.4230/LIPIcs.STACS.
2015.608.

46 Karl Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.
47 Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-

case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1122–1129, 2017. doi:10.1145/3055399.3055447.

48 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic mini-
mum spanning forest with subpolynomial worst-case update time. In Proceedings of the 58th
Annual Symposium on Foundations of Computer Science, FOCS 2017, 2017. To appear.

49 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008. doi:10.1137/060650271.

E S A 2 0 1 8

http://portal.acm.org/citation.cfm?id=2095147&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095147&CFID=63838676&CFTOKEN=79617016
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.53
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://planarity.org
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2746539.2746615
http://dx.doi.org/10.1145/2746539.2746615
http://dx.doi.org/10.1007/978-3-642-23719-5_14
http://dx.doi.org/10.1007/978-3-642-23719-5_14
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.608
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.608
http://dx.doi.org/10.1145/3055399.3055447
http://dx.doi.org/10.1137/060650271

46:16 Decremental SPQR-trees for Planar Graphs

50 Pierre Rosenstiehl. Embedding in the plane with orientation constraints: The angle graph.
Annals of the New York Academy of Sciences, 555(1):340–346, 1989. doi:10.1111/j.
1749-6632.1989.tb22470.x.

51 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended ab-
stract). In 45th Symposium on Foundations of Computer Science FOCS 2004, 17-19 Oc-
tober 2004, Rome, Italy, Proceedings, pages 509–517, 2004. doi:10.1109/FOCS.2004.25.

52 Shay Solomon. Fully dynamic maximal matching in constant update time. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334, 2016. doi:10.1109/
FOCS.2016.43.

53 Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs. In
Algorithms - ESA ’93, First Annual European Symposium, Bad Honnef, Germany, Septem-
ber 30 - October 2, 1993, Proceedings, pages 372–383, 1993. doi:10.1007/3-540-57273-2_
72.

54 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Port-
land, OR, USA, pages 343–350, 2000. doi:10.1145/335305.335345.

55 Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 112–119, 2005. doi:10.1145/1060590.1060607.

56 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757–1769, 2013.
doi:10.1137/1.9781611973105.126.

57 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1130–1143, 2017.
doi:10.1145/3055399.3055415.

http://dx.doi.org/10.1111/j.1749-6632.1989.tb22470.x
http://dx.doi.org/10.1111/j.1749-6632.1989.tb22470.x
http://dx.doi.org/10.1109/FOCS.2004.25
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1007/3-540-57273-2_72
http://dx.doi.org/10.1007/3-540-57273-2_72
http://dx.doi.org/10.1145/335305.335345
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1137/1.9781611973105.126
http://dx.doi.org/10.1145/3055399.3055415

Computing the Chromatic Number Using Graph
Decompositions via Matrix Rank

Bart M. P. Jansen1

Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

Jesper Nederlof2

Eindhoven University of Technology, Eindhoven, The Netherlands
j.nederlof@tue.nl

Abstract
Computing the smallest number q such that the vertices of a given graph can be properly q-
colored is one of the oldest and most fundamental problems in combinatorial optimization. The
q-Coloring problem has been studied intensively using the framework of parameterized al-
gorithmics, resulting in a very good understanding of the best-possible algorithms for several
parameterizations based on the structure of the graph. For example, algorithms are known to
solve the problem on graphs of treewidth tw in time O∗(qtw), while a running time of O∗((q−ε)tw)
is impossible assuming the Strong Exponential Time Hypothesis (SETH). While there is an abun-
dance of work for parameterizations based on decompositions of the graph by vertex separators,
almost nothing is known about parameterizations based on edge separators. We fill this gap by
studying q-Coloring parameterized by cutwidth, and parameterized by pathwidth in bounded-
degree graphs. Our research uncovers interesting new ways to exploit small edge separators.

We present two algorithms for q-Coloring parameterized by cutwidth ctw: a deterministic
one that runs in time O∗(2ω·ctw), where ω is the matrix multiplication constant, and a randomized
one with runtime O∗(2ctw). In sharp contrast to earlier work, the running time is independent
of q. The dependence on cutwidth is optimal: we prove that even 3-Coloring cannot be solved
inO∗((2−ε)ctw) time assuming SETH. Our algorithms rely on a new rank bound for a matrix that
describes compatible colorings. Combined with a simple communication protocol for evaluating
a product of two polynomials, this also yields an O∗((bd/2c+ 1)pw) time randomized algorithm
for q-Coloring on graphs of pathwidth pw and maximum degree d. Such a runtime was first
obtained by Björklund, but only for graphs with few proper colorings. We also prove that this
result is optimal in the sense that no O∗((bd/2c+1−ε)pw)-time algorithm exists assuming SETH.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Parameterized Complexity, Chromatic Number, Graph Decompositions

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.47

Related Version A full version is available at [28], https://arxiv.org/abs/1806.10501.

1 NWO Veni grant “Frontiers in Parameterized Preprocessing” and NWO Gravitation grant “Networks”
2 NWO Veni grant “Reducing small instances of complex tasks to large instances of simple ones” and

NWO Gravitation grant “Networks”

© Bart M.P. Jansen and Jesper Nederlof;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 47; pp. 47:1–47:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
mailto:j.nederlof@tue.nl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.47
https://arxiv.org/abs/1806.10501
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Chromatic Number via Matrix Rank

1 Introduction

Graph coloring is one of the most fundamental combinatorial problems, studied already
in the 1850s. Countless papers (cf. [38]) and several monographs [29, 30, 33] have been
devoted to its combinatorial and algorithmic investigation. Since the graph coloring problem
is NP-complete even in restricted settings such as planar graphs [21], considerable effort has
been invested in finding polynomial-time approximation algorithms and exact algorithms
that beat brute-force search [5, 6].

A systematic study of which characteristics of inputs govern the complexity of the
graph coloring problem has been undertaken using the framework of parameterized algo-
rithmics. The aim in this framework is to obtain algorithms whose running time is of the
form f(k) · nO(1), where k is a parameter that measures the complexity of the instance
and is independent of the number of vertices n in the input graph. Over the past decade,
numerous parameters have been employed that quantify the structure of the underlying
graph. In several settings, algorithms have been obtained that are optimal under the Strong
Exponential Time Hypothesis (SETH) [25, 26]. For example, it has long been known (cf. [10,
Theorem 7.9],[40]) that testing q-colorability on a graph that is provided together with a
tree decomposition of width k can be done in time O(qk · kO(1) · n). Lokshtanov, Marx, and
Saurabh [34] proved a matching lower bound: an algorithm running in time (q − ε)k · nO(1)

for any ε > 0 and integer q ≥ 3 would contradict SETH. Results are also known for graph
coloring parameterized by the vertex cover number [27], pathwidth and the feedback vertex
number [34], cliquewidth [17, 24, 31], twin-cover [20], modular-width [19], and split-matching
width [39]. (See [16, Fig. 1] for relations between these parameters.)

A survey of these algorithmic results for graph coloring results in the following picture
of the complexity landscape: For graph parameters that are defined in terms of the width
of decompositions by vertex separators (pathwidth, treewidth, vertex cover number, etc.),
one can typically obtain a running time of O∗(qk) to test whether a graph that is given
together with a decomposition of width k is q-colorable, but assuming (S)ETH there is no
algorithm with running time O∗(ck) for any constant c independent of q [27, Theorem 11].
(We use O∗(f(k)) as a shorthand for f(k) · nO(1).)

The complexity of graph coloring parameterized by width measures based on vertex
separators is therefore well-understood by now. However, only little attention has been paid
to graph decompositions whose width is measured in terms of the number of edges in a
separator. There is intriguing evidence that separators consisting of few edges (or, equivalently,
consisting of a bounded number of bounded-degree vertices) can be algorithmically exploited
in nontrivial ways when solving q-Coloring. In 2016, Björklund [4] presented a fascinating
algebraic algorithm that decides q-colorability using an algorithmic variation on the Alon-
Tarsi theorem [1]. Given a graph G of maximum degree d, a path decomposition of width k,
and integers q and s, his algorithm runs in time (bd/2c+ 1)knO(1) · s. If the graph is not
q-colorable it always outputs no. If the graph has at most s proper q-colorings, then it
outputs yes with constant probability. Hence when q ≥ (bd/2c+1) and s is small, it improves
over the standard O∗(qk)-time dynamic program by exploiting the bounded-degree vertex
separators encoded in the path decomposition. However, the dependence of the running time
on the number of proper q-colorings in the graph is very undesirable, as that number may be
exponentially large in n.

Björklund’s algorithm hints at the fact that graph decompositions whose width is governed
by the number of edges in a separator may yield an algorithmic advantage over existing
approaches. In this work, we therefore perform a deeper investigation of how decompositions

Bart M. P. Jansen and Jesper Nederlof 47:3

by small edge separators can be exploited when solving q-Coloring. By leveraging a new
rank upper bound for a matrix that describes the compatibility of colorings of subgraphs
on two sides of a small edge separator, we obtain a number of novel algorithmic results. In
particular, we show how to eliminate dependence on the number s of proper colorings.

Our results. We present efficient algorithms for q-Coloring parameterized by the width of
various types of graph decompositions by small edge separators. Our first results are phrased
in terms of the graph parameter cutwidth. A decomposition in this case corresponds to a
linear ordering of the vertices; the cutwidth of this ordering is given by the maximum number
of edges that connect a vertex in a prefix of the ordering to a vertex in the complement (see
Section 2 for formal definitions). Cutwidth is one of the classic graph layout parameters
(cf. [14]). It takes larger values than treewidth [32], and has been the subject of frequent
study [23, 41, 42].

Informally speaking, we prove that interactions of partial solutions on low-cutwidth
graphs are much simpler than interactions of partial solutions on low-pathwidth graphs. The
rank-based approach developed in earlier work [8, 11, 18] can be used by setting up matrices
whose rank determines the complexity of these interactions in low-cutwidth graphs. These
are different from the matrices associated to partial solutions in low-pathwidth graphs, and
admit better rank bounds. This is exploited by two different algorithms: a deterministic
algorithm that employs fast matrix multiplication and therefore has the matrix-multiplication
constant ω in its running time, and a faster randomized Monte Carlo algorithm.

I Theorem 1. There is a deterministic algorithm that, for any q, solves q-Coloring on a
graph G with a given linear layout of cutwidth ctw in O∗(2ω·ctw) time, where ω ≤ 2.373 is
the matrix multiplication constant.

I Theorem 2. There is a randomized Monte Carlo algorithm that, for any q, solves q-
Coloring on a graph G with a given linear layout of cutwidth ctw in O∗(2ctw) time.

These results show a striking difference between cutwidth and parameterizations based on
vertex separators such as treewidth and vertex cover number: we obtain single-exponential
running times where the base of the exponent is independent of the number of colors q, which
(assuming ETH) is impossible even parameterized by vertex cover [27]. The assumption that
a decomposition is given in the input is standard in this line of research [8, 12, 11, 18] and
decouples the complexity of finding a decomposition from that of exploiting a decomposition.

The ideas underlying Theorems 1 and 2 can also be used to eliminate the dependence on
the number of proper colorings from Björklund’s algorithm. We prove the following theorem:

I Theorem 3. There is a randomized Monte Carlo algorithm that, for any q, solves q-
Coloring on a graph G with maximum degree d and given path decomposition of width pw
in O∗((bd/2c+ 1)pw) time.

Our approach uses the first step of the proof of the Alon-Tarsi theorem (i.e. rewrite
the problem into evaluating the graph polynomial) and also relates colorability to certain
orientations, but deviates from the previous algorithm otherwise: to evaluate the appropriate
graph polynomial we extend a fairly simple communication-efficient protocol to evaluate a
product of two polynomials.

We also prove that the randomized algorithms of Theorem 2 and Theorem 3 are condi-
tionally optimal, even when restricted to special cases:

I Theorem 4 (F). Assuming SETH, there is no ε > 0 such that 3-Coloring on a planar
graph G given along with a linear layout of cutwidth ctw can be solved in time O∗((2− ε)ctw).

ESA 2018

47:4 Chromatic Number via Matrix Rank

I Theorem 5 (F). Let d ≥ 5 be an odd integer and let qd := bd/2c+ 1. Assuming SETH,
there is no ε > 0 such that qd-Coloring on a graph of maximum degree d given along with
a path decomposition of pathwidth pw can be solved in time O∗((bd/2c+ 1− ε)pw).

These results are obtained by building on the techniques of Lokshtanov et al. [34] that
propagate ‘partial assignments’ throughout graphs of small cutwidth or pathwidth.

Organization
In Section 2 we provide preliminaries. In Section 3 we present algorithms for graph coloring,
proving Theorems 1, 2, and 3. In Section 4 we give briefly sketch the main ideas of the
proofs of Theorems 4 and 5, showing that our randomized algorithms cannot be improved
significantly assuming SETH. Finally, we provide some conclusions in Section 5. Due to space
restrictions, proofs for statements marked (F) have been deferred to the full version [28].

2 Preliminaries

We use N to denote the natural numbers, including 0. For a positive integer n and a set X
we use

(
X
n

)
to denote the collection of all subsets of X of size n. The power set of X is

denoted 2X . The set {1, . . . , n} is abbreviated as [n]. The O∗ notation suppresses polynomial
factors in the input size n, such that O∗(f(k)) is shorthand for O(f(k)nO(1)). All our
logarithms have base two. For sets S, T we denote by ST the set of vectors indexed by
elements of T whose entries are from S. If T = [n], we use Sn instead of S[n].

We consider finite, simple, and undirected graphs G, consisting of a vertex set V (G) and
edge set E(G) ⊆

(
V (G)

2
)
. The neighbors of a vertex v in G are denoted NG(v). The closed

neighborhood of v is NG[v] := NG(v)∪{v}. The degree d(v) equals |NG(v)| and if X ⊆ E(G),
then dX(v) denotes the number of edges of X incident to v. This notation is extended to
d−(v), d+(v), d−X(v), d+

X(v) for directed graphs in the natural way (e.g. d+
X(v) denotes the

number of w such that (v, w) ∈ X). For a vertex set S ⊆ V (G) the open neighborhood
is NG(S) :=

⋃
v∈S NG(v)\S and the closed neighborhood is NG[S] := NG(S)∪S, while G[S]

denotes the graph induced by S.
A q-coloring of a graph G is a function f : V (G)→ [q]. A coloring is proper if f(u) 6= f(v)

for all edges {u, v} ∈ E(G). For a fixed integer q, the q-Coloring problem asks whether a
given graph G has a proper q-coloring. The q-SAT problem asks whether a given Boolean
formula, in conjunctive normal form with clauses of size at most q, has a satisfying assignment.

I Strong Exponential Time Hypothesis ([25, 26]). For every ε > 0, there is a constant q
such that q-SAT on n variables cannot be solved in time O∗((2− ε)n).

Cutwidth. For an n-vertex graph G, a linear layout of G is a linear ordering of its vertex
set, given by a bijection π : V (G)→ [n]. The cutwidth of G with respect to the layout π is:

ctwπ(G) = max
1≤i<n

∣∣{{u, v} ∈ E(G)
∣∣π(u) ≤ i ∧ π(v) > i

}∣∣,
and the cutwidth ctw(G) of a graph G is the minimum cutwidth attained by any linear
layout. It is well-known (cf. [7]) that ctw(G) ≥ pw(G) ≥ tw(G), where the latter denote the
pathwidth and treewidth of G, respectively. An intuitive way to think about cutwidth is
to consider the vertices as being placed on a horizontal line in the order dictated by the
layout π, with edges drawn as x-monotone curves. For any position i we consider the gap
between vertex π−1(i) and π−1(i+ 1), and count the edges that cross the gap by having one
endpoint at position at most i and the other at position after i. The cutwidth of a layout is
the maximum number of edges crossing any single gap.

Bart M. P. Jansen and Jesper Nederlof 47:5

Pathwidth and path decompositions. A path decomposition of a graph G is a path P

in which each node x has an associated set of vertices Bx ⊆ V (G) (called a bag) such
that

⋃
x∈V (P) Bx = V (G) and the following properties hold:

1. For each edge {u, v} ∈ E(G) there is a node x in P such that u, v ∈ Bx.
2. If v ∈ Bx ∩By then v ∈ Bz for all nodes z on the (unique) path from x to y in P .
The width of P is the size of the largest bag minus one, and the pathwidth of a graph G
is the minimum width over all possible path decompositions of G. Since our focus here is
on dynamic programming over a path decomposition we only mention in passing that the
related notion of treewidth can be defined in the same way, except for letting the nodes of
the decomposition form a tree instead of a path.

It is common for the presentation of dynamic-programming algorithms to use path- and
tree decompositions that are normalized in order to make the description easier to follow.
For an overview of tree decompositions and dynamic programming on tree decompositions
see e.g. [9]. Following [12] we use the following path decompositions:

I Definition 6 (Nice Path Decomposition). A nice path decomposition is a path decomposition
where the underlying path of nodes is ordered from left to right (the predecessor of any node
is its left neighbor) and in which each bag is of one of the following types:

First (leftmost) bag: the bag associated with the leftmost node x is empty, Bx = ∅.
Introduce vertex bag: an internal node x of P with predecessor y such that Bx =
By ∪ {v} for some v /∈ By. This bag is said to introduce v.
Introduce edge bag: an internal node x of P labeled with an edge {u, v} ∈ E(G) with
one predecessor y for which u, v ∈ Bx = By. This bag is said to introduce {u, v}.
Forget bag: an internal node x of P with one predecessor y for which Bx = By \ {v}
for some v ∈ By. This bag is said to forget v.
Last (rightmost) bag: the bag associated with the rightmost node x is empty, Bx = ∅.

It is easy to verify that any given path decomposition of pathwidth pw can be transformed
in time |V (G)| · pwO(1) into a nice path decomposition without increasing the width. Let
B1, . . . , B` be a nice path decomposition of G. We say Bi is before Bj if i ≤ j. We denote
Vi =

⋃i
j=1 Bi and let Ei denote the set of edges introduced in bags before i.

3 Upper bounds for Graph Coloring

In this section we outline algorithms for q-Coloring that run efficiently when given a
graph and either a small-cutwidth layout or a good path decomposition on graphs with
small maximum degree. We assume the input graph has no isolated vertices, as they
are clearly irrelevant. We start by using the ‘rank-based approach’ as proposed in [8] to
obtain deterministic algorithms, and afterward give a randomized algorithm with substantial
speedup. In both approaches the idea is to employ dynamic programming to accumulate
needed information about the existence of partial solutions, but use linear-algebraic methods
to compress this information. Let us remark in passing that our approaches are robust in
the sense that they directly extend to generalizations such as q-List Coloring in which for
every vertex a set of allowed colors is given.3

A key quantity that determines the amount of information needed after compression
in general is the rank of a partial solutions matrix. This matrix has its rows and columns

3 In the deterministic approach we simply avoid partial solutions not satisfying these constraints, and in
the randomized approach we assign sufficiently large weight to disallowed (vertex,color) combinations.

ESA 2018

47:6 Chromatic Number via Matrix Rank

indexed by partial solutions (which could be defined in various ways) and an entry is 1 (or
more generally, non-zero) if the two partial solutions combine to a solution. Previously, this
method proved to be highly useful for connectivity problems parameterized by treewidth [8].
For q-Coloring parameterized by treewidth, partial solutions can naturally be defined as
partial proper colorings of a subgraph whose boundary is formed by some vertex separator.
Two partial colorings combine to a proper complete coloring if and only if the two partial
colorings agree on the coloring of the separator. Unfortunately, the rank-based approach
is not useful here as the partial solution matrices arising have large rank, as witnessed by
induced identity submatrices of dimensions qtw. Indeed, the lower bound under SETH by
Lokshtanov, Marx, and Saurabh [34] shows that no algorithm can solve the problem much
faster than O∗(qpw), where pw denotes the pathwidth of the input graph.

Still, this does not exclude much faster running times parameterized by cutwidth. In our
application of the rank-based approach for q-Coloring of a graph with a given linear layout
of cutwidth ctw, the partial solutions are q-colorings of the first i and last n− i vertices in the
linear order, and clearly only the colors assigned to vertices incident to the edges going over
the cut are relevant. If we let X = Xi, Y = Yi denote the endpoints of these edges occurring
respectively not after and after i, and let H = Hi denote the bipartite graph induced by the
cut and these edges, we are set to study the rank of the following partial solutions matrix
indexed by x ∈ [q]X and y ∈ [q]Y :

MH [x, y] =
{

1, if x ∪ y is a proper q-coloring of H,
0, if otherwise.

Here and below, we slightly abuse notation by viewing elements of V I (i.e. vectors with
values in V that are indexed by I) as sets of pairs in I × V ; that is, if x ∈ V I we also use
x to denote the set {(i, xi)}i∈I . With this notation in mind, note that x ∪ y above can be
interpreted as an element of [q]X∪Y in the natural way as X and Y are disjoint. As the rank
of MH is generally high4 and depends on q, we instead focus on the matrix M ′H defined by

M ′H [x, y] =
∏

(v,w)∈E(H)

(xv − yw), (1)

where all edges are directed from X to Y in E(H). The crux is that the support (e.g. the
set of non-zero entries) of M ′H equals the support of MH :

I Lemma 7. We have M ′H [x, y] 6= 0 if and only if x ∪ y is a proper q-coloring of H.

Proof. If xv = yw for some (v, w) ∈ E(H) then the term (xv − yw) is zero, implying the
entire product on the right hand-side of (1) is zero. If x and y differ at every coordinate,
then M ′H [x, y] is a product of nonzero terms, and therefore non-zero itself. J

In Sections 3.1–3.2 this property will allow us to work with M ′H instead of MH , when
combined with the Isolation Lemma or Gaussian-elimination approach; similarly as in previous
work [8, 11, 12].5

4 For example, if H is a single edge MH is the complement of an identity matrix of dimensions q × q.
5 In the deterministic setting, the observation that one can work with a matrix different from a partial

solution matrix but with the same support as the partial solution matrix was already used by Fomin et
al. [18] in combination with a matrix factorization by Lovász [36].

Bart M. P. Jansen and Jesper Nederlof 47:7

3.1 A deterministic algorithm
We first show that M ′H has rank at most

∏
v∈X(dE(H)(v) + 1) by exhibiting an explicit

factorization. Here we use the shorthand dW (v) for the number of edges in W containing
vertex v. For a bipartite graph H with parts X,Y and edges oriented from X to Y , we have:

M ′H [x, y] =
∏

(v,w)∈E(H)

(xv − yw)

=
∑

W⊆E(H)

(∏
v∈X

xdW (v)
v

)(∏
v∈Y

(−yv)dE(H)\W (v)

)

=
∑

(dv∈{0,...,dE(H)(v)})v∈X

(∏
v∈X

xdv
v

) ∑
W⊆E(H)

∀v∈X:dW (v)=dv

∏
v∈Y

(−yv)dE(H)\W (v)

 , (2)

where the second equality follows by expanding the product and the third equality follows
by grouping the summands on the number of edges incident to vertices in W included in X.

Expression (2) provides us with a matrix factorization M ′H = LH · RH where LH is
indexed by x ∈ [q]X and a sequence s = (dv ∈ {0, . . . , dE(H)(v)})v∈X and RH has columns
indexed by y ∈ [q]Y (one such factorization sets LH [x, s] =

∏
v∈X x

sv
v). As the number of

relevant sequences s is bounded by
∏
v∈X(dE(H)(v)+1), the factorization implies the claimed

rank bound for M ′H .6 The rank bound allows some partial solutions to be pruned from the
dynamic-programming table without changing the answer. The following definition captures
correct reduction steps.

I Definition 8. Fix a bipartite graph H with parts X and Y and let S ⊆ [q]X be a set of
q-colorings of X. We say S ′ ⊆ [q]X H-represents S if S ′ ⊆ S, and for each y ∈ [q]Y we have:

(∃x ∈ S : x∪y is a proper coloring of H)⇔ (∃x′ ∈ S ′ : x′∪y is a proper coloring of H). (3)

Note that the backward direction of (3) is implied by the property that S ′ ⊆ S, but we state
both for clarity. If H is clear from context it will be omitted. For future reference we record
the observation that the transitivity of this relation follows directly from its definition:

I Observation 9. Let H be a bipartite graph with parts X and Y , and let A,B, C ⊆ [q]X . If
A represents B and B represents C, then A represents C.

Given the above matrix factorization, we can directly follow the proof of [8, Theorem 3.7]
to get the following result (note that ω denotes the matrix multiplication constant):

I Lemma 10. There is an algorithm reduce that, given a bipartite graph H with parts X,Y
and a set S ⊆ [q]X , outputs in time

(∏
v∈X(dE(H)(v) + 1)

)ω−1 · |S| · poly(|X|+ |Y |) a set S ′
that represents S and satisfies |S ′| ≤

∏
v∈X(dE(H)(v) + 1).

Proof. The algorithm is as follows: compute explicitly the matrix LH [S, ·] (i.e. the submatrix
of LH induced by all rows in S). As every entry of LH can be computed in polynomial time,
clearly this can be done within the claimed time bound. Subsequently, the algorithm finds a
row basis of this matrix and returns that set as S ′. As the rank of a matrix is at most its

6 This construction (first developed in this paper) has subsequently been used by the second author with
Bansal et al. [3] in the completely different setting of online algorithms; see [3, Footnote 3].

ESA 2018

47:8 Chromatic Number via Matrix Rank

number of columns, |S ′| ≤
∏
v∈X(dE(H)(v) + 1). Using [8, Lemma 3.15], this step also runs

in the promised running time.
To see that S ′ represents S, note that clearly S ′ ⊆ S and thus it remains to prove the

forward implication of (3). To this end, suppose that x ∪ y is a proper q-coloring of H and
x ∈ S. As S ′ is a row basis of LH , there exist x(1), . . . , x(`) ∈ S ′ and λ1, . . . , λ` such that

M ′H [x, y] = LH [x, ·]RH [·, y] =
(∑̀
i=1

λiLH [x(i), ·]
)
RH [·, y] =

∑̀
i=1

λiM
′
H [x(i), y],

where LH [x, ·] and RH [·, y] denote a row of LH and column of RH respectively. As x∪ y is a
proper coloring of H, Lemma 7 implies M ′H [x, y] is non-zero. Therefore there must also exist
x(i) ∈ S ′ such that M ′H [x(i), y] is non-zero and hence x(i) ∪ y is a proper coloring of H. J

Equipped with the algorithm reduce from Lemma 10 we are ready to present the algorithm
for q-Coloring. On a high level, the algorithm uses a naïve dynamic-programming scheme,
but by extensive use of the reduce procedure we efficiently represent sets of partial solutions
and speed up the computation significantly.

First we need to introduce some notation. A vector x ∈ V I is an extension of a vector
x′ ∈ V I′ if I ′ ⊆ I and x′i = xi for every i ∈ I ′. If x ∈ V I and P ⊆ I then the projection x|P
is defined as the unique vector in V P of which x is an extension. Let G be the graph for
which we need to decide whether a proper q-coloring exists and fix an ordering v1, . . . , vn of
V (G). We denote all edges as directed pairs (vi, vj) with i < j. For i = 1, . . . , n, define Vi as
the i’th prefix of this ordering, Ci as the i’th cut in this ordering, and Xi and Yi as the left
and respectively right endpoints of the edges in this cut, i.e.

Vi = {v1, . . . , vi}, Ci = {(vl, vr) ∈ E(G) : l ≤ i < r},
Xi = {vl ∈ V (G) : ∃(vl, vr) ∈ Ci ∧ l < r}, Yi = {vr ∈ V (G) : ∃(vl, vr) ∈ Ci ∧ l < r}.

Note that Xi ⊆ Xi−1 ∪{vi} and Yi−1 ⊆ Yi ∪{vi}. We let Hi denote the bipartite graph with
parts Xi, Yi and edge set Ci. For i = 1, . . . , n, let T [i] ⊆ [q]Xi be the set of all q-colorings of
the vertices in Xi that can be extended to a proper q-coloring of G[Vi]. The following lemma
shows that we can continuously work with a table T ′ that represents a table T :

I Lemma 11. If T ′[i− 1] Hi−1-represents T [i− 1], then T ′[i] Hi-represents T [i], where

T ′[i] =
{

(x ∪ (vi, c))|Xi
: x ∈ T ′[i− 1], c ∈ [q],

(
∀v ∈ N(vi) ∩Xi−1 : xv 6= c

)}
. (4)

Proof. Assuming the hypothesis, we first show that T ′[i] ⊆ T [i]. Let x ∈ T ′[i − 1] and
c ∈ [q] such that ∀v ∈ N(vi) ∩Xi−1 : xv 6= c. As T ′[i− 1] represents T [i− 1], we have that
x ∈ T [i−1]. By definition of T [i−1], there exists a proper coloring w of G[Vi−1] that extends
x. Since all v ∈ N(vi) ∩Xi−1 = N(vi) ∩ Vi−1 satisfy xv 6= c, it follows that w ∪ (vi, c) is a
proper coloring of G[Vi], and thus (x ∪ (vi, c))|Xi

∈ T [i].
Thus, to prove the lemma it remains to show the forward implication of (3). To this end,

let x ∈ T [i] and let w ∈ [q]Vi be a proper coloring of G[Vi] that extends x. Let y ∈ [q]Yi be
such that x∪ y is a proper coloring of Hi. As wvi 6= wvj for neighbors vj ∈ N(vi)∩ Vi−1 and
wvi
6= yvj

for vj ∈ N(vi) \ Vi, it follows that w ∪ y extends a proper coloring of Hi−1.
Therefore w|Xi−1∪(y∪(vi, wvi

))|Yi−1 must be a proper coloring ofHi−1, and w|Xi−1 ∈ T [i−
1] as it can be extended to a proper coloring of Vi, and thus also to a proper coloring of Vi−1.
As T ′[i−1] Hi−1-represents T [i−1], there exists x′ ∈ T ′[i−1] such that x′∪(y∪(vi, wvi))|Yi−1

is a proper coloring of Hi−1.

Bart M. P. Jansen and Jesper Nederlof 47:9

As no neighbor of vi was assigned color wvi by y, it follows that (x′ ∪ (vi, wvi)) ∪ y is an
extension of a proper coloring of Hi. As x′ ∪ (y ∪ (v, wvi

))|Yi−1 is a proper coloring of Hi−1,
no neighbors of vi are assigned color wvi

by x′, and by (4) we have that (x′∪ (vi, wvi
)) ∈ T ′[i],

as required. J

Now we combine Lemma 10 with Lemma 11 to obtain an algorithm to solve q-Coloring.

I Lemma 12. q-Coloring can be solved in time O∗
((

maxi
∏
v∈Xi

(dE(Hi)(v) + 1)
)ω).

Proof. Note T ′[0] = T [0] = {∅} (where ∅ is the 0-dimensional vector). Using Lemma 11, we
can use (4) for i = 1, . . . , n to iteratively compute a set T ′[i] representing T [i] from a set
T ′[i− 1] representing T [i− 1], and replace T ′[i] after each step with reduce(Hi, T

′[i]). By
combining Lemma 11 and Observation 9, we may conclude that G has a q-coloring if and
only if T ′[n] is not empty (that is, it contains a single element which is the empty vector).

The time required for the computation dictated by (4) is clearly |T ′[i]| · poly(n). Since
|T ′[i − 1]| ≤ maxi

∏
v∈Xi

(dE(Hi)(v) + 1), as it is the result of reduce, we have that |T ′[i]|
is bounded by q ·maxi

∏
v∈Xi

(dE(Hi)(v) + 1). Using this upper bound for T ′[i], the time of
reduce will be O∗

((
maxi

∏
v∈Xi

(dE(Hi)(v) + 1)
)ω), which clearly is the bottleneck in the

running time. J

Theorem 1 now follows directly from this more general statement.

Proof of Theorem 1. If v1, . . . , vn is a layout of cutwidth k, then |E(Hi)| ≤ k for every i,
and the term

∏
v∈Xi

(dE(Hi)(v) + 1) is upper bounded by 2k by the AM-GM inequality. Thus
the theorem follows from Lemma 12. J

3.2 A randomized algorithm
In this section we use an idea similar to the idea from the matrix factorization of the previous
section to obtain faster randomized algorithms. Specifically, our main technical result is as
follows (recall that Ei denotes the set of edges introduced in bags before Bi).

I Theorem 13. There is a Monte Carlo algorithm for q-Coloring that, given a graph G
and a nice path decomposition B1, . . . , B`, runs in time O∗(maxi

∏
v∈Bi

(min{dEi
(v), d(v)−

dEi
(v)} + 1)). The algorithm does not give false-positives and returns the correct answer

with high probability.

Let V (G) = V = {v1, . . . , vn} be ordered arbitrarily, and direct every edge {vi, vj} as (vi, vj)
with i < j. Define the graph polynomial fG as fG(x1, . . . , xn) =

∏
(u,v)∈E(G)(xu − xv). This

polynomial has been studied intensively (cf. [2, 13, 35]), for example in the context of the
Alon-Tarsi theorem [1]. Define PG =

∑
x∈[q]V fG(x). Similarly as in Lemma 7 we see that if

PG 6= 0 then G has a proper q-coloring, and if G has a unique q-coloring then PG 6= 0 as it is
the product of non-zero values. This is useful if the graph is guaranteed to have at most one
proper q-coloring. To this end, we use a standard technique based on the Isolation Lemma,
which we state now.

I Definition 14. A function ω : U → Z isolates a set family F ⊆ 2U if there is a unique
S′ ∈ F with ω(S′) = minS∈F ω(S), where ω(S′) :=

∑
v∈S′ ω(v).

I Lemma 15 (Isolation Lemma, [37]). Let F ⊆ 2U be a non-empty set family over universe U .
For each u ∈ U , choose a weight ω(u) ∈ {1, 2, . . . ,W} uniformly and independently at random.
Then Pr[ω isolates F] ≥ 1− |U |/W .

ESA 2018

47:10 Chromatic Number via Matrix Rank

We will apply Lemma 15 to isolate the set of proper colorings of G. To this end,
we use the set V (G) × [q] of vertex/color pairs as our universe U , and consider a weight
function ω : V (G)× [q]→ Z.

I Definition 16. A q-coloring of G is a vector x ∈ [q]n, and it is proper if xi 6= xj for every
(i, j) ∈ E(G). The weight of x is ω(x) =

∑n
i=1 ω((i, xi)).

Let ω : V (G) × [q] → [2nq] be a random weight function, i.e. for every v ∈ V (G) and
c ∈ [q] we pick an integer from [2nq] uniformly and independently at random. For every
integer z we associate a number PG(z) with G, as follows:

PG(z) =
∑
x∈[q]n

ω(x)=z

∏
(i,j)∈E(G)

(xi − xj) . (5)

If G has no proper q-coloring, then PG(z) = 0 since for every q-coloring x there will be an edge
(i, j) ∈ E for which xi = xj and therefore the product in (5) vanishes. We claim that if G has a
proper q-coloring, then with probability at least 1/2 there exists z ≤ 2nq such that PG(z) 6= 0,
which means we get a correct algorithm with high probability by repeating a polynomial
in n number of times. Let F = {{(i, xi)}i∈V : x is a proper q-coloring of G} ⊆ 2U . As F is
non-empty, we may apply Lemma 15 to obtain that ω isolates F with probability at least
1/2. Conditioned on this event, there must exist an integer w such that there is exactly one
proper q-coloring x of G satisfying ω(x) = z. In this case, x is the only summand in (5) that
can have a non-zero contribution. Moreover, as it is a proper coloring, its contribution is
a product of non-zero entries and therefore non-zero itself. Thus PG(z) is non-zero with
probability at least 1/2.

We now continue by showing how to compute PG(z) for all z ≤ 2nq quickly using dynamic
programming. Note that by expanding the product in (5) we have:

PG(z) =
∑
x∈[q]n

ω(x)=z

∑
W⊆E(G)

 ∏
(u,v)∈W

xu

 ∏
(u,v)∈E(G)\W

−xv

 . (6)

If Bi is a bag of a path decomposition (Section 2), we need to define table entries Ti containing
all information about the graph (Vi, Ei) needed to compute PG(z). Before we describe these
table entries we make a small deviation to convey intuition about our approach. Specifically,
we may interpret PG(z) as a polynomial in variables xv for v ∈ Bi. Now suppose for simplicity
that |Bi| = 1. Then the amount of information about Ei needed to compute PG(z) may be
studied via a simple communication-complexity game that we now outline.

A One-way Communication Protocol. Alice has a univariate polynomial PA(x) of degree
dA, and Bob has a univariate polynomial PB(x) of degree dB . Both parties know dA, dB and
an additional integer q. Alice needs to send as few bits as possible to Bob after which Bob
needs to output the quantity

∑
x∈[q] PA(x)PB(x), where q ∈ N is known to both.

An easy strategy is that Alice sends the dA + 1 coefficients of her polynomial to Bob. An
alternative strategy for Alice is based on partial evaluations, which is useful when dB < dA.
By expanding Bob’s polynomial in coefficient form we can rewrite

∑
x∈[q] PA(x)PB(x) into∑

x∈[q]

PA(x)(c0x
0 + c1x

1 + . . .+ cdB
xdB) = c0

∑
x∈[q]

PA(x)x0 + . . .+ cdB

∑
x∈[q]

PA(x)xdB ,

Bart M. P. Jansen and Jesper Nederlof 47:11

so as second strategy Alice may send the dB + 1 values
∑
x∈[q] PA(x)xi for i = 0, . . . , dB . So

she can always send at most min{dA, dB}+ 1 integers.
In our setting for defining table entries Ti for evaluating PG(z), we think of dA(v) as the

number of edges in Ei incident to v and of dB(v) as the number of edges incident to v not in
Ei. Roughly speaking, the running time of Theorem 13 is obtained by defining table entries
storing Alice’s message, in which she chooses the best of the two strategies independently for
every vertex.

Definition of the Table Entries. An orientation O of a subset X ⊆ E(G) of edges is a
set of directed pairs such that for every {u, v} ∈ X, either (u, v) ∈ O or (v, u) ∈ O. If O
is an orientation of X, we also say O orients X. The number of reversals rev(O) of O is
the number of (v, u) ∈ O such that u is introduced in a bag before the bag in which v is
introduced. An orientation is even if its number of reversals is even, and it is odd otherwise.

For a fixed path decomposition B1, . . . , B` of the input graph G, let Li ⊆ Bi consist of
all vertices in Bi of which at most half of their incident edges are already introduced in Bi or
a bag before Bi, and let Ri = Bi \ Li. Let li be the vector indexed by Li such that for every
v ∈ Li the value liv denotes the number of edges incident to v already introduced before or
at bag Bi. Similarly, let ri be the vector indexed by Ri such that for every v ∈ Ri the value
riv denotes the number of edges incident to v introduced after bag Bi. So for every i we have
d(v) = liv + riv.

If b ∈ NI≥0 is a vector, we denote P(b) for the set of vectors a in NI≥0 such that a � b.
Here a � b denotes that av ≤ bv for every v ∈ I. For d ∈ P(li) and e ∈ P(ri), define:

T zi [d, e] =
∑

x∈[q]Vi\Li

ω(x)=z

∑
O orients Ei

∀u∈Li:d+
O

(u)=du

(−1)rev(O)

 ∏
u∈Vi\Li

x
d+

O
(u)

u

(∏
u∈Ri

xeu
u

)
. (7)

Intuitively, this could be seen as a partial evaluation of PG(z). Note we sum over all
possible xv ∈ [q] for v ∈ Vi \ Li, but let the values xv for v ∈ Li be undetermined and
store the coefficient in the obtained polynomial of a certain monomial

∏
u∈Ri

xeu
u . Indeed,

it is easily seen that PG(z) equals T z` [∅, ∅], where ∅ is the unique 0-dimensional vector. By
combining the appropriate recurrence for all values T zi [d, e] with dynamic programming, the
following lemma is proved in the full version [28].

I Lemma 17 (F). All values T zi [d, e] can be computed in time poly(n) ·
∑`
i=1 Ti, where

Ti = |P(li)| · |P(ri)| =
∏
v∈Bi

(min{dEi
(v), d(v)− dEi

(v)}+ 1).

Thus PG(z) can be computed in the time stated in Theorem 13. As discussed, PG(z) = 0
if G has no proper q-coloring. Otherwise, ω isolates the set of proper q-colorings of G with
probability at least 1/2. Conditioned on this event we have PG(z) 6= 0, where z is the weight
of the unique minimum-weight q-coloring. Therefore we output yes if PG(z) 6= 0 for some z
and obtain the claimed probabilistic guarantee. This concludes the proof of Theorem 13.

As special cases of Theorem 13 we obtain Theorems 2 and 3.

Proof of Theorem 2. Given a linear layout v1, . . . , vn of cutwidth k, define a nice path
decomposition in which vertices are introduced in the order of the layout. After vi is
introduced, its incident edges to vj with j < i are introduced in arbitrary order. Forget vi
directly after the series of edge introductions that introduced its last incident edge.

ESA 2018

47:12 Chromatic Number via Matrix Rank

As v1, . . . , vn has cutwidth at most k, for any bag Bi of this path decomposition the
number of edges between Vi and V \ Vi is at most k. Together with the edges incident on the
most-recently introduced vertex vj , these k edges are the only edges incident on Bi that are
not in Ei. Consider the term

∏
v∈Bi

(min{dEi(v), d(v)− dEi(v)}+ 1). Vertex vj contributes
at most one factor n. For the remaining vertices in Bi, the only incident edges not in Ei
are those in the cut of size at most k. By the AM-GM inequality, their contribution to
the product is maximized when they are all incident to distinct vertices, in which case the
algorithm of Theorem 13 runs in time O∗(2k). J

Proof of Theorem 3. Follows from Theorem 13: min{dEi
(v), d(v)−dEi

(v)} ≤ bd(v)/2c. J

4 Lower Bounds for Graph Coloring

In this section we discuss the main ideas behind our lower bounds, whose proofs are deferred
to the full version [28]. We first start with Theorem 4, which rules out algorithms for solving
3-Coloring in time O∗((2− ε)ctw), even on planar graphs. (We remark that a companion
paper [22] was the first to present lower bounds for planar graphs of bounded cutwidth.)
The overall approach is based on the framework by Lokshtanov et al. [34]. We prove that an
n-variable instance of CNF-SAT can be transformed in polynomial time into an equivalent
instance of 3-Coloring on a planar graph G with a linear layout of cutwidth n + O(1).
Consequently, saving ε in the base of the exponent when solving graph coloring would
violate SETH. By employing clause-checking gadgets in the form of a path [27], crossover
gadgets [21], and a carefully constructed ordering of the graph, we get the desired reduction.

The second lower bound, Theorem 5, rules out algorithms with running time O∗((bd/2c+
1− ε)pw) for solving q-Coloring for q := bd/2c+ 1 on graphs of maximum degree d and
pathwidth pw, for any odd integer d ≥ 5. The reduction employs chains of cliques to
propagate assignments throughout a bounded-pathwidth graph. A t-chain of q-cliques is the
graph obtained from a sequence of t vertex-disjoint q-cliques by selecting a distinguished
terminal vertex in each clique and connecting it to the (q − 1) non-terminals in the previous
clique. Any proper q-coloring of a chain assigns all terminals the same color, and terminals
have 2(q−1) neighbors in the chain. Therefore, we can propagate a choice with q possibilities
throughout a path decomposition. We encode truth assignments to variables of a CNF-SAT
instance through colors given to the terminals of such chains. We enforce that the encoded
truth assignment satisfies a clause, by enforcing that an assignment that does not satisfy
the clause, is not the one encoded by the coloring. To check this, we take one terminal from
each chain and connect it to a partner on a path gadget that forbids a specific coloring.
Hence each vertex on a chain will receive at most one more neighbor, giving a maximum
degree of d := 2(q − 1) + 1 = 2q − 1 to represent a q-Coloring instance. Then solving this
q-Coloring instance in O∗((bd/2c+ 1− ε)pw) = O∗(((q− 1) + 1− ε)pw) time will contradict
SETH for the same reason as in the earlier construction [34] showing the impossibility
of O∗((q − ε)pw)-time algorithms.

5 Conclusion

We showed how graph decompositions using small edge separators can be used to solve
q-Coloring. The exponential parts of the running times of our algorithms are independent
of q, which is a significant difference compared to algorithms for parameterizations based on
vertex separators. The deterministic O∗(2ω·ctw) algorithm of Theorem 1 for the cutwidth
parameterization follows cleanly from the bound on the rank of the partial solutions matrix.

Bart M. P. Jansen and Jesper Nederlof 47:13

It may serve as an insightful new illustration of the rank-based approach for dynamic-
programming algorithms in the spirit of [8, 11, 12, 18].

One of the main take-away messages from this work from a practical viewpoint is the
following. Suppose H is a subgraph of G connected to the remainder of the graph by k edges.
Then any set of partial colorings S of H can be reduced to a subset S ′ of size 2k, with the
guarantee that if some coloring in S could be extended to a proper coloring of G, then this
still holds for S ′. The reduction can be achieved by an application of Gaussian elimination,
which has experimentally been shown to work well for speeding up dynamic programming
for other problems [15]. We therefore believe the table-reduction steps presented here may
also be useful when solving graph coloring over tree- or path decompositions, and can be
applied whenever processing a separator consisting of few edges.

References
1 Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica,

12(2):125–134, 1992. doi:10.1007/BF01204715.
2 Noga Alon and Michael Tarsi. A note on graph colorings and graph polynomials. J. Comb.

Theory, Ser. B, 70(1):197–201, 1997. doi:10.1006/jctb.1997.1753.
3 Nikhil Bansal, Marek Eliás, Grigorios Koumoutsos, and Jesper Nederlof. Competitive

algorithms for generalized k-server in uniform metrics. In Proc. 29th SODA, pages 992–
1001, 2018. doi:10.1137/1.9781611975031.64.

4 Andreas Björklund. Coloring graphs having few colorings over path decompositions. In
Proc. 15th SWAT, volume 53 of LIPIcs, pages 13:1–13:9, 2016. doi:10.4230/LIPIcs.SWAT.
2016.13.

5 Andreas Björklund and Thore Husfeldt. Exact graph coloring using inclusion-exclusion.
In Ming-Yang Kao, editor, Encyclopedia of Algorithms. Springer, 2008. doi:10.1007/
978-0-387-30162-4_134.

6 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

7 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

8 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

9 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases
of perfect matchings. In Proc. 45th STOC, pages 301–310. ACM, 2013. doi:10.1145/
2488608.2488646.

12 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by
treewidth in single exponential time. In Proc. 52nd FOCS, pages 150–159, 2011. doi:
10.1109/FOCS.2011.23.

13 J. A. de Loera. Gröbner bases and graph colorings. Contributions to Algebra and Geometry,
35(1):89–96, 1995.

14 Josep Díaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM
Comput. Surv., 34(3):313–356, 2002. doi:10.1145/568522.568523.

ESA 2018

http://dx.doi.org/10.1007/BF01204715
http://dx.doi.org/10.1006/jctb.1997.1753
http://dx.doi.org/10.1137/1.9781611975031.64
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.13
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.13
http://dx.doi.org/10.1007/978-0-387-30162-4_134
http://dx.doi.org/10.1007/978-0-387-30162-4_134
http://dx.doi.org/10.1137/070683933
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1093/comjnl/bxm037
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2488608.2488646
http://dx.doi.org/10.1145/2488608.2488646
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1145/568522.568523

47:14 Chromatic Number via Matrix Rank

15 Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up dynamic
programming with representative sets: An experimental evaluation of algorithms for
Steiner tree on tree decompositions. Algorithmica, 71(3):636–660, 2015. doi:10.1007/
s00453-014-9934-0.

16 Michael R. Fellows, Bart M. P. Jansen, and Frances Rosamond. Towards fully multivari-
ate algorithmics: Parameter ecology and the deconstruction of computational complexity.
European J. Combin., 34(3):541–566, 2013. doi:10.1016/j.ejc.2012.04.008.

17 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of
clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010. doi:10.1137/
080742270.

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
J. ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

19 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Proc. 8th IPEC, volume 8246 of Lecture Notes in Computer Science,
pages 163–176. Springer, 2013. doi:10.1007/978-3-319-03898-8_15.

20 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Dániel
Marx and Peter Rossmanith, editors, Proc. 6th IPEC, volume 7112 of Lecture Notes in
Computer Science, pages 259–271. Springer, 2011. doi:10.1007/978-3-642-28050-4_21.

21 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1(3):237–267, 1976. doi:10.1016/0304-3975(76)
90059-1.

22 Bas A.M. van Geffen, Bart M.P. Jansen, Arnoud A.W.M. de Kroon, and Rolf Morel. Lower
bounds for dynamic programming on planar graphs of bounded cutwidth. CoRR, 2018.
arXiv:1806.10513.

23 Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thi-
likos, and Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects. In Proc. 11th
IPEC, volume 63 of LIPIcs, pages 15:1–15:13, 2016. doi:10.4230/LIPIcs.IPEC.2016.15.

24 Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Cliquewidth III:
The odd case of graph coloring parameterized by cliquewidth. In Proc. 29th SODA, pages
262–273, 2018. doi:10.1137/1.9781611975031.19.

25 Russel Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

26 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

27 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of
graph coloring problems. In Proc. 10th CIAC, Lecture Notes in Computer Science, pages
345–356, 2017. doi:10.1007/978-3-319-57586-5_29.

28 Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph
decompositions via matrix rank. CoRR, 2018. arXiv:1806.10501.

29 T.R. Jensen and B. Toft. Graph Coloring Problems. Wiley interscience publication. Wiley,
1995.

30 David S. Johnson, Anuj Mehrotra, and Michael A. Trick. Special issue on computa-
tional methods for graph coloring and its generalizations. Discrete Applied Mathematics,
156(2):145–146, 2008. doi:10.1016/j.dam.2007.10.007.

31 Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs with
fixed clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003. doi:10.1016/
S0166-218X(02)00198-1.

http://dx.doi.org/10.1007/s00453-014-9934-0
http://dx.doi.org/10.1007/s00453-014-9934-0
http://dx.doi.org/10.1016/j.ejc.2012.04.008
http://dx.doi.org/10.1137/080742270
http://dx.doi.org/10.1137/080742270
http://dx.doi.org/10.1145/2886094
http://dx.doi.org/10.1007/978-3-319-03898-8_15
http://dx.doi.org/10.1007/978-3-642-28050-4_21
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://arxiv.org/abs/1806.10513
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.15
http://dx.doi.org/10.1137/1.9781611975031.19
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-319-57586-5_29
http://arxiv.org/abs/1806.10501
http://dx.doi.org/10.1016/j.dam.2007.10.007
http://dx.doi.org/10.1016/S0166-218X(02)00198-1
http://dx.doi.org/10.1016/S0166-218X(02)00198-1

Bart M. P. Jansen and Jesper Nederlof 47:15

32 Ephraim Korach and Nir Solel. Tree-width, path-width, and cutwidth. Discrete Applied
Mathematics, 43(1):97–101, 1993. doi:10.1016/0166-218X(93)90171-J.

33 R.M. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer
Publishing Company, 2015.

34 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. In Proc. 22nd SODA, pages 777–789, 2011. doi:
10.1137/1.9781611973082.61.

35 L. Lovász. Bounding the independence number of a graph. In Achim Bachem, Martin
Grötschel, and Bemhard Korte, editors, Bonn Workshop on Combinatorial Optimization,
volume 66, pages 213–223. North-Holland, 1982. doi:10.1016/S0304-0208(08)72453-8.

36 László Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc.
Sixth British Combinatorial Conf.), pages 45–86. Academic Press London, 1977.

37 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

38 P.M. Pardalos, T. Mavridou, and J. Xue. The graph coloring problem: A bibliographic
survey, volume 2, pages 331–395. Kluwer Academic Publishers, Boston, 1998.

39 Sigve Hortemo Sæther and Jan Arne Telle. Between treewidth and clique-width. Algorith-
mica, 75(1):218–253, 2016. doi:10.1007/s00453-015-0033-7.

40 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning prob-
lems on partial k-trees. SIAM J. Discrete Math., 10(4):529–550, 1997. doi:10.1137/
S0895480194275825.

41 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.2004.
12.001.

42 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: algorithms
for partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005. doi:10.1016/j.
jalgor.2004.12.003.

ESA 2018

http://dx.doi.org/10.1016/0166-218X(93)90171-J
http://dx.doi.org/10.1137/1.9781611973082.61
http://dx.doi.org/10.1137/1.9781611973082.61
http://dx.doi.org/10.1016/S0304-0208(08)72453-8
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/s00453-015-0033-7
http://dx.doi.org/10.1137/S0895480194275825
http://dx.doi.org/10.1137/S0895480194275825
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1016/j.jalgor.2004.12.003
http://dx.doi.org/10.1016/j.jalgor.2004.12.003

Polynomial Kernels for Hitting Forbidden Minors
under Structural Parameterizations

Bart M. P. Jansen
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

https://orcid.org/0000-0001-8204-1268

Astrid Pieterse
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
a.pieterse@tue.nl

https://orcid.org/0000-0003-3721-6721

Abstract
We investigate polynomial-time preprocessing for the problem of hitting forbidden minors in a
graph, using the framework of kernelization. For a fixed finite set of graphs F , the F-Deletion
problem is the following: given a graph G and integer k, is it possible to delete k vertices from G

to ensure the resulting graph does not contain any graph from F as a minor? Earlier work
by Fomin, Lokshtanov, Misra, and Saurabh [FOCS’12] showed that when F contains a planar
graph, an instance (G, k) can be reduced in polynomial time to an equivalent one of size kO(1).
In this work we focus on structural measures of the complexity of an instance, with the aim of
giving nontrivial preprocessing guarantees for instances whose solutions are large. Motivated by
several impossibility results, we parameterize the F-Deletion problem by the size of a vertex
modulator whose removal results in a graph of constant treedepth η.

We prove that for each set F of connected graphs and constant η, the F-Deletion problem
parameterized by the size of a treedepth-η modulator has a polynomial kernel. Our kernelization
is fully explicit and does not depend on protrusion reduction or well-quasi-ordering, which are
sources of algorithmic non-constructivity in earlier works on F-Deletion. Our main technical
contribution is to analyze how models of a forbidden minor in a graph G with modulator X,
interact with the various connected components of G−X. Using the language of labeled minors,
we analyze the fragments of potential forbidden minor models that can remain after removing
an optimal F-Deletion solution from a single connected component of G − X. By bounding
the number of different types of behavior that can occur by a polynomial in |X|, we obtain a
polynomial kernel using a recursive preprocessing strategy. Our results extend earlier work for
specific instances of F-Deletion such as Vertex Cover and Feedback Vertex Set. It also
generalizes earlier preprocessing results for F-Deletion parameterized by a vertex cover, which
is a treedepth-one modulator.

2012 ACM Subject Classification Theory of computation→ Graph algorithms analysis, Theory
of computation → Parameterized complexity and exact algorithms

Keywords and phrases Kernelization, F-minor free deletion, Treedepth modulator, Structural
parameterization

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.48

Related Version A full version is available at [26], https://arxiv.org/abs/1804.08885.

Funding This work was supported by NWO Veni grant “Frontiers in Parameterized Preprocess-
ing” and NWO Gravitation grant “Networks”.

© Bart M.P. Jansen and Astrid Pieterse;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0001-8204-1268
mailto:a.pieterse@tue.nl
https://orcid.org/0000-0003-3721-6721
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.48
https://arxiv.org/abs/1804.08885
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

1 Introduction

How, and under which circumstances, can a polynomial-time algorithm prune the easy
parts of an NP-hard problem input, without changing its answer? This question can
rigorously be answered using the notion of kernelization [1, 23, 29] which originated in
parameterized complexity theory [8, 12] where it can be naturally framed. After choosing
a complexity parameter for the NP-hard problem of interest, which associates to every
input x ∈ Σ∗ an integer k ∈ N that expresses its difficulty under the chosen type of
measurement, the theory postulates that a good preprocessing algorithm can be captured
by the notion of a polynomial kernelization: a polynomial-time algorithm that, given a
parameterized instance (x, k) ∈ Σ∗ × N, outputs an instance (x′, k′) with the same answer
whose size is bounded polynomially in k. Not all parameterized problems admit polynomial
kernelizations, and one can find meaningful ways to preprocess an NP-hard problem by
studying those parameterizations for which it does. The study of kernelization has blossomed
over the last decade, resulting in a myriad of interesting techniques for obtaining polynomial
kernelizations [3, 15, 24, 31, 34], as well as frameworks for proving the non-existence of
polynomial kernelizations under complexity-theoretic assumptions [1, 2, 11, 13, 20].

Originally, the study of kernelization focused on the natural parameterizations of (the
decision variants of) search problems, where the complexity parameter k measures the size
of the solution. A classic example [7, 35] is that an instance (G, k) of the k-Vertex Cover
problem, which asks whether an undirected graph G has a vertex cover of size k, can efficiently
be reduced to an equivalent instance with at most 2k vertices. This guarantees that efficient
pruning can be done on large inputs that have small vertex covers. However, such guarantees
are meaningless when the smallest vertex cover contains more than half the vertices. By
choosing a parameter that measures the structure of the input graph, rather than the size
of the desired solution, one can hope to develop provably good preprocessing procedures
even for inputs whose solutions are large. An early example of this approach was given by
Jansen and Bodlaender [25], who showed that an instance of the Vertex Cover problem
can efficiently be reduced to size O(`3), where ` is the size of a smallest feedback vertex set
in G: Vertex Cover parameterized by the size of a feedback vertex set has a cubic-vertex
kernel. The result effectively conveys that large instances of Vertex Cover that are `
vertex-deletions away from being acyclic, can be shrunk to size O(`3) in polynomial time.

Problem statement. To understand the power of polynomial-time preprocessing algorithms
over inputs to NP-hard problems that exhibit some structural regularities, but whose solutions
are generally large, we set out to answer the following question:

For which structural parameterizations of NP-hard graph problems is it possible to
obtain polynomial kernelizations?

Our goal is to answer this question for a rich class of problems, in terms of a rich
class of structural parameterizations. Existing lower bounds show that, in general graphs,
it is unlikely that a logical characterization exists of the problems admitting polynomial
kernelizations for structural parameterizations (cf. [16, §1]), even though meta-theorems in
terms of logical definability or finite integer index are possible when dealing with inputs from
sparse graph families [3, 21]. We therefore target the class of F-Minor-Free Deletion
problems, henceforth abbreviated as F-Deletion problems, to capture a wide class of
NP-hard graph problems. Such a problem is instantiated by specifying a finite set F of
forbidden minors. An input then consists of a graph G and integer k, and asks whether

B.M.P. Jansen and A. Pieterse 48:3

it is possible to find a set Y ⊆ V (G) of size k such that G− Y contains no graph from F
as a minor. This is a rich class of problems: by choosing F = {K2} we obtain Vertex
Cover, for F = {K3} we have Feedback Vertex Set, and for F = {K5,K3,3} we obtain
the problem of making a graph planar by vertex deletions. The kernelization complexity
of the solution-size parameterization of F-Deletion has been the subject of intensive
research [17, 18, 22, 28, 40]. In this work we attempt to find the widest class of structural
parameterizations for which F-Deletion admits polynomial kernels, continuing a long line
of investigation into structural parameterizations for Vertex Cover [4, 19, 25, 30, 31, 33],
Feedback Vertex Set [27, 32], and other F-Deletion problems [16, 21].

When it comes to measuring graph complexity, a natural choice is to consider a width
measure such as treewidth. Alas, it has long been known that even Vertex Cover, the
simplest F-Deletion problem, does not admit a polynomial kernelization when parameter-
ized by the treewidth of the input graph, assuming NP 6⊆ coNP/poly.1 Generally speaking,
graph problems do not admit polynomial kernels under parameterizations that attain the
maximum, rather than the sum, of the values of the connected components. We therefore use
the vertex-deletion distance to simple graph classes G as the parameter. The aforementioned
result by Jansen and Bodlaender [25] shows that Vertex Cover has a polynomial kernel-
ization when parameterized by the vertex-deletion distance to an acyclic graph, i.e., to a
graph of treewidth one. Unfortunately this formulation leaves little room for generalizations:
no polynomial kernelization is possible parameterized by the distance to a graph of treewidth
two [10, Theorem 11], or even pathwidth two.2 We therefore cannot use the deletion distance
to constant treewidth (tw) or pathwidth (pw) as our graph parameter, and use the deletion
distance to constant treedepth (td) instead. The parameter treedepth has recently attracted
much interest [6, 14, 38], sometimes allowing better upper bounds than are possible in terms
of treewidth [21, 37]. It plays an important role in the study of structural sparsity [36].
All graphs G satisfy td(G) ≥ pw(G) ≥ tw(G), so graphs of constant treedepth are more
restricted than those of constant treewidth. We therefore study the following problem for a
fixed set F of connected graphs and constant η ≥ 1.

F-Deletion parameterized by treedepth-η modulator Parameter: |X|.
Input: A graph G, integer k, and a modulator X ⊆ V (G) such that td(G−X) ≤ η.
Question: Is there a set Y ⊆ V (G) of size k such that G− Y is F-minor-free?

The restriction that F contains only connected graphs is needed to ensure that a solution
on a disconnected graph can be formed from solutions on its connected components, which
we require in some of our proofs. The same assumption was used by Fomin et al. [18] to
build a single-exponential FPT algorithm when F contains a planar graph, and was later
lifted in follow-up work by Kim et al. [28].

For technical reasons, we assume that a modulator X is given in the input. If no
modulator is known, one can compute an approximate modulator and use it as X. For
example, Gajarský et al. [21, Lemma 4.2] showed that a modulator of size at most 2η times
the optimum can be found in quadratic time. Our problem setting is related to that of
Gajarský et al. [21]. They studied kernelization for a general class of graph problems that

1 Bodlaender et al. [2, Theorem 1] show a superpolynomial kernelization lower bound for Independent
Set parameterized by treewidth. Since the parameter is not related to the solution size, this is equivalent
to Vertex Cover parameterized by treewidth. The lower bound holds under the assumption that
NP 6⊆ coNP/poly, which we implicitly assume when stating further lower bounds in this section.

2 The lower bound is stated for distance to treewidth two, but the same proof works for pathwidth two.

ESA 2018

48:4 Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

includes F-Deletion, parameterized by a constant-treedepth modulator, but under the
additional restriction that the input graph has bounded expansion or is nowhere dense.
Under this severe restriction they obtained kernelizations of linear size for a wide range of
problems. This prompted Somnath Sikdar during the 2013 Workshop on Kernelization [9]
to ask which types of problems admit polynomial kernelizations in general graphs, when
parameterized by a constant-treedepth modulator; we address this question in this work.

Our results. Our main result proves the existence of polynomial kernelizations for F-
Deletion parameterized by a modulator whose removal leaves a graph of constant treedepth.

I Theorem 1. For every fixed finite set F of connected graphs and every constant η, the F-
Deletion problem parameterized by a treedepth-η modulator has a polynomial kernelization.

This answers a question posed by Bougeret and Sau [4] (cf. [5]). They obtained polynomial
kernels for Vertex Cover parameterized by a constant-treedepth modulator, and asked
whether their result can be extended to the Feedback Vertex Set problem. As Feedback
Vertex Set is an F-Deletion problem for F = {K3}, Theorem 1 shows that this is indeed
the case. Theorem 1 greatly generalizes an earlier result of Fomin, Jansen, and Pilipczuk [16,
Corollary 1], who proved that F-Deletion parameterized by a vertex cover has a polynomial
kernel for every fixed F ; note that a vertex cover is precisely a treedepth-1 modulator.

Our kernelization is fully explicit and does not depend on protrusion replacement tech-
niques or well-quasi-ordering, which are sources of algorithmic non-constructivity in other
works [17, 18] on kernelization for F-Deletion. Moreover, our general theorem allows F
to be any set of connected graphs, including nonplanar ones. In contrast, the kernelization
for the solution-size parameterization by Fomin et al. [18] only applies when F contains at
least one planar graph. Hence they only capture problems where, after removing a solution,
the remaining graph has constant treewidth [39]. In our case, even though the parameter
value is expressed in terms of a modulator to a graph of constant treedepth and therefore
constant treewidth, the graphs that result after removing an optimal solution may have
unbounded treewidth. This occurs, for example, when using F = {K5,K3,3} to capture the
Vertex Planarization problem. (Whether the solution-size parameterization of Vertex
Planarization has a polynomial kernel is a notorious open problem [18].)

The degree of the polynomial in the kernel size bound grows very quickly with η. We
prove that this is unavoidable, even for the simplest case of Vertex Cover.

I Theorem 2 (F). For every η ≥ 6, the Vertex Cover problem parameterized by the size
of a given treedepth-η modulator X does not admit a kernelization of bitsize O(|X|2η−4−ε)
for any ε > 0, unless NP ⊆ coNP/poly.

Techniques. To obtain a polynomial kernel for an instance (G,X, k) of F-Deletion, the
main challenge is to understand how the connected components C of G−X interact through
their connections to the modulator X. Using the language of labeled minors, we analyze how
minor models of a forbidden graph in F may intersect the various components of G −X.
Using these insights, we are able to characterize which components of C affect the structure
of optimal solutions in an essential way. On a high level, the kernelization strategy is
as follows. We use the fact that a single constant-treedepth component can be analyzed
efficiently, to identify a subset C′ of C that contains |X|O(1) essential components under
our characterization. We prove that the remaining ones can be safely removed, because
their interaction with the rest of the instance can be ignored. Formally speaking, we show
that any optimal solution on G′ := G[X ∪

⋃
C∈C′ C] can be lifted to a solution on G by

B.M.P. Jansen and A. Pieterse 48:5

including ∆ =
∑
C∈C\C′ optF (C) additional vertices: (G,X, k) is a yes-instance if and only

if (G′, X, k −∆) is. This effectively shows that there is an optimal solution Y on G in which
the non-essential components act in isolation: Y does not delete more vertices from such a
component C, than would be deleted by a solution on the graph G[C].

The overall kernelization follows straight-forwardly from this pruning of non-essential
components by a recursive approach, similarly as in earlier work [4, 21]. The main challenge
is therefore to understand which components are essential and which are not, and this is
where our contribution lies. We present a stand-alone combinatorial lemma that captures
our key insight in this direction. To state it, we introduce some terminology.

We work with a nonstandard notion of labeled graphs. For a finite set X, an X-labeled
graph is a graph in which each vertex is assigned a (possibly empty) subset of X as its
labelset; we stress that multiple vertices may carry the same label on their labelset. The
minor relation on graphs extends to labeled graphs in a natural way: a labeled graph H
is a minor of a labeled graph G, if H can be obtained from G by repeatedly deleting an
edge, deleting a vertex, deleting a label from the labelset of a vertex, or contracting an edge.
When contracting an edge {u, v} into a single vertex w, the labelset of w is formed as the
union of the labelsets of u and v.

For a collection S of vertex subsets of an X-labeled graph C, and a set of X-labeled
graphs Q, we say that all Y ∈ S leave a Q-minor in C, if for all Y ∈ S the graph C − Y
contains some graph H ∈ Q as a labeled minor. We say that a set Q of X-labeled graphs is
θ-saturated for an integer θ, if for each subset X ′ ⊆ X of size θ, the graph consisting of one
vertex with labelset X ′ belongs to Q. Our main lemma states that if all optimal solutions
to F-Deletion on C leave a Q-minor for some suitably saturated Q, then there is a small
subset Q∗ for which the same holds.

I Lemma 3 (Main lemma F). Let F be a finite set of (unlabeled) connected graphs, let X
be a set of labels, let Q be a (minH∈F |V (H)|)-saturated set of connected X-labeled graphs of
at most maxH∈F |E(H)|+ 1 vertices each, and let C be an X-labeled graph. If all optimal
solutions to F-Deletion on C leave a Q-minor, then there is a subset Q∗ ⊆ Q whose size
depends only on (F ,td(C)), such that all optimal solutions leave a Q∗-minor.

In several aspects, the statement in the lemma is best-possible. In particular, we will
show in Section 3 that the dependence of the size of Q∗ on td(G) rather than tw(G) is
essential and that the precondition that Q is O(1)-saturated cannot be avoided.

Lemma 3 is the cornerstone in our understanding of which components of G −X are
essential. In our applications of the lemma, the graph C consists of a connected component
of G−X whose labels encode the adjacency of those vertices to the modulator X. The set Q
contains potential fragments of models of forbidden F-minors, again labeled by adjacency
to X, which we may be interested in destroying in C so that connections through X cannot
form F-minors with fragments that remain in other components of G − X. The lemma
then essentially says that if it is not possible to select a solution that deletes a minimum
number of vertices from C while simultaneously destroying all fragments in Q, then there is
a bounded-size subset of fragments Q∗ that cannot all be destroyed by such a solution. The
full importance of Lemma 3 will become clear in Section 4.

Organization. Section 2 provides basic preliminaries. In Section 3, we give some of the
main ideas of the proof of Lemma 3. In Section 4 we show how Theorem 1 follows from a
procedure that identifies relevant components. We give the procedure and its correctness
proof later in the same section, while relying on Lemma 3.

ESA 2018

48:6 Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

The proof of Lemma 3 is very technical and requires us to develop a framework for
analyzing minor models in boundaried labeled graphs. This proof, together with the proofs
of other statements marked (F), can be found in the full version [26].

2 Preliminaries

For a positive integer n we use [n] as a shorthand for {1, . . . , n}. For a set S, let 2S denote
the set of all subsets of S. All graphs we consider are finite, undirected, and simple. A
graph G consists of a vertex set V (G) and edge set E(G) ⊆

(
V (G)

2
)
. The open neighborhood

of a vertex v is denoted NG(v). For a vertex set S ⊆ V (G), its open neighborhood
is NG(S) :=

⋃
v∈S NG(v) \ S. For an edge {u, v} in a graph G, contracting {u, v} results in

the graph G′ obtained from G by removing u and v, and replacing them by a new vertex w
with NG′(w) = NG({u, v}). For a vertex set S ⊆ V (G), we use G− S to denote the graph
obtained from G by deleting all vertices in S and their incident edges. The subgraph of G
induced by vertex set S is denoted G[S].

I Definition 4 (treedepth). Treedepth is defined as follows. The trivial one-vertex graph has
treedepth 1. The treedepth of a disconnected graph G with connected components C1, . . . , Ct

is maxi∈[t] td(Ci). The treedepth of a connected graph G is minv∈V (G) td(G− {v}) + 1.

I Definition 5 (labeled graph). Let X be a set. An X-labeled graph G is a graph G together
with label function LG : V (G)→ 2X , assigning a (potentially empty) subset of labels to each
vertex in G. The labeled graph G is θ-restricted if each vertex has at most θ labels.

If an edge {u, v} is contracted in a labeled graph G to obtain a new vertex w, then the
labelset of w is defined as LG(u) ∪ LG(v).

I Definition 6 (minor model). A minor model of a graph H in a graph G is a mapping
ϕ : V (H)→ 2V (G) assigning a branch set ϕ(v) ⊆ V (G) to each vertex v ∈ V (H), such that:

G[ϕ(v)] is nonempty and connected for all v ∈ V (H),
ϕ(v) ∩ ϕ(u) = ∅ for all u 6= v ∈ V (H), and
if {u, v} ∈ E(H), then there exist u′ ∈ ϕ(u) and v′ ∈ ϕ(v) such that {u′, v′} ∈ E(G).

The third condition implies that one can find an edge mapping ψ : E(H)→ E(G) such that:
For all {u, v} ∈ E(H), edge ψ({u, v}) has one endpoint in ϕ(u) and the other in ϕ(v).

We will often use the existence of this edge mapping in our proofs.

For S ⊆ V (H) we define ϕ(S) :=
⋃
v∈S ϕ(v), and we define ϕ(V (H)) as the range of the

minor model. A minor model ϕ of H in G is called minimal if no minor model ϕ′ exists
with ϕ′(V (H)) (ϕ(V (H)).

I Definition 7 (labeled minor model). A labeled minor model of an X-labeled graph H in an
X-labeled graph G is a mapping ϕ as in Definition 6, that additionally satisfies the following:
for all v ∈ V (H) and ` ∈ LH(v) there exists v′ ∈ ϕ(v) such that ` ∈ LG(v′).

If G contains a (labeled) minor model of H, then we say that G contains H as a (labeled)
minor and denote this as H �m G. Observe that G contains H as a (labeled) minor if and
only if H can be obtained from G by deleting edges and vertices (and potentially labels),
and contracting edges.

I Lemma 8 (F). Let G and H be unlabeled graphs, let X ⊆ V (G), and let ϕ be a minimal
minor model of H in G. Then ϕ(V (H)) intersects at most |X|+ |V (H)|+ |E(H)| connected
components of G−X.

B.M.P. Jansen and A. Pieterse 48:7

x1 x2 x3 x4

x1 x2 x3 x4

Q := { | i ∈ [n]}xi

x3

x2 x4x3x1 x6x5 x8x7

Q without { }

x2 x4x3x1 x6x5

x2, x3

Q := { | i ∈ [n]} ∪ { , }x2i, x2i+1 x2, x2n x1, x2n−1

x8x7

F = {K2} F = {K3}

Q without { }

Figure 1 Two constructions of graphs and sets Q for n = 4, where no optimal F-deletion breaks Q,
but for any Q ∈ Q there exists an optimal F-deletion breaking Q \Q. Top: any solution breaking
both F and Q (white vertices at the top) is larger than optF , but for any Q ∈ Q there is a solution
of size optF breaking both F and Q \ {Q} (white vertices at the bottom).

We denote the size of an optimal F-Deletion solution on G by optF (G), and the set
of optimal solutions by optsolF (G). In our bounds, we use the notation Oz(1) for some
identifier(s) z to denote a constant that only depends on z.

I Lemma 9 (F). Let F be a fixed set of (unlabeled) graphs, let η ≥ 1 be a constant, and
let X be a set. For any set Q of X-labeled graphs and host graph C with td(C) ≤ η, one can:

compute optF (C) in OF,η(|V (C)|) time;
determine whether there is a solution Y ∈ optsolF (C) such that C−Y contains no graph
from Q as a labeled minor, in time f(L,

∑
H∈Q |V (H)|, η) · |V (C)| for some function f .

Here L equals the number of elements of X that appear in the labelset of at least one vertex
in at least one graph of Q.

3 Overview of the main lemma

In this section we discuss Lemma 3, whose long and technical proof is deferred to the full
version. The strength of the lemma comes from the fact that the bound on |Q∗| is independent
of the size of the graph C and of the number of labels |X| used on labelsets of vertices of C.

The statement of Lemma 3 is best-possible in several ways. First of all, the dependence
of |Q∗| on td(G) instead of tw(G) is essential. In Figure 1 (left), a construction of a graph
of treewidth 2 together with a set Q is shown. In this graph, no optimal {K2}-deletion
(Vertex Cover) breaks all graphs in Q. However, for any Q ∈ Q there is an optimal vertex
cover breaking Q \ {Q}. The example in Figure 1 can easily be extended to arbitrary n,
showing that there is a set Q with |Q| = n such that no optimal vertex cover breaks Q, yet
there is no Q∗ (Q such that no optimal vertex cover breaks Q∗. Since |Q| is not bounded
in terms of tw(G) = 2 and F = {K2}, this shows that td(G) cannot be replaced by tw(G).

Secondly, the assumption that Q is (minH∈F |V (H)|)-saturated cannot be avoided already
for F = {K3} (corresponding to Feedback Vertex Set). In Figure 1 (right) we show an
example of a graph of treedepth 4 and a set Q of size 2n+ 2 that consist of single vertices of
two labels each, where we again cannot properly bound the size of Q∗. The example is shown
for n = 4 but can easily be generalized to arbitrary n, without increasing the treedepth. For
any Q∗ (Q there exists an optimal F-deletion breaking Q∗, while |Q| is not bounded in
terms of td(G) and F .

ESA 2018

48:8 Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

The proof of Lemma 3 follows an inductive strategy that mimics how a recursive algorithm
would solve F-Deletion on a bounded-treedepth graph C. We pick a vertex v whose removal
decreases the treedepth, and branch on whether v is part of the solution or not. If so, we
remove v and recurse on a graph of smaller treedepth; if not, then we continue looking for
solutions in which v is forbidden to be removed. The process builds up a set S with the
property that removing S decreases the treedepth by |S|, and we are only interested in
solutions disjoint from S. This proceeds while C−S remains connected; the branching depth
is bounded since |S| ≤ td(C). When C − S becomes disconnected, we must take a more
involved approach. We recurse on each of the connected components of C − S separately
and find F-Deletion solutions there. But solutions for different components of C − S
may not combine into a solution for C, since various fragments of F-minors left behind in
different components of C − S, may be combined through their connections to S to form
a forbidden minor. For this reason, when we recurse on connected components of C − S
we place additional restrictions on the solutions chosen there, to ensure they also break
fragments of F-minors in such a way that the solutions can be properly combined.

Our approach to bound the size of Q∗ is built on top of this inductive strategy. While
branching over various ways to form an F-Deletion solution, we additionally branch on
what fragments of labeled Q-minors are left behind by the solution in the various components
of C −S. By exploiting the saturatedness of Q in a crucial way, we obtain the desired bound
on |Q∗|. The formalization of these ideas requires an extensive theory of how fragments of a
forbidden minor in various components of C − S may combine to form a forbidden minor
in C, which is developed in Appendix B of the full version of the paper.

4 Kernelization for F-Deletion

In this section we describe the recursive approach to kernelize the F-Deletion problem
using a constant-treedepth modulator. The correctness of this strategy will crucially depend
on Lemma 3. Lemma 10 identifies essential components in the input.

I Lemma 10. Let F be a finite set of connected graphs and let η ≥ 1 be a constant. There
is a polynomial-time algorithm that, given a graph G along with a modulator X ⊆ V (G) such
that td(G−X) ≤ η, outputs an induced subgraph G′ of G together with an integer ∆ such
that optF (G) = optF (G′) + ∆ and G′ −X has at most |X|OF,η(1) connected components.

Before proving this lemma, we show how it implies Theorem 1.

I Theorem 1. For every fixed finite set F of connected graphs and every constant η, the F-
Deletion problem parameterized by a treedepth-η modulator has a polynomial kernelization.

Proof. Consider an input (G,X, k) to F-Deletion. The proof is by induction on η.
(η = 1) If td(G − X) = 1, then G − X is an independent set and any connected

component of G−X contains one vertex. Apply Lemma 10 to find an induced subgraph G′
of G and integer ∆ such that optF (G) = optF (G′) + ∆, which implies that (G,X, k)
has answer yes if and only if (G′, X, k −∆) has answer yes. Now G′ −X has |X|OF,1(1)

single-vertex connected components. It follows that G′ −X has at most |X| + |X|OF,1(1)

vertices, which is polynomial in |X| for fixed F . Hence (G′, X, k −∆) forms a polynomial
kernel.

(η > 1) For η > 1, we apply Lemma 10 on the input (G,X, k) and find G′ and ∆ as above.
We will augment the modulator X into a superset X ′ to ensure that td(G′−X ′) < η. To this
end, we consider each connected component C of G′−X. If C consists of a single vertex then

B.M.P. Jansen and A. Pieterse 48:9

its treedepth is already smaller than η > 1. Otherwise, C is a connected graph with more than
one vertex, and by Definition 4 there is a vertex xC such that td(C −{xC}) < td(C). Since
the Treedepth problem parameterized by the target width is fixed-parameter tractable [38],
and η is a constant, we can find such a vertex xC by trying all options for xC and computing
the treewidth of the resulting graph in f(η) · nO(1) time. (Alternatively, we can compute
a treedepth-decomposition of C using the algorithm of Reidl et al. [38] and take its root
as xC .) We initialize X ′ as X. For each component C of G′ −X with treedepth larger than
one, we add the corresponding treedepth-decreasing vertex xC to X ′.

Since Lemma 10 guarantees that the number of connected components of G′ − X is
polynomial in |X| for fixed F and η, the resulting modulator X ′ has size polynomial in |X|.
Moreover, it guarantees that td(G′−X ′) < η. Hence we now have an instance (G′, X ′, k−∆)
of F-Deletion parameterized by a treedepth-(η − 1) modulator, with the same answer
as (G,X, k). We apply the kernel for the parameterization by a treedepth-(η− 1) modulator,
which outputs an instance (G∗, X∗, k∗) with the same answer as (G′, X ′, k−∆) and therefore
as (G,X, k). By induction, the size of G∗ is bounded by some polynomial in |X ′|, which
in turn is bounded by a polynomial in |X|. Hence G∗ has size |X|OF,η(1) for some suitably
chosen constant, and we output (G∗, X∗, k∗) as the result of the kernelization. J

Now we prove Lemma 10.

Proof of Lemma 10. Let C be the connected components of G − X. To reduce their
number, we have a single reduction rule stated in terms of labeled graphs. With each
connected component C ∈ C, we naturally associate an X-labeled graph CL by assigning a
vertex v ∈ V (C) the labelset NG(v) ∩X. We are interested in which of these labeled graphs
have optimal F-Deletion solutions that also hit certain fragments of potential F-minor-
models. We therefore define a set H which is a superset of the relevant fragments. We use ‖F‖
as a shorthand for maxH∈F |V (H)|. Let H consist of the connected ‖F‖-restricted X-labeled
graphs that have at most mF := maxH∈F |E(H)| edges. We consider two X-labeled graphs
to be identical if there is an isomorphism between them that respects the labelsets.

I Claim 11. |H| ∈ |X|OF (1).

Proof. Graphs in H have at most mF + 1 vertices. There are less than 2(mF+1)2 distinct
choices for the graph structure of a member of H, since there are less than 2n2 different
n-vertex graphs. For each vertex, there are less than (|X|+ 1)‖F‖ choices for a labelset of size
at most ‖F‖. Hence each graph structure H can appear with less than ((|X| + 1)‖F‖)|V (H)| ≤
(|X| + 1)‖F‖·(mF+1) different choices of labeling function, giving an overall bound |H| ≤
2(mF+1)2 · (|X|+ 1)‖F‖·(mF+1) that is polynomial in |X|. y

Choose γ ∈ OF,η(1) such that Lemma 3 guarantees that for this choice of F and
the treedepth bound η, one can always find Q∗ ⊆ Q of size at most γ. Let ρ := |X| +
maxH∈F (|V (H)| + |E(H)|), and τ := |X| + 1 + γ · ρ ∈ OF,η(|X|). Consider the following
marking procedure.

I Procedure 12. For each set Q ⊆ H of size at most γ, do the following. Let

CQ := {C ∈ C | ∀Y ∈ optsolF (G[C]) : CL − Y has a graph from Q as a labeled minor} .

Mark τ arbitrarily chosen components from CQ, or mark all of them if there are fewer than τ .

ESA 2018

48:10 Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

Let C′ ⊆ C denote the marked components, G′ := G[X ∪
⋃
C∈C′ C], and let ∆ :=∑

C∈C\C′ optF (G[C]). The procedure can be executed in polynomial time, using variants
of Courcelle’s theorem to find the sets CQ. We explain how this is done in Lemma 9.
Since γ ∈ OF,η(1), the number of subsets of H over which we iterate is polynomial in |H|
and therefore in |X|. Since the graphs in Q are ‖F‖-restricted, the number of labels involved
is constant for fixed F and η, and therefore Lemma 9 guarantees a polynomial running time.

I Claim 13. |C′| ≤ |X|OF,η(1).

Proof. The procedure loops over |X|OF,η(1) subsets Q. For each such set, we mark at
most τ = |X|+ 1 + γ · ρ ∈ OF,η(|X|) components. y

The pair (G′,∆) is the desired outcome of Lemma 10. It remains to prove that optF (G) =
optF (G′) + ∆. This follows from Claim 14 by induction.

I Claim 14. For any unmarked component C∗ ∈ C \ C′ : optF (G) = optF (G − V (C∗)) +
optF (G[C∗]).

Proof. Let Ĝ := G− V (C∗). Clearly, any solution for the graph G can be partitioned into
a solution for Ĝ and a solution for G[C∗], so that optF (G) ≥ optF (Ĝ) + optF (G[C∗]).
We focus on proving the converse. Let Ŷ ∈ optsolF (Ĝ) be an optimal solution on Ĝ.
Let X0 := X \ Ŷ and let H0 ⊆ H contain those graphs for which the labelset of each vertex
is contained in X0. Now define:

Q := {H ∈ H0 | there are fewer than ρ components C of Ĝ−X (1)

whose X-labeled version CL − Ŷ contains H as X-labeled minor}.

Intuitively, one may think of Q as those labeled graphs (that represent potential fragments
of forbidden F -minors) that can be realized in only few (ρ ∈ OF (|X|)) components of Ĝ−X
after removing the solution Ŷ . When lifting the solution Ŷ in Ĝ to a solution in G by adding
a solution in C∗, it will be crucial to break all X-labeled minor models of Q in C∗; the
fragments H0 \ Q that remain in many different components turn out to be irrelevant.

For a subset X ′ ⊆ X0 of labels, let IX′ be the labeled graph consisting of a single vertex
with labelset X ′. Let nF := minH∈F |V (H)| and observe that nF ≤ ρ. We prove:

∀X ′ ⊆ X0, |X ′| = nF : IX′ ∈ Q. (2)

Suppose IX′ /∈ Q for suitable X ′. Then there are ρ ≥ nF components of Ĝ−X that have IX′
as labeled minor after removing the solution Ŷ . Take nF such components C1

L, . . . , C
nF
L ,

and associate each one to a distinct vertex of X ′ ⊆ V (Ĝ) \ Ŷ . The fact that IX′ is a labeled
minor of CiL − Ŷ for each i, implies that in each such component there is a connected vertex
subset Si ⊆ V (CiL) \ Ŷ such that each label of X ′ appears at least once on a vertex of Si.
Considering the corresponding vertex subset in Ĝ − Ŷ and taking into account that the
labeling of CiL represents adjacency to X in G, this implies that we can contract each Si
into a single vertex si that becomes adjacent to all vertices of X ′. Then contract each si
into a distinct vertex of X ′: these minor operations on graph Ĝ− Ŷ turn X ′ into a clique
of size nF . Hence any graph on nF vertices is a minor of Ĝ− Ŷ , contradicting that Ĝ− Ŷ
is F-minor-free since F has a graph on nF vertices. So (2) holds.

Now consider the unmarked component C∗ in the statement of Claim 14, and consider its
labeled version C∗L. We say that a vertex set Y breaks the minor models of the X0-labeled

B.M.P. Jansen and A. Pieterse 48:11

x y z

H

X0

C∗

HL = H ′L

x y z

{x, y} {z}

X0

C∗Ci Ci

G̃ G̃

Figure 2 This figure shows how to define HL based on H and G̃, and how to modify the minor
model of H in G̃ such that it uses fewer vertices of C∗, in the proof of (4) in Claim 14.

graphs Q in C∗L, or simply breaks Q in C∗L, if C∗L − Y does not contain any graph in Q as a
labeled minor. We first show the following.

∃Y ∗ ∈ optsolF (G[C∗]) : Y ∗ breaks Q in C∗L. (3)

To establish (3), assume that no solution of size optF (G[C∗]) in G[C∗] breaks Q. We will
use Lemma 3, together with our marking scheme, to argue for a contradiction. Observe
that (2) implies that Q is an nF -saturated set of X0-labeled graphs. If no optimal solution
on G[C∗] breaks Q, then by Lemma 3 there is a set Q∗ ⊆ Q of size at most γ such that no
optimal solution on G[C∗] breaks Q∗. Since the assumption that (3) does not hold means
that the unmarked C∗ was eligible to be marked for the set CQ∗ in our procedure above,
it has marked τ other components C1, . . . , Cτ ∈ CQ∗ of G − X. For each i ∈ [τ], there
is no F-Deletion solution of size optF (G[Ci]) in G[Ci] that breaks Q∗ in the labeled
version CiL. Since Q∗ ⊆ Q, by (1) we have for each graph H ∈ Q∗ that there are fewer
than ρ components Ci among C1, . . . , Cτ for which CiL − Ŷ contains H as a labeled minor.
Since |Q∗| ≤ γ, it follows that there are at most γ · ρ indices i ∈ [τ] for which CiL − Y
contains some graph from Q∗ as a labeled minor. But since τ = |X|+ 1 + γ · ρ, there are at
least |X|+1 components CiL in which allQ∗-minors are broken by Ŷ . Since no optimal solution
breaks Q∗ in the marked components, we have |Ŷ ∩V (Ci)| > optF (G[Ci]) for at least |X|+1
components. But this contradicts that Ŷ is an optimal solution to F-Deletion on Ĝ: since F
consists of connected graphs, we can form a solution Ŷ ′ by taking X together with a set
of size optF (Ĝ[C]) from each component C of Ĝ−X. Since |Ŷ ′ ∩ V (C)| ≤ |Ŷ ∩ V (C)| for
all C ∈ C, with strict inequality for at least |X|+ 1 components, we have |Ŷ ′| < |Ŷ |. This
contradicts that Ŷ is an optimal solution and establishes (3).

Hence there exists a solution Y ∗ in C∗L breaking Q of size optF (G[C∗]). We prove:

Ŷ ∪ Y ∗ is a solution to F-Deletion on G. (4)

This will complete the proof of Claim 14, since |Ŷ ∪Y ∗| = optF (Ĝ)+optF (G[C∗]). Assume
for a contradiction that G̃ := G− (Ŷ ∪Y ∗) contains some graph H ∈ F as a minor. Consider
a minimal minor model of H in G̃, which is given by a vertex mapping ϕ : V (H)→ 2V (G̃),
and let ψ : E(H)→ E(G̃) be a corresponding edge mapping.

Out of all possible minimal minor models of H in G̃, select a model (ϕ,ψ) that minimizes
the quantity |ϕ(V (H)) ∩ V (C∗)|. Observe that if ϕ(V (H)) ∩ V (C∗) = ∅, then ϕ is also a
valid model in Ĝ− Ŷ , contradicting that Ŷ is a solution to F-Deletion on Ĝ. So in the
remainder we consider the case that the minor model contains at least one vertex of C∗.
We will build a minimal minor model of H in G using strictly fewer vertices of C∗, thereby
contradicting the choice of (ϕ,ψ). Consider the X0-labeled subgraph H ′L of G̃ obtained by
the following procedure, which is illustrated in Figure 2:
1. Start from the X0-labeled subgraph of G̃ induced by

⋃
v∈V (H) ϕ(v) ∩ V (C∗), where each

vertex u has labelset NG(u) ∩X0. As observed above, this subgraph is not empty.

ESA 2018

48:12 Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

2. Remove all edges from this subgraph, except those in the range of ψ and those that
connect two vertices that belong to a common branch set under ϕ.

3. Contract every edge between two vertices that belong to a common branch set of ϕ,
obtaining an X0-labeled graph H ′L. (Recall that labelsets merge during edge contraction.)

Observe that H ′L has at most |E(H)| edges, since each edge remaining in H ′L corresponds
to an edge in the range of ψ. We claim that H ′L is an nF -restricted graph: the labelset
of each vertex has size less than nF . To see this, observe that if some vertex of H ′L has
a labelset X ′ ⊆ X0 of size at least nF , then the pre-image of this vertex corresponds to a
connected vertex subset A of ϕ(V (H)) ∩ V (C∗) such that |NG(A) ∩X0| ≥ nF . Since (ϕ,ψ)
is a minor model in G̃ = G− (Ŷ ∪ Y ∗), this would imply that C∗L − Y ∗ has the one-vertex
graph IX′ with labelset X ′ as a labeled minor. But IX′ ∈ Q by (2), while Y ∗ breaks all
labeled Q-minors in C∗L by definition; a contradiction. Hence H ′L is indeed nF -restricted.

Let HL be an arbitrary connected component of H ′L. Since HL is connected, nF -restricted,
and contains at most |E(H)| edges, we have HL ∈ H0. As HL clearly occurs as a labeled
minor of C∗L − Y ∗, while Y ∗ breaks Q in C∗L, we have HL /∈ Q. By definition of Q, this
implies there are at least ρ connected components C1, . . . , Cρ of Ĝ−X such that CiL − Ŷ
contains HL as X0-labeled minor for each i ∈ [ρ]. By Lemma 8, the minimal model (ϕ,ψ)
in G̃ intersects at most |X| + |V (H)| + |E(H)| ≤ ρ components of G̃ − X and therefore
of G − X. Since ϕ(V (H)) also intersects C∗ /∈ {C1, . . . , Cρ}, it follows that some Ci is
disjoint from the range of (ϕ,ψ).

To finish the argument, fix Ci such that ϕ(V (H)) ∩ V (Ci) = ∅ and CiL − Ŷ contains HL

as X0-labeled minor. Let T denote the vertices of ϕ(V (H))∩V (C∗) whose contraction in the
process above resulted in the connected component HL of H ′L. Then it is straightforward to
verify that G[(ϕ(V (H)) \ T) ∪ (Ci − Ŷ)] contains H as a minor. The role that vertices of T
played in the minor model (ϕ,ψ) can be replaced by the vertices of CiL − Ŷ : each edge of ψ
that was realized between vertices of T yielded an edge of HL which is realized by a labeled
HL-minor in CiL − Ŷ ; each fragment of a branch set that was realized within C∗ yielded
a vertex of HL that is realized in the HL-minor in CiL − Ŷ ; and finally the connectivity
of the branch sets is ensured because the labeling ensures that for all fragments of branch
sets in T that were adjacent to vertices of X − Ŷ = X0, the branch set of the HL-minor
in Ci− Ŷ realizing that fragment is also adjacent to all those vertices of X0. Hence there is a
minimal H-minor in G̃ whose range is a subset of (ϕ(V (H)) \ T) ∪ (Ci − Ŷ). Since T ⊆ C∗
is not empty, this contradicts our choice of (ϕ,ψ) as a minimal H-model minimizing the
intersection with C∗. y

This concludes the proof of Lemma 10. J

5 Conclusion

Our goal in this paper was to obtain polynomial kernelizations for a wide range of graph
problems, in terms of a rich class of structural parameterizations. We obtained polynomial
kernelizations for F-Deletion problems parameterized by a constant-treedepth modulator.
The kernelization algorithm as presented here is only of theoretical interest. While the
kernel size is polynomial for fixed F and η, the degree of the polynomial grows very quickly
with F and η. It would be desirable to have a uniformly polynomial kernel size, of the
form f(F , η)|X|c for some constant c and function f . Unfortunately, Theorem 2 shows
that even for the simplest choice of F , corresponding to the Vertex Cover problem, the
degree of the polynomial must depend exponentially on η and no uniformly polynomial
kernelization exists. The bad news also extends in the other direction: when taking the

B.M.P. Jansen and A. Pieterse 48:13

simplest choice for η and working with a treedepth-one modulator (a vertex cover), the
degree of the polynomial in the kernel size for F-Deletion must depend on F [22, Theorem
1.1] and a uniformly-polynomial kernel does not exist.

References

1 Hans L. Bodlaender. Kernelization: New upper and lower bound techniques. In Proc. 4th
IWPEC, pages 17–37, 2009. doi:10.1007/978-3-642-11269-0_2.

2 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

4 Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain
polynomial kernels beyond sparse graphs? CoRR, abs/1609.08095, 2016. URL: http:
//arxiv.org/abs/1609.08095.

5 Marin Bougeret and Ignasi Sau. How much does a treedepth modulator help to obtain
polynomial kernels beyond sparse graphs? In Proc. 12th IPEC (2017), volume 89, pages
10:1–10:13, 2018. doi:10.4230/LIPIcs.IPEC.2017.10.

6 Hubie Chen and Moritz Müller. One hierarchy spawns another: Graph deconstructions
and the complexity classification of conjunctive queries. In Proc. CSL-LICS 2014, pages
32:1–32:10. ACM, 2014. doi:10.1145/2603088.2603107.

7 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. J. Algorithms, 41(2):280–301, 2001. doi:10.1006/jagm.2001.1186.

8 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Marek Cygan, Łukasz Kowalik, and Marcin Pilipczuk. Open problems from worker 2013,
the workshop on kernels, April 2013. URL: http://worker2013.mimuw.edu.pl/slides/
worker-opl.pdf.

10 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
On the hardness of losing width. Theory Comput. Syst., 54(1):73–82, 2014. doi:10.1007/
s00224-013-9480-1.

11 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:
10.1145/2629620.

12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

13 Andrew Drucker. New limits to classical and quantum instance compression. In Proc. 53rd
FOCS, pages 609–618, 2012. doi:10.1109/FOCS.2012.71.

14 Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-
order logic coincide. ACM Trans. Comput. Log., 17(4):25:1–25:18, 2016. doi:10.1145/
2946799.

15 Henning Fernau. Kernelization, Turing kernels. In Encyclopedia of Algorithms, pages
1043–1045. Springer, 2016. doi:10.1007/978-1-4939-2864-4_528.

16 Fedor V. Fomin, Bart M. P. Jansen, and Michał Pilipczuk. Preprocessing subgraph and
minor problems: When does a small vertex cover help? J. Comput. Syst. Sci., 80(2):468–
495, 2014. doi:10.1016/j.jcss.2013.09.004.

ESA 2018

http://dx.doi.org/10.1007/978-3-642-11269-0_2
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1145/2973749
http://dx.doi.org/10.1145/2973749
http://arxiv.org/abs/1609.08095
http://arxiv.org/abs/1609.08095
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.10
http://dx.doi.org/10.1145/2603088.2603107
http://dx.doi.org/10.1006/jagm.2001.1186
http://dx.doi.org/10.1007/978-3-319-21275-3
http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf
http://worker2013.mimuw.edu.pl/slides/worker-opl.pdf
http://dx.doi.org/10.1007/s00224-013-9480-1
http://dx.doi.org/10.1007/s00224-013-9480-1
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1109/FOCS.2012.71
http://dx.doi.org/10.1145/2946799
http://dx.doi.org/10.1145/2946799
http://dx.doi.org/10.1007/978-1-4939-2864-4_528
http://dx.doi.org/10.1016/j.jcss.2013.09.004

48:14 Polynomial Kernels for Hitting Forbidden Minors under Structural Parameterizations

17 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket
Saurabh. Hitting forbidden minors: Approximation and kernelization. In Proc. 28th STACS,
pages 189–200, 2011. doi:10.4230/LIPIcs.STACS.2011.189.

18 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
Deletion: Approximation, kernelization and optimal FPT algorithms. In Proc. 53rd FOCS,
pages 470–479, 2012. doi:10.1109/FOCS.2012.62.

19 Fedor V. Fomin and Torstein J. F. Strømme. Vertex cover structural parameterization
revisited. In Proc. 42nd WG, volume 9941 of LNCS, pages 171–182, 2016. doi:10.1007/
978-3-662-53536-3_15.

20 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.
007.

21 Jakub Gajarský, Petr Hlinený, Jan Obdrzálek, Sebastian Ordyniak, Felix Reidl, Peter
Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using
structural parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219–242, 2017.
doi:10.1016/j.jcss.2016.09.002.

22 Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.
Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms,
13(3):35:1–35:35, 2017. doi:10.1145/3029051.

23 Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007. doi:10.1145/1233481.1233493.

24 Gregory Gutin. Kernelization, constraint satisfaction problems parameterized above av-
erage. In Encyclopedia of Algorithms, pages 1011–1013. Springer, 2016. doi:10.1007/
978-1-4939-2864-4_524.

25 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - Upper
and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

26 Bart M. P. Jansen and Astrid Pieterse. Polynomial kernels for hitting forbidden minors
under structural parameterizations. CoRR, abs/1804.08885, 2018. arXiv:1804.08885.

27 Bart M. P. Jansen, Venkatesh Raman, and Martin Vatshelle. Parameter ecology for feed-
back vertex set. Tsinghua Science and Technology, 19(4):387–409, 2014. doi:10.1109/TST.
2014.6867520.

28 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Trans. Algorithms, 12(2):21:1–21:41, 2016. doi:10.1145/2797140.

29 Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS,
113:58–97, 2014.

30 Stefan Kratsch. A randomized polynomial kernelization for vertex cover with a smaller
parameter. In Proc. 24th ESA, volume 57 of LIPIcs, pages 59:1–59:17, 2016. doi:10.
4230/LIPIcs.ESA.2016.59.

31 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In Proc. 53rd FOCS, pages 450–459, 2012. doi:10.1109/FOCS.
2012.46.

32 Diptapriyo Majumdar. Structural parameterizations of feedback vertex set. In Proc. 11th
IPEC, volume 63 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–
21:16, 2017. doi:10.4230/LIPIcs.IPEC.2016.21.

33 Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Kernels for structural pa-
rameterizations of vertex cover - case of small degree modulators. In Proc. 10th IPEC,
volume 43 of LIPIcs, pages 331–342, 2015. doi:10.4230/LIPIcs.IPEC.2015.331.

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.189
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1007/978-3-662-53536-3_15
http://dx.doi.org/10.1007/978-3-662-53536-3_15
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/j.jcss.2016.09.002
http://dx.doi.org/10.1145/3029051
http://dx.doi.org/10.1145/1233481.1233493
http://dx.doi.org/10.1007/978-1-4939-2864-4_524
http://dx.doi.org/10.1007/978-1-4939-2864-4_524
http://dx.doi.org/10.1007/s00224-012-9393-4
http://arxiv.org/abs/1804.08885
http://dx.doi.org/10.1109/TST.2014.6867520
http://dx.doi.org/10.1109/TST.2014.6867520
http://dx.doi.org/10.1145/2797140
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59
http://dx.doi.org/10.1109/FOCS.2012.46
http://dx.doi.org/10.1109/FOCS.2012.46
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.21
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.331

B.M.P. Jansen and A. Pieterse 48:15

34 Neeldhara Misra. Kernelization, planar F-Deletion. In Encyclopedia of Algorithms, pages
1033–1036. Springer, 2016. doi:10.1007/978-1-4939-2864-4_527.

35 G.L. Nemhauser and L.E. Trotter (jr.). Vertex packings: structural properties and algo-
rithms. Math. Program., 8:232–248, 1975. doi:10.1007/BF01580444.

36 J. Nešetřil and P. Ossona de Mendez. Sparsity: Graphs, Structures, and Algo-
rithms, volume 28 of Algorithms and Combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

37 Michał Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on
structural decompositions of graphs. In Proc. 33rd STACS, volume 47 of LIPIcs, pages
57:1–57:15, 2016. doi:10.4230/LIPIcs.STACS.2016.57.

38 Felix Reidl, Peter Rossmanith, Fernando Sanchez Villaamil, and Somnath Sikdar. A faster
parameterized algorithm for treedepth. In Proc. 41st ICALP, pages 931–942, 2014. doi:
10.1007/978-3-662-43948-7_77.

39 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. J.
Comb. Theory, Ser. B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

40 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2),
2010. doi:10.1145/1721837.1721848.

ESA 2018

http://dx.doi.org/10.1007/978-1-4939-2864-4_527
http://dx.doi.org/10.1007/BF01580444
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.57
http://dx.doi.org/10.1007/978-3-662-43948-7_77
http://dx.doi.org/10.1007/978-3-662-43948-7_77
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1145/1721837.1721848

Quantum Algorithms for Connectivity and Related
Problems
Michael Jarret
Perimeter Institute, Waterloo, ON, Canada
mjarret@perimeterinstitute.ca

Stacey Jeffery
Qusoft CWI, Amsterdam, The Netherlands
jeffery@cwi.nl

Shelby Kimmel
Middlebury College, Middlebury, VT, USA
skimmel@middlebury.edu

Alvaro Piedrafita
Qusoft CWI, Amsterdam, The Netherlands
piedrafita@cwi.nl

Abstract
An important family of span programs, st-connectivity span programs, have been used to design
quantum algorithms in various contexts, including a number of graph problems and formula
evaluation problems. The complexity of the resulting algorithms depends on the largest positive
witness size of any 1-input, and the largest negative witness size of any 0-input. Belovs and
Reichardt first showed that the positive witness size is exactly characterized by the effective
resistance of the input graph, but only rough upper bounds were known previously on the negative
witness size. We show that the negative witness size in an st-connectivity span program is exactly
characterized by the capacitance of the input graph. This gives a tight analysis for algorithms
based on st-connectivity span programs on any set of inputs.

We use this analysis to give a new quantum algorithm for estimating the capacitance of a
graph. We also describe a new quantum algorithm for deciding if a graph is connected, which
improves the previous best quantum algorithm for this problem if we’re promised that either the
graph has at least κ > 1 components, or the graph is connected and has small average resistance,
which is upper bounded by the diameter. We also give an alternative algorithm for deciding
if a graph is connected that can be better than our first algorithm when the maximum degree
is small. Finally, using ideas from our second connectivity algorithm, we give an algorithm for
estimating the algebraic connectivity of a graph, the second largest eigenvalue of the Laplacian.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Electrical networks, Quantum algorithms, Span programs, Connectivity,
Graph theory

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.49

Acknowledgements SJ is supported by an NWO WISE Grant and NWO Veni Innovational
Research Grant under project number 639.021.752. SK completed some of this work while at
the Joint Center for Quantum Information and Computer Science (QuICS) at the University of
Maryland. This research was supported in part by Perimeter Institute for Theoretical Physics.
Research at Perimeter Institute is supported by the Government of Canada through Industry
Canada and by the Province of Ontario through the Ministry of Economic Development and
Innovation.

© Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 49; pp. 49:1–49:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mjarret@perimeterinstitute.ca
mailto:jeffery@cwi.nl
mailto:skimmel@middlebury.edu
mailto:piedrafita@cwi.nl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 Quantum Algorithms for Connectivity and Related Problems

1 Introduction

Span programs are an algebraic model of computation first developed by Karchmer and
Wigderson [10] to study classical logspace complexity, and introduced to the study of quantum
algorithms by Reichardt and Spǎlek [15]. In [14, 12], Reichardt used the concept of span
programs to prove that the general adversary bound gives a tight lower bound on the quantum
query complexity of any given decision problem, thus showing the deep connection between
span programs and quantum query algorithms.

Given a span program, a generic transformation compiles it into a quantum algorithm,
whose query complexity is analyzed by taking the geometric mean of two quantities: the
largest positive witness size of any 1-input; and the largest negative witness size of any
0-input. Thus, in order to analyze the query complexity of an algorithm obtained in this
way, it is necessary to characterize, or at least upper bound, these quantities.

The relationship between quantum query algorithms and span programs is potentially a
powerful tool, but this correspondence alone is not a recipe for finding such an algorithm,
and producing an optimal span program for a given problem is generally difficult. Despite
this difficulty, a number have been found for important problems such as k-distinctness [2],
formula evaluation [15, 13], and st-connectivity [4]. The latter span program is of particular
importance, as it has been applied to a number of graph problems [5], to generic formula
evaluation problems [9], and underlies the learning graph framework [3]. The st-connectivity
based algorithms are also of interest because, unlike with generic span program algorithms,
it is often possible to analyze not only query complexity, but also the time complexity.

While span program algorithms are universal for quantum query algorithms, it can also
be fruitful to analyze the unitaries used in these algorithms in ways that are different from
how they appear in the standard span program algorithm. For example, Ref. [7] derives an
algorithm to estimate span program witness sizes based on unitaries that appear in the span
program algorithm. We will take a similar approach in this paper, deriving new algorithms
based on unitaries that appear in the span program algorithm for st-connectivity.

The problems of st-connectivity and connectivity will be considered in this paper. For a
family of undirected graphs G on N edges, for N ∈ N, and vertex set containing s and t, the
problem st-connG is the following: Given x ∈ {0, 1}E(G), decide if there is a path from s

to t in G(x), where G(x) is the subgraph of G obtained by including an edge e if xe = 11.
Similarly, the problem of connG is the following: Given x ∈ {0, 1}E(G), determine if every
vertex in G(x) is connected to every other vertex in G(x).

1.1 Contributions
1. We provide a complete characterization of the query complexity of the st-connectivity

span program algorithm. We do this by showing that the negative witness size of the
st-connectivity span program is exactly the effective capacitance of the input graph.
(The positive witness size for this span program was previously known to be exactly
the effective resistance [4, 9].) The effective capacitance is a measure that depends on
the size and number of cuts between s and t (in the case they are disconnected), and is
commonly used to analyze electrical networks of capacitors. This characterization tells us
that quantum algorithms can quickly decide st-connectivity on graphs that are promised
to have either small effective resistance or small effective capacitance.

1 We can consider more complicated ways of associating edges with input variables in 2.2, but the basic
idea is captured by this simpler picture.

M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita 49:3

2. We describe a new quantum algorithm for estimating the effective capacitance of an input
graph G(x) to multiplicative error ε, with complexity Õ(ε−3/2√Cs,t(G(x))p), where
Cs,t(G(x)) is the effective-capacitance between s and t in G(x), and p is the length of
the longest self-avoiding st-path in G.

3. We create and analyze a new algorithm for connG. Previously, for a graph with n

vertices, an optimal Õ(n3/2) upper bound on the time complexity of this problem was
known [6], and an optimal span-program-based quantum algorithm was presented by
Ārin, š [1], which also uses only O(logn) space. If R upper bounds the average resistance
of any connected input, all disconnected inputs have at least κ > 1 components, and U is
the cost of taking a step of a quantum walk on G then our algorithm has the following
properties:

For graphs without multi-edges, our algorithm has query complexity O(n
√
R/κ) and

time complexity Õ(n
√
R/κU).

For graphs with multi-edges, our algorithm has query complexity O(n
3/4
√
Rdmax(G)
κ1/4),

where dmax(G) is the maximum degree of any vertex in the graph, and time complexity
Õ(n3/4

√
Rdmax(G)/κ1/4U).

Our algorithm uses O(logn) space.

Our algorithm is the first connectivity algorithm to explicity apply to cases where G is
not necessarily the complete graph.

In the worst case, our algorithm achieves the optimal query complexity of O(n3/2).

4. We present an alternative approach to deciding graph connectivity using phase estimation
on a unitary derived from the st-connectivity span program. This phase estimation uses
a different initial state from that used in the span program algorithm. We first show
that the quantum query complexity of deciding connG is O(

√
ndmax(G)/(κλ)), when

either G(x) is connected and the second smallest eigenvalue of the Laplacian of G(x),
λ2(G(x)), is at least λ, or G(x) has at least κ > 1 connected components. We are able to
give time-efficient versions of our second algorithm in two contexts:

a. Under the promise that if G(x) is connected, then λ2(G(x)) ≥ λ, and otherwise
G(x) has at least κ connected components, we can solve connG in time complexity

Õ

(√
ndavg(G)
κλ2(G)

(
S +

√
dmax(G)

λ U
))

, where U is the complexity of implementing a step

of a quantum walk on G, S is the cost generating a quantum state corresponding to
the stationary distribution of a random walk on G, and davg(G) is the average degree
of the vertices of G.

b. When G is a Cayley graph of degree d, the time complexity is upper bounded by

Õ

(√
nd
κλU +

√
nd

κλ2(G) Λ
)
, where Λ is the cost of computing the eigenvalues of G. This

gives an upper bound of Õ(n/
√
λκ) when G is a complete graph, and Õ(

√
n/(λκ))

when G is a Boolean hypercube.

5. We give an algorithm to estimate the algebraic connectivity of G(x), λ2(G(x)), when G
is a complete graph. The algebraic connectivity is closely related to the inverse of the
mixing time, which is known to be small for many interesting families of graphs such
as expander graphs. We give a protocol that with probability at least 2/3 outputs an

estimate of λ2(G(x)) up to multiplicative error ε in time complexity Õ
(

1
ε

n√
λ2(G(x))

)
.

ESA 2018

49:4 Quantum Algorithms for Connectivity and Related Problems

1.2 Open Problems
Our work suggests several directions for new research. Since st-connectivity is fairly ubiqui-
tous, it seems that our approach may, in turn, help analyze applications of st-connectivity.
Additionally, we provide two algorithms for deciding connectivity, items 3 and 4 above. At
least naively, it seems like our two algorithms are incomparable, even though they are based
on similar unitaries. It would be worthwhile to understand whether the two approaches are
fundamentally different. Finally, it would be interesting to see whether one can extend our
algorithm for estimating algebraic connectivity to accept more general parent graphs than
the complete graph.

2 Preliminaries

2.1 Linear Algebra Notation
For a subspace V of some inner product space, let ΠV denote the orthogonal projector onto V .
For a linear operator A, let σmin(A) (respectively σmax(A)) denote its smallest (resp. largest)
non-zero singular value. Let kerA denote the kernel of A, row(A) denote the rowspace of
A, and col(A) the columnspace of A. For a unitary U with eigenvalues eiθ1 , . . . , eiθN , let
∆(U) = min{|θi| : θi 6= 0} denote the phase gap of U .

2.2 Graph Theory
We will consider multigraphs, so we refer to each edge in the graph using its endpoints and a
unique label `, as, for example: ({u, v}, `). The label ` uniquely specifies the edge, but we
include the endpoints for convenience. Let −→E (G) = {(u, v, `) : ({u, v}, `) ∈ E(G)} be the
directed edges of G. Furthermore, for any set of edges E, we let −→E = {(u, v, `) : ({u, v}, `) ∈
E} represent the corresponding set of directed edges. We will sometimes write (u, v, `) for
an undirected edge, but when talking about undirected edges, we have (u, v, `) = (v, u, `).

For x ∈ {0, 1}E(G), we define G(x) as the subgraph of G in which e ∈ E(G) is included
if and only if xe = 1. In general there can be a more complicated association between the
edges of G and literals xi and x̄i, but for simplicity, we don’t make this explicit.

A network N = (G, c) consists of a graph G combined with a positive real-valued
weight function c : E(G) −→ R+. Since c is a map on undirected edges, we can easily
extend it to map on directed edges such that c(u, v, `) = c(v, u, `), and we overload our
notation accordingly. We will often assume that some c is implicit for a graph G and let
AG =

∑
(u,v,`)∈E(G) c(u, v, `)(|u〉〈v|+ |v〉〈u|) denote its weighted adjacency matrix. Note that

AG only depends on the total weight of edges from u to v, and is independent of the number
of edges across which this weight is distributed. Let dG(u) =

∑
v,`:(u,v,`)∈E(G) c(u, v, `) denote

the weighted degree of u in G, under the implicit weight function c, and let dmax(G) =
maxu∈V (G) dG(u). Let DG =

∑
u∈V (G) dG(u)|u〉〈u| denote the weighted degree matrix, and

let LG = DG −AG denote the Laplacian of G. The Laplacian is always positive semidefinite,
so its eigenvalues are real and non-negative. For |µ〉 =

∑
u∈V (G) |u〉, it is always the case

that LG|µ〉 = 0, so the smallest eigenvalue of LG is 0. Let λ2(G) denote the second smallest
eigenvalue of LG, including multiplicity. This value is called the algebraic connectivity or the
Fiedler value of G, and it is non-zero if and only if G is connected.

Consider a graph G with specially labeled vertices s and t that are connected in G. An
st-flow is any linear combination of st-paths. More precisely:

M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita 49:5

I Definition 1 (Unit st-flow and energy). Let G be an undirected graph with s, t ∈ V (G),
and s and t connected. Then a unit st-flow on G is a function θ : −→E (G)→ R such that:
1. For all (u, v, `) ∈ −→E (G), θ(u, v, `) = −θ(v, u, `);
2.
∑
v,`:(s,v,`)∈−→E (G) θ(s, v, `) =

∑
v,`:(v,t,`)∈−→E (G) θ(v, t, `) = 1; and

3. for all u ∈ V (G) \ {s, t},
∑
v,`:(u,v,`)∈−→E (G) θ(u, v, `) = 0.

Given an implicit weighting c, the unit flow energy of θ on E′ ⊆ E(G(x)), is JE′(θ) =
1
2
∑
e∈
−→
E′

θ(e)2

c(e) .

I Definition 2 (Effective resistance and average resistance). Let G be a graph with implicit
weighting c and s, t ∈ V (G). If s and t are connected in G(x), the effective resistance of G(x)
between s and t is Rs,t(G(x)) = minθ JE(G(x))(θ), where θ runs over all unit st-unit flows of
G(x). If s and t are not connected in G(x), Rs,t(G(x)) =∞. For a connected graph G, we
can define the average resistance by Ravg(G) := 1

n(n−1)
∑
s,t∈V :s6=tRs,t(G).

Intuitively, Rs,t characterizes “how connected” the vertices s and t are in a network. The
more, shorter paths connecting s and t, and the more weight on those paths, the smaller the
effective resistance. We next introduce a measure of how disconnected s and t are, in the
case that we are considering a subgraph G(x) of G where s and t are not connected.

I Definition 3 (Unit st-potential). Let G be an undirected weighted graph with s, t ∈ V (G),
and s and t connected. For G(x) such that s and t are not connected, a unit st-potential
on G(x) is a function V : V (G)→ R+ such that V(s) = 1 and V(t) = 0 and V(u) = V(v) if
(u, v, `) ∈ E(G(x)).

A unit st-potential is a witness of the disconnectedness of s and t in G(x), which generalizes
the notion of an st-cut. (An st-cut is a unit potential that only takes values 0 and 1.)

I Definition 4 (Unit Potential Energy). Given a graph G with implicit weighting c and
a unit st-potential V on G(x), the unit potential energy of V on E′ ⊆ E(G) is defined
JE′(V) = 1

2
∑

(u,v,`)∈
−→
E′

(V(u)− V(v))2c(u, v, `).

I Definition 5 (Effective capacitance). Let G be a graph with implicit weighting c and
s, t ∈ V (G). If s and t are not connected in G(x), the effective capacitance between s and t
of G(x) is Cs,t(G(x)) = minV JE(G)(V), where V runs over all unit st-potentials on G(x). If
s and t are connected, Cs,t(G(x)) =∞.

In physics, capacitance measures how well a system of two separated conductors stores
electric charge. The ratio of the amount of stored charge to the voltage difference between
the conductors is a constant that depends only on the geometry of the set-up. This ratio is
called the effective capacitance. We discuss this intuition further in Section 2.2 and Appendix
A of [8].

Connectivity and st-connectivity

We will consider problems parametrized by a parent graph G, by which we more precisely
mean a family of graphs {Gn}n∈N where Gn is a graph on n vertices. We will generally drop
the subscript n.

A graph is connected if there is a path between every pair of vertices. For a family of
graphs G, and X ⊆ {0, 1}E(G), connG,X is the connectivity problem, defined for all x ∈ X
by connG,X(x) = 1 if G(x) is connected, and connG,X(x) = 0 if G(x) is not connected.

Similarly, for s, t ∈ V (G), defined st-connG,X by st-connG,X(x) = 1 if there is a path
from s to t in G(x), and st-connG,X(x) = 0 otherwise, for all x ∈ X.

ESA 2018

49:6 Quantum Algorithms for Connectivity and Related Problems

We will consider conn and st-conn in the edge-query input model, meaning that we
have access to a standard quantum oracle Ox, defined Ox|i〉|b〉 = |i〉|b⊕ xi〉, where xi is the
ith bit of i. Since every edge of G is associated with an input variable, as described in 2.2,
for any edge in G, we can check if it is also present in G(x) using one query to Ox.

2.3 Span Programs and Witness Sizes
Span programs [10] were introduced to quantum algorithms by Reichardt and Špalek [15],
and have since proven to be important for designing quantum algorithms in the query model.

I Definition 6 (Span Program). A span program P = (H,U, τ, A) on {0, 1}N is made up of
(I) finite-dimensional inner product spaces H = H1⊕· · ·⊕HN , and {Hj,b ⊆ Hj}j∈[N],b∈{0,1}
such that Hj,0 +Hj,1 = Hj , (II) a vector space U , (III) a non-zero target vector τ ∈ U , and
(IV) a linear operator A : H → U . For every string x ∈ {0, 1}N , we associate the subspace
H(x) := H1,x1 ⊕ · · · ⊕HN,xN

, and an operator A(x) := AΠH(x).

I Definition 7 (Positive and Negative Witness). Let P be a span program on {0, 1}N and let
x be a string x ∈ {0, 1}N . Then we call |w〉 a positive witness for x in P if |w〉 ∈ H(x), and
A|w〉 = τ . We define the positive witness size of x as:

w+(x, P) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = τ}, (1)

if there exists a positive witness for x, and w+(x) =∞ otherwise.
Let L(U,R) denote the set of linear maps from U to R. We call a linear map ω ∈ L(U,R)

a negative witness for x in P if ωAΠH(x) = 0 and ωτ = 1. We define the negative witness
size of x as:

w−(x, P) = w−(x) = min{‖ωA‖2 : ω ∈ L(U,R), ωAΠH(x) = 0, ωτ = 1}, (2)

if there exists a negative witness, and w−(x) =∞ otherwise. If w+(x) is finite, we say that
x is positive (wrt. P), and if w−(x) is finite, we say that x is negative. We let P1 denote the
set of positive inputs, and P0 the set of negative inputs for P .

For a function f : X → {0, 1}, with X ⊆ {0, 1}N , we say P decides f if f−1(0) ⊆ P0 and
f−1(1) ⊆ P1. Given a span program P that decides f , one can use it to design a quantum
algorithm whose output is f(x) (with high probability), given access to the input x ∈ X via
queries of the form Ox : |i, b〉 7→ |i, b⊕ xi〉.

The following theorem is due to [12] (see [7] for a version with similar notation).

I Theorem 8. Let U(P, x) = (2ΠkerA−I)(2ΠH(x)−I). Fix X ⊆ {0, 1}N and f : X → {0, 1},
and let P be a span program on {0, 1}N that decides f . Let W+(f, P) = maxx∈f−1(1) w+(x, P)
and W−(f, P) = maxx∈f−1(0) w−(x, P). Then there is a bounded error quantum algorithm
that decides f by making O(

√
W+(f, P)W−(f, P)) calls to U(P, x), and elementary gates.

In particular, this algorithm has quantum query complexity O(
√
W+(f, P)W−(f, P)).

Ref. [7] defines the approximate positive witness size, w̃+(x, P) as the smallest ‖|w〉‖2

such that A|w〉 = τ and
∥∥ΠH(x)⊥ |w〉

∥∥, rather than being required to be 0, should be as small
as possible. In particular, every x has a finite approximate positive witness size, not only
those in P1.

I Theorem 9 ([7]). Let U(P, x) = (2ΠkerA− I)(2ΠH(x)− I). Fix X ⊆ {0, 1}N and f : X →
R≥0. Let P be a span program on {0, 1}N such that for all x ∈ X, f(x) = w−(x, P) and
define W̃+ = W̃+(P) = maxx∈X w̃+(x, P). Then there is a quantum algorithm that estimates

f to accuracy ε and that uses Õ
(
ε−3/2

√
w−(x)W̃+

)
calls to U(P, x) and elementary gates.

M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita 49:7

A span program for st-connectivity

An important example of a span program is one for st-connectivity, first introduced in [10],
and used in [4] to give a new quantum algorithm for st-connectivity. Given some implicit
weighting function c on G, the span program is as follows, which we denote PG:

∀e ∈ E(G), He,1 = span{|u, v, `〉, |v, u, `〉 : e = ({u, v}, `)} U = span{|v〉 : v ∈ V (G)}

∀e = (u, v, `) ∈ −→E (G) : A|u, v, `〉 =
√
c(u, v, `)(|u〉 − |v〉) τ = |s〉 − |t〉 (3)

If s and t are connected in G(x), then a linear combination of weighted st-paths in G(x)
is a positive witness for x. Furthermore, this is the only possible positive witness form,
so x is a positive input for PG if and only if G(x) is st-connected, and in particular,
w+(x, PG) = 1

2Rs,t(G(x)) [4]. Since the weights c(e) are positive, the set of positive inputs
of PG are independent of the choice of c, however, the witness sizes will depend on c.

3 Effective Capacitance and st-connectivity

In [8, Theorem 17], we prove the following theorem, exactly characterizing the negative
witness size of the st-connectivity span program:

I Theorem 10. Let PG be the span program in Eq. (3). Then for any x ∈ {0, 1}N ,
w−(x, PG) = 2Cs,t(G(x)).

Previously, the negative witness size of PG was characterized by the size of a cut [15] or,
in planar graphs, the effective resistance of a graph related to the planar dual of G(x) [9].

As a corollary of Theorem 10, we have the following:

I Theorem 11. Let G be a multigraph with s, t ∈ V (G). Then for any choice of (non-
negative, real-valued) implicit weight function, the bounded error quantum query complexity
of evaluating st-connG,X is

O

(√
max

x∈X:st-connG,X(x)=1
Rs,t(G(x))× max

x∈X:st-connG,D(x)=0
Cs,t(G(x))

)
. (4)

Proof. This follows from Theorem 10 and the fact that w+(x, PG) = 1
2Rs,t(G(x)), proven in

[4] and generalized to the weighted case in [9]. Then Theorem 8 gives the result. J

We emphasize that Theorem 11 holds for Rs,t and Cs,t defined with respect to any weight
function, some of which may give a significantly better complexity for solving this problem.

3.1 Estimating the Capacitance of a Circuit
By Theorem 10, w−(x, PG) = 2Cs,t(G(x)), so we can apply Theorem 9 to estimate Cs,t(G(x)).
By Theorem 9, the complexity of doing this depends on Cs,t(G(x)) and W̃+(PG) =
maxx w̃+(x, PG). We prove the following theorem in [8]:

I Theorem 12. For the span program PG, we have that W̃+(PG) = O(maxp JE(G)(p)), where
the maximum runs over all st-unit flows p that are paths from s to t.

To prove 12, we first relate unit st-flows on G to approximate positive witnesses. Intuitively,
an approximate positive witness is an st-flow on G that has energy as small as possible on
edges in E(G) \ E(G(x)). Thus, we can upper bound the approximate positive witness size

ESA 2018

49:8 Quantum Algorithms for Connectivity and Related Problems

by the highest possible energy of any st-flow on G, which is always achieved by a flow that is
an st-path. Note that when the weights are all 1, maxp JE(G)(p) is just the length of the
longest self-avoiding st-path in G. Combining Theorems 10, 12 and 9, we have:

I Corollary 13. Given a network (G, c), with s, t ∈ V (G) and access to an oracle Ox,
the bounded error quantum query complexity of estimating Cs,t(G(x)) to accuracy ε is
Õ(ε−3/2√Cs,t(G(x)) maxp JE(G)(p)) where the maximum runs over all st-unit flows p that
are paths from s to t.

I Corollary 14. Let U be the cost of implementing |u〉|0〉 7→
∑

(u,v,`)∈−→E (G)

√
c(u,v,`)
dG(u) |u, v, `〉.

Then the quantum time complexity of estimating Cs,t(G(x)) to accuracy ε is

Õ

(
ε−3/2

√
Cs,t(G(x)) max

p
JE(G)(p)U

)
.

Proof. By [9] (generalizing [4]), U(PG, x), from Theorem 9, can be implemented in cost O(U).
J

3.2 Deciding Connectivity
Note that connG,X =

∧
{u,v}:u,v∈V (G) uv-connG,X . Thus connectivity is equivalent [11, 9]

to n(n−1)/2 st-connectivity problems in series, one for each pair of distinct vertices in V (G).
(Ref. [1] uses a similar approach, but only looks at n− 1 instances — the pairs s and v for
each v ∈ V (G). Our approach is symmetrized over the vertices, so the analysis is simpler.)

More precisely, we define a graph G such that:

V (G) = V (G)× {{u, v} : u 6= v ∈ V (G)}, E(G) = E(G)× {{u, v} : u 6= v ∈ V (G)} (5)

where × denotes the Cartesian product. We think of the {u, v} terms in (5) as an extra
label denoting that that edge or vertex is in the {u, v}th copy of the graph G present as a
subgraph in G. Choose any labeling of the vertices from 1 to n (with slight abuse of notation,
we use u both for the original vertex name and the label). We then label the vertex (1, {1, 2})
as s and the vertex (n, {n− 1, n}) as t. Next identify vertices (v, {u, v}) and (u, {u, v + 1})
if u < v and v < n, and identify vertices (v, {u, v}) and (u+ 1, {u+ 1, u+ 2}) if v = n and
u < n− 1. See [8] for a graphical example of this construction.

Finally, we define G(x) to be the subgraph of G with edges E(G(x)) = E(G(x))×{{u, v} :
u 6= v ∈ V (G)}. Clearly, any st-path in G(x) must go through each of the copies of G(x),
meaning it must include, for each {u, v}, a uv-path through the copy of G(x) labeled {u, v}.
Thus, there is an st-path in G(x) if and only if G(x) is connected.

We consider the span program PG , where c(e) = 1 for all e ∈ E(G). We will use PG to
solve st-connectivity on G(x). To analyze the resulting algorithm, we need to upper bound the
negative and positive witness sizes w−(x, PG) = 2Cs,t(G(x)) and w+(x, PG) = 1

2Rs,t(G(x)).
Using the rule that resistances in series add, we get:

I Lemma 15. For any x such that G(x) is connected, w+(x, PG) = n(n−1)
2 Ravg(G(x)).

In [8, Lemma 24], we bound Cs,t(G(x)), to prove the following:

I Lemma 16. Fix κ > 1, and suppose G(x) has κ connected components. Then if G is a
subgraph of a complete graph (that is, G has at most one edge between any pair of vertices),
we have w−(x, PG) = O(1/κ). Otherwise, we have w−(x, PG) = O(dmax(G)/

√
nκ).

M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita 49:9

Combining Lemmas 16 and 15 with Theorem 8, we have the following:

I Theorem 17. For any family of graphs G such that G is a subgraph of a complete graph,
and X ⊆ {0, 1}E(G) such that for all x ∈ X, if G(x) is connected, Ravg(G(x)) ≤ R, and
if G(x) is not connected, it has at least κ components, the bounded error quantum query
complexity of connG,X is O

(
n
√
R/κ

)
.

For any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all x ∈ X, if G(x)
is connected, Ravg(G(x)) ≤ R, and if G(x) is not connected, it has at least κ components,
the bounded error quantum query complexity of connG,X is O

(
n3/4

√
Rdmax(G)/κ1/4

)
.

I Corollary 18. Let U be the cost of implementing |u〉|0〉 7→
∑

(u,v,`)∈−→E (G)

√
d−1
G (u)|u, v, `〉.

If G is subset of a complete graph, the quantum time complexity of connG,X is O(n
√
R/κU).

For any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all x ∈ X, if G(x) is
connected, Ravg(G(x)) ≤ R, and if G(x) is not connected, it has at least κ components, the
quantum time complexity of connG,X is O

(
n3/4

√
Rdmax(G)/κ1/4U

)
.

Proof. By [9] (generalizing [4]), U(PG , x) can be implemented in cost O(U). J

4 Spectral Algorithm for Deciding Connectivity

In this section, we give alternative quantum algorithms for connectivity. We first present an
algorithmic template, outlined in Algorithm 25, that requires the instantiation of a certain
initial state. Since this initial state is independent of the input, we already get an upper
bound on the quantum query complexity, as follows:

I Corollary 19. Fix any λ > 0 and κ > 1. For any family of connected graphs G and
X ⊆ {0, 1}E(G) such that for all x ∈ X, either λ2(G(x)) ≥ λ or G(x) has at least κ connected

components, the bounded error quantum query complexity of connG,X is O
(√

ndmax(G)
κλ

)
.

In [8, Section 5.1], we describe one such initial state, and how to prepare it, leading to
the following upper bound, in which U is the cost of performing one step of a quantum
walk on G, and S is the cost of preparing a quantum state corresponding to the stationary
distribution of a quantum walk on G:

I Theorem 20. Fix any κ > 1 and λ > 0. For any family of connected graphs G and
X ⊆ {0, 1}E(G) such that ∀x ∈ X, either λ2(G(x)) ≥ λ, or G(x) has at least κ components,

connG,X can be solved in bounded error in time Õ
(√

ndavg(G)
κλ2(G)

(
S +

√
dmax(G)

λ U
))

.

In [8, Section 5.2], we restrict our attention to the case where G is a Cayley graph, and
give an alternative instantiation of Algorithm 25, proving the following, where Λ is the cost
of computing the eigenvalues of G:

I Theorem 21. Fix any λ > 0 and integer κ > 1. For any family of connected graphs G
such that each G is a Cayley graph over an Abelian group and X ⊆ {0, 1}E(G) such that for
all x ∈ X, either λ2(G(x)) ≥ λ or G(x) has at least κ components, connG,X can be solved

in bounded error in time Õ
(√

nd
κλU +

√
nd

κλ2(G) Λ
)
.

ESA 2018

49:10 Quantum Algorithms for Connectivity and Related Problems

The results in this section, in contrast to the previous connectivity algorithm, apply with
respect to any weighting of the edges of G. Applying non-zero weights to the edges of G
does not change which subgraphs G(x) are connected, but it does impact the complexity
of our algorithm. Thus, we get algorithms with the complexities given in Corollary 19 and
Theorems 20 and 21, where dmax(G) and davg(G) are in terms of weighted degrees, and λ2(G)
and λ2(G(x)) are in terms of weighted Laplacians.

Finally, in 4.1, we describe how when G is a complete graph, these ideas can be used to
design algorithms, not only for deciding connectivity, but also for estimating the algebraic
connectivity of a graph, a measure of how connected a graph is. In particular, we show:

I Theorem 22. Let G be the complete graph on n vertices. There exists a quantum al-
gorithm that, on input x, with probability at least 2/3, outputs an estimate λ̃ such that∣∣λ̃− λ2(G(x))

∣∣ ≤ ελ2(G(x)), where λ2(G(x)) is the algebraic connectivity of G(x), in com-
plexity Õ

(
n/ε
√
λ2(G(x))

)
.

Let PG = (H,U,A, τ) be the span program for st-connectivity defined in 3. Note that
only τ depends on s and t, and we will not be interested in τ here. We let A(x) = AΠH(x).
A simple calculation gives A(x)A(x)T = 2LG(x) and AAT = 2LG, where LG(x) and LG are
the Laplacians of G(x) and G respectively. Recall that for any G, the eigenvalues of LG lie
in [0, dmax], with |µ〉 = 1√

n

∑
v |v〉 as a 0-eigenvalue. In our case, since G is assumed to be

connected, |µ〉 is the only 0-eigenvector of LG, so row(LG) is the orthogonal complement
of |µ〉. For any x, G(x) also has |µ〉 as a 0-eigenvalue, but if G(x) is connected, this is the
only 0-eigenvalue. In general, the dimension of the 0-eigenspace of LG(x) is the number of
components of G(x). Thus, we have the following.

The multiset of nonzero eigenvalues of LG are exactly half of the squared singular values
of A, and in particular, since no eigenvalue of LG can be larger than the maximum degree
of G, σmax(A) ≤

√
2dmax(G).

The multiset of nonzero eigenvalues of LG(x) are exactly half the squared singular values
of A(x), and if G(x) is connected, then σmin(A(x)) =

√
2λ2(G(x)), where λ2(G(x)) is the

second smallest eigenvalue of LG(x), which is non-zero if and only if G(x) is connected.
The support of LG is col(A), which is the orthogonal subspace of |µ〉 = 1√

n

∑
v |v〉.

For a particular span program P , and input x, an associated unitary U(P, x) = (2ΠkerA−
I)(2ΠH(x)−I) can be used to construct quantum algorithms, for example, for deciding the span
program. Then by [7, Theorem 3.10], which states that ∆(U(P, x)) ≥ 2σmin(A(x))/σmax(A),
we have the following.

I Lemma 23. Let PG be the st-connectivity span program from 3. Then ∆(U(P, x)) ≥
2
√
λ2(G(x))/dmax(G).

Our algorithm will be based on the following connection between the connectivity of G(x)
and the presence of a 0-phase eigenvector of U(P, x) in row(A), proven in [8, Lemma 32].

I Lemma 24. G(x) is not connected if and only if there exists |ψ〉 ∈ row(A) that is fixed
by U(P, x). Moreover, if G(x) has κ > 1 components, there exists a (κ − 1)-dimensional
subspace of row(A) that is fixed by U(P, x).

Thus, to determine ifG(x) is connected, it is sufficient to detect the presence of any 0-phase
eigenvector of U(P, x) on row(A). Let {|ψi〉}n−1

i=1 be any basis for row(A), not necessarily
orthogonal, and suppose we have access to an operation that generates |ψinit〉 =

∑n−1
i=1 |i〉|ψi〉.

Such a basis is independent of the input, so we can certainly perform such a map with 0
queries. We will later discuss cases in which we can implement such a map time efficiently.

M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita 49:11

I Algorithm 25. Assume there is a known constant λ such that if G(x) is connected,
then λ2(G(x)) ≥ λ. Let {|ψi〉}i be some states that span the rowspace of A, whose choice
determines the cost of the amplitude estimation step.
1. Prepare |ψinit〉 =

∑n−1
i=1

1√
n−1 |i〉|ψi〉.

2. Perform the phase estimation procedure of [8, Theorem 9] of U(P, x) on the second
register, to precision

√
λ/dmax(G), and accuracy ε.

3. Use amplitude estimation to determine if the amplitude on |0〉 in the phase register is 0,
in which case, output “connected”, or > 0, in which case, output “not connected.”

The algorithm performs phase estimation (see [8, Theorem 8]) on the second register
of |ψinit〉, with precision

√
λ/dmax(G). Intuitively, this will distinguish any part of the

second register that is in the 0-phase space of U(P, x), labeling it with |0〉 in a new phase
register, from any part of the state that is in the span of the θ-phase vectors of U(P, x) for
|θ| >

√
λ/dmax(G). We can then estimate the part of the state in the 0-phase space of U(P, x)

by using amplitude estimation in Step 3. First, suppose that there are κ− 1 > 0 orthonormal
0-phase eigenvectors of U(P, x) in row(A), and let Π be the orthonormal projector onto
their span. By [8, Theorem 8], for each i, the phase estimation step will map |i〉 (Π|ψi〉) to
|i〉|0〉 (Π|ψi〉). Thus, the squared amplitude on |0〉 in the phase register will be at least:

ε := ‖(I ⊗Π)|ψinit〉‖2

‖|ψinit〉‖2
= 1
‖|ψinit〉‖2

n−1∑
i=1
‖Π|ψi〉‖2 > 0, (6)

since the |ψi〉 span row(A).
On the other hand, suppose G(x) is connected, so there is no 0-phase eigenvector in

row(A). Then all phases will be at least ∆(U(P, x)) ≥
√
λ/dmax(G), so the phase register will

have squared overlap at most ε with |0〉. Setting ε = ε/2, we just need to distinguish between
an amplitude of ≥ ε and an amplitude of ≤ ε/2 on |0〉, which we can do using amplitude
estimation in 1√

ε
calls to Steps 1 and 2 (See [8] for details). Step 2 can be implemented using√

dmax(G)/λ log 1
ε calls to U(P, x). By [9, Theorem 13], if U is the cost of implementing, for

any u ∈ V , the map

|u, 0〉 7→
∑

(v,`)∈Γ(u)

√
c(u, v, `)/dG(u)|u, v, `〉, (7)

which corresponds to one step of a quantum walk on G, then U(P, x) can be implemented in
time O(U). We thus get the following (formally proven in [8, Theorem 34]):

I Theorem 26. Fix λ > 0. Let Init denote the cost of generating the initial state |ψinit〉,
and U the cost of the quantum walk step in equation 7. Let ε be as in equation 6. Then
for any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all x ∈ X, either
λ2(G(x)) ≥ λ or G(x) is not connected, connG,X can be decided by a quantum algorithm

with cost O
(

1√
ε

(
Init +

√
dmax(G)

λ U log 1
ε

))
.

In [8, Sections 5.1 and 5.2], we discuss particular implementations of this algorithm, but
if we only care about query complexity, we already have Corollary 19. We formally prove
Corollary 19 in [8], but the idea is that Init costs 0 queries, U(P, x) can be implemented in 2
queries, and if there are κ− 1 orthonormal 0-phase vectors of U(P, x) in row(A), they each
contribute at least 1

n−1 to ε = ‖(I ⊗Π)|ψinit〉‖2, so ε ≥ κ−1
n−1 , giving a total query complexity

of O(
√
ndmax(G)(κλ)−1).

ESA 2018

49:12 Quantum Algorithms for Connectivity and Related Problems

4.1 Estimating the connectivity when G is a complete graph
For the remainder of this section, let G be the complete graph on n vertices, Kn. In that
case, we can not only decide if G(x) is connected, but estimate λ2(G(x)). The idea is to
relate the smallest phase of U(P, x) on row(A) to λ2(G(x)), and estimate this value using
quantum phase estimation. We use a correspondence between the phases of the product of
two reflections U = (2ΠA − I)(2ΠB − 1) and the singular values of its discriminant, defined
ΠAΠB due to Szegedy [16] to prove the following in [8, Section 5.3].

I Lemma 27. Let U = (2ΠA − I)(2ΠB − I) and D = ΠAΠB be its discriminant. Then
∆(−U) = 2 sin−1(σmin(D)). Moreover, when G is a complete graph on n vertices, we have
for any x, λ2(G(x)) = n sin2(∆(U(P, x))/2).

This correspondence also implies the following, which allows us to restrict our attention
to row(A) in searching for the smallest phase of U(P, x) and is proven in [8, Section 5.3]:

I Lemma 28. Let U = (2ΠA − I)(2ΠB − I), and let |∆+〉 be a ∆(U)-eigenvector of U , and
|∆−〉 a (−∆(U))-eigenvector of U . Then there exists a vector |u〉 in the support of A such
that |u〉 ∈ span{|∆+〉, |∆−〉}. In particular, if |∆±〉 are ±∆(U(P, x))-eigenvectors of U(P, x),
then there exists a vector |u〉 in row(A) such that |u〉 ∈ span{|∆+〉, |∆−〉}.

We will estimate the value τ = ∆(U(P, x))/π in the range [0, 1], which we will then
transform into an estimate of λ2(G(x)). At every iteration, c will denote a lower bound for τ
and C will denote the current upper bound. At the beginning of the algorithm we have c = 0,
C = 1, and every iteration will result in updating either C or c in such a manner that the
new interval for τ is reduce by a fraction of 2/3. The algorithm is described in Algorithm 29.

I Algorithm 29. To begin, let c = 0 and C = 1.
1. Set ϕ = C−c

3 , ε = 1√
2n , δ = c+ ϕ.

2. For j = 1, . . . , 4 log(n/ε):
a. Prepare

∑n−1
i=1

1√
n−1 |i〉|ψi〉|0〉B |0〉P .

b. Perform the gapped phase estimation algorithm GPE(ϕ, ε, δ) of [8, Theorem 9] to
U(P, x) on the second register.

c. Use amplitude estimation to distinguish between the case when the amplitude on |0〉B
is ≥ 1√

n
, in which case output “aj = 0”, and the case where the ampltiude is ≤ 1√

2n ,
in which case, output “aj = 1”.

3. Compute ã = Maj(a1, . . . , a4 log(n/ε)). If the result is 0, set C = δ + ϕ. If the result is 1,
set c = δ. If C − c ≤ 2εc, then output n sin2

(
π(C+c)

4

)
. Otherwise, return to Step 1.

We say an iteration of the algorithm succeeds if ã = Maj(a1, . . . , a4 log(n/ε)) correctly indicates
whether the amplitude on |0〉B is ≥ n−1/2 or ≤ (2n)−1/2. This happens with probability Ω(1−
(ε/n)4). Since we will shortly see that the algorithm runs for at most Õ(n/ε

√
λ2(G(x))) ≤

Õ
(
n2ε−1) steps, a Taylor series approximation guarantees that the probability that every

iteration succeeds is at least Ω
(
1− (ε/n)2). It is therefore reasonable to assume that every

iteration succeeds, since this happens with high probability. We first note that if every
iteration succeeds, throughout the algorithm we have τ = ∆(U(P, x))/π ∈ [c, C].

I Lemma 30. Let τ = ∆(U(P, x))/π. For any ϕ and δ, if τ ≥ δ + ϕ, applying GPE(ϕ, ε, δ)
to |ψinit〉 results in a state with amplitude at most 1√

2n on |0〉B in register B; and if τ ≤ δ,
this results in a state with amplitude at least 1√

n
on |0〉B in register B. Thus, if every

iteration succeeds, at every iteration, we have τ ∈ [c, C].

The proof of Lemma 30 is found in [8, Section 5.3]. Next, we analyze the running time of
Algorithm 29 to get the following theorem, also proven in [8, Section 5.3].

M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita 49:13

I Theorem 31. With probability Ω(1 − (ε/n)2), Algorithm 29 will terminate after time
Õ(n/ε

√
λ2(G(x))).

Finally, we prove in [8, Section 5.3] that the algorithm outputs an estimate that is within
ε multiplicative error of λ2(G(x)). Theorem 22 follows from Theorems 31 and 32.

I Theorem 32. With probability at least Ω(1− (ε/n)2), Algorithm 29 outputs an estimate λ̃
such that

∣∣λ2(G(x))− λ̃
∣∣ ≤ π23

4 ελ2(G(x)).

References

1 A. Ārin, š. Span-Program-Based Quantum Algorithms for Graph Bipartiteness and Con-
nectivity, pages 35–41. Springer International Publishing, Cham, 2016. doi:10.1007/
978-3-319-29817-7_4.

2 A. Belovs. Learning-graph-based quantum algorithm for k-distinctness. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012),
pages 207–216, 2012. doi:10.1109/FOCS.2012.18.

3 A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings
of the 44th Symposium on Theory of Computing (STOC 2012), pages 77–84, 2012.

4 A. Belovs and B. W. Reichardt. Span programs and quantum algorithms for st-connectivity
and claw detection. In Proceedings of the 20th European Symposium on Algorithms (ESA
2012), pages 193–204, 2012.

5 C. Cade, A. Montanaro, and A. Belovs. Time and space efficient quantum algorithms for
detecting cycles and testing bipartiteness, 2016. arXiv:1610.00581.

6 C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query complexity of some
graph problems. SIAM Journal on Computing, 35(6):1310–1328, 2006.

7 T. Ito and S. Jeffery. Approximate span programs. In Proceedings of the 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016), pages 12:1–12:14,
2016. arXiv:1507.00432.

8 Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithms
for connectivity and related problems. arXiv preprint arXiv:1804.10591, 2018.

9 S. Jeffery and S. Kimmel. Quantum algorithms for graph connectivity and formula evalu-
ation. Quantum, 1:26, 2017. doi:10.22331/q-2017-08-17-26.

10 M. Karchmer and A. Wigderson. On span programs. In Proceedings of the 8th Annual
IEEE Conference on Structure in Complexity Theory, pages 102–111, 1993.

11 N. Nisan and A. Ta-Shma. Symmetric logspace is closed under complement. In Proceedings
of the Twenty-seventh Annual ACM Symposium on Theory of Computing (STOC 1995),
pages 140–146, New York, NY, USA, 1995. ACM. doi:10.1145/225058.225101.

12 B. W. Reichardt. Span programs and quantum query complexity: The general adver-
sary bound is nearly tight for every Boolean function. In Proceedings of the 50th IEEE
Symposium on Foundations of Computer Science (FOCS 2009), pages 544–551, 2009.
arXiv:quant-ph/0904.2759.

13 B. W. Reichardt. Span programs and quantum query algorithms. Electronic Colloquium
on Computational Complexity (ECCC), 17:110, 2010.

14 B. W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the 22nd An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pages 560–569. SIAM,
2011.

15 B. W. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating
formulas. Theory of Computing, 8(13):291–319, 2012.

16 M. Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), pages
32–41, Washington, DC, USA, 2004. IEEE Computer Society. doi:10.1109/FOCS.2004.
53.

ESA 2018

http://dx.doi.org/10.1007/978-3-319-29817-7_4
http://dx.doi.org/10.1007/978-3-319-29817-7_4
http://dx.doi.org/10.1109/FOCS.2012.18
http://dx.doi.org/10.22331/q-2017-08-17-26
http://dx.doi.org/10.1145/225058.225101
http://dx.doi.org/10.1109/FOCS.2004.53
http://dx.doi.org/10.1109/FOCS.2004.53

Generalized Coloring of Permutations

Vít Jelínek
Computer Science Institute, Charles University
Malostranské náměstí 25, Praha 1, 11800, Czechia
jelinek@iuuk.mff.cuni.cz

https://orcid.org/0000-0003-4831-4079

Michal Opler
Computer Science Institute, Charles University
Malostranské náměstí 25, Praha 1, 11800, Czechia
opler@iuuk.mff.cuni.cz

https://orcid.org/0000-0002-4389-5807

Pavel Valtr
Department of Applied Mathematics, Charles University
Malostranské náměstí 25, Praha 1, 11800, Czechia

https://orcid.org/0000-0002-3102-4166

Abstract

A permutation π is a merge of a permutation σ and a permutation τ , if we can color the elements
of π red and blue so that the red elements have the same relative order as σ and the blue ones as τ .
We consider, for fixed hereditary permutation classes C and D, the complexity of determining
whether a given permutation π is a merge of an element of C with an element of D.

We develop general algorithmic approaches for identifying polynomially tractable cases of
merge recognition. Our tools include a version of nondeterministic logspace streaming recogniz-
ability of permutations, which we introduce, and a concept of bounded width decomposition,
inspired by the work of Ahal and Rabinovich.

As a consequence of the general results, we can provide nontrivial examples of tractable per-
mutation merges involving commonly studied permutation classes, such as the class of layered
permutations, the class of separable permutations, or the class of permutations avoiding a de-
creasing sequence of a given length.

On the negative side, we obtain a general hardness result which implies, for example, that
it is NP-complete to recognize the permutations that can be merged from two subpermutations
avoiding the pattern 2413.

2012 ACM Subject Classification Mathematics of computing → Permutations and combina-
tions, Mathematics of computing → Combinatorial algorithms, Theory of computation → Prob-
lems, reductions and completeness

Keywords and phrases Permutations, merge, generalized coloring

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.50

Funding Supported by the GAUK project 1766318, by project Impuls of the Neuron Fund for
Support of Science, and by project 18-19158S of the Czech Science Foundation.

© Vít Jelínek, Michal Opler, and Pavel Valtr;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jelinek@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-4831-4079
mailto:opler@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-4389-5807
https://orcid.org/0000-0002-3102-4166
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 Generalized Coloring of Permutations

1 Introduction

Definitions and previous results

A permutation is a sequence π = π1, π2, . . . , πn in which each number from the set [n] =
{1, 2, . . . , n} appears exactly once. We then say that a permutation π = π1, . . . , πn contains
a permutation σ = σ1, . . . , σk, if π has a subsequence of length k whose elements have the
same relative order as the elements of σ (see Section 2 for a more formal definition). If π
does not contain σ, we say that π avoids σ, or π is σ-avoiding.

A permutation π is a merge of a permutation σ and a permutation τ , if we can color the
elements of π with colors red and blue so that the red elements have the same relative order
as σ and the blue ones as τ . For two sets of permutations C and D, we let C � D denote
the set of the permutations that can be obtained by merging a permutation τ ∈ C with a
permutation σ ∈ D.

In this paper, we study the algorithmic complexity of determining whether a given
permutation is a merge of a pair of permutations with a prescribed structure. More formally,
for a fixed pair of hereditary permutation classes C and D, we consider the complexity of
determining whether a given permutation π belongs to C � D.

The notion of merge has been originally introduced as an approach for the enumeration of
pattern-avoiding permutations [5, 4]. For instance, Claesson et al. [13] have shown that every
1324-avoiding permutation can be obtained by merging a 132-avoiding permutation with a
213-avoiding one, and this result, and its subsequent strengthenings by Bóna [8, 9] and Bevan
et al. [7], are the basis of the best known upper bounds for the number of 1324-avoiding
permutations.

Apart from enumeration questions, the research into permutation merges has also ad-
dressed structural issues, such as whether a given permutation class can be obtained by
merging two of its proper subclasses [18, 17], or which classes can be obtained by merging a
bounded number of permutations from a given class [3, 19, 21]. Our paper is, however, the
first to address algorithmic aspects of permutation merges.

So far, most of the algorithmic research related to permutations has focused on the
decision problem known as Permutation Pattern Matching, or PPM, where the goal is to
determine whether a given permutation π (the ‘pattern’) is contained in a permutation τ
(the ‘text’). Bose et al. [11] have shown that PPM is NP-complete for general π and τ , but
it is polynomial when π is restricted to the class of the so-called separable permutations.
The latter result was generalized by Ahal and Rabinovich [2]. More precisely, Ahal and
Rabinovich introduced a notion of tree decomposition for permutations and an associated
width parameter, closely related to the concept of tree-width from graph theory; they then
proved that PPM is polynomial when the pattern π is restricted to a class of bounded
tree-width, of which separable permutations are a special case. We remark that a different
width parameter for permutations was introduced by Guillemot and Marx [16], who used
it to prove that PPM is in FPT with the length of the pattern π as the parameter. While
the results on the complexity of PPM do not have any immediate consequences for the
problems we consider in this paper, the tree-width concept of Ahal and Rabinovich is a
crucial ingredient in our results.

The decision problem of recognizing permutations from C � D can be viewed as a
permutation analogue of the generalized graph coloring problem from graph theory. For a
fixed k-tuple G1, . . . ,Gk of graph classes, a generalized coloring of a graph is an assignment
of colors 1, 2, . . . , k to its vertices so that the vertices of color i induce a subgraph from Gi.
In particular, if all the Gi are equal to the class of edgeless graphs, this notion reduces to the

V. Jelínek, M. Opler, and P. Valtr 50:3

classical notion of k-coloring. The research into the complexity of generalized graph coloring
was initiated by Rutenburg [20], who considered graph properties defined by a finite set of
forbidden subgraphs. Later, Farrugia [15] has shown that if all the Gi are hereditary and
additive (i.e., closed under taking induced subgraphs and forming disjoint unions) then the
problem is NP-hard, except the trivially polynomial case when k = 2 and both G1 and G2
are equal to the class of edgeless graphs. Further results in this area were obtained, e.g., by
Brown [12], Alexeev et al. [6], Achlioptas et al. [1], or Borowiecki [10].

As with generalized graph coloring, the recognition of permutation merges admits several
cases which are trivially polynomial. For instance, let Ik be the class of permutations that
can be merged from at most k increasing subsequences, or equivalently, of permutations that
avoid the pattern k + 1, k, . . . , 1. Similarly, let Dk be the permutations merged from at most
k decreasing subsequences, which are exactly the avoiders of 1, 2, . . . , k + 1. One may easily
see that Ik � I` = Ik+` and Dk �D` = Dk+`, and in particular, these merges are trivially
polynomially recognizable. Moreover, Kézdy et al. [19] have shown that for any k, ` ≥ 1, the
class Ik �D` has only finitely many minimal excluded patterns, and therefore these classes
are polynomially recognizable as well.

Ekim et al. [14] studied the complexity of generalized 2-colorings when the input graph is
restricted to the class of the so-called permutation graphs. Their results, in our terminology,
imply the polynomial recognition of L � I1 and of L � L, where L and L denote the classes
of layered and co-layered permutations (see Section 2 for definitions).

Our results

In this paper, we show that there are many more cases of polynomially tractable merges of
permutation classes. This contrasts with Farrugia’s above-mentioned result on generalized
graph coloring. As our main results, we will present two general approaches to show that a
permutation class of the form C � D is polynomially recognizable.

Our first approach, which we present in Section 3.1, is based on the concept of non-
deterministically logspace on-line recognizable (or NLOL-recognizable) permutation classes,
which we introduce. We will show that an arbitrary merge of NLOL-recognizable classes is
polynomially recognizable. While this approach is conceptually quite simple, it generalizes
all the previously known examples of tractable merges following from the work of Kézdy et
al. [19] and Ekim et al. [14].

For our second approach, presented in Section 4, we introduce the notion of grid de-
compositions, and the associated width parameter called grid-width. We combine the grid
decomposition technique with a restricted version of NLOL, called 2D-NLOL, to prove that the
merge of a 2D-NLOL-recognizable class with a class of bounded grid-width can be recognized
in polynomial time. This approach allows us to handle further cases of natural permutation
classes that are not NLOL-recognizable, such as the class of 213-avoiders, or the class of
separable permutations.

To complement our tractability results, we also provide, in Section 5, an NP-hardness
result. The result implies, among other examples, that the recognition of Av(2413)�Av(2413)
is NP-hard, where Av(2413) is the class of 2413-avoiding permutations.

2 Basic definitions

A permutation of order n is a sequence in which each element of the set [n] appears
exactly once. We let Sn denote the set of permutations of order n. When writing out
short permutations explicitly, we shall omit all punctuation and write, e.g., 15342 for the

ESA 2018

50:4 Generalized Coloring of Permutations

1 2 3 4 5 6

1

2

3

4

5

6

231 ⊕ 321 = 231654

1 2 3 4 5 6

1

2

3

4

5

6

231 	 321 = 564321

1 2 3 4 5 6

1

2

3

4

5

6

the ‘3’ of 2314 inflated by 231

Figure 1 Example of direct sum (left), skew sum (center) and inflation (right).

permutation 1, 5, 3, 4, 2 ∈ S5. We shall assume that there is a unique permutation of order 0,
corresponding to the empty sequence.

To represent a permutation π = π1, π2, . . . , πn graphically, we will use the permutation
diagram, which is the set of points {(i, πi); i ∈ [n]} in the plane. See Figure 1 for an example.
Note that we use Cartesian coordinates, that is, the first row of the diagram is at the bottom.

Let x = x1, x2, . . . , xn and y = y1, y2, . . . , yn be two sequences of numbers. We say that
x and y are order-isomorphic, if, for every 1 ≤ i, j ≤ n we have xi < xj ⇐⇒ yi < yj . A
permutation π ∈ Sn contains a permutation σ ∈ Sk, if π has a subsequence order-isomorphic
to σ. Such a subsequence is then an occurrence (or a copy) of σ in π. If π does not contain
σ, we say that π avoids σ.

A hereditary permutation class (or just permutation class, for short) is a set C of per-
mutations with the property that if π is in S, then all the permutations contained in π are
in C as well. For a permutation σ, we let Av(σ) denote the set of σ-avoiding permutations.
More generally, for a set F of permutations, we let Av(F) be the set of permutations that
avoid all the elements of F . Clearly, Av(F) is a permutation class, and any permutation
class is equal to Av(F) for a (possibly infinite) set F .

Consider a pair of permutations σ = σ1, . . . , σk ∈ Sk and τ = τ1, . . . , τ` ∈ S`. The direct
sum of σ and τ , denoted σ ⊕ τ , is the permutation π = σ1, . . . , σk, k + τ1, k + τ2, . . . , k +
τ` ∈ Sk+`. Similarly, their skew sum, denoted σ 	 π, is the permutation ` + σ1, . . . , ` +
σk, τ1, τ2, . . . , τ` ∈ Sk+`; see Figure 1.

For a pair of permutation classes C and D, we let C ⊕D be the set {σ⊕ τ ; σ ∈ C, τ ∈ D};
note that this is again a permutation class. The class C 	 D is defined analogously. The
sum-closure of a class C, denoted C⊕, is the class of all the permutations that can be obtained
as a direct sum of finitely many members of C; the skew-closure C	 is defined analogously.

A permutation π is a merge of permutations σ and τ if we can color the elements of π
with colors red and blue so that the red elements are order-isomorphic to σ and the blue
ones to τ . The merge of a class C and a class D is the class C � D of permutations that can
be obtained by merging an element of C with an element of D.

For integers i and j, we let [i, j] denote the set {k ∈ Z; i ≤ k ≤ j}. A set of this form is an
integer interval. We also use the notation [i, j) for the interval [i, j − 1] and (i, j] for [i+ 1, j].
A box is the Cartesian product of two integer intervals. For a box B = I × J ⊆ [n]× [n] and
a permutation π = π1, . . . , πn, the restriction of π to B, denoted π|B , is the subsequence of
π formed by the entries πi satisfying i ∈ I and πi ∈ J .

Let σ = σ1, . . . , σk and τ = τ1, . . . , τ` be again a pair of nonempty permutations. The
inflation of an element σi of σ by τ , is an operation which produces a permutation

π = σ′1, σ
′
2, . . . , σ

′
i−1, τ

′
1, τ
′
2, . . . , τ

′
`, σ
′
i+1, . . . , σ

′
k,

V. Jelínek, M. Opler, and P. Valtr 50:5

where the subsequence τ ′1, τ ′2, . . . , τ ′` is a copy of τ , and for any j ∈ `, the subsequence
σ′1, σ

′
2, . . . , σ

′
i−1, τ

′
j , σ
′
i+1, . . . , σ

′
k is a copy of σ; see again Figure 1. A permutation is simple,

if it cannot be obtained from two strictly smaller permutations by an inflation. For instance,
the permutation 25314 is simple, while 25341 is not, since it can be obtained, e.g., by inflating
the element ‘3’ in 2431 by the permutation 12.

For a permutation π = π1, . . . , πn the reverse of π is the permutation πn, πn−1, . . . , π1,
the complement of π is the permutation n+ 1−π1, n+ 1−π2, . . . , n+ 1−πn, and the inverse
of π is the permutation σ = σ1, . . . , σn satisfying πi = j ⇐⇒ σj = i. We let πr, πc and
π−1 denote the reverse, complement and inverse of π, respectively. Similarly, for a class of
permutations C, we let Cr denote the set {πr; π ∈ C}, and similarly for Cc and C−1. Note
that Cr, Cc and C−1 are again permutation classes.

Several commonly encountered permutation classes have standard names in the literature.
The increasing permutations are the permutations from the class Av(21) and symmetrically,
the elements of Av(12) are the decreasing permutations. The permutations avoiding both
231 and 312 are known as the layered permutations. Layered permutations can also be
characterized as those permutations that can be written as a finite direct sum in which
each summand is a decreasing permutation; that is, the class of layered permutations is the
sum-closure of Av(12). The complements of layered permutations are known as the co-layered
permutations; they form the class Av({132, 213}). Finally, the permutations from the class
Av({2413, 3142}) are known as the separable permutations; it is known [11] that these are
precisely the permutations that can be created from the permutation of size 1 by direct sums
and skew sums.

3 Tractable merges

For a permutation class C, C-recognition is the decision problem to determine whether a
given permutation belongs to C. Our main goal is to identify pairs of classes C,D for which
the (C � D)-recognition problem is tractable, i.e., solvable in polynomial time.

3.1 NLOL-recognizable classes
Our first nontrivial example of classes whose merges can be efficiently recognized are the
so-called NLOL-recognizable permutation classes. Informally speaking, a permutation class
is NLOL-recognizable if its members can be recognized by a single-pass nondeterministic
streaming algorithm with logarithmic memory.

More formally, we say that a permutation class C is nondeterministically logspace on-line
recognizable, or NLOL-recognizable for short, if there is a nondeterministic algorithm A that
recognizes C in the following setting: as the first part of the input, the algorithm A receives a
number n, which is an upper bound on the length and also on the largest value in the input
sequence. The algorithm is then given access to O(logn) bits of memory, and it receives a
sequence of distinct values π1, . . . , πk from the set [n], terminated by a special symbol EOF.
Upon receiving the EOF symbol, A answers whether the input sequence is order-isomorphic
to a permutation in C. The algorithm can store arbitrary data of size O(logn) in its memory,
but as soon as it reads the input value πi, it can no longer access the previous values of
the input. A is nondeterministically recognizing C in the sense that the input sequence is
order-isomorphic to a permutation in C if and only if at least one computation of A accepts
it. The algorithm A is then called an NLOL-recognizer of C. Note that the input sequence is
guaranteed to consist of distinct values, so the NLOL-recognizer itself does not need to verify
this property. This also implies that the input sequence has length at most n.

ESA 2018

50:6 Generalized Coloring of Permutations

We let NLOL denote the set of the NLOL-recognizable permutation classes. Clearly, for any
permutation class C ∈ NLOL, the C-recognition problem is tractable, since nondeterministic
logspace computations can be simulated in polynomial time.

One may easily observe that NLOL contains any finite permutation class, as well as the
classes Av(12) and Av(21). The key feature of NLOL is that it is closed under many important
operations with permutation classes, including the merge operation.

I Lemma 1. If C and D are NLOL-recognizable classes, then the following classes are
NLOL-recognizable as well:
(a) The classes C ∩ D and C ∪ D.
(b) The classes Cr and Cc.
(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.
(d) The classes C ⊕ D and C 	 D.
(e) The class C � D.

I Corollary 2. For any sequence of classes C1, C2, . . . , Ck ∈ NLOL, the class C1�C2�· · ·�Ck
is in NLOL, and therefore polynomially recognizable.

Lemma 1 shows that NLOL contains many important permutation classes, including the
classes of layered and co-layered permutations, as well as any class of the form Av(1, 2, 3 . . . , k)
or Av(k, k − 1, . . . , 1).

On the negative side, it can be shown that NLOL does not contain some other important
classes, such as the class of separable permutations, or its subclasses Av(231), Av(213),
Av(312) and Av(132). These five classes share a common feature: their elements have a
simple recursive tree-like structure involving direct sums, skew sums and inflations. We shall
soon formalize this notion of tree-like structure via the concept of bounded grid-width, and
show that it leads to another general type of tractable merges. Before we get there, however,
we first introduce a restricted form of NLOL that will play an important part in conjunction
with bounded grid-width classes.

3.2 2D-NLOL-recognizable classes
Informally speaking, a permutation class is 2D-NLOL-recognizable, if its members can
be recognized by a single-pass nondeterministic streaming algorithm over a sequence of
index-value pairs in a left-to-right, bottom-to-top order.

Let P = {(x1, y1), . . . , (xn, yn)} be a set of points in the plane. We say that P is in
general position if no two of its points are on the same horizontal or vertical line, i.e., there
is no i 6= j with xi = xj or yi = yj . We say that a permutation π ∈ Sn is shape-isomorphic
to P if there is a bijection f : [n]→ [n] such that for every i and j the following holds: i < j

if and only if xf(i) < xf(j) and πi < πj if and only if yf(i) < yf(j). Note that a permutation
π ∈ Sn is shape-isomorphic to its diagram {(i, πi); i ∈ [n]}.

Let (x1, y1), (x2, y2), . . . , (xk, yk) be a sequence of distinct points in general position. We
say that the sequence is top-right monotone if for every i ∈ [k] the point (xi, yi) is to the
right or above all the previous points of the sequence; formally, for every i ∈ [k], either for
every j < i we have xj < xi or for every j < i we have yj < yi. Note that there can be
several top-right monotone sequences corresponding to a single point set. Note also, that a
sequence (x1, y1), (x2, y2), . . . , (xk, yk) ⊆ [n]× [n] in general position is top-right monotone
if and only if for every i ∈ [k] there is a box Bi = [1, ri]× [1, ti] which contains the points
(x1, y1), . . . , (xi, yi) but none of the points (xi+1, yi+1), . . . , (xk, yk). A sequence of points is
admissible if it is in general position and top-right monotone.

V. Jelínek, M. Opler, and P. Valtr 50:7

We will now consider nondeterministic logspace algorithms that receive an integer n,
followed by an admissible sequence of points in [n] × [n] as their input. To describe the
assumptions we make about the algorithms, we first introduce some terminology. Let A
be such nondeterministic algorithm. A position of the algorithm A is a pair (p,m), where
p = (px, py) is a point in [n + 1] × [n + 1] and m is a memory state of A. Let S be an
admissible sequence of points. We say that A can reach the position (p,m) on input S, if
S is contained in the box [1, px)× [1, py) and there is a computation of A starting from its
initial state and ending in state m after processing S. Let p = (px, py) and p′ = (p′x, p′y) be
two points with 1 ≤ px ≤ p′x ≤ n and 1 ≤ py ≤ p′y ≤ n, and S be an admissible sequence.
We say that A can reach position (p′,m′) from position (p,m) on input S, if S is contained
in the box [1, p′x)× [1, p′y) but disjoint from the box [1, px)× [1, py), and the algorithm A has
a computation starting in state m and ending in state m′ after processing S.

We say that an algorithm A is order-oblivious if it has the following property: for any pair
of positions (p,m) and (p′,m′) with p ≤ p′, and for any pair of admissible sequences S and
S′ that correspond to two top-right monotone orderings of the same point set, A can reach
(p′,m′) from (p,m) on input S if and only if it can reach (p′,m′) from (p,m) on input S′.
Informally speaking, the state reached by an order-oblivious algorithm only depends on the
set of points it has received as input, but not on their ordering. We may therefore say, e.g.,
that A reaches position (p,m) on a set of points P , without specifying the particular ordering
of P , with the assumption that the ordering is top-right monotone.

We say that an order-oblivious algorithm A is box-coherent if it has the following property:
for any indices i ≤ i′ and j ≤ j′, consider the four points px = (i, j), pp = (i, j′), py = (i′, j)
and pq = (i′, j′) and four corresponding memory states mx, mp, my and mq. Suppose that A
can reach the position (py,my) from (px,mx) on an input X ⊆ [i, i′)× [1, j), and that it can
reach (pp,mp) from (px,mx) on an input Y ⊆ [1, i)× [j, j′). Let Z be a subset of [i, i′)× [j, j′)
such that X ∪Y ∪Z is in general position. Let (pq,mq) be a position reachable from (py,my)
on input Y ∪Z. Then the reachability of (pq,mq) from (pp,mp) on input X ∪Z only depends
on the four states mx,my,mp,mq and the set Z; in particular, it does not depend on the
the set X itself. Symmetrically, if we let (pq,mq) be a position reachable from (pp,mp) on
input X ∪Z then the reachability of (pq,mq) from (py,my) on input Y ∪Z only depends on
the four memory states and the set Z, but does not depend on Y . Informally, box-coherence
means that the memory states mx and my retain enough information about X to determine
the reachable states on inputs of the form X ∪ Z.

We say that a permutation class C is 2D nondeterministically logspace on-line recognizable,
or 2D-NLOL-recognizable for short, if there is a nondeterministic order-oblivious box-coherent
algorithm A that recognizes C in the following setting: as the first part of the input, the
algorithm A receives a number n, which is an upper bound on the largest value in the input
sequence. The algorithm is then given access to O(logn) bits of memory, and it receives a
top-right monotone sequence of points (x1, y1), (x2, y2), . . . , (xk, yk) from [n]× [n], terminated
by a special symbol EOF. Upon receiving the EOF symbol, the algorithm answers whether the
input sequence is shape-isomorphic to a permutation in C. The algorithm can store arbitrary
data of size O(logn) in its memory, but after it reads the value (xi, yi) from the input, it
cannot access any of the previous values. A is nondeterministically recognizing C in the sense
that the input sequence is shape-isomorphic to a permutation in C if and only if at least one
computation of A accepts it. The algorithm A is then called a 2D-NLOL-recognizer of C.
Note that the algorithm A does not have to verify that the input is in general position; in
other words, on inputs that fail this condition, the behavior of A can be arbitrary.

ESA 2018

50:8 Generalized Coloring of Permutations

We let 2D-NLOL denote the set of the 2D-NLOL-recognizable permutation classes. Clearly,
2D-NLOL is contained in NLOL: the left-to-right ordering is a special case of a top-right
monotone ordering, and any 2D-NLOL-recognizer can be trivially transformed into an NLOL-
recognizer. Furthermore, we observe that 2D-NLOL contains any finite permutation class,
as well as the classes Av(12) and Av(21). And like NLOL, 2D-NLOL is closed under many
important operations with permutation classes, including the merge operation.

I Lemma 3. If C and D are 2D-NLOL-recognizable classes, then the following classes are
2D-NLOL-recognizable as well:
(a) The classes C ∩ D and C ∪ D.
(b) The class C−1, which contains the inverses of the permutations of C.
(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.
(d) The classes C ⊕ D and C 	 D.
(e) The class C � D.

4 Grid-width

Let us introduce a decomposition of permutations and a corresponding width parameter,
which are suited for describing various algorithms using dynamic programming.

An interval family I is a set of pairwise disjoint integer intervals with the natural ordering
I1, . . . , In such that for j < k, Ij < Ik. For two interval families I and J , let I × J denote
the naturally defined set of boxes in the plane. For a point set A in the plane, let x(A)
denote its projection on the x-axis and equivalently y(A) its projection on the y-axis. The
intervalicity of a set A ⊆ [n], denoted by I(A), is the size of the smallest interval family
whose union is equal to A.

A grid tree of a permutation π ∈ Sn is a rooted binary tree T with n leaves, each leaf
being labeled by a distinct point of the permutation diagram {(i, πi); i ∈ [n]}. Let STv denote
the point set of the labels on the leaves in the subtree of T rooted in v. The grid-width of a
vertex v in T is the maximum of the intervalicities I(x(STv)) and I(y(STv)), and the grid-with
of T , denoted by gwT (π), is the maximum grid-width of a vertex of T . Finally, the grid-width
of a permutation π, denoted by gw(π), is the minimum of gwT (π) over all grid trees T of π.

It can be shown, by using the ideas of Ahal and Rabinovich [2], that the grid-width of a
permutation π corresponds, up to a multiplicative constant, to the tree-width of the so-called
adjacency graph Gπ associated with π. This also implies that grid-width admits an efficient
constant-factor approximation.

4.1 GT-recognizable classes
We shall now define a type of class whose recognition problem is tractable on inputs of
bounded grid-width. Informally speaking, a class is GT-recognizable if its members can be
recognized by a dynamic programming algorithm over their grid tree.

First, let us define an efficient way to encode merging of two interval families. A merge
description of interval families I1 and I2 into an interval family I is a pair (f, g), where

f : [|I1|+ |I2|]→ {1, 2} encodes the interleaving of the intervals of I1 and I2, and
g is a monotone function [|J |]→ [|I1|+|I2|] that describes first interval of each consecutive
sequence of intervals that merges to a single interval.

Observe that the knowledge of the merge description together with the interval families
I1 and I2 uniquely determines the resulting interval family I.

V. Jelínek, M. Opler, and P. Valtr 50:9

For the following definitions, fix a permutation π of length n with a grid tree T . For any
vertex v, let Iv be the unique minimal interval decomposition of x(STv) and similarly let Jv
be the unique minimal interval decomposition of y(STv). Let u be a vertex of T with children
v and w. A merge description of vertex u is then a pair (M1,M2), where

M1 is a merge description of the interval families Iv and Iw into Iu, and
M2 is a merge description of the interval families Jv and Jw into Ju.

It is easy to see that the shape of T (omitting the labels on its leaves) together with
merge descriptions of its inner vertices uniquely determines both the original T and π. For
technical reasons, we now allow grid trees to have unlabeled (empty) leaves, which represent
an empty subpermutation. For an empty leaf v, both interval families Iv and Jv are just
empty sets. We say that T is a merge-labeled tree if every inner vertex is labeled with its
merge description, every non-empty leaf has label ε0 and every empty leaf has label ε1.

We say that a permutation class C is grid tree recognizable, or GT-recognizable for short,
if there is an algorithm A that receives the grid-width g and outputs a tree automaton that
recognizes C over merge-labeled trees of grid-width at most g.

A tree automaton over merge-labeled trees is a tuple A = (Q,∆, F), where Q is a set
of states, F ⊆ Q is a set of final states, and ∆ is a set of transition rules of the form
(M, q1, q2) → q, for merge description M and states q1, q2 ∈ Q, and of rules of the form
εi → q for i ∈ {0, 1} and q ∈ Q. A run of A on a merge-labeled tree T is simply T labeled
with states from Q such that all the states together with their transitions are consistent with
the rules of ∆. A run is accepting if its state q in the root of T belongs to the set of final
states F .

As with NLOL and 2D-NLOL, the GT-recognizable classes are closed with respect to many
important operations.

I Lemma 4. If C and D are GT-recognizable classes, then the following classes are GT-
recognizable as well:
(a) The classes C ∩ D and C ∪ D.
(b) The classes Cr, Cc and C−1.
(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.
(d) The classes C ⊕ D and C 	 D.
(e) The class C � D.
Moreover, it can be shown that any class determined by a finite set of minimal forbidden
patterns is GT-recognizable.

Fix an input permutation π. Let A be a 2D-NLOL-recognizer and M its set of memory
states. We call a point set E a grid set if it can be expressed as Ex×Ey for some Ex, Ey ⊆ [n].
A tuple (E, g) is a grid set of positions if E is a grid point set and g : E →M . We say that
(E, g) is consistent if for any two points p = (px, py), r = (rx, ry) ∈ E such that px ≤ rx and
py ≤ ry, A can reach position (p, g(p)) from position (r, g(r)). The first lemma claims that if
we have a box with prescribed states in the lower left and upper right corner, which constitute
a reachable pair, then we can extend it to consistent grid set for arbitrary subgridding of the
box. The second simply states that for a consistent grid set, we can exchange contents of
any box as long as we do not violate reachability locally.

I Lemma 5. Let E = Ex × Ey be a grid set, e1 ≤ e2 the minimal and maximal element of
Ex and f1 ≤ f2 the minimal and maximal element of Ey. Let mx,mq ∈ A be a pair of states
such that (e1, f1) and (e2, f2) are reachable through mx and mq. Then there is a function
g : E →M such that (E, g) is consistent and moreover g(e1, f1) = mx and g(e2, f2) = mq.

ESA 2018

50:10 Generalized Coloring of Permutations

I Lemma 6. Let (E, g) be a grid set consistent over some subpermutation π′ of permuta-
tion π, and p = (p1, p2) and r = (r1, r2) two its points such that E ∩ [p1, p2] × [r1, r2]
contains only the four points (p1, p2), (r1, p2), (p1, r2), (r1, r2). Then replacing the subper-
mutation π′|[p1,r1)×[p2,r2) with a different subpermutation σ of π does not violate the con-
sistency property as long as the reachability is preserved for all the pairs among the points
(p1, p2), (r1, p2), (p1, r2), (r1, r2).

We may now state and prove our main result.

I Theorem 7. If C is a 2D-NLOL-recognizable class and D is a GT-recognizable class such
that every π ∈ D has grid-width bounded by g, then C � D is polynomially recognizable.

Proof. Let the input be a permutation π of length n, let A be the 2D-NLOL-recognizer of C
and B be the tree automaton recognizing D over merge-labeled trees of grid-with at most g.
The general outline of our approach is fairly simple, we want to efficiently emulate B on all
the subpermutations of π with grid-width at most g while at the same time simulating A
on the remaining elements. Throughout this proof we shall use the color red to color the
part belonging to C and blue for the part belonging to D. Let M denote the set of possible
memory states of A during computation on permutation of length n, and let N denote the
set of states of B. Observe that the size of M is at most nc for some constant c and the size
of N is at most f(g) for a computable function f .

We shall define a polynomially bounded number of problems that can be effectively solved
by recursion. A problem is a tuple (I,J ,Q, s), where
I and J are interval families of integers in [n] each of size at most g,
Q : I × J →M4 assigns four memory states of A to each pair of the intervals, and
s ∈ N is a possible state of the automaton B.

There are at most n4g choices for the intervals, at most n4cg2 choices for the memory
states and finally at most f(g) choices for the states of the tree automaton B, which makes
the total number of problems at most f(g)n4g+4g2c.

We then say that a problem (I,J ,Q, s) is feasible if there is a red-blue coloring of the
subset of π that lies in the union of I × [n] and [n]× J with the following properties:

the permutation πB corresponding to the blue elements is contained in I×J and moreover,
for every I = [i1, i2] ∈ I it holds that both (i1, πi1) and (i2, πi2) are colored blue, and
similarly for every J = [j1, j2] ∈ J we have that both (π−1

j1
, j1) and (π−1

j2
, j2) are colored

blue,
πB belongs to D and there exists its grid tree T of grid-width at most g whose root has
its minimal interval decompositions identical to I and J , and moreover, there is a run of
the automaton B over the tree T that assigns the state s to the root of T , and
for any two intervals I = [i1, i2] ∈ I and J = [j1, j2] ∈ J such that Q(I, J) =
(mx,my,mp,mq), the grid set (E, l) that contains the points (i1, j1), (i2 + 1, j1), (i1, j2 +
1), (i2 + 1, j2 + 1) with their respective states mx,my,mp,mq, is consistent over the
elements of πR.

Let m0 ∈M be the initial memory state of A, mF ∈M be a memory state corresponding
to a permutation in C and s ∈ N be a final state of B. We say that a problem (I,
J , Q, s) is initial if I and J contain only single intervals I = [i1, i2] and J = [j1, j2]
and Q(I, J) = (mx,my,mp,mq) such that the positions ((i1, j1),mx), ((i2, j1),my) and
((i1, j2),mp) are reachable from ((0, 0),m0), and ((n + 1, n + 1),mF) is reachable from
((i2 +1, j2 +1),mq). It follows from the definition that π belongs to C�D if and only if one of

V. Jelínek, M. Opler, and P. Valtr 50:11

I1 I2I2

J1

J1

J2

Figure 2 Decomposing problems into subproblems in Feasible. The original problem (left) and
its possible subproblems (center and right).

the initial problems is feasible. Thus, we can decide membership if we compute the feasibility
of all the initial problems since the additional conditions above are easily checkable.

We describe a recursive algorithm Feasible(I, J , Q, s) that takes a problem and either
reports unsuccess or outputs some red-blue coloring of π restricted to I × [n] ∪ [n]× J that
witnesses its feasibility. If we have a problem where both I and J contain only one interval,
and the interval is in fact just a single point, then the feasibility of such problem is easily
decidable. Otherwise, we recursively call Feasible on a pair of subproblems (I1, J1, Q1,
s1) and (I2, J2, Q2, s2) with the following properties:
I1, I2 are two disjoint non-empty interval families whose union is contained in I, and
J1,J2 two disjoint interval families whose union is contained in J ,
Q1 and Q2 are consistent with Q, and
s1, s2 ∈ N are arbitrary.

See Figure 2. There are at most n4g choices for the interval families. In order to bound the
number of states, observe that we have 8g2 positions for the memory states and f(g) states
of B, which gives us at most f(g)2n8g2 choices. This way, we defined at most f(g)2n4g+8cg2

pairs of strictly smaller subproblems and we call Feasible recursively on each of them.
We continue by describing the composition of outputs returned by Feasible on the

subproblems (I1,J1,Q1, s1) and (I2,J2,Q2, s2) into a coloring returned by Feasible on
the problem (I, J , Q, s). If at least one of the recursive calls ends unsuccessfully we move
to the next pair. Suppose that both of them are feasible and we have red-blue colorings
of π restricted to the union of Iα × [n] and [n]× Jα for α ∈ {0, 1}. Since we are trying to
emulate the interval merging of a grid tree, we color all the remaining elements in the union
of I × [n] and [n]× J red. Now we trivially check if the first condition of feasibility holds.
In order to satisfy the second condition, it is sufficient to verify that B contains a transition
((M1,M2), s1, s2)→ s where M1 and M2 are the merge descriptions of the interval families
I1, I2 into I and J1,J2 into J . Note that in our case the union I1 and I2 might not be
equal to I but we simply define the merge descriptions while forgetting the missing elements
(and similarly for J). This check takes at most h(g) time for some computable function h
depending on D.

Finally, we need to check the third condition of feasibility. Fix some intervals I ∈ I and
J ∈ J with Q = (mx,my,mp,mq). Since we have a coloring of I × [n] and [n]×J , it suffices
to check whether the corresponding grid set is consistent over the elements of πR precisely as
described in the condition. Simulating the nondeterministic recognizer on fixed input can be
done in at most O(nc+1) time, thus making the total time spent checking the third condition
at most O(g2nc+1). If all three verifications succeed we output the created coloring.

ESA 2018

50:12 Generalized Coloring of Permutations

It follows that the total time spent computing Feasible(I, J , Q, s), omitting the
recursive calls, is O(f(g)3h(g)g2n4g+8cg2+c+c2) where c2 is a constant independent of g that
captures the time spent per subproblem on enumerating all the possible subproblem pairs
and testing the first condition. Therefore, the total time required to solve all the problems is
at most O(f ′(g)n12cg2+8g+c+c2) where f ′ is some computable function.

Whenever Feasible outputs a coloring of an initial problem, we verify all the conditions
of feasibility and thus we obtain a coloring that witnesses π ∈ C � D. For the converse,
suppose that π ∈ C � D and we aim to show that we obtain a positive answer on the
membership problem. Fix a red-blue coloring witnessing π ∈ C � D. Due to Lemma 5, there
is a grid set (E, l) with E = [n+1]× [n+1] that is consistent with the accepting computation
of A over πR. We say that a problem (I, J , Q, s) is globally feasible if the problem is feasible,
there is an extension of some feasible coloring to the fixed coloring of the whole π and Q
assigns precisely the memory states prescribed by (E, l). As we mentioned before, if π can
be properly colored then there has to be some initial state that is globally feasible. We aim
to show that for a globally feasible problem (I, J , Q, s), Feasible successfully outputs a
feasible coloring which would therefore imply the correctness of the algorithm.

We prove this by induction on the size of I and J . For any globally feasible problem
with I and J such that both I × J contain a single point, Feasible clearly outputs some
coloring. For a larger globally feasible problem (I, J , Q, s), we first describe how to split
the problem into two specific subproblems that are also globally feasible. The splitting of
the interval families is uniquely determined by the fixed coloring of the whole permutation
together with the first condition of feasibility. Note that the first condition also ensures that
we do not reach leaves of the grid tree corresponding to πB before the interval families get
trivial. Second condition determines the states of the tree automaton and we define Q to be
consistent with the grid set (E, l). It is easy to see that these subproblems are also globally
feasible and thus the subsequent calls of Feasible return two partial colorings.

Finally, it remains to argue that it does not matter which feasible colorings we obtain
from the recursion. Suppose that the subsequent calls of Feasible returned feasible colorings
different from our fixed coloring. However, here we can use the global feasibility together with
Lemma 6 to see that we can replace the subpermutations box by box and the consistency is
preserved. Therefore, the coloring obtained by joining the feasible colorings of the subproblems
satisfies all the conditions and is returned by Feasible. J

5 Hard cases of merge-recognition

Let us mention, without going into details, that we can also provide examples of merges
C � D whose recognition problem is NP-hard, even when the classes C and D are themselves
determined by a single forbidden pattern. Specifically, we can prove the following result.

I Theorem 8. For any simple permutation α of order at least 4, the recognition problem for
the class Av(α)�Av(α) is NP-complete.

6 Concluding remarks and open problems

The complexity of many cases of (C � D)-recognition remains open. One natural question is
to consider the merge of GT-recognizable classes that have bounded grid-width but do not
belong to NLOL. Classes of this type include many important examples, such as the class
Av(2413, 3142) of separable permutations, or the class Av(213) and its symmetries.

V. Jelínek, M. Opler, and P. Valtr 50:13

I Open problem 1. What is the complexity of (C�D)-recognition when C and D are any two
(possibly identical) classes from the set {Av(2413, 3142),Av(213),Av(231),Av(132),Av(312)}?

It is also natural to consider ‘unbalanced’ merges, when one of the two classes is very
simple, e.g., the class Av(21) of increasing permutations. Our results imply that (C �Av(21))-
recognition is tractable when C is in NLOL or when C is a GT class of bounded grid-width,
but we know nothing about the remaining cases.

I Open problem 2. For which classes C is the (C �Av(21))-recognition polynomial?

References
1 D. Achlioptas, J. I. Brown, D. G. Corneil, and M. S. O. Molloy. The existence of uniquely
−G colourable graphs. Discrete Math., 179(1-3):1–11, 1998. doi:10.1016/S0012-365X(97)
00022-8.

2 S. Ahal and Y. Rabinovich. On complexity of the subpattern problem. SIAM J. Discrete
Math., 22(2):629–649, 2008. doi:10.1137/S0895480104444776.

3 M. Albert and V. Jelínek. Unsplittable classes of separable permutations. Electron. J.
Combin., 23(2):Paper 2.49, 20, 2016.

4 M. Albert, J. Pantone, and V. Vatter. On the growth of merges and staircases of permuta-
tion classes. arXiv:1608.06969, 2016.

5 M. H. Albert. On the length of the longest subsequence avoiding an arbitrary pattern in a
random permutation. Random Structures Algorithms, 31(2):227–238, 2007. doi:10.1002/
rsa.20140.

6 V. E. Alekseev, A. Farrugia, and V. V. Lozin. New results on generalized graph coloring.
Discrete Math. Theor. Comput. Sci., 6(2):215–221, 2004.

7 D. Bevan, R. Brignall, A. Elvey Price, and J. Pantone. Staircases, dominoes, and the
growth rate of 1324-avoiders. Electronic Notes in Discrete Mathematics, 61:123–129, 2017.
The European Conference on Combinatorics, Graph Theory and Applications (EURO-
COMB’17). doi:10.1016/j.endm.2017.06.029.

8 M. Bóna. A new upper bound for 1324-avoiding permutations. Combin. Probab. Comput.,
23(5):717–724, 2014. doi:10.1017/S0963548314000091.

9 M. Bóna. A new record for 1324-avoiding permutations. Eur. J. Math., 1(1):198–206, 2015.
doi:10.1007/s40879-014-0020-6.

10 P. Borowiecki. Computational aspects of greedy partitioning of graphs. J. Comb. Optim.,
35(2):641–665, 2018. doi:10.1007/s10878-017-0185-2.

11 P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for permutations. Inform. Process.
Lett., 65(5):277–283, 1998. doi:10.1016/S0020-0190(97)00209-3.

12 J. I. Brown. The complexity of generalized graph colorings. Discrete Appl. Math., 69(3):257–
270, 1996. doi:10.1016/0166-218X(96)00096-0.

13 A. Claesson, V. Jelínek, and E. Steingrímsson. Upper bounds for the Stanley–Wilf limit of
1324 and other layered patterns. J. Comb. Theory A, 119:1680–1691, 2012.

14 T. Ekim, P. Heggernes, and D. Meister. Polar permutation graphs are polynomial-time
recognisable. European J. Combin., 34(3):576–592, 2013. doi:10.1016/j.ejc.2011.12.
007.

15 A. Farrugia. Vertex-partitioning into fixed additive induced-hereditary properties is NP-
hard. Electron. J. Combin., 11(1):Research Paper 46, 9, 2004.

16 S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 82–101. ACM, New York, 2014. doi:10.1137/1.9781611973402.7.

ESA 2018

http://dx.doi.org/10.1016/S0012-365X(97)00022-8
http://dx.doi.org/10.1016/S0012-365X(97)00022-8
http://dx.doi.org/10.1137/S0895480104444776
http://dx.doi.org/10.1002/rsa.20140
http://dx.doi.org/10.1002/rsa.20140
http://dx.doi.org/10.1016/j.endm.2017.06.029
http://dx.doi.org/10.1017/S0963548314000091
http://dx.doi.org/10.1007/s40879-014-0020-6
http://dx.doi.org/10.1007/s10878-017-0185-2
http://dx.doi.org/10.1016/S0020-0190(97)00209-3
http://dx.doi.org/10.1016/0166-218X(96)00096-0
http://dx.doi.org/10.1016/j.ejc.2011.12.007
http://dx.doi.org/10.1016/j.ejc.2011.12.007
http://dx.doi.org/10.1137/1.9781611973402.7

50:14 Generalized Coloring of Permutations

17 V. Jelínek and M. Opler. Splittability and 1-amalgamability of permutation classes. Dis-
crete Math. Theor. Comput. Sci., 19(2):Paper No. 4, 14, 2017.

18 V. Jelínek and P. Valtr. Splittings and Ramsey properties of permutation classes. Adv.
Appl. Math., 63:41–67, 2015. doi:10.1016/j.aam.2014.10.003.

19 A. E. Kézdy, H. S. Snevily, and C. Wang. Partitioning permutations into increasing and
decreasing subsequences. J. Combin. Theory Ser. A, 73(2):353–359, 1996.

20 V. Rutenburg. Complexity of generalized graph coloring. In Mathematical foundations of
computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes in Comput. Sci.,
pages 573–581. Springer, Berlin, 1986. doi:10.1007/BFb0016284.

21 V. Vatter. An Erdős-Hajnal analogue for permutation classes. Discrete Math. Theor.
Comput. Sci., 18(2):Paper No. 4, 5, 2016.

http://dx.doi.org/10.1016/j.aam.2014.10.003
http://dx.doi.org/10.1007/BFb0016284

Solving Partition Problems Almost Always
Requires Pushing Many Vertices Around
Iyad Kanj
School of Computing, DePaul University Chicago, USA
ikanj@cs.depaul.edu

Christian Komusiewicz1

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany
komusiewicz@informatik.uni-marburg.de

Manuel Sorge2

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer Sheva, Israel
sorge@post.bgu.ac.il

Erik Jan van Leeuwen
Department of Information and Computing Sciences, Utrecht University, The Netherlands
e.j.vanleeuwen@uu.nl

Abstract
A fundamental graph problem is to recognize whether the vertex set of a graph G can be bipar-
titioned into sets A and B such that G[A] and G[B] satisfy properties ΠA and ΠB , respectively.
This so-called (ΠA,ΠB)-Recognition problem generalizes amongst others the recognition of
3-colorable, bipartite, split, and monopolar graphs. A powerful algorithmic technique that can
be used to obtain fixed-parameter algorithms for many cases of (ΠA,ΠB)-Recognition, as well
as several other problems, is the pushing process. For bipartition problems, the process starts
with an “almost correct” bipartition (A′, B′), and pushes appropriate vertices from A′ to B′ and
vice versa to eventually arrive at a correct bipartition.

In this paper, we study whether (ΠA,ΠB)-Recognition problems for which the pushing
process yields fixed-parameter algorithms also admit polynomial problem kernels. In our study,
we focus on the first level above triviality, where ΠA is the set of P3-free graphs (disjoint unions
of cliques, or cluster graphs), the parameter is the number of clusters in the cluster graph G[A],
and ΠB is characterized by a set H of connected forbidden induced subgraphs. We prove that,
under the assumption that NP 6⊆ coNP/poly, (ΠA,ΠB)-Recognition admits a polynomial kernel
if and only if H contains a graph of order at most 2. In both the kernelization and the lower
bound results, we make crucial use of the pushing process.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Theory of computation → Algorithm design techniques

Keywords and phrases Fixed-parameter algorithms, Kernelization, Vertex-partition problems,
Reduction rules, Cross-composition

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.51

1 CK gratefully acknowledges support by the DFG, project MAGZ, KO 3669/4-1.
2 MS gratefully acknowledges support by the People Programme (Marie Curie Actions) of

the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement number 631163.11, by the Israel Science Foundation (grant number
551145/14), and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant agreement number 714704.

© Iyad Kanj, Christian Komusiewicz, Manuel Sorge, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ikanj@cs.depaul.edu
mailto:komusiewicz@informatik.uni-marburg.de
mailto:sorge@post.bgu.ac.il
mailto:e.j.vanleeuwen@uu.nl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

1 Introduction

A graph G is a (ΠA,ΠB)-graph, for two hereditary graph properties ΠA,ΠB, if V (G) can
be partitioned into two sets A,B such that G[A] ∈ ΠA and G[B] ∈ ΠB. We call (A,B) a
(ΠA,ΠB)-partition of G. The (ΠA,ΠB)-Recognition problem is to recognize whether a
given graph is a (ΠA,ΠB)-graph. This captures a wealth of famous problems, including the
recognition of 3-colorable, bipartite, co-bipartite, and split graphs, and Π-Vertex Deletion,
which asks for a partition (A,B) such that G[A] ∈ Π and G[B] has order at most k for
some given k. In the most interesting (and NP-hard) cases [2, 13, 22], ΠA and ΠB are both
characterized by a (not necessarily finite) set of forbidden connected induced subgraphs. In
other words, ΠA and ΠB are each closed under the disjoint union of graphs in these cases.

Many such (ΠA,ΠB)-Recognition problems were shown fixed-parameter tractable by
Kanj et al. [20], for example when ΠA is the class of graphs that is a disjoint union of k
cliques, using parameter k. The central algorithmic idea that was employed in [20] is the
pushing process. The algorithm empties the input graph, and adds vertices back one by one
while maintaining a valid partition. Since adding a vertex might invalidate a previously
valid partition, vertices are pushed from one part of the partition to the other part in the
hope of obtaining a valid partition again. A similar algorithmic idea, known as iterative
localization, was used earlier by Heggernes et al. [19] to show the fixed-parameter tractability
of computing the cochromatic number of perfect graphs and the stabbing number of disjoint
rectangles with axes-parallel lines (using the standard parameters). Iterative localization
was also applied in follow-up work related to the cochromatic number [21].

A crucial ingredient in applying the pushing process is to understand the avalanches
caused by this process. For (ΠA,ΠB)-Recognition, an avalanche is triggered when a vertex
is pushed to A; this may imply that several other vertices must be pushed to B, which, in
turn, triggers the pushing of yet more vertices to A, and so on. Similar effects are visible
in the aforementioned cochromatic number and rectangle stabbing number problems. The
contribution of the previous works [19, 20, 21] was to bound the depth of this process by
some function of the parameter, leading to fixed-parameter algorithms. However, such a
bound does not provide an answer to the question of which vertices trigger avalanches and
their continued rolling, and whether the number of such vertices can somehow be limited.

This question can be naturally formalized in terms of the kernelization complexity of
problems to which the pushing process applies. A kernel reduces the size of the graph and
thus directly reduces the number of vertices triggering or being affected by avalanches when
an algorithm based on the pushing process is applied to the kernelized instance. In previous
work, Kolay et al. [21] studied the kernelization complexity of computing the cochromatic
number of a perfect graph G, which is the smallest number k = r + ` such that V (G)
can be partitioned into r sets that each induces a clique and ` sets that each induces an
edgeless graph. This problem has a parameterized algorithm using iterative localization
(i.e., a pushing process) [19], but Kolay et al. [21] showed that, unless NP ⊆ coNP/poly, this
problem does not admit a polynomial kernel parameterized by r + `. This suggests that,
for this problem, one cannot control the number of vertices affected by avalanches. The
kernelization complexity of (ΠA,ΠB)-Recognition, however, has not been studied so far.
Hence, it is open whether avalanches can be controlled to affect few vertices in this case.

Our Result. We study the kernelization complexity of (ΠA,ΠB)-Recognition through
the lens of the pushing process. To this end, we consider the first level above triviality of
the problem. When ΠA is characterized by a forbidden induced subgraph of order 2, then

I. Kanj, C. Komusiewicz, M. Sorge, E. J. van Leeuwen 51:3

(ΠA,ΠB)-Recognition can be solved in linear time [16], and thus we focus on the NP-hard
case when the forbidden induced subgraph has order 3 [2, 13, 22]. In particular, we let ΠA be
the class of so-called cluster graphs. These are the graphs that contain no P3 – the (simple)
path on three vertices – as an induced subgraph, or equivalently, graphs that are disjoint
unions of complete graphs. This leads to the following problem:

Cluster-Π-Partition
Input: A graph G = (V,E).
Question: Is there a partition (A,B) of V such that G[A] is a cluster graph
and G[B] ∈ Π?

Cluster-Π-Partition generalizes the recognition problem of many graph classes, such
as the recognition of monopolar graphs [6, 9, 8, 23] (Π is the set of edgeless graphs),
2-subcolorable graphs [5, 15, 18, 24] (Π is the set of cluster graphs), and several others [1, 4, 7].
Unfortunately, Cluster-Π-Partition is NP-hard in these special cases, and in general
when Π is characterized by a set of connected forbidden induced subgraphs [2, 13, 22]. Hence,
we consider the number k of clusters in the cluster graph G[A] as a parameter, and study
the pushing process with respect to this parameter.

Our result gives a complete characterization of the kernelization complexity of Cluster-
Π-Partition through a deeper understanding of the pushing process. We show that, while
for a specific Π the pushing process can be used to witness a small vertex set of size kO(1)

containing the vertices affected by avalanches, for all other Π, such a set of polynomial size
is unlikely to exist. Formally, we show that:

I Theorem 1.1. Let Π be a graph property characterized by a (not necessarily finite) set H
of connected forbidden induced subgraphs. Then unless NP ⊆ coNP/poly, Cluster-Π-
Partition parameterized by the number k of clusters in the cluster graph G[A] admits a
polynomial kernel if and only if H contains a graph of order at most 2.

The positive result corresponds to the recognition of monopolar graphs. Indeed, the graph
properties with forbidden induced subgraphs of order 2 are “being edgeless” and “being
nonedge-less”, but the latter is not characterized by connected forbidden induced subgraphs.

The pushing process and a deeper understanding of the avalanches it causes are indeed
central to both directions of the above result. In the proof of the positive result, we first
perform a set of data reduction rules to identify some vertices that are part of A or B in any
partition (A,B) of V (G) such that G[A] is a cluster graph with at most k clusters and G[B]
is edgeless. More importantly, these rules restrict the combinatorial properties of the graph
induced by the remaining vertices. With these restrictions, it becomes possible to model the
avalanches that occur using a bipartite graph. This graph enables two further reduction
rules that lead to the polynomial kernel.

For the negative result, we observe that the bipartite graph constructed in the kernel
is closely tied to the deterministic behavior of the pushing process for monopolar graphs:
when an edge in G[B] is created by pushing a vertex to B, the other endpoint of the edge
must be pushed to A (recall that G[B] must become edgeless). This limits the avalanches.
However, for more complex properties ΠB , such a simple correspondence no longer exists. In
particular, when the forbidden induced subgraphs have order at least 3, pushing a vertex
to B may create a forbidden induced subgraph in G[B] that can be repaired in at least
two different ways. Then the pushing process starts to behave nondeterministically, and
the avalanches grow beyond control. We exploit this intuition to exclude the existence of a
polynomial kernel, unless NP ⊆ coNP/poly, by providing a cross-composition.

ESA 2018

51:4 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

Other Parameterizations. One might consider two other parameters: the size of a largest
cluster in G[A] and the size of one of the sides. The size of a largest cluster in G[A] will not
lead to tractability, as Cluster-Π-Partition is NP-hard on subcubic graphs, even when Π
is the set of edgeless graphs [23]. Thus, we consider the number k of vertices in the graph
G[B], even for the broader (ΠA,ΠB)-Recognition problem, observing a general result:

I Theorem 1.2. (♠)3 (ΠA,ΠB)-Recognition has a kernel of size O(kd) parameterized by
k, the maximum size of B, when ΠA can be characterized by a collection H of forbidden
induced subgraphs, each of size at most d, and ΠB is hereditary.

We obtain the following better bound in terms of the number of vertices for Cluster-Π∆-
Partition, the restriction of Cluster-Π-Partition to the case when all graphs containing
a vertex of degree at least ∆ + 1 are forbidden induced subgraphs of Π.

I Theorem 1.3. (♠) Cluster-Π∆-Partition parameterized by k, the maximum size of B,
has an O((∆2 + 1) · k2)-vertex kernel.

Preliminaries. We follow standard graph-theoretic notation [11]. For ` ∈ N, we use [`] to
denote {1, 2, . . . , `}. Let v ∈ V (G) and X,Y ⊆ V (G). We say v is adjacent to X if v is
adjacent to at least one vertex in X. We say X is adjacent to Y if there exists x ∈ X that
is adjacent to Y . We say a partition (A,B) of V (G) is a cluster-Π partition if (1) G[A]
is a cluster graph and (2) G[B] ∈ Π. A monopolar partition of a graph G is a partition
of V (G) into a cluster graph and an independent set. Monopolar Recognition asks,
given a graph G and an integer k, whether G admits a monopolar partition (A,B) such that
the number of clusters in the cluster graph G[A] is at most k. For an instance (G, k) of
Monopolar Recognition, a monopolar partition of G is valid if the number of clusters
in the cluster graph of the partition is at most k. For relevant definitions of parameterized
complexity, e.g. polynomial problem kernels, see [12, 10]. Let Q be a language and (P, κ)
a parameterized problem, i.e., P is a language and κ : Σ∗ → N a parameterization. An
or-cross-composition from Q into (P, κ) is a polynomial-time algorithm that, given t instances
q1, . . . , qt ∈ Σ∗ of Q, computes an instance r ∈ Σ∗ such that κ(r) ≤ poly (log t+ maxt

i=1 |qi|) ,
and r ∈ P if and only if qi ∈ Q for some i ∈ [t]. If there is an or-cross-composition from
an NP-hard language into (P, κ), then there is no polynomial-size problem kernel for (P, κ)
unless NP ⊆ coNP/poly [17, 3].

2 A Polynomial Kernel for Monopolar Recognition Parameterized by
the Number of Clusters

The outline of the kernelization algorithm is as follows. First, we compute a decomposition
of the input graph into sets of vertex-disjoint maximal cliques which we call a clique
decomposition. This decomposition is used and updated throughout the data-reduction
procedure. We also maintain sets of vertices that are determined to belong to A or B. We
first apply a sequence of reduction rules whose aim is roughly to bound the number of
cliques and the number of edges between the cliques in the decomposition, and to restrict
the structure of edges between cliques. Then, we build an auxiliary graph to model how the
placement of a vertex in A or B implies an avalanche of placements of vertices in A and B. If
this avalanche creates too many clusters in A, then this determines the placement of certain

3 Due to lack of space, proofs of statements marked with (♠) are omitted.

I. Kanj, C. Komusiewicz, M. Sorge, E. J. van Leeuwen 51:5

vertices in A or B, and triggers another reduction rule. If this reduction rule does not apply
anymore, then the size of the auxiliary graph is bounded, which in turn, helps bounding the
size of the instance.

Clique Decompositions. Say that a clique C is a large clique if |C| ≥ 3, an edge clique if
|C| = 2 (i.e., C is an edge), and a vertex clique if |C| = 1 (i.e., C consists of a single vertex).
Let (G, k) be an instance of Monopolar Recognition. Suppose that Atrue ⊆ V (G) and
Btrue ⊆ V (G) are subsets of vertices that have been determined to be in A and B, respectively,
in any valid monopolar partition of (G, k). We define a decomposition (C1, . . . , Cr) of
V (G) \ (Atrue ∪ Btrue), referred to as a nice clique decomposition, that partitions this set
into vertex-disjoint cliques C1, . . . , Cr, r ≥ 1, such that the tuple (C1, . . . , Cr) satisfies the
following properties:
(i) In the decomposition tuple (C1, . . . , Cr), the large cliques appear before the edge cliques,

and the edge cliques, in turn, appear before the vertex cliques; that is, for each large
clique Ci and for each edge or vertex clique Cj we have i < j, and for each edge clique
Ci and for each vertex clique Cj we have i < j.

(ii) Each clique Ci, i ∈ [r− 1], is maximal in
⋃r

j=i Cj ; that is, there does not exist a vertex
v ∈

⋃r
j=i+1 Cj such that Ci ∪ {v} is a clique.

(iii) The subgraph of G induced by the union of the edge cliques and vertex cliques does
not contain any large clique.

The following fact is implied by property (ii) above:

I Fact 2.1. The vertex cliques in a nice clique decomposition form an independent set in G.

I Lemma 2.2. (♠) A nice clique decomposition of G can be computed in O(nm) time.

Let (G, k) be an instance of Monopolar Recognition. We initialize Atrue = Btrue = ∅,
V ′ = V (G) \ (Atrue ∪Btrue), and we compute a nice clique decomposition (C1, . . . , Cr) of V ′.
We will then apply reduction rules to simplify the instance (G, k). During this process, we
may identify vertices in V ′ to be added to Atrue or Btrue. At any point in the process, we will
maintain a partition (Atrue, Btrue, C1, . . . , Cr) of V (G) such that (1) Atrue ⊆ A and Btrue ⊆ B
for any valid monopolar partition (A,B) of V (G), and (2) (C1, . . . , Cr) is a nice clique
decomposition of V ′ = V (G) \ (Atrue ∪Btrue); we call such a partition (Atrue, Btrue, C1, . . . , Cr)
a normalized partition of V (G).

Basic Reduction Rules. We now describe our basic set of reduction rules. After the
application of a reduction rule, a normalized partition may change as the result of moving
vertices from

⋃r
i=1 Ci to Atrue∪Btrue, and we will need to compute a nice clique decomposition

of the resulting (new) set V (G) \ (Atrue ∪Btrue). However, a vertex that has been moved to
Atrue (resp. Btrue) will remain in Atrue (resp. Btrue). When a reduction rule is applied, we
assume that no reduction rule preceding it is applicable. The following rule is straightforward:

I Reduction Rule 2.3. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
Atrue is not a cluster graph with at most k clusters, or Btrue is not an independent set, then
reject the instance (G, k).

The following rule is correct because, for every monopolar partition (A,B) of G, Btrue ⊆ B
and B is an independent set.

I Reduction Rule 2.4. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there is a vertex v ∈ V (G)\ (Atrue∪Btrue) that is adjacent to Btrue then set Atrue = Atrue∪{v}.

ESA 2018

51:6 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

The following rule is correct, since Atrue ⊆ A for every monopolar partition (A,B) of G:

I Reduction Rule 2.5. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there is a vertex v ∈ V (G) \ (Atrue ∪ Btrue) that is either (1) adjacent to two clusters in
Atrue, or (2) adjacent to a cluster C in Atrue but not to all the vertices in C, then set
Btrue = Btrue ∪ {v}.

The proof of the following reduction rule is straightforward, after recalling that the vertex
cliques induce an independent set in G (Fact 2.1), and observing that no two vertices of an
independent set can belong to the same cluster in a cluster graph:

I Reduction Rule 2.6. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there is a vertex v ∈ V (G) \ (Atrue ∪Btrue) with more than k neighbors that are vertex cliques,
then set Atrue = Atrue ∪ {v}.

The next two reduction rules restrict the number and type of edges incident to large cliques.

I Reduction Rule 2.7. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If
there exists a vertex v ∈ V (G)\(Atrue∪Btrue) and a large clique Ci such that 1 < |N(v)∩Ci| ≤
|Ci| − 1, then set Atrue = Atrue ∪ (N(v) ∩ Ci).

Proof. Since 1 < |N(v) ∩ Ci| ≤ |Ci| − 1, v has at least two neighbors u,w ∈ Ci and at
least one nonneighbor x ∈ Ci. If a vertex z ∈ N(v) ∩ Ci is in B, for any valid monopolar
partition (A,B) of V (G), then since B is an independent set, it follows that Ci − {z} ⊆ A.
In particular, v is in A, at least one of u,w, say u, is in A, and x is in A. But this implies
that (v, u, x) forms an induced P3 in A, contradicting that A is a cluster graph. J

I Reduction Rule 2.8. (♠) Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G),
and let Ci, Cj, i < j, be two cliques such that Ci is a large clique and Cj is either a large
clique or an edge clique. If there are at least two edges between Ci and Cj then one of the
following reductions, considered in the listed order, is applicable:
Case (1) There are two edges uu′ and vv′, where u, v ∈ Ci and u′, v′ ∈ Cj, such that u 6= v

and u′ 6= v′. Let w ∈ Ci be such that w /∈ {u, v} (note that w exists because
|Ci| ≥ 3). Set Atrue = Atrue ∪ {w}.

Case (2) N(Cj) ∩ Ci = {v}. Set Btrue = Btrue ∪ {v}.
We can now bound the number of large cliques and edge cliques in yes-instances.

I Reduction Rule 2.9. (♠) Let (G, k) be an instance of Monopolar Recognition, and
let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If in (C1, . . . , Cr) either the
number of large cliques is more than k, or the number of large cliques plus the number of
edge cliques is more than 2k, then reject the instance (G, k).

I Reduction Rule 2.10. (♠) Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G),
let C be a cluster in Atrue, and let Ci, i ∈ [r], be a large clique. If v ∈ Ci is such that: (1) v
is the only vertex in Ci that is adjacent to C, or (2) v is the only vertex in Ci that is not
adjacent to C, then set Btrue = Btrue ∪ {v}.

I Reduction Rule 2.11. (♠) Let (G, k) be an instance of Monopolar Recognition, and
let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). If either (1) Btrue contains
more than k + 1 vertices or (2) there exists a cluster in Atrue that is not a singleton,
then reduce the instance (G, k) to an instance (G′, k) with G′ constructed as follows. Let
V (G′) = V1 ∪ V2 ∪ V3, where V1 = {uC | C is a cluster in Atrue}, V2 = {v1, . . . , vk+1}, and
V3 = C1 ∪ · · · ∪ Cr; and E(G′) = {vuC | v ∈ V2 ∧ uC ∈ V1} ∪ {vuC | v ∈ V3 ∧ uC ∈

I. Kanj, C. Komusiewicz, M. Sorge, E. J. van Leeuwen 51:7

V1 ∧ v is adjacent to C}. That is, G′ is constructed from G by introducing k+ 1 new vertices,
replacing each cluster C in Atrue (if any) by a single vertex uC whose neighborhood is the
neighborhood of C in C1, . . . , Cr plus the k+ 1 new vertices, and keeping C1, . . . , Cr the same.

If Reduction Rule 2.11 is applied, then after its application, we set Atrue to V1 and Btrue
to {v1, . . . , vk+1}. Note that in any valid monopolar partition (A,B) of the graph resulting
from the application of Reduction Rule 2.11, each vertex in V1 must be in A, being adjacent
to the k + 1 independent set vertices v1, . . . , vk+1, whereas the vertices v1, . . . , vk+1 can be
safely assumed to be in B since their only neighbors are in V1 ⊆ A.

Modeling the Pushing Process by a Bipartite Graph. We now have bounded the number
of large and edge cliques, and the size of Atrue and Btrue. It remains to bound the size of the
large cliques and the number of vertex cliques. The challenge here is that we need to identify
vertices such that putting them in A or B will eventually, after a series of pushes, lead either
to the creation of too many clusters in A, or to the addition of two adjacent vertices in B.
To model the avalanche of pushes to A or B, we introduce the following auxiliary graph.

I Definition 2.12. For a normalized partition (Atrue, Btrue, C1, . . . , Cr) of V (G), we define
the auxiliary bipartite graph Λ as follows. The vertex set of Λ is V (Λ) = VC ∪VI , where VC is
the set of all vertices in the large cliques in C1, . . . , Cr, and VI is the set of all vertices in the
vertex cliques in C1, . . . , Cr. The edge set of Λ is E(Λ) = {uv ∈ E(G) | u ∈ VC and v ∈ VI};
that is, E(Λ) consists of precisely the edges in E(G) that are between VC and VI .

Recall that VI is an independent set in G by Fact 2.1. For a vertex v ∈ V (Λ), we write
NΛ(v) for the set of neighbors of v in Λ. We have the following lemma:

I Lemma 2.13. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G) and consider
the graph Λ = (V (Λ), E(Λ)). Then the maximum degree of Λ, ∆(Λ), is at most k.

Proof. For every vertex v ∈ VC , we have |NΛ(v)| ≤ k because Reduction Rule 2.6 is
inapplicable. By property (ii) of a nice decomposition and the inapplicability of Reduction
Rule 2.7, every vertex clique that is adjacent to a large clique C is adjacent to exactly one
vertex in C. Since by Reduction Rule 2.9 the number of large cliques is at most k, every
vertex in VI , which is a vertex clique by definition of VI , has at most k neighbors in VC .
Therefore, for every vertex v ∈ VI , we have |NΛ(v)| ≤ k. J

For two vertices u, v ∈ V (Λ), write distΛ(u, v) for the length of a shortest path between
u and v in Λ. For a vertex v ∈ V (Λ) and i ∈ {0, . . . , n}, define N i(v) = {u ∈ V (Λ) |
distΛ(u, v) = i}. Write 0̄n (resp. 1̄n) for the set of even (resp. odd) integers in {0, . . . , n}.

I Lemma 2.14. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G), let Λ =
(V (Λ), E(Λ)) be the associated auxiliary graph, and let (A,B) be any valid monopolar partition
of G.
(i) For each v ∈ VC : If v ∈ B then NΛ(v) ⊆ A.
(ii) For each v ∈ VI : If v ∈ A then NΛ(v) ⊆ B.
(iii) For each v ∈ VC : If v ∈ B then N i

Λ(v) ⊆ B for i ∈ 0̄n, and N i
Λ(v) ⊆ A for i ∈ 1̄n.

(iv) For each v ∈ VI : If v ∈ A then N i
Λ(v) ⊆ A for i ∈ 0̄n, and N i

Λ(v) ⊆ B for i ∈ 1̄n.

Proof. (i): This trivially follows because B is an independent set.
(ii): Suppose that v ∈ VI is in A, and let u ∈ NΛ(v). Then u ∈ VC because Λ is bipartite,

and hence, by definition, u belongs to a large clique Ci for some i ∈ [r]. Suppose, to get
a contradiction, that u ∈ A. Since Ci is a large clique, and hence |Ci| ≥ 3, there exists a

ESA 2018

51:8 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

vertex w 6= u in Ci such that w ∈ A. By property (ii) of the nice decomposition (C1, . . . , Cr)
and the inapplicability of Reduction Rule 2.7, {v, w} /∈ E(G). But this implies that (v, u, w)
is an induced P3 in A, contradicting that A is a cluster graph. It follows that NΛ(v) ⊆ B.

(iii): This follows by repeated alternating applications of (i) and (ii) above.
(iv): This follows by repeated alternating applications of (ii) and (i) above. J

I Reduction Rule 2.15. (♠) Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G),
and let Λ = (V (Λ), E(Λ)) be the associated auxiliary graph.
(i) For any vertex v ∈ VC : If either

⋃
i∈0̄n

N i
Λ(v) contains two adjacent (in G) vertices or

|
⋃

i∈1̄n
N i

Λ(v)| > k, then set Atrue = Atrue ∪ {v}.
(ii) For any vertex v ∈ VI : If either |

⋃
i∈0̄n

N i
Λ(v)| > k or

⋃
i∈1̄n

N i
Λ(v) contains two

adjacent (in G) vertices, then set Btrue = Btrue ∪ {v}.

Proof. (i) Let v ∈ VC , and suppose that either
⋃

i∈0̄n
N i

Λ(v) contains two adjacent vertices
or |

⋃
i∈1̄n

N i
Λ(v)| > k. If v ∈ B for any valid partition (A,B) of G, then by part (iii) of

Lemma 2.14, it would follow that
⋃

i∈0̄n
N i

Λ(v) ⊆ B and
⋃

i∈1̄n
N i

Λ(v) ⊆ A. In either case
this contradicts that (A,B) is valid partition of G: If

⋃
i∈0̄n

N i
Λ(v) contains two adjacent

vertices, then B is not an independent set, and if |
⋃

i∈1̄n
N i

Λ(v)| > k then A contains more
than k clusters since

⋃
i∈1̄n

N i
Λ(v) induces an independent set in G.

(ii) The proof follows along the same lines as the proof of (i) (♠). J

I Definition 2.16. Let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G), and let
Λ = (V (Λ), E(Λ)) be the associated auxiliary graph. From each large clique Ci, i ∈ [r], fix
three vertices ui, vi, wi; define Vfixed = {ui, vi, wi | Ci is a large clique} to be the set of all
fixed vertices. Define Vedge = {u | u is contained in some edge clique Ci} to be the set of
vertices of the edge cliques, define Nedge = N(Vedge) ∩ V (Λ) to be the neighbors of Vedge in
V (Λ), and define N∪edge =

⋃
v∈Nedge

⋃
i≤n N

i
Λ(v) to be the set of all vertices in V (Λ) that are

reachable in Λ from the vertices in Nedge. Define Vinter = {u, v | u ∈ Ci∧v ∈ Cj ∧ i 6= j∧uv ∈
E(G) ∧ (Ci, Cj are large cliques)} to be the set of endpoints of edges between large cliques,
and define N∪inter =

⋃
v∈Vinter

⋃
i≤n N

i
Λ(v) to be the set of all vertices in V (Λ) that are reachable

in Λ from the vertices in Vinter. Finally, let Vrep = Atrue ∪Btrue ∪ Vfixed ∪N∪inter ∪ Vedge ∪N∪edge.

I Reduction Rule 2.17. (♠) Let (G, k) be an instance of Monopolar Recognition,
and let (Atrue, Btrue, C1, . . . , Cr) be a normalized partition of V (G). Let Vrep be as defined in
Definition 2.16. Set G = G[Vrep].

We now give the polynomial kernel whose existence was promised in Theorem 1.1.

I Theorem 2.18. Monopolar Recognition has a kernel of size at most 9k4 + 9k + 1
which can be computed in O(n2m) time.

Proof. Given an instance (G, k) of Monopolar Recognition, we apply Reduction Rules
2.3–2.17 exhaustively to (G, k). Clearly, the above rules can be applied in polynomial
time. Let (G′, k′) be the resulting instance, let (Atrue, Btrue, C1, . . . , Cr) be a normalized
partition of V (G′) with respect to which none of Reduction Rules 2.3–2.17 applies, and let
Λ = (V (Λ), E(Λ)) be the auxiliary graph. Note that, by Reduction Rule 2.17, V (G′) =
Vrep = Atrue ∪ Btrue ∪ Vfixed ∪ N∪inter ∪ Vedge ∪ N∪edge. By Reduction Rule 2.9, the number of
large cliques is at most k, and the number of edge cliques is at most 2k. It follows that
|Vfixed| ≤ 3k and |Vedge| ≤ 4k. For a vertex v ∈ Vedge, by Reduction Rule 2.6, v has at most
k neighbors in VI . Moreover, by Reduction Rule 2.8, v can have at most k neighbors in
VC , and therefore, |NΛ(v)| ≤ 2k, and |Nedge| ≤ 4k · 2k = 8k2. Since Reduction Rule 2.15
does not apply and ∆(Λ) ≤ k by Lemma 2.13, we have that, for any v ∈ V (Λ), we have

I. Kanj, C. Komusiewicz, M. Sorge, E. J. van Leeuwen 51:9

|
⋃

i≤n N
i
Λ(v)| ≤ ∆(Λ) · k ≤ k2. This implies that |N∪edge| ≤ 8k2 · k2 ≤ 8k4. Now since the

number of large cliques is at most k, by Reduction Rule 2.8, it follows that |Vinter| ≤
(

k
2
)
< k2.

Since for a vertex v ∈ V (Λ) we have |
⋃

i≤n N
i
Λ(v)| ≤ k2 as argued above, it follows that

|N∪inter| ≤ k4. Since |Atrue| ≤ k and |Btrue| ≤ k + 1, putting everything together, we conclude
that the number of vertices in V (G′), |Vrep|, is at most k+k+1+3k+k4+4k+8k4 ≤ 9k4+9k+1.
The running time proof is omitted (♠). J

3 Kernel-size lower bound

This section is dedicated to proving the “only if” direction of Theorem 1.1, which, together
with Theorem 2.18, completes its proof. In particular, we prove the following:

I Theorem 3.1. Let Π be a graph property characterized by a (not necessarily finite) set H of
connected forbidden induced subgraphs, each of order at least 3. Then unless NP ⊆ coNP/poly,
Cluster-Π-Partition parameterized by the number k of clusters in the cluster graph G[A]
does not admit a polynomial kernel.

Throughout, let Π be any graph property satisfying the conditions of Theorem 3.1. We
show Theorem 3.1 by giving a cross-composition from the NP-hard problem Colorful
Independent Set [14]. Herein, we are given a graph G = (V,E), k ∈ N, and a proper
k-coloring c : V → {1, . . . , k}; the question is whether there is an independent set with k

vertices in G that contains exactly one vertex of each color. In the remainder of this section,
we explain the construction behind the cross-composition and prove its correctness. We start
by describing the intuition behind the construction, and why the avalanches in this case
cannot be contained.

In contrast to Monopolar Recognition, the avalanches caused by the pushing process
for the general Cluster-Π-Partition problem are much more uncontrollable: If some push
to the Π-side B creates a forbidden induced subgraph M for Π in G[B], we can repair the
partition and “break” M by moving any vertex of M to the cluster graph side A. However,
each move of a vertex in M may lead – through further necessary pushes from A to B – to
distinct forbidden induced subgraphs in G[B], again with multiple possible ways of breaking
them in order to repair the partition. These avalanches cannot be contained, and lead to
many possible paths along which they can be repaired, which can be modeled using a tree-like
structure.

It is precisely the above-described behavior of avalanches that we exploit to obtain a
cross-composition: The main gadgets select a Colorful Independent Set instance and
independent-set vertices within that instance. Each such selection gadget has a trivial
cluster-Π partition with one caveat: It has one (singleton) cluster too many in G[A], and
only this vertex can be pushed into the Π-side B. We call this vertex the activator vertex
of the gadget. Pushing the activator vertex into B creates a forbidden induced subgraph
for Π, requiring further pushes that propagate along a root-leaf path in a binary-tree-like
structure. In the end, exactly one vertex corresponding to a leaf in this structure will be
pushed from A to B, transmitting the choice to further gadgets.

Setup. Let t instances of Colorful Independent Set be given, with graphs G1, . . . , Gt,
respectively. Below, we use an instance and its index in [t] interchangeably. Without loss
of generality, assume that the following properties hold; they can be achieved by simple
padding techniques. Each instance asks for an independent set of size k, each color class in
each graph has n vertices and n as well as t are powers of two. In the following, let m be the
maximum number of edges over all graphs Gi.

ESA 2018

51:10 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

We construct an instance of Cluster-Π-Partition as described below. The instance
consists of the graph G and asks for a cluster-Π partition (A,B) with at most d clusters
in G[A] (we specify d below). The graph G is constructed by first adding d vertices which we
call anchors (see below). The clusters in any cluster-Π partition (A,B) of G with d clusters
in G[A] will extend these anchor vertices into larger cliques. We then successively add gadgets
that are attached to these anchors. We first construct an instance-selection gadget that
selects one of the given t instances. Then we add a vertex-selection gadget for each instance
which selects k vertices in its corresponding instance if it has been selected. Finally, we add
verification gadgets that ensure that the selected vertices are pairwise nonadjacent in the
graph of the selected instance.

Throughout, we use the following notation. We denote by (A,B) an arbitrary fixed
cluster-Π partition of G. We fix M to be a forbidden induced subgraph of Π with minimum
number of vertices. By assumption, M contains at least three vertices. The vertices that
we introduce will be in three disjoint categories: helper vertices, dial vertices, and volatile
vertices. Their meaning is as follows. Helper vertices will always be contained in B and only
serve to impose certain properties on other vertices. Dial vertices are normally in A and
belong to a cluster extending around an anchor; some of these vertices may be pushed to B
by an avalanche. On the other hand, volatile vertices are normally in B and may be pushed
to A by an avalanche.

First, we introduce d anchor vertices, divided into 5 + 2k groups: a1
1, a

1
2; a2

1, . . . , a
2
2 log t;

a3
1, . . . , a

3
k+1; for each i ∈ [k], a3+i

1 , . . . , a3+i
log n; for each i ∈ [k], a3+k+i

1 , . . . , a3+k+i
n ; and

a5+2k
1 , . . . , a5+2k

m . Hence, we put d := 2 + 2 log(t) + k + k logn + kn + 2m. The groups of
anchors correspond to the gadgets constructed below in which they are used. Each anchor
vertex is a dial vertex. We fix each of the anchors into A by introducing, for each anchor aj

i ,
d+ 1 copies of M and, for each copy, identifying an arbitrary vertex of that copy with aj

i .
The vertices different from aj

i in the copies of M are helper vertices. If aj
i ∈ B, then out of

each of the d incident copies of M , at least one vertex is in A, and since these vertices are
pairwise nonadjacent, G[A] would contain at least d+ 1 clusters, which is a contradiction.
Thus, each anchor must be in A. When we construct cluster-Π partitions in the following we
always tacitly assume that anchors are in A and all helper vertices are in B.

We associate each anchor aj
i with a vertex set Dj

i that contains aj
i and induces a clique

in G (throughout the construction). We say that Dj
i is the dial of aj

i . Initially, D
j
i = {aj

i}.
Later on, other vertices may join Dj

i ; by saying a vertex v joins Dj
i , we mean that we put

v into Dj
i and make v adjacent to all other vertices in Dj

i . Intuitively, the set of anchors
corresponds to the clusters in G[A]. These clusters are divided into two types: Either an
anchor’s dial contains at least two vertices and the cluster consists only of vertices in the
anchor’s dial, or the anchor’s dial contains only the anchor, and a single volatile vertex may
join the anchor’s cluster. We use the following notation.

I Definition 3.2. Let (A,B) be a cluster-Π partition for G and D be a set of dials. Parti-
tion (A,B) is friendly with respect to D if each singleton dial in D is a singleton cluster
in G[A].

Next, we introduce the operation of making three vertices exclusive. Intuitively, this
operation is our main tool to fan out the possible pushes in avalanches according to a binary
tree: When u is pushed to B, either v or w can be pushed to A to repair the partition. We
use this construction extensively in the selection gadgets described below.

I. Kanj, C. Komusiewicz, M. Sorge, E. J. van Leeuwen 51:11

Given three vertices u, v, w ∈ V (G), by making u, v, and w exclusive we mean: (i) intro-
ducing a copy of M into G, (ii) identifying three distinct vertices of M with u, v, and w,
respectively, and (iii) fixing all remaining vertices ofM (if any) into B by making each of them
adjacent to both a1

1 and a1
2. The vertices in V (M) \ {u, v, w} are helper vertices. Observe

that V (M) \ {u, v, w} ⊆ B, because, otherwise, there would be a P3 in G[A] involving a1
1 and

a1
2. Furthermore, not all three u, v, w ∈ B since otherwise G[B] contains a copy of M . When

constructing cluster-Π partitions we will always tacitly assume that V (M) \ {u, v, w} ⊆ B
and ignore the vertices in V (M) \ {u, v, w}. Furthermore, to simplify showing that the
constructed partition (A,B) is a cluster-Π partition we will show that G[A] is a cluster graph,
that G[B]− {u, v, w} ∈ Π, that at least one of u, v, w is in A and that {u, v, w} ∩B do not
have any neighbors in G[B] other than {u, v, w}. Since Π is characterized by connected
forbidden induced subgraphs and the helper vertices will not receive further neighbors, this
suffices to prove that G[B] ∈ Π.

Instance Selection. The inner workings of the generic selection gadget described below use
the necessary pushes along a binary-tree-like structure outlined above.

For use as an instance-selection gadget, we need to take special care so that the number
of clusters used is roughly logarithmic in the number of instances. We achieve this by using
only two clusters (represented by anchors and their dials) per level in the binary-tree-like
structure of pushes. For use as a vertex-selection gadget, to bound the number of clusters
in the size of the largest instance, we need to ensure that all the vertex-selection gadgets
share their corresponding clusters. We achieve this by grouping the gadgets according to
the groups of anchors above; each gadget uses only anchors in their corresponding group
and shares these anchors with all other gadgets in this group. Essentially, the operation of
vertices joining dials makes it possible to define the selection gadgets in a relatively local way.

We will use the following (generic) construction both for selecting an instance and for
selecting the independent-set vertices in that instance. For this purpose, fix two construction
parameters p, q ∈ N, where p specifies which anchors (and dials) we use when constructing
the gadget and q specifies how many possible choices shall be modeled. Herein, we require
that q be a power of two. For the instance-selection gadget we will set p = 2 and q = t.

We introduce a new vertex v∗. Our goal is to construct a structure in which, starting
from a trivial cluster-Π partition (A,B), putting v∗ ∈ B triggers an avalanche of pushes
according to a path in a binary-tree-like structure. To this end, fix a rooted binary tree T
with q leaves (corresponding to the q = t instances of Colorful Independent Set for
the instance-selection gadget). Say a vertex in T is on level i ∈ [log q] if its distance from
the root is i. For i ∈ [log q], Li denotes the set of vertices at level i. The tree T will not be
part of the constructed graph, we use it only as a scaffold to define the actual vertices in the
graph.

For each vertex v ∈ V (T) except the root, introduce two vertices α(v), β(v) into G. Let i
be the level of v. Connect α(v) to both ap

2i−1 and β(v). Make β(v) join Dp
2i. Furthermore,

for each vertex u ∈ Li, i ∈ {0, . . . , log q}, let v, w be the two children of u in T and make
β(u), α(v), α(w) exclusive. If i = 0, then let v, w be the two vertices in level 1 in T and make
v∗, α(v), α(w) exclusive instead. This completes the construction of the selection gadget.
Vertex v∗ is a volatile vertex, as is α(v) for v ∈ V (T). Each β(v), v ∈ V (T), is a dial vertex.
Call the constructed gadget selection(p, q), and say that v∗ is the activator vertex, and that
the vertices in {β(v) | v ∈ Llog q} are the choice vertices. We fix an arbitrary order of the
choice vertices, so that we may speak of the ith choice vertex without confusion.

ESA 2018

51:12 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

I Lemma 3.3. (♠) Let G′ be the graph before applying selection(p, q) and G the graph
afterwards.
(i) If cluster-Π partition (A,B) has at most d clusters in G[A] and the activator vertex is

in B, then at least one choice vertex is in B.
(ii) If there is a cluster-Π partition (A′, B′) for G′ with d clusters in G′[A′], then there is

a cluster-Π partition (A,B) for G with d+ 1 clusters, where the activator vertex is a
singleton cluster and each choice vertex is in A. If (A′, B′) is friendly with respect to
the dials Dp

i , then (A,B) is friendly with respect to the dials Dp
i .

(iii) If G′ has a cluster-Π partition (A′, B′) that is friendly with respect to the dials Dp
i and

such that G′[A′] contains at most d clusters, then, for each i ∈ [q], there is a cluster-Π
partition (A,B) of G, such that graph G[A] contains at most d clusters, and out of all
choice vertices only the ith one is in B (and, necessarily, the activator vertex is in B).
Moreover, the choice vertex that is contained in B is isolated in G[B].

As mentioned, to construct the instance-selection gadget, we carry out selection(2, t). For
further reference, fix a bijection φ from the set of instances [t] to the choice vertices produced
by the construction. We use φ later to denote the choice vertex corresponding to an instance.

Vertex Selection. We now use the above construction selection(·, ·) to create vertex-selection
gadgets for each instance and each color. Each vertex-selection gadget selects one vertex of
the gadget’s color into an independent set when activated by putting the activator vertex
into B (which will be effected by the instance-selection gadget). The vertex-selection gadgets
for each instance are distinct, but they use dials which are shared by all instances.

In the first part of the construction of the vertex-selection gadgets, for each instance
r ∈ [t] and color i ∈ [k], carry out selection(3 + i, n). Let ψ∗r,i be the corresponding activator
vertex and fix a bijection ψr,i from the vertices V (Gr) of color i to the choice vertices. Make
ψ∗r,i join D3

1+i. Intuitively, if the activator vertex ψ∗r,i is put into B, the subgraph constructed
by selection(3 + i, n) enforces the push of a choice vertex into B, which by bijection ψr,i

correspond one-to-one to the vertices of color i in instance r. In this way, we model the
selection of an independent-set vertex.

In the second part of the construction of the vertex-selection gadgets, we introduce a
way to activate the vertex-selection gadgets of all colors if some instance r ∈ [t] has been
chosen. For this, carry out the following steps for each r ∈ [t]. Introduce two vertices ur, vr.
Make φ(r), ur, and vr exclusive. Fix ur ∈ B by making it adjacent to both a1, a2. Make vr

adjacent to a3
1 and, for each i ∈ [k], make vr adjacent to ψ∗r,i. Vertex ur is a helper vertex

and vr is a volatile vertex. This concludes the construction of the vertex-selection gadgets.
Intuitively, the selection of instance r is indicated by the fact that φ(r) ∈ B. Since ur ∈ B

and φ(r), ur, and vr are exclusive, vr ∈ A. Vertex vr forms a P3 with a3
1 and each ψ∗r,i.

Hence, the activator vertices ψ∗r,i of each vertex-selection gadget for instance r are in B. This
enforces the selection of an independent-set vertex of each color.

By iteratively applying Lemma 3.3, we can show that the above-constructed graph has
the properties that, if there is a cluster-Π partition (A,B) with d clusters in G[A], then there
is an instance for which the vertex-selection gadget for each color has one choice vertex in B
(that is, the corresponding vertex is selected); and, vice-versa, for each possible selection of
one vertex of each color in an instance, there is a corresponding cluster-Π partition.

Verification. For the verification gadgets it is again crucial to share clusters (anchors)
between many gadgets to keep the overall number of clusters in A small. For this, we use
|V | = k · n anchors that each represents, for each instance, one fixed vertex, and m pairs of
anchors that each represents, for each instance, one fixed edge.

I. Kanj, C. Komusiewicz, M. Sorge, E. J. van Leeuwen 51:13

Due to space constraints, the details of the construction are not given here, but the
working principle is as follows. Selecting a vertex v via a vertex-selection gadget will make it
necessary to push a vertex corresponding to v into the cluster of its associated anchor. This
push creates a P3 in A for each incident edge e, necessitating a further push. Namely, we
are required to push a vertex out of the cluster in A corresponding to one anchor associated
with e. Pushing the corresponding vertex for the other endpoint of e into B will complete
a forbidden induced subgraph, yielding that no two endpoints of an edge are selected. For
the other direction of the correctness proof, we show that it is possible to configure the
gadgets accordingly if one of the input instances is positive, which then concludes the proof
of Theorem 3.1.

References
1 Faisal N. Abu-Khzam, Carl Feghali, and Haiko Müller. Partitioning a graph into disjoint

cliques and a triangle-free graph. Discrete Appl. Math., 190-191:1–12, 2015.
2 Demetrios Achlioptas. The complexity of G-free colourability. Discrete Math.,

165–166(0):21–30, 1997.
3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds

by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.
4 Marin Bougeret and Pascal Ochem. The complexity of partitioning into disjoint cliques

and a triangle-free graph. Discrete Appl. Math., 217:438–445, 2017.
5 Hajo Broersma, Fedor V. Fomin, Jaroslav Nešetřil, and Gerhard J. Woeginger. More about

subcolorings. Computing, 69(3):187–203, 2002.
6 Sharon Bruckner, Falk Hüffner, and Christian Komusiewicz. A graph modification approach

for finding core-periphery structures in protein interaction networks. Algorithms Mol. Biol.,
10:16, 2015.

7 Zh. A. Chernyak and A. A. Chernyak. About recognizing (α, β) classes of polar graphs.
Discrete Math., 62(2):133–138, 1986.

8 Ross Churchley and Jing Huang. On the polarity and monopolarity of graphs. J. Graph
Theory, 76(2):138–148, 2014.

9 Ross Churchley and Jing Huang. Solving partition problems with colour-bipartitions.
Graph. Combinator., 30(2):353–364, 2014.

10 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

11 Reinhard Diestel. Graph Theory, 4th Edition. Springer, 2012.
12 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, Berlin, Heidelberg, 2013.
13 Alastair Farrugia. Vertex-partitioning into fixed additive induced-hereditary properties is

NP-hard. Electron. J. Comb., 11(1):R46, 2004.
14 Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On

the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009.

15 Jirí Fiala, Klaus Jansen, Van Bang Le, and Eike Seidel. Graph subcolorings: Complexity
and algorithms. SIAM J. Discrete Math., 16(4):635–650, 2003.

16 Stéphane Foldes and Peter L. Hammer. Split graphs. Congr. Numer., 19:311–315, 1977.
17 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct

PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.
18 John Gimbel and Chris Hartman. Subcolorings and the subchromatic number of a graph.

Discrete Math., 272:139–154, 2003.

ESA 2018

51:14 Solving Partition Problems Almost Always Requires Pushing Many Vertices Around

19 Pinar Heggernes, Dieter Kratsch, Daniel Lokshtanov, Venkatesh Raman, and Saket
Saurabh. Fixed-parameter algorithms for Cochromatic Number and Disjoint Rectangle
Stabbing via iterative localization. Infor. Comput., 231:109–116, 2013.

20 Iyad Kanj, Christian Komusiewicz, Manuel Sorge, and Erik Jan van Leeuwen. Parame-
terized algorithms for recognizing monopolar and 2-subcolorable graphs. J. Comput. Syst.
Sci., 92:22–47, 2018.

21 Sudeshna Kolay, Fahad Panolan, Venkatesh Raman, and Saket Saurabh. Parameterized
Algorithms on Perfect Graphs for Deletion to (r, l)-Graphs. In Proc. 41st MFCS, volume 58
of LIPIcs, pages 75:1–75:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

22 Jan Kratochvíl and Ingo Schiermeyer. On the computational complexity of (O,P)-partition
problems. Discuss. Math. Graph Theory, 17(2):253–258, 1997.

23 Van Bang Le and Ragnar Nevries. Complexity and algorithms for recognizing polar and
monopolar graphs. Theor. Comput. Sci., 528:1–11, 2014.

24 Juraj Stacho. On 2-subcolourings of chordal graphs. In Proc. 8th LATIN, volume 4957 of
LNCS, pages 544–554. Springer, 2008.

String Attractors: Verification and Optimization
Dominik Kempa
Department of Computer Science, University of Helsinki, Finland
dkempa@cs.helsinki.fi

https://orcid.org/0000-0003-2286-7417

Alberto Policriti
Department of Computer Science, University of Udine, Italy
alberto.policriti@uniud.it

https://orcid.org/0000-0001-8502-5896

Nicola Prezza
Department of Computer Science, University of Pisa, Italy
nicola.prezza@di.unipi.it

https://orcid.org/0000-0003-3553-4953

Eva Rotenberg
DTU Compute, Technical University of Denmark, Denmark
erot@dtu.dk

https://orcid.org/0000-0001-5853-7909

Abstract
String attractors [STOC 2018] are combinatorial objects recently introduced to unify all known
dictionary compression techniques in a single theory. A set Γ ⊆ [1..n] is a k-attractor for a string
S ∈ Σn if and only if every distinct substring of S of length at most k has an occurrence crossing
at least one of the positions in Γ. Finding the smallest k-attractor is NP-hard for k ≥ 3, but
polylogarithmic approximations can be found using reductions from dictionary compressors. It
is easy to reduce the k-attractor problem to a set-cover instance where the string’s positions
are interpreted as sets of substrings. The main result of this paper is a much more powerful
reduction based on the truncated suffix tree. Our new characterization of the problem leads to
more efficient algorithms for string attractors: we show how to check the validity and minimality
of a k-attractor in near-optimal time and how to quickly compute exact solutions. For example,
we prove that a minimum 3-attractor can be found in O(n) time when |Σ| ∈ O(3+ε

√
logn) for

some constant ε > 0, despite the problem being NP-hard for large Σ.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases Dictionary compression, String attractors, Set cover

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.52

Related Version A full version of the paper is available at [15], https://arxiv.org/abs/1803.
01695.

1 Introduction

The goal of dictionary compression is to reduce the size of an input string by exploiting its
repetitiveness. In the last decades, several dictionary compression techniques – some more
powerful than others – were developed to achieve this goal: Straight-Line programs [17]
(context-free grammars generating the string), Macro schemes [23] (a set of substring equations
having the string as unique solution), the run-length Burrows-Wheeler transform [4] (a string
permutation whose number of equal-letter runs decreases as the string’s repetitiveness

© Dominik Kempa, Alberto Policriti, Nicola Prezza, and Eva Rotenberg;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 52; pp. 52:1–52:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dkempa@cs.helsinki.fi
https://orcid.org/0000-0003-2286-7417
mailto:alberto.policriti@uniud.it
https://orcid.org/0000-0001-8502-5896
mailto:nicola.prezza@di.unipi.it
https://orcid.org/0000-0003-3553-4953
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.52
https://arxiv.org/abs/1803.01695
https://arxiv.org/abs/1803.01695
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 String Attractors: Verification and Optimization

increases), and the compact directed acyclic word graph [3, 6] (the minimization of the suffix
tree). Each scheme from this family comes with its own set of algorithms and data structures
to perform compressed-computation operations – e.g. random access – on the compressed
representation. Despite being apparently unrelated, in [16] all these compression schemes
were proven to fall under a common general scheme: they all induce a set Γ ⊆ [1..n] whose
cardinality is bounded by the compressed representation’s size and with the property that
each distinct substring has an occurrence crossing at least one position in Γ. A set with
this property is called a string attractor. Intuitively, positions in a string attractor capture
“interesting” regions of the string; a string of low complexity (that is, more compressible), will
generate a smaller attractor. Surprisingly, given such a set one can build a data structure of
size O(|Γ| polylog(n)) supporting random access queries in optimal time [16]: string attractors
therefore provide a universal framework for performing compressed computation on top of
any dictionary compressor (and even optimally for particular queries such as random access).

These premises suggest that an algorithm computing the smallest string attractor for
a given string would be a valuable tool for designing better compressed data structures.
Unfortunately, computing a minimum string attractor is NP-hard. The problem remains
NP-hard even under the restriction that only substrings of length at most k are captured by
Γ, for any k ≥ 3 and on large alphabets. In this case, we refer to the problem as k-attractor.
Not all hope is lost, though: as shown in [16], dictionary compressors are actually heuristics
for computing a small n-attractor (with polylogarithmic approximation rate w.r.t. the
minimum), and, more generally, k-attractor admits a O(log k)-approximation based on a
reduction to set cover. It is actually easy to find such a reduction: choose as universe the
set of distinct substrings and as set collection the string’s positions (i.e., set si contains
all substrings crossing position i). The main limitation of this approach is that the set of
distinct substrings could be quadratic in size; this makes the strategy of little use in cases
where the goal is to design usable (i.e., as close as possible to linear-time) algorithms on
string attractors.

The core result of this paper is a much more powerful reduction from k-attractor to
set-cover: the universe U of our instance is equal to the set of edges of the k-truncated suffix
tree, while the size of the set collection S ⊆ 2U is bounded by the size of the (2k−1)-truncated
suffix tree. First of all, we obtain a universe that is always at least k times smaller than the
naive approach. Moreover, the size of our set-cover instance does not depend on the string’s
length n, unless σ and k do. This allows us to show that k-attractor is actually solvable in
polynomial time for small values of k and σ, and leads us to efficient algorithms for a wide
range of different problems on string attractors.

The paper is organized as follows. In Section 1.1 we describe the notation used throughout
the paper and we report the main notions related to k-attractors. In Section 1.2 we give
the main theorem stating our reduction to set-cover (Theorem 5) and briefly discuss the
results that we obtain in the rest of the paper by applying it. Theorem 5 itself is proven in
Section 2 and is used in Section 3 to provide fast algorithms on string attractors. Finally, in
Section 3.4 we introduce and study the complexity of the closely-related sharp-k-attractor
problem: to capture all distinct substrings of length exactly k. The full version [15] of this
paper covers additional material related to the approximation of minimum k-attractors.

1.1 Notation and definitions
Throughout we consider a string S[1..n] of n symbols. We assume the reader to be familiar
with the notions of suffix tree [24], suffix array [18], and wavelet tree [10, 21]. By ST k(S)
we denote a k-truncated suffix tree of S, i.e., a compact trie containing all substrings of S

D. Kempa, A. Policriti, N. Prezza, and E. Rotenberg 52:3

of length at most k. E(T) denotes the set of edges of the compact trie T . L(T) denotes
the set of leaves at maximum string depth of the compact trie T (i.e., leaves whose string
depth is equal to the maximum string depth among all leaves). Let e = 〈u, v〉 be an edge in
the (truncated) suffix tree of S. With s(e) we denote the string read from the suffix tree
root to (and including) the first character in the label of e. λ(e) = |s(e)| is the length of
this string. We will also refer to λ(e) as the string depth of e. Note that edges e1, . . . , et of
the k-truncated suffix tree have precisely the same labels s(e1), . . . , s(et) of the suffix tree
edges e′1, . . . , e′t at string depth λ(e′i) ≤ k. It follows that we can use these two edge sets
interchangeably when we are only interested in their labels (this will be the case in our
results). Let SA[1..n] denote the suffix array of S. 〈le, re〉, with e ∈ E(ST k(S)) being an
edge in the k-truncated suffix tree, will denote the suffix array range corresponding to the
string s(e), i.e., SA[le..re] contains all suffixes prefixed by s(e).

Unless otherwise specified, we give the space of our data structures in words of Θ(logn)
bits each.

With the following definition we recall the notion of k-attractor of a string [16].

I Definition 1. A k-attractor of a string S ∈ Σn is a set of positions Γ ⊆ [1..n] such that
every substring S[i..j] with i ≤ j < i+ k has at least one occurrence S[i′..j′] = S[i..j] with
j′′ ∈ [i′..j′] for some j′′ ∈ Γ.

When k = n, we simply call Γ an attractor of S.

I Definition 2. A minimal k-attractor of a string S ∈ Σn is a k-attractor Γ such that Γ−{j}
is not a k-attractor of S for any j ∈ Γ.

I Definition 3. A minimum k-attractor of a string S ∈ Σn is a k-attractor Γ∗ such that, for
any k-attractor Γ of S, |Γ∗| ≤ |Γ|.

I Theorem 4. [16, Thm. 4.2] The problem of deciding whether a string S admits a
k-attractor of size at most t is NP-complete for k ≥ 3.

1.2 Overview of the contributions
Our main theorem is a reduction to set-cover based on the notion of truncated suffix tree:

I Theorem 5. Let S′ = #k−1S#k−1, with # /∈ Σ. An instance of k-attractor can be reduced
to a set-cover instance with universe equal to the set of edges of the k-truncated suffix tree of
S and set collection with one element for each leaf of the (2k − 1)-truncated suffix tree of S′.

Figure 1 depicts the main technique (Lemma 11) standing at the core of our reduction: a
set Γ is a valid attractor if and only if it marks (or colors, in the picture), all suffix tree edges.

Using the reduction of Theorem 5, we obtain the following results. First, we present
efficient algorithms to check the validity and minimality of a k-attractor. Note that it is
trivial to perform these checks in cubic time (or quadratic, with little more care). In Theorem
18 we show that we can check whether a set Γ ⊆ [1..n] is a valid k-attractor for S in O(n)
time and O(n) words of space. Using recent advances in compact data structures, we show
how to further reduce this working space to O(n log σ) bits without affecting query times
when k ≤ σO(1), or with a small time penalty in the general case. In particular, when k is
polynomial in the alphabet size, we can always check the correctness of a k-attractor in O(n)
time and O(n log σ) bits of space. With similar techniques, in Theorem 22 we show how to
verify that Γ is a minimal k-attractor for S in near-optimal O(n logn) time. To conclude, in
Theorem 24 we show that a minimum k-attractor can be found in O(n) + exp

(
O(σk log σk)

)
time. In particular, this result yields the following corollaries:

ESA 2018

52:4 String Attractors: Verification and Optimization

B

A BA

B
A BA

BABA

ABA

(a) The suffix tree of the string BBBABA, col-
ored corresponding to attractor positions 2, 5, 6.
This attractor is minimal: removing any position
leaves some edge uncolored.

B

A BA

B
A BA

BABA

ABA

(b) The suffix tree of the string BBBABA, col-
ored corresponding to attractor positions 3, 4.
This attractor is minimum: it is minimal and of
minimum size.

Figure 1 A position i “marks” (or, here, colors) a suffix tree edge e if and only if it crosses an
occurrence of the string read from the root to the first letter in the label of e. A set of positions
forms a k-attractor if and only if they color all edges of the k-truncated suffix tree (in this figure,
k = 6 and we color the whole suffix tree). Dashed lines indicate that the edge has multiple colors.
The string terminator $ (and edges labeled with $) is omitted for simplicity.

I Corollary 6. k-attractor is in P when σk log σk ∈ O(logn).

I Corollary 7. For constant k, a minimum k-attractor can be found in O(n) time if there
exists ε > 0 such that σk+ε ∈ O(logn).

Proof. Let σk+ε = σk(1+ε′), where ε′ = ε/k > 0 is a constant. For any constant ε′ > 0 we
have that σk log σk ∈ o(σk · (σk)ε′) = o(σk(1+ε′)). It follows that σk log σk ∈ o(logn), i.e., by
Theorem 24 we can find a minimum k-attractor in linear time. J

With the above result we can, for example, find a minimum 3-attractor in O(n) time
when σ ∈ O(3+ε

√
logn), for some ε > 0 (keep in mind that 3-attractor is NP-complete for

large alphabets).

2 A better reduction to set-cover

In this section we give our main result: a reduction from k-attractor to set-cover using a
universe smaller than the one used in [16]. We start with an alternative characterization of
k-attractors based on the k-truncated suffix tree.

I Definition 8 (Marker). j ∈ Γ is a marker for a suffix tree edge e if and only if

∃i ∈ SA[le..re] : i ≤ j < i+ λ(e)

Equivalently, we say that j marks e (see Figure 1).

I Definition 9 (Edge marking). Γ ⊆ [1..n] marks a suffix tree edge e if and only if there
exists a j ∈ Γ that marks e.

I Definition 10 (Suffix tree k-marking). Γ ⊆ [1..n] is a suffix tree k-marking if and only if it
marks every edge e such that λ(e) ≤ k (equivalently, every e ∈ E(ST k(S))).

When k = n we simply say suffix tree marking (since all edges satisfy λ(e) ≤ n). We now
show that the notions of k-attractor and suffix tree k-marking are equivalent.

I Lemma 11. Γ is a k-attractor if and only if it is a suffix tree k-marking.

D. Kempa, A. Policriti, N. Prezza, and E. Rotenberg 52:5

Proof. (⇒) Let Γ be a k-attractor. Pick any suffix tree edge e such that λ(e) ≤ k. Then,
λ(e) = |s(e)| ≤ k and, by definition of k-attractor, there exists a j ∈ Γ and an i such that
s(e) = S[i..i+ |s(e)| − 1] and i ≤ j ≤ i+ |s(e)| − 1. We also have that i ∈ SA[le..re] (being
〈le, re〉 precisely the suffix array range of suffixes prefixed by s(e)). Putting these results
together, we found an i ∈ SA[le..re] such that i ≤ j ≤ i+ λ(e)− 1 for some j ∈ Γ, which by
Definition 9 means that Γ marks e. Since the argument works for any edge e at string depth
at most k, we obtain that Γ is a suffix tree k-marking.

(⇐) Let Γ be a suffix tree k-marking. Let, moreover, s be a substring of S of length at
most k. Consider the lowest suffix tree edge e (i.e., the e with maximum λ(e)) such that s(e)
prefixes s. In particular, λ(e) ≤ k. Note that, by definition of suffix tree, every occurrence
S[i..i + |s(e)| − 1] = s(e) of s(e) in S prefixes an occurrence of s: S[i..i + |s| − 1] = s. By
definition of k-marking, there exists a j ∈ Γ such that j is a marker for e, which means
(by Definition 8) that ∃i ∈ SA[le..re] : i ≤ j < i + λ(e). Since i ∈ SA[le..re], SA[i] is an
occurrence of s(e), and therefore of s. But then, we have that i ≤ j < i+ λ(e) = i+ |s(e)| ≤
i+ |s|, i.e., S[SA[i]..SA[i] + |s| − 1] is an occurrence of s crossing j ∈ Γ. Since the argument
works for every substring s of S of length at most k, we obtain that Γ is a k-attractor. J

An equivalent formulation of Lemma 11 is that Γ is a k-attractor if and only if it marks
all edges of the k-truncated suffix tree. In particular (case k = n), Γ is an attractor if and
only if it is a suffix tree marking.

Lemma 11 will be used to obtain a smaller universe U in our set-cover reduction. With
the following lemmas we show that also the size of the set collection S can be considerably
reduced when k and σ are small.

I Definition 12 (k-equivalence). Two positions i, j ∈ [1..n] are k-equivalent, indicated as
i ≡k j, if and only if

S′[i− k + 1..i+ k − 1] = S′[j − k + 1..j + k − 1]

where S′[i] = # if i < 1 or i > n (note that we allow negative positions) and S′[i] = S[i]
otherwise, and # /∈ Σ is a new character.

It is easy to see that k-equivalence is an equivalence relation. First, we bound the size of
the distinct equivalence classes of ≡k (i.e., the size of the quotient set [1..n]/ ≡k).

I Lemma 13. |[1..n]/ ≡k | = |L(ST 2k−1(S′))| ≤ min{n, σ2k−1 + 2k − 2}

Proof. By definition of ≡k, the set [1..n]/ ≡k has one element per distinct substring of length
(2k − 1) in S′, that is, per distinct path from the suffix tree root to each of the nodes in
L(ST 2k−1(S′)). Clearly, |L(ST 2k−1(S′))| ≤ n. On the other hand, there are at most σ2k−1

distinct substrings of length 2k − 1 on Σ. Moreover, there are 2k − 2 additional substrings
to consider on the borders of S′ (to include the runs of symbol #). It follows that the
cardinality of L(ST 2k−1(S′)) is upper-bounded also by σ2k−1 + 2k − 2. J

We now show that any minimal k-attractor can have at most one element from each
equivalence class of ≡k.

I Lemma 14. If Γ is a minimal k-attractor, then for any 1 ≤ i ≤ n it holds |Γ ∩ [i]≡k | ≤ 1.

Proof. Suppose, by contradiction, that |Γ ∩ [i]≡k | > 1 for some i. Then, let j, j′ ∈ Γ ∩ [i]≡k ,
with j 6= j′. By definition of ≡k, S′[j − k + 1..j + k − 1] = S′[j′ − k + 1..j′ + k − 1]. This
means that if a substring of S of length at most k has an occurrence crossing position j

ESA 2018

52:6 String Attractors: Verification and Optimization

in Γ then it has also one occurrence crossing position j′ ∈ (Γ − {j}). On the other hand,
any other substring occurrence crossing any position j′′ 6= j, j′ is also captured by Γ− {j}
since j′′ belongs to this set. This implies that Γ− {j} is a k-attractor, which contradicts the
minimality of Γ. J

Moreover, if we swap any element of a k-attractor with an equivalent element then the
resulting set is still a k-attractor:

I Lemma 15. Let Γ be a k-attractor. Then, (Γ− {j}) ∪ {j′} is a k-attractor for any j ∈ Γ
and any j′ ≡k j.

Proof. Pick any occurrence of a substring s, |s| ≤ k, crossing position j. By definition of ≡k,
since j′ ≡k j there is also an occurrence of s crossing j′. This implies that Γ′ = (Γ−{j})∪{j′}
is a k-attractor. J

Lemmas 14 and 15 imply that we can reduce the set of candidate positions from [1..n]
to C = {min(I) | I ∈ [1..n]/ ≡k} (that is, an arbitrary representative – in this case, the
minimum – from any class of ≡k), and still be able to find a minimal/minimum k-attractor.
Note that, by Lemma 13, |[1..n]/ ≡k | ≤ min{n, σ2k−1 + 2k − 2}.

We can now prove our main theorem.

Proof of Theorem 5. We build our set-cover instance 〈U ,S〉 as follows. We choose U =
E(ST k(S)), i.e., the set of edges of the k-truncated suffix tree. The set collection S is defined
as follows: let si = {e ∈ E(ST k(S)) | i marks e}, C = {min(I) | I ∈ [1..n]/ ≡k} and put:

S = {si | i ∈ C}.

By definition of ≡k, each I ∈ [1..n]/ ≡k is unambiguously identified by a substring of length
2k − 1 of the string S′ = #k−1S#k−1. We therefore obtain |S| = |L(ST 2k−1(S′))|. We now
prove the correctness and completeness of the reduction.

Correctness. By the definition of our reduction, a solution {si1 , . . . , siγ} to 〈U ,S〉 yields a
set Γ = {i1, . . . , iγ} of positions marking every edge in E(ST k(S)). Then, Lemma 11 implies
that Γ is a k-attractor.

Completeness. Let Γ = {i1, . . . , iγ} be a minimal k-attractor. Then, Lemmas 14 and 15
imply that the following set is also a minimal k-attractor of the same size: Γ′ = {j1 =
min([i1]≡k), . . . , jγ = min([iγ]≡k)}. Note that Γ′ ⊆ {min(I) | I ∈ [1..n]/ ≡k}. By Lemma
11, Γ′ marks every edge in E(ST k(S)). Then, by definition of our reduction the collection
{sj1 , . . . , sjγ} covers U = E(ST k(S)). J

In the rest of the paper, we use the notation U = E(ST k(S)) and C = {min(I) | I ∈
[1..n]/ ≡k} to denote the universe to be covered (edges of the k-truncated suffix tree) and
the candidate attractor positions, respectively. Recall, moreover, that |U| ≤ min{n, σk} and
|C| ≤ min{n, σ2k−1 + 2k − 2}.

3 Faster algorithms

In this section we use properties of our reduction to provide faster algorithms for a range of
problems: (i) checking that a given set Γ ⊆ [1..n] is a k-attractor, (ii) checking that a given
set is a minimal k-attractor, and (iii) finding a minimum k-attractor. We note that problems
(i)-(ii) admit naive cubic solutions, while problem (iii) is NP-hard for k ≥ 3 [16].

D. Kempa, A. Policriti, N. Prezza, and E. Rotenberg 52:7

We assume that the input string S is over the integers alphabet [1..σ] where σ ∈ nO(1).
Note that suffix-sorting can be performed in linear time and space on such alphabets [14].

3.1 Checking the attractor property
Given a string S, a set Γ ⊆ [1..n], and an integer k ≥ 1, is Γ a k-attractor for S? We show
that this question can be answered in O(n) time.

The main idea is to use Lemma 11 and check, for every suffix tree edge e at string depth
at most k, if Γ marks e. Consider the suffix array SA[1..n] of S and the array D[1..n] defined
as follows: D[i] = succ(Γ, SA[i]) − SA[i], where succ(X,x) returns the smallest element
larger than or equal to x in the set X (i.e., D[i] is the distance between SA[i] and the
element of Γ following – and possibly equal to – SA[i]). D can be built in linear time and
space by creating a bit-vector B[1, n] such that B[i] = 1 iff i ∈ Γ and pre-processing B for
constant-time successor queries [13, 5]. We build a range-minimum data structure (RMQ)
on D (O(n) bits of space, constant query time [9]). Then for every suffix tree edge e such
that λ(e) ≤ k, we check (in constant time) that λ(e) > min(D[le..re]). The following lemma
ensures that this is equivalent to checking whether Γ marks e.

I Lemma 16. λ(e) > min(D[le..re]) if and only if Γ marks e.

Proof. (⇒) Assume that λ(e) > min(D[le..re]). By definition of D, this means that there
exist an index i′ ∈ [le..re] and a j ∈ Γ, with j ≥ i = SA[i′], such that j − i = D[i′] < λ(e).
Equivalently, i ≤ j < i+ λ(e), i.e., Γ marks e.

(⇐) Assume that Γ marks e. Then, by definition, there exist an index i′ ∈ [le..re] and a
j ∈ Γ such that SA[i′] = i ≤ j < i+λ(e). Then, j− i < λ(e). Since D[i′] is computed taking
the j ∈ Γ, j ≥ SA[i′], minimizing j − SA[i′], it must be the case that D[i′] ≤ j − i < λ(e).
Since i′ ∈ [le..re], this implies that min(D[le..re]) < λ(e). J

Together, Lemmas 11 and 16 imply that, if λ(e) > min(D[le..re]) for every edge at string
depth at most k, then Γ is a k-attractor for S. Since the suffix tree, as well as the other
structures used by our algorithm, can be built in linear time and space on alphabet [1..n] [7]
and checking each edge takes constant time, we obtain that the problem of checking whether
a set Γ ⊆ [1..n] is a valid k-attractor can be solved in O(n) time and O(n) words of space.
We now show how to improve upon this working space by using recent results in the field of
compact data structures. In the following result, we assume that the input string is packed
in O(n log σ) bits (that is, O(n/ logσ n) words).

We first need the following Lemma from [2]:

I Lemma 17. [2, Thm. 3] In O(n) time and O(n log σ) bits of space we can enumerate the
following information for each suffix tree edge e:

The suffix array range 〈le, re〉 of the string s(e), and
the length λ(e) of s(e).

Proof. In [2, Thm. 3] (see also [1]) the authors show how to enumerate the following
information for each right-maximal substring W of S in O(n) time and O(n log σ) bits of
space: |W | and the suffix array range range(Wb) of the string Wb, for all b ∈ Σ such that
Wb is a substring of S. Since W is right-maximal, those Wb are equal to our strings s(e)
(for every edge e). It follows that our problem is solved by outputting all range(Wb) and
|Wb| returned by the algorithm in [2, Thm. 3]. J

We can now prove our theorem. Note that the input set Γ ⊆ [1..n] can be encoded in n
bits, so also the input fits in O(n log σ) bits.

ESA 2018

52:8 String Attractors: Verification and Optimization

I Theorem 18. Given a string S ∈ [1..σ]n, a set Γ ⊆ [1..n], and an integer k ≥ 1, we can
check whether Γ is a k-attractor for S in:

Optimal O(n log σ) bits of space and O(n logε n) time, for any constant ε > 0, or
O(n(log σ + log k)) bits of space and O(n) time.

Proof. To achieve the first trade-off we will replace the D array (occupying O(n logn) bits)
with a smaller data structure supporting random access to D. We start by replacing the
standard suffix array with a compressed suffix array (CSA) [8, 11]. Given a text stored in
O(n log σ) bits, the CSA can be built in deterministic O(n) time and optimal O(n log σ) bits
of space [20], and supports access queries to the suffix array SA in O(logε n) time [11], for any
constant ε > 0 chosen at construction time. Given that D[i] = succ(Γ, SA[i])− SA[i] and we
can compute the successor function in constant time using a O(n)-bit data structure (array
B), D[i] can be computed in O(logε n) time. Using access to D, the RMQ data structure
(occupying O(n) bits) can be built in O(n logε n) time and O(n) bits of space [9, Thm. 5.8].
At this point, observe that the order in which we visit suffix tree edges does not affect the
correctness of our algorithm. By using Lemma 17 we can enumerate λ(e) and 〈le, re〉 for
every suffix tree edge e in linear time and compact space, and check λ(e) > min(D[le..re]),
whenever λ(e) ≤ k (Lemma 16).

To achieve the second trade-off we observe that in our algorithm we only explore the
suffix tree up to depth k (i.e., we only perform the check of Lemma 16 when λ(e) ≤ k),
hence any D[i] > k can be replaced with D[i] = k + 1 without affecting the correctness of
the verification procedure. In this way, array D can be stored in just O(n log k) bits. To
compute the D array in O(n) time and compact space we observe that it suffices to access all
pairs 〈i, SA[i]〉 in any order (not necessarily 〈1, SA[1]〉, 〈2, SA[2]〉, . . .). From [2, Thm. 10],
in O(n) time and O(n log σ) bits of space we can build a compressed suffix array supporting
constant-time LF function computation. By repeatedly applying LF from the first suffix
array position, we enumerate entries of the inverse suffix array ISA in right-to-left order
in O(n) time [2, Lem. 1]. This yields the sequence of pairs 〈ISA[i], i〉 = 〈j, SA[j]〉, for
i = n, . . . , 1 and j = ISA[i], which can be used to compute D in linear time and compact
space. As in the first trade-off, we use Lemma 17 to enumerate λ(e) and 〈le, re〉 for every
suffix tree edge e, and check λ(e) > min(D[le..re]), whenever λ(e) ≤ k (Lemma 16). J

Note that with the second trade-off of Theorem 18 we achieve O(n) time and optimal
O(n log σ) bits of space when k ≤ σO(1) (in particular, this is always the case when k is
constant). Note also that, since we now assume that the input string is packed in O(n/ logσ n)
words, the running time is not optimal (as Ω(n/ logσ n) is a lower-bound in this model).

3.2 Checking minimality
Given a string S, a set Γ ⊆ [1..n], and an integer k ≥ 1, is Γ a minimal k-attractor for
S? The main result of this section is that this question can be answered in near-optimal
O(n logn) time.

We first show that minimal k-attractors admit a convenient characterization based on
the concept of suffix tree k-marking.

I Definition 19 (k-necessary position). j ∈ Γ is k-necessary with respect to Γ if and only if
there is at least one suffix tree edge e such that:
1. λ(e) ≤ k,
2. j marks e, and
3. If j′ ∈ Γ marks e, then j′ = j

D. Kempa, A. Policriti, N. Prezza, and E. Rotenberg 52:9

I Definition 20 (k-necessary set). Γ is k-necessary if and only if all its elements are k-
necessary with respect to Γ.

When Γ is clear from the context, we just say k-necessary (referring to some j ∈ Γ)
instead of k-necessary with respect to Γ.

I Lemma 21. Γ is a minimal k-attractor if and only if:
1. It is a k-attractor, and
2. it is k-necessary.

Proof. (⇒) Let Γ be a minimal k-attractor. Let j ∈ Γ. Since Γ is minimal, Γ− {j} is not a
k-attractor. From Theorem 11, this implies that Γ− {j} is not a k-marking, i.e., there exists
a suffix tree edge e, with λ(e) ≤ k, that is not marked by Γ− {j}. On the other hand, the
fact that Γ is a k-attractor implies (Theorem 11) that Γ is a k-marking, i.e., it also marks
edge e. This, in particular, implies that j marks e. Now, let j′ ∈ Γ be a position that marks e.
Assume, by contradiction, that j′ 6= j. Then, j′ ∈ Γ− {j}, which implies that Γ− {j} marks
e. This is a contradiction, therefore it must be the case that j′ = j, i.e., j is k-necessary.
Since the argument works for any j ∈ Γ, we obtain that all j ∈ Γ are k-necessary.

(⇐) Assume that Γ is a k-attractor and all j ∈ Γ are k-necessary. Then, choose an
arbitrary j ∈ Γ. By Definition 19, there exists an edge e that is only marked by j, i.e.,
for every j′ ∈ Γ − {j}, j′ does not mark e. This implies (Theorem 11) that Γ − {j} is
not a k-attractor. Since the argument works for any j ∈ Γ, we obtain that Γ is a minimal
k-attractor. J

A naive solution for the minimality-checking problem is to test the k-attractor property
on Γ− {i} for every i ∈ Γ using Theorem 18. This solution, however, runs in quadratic time.
Our efficient strategy relies on colored range reporting and consists in checking, for every
suffix tree edge e, if there is only one j ∈ Γ marking it. In this case, we flag j as necessary.
If, in the end, all attractor positions are flagged as necessary, then the attractor is minimal
by Lemma 21. Notice that it can turn out that a single suffix tree edge can be marked by
more than one necessary j ∈ Γ.

I Theorem 22. Given a string S ∈ [1..σ]n, a set Γ ⊆ [1..n], and an integer k ≥ 1, we can
check whether Γ is a minimal k-attractor for S in O(n logn) time and O(n log |Γ|) space.

Proof. We associate to each element in Γ a distinct color from the set ΣΓ = {ci | i ∈ Γ}, and
we build a two-dimensional ΣΓ-colored grid L ⊆ [1..n]2 × ΣΓ (i.e., each point 〈i, j〉 in L is
associated with a color from ΣΓ) defined as L = {〈i,D[i], cSA[i]+D[i]〉, i = 1, ..., n}, that is,
at coordinates 〈i,D[i]〉 we insert a point “colored” with the color associated to the attractor
position immediately following – and possibly equal to – SA[i]. Then, for every suffix tree
edge e we check that L∩ [le..re]× [0..λ(e)−1] contains at least two distinct colors. If there are
at least two distinct colors ck 6= ck′ in the range [le..re]× [0..λ(e)− 1], then we do not mark
k and k′ as necessary (note that they could be marked later by some other edge, though).
However, even if there is only one color ck in the range this may not be enough to mark k as
necessary. The reason for this is that in array D we are tracking only the attractor position i′
immediately following each text position i; it could well be that the attractor position i′′ > i′

immediately following i′ marks e, but we miss it because we track only i′. This problem can
be easily solved inserting in L also a point corresponding to the second nearest attractor
position following every text position (so the number of points only doubles). It is easy to
see that this is sufficient to solve our problem, since we only aim at enumerating at most two
distinct colors in a range.

ESA 2018

52:10 String Attractors: Verification and Optimization

At this point, we have reduced the problem to the so-called three-sided colored orthogonal
range reporting problem in two dimensions: report the distinct colors inside a three-sided
orthogonal range in a grid. For this problem, the fastest known data structure takes O(n logn)
space and answers queries in O(log2 n+ i) time, where n is the number of points in the grid
and i is the number of returned points [12]. This would result in an overall running time
of O(n log2 n) for our algorithm. We note that our problem is, however, simpler than the
general one. In our case, it is enough to list two distinct colors (if any); we are not interested
in counting the total number of such colors or reporting an arbitrary number of them.

Our solution relies on wavelet trees [10]. First, we pre-process the set of v ≤ 2n points so
that they fit in a grid [1..v]× [1..v] such that every row and every column contain exactly
one point. Mapping the original query on this grid can be easily done in constant time using
well-established rank reduction techniques that we do not discuss here (see, e.g. [22]). We
can view this grid as an integer vector V ∈ [1..v]v, where each V [i] is associated with a color
V [i].c ∈ ΣΓ. We build a wavelet treeWT (V) on V . Let us denote the internal node ofWT (V)
reached following the path s ∈ {0, 1}∗. With Vs we denote the subsequence of V associated
with us, i.e., the subsequence of V such that the binary representation of each Vs[i] is prefixed
by s. For each internal node us we store (i) the sequence of colors Cs = Vs[1].c, . . . , Vs[|Vs|].c,
and (ii) a bitvector Bs[1..|Vs|] such that Bs[1] = 0 and Bs[i] 6= Bs[i− 1] iff Cs[i] 6= Cs[i− 1].
We pre-process each Bs for constant-time rank and select queries [13, 5]. Overall, our data
structure takes O(n log Γ) words of space (that is, O(n log Γ logn) bits: at each of the logn
levels of the wavelet tree we store v ≤ 2n colors).

To report two distinct colors in the range [l, r] × [l′, r′], we find in O(log v) time the
O(log v) nodes of WT (V) covering [l′, r′] as usually done when solving orthogonal range
queries on wavelet trees (see [21] for full details). For each such node us, let the range
Vs[ls, rs] contain the elements in common between Vs and V [l..r] (i.e., the range obtained
mapping [l..r] on Vs). We check whether in Bs[ls..rs] there are two distinct bits at adjacent
positions. If this is the case, we locate their positions Bs[i0] = 0 and Bs[i1] = 1, with
ls ≤ i0 = i1 − 1 ≤ rs (the case i1 = i0 − 1 is symmetric), and return the colors Cs[i0] and
Cs[i1]. By construction of Bs, Cs[i0] 6= Cs[i1] and therefore we are done. Note that i0 and i1
can be easily found in constant time using rank/select queries on Bs.

If, on the other hand, all sequences Bs[ls..rs] are unary, then we just need to retrieve the
O(log v) colors Cs[ls], for all the us covering the interval [l′, r′], and check if any two of them
are distinct (e.g. radix-sort them in linear time). Also this step runs in O(log v) time.

Overall, our solution uses O(n log |Γ|) space and runs in O(n log v) = O(n logn) time. J

3.3 Computing a minimum k-attractor
Computing a minimum k-attractor is NP-hard for k ≥ 3 and large σ. In this section we show
that the problem is actually polynomial-time-solvable for small k and σ. Our algorithm takes
advantage of both our reduction to set-cover and the verification algorithm of Theorem 18.

First, we give an upper-bound to the cardinality of the set of all minimal k-attractors.
This will speed up our procedure for finding a minimum k-attractor (which is, in particular,
minimal). By Lemma 13, there are no more than exp

(
O(σ2k)

)
k-attractors for S. With the

following lemma, we give a better upper-bound to the number of minimal k-attractors.

I Lemma 23. The number of minimal k-attractors is exp
(
O(σk log σk)

)
.

Proof. Let minimal(σ, k) denote the maximum number of minimal k-attractors on the
alphabet [1..σ] (independently of the string length n). Let Γ be a minimal k-attractor.
By Lemma 21, for every j ∈ Γ there is at least one edge e ∈ U marked by j only. Let

D. Kempa, A. Policriti, N. Prezza, and E. Rotenberg 52:11

edge : Γ → U be the function defined as follows: edge(j) = e such that (i) e is marked by
j only, and (ii) among all edges marked by j only, e is the one with the lexicographically
smallest s(e) (where, if s(e′) prefixes s(e′′), then we consider s(e′) smaller than s(e′′) in
lexicographic order). Let U ′ = edge(Γ) be the image of Γ through edge function. By its
definition, edge is a bijection between Γ and U ′. This implies that |Γ| = |U ′| ≤ |U| ≤ σk:
a minimal k-attractor is a set of cardinality at most σk chosen from a universe C of size
at most |C| ≤ σ2k−1 + 2k − 2 ≤ σ2k, therefore: minimal(σ, k) ≤

∑σk

i=1
(
σ2k

i

)
. We now give

an upper-bound to the function f(N, t) =
∑t
i=1
(
N
i

)
, where we assume t ≥ 2 for simplicity

(the hypothesis holds in our case since t = σk). Then, we will plug our bound in the above
inequality. Since

(
N
i

)
< Ni

i! , we have that

f(N, t) <
∑t
i=1

Ni

i!
=

∑t
i=1
(
N
t

)i · tii!
≤

∑t
i=1
(
N
t

)i ·∑t
i=1

ti

i!
∈ O

((
N ·e
t

)t)
We obtain our claim: minimal(σ, k) ≤ f(σ2k, σk) ∈ O(eσk · σkσk) ≤ exp

(
O(σk log σk)

)
. J

Using the above lemma, we now provide a strategy to find a minimum k-attractor.

I Theorem 24. A minimum k-attractor can be found in O(n) + exp
(
O(σk log σk)

)
time.

Proof. Let c(i) = S′[i−k+1..i+k−1], where S′[i] = # /∈ Σ if i < 1 or i > n and S′[i] = S[i]
otherwise, be the context string associated to position i. Consider the string

C = c(i1)$c(i2)$. . . $c(it)

where {i1, i2, . . . , it} = C and # 6= $ /∈ Σ. By our choice of C, the length of this string is
|C| = (|C| · 2k) − 1 ≤ (σ2k−1 + 2k) · 2k ∈ O(σ2k · k) ≤ exp

(
O(log σk)

)
. We can build C in

O(n+ |C|) time using the suffix tree of S (i.e., extracting all paths from the root to nodes at
string depth at most 2k − 1).

Let now Γ′′ ⊆ {k · (2j + 1) | j = 0, . . . , t − 1}. It is easy to see that Γ′ = {i | C[i] =
$ or C[i] = #} ∪ Γ′′ is a k-attractor for C if and only if the set Γ = {i(x−k)/(2k) | x ∈ Γ′′}
is a k-attractor for S. Suppose that Γ′ is a k-attractor for C, and consider a substring s
of S of length at most k. By construction of C, s is also a substring of C; in particular,
there is an occurrence C[i..i+ |s| − 1] = s crossing a position k · (2j + 1) ∈ Γ′′, for some j.
Then, ij ∈ Γ and, by the way we defined C, there is an occurrence of s crossing position
ij in S. Conversely, suppose that Γ is a k-attractor for S, and let s be a substring of C of
length at most k. If s contains either $ or #, then it must cross one of the positions in
{i | C[i] = $ or C[i] = #} ⊆ Γ′. Otherwise, it appears inside one of the substrings c(ik),
for some k ∈ [1..t]. But then, this means that s appears in S and, in particular, that it has
some occurrence s′ = s crossing a position ij ∈ Γ. From the way we constructed C, s has an
occurrence in C crossing position k · (2j + 1) ∈ Γ′′ ⊆ Γ′.

At this point, we check whether Γ′ is a k-attractor for C for all possible Γ′′, and return the
smallest such set. Instead of trying all subsets of C, we use Lemma 23 and generate only subsets
of C of size at most σk; these subsets will include all minimal k-attractors and, in particular,
all minimum k-attractors. By Lemma 23, there are at most exp

(
O(σk log σk)

)
such sets, and

each verification takes linear O(|C|) = exp
(
O(log σk)

)
time using Theorem 18. Overall, our

algorithm for the minimum k-attractor runs in O(n) + exp
(
O(log σk)

)
· exp

(
O(σk log σk)

)
time, which simplifies to O(n) + exp

(
O(σk log σk)

)
. J

ESA 2018

52:12 String Attractors: Verification and Optimization

3.4 Sharp attractors
The complexity of k-attractor has been fully characterized in [16], except for the particular
case k = 2: for k ≥ 3, the problem has been proven to be NP-complete, while for k = 1 it is
clearly solvable in linear time. While we have not been able to settle the case k = 2, we show a
polynomial-time solution under the additional constraint that only substrings of length exactly
equal to 2 are captured by the attractor set. We denote with the name k-sharp attractor this
variant. Formally, we define a k-sharp attractor of a string S ∈ Σn to be a set of positions
Γ ⊆ [1..n] such that every substring S[i..j] with j−i+1 = k has an occurrence S[i′..j′] = S[i..j]
with j′′ ∈ [i′..j′] for some j′′ ∈ Γ. In other words, a k-sharp-attractor is a subset that covers
all substrings of length exactly k. By Minimum-k-Sharp-Attractor we denote the
optimization problem of finding the smallest k-sharp attractor of a given input string, and by
k-Sharp-Attractor = {〈T, p〉 | String T has a k-sharp-attractor of size ≤ p} we denote
the corresponding decision problem. In the full version [15] of this paper we show that, for
any constant k ≥ 3, k-Sharp-Attractor is NP-complete. The proof is an adaptation of
the original one proposed for k-attractors in [16], and is based on a reduction from set cover.
Here we show that for k = 2 the problem can be solved in polynomial time (again, the case
k = 1 is trivially solvable in linear time).

I Theorem 25. Minimum 2-sharp-attractor is in P.

Proof. It is easy to show that 2-sharp-attractor is in P by a reduction to edge cover. Given
a string S, let V ⊆ Σ2 be the set of strings of length 2 that occur at least once in S. For
every substring of length 3 of the form xyz, add the edge (xy, yz) to the edge-set E, and
add self-loops for the first and last pair.

A position γ ∈ Γ thus corresponds to an edge, eγ , and it is easy to see that Γ is a
2-sharp-attractor if and only if {eγ |γ ∈ Γ} is an edge cover.

The number of vertices and edges in this graph are both ≤ n, so a minimum edge cover
can be found in O(n

√
n) time [19]. J

References
1 Djamal Belazzougui. Linear time construction of compressed text indices in compact space.

In Annual Symposium on Theory of Computing (STOC), pages 148–193. ACM, 2014.
2 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Linear-time string

indexing and analysis in small space. arXiv preprint 1609.06378, 2016.
3 Anselm Blumer, Janet Blumer, David Haussler, Ross McConnell, and Andrzej Ehren-

feucht. Complete inverted files for efficient text retrieval and analysis. Journal of the
ACM, 34(3):578–595, 1987.

4 Michael Burrows and David J. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

5 David Clark. Compact Pat trees. PhD thesis, University of Waterloo, 1998.
6 Maxime Crochemore and Renaud Vérin. Direct construction of compact directed acyclic

word graphs. In Combinatorial Pattern Matching (CPM), pages 116–129. Springer, 1997.
7 Martin Farach. Optimal suffix tree construction with large alphabets. In Annual Symposium

on Foundations of Computer Science (FOCS), pages 137–143. IEEE, 1997.
8 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,

52(4):552–581, 2005.
9 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range mini-

mum queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

D. Kempa, A. Policriti, N. Prezza, and E. Rotenberg 52:13

10 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Annual Symposium on Discrete Algorithms (SODA), pages 841–850. SIAM,
2003.

11 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM Journal on Computing, 35(2):378–
407, 2005.

12 Prosenjit Gupta, Ravi Janardan, and Michiel Smid. Further results on generalized inter-
section searching problems: counting, reporting, and dynamization. Journal of Algorithms,
19(2):282–317, 1995.

13 Guy Joseph Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon Uni-
versity, 1988.

14 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. Journal of the ACM, 53(6):918–936, 2006.

15 Dominik Kempa, Alberto Policriti, Nicola Prezza, and Eva Rotenberg. String attractors:
Verification and optimization. arXiv, 2018. arXiv:1803.01695.

16 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: String at-
tractors. In Annual Symposium on Theory of Computing (STOC), pages 827–840. ACM,
2018.

17 John C. Kieffer and En-Hui Yang. Grammar-based codes: A new class of universal lossless
source codes. IEEE Transactions on Information Theory, 46(3):737–754, 2000.

18 Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

19 Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algorithm for finding maximum

matching in general graphs. In Annual Symposium on Foundations of Computer Science
(SFCS), pages 17–27. IEEE, 1980.

20 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Space-efficient construction of com-
pressed indexes in deterministic linear time. In Annual Symposium on Discrete Algorithms
(SODA), pages 408–424. SIAM, 2017.

21 Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.
22 Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University

Press, 2016.
23 James A. Storer and Thomas G. Szymanski. Data compression via textual substitution.

Journal of the ACM, 29(4):928–951, 1982.
24 Peter Weiner. Linear pattern matching algorithms. In Annual Symposium on Switching

and Automata Theory (SWAT/FOCS), pages 1–11. IEEE, 1973.

ESA 2018

http://arxiv.org/abs/1803.01695

Data Reduction for Maximum Matching on
Real-World Graphs: Theory and Experiments
Viatcheslav Korenwein
TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany

André Nichterlein
TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany
andre.nichterlein@tu-berlin.de

Rolf Niedermeier
TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany
rolf.niedermeier@tu-berlin.de

Philipp Zschoche
TU Berlin, Institut für Softwaretechnik und Theoretische Informatik, Berlin, Germany
zschoche@tu-berlin.de

Abstract
Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected
graphs is among the most prominent problems of algorithmic graph theory. For n-vertex and m-
edge graphs, the best known algorithms run in Õ(m

√
n) time. We build on recent theoretical

work focusing on linear-time data reduction rules for finding maximum-cardinality matchings
and complement the theoretical results by presenting and analyzing (thereby employing the
kernelization methodology of parameterized complexity analysis) linear-time data reduction rules
for the positive-integer-weighted case. Moreover, we experimentally demonstrate that these data
reduction rules provide significant speedups of the state-of-the art implementation for computing
matchings in real-world graphs: the average speedup is 3800% in the unweighted case and “just”
30% in the weighted case.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Maximum-cardinality matching, maximum-weight matching, linear-time
algorithms, preprocessing, kernelization, parameterized complexity analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.53

Related Version http://arxiv.org/abs/1806.09683

Acknowledgements We are grateful to anonymous reviewers of ESA ’18 for constructive and
detailed feedback.

1 Introduction

In their book chapter on weighted matching, Korte and Vygen [11] write that “weighted
matching appears to be one of the ‘hardest’ combinatorial optimization problems that can be
solved in polynomial time”. Correspondingly, the design and analysis of matching algorithms
plays a pivotal role in algorithm theory as well as in practical computing. Complementing
the rich literature on matching algorithms (see Coudert, Ducoffe, and Popa [6] and Duan,
Pettie, and Su [8] for recent accounts, the latter also providing a literature overview), in
this work we focus on efficient linear-time data reduction rules that may help to speed up

© Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 53; pp. 53:1–53:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.nichterlein@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de
mailto:zschoche@tu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.53
http://arxiv.org/abs/1806.09683
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

53:2 Data Reduction for Maximum Matching on Real-World Graphs

superlinear matching algorithms. Notably, while recent breakthrough results on matching
(including linear-time approximation algorithms [7]) focus on the theory side, we study both
theory and practice, thereby achieving gains on both sides.

To achieve our results, we follow and significantly extend recent purely theoretical
work [13] presenting and analyzing linear-time data reductions for the unweighted case.
More specifically, on the theoretical side we complement these results by performing an
analysis for the weighted case (turning out to become more technical); on the practical side,
we demonstrate that these data reduction rules may serve to speed up the state-of-the-art
matching solver due to Kolmogorov [10]. Similar data reduction rules have been implemented
for finding maximum independent sets and minimum vertex covers [2, 5], leading to significant
speedups of algorithms for both problems.

Formally, we study the following two problems; note that we formulate them as decision
problems since this better fits with presenting our theoretical part where we prove kernelization
results (thereby employing the framework of parameterized complexity analysis); our data
reduction rules also work and are implemented for the optimization versions.

Maximum-Cardinality Matching
Input: An undirected graph G = (V, E) and s ∈ N.
Question: Is there a size-s subset M ⊆ E of nonoverlapping (that is, pairwise vertex-disjoint)

edges?

Maximum-Weight Matching
Input: An undirected graph G = (V, E), edge weights ω : E → N, and s ∈ N.
Question: Is there a subset M ⊆ E of nonoverlapping edges of weight

∑
e∈M

ω(e) ≥ s?

We remark that all our results extend to the case of rational weights; however, integers
are easier to cope with and are used in the implementation of Kolmogorov [10].

Our contributions. We lift known kernelization results [13] for Maximum-Cardinality
Matching to Maximum-Weight Matching. To this end, we provide algorithms to
efficiently apply our newly developed data reduction rules. Herein, we have a particular eye
on exhaustively applying the data reduction rules in linear time, which seems imperative in an
effort to practically improve matching algorithms. Hence, our main theoretical contribution
lies in developing efficient algorithms implementing the data reduction rules, thereby also
showing a purely theoretical guarantee on the amount of data reduction that can be achieved in
the worst case (this is also known as kernelization in parameterized algorithmics)1. We proceed
by implementing and testing the data reduction algorithms for Maximum-Cardinality
Matching and Maximum-Weight Matching, thereby demonstrating their significant
practical effectiveness. More specifically, combining them in form of preprocessing with
Kolmogorov’s state-of-the-art solver [10, 16] yield partially tremendous speedups on sparse
real-world graphs (taken from the SNP library [12]). Concretely, comparing Kolmogorov’s
algorithm with and without our data reduction algorithms, the average speedup is 3800% in
the unweighted case and “only” 30% in the weighted case.

Notation. We use standard notation from graph theory. All graphs considered in this
work are simple and undirected. For a graph G, we denote with E(G) = E the edge set.

1 We clearly remark, however, that our theoretical findings (that is, kernel size upper bounds based on
the feedback edge set number) are too weak in order to fully explain the practical success of the data
reduction rules.

V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche 53:3

We write uv to denote the edge {u, v} and G− v to denote the graph obtained from G by
removing v and all its incident edges. A feedback edge set of a graph G is a set X of edges
such that G−X is a tree or forest. The feedback edge number denotes the size of a minimum
feedback edge set. A matching in a graph is a set of pairwise disjoint edges. Let G be a graph
and let M ⊆ E(G) be a matching in G. We denote by match(G) the maximum-cardinality
matching respectively the maximum-weight matching in G, depending on whether we have
edge weights or not. If there are edge weights ω : E → N, then for a matching M we denote
by ω(M) =

∑
e∈M ω(e) the weight of M . Moreover, we denote with ω(G) the weight of a

maximum-weight matching match(G), i. e. ω(G) = ω(match(G)). A vertex v ∈ V is called
matched with respect to M if there is an edge in M containing v, otherwise v is called free
with respect to M . If the matching M is clear from the context, then we omit “with respect
to M”.

Kernelization. A parameterized problem is a set of instances (I, k) where I ∈ Σ∗ for a finite
alphabet Σ, and k ∈ N is the parameter. We say that two instances (I, k) and (I ′, k′) of
parameterized problems P and P ′ are equivalent if (I, k) is a yes-instance for P if and only
if (I ′, k′) is a yes-instance for P ′. A kernelization is an algorithm that, given an instance (I, k)
of a parameterized problem P , computes in polynomial time an equivalent instance (I ′, k′)
of P (the kernel) such that |I ′|+ k′ ≤ f(k) for some computable function f . We say that f

measures the size of the kernel, and if f(k) ∈ kO(1), then we say that P admits a polynomial
kernel. Often, a kernel is achieved by applying polynomial-time executable data reduction
rules. We call a data reduction rule R correct if the new instance (I ′, k′) that results from
applying R to (I, k) is equivalent to (I, k). An instance is called reduced with respect to
some data reduction rule if further application of this rule has no effect on the instance.

2 Kernelization Algorithms

In this section, we recall the data reduction rules for Maximum-Cardinality Matching
and show how to lift them to Maximum-Weight Matching. For Maximum-Cardinality
Matching two simple data reduction rules are due to a classic result of Karp and Sipser [9].
They deal with vertices of degree at most two.

I Reduction Rule 2.1 ([9]). Let v ∈ V . If deg(v) = 0, then delete v. If deg(v) = 1, then
delete v and its neighbor, and decrease the solution size s by one.

I Reduction Rule 2.2 ([9]). Let v be a vertex of degree two and let u, w be its neighbors.
Then remove v, merge u and w, and decrease the solution size s by one.

In each application of the two data reduction rules the considered vertex v is matched
(hence the decrease of the solution size). When applying Reduction Rule 2.1, then v is
matched to its only neighbor u. For Reduction Rule 2.2 the situation is not so clear as v

is matched to u or to w depending on how the maximum-cardinality matching in the rest
of the graph looks like. Thus, one can only fix the matching edge with endpoint v (in the
original graph) in a postprocessing step.

Both of the above data reduction rules can be exhaustively applied in linear time. While
for Reduction Rule 2.1 this is easy to see, for Reduction Rule 2.2 the algorithm needs further
ideas [3]. Using the above data reduction rules, one can show a kernel with respect to the
parameter feedback edge number, that is, the size of a minimum feedback edge set.

I Theorem 1 ([13]). Maximum-Cardinality Matching admits a linear-time computable
linear-size kernel with respect to the parameter feedback edge number k.

ESA 2018

53:4 Data Reduction for Maximum Matching on Real-World Graphs

v u

a b

c
5

6 9

3

4

u

a b

c

1 4 4

0

Figure 1 Left: Input graph. Right: The graph after applying Reduction Rule 2.4 to vertex v.

Applying the O(m
√

n)-time algorithm for Maximum-Cardinality Matching [14]
altogether yields an O(n + m + k1.5)-time algorithm, where k is the feedback edge number.

Weighted Matching. In the remainder of this section, we show how to lift Theorem 1
to the weighted case. Reduction Rules 2.1 and 2.2 are based on the simple observation
that for every vertex v ∈ V of degree at least one, there exists a maximum-cardinality
matching containing v: If v is not matched, then take an arbitrary neighbor u of v, remove
the edge containing u from a maximum-cardinality matching, and add the edge uv. This
observation does not hold in the weighted case – see e. g. Figure 1 (left side) where the only
maximum-weight matching {au, bc} leaves v free. Thus, we need new ideas to obtain data
reduction rules for the weighted case.

Vertices of degree at most one. We start with the simple case of dealing with vertices of
degree at most one. Here, the following data reduction rule is obvious.

I Reduction Rule 2.3. If deg(v) = 0 for a vertex v ∈ V , then delete v. If ω(e) = 0 for an
edge e ∈ E, then delete e.

Next, we show how to deal with degree-one vertices, see Figure 1 for a visualization.

I Reduction Rule 2.4. Let G = (V, E) be a graph with non-negative edge weights ω : E → N.
Let v be a degree-one vertex and let u be its neighbor. Then delete v, set the weight of every
edge e incident with u to max{0, ω(e)− ω(uv)}, and decrease the solution value s by ω(uv).

While proving the correctness of this rule (see next lemma) is relatively straightforward,
the naive algorithm to exhaustively apply Reduction Rule 2.4 is too slow for our purpose: If
the edge weights are adjusted immediately after deleting v, then exhaustively applying the
rule to a star requires Θ(n2) time. However, as we subsequently show, Reduction Rule 2.4
can be exhaustively applied in linear time.

I Lemma 2. Reduction Rule 2.4 is correct.

Due to space restrictions, we defer the poof of Lemma 2 to the arXiv version.

I Lemma 3. Reduction Rule 2.4 can be exhaustively applied in O(n + m) time.

Proof. The basic idea of the algorithm exhaustively applying Reduction Rule 2.4 in linear
time is as follows: We store in each vertex a number indicating the weight of the heaviest
incident edge removed due to Reduction Rule 2.4. Then, whenever we want to access the
“current” weight of an edge e, then we subtract from ω(e) the two numbers stored in the two
incident vertices. Once Reduction Rule 2.4 is no more applicable, then we update the edge
weights to get rid of the numbers in the vertices in order to create a Maximum-Weight
Matching instance.

V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche 53:5

The details of the algorithm are as follows. First, in O(n + m) time we collect all
degree-one vertices in a list L and initialize for each vertex v a counter c(v) := 0. Then, we
process L one by one. For a degree-one vertex v ∈ L, let u be its neighbor. We decrease s

by max{0, w(uv)−c(u)−c(v)}, then set c(u) := c(u)+max{0, w(uv)−c(u)−c(v)}, and then
delete v. If after the deletion of v its neighbor u has degree one, then u is added to L. Thus,
after at most n steps, each one doable in constant time, we processed L. When L is empty,
then in O(m) time we update for each edge uv its weight w(uv) := max{0, w(uv)−c(u)−c(v)}.
This finishes the description of the algorithm.

Observe that we have the following invariant when processing the list L: the weight of
an edge uv is max{0, w(uv) − c(u) − c(v)}. With this invariant, it is easy to see that the
algorithm indeed applies Reduction Rule 2.4 exhaustively. J

Note that after applying Reduction Rule 2.4 we can have weight-zero edges and thus
Reduction Rule 2.3 might become applicable. We do not know whether Reduction Rules 2.3
and 2.4 together can be applied exhaustively in linear time. However, for the kernel we
present in the end of this section it is sufficient to apply Reduction Rule 2.4 exhaustively.

Vertices of degree two. Lifting Reduction Rule 2.2 to the weighted case is more delicate
than lifting Reduction Rule 2.1 to Reduction Rules 2.3 and 2.4. The reason is that the two
incident edges might have different weights. As a consequence, we cannot decide locally what
to do with a degree-two vertex. Instead, we process multiple degree-two vertices at once. To
this end, we use the following notation.

I Definition 4. Let G be a graph. A path P = v0v1 . . . v` is a maximal path in G if ` ≥ 3,
the inner vertices v1, v2, . . . , v`−1 all have degree two in G, but the endpoints v0 and v` do
not, that is, degG(v1) = . . . = degG(v`−1) = 2, degG(v0) 6= 2, and degG(v`) 6= 2.

I Definition 5. Let G be a graph. A cycle C = v0v1 . . . v`v0 is a pending cycle in G if at
most one vertex in C does not have degree two in G.

The reason to study maximal paths and pending cycles is that we can compute a maximum-
weight matching in these graphs quickly, as stated next. This allows us to preprocess all
vertices in a maximal path or a pending cycle at once.

I Observation 6. Maximum-Weight Matching can be solved in O(n) time on paths and
cycles.

Proof. If the input graph G is a path, then by exhaustively applying Reduction Rules 2.3
and 2.4, we can compute a maximum-weight matching. Otherwise, if G is a cycle, then we
take an arbitrary edge e and distinguish two cases. First, we take e into a matching and
remove both endpoints from the graph. In the resulting path, we compute in linear time a
maximum-weight matching M . Second, we delete e and obtain a path for which we compute
in linear time a maximum-weight matching M ′. We then simply choose between M ∪ {e}
and M ′ the heavier matching as the result. J

Now, using Observation 6, we introduce data reduction rules for maximal paths and
pending cycles. Both rules are based on a similar idea which is easier to explain for a
pending cycle. Let C be a pending cycle and u ∈ C the degree-at-least-three vertex in C.
Then there are two cases: u is matched with a vertex not in C or it is not. Now let M

be a maximum-weight matching for G, and let M ′ be a maximum-weight matching with
the constraint that u is matched to a vertex outside C. Clearly, M ∩ E(C) is at least as

ESA 2018

53:6 Data Reduction for Maximum Matching on Real-World Graphs

u u z
ω(C)− ω(C − u)

Figure 2 Left: A pending cycle C with u being the vertex of degree more than three. Right: The
graph after applying Reduction Rule 2.5 where s is reduced by ω(C − u).

large as M ′ ∩ E(C). Looking only at C, all that we need to know is the difference of the
weights of these two matchings. This can be encoded with one vertex z which replaces the
whole cycle C (see Figure 2 for an illustration). Then, matching z corresponds to taking the
matching in C and not matching z corresponds to taking the matching in C−u. Formalizing
this idea, we arrive at the following data reduction rule.

I Reduction Rule 2.5. Let G be a graph with non-negative edge weights. Let C be a pending
cycle in G, where u ∈ C has degree at least three in G. Then replace C by an edge uz with
ω(uz) = ω(C)− ω(C − u) and decrease the solution value s by ω(C − u).

I Lemma 7. Reduction Rule 2.5 is correct.

Proof. Let C be a pending cycle in G where u ∈ C has degree at least three in G and
let G′ be the graph obtained applying Reduction Rule 2.5 to C. We show ω(G′) = ω(G)−
ω(C − u). Let M be a maximum-weight matching in G. Let MC := M \ E(C). Observe
that ω(MC) = ω(M) − ω(M ∩ E(C)) ≥ ω(G) − ω(C). If u is matched with respect
to MC , then we have MC = M \ E(C − u). Hence, ω(G′) ≥ ω(MC) ≥ ω(G) − ω(C − u).
If u is free with respect to MC , then MC ∪ {uz} is a matching in G′ with weight at
least (ω(G) − ω(C)) + (ω(C) − ω(C − u)) = ω(G) − ω(C − u). Hence, in both cases we
have ω(G′) ≥ ω(G)− ω(C − u).

Conversely, let M ′ be a maximum-weight matching in G′. Recall that, for an edge-
weighted graph H, match(H) denotes a maximum-weight matching in H. If uz ∈M ′, then
(M ′ \ {uz}) ∪ match(C) is a matching in G with ω(G′) − (ω(C) − ω(C − u)) + ω(C) =
ω(G′) + ω(C − u). Hence, ω(G) ≥ ω(G′) + ω(C − u). If uz 6∈M ′, then M ′ ∪match(C − u)
is a matching in G with weight at least ω(G′) + ω(C − u). Again, in both cases we
have ω(G) ≥ ω(G′) + ω(C − u). Combined with ω(G′) ≥ ω(G) − ω(C − u), we arrive
at ω(G′) = ω(G)− ω(C − u). J

The basic idea for maximal paths is the same as for pending cycles. The difference is that
we have to distinguish four cases depending on whether or not the two endpoints u and v

of a maximal path P are matched within P . To simplify the notation, we set ω(uv) = 0 if
the edge uv does not exist in G. Furthermore, P − u− v denotes the path obtained from
removing in P the vertices u and v. This avoids some trivial case distinctions.

Figure 3 visualizes the next data reduction rule.

I Reduction Rule 2.6. Let G = (V, E) be a graph with non-negative edge weights ω : E → N.
Let P be a maximal path in G with endpoints u and v. Then remove all vertices in P

except u and v, add a new vertex z and, if not already existing, add the edge uv. Furthermore,
set ω(uz) := ω(P − v) − ω(P − u − v), ω(vz) := ω(P − u) − ω(P − u − v), and ω(uv) :=
max{ω(uv), ω(P)− ω(P − u− v)}, and decrease the solution value s by ω(P − u− v).

V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche 53:7

u

v

P

u

v

z

ω(P − v)− ω(P − u− v)

ω(P − u)− ω(P − u− v)

ω(P)− ω(P − u− v)

Figure 3 Applying Reduction Rule 2.6 on a path P with endpoints u and v (where u and v are
not adjacent). The four choices for u and v on whether or not they are matched to a vertex within
the path are reflected by the three (full) edges on the right where at most one can be taken into a
matching. Since the edge uv is not contained in the input graph the weight of the edge uv in the
reduced graph simplifies to the displayed value.

I Lemma 8. Reduction Rule 2.6 is correct.

Proof. Let G be the input graph with a maximal path P with endpoints u and v. Furthermore,
let G′ be the reduced instance with z defined as in the data reduction rule. We show
that ω(G′) = ω(G)− ω(P − u− v).

Let M be a maximum-weight matching for G. We define MP := M \ E(P). Observe
that ω(MP) = ω(M)− ω(M ∩ E(P)) ≥ ω(G)− ω(P) We distinguish four cases.
1. If both u and v are matched with respect to MP , then MP = M \ E(P − u − v) and

hence ω(MP) = ω(M)− ω(M ∩ E(P − u− v)) ≥ ω(G)− ω(P − u− v).
2. If u is matched and v is free with respect to MP , then MP = M \ E(P − u) and

hence ω(MP) ≥ ω(G)−ω(P−u). Thus, MP∪{vz} is a matching of weight at least (ω(G)−
ω(P − u)) + (ω(P − u)− ω(P − u− v)) = ω(G)− ω(P − u− v).

3. If v is matched and u is free with respect to MP , then MP = M \ E(P − v) and
hence ω(MP) ≥ ω(G)−ω(P−v). Thus, MP∪{uz} is a matching of weight at least (ω(G)−
ω(P − v)) + (ω(P − v)− ω(P − u− v)) = ω(G)− ω(P − u− v).

4. Finally, if both u and v are free with respect to MP , then MP ∪ {uv} is a matching of
weight at least (ω(G)− ω(P)) + (ω(P)− ω(P − u− v)) = ω(G)− ω(P − u− v).

Thus in each case we have ω(G′) ≥ ω(G)− ω(P − u− v).
Conversely, let M ′ be a maximum-weight matching for G′. We define M ′ := M ′ \

{uz, vz, uv}. Again, we distinguish four cases.
1. If both u and v are matched with respect to M ′, then M ′ = M ′. Hence, M ′ ∪match(P −

u− v) is a matching in G with weight at least ω(G′) + ω(P − u− v).
2. If u is matched and v is free with respect to M ′, then w.l.o.g. vz ∈ M ′. Hence, M ′ ∪

match(P − u) is a matching in G with weight at least ω(G′)− (ω(P − u)− ω(P − u−
v)) + ω(P − u) = ω(G′) + ω(P − u− v).

3. If u is matched and v is free with respect to M ′, then w.l.o.g. uz ∈ M ′. Hence,
M ′ ∪match(P − v) is a matching in G with weight at least ω(G′)− (ω(P − v)− ω(P −
u− v)) + ω(P − v) = ω(G′) + ω(P − u− v).

4. Finally, if both u and v are free with respect to M ′, then w.l.o.g uv ∈M ′ as ω(uv) ≥ ω(uz)
and ω(uv) ≥ ω(vz). Now, we encounter two subcases.
a. If ω(uv) > ω(P)− ω(P − u− v), then the edge uv is in G and in G′, having the same

weight in both graphs. Then, M ′ ∪match(P − u− v) is a matching in G with weight
at least ω(G′) + ω(P − u− v).

b. Otherwise, M ′ ∪match(P) is a matching in G with weight at least ω(G′)− (ω(P)−
ω(P − u− v)) + ω(P) = ω(G′) + ω(P − u− v).

ESA 2018

53:8 Data Reduction for Maximum Matching on Real-World Graphs

Hence, in all cases we have ω(G) ≥ ω(G′) + ω(P − u − v). Combined with ω(G′) ≥
ω(G) + ω(P − u− v), we can infer that ω(G′) = ω(G)− ω(P − u− v). J

I Lemma 9. Reduction Rules 2.5 and 2.6 can be exhaustively applied in O(n + m) time.
Proof. First, we collect in O(n+m) time all maximal paths and all pending cycles [4, Lemma
2]. Given a maximal path or a pending cycle on ` vertices due to Observation 6 one can
compute the necessary maximum-weight matchings (at most four) in O(`) time. Moreover,
replacing the maximal path or the pending cycle by the respective structure is doable in O(`)
time. Applying Reduction Rules 2.5 and 2.6 does not create new maximal paths (recall that
a maximal path needs at least two vertices of degree two) or pending cycles. Thus, as all
maximal paths and pending cycles combined contain at most n vertices, Reduction Rules 2.5
and 2.6 can be exhaustively applied in O(n + m) time. J

Each of Reduction Rules 2.3, 2.4, and 2.6 can be exhaustively applied in linear time;
however, we do not know whether all these data reduction rules together can be exhaustively
applied in linear time. Note that after applying Reduction Rule 2.5 Reduction Rule 2.4 might
become applicable. For our problem kernel below, however, Lemmas 3 and 9 are sufficient.
In contrast to this subsequent theoretical result, in our experimental part it proved beneficial
to apply the rules exhaustively in order to remove as many vertices and edges as possible.
I Theorem 10. Maximum-Weight Matching admits a linear-time computable 20k-vertex
and 22k-edge kernel with respect to the parameter feedback edge number k.
Proof. The kernelization algorithm works as follows: First, exhaustively apply Reduction
Rule 2.3 in O(n + m) time. Second, exhaustively apply Reduction Rules 2.5 and 2.6 in
O(n + m) time (see Lemma 9). Third, exhaustively apply Reduction Rule 2.4 in O(n + m)
time (see Lemma 3). Without loss of generality, one can assume that the input graph does
not contain a cycle where each vertex has degree two, because otherwise this cycle can be
solved independently in linear time (see Observation 6). Note that when applying the rules in
this order, the resulting graph G = (V, E) does not contain any degree one-vertices, maximal
paths, or pending cycles.

We claim that G has less than 20k vertices and 22k edges. First, note that the input graph
contains at most k maximal paths [4, Lemma 1]. Thus, a feedback edge set X ⊆ E for G

contains at most 2k edges (each application of Reduction Rule 2.6 increases the feedback
edge set by one). Denote with V 1

G−X , V 2
G−X , and V ≥3

G−X the vertices that have degree one,
two, and more than two in G−X. Observe that all vertices in the reduced graph G have
degree at least two since it is reduced with respect to Reduction Rules 2.3 and 2.4. Thus,
|V 1

G−X | ≤ 4k as each leaf in G−X has to be incident to an edge in X. Next, since G−X is
a forest (or tree), we have |V ≥3

G−X | < |V 1
G−X | and thus |V ≥3

G−X | < 4k. Finally, each degree-two
vertex in G needs two neighbors of degree at least three since G is reduced with respect to
Reduction Rules 2.5 and 2.6. Thus, the vertices in V 2

G−X are either incident to an edge in X

or adjacent to one of the at most |V ≥3
G−X |+ 4k vertices in G that have degree at least three.

The sum over all degrees of vertices in V ≥3
G−X is∑

v∈V
≥3

G−X

degG−X(v) = 2m−
∑

v∈V =2
G−X

∪V =1
G−X

degG−X(v) ≤ 2(n− 1)− 2|V =2
G−X | − |V =1

G−X |

= 2|V ≥3
G−X |+ |V

1
G−X | − 2 < 12k.

It follows that |V 2
G−X | ≤ 16k. Thus, the number of vertices in G is |V 1

G−X | + |V 2
G−X | +

|V ≥3
G−X | ≤ 20k. Since G − X is a forest, it follows that G has at most |V | + 2k ≤ 22k

edges. J

V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche 53:9

Table 1 A selection of our test graphs from SNAP [12] with their respective size.

Graph n edges

email-Eu-core 1,005 16,064
p2p-Gnutella25 22,687 54,705
soc-...dot090221 82,141 3.49 · 105

com-dblp 3.2 · 105 1.05 · 106

amazon0505 4.1 · 105 2.44 · 106

wiki-topcats 1.8 · 106 2.54 · 107

Graph n edges

p2p-Gnutella08 6,301 20,777
ca-CondMat 23,133 93,439

soc-Slashdot0811 77,360 4.69 · 105

twitter-combined 81,306 1.34 · 106

roadNet-CA 2 · 106 2.77 · 106

soc-LiveJournal1 4.8 · 106 4.29 · 107

3 Experimental Evaluation

In this section we provide an experimental evaluation of the data reduction rules on real-world
graphs ranging from a few thousand vertices and edges to a hundred million vertices and
edges. We analyze the effectiveness and efficiency of the kernelization as well as the effect on
the subsequently used state-of-the-art solver “blossom5” of Kolmogorov [10].

3.1 Setup & Implementation Details
Setup. Our program is written in C++14 and source code in available from http://fpt.
akt.tu-berlin.de/software/. One can replicate all experiments by following the manual
next to the source code. We ran all our experiments on an Intel(R) Xeon(R) CPU E5-1620
3.60GHz machine with 64GB main memory under the Debian GNU/Linux 7.0 operating
system, where we compiled the program with GCC 5.4.0. All tested graphs are from the
established SNAP [12] data set. See Table 1 for a sample list of graphs with their respective
number of vertices and edges. The weighted graphs are generated from the unweighted
graphs by adding edge-weights between 1 and 1000 chosen independently and uniformly at
random. The full list is given in the arXiv version.

Implementation Details. The first step of our program is to read the graph into our data
structure. On average this took 9% of the overall running time. When running blossom5 we
also measured the time to handover the graph from our data structure to the solver’s data
structure, which took on average 4% of the overall running time.

We implemented kernelization algorithms for the unweighted and weighted case. The
first kernelization is for Maximum-Cardinality Matching, which exhaustively applies
Reduction Rules 2.1 and 2.2. Note that one can (theoretically) improve our implementation
of Reduction Rule 2.2 by a linear-time algorithm of Bartha and Kresz [3]. However, our naive
implementation proved to be sufficient. The second kernelization is for Maximum-Weight
Matching. We use the algorithms described in Lemmas 3 and 9 to apply Reduction
Rules 2.4 to 2.6. Deviating from the algorithm described in Theorem 10, based on empirical
observations our program applies Reduction Rules 2.3 to 2.6 as long as possible. Hence, the
kernelization does not run in linear time but further shrinks the input graph.

Note that all reported running times involving blossom5 are averages over 100 runs where
we randomly permute vertex indices in the input. Although this permutation yields an
isomorphic graph, we empirically observed that in the unweighted case the running time of
blossom5 heavily depends on the permutation. For example, choosing a “good” or a “bad”
permutation for the same graph yields speed ups of a factor 20 or more. (See the arXiv
version for the results without this permutation.) When using blossom5 in the weighted case,

ESA 2018

http://fpt.akt.tu-berlin.de/software/
http://fpt.akt.tu-berlin.de/software/

53:10 Data Reduction for Maximum Matching on Real-World Graphs

as
20
00
01
02

em
ai
l-E

u-
co
re

ca
-G
rQ

c

p2
p-
G
nu
te
lla
08

ca
-H
ep
Th

p2
p-
G
nu
te
lla
09

p2
p-
G
nu
te
lla
06

p2
p-
G
nu
te
lla
05

p2
p-
G
nu
te
lla
04

p2
p-
G
nu
te
lla
25

fa
ce
bo
ok
-c
om

bi
ne
d

ca
-C
on
dM

at
ca
-H
ep
Ph

em
ai
l-E

nr
on

ca
-A
st
ro
Ph

so
c-
sig

n-
Sl
as
hd
ot
08
11
06

so
c-
sig

n-
Sl
as
hd
ot
09
02
16

so
c-
sig

n-
Sl
as
hd
ot
09
02
21

so
c-
Ep

in
io
ns
1

so
c-
Sl
as
hd
ot
08
11

so
c-
sig

n-
ep
in
io
ns

so
c-
Sl
as
hd
ot
09
02

lo
c-
go
wa

lla
-e
dg
es

am
az
on
03
02

co
m
-a
m
az
on

co
m
-d
bl
p

we
b-
No

tr
eD

am
e

tw
itt
er
-c
om

bi
ne
d

ro
ad
Ne

t-P
A

we
b-
St
an
fo
rd

ro
ad
Ne

t-T
X

am
az
on
03
12

am
az
on
06
01

am
az
on
05
05

co
m
-y
ou
tu
be

ro
ad
Ne

t-C
A

we
b-
G
oo
gl
e

wi
ki
-T
al
k

we
b-
Be
rk
St
an

as
-sk

itt
er

so
c-
po
ke
c-
re
la
tio

ns
hi
ps

wi
ki
-to

pc
at
s

co
m
-lj

so
c-
Li
ve
Jo
ur
na
l1

co
m
-o
rk
ut

0

50

100

G
ra
ph

siz
e
(n

+
m
)
[%

]
input size (=100 %) kernel size (unweighted) kernel size (weighted)

Figure 4 Percentage of the number of remaining edges and vertices after the respective kerneliza-
tion algorithms (weighted, unweighted) relative to the numbers of vertices and edges in the input
graph.

we did not observe this effect. For consistency, however, we take the average running time
also in the weighted case. Note that our kernelization algorithm for the unweighted case was
not at all affected by changing the permutation. In the weighted case, however, for different
permutations the rules were applied in different order resulting in kernels slightly differing in
size. The time for computing the random permutation is included in the times measured for
reading and parsing of the graph.

3.2 Evaluation

We next present the results of our experimental evaluation starting with the size reduction
and running time of the kernelization algorithm.

Kernel size. The effectiveness of our kernelization algorithms is displayed in Figure 4: Few
graphs remain almost unchanged while other graphs are essentially solved by the kernelization
algorithm. As expected, the kernelization algorithm for the unweighted case is much more
effective than for the weighted case. On the 40 tested graphs, on average 70% of the vertices
and edges are removed by the kernelization; the median is 81%. The least amenable graph
was amazon0302 with a size reduction of only 7%. In contrast, on 16 out of the 40 graphs
the kernelization algorithm reduces more than 99% of the vertices and edges.

While the data reduction rules are less effective in the weighted case, they reduce the
graphs on average still by 51% with the median value being a bit lower with 48%. The least
amenable graph is again amazon0302 with a size reduction of only 3%. Still, on seven out of
the 40 graphs the kernelization algorithm reduces more than 99% of the vertices and edges.

V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche 53:11

104 105 106 107 108
10−3

10−2

10−1

100

101

102

Graph size (n + m)

R
un

ni
ng

tim
e
[se

c]
unweighted weighted

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

With kernelization [sec]

W
ith

ou
t
ke
rn
el
iz
at
io
n
[se

c]

unweighted weighted

Figure 5 Left: Kernelization time depending on the graph sizes. Right: Running time comparison
with and without using our kernelization algorithms before blossom5. The solid/dashed/dash
dotted/dotted lines indicate a factor of 1/2/5/25 difference in the running time.

Kernelization time. We next discuss the running time of our kernelization algorithms on
the test set. To this end, we consider the time spent on kernelization and the time spent
on blossom5. We will, for now, omit the running times needed for reading and parsing the
graph as these steps require on some instances more time than the kernelization algorithms.

As shown in Figure 5 (left), our kernelization algorithms are quite efficient. Even on the
largest graphs with more than 120 million edges and vertices, the running time is less than
45 seconds in the weighted case and less than ten seconds in the unweighted case. In the
unweighted case, our kernelization algorithm is always by at least a factor of 10 faster than
blossom5 (on the first 40 graphs). Hence, applying the kernelization algorithm before the
matching algorithm should – in the (unlikely) worst case of only few applications of the data
reduction rules – only slightly increase the overall running time.

In the weighted case, however, our kernelization algorithm becomes slower than in the
unweighted case. This is not surprising as the kernelization algorithm is more involved than
the one for the unweighted case. Furthermore, blossom5 is significantly faster in the weighted
case; on four graphs the matching algorithm is up to 2.5 times faster than our kernelization
algorithm. However, on most graphs, our kernelization algorithm is still significantly faster
than blossom5 (on average 17 times faster).

Running time comparison. We now compare the running time of only using blossom5 to
first apply our kernelization algorithms and then use blossom5 on the kernel. Recall that all
reported running times are averages over 100 runs. Since this 100 repetitions would have
taken years for some graphs, we use only the 40 smallest graphs for the comparison. These
graphs have between 12 thousand and 11 million edges.

Figure 5 (right) displays the results of the running time comparison. As one can clearly
see, in the unweighted case the kernelization significantly accelerates the algorithm to find
a maximum-cardinality matching. The speedup ranges from a factor 1.15 for the graph
facebook-combined to a factor 525 for the graph as-skitter (the largest graph in this test
set). The average speedup factor is 38, the median is 8.9.

For the weighted case, results are not as clear. With kernelization the algorithm is between
2.3 times slower for the graph roadNet-CA and 44.7 times faster for the graph wiki-Talk.
However, the wiki-Talk is an exception as it is the only graph where the kernelization

ESA 2018

53:12 Data Reduction for Maximum Matching on Real-World Graphs

gave a speedup of a factor more than ten. The average speedup factor is 3.10 and the
median is 1.3. On ten out of the 40 graphs the algorithm with kernelization was slower than
without. As discussed above, there are even four graphs where blossom5 is even faster than
our kernelization algorithm alone.

Summary. While the kernelization algorithms reduce the input graphs quite significantly in
the weighted and unweighted case, the overall gain is very different in the two cases. When
searching for a maximum-cardinality matching, we clearly recommend to always apply our
kernelization algorithm. For the less clear weighted case, note that the kernelization is more
frequently beneficial than it is not. However, the speedup is not as large as in the unweighted
case and several instances are actually solved somewhat slower. There are several reasons for
this behavior; some of which motivate future research and also lead to engineering challenges:

First, blossom5 is significantly faster on weighted graphs. We believe that the reason for
this is in unweighted graphs there are a lot of symmetries, and unlucky tie-breaking seems to
have a strong impact on blossom5. In the weighted case, the performance of blossom5 was
much more consistent under permuting the vertices in the input graph. As a consequence,
we believe that the following might speed up the algorithm: given an unweighted graph,
introduce edge-weights such that a maximum-weight matching in the then weighted graph is
also a maximum-cardinality matching in the unweighted graph. Using the famous Isolation
Lemma [15] one might even enrich and support this with a theoretical analysis. As our focus
was on data reduction, here we did not pursue this line of research yet.

Second, the kernelization algorithm in the weighted case is significantly slower than in the
unweighted case (see Figure 5) as applying the rules is more involved. Note that Reduction
Rules 2.1 and 2.2 only make changes in the local neighborhood of the affected vertices.
This is not the case in the weighted case, where the application of Reduction Rules 2.4
to 2.6 involve iterations over all edges, see Lemmas 3 and 9. Hence, applying the data
reduction rules exhaustively requires a larger overhead. Although some improvements in the
implementation might be possible, an improved algorithmic approach to exhaustively apply
the data reduction rules is needed. Is there a (quasi-)linear-time algorithm to exhaustively
apply Reduction Rules 2.3 to 2.6?

4 Conclusion

Our work shows that it practically pays off to use (linear-time) data reduction rules for
computing maximum matchings. The current state of the theoretical (kernel size upper
bounds) analysis, however, is insufficient to fully explain this success. In future research,
one might also study the combination of data reduction with linear-time approximation
algorithms for matching [7]. Moreover, while our naive implementation for the unweighted
case proved to be quite fast, we still work on improving the algorithm for the weighted case.
In particular, parallelizing the kernelization algorithm seems promising for further speedups.
We conclude with the following questions:

Can exhaustive application of Reduction Rules 2.3 to 2.6 be realized in linear time?
The “crown” data reduction rule known for the NP-hard Vertex Cover problem [1]
can be transferred to Maximum-Cardinality Matching; however, our preliminary
tests did not show a significant improvement of the kernelization algorithm. Is there
any version of the “crown” data reduction rule with practical usefulness in matching
computations?

V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche 53:13

References
1 Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and W. Henry Suters.

Crown structures for vertex cover kernelization. Theory of Computing Systems, 41(3):411–
430, 2007.

2 Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in practice:
A case study of vertex cover. Theoretical Computer Science, 609:211–225, 2016.

3 M. Bartha and M. Kresz. A depth-first algorithm to reduce graphs in linear time. In
Proceeding of the 11th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC’ 09), pages 273–281. IEEE, 2009.

4 Matthias Bentert, Alexander Dittmann, Leon Kellerhals, André Nichterlein, and Rolf
Niedermeier. Towards improving brandes’ algorithm for betweenness centrality. CoRR,
abs/1802.06701, 2018. URL: http://arxiv.org/abs/1802.06701.

5 Lijun Chang, Wei Li, and Wenjie Zhang. Computing A near-maximum independent set
in linear time by reducing-peeling. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD ’17), pages 1181–1196. ACM, 2017.

6 David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT algorithms
for some classes of bounded clique-width graphs. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’18), pages 2765–2784, 2018.

7 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching.
Journal of the ACM, 61(1):1:1–1:23, 2014.

8 Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for weighted matching in
general graphs. ACM Transactions on Algorithms, 14(1):8:1–8:35, 2018.

9 Richard M. Karp and Michael Sipser. Maximum matchings in sparse random graphs. In
Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’81), pages 364–375. IEEE, 1981.

10 Vladimir Kolmogorov. Blossom V: a new implementation of a minimum cost perfect match-
ing algorithm. Mathematical Programming Computation, 1(1):43–67, 2009.

11 Bernd Korte and Jens Vygen. Combinatorial Optimization – Theory and Algorithms.
Springer, 2018.

12 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

13 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power of linear-time data
reduction for maximum matching. In Proceedings of the 42nd International Symposium on
Mathematical Foundations of Computer Science (MFCS 2017), LIPIcs, pages 46:1–46:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

14 Silvio Micali and Vijay V. Vazirani. An O(
√
|V ||E|) algorithm for finding maximum match-

ing in general graphs. In Proceedings of the 21st Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’80), pages 17–27. IEEE, 1980.

15 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987.

16 Sanne Wøhlk and Gilbert Laporte. Computational comparison of several greedy algorithms
for the minimum cost perfect matching problem on large graphs. Computers & OR, 87:107–
113, 2017.

ESA 2018

http://arxiv.org/abs/1802.06701
http://snap.stanford.edu/data

Searching a Tree with Permanently Noisy Advice
Lucas Boczkowski
CNRS, IRIF, Univ. Paris Diderot, Paris, France
lucas.boczkowski@irif.fr

Amos Korman
CNRS, IRIF, Univ. Paris Diderot, Paris, France
amos.korman@irif.fr

Yoav Rodeh
Dep. of Physics of Complex Systems. Weizmann Institute, Rehovot, Israel
yoav.rodeh@gmail.com

Abstract
We consider a search problem on trees using unreliable guiding instructions. Specifically, an
agent starts a search at the root of a tree aiming to find a treasure hidden at one of the nodes
by an adversary. Each visited node holds information, called advice, regarding the most prom-
ising neighbor to continue the search. However, the memory holding this information may be
unreliable. Modeling this scenario, we focus on a probabilistic setting. That is, the advice at a
node is a pointer to one of its neighbors. With probability q each node is faulty, independently
of other nodes, in which case its advice points at an arbitrary neighbor, chosen uniformly at
random. Otherwise, the node is sound and points at the correct neighbor. Crucially, the advice
is permanent, in the sense that querying a node several times would yield the same answer. We
evaluate efficiency by two measures: The move complexity denotes the expected number of edge
traversals, and the query complexity denotes the expected number of queries.

Let ∆ denote the maximal degree. Roughly speaking, the main message of this paper is that
a phase transition occurs when the noise parameter q is roughly 1/

√
∆. More precisely, we prove

that above the threshold, every search algorithm has query complexity (and move complexity)
which is both exponential in the depth d of the treasure and polynomial in the number of nodes n.
Conversely, below the threshold, there exists an algorithm with move complexity O(d

√
∆), and

an algorithm with query complexity O(
√

∆ log ∆ log2 n). Moreover, for the case of regular trees,
we obtain an algorithm with query complexity O(

√
∆ logn log logn). For q that is below but

close to the threshold, the bound for the move complexity is tight, and the bounds for the query
complexity are not far from the lower bound of Ω(

√
∆ log∆ n).

In addition, we also consider a semi-adversarial variant, in which an adversary chooses the
direction of advice at faulty nodes. For this variant, the threshold for efficient moving algorithms
happens when the noise parameter is roughly 1/∆. Above this threshold a simple protocol that
follows each advice with a fixed probability already achieves optimal move complexity.

2012 ACM Subject Classification Theory of computation→ Probabilistic computation, Theory
of computation → Database theory, Theory of computation → Theory of randomized search
heuristics

Keywords and phrases Data structures, Graph search, Average Case Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.54

Related Version A full version of the paper is available at [5], https://arxiv.org/abs/1611.
01403.

Funding This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No
648032).

© Lucas Boczkowski, Amos Korman, and Yoav Rodeh;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 54; pp. 54:1–54:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lucas.boczkowski@irif.fr
mailto:amos.korman@irif.fr
mailto:yoav.rodeh@gmail.com
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.54
https://arxiv.org/abs/1611.01403
https://arxiv.org/abs/1611.01403
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

54:2 Searching a Tree with Permanently Noisy Advice

1 Introduction

This paper considers a basic search problem on trees, in which the goal is to find a treasure
that is placed at one of the nodes by an adversary. Each node of the tree holds information,
called advice, regarding which of its neighbors is closer to the treasure, and the search may
consult the advice at some nodes in order to accelerate the search. Crucially, we assume that
advice at nodes may be faulty with some probability. Many works consider noisy queries
in the context of search, but it is typically assumed that queries can be resampled (see
e.g., [12, 19, 4, 11]). In contrast, we assume that each location is associated with a single
permanent advice. That is, faults are in the physical memory associated with the node, and
hence querying the node again would yield the same answer. This difference is dramatic,
as the search under our model does not allow for simple amplification procedures (similar
to [7] albeit in the context of sorting). Searching in contexts of permanently faulty nodes
has been studied in a number of works [8, 13, 16, 17, 18], but only assuming that the faulty
nodes are chosen by an adversary. The difference between such worst case scenarios and the
probabilistic version studied here is again significant, both in terms of results and techniques
(see more details in Section 1.3).

1.1 The Noisy Advice Model
We start with some notation. Further notations are given in Section 1.4. Let T be an n-node
tree1 rooted at some arbitrary node σ. We consider an agent that is initially located at the
root σ of T , aiming to find a node τ , called the treasure, which is chosen by an adversary.
The distance d(u, v) is the number of edges on the path between u and v. The depth of a
node u is d(u) = d(σ, u). Let d = d(τ) denote the depth of τ , and let the depth D of the
tree be the maximal depth of a node. Finally, let ∆u denote the degree of node u and let ∆
denote the maximal degree in the tree.

Each node u 6= τ is assumed to be provided with an advice, termed adv(u), which provides
information regarding the direction of the treasure. Specifically, adv(u) is a pointer to one of
u’s neighbors. It is called correct if the pointed neighbor is one step closer to the treasure than
u is. Each vertex u 6= τ is faulty with probability qu (the meaning of being faulty will soon
be explained). Otherwise, u is considered sound, in which case its advice is correct. We call
qu the noise parameter of u, and define the general noise parameter as q = max{qu | u ∈ T}.

We consider two models for faulty nodes. The main model assumes that the advice at
a faulty node points to one of its neighbors chosen uniformly at random (and so possibly
pointing at the correct one). We also consider an adversarial variant, called the semi-
adversarial model, where this neighbor is chosen by an oblivious adversary. That is, an
adversary specifies for each node what advice it would have assuming it is faulty. Then,
faulty nodes are still chosen randomly as in the main model, but their advice is specified by
the adversary.

The agent can move by traversing edges of the tree. At any time, the agent can query its
hosting node in order to “see” the corresponding advice and to detect whether the treasure
is present there. The protocol terminates when the agent queries the treasure. We evaluate
a search algorithm A by two measures: The move complexity, termedM(A), is the expected
number of edge traversals, and the query complexity, termed Q(A), is the expected number

1 We present the model for trees, but it should be clear that it can be similarly defined for arbitrary
graphs (see also Section 5).

L. Boczkowski, A. Korman, and Y. Rodeh 54:3

of queries2. Expectation is taken over both the randomness involved in sampling advice
and the possible probabilistic choices made by A. We note that when considering walking
algorithms, we assume that the agent does not know the structure of the tree in advance,
and discovers it as it moves. Conversely, when focusing on minimizing the query complexity
only, we assume that the tree structure is known to the algorithm.

The noise parameters (qu)u∈T govern the accuracy of the environment. On the one
extreme, if qu = 0 for all nodes, then advice is always correct. This case allows to find the
treasure in d moves, by simply following each encountered advice. Alternatively, it also
allows to find the treasure using O(logn) queries, by performing a separator based search.
On the other extreme, if qu = 1 for all nodes, then advice is essentially meaningless, and the
search cannot be expected to be efficient. An intriguing question is therefore to identify the
largest value of q that allows for efficient search.

1.2 Our Results
Consider the noisy advice model on trees with maximum degree ∆ and depth D. Roughly
speaking, we show that 1/

√
∆ is the threshold for the noise parameter q, in order to obtain

search algorithms with low expected complexities.
The proof that there is no algorithm with low expected complexities when the noise

exceeds 1/
√

∆ is rather simple, and in fact, holds even if the algorithm has access to the
advice of all internal nodes. Intuitively, the argument is as follows (the formal proof appears
in Section 4.1). Consider a complete ∆-ary tree of depth D and assume that the treasure τ
is placed at a leaf. The first observation (Lemma 10) is that the expected number of leaves
having more advice point to them than to τ is a lower bound on the query complexity. The
next observation is that there are roughly ∆D leaves whose distance from τ is 2D. For each
of those leaves u, the probability that more advice points towards it than towards τ can be
approximated by the probability that all nodes on path connecting u and τ are faulty. As
this latter probability is q2D, the expected number of leaves that have more pointers leading
to them is roughly ∆Dq2D, which explodes when q � 1/

√
∆. This essentially establishes the

lower bound for the noise regime.
The main technical difficulties we had to face appeared when we aimed to show that

the 1/
√

∆ lower bound is, in fact, tight, and moreover, that there exist extremely efficient
algorithms when the noise is above the threshold. In this regard, we note two technical
contributions. The first appears in the construction of the moving algorithm Awalk. Even
though the algorithm should be designed to quickly find an adversarially placed treasure, it
is in fact based on a Bayesian approach. The challenging part is identifying the correct prior.
Constructing algorithms that ensure worst-case guarantees through a Bayesian approach
was done in [4] which studies a closely related, yet much simpler problem of search on the
line. Apart from [4] we are unaware of other works that follow this approach. The second
technical contribution corresponds to the query setting, where we mimic the resampling of
advice at separator nodes, by locally applying the moving algorithm.

1.2.1 Upper Bounds
In Section 2, we present a walking algorithm that is optimal up to a constant factor for
the regime of noise below the threshold. Furthermore, this algorithm does not require prior
knowledge of either the tree’s structure, or the values of ∆, q, d, or n.

2 The success probability after a fixed number of rounds is another quantity of interest. It is left for
future work.

ESA 2018

54:4 Searching a Tree with Permanently Noisy Advice

Using this walking algorithm, we derive two query algorithms (in Section 3). The first
is optimal up to a factor of O(log2(∆) logn) and the second is restricted to regular trees,
but is optimal up to a factor of O(log(∆) log logn). Note that the query algorithms use the
knowledge of the tree structure, as well as bounds on the regime of noise.

Before stating our theorems, we need the following definition.

I Definition 1. Condition (?) holds with parameter 0 < ε < 1 if for every node v, we have

qv <
1− ε−∆−

1
4

v
√

∆v + ∆
1
4
v

.

Note that since ∆v ≥ 2, the condition is always satisfiable when taking a small enough ε. In
the following theorems the O notation hides only a polynomial a polynomial term in 1/ε.

Note, all our algorithms are deterministic, hence, expectation is taken with respect only
to the sampling of the advice.

I Theorem 2. There exists a deterministic walking algorithm Awalk such that for any constant
ε > 0, if Condition (?) holds with parameter ε thenM(Awalk) = O(

√
∆d).

I Theorem 3.
1. For any ε > 0, there exists a deterministic query algorithm Asep such that if Condition

(?) holds with parameter ε then the query complexity is Q(Asep) = O(
√

∆ log ∆ · log2 n).
2. Assume that q < c/

√
∆ for a small enough constant c > 0. Then there exists a determin-

istic query algorithm A2−layers such that, restricted to (not necessarily complete) ∆-ary
trees, Q(A2−layers) = O(

√
∆ logn · log logn).

1.2.2 Lower Bounds
We establish the following lower bound. The main part of the proof is to be found in Section
4. We refer the reader to the full version of this work [5, Section 2 and Appendix A] for the
missing parts.

I Theorem 4. The following holds for any randomized algorithm A and any integer ∆ ≥ 3.
1. Exponential complexity above the threshold.

Consider a complete ∆-ary tree. For every constant ε > 0, if q ≥ 1+ε√
∆−1 · (1 + 1

∆−1), then
both Q(A) andM(A) are exponential in D.

2. Lower bounds for any q.
(a) Consider a complete ∆-ary tree. Then Q(A) = Ω(q∆ log∆ n).
(b) For any integer d, there is a tree with at most d∆ nodes, and a placement of the
treasure at depth d, such thatM(A) = Ω(dq∆).

Observe that taken together, Theorems 2,4,3 and Condition (?) imply that for any ε > 0 and
large enough ∆, efficient search can be achieved if q < (1− ε)/

√
∆ but not if q > (1 + ε)/

√
∆.

1.2.3 Memory-less Algorithms
Query algorithms assume the knowledge of the tree and hence cannot avoid memory com-
plexity which is linear in n. In contrast, our walking algorithm Awalk uses memory that is
composed of advice accumulated during the walk, and hence remains low, in expectation.

Finally, we analyse the performance of simple memoryless algorithms called probabilistic
following, suggested in [15]. At every step, the algorithm follows the advice at the current
vertex with some fixed probability λ, and performs a random walk step otherwise. It turns out

L. Boczkowski, A. Korman, and Y. Rodeh 54:5

that such algorithms can perform well, but only in a very limited regime of noise. Specifically,
we prove:

I Theorem 5. There exist positive constants c1, c2 and c3 such that the following holds. If
for every vertex u, qu < c1/∆u then there exists a probabilistic following algorithm that finds
the treasure in less than c2d expected steps. On the other hand, if q > c3/∆ then for any
probabilistic following strategy the move complexity on a complete ∆-ary tree is exponential
in the depth of the tree.

Since this algorithm is randomized, expectation is taken over both the randomness involved
in sampling advice and the possible probabilistic choices made by the algorithm.

Interestingly, when qu < c1/∆u for all vertices, this algorithm works even in a semi-
adversarial model. In fact, it turns out that in the semi-adversarial model, probabilistic
following algorithms are the best possible, as the threshold for efficient search, with respect
to any algorithm, is roughly 1/∆. Due to lack of space these results are discussed and proved
in the full version of this work [5, Appendix E].

1.3 Related Work
In computer science, search algorithms have been the focus of numerous works. Due to
their importance, trees are particularly popular structures to investigate search, see e.g.,
[20, 3, 22, 21]. Within the literature on search, many works considered noisy queries
[12, 19, 11], however, it was typically assumed that noise can be resampled at every query.
As mentioned, dealing with permanent faults incurs challenges that are fundamentally
different from those that arise when allowing queries to be resampled. To illustrate this
difference, consider the simple example of a star graph and a constant q < 1. Straightforward
amplification can detect the target in O(1) expected number of queries. In contrast, in our
model, it can be easily seen that Ω(n) is a lower bound for both the move and the query
complexities, for any constant noise parameter.

A search problem on graphs in which the set of nodes with misleading advice is chosen
by an adversary was studied in [16, 17, 18], as part of the more general framework of the liar
models [1, 2, 6, 9, 23]. Data structures with adversarial memory faults have been investigated
in the so called faulty-memory RAM model introduced in [14]. In particular, data structures
supporting the same operations as search trees with adversarial memory faults were studied
in [13, 8]. Interestingly, the data structures developed in [8] can cope with up to O(logn)
faults, happening at any time during the execution of the algorithm, while maintaining
optimal space and time complexity. All these worst case models are, however, significantly
different from the randomized one we consider, both in terms of techniques and results. The
subject of queries with probabilistic memory faults, as the ones we study here, has been
explicitly studied in the context of sorting [7].

The noisy advice model considered in this paper actually originated in the recent biolo-
gically centered work [15], aiming to abstract navigation relying on guiding instructions in
the context of collaborative transport by ants. There, a group of ants carry a large load of
food aiming to transport it to their nest, while basing their navigation on unreliable advice
given by pheromones that are laid on the terrain. In that work, the authors modelled ant
navigation as a probabilistic following algorithm, and noticed that an execution of such an
algorithm can be viewed as an instance of Random Walks in Random Environment (RWRE)
[24, 10]. Relying on results from this subfield of probability theory, the authors showed that
when tuned properly, such algorithms enjoy linear move complexity on grids, provided that
the bias towards the correct direction is sufficiently high.

ESA 2018

54:6 Searching a Tree with Permanently Noisy Advice

1.4 Notations
Denote p = 1 − q, and for a node u, pu = 1 − qu. For two nodes u, v, let 〈u, v〉 denote
the simple path connecting them, excluding the end nodes, and let [u, v〉 = 〈u, v〉 ∪ {u}
and [u, v] = [u, v〉 ∪ {v}. For a node u, let T (u) be the subtree rooted at u. We denote by
−−→
adv(u) (resp. ←−−adv(u)) the set of nodes whose advice points towards (resp. away from) u. By
convention u /∈ −−→adv(u) ∪←−−adv(u). Unless stated otherwise, log is the natural logarithm.

1.5 Organization
In Section 2 we present our optimal walking algorithm. Section 3 presents our query
algorithms, while most of the details regarding the more elaborated algorithm on regular
trees are only shown in the full version of this work [5, Appendix G]. In Section 4 we show
the lower bounds for both the move and query complexities. In Section 5, we give a list of
open problems. Theorem 5 and the threshold of Θ(1/∆) that applies to the semi-adversarial
setting are proved in the full version of this work.

2 Optimal Walking Algorithm

In this section we prove Theorem 2. At a very high level, at any given time, the walking
algorithm processes the advice seen so far, identifies a promising node to continue from on
the border of the already discovered connected component, moves to that node, and explores
one of its neighbors.

2.1 Algorithm Design following a Greedy Bayesian Approach
In our setting the treasure is placed by an adversary. However, we can still study algorithms
induced by assuming that it is placed in one of the vertices according to some known
distribution and see how they measure up in our worst case setting. As mentioned, this
approach is similar to [4], which studies the closely related, yet much simpler problem of
search on the line. Of course, the success of this scheme highly depends on the choice of the
prior distribution we take.

To make our life easier, let us first assume that the structure of the tree is known to the
algorithm. Also, we assume the treasure is placed in one of the leaves of the tree according
to some known distribution θ, and denote by adv the advice on the nodes we have already
visited. Aiming to find the treasure as fast as possible, a possible greedy algorithm explores
the vertex that, given the advice seen so far, has the highest probability of having the treasure
in its subtree.

We extend the definition of θ to internal nodes by defining θ(u) to be the sum of θ(w)
over all leaves w of T (u). Given some u that was not visited yet, and given the previously
seen advice adv, the probability of the treasure being in u’s subtree T (u), is:

P (τ ∈ T (u) | adv) = P (τ ∈ T (u))
P (adv) P (adv | τ ∈ T (u))

= θ(u)
P (adv)

∏
w∈−→adv(u)

(
pw + qw

∆w

) ∏
w∈←−adv(u)

qw
∆w

.

The last factor is qw/∆w because it is the probability that the advice at w points exactly
the way it does in adv, and not only away from τ . Note that the advice seen so far is
never for vertices in T (u) as we consider a walking algorithm, and u has not been visited

L. Boczkowski, A. Korman, and Y. Rodeh 54:7

yet. Therefore, if τ ∈ T (u) then correct advice in adv points to u. We ignore the term
pw + qw/∆w as it is normally quite close to 1, and applying a log we can approximate the
relative strength of a node by:

log(θ(u)) +
∑

w∈←−adv(u)

log
(
qw
∆w

)
.

We do not want to assume that our algorithm knows qw, but we do assume that in the worst
scenario qw ∼ 1/

√
∆w. Assigning this value and rescaling we finally define:

score(u) = 2
3 log(θ(u))−

∑
w∈←−adv(u)

log(∆w).

When comparing two specific vertices u and v, score(u) > score(v) iff:∑
w∈〈u,v〉∩−→adv(u)

log(∆w)−
∑

w∈〈u,v〉∩−→adv(v)

log(∆w) > 2
3 log

(
θ(v)
θ(u)

)
.

This is because any advice that is not on the path between u and v contributes the same to
both sides, as well as advice on vertices on the path that point sideways, and not towards u
or v3. Since we use this score to compare two vertices that are neighbors of already explored
vertices, and our algorithm is a walking algorithm, then we will always have all the advice
on this path. In particular, the answer to whether score(u) > score(v), does not depend
on the specific choices of the algorithm, and does not change throughout the execution of
the algorithm, even though the scores themselves do change. The comparison depends only
on the advice given by the environment.

Let us try and justify the score criterion at an intuitive level. Consider the case of a
complete ∆-ary tree, with θ being the uniform distribution on the leaves4. Here score(u) >
score(v) if (cheating a little by thinking of log(∆) and log(∆− 1) as equal):∣∣−−→adv(u) ∩ 〈u, v〉

∣∣− ∣∣−−→adv(v) ∩ 〈u, v〉
∣∣ > 2

3
(
d(u)− d(v)

)
.

If, for example, we consider two vertices u, v ∈ T at the same depth, then score(u) > score(v)
if there is more advice pointing towards u than towards v. If the vertices have different
depths, then the one closer to the root has some advantage, but it can still be beaten.

For general trees, perhaps the most natural θ to take is the uniform distribution on all
nodes (or just on all leaves - this choice is actually similar). It is also a generalization of the
example above. Unfortunately, however, while this works well on the complete ∆-ary tree,
we show in the full version of this paper [5, Appendix D], that this approach fails on other
(non-complete) ∆-ary trees.

2.2 Algorithm Awalk

In our context, there is no distribution over treasure location and we are free to choose θ as
we like. We take θ to be the distribution defined by a simple random process. Starting at

3 It is tempting to define score(u) as the sum of weighted advice from the root to u. However, when
comparing two vertices, the advice of their least common ancestor would be counted twice, which we
prefer to avoid.

4 Actually, a similar formula could be derived choosing θ to be the uniform distribution over all nodes,
but for technical reasons it is easier to restrict it to leaves only.

ESA 2018

54:8 Searching a Tree with Permanently Noisy Advice

the root, at each step, walk down to a child uniformly at random. until reaching a leaf. For
a leaf v, define θ(v) as the probability that this process eventually reaches v. Our extension
of θ can be interpreted as θ(v) being the probability that this process passes through v.
Formally, θ(σ) = 1, and θ(u) = (∆σ

∏
w∈〈σ,u〉(∆w − 1))−1. It turns out that this choice,

slightly changed, works remarkably well, and gives an optimal algorithm in noise conditions
that practically match those of our lower bound. For a vertex u 6= σ, define:

β(u) =
∏

w∈[σ,u〉

∆w.

It is a sort of approximation of 1/θ(u), which we prefer for technical convenience. Indeed, for
all u, 1/β(u) ≤ θ(u). A wonderful property of this β (besides the fact that it gives rise to an
optimal algorithm) is that to calculate β(v) (just like θ), one only needs to know the degrees
of the vertices from v up to the root. It is hard to imagine distributions on leaves that allow
us to calculate the probability of being in a subtree without knowing anything about it!

In the walking algorithm, if v is a candidate for exploration, these nodes must have been
visited already and so the algorithm does not need any a priori knowledge of the structure of
the tree. The following claim will be soon useful:

I Claim 6. The following two inequalities hold for every c < 1:∑
v∈T

cd(v)

β(v) ≤
1

1− c ,
∑
v∈T

d(v)cd(v)

β(v) ≤ c

(1− c)2 .

Proof. To prove the first inequality, follow the same random walk defining θ. Starting at the
root, at each step choose uniformly at random one of the children of the current vertex. Now,
while passing through a vertex v collect cd(v) points. No matter what choices are made, the
number of points is at most 1 + c+ c2 + ... = 1/(1− c). On the other hand,

∑
v∈T θ(v)cd(v)

is the expected number of points gained. The result follows since 1/β(v) ≤ θ(v). The second
inequality is derived similarly, using the fact that c+ 2c2 + 3c3 + . . . = c/(1− c)2. J

For a vertex u ∈ T and previously seen advice adv define:

score(u) = 2
3 log

(
1

β(u)

)
−

∑
w∈←−adv(u)

log(∆w).

Algorithm Awalk keeps track of all vertices that are children of the vertices it explored so
far, and repeatedly walks to and then explores the one with highest score according to the
current advice, breaking ties arbitrarily. Note that the algorithm does not require prior
knowledge of either the tree’s structure, or the values of ∆, q, d or n.

2.3 Analysis
Recall the definition of Condition (?) from Definition 1. The next lemma provides a large
deviation bound tailored to our setting. The proof can be found in Appendix C of the full
version [5].

I Lemma 7. Consider independent random variables X1, . . . , X`, where Xi takes the values
(− log ∆i, 0, log ∆i) with respective probabilities (pi + qi

∆i
, qi(1 − 2

∆i
), qi∆i

), for parameters
pi, qi = 1− pi and ∆i > 0. Assume that Condition (?) holds for some ε > 0. Then for every
integer (positive or negative) m,

P

(∑̀
i=1

Xi ≥ m

)
≤ (1− ε)`

e
3m

4

∏̀
i=1

1√
∆i

.

L. Boczkowski, A. Korman, and Y. Rodeh 54:9

The next theorem states that Awalk is optimal up to a constant factor for the regime of noise
below the threshold. It establishes Theorem 2.

I Theorem 8. Assume that Condition (?) holds for some fixed ε > 0. Then M(Awalk) =
O(d
√

∆), where the constant hidden in the O notation only depends polynomially on 1/ε.

Proof. Denote the vertices on the path from σ to τ by σ = u0, u1, . . . , ud = τ in order.
Denote by Ek the expected time to reach uk once uk−1 is reached. We will show that for all
k, Ek = O(

√
∆), and by linearity of expectation this concludes the proof.

Once uk−1 is visited, Awalk only goes to some of the nodes that have score at least as
high as uk. We can therefore bound Ek from above by assuming we go through all of them,
and this expression does not depend on the previous choices of the algorithm and the nodes
it saw before seeing uk. The length of this tour is bounded by twice the sum of distances of
these nodes from uk. Hence,

Ek ≤ 2
k∑
i=1

∑
u∈C(ui)

P (score(u) ≥ score(uk)) · d(uk, u).

Where C(uk) = T (uk−1) \ T (uk), and so ∪ki=1C(ui) = T \ T (uk). Recall that scores are
defined so that u has a larger score than uk, if the sum of weighted arrows on the path 〈uk, u〉
is at least 2

3 log(β(u)/β(uk)). Setting m to be this value, Lemma 7 allows to calculate this
probability exactly. Indeed, a vertex x on the path should point towards uk: this happens
with probability px + qx/∆x. Otherwise, it points towards u with probability qx/∆x, and
elsewhere with probability qx(1− 2/∆x). Denoting c = 1− ε,

Ek
2 ≤

k∑
i=1

∑
u∈C(ui)

cd(uk,u)−1

e
3
4 ·

2
3 log

(
β(u)
β(uk)

)√√√√ ∏
v∈〈u,uk〉

1
∆v
· d(uk, u)

= 1
c

k∑
i=1

∑
u∈C(ui)

cd(uk,u)√
β(u)
β(uk)

√
∆ui

β(uk)
β(ui) ·

β(u)
β(ui)

· d(uk, u)

≤
√

∆
c

k∑
i=1

cd(uk,ui)
∑

u∈C(ui)

cd(ui,u) β(ui)
β(u) ·

(
d(uk, ui) + d(ui, u)

)
.

By Claim 6, applied to the tree rooted at ui, we get:

∑
u∈C(ui)

cd(ui,u)β(ui)
β(u) <

1
1− c , and

∑
u∈C(ui)

cd(ui,u)β(ui)
β(u) d(ui, u) < c

(1− c)2 .

And so:

Ek
2 ≤

√
∆

c(1− c)

k∑
i=1

cd(uk,ui)d(uk, ui) +
√

∆
(1− c)2

k∑
i=1

cd(uk,ui)

≤ (1 + c)
√

∆
(1− c)3 ≤ 2

√
∆

ε3 = O
(√

∆
)
,

where we again used the equality c+ 2c2 + 3c3 + . . . = c/(1− c)2. J

ESA 2018

54:10 Searching a Tree with Permanently Noisy Advice

3 Query Algorithms

3.1 An O(
√

∆ log ∆ log2 n) Queries Algorithm
Our next goal is to prove the first item in Theorem 3. As is common in search on trees, our
technique in this section is based on separators. We say a node u is a separator of T if all
the connected components of T \ {u} are of size at most |T |/2. It is well known that such
a node exists. Assume there is some local procedure, that given a vertex u decides with
probability 1− δ in which one of the connected components of T \ {u}, the treasure resides.
Applying this procedure on a separator of the tree, and then focusing the search recursively
only on the component it pointed out, results in a type of algorithm we call a separator based
algorithm. It uses the local procedure at most dlog2 ne times, and by a union bound, finds
the treasure with probability at least 1− dlog2 neδ. Broadly speaking, we will be interested
in the expected running time of this sort of algorithm conditioned on it being successful.
This sort of conditioning complicates matters slightly. In what follows, we assume that the
set of separators for the tree is fixed.

Proof. (of the first item in Theorem 3) The algorithm we build is denoted Asep. It runs a
separator based algorithm in parallel to some arbitrary exhaustive search algorithm. The
meaning of in parallel here simply means that the two algorithms are run in an alternating
fashion. Fix some small h. The local exploration procedure, denoted localh, for a vertex u
proceeds as follows.

Procedure localh(u). Consider the tree Th(u) rooted at u consisting of all vertices satisfy-
ing log∆ β(v) < h together with their children. So a leaf of v ∈ Th(u) is either a leaf of T , or
satisfies ∆h ≤ β(v) < ∆h+1. Denote the second kind a nominee. Call a nominee promising if
the number of weighted arrows pointing to v is large, specifically, if

∑
w∈[u,v〉Xw ≥ 2

3h log ∆,
where Xw = log ∆w if the advice at w is pointing to v, Xw = − log ∆w if it is pointing
to u, and Xw = 0 otherwise. Viewing it as a query algorithm, we now run the walking
algorithm Awalk on Th(u) (starting at its root u) until it either finds the treasure or finds
a promising nominee. In the latter case, localh(u) declares that the treasure is on the
connected component of T \ {u} containing this nominee. If τ ∈ Th(u) then set τu = τ .
Otherwise let τu be the leaf of Th(u) closest to the treasure, and so in this case τu is a
nominee. Say that u is h-misleading if either (1) τ 6∈ Th(u) and τu is not promising, or (2)
there is some promising nominee v ∈ Th(u) that is not in the same connected component
of T \ {u} as τu. Note that if u is not h-misleading then localh(u) necessarily outputs the
correct component of T \ {u}, namely, the one containing the treasure. The proof of the
following lemma appears in the full version of this work, [5, Appendix F]. The part regarding
regular trees will be needed later.

I Lemma 9. For any u, P (u is h-misleading) ≤ (∆+1)(1−ε)h. Also, for any event X such
that X occurring always implies that u is not misleading, we have P (X)Q (localh(u) | X) =
O(
√

∆ log ∆ ·h). In the case the tree is regular, these bounds become 2(1− ε)h and O(
√

∆ ·h)
respectively. The constant hidden in the O notation only depends polynomially on 1/ε.

Taking h = −3 log(2n)/ log(1 − ε), gives P (u is misleading) ≤ 1/n2. Denote by Good
the event that none of the separators encountered are misleading. By a union bound,
P (Good c) ≤ 1/n.

Q(Asep) = P (Good)Q (Asep | Good) + P (Good c)Q (Asep | Good c) . (1)

L. Boczkowski, A. Korman, and Y. Rodeh 54:11

As Asep runs an exhaustive search algorithm in parallel, the second term is O(1). For the first
term, note that conditioning on Good , all local procedures either find the treasure or give
the correct answer, and so there are O(logn) of them and they eventually find the treasure.
Denote by ui the i-th vertex that localh is executed on. By linearity of expectation, and
applying Lemma 9, the first term of (1) is P (Good)

∑
iQ (localh(ui) | Good) = O(logn ·√

∆ log ∆ · h) = O(
√

∆ log ∆ log2 n). As log(1 + x) > x always, then −1/ log(1 − ε) ≤ 1/ε,
and the hidden factor in the O is as stated. J

3.2 An Almost Tight Result for Regular Trees
We now turn our attention to the second item in Theorem 3. Due to space constraints, we
only sketch the argument here and refer the interested reader to the full version for details.
At a high level, we run two algorithms in parallel (i.e., in an alternating fashion): Afast , and
Amid . Algorithm Afast is actually Asep applied with parameter h = Θ(log logn) instead of
Θ(logn). Using Lemma 9, with probability 1 − 1/logO(1)(n), the local procedure of Afast
always detects the correct component for each separator, and Afast needs an expected number
of O(

√
∆ · logn · log logn) queries to find the treasure. This is the running time we are

aiming for.
Algorithm Amid is similar to Asep except it uses a different subroutine for local exploration.

It then remains to show that it finds the treasure using a relatively low expected number
of queries even conditioning on the event that caused Afast to fail, namely, the event that
there is a misleading separator at the scale h = Θ(log logn). The query complexity of Amid
does blow up under this event but we show that the blowup is not that bad, and can be
compensated by the fact that the bad event has small probability. This is the core of the
proof, and what requires most work. In fact, the complexity of the arguments led us to
restrict the discussion to regular trees and also modify the subroutine for local exploration
to ease the analysis.

4 Lower Bounds

We next prove Items (1) of Theorem 4. Items (2a) and (2b) are proved in Appendix A of the
full version of this paper.

4.1 Exponential Complexity Above the Threshold
We wish to prove Item (1) in Theorem 4. Namely, that for every fixed ε > 0, and for every
complete ∆-ary tree, if q ≥ 1+ε√

∆−1 · (1 + 1
∆−1), then every randomized search algorithm has

query (and move) complexity which is both exponential in the depth d of the treasure and
polynomial in n. In fact, this lower bound holds even if the algorithm has access to the
advice of all internal nodes. The following lemma is proved in stated here without proof:

I Lemma 10. Assume the treasure is placed in a leaf τ of the complete ∆-ary tree. Denote by
adv the random advice on all internal nodes, then the expected number of leaves u satisfying
|−−→adv(u)| > |−−→adv(τ)|, is a lower bound on the query complexity of any algorithm.

Using Lemma 10, all we need to do is approximate the number of leaves u satisfying
|−−→adv(u)| > |−−→adv(τ)|. When comparing the number of pointers that point towards each of
two different nodes, only the pointers of the internal nodes on the path between them may
influence on the result. The probability that a leaf u “beats” the treasure τ in the sense of

ESA 2018

54:12 Searching a Tree with Permanently Noisy Advice

Lemma 10, is at least the probability that exactly one node on the path points to u and
none of the rest point towards the treasure. This probability is at least

q

∆ ·
(
q ·
(

1− 1
∆

))d(u,τ)−2
.

There are precisely (∆− 1)D leaves whose distance from the treasure is 2D. Therefore, the
expected number of leaves that beat the treasure is at least:

q

∆(∆− 1)Dq2D−2 ·
(

1− 1
∆

)2D−2
= ∆
q(∆− 1)2 ·

(
q2(∆− 1)3

∆2

)D
≥ ∆
q(∆− 1)2 · (1 + ε)2D.

Item (1) in Theorem 4 follows.

5 Open Problems

Closing the small gap between the upper and lower bounds for the query setting remains
open. The noisy advice model may well be interesting to study in other search settings.
In particular, obtaining efficient search algorithms for general graphs is highly intriguing.
Even though the likelihood of a node being the treasure under a uniform prior can still be
computed in principle, it is not so easy to compare two nodes as in Theorem 8 because there
may be more than a single path between them.

In a limited regime of noise, we believe that memoryless strategies might very well be
efficient also on general graphs, and we pose the following conjecture. Proving it may require
the use of tools from the theory of RWRE, which seem to be lacking in the context of general
graph topologies.

I Conjecture 11. There exists a probabilistic following algorithm that finds the treasure in
expected linear time on any undirected graph assuming q < c/∆ for a small enough c > 0.

References
1 Andrei Asinowski, Jean Cardinal, Nathann Cohen, Sébastien Collette, Thomas Hackl, Mi-

chael Hoffmann, Kolja B. Knauer, Stefan Langerman, Michal Lason, Piotr Micek, Günter
Rote, and Torsten Ueckerdt. Coloring hypergraphs induced by dynamic point sets and
bottomless rectangles. CoRR, abs/1302.2426, 2013. URL: http://arxiv.org/abs/1302.
2426.

2 Javed A. Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors.
In STOC, pages 486–493. ACM, 1991. [doi:10.1145/103418.103469,].

3 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J. Comput.,
28(6):2090–2102, 1999. [doi:10.1137/S009753979731858X,].

4 Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy bin-
ary search (and pretty good for quantum as well). In FOCS, pages 221–230, 2008.
[doi:10.1109/FOCS.2008.58,].

5 Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching a tree with permanently
noisy advice. https://arxiv.org/abs/1611.01403, 2016. [arXiv:1611.01403,].

6 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of
errors. In STOC, pages 130–136. ACM, 1993.

7 Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In SODA, pages
268–276, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347112.

http://arxiv.org/abs/1302.2426
http://arxiv.org/abs/1302.2426
http://dx.doi.org/10.1145/103418.103469
http://dx.doi.org/10.1137/S009753979731858X
http://dx.doi.org/10.1109/FOCS.2008.58
http://arxiv.org/abs/1611.01403
http://dl.acm.org/citation.cfm?id=1347082.1347112

L. Boczkowski, A. Korman, and Y. Rodeh 54:13

8 Gerth Stølting Brodal, Rolf Fagerberg, Irene Finocchi, Fabrizio Grandoni, Giuseppe F.
Italiano, Allan Grønlund Jørgensen, Gabriel Moruz, and Thomas Mølhave. Optimal resi-
lient dynamic dictionaries. In Algorithms - ESA 2007, 15th Annual European Symposium,
Eilat, Israel, October 8-10, 2007, Proceedings, pages 347–358, 2007. [doi:10.1007/978-3-540-
75520-3_32,].

9 Ferdinando Cicalese and Ugo Vaccaro. Optimal strategies against a liar. Theor. Comput.
Sci., 230(1-2):167–193, 2000.

10 Alexander Drewitz and Alejandro F. Ramiréz. Selected topics in random walk in ran-
dom environment. Topics in Percolative and Disordered Systems, Springer Proceedings in
Mathematics and Statistics, 69:23–83, 2014.

11 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic
and probabilistic binary search in graphs. In STOC, pages 519–532, 2016.
[doi:10.1145/2897518.2897656,].

12 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM J. Comput., 23(5):1001–1018, 1994. [doi:10.1137/S0097539791195877,].

13 Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Resilient search trees.
In SODA, pages 547–553, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.
1283442.

14 Irene Finocchi and Giuseppe F. Italiano. Sorting and searching in the pres-
ence of memory faults (without redundancy). In STOC, pages 101–110, 2004.
[doi:10.1145/1007352.1007375,].

15 Ehud Fonio, Yael Heyman, Lucas Boczkowski, Aviram Gelblum, Adrian Kosowski, Amos
Korman, and Ofer Feinerman. A locally-blazed ant trail achieves efficient collective naviga-
tion despite limited information, eLife 2016;5:e20185, 2016. URL: https://elifesciences.
org/content/5/e20185.

16 Nicolas Hanusse, David Ilcinkas, Adrian Kosowski, and Nicolas Nisse. Locating a target
with an agent guided by unreliable local advice: How to beat the random walk when you
have a clock? In PODC, pages 355–364, 2010. [doi:10.1145/1835698.1835781,].

17 Nicolas Hanusse, Dimitris Kavvadias, Evangelos Kranakis, and Danny Krizanc. Memory-
less search algorithms in a network with faulty advice. Theoretical Computer Science,
402(2–3):190–198, 2008. [doi:10.1016/j.tcs.2008.04.034,].

18 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc. Searching with mobile agents in
networks with liars. Discrete Applied Mathematics, 137(1):69–85, 2004. [doi:10.1016/S0166-
218X(03)00189-6,].

19 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In SODA,
pages 881–890, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.

20 Eduardo Sany Laber and Loana Tito Nogueira. Fast searching in trees. In Eletronic Notes
on Discrete Mathematics, 2001.

21 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching
strategy in linear time. In SODA, pages 1096–1105, 2008. URL: http://dl.acm.org/
citation.cfm?id=1347082.1347202.

22 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In FOCS, pages 379–388, 2006. [doi:10.1109/FOCS.2006.32,].

23 Andrzej Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71–109, 2002.

24 Alain-Sol Snitzman. Topics in random walks in random environment. ICTP Lecture Notes
Series, 2004.

ESA 2018

http://dx.doi.org/10.1007/978-3-540-75520-3_32
http://dx.doi.org/10.1007/978-3-540-75520-3_32
http://dx.doi.org/10.1145/2897518.2897656
http://dx.doi.org/10.1137/S0097539791195877
http://dl.acm.org/citation.cfm?id=1283383.1283442
http://dl.acm.org/citation.cfm?id=1283383.1283442
http://dx.doi.org/10.1145/1007352.1007375
https://elifesciences.org/content/5/e20185
https://elifesciences.org/content/5/e20185
http://dx.doi.org/10.1145/1835698.1835781
http://dx.doi.org/10.1016/j.tcs.2008.04.034
http://dx.doi.org/10.1016/S0166-218X(03)00189-6
http://dx.doi.org/10.1016/S0166-218X(03)00189-6
http://dl.acm.org/citation.cfm?id=1283383.1283478
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dx.doi.org/10.1109/FOCS.2006.32

Efficient and Adaptive Parameterized Algorithms
on Modular Decompositions
Stefan Kratsch
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
kratsch@informatik.hu-berlin.de

Florian Nelles
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
nelles@informatik.hu-berlin.de

Abstract
We study the influence of a graph parameter called modular-width on the time complexity for
optimally solving well-known polynomial problems such as maximum matching, triangle
counting, and maximum s-t vertex-capacitated flow. The modular-width of a graph
depends on its (unique) modular decomposition tree, and can be computed in linear timeO(n+m)
for graphs with n vertices and m edges. Modular decompositions are an important tool for graph
algorithms, e.g., for linear-time recognition of certain graph classes.

Throughout, we obtain efficient parameterized algorithms of running times O(f(mw)n+m),
O(n+ f(mw)m) , or O(f(mw) + n+m) for low polynomial functions f and graphs of modular-
width mw. Our algorithm for maximum matching, running in time O(mw2 log mwn + m), is
both faster and simpler than the recent O(mw4 n+m) time algorithm of Coudert et al. (SODA
2018). For several other problems, e.g., triangle counting and maximum b-matching, we
give adaptive algorithms, meaning that their running times match the best unparameterized
algorithms for worst-case modular-width of mw = Θ(n) and they outperform them already for
mw = o(n), until reaching linear time for mw = O(1).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases efficient parameterized algorithms, modular-width, adaptive algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.55

Related Version See [26], https://arxiv.org/abs/1804.10173, for the full version of the pa-
per.

1 Introduction

Determining the best possible worst-case running times for computational problems lies at
the heart of algorithmic research. For many intensively studied problems progress has been
stalled for decades and one may suspect that the “correct” running times have already been
found. While there is still only little known regarding unconditional lower bounds, the recent
success of “fine-grained analysis of algorithms” has brought plenty of tight conditional lower
bounds for a wealth of problems (see, e.g., [31, 5, 2]). Indeed, if one is willing to believe in
the conjectured worst-case optimality of known algorithms for 3-sum, all-pairs-shortest
paths (APSP), or satisfiability1 then lots of other known algorithms must be optimal as
well. Even if there is no general agreement on the truth of the conjectures, the previously

1 It has been conjectured that there is no O(n2−ε) time algorithm for 3-SUM, no O(n3−ε) time for APSP,
and there is no c < 2 such that k-SAT can be solved in time O(cn) for each fixed k (SETH).

© Stefan Kratsch and Florian Nelles;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kratsch@informatik.hu-berlin.de
mailto:nelles@informatik.hu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.55
https://arxiv.org/abs/1804.10173
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

stalled work can now be focused on beating the best known times for just those problems
rather than for a multitude of problems. Complementary to the quest for refuting conjectures
and beating long-standing fastest algorithms, what should we do if the conjectures and
implied lower bounds are true (or if we simply fail to disprove them)? Certainly, quadratic
or cubic time is often too slow, even long before entering the realm of big data. Apart
from heuristics and approximate algorithms, a possible solution lies in taking advantage of
structure in the input and deriving worst-case running times that depend on parameters
that quantify this structure. Consider for example the longest common subsequence
problem, where a breakthrough result [1, 6] proved that there is no O(n2−ε) time algorithm
for any ε > 0 unless satisfiability can be solved in O((2− ε′)n) time for some ε′ > 0 and
SETH fails. Long before this result, algorithms were discovered that run much faster than
O(n2) time when certain parameters are small (cf. [7]); curiously, a very recent result of
Bringmann and Künnemann [7] shows that these are optimal modulo SETH (while giving
one new optimal algorithm for binary alphabets). Similarly, for the task of sorting an array of
n items, there is the (unconditional) lower bound of Ω(n logn) for comparison-based sorting,
which is matched by well-known sorting algorithms. The goal in the area of adaptive sorting
is to find algorithms that are adaptive to presortedness (a.k.a., input structure) with very
low running times for almost sorted inputs while maintaining competitive running times as
disorder increases (cf. [12]).

The success of fine-grained analysis has rekindled the interest in outperforming (possibly
optimal) worst-case running times by tailoring algorithms to benefit from input structure.
This fits naturally into the framework of parameterized complexity where running times
are expressed in terms of input size and one or more problem-specific parameters. Usually,
this is aimed at NP-hard problems and a key goal is to obtain fixed-parameter tractable
(FPT) algorithms that run in time f(k)nc where f(k) is a (usually exponential) function
of the parameter and nc denotes a fixed polynomial in the input size n. Recent work of
Giannopoulou et al. [19] has initiated a programmatic study of what they called “FPT in P”,
i.e., efficient parameterized algorithms for tractable problems. Here, they propose to seek
running time O(kαnβ) when the best dependence on input size alone is O(nγ) for γ > β; in
particular, algorithms with linear dependence on the input size are sought, i.e., time O(kαn).
Giannopoulou et al. suggest that maximum matching could become a focal point of study,
similar to the related NP-hard vertex cover problem in parameterized complexity.

There have been several recent publications that fit into the FPT in P program [14, 28,
4, 13, 24]. Several works focus on the treewidth parameter, which is of core importance in
parameterized complexity [14, 23]. In particular, Fomin et al. [14] obtained algorithms that
depend polynomially on input size n and treewidth tw to solve a number of problems related
to determinants and systems of linear inequalities; e.g., they can solve maximum matching
in time O(tw3 n logn) and vertex flow with unit capacities in time O(tw2 n logn). (A small
caveat of treewidth in this context is that it is NP-hard to compute so one has to resort
to an approximation with polynomial blow-up in the treewidth.) Iwata et al. [24] studied
the related parameter tree-depth and, among other results, showed how to solve maximum
matching in time O(tdm) on graphs of tree-depth td. Very recently, Coudert et al. [8]
studied another tree-width related parameter called clique-width as well as several related
parameters such as modular-width and split-width; they obtain upper and lower bounds for
a variety of problems. Their main result is an algorithm for maximum matching that runs
in O(mw4 n+m) time, where mw stands for the modular-width of the input graph. Note
that modular-width and the modular decomposition of a graph can be computed in linear
time O(n+m); the modular-width is an upper bound for the (NP-hard) clique-width but it
is itself unbounded already on graphs of constant clique-width.

S. Kratsch and F. Nelles 55:3

Table 1 Overview about our results. We denote with n and m the number of vertices and edges,
mw denotes the modular-width of the input graph, and λ denotes the edge-connectivity of the graph
(which is upper-bounded by the minimum degree δ, so λ ≤ δ ≤ 2m/n. The previous best result for
maximum matching, parameterized by modular-width mw, was O(mw4 n+m) [8].

Problem Best unparameterized Our result
maximum matching O(m

√
n) [29] O(mw2 log mwn+m)

maximum b-matching2 O((n logn) · (m+ n logn)) [16] O(mw2 log mwn+m) or
O((mw log mw) · (m+ n log mw))

triangle counting O(nω) [32] or O(mwω−1 n+m)
O(m

2ω
ω+1) = O(m1.41) [3]

edge-disjoint s-t paths O(n 3
2m

1
2) [20] O(mw3 + n+m)

global min cut O(m+ λ2n log(n/λ)) [15] O(mw3 + n+m)
max s-t vertex flow O(nm) [30] O(mw3 + n+m)
global vertex min cut O(n3 logn) [22] O(mw2 log mwn+m)

Our work. We further explore the algorithmic applications of modular-width for well-
studied tractable problems. See Table 1 for an overview of our results. First, we improve
the running time for maximum matching from O(mw4 n + m) to O(mw2 log mwn + m).
We follow the same natural recursive approach as in previous work, i.e., computing optimal
solutions in a bottom-up fashion on the modular decomposition tree. Unlike Coudert et
al. [8], however, we do not seek to use the structure of modules to speed up the computation
of augmenting paths, starting from an union of maximum matchings for the child modules.
Instead, we simplify the current graph, while retaining the same maximum matching size,
such that the found solutions can be encoded into vertex capacities in a graph with at
most 3 mw vertices. This allows us to forget the matchings for the modules and instead of
augmenting paths it suffices to find a maximum b-matching subject to vertex capacities; using
an O(min{b(V), n logn} · (m + n logn)) = O(n3 logn) time algorithm due to Gabow [16]
then yields the claimed running time.3

Our algorithm for maximum matching easily generalizes to computing maximum b-
matchings in the same time O(mw2 log mwn+m). By a different summation of the running
time, one can also bound the time by O((mw log mw) · (m + n log mw)). For large total
capacity b(V), Gabow’s algorithm runs in time O((n logn) · (m+ n logn)), which matches
our running time for graphs with worst-case modular-width of mw = Θ(n).

Thus, when capacities are large, our algorithm interpolates smoothly between linear time
O(n+m) for mw = O(1) and the running time of the best unparameterized algorithm for
mw = Θ(n); i.e., it is an adaptive algorithm and already mw = o(n) gives an improved
running time. Such adaptive algorithms (for other problems and parameter) were also
considered by Iwata et al. [24]. For maximum matching, the comparison with the O(m

√
n)

time algorithm of Micali and Vazirani [29] is of course less favorable, but still yields a fairly
large regime for mw where we get a faster algorithm.

We next study triangle counting where, given a graph G = (V,E), we need to
determine the number of triangles in G. The fastest known algorithm in terms of n relies on
fast matrix multiplication and runs in O(nω) time [32] where ω is the matrix multiplication

2 For b(V) ≥ n logn
3 The obvious upper bound of O(mw3 log mwn+m) of applying Gabow’s algorithm on each prime node

can be improved by a slightly more careful summation; the same applies in the other results.

ESA 2018

55:4 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

exponent.4 We present an algorithm that runs in O(mwω−1 n+m) time. Again, our running
time smoothly interpolates between linear time O(n + m) for mw = O(1) and the best
unparameterized time for mw = Θ(n), making it adaptive for sufficiently dense graphs;
else, the O(m

2ω
ω+1) = O(m1.41) time algorithm of Alon et al. [3] is faster. Coudert et al. [8]

obtained time O(cw2(n+m)) where cw is the clique-width of G; this is incomparable with
our result because clique-width is a smaller parameter (cw ≤ mw and there are graphs with
cw = O(1) but mw = Θ(n)) but (so far) allows a worse time.

Finally, we turn to problems related to edge- and vertex-disjoint paths. Due to space
restrictions the discussion of those problems are deferred to the full version [26]. Our results
for the vertex-disjoint paths generalize to vertex-capacitated flows and global min cuts; it is
easy to see that there is little use for modular-width for most edge-weighted/capacitated
problems because it suffices to solve them on cliques, which have modular-width equal to
two (see also Section 5). Note that standard transformations between different variants of
path- and flow-type problems do not apply here because they affect the modular-width of the
graph. We obtain the following running times: maximum s-t vertex-capacitated flow
in O(mw3 + n+m) time; global vertex-capacitated min cut in O(mw2 log mwn+m)
time; edge-disjoint s-t paths in O(mw3 + n+m) time; and unweighted global min
cut in O(mw3 + n+m) time. The running times for flows/paths are linear in the graph
size and only have an additive contribution in terms of the modular-width, because at most
one involved computation (on a prime node) is needed. These also give rise to linear-time
kernelization-like algorithms that return an equivalent instance of size poly(mw), which
is the one instance that one would run some other algorithm on (i.e., the only source of
non-linear time). Such results (for other problems) have also been observed by Coudert
et al. [8]. It is easy to see that any algorithm of running time O(f(k) + n+m), for some
parameter k, implies a linear-time kernelization: Run the algorithm for c(n+m) steps, for
sufficiently large c relative to hidden constants in O; it either terminates and returns the
correct answer or allows the conclusion that n+m < f(k), i.e., the input instance itself is the
kernel. Again, as done for maximum b-matching, one can obtain different bounds for the
running time by slightly different summations. For example, the running time for maximum
s-t vertex-capacitated flow can also be bounded by O(mwm+ n), meaning that the
algorithm is never worse than the optimal unparameterized algorithm and outperforms it
already for mw = o(n).

To summarize, we obtain several results that fit into the recent FPT in P program
(and the much older programs of adaptive algorithms and faster algorithms for restricted
settings), i.e., efficient parameterized algorithms with running times O(poly(mw)(n+m)) or
O(poly(mw) +m+ n). All running times are linear for mw = O(1) and several algorithms
are adaptive so that they match the best known algorithm for mw = Θ(n) and outperform
it already when mw = o(n), possibly only for sufficiently dense graphs. Of course, we use
the best algorithms as black boxes so the message is that throughout there is little to no
overhead even in the worst case for using a modular decomposition-based approach and
getting savings in running time already for large (but not worst-case) modular-width.

Related work. triangle counting is solvable in time O(nω) using fast matrix multiplica-
tion [3], and even for the simpler triangle detection problem, where only (non-)existence
of a single triangle needs to be reported, it has been conjectured that there is no O(nω−ε)

4 It is known that 2 ≤ ω < 2.3728639 due to Le Gall [17]. By definition of ω the running time is in fact
O(nω+o(1)); adopting a common abuse of notation we use exponent ω for brevity.

S. Kratsch and F. Nelles 55:5

time and no combinatorial O(n3−ε) time algorithm. The fastest known algorithm for counting
triangles in sparse graphs is the AYZ algorithm due to Alon, Yuster, and Zwick [3], which
runs in time O(m

2ω
ω+1) (O(m1.41) for ω < 2.373). Coudert et al. [8] gave a faster algorithm for

graphs of bounded clique-width cw, running in time O(cw2(n+m)). Bentert et al. [4] have
studied triangle enumeration under various parameters including feedback edge number,
distance to d-degenerate graphs, and clique-width. The latter one outputs all triangles in
time O(cw2 n+ n2 + #T) where #T denotes the number of triangles in G.

The currently best maximum flow algorithm is due to Orlin [30] and runs in time O(nm).
Using a flow algorithm, one can determine the number of edge- or vertex-disjoint s-t paths in
a graph, but in the unweighted case one can do slightly better, e.g., computing the number of
edge-disjoint paths in an undirected graph can be done in time O(n 3

2m
1
2) using an algorithm

due to Goldberg and Rao [20]. Finding a global minimum edge cut with weights on the edges
in an undirected graph can be done in time O(nm+ n2 logn) due to Stoer and Wagner [33].
The unweighted variant can be solved in time O(m+ λ2n log(n/λ)) by Gabow [15], where λ
denotes the edge-connectivity of the graph (which is upper-bounded by the minimum degree
δ, so λ ≤ δ ≤ 2m/n). There is also a randomized algorithm with running time O(m log3 n)
due to Karger [25].

The notion of a modular decomposition was first introduced by Gallai [18] for recognizing
comparability graphs. The first linear time algorithm to compute a modular decomposition
was independently developed by McConnell and Spinrad [27] and Cournier and Habib [9].
Tedder et al. [34] later gave a new and much simpler linear-time algorithm.

Organization. In Section 2 we briefly introduce basic notation, define the modular de-
composition tree, and define modular-width. Then, in Section 3, we consider the problem
maximum matching and the generalization to maximum b-matching. In Section 4, we
study the problem triangle counting. Due to space restrictions, the remaining results for
edge/vertex-disjoint paths, flows, and cuts can be found in the full version [26]. We conclude
in Section 5.

2 Preliminaries

We use standard graph notation [10]. An s-t vertex-capacitated flow in a graph G = (V,E)
with vertex capacities c : V → R is a weighted collection of s-t paths in G such that the
total weight of paths including any vertex v ∈ V \ {s, t} is at most the capacity c(v).
(Equivalently, one may define this as a function f : E(←→G) → R where ←→G = (V,A) with
A = {(u, v), (v, u) | {u, v} ∈ E} that has flow-conservation at each v ∈ V \ {s, t} and with∑

(u,v)∈δ−←→
G

(v) f((u, v)) ≤ c(v) for all v ∈ V \ {s, t}, where δ−←→
G

(v) is the set of arcs with end
in v.) The value of such a flow, denoted by |f |, is the total weight over all the s-t paths
(equivalently,

∑
(v,t)∈δ−←→

G
(t) f(v, t)). For unit capacities c ≡ 1 this is equivalent to a maximum

collection of vertex-disjoint s-t paths.
We say that two sets A and B overlap if A ∩B 6= ∅, A \B 6= ∅, and B \ A 6= ∅ and let

[n] = {1, 2, . . . , n} for any n ∈ N.

Modular Decomposition. Let G = (V,E) be a graph. A module is a vertex set M ⊆ V

such that all vertices in M have the same neighborhood in V \M . In other words, M ⊆ N(x)
or M ∩N(x) = ∅ for every vertex x ∈ V \M . Clearly, ∅, V , and {v} for every v ∈ V are
modules of G; these are called trivial modules. If a graph only admits trivial modules, we
call G prime. Consider a partition P = {M1,M2, . . . ,M`} of the vertices of G into modules
where ` ≥ 2, called modular partition. If there is v ∈Mi and u ∈Mj with {u, v} ∈ E, then

ESA 2018

55:6 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

any vertex in Mi is adjacent to every vertex in Mj . In this case, we can call two modules Mi

and Mj of P adjacent, and non-adjacent otherwise.

I Definition 1. Let P = {M1,M2, . . . ,M`} be a modular partition of a graph G = (V,E).
The quotient graph G/P = ({qM1 , qM2 , . . . , qM`

}, EP) is the graph whose vertices are in a
one-to-one correspondence to the modules in P . Two vertices qMi

, qMj
of G/P are adjacent

if and only if the corresponding modules Mi and Mj are adjacent (with adjacency as above).

If P = {M1,M2, . . . ,M`} is a modular partition of a graph G, then the quotient graph
G/P is a compact representation of the edges with endpoint in different modules. Together
with all subgraphs G[Mi], with i ∈ [`], we can reconstruct G. Each subgraph G[Mi] is called
a factor. Instead of specifying the factors, one can recursively decompose them as well until
one reaches trivial modules {v}. To make the decomposition unique, one considers modular
partitions consisting of strong modules. A module of a graph G is called a strong module, if
it does not overlap with any other module of G. One can represent all strong modules of a
graph G by an inclusion tree MD(G). Each strong module M in G corresponds to a vertex
vM in MD(G). A vertex vA is an an ancestor of vB in MD(G) if and only if B (A for the
corresponding strong modules A and B of G. Hence, the root node of MD(G) corresponds
always to the complete vertex set V of G and every leaf of MD(G) corresponds a singleton
set {v} with v ∈ V . Consider an internal node vM of MD(G) with the set of children
{vM1 , . . . , vM`

}, i.e., vM corresponds to a strong module M of G and P = {M1, . . . ,M`} is a
modular partition of G[M] into strong modules where Mi is the corresponding module of
vMi , with i ∈ [`]. There are three types of internal nodes in MD(G). A node vM in MD(G)
is degenerate, if for any non-empty subset of the children of vM in MD(G), the union of the
corresponding modules induces a (not necessarily strong) module. In this case the quotient
graph G[M]/P is either a clique or an independent set. In the former case one calls vM a
series node, in the later a parallel node. Another case are so called prime nodes. Here, for
no proper subset of the children of vM , the union of the corresponding modules induces a
module. In this case the quotient graph of vM is prime. Gallai showed there are no further
nodes in MD(G).

I Theorem 2 ([18]). For any graph G = (V,E) one of the three conditions is satisfied:
G is not connected,
G is not connected,
G and G are connected and the quotient graph G/P , where P is the maximal modular
partition of G, is a prime graph.

Theorem 2 implies that MD(G) is unique. The tree MD(G) is called the modular
decomposition tree and the modular-width, denoted by mw = mw(G), is the minimum k ≥ 2
such that any prime node in MD(G) has at most k children. Since every node in MD(G)
has at least two children and there are exactly n leaves, MD(G) has at most 2n− 1 nodes.
It is known that MD(G) can be computed in time O(n+m) [34]. We refer to a survey of
Habib and Paul [21] for more information.

3 Maximum Matching

In the maximum matching problem we are given a graph G = (V,E) and need to find a
maximum set X ⊆ E of pairwise disjoint edges. The size of a maximum matching of a graph
G is denoted by µ(G). Edmond [11] was the first to give a polynomial-time algorithm for this

S. Kratsch and F. Nelles 55:7

problem. The fastest known algorithm, due to Micali and Vazirani [29], runs in time O(m
√
n).

A b-matching is a generalization of a matching that specifies for each vertex a degree bound of
how many edges in the matching may be incident with that vertex. Formally, degree bounds
are given by a function b : V → N, and a b-matching is a function x : E → N that fulfills for
every vertex v ∈ V the constraint that

∑
e∈δ(v) x(e) ≤ b(v). Gabow [16] showed how to find

a b-matching that maximizes
∑
e∈E x(e) in time O((n logn) · (m+ n logn)).

Recently, Coudert et al. [8] gave an O(mw4 n+m) time algorithm for maximum matching,
where mw denotes the modular-width of the input graph. In the following we will improve this
result by providing an algorithm for maximum matching that runs in time O(mw2 log mw ·
n+m). The main idea of our algorithm is to compress the computation of a matching in G
to a computation of a b-matching, instead of using the structure of modular decompositions
to speed up the search for augmenting paths (like in [8]).

I Theorem 3. For every graph G = (V,E) with modular-width mw, maximum matching
can be solved in time O(mw2 log mw · n+m).

Algorithm. First, we compute the modular decomposition tree MD(G). We will traverse
the decomposition tree in a bottom-up manner. For each vM in MD(G), with M denoting
the corresponding module of G, we will compute a maximum matching in G[M]. Note that
for the root module vM of MD(G) it holds that G[M] = G. For any leaf module vM of
MD(G), we have µ(G[M]) = 0, since G[M] is a graph consisting of a single vertex. Let vM
be a non-leaf vertex in MD(G) with the set of children {vM1 , . . . , vM`

}. This means that
{M1, . . . ,M`} is a modular partition of G[M], where Mi ⊆M corresponds to the vertex vMi

in MD(G) for i ∈ [`]. In the following, we can always assume that we have already computed
µ(G[Mi]) for i ∈ [`]. The next lemma shows that the concrete structure inside a module
is irrelevant for the maximum matching size of the whole graph, i.e., only the number of
vertices and the maximum matching size is important. The lemma is a more general version
of [8, Lemma 5.1], but can be proven in a similar way.

I Lemma 4. Let M be a module of G = (V,E) and let G[M] = (M,EM). Let A ⊆
(
M
2
)
be

any set of edges on the vertices of M such that µ((M,A)) = µ((M,EM)). Then, the size of
a maximum matching of G′ = (V, (E \EM) ∪A) is equal to the size of a maximum matching
of G.

Proof. We first show that µ(G′) ≥ µ(G). Let us consider a maximum matching F ⊆ E

in G = (V,E). To get a maximum matching in G′ we replace all edges in F that are
incident with M : First, replace all edges in F ∩ E(G[M]) by an arbitrary matching A′ ⊆ A
of the same size; such a matching must exist because F ∩ E(G[M]) is not larger than a
maximum matching in G[M] and µ((M,A)) = µ((M,EM)). Second, we replace all edges
in F that have exactly one endpoint in M as follows: Let X ⊆M be the set of vertices in
M that are endpoints of an edge in F whose other endpoint is not in M . By assumption,
|M \ V (A′)| ≥ |X| and since all vertices in V \M that are connected to a vertex in X in G
are also connected to all vertices in M \ V (A′) in G′, we can replace all edges of F that have
exactly one endpoint in M . Thus, µ(G′) ≥ µ(G), i.e., replacing the edges in a module by
an arbitrary set of edges with same maximum matching size does not decrease the size of
the maximum matching for the whole graph. Applying this argument for A′ := EM to swap
back to the original edge set yields, µ(G) ≥ µ(G′) and completes the proof. J

We now describe how to compute µ(G[M]) for a node vM in MD(G). Let {vM1 , . . . , vM`
}

be the set of children of vM in MD(G), meaning that P = {M1, . . . ,M`} is a modular
partition of G[M]. We can assume that we have already computed µ(G[Mi]) for i ∈ [`].

ESA 2018

55:8 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

Let G[M]/P be the quotient graph of G[M]. If vM is a parallel node then G[M]/P is
edgeless, i.e., G[M] is the disjoint union of all G[Mi]. In this case a maximum matching
for G[M] simply consists of the union of maximum matchings for each G[Mi] and we set
µ(G(M)) =

∑
i∈[`] µ(G[Mi]). Next, suppose that vM is a prime node. We will reduce the

problem of computing a maximum matching in G[M] to computing a maximum b-matching
in an auxiliary graph closely related to the quotient graph of vM that we will define next.

I Definition 5. Let G = (V,E) be a graph and P = {M1, . . . ,M`} be a modular partition of
G. Let ni denote the number of vertices in G[Mi] and fi the size of a maximum matching in
G[Mi]. We define an auxiliary graph G∗ = (V ∗, E∗) together with degree bounds b∗ : V ∗ → N
as an instance (G∗, b∗) for the maximum b-matching problem as follows:

For every module Mi ∈ P , with i ∈ [`], we add three vertices v1
i , v

2
i , v

3
i to V ∗ and set

b∗(v1
i) = b∗(v2

i) = fi and b∗(v3
i) = ni − 2fi.

We add the edge {v1
i , v

2
i } to E∗ for i ∈ [`].

For each edge between vertices qi and qj in G/P that corresponds to modules Mi and
Mj , we add the nine edges {vci , vdj } with c, d ∈ {1, 2, 3} to E∗.

I Lemma 6. Let G = (V,E) be a graph and P = {M1, . . . ,M`} be a modular partition of G.
Let (G∗, b∗) be the instance of a maximum b-matching problem as defined in Definition 5.
Then the size of maximum matchings in G is equal to the size of a maximum b-matching of
(G∗, b∗).

Proof. Consider a graph G = (V,E) with a modular partition P = {M1, . . . ,M`}. For
Mi ∈ P let ni = |V (G[Mi])| and let fi = µ(G[Mi]). Due to Lemma 4, we can replace each
G[Mi], for i ∈ [`], by a graph consisting of a complete bipartite graph Kfi,fi

together with
ni − 2fi single vertices without changing the size of a maximum matching. We do this for
every module Mi ∈ P and denote the resulting graph by G. Note, that µ(G) = µ(G). Now,
each replacement of G[Mi] can be partitioned into three modules, namely the two parts of
the complete bipartite graph Kfi,fi

and the one set consisting of ni − 2fi single vertices.
This results in a modular partition P ′ of G of size 3`, and for every module M ∈ P ′ the
factor graph G[M] is an independent set. The quotient graph G/P ′ is exactly the auxiliary
graph G∗ of G and the degree bound of a vertex v in G∗ is equal to the number of vertices
in the corresponding module. Since solving a b-matching in (G∗, b∗) directly corresponds to
solving maximum matching in G, this completes the proof. J

Finally, suppose that vM is a series node. Instead of computing µ(G[M]) directly, we
will modify the decomposition tree MD(G) (cf. [8]). Let {vM1 , . . . , vM`

} be the children of
vM in MD(G). We will iteratively compute a maximum matching for Gi = G[∪1≤j≤iMj]
by using a modular partition of Gi consisting of the two modules ∪1≤j<iMj and Mi, for
i ∈ [`]. This means that we replace a series node with ` children by `− 1 series nodes with
only two children. We will treat the newly inserted nodes as prime nodes (with a quotient
graph isomorphic to K2). After replacing the series nodes of the modular decomposition tree
MD(G), every node still has at least two children; hence, we still have a most 2n− 1 nodes
in MD(G).

Running Time. Consider a graph G = (V,E) with modular-width mw. Computing the
modular decomposition tree MD(G) takes time O(n+m). Since there are at most 2n− 1
nodes in MD(G) the total computation for all parallel nodes together takes time O(n). As
described above, we modify the decomposition tree such that every series node of MD(G)

S. Kratsch and F. Nelles 55:9

with ` ≥ 3 children is replaced by `− 1 ‘pseudo-prime‘ nodes with exactly two children. This
replacement can be done in time O(n). Now, every node vM ∈MD(G) that is not a parallel
node has a set of children {vM1 , . . . , vM`

} with ` ≤ mw. This means that P = {M1, . . . ,M`}
is a modular partition of G[M] and the quotient graph G[M]/P consists of ` ≤ mw vertices.
Since we have already computed µ(G[Mi]) for all i ∈ [`], we can construct the auxiliary
graph G∗ of G[M] as defined in Definition 5 in time O(V (G∗) + E(G∗)) = O(`2). Recall,
that |V (G∗)| = 3`. Thus, we can compute a maximum b-matching of G∗ subject to b in time
O(`3 log `) using the algorithm due to Gabow [16]. We have to do this for every prime and
series node, but a slightly more careful summation of running times over all nodes gives an
improvement over the obvious upper bound of O(mw3 log mw · n+m): Let t be the number
of nodes in MD(G) and for a node vMi in MD(G) let `i denote the number of children, i.e.
the number of vertices of the quotient graph of G[Mi]. Then, neglecting constant factors and
assuming that MD(G) is already computed, we can solve maximum matching, in time:

t∑
i=1

`3
i log `i ≤

(
t∑
i=1

`i

)
·max
i∈[t]
{`2
i log `i} ≤ 2n ·max

i∈[t]
{`2
i log `i} ≤ 2n · (mw2 log mw)

The second inequality holds, since
∑t
i=1 `i counts each node in MD(G) once, except for the

root. Since constant factors propagate through the inequality, the total running time of the
algorithm is O(mw2 log mw · n+m), which proves Theorem 3.

Generalization to b-matching. We can easily generalize this result to the more general
maximum b-matching problem.

I Theorem 7. For every graph G = (V,E) with modular-width mw, maximum b-matching
can be solved in time O(mw2 log mw · n+m).

Again, the concrete structure inside a module will not be important. The only important
information is the size of a maximum b-matching and the sum of all b-values in a module.
We naturally extend Definition 5 to b-matchings:

I Definition 8. Let G = (V,E) be a graph with b : V → N and let P = {M1, . . . ,M`} be a
modular partition of G. Let ni =

∑
v∈Mi

b(v) and fi be the size of a maximum b-matching in
G[Mi] for i ∈ [`]. We define the auxiliary graph G∗ = (V ∗, E∗) together with degree bounds
b∗ : V → N in the same way as done in Definition 5.

I Lemma 9. Let G = (V,E) be a graph and P = {M1, . . . ,M`} be a modular partition of G.
Let (G∗, b∗) be the instance of a maximum b-matching problem as defined in Definition 8.
Then the size of a maximum b-matching in (G, b) is equal to the size of a maximum b-matching
of (G∗, b∗).

Proof. Consider a graph G = (V,E) with a modular partition P = {M1, . . . ,M`}. For
Mi ∈ P let ni =

∑
v∈Mi

b(v) and let fi be the size of a maximum b-matching in Mi. Note,
that one can solve b-matching by replacing every vertex v by b(v) copies that are connected
in the same way as v. After considering this replacement and due to Lemma 4, we can
replace G[Mi], for i ∈ [`], by a graph consisting of a complete bipartite graph Kfi,fi

together
with ni − 2fi single vertices without changing the size of a maximum matching. We do this
for every module Mi and denote the resulting graph by G. As in the proof of Lemma 6, we
can subdivide every module in three parts. This yields to the instance (G∗, b∗) as defined
in Definition 8. Again, solving a maximum b-matching of (G∗, b∗) directly corresponds to
solving a maximum b-matching in G, which completes the proof. J

ESA 2018

55:10 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

The running time can be bounded in the same way as before. However, to see that this
algorithm is also adaptive for sparse graphs (at least for large b-values), we can modify the
computation of the running time: Let t be the number of nodes in MD(G). For a node
vMi in MD(G) let ni denote the number of vertices and mi denote the number of edges of
the quotient graph of G[Mi]. Thus, we can compute a maximum b-matching of G∗ subject
to b∗ in time O((ni logni) · (mi + ni logni)) using the algorithm due to Gabow [16]. Then,
neglecting constant factors and assuming that MD(G) is already computed, we can solve
maximum b-matching in time:

t∑
i=1

(ni logni) · (mi + ni logni) =
t∑
i=1

mini logni +
t∑
i=1

n2
i log2 ni

≤

(
t∑
i=1

mi

)
max
i∈[t]
{ni logni}+

(
t∑
i=1

ni

)
max
i∈[t]
{ni log2 ni}

≤ m ·mw log mw + 2n · (mw log2 mw)

Since constant factors propagate through the inequality, the total running time of the
algorithm is O((m+ n log mw) · (mw log mw)). Therefore, even for mw = Θ(n) our algorithm
is not worse than the (currently) best unparameterized algorithm, assuming b(V) ≥ n logn,
where b(V) =

∑
v∈V b(v).

4 Triangle Counting

In this section we consider the triangle counting problem, in which one is interested in
the number of triangles in the input graph.

I Theorem 10. For every graph G = (V,E) with modular-width mw, triangle counting
can be solved in time O(n ·mwω−1 +m).

Algorithm. First, we compute the modular decomposition tree MD(G). We will process
MD(G) in a bottom-up manner. For each vM in MD(G), with corresponding module M in
G, we will compute the following three values: the number of vertices nM = |V (G[M])|, the
number of edges mM = |E(G[M])|, and the number of triangles tM in G[M]. For any leaf
node vM in MD(G) we have nM = 1 and mM = tM = 0, because G[M] consists of a single
vertex. Let vM be a non-leaf node in MD(G) with children {vM1 , . . . , vM`

}. Since we process
MD(G) in a bottom-up manner, the values for G[Mi] are already computed for i ∈ [`]. If
vM is a parallel node, the values simply add up, i.e. nM =

∑`
i=1 nMi

, mM =
∑`
i=1 mMi

,
and tM =

∑`
i=1 tMi

. If vM is a series node, we will use the same approach as in Section 3
and replace vM by `− 1 series nodes with only two children each. Afterwards, we compute
the values for a series node vM with children vM1 and vM2 as follows:

nM = nM1 + nM2

mM = mM1 +mM2 + nM1nM2

tM = tM1 + tM2 +mM1nM2 +mM2nM1

Finally, let vM be a prime node in MD(G) and let {vM1 , . . . , vM`
} be the children of vM

in MD(G). This means that P = {M1, . . . ,M`} is a modular partition of G[M]. Again,
nM =

∑`
i=1 nMi and we can compute mM by traversing all edges in the quotient graph

S. Kratsch and F. Nelles 55:11

G[M]/P , i.e., mM =
∑`
i=1 mMi +

∑
{qi,qj}∈E(G[M]/P) nMi

nMj . For computing tM we count
triangles in G[M] of three types: Triangles using vertices in exactly one module, in two
(adjacent) modules, or in three modules of P . We call a triangle with vertices in three
different modules a separated triangle. To compute the number of separated triangles, we
use the following lemma:

I Lemma 11. Let G = (V,E) be a graph with a modular partition P = {M1, . . . ,M`} and
quotient graph G/P . Let nMi

:= |Mi| and consider the weight function w : E(G/P) → R+

with w({qi, qj}) = √nMinMj . Let A be the weighted adjacency matrix of G/P with respect to
w. Then, the number of separated triangles in G is:

∑̀
i,j=1

1
3(A2 ◦A)i,j ,

where A◦B denotes the Hadamard product of the matrices A and B, i.e., (A◦B)i,j = Ai,jBi,j .

Proof. To count all separated triangles in G we need to sum up the values nMi
nMj

nMk
for

each triangle (qi, qj , qk) in G/P . We show, that (A2 ◦A)i,j exactly corresponds to the number
of separated triangles in G with one vertex in Mi and one in Mj ; here, a wedge is a path on
three vertices (and a wedge (qi, qk, qj) requires the presence of edges {qi, qk} and {qk, qj}):

(
A2)

i,j
=
∑̀
k=1

Ai,kAk,j

=
∑

k:(qi,qk,qj)
is a wedge in G/P

√
nMinMk

√
nMk

nMj

= √nMi
nMj

∑
k:(qi,qk,qj)

is a wedge in G/P

nMk

⇒
(
A2 ◦A

)
i,j

=
∑

k:(qi,qk,qj)
is a triangle in G/P

nMi
nMj

nMk

Since every triangle is counted three times (once for each edge) the lemma follows. J

Using Lemma 11, we can compute tM by

tM =
∑̀
i=1

tMi
+

∑
{qi,qj}∈E(G/P)

(
mMi

nMj
+ nMi

mMj

)
+
∑̀
i,j=1

1
3
(
A2 ◦A

)
i,j
,

where the three terms refer to triangles with vertices from only one module, triangles using
vertices of two adjacent modules, and separated triangles with vertices in three different
(pairwise adjacent) modules.

Running Time. Computing the modular decomposition tree MD(G) takes time O(n+m).
Consider a node vM in MD(G) with children {vM1 , . . . , vM`

}. If vM is a parallel or a series
node then we can compute the values nM , mM , and tM for G[M] in time O(`). Thus, since
the number of nodes in MD(G) is at most 2n− 1, the total running time for all parallel and
series nodes is O(n). Assume that vM is a prime node. Recall, that P = {M1, . . . ,M`} is
a modular partition of G[M]. Computing nM takes time O(`) and computing mM takes

ESA 2018

55:12 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

time O(|E(G[M]/P)|) = O(`2). The running time for computing tM is dominated by the
computation of A2, which takes time O(`ω). Note, that 2 ≤ ` ≤ mw. By a similar careful
summation as done in Section 3 we can improve the obvious upper bound of O(n ·mwω +m):
Let p be the number of nodes in MD(G) and for vMi in MD(G) let `i be the number of
children, i.e., the number of vertices of the quotient graph of G[Mi]. Neglecting constant
factors and assuming that MD(G) is already computed, the running time is:

p∑
i=1

`ωi ≤

(
p∑
i=1

`i

)
max
i∈[p]

`ω−1
i ≤ 2n ·mwω−1

Again, since constant factors propagate through the inequalities, the total running time of
the algorithm is O(n ·mwω−1 + m), which proves Theorem 10. Note, that this algorithm
is adaptive for dense graphs, meaning that even for mw = Θ(n) our algorithm is not worse
than O(nω).

5 Conclusion

We have obtained efficient parameterized algorithms for maximum matching, maximum
b-matching, triangle counting, and several path- and flow-type problems with respect
to the modular-width mw of the input graph. All time bounds are of form O(f(mw)n+m),
O(n+ f(mw)m), or O(f(mw) + n+m), where the latter can be easily seen to imply linear-
time preprocessing to size O(f(mw)). Throughout, the dependence f(mw) is very low and
several algorithms are adaptive in the sense that their time bound interpolates smoothly
between O(n+m) when mw = O(1) and the best known unparameterized running time when
mw = Θ(n). Thus, even if typical inputs may have modular width Θ(n) (a caveat that all
structural parameters face to some degree), using these algorithms costs only a constant-factor
overhead and already mw = o(n) yields an improvement over the unparameterized case.

As mentioned in the introduction, (low) modular-width seems useless in problems where
edges are associated with weights and/or capacities. Intuitively, these numerical values
distinguish edges between adjacent modules M and M ′, which could otherwise be treated
as largely equivalent. For concreteness, consider an instance (G, s, t, w) of the shortest
s,t-path problem where w : E(G)→ N are the edge weights. Clearly, the distance from s to t
is unaffected if we add the missing edges of G and let their weight exceed the sum of weights
in w. However, the obtained graph is a clique and has constant modular-width. Similar
arguments work for other edge-weighted/capacitated problems like maximum flow using
either huge or negligible weights. In each case, running times of form O(f(mw)g(n,m)) would
imply time O(g(n,m)) for the unparameterized case (without considering modular-width),
so the best such running times cannot be outperformed even for low modular-width.

Apart from developing further efficient (and adaptive?) parameterized algorithms relative
to modular-width there are other directions of future work. Akin to conditional lower
bounds via fine-grained analysis of algorithms it would be interesting to prove optimality of
efficient parameterized algorithms for all regimes of the parameters (e.g., like Bringmann and
Künnemann [7]). Which other (graph) parameters allow for adaptive parameterized running
times so that even nontrivial upper bounds on the parameter imply faster algorithms than
the unparameterized worst case?

S. Kratsch and F. Nelles 55:13

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 59–78, 2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 41–50. ACM,
2015. doi:10.1145/2746539.2746594.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

4 Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. Parameterized
aspects of triangle enumeration. In Fundamentals of Computation Theory - 21st Inter-
national Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings,
pages 96–110, 2017. doi:10.1007/978-3-662-55751-8_9.

5 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
661–670. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.76.

6 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97,
2015. doi:10.1109/FOCS.2015.15.

7 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
1216–1235, 2018. doi:10.1137/1.9781611975031.79.

8 David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully polynomial FPT algorithms
for some classes of bounded clique-width graphs. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 2765–2784, 2018. doi:10.1137/1.9781611975031.176.

9 Alain Cournier and Michel Habib. A new linear algorithm for modular decomposition. In
Sophie Tison, editor, Trees in Algebra and Programming - CAAP’94, 19th International
Colloquium, Edinburgh, U.K., April 11-13, 1994, Proceedings, volume 787 of Lecture Notes
in Computer Science, pages 68–84. Springer, 1994. doi:10.1007/BFb0017474.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

12 Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Comput. Surv., 24(4):441–476, 1992. doi:10.1145/146370.146381.

13 Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf Nie-
dermeier, and Nimrod Talmon. When can graph hyperbolicity be computed in linear
time? In Algorithms and Data Structures - 15th International Symposium, WADS 2017,
St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings, pages 397–408, 2017.
doi:10.1007/978-3-319-62127-2_34.

14 Fedor V Fomin, Daniel Lokshtanov, Michał Pilipczuk, Saket Saurabh, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and matrices of
low treewidth. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on

ESA 2018

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1145/2746539.2746594
http://dx.doi.org/10.1007/BF02523189
http://dx.doi.org/10.1007/978-3-662-55751-8_9
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1137/1.9781611975031.79
http://dx.doi.org/10.1137/1.9781611975031.176
http://dx.doi.org/10.1007/BFb0017474
http://dx.doi.org/10.1145/146370.146381
http://dx.doi.org/10.1007/978-3-319-62127-2_34

55:14 Efficient and Adaptive Parameterized Algorithms on Modular Decompositions

Discrete Algorithms, pages 1419–1432. Society for Industrial and Applied Mathematics,
2017.

15 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arbores-
cences. J. Comput. Syst. Sci., 50(2):259–273, 1995. doi:10.1006/jcss.1995.1022.

16 Harold N. Gabow. Data structures for weighted matching and extensions to b-matching
and f-factors. CoRR, abs/1611.07541, 2016. arXiv:1611.07541.

17 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,
Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–
303. ACM, 2014. URL: http://dl.acm.org/citation.cfm?id=2608628, doi:10.1145/
2608628.2608664.

18 Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1-2):25–66,
1967.

19 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial
fixed-parameter algorithms: A case study for longest path on interval graphs. CoRR,
abs/1506.01652, 2015. arXiv:1506.01652.

20 Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks. SIAM
J. Discrete Math., 12(1):1–5, 1999. doi:10.1137/S089548019733103X.

21 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decom-
position. Computer Science Review, 4(1):41–59, 2010. doi:10.1016/j.cosrev.2010.01.
001.

22 Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a
directed graph. J. Algorithms, 17(3):424–446, 1994. doi:10.1006/jagm.1994.1043.

23 Thore Husfeldt. Computing graph distances parameterized by treewidth and diameter. In
Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized
and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63
of LIPIcs, pages 16:1–16:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.IPEC.2016.16.

24 Yoichi Iwata, Tomoaki Ogasawara, and Naoto Ohsaka. On the power of tree-depth for
fully polynomial FPT algorithms. In 35th Symposium on Theoretical Aspects of Computer
Science, STACS 2018, February 28 to March 3, 2018, Caen, France, pages 41:1–41:14, 2018.
doi:10.4230/LIPIcs.STACS.2018.41.

25 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. doi:
10.1145/331605.331608.

26 Stefan Kratsch and Florian Nelles. Efficient and adaptive parameterized algorithms on
modular decompositions. CoRR, abs/1804.10173, 2018. arXiv:1804.10173.

27 Ross M McConnell and Jeremy P Spinrad. Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In Proceedings of the fifth annual ACM-
SIAM symposium on Discrete algorithms, pages 536–545. Society for Industrial and Applied
Mathematics, 1994.

28 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. Fine-grained algorithm
design for matching. CoRR, abs/1609.08879, 2016. arXiv:1609.08879.

29 Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|) algorithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer
Society, 1980. doi:10.1109/SFCS.1980.12.

30 James B. Orlin. Max flows in o(nm) time, or better. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 765–774, 2013. doi:
10.1145/2488608.2488705.

http://dx.doi.org/10.1006/jcss.1995.1022
http://arxiv.org/abs/1611.07541
http://dl.acm.org/citation.cfm?id=2608628
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/2608628.2608664
http://arxiv.org/abs/1506.01652
http://dx.doi.org/10.1137/S089548019733103X
http://dx.doi.org/10.1016/j.cosrev.2010.01.001
http://dx.doi.org/10.1016/j.cosrev.2010.01.001
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.16
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.41
http://dx.doi.org/10.1145/331605.331608
http://dx.doi.org/10.1145/331605.331608
http://arxiv.org/abs/1804.10173
http://arxiv.org/abs/1609.08879
http://dx.doi.org/10.1109/SFCS.1980.12
http://dx.doi.org/10.1145/2488608.2488705
http://dx.doi.org/10.1145/2488608.2488705

S. Kratsch and F. Nelles 55:15

31 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages
1065–1075. SIAM, 2010. doi:10.1137/1.9781611973075.86.

32 Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Experimental and Efficient Algorithms, 4th Internation-
alWorkshop, WEA 2005, Santorini Island, Greece, May 10-13, 2005, Proceedings, pages
606–609, 2005. doi:10.1007/11427186_54.

33 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591,
1997. doi:10.1145/263867.263872.

34 Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-
time modular decomposition via recursive factorizing permutations. In Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th International Col-
loquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A:
Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture Notes in Computer
Science, pages 634–645. Springer, 2008. doi:10.1007/978-3-540-70575-8_52.

ESA 2018

http://dx.doi.org/10.1137/1.9781611973075.86
http://dx.doi.org/10.1007/11427186_54
http://dx.doi.org/10.1145/263867.263872
http://dx.doi.org/10.1007/978-3-540-70575-8_52

On Nondeterministic Derandomization of
Freivalds’ Algorithm: Consequences, Avenues and
Algorithmic Progress
Marvin Künnemann
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
marvin@mpi-inf.mpg.de

Abstract
Motivated by studying the power of randomness, certifying algorithms and barriers for fine-
grained reductions, we investigate the question whether the multiplication of two n× n matrices
can be performed in near-optimal nondeterministic time Õ(n2). Since a classic algorithm due to
Freivalds verifies correctness of matrix products probabilistically in time O(n2), our question is
a relaxation of the open problem of derandomizing Freivalds’ algorithm.

We discuss consequences of a positive or negative resolution of this problem and provide
potential avenues towards resolving it. Particularly, we show that sufficiently fast deterministic
verifiers for 3SUM or univariate polynomial identity testing yield faster deterministic verifiers for
matrix multiplication. Furthermore, we present the partial algorithmic progress that distinguish-
ing whether an integer matrix product is correct or contains between 1 and n erroneous entries
can be performed in time Õ(n2) – interestingly, the difficult case of deterministic matrix product
verification is not a problem of “finding a needle in the haystack”, but rather cancellation effects
in the presence of many errors.

Our main technical contribution is a deterministic algorithm that corrects an integer matrix
product containing at most t errors in time Õ(

√
tn2 + t2). To obtain this result, we show how

to compute an integer matrix product with at most t nonzeroes in the same running time. This
improves upon known deterministic output-sensitive integer matrix multiplication algorithms for
t = Ω(n2/3) nonzeroes, which is of independent interest.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases matrix product verification, certifying computation, fine-grained com-
plexity and algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.56

Related Version A full version of the paper is available at [27], https://arxiv.org/abs/1806.
09189.

Acknowledgements The author wishes to thank Markus Bläser, Russell Impagliazzo, Kurt Mehl-
horn, Ramamohan Paturi, and Michael Sagraloff for early discussions on this work and Karl
Bringmann for comments on a draft of this paper.

1 Introduction

Fast matrix multiplication algorithms belong to the most exciting algorithmic developments
in the realm of low-degree polynomial-time problems. Starting with Strassen’s polynomial
speedup [38] over the naive O(n3)-time algorithm, extensive work (see, e.g., [13, 41, 29]) has
brought down the running time to O(n2.373) (we refer to [8] for a survey). This leads to
substantial improvements over naive solutions for a wide range of applications; for many

© Marvin Künnemann;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 56; pp. 56:1–56:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marvin@mpi-inf.mpg.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.56
https://arxiv.org/abs/1806.09189
https://arxiv.org/abs/1806.09189
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 On Nondeterministic Derandomization of Freivalds’ Algorithm

problems, the best known algorithms make crucial use of fast multiplication of square or
rectangular matrices. To name just a few examples, we do not only obtain polynomial
improvements for numerous tasks in linear algebra (computing matrix inverses, determinants,
etc.), graph theory (finding large cliques in graphs [33], All-Pairs Shortest Path for bounded
edge-weights [4]), stringology (context free grammar parsing [40], RNA folding and language
edit distance [9]) and many more, but also strong subpolynomial improvements such as a
2Ω(
√

log n)-factor speed-up for the All-Pairs Shortest Path problem (APSP) [46] or similar
improvements for the orthogonal vectors problem (OV) [3]. It is a famous open question
whether the matrix multiplication exponent ω is equal to 2.

Matrix multiplication is the search version of the MM-Verification problem: given
n × n matrices A,B and a candidate C for the product matrix, verify whether AB = C.
There is a surprisingly simple randomized algorithm due to Freivalds [15] that is correct
with probability at least 1/2: Pick a random vector v ∈ {0, 1}n, compute the matrix-vector
products Cv and A(Bv), and declare AB = C if and only if Cv = ABv. Especially given
the simplicity of this algorithm and the widely-shared hope that ω = 2, one might conjecture
that a deterministic version of Freivalds’ algorithm exists. Alas, while refined ways to pick
the random vector v reduce the required number of random bits to logn+O(1) [32, 26], a
Õ(n2)-time deterministic algorithms for matrix product verification remains elusive.

The motivation of this paper is the following question:

Can we solve Boolean, integer or real matrix multiplication in nondeterministic Õ(n2) time?

Here we say that a functional problem f is in nondeterministic time t(n) if f admits
a t(n)-time verifier : there is a function v, computable in deterministic time t(n), where
n denotes the problem size of x, such that for all x, y there exists a certificate c with
v(x, y, c) = 1 if and only y = f(x).1

Note that a Õ(n2)-time derandomization of Freivalds’ algorithm would yield an affirmative
answer: guess C, and verify AB = C using the deterministic verification algorithm. In
contrast, a nondeterministic algorithm may guess additional information, a certificate beyond
a guess C on the matrix product, and use it to verify that C = AB. Surprising faster
algorithms in such settings have recently been found for 3SUM and all problems subcubic
equivalent to APSP under deterministic reductions [11]; see [43, 42] for an overview over
subcubic equivalences to APSP.

In this paper, we discuss consequences of positive or negative resolutions of this question,
propose potential avenues for an affirmative answer and present partial algorithmic progress.
In particular, we show that (1) sufficiently fast verifiers for 3SUM or univariate polynomial
identity testing yield faster nondeterministic matrix multiplication algorithms, (2) in the
integer case we can detect existence of between 1 and n erroneous entries in C in determin-
istic time Õ(n2) and (3) we provide a novel deterministic output-sensitive integer matrix
multiplication algorithm that improves upon previous deterministic algorithms if AB has at
least n2/3 nonzeroes.

1.1 Further Motivation and Consequences
Our motivation stems from studying the power of randomness, as well as algorithmic
applications in certifiable computation, and consequences for the fine-grained complexity of
polynomial-time problems.

1 Throughout the paper, we view any decision problem P as a binary-valued functional problem. Thus a
t(n)-time verifier for P shows that P is in nondeterministic and co-nondeterministic time t(n).

M. Künnemann 56:3

Power of Randomness: Matrix-product verification has one of the simplest randomized
solution for which no efficient derandomization is known – the currently best known deter-
ministic algorithm simply computes the matrix product AB in deterministic time O(nω)
and checks whether C = AB. Exploiting nondeterminism instead of randomization may
yield insights into when and under which conditions we can derandomize algorithms without
polynomial increases in the running time.

A very related case is that of univariate polynomial identity testing (UPIT): it has a
similar status with regards to randomized and deterministic algorithms. As we will see,
finding Õ(n2)-time nondeterministic derandomizations for UPIT is a more difficult problem,
so that resolving our main question appears to be a natural intermediate step towards
nondeterministic derandomizations of UPIT, see Section 1.2.

Practical Applications – Deterministic Certifying Algorithms: Informally, a certifying
algorithm for a functional problem f is an algorithm that computes, for each input x, besides
the desired output y = f(x) also a certificate c such that there is a simple verifier that checks
whether c proves that y = f(x) indeed holds [31]. If we fix our notion of simplicity to be
that of being computable by a fast deterministic algorithm, then our notion of verifiers turns
out to be a suitable notion to study existence of certifying algorithms – it only disregards
the running time needed to compute the certificate c.

Having a fast verifier for matrix multiplication would certainly be desirable – while
Freivalds’ algorithm yields a solution that is sufficient for many practical applications, it can
never completely remove doubts on the correctness. Since matrix multiplication is a central
ingredient for many problems, fast verifiers for matrix multiplication imply fast verifiers for
many more problems.

In fact, even if ω = 2, finding combinatorial2 strongly subcubic verifiers is of interest, as
these are more likely to yield practical advantages over more naive solutions. In particular, the
known subcubic verifiers for all problems subcubic equivalent to APSP (under deterministic
reductions) [11] all rely on fast matrix multiplication, and might not yet be relevant for
practical applications.

Barriers for SETH-based Lower Bounds: Given the widely-shared hope that ω = 2, can
we rule out conditional lower bounds of the form nc−o(1) with c > 2 for matrix multipli-
cation, e.g., based on the Strong Exponential Time Hypothesis (SETH) [19]? Carmosino
et al. [11] proposed the Nondeterministic Strong Exponential Time Hypothesis (NSETH)
that effectively postulates that there is no O(2(1−ε)n)-time co-nondeterministic algorithm for
k-SAT for all constant k. Under this assumption, we can rule out fast nondeterministic or
co-nondeterministic algorithms for all problems that have deterministic fine-grained reduc-
tions from k-SAT. Conversely, if we find a nondeterministic matrix multiplication algorithm
running in time nc+o(1), then NSETH implies that there is no SETH-based lower bound of
nc′−o(1), with c′ > c, for matrix multiplication using deterministic reductions.

Barriers for Reductions in Case of a Negative Resolution: Suppose that there is a
negative resolution of our main question, specifically that Boolean matrix multiplication has
no nc−o(1)-time verifier for some c > 2 (observe that this would imply ω > 2). Then by a
simple O(n2)-time nondeterministic reduction from Boolean matrix multiplication to triangle
finding (implicit in the proof of Theorem 1.1 below) and a known O(n2)-time reduction from
triangle finding to Radius [1], Radius has no nc−o(1)-time verifier. This state of affairs would
rule out certain kinds of subcubic reductions from Radius to Diameter, e.g., deterministic

2 Throughout this paper, we call an algorithm combinatorial, if it does not use sophisticated algebraic
techniques underlying the fastest known matrix multiplication algorithms.

ESA 2018

56:4 On Nondeterministic Derandomization of Freivalds’ Algorithm

many-one-reductions, since these would transfer a simple O(n2)-time verifier for Diameter3
to Radius. Note that finding a subcubic reduction from Radius to Diameter is an open
problem in the fine-grained complexity community [1].

1.2 Structural Results: Avenues Via Other Problems
We present two particular avenues for potential subcubic or even near-quadratic matrix
multiplication verifiers: finding fast verifiers for either 3SUM or univariate polynomial
identity testing.

3SUM

One of the core hypotheses in the field of hardness in P is the 3SUM problem [16]. Despite
the current best time bound of O(n2 · poly log log n

log2 n
) [6, 12] being only slightly subquadratic,

recently a strongly subquadratic verifier running in time Õ(n3/2) was found [11]. We
have little indication to believe that this verification time is optimal; for the loosely related
computational model of decision trees, a remarkable near-linear time bound has been obtained
just this year [25].

By a simple reduction, we obtain that any polynomial speedup over the known 3SUM
verifier yields a subcubic Boolean matrix multiplication verifier. In particular, establishing a
near-linear 3SUM verifier would yield a positive answer to our main question in the Boolean
setting.

I Theorem 1.1. Any O(n3/2−ε)-time verifier for 3SUM yields a O(n3−2ε)-time verifier for
Boolean matrix multiplication.

Under the BMM hypothesis, which asserts that there is no combinatorial O(n3−ε)-time
algorithm for Boolean matrix multiplication (see, e.g., [2]), a n3/2−o(1)-time lower bound
(under randomized reductions) for combinatorial 3SUM algorithms is already known [22, 43].
The above result, however, establishes a stronger, non-randomized relationship between the
verifiers’ running times by a simple proof exploiting nondeterminism.

UPIT

Univariate polynomial identity testing (UPIT) asks to determine, given two degree-n poly-
nomials p, q over a finite field of polynomial order, represented as arithmetic circuits with
O(n) wires, whether p is identical to q. By evaluating and comparing p and q at n + 1
distinct points or Õ(1) random points, we can solve UPIT deterministically in time Õ(n2)
or with high probability in time Õ(n), respectively. A nondeterministic derandomization,
more precisely, a O(n2−ε)-time verifier, would have interesting consequences [47]: it would
refute the Nondeterministic Strong Exponential Time Hypothesis posed by Carmosino et
al. [11], which in turn would prove novel circuit lower bounds, deemed difficult to prove. We
observe that a sufficiently strong nondeterministic derandomization of UPIT would also give
a faster matrix multiplication verifier.

3 We verify that a graph G has diameter d as follows: For every vertex v, we guess the shortest path
tree originating in v. It is straightforward to use this tree to verify that all vertices v′ have distance at
most d from v in time O(n). Thus, we can prove that the diameter is at most d in time O(n2). For the
lower bound, guess some vertex pair u, v and verify that their distance is indeed d using a single-source
shortest path computation in time O(m + n log n) = O(n2).

M. Künnemann 56:5

I Theorem 1.2. Any O(n3/2−ε)-time verifier for UPIT yields a O(n3−2ε)-time verifier for
integer matrix multiplication.

Note that this avenue might seem more difficult to pursue than a direct attempt at
resolving our main question, due to its connection to NSETH and circuit lower bounds.
Alternatively, however, we can view the specific arithmetic circuit obtained in our reductions
as an interesting intermediate testbed for ideas towards derandomizing UPIT. In fact, our
algorithmic results were obtained by exploiting the connection to UPIT, and exploiting the
structure of the resulting specialized circuits/polynomials.

1.3 Algorithmic Results: Progress on Integer Matrix Product
Verification

Our main result is partial algorithmic progress towards the conjecture in the integer setting.
Specifically, we consider a restriction of MM-Verification to the case of detecting a
bounded number t of errors. Formally, let MM-Verificationt denote the following problem:
given n× n integer matrices A,B,C with polynomially bounded entries, produce an output
“C = AB” or “C 6= AB”, where the output must always be correct if C and AB differ in at
most t entries.

Our main result is an algorithm that solves MM-Verificationt in near-quadratic time
for t = O(n) and in strongly subcubic time for t = O(nc) with c < 2.

I Theorem 1.3. For any 1 ≤ t ≤ n2, MM-Verificationt can be solved deterministically
in time O((n2 + tn) log2+o(1) n).

Interestingly, this shows that detecting the presence of very few errors is not a difficult
case. Instead of a needle-in-the-haystack problem, we rather need to find a way to deal with
cancellation effects in the presence of at least Ω(n) errors.

As a corollary, we obtain a different near-quadratic-time randomized algorithm for MM-
Verification than Freivalds’ algorithm: Run the algorithm of Theorem 1.3 for t = n in
time Õ(n2). Afterwards, either C = AB holds or C has at least Ω(n) erroneous entries.
Thus it suffices to sample Θ(n) random entries i, j and to check whether Ci,j = (AB)i,j for
all sampled entries (by naive computation of (AB)i,j in time O(n) each) to obtain an Õ(n2)-
time algorithm that correctly determines C = AB or C 6= AB with constant probability.
Potentially, this alternative to Freivalds’ algorithm might be simpler to derandomize.

Finally, our algorithm for detecting up to t errors can be extended to a more involved
algorithm that also finds all erroneous entries (if no more than t errors are present) and
correct them in time Õ(

√
tn2 + t2). In fact, this problem turns out to be equivalent to the

notion of output-sensitive matrix multiplication os-MMt: Given n × n matrices A,B of
polynomially bounded integer entries with the promise that AB contains at most t nonzeroes,
compute AB.

I Theorem 1.4. Let 1 ≤ t ≤ n2. Given n × n matrices A,B,C of polynomially bounded
integers, with the property that C differs from AB in at most t entries, we can compute
AB in time O(

√
tn2 log2+o(1) n+ t2 log3+o(1) n). Equivalently, we can solve os-MMt in time

O(
√
tn2 log2+o(1) n+ t2 log3+o(1) n).

Previous work by Gasieniec et al. [17] gives a Õ(n2 + tn) randomized solution, as well as
a Õ(tn2) deterministic solution. Because of the parameter-preserving equivalence between t
error correction and os-MMt, this task is also solved by the randomized Õ(n2 + tn)-time

ESA 2018

56:6 On Nondeterministic Derandomization of Freivalds’ Algorithm

algorithm due to Pagh [34]4 and the deterministic O(n2 + t2n log5 n)-time algorithm due to
Kutzkov [28]. Note that our algorithm improves upon Kutzkov’s algorithm for t = Ω(n2/3),
in particular, our algorithm is strongly subcubic for t = O(n3/2−ε) and even improves upon
the best known fast matrix multiplication algorithm for t = O(n0.745).

1.4 Further Related Work
There is previous work that claims to have resolved our main question in the affirmative.
Unfortunately, the approach is flawed; we detail the issue in the full version of this article [27].

Other work considers MM-Verification and os-MM in quantum settings, e.g., [10, 23].
Furthermore, better running times can be obtained if we restrict the distribution of the
errors over the guessed matrix/nonzeroes over the matrix product: Using rectangular matrix
multiplication, Iwen and Spencer [20] show how to compute AB in time O(n2+ε) for any
ε > 0, if no column (or no row) of AB contains more than n0.29462 nonzeroes. Furthermore,
Roche [35] gives a randomized algorithm refining the bound of Gasieniec et al. [17] using, as
additional parameters, the total number of nonzeroes in A,B,C and the number of distinct
columns/rows containing an error.

For the case of Boolean matrix multiplication, several output-sensitive algorithms are
known [36, 48, 5, 30], including a simple deterministic O(n2 + tn)-time algorithm [36] and,
exploiting fast matrix multiplication, a randomized Õ(n2tω/2−1)-time solution [30]. Note
that in the Boolean setting, our parameter-preserving reduction from error correction to
output-sensitive multiplication (Proposition 3.1) no longer applies, so that these algorithms
unfortunately do not immediately yield error correction algorithms.

1.5 Paper Organization
After collecting notational conventions and introducing polynomial multipoint evaluation
as our main algorithmic tool in Section 2, we give a high-level description over the main
ideas behind our results in Section 3. We prove our structural results in Section 4. Our first
algorithmic result on error detection is proven in Section 5. Unfortunately, the details for
our technically most demanding result, i.e., Theorem 1.4, had to be omitted due to space
constraints – they are available in the full version of this article [27]. We conclude with open
questions in Section 6.

2 Preliminaries

Recall the definition of a t(n)-time verifier for a functional problem f : there is a function v,
computable in deterministic time t(n) with n being the problem size of x, such that for all
x, y there exists a certificate c with v(x, y, c) = 1 if and only y = f(x). Here, we assume the
word RAM model of computation with a word size w = Θ(logn).

For n-dimensional vectors a, b over the integers, we write their inner product as 〈a, b〉 =∑n
k=1 a[k] · b[k], where a[k] denotes the k-th coordinate of a. For any matrix X, we write Xi,j

for its value at row i, column j. We typically represent the n×n matrix A by its n-dimensional
row vectors a1, . . . , an, and the n×n matrix B by its n-dimensional column vectors b1, . . . , bn

such that (AB)i,j = 〈ai, bj〉. For any I ⊆ [n], J ⊆ [n], we obtain a submatrix (AB)I,J of AB
by deleting from AB all rows not in I and all columns not in J .

4 For t = ω(n), Jacob and Stöckel [21] give an improved randomized Õ(n2(t/n)ω−2)-time algorithm.

M. Künnemann 56:7

Fast Polynomial Multipoint Evaluation

Consider any finite field F and let M(d) be the number of additions and multiplica-
tions in F needed to multiply two degree-d univariate polynomials. Note that M(d) =
O(d log d log log d) = O(d log1+o(1) n), see, e.g. [44].

I Lemma 2.1 (Multipoint Polynomial Evaluation [14]). Let F be an arbitrary field. Given a
degree-d polynomial p ∈ F[X] given by a list of its coefficients (a0, . . . , ad) ∈ Fd+1, as well as
input points x1, . . . , xd ∈ F, we can determine the list of evaluations (p(x1), . . . , p(xd)) ∈ Fn

using O(M(d) log d) additions and multiplications in F.

Thus, we can evaluate p on any list of inputs x1, . . . , xn in time O((n+ d) log2+o(1) d).

3 Technical Overview

We first observe a simple parameter-preserving equivalence of the following problems,
MM-Verificationt Given `× n, n× `, `× ` matrices A,B,C such that AB and C differ in

0 ≤ z ≤ t entries, determine whether AB = C, i.e., z = 0,
AllZeroest Given `×n, n×` matrices A,B such that AB has 0 ≤ z ≤ t nonzeroes, determine

whether AB = 0, i.e., z = 0.
We also obtain a parameter-preserving equivalence of their “constructive” versions,
MM-Correctiont Given ` × n, n × `, ` × ` matrices A,B,C such that AB and C differ in

0 ≤ z ≤ t entries, determine AB,
os-MMt Given ` × n, n × ` matrices A,B such that AB has 0 ≤ z ≤ t nonzeroes, deter-

mine AB.
For any problem Pt among the above, let TP (n, `, t) denote the optimal running time to solve
Pt with parameters n, ` and t.

I Proposition 3.1. Let ` ≤ n and 1 ≤ t ≤ n2. We have

TMM-Verification(n, `, t) = Θ(TAllZeroes(n, `, t))
TMM-Correction(n, `, t) = Θ(Tos-MM(n, `, t)).

Proof. By setting C = 0, we can reduce AllZeroest and os-MMt to MM-Verificationt

and MM-Correctiont, respectively, achieving the lower bounds of the claim.
For the other direction, let a1, . . . , a` ∈ Zn be the row vectors of A, b1, . . . , b` ∈ Zn be the

column vectors of B and c1, . . . , c` ∈ Z` be the column vectors of C. Let ei denote the vector
whose i-th coordinate is 1 and whose other coordinates are 0. We define `× (n+ `), (n+ `)× `
matrices A′, B′ by specifying the row vectors of A′ as

a′i = (ai,−ei),

and the column vectors of B′ as

b′j = (bj , cj).

Note that (A′B′)i,j = 〈a′i, b′j〉 = 〈ai, bj〉−cj [i], thus (A′B′)i,j = 0 if and only if (AB)i,j = Ci,j .
Consequently, A′B′ has at most t nonzeroes, and checking equality of A′B′ to the all-zero
matrix is equivalent to checking AB = C. The total time to solve MM-Verificationt is
thus bounded by O((n+ `)`) + TAllZeroes(n+ `, `, t) = O(TAllZeroes(n, `, t)), as desired.

Furthermore, by computing C ′ = A′B′ (which contains at most t nonzero entries), we
can also correct the matrix product C by updating Ci,j to Ci,j + C ′i,j . This takes time
O((n+ `)`) + Tos-MM(n+ `, `, t) = O(Tos-MM(n, `, t)), as desired. J

ESA 2018

56:8 On Nondeterministic Derandomization of Freivalds’ Algorithm

Because of the above equivalence, we can focus on solving AllZeroest and os-MMt in
the remainder of the paper. The key for our approach is the following multilinear polynomial

fA,B
MM (x1, . . . , x`; y1, . . . , y`) :=

∑
i,j∈[`]

xi · yj · 〈ai, bj〉,

where again the a1, . . . , a` denote the row vectors of A and the b1, . . . , b` denote the column
vectors of B. Note that the nonzero monomials of fA,B

MM correspond directly to the nonzero
entries of AB. We introduce a univariate variant

g(X) = gA,B(X) := fA,B
MM (1, X, . . . ,X`−1; 1, X`, . . . , X`(`−1)),

which has the helpful property that monomials xiyj of fMM are mapped to the monomial
X(i−1)+`(j−1) in a one-to-one manner, preserving coefficients. To obtain a more efficient
representation of g than to explicitly compute all coefficients 〈ai, bj〉, we can exploit linearity
of the inner product: we have g(X) =

∑n
k=1 qk(X)rk(X`), where qk(Z) =

∑`
i=1 ai[k]Zi−1

and rk(Z) =
∑`

j=1 bj [k]Zj−1. This representation is more amenable for efficient evaluation,
and immediately yields a reduction to univariate polynomial identity testing (UPIT) (see
Theorem 4.2 in Section 4).

To solve the detection problem, we use an idea from sparse polynomial interpolation [7, 49]:
If AB has at most t nonzeroes, then for any root of unity ω of sufficiently high order,
g(ω0) = g(ω1) = g(ω2) = · · · = g(ωt−1) = 0 is equivalent to AB = 0. By showing how to
do fast batch evaluation of g using the above representation, we obtain an Õ((`+ t)n)-time
algorithm for AllZeroest in Section 5, proving Theorem 1.3.

Towards solving the correction problem, the naive approach is to use the Õ((`+ t)n)-time
AllZeroest algorithm in combination with a self-reduction to obtain a fast algorithm for
finding a nonzero position (i, j) of AB: If the AllZeroes algorithm determines that AB
contains at least one nonzero entry, we split the product matrix AB into four submatrices,
detect any one of them containing a nonzero entry, and recurse on it. After finding such
an entry, one can compute the correct nonzero value (AB)i,j = 〈ai, bj〉 in time O(n). One
can then “remove” this nonzero from further search (analogously to Proposition 3.1) and
iterate this process. Unfortunately, this only yields an algorithm of running time Õ(tn2),
even if AllZeroes would take near-optimal time Õ(n2). A faster alternative is to use the
self-reduction such that we find all nonzero entries whenever we recurse on a submatrix
containing at least one nonzero value. However, this process only leads to a running time of
Õ(
√
tn2 + nt2). Here, the bottleneck Õ(nt2) term stems from the fact that performing an

AllZeroes test for t submatrices (e.g., when t nonzeroes are spread evenly in the matrix)
takes time t · Õ(nt).

We still obtain a faster algorithm by a rather involved approach: The intuitive idea is to
test submatrices for appropriately smaller number of nonzeroes z � t. At first sight, such an
approach might seem impossible, since we can only be certain that a submatrix contains no
nonzeroes if we test it for the full number t of potential nonzeroes. However, by showing
how to reuse and quickly update previously computed information after finding a nonzero,
we make this approach work by obtaining “global” information at a small additional cost of
Õ(t2). Doing these dynamic updates quickly crucially relies on the efficient representation of
the polynomial g. The details are given in the full version of this article [27].

M. Künnemann 56:9

4 Structural Results: Avenues Via Other Problems

In this section, we show the simple reductions translating verifiers for 3SUM or UPIT to
matrix multiplication.

4.1 3SUM
We consider the following formulation of the 3SUM problem: given sets S1, S2, S3 of
polynomially bounded integers, determine whether there exists a triplet s1 ∈ S1, s2 ∈
S2, s3 ∈ S3 with s1 + s2 = s3. It is known that a combinatorial O(n3/2−ε)-time algorithm for
3SUM (for any ε > 0) yields a combinatorial O(n3−ε′)-time Boolean matrix multiplication
(BMM) algorithm (for some ε′ > 0). This follows by combining a reduction from Triangle
Detection to 3SUM of [22] and using the combinatorial subcubic equivalence of Triangle
Detection and BMM [43]5. While this only yields a nontight BMM-based lower bound for
3SUM for deterministic or randomized combinatorial algorithms, we can establish a tight
relationship for the current state of knowledge of combinatorial verifiers. In fact, allowing
nondeterminism, we obtain a very simple direct proof of a stronger relationship of the running
times than known for deterministic reductions.

I Theorem 4.1. If 3SUM admits a (“combinatorial”) O(n3/2−ε)-time verifier, then BMM
admits a (“combinatorial”) O(n3−2ε)-time verifier.6

Thus, significant combinatorial improvements over Carmosino et al.’s 3SUM verifier yield
strongly subcubic combinatorial BMM verifiers. In particular, a Õ(n)-time verifier for 3SUM
would yield an affirmative answer to our main question in the Boolean setting. Note that an
analogous improvement of the O(n3/2√logn) [18] size bound in the decision tree model to a
size of O(n log2 n) has recently been obtained [25].

To establish this strong relationship, our reduction exploits the nondeterministic setting
– without nondeterminism, no reduction is known that would give a O(n 8

3−ε)-time BMM
algorithm even if 3SUM could be solved in an optimal O(n) time bound.

Proof of Theorem 4.1. Given the n× n Boolean matrices A,B,C, we first check whether
all entries (i, j) with Ci,j = 1 are correct. For this, for each such i, j, we guess a witness k
and check that Ai,k = Bk,j = 1, which verifies that Ci,j = (AB)i,j = 1.

To check the remaining zero entries Z = {(i, j) ∈ [n]2 | Ci,j = 0}, we construct a
3SUM instance S1, S2, S3 as follows. Let W = 2(n + 1). For each (i, j) ∈ Z, we include
iW 2 + jW in our set S3. For every (i, k) with Ai,k = 1, we include iW 2 + k in our set S1,
and, for every (k, j) with Bk,j = 1, we include jW − k in our set S2. Clearly, any witness
Ai,k = Bk,j = 1 for (AB)i,j = 1, (i, j) ∈ Z yields a triplet a = iW 2 + k ∈ S1, b = jW − k ∈
S2, c = iW 2 + jW ∈ S3 with a+ b = c. Conversely, any 3SUM triplet a ∈ S1, b ∈ S2, c ∈ S3
yields a witness for (AB)i,j = 1, where (i, j) ∈ Z is the zero entry represented by c, since
(iW 2 + k) + (jW − k′) = i′W 2 + j′W for i, i′, j, j′, k, k′ ∈ [n] if only if i = i′, j = j′ and
k = k′ by choice of W . Thus, the 3SUM instance is a NO instance if and only if no (i, j) ∈ Z
has a witness for (AB)i,j = 1, i.e., all (i, j) ∈ Z satisfy Ci,j = (AB)i,j = 0.

Note that reduction runs in nondeterministic time O(n2), using an oracle call of a 3SUM
instance of size O(n2), which yields the claim. J

5 K. G. Larsen obtained an independent proof of this fact, see https://simons.berkeley.edu/talks/
kasper-larsen-2015-12-01.

6 Strictly speaking, the notion of a “combinatorial” algorithm is not well-defined, hence we use quotes here.
However, our reductions are so simple that they should qualify under any reasonable exact definition.

ESA 2018

https://simons.berkeley.edu/talks/kasper-larsen-2015-12-01
https://simons.berkeley.edu/talks/kasper-larsen-2015-12-01

56:10 On Nondeterministic Derandomization of Freivalds’ Algorithm

4.2 UPIT
Univariate Polynomial Identity Testing (UPIT) is the following problem: Given arithmetic
circuits Q,Q′ on a single variable, with degree n and O(n) wires, over a field of order
poly(n), determine whether Q ≡ Q′, i.e., the outputs of Q and Q′ agree on all inputs. Using
evaluation on n+ 1 distinct points, we can deterministically solve UPIT in time Õ(n2), while
evaluating on Õ(1) random points yields a randomized solution in time Õ(n). Williams [47]
proved that a O(n2−ε)-time deterministic UPIT algorithm refutes the Nondeterministic
Strong Exponential Time Hypothesis posed by Carmosino et al. [11]. We establish that
a sufficiently strong (nondeterministic) derandomization of UPIT also yields progress on
MM-Verification.

I Theorem 4.2. If UPIT admits a (“combinatorial”) O(n3/2−ε)-time verifier for some
ε > 0, then there is a (“combinatorial”) O(n3−2ε)-time verifier for matrix multiplication over
polynomially bounded integers and over finite fields of polynomial order.

Proof. We only give the proof for matrix multiplication over a finite field F of polynomial
order. Using Chinese Remaindering, we can easily extend the reduction to the integer case
(see Proposition 5.3 below).

Consider g(X) =
∑

i,j∈[n]〈ai, bj〉X(i−1)+n(j−1) over F as defined in Section 3 (with ` = n).
As described there, we can write g(X) =

∑n
k=1 qk(X)rk(Xn) with qk(Z) =

∑n
i=1 ai[k]Zi−1

and rk(Z) =
∑n

j=1 bj [k]Zj−1. Let k ∈ [n] and note that qk, rk and Xn have arithmetic
circuits with O(n) wires using Horner’s scheme. Chaining the circuits of Xn and rk, and
multiplying with the output of the circuit for qk, we obtain a degree-O(n2) circuit Qk with
O(n) wires. It remains to sum up the outputs of the circuits Q1, . . . , Qn. We thus obtain
a circuit Q with O(n2) wires and degree O(n2). Since by construction AB = 0 if and only
Q ≡ 0, we obtain an UPIT instance Q,Q′, with Q′ being a constant-sized circuit with
output 0, that is equivalent to our MM-Verification instance. Thus, any O(n3/2−ε)-time
algorithm for UPIT would yield a O(n2(3/2−ε))-time MM-Verification algorithm, as
desired. J

It is known that refuting NSETH implies strong circuit lower bounds [11], so pursuing this
route might seem much more difficult than attacking MM-Verification directly. However,
to make progress on MM-Verification, we only need to nondeterministically derandomize
UPIT for very specialized circuits. In this direction, our algorithmic results exploit that
we can derandomize UPIT for these specialized circuits, as long as they represent sparse
polynomials.

5 Deterministically Detecting Presence of 0 < z ≤ t Errors

In this section we prove the first of our main algorithmic results, i.e., Theorem 1.3.

I Theorem 5.1. For any 1 ≤ t ≤ n2, MM-Verificationt can be solved deterministically
in time O((n2 + tn) log2+o(1)(n)).

We prove the claim by showing how to solve the following problem in time Õ((`+ t)n).

I Lemma 5.2. Let Fp be a prime field with a given element ω ∈ Fp of order at least `2.
Let A,B be ` × n, n × `-matrices over Fp. There is an algorithm running in time O((` +
t)n log2+o(1) n) with the following guarantees:
1. If AB = 0, the algorithm outputs “AB = 0”.
2. If AB has 0 < z ≤ t nonzeroes, the algorithm outputs “AB 6= 0”.

M. Künnemann 56:11

Given such an algorithm working over finite fields, we can check matrix products of
integer matrices using the following proposition.

I Proposition 5.3. Let A,B be n× n matrices over the integers of absolute values bounded
by nc for some c ∈ N. Then we can find, in time O(n2 logn), distinct primes p1, p2, . . . , pd

and corresponding elements ω1 ∈ Fp1 , ω2 ∈ Fp2 , . . . , ωd ∈ Fpd
, such that

i) AB = 0 if and only if AB = 0 over Fpi
for all 1 ≤ i ≤ d,

ii) d = O(1), and
iii) for each 1 ≤ i ≤ d, we have pi = O(n2) and ωi has order at least n2 in Fpi .
Note that the obvious approach of choosing a single prime field Fp with p ≥ n2c+1 is not
feasible for our purposes: the best known deterministic algorithm to find such a prime takes
time nc/2+o(1) (see [39] for a discussion), quickly exceeding our desired time bound of O(n2).

Proof of Proposition 5.3. Let d = c+ 1 and note that any entry (AB)i,j =
∑n

k=1Ai,kBk,j

is in [−n2c+1, n2c+1]. Thus for any number m > n2c+1, we have (AB)ij ≡ 0 (mod m) if and
only if (AB)i,j = 0. By Chinese Remaindering, we obtain that any distinct primes p1, . . . , pd

with pi ≥ n2 satisfy i) and ii), as AB = 0 if and only if AB = 0 over Fpi
for all 1 ≤ i ≤ d,

using the fact that
∏d

i=1 pi ≥ n2d > n2c+1.
By Bertrand’s postulate, there are at least d primes in the range {n2 + 1, . . . , 2d(n2 + 1)},

thus using the sieve of Eratosthenes, we can find p1, . . . , pd with pi ≥ n2 + 1 and pi ≤
2d(n2 + 1) in time O(n2 log logn) (see [44, Theorem 18.10]). It remains to find elements
ω1 ∈ Fp1 , . . . , ωd ∈ Fpd

of sufficiently high order. For each 1 ≤ j ≤ d, this can be achieved in
time O(n2 logn) by exhaustive testing: We keep a list L ⊆ F×pj

= Fpj \{0} of “unencountered”
elements, which we initially set to F×pj

. Until there are no elements in L remaining, we pick
any α ∈ L and delete all elements in the subgroup of F×pj

generated by α from L. We set ωj to
the last α that we picked (which has to generate the complete multiplicative group F×pj

) and
thus is a primitive (pj − 1)-th root of unity. Since pj − 1 ≥ n2, the order of ωj is at least n2,
as desired. Observe that the number of iterations is bounded by the number of subgroups
of F×pj

, i.e., the number of divisors of pj − 1. Thus, we have at most O(log pj) iterations,
each taking time at most O(pj), yielding a running time of O(pj log pj) = O(n2 logn). J

Combining Proposition 3.1 with the algorithm of Lemma 5.2 and Proposition 5.3, we
obtain the theorem.

Proof of Theorem 5.1. Given any instance A,B,C of MM-Verificationt, we convert it
to an instance A′, B′ of AllZeroes as in Proposition 3.1. We construct primes p1, . . . , pd

as in Proposition 5.3 in time O(n2 logn). For each j ∈ [d], we convert A′, B′ to matrices
over Fpj

in time O(n2) and test whether A′B′ = 0 over Fpj
for all j ∈ [d] using Lemma 5.2

in time O((n2 + tn) log2+o(1) n). We output “AB = C” if and only if all tests succeeded.
Correctness follows from Proposition 5.3 and Lemma 5.2, and the total running time is
O((n2 + tn) log2+o(1) n), as desired. J

In the remainder, we prove Lemma 5.2. As outlined in Section 3, define the polynomial
g(X) =

∑
i,j∈[`]〈ai, bj〉X(i−1)+`(j−1) over Fp. We aim to determine whether g ≡ 0. To do so,

we use the following idea from Ben-Or and Tiwari’s approach to black-box sparse polynomial
interpolation (see [7, 49]). Suppose that ω ∈ Fp has order at least `2. Then the following
proposition holds.

I Proposition 5.4. Assume AB has 0 ≤ z ≤ t nonzeroes. Then g(ω0) = g(ω) = g(ω2) =
· · · = g(ωt−1) = 0 if and only if g ≡ 0, i.e., z = 0.

ESA 2018

56:12 On Nondeterministic Derandomization of Freivalds’ Algorithm

Proof. By assumption on A,B, we have g(X) =
∑

m∈M cmX
m, whereM = {(i−1)+`(j−1) |

〈ai, bj〉 6= 0} with |M | = z ≤ t and c(i−1)+`(j−1) = 〈ai, bj〉. Writing M = {m1, . . . ,mz} and
defining vm = ωm, we see that g(ω0) = · · · = g(ωt−1) = 0 is equivalent to

cm1 + · · ·+ cmz = 0,
cm1vm1 + · · ·+ cmzvmz = 0,
cm1v

2
m1

+ · · ·+ cmz
v2

mz
= 0,
. . .

cm1v
t−1
m1

+ · · ·+ cmz
vt−1

mz
= 0.

Since ω has order at least `2, we have that vm = ωm 6= ωm′ = vm′ for all m,m′ ∈ M

with m 6= m′. Thus the above system is a Vandermonde system with unique solution
(cm1 , . . . , cmz

) = (0, . . . , 0), since z ≤ t. This yields the claim. J

It remains to compute g(ω0), . . . , g(ωt−1) in time Õ((`+ t)n).

I Proposition 5.5. For any σ1, . . . , σt ∈ Fp, we can compute g(σ1), . . . , g(σt) in time
O((`+ t)n log2+o(1) `).

Proof. Recall that g(X) =
∑n

k=1 qk(X)·rk(X`), where qk(Z) =
∑`

i=1 ai[k]Zi−1 and rk(Z) =∑`
j=1 bj [k]Zj−1. Let 1 ≤ k ≤ n. Using fast multipoint evaluation (Lemma 2.1), we can

compute qk(σ1), . . . , qk(σt) using O((`+ t) log2+o(1) `) additions and multiplications in Fp.
Furthermore, since we can compute σ`

1, . . . , σ
`
t using O(t log `) additions and multiplications

in Fp, we can analogously compute rk(σ`
1), . . . , rk(σ`

t) in time O((`+ t) log2+o(1) `). Doing
this for all 1 ≤ k ≤ n yields all values qk(σu), rk(σ`

u) with k ∈ [n], u ∈ [t] in time O((` +
t)n log2+o(1) `). We finally aggregate these values to obtain the desired outputs g(σu) =∑n

k=1 qk(σu) · rk(σ`
u) with u ∈ [t]. The aggregation only uses O(tn) multiplications and

additions in Fp, thus the claim follows. J

Together with Proposition 5.4, this yields Lemma 5.2 and thus the remaining step of the
proof of Theorem 5.1.

6 Open Questions

It remains to answer our main question. To this end, can we exploit any of the avenues
presented in this work? In particular: Can we (1) find a faster 3SUM verifier, (2) find a
faster UPIT algorithm for the circuits given in Theorem 4.2, or (3) instead of derandomizing
Freivalds’ algorithm, nondeterministically derandomize the sampling-based algorithm follow-
ing from our main algorithmic result (which detects up to O(n) errors using Theorem 1.3,
and then samples and checks Θ(n) random entries)?

A further natural question is whether we can use the sparse polynomial interpolation
technique by Ben-Or and Tiwari [7] (see also [49, 24] for alternative descriptions of their
approach) to give a more efficient deterministic algorithm for output-sensitive matrix mul-
tiplication. Indeed, they show how to use O(t) evaluations of a t-sparse polynomial p to
efficiently interpolate p (for p = gA,B , this corresponds to determining AB). Specifically, the
O(t) evaluations define a certain Toeplitz system whose solution yields the coefficients of a
polynomial ζ(Z) =

∏z
i=1(Z − ri) where ri is the value of the i-th monomial of p evaluated at

a certain known value. By factoring ζ into its linear factors, we can determine the monomials
of p (i.e., for p = gA,B, the nonzero entries of AB). In our case, we can then obtain AB
by naive computations of the inner products at the nonzero positions in time O(nt). The

M. Künnemann 56:13

bottleneck in this approach appears to be deterministic polynomial factorization into linear
factors: In our setting, we would need to factor a degree-(≤ t) polynomial over a prime
field Fp of size p = Θ(n2). We are not aware of deterministic algorithms faster than Shoup’s
O(t2+ε ·√p log2 p)-time algorithm [37], which would yield an O(n2 +nt2+ε)-time algorithm at
best. However, such an algorithm would be dominated by Kutzkov’s algorithm [28]. Can we
sidestep this bottleneck? Note that some works improve on Shoup’s running time for suitable
primes (assuming the Extended Riemann Hypothesis; see [44, Chapter 14] for references).

References

1 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equiv-
alences between graph centrality problems, APSP and diameter. In Proc. 26th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA’15), pages 1681–1697, 2015.
doi:10.1137/1.9781611973730.112.

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proc. 55th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’14), pages 434–443, 2014. doi:10.1109/FOCS.2014.53.

3 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15), pages 218–230, 2015. doi:10.1137/1.9781611973730.17.

4 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. Journal of Computer and System Sciences, 54(2):255–262, 1997. doi:10.1006/
jcss.1997.1388.

5 Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and sparse matrix multi-
plications. In Proc. 12th International Conference on Database Theory (ICDT’09), pages
121–126, 2009. doi:10.1145/1514894.1514909.

6 Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3SUM.
Algorithmica, 50(4):584–596, 2008. doi:10.1007/s00453-007-9036-3.

7 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynominal interpolation (extended abstract). In Proc. 20th Annual ACM Symposium on
Theory of Computing (STOC’88), pages 301–309, 1988. doi:10.1145/62212.62241.

8 Markus Bläser. Fast matrix multiplication. Theory of Computing, Graduate Surveys, 5:1–
60, 2013. doi:10.4086/toc.gs.2013.005.

9 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams.
Truly sub-cubic algorithms for language edit distance and RNA-folding via fast bounded-
difference min-plus product. In Proc. 57th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’16), pages 375–384, 2016. doi:10.1109/FOCS.2016.48.

10 Harry Buhrman and Robert Spalek. Quantum verification of matrix products. In Proc.
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pages 880–889,
2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109654.

11 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Pa-
turi, and Stefan Schneider. Nondeterministic extensions of the Strong Exponential
Time Hypothesis and consequences for non-reducibility. In Proc. 2016 ACM Confer-
ence on Innovations in Theoretical Computer Science (ITCS’16), pages 261–270, 2016.
doi:10.1145/2840728.2840746.

12 Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)-convolution,
and some geometric 3SUM-hard problems. In Proc. 29th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’18), pages 881–897, 2018. doi:10.1137/1.9781611975031.
57.

ESA 2018

http://dx.doi.org/10.1137/1.9781611973730.112
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1137/1.9781611973730.17
http://dx.doi.org/10.1006/jcss.1997.1388
http://dx.doi.org/10.1006/jcss.1997.1388
http://dx.doi.org/10.1145/1514894.1514909
http://dx.doi.org/10.1007/s00453-007-9036-3
http://dx.doi.org/10.1145/62212.62241
http://dx.doi.org/10.4086/toc.gs.2013.005
http://dx.doi.org/10.1109/FOCS.2016.48
http://dl.acm.org/citation.cfm?id=1109557.1109654
http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1137/1.9781611975031.57
http://dx.doi.org/10.1137/1.9781611975031.57

56:14 On Nondeterministic Derandomization of Freivalds’ Algorithm

13 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal on Symbolic Computation, 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)
80013-2.

14 Charles M. Fiduccia. Polynomial evaluation via the division algorithm: The fast Fourier
transform revisited. In Proc. 4th Annual ACM Symposium on Theory of Computing
(STOC’72), pages 88–93, 1972. doi:10.1145/800152.804900.

15 Rusins Freivalds. Fast probabilistic algorithms. In Proc. 8th International Symposium
on Mathematical Foundations of Computer Science (MFCS’79), pages 57–69, 1979. doi:
10.1007/3-540-09526-8_5.

16 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computa-
tional geometry. Computational Geometry, 5:165–185, 1995. doi:10.1016/0925-7721(95)
00022-2.

17 Leszek Gasieniec, Christos Levcopoulos, Andrzej Lingas, Rasmus Pagh, and Takeshi
Tokuyama. Efficiently correcting matrix products. Algorithmica, 79(2):428–443, 2017.
doi:10.1007/s00453-016-0202-3.

18 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Proc. 55th
IEEE Annual Symposium on Foundations of Computer Science (FOCS’14), pages 621–630,
2014. doi:10.1109/FOCS.2014.72.

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

20 Mark A. Iwen and Craig V. Spencer. A note on compressed sensing and the complexity
of matrix multiplication. Information Processing Letters, 109(10):468–471, 2009. doi:
10.1016/j.ipl.2009.01.010.

21 Riko Jacob and Morten Stöckel. Fast output-sensitive matrix multiplication. In Proc.
23rd Annual European Symposium on Algorithms (ESA’15), pages 766–778, 2015. doi:
10.1007/978-3-662-48350-3_64.

22 Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–
343, 2016. doi:10.1007/s00453-014-9946-9.

23 Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Improving quantum query complex-
ity of boolean matrix multiplication using graph collision. In Proc. 39th International
Colloquium on Automata, Languages, and Programming (ICALP’12), pages 522–532, 2012.
doi:10.1007/978-3-642-31594-7_44.

24 Erich Kaltofen and Yagati N. Lakshman. Improved sparse multivariate polynomial in-
terpolation algorithms. In Proc. 1st International Symposium on Symbolic and Algebraic
Computation (ISSAC’88), pages 467–474, 1988. doi:10.1007/3-540-51084-2_44.

25 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees
for k-SUM and related problems. CoRR, abs/1705.01720, 2017. To appear in STOC’18.
arXiv:1705.01720.

26 Tracy Kimbrel and Rakesh K. Sinha. A probabilistic algorithm for verifying matrix products
using O(n2) time and log2 n+O(1) random bits. Information Processing Letters, 45(2):107–
110, 1993. doi:10.1016/0020-0190(93)90224-W.

27 Marvin Künnemann. On nondeterministic derandomization of Freivalds’ algorithm: Con-
sequences, avenues and algorithmic progress. CoRR, abs/1806.09189, 2018. arXiv:
1806.09189.

28 Konstantin Kutzkov. Deterministic algorithms for skewed matrix products. In Proc. 30th
International Symposium on Theoretical Aspects of Computer Science (STACS’13), pages
466–477, 2013. doi:10.4230/LIPIcs.STACS.2013.466.

29 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC’14), pages 296–303,
2014. doi:10.1145/2608628.2608664.

http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1145/800152.804900
http://dx.doi.org/10.1007/3-540-09526-8_5
http://dx.doi.org/10.1007/3-540-09526-8_5
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.1007/s00453-016-0202-3
http://dx.doi.org/10.1109/FOCS.2014.72
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1016/j.ipl.2009.01.010
http://dx.doi.org/10.1016/j.ipl.2009.01.010
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/s00453-014-9946-9
http://dx.doi.org/10.1007/978-3-642-31594-7_44
http://dx.doi.org/10.1007/3-540-51084-2_44
http://arxiv.org/abs/1705.01720
http://dx.doi.org/10.1016/0020-0190(93)90224-W
http://arxiv.org/abs/1806.09189
http://arxiv.org/abs/1806.09189
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.466
http://dx.doi.org/10.1145/2608628.2608664

M. Künnemann 56:15

30 Andrzej Lingas. A fast output-sensitive algorithm for boolean matrix multiplication. In
Proc. 17th Annual European Symposium on Algorithms (ESA’09), pages 408–419, 2009.
doi:10.1007/978-3-642-04128-0_37.

31 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying
algorithms. Computer Science Review, 5(2):119–161, 2011. doi:10.1016/j.cosrev.2010.
09.009.

32 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993. doi:10.1137/0222053.

33 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae, 026(2):415–419, 1985. URL: http:
//eudml.org/doc/17394.

34 Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation
Theory, 5(3):9:1–9:17, 2013. doi:10.1145/2493252.2493254.

35 Daniel S. Roche. Error correction in fast matrix multiplication and inverse. CoRR,
abs/1802.02270, 2018. arXiv:1802.02270.

36 Claus-Peter Schnorr and C. R. Subramanian. Almost optimal (on the average) combi-
natorial algorithms for boolean matrix product witnesses, computing the diameter (ex-
tended abstract). In Proc. 2nd International Workshop on Randomization and Approx-
imation Techniques in Computer Science (RANDOM’98), pages 218–231, 1998. doi:
10.1007/3-540-49543-6_18.

37 Victor Shoup. On the deterministic complexity of factoring polynomials over finite fields. In-
formation Processing Letters, 33(5):261–267, 1990. doi:10.1016/0020-0190(90)90195-4.

38 Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–
356, Aug 1969. doi:10.1007/BF02165411.

39 Terence Tao, Ernest Croot III, and Harald Helfgott. Deterministic methods to
find primes. Mathematics of Computation, 81(278):1233–1246, 2012. doi:10.1090/
S0025-5718-2011-02542-1.

40 Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of Com-
puter and System Sciences, 10(2):308–315, 1975. doi:10.1016/S0022-0000(75)80046-8.

41 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proc. 44th Annual ACM Symposium on Theory of Computing Conference (STOC’12),
pages 887–898, 2012. doi:10.1145/2213977.2214056.

42 Virginia Vassilevska Williams. Fine-grained algorithms and complexity. In Proc. 21st
International Conference on Database Theory (ICDT’18), pages 1:1–1:1, 2018. doi:10.
4230/LIPIcs.ICDT.2018.1.

43 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. 51th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’10), pages 645–654, 2010. doi:10.1109/FOCS.2010.67.

44 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.). Cam-
bridge University Press, 2013.

45 Jirí Wiedermann. Fast nondeterministic matrix multiplication via derandomization of
Freivalds’ algorithm. In Proc. 8th IFIP International Conference on Theoretical Computer
Science (TCS’14), pages 123–135, 2014. doi:10.1007/978-3-662-44602-7_11.

46 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proc. 46th Annual
ACM Symposium on Theory of Computing (STOC’14), pages 664–673, 2014. doi:10.1145/
2591796.2591811.

47 Ryan Williams. Strong ETH breaks with Merlin and Arthur: Short non-interactive proofs
of batch evaluation. In Proc. 31st Conference on Computational Complexity (CCC’16),
pages 2:1–2:17, 2016. doi:10.4230/LIPIcs.CCC.2016.2.

ESA 2018

http://dx.doi.org/10.1007/978-3-642-04128-0_37
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1137/0222053
http://eudml.org/doc/17394
http://eudml.org/doc/17394
http://dx.doi.org/10.1145/2493252.2493254
http://arxiv.org/abs/1802.02270
http://dx.doi.org/10.1007/3-540-49543-6_18
http://dx.doi.org/10.1007/3-540-49543-6_18
http://dx.doi.org/10.1016/0020-0190(90)90195-4
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1090/S0025-5718-2011-02542-1
http://dx.doi.org/10.1090/S0025-5718-2011-02542-1
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.1
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1007/978-3-662-44602-7_11
http://dx.doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.2

56:16 On Nondeterministic Derandomization of Freivalds’ Algorithm

48 Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Transactions on
Algorithms, 1(1):2–13, 2005. doi:10.1145/1077464.1077466.

49 Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic Compu-
tation, 9(3):375–403, 1990. doi:10.1016/S0747-7171(08)80018-1.

http://dx.doi.org/10.1145/1077464.1077466
http://dx.doi.org/10.1016/S0747-7171(08)80018-1

Optimal Online Contention Resolution Schemes
via Ex-Ante Prophet Inequalities
Euiwoong Lee
Courant Institute of Mathematical Sciences, New York University, New York City, USA
euiwoong@cims.nyu.edu

Sahil Singla
Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
ssingla@cmu.edu

Abstract
Online contention resolution schemes (OCRSs) were proposed by Feldman, Svensson, and Zen-
klusen [11] as a generic technique to round a fractional solution in the matroid polytope in an
online fashion. It has found applications in several stochastic combinatorial problems where there
is a commitment constraint: on seeing the value of a stochastic element, the algorithm has to
immediately and irrevocably decide whether to select it while always maintaining an independent
set in the matroid. Although OCRSs immediately lead to prophet inequalities, these prophet
inequalities are not optimal. Can we instead use prophet inequalities to design optimal OCRSs?

We design the first optimal 1/2-OCRS for matroids by reducing the problem to designing a
matroid prophet inequality where we compare to the stronger benchmark of an ex-ante relaxation.
We also introduce and design optimal (1−1/e)-random order CRSs for matroids, which are similar
to OCRSs but the arrival order is chosen uniformly at random.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases Prophets, Contention Resolution, Stochastic Optimization, Matroids

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.57

Related Version A full version of the paper is available at https://arxiv.org/abs/1806.
09251.

Acknowledgements We are thankful to Ravishankar Krishnaswamy and Deeparnab Chakrabarty
for useful discussions in early part of this project. Part of this work was done while the authors
were visiting the Simons Institute for the Theory of Computing. The second author was supported
in part by NSF awards CCF-1319811, CCF-1536002, and CCF-1617790.

1 Introduction

Given a combinatorial optimization problem, a common algorithmic approach is to first solve
a convex relaxation of the problem and to then round the obtained fractional solution x
into a feasible integral solution while (approximately) preserving the objective. Contention
resolution schemes (CRSs), introduced in [8], is a way to perform this rounding given a
fractional solution x ∈ Rn≥0. For c > 0, intuitively a c-CRS is a rounding algorithm that
guarantees every element i is selected into the final feasible solution w.p. at least c · xi. For
a maximization problem with a linear objective, by linearity of expectation such a c-CRS
directly implies a c-approximation algorithm.

© Euiwoong Lee and Sahil Singla;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 57; pp. 57:1–57:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:euiwoong@cims.nyu.edu
mailto:ssingla@cmu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.57
https://arxiv.org/abs/1806.09251
https://arxiv.org/abs/1806.09251
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

In a recent work, Feldman et al. [11] introduced an Online CRS (OCRS), which is a
CRS with an additional property that it performs the rounding in an “online fashion”.
This property is crucial for the prophet inequality problem (or any stochastic combinatorial
problem with a commitment constraint; see §1.3).

I Definition 1 (Prophet inequality). Suppose each element i ∈ N takes a value vi ∈ R≥0
independently from some known distribution Di. These values are presented one-by-one to
an online algorithm in an adversarial order. Given a packing feasibility constraint F ⊆ 2N ,
the problem is to immediately and irrevocably decide whether to select the next element i,
while always maintaining a feasible solution and maximizing the sum of the selected values.

A c-approximation prophet inequality for 0 ≤ c ≤ 1 means there exists an online algorithm
with expected value at least c times the expected value of an offline algorithm that knows all
values from the beginning. As shown in [11], a c-OCRS immediately implies a c-approximation
prophet inequality. Some other applications are oblivious posted pricing mechanisms and
stochastic probing.

Although powerful, the above approach of using OCRSs to design prophet inequalities does
not give us optimal prophet inequalities. For example, while we know a 1/2-approximation
prophet inequality over matroids [20], we only know a 1/4-OCRS over matroids [11]. This
indicates that the currently known OCRSs may not be optimal. Can we design better
OCRSs? The main contribution of this work is to design an optimal OCRS over matroid
constraints using the following idea:

Not only can we design prophet inequalities from OCRSs, we can also design OCRSs
from prophet inequalities.

More specifically, our OCRS is based on an ex-ante prophet inequality: we compare the online
algorithm to the stronger benchmark of a convex relaxation. We modify existing prophet
inequalities to obtain ex-ante prophet inequalities while preserving the approximation factors.
As a corollary, this gives the first optimal 1/2-OCRS over matroids.

Since for many applications the arrival order is not chosen by an adversary, some recent
works have also studied prophet secretary inequalities where the arrival order is chosen
uniformly at random [10, 9, 5]. Motivated by these works, we introduce random order
contention resolution schemes (RCRS), which is an OCRS for uniformly random arrival1.
Again by designing the corresponding random order ex-ante prophet inequalities, we obtain
optimal (1− 1/e)-RCRS over matroids.

In §1.1 we formally define an OCRS/RCRS and an ex-ante prophet inequality. In §1.2
we describe our results and proof techniques. See §1.3 for further related work.

1.1 Model
CRSs are a powerful tool for offline and stochastic optimization problems [8, 15]. For a given
x ∈ [0, 1]N , let R(x) denote a random set containing each element i ∈ N independently w.p.
xi. We say an element i is active if it belongs to R(x).

I Definition 2 (Contention resolution scheme). Given a finite ground set N with n = |N |
and a packing (downward-closed) family of feasible subsets F ⊆ 2N , let PF ⊆ [0, 1]N be the
convex hull of all characteristic vectors of feasible sets. For a given x ∈ PF , a c-selectable

1 A parallel independent work has also introduced RCRS [1]; however, their technical results are very
different.

E. Lee and S. Singla 57:3

CRS (or simply, c-CRS) is a (randomized) mapping π : 2N → 2N satisfying the following
three properties:
(i) π(S) ⊆ S for all S ⊆ N .
(ii) π(S) ∈ F for all S ⊆ N .
(iii) PrR(x),π[i ∈ π(R(x))] ≥ c · xi for all i ∈ N .
Notice, if f is a monotone linear function then E[f(π(R(x)))] ≥ c·E[f(R(x))]. By constructing
CRSs for various constraint families of F , Chekuri et al. [8] give improved approximation
algorithms for linear and submodular maximization problems under knapsack, matroid,
matchoid constraints, and their intersections2.

In the above applications to offline optimization problems, the algorithm first flips all
the random coins to sample R(x), and then obtains π(R(x)) ⊆ R(x). For various online
problems such as the prophet inequality, this randomness is an inherent part of the problem.
Feldman et al. [11] therefore introduce an OCRS where the random set R(x) is sampled in
the same manner, but whether i ∈ R(x) (or not) is only revealed one-by-one to the algorithm
in an adversarial order3. After each revelation (arrival), the OCRS has to irrevocably decide
whether to include i ∈ R(x) into π(R(x)) (if possible). A c-selectable OCRS (or simply,
c-OCRS) is an OCRS satisfying the above properties (i) to (iii) of a c-CRS.

In this work, we also study RCRS which is an OCRS with the arrival order chosen
uniformly at random. A c-selectable RCRS (or simply, c-RCRS) is an RCRS satisfying the
above properties (i) to (iii) of a c-CRS, where in Property (iii) we also take expectation over
the arrival order.

While prophet inequalities have been designed using OCRSs, our main result in this
paper is to show a deeper reverse connection between OCRSs and prophet inequalities. We
first define an ex-ante prophet inequality. Given a prophet inequality problem instance with
packing constraints F and r.v.s vi ∼ Di for i ∈ N , the following ex-ante relaxation gives an
upper bound on the expected offline optimum:

max
x

∑
i

xi · Evi∼Di
[vi | vi takes value in its top xi quantile] s.t. x ∈ PF . (1)

To prove that (1) is an upper bound, we interpret xi as the probability that i is in the offline
optimum. It is also known that (1) is a convex program and can be solved efficiently; see [11]
for more details.

I Definition 3 (Ex-ante prophet inequality). For 0 ≤ c ≤ 1, a c-approximation ex-ante prophet
inequality for packing constraints F is a prophet inequality algorithm with expected value at
least c times (1).

Before describing our results, to build some intuition for the above definitions we discuss
the special case of a rank 1 matroid, i.e., where we can only select one of the n elements.

Example: Rank 1 matroid

For simplicity, in this section we assume that all random variables are Bernoulli, i.e., vi takes
value yi independently w.p. pi, and is 0 otherwise. We first show why a c-OCRS implies a
c-approximation prophet inequality for rank 1 matroids.

2 Some “greedy” properties are also required from the CRS for the guarantees to hold for a submodular
function f [8].

3 For adversarial arrival order, we assume that this order is known to the OCRS algorithm in advance.
This offline adversary is weaker than the almighty adversary considered in [11], but is common in the
prophet inequality literature [24, 25]. We need this assumption in §2 to define our exponential sized
linear program.

ESA 2018

57:4 Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

Consider the optimum solution x to the ex-ante relaxation (1) for the above Bernoulli
instance. Its objective value is

∑
i xiyi where x satisfies

∑
i xi ≤ 1. Moreover, xi ≤ pi for all

i because selecting i beyond pi does not increase (1). To see why (1) gives an upper bound on
the expected offline maximum, observe that if we interpret xi as the probability that vi is the
offline maximum, this gives a feasible solution to

∑
i xi ≤ 1 and with value at most

∑
i xiyi.

Thus, to prove a c-approximation prophet inequality, it suffices to design an online algorithm
with value at least c ·

∑
i xiyi. Consider an algorithm that runs a c-OCRS on x, where i is

considered active independently w.p. xi/pi whenever vi takes value yi. This ensures element
i is active w.p. exactly xi. Since a c-OCRS guarantees each element is selected w.p. ≥ c

when it is active, by linearity of expectation such an algorithm has expected value at least
c ·
∑
i xiyi.

We now discuss a simple 1/4-OCRS for a rank 1 matroid. Given x satisfying
∑
i xi ≤ 1,

consider an algorithm that ignores each element i independently w.p. 1/2, and otherwise
selects i only if it is active. Since this algorithm selects any element i w.p. at most xi/2
(when i is not ignored and is active), by Markov’s inequality the algorithm selects no element
till the end w.p. at least 1−

∑
i xi/2 ≥ 1/2. Hence the algorithm reaches each element i w.p.

at least 1/2 without selecting any of the previous elements. Moreover, it does not ignore
i w.p. 1/2, which implies it considers each element w.p. at least 1/4. The OCRS due to
Feldman et al. [11] can be thought of generalizing this approach to a general matroid.

An interesting result of Alaei [4] shows that the above 1/4-OCRS can be improved to a
1/2-OCRS over a rank 1 matroid by “greedily” maximizing the probability of ignoring the
next element i, but considering i w.p. 1/2 on average. In the full version of the paper we
present Alaei’s proof for completeness, and also show how to obtain a simple (1− 1/e)-RCRS
for a rank 1 matroid. This raises the question whether one can obtain a 1/2-OCRS and a
(1− 1/e)-RCRS for general matroids.

1.2 Results and Techniques
Our first theorem gives an approximation factor preserving reduction from OCRSs to ex-ante
prophet inequalities.

I Theorem 4. For 0 ≤ c ≤ 1, a c-approximation ex-ante prophet inequality for adversarial
(random) arrival order over a packing constraint F implies a c-OCRS (c-RCRS) over F .

We complement the above theorem by designing ex-ante prophet inequalities over matroids.

I Theorem 5. For matroids, there exists a 1/2-approximation ex-ante prophet inequality
for adversarial arrival order and a (1− 1/e)-approximation ex-ante prophet inequality for
uniformly random arrival order.

As a corollary, the above two theorems give optimal OCRS and RCRS over matroids.
This generalizes the rank 1 results discussed in the previous section to general matroids;
although the proof techniques are very different.

I Corollary 6. For matroids, there exists a 1/2-OCRS and a (1− 1/e)-RCRS.

Our 1/2-OCRS above assumes that the arrival order is known to the algorithm. It is an
interesting open question to find a 1/2-OCRS for an almighty/online adversary as in [11].

We first prove that both the factors 1/2 and (1− 1/e) in Corollary 6 are optimal.

Optimality of 1/2-OCRS and (1 − 1/e)-RCRS

We argue that the factors 1/2 and (1− 1/e) in Corollary 6 are optimal even in the special
case of a rank 1 matroid. For adversarial arrival, consider just two elements, i.e., n = 2, with

E. Lee and S. Singla 57:5

v1

v2

vn−1

vn

u1 u2
Figure 1 The Hat example on n + 2 vertices. The following x belongs to the graphic matroid:

xe = 1/2 for e = (ui, vj) where i ∈ {1, 2} and j ∈ {1, . . . , n}, and xe = 1 for e = (u1, u2).

x1 = 1 − ε and x2 = ε for some ε → 0. Since the OCRS algorithm has to select the first
element at least 1/2 fraction of the times, it can attempt to select the second element at
most 1/2 + ε/2 fraction of the times.

For random arrival order, consider the feasible solution x with xi = 1/n for every i ∈ N .
We show that no online RCRS algorithm can guarantee each element is selected w.p. greater
than (1−1/e)

n . This is because for the product distribution, w.p. 1/e none of the n elements
is active (more precisely, w.p. (1− 1/n)n). Hence the RCRS algorithm, which only selects
active elements, selects some element w.p. 1− 1/e. This implies on average it cannot pick
every element w.p. greater than (1−1/e)

n . This example, originally shown in [8], also proves
that offline CRS cannot better than (1− 1/e)-selectable.

Our techniques

We first see the difficulty in extending Alaei’s greedy approach from a rank 1 matroid to a
general matroid. Consider the graphic matroid for the Hat example (see Figure 1). Suppose
the base edge (u1, u2) appears in the end of an adversarial order. Notice that any algorithm
which ignores the structure of the matroid is very likely to select some pair of edges (u1, vi)
and (vi, u2) for some i. Since this pair spans the base edge (u1, u2), such an OCRS algorithm
will not satisfy c-selectability for (u1, u2). To overcome this, Feldman et al. [11] decompose
the matroid into “simpler” matroids using x. However, it is not clear how to extend their
approach beyond a 1/4-OCRS.

In this paper we take an alternate LP based approach to design OCRSs, which was first
used by Chekuri et al. [8] to design offline CRSs. The idea is to define an exponential sized
linear program where each variable denotes a deterministic OCRS algorithm. The objective
of this linear program is to maximize c s.t. each element is selected at least c fraction of the
times (c-selectability). Thus to show existence of a 1/2-OCRS, it suffices to prove this linear
program has value c ≥ 1/2. In §2 we prove this by showing that the dual LP has value at
least 1/2 because it can be interpreted as an ex-ante prophet inequality.

Next, to show there exists a 1/2 approximation ex-ante prophet inequality, our approach
is inspired from the matroid prophet inequality of Kleinberg and Weinberg [20]. They give
an online algorithm that gets at least half of the expected offline optimum for the product
distribution (independent r.v.s). Unfortunately, their techniques do not directly extend
because the ex-ante relaxation objective could be significantly higher than for the product
distribution (this is known as the correlation gap, which can be e/(e − 1) [2, 6]). Our
primary technique is to view the ex-ante relaxation solution as a “special kind” of a correlated
value distribution. Although prophet inequalities are not possible for general correlated
distributions [19], we show that in this special case the original proof of the matroid prophet
inequality algorithm retains its 1/2 approximation after some modifications.

ESA 2018

57:6 Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

1.3 Further Related Work
Krengel and Sucheston gave the first tight 1/2-single item prophet inequality [22, 21]. The
connection between multiple-choice prophet inequalities and mechanism design was recognized
in [18]; they proved a prophet inequality for uniform matroids. This bound was later
improved by Alaei [3] using the Magician’s problem, which is an OCRS in disguise. Chawla
et al. [7] further developed the connection between prophet inequalities and mechanism
design, and showed how to be O(1)-prophet inequality for general matroids in a variant
where the algorithm may choose the element order. Yan [26] improved this result to e/(e−1)-
competitive using the correlation gap for submodular functions, first studied in [2, 6]. Chekuri
et al. [8] adapted correlation gaps to a polytope to design CRSs. Improved correlation gaps
were presented in [26, 17]. The matroid prophet inequality was first explicitly formulated
in [20]. Feldman et al. [11] gave an alternate proof, and extended to Bernoulli submodular
functions, using OCRSs. Finally, information theoretic O(poly log(n))-prophet inequalities
are also known for general downward-closed constraints [24, 25].

The prophet secretary notion was first introduced in [10], where the elements arrive in a
uniformly random order and draw their values from known independent distributions. Their
results have been recently improved [9, 5]. There is a long line of work on studying the
commitment constraints for combinatorial probing problems, e.g., see [13, 15, 16, 14]. In these
models the algorithm starts with some stochastic knowledge about the input and on probing
an element has to irrevocably commit if the element is to be included in the final solution. A
common approach to handle such a constraint is using a prophet inequality/OCRS.

2 OCRS Assuming an Ex-Ante Prophet Inequality

In this section we prove Theorem 4, showing how to reduce the problem of designing an
OCRS to a prophet inequality where we compare ourself to the ex-ante relaxation instead of
the expected offline maximum.

2.1 Using LP Duality
Given a finite ground set N with n = |N | and a downward-closed family of feasible subsets
F ⊆ 2N , let PF ⊆ [0, 1]N be the convex hull of all characteristic vectors of feasible sets.
Let x ∈ PF and R(x) denote a random set containing each element i ∈ N independently
w.p. xi. For offline CRSs, let Φ∗ be the set of valid offline deterministic mappings; i.e.,
φ : 2N → F is in Φ∗ iff φ(A) ⊆ A and φ(A) ∈ F for all A ⊆ N . For φ ∈ Φ∗ and i ∈ N , let
qi,φ := PrR(x)[i ∈ φ(R(x))] denote the probability of selecting i if the CRS executes φ. The
following LP relaxation, introduced by Chekuri et al. [8], finds a c-selectable randomized
CRS. It has variables {λφ}φ∈Φ∗ and c.

maxλ,c c

s.t.
∑
φ∈Φ∗

qi,φλφ ≥ xi · c i ∈ N

∑
φ∈Φ∗

λφ = 1

λφ ≥ 0 ∀φ ∈ Φ∗

Observe that if the above LP has value c, there exists a randomized c-CRS. This is because
we can randomly select one of the φ’s w.p. λφ, and the constraint

∑
φ∈Φ∗ qi,φλφ ≥ xi · c

E. Lee and S. Singla 57:7

ensures c-selectability for every i ∈ N . Chekuri et al. noticed that by strong duality, to
prove the above LP has value at least c, it suffices to show that the following dual program
has value at least c. It has variables {yi}i∈N and µ.

miny,µ µ

s.t.
∑
i∈N

qi,φyi ≤ µ φ ∈ Φ∗∑
i∈N

xiyi = 1

yi ≥ 0 ∀i ∈ N

To design OCRSs (RCRSs), we take a similar approach as Chekuri et al and let Φ∗ be
the set of all deterministic online algorithms. Formally, φ : 2N × 2N ×N → {0, 1} belongs
to Φ∗ iff φ(A,B, i) = 1 only for B ⊆ A, i 6∈ A, and B ∪ {i} ∈ F . Intuitively, φ(A,B, i) = 1
indicates that the online algorithm selects element i in the current iteration after processing
elements in A and selecting elements in B. Let qi,φ denote the probability of selecting i if
the OCRS (RCRS) executes φ, where for RCRS we also take probability over the random
order. By the above duality argument, to show existence of a c-OCRS (c-RCRS) it suffices
to prove the dual LP has value at least c. We prove this by showing that for any y ≥ 0 s.t.∑
i∈N xiyi = 1, there exists φ ∈ Φ∗ such that

∑
i∈N qi,φyi ≥ c.

Consider a Bernoulli prophet inequality instance where each element i ∈ N has value yi
with probability xi, and 0 otherwise. Since x ∈ PF , notice that

∑
i∈N xiyi = 1 is exactly the

value of the ex-ante relaxation (1) for this instance. Thus, a c-approximation ex-ante prophet
inequality implies there exists a φ ∈ Φ∗ with value at least c. By linearity of expectation,
the value of φ is

∑
i∈N qi,φyi, which proves

∑
i∈N qi,φyi ≥ c.

2.2 Solving the LP Efficiently

While the original primal LP has an exponential number of variables, we can compute an
OCRS (or RCRS) that achieves value at least c as follows. In the dual program, given
y s.t.

∑
i xiyi = 1, we can use the ex-ante prophet inequality to find φ ∈ Φ∗ with value∑

i qi,φyi ≥ c in polynomial time. (Notice qi,φ can be computed in polynomial time because
the adversarial order is known to the OCRS algorithm.) This implies for any ε > 0, the
polytope Qc−ε := {y : y ≥ 0,

∑
i xiyi = 1,

∑
i qi,φyi ≤ c− ε for all φ ∈ Φ∗} is empty.

Since we have an efficient separation oracle (for any y, we can find a violated constraint
in polynomial time) for Qc−ε, by running the ellipsoid algorithm [12] we can find a subset
Φ′ ⊆ Φ∗ with |Φ′| = poly(n) in polynomial time such that Q′c−ε := {y : y ≥ 0,

∑
i xiyi =

1,
∑
i qi,φyi ≤ c − ε for all φ ∈ Φ′} is empty. Now the following linear program, which has

a polynomial number of variables and constraints, with optimal value at least c− ε can be
solved efficiently.

maxλ,c c

s.t.
∑
φ∈Φ′

qi,φλφ ≥ xi · c i ∈ N

∑
φ∈Φ′

λφ = 1

λφ ≥ 0 ∀φ ∈ Φ′

ESA 2018

57:8 Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

3 Ex-Ante Prophet Inequalities for a Matroid

This section proves Theorem 5 by designing for a matroid a 1/2-ex-ante prophet inequality
under adversarial arrival and a (1− 1/e)-ex-ante prophet inequality under random arrival.

3.1 Notation
Let v ∼ D be a set of random element values {v1, . . . , vn} where each vi is independently
drawn from Di. Let x be the optimal solution to the ex-ante relaxation in (1) for a given
matroidM = (N, I). For i ∈ N , denote

yi := Evi∼Di [vi | vi takes value in its top xi quantile]. (2)

Since x ∈ PM, we can write it as a convex combination of independent sets in the matroid.
In particular, this gives a correlated distribution D̂ over independent sets ofM such that
for each i ∈ N , we have PrI∼D̂[i ∈ I] = xi. Let v̂ = {v̂1, . . . , v̂n} be a set of random values
obtained by sampling I ∼ D̂ and setting v̂i = yi for i ∈ I, and v̂i = 0 otherwise. Notice the
optimal value of (1) is

∑
i xiyi and for each i ∈ N , we have E[v̂i] = xiyi.

We need the following notation to describe our algorithms.

I Definition 7. For any vector v̂ denoting values of elements of N and any A ⊆ N , we
define:

Let Opt(v̂ | A)⊆ N \A denote the maximum value independent set in the contracted
matroidM/A.
Let R(A, v̂) :=

∑
i∈Opt(v̂|A) v̂i denote the remaining value after selecting set A.

We next define a base price of for every element i.

I Definition 8. For A ∈ I denoting an independent set of elements accepted by our algorithm,
we define

Let bi(A, v̂) := R(A, v̂)−R(A ∪ {i}, v̂) denote a threshold for element i.
Let bi(A) := Ev̂∼D̂[bi(A, v̂)] denote the base price for element i.

3.2 Reducing to Bernoulli Distributions
In this section we show that it suffices to only prove Theorem 5 for Bernoulli distributions.

I Lemma 9. If there exists an α-approximation ex-ante prophet inequality for Bernoulli
distributed independent random values then there exists an α-approximation ex-ante prophet
inequality for general distributed independent random values.

Proof. Given a prophet inequality instance where v ∼ D for a general distribution D,
consider a new Bernoulli prophet inequality instance v′ ∼ D′ where for each i ∈ N , r.v.
v′i ∼ D′i independently takes value yi (defined in (2)) w.p. xi, and is 0 otherwise. Since the
optimal ex-ante fractional value for both the general and Bernoulli instance is the same, to
prove this theorem we use an ex-ante prophet inequality for the Bernoulli instance to design
an ex-ante prophet inequality for the general instance with the same expected value.

On arrival of an element i, consider an algorithm for the general distribution that treats
i is active iff vi takes value in its top xi quantile. If active, the algorithm asks the ex-ante
prophet inequality of the Bernoulli instance to decide whether to select i. We claim that the
expected value of this algorithm is α ·

∑
i xiyi, which will prove this theorem. The claim is

true because for the above algorithm each element i is active independently w.p. exactly
xi, and conditioned on being active its expected value is exactly yi. Thus by linearity of
expectation, the expected value is the same as the Bernoulli instance, which is α ·

∑
i xiyi. J

E. Lee and S. Singla 57:9

3.3 Adversarial Order
We prove the optimal ex-ante prophet inequality for a matroid under the adversarial arrival.

I Theorem 10. For matroids, there exists a 1/2-approximation ex-ante prophet inequality
for adversarial arrival order.

Given the notation and definitions in §3.1, the proof of Theorem 10 is similar to the proof
of the matroid prophet inequality in [20].

By Lemma 9, we know it suffices to prove this theorem only for Bernoulli distributions.
Consider v ∼ D as the input to our online algorithm, where vi takes value yi w.p. xi and is
0 otherwise. Given v, our algorithm is deterministic and let A := A(v) denote the set of
elements that it selects. Relabel the elements such that the arrival order of the elements is
1, . . . , n. Let Ai = A ∩ {1, . . . , i}.

Our algorithm selects the next element i iff both vi > Ti := α · bi(Ai−1) and selecting
i is feasible in M, where α = 1

2 . Thus, the total value of algorithm Alg :=
∑
i∈A vi =

Revenue + Utility, where

Revenue :=
∑
i∈A Ti and Utility :=

∑
i∈A(vi − Ti)+.

Since
∑
i∈N xiyi is the optimal value of (1), to prove Theorem 10 it suffices to show

E[Alg] = E[Revenue] + E[Utility] ≥ α ·
∑
i∈N xiyi.

We keep track of the algorithm’s progress using the following residual function:

r(i) := Ev∼D,v̂∼D̂[R(Ai−1, v̂)].

Clearly, r(0) =
∑
i∈N xiyi. In the following Lemma 11 and Lemma 12, we use the residual

function to lower bound E[Revenue] and E[Utility].

I Lemma 11. Ev∼D[Revenue] = α ·
(
r(0)− r(n)

)
.

Proof. From the definition of Revenue, we get

Revenue = α ·
∑
i∈A

bi(Ai−1) = α ·
∑
i∈A

(
Ev̂[R(Ai−1, v̂)]− Ev̂[R(Ai−1 ∪ {i}, v̂)]

)
= α ·

∑
i∈A

(
Ev̂[R(Ai−1, v̂)]− Ev̂[R(Ai, v̂)]

)
= α ·

(
Ev̂[R(A0, v̂)]− Ev̂[R(A, v̂)]

)
.

Taking expectation over v ∼ D and using definitions of r(0) and r(n), the lemma follows. J

I Lemma 12. Ev∼D[Utility] ≥ (1− α) · r(n).

Proof. We prove the following two inequalities:

Ev∼D[Utility] ≥ Ev∼D,v̂∼D̂

[∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]

(3)

and

Ev∼D,v̂∼D̂

[∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]
≥ (1− α) · Ev∼D,v̂∼D̂[R(A, v̂)]. (4)

Lemma 12 now follows by summing (3) and (4), and using r(n) = Ev∼D,v̂∼D̂[R(A, v̂)].

ESA 2018

57:10 Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

To prove (3), notice that for any i not selected by the algorithm, vi ≤ Ti. This implies

Ev∼D[Utility] = Ev

[∑
i∈A

(vi − Ti)+
]

= Ev

[∑
i∈N

(vi − Ti)+
]
.

Now observe that for any fixed i and v1, . . . , vi−1, the threshold Ti is determined. Since vi
and v̂i are independent random variables with the same distribution, we get

Ev[(vi − Ti)+|v1, . . . , vi−1] = Ev,v̂[(v̂i − Ti)+|v1, . . . , vi−1].

This implies

Ev∼D[Utility] = Ev

[∑
i∈N

(vi − Ti)+
]

= Ev,v̂

[∑
i∈N

(v̂i − Ti)+
]
≥ Ev,v̂

[∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]
.

Finally, to prove (4), we have

Ev,v̂[R(A, v̂)] = Ev,v̂

[∑
i∈Opt(v̂|A)

v̂i

]
≤ Ev,v̂

[∑
i∈Opt(v̂|A)

Ti
]

+ Ev,v̂

[∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]

≤ α · Ev,v̂[R(A, v̂)] + Ev,v̂

[∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]
,

where the first inequality uses v̂i ≤ Ti + (v̂i − Ti)+ and the second inequality uses Claim 13
for S = Opt(v̂ | A). After rearranging, this implies (4). J

We need the following Claim 13 in the proof of Lemma 12.

I Claim 13. For every pair of disjoint sets A,S such that A ∪ S ∈M,

α · Ev̂∼D̂

[∑
i∈S

R(Ai−1, v̂)−R(Ai−1 ∪ {i}, v̂)
]

=
∑
i∈S
Ti ≤ α · Ev̂∼D̂[R(A, v̂)]. (5)

Proof. This directly follows from [20], as they proved it for every fixed v̂. The proof is
similar to Claim 18 in the next section. J

Proof of Theorem 10. Using Lemma 11 and Lemma 12, and substituting α = 1
2 , we get

E[Alg] = E[Utility] + E[Revenue] ≥ 1
2 · r(0) = 1

2 ·
∑
i∈N

xiyi. J

3.4 Random Order
We prove the optimal ex-ante prophet inequality for a matroid for random arrival.

I Theorem 14. For matroids, there exists a (1 − 1/e)-approximation ex-ante prophet in-
equality for uniformly random arrival order.

The proof of Theorem 14 is similar to the matroid prophet secretary inequality in [9].
We consider the model where each item chooses the arrival time from [0, 1] uniformly and
independently, which is equivalent to the random permutation model. Starting with A0 = ∅,
let At denote the set of accepted elements by our algorithm before time t. This is a random
variable that depends on the values v and arrival times T. For t ∈ [0, 1], let

α(t) := 1− exp(t− 1).

E. Lee and S. Singla 57:11

Suppose an element i arrives at time t, then our algorithm selects i iff both vi > α(t) · bi(At)
and selecting i is feasible inM.

Similar to §3.3, we keep track of the algorithm’s progress using the residual function

r(t) := Ev∼D,v̂∼D̂,T[R(At, v̂)],

where At is a function of v and T. Clearly, r(0) =
∑
i∈N xiyi.

I Claim 15. Ev∼D,T[Revenue] = −
∫ 1

t=0
α(t) · r′(t)dt.

Proof. This follows directly from the definition of Revenue. See [9] for details. J

I Lemma 16. Ev∼D,T[Utility] ≥
∫ 1

t=0
(1− α(t)) · r(t)dt.

Proof. The utility for element i arriving at time t is given by

Ev,T[ui | Ti = t] = Ev,T−i

[
(vi − α(t) · bi(At))+ · 1i6∈Span(At)

∣∣∣ Ti = t
]
.

Observe that At does not depend on vi if Ti = t because it includes only the acceptances
before t. It does not depend on v̂i either, as v̂i is only used for analysis purposes and not
known to the algorithm. Since vi and v̂i are identically distributed, we can also write

Ev∼D,T[ui | Ti = t] = Ev∼D,v̂∼D̂,T−i

[
(v̂i − α(t) · bi(At))+ · 1i 6∈Span(At)

∣∣∣ Ti = t
]
. (6)

Now observe that element i can belong to Opt(v̂ | At) only if it’s not already in Span(At),
which implies 1i 6∈Span(At) ≥ 1i∈Opt(v̂|At). Using this and removing non-negativity, we get

Ev,T[ui | Ti = t] ≥ Ev,v̂,T−i

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

∣∣ Ti = t
]
.

Now we use Lemma 17 to remove the conditioning on element i arriving at time t as this
gives a valid lower bound on expected utility,

Ev,T[ui | Ti = t] ≥ Ev,v̂,T
[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
. (7)

We can now lower bound sum of all the utilities using Eq. (7) to get

Ev,T[Utility] =
∑
i

∫ 1

t=0
Ev,T[ui | Ti = t] · dt

≥
∑
i

∫ 1

t=0
Ev,v̂∼D̂,T

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
· dt.

By moving the sum over elements inside the integrals, we get

Ev,T[Utility] ≥
∫ 1

t=0
Ev,v̂,T

[∑
i

(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
· dt

=
∫ 1

t=0
Ev,v̂,T

[
R(At, v̂)− α(t) ·

∑
i∈Opt(v̂|At)

bi(At)
]
· dt.

Finally, using Claim 18 for S = Opt(v̂ | At), we get

Ev,T[Utility] ≥
∫ 1

t=0
Ev,v̂,T [(1− α(t)) ·R(At, v̂)] · dt. J

ESA 2018

57:12 Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

Proof of Theorem 14. Using Lemma 16 and Claim 15, we get

E[Alg] = E[Revenue] + E[Utility]

≥ −
∫ 1

t=0
α(t) · r′(t) · dt+

∫ 1

t=0
(1− α(t)) · r(t) · dt

=
∫ 1

t=0
r(t) · (1− α(t) + α′(t)) · dt− [r(t) · α(t)]1t=0.

Notice that for α(t) = 1− et−1, we have 1− α(t) + α′(t) = 0. Hence, we get

E[Alg] ≥ −[r(t) · α(t)]1t=0 =
(

1− 1
e

)
· r(0) =

(
1− 1

e

)
·
∑
i∈N

xiyi. J

Finally, we prove the missing Lemma 17 that removes the conditioning on i arriving at t.

I Lemma 17. For any i, any time t, and any fixed v, v̂, we have

ET−i

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At) | Ti = t

]
≥ ET

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
.

Proof. We prove the lemma for any fixed T−i. Suppose we draw a uniformly random
Ti ∈ [0, 1]. Observe that if Ti ≥ t then we have equality in the above equation because set At
is the same both with and without i. This is also the case when Ti < t but i is not selected
into At. Finally, when Ti < t and i ∈ At we have 1i∈Opt(v̂|At) = 0 in the presence of element
i (i.e., RHS of lemma), making the inequality trivially true. J

I Claim 18. For any fixed v,T, time t, and set of elements S ⊆ N that is independent in
the matroidM/At, we have∑

i∈S
bi(At) ≤ Ev̂ [R(At, v̂)] .

Proof. By definition∑
i∈S bi(At) = Ev̂

[∑
i∈S (R(At, v̂)−R(At ∪ {i}, v̂))

]
.

Fix the values v̂ arbitrarily, we also have∑
i∈S

(R(At, v̂)−R(At ∪ {i}, v̂)) ≤ R(At, v̂).

This follows from the fact that R(At, v̂)−R(At ∪ {i}, v̂) are the respective critical values of
the greedy algorithm onM/At with values v̂. Therefore, the bound follows from Lemma 3.2
in [23]. An alternative proof is given as Proposition 2 in [20] while in our case the first
inequality can be skipped and the remaining steps can be followed replacing A by At.

Taking the expectation over v̂, the claim follows. J

References
1 Marek Adamczyk and Michal Wlodarczyk. Random order contention resolution schemes.

CoRR, abs/1804.02584, 2018.
2 Shipra Agrawal, Yichuan Ding, Amin Saberi, and Yinyu Ye. Price of correlations in

stochastic optimization. Operations Research, 60(1):150–162, 2012. Preliminary version
in SODA 2010.

E. Lee and S. Singla 57:13

3 Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to
many buyers. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 512–521, 2011.

4 Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to
many buyers. SIAM Journal on Computing, 43(2):930–972, 2014.

5 Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Prophet secretary: Surpassing the 1-
1/e barrier. In Proceedings of the 2018 ACM Conference on Economics and Computation,
Ithaca, NY, USA, June 18-22, 2018, pages 303–318, 2018.

6 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

7 Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA,
5-8 June 2010, pages 311–320, 2010.

8 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximiza-
tion via the multilinear relaxation and contention resolution schemes. SIAM J. Comput.,
43(6):1831–1879, 2014.

9 Soheil Ehsani, Mohammad Hajiaghayi, Thomas Kesselheim, and Sahil Singla. Prophet
secretary for combinatorial auctions and matroids. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2018.

10 Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Morteza Monemiza-
deh. Prophet secretary. SIAM Journal on Discrete Mathematics, 31(3):1685–1701, 2017.

11 Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1014–1033, 2016.

12 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

13 Sudipto Guha and Kamesh Munagala. Approximation algorithms for budgeted learning
problems. In STOC, pages 104–113. ACM, 2007. Full version as: Approximation Algorithms
for Bayesian Multi-Armed Bandit Problems, http://arxiv.org/abs/1306.3525.

14 Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla. The markovian price of
information, 2018.

15 Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications.
In Integer Programming and Combinatorial Optimization - 16th International Conference,
IPCO 2013, Valparaíso, Chile, March 18-20, 2013. Proceedings, pages 205–216, 2013.

16 Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and adaptivity gaps
for stochastic probing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1731–1747. SIAM, 2016.

17 Guru Guruganesh and Euiwoong Lee. Understanding the Correlation Gap For Matchings.
In 37th IARCS Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2017), volume 93 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 32:1–32:15, 2018.

18 Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and Tuomas Sandholm. Automated
online mechanism design and prophet inequalities. In Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia,
Canada, pages 58–65, 2007.

19 Theodore P Hill and Robert P Kertz. A survey of prophet inequalities in optimal stopping
theory. Contemp. Math, 125:191–207, 1992.

ESA 2018

http://arxiv.org/abs/1306.3525

57:14 Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities

20 Robert Kleinberg and S. Matthew Weinberg. Matroid prophet inequalities. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 123–136, 2012.

21 Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. Bull. Am. Math. Soc,
1977.

22 Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite
value. Advances in Prob, 4:197–266, 1978.

23 Brendan Lucier and Allan Borodin. Price of anarchy for greedy auctions. In Proceedings
of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 537–553.
Society for Industrial and Applied Mathematics, 2010.

24 Aviad Rubinstein. Beyond matroids: secretary problem and prophet inequality with general
constraints. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 324–332, 2016.

25 Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1671–
1687. SIAM, 2017.

26 Qiqi Yan. Mechanism design via correlation gap. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, pages 710–719. Society for Industrial and
Applied Mathematics, 2011.

Equilibrium Computation in Atomic Splittable
Routing Games
Umang Bhaskar1

Tata Institute of Fundamental Research, Mumbai, India
umang@tifr.res.in

Phani Raj Lolakapuri
Tata Institute of Fundamental Research, Mumbai, India
phaniraj@tcs.tifr.res.in

https://orcid.org/0000-0003-1593-9654

Abstract
We present polynomial-time algorithms as well as hardness results for equilibrium computation in
atomic splittable routing games, for the case of general convex cost functions. These games model
traffic in freight transportation, market oligopolies, data networks, and various other applications.
An atomic splittable routing game is played on a network where the edges have traffic-dependent
cost functions, and player strategies correspond to flows in the network. A player can thus split
its traffic arbitrarily among different paths. While many properties of equilibria in these games
have been studied, efficient algorithms for equilibrium computation are known for only two cases:
if cost functions are affine, or if players are symmetric. Neither of these conditions is met in
most practical applications. We present two algorithms for routing games with general convex
cost functions on parallel links. The first algorithm is exponential in the number of players,
while the second is exponential in the number of edges; thus if either of these is small, we get
a polynomial-time algorithm. These are the first algorithms for these games with convex cost
functions. Lastly, we show that in general networks, given input C, it is NP-hard to decide if
there exists an equilibrium where every player has cost at most C.

2012 ACM Subject Classification Theory of computation → Network games

Keywords and phrases Routing Games, Equilibrium Computation, Convex costs, Splittable
flows

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.58

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1804.
10044.

1 Introduction

The problem of equilibrium computation, particularly efficient computation, is the cornerstone
of algorithmic game theory, and is an area where researchers have had many successes. In
many games, we have a good understanding of where the boundaries of computation lie,
including normal-form games [9], markets [11], and congestion games [10]. The study of
equilibrium computation has had a significant impact on algorithms, contributing new
techniques and complexity classes.

1 This work was partly funded by a Ramanujan Fellowship.

© Umang Bhaskar and Phani Raj Lolakapuri;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 58; pp. 58:1–58:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:umang@tifr.res.in
mailto:phaniraj@tcs.tifr.res.in
https://orcid.org/0000-0003-1593-9654
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.58
https://arxiv.org/abs/1804.10044
https://arxiv.org/abs/1804.10044
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 Equilibrium Computation in Atomic Splittable Routing Games

In this paper, we are interested in equilibrium computation in atomic splittable routing
games (ASRGs) with convex cost functions. These games are used to model many applications,
including freight transportation, market oligopolies, and data networks (e.g., [8, 21]). In an
ASRG, we are given a network with cost functions on the edges, and k players. Each player
i has a source si, destination ti, and a fixed demand vi. Each player needs to transport its
demand from its source to its destination at minimum cost, and is free to split the demand
along multiple paths. Each player thus computes a minimum cost si-ti flow, given the
strategy of the other players.

The fact that each player can split its flow along multiple paths is what differentiates
these from weighted congestion games. This freedom reduces the combinatorial structure
of the game, making ASRGs harder to analyze. For example, equilibria in ASRGs may be
irrational. While equilibrium computation in (unsplittable) congestion games is well-studied,
much less is known about ASRGs. In fact, properties of ASRGs apart from equilibrium
computation have been studied. We know tight bounds on the price of anarchy [8, 14, 25],
and can characterize games with multiple equilibria [4].

However for equilibrium computation little is known. We know of only two cases when an
equilibrium can be efficiently computed – when cost functions are affine, or when players are
symmetric, i.e., they have the same source, destination, and demand [8, 16]. These conditions
are hardly ever met in practice. We know of no hardness results for this problem. A number
of iterative algorithms for equilibrium computation are proposed, and sufficient conditions
for convergence are given by Marcotte [20]. Further, it is implicit in a paper by Swamy that
one can compute equilibrium efficiently, given the total flow on each edge [27].

Computing equilibria in ASRGs is an interesting theoretical challenge as well. In some
regards, properties of pure Nash equilibria in ASRGs resemble mixed Nash equilibria in
games. For example, an equilibrium in pure strategies always exists [23]. For many games
with this property, local search algorithms are known that converge to an equilibrium (e.g.,
congestion games). However in ASRGs we do not know of any such algorithms.

In this work, we focus on polynomial time algorithms for computing equilibria in ASRGs
with general convex costs on parallel edges. Parallel edges are interesting because a number
of applications can be modeled using parallel edges, such as load balancing across servers [26],
and in traffic models [15]. Further, many results were first obtained for graphs consisting
of parallel edges and then extended (e.g., results on the price of collusion [17], extended to
series-parallel graphs [5], or on the price of anarchy [19, 7]). These are thus a natural starting
point to study equilibrium computation. We believe it likely that some of our structural
results extend beyond parallel edges, to nearly-parallel and series-parallel graphs.

Our Contribution. For ASRGs with convex costs on parallel edges, we give two algorithms.
Our first algorithm computes an equilibrium2 in time O ((log |I|)n), where |I| is the input
size and n is the number of players. If the number of players is near-logarithmic in the input
size, i.e., O(log |I|/ log log |I|), this gives a polynomial time algorithm. Our algorithm is
based on the idea of reducing equilibrium computation to guessing the marginal costs of
the players at equilibrium. The marginal costs turn out to have a number of interesting
monotonicity properties, which we use to give a high-dimensional binary search algorithm.

2 We use the standard notion of polynomial-time computation when outputs are possibly irrational: we
say an algorithm is efficient if for any ε > 0, the algorithm computes and ε-approximate solution in time
polynomial in the inputs size and log(1/ε).

U. Bhaskar and P. R. Lolakapuri 58:3

Our second algorithm has running time exponential in the number of edges in the network.
If the number of edges is constant, then this gives us a polynomial-time algorithm. Define
players to be of the same type if they have flow on the same set of edges at equilibrium.
The algorithm is based on the following structural result: for parallel edges, computing
equilibrium in a general ASRG can be reduced to computing equilibrium in an ASRG where
players of the same type also have the same demand. At a high level, this allows us to replace
players of the same type by a single player, and then use our previous algorithm. Somewhat
surprisingly, this result does not subsume the previous result. This is because the actual
partition of players into types is unknown, hence we must enumerate over all possible such
partitions, which introduces a factor of O(n|E|) to the running time.

Lastly, we show that in general networks, determining existence of a Nash equilibrium
where the cost of every player is at most C is NP-hard. Our proof here is a reduction
from SUBSET-SUM, and builds upon a construction showing multiplicity of equilibria in
ASRGs [4]. Our result parallels early results for bimatrix games [12], which showed that it is
NP-hard to determine existence of a Nash equilibrium in bimatrix games where the cost of
players is above a threshold [12]. Our proof is computer-assisted, and we use Mathematica
to verify properties of equilibria in the games used in our reduction.

The complete proofs can be found in the full version of the paper [6].

Related Work. Existence of equilibria in atomic splitable routing games (and for more
general concave games) is shown by Rosen [23]. Equilibria in these games are unique when
delay functions of the edges are polynomials of degree ≤ 3 [2], when the players are symmetric,
or when the underlying network is nearly-parallel [4]. In general, the equilibria may not
be unique [4]. For computation, the equilibria can be obtained as the solution to a convex
problem if the edge costs are linear, or if the players are symmetric [8]. Huang considers
ASRGs with linear delays on a class of networks called well-designed which includes series-
parallel graphs, and gives a combinatorial algorithm to find the equilibrium [18]. A network
is well-designed if for the optimal flow (which minimizes total cost), increasing the total flow
value does not decrease the flow on any edge. Recently, Harks and Timmermans gave an
algorithm to compute equilibrium for ASRGs with player specific-linear costs on parallel
links [16]. This setting allows players to have different cost functions on an edge. Their
results use a reduction to integrally splittable flows, where the flow each player puts on
an edge is an integral multiple of some quantity. In our case, the equilibrium flow can be
irrational, hence these ideas do not seem to work. A number of algorithms for equilibrium
computation are also proposed by Marcotte, based on either sequential best-response by the
players, or linearization of the cost functions [20]. Marcotte shows conditions under which
these algorithms converge to an equilibrium. It is unclear if these algorithms can be shown
to run in polynomial time.

Nonatomic games have an infinite set of players, each of which has infinitesimal flow.
Unlike ASRGs, equilibria in nonatomic games are well-studied: an equilibrium can be
obtained by solving a convex program, and is unique if the costs are strictly increasing [3]. It
is also known that ASRGs captures the setting where nonatomic players to form coalitions,
and within a coalition players cooperate to minimize the total cost of its flow [17]. A number
of papers study the change in total cost as players in a nonatomic game form coalitions,
forming an ASRG [17, 5, 18]. Another property of ASRGs that has received a lot of attention
is the price of anarchy (PoA), formalised as the ratio of the total cost of the worst equilibrium,
to the optimal cost. Upper bounds on the PoA were obtained by Cominetti, Correa, and
Stier-Moses [8] and improved upon by Harks [14]. These bounds were shown to be tight [25].

ESA 2018

58:4 Equilibrium Computation in Atomic Splittable Routing Games

Atomic games where demands are unsplittable are also extensively studied. If all players
have the same demand, these are called congestion games. Player strategies may not
correspond to paths in a graph; if they do, these are called network congestion games. For
congestion games, existence of a potential function is well-known [24], though computing an
equilibrium is PLS-hard [10, 1], even if players are symmetric or the edge cost functions are
linear. For symmetric players in a network congestion game, or if player strategies correspond
to bases of a matroid, the equilibrium can be computed in polynomial time [1, 10].

2 Preliminaries

An atomic splittable routing game (ASRG) Γ = (G = (V,E), (vi, si, ti)i∈[n], (le)e∈E)) is
defined on a directed network G = (V,E) with n players. Each player i wants to send vi
units of flow from si to ti, where vi is the demand of player i. Each edge e has a cost function
le(x) which is non-negative, increasing, convex and differentiable. Players are indexed so
that v1 ≥ v2 ≥ . . . ≥ vn, and the total demand V :=

∑
i vi. Vector f i denotes the flow of

player i. By abuse of notation, we say vector f is the flow on the network with n players
such that f ie denotes the amount of flow player i sends along the edge e, and fe :=

∑
i f

i
e is

the total flow on edge e.
Given a flow f = (f1, f2, . . . , fn) for n players, player i incurs a cost Cie(f) := f iele(fe)

on the edge e. His total cost is Ci(f) =
∑
e∈E Cie(f). Each player’s objective is to minimize

his cost, given the flow of the other players. We say a flow f is at equilibrium3 if no player
can unilaterally change his flow and reduce his total cost. More formally,

I Definition 1. In an ASRG a flow f = (f1, f2, . . . , fn) is a Nash Equilibrium flow if for
every player i and every flow g = (f1, f2, . . . , f i−1, gi, f i+1, . . . , fn), where gi is a flow of
value vi, Ci(f) ≤ Ci(g).

The equilibrium flow can be characterized in terms of the marginal costs of each player.
Intuitively, the marginal cost for a player on a path is the increase in cost for the player
when he increases his flow on the path by a small amount.

I Definition 2. Given a flow f , the marginal cost for the player i on path p is given by

Lip(f) =
∑
e∈p

le(fe) + f iel
′
e(fe)

By applying the Karush-Kuhn-Tucker conditions [13] for player i’s minimization problem,
we get the following lemma 3 which characterizes the equilibrium using marginal costs.

I Lemma 3. Flow f = (f1, f2, . . . , fn) is a Nash equilibrium flow iff for any player i and
any two directed paths p and q between si and ti such that f ie > 0 ∀e ∈ p, Lip(f) ≤ Liq(f).

Lemma 3 says that for any player i at equilibrium, the marginal delay Lip(f) on all paths
p such that f ie > 0 ∀e ∈ p is equal, and is the minimum over all si-ti paths. In a network of
parallel edges, every edge is an s-t path, hence the condition holds at equilibrium with edges
replacing paths.

We will frequently use the support of a player, where given a flow f = (f1, f2, . . . , fn),
the support of player i, Si is defined as the set edges with f ie > 0.

3 More specifically, a pure Nash equilibrium.

U. Bhaskar and P. R. Lolakapuri 58:5

Swamy studies the use of edge tolls to enforce a particular flow as equilibrium [27].
However, if we start with an equilibrium flow, the tolls required are identically zero. The
following theorem regarding equilibrium computation is then implicit, and will be useful to
us in Section 4.

I Theorem 4 ([27]). For ASRG Γ , let (he)e∈E be the total flow on each edge at an equilibrium.
Then given the total flow h, the equilibrium flow for each player can be obtained in polynomial
time by solving a convex quadratic program.

We make the following smoothness assumptions on edge cost functions.
1. Cost functions are continuously differentiable, nonnegative, convex, and increasing.
2. There is a constant Ψ ≥ V that satisfies:

Ψ ≥ max
e∈E, x∈[0,V]

{
le(x), l′e(x), l′′e (x), 1

l′e(x)

}
By the first assumption, the edge marginal cost Lie(f) is strictly increasing, both with the
total flow fe and player i’s flow f ie. Define Li(f) := mine∈E Lie(f). Hence if ~f , ~f ′ are two
equilibrium flows, and for some player i and edge e fe ≥ f ′e, f ie ≥ f ′e

i, and f ie > 0, then

Li(f) = Lie(f) ≥ Lie(f ′) ≥ Li(f ′)

and the second inequality is strict if fe > f ′e or f ie > f ie
′. We frequently use this inequality in

our proofs.
Also observe that for each edge e and flow values x, y ∈ [0, V], the following properties of

the edge cost functions hold.

|x− y| ≤ δ ⇒ |le(x)− le(y)| ≤ δΨ and |le(x)− le(y)| ≤ δ ⇒ |x− y| ≤ δΨ

3 An Algorithm with Complexity Exponential in the Number of
Players

To convey the main ideas of the algorithm, we will ignore issues regarding finite precision
computation in this section. In particular, we assume the algorithm carries out binary
search to infinite precision, and show that such an algorithm computes the exact equilibrium.
In this article we will give the algorithms for computing equilibria assuming that we can
compute values upto arbitrary precision. In the full version of the paper [6], we give an
implementation of the algorithm with finite precision. We show that our implementation
computes an ε-equilibrium in time O

(
mn2 (log(nΨ/ε))n

)
Recall that the equilibrium in case of parallel edges is unique [22]. We start with an

outline of the algorithm. Our first idea is to reduce the problem of equilibrium computation,
to finding the marginal costs at equilibrium. We give a function GraphFlow that at a high
level, given a vector of marginal costs ~M = (M1, . . .Mn), returns a vector of demands
~w = (w1, . . . , wn) and a flow vector ~f = (f ie)e∈E,i∈[n] so that (1) ~f is the equilibrium flow
for the demand vector ~w, and (2) for each player i, the marginal cost Li(f) = M i. That is,
the marginal costs for the players at equilibrium are given by the input vector ~M . We show
that in fact each marginal cost vector ~M maps to a unique (demand, flow) pair that satisfies
these conditions. Hence given marginal costs at equilibrium, the function must return the
correct demands (vi)i∈[n], and the required equilibrium flow. Thus, our problem reduces to
finding a marginal cost vector ~M for which GraphFlow returns the correct demand vector
~v = (v1, v2, . . . , vn). We say a demand wi for player i is correct if wi = vi.

ESA 2018

58:6 Equilibrium Computation in Atomic Splittable Routing Games

Algorithm 1 GraphFlow(~M).

Input: Vector ~M = (M i)i∈[n] of nonnegative real values
Output: Flow ~f = (fi(e))i∈[n],e∈E and demands ~w = (wi)i∈[n] so that wi = |f i| and ~f is an

equilibrium flow for demands ~w with marginal costs ~M .
1: Assume that M1 ≥M2 ≥ · · · ≥Mn, else renumber the vector components so that this

holds.
2: for each edge e ∈ E do
3: f ie = 0 for each player i ∈ [n]
4: if le(0) ≥M1 then
5: Se ← ∅; continue with the next edge
6: for k = 1→ n do
7: S = [k]
8: Let xe be the unique solution to kle(x) + xl′e(x) =

∑
i∈SM

i . Since le(x) is
strictly increasing and convex, the solution is unique

9: f ie = Mi−le(xe)
l′e(xe) for each player i ∈ S . Note that

∑
i∈S f

i
e = xe

10: if (f ie ≥ 0 for all i ∈ S) and (k = n or Mk+1 ≤ le(xe)) then
11: fe ← xe, Se ← S, continue with the next edge
12: wi ←

∑
e f

i
e for each player i; return (~f, ~w)

Since only the marginal costs and demands matter to us, we can think of GraphFlow as
a function from marginal cost vectors to demand vectors. We then give a high-dimensional
binary search algorithm that computes the required marginal cost vector. This proceeds in a
number of steps. We first show that the function GraphFlow is continuous, and is monotone
in a strict sense: if we increase the marginal cost of a player, then the demand for this
player increases, and the demand for every other player decreases. This allows us to show in
Lemma 6 that given any marginal costs for the first n− k players, there exist marginal costs
for the remaining k players so that the demands returned by GraphFlow for these remaining
players is correct. Lemma 6 allows us to ignore first n− k players, and focus on the last k
players, since no matter what marginal costs we choose for the first n− k players, we can
find marginal costs for the last k players that give the correct demand for these players.

The crux of our binary search algorithm is then Lemma 7, which says the following.
Suppose we are given two marginal cost vectors ~M and ~M ′ that differ only in their last k
coordinates, and for which the demands of the last k − 1 players is equal. Thus, M i = M i′

for all players i < k, and the demands returned by GraphFlow(~M), GraphFlow(~M ′) are
equal for all players i > k. Suppose for the kth player, the demand with marginal costs ~M

is higher than the demand with marginal costs ~M ′. Then Lemma 7 says that k’s marginal
cost in ~M must be higher than in ~M ′, i.e., Mk > Mk′. Thus Lemma 7 allows us to give a
recursive binary search procedure. For a player k, the procedure fixes a marginal cost Mk,
and finds marginal costs for players i > k so that these players have the correct demand. By
Lemma 6, we know that such marginal costs exist. With these marginal costs, if the demand
for player k is greater than vk, then by Lemma 7 Mk is too large. We then reduce Mk, and
continue.

Algorithm 1 describes the function GraphFlow. The algorithm considers each edge in
turn. For an edge e, it tries to find a subset of players S ⊆ [n] and flows f ie so that, for all
players i ∈ S, Lie(f) = M i, and for all players not in S, f ie = 0 and M i ≤ Lie(f). The set S
can be obtained in O(n) time by adding players to S in decreasing order of marginal costs

U. Bhaskar and P. R. Lolakapuri 58:7

M i. Given a set S, summing the equalities Lie(f) = M i, we get the following equation with
variable fe:

|S| le(fe) + fel
′
e(fe) =

∑
i∈S

M i .

Noting that the left-hand side is strictly increasing in fe, we can solve this equation for fe
using binary search. This gives us the total flow on the edge fe. We can then obtain the flow
for each player by solving, for each player i ∈ S, the following equation:

f ie = M i − le(fe)
l′e(fe)

.

We set f ie = 0 for all players not in S. It can be checked that
∑
i∈S f

i
e = fe. If f ie ≥ 0 for all

players, and Lie(f) = le(fe) ≥M i for all players not in S, we move on to the next edge. Else,
we add the next player with lower marginal cost M i to the set S, and recompute fe.

We first establish in Claims 1, 2, and 3 that the algorithm is correct, and gives a continuous
map from marginal cost vectors to demand vectors.

I Claim 1. Given ~M , assume w.l.o.g. that M1 ≥ M2 ≥ · · · ≥ Mn. Then GraphFlow(~M)
returns flow ~f and demands ~w so that, on each edge e and for each player i,
1. if f ie = 0 then Lie(f) ≥M i

2. if f ie > 0 then Lie(f) = M i

Thus, ~f is an equilibrium flow for values ~w, and if wi > 0 then M i = Li(f).

I Claim 2. For each vector ~M of marginal costs, there is a unique pair of vectors (~w, ~f) so
that:
1. ~f is the equilibrium flow for demands ~w, and
2. for each player i, Li(f) ≥M i. If wi > 0, then Li(f) = M i.

I Corollary 5. For a demand vector ~w, let ~f be the equilibrium flow, and M i = Li(f) be
the marginal costs of the players at equilibrium. Then the function GraphFlow(M1, . . . ,Mn)
returns (~w, ~f) as the output.

I Claim 3. Given marginal costs ~M , ~M ′ so that for player l, |M l−M l′| ≤ ε, and M j = M j ′

for all players j 6= l, let (~f, ~w) and (~f ′, ~w′) be the flows and demands returned by GraphFlow.
Then for each player i, |f ie− f ie

′| ≤ ε′, where ε′ = 2nΨε. Hence, for each player i, |wi−w′i| ≤
mε′.

Claim 3 then shows that the function GraphFlow is continuous.
In the remainder of the discussion, given a vector of marginal costs ~M , we will primarily

be concerned with the demands ~w returned by the function GraphFlow. We therefore define
the functions GraphVali for each player i ∈ [n]. Function GraphVali takes as input a vector
~M of marginal costs for the players, and returns the demand wi, the ith component of
the demand vector ~w returned by GraphFlow(~M). Claim 4 now shows that the function
GraphFlow is monotone: if we increase the input marginal cost of a player, that player’s
demand goes up, while the demand for all the other players goes down. This is crucial in
establishing existence of marginal costs for a subset of players (Lemma 6), and in our binary
search algorithm later on.

I Claim 4. Consider marginal cost vectors ~M and ~M ′ that differ only in their kth coordinate,
so that ~M = (M i)i∈[n] and ~M ′ = (M1,M2, . . . ,Mk′, . . . ,Mn). For each player i, let
wi = GraphVali(~M), and w′i = GraphVali(~M ′). If Mk′ > Mk, then the following hold true
as well:

ESA 2018

58:8 Equilibrium Computation in Atomic Splittable Routing Games

1. w′k ≥ wk,
2. if w′k > 0, then w′k > wk,
3. w′i ≤ wi for i 6= k, and
4. for any subset of players P containing player k,

∑
i∈P w

′
i ≥

∑
i∈P wi.

Consider the game with cost functions as in Γ , but with n players, each with demand V .
Since this is a symmetric game, the equilibrium flow can be computed in polynomial time [8].
We define Λ to be the marginal cost of each player at this equilibrium.

I Lemma 6. Let S ⊆ [n] be a subset of the players. Given strictly positive input demands
ŵi ≤ V for players i ∈ S and marginal costs M i ≤ Λ for players i 6∈ S, there exist marginal
costs M̂ i ≤ Λ for the players in S so that, given input ((M̂ i)i∈S , (M i)i6∈S), GraphVali returns
ŵi as the demand for players i ∈ S.

I Lemma 7. Given a player k, and two marginal cost vectors ~M and ~M ′ that satisfy the
following properties:
1. for all players i < k, M i = M i′,
2. for all players i > k, GraphVali(~M) = GraphVali(~M ′).
Let wk = GraphValk(~M), and w′k = GraphValk(~M ′). If wk > w′k, then Mk > Mk′.

Proof. Let Mk ≤ Mk′, and let P be the set of players {i ≥ k : M i ≤ M i′}. Thus k ∈ P .
We will show that wk ≤ w′k. The proof proceeds by changing the marginal cost of each player
in order from M i to M i′, and considering the effect on total demand of players in P . We
show that in this process, the total demand of these players does not increase, and hence∑

i∈P
GraphVali(~M) ≤

∑
i∈P

GraphVali(~M ′) . (1)

The expression on the left equals wk +
∑
i∈P,i6=k wi, while the expression on the right equals

w′k +
∑
i∈P,i6=k wi since for players i > k, GraphVali(~M) = GraphVali(~M ′). Hence, this will

show that wk ≤ w′k, as required.
We now need to prove (1). Our proof uses Claim 4. Formally, let ~M(t) = ((M i′)i≤t, (M i)i>t).
Then ~M(0) = ~M , and ~M(n) = ~M ′. We will show that∑

i∈P
GraphVali(~M(t)) ≤

∑
i∈P

GraphVali(~M(t+ 1)) . (2)

For each player t ∈ [n], there are three cases: either (1) M t = M t′, (2) M t ≤M t′ and t ∈ P ,
or (3) M t > M t′ and t 6∈ P . We consider these three cases separately. In the first case,
~M(t) = ~M(t+ 1), and (2) clearly holds. In the second case, by Claim 4 and since t ∈ P , (2)
holds. In the third case, again by Claim 4, for all i 6= t the demand either increases or
remains the same. Since t 6∈ P , the total demand of players in P either increases or remains
the same, and hence (2) holds. This completes the proof. J

We now give our algorithm for obtaining the “correct” marginal costs ~M , so that
GraphFlow(~M) returns the required equilibrium flow. The algorithm is recursive. For each
player k, it picks a candidate marginal cost Mk, and then recursively calls itself to find
marginal costs M i for players i > k so that the demands for these players i > k is correct. If
the demand for player k itself is too large, it reduces Mk, and otherwise increases Mk. Thus
the algorithm conducts a binary search to find the correct marginal cost for player k, and in
each iteration calls itself to determine correct marginal values for players i > k.

U. Bhaskar and P. R. Lolakapuri 58:9

Algorithm 2 EqMCostk((M1, . . . ,Mk−1)).

Input: Vector (M1, . . . ,Mk−1), with each component M i ∈ [0,Λ] . If k = 1, there is no
input required.

Output: Vector (~M) of marginal costs so that the first k − 1 marginal costs are equal to
the inputs, and for players i ≥ k, the demand GraphVali(~M) = vi.

1: if k = n then
2: Using binary search in [0,Λ], find M so that GraphValn((M i)i<n,M) = vn. return
M .

3: Low← 0, High← Λ, Mid← (Low + High)/2
4: (Mk+1, . . . ,Mn)← EqMCostk+1(M1, . . . ,Mk−1,Mid)
. Call EqMCostk+1 to get marginal costs for the remaining player k + 1, . . . , n so that
the demand for these players is correct

5: if (GraphValk((M i)i<k,Mid, (M i)i>k) = vk) then
6: return (Mid, (M i)i>k)
7: else if (GraphValk((M i)i<k,Mid, (M i)i>k) > vk) then
8: High← Mid, Mid← (Low + High)/2, goto 4
9: else if (GraphValk((M i)i<k,Mid, (M i)i>k) < vk) then
10: Low← Mid, Mid← (Low + High)/2, goto 4

I Theorem 8. For ASRG Γ , EqMCost1 returns marginal cost vector ~M such that
GraphFlow(~M) = (~w, ~f), where ~w = ~v and ~f is the equilibrium flow in Γ .

The main ingredient in the proof of Theorem 8 is the following lemma, which shows that
recursively, for any player k, the function EqMCost returns correct marginal costs.

I Lemma 9. For any vector (M1, . . . ,Mk−1) with each component in [0,Λ], the function
EqMCostk((M1, . . . ,Mk−1)) returns marginal costs (Mk, . . . ,Mn) for the remaining players
so that, for each player i ≥ k, GraphVali(M1, . . . ,Mn) = vi.

Proof. The proof is by induction on n. In the base case, k = n, and the input is the
vector (M1, . . . ,Mn−1) with each component in [0,Λ]. By Lemma 6, there exists M̂ so
that GraphValn(M1, . . . ,Mn−1, M̂) = vn. We now show that the value M̂ can correctly
be found by binary search. Initially, the search interval is [0,Λ], and by Lemma 6, M̂
lies in the search interval. Assume in some iteration the search interval is [Low,High]; M̂
lies in the search interval; and that GraphValn(M1, . . . ,Mn−1,Mid) > vn. Since vn > 0,
and vn = GraphValn(M1, . . . ,Mn−1, M̂) < GraphValn(M1, . . . ,Mn−1,Mid), it follows by
Lemma 7 that M̂ < Mid. Hence, M̂ lies in the interval [Low,Mid], and we can restrict
our search to this space, which is exactly how the binary search proceeds. The case when
GraphValn(M1, . . . ,Mn−1,Mid) < vn is similar, and M̂ then lies in the interval [Mid,High].

For the inductive step, we are given player k < n. We assume that given any input
vector (M1, . . . ,Mk) with each component in [0,Λ], EqMCostk+1 returns marginal costs
(Mk+1, . . . ,Mn) for the remaining players so that for each of these remaining players
i ≥ k + 1, GraphVali(M1, . . . ,Mn) = vi. We need to show that given any input marginal
costs (M1, . . . ,Mk−1) for the first k−1 players, EqMCostk finds marginal costs (Mk, . . . ,Mn)
for players k onwards so that the demand returned for these players i ≥ k by GraphVali is
vi. Firstly, by Lemma 6, choosing S = [k, . . . , n] and ŵi = vi for players i ∈ S, there exist
marginal costs (M̂k, . . . , M̂n) so that for all i ≥ k, GraphVali((M i)i<k, (M̂ i)i≥k) = vi. We
now show that the binary search procedure in EqMCostk finds the required marginal cost
M̂k. By Lemma 6, M̂k lies in the initial search interval [0,Λ]. Assume that in some iteration,

ESA 2018

58:10 Equilibrium Computation in Atomic Splittable Routing Games

M̂k lies in the search interval [Low,High], and Mid = (Low + High)/2. By the induction
hypothesis, EqMCostk+1(M1, . . . ,Mk−1,Mid) returns marginal costs (Mk+1, . . . ,Mn) for
the players k + 1, . . . , n so that for each of these players i ≥ k + 1 (but not player k),
GraphVali((M i)i<k,Mid, (M i)i>k) = vi. Further, for each player i ≥ k, GraphVali((M i)i<k,
(M̂ i)i≥k) = vi. Suppose that for player k, GraphValk((M i)i<k,Mid, (M i)i>k) > vk =
GraphVali((M i)i<k, (M̂ i)i≥k). Then by Lemma 7, Mid > M̂k, and hence M̂k lies in the
interval [Mid,High]. The algorithm then reduces the search space to this interval, and
continues. If GraphValk((M i)i<k,Mid, (M i)i>k) < vk, it can be similarly shown that Mid <
M̂k. Thus, M̂k always lies in the search space [Low,High], which is halved in each iteration.
The binary search is thus correct, and must eventually terminate. J

Proof of Theorem 8. By Lemma 9, EqMCost1 returns a marginal cost vector ~M = (M1, . . . ,

Mn) so that GraphVali(~M) = vi for each player i. Let ~v = (v1, . . . , vn). By definition of
the function GraphVal, this implies that GraphFlow(~M) returns vectors ~v and ~f . Finally by
Claims 1 and 2, ~f is the equilibrium flow for demands ~v, as required. J

Implementation and Complexity. Under the assumption that binary search could be done
to arbitrary precision, we showed that the algorithm EqMCost is correct. However, the
solutions to the polynomial equations could be irrationals, and thus the algorithm given is not
a finite algorithm. In the full version of paper [6], we show that for any given error parameter
ε, we can implement EqMCost to run in time O

(
poly(log Ψ, log 1

ε ,m, n)
)
, and return an

ε-equilibria. We say a flow ~f is an ε-equilibrium if any player i has flow only on ε-minimum
marginal cost edges. That is, if f ie > 0 for player i on edge e, then Lie(f) ≤ mine′ Lie′(f) + ε.
Conventionally, a strategy profile is an ε-equilibrium if no player can improve it’s cost by ε.
One can check that the two are equivalent: if a flow f is an ε-equilibrium by our definition,
then no player i can improve its cost by more than εvi, where vi is its demand.

The work in giving an implementation for the algorithm EqMCost is in implementing the
binary search correctly, up to some error parameter ε. Since the algorithm is iterative, this
error grows across each iteration, and bounding the error in each iteration is quite technical.
Additionally, approximate versions of some of the results for EqMCost have to be reproved.
Further details are given in the full version of paper [6].

4 An Algorithm with Complexity Exponential in Number of Edges

Our second algorithm is based on Theorem 10, which shows that at equilibrium the supports
of players form chains.

I Theorem 10 ([4]). Consider an ASRG with n players on a graph consisting of parallel
edges4, and let f be the equilibrium flow. Then L1(f) ≥ · · · ≥ Ln(f). Consequently, the
supports S1(f) ⊇ · · · ⊇ Sn(f).

Thus in an ASRG on m parallel links, there exist numbers 1 = a1 < a2 < · · · < aT ≤ n
with T ≤ m, so that players with indices in [ai, ai+1−1] have the same support at equilibrium.
Define a type set T = (P1, . . . , PT) with T ≤ m to be a partition of the players so that players
in a set Pt in the partition have consecutive indices. Hence, a type set T = (P1, . . . , PT)
can be denoted by a sequence of numbers (a1, . . . , aT) where 1 = a1 < a2 < · · · < aT ≤ n

and Pt consists of the players with indices at, . . . , at+1 − 1. We say a type set is valid for

4 The proof by Bhaskar et al. [4] is for series-parallel graphs which are a superset of parallel link graphs.

U. Bhaskar and P. R. Lolakapuri 58:11

Γ iff two players in the same partition in T also have the same support in the equilibrium.
Theorem 10 then shows that in a graph consisting of m parallel links, there is a type set
that is valid.

We will now give an algorithm with running time that is exponential in the number of
edges, using the algorithm from Section 3, which is exponential in the number of players, and
Theorem 4. Our algorithm in this section crucially uses Lemma 11, which has the following
content. Let T = (P1, . . . , PT) be a type set, not necessarily valid, for a game Γ . Consider
the game Γ T where for each set Pt ∈ T , we replace the players in Pt with |Pt| players that
have the same demand, given by

∑
i∈Pt

vi/|Pt|. That is, we pick a set Pt, and replace all
players in this set by players with demands equal to the average demand of players in Pt.
We do this for each set Pt. Lemma 11 then says that if T is valid for Γ , then the total flow
on any edge does not change between Γ and Γ T .

I Lemma 11. Let T = (P1, . . . , PT) be the valid type set for game Γ with n players on a
network of parallel edges. Let f and g be the respective equilibrium flows for games Γ and
Γ T respectively. Then on each edge e, fe = ge.

The proof of Lemma 11 closely follows an earlier proof of uniqueness of equilibrium in
an ASRG [4, Theorem 5]. Lemma 11 implies that in an ASRG on parallel edges we can
replace players that have the same support with players that have the same demand without
affecting the total flow at equilibrium on the edges. Further, given the total flow on each edge
at equilibrium in a general network, the flow for each player can be computed by Theorem 4.

The algorithm EqMCost runs a binary search for the marginal cost at equilibrium for
each player. For each player i, EqMCosti runs a binary search, in each iteration of which
it calls EqMCosti+1. If each binary search runs for R iterations, and each iteration takes
time S, then this recursively gives a running time of O(S Rn). However, if players i, i+ 1
have the same demand, then by Theorem 10 they also have the same marginal cost at
equilibrium. Hence we can run the binary search for the marginal cost at equilibrium, for
both players simultaneously. This is the basic idea for the modification. For a given type set
T = (P1, . . . , PT), and the game Γ T , we know that all players in the same set Pt have the
same marginal cost at equilibrium. Hence, we run the binary search once for each set Pt,
rather than once for each player. By Theorem 10, the number of types T ≤ m.

This gives us the reduced running time of O(S Rm) for type set T , for each run of the
modified algorithm EqMCostTy. However, note that we run the algorithm once for each
possible type set. If the game is played on m parallel links, then the number of possible type
sets is about (n+m)m. In the full version of paper [6], we show that this takes a running
time of O

(
(n+m)mm3 (log(nΨ/ε))m

)
.

5 Hardness of Computing Equilibria

Prior to the proof of PPAD-hardness of computing a (mixed) Nash equilibrium in bimatrix
games, Gilboa and Zemel showed that it was NP-hard to determine if there existed an
equilibrium in bimatrix games where every player had payoff above a given threshold C [12].
We show a similar result for ASRGs.

I Theorem 12. Given an ASRG with convex, strictly increasing and continuously differenti-
able cost functions, it is NP-hard to determine if there exists an equilibrium at which cost of
every player is at most C.

ESA 2018

58:12 Equilibrium Computation in Atomic Splittable Routing Games

e1

e2

e3
e5

e4
e7

e8

o o′

s

t

sp tp

e6 e9

e10

r r′
sq tq

Figure 1 ASRG G, with multiple equilibria.

The main idea of the proof is to build upon the existence of multiple equilibria in
ASRGs, and is a reduction from SUBSET-SUM. In this problem, we are given a set S =
{s1, s2, . . . , sn} ⊂ N such that the sum of elements in S is M , and we want to determine
if there exists a subset T ⊆ S such that the sum of elements in T is M/2. SUBSET-SUM
problem is known to be NP-complete. Our reduction is in two steps. First, we construct
an ASRG G with four players b, r, p, and q, and exactly three equilibria, one of which is
irrational, which is used as gadget in the reduction (Figure 1).5 This construction builds
upon an earlier example showing multiplicity of equilibria in ASRGs [4]. We will be mainly
concerned with the rational equilibrium flows, say f and g. We choose the cost functions so
that (i) Cpe7

(g) > Cpe7
(f), and (ii) the sum of costs of players p and q are equal for f and g,

that is,

Λ := Cpe7
(f) + Cqe9

(f) = Cpe7
(g) + Cqe9

(g) (3)

Then Cqe9
(f) > Cqe9

(g).
We now repeat this subgame n times in series, once for each element in the set S in the

SUBSET-SUM instance. Each subgame is independent of the others, i.e., the players bi and
ri in ith subgame are local to that subgame and do not play any role in other subgames.
All the subgames are connected by players p and q, who can only use one edge (e7 and e9
respectively) in each subgame. We show that f , g, and h continue to be the only equilibria
within each subgame. In the ith subgame Gi, we multiply each cost function by si. This
causes all costs to get multiplied by si, and does not affect the equilibria. Thus, in each
subgame Gi, player p has costs siCpe7

(f) and siCpe9
(g) in equilibrium flows f , g, and h (confined

to the subgame) respectively. Similar for player q. Roughly, we think of equilibrium f in a
subgame as putting si in the subset S, and equilibrium g as leaving si out.

We will show that if the given instance satisfies SUBSET-SUM, then there exists an
equilibrium at which both players p and q have cost (MΛ)/2, otherwise at least one of them
has cost strictly greater than (MΛ)/2. At equilibrium in the game, let F be the subgames
where f is the equilibrium, and G be the subgames where g is the equilibrium. Then the
total cost of players p and q is

Cpe7
(f)
∑
i∈F

si + Cpe7
(g)
∑
i∈G

si + Cqe9
(f)
∑
i∈F

si + Cqe9
(g)
∑
i∈G

si = MΛ

5 We use Mathematica to verify properties of equilibria in the games used in the reduction. Further
details are given in the full version of paper [6].

U. Bhaskar and P. R. Lolakapuri 58:13

where the equality follows from (3). From Cpe7
(g) > Cpe7

(f), it follows that the cost of each
player p, q is (MΛ)/2 iff at equilibrium,

∑
i∈F si =

∑
i∈G si. Else, since the sum of costs of

the two players is constant, exactly one player has cost above (MΛ)/2.
To complete the proof, we add player-specific edges to ensure that (MΛ)/2 is large enough

so that all the other players bi, ri always have cost at most (MΛ)/2 at any equilibrium.

References
1 Heiner Ackermann, Heiko Röglin, and Berthold Vöcking. On the impact of combinatorial

structure on congestion games. In 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings,
pages 613–622, 2006.

2 Eitan Altman, Tamer Başar, Tania Jimenez, and Nahum Shimkin. Competitive routing in
networks with polynomial costs. Automatic Control, IEEE Transactions on, 47(1):92–96,
2002.

3 MJ Beckmann, CB Mc Guire, and CB Weinstein. Studies in the economics of transporta-
tion, Yale University Press. New Haven, Connecticut, USA, 1956.

4 Umang Bhaskar, Lisa Fleischer, Darrell Hoy, and Chien-Chung Huang. On the uniqueness
of equilibrium in atomic splittable routing games. Math. Oper. Res., 40(3):634–654, 2015.
doi:10.1287/moor.2014.0688.

5 Umang Bhaskar, Lisa Fleischer, and Chien-Chung Huang. The price of collusion in series-
parallel networks. In Integer Programming and Combinatorial Optimization, 14th Interna-
tional Conference, IPCO 2010, Lausanne, Switzerland, June 9-11, 2010. Proceedings, pages
313–326, 2010.

6 Umang Bhaskar and Phani Raj Lolakapuri. Equilibrium computation in atomic splittable
routing games with convex cost functions. CoRR, abs/1804.10044, 2018. arXiv:1804.
10044.

7 Kshipra Bhawalkar, Martin Gairing, and Tim Roughgarden. Weighted congestion games:
The price of anarchy, universal worst-case examples, and tightness. ACM Trans. Economics
and Comput., 2(4):14:1–14:23, 2014.

8 Roberto Cominetti, José R. Correa, and Nicolás E. Stier Moses. The impact of oligopolistic
competition in networks. Operations Research, 57(6):1421–1437, 2009. doi:10.1287/opre.
1080.0653.

9 Constantinos Daskalakis. On the complexity of approximating a Nash equilibrium. ACM
Trans. Algorithms, 9(3):23:1–23:35, 2013.

10 Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of pure
Nash equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, June 13-16, 2004, pages 604–612, 2004.

11 Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. Settling the complexity
of Leontief and PLC exchange markets under exact and approximate equilibria. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 890–901, 2017.

12 Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity consid-
erations. Games and Economic Behavior, 1(1):80–93, 1989.

13 Geoff Gordon and Ryan Tibshirani. Karush-Kuhn-Tucker conditions. Optimization,
10(725/36):725, 2012.

14 Tobias Harks. Stackelberg strategies and collusion in network games with splittable flow.
Theory of Computing Systems, 48(4):781–802, 2011.

15 Tobias Harks, Ingo Kleinert, Max Klimm, and Rolf H Möhring. Computing network tolls
with support constraints. Networks, 65(3):262–285, 2015.

ESA 2018

http://dx.doi.org/10.1287/moor.2014.0688
http://arxiv.org/abs/1804.10044
http://arxiv.org/abs/1804.10044
http://dx.doi.org/10.1287/opre.1080.0653
http://dx.doi.org/10.1287/opre.1080.0653

58:14 Equilibrium Computation in Atomic Splittable Routing Games

16 Tobias Harks and Veerle Timmermans. Equilibrium computation in atomic splittable
singleton congestion games. In Integer Programming and Combinatorial Optimization -
19th International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017,
Proceedings, pages 442–454, 2017.

17 Ara Hayrapetyan, Éva Tardos, and TomWexler. The effect of collusion in congestion games.
In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA,
USA, May 21-23, 2006, pages 89–98, 2006.

18 Chien-Chung Huang. Collusion in atomic splittable routing games. Theory Comput. Syst.,
52(4):763–801, 2013. doi:10.1007/s00224-012-9421-4.

19 Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65–69, 2009.

20 Patrice Marcotte. Algorithms for the network oligopoly problem. Journal of the Operational
Research Society, pages 1051–1065, 1987.

21 Ariel Orda, Raphael Rom, and Nahum Shimkin. Competitive routing in multiuser commu-
nication networks. IEEE/ACM Transactions on Networking (ToN), 1(5):510–521, 1993.

22 Oran Richman and Nahum Shimkin. Topological uniqueness of the Nash equilibrium for
selfish routing with atomic users. Math. Oper. Res., 32(1):215–232, 2007. doi:10.1287/
moor.1060.0229.

23 J Ben Rosen. Existence and uniqueness of equilibrium points for concave n-person games.
Econometrica: Journal of the Econometric Society, pages 520–534, 1965.

24 Robert W Rosenthal. A class of games possessing pure-strategy Nash equilibria. Interna-
tional Journal of Game Theory, 2(1):65–67, 1973.

25 Tim Roughgarden and Florian Schoppmann. Local smoothness and the price of anarchy
in splittable congestion games. Journal of Economic Theory, 156:317–342, 2015.

26 Subhash Suri, Csaba D Tóth, and Yunhong Zhou. Selfish load balancing and atomic
congestion games. Algorithmica, 47(1):79–96, 2007.

27 Chaitanya Swamy. The effectiveness of Stackelberg strategies and tolls for network con-
gestion games. ACM Trans. Algorithms, 8(4):36:1–36:19, 2012. doi:10.1145/2344422.
2344426.

http://dx.doi.org/10.1007/s00224-012-9421-4
http://dx.doi.org/10.1287/moor.1060.0229
http://dx.doi.org/10.1287/moor.1060.0229
http://dx.doi.org/10.1145/2344422.2344426
http://dx.doi.org/10.1145/2344422.2344426

Online Non-Preemptive Scheduling to Minimize
Weighted Flow-time on Unrelated Machines
Giorgio Lucarelli
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France
giorgio.lucarelli@imag.fr

Benjamin Moseley
Carnegie Mellon University, USA
moseleyb@andrew.cmu.edu

Nguyen Kim Thang
IBISC, Univ Evry, University Paris-Saclay, France
thang@ibisc.fr

Abhinav Srivastav
IBISC, Univ Evry, University Paris-Saclay, France
abhinavsriva@gmail.com

Denis Trystram
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, France
denis.trystram@imag.fr

Abstract
In this paper, we consider the online problem of scheduling independent jobs non-preemptively
so as to minimize the weighted flow-time on a set of unrelated machines. There has been a
considerable amount of work on this problem in the preemptive setting where several competitive
algorithms are known in the classical competitive model. However, the problem in the non-
preemptive setting admits a strong lower bound. Recently, Lucarelli et al. presented an algorithm
that achieves a O

(1
ε2

)
-competitive ratio when the algorithm is allowed to reject ε-fraction of total

weight of jobs and has an ε-speed augmentation. They further showed that speed augmentation
alone is insufficient to derive any competitive algorithm. An intriguing open question is whether
there exists a scalable competitive algorithm that rejects a small fraction of total weights.

In this paper, we affirmatively answer this question. Specifically, we show that there exists
a O

(1
ε3

)
-competitive algorithm for minimizing weighted flow-time on a set of unrelated machine

that rejects at most O(ε)-fraction of total weight of jobs. The design and analysis of the algorithm
is based on the primal-dual technique. Our result asserts that alternative models beyond speed
augmentation should be explored when designing online schedulers in the non-preemptive setting
in an effort to find provably good algorithms.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Online Algorithms, Scheduling, Resource Augmentation

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.59

Funding Nguyen Kim Thang is supported by the ANR project OATA no ANR-15-CE40-0015-01,
Hadamard PGMO and DIM RFSI. Abhinav Srivastav was supported by the PSL project Multi-
Fac and is supported by the ANR project OATA no ANR-15-CE40-0015-01, Hadamard PGMO
and DIM RFSI. Benjamin Moseley was supported in part by a Google Research Award, and NSF
Grants CCF-1617724, CCF-1733873 and CCF-1725661.

© Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 59; pp. 59:1–59:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giorgio.lucarelli@imag.fr
mailto:moseleyb@andrew.cmu.edu
mailto:thang@ibisc.fr
mailto:abhinavsriva@gmail.com
mailto:denis.trystram@imag.fr
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

59:2 Online Non-Preemptive Scheduling to Minimize Weighted Flow-time

1 Introduction

In this work, we study the fundamental problem of online scheduling of independent jobs on
unrelated machines. Jobs arrive over time and the online algorithm has to make the decision
which job to process non-preemptively at any time on each machine. A job j is released at
time rj and takes pij amount of processing time on a machine i. Further, each job has a
weight wj that denotes its (relative) priority. Our aim is to design a non-preemptive schedule
that minimizes the total weighted flow-time (or response time) quantity, i.e.,

∑
j wj(Cj − rj)

where Cj denotes the completion time of job j.
We are interested in designing online non-preemptive scheduling problem in the worst-case

model. Several strong lower bounds are known for simple instances [2, 4]. The main hurdle
arises from two facts: the algorithm must be online and robust to all problem instances
and the algorithmic decisions made should be of irrevocable nature. In order to overcome
the strong theoretical lower bound, Kalyanasundaram and Pruhs [7] and Phillips et al. [10]
proposed the analysis of scheduling algorithms in terms of the speed augmentation and
machine augmentation, respectively. Together these augmentation are commonly referred to
as resource augmentation. Here, the idea is to either give the scheduling algorithm faster
processors or extra machines in comparison to the adversary. For preemptive problems, these
models provide a tool to establish a theoretical explanation for the good performance of
algorithms in practice. In fact, many practical heuristics have been shown to be competitive
where the algorithm is given resource augmentation. In contrast, problems in the non-
preemptive setting have resisted against provably good algorithms even with such additional
resources [9].

Choudhury et al. [5] proposed a new model of resource augmentation where the online
algorithm is allowed to reject some of the arriving jobs, while the adversary must complete
all jobs. Using a combination of speed augmentation and rejection, Lucarelli et al. [9] break
this theoretical barrier and gave a scalable algorithm for non-preemptive weighted flow-time
problems. However, it remains an intriguing question about the power of rejection model in
comparison to the previous ones.

Recently, Lucarelli et al. [8] showed that a O(1) competitive algorithm exists if all jobs
have unit weight and one only rejects a constant fraction of the jobs. Their algorithm and
analysis are closely tied to the unweighted case and there is no natural extension to the
case where jobs have weights. The question looms, does there exist a constant competitive
algorithm for non-preemptive scheduling to minimize weighted flow-time using rejection?

1.1 Our Result and Approach
This paper gives the first algorithm with non-trivial guarantees for minimizing weighted flow
time using rejection and no other form of resource augmentation. The main result of the
paper is the following theorem. The theorem shows that constant competitiveness can be
achieved by only rejecting a small faction of the total weight of the jobs.

I Theorem 1. For the non-preemptive problem of minimizing weighted flow-time on unrelated
machines, there exists a O(1

ε3)-competitive algorithm that rejects at most O(ε)-fraction of
total weight of the jobs for any 0 < ε < 1.

The algorithmic decisions are classified into three parts: dispatching, rejecting and
scheduling policy. The scheduling follows HDF policy (Highest Density First) once jobs are
assigned to the machines. At the arrival of a job, for each machine, the algorithm computes
an approximate increase in the weighted flow-time and assigns the job to the machine with

G. Lucarelli, B. Moseley, N. Kim Thang, A. Srivastav, and D. Trystram 59:3

the least increase in the approximate weighted flow-time. To compute this quantity for a
given machine, the algorithm considers the set of uncompleted jobs in the machine queue in
the non-increasing order of densities and uses two different rejection policies.

The first rejection policy, referred as the preempt rule, rejects jobs that have already
started processing if the total weight of newly arrived “high priority” jobs (high density jobs)
exceeds a given threshold. Specifically, when a job starts executing, we associate a counter
that keeps tracks of the total weight of newly arrived jobs. Once the value of this counter
is at least 1/ε times the weight of the current executing job, the algorithm preempts the
current executing job and rejects it. The rejected job is pushed out of the system so as to be
never executed again.

We emphasize here a critical issue due to job rejection which is of different nature to speed
augmentation. Observe that rejecting a job that has already started processing may cause a
large decrease in the weighted flow-time of the jobs in the machine queue. Due to job arrivals
and job rejections, quantities associated to the machine queue (for example the remaining
job weight, etc) vary arbitrarily without any nice properties like monotonicity. That creates
a significant challenge in the dual fitting analysis. To tackle this problem, we introduce the
notion of definitive completion time for each job. Once a job is rejected or completed before
its definitive completion time, the algorithm removes the job from the queue of the machine.
However, for the purpose of analysis, the rejected jobs are still considered in the definition of
dual variables until their definitive completion time. This ensures that for any fixed time,
the weight of jobs not yet definitively completed increases with the arrival of new jobs (see
Section 3.4 for details).

The second rejection policy, referred as the weight-gap rule, rejects unprocessed “low
priority” jobs (small density jobs) from the machine’s queue. This policy simulates the
ε-speed-augmentation. In the particular case where all jobs have the same weight, this
rejection policy rejects a “low priority” job for every 1/ε arrivals of new jobs. Due to the
scheduling policy, if a “low priority” job is not rejected, then it will be completed last in the
schedule (assuming no future job arrivals).

In the algorithm’s schedule, future arriving jobs do not delay the rejected low priority
jobs, while the later ones need to be completed in the adversary’s schedule. This is where
the algorithm benefits from the power of rejection. Specifically, the algorithm can use the
difference between the rejection time and the definitive completion time of jobs to create a
similar effect to speed augmentation. The key idea is to reject the low priority jobs so their
total weight is comparable to jobs that arrive after them.

The definitive completion times play a crucial role so that the dual achieves a substantial
value compared to the primal. By carefully choosing the definitive completion times of jobs,
we manage to prove the competitive ratio of our algorithm with admittedly sophisticated
analysis.

1.2 Related Works
The problem of minimizing the total weighted flow-time has been extensively studied in
the online scenario. For the preemptive problem, Chekuri et al. [4] presented a semi-online
O(log2 P)-competitive algorithm for a single machine, where P is the ratio of the largest to
the smallest processing time of the instance. Later, Bansal and Dhamdhere [3] proposed
a O(logW)-competitive algorithm, where W is the ratio between the maximum and the
minimum weights of the jobs. This was later improved in [2]. In contrast to the single-
machine case, Chekuri et al. [4] showed a Ω(min(

√
P ,
√
W, nm

1
4)) lower bound for m identical

machines. For the online non-preemptive problem of minimizing the total weighted flow-time,
Chekuri et al. [4] showed that any algorithm has at least Ω(n) competitive ratio for single
machine where n is the number of jobs.

ESA 2018

59:4 Online Non-Preemptive Scheduling to Minimize Weighted Flow-time

In speed-augmentation model, Anand et al. [1] presented a scalable competitive algorithm
for the preemptive problem on a set of unrelated machines. For the non-preemptive setting,
Phillips et al. [10] gave a constant competitive algorithm in identical machine setting that uses
m logP machines (recall that the adversary uses m machines). They also showed that there
exists a O(logn)-machine O(1)-speed algorithm that returns the optimal schedule for the
unweighted flow-time objective. Epstein et al. [6] proposed an `-machines O(min{

√̀
P ,
√̀
n})-

competitive algorithm for the unweighted case on a single machine. This algorithm is optimal
up to a constant factor for constant `.

Lucarelli et al. [9] presented a strong lower bound on the competitiveness for the weighted
flow-time problem on a single machine that uses arbitrarily faster machine than that of the
adversary. Choudhury et al. [5] extended the resource augmentation model to allow rejection,
according to which the algorithm does not need to complete all jobs and some of them can be
rejected. Using a combination of speed augmentation and rejection, Lucarelli et al. [9] gave
a constant competitive algorithm for the weighted flow-time problem on a set of unrelated
machines. In particular, they showed that there exists a O(1/ε2)-competitive algorithm that
uses machines with speed (1 + ε) and rejects at most an ε-fraction of jobs for arbitrarily
small ε > 0. Recently, Lucarelli et al. [8] provided a scalable competitive algorithm for the
case of (unweighted) flow time where there is no speed augmentation.

2 Definitions and Notations

2.1 Problem definition
We are given a setM of unrelated machines and a set of jobs J that arrive online. Each job
j is characterized by its release time rj and its weight wj . If job j is executed on machine i, it
has a processing requirement of pij time units. The goal is to schedule jobs non-preemptively.
Given a schedule S, the completion time of the job j is denoted by CSj . The flow-time of j
is defined as FSj = CSj − rj , which is the total amount of time job j remains in the system.
The objective is to minimize the weighted flow-times of all jobs, i.e.,

∑
j∈J wjF

S
j . In the

following section we formulate this problem as a linear program.

2.2 Linear Programming Formulation
The LP formulation presented below is an extension of those used in the prior works of [1, 9].
For each job j, machine i and time t ≥ rj , there is a binary variable xijt which indicates if j
is processed or not on i at time t. The problem of minimizing weighted flow-time can be
expressed as:

min
∑
i,j,t

wj

(
t− rj
pij

+ 21
)
xijt

∑
i,t

xijt
pij

= 1 ∀j (1)

∑
j

xijt ≤ 1 ∀i, t (2)

xijt ∈ {0, 1} ∀i, j, t ≥ rj (3)

The objective value of the above integer program is at most a constant factor than that
of the optimal preemptive schedule. The above integer program can be relaxed to a linear

G. Lucarelli, B. Moseley, N. Kim Thang, A. Srivastav, and D. Trystram 59:5

program by replacing the integrality constraints of xijt with 0 ≤ xijt ≤ 1. The dual of the
relaxed linear program can be expressed as follows:

max
∑
j

αj −
∑
i,t

βit

αj
pij
− βit ≤ wj

(
t− rj
pij

+ 21
)

∀i, j, t ≥ rj (4)

βit ≥ 0 ∀i, t (5)

For the rejection model considered in this work, it is assumed that the algorithm is
allowed to reject jobs. Rejection can be interpreted in the primal LP by only considering
constraints corresponding to non-rejected jobs. That is, the algorithm does not have to
satisfy the constraint (1) for rejected jobs.

2.3 Notations
In this section, we define notations that will be helpful during the design and analysis of the
algorithm.

t− denotes the time just before t that is, t− = t − ε′ for an arbitrarily small value of
ε′ > 0.
Ui(t) denotes the set of pending jobs at time t on machine i, i.e., the set of jobs dispatched
to i that have not yet completed and also have not been rejected until t.
κi(t) denotes the job currently executing on machine i at time t.
Vi(t) denotes the set of unprocessed jobs in Ui(t) that is Vi(t) = Ui(t)\{κi(t)}. Throughout
this paper, we assume that the jobs in Vi(t) are indexed in non-increasing order of their
densities that δi1 ≥ δi2, . . . ,≥ δi|Vi(t)|.
νi(t) denotes the smallest density job in Vi(t).
R1
i (a, b) denotes the set of jobs rejected due to the prempt rule (to be defined later)

during time interval (a, b]. In particular, R1
i (t) is the set of job rejected at time t due to

the prempt rule.
Similarly, R2

i (a, b) denotes the set of jobs rejected due to the weight-gap rule (also to be
defined later) during time interval (a, b]. In particular, R2

i (t) is the set of job rejected at
time t due to the weight-gap rule.
qij(t) denotes the remaining processing time of j at a time t on machine i.
δij is the density of a job j on machine i that is δij = wi

pij
.

Sj denotes the starting of job j on some machine i. If a job is rejected before it starts
executing, set Sj =∞.

By the previous definitions, it follows that R1
i (rj), R2

i (rj) ⊆ U(r−j) ∪ {j} and U(rj) =
(U(r−j) ∪ {j}) \ {R1

i (rj) ∪R2
i (rj)}.

3 The Algorithm

In this section, we describe our algorithm. Specifically, we explain how to take the following
decisions: dispatching that is to decide the machine assignment of jobs; scheduling that is to
decide which jobs to process at each time; and rejection. The algorithm is denoted by A.
Let 0 < ε < 1 be an arbitrarily small constant. Note that the proposed algorithm rejects
an O(ε)-fraction of the total weight of jobs and dispatches each job to a machine upon its
arrival.

ESA 2018

59:6 Online Non-Preemptive Scheduling to Minimize Weighted Flow-time

3.1 Scheduling policy
At each time t if the machine i is idle either due to the rejection of a job or due to the
completion of a job, then the algorithm starts executing the job j with the highest density
among all the jobs in Ui(t), i.e. j = arg maxh∈Ui(t) δih. In case of ties, the algorithm selects
the job with the earliest release time.

3.2 Rejection policies
Our algorithm uses two different rules for rejecting jobs. The first rule called as the preempt
rule, bounds the total weight of “high priority” jobs that arrive during the execution of a
job. The second rule called as the weight-gap rule, helps the algorithm to balance the total
amount of weight of low density jobs. The algorithm associates two counters, count1

j and
count1

j , with each job j which are both initialized to 0 at rj .

1. Preempt rule: Let j = κi(t) be the job processing on i at time t. During the processing
of j, if a new job j′ is dispatched to i then count1

j is incremented by wj′ . Let k be the
earliest job released and dispatched to machine i during the execution of j such that
count1

j ≥ wj/ε, if it exists. At rk, the algorithm interrupts the processing of j and rejects
it, that is R1

i (rk) = {j}. If no job is rejected due to the preempt rule at rk, then we set
R1
i (rk) = ∅.

2. Weight-gap rule: We associate a function Wi(t) : R+ → R+ with each machine i which
is initialized to 0 for every t. Informally Wi(t) represents the total budget for future
rejections. If a job j is dispatched to machine i then Wi(t) for t ≥ rj is updated according
to the following policy.
Let V = Vi(r−j) ∪ {j}. Assume that the jobs in V are indexed in non-increasing order of
their densities that is, δi1 ≥ δi2 ≥ . . . ≥ δiν , where the job with index ν is the smallest
density job in V . Note that the job j is included in this ordering. Let s be the smallest
index in {1, 2, . . . , ν} such that:

ν∑
h=s

wh ≤ ε(Wi(t−) + wj) <
ν∑

h=(s−1)

wh (6)

We say that no such job with index s exists if and only if wν > ε(Wi(t−)+wj). Algorithm 1
defines the set of jobs R2

i (rj). The algorithm rejects the jobs in R2
i (rj) and updates Wi(t)

as follows:

Wi(t) = max{0,Wi(r−j) + wj −
∑

h∈R2
i

(rj)

wh/ε}, ∀t ≥ rj (7)

The following lemma describes some properties arising due to the weight-gap rule.

I Lemma 2. The following properties hold.
(Property 1) If R2

i (rj) = {νi(r−j), j} or R2
i (rj) = {(s− 1), . . . , v} then Wi(rj) = 0.

(Property 2) εWi(t) < wνi(t) for every pair of i, t.
(Property 3) Let w|R2

i
(rj)| denote the weight of smallest density job in R2

i (rj). If j /∈ R2
i (rj)

then
∑
h∈R2

i
(rj) wh − w|R2

i
(rj)| ≤ 2εwj.

(Property 4) If j ∈ R2
i (rj), then R2

i (rj) = {j} or {j, νi(r−j)}.

I Lemma 3. The total weight of jobs rejected by the preempt rule is at most O(ε)-fraction
of the total weight of jobs in J .

G. Lucarelli, B. Moseley, N. Kim Thang, A. Srivastav, and D. Trystram 59:7

Algorithm 1 Weight-gap Rejection Rule.
1: if no job with index s exists then
2: if j is not the smallest density job in V then
3: No job is rejected that is, R2

i (rj) := ∅
4: else
5: {j is the smallest density job in V that is, j is the job with index ν}
6: {vi(r−j) is the job with index ν − 1}
7: if pij ≥ εpi(ν−1) then
8: No job is rejected that is, R2

i (rj) := ∅
9: else

10: count2
(ν−1) := count2

(ν−1) + wj

11: if count2
(ν−1) ≥ w(ν−1) then

12: Reject j and νi(r−j) that is, R2
i (rj) := {j, νi(r−j)}

13: else
14: No job is rejected that is, R2

i (rj) := ∅
15: else
16: {a job with index s exists}
17: if wj ≥ w(s−1)/ε then
18: Reject jobs with indices s− 1, . . . , ν in V that is, R2

i (rj) := {s− 1, . . . , ν}
19: else
20: {wj < w(s−1)/ε}
21: if j is not one of the jobs in s, . . . , ν that is, j /∈ {s, . . . , ν} then
22: Reject jobs with indices s, . . . , ν in V that is, R2

i (rj) := {s, . . . , ν}
23: else
24: {j ∈ {s, . . . , ν}}
25: count2

(s−1) := count2
(s−1) + wj

26: if count2
(s−1) ≥ w(s−1) then

27: Reject jobs with indices s− 1, . . . , ν in V that is, R2
i (rj) := {s− 1, . . . , ν}.

28: else
29: Reject jobs with indices s, . . . , ν in V that is, R2

i (rj) := {s, . . . , ν}.

Proof. From preempt rule, it follows that each job j can be associated with a set of jobs such
that their total weight is at most wj/ε. For every pair of j, j′ and j 6= j′, the intersection of
the associated sets is empty and hence the lemma follows. J

I Lemma 4. The total weight of jobs rejected by the weight-gap rule is at most O(ε)-fraction
of the total weight jobs in J .

3.3 Dispatching policy

When a new job j arrives, a variable ∆ij is set. Intuitively, ∆ij is the approximate increase
in the total weighted flow-time objective if the job j is assigned to the machine i and j is not
rejected. Then, ∆ij is defined as follows.

∆ij = wj
∑

h∈Vi(rj):δih≥δij

pih + pij
∑

h∈Vi(rj):δih<δij

wh

+ wjqiκi(r−j)(rj) · 1{κi(r−j) is not rejected currently due to preempt rule}

ESA 2018

59:8 Online Non-Preemptive Scheduling to Minimize Weighted Flow-time

− qiκi(r−j)(rj) ·
∑

h∈Ui(rj)\{j}

wh · 1{κi(r−
j) is currently rejected due to the preempt rule}

The first term corresponds to the flow-time of the new job j due to waiting on jobs with
higher density than δij in Vi(rj). The second term corresponds to the delay of the jobs
in Vi(rj) with smaller density than δij . The third and the fourth terms give corrections
depending on whether job κi(r−j) is rejected due to the preempt rule.

We now describe the dispatching policy of jobs to machines. At the arrival time of a job
j, we hypothetically assign j to every machine i and compute the variables αij . Finally, we
assign j to the machine that minimizes αij . For notional purposes, we put an additional
apostrophe to previously defined variables. The additional apostrophe stands for the fact that
these variables correspond to the case where we hypothetically assign j to i. For example,
R2′
i (rj) denote the set of rejected jobs due to the weight-gap rule when j is hypothetically

assigned to i. Similarly, W ′i (rj) denote the function Wi at rj in the case if j is assigned to i.
Further, let ρ = ρij be an index of a job in Vi(r−j) such that the following two inequalities
hold simultaneously:

|Vi(r−j)|∑
h=ρ

wh ≤W ′i (rj) <
|Vi(r−j)|∑
h=(ρ−1)

wh

The variable αij is computed for each machine i as follows:

αij = 20wjpij
ε

+ wj
∑

h∈Vi(r−j):δih≥δij

pih + wjpij + pij
∑

h∈Vi(r−j):δij>δih

wih − nij

where nij is defined as follows.

nij = wj

 ∑
h∈Vi(r−j):δiρ≥δih

ph +
(
W ′i (rj)−

∑
h∈Vi(r−j):δiρ≥δih

wh

)
pi,(ρ−1)

w(ρ−1)


if R2′

i (rj) = {j},

nij = wj
∑

h∈R′2
i

(rj)

pih if R′2i (rj) = {j, νi(r−j)},

nij = pij
∑

h∈R′2
i

(rj)

wh + ε2W ′i (rj)pij otherwise.

The algorithm assigns j to machine i∗ = arg mini∈M αij .

3.4 Dual variables
Suppose job j is assigned to machine i. Assume Lj represents the last time t such that j is
in Ui(t). Informally, Lj is the time at which j is removed from the queue of the machine i.
Note that j can be removed from Ui(t) due to three following reasons:
1. If j has being scheduled for pij time units on machine i then Lj = Cj
2. If j is rejected due to preempt rule
3. If j is rejected due to weight-gap rule.

G. Lucarelli, B. Moseley, N. Kim Thang, A. Srivastav, and D. Trystram 59:9

In cases 2 and 3, j is rejected due to the arrival of some job, denoted by rej(j). Recall that
R1
i (rj , Lj) is the set of jobs that are rejected due to preempt rule during the interval (rj , Lj]

on machine i. Note that those jobs cause a decrease in the flow of j. Observe that R1
i (rj , Lj)

contains j if j is rejected due to the preempt rule. We define the definitive completion time,
denoted by C̃j , of a job j as follows.

1. If j is not rejected due to the weight-gap rule (corresponds to cases 1 and 2) .

C̃j = Lj +
∑

h∈R1
i

(rj ,Lj)

qih(rrej(h)) (8)

2. If j is rejected due to the weight-gap rule on the arrival of some job other than j that is,
rj′ where j′ 6= j

C̃j = Lj +
∑

h∈R1
i

(rj ,Lj)

qih(rrej(h)) +
∑

h∈Ui(Lj):δih≥δij

qih(Lj) +
∑

h∈R2
i

(rrej(j)):δih≥δij

pih (9)

3. If j is immediately rejected (i.e., j ∈ R2
i (rj)) and job νi(r−j) is also rejected due to the

arrival of j.

C̃j = Lj + pij +
∑

h∈Ui(Lj)

qih(Lj) (10)

4. If j is immediately rejected and it is the only job rejected due to the weight gap rule at
rj . Denote ρ = ρij .

C̃j = Lj + pij +
∑

h∈Vi(L−j):δih>δi(ρ−1)

pih

+

1−

Wi(Lj)−
∑

h∈Vi(L−j):δiρ≥δih
wh

w(ρ−1)

 pi(ρ−1) + qiκi(Lj)(Lj).1{R1
i

(Lj)=∅} (11)

This completes the description of the definitive completion time.

Let Qi(t) denote the set of jobs that have not been definitely completed that is

Qi(t) := {j : j has been assigned to i, t < C̃j}.

Next, we define the notion of artificial fractional weight of a job j ∈ Qi(t),

wfj (t) =

wj if rj ≤ t ≤ C̃j − pij

wj

(
C̃j−t
pij

)
if C̃j − pij < t < C̃j

Now, we have all the necessary tools to set dual variables. At the arrival of job j, set

αj =
(

ε

1 + ε

)
min
i∈M

αij

and never change this value again. The second dual variable βit is set to
ε

(1 + ε)(1 + ε2)
∑

h∈Qi(t)

wfh(t)

Let QRi (t) ⊆ Qi(t) be the set of jobs that are rejected due to the weight-gap rule and are
not yet definitively completed until time t.

ESA 2018

59:10 Online Non-Preemptive Scheduling to Minimize Weighted Flow-time

I Lemma 5. For fixed time t, βit may only increase as new jobs arrive and some old jobs
might get rejected.

Observe that above lemma holds as jobs are removed from Qi(t) only after their definitive
completion time. Thus a job that might have already completed its execution on a machine
or rejected, can still be present in the Qi(t). During the analysis, we will show that the dual
constraint corresponding to job j are feasible at rj . Since βit only increases with respect to
the arrival of new jobs, the feasibility holds for all t ≥ rj .

4 Analysis

We present first two technical lemmas which are important for the analysis of our primal-dual
algorithm. In Lemma 6, we relate the weight of rejected jobs in QRi (t) to the weight of jobs
pending in Ui(t). This will help us in proving the feasibility of dual constraints in Lemma 9,
Lemma 10 and Lemma 11. In Lemma 7, we show that the negative parts in the definition of
αjs’ are relatively small. This will help us to bound the value of the dual objective.

I Lemma 6. Let κ = κi(t). For any machine i and any time t, it holds that wκ
piκ
qiκ(t) +∑

h∈Vi(t)
wfh(t)−Wi(t) ≤ 1

ε

∑
h∈QR

i
(t)
wh(t).

Proof. We prove by induction on the arrival of jobs. The base case when no job has been
released, holds trivially. Assume that the above inequality holds for every time t, before
the arrival of job j on machine i, we show that it holds after j arrives. We split the proof
into two cases depending upon if j is immediately rejected or not. The rest of the proof is
omitted due to space constraints. J

I Lemma 7. Let Ji(t) denote the set of jobs dispatched to machine i until the time t that is,
J(i) =

⋃
t′≤t

Ui(t′). Then the following inequality holds at all time and for all i ∈M

D1 −D2 ≤ B1 + B2 + B3 (12)

where

D1 =
∑

j∈Ji(t)\R2
i

(rj)

(
ε2Wi(rj)pij − wjpi,νi(r−j).1{j=νi(rj) and pj<εpiνi(r−

j
)
}

)
,

D2 =
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j)pi,νi(r−j).1{|R2

i
(rj)|>1}

)
,

B1 =
∑

j∈R2
i

(0,t)

wjpij , B2 =
∑

j∈Ji(t)\{R2
i

(0,t)∪Ui(t)}

wjpij + εWi(t)pi,νi(t) and

B3 =
∑

j∈Ji(t)

wjpij/ε.

Proof. The proof is omitted due to space constraints. J

I Corollary 8. Let Ji ⊆ J be the set of jobs dispatched to machine i that Ji =
⋃
t≥0

Ui(t).

Then the following inequality holds for every machine i ∈M,∑
j∈Ji\R2

i
(rj)

ε2Wi(rj)pij ≤
(

5
ε

) ∑
j∈Ji

wjpij

G. Lucarelli, B. Moseley, N. Kim Thang, A. Srivastav, and D. Trystram 59:11

Proof. From Lemma 7, it immediately follows that

∑
j∈Ji\R2

i
(rj)

(ε2Wi(rj)pij − wjpi,νi(r−j).1{j=ν(rj) and pj<εpi,νi(r−
j

)
})

−
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j)pi,νi(r−j).1{|R2

i
(rj)|>1}

)
≤ 2
ε

∑
j∈Ji

wjpij



Rearranging the terms, we get

ε2
∑

j∈Ji\R2
i

(rj)

Wi(rj)pij

−
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j)pi,νi(r−j).1{|R2

i
(rj)|>1}

)

≤ 2
ε

∑
j∈Ji

wjpij

+
∑

j∈Ji\R2
i

(rj)

wjpi,vi(r−j).1{j=v(rj) and pj<εpivi(r−
j

)
}

≤ 2
ε

∑
j∈Ji

wjpij

+
∑
h∈Ji

pih
∑

j∈Ji:j=ν(rj),h=ν(r−
j

)

wj

≤ 2
ε

∑
j∈Ji

wjpij

+
∑
h∈Ji

pihwh/ε

since count2
h < wh/ε, otherwise h is rejected due to Line 12 in Algorithm 1

≤ 3
ε

∑
j∈Ji

wjpij


Rearranging the terms again, we get

ε2
∑

j∈Ji\R2
i

(rj)

Wi(rj)pij

≤ 3
ε

∑
j∈Ji

wjpj

+
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j)pi,νi(r−j).1{|R2

i
(rj)|>1}

)

≤ 4
ε

∑
j∈Ji

wjpj

+
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1}

)
since R2

i (rj) = {j, νi(r−j)}

≤ 4
ε

∑
j∈Ji

wjpj

+
∑
h∈Ji

pih
∑

j∈Ji:h=νi(r−j)=νi(rj)

wj

≤ 5
ε

∑
j∈Ji

wjpj



The last inequality holds since count2
h < wh/ε, otherwise h is rejected in Line 27 in Algorithm 1.

Thus, the corollary follows. J

ESA 2018

59:12 Online Non-Preemptive Scheduling to Minimize Weighted Flow-time

Now we show the proof of dual feasibility for each job j on every pair of i, t. Thus, for a
given machine i, j may or may not be assigned to i. by the algorithm.

I Lemma 9. Suppose that a job j is not immediately rejected at rj when j is hypothetically
assigned to i. Then, the dual constraint (4) corresponding to j holds.

I Lemma 10. Assume that a job j is immediately rejected at rj and R2
i (rj) = {j, νi(r−j)}

when j is hypothetically assigned to i. Then, the dual constraint (4) corresponding to j holds.

I Lemma 11. Suppose that a job j is immediately rejected at rj and R2
i (rj) = {j} when j

is hypothetically assigned to i. Then, the dual constraint (4) corresponding to j holds.

I Lemma 12. It holds that
∑
j∈J

αj ≥ ε
1+ε

∑
j∈J

(C̃j − rj).

The proofs of above lemmas are omitted due to space constraints

4.1 Proof of theorem 1
Proof. In the definition of dual variables, each job j is accounted in βit variable until its
definitive completion time. Thus,

∑
i,t

βit ≤ ε
(1+ε)(1+ε2)

∑
j∈J wj(C̃j − rj). Combining it with

Lemma 12, we have that the dual objective is at least ε3

(1+ε)(1+ε2)
∑
j∈J wj(C̃j − rj). Further,

the cost of the primal is at most 22
∑
j∈J wj(C̃j − rj). Hence the theorem follows. J

References
1 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time

explained by dual fitting. In Proceedings of Symposium on Discrete Algorithms (SODA,
2012), pages 1228–1241, 2012.

2 Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o(1)-competitive
algorithms. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA, 2009), pages 1238–1244, 2009.

3 Nikhil Bansal and Kedar Dhamdhere. Minimizing weighted flow time. ACM Transactions
on Algorithms, 3(4), 2007.

4 Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow
time. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 84–93, 2001.

5 Anamitra Roy Choudhury, Syamantak Das, Naveen Garg, and Amit Kumar. Rejecting jobs
to minimize load and maximum flow-time. In Proc. Symposium on Discrete Algorithms,
pages 1114–1133, 2015.

6 Leah Epstein and Rob van Stee. Optimal on-line flow time with resource augmentation.
Discrete Applied Mathematics, 154(4):611–621, 2006.

7 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

8 Giorgio Lucarelli, Benjamin Moseley, Nguyen Kim Thang, Abhinav Srivastav, and Denis
Trystram. Online non-preemptive scheduling on unrelated machines with rejections. In
ACM Symposium on Parellelism in Algorithms and Architectures (SPAA, 2018), page To
appear, 2018.

9 Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trystram. Online non-
preemptive scheduling in a resource augmentation model based on duality. In European
Symposium on Algorithms (ESA, 2016), volume 57, pages 1–17, 2016.

10 Cynthia A Phillips, Clifford Stein, Eric Torng, and Joel Wein. Optimal time-critical schedul-
ing via resource augmentation. Algorithmica, 32(2):163–200, 2002.

Finding Stable Matchings That Are Robust to
Errors in the Input
Tung Mai
Georgia Institute of Technology, Atlanta, GA, USA
tung.mai@cc.gatech.edu

Vijay V. Vazirani
University of California, Irvine, Irvine, CA, USA
vazirani@ics.uci.edu

Abstract
In this paper, we introduce the issue of finding solutions to the stable matching problem that
are robust to errors in the input and we obtain the first algorithmic results on this topic. In
the process, we also initiate work on a new structural question concerning the stable matching
problem, namely finding relationships between the lattices of solutions of two “nearby” instances.

Our main algorithmic result is the following: We identify a polynomially large class of errors,
D, that can be introduced in a stable matching instance. Given an instance A of stable matching,
let B be the instance that results after introducing one error from D, chosen via a discrete
probability distribution. The problem is to find a stable matching for A that maximizes the
probability of being stable for B as well. Via new structural properties of the type described in
the question stated above, we give a polynomial time algorithm for this problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Stable Matching, Robust

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.60

Funding Supported in part by NSF grant CCF-1815901.

Acknowledgements We wish to thank David Eppstein, Mike Goodrich and Sandy Irani for
interesting discussions that sparked off the question addressed in this paper.

1 Introduction

Ever since its introduction in the seminal 1962 paper of Gale and Shapley [3], the stable
matching problem has been the subject of intense study from numerous different angles
in many fields, including computer science, mathematics, operations research, economics
and game theory, e.g., see the books [9, 6, 11]. The very first matching-based market,
namely matching medical interns to hospitals, was built around this problem, e.g., see [6, 12].
Eventually, this led to an entire inter-disciplinary field, namely matching and market design
[12]. The stable matching problem and market design were the subject of the 2012 Nobel
Prize in Economics, awarded to Roth and Shapley [13].

The current paper initiates the study of this problem from yet another angle, namely
robustness to errors in the input. To the best of our knowledge, this issue has not been
studied in the context of this problem (see also Section 1.2) even though the design of
algorithms that produce robust solutions is already a very well established field, especially as
pertaining to robust optimization, e.g., see the books [2, 1].

© Tung Mai and Vijay V. Vazirani;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 60; pp. 60:1–60:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tung.mai@cc.gatech.edu
mailto:vazirani@ics.uci.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Finding Stable Matchings That Are Robust to Errors in the Input

A particularly impressive aspect of the stable matching problem is its deep and pristine
combinatorial structure. This in turn has led to efficient algorithms for numerous questions
studied about this problem, e.g., see the books mentioned above. A second major contribution
of our paper is initiating work on a new structural question, namely finding relationships
between the lattices of solutions of two “nearby” instances. In the current paper, and our
followup work [10], we restrict ourselves to “nearby” instances which differ in only one
agent’s preference list. Clearly, this is only the tip of the iceberg as far as “nearby” instances
go. Moreover, the structural results are so clean and extensive that they are likely to find
algorithmic applications beyond the problem of finding robust solutions. In particular, with
ever more interesting matching-based markets being designed and launched on the Internet
[12], these new structural properties could find interesting applications and are worth studying
further.

We will introduce the problem of finding robust stable matchings via the following model:
Alice has an instance A of the stable matching problem, over n boys and n girls, which she
sends it to Bob over a channel that can introduce errors. Let B denote the instance received
by Bob. Let D denote a polynomial sized domain from which errors are introduced by the
channel; we will assume that the channel introduces at most one error from D. We are also
given the discrete probability distribution, p over D, from which the channel picks one error.
In addition, Alice sends to Bob a matching, M , of her choice, that is stable for instance A.
Since M consists of only O(n) numbers of O(logn) bits each, as opposed to A which requires
O(n2) numbers, Alice is able to send it over an error-free channel. Now Alice wants to pick
M in such a way that it has the highest probability of being stable in the instance received
by Bob. Hence she picks M from the set

arg max
N
{Prp[N is stable for instance B | N is stable for instance A]},

We will say that such a matching M is robust. We seek a polynomial time algorithm for
finding such a matching.

Clearly, the domain of errors, D, will have to be well chosen to solve this problem.
A natural set of errors is simple swaps, under which the positions of two adjacent boys
in a girl’s list, or two adjacent girls in a boy’s list, are interchanged. We will consider a
generalization of this class of errors, which we call shift. For a girl g, assume her preference
list in instance A is {. . . , b1, b2, . . . , bk, b, . . .}. Move up the position of b so g’s list becomes
{. . . , b, b1, b2, . . . , bk, . . .}, and let B denote the resulting instance. Then we will say that B is
obtained from A by a shift. An analogous operation is defined on a boy b’s list. The domain
D consists of all such shifts; clearly, D is polynomially bounded. We prove the following
theorem.

I Theorem 1. There is a polynomial time algorithm which given an instance A of the stable
matching problem and a probability distribution p over the domain, D, of errors defined above,
finds a robust stable matching in A.

1.1 Overview of results and technical ideas
We first summarize some well-known structural facts, e.g., see [6]. The set of stable matchings
of an instance form a distributive lattice: given two stable matchings M and M ′, their meet
and join involve taking, for each boy, the optimal or pessimal choice, respectively. It is easy
to show that the resulting two matchings are also stable. The extreme matchings of this
lattice are called boy optimal and girl-optimal matchings. A deep notion about this lattice
is that of a rotation. A rotation, on an ordered list of k boy-girl pairs, when applied to a

T. Mai and V. V. Vazirani 60:3

matching M in which all these boy-girl pairs are matched to each other, matches each boy
to the next girl on the list, closing the list under rotation. The k pairs and the order among
them are so chosen that the resulting matching is also stable; moreover, a rotation on a
subset of these k pairs, under any ordering, leads to a matching that is not stable. Hence,
a rotation can be viewed as a minimal change to the current matching that results in a
stable matching. Rotations help traverse the lattice from the boy-optimal to the girl-optimal
matching along all possible paths available.

For the given instance, a partial order Π is defined on a subset of rotations; the closed
sets of Π are in one-to-one correspondence with the set of stable matchings of the instance.
Moreover, if S is such a closed set, then starting in the lattice from the boy-optimal matching
and applying the rotations in set S, we reach the stable matching corresponding to S.

Let A and B be two instances of stable matching over n boys and n girls, with sets of
stable matchingsMA andMB , respectively, and lattices LA and LB , respectively. Then, it
is easy to see that the matchings inMA ∩MB form a sublattice in each of the two lattices.
Next assume that instance B results from applying a shift operation, defined above, to
instance A. Then, we show thatMAB =MA \MB is also a sublattice of LA. We use this
fact crucially to show that there is at most one rotation, ρin, that leads fromMA ∩MB to
MAB and at most one rotation, ρout that leads from MAB toMA ∩MB. Moreover, we
can obtain efficiently this pair of rotations for each of the polynomially many instances that
result from the polynomially many shifts.

It is easy to see that a matching M corresponding to a closed set S is stable in instance
B iff whenever ρin ∈ S, ρout ∈ S. We next give an integer program whose optimal solution
is a robust stable matching for the given probability distribution on shifts. The IP has
one indicator variable, yρ, corresponding to each rotation ρ in Π. The constraints of the
program ensure that the set S of rotations that are set to 0 form a closed set. The rest of the
constraints and the objective function ensure that the corresponding matching maximizes
the probability that it is stable in the erroneous instance B. Finally, we show that the
LP-relaxation of this IP always has integral solutions. Hence we obtain a polynomial time
algorithm for finding a robust stable matching.

1.2 A matter of nomenclature

Assigning correct nomenclature to a new issue under investigation is clearly critical for ease
of comprehension. In this context we wish to mention that very recently, Genc et. al. [4]
defined the notion of an (a, b)-supermatch as follows: this is a stable matching in which if any
a pairs break up, then it is possible to match them all off by changing the partners of at most
b other pairs, so the resulting matching is also stable. They showed that it is NP-hard to
decide if there is an (a, b)-supermatch. They also gave a polynomial time algorithm for a very
restricted version of this problem, namely given a stable matching and a number b, decide
if it is a (1, b)-supermatch. Observe that since the given instance may have exponentially
many stable matchings, this does not yield a polynomial time algorithm even for deciding if
there is a stable matching which is a (1, b)-supermatch for a given b.

Genc. et. al. [5] also went on to defining the notion of the most robust stable matching,
namely a (1, b)-supermatch where b is minimum. We would like to point out that “robust”
is a misnomer in this situation and that the name “fault-tolerant” is more appropriate. In
the literature, the latter is used to describe a system which continues to operate even in
the event of failures and the former is used to describe a system which is able to cope with
erroneous inputs, e.g., see the following pages from Wikipedia [15, 14].

ESA 2018

60:4 Finding Stable Matchings That Are Robust to Errors in the Input

2 Preliminaries

2.1 The stable matching problem
The stable matching problem takes as input a set of boys B = {b1, b2, . . . , bn} and a set
of girls G = {g1, g2, . . . , gn}; each person has a complete preference ranking over the set
of opposite sex. The notation bi <g bj indicates that girl g strictly prefers bj to bi in her
preference list. Similarly, gi <b gj indicates that the boy b strictly prefers gj to gi in his list.

A matching M is a one-to-one correspondence between B and G. For each pair bg ∈M ,
b is called the partner of g in M (or M -partner) and vice versa. For a matching M , we
say that b is above (or below) g if he prefers his M -partner to g (or g to his M -partner).
Similarly, g is said to be above (or below) b if she prefers her M -partner to b (or b to her
M -partner). For a matching M , a pair bg 6∈M is said to be blocking if b is below g and g is
below b, i.e., they prefer each other to their partners. A matching M is stable if there is no
blocking pair in M .

2.2 The lattice of stable matchings
Let M and M ′ be two stable matchings. We say that M dominates M ′, denoted by M �M ′,
if every boy weakly prefers his partner in M to M ′. It is well known that the dominance
partial order over the set of stable matchings forms a distributive lattice [6], with meet and
join defined as follows. The meet of M and M ′, M ∧M ′, is defined to be the matching
that results when each boy chooses his more preferred partner from M and M ′; it is easy to
show that this matching is also stable. The join of M and M ′, M ∨M ′, is defined to be
the matching that results when each boy chooses his less preferred partner from M and M ′;
this matching is also stable. These operations distribute, i.e., given three stable matchings
M,M ′,M ′′,

M ∨ (M ′ ∧M ′′) = (M ∨M ′)∧ (M ∨M ′′) and M ∧ (M ′ ∨M ′′) = (M ∧M ′)∨ (M ∧M ′′).

It is easy to see that the lattice must contain a matching, M0, that dominates all others
and a matching Mz that is dominated by all others. M0 is called the boy-optimal matching,
since in it, each boy is matched to his most favorite girl among all stable matchings. This is
also the girl-pessimal matching. Similarly, Mz is the boy-pessimal or girl-optimal matching.

2.3 Rotations help traverse the lattice
A crucial ingredient needed to understand the structure of stable matchings is the notion of
a rotation, which was defined by Irving [7] and studied in detail in [8]. A rotation takes r
matched pairs in a fixed order, say {b0g0, b1g1, . . . , br−1gr−1} and “cyclically” changes the
mates of these 2r agents, as defined below, to arrive at another stable matching. Furthermore,
it represents a minimal set of pairings with this property, i.e, if a cyclic change is applied on
any subset of these r pairs, with any ordering, then the resulting matching has a blocking
pair and is not stable. After rotation, the boys’ mates weakly worsen and the girls’ mates
weakly improve. Thus one can traverse from M0 to Mz by applying a suitable sequence of
rotations (specified by the rotation poset defined below). Indeed, this is precisely the purpose
of rotations.

Let M be a stable matching. For a boy b let sM (b) denote the first girl g on b’s list such
that g strictly prefers b to her M -partner. Let nextM (b) denote the partner in M of girl
sM (b). A rotation ρ exposed in M is an ordered list of pairs {b0g0, b1g1, . . . , br−1gr−1} such

T. Mai and V. V. Vazirani 60:5

that for each i, 0 ≤ i ≤ r− 1, bi+1 is nextM (bi), where i+ 1 is taken modulo r. In this paper,
we assume that the subscript is taken modulo r whenever we mention a rotation. Notice
that a rotation is cyclic and the sequence of pairs can be rotated. M/ρ is defined to be a
matching in which each boy not in a pair of ρ stays matched to the same girl and each boy
bi in ρ is matched to gi+1 = sM (bi). It can be proven that M/ρ is also a stable matching.
The transformation from M to M/ρ is called the elimination of ρ from M .

Let ρ = {b0g0, b1g1, . . . , br−1gr−1} be a rotation. For 0 ≤ i ≤ r − 1, we say that ρ moves
bi from gi to gi+1, and moves gi from bi to bi−1. If g is either gi or is strictly between gi
and gi+1 in bi’s list, then we say that ρ moves bi below g. Similarly, ρ moves gi above b if b
is bi or between bi and bi−1 in gi’s list.

2.4 The rotation poset
A rotation ρ′ is said to precede (or dominate) another rotation ρ, denoted by ρ′ ≺ ρ, if ρ′
is eliminated in every sequence of eliminations from M0 to a stable matching in which ρ is
exposed. Thus, the set of rotations forms a partial order via this precedence relationship.
The partial order on rotations is called rotation poset and denoted by Π.

I Lemma 2 ([6], Lemma 3.2.1). For any boy b and girl g, there is at most one rotation that
moves b to g, b below g, or g above b. Moreover, if ρ1 moves b to g and ρ2 moves b from g

then ρ1 ≺ ρ2.

A closed subset is a subset of the poset such that if an element is in the subset then all
of its predecessors are also included. There is a one-to-one relationship between the stable
matchings and the closed subsets of Π. Given a closed subset C, the correponding matching
M is found by eliminating the rotations starting from M0 according to the topological
ordering of the elements in the subset. We say that C generates M .

I Lemma 3 ([6], Lemma 3.3.2). Π contains O(n2) rotations and can be computed in polyno-
mial time.

I Lemma 4 ([6], Theorem 2.5.4). Every rotation appears exactly once in any sequence of
elimination from M0 to Mz.

2.5 The notion of shift
In this paper, we will assume that a girl applies a shift to one of her preferences as defined
below. We will study the structural properties of the resulting instance B.

Let the preference list of girl g in A be {. . . , b1, b2, . . . , bk, b, . . .}. In B the preference list
of g is {. . . , b, b1, b2, . . . , bk, . . .}. Moreover, all other preference lists are identical in both A
and B. We say that B obtained from A by applying a shift. We denote x <Iz y if z prefers y
to x in instance I.

3 Structural Results

3.1 The stable matchings in MA \ MB form a sublattice
LetMA andMB be the sets of all stable matchings under instance A and B respectively.
Let MAB = MA \ MB. In other words, MAB is the set of stable matchings in A that
become unstable in B. In this section we show thatMAB forms a lattice. We first prove a
simple observation.

ESA 2018

60:6 Finding Stable Matchings That Are Robust to Errors in the Input

I Lemma 5. Let M ∈MAB. The only blocking pair of M under instance B is bg.

Proof. Since M 6∈ MB , there must be a blocking pair xy 6∈M under B. Assume xy is not
bg, we will show that xy must also be a blocking pair in A. Let y′ be the partner of x and
x′ be the partner of y in M . Since xy is a blocking pair in B, x >By x′ and y >Bx y′. The
preference list of x remain unchanged from A to B, so y >Ax y′. Next, we consider two cases:

If y is not g, the preference list of y does not change. Therefore, x >Ay x′, and hence, xy
is also a blocking pair in A.
If y is g, for all pairs x, x′ such that x >By x′ and x 6= b, we also have x >Ay x′. Therefore,
xy is a blocking pair in A.

This contradicts the fact that M is stable under A. J

Recall that b1 ≥g b2 ≥g . . . ≥g bk are k boys right above b in g’s list such that the position
of b is shifted up to be above b1 in B. From Lemma 5, we can then characterize the set
MAB .

I Lemma 6. MAB is the set of all stable matchings in A that match g to a partner between
b1 and bk in g’s list, and match b to a partner below g in b’s list.

Proof. Assume M is a stable matching in A that contains big for 1 ≤ i ≤ k and bg′ such
that g >b g′. In B, g prefers b to bi, and hence bg is a blocking pair. Therefore, M is not
stable under B and M ∈MAB .

To prove the other direction, let M be a matching inMAB . By Lemma 5, bg is the only
blocking pair of M in B. For that to happen, pM (b) <Bb g and pM (g) <Bg b. We will show
that pM (g) = bi for 1 ≤ i ≤ k. Assume not, then pM (g) <Bg bk, and hence, pM (g) <Ag b.
Therefore, bg is a blocking pair in A, which is a contradiction. J

Let LA be the boy-optimal lattice formed byMA.

I Theorem 7. MAB forms a sublattice of LA.

Proof. AssumeMAB is not empty. LetM1 andM2 be two matchings inMAB . By Lemma 6,
M1 and M2 both match g to a partner between b1 and bk in g’s list, and match b to a partner
below g in b’s list. Since M1 ∧M2 is the matching resulting from having each boy choose
the more preferred partner and each girl choose the least preferred partner, M1 ∧M2 also
belongs to the set characterized by Lemma 6. A similar argument can be applied to the case
of M1 ∨M2. ThereforeMAB form a sublattice of LA. J

3.2 Rotations going into and out of a sublattice
Let M be a stable matching in MA and ρ be a rotation exposed in M with respect to
instance A. If M 6∈ S and M/ρ ∈ S for a set S, we say that ρ goes into S. Similarly, if
M ∈ S and M/ρ 6∈ S, we say that ρ goes out of S. Let the set of all rotations going into S
and out of S be IS and OS , respectively.

Let {bi1 , . . . bil} be the set of possible partners of g in any stable matching in MAB,
where 1 ≤ i1 ≤ . . . ≤ il ≤ k. Let ρ1 be a rotation moving g to bil , ρ2 be the rotation moving
b below g and ρ3 be a rotation moving g from bi1 . Note that each of ρ1, ρ2 and ρ3 might not
exist.

I Lemma 8. IMAB
can only contain ρ1, ρ2. OMAB

can only contain ρ3.

T. Mai and V. V. Vazirani 60:7

Proof. Consider a rotation ρ ∈ IMAB
. There existsM ∈MA\MAB such thatM/ρ ∈MAB .

By Lemma 6, M/ρ matches g to a partner between b1 and bk in g’s list, and matches b to
a partner below g in b’s list. Moreover, M either does not contain big for any 1 ≤ i ≤ k,
or contains bg′ where g′ ≥b g, or both. If M does not contain big for any 1 ≤ i ≤ k, then
ρ = ρ1. If M contains bg′ where g′ ≥b g, then ρ = ρ2.

Consider a rotation ρ ∈ OMAB
. There exists M ∈MAB such that M/ρ ∈MA \MAB.

Again, by Lemma 6, M contains big for 1 ≤ i ≤ k and bg′ where g′ <b g. Since M dominates
M/ρ in the boy optimal lattice, b must prefer g′ to his partner in M/ρ. Hence, M/ρ matches
b to a partner below g in b’s list. Therefore, M/ρ must not contain big for any 1 ≤ i ≤ k. It
follows that ρ must be ρ3. J

I Lemma 9. If both ρ1 and ρ2 exist then ρ1 � ρ2.

Proof. Assume that ρ1 6= ρ2 and there exists a sequence of rotation eliminations, from M0
to a stable matching M in which ρ2 is exposed, that does not contain ρ1. Since ρ2 moves b
below g, g is matched a partner higher than b in her list in M/ρ2. Therefore, the partner
can only be bil or a boy higher than bil in g’s list.

Consider any sequence of rotation eliminations from M/ρ to Mz. In the sequence, the
position of g’s partner can only go higher in her list. Therefore, ρ1 cannot be exposed in any
matching in the sequence. It follows that ρ1 is not exposed in a sequence of eliminations
from M0 to Mz, which is a contradiction by Lemma 4. J

I Theorem 10. There is at most one rotation in IMAB
and at most one rotation in OMAB

.
Moreover, the rotation in IMAB

must be either ρ1 or ρ2, and the rotation in OMAB
must be

ρ3.

Proof. By Lemma 8, IMAB
can contain at most 2 rotations, namely ρ1 and ρ2 if they are

distinct. By Lemma 9, if both of them exist, ρ1 � ρ2. Hence, IMAB
can contain at most one

rotation, and it is either ρ1 or ρ2.
Again, by Lemma 8, OMAB

can contain at most one rotation, namely ρ3 if it exists. J

By Theorem 10, there is at most one rotation ρin coming into MAB and at most one
rotation ρout coming out ofMAB .

I Proposition 11. ρin and ρout can be computed in polynomial time.

Proof. Since we can compute ΠA efficiently according to Lemma 3, each of ρ1, ρ2 and ρ3
can be computed efficiently.

First we can check possible partners of b and g with respect to instance A. By Lemma 6,
MAB is empty if none of the possible partners of g is between b1 and bk in g’s list or none of
the partners of b is below g in b’s list. It follows that both ρin and ρout do not exist. Hence
we may assume that such a case does not happen.

Suppose ρ2 exists. If ρ3 exists and ρ3 � ρ2,MAB = ∅. Otherwise, ρin = ρ2, and ρout = ρ3
if ρ3 exists.

Suppose ρ2 does not exist. If ρ1 exists, ρin = ρ1. If ρ3 exists, ρout = ρ3. J

I Lemma 12. Let M be a matching in MAB and S be the corresponding closed subset in
ΠA. If ρ1 exists, S must contain ρ1. If ρ2 exists, S must contain ρ2. If ρ3 exists, S must
not contain ρ3.

ESA 2018

60:8 Finding Stable Matchings That Are Robust to Errors in the Input

Proof. If ρ1 exists, M0 does not contain big for any i ∈ [1, k]. Since M ∈MAB , by Lemma 6
M matches g to a boy between b1 and bk in her list. The set of rotations eliminated from
M0 to M must include ρ1.

If ρ2 exists, b can not be below g in M0. Since b is below g in M , by Lemma 6 the set of
rotations eliminated from M0 to M must include ρ2.

Assume that ρ3 exists and S contains ρ3. Since ρ3 moves g up from bi1 , M can not
contain big for any i ∈ [1, k]. This is a contradiction. J

3.3 The rotation poset for the sublattice MAB

From the previous section we know that MAB is a sublattice of MA. In this section we give
the rotation poset that generates all stable matchings in the sublattices.

We may assume that MAB 6= ∅. If ρin exists, let Πin = {ρ ∈ ΠA : ρ � ρin} and Mboy
be the matching generated by Πin. Otherwise, let Mboy = M0. Similarly, let Mgirl be the
matching generated by ΠA \ Πout, where Πout = {ρ ∈ ΠA : ρ � ρout}, if ρout exists, and
Mgirl = Mz otherwise.

I Lemma 13. Mboy is the boy-optimal matching in MAB, and Mgirl is the girl-optimal
matching inMAB.

Proof. Let M be a matching inMAB generated by a closed subset S ⊆ ΠA. By Lemma 12,
if ρin exists, S must contain ρin. Since Πin is the minimum set containing ρin, Πin ⊆ S.
Therefore, Mboy �M .

To prove that M �Mgirl, we show S ⊆ ΠA \Πout. Assume otherwise, then there exists a
rotation ρ ∈ S such that ρ 6∈ ΠA \Πout. It follows that ρ ∈ Πout, and hence ρ � ρout. Since
S contains ρ and S is a closed subset, S must also contain ρout. This is a contradiction by
Lemma 12. J

I Theorem 14. ΠAB = ΠA \ (Πin ∪Πout) is the rotation poset generatingMAB.

Proof. LetM be a matching inMAB generated by a closed subset S ⊆ ΠA. Let S′ = S \Πin.
We show that S′ is a closed subset of ΠAB and eliminating the rotations in S′ starting from
Mboy according to the topological ordering of the elements gives M .

First S′ ∩ Πin = ∅ trivially. Since M ∈ MAB, S does not contain ρout by Lemma 12.
Therefore, S′ does not contain ρout, and S′ ∩Πout = ∅. It follows that S′ is a closed subset
of ΠAB .

Next observe that we can eliminate rotations in S from M0 by eliminating rotations in
Πin first and then eliminating rotations in S \ Πin. This can be done because Πin is a closed
subset of ΠA. Since Πin generates M , the lemma follows. J

4 Algorithm for finding a robust stable matching

We now use the structural properties described in Section 3 to give a polynomial time
algorithm for finding a robust stable matching. Clearly, the results in Section 3 can be
reproduced when we make a shift in a boy’s list. Recall from Section 1 that given a discrete
probability distribution D on all possible shifts, a robust stable matching is a stable matching
M ∈MA that minimizes the probability that M ∈MAB , where B ∼ D.

For a shift B, let ρBin and ρBout be the rotation going intoMAB and out ofMAB respectively.
By Proposition 11, ρBin and ρBout can be computed efficiently for each B.

By Lemma 3, ΠA can be computed in polynomial time. We create two additional vertices,
a source s and a sink t. For a shift B, we may ignore the cases where neither ρBin nor ρBout
exist. In those cases, either MA = MB or MA ∩MB = ∅. Hence, assume that such an

T. Mai and V. V. Vazirani 60:9

instance B does not exist, andMAB is always a proper non-empty subset of MA. For a
shift B such that ρBin does not exist, let ρBin = s. Similarly, for a shift B such that ρBout does
not exist, let ρBout = t.

Let pB be the probability that instance B is chosen according to D. Consider the following
integer program:

min
∑
B

xBpB

s.t. yρ1 ≤ yρ2 ∀ρ1, ρ2 : ρ1 ≺ ρ2

yt = 1
ys = 0
xB ≥ yρB

out
− yρB

in
∀B

xB ≥ 0 ∀B
yρ ∈ {0, 1} ∀ρ ∈ ΠA.

(IP)

I Lemma 15. (IP) gives a solution to a robust stable matching.

Proof. Let S = {ρ : yρ = 0}. The set of constraints:

yρ1 ≤ yρ2 ∀ρ1, ρ2 : ρ1 ≺ ρ2

guarantees that S is a closed subset.
Notice that xB = 1 if and only if yρB

out
= 1 and yρB

in
= 0. This, in turn, happens if and

only if the matching generated by S is inMAB .
Therefore, by minimizing

∑
e∈E xBpB , we can find a closed subset that generates a robust

stable matching. J

I Lemma 16. (IP) can be solved in polynomial time.

Proof. Consider relaxing the constraint yρ ∈ {0, 1} to 0 ≤ yρ ≤ 1. We show how to round
a solution of this natural LP-relaxation of (IP) to have an integral solution of the same
objective function. It suffices to just consider y as xB will always be set to max(0, yρB

out
−yρB

in
)

for any given y.
Let y be a fractional optimal solution of the relaxation. Let 1 = a0 > a1 > a2 > . . . >

ak > ak+1 = 0 be all the possible y-values. Since y is fractional, k ≥ 1. Denote Si by the set
of all rotations having y-value equal to ai, where 1 > ai > 0.

Let B+ be the set of instances B such that:
xB = yρB

out
− yρB

in
> 0.

yρB
out

= ai.
yρB

in
6= ai.

Let B− be the set of instances B such that:
xB = yρB

out
− yρB

in
> 0.

yρB
in

= ai.
yρB

out
6= ai.

Consider perturbing the y-value of all rotations in Sa by a small amount ε:

yρ ← yρ + ε = ai + ε ∀ρ ∈ Sa.

ESA 2018

60:10 Finding Stable Matchings That Are Robust to Errors in the Input

Here ε is chosen so that ai + ε < ai−1 and ai + ε > ai+1. The net change in the objective
function is

∑
B∈B+

εpB −
∑
B∈B−

εpB = ε

(∑
B∈B+

pB −
∑
B∈B−

pB

)
.

We claim that∑
B∈B+

pB −
∑
B∈B−

pB = 0.

Assume otherwise, we can pick a sign of ε to have a strictly smaller objective function.
Since

∑
B∈B+ pB −

∑
B∈B− pB = 0, we can choose ε = ai−1 − ai and obtain another optimal

solution where the value of k decreases by 1. Keep going until k = 0 gives an integral
solution. J

Finally, Theorem 1 follows from Lemmas 15 and 16.

5 Discussion

As stated in the Introduction, the two main questions on stable matching introduced in this
paper are obtaining efficient algorithms for finding solutions that are robust to errors in the
input, and the structural question of finding relationships between the lattices of solutions of
two “nearby” instances. The current paper and our followup work [10] seem to suggest that
both these issues are likely to lead to much work in the future. In particular, the structural
results are so clean and extensive that they are likely to find algorithmic applications beyond
the problem of finding robust solutions. One possible domain of applications that may be
able to exploit these structural properties is matching-based markets, particularly as we are
seeing ever more interesting such markets being designed and launched on the Internet, e.g.,
see [12].

At a more detailed level, the domain D, for which we have obtained our algorithm, is
very restrictive and we need to extend it to a larger domain. Our followup paper [10] does
this, though it seems more can be done. In particular, are there ways of dealing with two or
more errors? Another interesting question is to improve the running time of our algorithm.
This looks also quite plausible.

Beyond these questions, pertaining to the most basic of formulations of stable matching,
one can study numerous variants and generalizations, such as incomplete preference lists, the
stable roommates problem, and matching intern couples to hospitals. Each of these bring
their own structural properties and challenges, e.g., see [6, 11].

References
1 A. Ben-Tal, L. El Ghaoui, and A.S. Nemirovski. Robust Optimization. Princeton Series in

Applied Mathematics. Princeton University Press, October 2009.
2 G. C. Calafiore and L. El Ghaoui. On distributionally robust chance-constrained linear

programs. Journal of Optimization Theory and Applications, 130(1), 2006.
3 David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The

American Mathematical Monthly, 69(1):9–15, 1962.
4 Begum Genc, Mohamed Siala, Barry O’Sullivan, and Gilles Simonin. Finding robust solu-

tions to stable marriage. arXiv preprint arXiv:1705.09218, 2017.

T. Mai and V. V. Vazirani 60:11

5 Begum Genc, Mohamed Siala, Gilles Simonin, and Barry O’Sullivan. On the complexity of
robust stable marriage. In International Conference on Combinatorial Optimization and
Applications, pages 441–448. Springer, 2017.

6 Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms.
MIT press, 1989.

7 Robert W Irving. An efficient algorithm for the “stable roommates” problem. Journal of
Algorithms, 6(4):577–595, 1985.

8 Robert W Irving and Paul Leather. The complexity of counting stable marriages. SIAM
Journal on Computing, 15(3):655–667, 1986.

9 Donald Ervin Knuth. Stable marriage and its relation to other combinatorial problems:
An introduction to the mathematical analysis of algorithms. American Mathematical Soc.,
1997.

10 Tung Mai and Vijay V. Vazirani. A generalization of Birkhoff’s theorem for distributive
lattices, with applications to robust stable matchings. In arXiv, 2018.

11 David Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.
12 Alvin E. Roth. Al Roth’s game theory, experimental economics, and market design page,

2016. URL: http://stanford.edu/~alroth/alroth.html#MarketDesign.
13 Alvin E. Roth and Lloyd S. Shapley. The 2012 Nobel Prize in Economics, 2012. URL:

https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/.
14 Wikipedia. Fault Tolerence. URL: https://en.wikipedia.org/wiki/Fault_tolerance.
15 Wikipedia. Robustness (Computer Science). URL: https://en.wikipedia.org/wiki/

Robustness_(computer_science).

ESA 2018

http://stanford.edu/~alroth/alroth.html#MarketDesign
https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2012/
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Robustness_(computer_science)

Disconnected Cuts in Claw-free Graphs
Barnaby Martin
Department of Computer Science, Durham University, Durham, UK
barnaby.d.martin@durham.ac.uk

Daniël Paulusma
Department of Computer Science, Durham University, Durham, UK
daniel.paulusma@durham.ac.uk

Erik Jan van Leeuwen
Department of Information and Computing Sciences, Utrecht University, The Netherlands
e.j.vanleeuwen@uu.nl

Abstract
A disconnected cut of a connected graph is a vertex cut that itself also induces a disconnected
subgraph. The corresponding decision problem is called Disconnected Cut. It is known that
Disconnected Cut is NP-hard on general graphs, while polynomial-time algorithms exist for
several graph classes. However, the complexity of the problem on claw-free graphs remained an
open question. Its connection to the complexity of the problem to contract a claw-free graph to
the 4-vertex cycle C4 led Ito et al. (TCS 2011) to explicitly ask to resolve this open question. We
prove that Disconnected Cut is polynomial-time solvable on claw-free graphs, answering the
question of Ito et al. The basis for our result is a decomposition theorem for claw-free graphs of
diameter 2, which we believe is of independent interest and builds on the research line initiated by
Chudnovsky and Seymour (JCTB 2007–2012) and Hermelin et al. (ICALP 2011). On our way to
exploit this decomposition theorem, we characterize how disconnected cuts interact with certain
cobipartite subgraphs, and prove two further algorithmic results, namely that Disconnected
Cut is polynomial-time solvable on circular-arc graphs and line graphs.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases disconnected cut, surjective homomorphism, biclique cover, claw-freeness

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.61

Related Version A full version is available at https://arxiv.org/abs/1803.03663.

Funding This paper received support from the Leverhulme Trust (RPG-2016-258).

1 Introduction

Graph connectivity is a crucial graph property studied in the context of network robustness.
Well-studied notions of connectivity consider for example hamiltonicity, edge-disjoint spanning
trees, edge cuts, vertex cuts, etc. In this paper, we study the notion of a disconnected cut,
which is a vertex set U of a connected graph G such that G − U is disconnected and the
subgraph G[U] induced by U is disconnected as well. Alternatively, we say that V (G) can be
partitioned into nonempty sets V1, V2, V3, V4 such that no vertex of V1 is adjacent to a vertex
of V3 (that is, V1 is anti-complete to V3) and V2 is anti-complete to V4; then both V1 ∪ V3
and V2 ∪ V4 form a disconnected cut. See Figure 1 for an example. The Disconnected
Cut problem asks whether a given connected graph G has a disconnected cut.

© Barnaby Martin, Daniël Paulusma, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 61; pp. 61:1–61:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barnaby.d.martin@durham.ac.uk
mailto:daniel.paulusma@durham.ac.uk
mailto:e.j.vanleeuwen@uu.nl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.61
https://arxiv.org/abs/1803.03663
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 Disconnected Cuts in Claw-free Graphs

V

V

V

V

4

1

2

3

Figure 1 Graph with disconnected cuts V1 ∪ V3 and V2 ∪ V4 (figure originally appeared in [22]).

The Disconnected Cut problem is intimately connected to at least five other problems
studied in the literature. We give a brief overview here, and refer to the related work
section for more details. The name Disconnected Cut originates from Fleischner et
al. [15], who determined the complexity of partitioning the vertices of a graph into exactly
k bicliques (complete bipartite graphs with at least one edge), except for the case k = 2.
For k = 2, this problem is polynomially equivalent to Disconnected Cut (by taking the
complement of the input graph). The Disconnected Cut problem can also be seen as
an H-Partition problem for appropriately defined 4-vertex graphs H. Dantas et al. [8]
proved that H-Partition is polynomial-time solvable for each 4-vertex graph H except for
the two cases equivalent to Disconnected Cut. If the input graph has diameter 2, then
Disconnected Cut is equivalent to C4-Compaction [15], which asks for a homomorphism f

from a graph G to the graph C4 (the 4-vertex-cycle with a self-loop in each vertex) such that
for every xy ∈ E(H) with x 6= y there is an edge uv ∈ E(G) with f(u) = x and f(v) = y.
The diameter-2 case is also equivalent to testing if a graph can be modified to a biclique
by a series of edge contractions [22]. The restriction to graphs of diameter 2 is natural, as
every graph of diameter 1 has no disconnected and every graph of diameter at least 3 has a
disconnected cut [15]. Finally, Disconnected Cut fits in the broad study of vertex cut
problems with extra properties on the cut set; see [23] for an overview.

The above demonstrates that Disconnected Cut is of central importance to under-
standing many different types of problems, ranging from cut problems to homomorphism
and graph contractibility problems. Therefore, there has been broad interest to determine its
computational complexity. Indeed, numerous papers [6, 8, 9, 10, 15, 21, 22, 28] asked about
its complexity on general graphs. NP-completeness was proven independently in [26] and
by Vikas, as announced in [30]. The strong interest in Disconnected Cut also led to a
study on graph classes. We know polynomial-time algorithms for many classes [6, 9, 15, 22],
particularly for certain classes of H-free graphs (graphs without a fixed graph H as an
induced subgraph). However, even for several simple graphs H, the complexity landscape of
Disconnected Cut still contains gaps. Indeed, even for four-vertex graphs H, we show (in
the full version of our paper) that one open case remains, namely the case H = K4. To prove
this result, we need to deal with one non-trivial case, namely, when H = K1,3 (the claw).

Our interest in Disconnected Cut on claw-free graphs is heightened by the close
relation of this problem to Cr-Contractibility, which is to decide if a graph G contains
the r-vertex cycle Cr as a contraction. This problem is NP-complete if r ≥ 4 [3] and stays
NP-complete for claw-free graphs as long as r ≥ 6 [14]. The case r ≤ 3 is polynomial-time
solvable even for general graphs [3]. Hence, for claw-free graphs this leaves open the cases
where r ∈ {4, 5}. Ito et al. [22] showed that C4-Contractibility on claw-free graphs of
diameter 2 is equivalent to Disconnected Cut. As Disconnected Cut is trivial if the
input graph does not have diameter 2, this led Ito et al. [22] to explicitly ask the following:

What is the computational complexity of Disconnected Cut on claw-free graphs?

B. Martin, D. Paulusma, and E. J. van Leeuwen 61:3

Our Contribution. We answer the open question of Ito et al. [22] by giving a polynomial-
time algorithm for Disconnected Cut on claw-free graphs (which also finds a disconnected
cut if it exists). This immediately implies that C4-Compaction and C4-Contractibility
are polynomial-solvable on claw-free graphs of diameter 2. As claw-free graphs are not closed
under edge contraction, the latter is certainly not expected beforehand.

We start with the basic observation that Disconnected Cut is trivial if the graph does
not have diameter 2 [15]. Hence, we aim for a deeper understanding of claw-free graphs of
diameter 2. To this end, we give a new graph-theoretic theorem that proves that claw-free
graphs of diameter 2 belong to one of four basic graph classes after performing two types of
elementary operations. The theorem builds on one of the algorithmic decomposition theorems
for claw-free graphs developed by Hermelin et al. [19, 20], and relies on the pioneering works of
Chudnovsky and Seymour [5]. Several other algorithmic decomposition theorems for claw-free
graphs have been built on the ideas of Chudnovsky and Seymour, see e.g. [11, 24], which
jointly have had a broad impact on our algorithmic understanding of claw-free graphs (see [19]
for an overview or [2]). Our structural theorem and resulting algorithm for Disconnected
Cut expand this line of research.

The crux of the proof of our structural theorem is to exploit the extra structure offered by
claw-free graphs of diameter 2 to show that the so-called strip-structures, which are central
to the aforementioned decomposition theorems, only contain trivial strips. An important
ingredient in the proof is to exclude not only twins (vertices u, v for which N [u] = N [v]), but
also vertices with nested neighbourhoods (vertices u for which there exists a vertex v such
that N(u) \ {v} ⊆ N(v) \ {u}). Using this operation, one can simplify the decomposition
theorem of [19], and we think this observation may have an impact beyond this work.

Using the structural theorem, Disconnected Cut on claw-free graphs reduces to
understanding its behavior under the elementary operations and on the basic graph classes.
The crucial elementary operation is to remove certain cobipartite structures known as W-
joins [5]. We develop the notion of unshatterable proper W-joins, which are essentially
W-joins that cannot be broken into smaller W-joins, and exhibit how unshatterable proper
W-joins interact with disconnected cuts. We then show that unshatterable proper W-joins
can be removed from the graph by a simple operation. We complete our arguments by
proving that all W-joins in the graph must be in fact be unshatterable proper W-joins, and
that we can find unshatterable proper W-joins in polynomial time.

The main basic graph classes in the structural theorem are line graphs and proper
circular-arc graphs. Prior to our work, the complexity of Disconnected Cut was unknown
for these classes as well. We present a polynomial-time algorithm for line graphs and even
for general circular-arcs graphs (not only proper circular-arcs). Both algorithms rely on the
existence of a small induced cycle passing through a disconnected cut in a highly structured
manner. In addition, for line graphs, we prove that the pre-image of the line graph is 2P2-free,
and thus has diameter at most 3. The hardest part of the proof is then to prove that if the
pre-image has diameter exactly 3, then the line graph has no disconnected cut.

Related Work. As mentioned, the name Disconnected Cut stems from Fleischner et
al. [15], who studied how to partition the vertices of a graph into exactly k bicliques, where
Disconnected Cut is equivalent to the case k = 2. However, Disconnected Cut
originates from H-partitions, introduced in [8]. A model graph H on vertices h1, . . . , hk has
solid and dotted edges. An H-partition of a graph G is a partition of V (G) into |V (H)|
nonempty sets V1, . . . , Vk such that for every pair of vertices u ∈ Vi and v ∈ Vj : if hihj is a
solid edge of E(H), then uv ∈ E(G); and if hihj is a dotted edge of E(H), then uv /∈ E(G)

ESA 2018

61:4 Disconnected Cuts in Claw-free Graphs

(if hihj /∈ E(H), then uv ∈ E(G) or uv /∈ E(G) are both allowed). The corresponding
decision problem is called H-Partition. Dantas et al. [8] proved that H-Partition is
polynomial-time solvable for every 4-vertex model graph H except H = 2K2, which has solid
edges h1h3, h2h4 and no dotted edges, and H = 2S2, which has dotted edges h1h3, h2h4
and no solid edges. These two cases are polynomial-time equivalent to Disconnected
Cut. Hence, we now know that, as a matter of exception, H-Partition is NP-complete if
H ∈ {2K2, 2S2} [26].

We can encode a model graph H as a matrix M in which every entry is either 0 (dotted
edge), 1 (solid edge) or ∗ (no restriction). If we allow sets Vi in a solution for H-Partition
to be empty, then we obtain the M -Partition problem, introduced by Feder et al. [13]. This
well-known problem generalizes many classical problems involving vertex cuts and partitions,
including k-Colouring and H-Colouring; see also [18]. An even more general variant is
to give every vertex u a list L(u) ⊆ {1, . . . , k} and to search for a solution, in which each
vertex u may only belong to a set Vi with i ∈ L(u). This yields the List M-Partition
problem, which includes well-known cases, such as the Stubborn problem, which turned out
to be polynomial-time solvable [7], in contrast to Disconnected Cut. A homomorphism
f from G to H is a retraction if G contains H as an induced subgraph and f(u) = u for
every u ∈ V (H). The corresponding decision version is called H-Retraction. Let C4 be
the 4-cycle with a self-loop in each vertex. Then C4-Retraction is a special case of List
2S2-Partition where the input graph contains a cycle on four specified vertices v1, . . . , v4
with L(vi) = {i} for i = 1, . . . , 4 and L(v) = {1, 2, 3, 4} for v /∈ {v1, . . . , v4}. This problem is
a generalization of Disconnected Cut. Feder and Hell [12] proved that C4-Retraction
is NP-complete. Hence, List 2S2-Partition and List 2K2-Partition are NP-complete.
Note that this result is also implied by the NP-completeness of 2K2-Partition [26].

Vikas [29] solved an open problem of Winkler (see [13, 29]) by proving NP-completeness
of C4-Compaction, the variant of the 2S2-Partition problem with the extra constraint that
there must be at least one edge uiuj with ui ∈ Vi and ui+1 ∈ Vi+1 for i = 1, . . . , 4 (where
V5 = V1). Generally, a homomorphism f from a graph G to a graph H is a compaction if f is
edge-surjective, i.e., for every xy ∈ E(H) with x 6= y there is an edge uv ∈ E(G) with f(u) = x

and f(v) = y. The corresponding decision problem is called H-Compaction. If H = C4, then
the problem is equivalent to Disconnected Cut when restricted to graphs of diameter 2 [15].
Hence, C4-Compaction is NP-complete for graphs of diameter 2 [26] (the result of [29] holds
for graphs of diameter at least 3). Similarly, a homomorphism f from a graph G to a graph H
is (vertex-)surjective if for every x ∈ V (H) there is a vertex u ∈ V (G) such that f(u) = x.
The decision problem is called Surjective H-Colouring (or H-Vertex Compaction,
or Surjective H-Homomorphism) and is equivalent to Disconnected Cut if H = C4.
The complexity classifications of H-Compaction and Surjective H-Colouring are wide
open despite many partial results; see [1] for a survey and [16] for a more recent overview
focussing on Surjective H-Colouring .

2 Preliminaries and Basic Results

In the remainder of our paper, graphs are finite, undirected, and have neither multiple edges
nor self-loops unless explicitly stated otherwise. Let G = (V,E) be a graph. For a set S ⊆ V ,
G[S] is the subgraph of G induced by S. We say that S is connected if G[S] is connected.
We write G− S = G[V \ S], and if S = {u}, we write G− u instead. For a vertex u ∈ V , let
N(u) = {v | uv ∈ E} be the neighbourhood of u and N [u] = N(u) ∪ {u}. The complement

B. Martin, D. Paulusma, and E. J. van Leeuwen 61:5

G of G has vertex set V and edge set {uv | uv /∈ E}. The distance dG(u, v) between vertices
u and v of G is the number of edges in a shortest path between them. The diameter of G is
equal to max{dG(u, v) | u, v ∈ V }. The following lemma was observed by Fleischner et al.

I Lemma 1 ([15]). If a graph G has diameter 1, then G has no disconnected cut. If a graph
G has diameter at least 3, then G has a disconnected cut, which can be found in linear time.

A subset D ⊆ V is a dominating set of a graph G = (V,E) if every vertex of V \D is
adjacent to at least one vertex of D. If D = {u}, then u is a dominating vertex of G. A
vertex u ∈ V has a disconnected neighbourhood if N(u) induces a disconnected graph.

I Lemma 2. If a graph G contains a dominating vertex, then G has no disconnected cut.

I Lemma 3 (proof omitted). If a graph G contains a non-dominating vertex u with a
disconnected neighbourhood, then G has a disconnected cut.

Two disjoint vertex sets S and T in a graph G = (V,E) are complete to each other if there
is an edge between every vertex of S and every vertex of T , and S and T are anticomplete
to each other if there is no edge between a vertex of S and a vertex of T . Recall that G
has a disconnected cut if V can be partitioned into four nonempty sets V1, V2, V3, V4, such
that V1 is anticomplete to V3 and V2 is anticomplete to V4. We say that V1, V2, V3, V4 form a
disconnected partition of G.

I Lemma 4. Let V1, V2, V3, V4 be a disconnected partition of a graph G of diameter 2. Then
G has an induced cycle C with 4 ≤ |V (C)| ≤ 5 such that V (C) ∩ Vi 6= ∅ for i = 1, . . . , 4.

Proof. Let u1 ∈ V1 and u3 ∈ V3. As G has diameter 2, there exists a vertex u2 in V2 or V4,
say V2, such that u2 is adjacent to u1 and to u3. Let u4 ∈ V4. As G has diameter 2, there
exists a vertex u′

1 in V1 or V3, say V1, such that u′
1 is adjacent to u2 and u4. If u3 and u4 are

adjacent, then we can take as C the cycle on vertices u′
1, u2, u3, u4 in that order. Otherwise,

as G has diameter 2, there exists a vertex w ∈ V3 ∪ V4, such that w is adjacent to u3 and to
u4. In that case we can take as C the cycle on vertices u′

1, u2, u3, w, u4. J

Two adjacent vertices u and v of graph G = (V,E) have a nested neighbourhood if
N(u)\{v} ⊆ N(v)\{u} orN(v)\{u} ⊆ N(u)\{v}. We say that G has distinct neighbourhoods
if G has no two vertices that have nested neighbourhoods.

I Lemma 5 (proof omitted). Let G be a graph of diameter 2 that contains two vertices u
and v such that N(u) \ {v} ⊆ N(v) \ {u}. Then G has a disconnected cut if and only if G−u
has a disconnected cut. Moreover, G− u has diameter at most 2.

A pair of vertices u and v of a graph G = (V,E) is a universal pair if {u, v} is a
dominating set and there exist distinct vertices x and y in V \ {u, v}, such that x ∈ N(u)
and y ∈ N(v); note that this implies that |V | ≥ 4 and u, v have at least one neighbour
in V − {u, v}. Let H be a graph. Then G is H-free if G contains no induced subgraph
isomorphic to H. The disjoint union G+H of two vertex-disjoint graphs G and H is the
graph (V (G) ∪ V (H), E(G) ∪E(H)). The disjoint union of r copies of a graph G is denoted
by rG. The graphs Cr and Pr denote the cycle and path on r vertices, respectively. The
graph Kr denotes the complete graph on r vertices. The independence number α(G) of a
graph G is the largest k such that G contains an induced subgraph isomorphic to kP1.

I Lemma 6 ([6]). A 2P2-free graph has a disconnected cut if and only if its complement has
a universal pair.

ESA 2018

61:6 Disconnected Cuts in Claw-free Graphs

I Lemma 7 ([9]). Disconnected Cut is O(n3)-time solvable for 4P1-free graphs.

The graph ({u, v1, v2, v2}, {uv1, uv2, uv3}) is the claw K1,3. A graph is cobipartite if it is
the complement of a bipartite graph. The line graph of a graph G with edges e1, . . . , ep is
the graph L(G) with vertices u1, . . . , up such that there is an edge between any two vertices
ui and uj if and only if ei and ej have a common endpoint in G. Note that every line graph
is claw-free. We call G the preimage of L(G). Every connected line graph except K3 has
a unique preimage [17]. A circular-arc graph is a graph that has a representation in which
each vertex corresponds to an arc of a circle, such that two vertices are adjacent if and only
if their corresponding arcs intersect. An interval graph is a graph that has representation in
which each vertex corresponds to an interval of the line, such that two vertices are adjacent
if and only if their corresponding intervals intersect. Note that circular-arc graphs generalize
interval graphs. A circular-arc or interval graph is proper if it has a representation where the
arcs respectively intervals are such that no one is contained in another.

3 Circular-Arc Graphs

In this section we prove that Disconnected Cut is polynomial-time solvable for circular-arc
graphs. This result is known already for interval graphs, as it follows from the result that
Disconnected Cut is polynomial-time solvable for the class of chordal graphs [22], which
contains the class of interval graphs. In fact, we have an O(n2)-time algorithm for interval
graphs. Due to Lemma 4 and the fact that interval graphs are chordal, no interval graph of
diameter 2 has a disconnected cut. Consequently, an interval graph has a disconnected cut if
and only if its diameter is at least 3 due to Lemma 1. To show that Disconnected Cut is
polynomial-time solvable for circular-arc graphs requires significant additional work.

Let G be a circular-arc graph. For each vertex u ∈ V (G) we can associate an arc [lu, ru]
where we say that lu is the clockwise left endpoint of u and ru is the clockwise right endpoint
of u. We may assume that all left and right endpoints of the vertices of G are unique.

I Lemma 8 ([27]). A circular-arc graph G on n vertices and m edges can be recognized in
O(n+m) time. In the same time, a representation of G can be constructed with distinct arc
endpoints that are clockwise enumerated as 1, . . . , 2n.

For the main result in the section we need the following lemma (proof omitted).

I Lemma 9. Let G be a circular-arc graph of diameter 2 with a disconnected cut. Then G
has a disconnected partition V1, V2, V3, V4 such that each Vi is connected.

I Theorem 10. Disconnected Cut is O(n2)-time solvable for circular-arc graphs.

Proof Sketch. Let G = (V,E) be a circular-arc graph on n vertices. We will either find a
disconnected cut or conclude that G has no disconnected cut. We compute the diameter of
G in O(n2) time, say by using the (more general) O(n2)-time algorithm of [4]. By Lemma 1,
we may assume that G has diameter 2. Lemma 9 tells us that if G has a disconnected cut,
then G has a disconnected partition V1, V2, V3, V4 such that Vi is connected for i = 1, . . . , 4.
We say that the arc of a set Vi is the union of all the arcs of the vertices in Vi. As G has
diameter 2, the union of the arcs of the sets Vi covers the whole circle. Moreover, the arcs of
V1 and V3 are disjoint and the arcs of V2 and V4 are disjoint.

We now compute, in linear time, a representation of G with distinct arc endpoints
clockwise enumerated as 1, . . . , 2n via Lemma 8. We then sort the arcs in O(n logn) time.
Then, in O(n2) time, we check if there is a pair or triple of vertices whose arcs cover the
whole circle. If so, then using Lemma 9 we find that G has no disconnected cut.

B. Martin, D. Paulusma, and E. J. van Leeuwen 61:7

Suppose G has no pair or triple of vertices whose arcs cover the whole circle. Then, in
O(n) time, we find an induced cycle v1, . . . , vk whose arcs cover the whole circle and such that
k ∈ {4, 5}. If G has a disconnected partition V1, V2, V3, V4 such that each Vi is connected,
then we have the following. If k = 4, then we may assume without loss of generality that
vi ∈ Vi for i = 1, . . . , 4. If k = 5, then two vertices vi, vi+1 belong to the same set Vh, whereas
sets Vi with i 6= h each contain a single vertex from C. If k = 5, then we guess which two
vertices vi, vi+1 will be put in the same set, say v1, v5; this does not influence the asymptotic
running time.

Now we build up the sets Vi from scratch by putting in the vertices from V (G)\{v1, . . . , vk}.
We maintain that each Vi induces a connected graph, and thus, the union of the arcs of the
vertices in Vi indeed always form an arc. Observe also that no set Vh is contained in some
other set Vi; by our choice of vertices vi we will always maintain this property. We say that
a vertex u intersects a set Vi if the arc of u intersects the arc of Vi. Note that, since the arcs
corresponding to {v1, . . . , vk} cover the entire circle, so do the arcs of the sets Vi that we are
constructing. If there is a vertex that intersects each of the sets Vi constructed so far, then
there is no disconnected cut with each Vi connected. If k = 4, then G has no disconnected
cut due to Lemma 9. If k = 5, then our guess of vertices v1, v5 to belong to Vh may have
been incorrect, and we need to put two other consecutive vertices of C in the same set Vh

before concluding that G has no disconnected cut. Otherwise, we do the following until no
longer possible. As no Vh is contained in some other Vh, any vertex u that intersects two
sets Vi and Vi+2 for some i (say, i ∈ {1, 2} without loss of generality), also intersects Vi+1 or
Vi+3 (where V5 = V1). We put a vertex u that intersects two sets Vi and Vi+2 for some i into
set Vi+1 if u intersects Vi+1 as well; otherwise, u intersects Vi+3 and we put u in Vi+3.

Let T be the set of vertices of G that we have not placed in some set Vi yet. We show that
each vertex of T must intersect exactly two sets Vi and Vj such that, in addition, j = i+ 1
holds. Then we can model the remaining instance as an instance of 2-Satisfiability and
solve it in O(n2) time. J

4 Line Graphs

In this section we prove that Disconnected Cut is polynomial-time solvable for line graphs.
We start with the following lemma due to Ito et al. [22].

I Lemma 11 ([22]). Let G be a graph with diameter 2 whose line graph L(G) also has
diameter 2. Then G has a disconnected cut if and only if L(G) has a disconnected cut.

For the main result in the section we need the following lemma (proof omitted).

I Lemma 12. Let G be a graph that is neither a triangle nor a star. Then L(G) has
diameter 2 if and only if G is 2P2-free.

I Theorem 13. Disconnected Cut is O(n4)-time solvable on line graphs of n-vertex graphs.

Proof. Let G be a graph on n vertices and m edges. We first check in O(n) time if G is a
triangle or star. If so, then L(G) is a complete graph and thus L(G) has no disconnected
cut. From now on suppose that G is neither a triangle nor a star. By Lemma 12 we find
that L(G) has diameter 2 if and only if G is 2P2-free. Hence, we can check in O(n4) time,
via checking if G has an induced 2P2 by brute force, if L(G) has diameter 2.

First assume that L(G) does not have diameter 2. As G is not a triangle or a star, L(G)
has diameter at least 3. By Lemma 1 we find that L(G) has a disconnected cut. Now assume
that L(G) has diameter 2. We check in O(n3) time if G has an edge uv such that every

ESA 2018

61:8 Disconnected Cuts in Claw-free Graphs

vertex of V (G) \ {u, v} is adjacent to at least one of u, v. If so, then uv is a dominating
vertex of L(G), and L(G) has no disconnected cut due to Lemma 2. If not, then L(G) has
no dominating vertices, and we proceed as follows. First we check if L(G) has a vertex uv
with a disconnected neighbourhood, or equivalently, if G contains an edge uv such that u
and v have degree at least 2 and no common neighbours. This takes O(n3) time. If L(G) has
a vertex with a disconnected neighbourhood, then L(G) has a disconnected cut by Lemma 3.
From now on assume that L(G) has no vertex with a disconnected neighbourhood. As G is
neither a triangle nor a star, G is 2P2-free by Lemma 12. Hence, G has diameter at most 3.
We can determine in O(n3) time the diameter of G and consider each case separately.

Case 1. G has diameter 1.
We claim that L(G) has no disconnected cut. For contradiction, assume that L(G) has a
disconnected cut. Let V ′

1 , V ′
2 , V ′

3 , V ′
4 be a disconnected partition of L(G). By Lemma 4, L(G)

contains a cycle C ′ with vertices uiui+1 for i = 1, . . . , j (with uj+1 = u1) and j ∈ {4, 5}, such
that V (C ′) ∩ V ′

i 6= ∅ for i = 1, 2, 3, 4. Then we may assume without loss of generality that
uiui+1 ∈ V ′

i for i = 1, . . . , 4 and ujuj+1 ∈ V ′
4 . As G has diameter 1, u1u3 is an edge of G and

thus a vertex of L(G). In L(G), u1u3 is adjacent to every vertex in {u1u2, u2u3, u3u4, ujuj+1},
and thus to a vertex in V ′

i for i = 1, . . . , 4, a contradiction.

Case 2. G has diameter 2.
Then G has a disconnected cut if and only if L(G) has a disconnected cut due to Lemma 11.
By Lemma 6 it suffices to check if G has a universal pair. This takes O(n3) time.

Case 3. G has diameter 3.
We will prove that L(G) has no disconnected cut. As G has diameter 3, G does have a
disconnected cut by Lemma 1. We need the following claim.

I Claim. Let V1, V2, V3, V4 be a disconnected partition of G. Then every cycle C of G with
4 ≤ |V (C)| ≤ 5 contains vertices of at most three distinct sets from {V1, V2, V3, V4}.

We prove the Claim as follows. For contradiction, assume that G has a cycle C with vertices
u1, . . . , uj for j ∈ {4, 5}, such that V (C) ∩ Vi 6= ∅ for i = 1, . . . , 4. We may assume without
loss of generality that ui ∈ Vi for i = 1, . . . , 4 and uj ∈ V4. As G is 2P2-free, we may assume
without loss of generality that u3 is in a singleton connected component of G[V3]. If j = 4,
then we may also assume without loss of generality that u2 is in a singleton connected
component of G[V2]. If j = 5, then u2 must be in a singleton connected component of G[V2]
due to the edge u4u5, which is contained in G[V4]. This means that the sets NG(u2) \ {u3}
and NG(u3) \ {u2} are disjoint. As u1u2 and u3u4 are edges of G, both NG(u2) \ {u3}} and
NG(u3) \ {u2}} are nonempty. Hence, the vertex u2u3 has a disconnected neighbourhood in
L(G), a contradiction. This proves the Claim.
Now, for contradiction, assume that L(G) has a disconnected cut. Let V ′

1 , V ′
2 , V ′

3 , V ′
4 be a

disconnected partition of L(G). By Lemma 4, L(G) contains a cycle C ′ with vertices uiui+1
for i = 1, . . . , j (with uj+1 = u1) and j ∈ {4, 5}, such that V (C ′) ∩ V ′

i 6= ∅ for i = 1, 2, 3, 4.
Assume without loss of generality that uiui+1 ∈ V ′

i for i = 1, . . . , 4 and ujuj+1 ∈ V ′
4 .

We define the following partition V1, V2, V3, V4 of V (G). Let u ∈ V (G). If u is incident
to only edges from one set V ′

i , then we put u in Vi. Suppose u is incident to edges from
more than one set V ′

i . As V ′
1 , V ′

2 , V ′
3 , V ′

4 is a disconnected partition of L(G), we find that u
is incident to edges from V ′

i and V ′
i+1 for some 1 ≤ i ≤ 4 (where V5 = V1) and to no other

sets V ′
j . In that case we put u into Vi+1.

B. Martin, D. Paulusma, and E. J. van Leeuwen 61:9

We now prove that V1 is anticomplete to V3. For contradiction, assume that V1 contains
a vertex u and V3 contains a vertex v such that uv ∈ E(G). As u ∈ V1, we find that u is
incident to edges only in V ′

4 and V ′
1 . Hence, uv ∈ V ′

1 ∪ V ′
4 . As v ∈ V3, we find that v is

incident to edges only in V ′
2 and V ′

3 . This implies that uv ∈ V ′
2 ∪ V ′

3 , a contradiction. By the
same argument we can show that V2 is anticomplete to V4. Let C be the cycle with vertices
u1, . . . , uj in G. Then V (C) ∩ Vi 6= ∅, and thus Vi 6= ∅, for i = 1, . . . , 4. Hence, V1, V2, V3,
V4 is a disconnected partition of G, and C is a cycle in G with V (C) ∩ Vi 6= ∅ for every i.
This is not possible due to the Claim. We conclude that L(G) has no disconnected cut.
The correctness of our algorithm follows from the above. If G has diameter 1 (Case 1) or
diameter 3 (Case 3), no additional running time is required, as L(G) has no disconnected
cut in both these cases. Hence, only executing Case 2 takes additional time, namely time
O(n3). Hence, the total running time of our algorithm is O(n4). J

5 Claw-Free Graphs

In this section, we prove that Disconnected Cut is polynomial-time solvable on claw-free
graphs. The proof consists of two parts. In Section 5.1 we show how to get rid of certain
cobipartite structures in the graph, called W-joins. We remark that Disconnected Cut
can be solved in polynomial time on cobipartite graphs [15]. Although this is a necessary
condition for Disconnected Cut to be solvable in polynomial time on claw-free graphs,
the algorithm for cobipartite graphs is not sufficient to deal with W-joins. In Section 5.2 we
present our new decomposition theorem for claw-free graphs of diameter 2 and combine this
theorem with the results from the previous sections and Section 5.1 to show our main result.

5.1 Cobipartite Structures versus Disconnected Cuts
A pair (A,B) of disjoint non-empty sets of vertices is a W-join in graph G if |A|+ |B| > 2,
A and B are cliques, A is neither complete nor anticomplete to B, and every vertex of
V (G) \ (A ∪B) is either complete or anticomplete to A and either complete or anticomplete
to B. A W-join is a proper W-join if each vertex in A is neither complete nor anticomplete
to B and each vertex in B is neither complete nor anticomplete to A. Observe that for a
proper W-join (A,B), it must hold that |A|, |B| ≥ 2. For any W-join (A,B), it holds that
G[A ∪B] is a cobipartite induced subgraph in G.

We assume that an input graph G of Disconnected Cut has diameter 2 and that G
has distinct neighbourhoods, by Lemmas 1 and 5 respectively. We show how to use these
assumptions to remove all W-joins in a claw-free graph and obtain an equivalent instance of
Disconnected Cut. As a first step, we show that we can focus on proper W-joins.

I Lemma 14 (proof omitted). Let G be a graph with distinct neighbourhoods. If G admits a
W-join (A,B), then (A,B) is a proper W-join.

A W-join (A,B) is partitionable if there are partitions of A into non-empty sets A′, A′′ and
of B into non-empty sets B′, B′′ such that A′ is anticomplete to B′′ and B′ is anticomplete
to A′′. A proper W-join (A,B) is shatterable if it is partitionable with sets A′, A′′, B′, B′′

and one of (A′, B′), (A′′, B′′) is also a proper W-join; we say it is unshatterable otherwise.

I Lemma 15 (proof omitted). Let G be a graph with distinct neighbourhoods and let (A,B)
be a proper W-join in G. If (A,B) is partitionable and unshatterable, then G[A ∪ B] is
isomorphic to C4.

ESA 2018

61:10 Disconnected Cuts in Claw-free Graphs

I Lemma 16 (proof omitted). Let G be a claw-free graph that is not cobipartite, has distinct
neighbourhoods, and has diameter 2. Let (A,B) be a proper W-join in G that is unshatterable.
If G admits a disconnected cut, then there exists a disconnected partition V1, V2, V3, V4 of G
such that Vi ∩ (A ∪B) = ∅ for some i ∈ {1, 2, 3, 4}.

Let (A,B) be a proper W-join of a graph G. For any two adjacent vertices a ∈ A and
b ∈ B, let Gab be the graph obtained from G by removing A \ {a} and B \ {b}. Observe that
the graph Gab is the same regardless of the choice of a, b.

I Lemma 17. Let G be a claw-free graph that is not cobipartite, has distinct neighbourhoods,
and has diameter 2. Let (A,B) be a proper W-join of G that is unshatterable. Then G admits
a disconnected cut if and only if Gab admits a disconnected cut for any two adjacent vertices
a ∈ A and b ∈ B.

Proof. First suppose that Gab admits a disconnected partition V1, V2, V3, V4 for any two
vertices a, b. Let a ∈ Vi and b ∈ Vj for i, j ∈ {1, 2, 3, 4}. Then the sets V ′

1 , V
′

2 , V
′

3 , V
′

4 obtained
from V1, V2, V3, V4 by adding A to Vi and B to Vj is a disconnected partition of G.

Now suppose that G admits a disconnected cut. Let V1, V2, V3, V4 be a disconnected
partition of G. By Lemma 16, we may assume without loss of generality that V4∩(A∪B) = ∅.
Note that A is a clique in G and V1 is anticomplete to V3, and thus A ⊆ V1∪V2 or A ⊆ V2∪V3.
We assume the former without loss of generality. Among all such disconnected partitions, we
will assume that V1, V2, V3, V4 was chosen to minimize |A ∩ V1|.

We consider several cases. In each of these cases we find two vertices a, b for which we
can construct a disconnected partition of Gab. Note that this suffices to prove the statement,
as the graph Gab is the same regardless of the choice of a, b.

First assume that A ⊆ V1. Since no vertex of B is anticomplete to A by the definition of a
proper W-join and V1 is anticomplete to V3, it follows that B ⊆ V1∪V2. Now if B ⊆ V1, then
let a ∈ A and b ∈ B be arbitrary adjacent vertices (these exist by the definition of a W-join)
and V1 \ ((A \ {a}) ∪ (B \ {b})), V2, V3, V4 is a disconnected partition of Gab. Otherwise,
let b ∈ B ∩ V2 and let a be an arbitrary vertex of A that is adjacent to b (which exists
by the definition of a proper W-join). Then V1 \ ((A \ {a}) ∪B), V2 \ (B \ {b}), V3, V4 is a
disconnected partition of Gab.

Now assume that A ⊆ V2. Note that B ⊆ V1 ∪ V2 ∪ V3. Since B is a clique and V1
is anticomplete to V3, it follows that B ⊆ V1 ∪ V2 or B ⊆ V2 ∪ V3. First, assume that
B ⊆ V2. Let a ∈ A and b ∈ B be arbitrary adjacent vertices; note that a, b ∈ V2. Then
V1, V2 \ ((A \ {a}) ∪ (B \ {b})), V3, V4 is a disconnected partition of Gab. So we may assume
that B 6⊆ V2. Then B ∩ V1 6= ∅ or B ∩ V3 6= ∅. Without loss of generality, we assume it is
the former. Let b ∈ B ∩ V1 and let a ∈ A be any neighbour of b. Note that a ∈ V2. Then
V1 \ (B \ {b}), V2 \ ((A \ {a}) ∪B), V3, V4 is a disconnected partition of Gab.

It remains to consider the case where A ∩ V1 6= ∅ and A ∩ V2 6= ∅. Let P = N(A) \N [B],
Q = N(B) \ N [A], M = N [A ∪ B] \ (P ∪ Q), and R = V (G) \ (P ∪ Q ∪M). Note that
P is complete to A and anticomplete to B, whereas Q is complete to B and anticomplete
to A. Moreover, M is complete to A ∪B, whereas R is anticomplete to A ∪B. Then, by the
assumptions of the case, we have that P ⊆ V1 ∪ V2. Note that B ⊆ V1 ∪ V2 ∪ V3. Since B is
a clique and V1 is anticomplete to V3, it follows that B ⊆ V1 ∪ V2 or B ⊆ V2 ∪ V3. Moreover,
as A ∩ V1 6= ∅, it follows from the definition of a proper W-join that B 6⊆ V3. We now prove
that B ⊆ V1 ∪ V2.

For contradiction, assume that B ∩ V3 6= ∅ and thus B ∩ V2 6= ∅. As M is complete
to A and B and A ∪ B has a nonempty intersection with each of V1, V2, V3, it follows
from the definition of a disconnected partition that M ⊆ V2. Similarly, we derive that

B. Martin, D. Paulusma, and E. J. van Leeuwen 61:11

Q ⊆ V2 ∪ V3; recall also that P ⊆ V1 ∪ V2. Suppose V1 \A 6= ∅. Then V1 \A, V2 ∪A, V3, V4 is
also a disconnected partition of G, contradicting our choice of the disconnected partition
V1, V2, V3, V4. Hence, V1 \ A = ∅ and thus, V1 ⊆ A. Then P ⊆ V2. By the definition
of a W-join, any path of length 2 from a vertex in R to a vertex in A must intersect
P or M . As M ∪ P ⊆ V2 and V4 is anticomplete to V2, we obtain R ∩ V4 = ∅. Since
A ∪B ∪ P ∪M ∪Q ∪R = V (G) and none of A,B, P,M,Q,R intersects V4, it follows that
V4 = ∅, a contradiction.

We may thus assume that B ⊆ V1 ∪ V2. First, assume that there exist adjacent vertices
a ∈ A and b ∈ B such that |V1 ∩ {a, b}| = 1 (and thus |V2 ∩ {a, b}| = 1). Then V1 \ ((A ∪
B) \ {a, b}), V2 \ ((A∪B) \ {a, b}) is a disconnected partition of Gab. Hence, we may assume
that no such two vertices exist. It follows that neither B ⊆ V1 nor B ⊆ V2; otherwise, such a
and b would exist by the definition of a proper W-join. Then we may conclude that (A,B)
is partitionable with sets A ∩ V1, A ∩ V2, B ∩ V1, B ∩ V2. Since (A,B) is unshatterable, it
follows from Lemma 15 that G[A ∪B] is isomorphic to C4. Hence, |A| = |B| = 2 and V1, V2
each contain exactly one vertex of A and exactly one vertex of B. Since G is not cobipartite
and G is connected (as G has diameter 2), it follows that one of P,M,Q is non-empty.
However, each vertex in P ∪M ∪Q is adjacent to a vertex of V1 and a vertex of V2. Hence,
P ∪M ∪Q ⊆ V1 ∪ V2. Without loss of generality, (P ∪M ∪Q) ∩ V1 6= ∅. Let a be the single
vertex of A ∩ V2 and let b be the single vertex of B ∩ V2. Then V1 \ (A ∪B), V2, V3, V4 is a
disconnected partition of Gab. The lemma follows. J

In Section 5.2 we will show that by iterating the above lemma, we can remove all W-
joins from an input claw-free graph of diameter 2. However, to this end, it is crucial to
have a polynomial-time algorithm that actually finds an unshatterable proper W-join (if it
exists). Our algorithm for this problem relies on the O(n2m)-time algorithm by King and
Reed [25] to find a proper W-join (A,B). We test in linear time whether the proper W-join
is partitionable by considering the graph H obtained from G[A ∪B] by removing all edges
with both endpoints in A or in B. We argue that we can recurse on a smaller proper W-join
if H has two or more connected components, and that (A,B) is unshatterable otherwise.

I Lemma 18 (proof omitted). Let G be a graph with distinct neighbourhoods. Then in
O(n2m) time, we can find an unshatterable proper W-join in G, or report that G has no
proper W-join.

5.2 Structure of Claw-Free Graphs and Solving Disconnected Cut
Before our main result we first show a decomposition of claw-free graphs of diameter 2.

I Theorem 19. Every claw-free graph G of diameter 2 with distinct neighbourhoods, no
W-joins, α(G) > 3, and |V (G)| > 13 is a proper circular-arc graph or a line graph.

Proof Sketch. One of the algorithmic structure theorems for claw-free graphs by Hermelin
et al. [19, Theorem 6.8] (see also [20]) essentially shows that a claw-free graph that satisfies
the assumptions of the theorem is almost a line graph, but certain vertices of this line graph
are replaced with large structures called stripes. A stripe is basically an induced subgraph of
the graph with one or two specially marked ‘ends’. These ends are cliques, contain the only
vertices that are incident with edges that connect the stripe with the rest of the graph, and
for each end its neighbourhood outside the stripe is a clique. Using the fact that the diameter
is 2, we argue that if a stripe contains a vertex x that is not in an end of the stripe, then
every vertex of G must be in the stripe or in the neighbourhood of its ends. This enables
us to prove the main claim in the theorem, which is that the stripe is essentially the whole

ESA 2018

61:12 Disconnected Cuts in Claw-free Graphs

graph if it has such a vertex x. After proving the claim, it suffices to consider the different
cases in the structural theorem and prove that, by using the claim and the assumptions of
the theorem, G must be a proper circular-arc graph or a line graph. J

I Theorem 20. Disconnected Cut is O(n3m)-time solvable for claw-free graphs.

Proof. Let G be a connected claw-free graph on n vertices and m edges. We will either
find a disconnected cut or conclude that G has no disconnected cut. Assume n ≥ 14. We
compute the diameter of G in O(n2) time. By Lemma 1, G has no disconnected cut if its
diameter is 1 and has a disconnected cut if its diameter is at least 3. Assume the diameter of
G is 2. We check if α(G) ≤ 3 in O(n(m+ n logn)) time [11]. If so, then we decide if G has a
disconnected cut in O(n3) time by Lemma 7. Assume α(G) > 3. Hence, G is not cobipartite.

Next, we check whether G contains a vertex u for which there exists a vertex v such
that N(u) \ {v} ⊆ N(v) \ {u}. This takes O(n3) time. If so, then we remove u from G (and
restart the algorithm with the resulting graph, which is still connected and claw-free). This
is correct by Lemma 5. Hence, we may assume that G has distinct neighbourhoods.

Then, we get rid of all W-joins in G. Since G has distinct neighbourhoods, it follows from
Lemma 14 that every W-join in G is a proper W-join. Using Lemma 18, in O(n2m) time, we
can find an unshatterable W-join in G or correctly decide that G does not admit a proper
W-join (and thus no W-join). In the former case, we apply Lemma 17 to the unshatterable
proper W-join (A,B) that is found. This takes linear time. We then restart the algorithm
on the graph Gab found by Lemma 17 (note that Gab is still connected and claw-free). Since
|A|+ |B| ≥ 3, |V (Gab)| < |V (G)| and thus we can recurse at most n times. Hence, we may
assume that G admits no W-joins.

Next, we check if G is a circular-arc graph in linear time by Lemma 8. If so, then we
apply Theorem 10 to decide if G has a disconnected cut in O(n2) time. Hence, we may
assume that G is not (proper) circular-arc. By Theorem 19 this means that G is a line graph.
Hence, we apply Theorem 13 to decide whether G admits a disconnected cut in O(n4) time.
This finishes the description of the algorithm. The running time is clearly O(n3m). J

Recall from [15, 22] that C4-Contractibility and C4-Compaction are equivalent to
Disconnected Cut on graphs of diameter 2. We combine these claims with Theorem 19.

I Corollary 21. C4-Contractibility and C4-Compaction are O(n3m)-time solvable for
claw-free graphs of diameter 2.

6 Open Problems

In light of Corollary 21 we ask about the complexities of C4-Contractibility and C4-
Compaction for claw-free graphs of diameter at least 3. We note that the NP-complete
problem P4-Contractibility [3] is polynomial-time solvable for claw-free graphs [14].

It is not known if there exists a graph H for which H-Compaction and Surjective
H-Colouring have a different complexity. If we impose restrictions on the input graph, such
a graph H is known: C4-Compaction is NP-complete for graphs of diameter 3 [29], whereas
Surjective C4-Colouring (being equivalent to Disconnected Cut) is trivial on this
graph class. In contrast to claw-free graphs, graphs of diameter 3 do not form a hereditary
graph class, that is, they are not closed under vertex deletion. This leads to the natural
question if there exist a hereditary graph class G and a graph H, such that H-Compaction
and Surjective H-Colouring have different complexity when restricted to G. Should

B. Martin, D. Paulusma, and E. J. van Leeuwen 61:13

C4-Compaction turn out to be NP-complete for claw-free graphs, then due Theorem 19 and
the equivalency between Disconnected Cut and Surjective H-Colouring we can take
the class of claw-free graphs as G and the graph C4 as H to find such a pair (G, H).

We also ask what the complexity of Disconnected Cut is for K4-free graphs; as shown
in the full version of our paper, the K4 is the only 4-vertex graph H for which this is still open.

References
1 Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homo-

morphism problems - a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012.
2 Flavia Bonomo, Gianpaolo Oriolo, and Claudia Snels. Minimum weighted clique cover

on strip-composed perfect graphs. In Proc. WG 2012, volume 7551 of Lecture Notes in
Computer Science, pages 22–33, 2012.

3 Andries E. Brouwer and Henk Jan Veldman. Contractibility and NP-completeness. Journal
of Graph Theory, 11(1):71–79, 1987.

4 Danny Z. Chen, D. T. Lee, R. Sridhar, and Chandra N. Sekharan. Solving the all-pair
shortest path query problem on interval and circular-arc graphs. Networks, 31(4):249–258,
1998.

5 Maria Chudnovsky and Paul D. Seymour. The structure of claw-free graphs, volume 327 of
London Mathematical Society Lecture Note Series, pages 153–171. Cambridge University
Press, 2005.

6 Kathryn Cook, Simone Dantas, Elaine M. Eschen, Luérbio Faria, Celina M. H.
de Figueiredo, and Sulamita Klein. 2K2 vertex-set partition into nonempty parts. Dis-
crete Mathematics, 310(6-7):1259–1264, 2010.

7 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. A
polynomial algorithm for 3-compatible coloring and the stubborn list partition problem
(the stubborn problem is stubborn no more). SIAM Journal on Computing, 41(4):815–828,
2012.

8 Simone Dantas, Celina M. H. de Figueiredo, Sylvain Gravier, and Sulamita Klein. Finding
H-partitions efficiently. RAIRO - Theoretical Informatics and Applications, 39(1):133–144,
2005.

9 Simone Dantas, Frédéric Maffray, and Ana Silva. 2K2-partition of some classes of graphs.
Discrete Applied Mathematics, 160(18):2662–2668, 2012.

10 Celina M. H. de Figueiredo. The P versus NP-complete dichotomy of some challenging
problems in graph theory. Discrete Applied Mathematics, 160(18):2681–2693, 2012.

11 Yuri Faenza, Gianpaolo Oriolo, and Gautier Stauffer. Solving the weighted stable set
problem in claw-free graphs via decomposition. Journal of the ACM, 61(4):20:1–20:41,
2014.

12 Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of Combin-
atorial Theory, Series B, 72(2):236–250, 1998.

13 Tomás Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List partitions. SIAM
Journal on Discrete Mathematics, 16(3):449–478, 2003.

14 Jirí Fiala, Marcin Kaminski, and Daniël Paulusma. A note on contracting claw-free graphs.
Discrete Mathematics & Theoretical Computer Science, 15(2):223–232, 2013.

15 Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering graphs
with few complete bipartite subgraphs. Theoretical Computer Science, 410(21-23):2045–
2053, 2009.

16 Petr A. Golovach, Matthew Johnson, Barnaby Martin, Daniël Paulusma, and Anthony
Stewart. Surjective H-colouring: New hardness results. Computability, to appear.

17 Frank Harary. Graph Theory. Reading MA, 1969.

ESA 2018

61:14 Disconnected Cuts in Claw-free Graphs

18 Pavol Hell. Graph partitions with prescribed patterns. European Journal of Combinatorics,
35:335–353, 2014.

19 Danny Hermelin, Matthias Mnich, Erik Jan van Leeuwen, and Gerhard J. Woeginger. Dom-
ination when the stars are out. CoRR, abs/1012.0012, 2010.

20 Danny Hermelin, Matthias Mnich, Erik Jan van Leeuwen, and Gerhard J. Woeginger. Dom-
ination when the stars are out. In Proc. ICALP 2011, volume 6755 of Lecture Notes in
Computer Science, pages 462–473, 2011.

21 Takehiro Ito, Marcin Kaminski, Daniël Paulusma, and Dimitrios M. Thilikos. On discon-
nected cuts and separators. Discrete Applied Mathematics, 159(13):1345–1351, 2011.

22 Takehiro Ito, Marcin Kaminski, Daniël Paulusma, and Dimitrios M. Thilikos. Parameteriz-
ing cut sets in a graph by the number of their components. Theoretical Computer Science,
412(45):6340–6350, 2011.

23 Marcin Kaminski, Daniël Paulusma, Anthony Stewart, and Dimitrios M. Thilikos. Minimal
disconnected cuts in planar graphs. Networks, 68(4):250–259, 2016.

24 Andrew D. King. Claw-free graphs and two conjectures on ω, ∆, and χ. PhD thesis,
University, Montreal, Canada, 2009.

25 Andrew D. King and Bruce A. Reed. Bounding χ in terms of ω and δ for quasi-line graphs.
Journal of Graph Theory, 59:215–228, 2008.

26 Barnaby Martin and Daniël Paulusma. The computational complexity of disconnected cut
and 2K2-partition. Journal of Combinatorial Theory, Series B, 111:17–37, 2015 (conference
version Proc. CP 2011, LNCS 6876, 561–575).

27 Ross M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, 37(2):93–
147, 2003.

28 Rafael B. Teixeira, Simone Dantas, and Celina M. H. de Figueiredo. The external constraint
4 nonempty part sandwich problem. Discrete Applied Mathematics, 159(7):661–673, 2011.

29 Narayan Vikas. Computational complexity of compaction to reflexive cycles. SIAM Journal
on Computing, 32(1):253–280, 2002.

30 Narayan Vikas. Algorithms for partition of some class of graphs under compaction and
vertex-compaction. Algorithmica, 67(2):180–206, 2013 (conference version Proc. COCOON
2011, LNCS 6842, 319–330).

Practical Low-Dimensional Halfspace Range
Space Sampling
Michael Matheny
University of Utah, USA

Jeff M. Phillips1

University of Utah, USA

Abstract
We develop, analyze, implement, and compare new algorithms for creating ε-samples of range
spaces defined by halfspaces which have size sub-quadratic in 1/ε, and have runtime linear in
the input size and near-quadratic in 1/ε. The key to our solution is an efficient construction of
partition trees. Despite not requiring any techniques developed after the early 1990s, apparently
such a result was never explicitly described. We demonstrate that our implementations, including
new implementations of several variants of partition trees, do indeed run in time linear in the
input, appear to run linear in output size, and observe smaller error for the same size sample
compared to the ubiquitous random sample (which requires size quadratic in 1/ε). This result
has direct applications in speeding up discrepancy evaluation, approximate range counting, and
spatial anomaly detection.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Partitions, Range Spaces, Sampling, Halfspaces

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.62

1 Introduction

Taming the relationship between a point set X ⊂ Rd and its interaction with halfspaces
Hd, has long been a focus of computational geometry. Understanding and controlling this
interaction is at the heart of problems in range searching, linear classification, coresets, and
spatial anomaly detection. This pair (X,Hd) describes a range space, the combinatorial set
of all subsets of X defined by h∩X for any halfspace h ∈ Hd. In this paper we focus on two
specific and closely-interrelated (as it turns out) constructions for (X,Hd): ε-samples and
partitions, defined next.

An ε-sample Y ⊂ X of (X,Hd) is a small point set that approximately preserves density
with respect to halfspaces: for all h ∈ Hd, and error parameter ε ∈ (0, 1) it bounds

Error(X,Y) = max
h∈Hd

∣∣∣∣ |Y ∩ h||Y |
− |X ∩ h|
|X|

∣∣∣∣ ≤ ε.
It is known that ε-samples of size Θ(1/ε2d/(d+1)) exist for halfspaces [3], and in general

this size may be required [21]. For many years (c.f., [22, 8]) such proofs were not constructive,
as they relied on the “partial coloring lemma”; until in 2010 when Bansal [5] introduced a poly-
nomial time construction. The runtime of the low-discrepancy coloring on m points was later
reduced [16] to O(m3(d+1)polylog(m)), this within the standard merge-reduce framework [10]
results in a O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) runtime for sample construction– which is

1 Thanks to supported by NSF CCF-1350888, IIS-1251019, ACI-1443046, CNS-1514520, and CNS-1564287.

© Michael Matheny and Jeff M. Phillips;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 62; pp. 62:1–62:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 Range Space Sampling

still not very efficient. For instance for d = 2, this requires O(n(1/ε)10+2/3polylog(1/ε))
time. A random sample, which can be generated in O(n + 1/ε2) time, is an ε-sample of
size O(1

ε2 (d+ log 1
δ)) with probability at least 1− δ [27, 15]. The above discrepancy-based

algorithm can be run on the output of this sample to get optimal size, but it only reduces the
overall runtime of the ε-sample construction to O(n+ (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)).

There are other constructions for ε-samples, which either focus on small space (to work in
a stream) [26, 4] or have better performance in practice without size guarantees below that
of random sampling [2]. As with the optimal algorithms, these require the enumeration of all
combinatorial halfspaces associated with a set of size roughly the size of the final ε-sample,
requiring at least Ω((1/ε2d/(d+1))d) time. Indeed Suri et al. [26] concludes with: “The high
computational complexity of the currently known algorithms for these subroutines may be
prohibitive for data stream applications. It is a long standing open problem to find efficient
exact or approximation algorithms for either of them.”

A partition of (X,Hd) is a set of pairs {(∆1, X1), (∆2, X2), . . .} where each ∆i is a small
complexity region and contains Xi ⊂ X, and X is the disjoint union of the Xis. It is a (t, z)-
partition when there are O(t) pairs, |Xi| ≤ 2n/t; and each h ∈ Hd crosses O(tz) cells. The
smallest possible guarantee for z is z = (1− 1/d), and an algorithm for such a construction
was provided by Matoušek [20], that takes O(n log t) time after O(n1+η) preprocessing time
for any η > 0. Chan provided a refined algorithm which takes O(n log t) time, and has a few
nicer structural properties. There are other algorithms which generate (t, z)-partitions for
large values of z. For instance in R2 Edelsbrunner and Welzl [11] describe an algorithm with
z = 0.695 and a structure similar to a kd-tree leads to a size of z = log4(3) ≤ 0.7925 [29].

Our results. In this paper, we use partition construction algorithms to efficiently create
ε-samples for (X,Hd). Our algorithm takes O(n+ 1

ε2 log 1
ε) time and produces an ε-sample

of size O((1/ε)2d/(d+1) logd/(d+1)(1/ε)), nearly matching the Ω(1/ε2d/(d+1)) lower bound.
We also implement several variants of these algorithms in R2. We know of no other

implementation of ε-sample construction for (X,H2) which is guaranteed to get subquadratic
size in 1/ε. We know of no implementations of optimal partitions, although Har-Peled [13]
has implemented a related concept called a cutting, which (as we will explain) is a key
ingredient for creating partitions. We choose to build our own implementation of cuttings,
and explain why we did not use Har-Peled’s in Section 4.

We are able to demonstrate that our algorithm indeed scales linearly in n, scales linearly
in the output size, and produces ε-samples with less measured error than random samples.

Our initial goal in fast ε-sample construction comes from finding approximately maximal
ranges in range spaces, as part of a large-scale spatial anomaly detection framework [18, 17].
At a high level, these algorithms follow two phases: (1) create an ε-sample S, (2) use S to
find an approximately maximal range. The second step takes O(|S|/ε) or O(|S|/ε2), so it is
only worth using a smaller ε-sample of size roughly 1/ε4/3 if it takes less than 1/ε2+1/3 or
1/ε3+1/3 time to create. We show this is the case in theory, and in practice. Similar overall
runtime gains exist when using S for classification, or approximate range counting, or other
tasks where the use of S is more expensive than the new construction time.

2 Overview and Proof for Fast ε-Samples

The key to our construction of an ε-sample S for a range space (X,Hd) is to first create
a partition over (X,Hd). Given such a partition algorithm, our algorithm constructs an
ε-sample as follows. Randomly sample Y ⊂ X, construct the partition ∆ = {(∆1, Y1), . . . , }
on Y , and return a single point at random from each Yi weighted by |Yi|.

M. Matheny and J. M. Phillips 62:3

I Theorem 1. For range space (X,Hd) with |X| = n and constant d, with constant probability
an ε-sample S of size O(1

ε2d/(d+1) logd/(d+1) 1
ε) can be constructed in O(n+ 1

ε2 log 1
ε) time.

Proof. Take a random uniform sample Y ⊂ X of size s = O(1
ε2

1
) then Y is an ε1-sample of

(X,Hd) with constant probability. Next we build a (t, 1− 1/d)-partition on Y in O(s log t)
time [7]; this results in a set of O(t) partitions of Y each containing at most 2s/t points such
that any halfspace in Hd will only cross O(t1−1/d) of them. From each partition (∆, Yi) we
will choose a single point yi at random to put in our result S, and weight it proportional to
the number of points in the partition.

In our construction any partition contained completely inside a halfspace or outside does
not contribute to the error of the sample. Only regions crossing the boundary of the halfspace
h contribute to the error. The error in each boundary region is an independent bounded
random variable Vi with value in the range [0, 2 st]. There are at most k = c · t1−1/d boundary
regions for some constant c, so we can apply Hoeffding’s inequality, with failure probability δ

Pr[|V − E[V]| ≥ sε2] ≤ 2 exp
(
− 2s2ε2

2

ct1−1/d · 4 s2

t2

)
= 2 exp

(
−ε

2
2t

1+1/d

2c

)
≤ δ.

Rearranging the last inequality, gives that with t ≥ (2c
ε2

2
ln 2

δ)d/(d+1), for any one halfspace h,
|V − E[V]| is more than sε2 with probability at most δ.

There are O(sd) = O(1/ε2d
1) halfspaces in (Y,H2), so setting δ = c2ε

2d
1 for some constant

c2, and the additivity property of ε-approximations [8], gives an (ε1 + ε2)-approximation

of size t ≥
(

4dc
ε2

2
ln 2

c2ε1

)d/(d+1)
with constant probability. By setting ε1 = ε2 = ε

2 the total

error is ε1 + ε2 = ε and the size of the ε-sample is O
(

1
ε2d/(d+1) logd/(d+1) (1

ε

))
for constant d.

Creating Y takes O(n+ 1
ε2) time, the partition tree construction takes O(1

ε2 log 1
ε) time since

t = O(poly(1
ε)), and the re-weighting and sampling step takes O(1

ε2) time. In total therefore
the entire algorithm takes O(n+ 1

ε2 log 1
ε) time. J

The same proof technique will work with other (t, z)-partitions in place of Chan’s [7]. In
general, for z < 1, a scheme that generates a (t, z)-partition of t cells where any halfspace
crosses at most O(tz) of the cells results in an ε-sample of size O(1

ε2/(2−z) log1/(2−z) 1
ε).

For instance in R2, Edelsbrunner and Welzl’s z = 0.695 result [11] in an ε-sample of size
O(1

ε1.532 log0.766(1
ε)). Alternatively, Willards z = 0.7925 result in R2 [29] results in an

ε-sample size of O(1
ε1.657 log0.829(1

ε)).

3 Overview of Algorithms for Constructing the Partition

Random sampling, and sampling a point from each cell of a partition is straight-forward;
the challenge in our implementation of Theorem 1 is the creation of a partition. In this
section we describe the key components of the two prominent optimal size (z = 1 − 1/d)
algorithms: Matoušek’s efficient partitioning [20] (ComputePartition-Mat) and Chan’s Optimal
partitioning [7] (ComputePartition-Chan).

These algorithms rely on a related object called a cutting, defined over Rd and a set of m
hyperplanes H. For a parameter r < m, a (1/r)-cutting is a decomposition of Rd into O(rd)
cells Λ = {Λ1,Λ2, . . .}, so no cell is crossed by more than O(m/r) hyperplanes in H. Such
cuttings exist and can be computed in O(mrd−1) time [9, 19].

Cuttings are almost enough to compute partitions. A set of n points in Rd induces m =
O(nd) combinatorially distinct halfspaces H. Letting r = t1/d, the total number of crossings
will be O(rd ·m/r) = O(mrd−1), so the average per region will be O(rd−1) = O(t1−1/d). Also,

ESA 2018

62:4 Range Space Sampling

ignoring dependences, the average cell contains O(n/rd) = O(n/t) points, as desired. The
main challenge is ensuring that these average properties of the cutting map to the specific
properties required for the partition. In short, we can create an appropriate cutting, detect
where it does not satisfy the partition properties, and then amend it so it does.

We specifically focus our implementations in the d = 2 setting, which for instance is
enough for our original application of spatial anomaly detection we mentioned previously [17],
even in higher dimensions. Our implementations are similar to the existing implementation of
cuttings by Har-Peled [13], but adds several features which will aid in computing the partition.
Our cutting implementation builds a cutting by iteratively adding lines in a random order
while keeping track of the number of lines crossing each cell in an arrangement. From a
practical point of view, it is important to force the cells of the partition to be constant size.
We have focused on two methods for this, a vertical trapezoidal decomposition (Trapezoid),
or a hierarchy of constant size polygons (PolyTree).

Constructing a (1/r)-cutting over the entire set of O(nd) halfspaces would lead to a
runtime of O(ndrd−1) which would be prohibitively slow. Instead of using the full set of
halfspaces a smaller set (a test set) can be constructed, such that the number of partitions
crossed by any halfspace in this test set will not be too different from the full set Hd.

In particular, an (1/r)-test set is a set of halfspaces H which applies to any partition
∆ = {(∆1, X1), (∆2, X2), . . .} and point set X of size n so |Xi| ≥ n/r for all (∆i, Xi) ∈ ∆.
It ensures that if κ = maxh∈H |h ∩∆|, then maxh∈Hd

|h ∩∆| ≤ O(κ+ r1−1/d). Here h ∩∆
is the set of (∆i, Xi) ∈ ∆ for which ∆i intersects h, but do not completely contain h. Test
sets can be built a number of ways, including randomly sampling lines, randomly sampling
points and using the lines they induce, and using the dual arrangement.

4 Implementation Particulars of Partitions

Our implementation of Partition trees is in python. It relies on an efficient way to construct
and maintain an arrangement of lines and associated points. At each step of the construction
we will maintain a tree with leaves that correspond to cells ∆1,∆2, . . . of an arrangement.
Each cell will maintain a list of contained points Xi ∈ ∆i and crossing lines.

As part of the construction so the result is a (t, 1 − 1/d)-partition ∆, with desired t

parameter, cells can be refined by applying various operations to them. For instance a
cutting can be constructed locally inside of a cell ∆i, or a cell can be partitioned into a set
of sub-cells.

Geometric Primitives. All of our algorithms rely on operations over line segments. The
most important operation is being able to test, within a region ∆, if a line lies completely
above a line segment or if it crosses a line segment. This fairly simple operation is slightly
complicated by numerical issues that can occur. For instance when constructing a test
set using the BuildTestSet-Points or BuildTestSet-Dual method (see below) many lines will
potentially meet at the same point. Line segments that meet in this point could be mistaken
as crossing. To handle numerical issues we use python’s implementation of math.isclose to
handle point comparisons. This method allows us to assign two floating point numbers as
equal if their relative values are sufficiently close [6]. Moreover, all methods that compare
line segments have closed and open versions where closed versions allow end-point overlap
and open versions do not. The method segment.above_closed(line) returns true if the
line intersects with the segment at one the segment’s end points, but is otherwise above the
segment, while segment.above_open(line) returns false in this case. This allows us in our
experiments to effectively handle degeneracies while avoiding slower exact precision libraries.

M. Matheny and J. M. Phillips 62:5

Internally our segment objects are represented by the slope, a, the y-intercept, b, and
the [xl, xr] interval on the x-axis the segment is defined over. This representation makes
many operations easy, but also results in several challenges, most notably: vertical lines
are undefined, unbounded segments (e.g., (−∞, xr]) require extra logic to handle crossing
queries, lines which are nearly vertical can become numerically unstable, and the dual of
unbounded polygons require significant extra logic to handle correctly. However, we have
implemented stable functions for intersect and above relations for pairs of segments in a cell.

Using line segments and points as the primitives we also define more complicated structures
notably: polygons, dual wedges, vertical line segments, and trapezoids.

PolyTrees. There are a number of ways to maintain the structure of an arrangement. A
common method is to store each cell with a corresponding list of pointers to adjacent cells.
Inserting a line involves finding the leftmost crossing cell, identifying the next adjacent cell
the line crosses, splitting the crossed cell into an upper and lower cell, and then repeating
this operation for each crossed cell.

This has a number of downsides: there are special cases if a line crosses a vertex of a cell,
inserting points into the arrangement requires the maintenance of a secondary structure, and
cells require a significant amount of adjacency information that must be maintained. Instead
of maintaining this structure we use the idea of forcing each cell to be simple, and follow
certain restrictions, as introduced by Seidel [25] and refined by Har-Peled [13].

In particular, we either maintain a decomposition into constant complexity polygons
(polygons with a constant number of boundary segments) or a trapezoidal decomposition.
In both cases we maintain a tree where each node in the tree consists of a line segment
that separates a cell into two cells. With trapezoids an inserted line could in some cases
divide a trapezoid vertically into 2 separate trapezoids and then horizontally into 4 separate
trapezoids. In the case of polygons the inserted line would split the polygon into two separate
polygons which could possibly be further split if the number of sides in either of the resulting
polygons is greater than a chosen constant. We also enforce that no vertical segments are
used to avoid limitations of our line segment representation.

Given a line h and a decomposition Λ = {Λ1,Λ2, . . .}, the zone of h is the set of regions
Λi that intersect h; we represent this as Zoneh = Λ ∩ h. To find the zone of a line in this
structure at each node we treat the line as an infinite length segment and then traverse
the line down the tree. At each node we will have three cases where the portion of the line
contained in the node lies completely either above or below, or crosses the current node’s line
segment. In the completely above or below case we merely traverse to the above or below
child of the node. In the crossing case we split the portion of the line contained in the node
into two segments, above and below, and recursively query the above and below nodes. Point
information is easy to maintain with this method since a point always lies on one side of the
line segment, so the tree structure can be used to insert or remove points in logarithmic time
to the number of cells.

More complicated structures can also be queried on these trees, most notably wedges and
polygons. Wedge queries are particularly useful in ComputePartition-Chan since a wedge is
the dual of a line segment, so the number of points contained in a wedge corresponds in the
dual to the number of lines crossing a line segment.

Cuttings. Our cutting algorithm CreateCutting(H, r) (Algorithm 1) follows closely Al-
gorithm 1, from Har-Peled [13]. We implement the cutting with respect to weighted lines
as this speeds up and somewhat simplifies the later partitioning algorithms. We require a

ESA 2018

62:6 Range Space Sampling

Algorithm 1 CreateCutting(H, r).
1: Λ = R2

2: for h ∈ H (ordered by a random weighted permutation) do
3: Find Viol(h,Λ) = {Λi ∈ Zoneh(Λ) | |H ∩ Λi| > |H|/r}.
4: For all Λi ∈ Viol(h,Λ), replace Λi in Λ by split(Λi, h)
5: return Λ

Algorithm 2 BuildTestSet-Dual (X, r).
1: S = sample(X,O(

√
r log r)); S∗ is dual of S.

2: Λ← CreateCutting(S∗, O(r1/2))
3: return the dual of V ∗, where V is the set of vertices of the cells of Λ.

weighted permutation of lines using [12]; this ensures that the probability we see a line after
some point in the permutation is equivalent to the probability we would have seen at least
one instance after seeing that many distinct lines in a variant where weights are multiplicities
(as advocated by Chan [7]), and each copy is treated independently in a uniform random
permutation. For notational convenience, for a subset H ′ ⊆ H, let |H ′| =

∑
h∈H′ w(h),

where w(h) is the weight implicitly stored with each halfspace h ∈ H.
In practice, we implement CreateCutting(H, r) slightly differently then described in Al-

gorithm 1. Instead of choosing the h ∈ H to process in the random weighted permutation,
our approach is centered around the violated cells. We choose a cell Λi ∈ Λ which is too
heavy (i.e., |H ∩ Λi| > |H|/r), and then choose some halfspace h ∈ Λi ∩H, and only replace
Λi (not the entire Zoneh) with the result of the split(Λi, h), which divides Λi into two parts
separated by h. This change has two advantages. First we do not need to find the Zoneh(Λ)
which involves traversing the PolyTree, so our approach is slightly faster. Second, we can
choose the h ∈ Λi ∩H to use in the split wisely; e.g., as the one that maximizes the smaller
of the two resulting cells. We find the second heuristic produces slightly smaller cuttings in
practice, but is significantly slower, and is not used in our experiments.

How split(Λi, h) is implemented is the difference between the Trapezoid-based cutting and
the Polygon-based cutting we refer to as PolyTree.

For the Trapezoid-based method each cell ∆ is a trapezoid to begin with. The split
operation first inserts up to two new vertical cuts for each intersection of the line with the
top or bottom of the cell and then horizontally cuts the resulting cells using the inserted
line. For PolyTree, the first important detail is that we store H ∩ Λi as the line segments
restricted to where they intersect Λi.

On a split, we need to maintain which halfspaces h ∈ Λi ∩ H are in each child; if
h′ ∈ Λi ∩H intersects both children, then we split h′ into two line segments at the point
where it intersects h, and store the corresponding segment in each child. If h′ ∈ Λi ∩H is in
only one child, because we store them as segments it is easy to check which child it goes into.

Both of these algorithms are then fairly straightforward to implement once given structures
for efficiently maintaining arrangements of line segments.

We find that PolyTree is faster and produces a smaller cutting than Trapezoid-based ones;
see Figure 1 and Figure 2 which show the runtime and cutting size as a function of input
size and choice of r. For this reason we will primarily focus on PolyTree hereafter.

Test Set Generation. There are a number of ways to generate test sets (BuildTestSet-Dual,
BuildTestSet-Points, BuildTestSet-Lines), but these do not appear to have a significant effect
on the runtime of the final algorithms; again see Figure 1 and Figure 2 for comparisons

M. Matheny and J. M. Phillips 62:7

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Lines

4

6

8

10

12

14

16

18

20
C

u
tt

in
g
 C

o
n
st

a
n
t

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Lines

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
 (

se
c)

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

Figure 1 Size of cutting (divided by r2) and time (in seconds) vs. the number of input lines.

0 5 10 15 20 25 30 35
r

4

6

8

10

12

14

16

18

20

22

C
u
tt

in
g
 C

o
n
st

a
n
t

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

0 5 10 15 20 25 30 35
r

0

1

2

3

4

5

6

7

8

9
T
im

e
 (

se
c)

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

Figure 2 Size of cutting (divided by r2) and time (in seconds) as r increases for 1000 input lines.

of the PolyTree and Trapezoid methods. The simplest method, BuildTestSet-Lines, simply
samples O(r logd n) halfplanes, from those defined by passing through d points in X. The
next simplest, BuildTestSet-Points, samples O(r1/d logn) points S, and then the test set is
all halfplanes passing through d-tuples chosen from S; it again defines O(r logd n) halfplanes.
Finally the most complicated approach is BuildTestSet-Dual (see Algorithm 2); it produces the
smallest size test set, size O(r) [20], and thus is the one we advocate. It samples O(r1/d log r)
points S ⊂ X; it considers the dual set of halfplanes S∗ of primal points S; it creates a
(1/r1/d)-cutting of S∗ (in the dual); and then it returns the primal halfspaces defined by the
vertices of the cutting in the dual. Each halfspace h in the test set H is implicitly endowed
with a weight w(h), which by default is w(h) = 1 for all h ∈ H.

Matoušek Partitioning. We have implemented Matoušek’s efficient partition trees [20].
At a high level this algorithm computes the cutting of a test set and then finds a single
good cell that contain at least n/b points (for a constant b, we use b = 16 as default). It
adds this cell to the partition, doubles the weight of all halfspaces in the test set crossing
that cell, computes a new cutting and good cell. It repeats until the number of points
remaining has been cut by half, and then it recurses on the remained of the points at half
the precision (e.g., set b := 1/2b). This is too expensive to do with b = r, so after this we
then recursively partition each cell (∆i, Xi) until the result is an (1/r, 1 − 1/d)-partition

ESA 2018

62:8 Range Space Sampling

Algorithm 3 ComputePartition-Mat(X, r, n, j).
1: if (|X| < n/r) then return {(X,∆0)} where ∆0 contains X.
2: H ← BuildTestSet-x(X, b/2j)
3: ∆ = ∅
4: while (|X| ≥ n/2j) do
5: Λ← CreateCutting(H,

√
b/2j)

6: Find Λi ∈ Λ so |X ∩ Λi| > n/b; shrink Λi so |X ∩ Λi| = bn/bc exactly.
7: Add (Λi,Λi ∩X) to ∆; remove Λi ∩X from X

8: Double the weight h ∈ H which cross Λi
9: ∆′ =

⋃
(∆j ,Xj)∈∆ ComputePartition-Mat(Xj , r, n, j)

10: return ∆′ ∪ ComputePartition-Mat(X, r, n, j + 1)

Algorithm 4 ComputePartition-Chan(∆, r, n).
1: Trim to ∆′ = {(∆i, Xi) ∈ ∆ | |Xi| > n/r}; if ∆′ = ∅ return ∆
2: H = BuildTestSet-x(X, |∆|)
3: for (∆i, Xi) ∈ ∆′ do
4: Sample L ⊂ H, proportional to their weight w(h), at rate q
5: Λ = CreateCutting(L, ri); with ri chosen so |Λ| ≤ b/4
6: For all Λj ∈ Λ, further split Λj (with split) until |Xi ∩ Λj | ≤ |Xi|/b
7: Replace (∆i, Xi) in ∆ with {(Λ1,Λ1 ∩Xi), (Λ2,Λ2 ∩Xi), . . .}
8: Update all weights w(h) = w(h)(1 + 1/b)|h∩Λ̄i|/p.
9: return ComputePartition-Chan(∆, r, n)

as desired. The branching factor of the partition tree is not fixed on each level, but will
be roughly b on average. Algorithm 3 presents this approach, and is initially called as
ComputePartition-Mat(X, r, |X|, 0).

Note that Line 9 is the refinement step where each cell is further partitioned. Since the
first level is the most important for good ε-samples, faster algorithms could be used at later
recurve calls at this step. In contrast, the recursive call at Line 10 is handing objects not
handled in the first pass, where each pass handles roughly half of the data.

Chan Partitioning. Chan’s optimal partition trees [7] are faster in theory than Matoušek’s
algorithm, but are more complicated to implement. The algorithm works by processing each
node at a certain level in the tree in a random order. For each node it creates a cutting of
approximately b/4 size for an appropriately large branching parameter b (our implementation
uses b = 22 as a default). It then further splits the cells of the cutting to contain 1/b fraction
of points at that node. It multiplicatively updates weights for halfplanes that cross each cell.
This multiplicative update influences subsequent cuttings by biasing away from creating cells
that are crossed by already heavily weighted lines (lines that cross many cells). After splitting
all of the cells in this level of the tree the algorithm recurses on the newly created level. The
ultimate partition ∆ = {(∆1, X1), (∆2, X2), . . .} are the leaf nodes of the tree. Algorithm 4
presents this approach, calling ComputePartition-Chan({(R2, X)}, r, |X|) initially.

Implementing the algorithm as described is too slow asymptotically, so Chan presents a
faster variant, which requires two additional parameters p and q. Roughly q =

√
b|∆|/|X|

(see [7] for details) determines the probability that a line ends up in the reduced test set L.
The parameter p, about

√
b/|∆| logn (again, see [7] for details), effects the number of cells

Λi that are used to update the weight in each h (we sample each cells with probability p as

M. Matheny and J. M. Phillips 62:9

opposed to dividing by this number, as written on Line 8). Also, Line 4, where L is sampled
from H, can be made more efficient by only minimally updating L each pass through the
loop, since it generally has large weight lines and that set is fairly stable.

Near the bottom of the tree, Line 8 can be expensive. We make this efficient with a
crucial observation that the test set H was generated by computing a cutting over the dual
space. Thus these halfspaces are duals to the vertices of the PolyTree structure. Thus we can
search over the PolyTree to determine the number of crossing lines. A cell of the partitioning
is a polygon consisting of a constant number of line segments. A line crossing the polygon
will cross at least one of the line segments and in the dual this will correspond to a point
contained inside of a double wedge. For each line segment in the polygon we take its dual (a
double wedge) and query the PolyTree that was used to construct the test set to determine
the number of vertices contained inside of it. Since we only return the overlapped polygons
and each polygon consists of at most a constant number of edges, the number of queried cells
can only be a constant factor larger than the number of lines crossed by the line segment.

However, code profiling shows that the two steps involving sampling with p and q, and
updating L are the most expensive parts of the algorithm. As a result we also consider a
variant ComputePartition-Chan-Simple which avoids these sampling steps that were supposed
to speed things up. In the context of Algorithm 4 this basically sets p = q = 1, so L = H,
and Line 4 is not required.

The given algorithm is only guaranteed to compute a set of partitions in O(n logO(1) n)
time; incurring extra log factors due to the height of the partition tree. Chan removes log
factors with a method he calls bootstrapping. We do not do this since the branching factor is
high (around 22) so the depth of the tree is low, and this method is not worth the overhead.

In our implementation, we only compute the test set H once at the beginning. On each
recursive call (Line 9) we can reuse it, but simply reset all of the weights to be uniform.

Ham-Sandwich Tree. We also implement an alternative using Willard’s [29] Ham-Sandwich
Tree. It provides a partitioning with z = log3 4, which gives a O(1

ε1.657 log0.829 1
ε) sized sample,

and constructs a tree with a branching factor of 4. At each level we split the point set in half
with a single vertical line, and on these two resulting sets we find a single (roughly horizontal)
line that divides both the left and right point set in half. Such a separator is guaranteed by
the ham-sandwich theorem, and can be computed in linear time [24], but is complicated to
implement. We instead approximate the ham-sandwich cut by computing a number of test
lines and choosing the best separator from these. This is simple to implement, gives good
cuts in practice, and can guarantee to be at most ε-imbalanced [23].

Why not use Har-Peled’s implementation and CGAL? It may seem at first that we could
simply use Har-Peled’s implementation for ε-cuttings [13]. However, our initial goal was
to use this as part of a code for spatial anomaly detection [18, 17], and there were several
issues that made this less feasible. (1) We wanted to use non infinite precision floating point
arithmetic. Har-Peled reports that switching to exact precision representations results in a
30-factor slow down, but was necessary for degeneracy issues. We managed these precision
issues while using floating point arithmetic with careful use of open and closed operators
for line above/below and intersection. (2) We can measure wedges, and line segments on
the PolyTree structure which is very useful in ComputePartition-Chan. (3) Har-Peled’s code
created a cutting inside of a 1×1 box. This makes computing dual cuttings difficult as we first
have to normalize the lines to lie in such a region, but computing the correct normalization
quickly would require us to re-implement much of the PolyTree algorithm. Ultimately we
opted to build our ε-cutting code from scratch rather than modify the previous code.

ESA 2018

62:10 Range Space Sampling

5 10 15 20 25 30
b

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Chan
Chan Simple

5 10 15 20 25 30
b

0

1

2

3

4

5

6

7

8

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Chan
Chan Simple

Figure 3 The Branching Factor b vs. Time and Error using the default parameters.

Har-Peled [13] also reported the cutting constant (number of cells divided by r2) for
various of his algorithms, about 7.3 (polygons) and 12.8 (trapezoids). This roughly matches
the numbers we observe in Figure 1 and Figure 2.

Another option for computing cuttings and managing the partition trees is using the
current 2d-arrangement implementation in CGAL [28]. This would have most likely made
portions of this project much easier to implement and removed various hurdles. However,
the possibilities of several factor slow-downs using exact precision would have potentially
resulted in no ultimate gains in the spatial anomaly application demonstrated below.

5 Experiments on ε-Samples and Applications

In this section we explore the efficacy of our ε-sample algorithms based on partitions. We
use as X the Chicago crime data [1] with roughly 6.5 million data points.

A key step of the analysis is measuring the accuracy of the ε-sample. That is for a
sampled S we measure Error(X,Y) = maxh∈Hd

| |Y ∩h||Y | −
|X∩h|
|X| |, which unfortunately requires

|X|d+1 time to simply enumerate, which would be infeasible for large X. Instead we use
techniques [18, 2, 17] which provide guaranteed approximation of this function, designed
with spatial anomaly detection in mind. We have set the parameters large enough so the
noise in computing Error is insignificant compared to the quantities we are evaluating. We
evaluated the accuracy and efficiency of computing ε-samples with 8 different methods.

There are 3 algorithms based on sampling one element per cell from Matousek’s partition
algorithm with polygonal cells, using tests created by lines Mat Poly Lines, points Mat
Poly Points, or the dual approach Mat Poly Dual.
We consider 2 algorithms based on Chan’s partition algorithm Chan and Chan Simple.
Each uses polygonal cells and the dual approach for the test set since this specific type of
test set allowed for an optimization in the reweighting step. The Chan variant includes
subsampling among cells for purpose of reweighting, while the Chan Simple simply uses
all of these cells and does not require the sampling step which in practice was inefficient.
Then Ham Tree Sample draws samples from the cells of the Willards partitioning; these
are also cells of a partition, but with worse theoretical size-accuracy bounds.
Finally we consider two baselines: random sampling, Random Sample, and another
approach Biased-L2 [2] which is a greedy, but slow algorithm which has similar worst case
guarantees to random sampling, but achieves better error in practice.

M. Matheny and J. M. Phillips 62:11

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Input Size

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Input Size

0

1

2

3

4

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Figure 4 Input size vs. Time and Error using the default parameters.

500 1000 1500 2000
Output Size

10-2

10-1

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

500 1000 1500 2000
Output Size

0

2

4

6

8

10

12

14

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Figure 5 Output size vs. Time and Error using the default parameters.

In testing these algorithms we can control three parameters: the Branching Factor b, the
Input Size n (default n = 100,000 sampled from the crime data set), and the Output Size k
(default k = 1,000). We do not create a sample before creating the partition as analyzed in
Theorem 1; we just create the partition on the n points, then sample a point from each cell for
the ε-sample. The branching factor only effects ComputePartition-Mat (default b = 16) and
ComputePartition-Chan (default b = 22) and is constant for the execution of the algorithm.

Sample Evaluation Results. We do not plot Biased-L2 since it was quite slow as a function
of the Output Size. For k = 51 it required 360 seconds which was already more than a
factor 100× slower than any other algorithm, and became nearly intractable for k > 100.
We do note however that its measured Error on small k is competitive with the best of our
partitioning based methods.

Figure 3 shows how Branching Factor b affects the time and error. Matoušek-based
algorithms seem to gradually decrease in Error, but the trend is very small. For Chan Simple,
the Error encounters a phase shift at around b = 25, where the error suddenly becomes
significantly worse for larger b, probably as an effect of the data set size. The timing is
fairly unaffected by b for Chan-based algorithms, but increases noticeably and linearly for
the Matoušek based algorithms. We conclude that b = 22 is a good choice for Chan-based
algorithms and b = 16 is a good choice for Matoušek based algorithms.

Figure 4 shows the Input Size relationship to time and Error. As prescribed by the theory,
Input Size has no noticeable effect on Error. Moreover, also as expected the runtime of all
algorithms scale linearly with Input Size.

ESA 2018

62:12 Range Space Sampling

10 0.5 100.0 100.5 101.0 101.5 102.0

Time (sec)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Di
sc

re
pa

nc
y

Er
ro

r

Chan
Chan Simple
Mat Poly Points
Random Sample
Ham Tree Sample

Figure 6 Smooth Discrepancy Error vs. time.

Figure 5 plots the Output Size against the time and Error. As Output Size increases,
as expected the error for all methods decreases, note that Error is plotted on a log-scale.
The Ham Tree Sample and Mat Poly Lines achieve the smallest Error, with Ham Tree Sample
doing the best, and all proposed methods appear to improve upon the old default Random
Sample in terms of Error. In particular with Output Size k = 1000 both Mat Poly Points
and Ham Tree Sample have Error ≈ 0.01 while Random Sample has Error ≈ 0.04. For the
Matoušek-based partitioning algorithms, the choice of test set does not have much effect on
Error, and perform slightly worse than those based on Chan’s partitioning.

Moreover, as Output Size increases the observed run time of all algorithms increases at
most linearly. In some cases (e.g., Ham Tree Sample and Mat Poly Lines) the increase is
sublinear as these are hierarchical methods, and the largest cost is incurred at the top of the
hierarchy. Here as in other plots, we observe that Random Sample is absurdly faster than
any other approach. However, even for Output Size k = 1000, our methods Ham Tree Sample,
Chan Simple, and Mat Poly Points take only about 1, 2.5, and 4 seconds, respectively.

Spatial Anomaly Detection Evaluation. As a concrete demonstration of the usefulness of
efficient ε-samples in practice, we apply our new algorithms to a framework for approximately
detecting spatial anomalies – maximizing the spatial scan statistic [14]. Specifically each
point is endowed with two measures (b(x) the baseline quantity like population and m(x)
the measured quantity like disease instance), and let m(h) and b(h) be the fraction of all
measured and baseline counts within range h ∈ Hd, respectively. The main computational
problem of exact scan statistics is to find h∗ = arg maxh∈Hd

Φ(h) where for simplicity we
use Φ(h) = φ(m(h), b(h)) = |m(h) − b(h)|. Approximate scan statistics [18, 17] depend
on creating two samples an ε-net which approximates the density of the regions and an
ε-samples which approximates the density of points. Together this allows the algorithm to
find a ĥ where |Φ(ĥ)− Φ(h∗)| ≤ ε; and this is still statistically powerful [18]. In particular,
we consider an algorithm for ĥ which runs in time O(n+ 1

εk log 1
ε + T (n, k)), where k is the

ε-sample size and T (n, k) its construction time. We fix ε to be approximately .0025 which
corresponds approximately to an ε-net of size 400. and vary only k. We find approximate
anomalies on the crime data set with a particular h′ ∈ Hd chosen and points chosen, so
that Φ(h′) will be anomalously large. Namely we plant a region containing .02 fraction of
the points, where in that region points are in the measured set with probability of .7 and
baseline set of .3 and outside with probability .5 and .5 respectively. In Figure 6 we plot
Discrepancy Error = |Φ(ĥ) − Φ(h′)| as a function of the overall runtime of the algorithms.
Note that Φ(h∗) ≥ Φ(h′), so it is possible to find a Φ(ĥ) ≥ Φ(h′), but Φ(h′) serves as a

M. Matheny and J. M. Phillips 62:13

useful proxy. We find that Ham Tree Sample generally outperforms Random Sample; for
instance for 0.003 error, Ham Tree Sample takes 10 seconds to Random Sample’s 50 seconds.
Mat Poly Points also usually performs better than Ham Tree Sample, while Chan and Chan
Simple perform comparably to random sampling, albeit with high variance, even though their
sampling procedure is hundreds of times slower.

Conclusion. Overall we recommend Ham Tree Sample for computing ε-samples if moderate
computing beyond random sampling can be tolerated. This method significantly reduces the
size and error versus random sampling, and is not difficult to implement.

References
1 Crimes in Chicago. https://www.kaggle.com/currie32/crimes-in-chicago, 2017.
2 Huseyin Akcan, Herve Bronnimann, and Robert Marini. Practical and efficient geometric ε-

approximations. Proceedings of the 18th Canadian Conference on Computational Geometry,
pages 120–125, 2006.

3 J. Ralph Alexander. Geometric methods in thge theory of uniform distribution. Combin-
atorica, 10:115–136, 1990.

4 Amitabha Bagchi, Amitabh Chaudhary, David Eppstein, and Michael T. Goodrich. De-
terministic sampling and range counting in geometric data streams. ACM Transactions on
Algorithms, 3(A16), 2007.

5 Nikhil Bansal. Constructive algorithms for discrepancy minimization. In Proceedings 51st
Annual IEEE Symposium on Foundations of Computer Science, pages 407–414, 2010.

6 Christopher Barker. Pep 485 – a function for testing approximate equality. https://www.
python.org/dev/peps/pep-0485/, Jan 2015.

7 Timothy M. Chan. Optimal partition trees. In In: Proc. 26th Annu. ACM Sympos. Comput.
Geom, pages 1–10, 2010.

8 Bernard Chazelle. The Discrepancy Method. Cambridge, 2000.
9 Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its use

in geometry. Combinatorica, 10:229–249, 1990.
10 Bernard Chazelle and Jiri Matousek. On linear-time deterministic algorithms for optimiz-

ation problems in fixed dimensions. Journal of Algorithms, 21:579–597, 1996.
11 Herbert Edelsbrunner and Emo Welzl. Halfplanar range search in linear space and o(n0.695)

query time. In 23, editor, Information Processing Letters, pages 289–293, 1986.
12 Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reservoir.

Information Processing Letters, 97(5):181–185, 2006.
13 S. Har-Peled. Constructing planar cuttings in theory and practice. SIAM J. Comput.,

29(6):2016–2039, 2000.
14 Martin Kulldorff. A spatial scan statistic. Communications in Statistics: Theory and

Methods, 26:1481–1496, 1997.
15 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the samples complexity

of learning. J. Comp. and Sys. Sci., 62:516–527, 2001.
16 Sachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on the

edges. SIAM Journal on Computing, 44:1573–1582, 2015.
17 Michael Matheny and Jeff M. Phillips. Computing approximate statistical discrepancy.

CoRR, abs/1804.11287, 2018. arXiv:1804.11287.
18 Michael Matheny, Raghvendra Singh, Liang Zhang, Kaiqiang Wang, and Jeff M. Phillips.

Scalable spatial scan statistics through sampling. In Proceedings of the 24th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, 2016.

ESA 2018

https://www.kaggle.com/currie32/crimes-in-chicago
https://www.python.org/dev/peps/pep-0485/
https://www.python.org/dev/peps/pep-0485/
http://arxiv.org/abs/1804.11287

62:14 Range Space Sampling

19 Jiri Matoušek. Approximations and optimal geometric divide-and-conquer. In Proceedings
23rd Symposium on Theory of Computing, pages 505–511, 1991.

20 Jiri Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8:315–334,
1992.

21 Jiri Matoušek. Tight upper bounds for the discrepancy of halfspaces. Discrete and Com-
putational Geometry, 13:593–601, 1995.

22 Jiri Matoušek. Geometric Discrepancy. Springer, 2009.
23 Jiří Matoušek, Chi-Yuan Lo, and William Steiger. Ham-sandwich cuts in rd. In Proceedings

of the Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC ’92, pages
539–545, New York, NY, USA, 1992. ACM.

24 Nimrod Megiddo. Partitioning with two lines in the plane. Journal of Algorithms, 6(3):430–
433, 1985.

25 Raimund Seidel. A simple and fast incremental randomized algorithm for computing
trapezoidal decompositions and for triangulating polygons. Computational Geometry, 1:51–
64, 1991.

26 Subhash Suri, Csaba D. Tóth, and Yunhong Zhou. Range counting over multidimensional
data streams. In Proceedings 20th Symposium on Computational Geometry, pages 160–169,
2004.

27 Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theo. of Prob and App, 16:264–280, 1971.

28 Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and
Baruch Zukerman. 2D arrangements. In CGAL User and Reference Manual. CGAL Edit-
orial Board, 4.12 edition, 2018.

29 D. E. Willard. Polygon retrieval. In 11, editor, SIAM Journal of Computing, pages 149–165,
1982.

Nearly-Optimal Mergesorts: Fast, Practical
Sorting Methods That Optimally Adapt to
Existing Runs
J. Ian Munro
University of Waterloo, Canada
imunro@uwaterloo.ca

https://orcid.org/0000-0002-7165-7988

Sebastian Wild
University of Waterloo, Canada
wild@uwaterloo.ca

https://orcid.org/0000-0002-6061-9177

Abstract
We present two stable mergesort variants, “peeksort” and “powersort”, that exploit existing runs
and find nearly-optimal merging orders with negligible overhead. Previous methods either require
substantial effort for determining the merging order (Takaoka 2009; Barbay & Navarro 2013) or
do not have an optimal worst-case guarantee (Peters 2002; Auger, Nicaud & Pivoteau 2015; Buss
& Knop 2018). We demonstrate that our methods are competitive in terms of running time with
state-of-the-art implementations of stable sorting methods.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases adaptive sorting, nearly-optimal binary search trees, Timsort

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.63

Related Version arXiv: 1805.04154 (extended version with appendices)

Supplement Material zenodo: 1241162 (code to reproduce running time study)

Funding This work was supported by the Natural Sciences and Engineering Research Council of
Canada and the Canada Research Chairs Programme.

1 Introduction

Sorting is a fundamental building block for numerous tasks and ubiquitous in both the
theory and practice of computing. While practical and theoretically (close-to) optimal
comparison-based sorting methods are known, instance-optimal sorting, i.e., methods that
adapt to the actual input and exploit specific structural properties if present, is still an area
of active research. We survey some recent developments in Section 1.1.

Many different structural properties have been investigated in theory. Two of them have
also found wide adoption in practice, e.g., in Oracle’s Java runtime library: adapting to the
presence of duplicate keys and using existing sorted segments, called runs. The former is
achieved by a so-called fat-pivot partitioning variant of quicksort [8], which is also used in the
OpenBSD implementation of qsort from the C standard library. It is an unstable sorting
method, though, i.e., the relative order of elements with equal keys might be destroyed in
the process. It is hence used in Java solely for primitive-type arrays.

© J. Ian Munro and Sebastian Wild;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 63; pp. 63:1–63:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:imunro@uwaterloo.ca
https://orcid.org/0000-0002-7165-7988
mailto:wild@uwaterloo.ca
https://orcid.org/0000-0002-6061-9177
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.63
https://arxiv.org/abs/1805.04154
https://zenodo.org/record/1241162
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

63:2 Nearly-Optimal Mergesort

Making use of existing runs in the input is a well-known option in mergesort; e.g.,
Knuth [17] discusses a bottom-up mergesort variant that does this. He calls it “natural
mergesort” and we will use this as an umbrella term for any mergesort variant that picks up
existing runs in the input (instead of blindly starting with runs of size 1). The Java library
uses Timsort [25, 15], a natural mergesort originally developed as Python’s new library sort.

While fat-pivot quicksort provably adapts to the entropy of the multiplicities of keys [34] –
it is optimal up to a factor of 1.088 on average with pseudomedian-of-9 (“ninther”) pivots1 –
Timsort is much more heuristic in nature. It picks up existing runs and tries to perform
merges in a favorable order (i.e., avoiding merges of runs with very different lengths) by
distinguishing a handful of cases of how the lengths of the 4 most recent runs relate to each
other. The rules are easy to implement and were empirically shown to be effective in most
cases, but their interplay is quite intricate. Although announced as an O(n logn) worst-case
method with its introduction in 2002 [24], a rigorous proof of this bound was only given in
2015 by Auger, Nicaud, and Pivoteau [2] and required a rather sophisticated amortization
argument.

The core complication is that – unlike for standard mergesort variants – a given element
might participate in more than a logarithmic number of merges. Indeed, Buss and Knop [9]
have very recently shown that for some family of inputs, the average number of merges a
single element participates in is at least

(3
2 − o(1)

)
· lgn. So in the worst case, Timsort does,

e.g., asymptotically at least 1.5 times as many element moves as standard mergesort. In
terms of adapting to existing order, provable guarantees for Timsort had long remained
elusive; an upper bound of O(n+ n log r) was conjectured in [2] and [9]), but indeed only for
this very conference, Auger, Jugé, Nicaud and Pivoteau [1] finally give a proof. The hidden
constants in their bound are quite big (and far away from the coefficient 3

2 of the above lower
bound).

A further manifestation of the complexity of Timsort’s rules was reported by de Gouw
et al. [10]: The original rules to maintain the desired invariant for run lengths on the stack
are insufficient in some cases. This (algorithmic!) bug had remained unnoticed until their
attempt to formally verify the correctness of the Java implementation failed because of it.
Gouw et al. proposed two options for correcting Timsort, one of which was applied for the
Java library. But now, Auger et al. [1] demonstrated that this correction is still insufficient:
as of this writing, the Java runtime library contains a flawed sorting method! All of this
indicates that already the core algorithm in Timsort is (too?) complicated, and it raises the
question whether Timsort’s good properties cannot be achieved in a simpler way.

For its theoretical guarantees on adapting to existing runs this is certainly the case.
Takaoka [29, 30] and Barbay and Navarro [5] independently described a sorting method that
we call Huffman-Merge (see below why). It adapts even to the entropy of the distribution
of run lengths: it sorts an input of r runs with respective lengths L1, . . . , Lr in time
O
(
(H(L1

n , . . . ,
Lr

n) + 1)n
)
⊆ O(n + n lg r), where H(p1, . . . , pr) =

∑r
i=1 pi lg(1/pi) is the

binary Shannon entropy.2 Since H(L1
n , . . . ,

Lr

n)n − O(n) comparisons are necessary for
distinct keys, Huffman-Merge is optimal up to O(n). The algorithm is also conceptually
simple: find runs in a linear scan, determine an optimal merging order using a Huffman tree of

1 The median of three elements is chosen as the pivot, each of which is a median of three other elements.
This is a good approximation of the median of 9 elements and a recommended pivot selection rule [8].

2 Note that H(L1/n, . . . , Lr/n) can be significantly smaller than lg r: Consider the run lengths L1 =
n − dn/ lg ne and L2 = · · · = Lr = 1, i.e., r = 1 + dn/ lg ne. Then H ≤ 2, but lg r ∼ lg n. (Indeed,
H → 1 and the input can indeed be sorted with overall costs 2n.)

J. I. Munro and S. Wild 63:3

the run lengths, and execute those merges bottom-up in the tree. However, straight-forward
implementations add significant overhead in terms of time and space, which renders Huffman-
Merge uncompetitive to (reasonable implementations of) elementary sorting methods.

Moreover, Huffman-Merge leads to an unstable sorting method since it merges non-
adjacent runs. The main motivation for Timsort was to find a fast general-purpose sorting
method that is stable [24], and the Java library even dictates the sorting method used for
objects to be stable.3 It is conceptually easy to modify the idea of Huffman-Merge to sort
stably: replace the Huffman tree by an optimal binary search tree and otherwise proceed as
before. Since we only have weights at the leaves of the tree, we can compute this tree in
O(n+ r log r) time using the Hu-Tucker- or Garsia-Wachs-algorithm. (Barbay and Navarro
made this observation, as well; indeed they initially used the Hu-Tucker algorithm [4] and
only switched to Huffman in the journal paper [5].) Since r can be Θ(n) and the algorithms
are fairly sophisticated, this idea is not very appealing for use in practical sorting, though.

In this paper, we present two new stable, natural mergesort variants, “peeksort” and
“powersort”, that have the same optimal asymptotic running time O

(
(H(L1

n , . . . ,
Lr

n)+1)n
)
as

Huffman-merge, but incur much less overhead. For that, we build upon classic algorithms for
computing nearly-optimal binary search trees [21]; but the vital twist for practical methods
is to neither explicitly store the full tree, nor the lengths of all runs at any point in time. In
particular – much like Timsort – we only store a logarithmic number of runs at any point
in time (in fact reducing their number from roughly logϕ ≈ 1.44 lgn in Timsort to lgn),
but – much unlike Timsort – we retain the guarantee of an optimal merging order up to
linear terms. Our methods require at most n lgn+O(n) comparison in the worst case and
H(L1

n , . . . ,
Lr

n)n+ 3n for an input with runs of lengths L1, . . . , Lr.
We demonstrate in a running-time study that our methods achieve guaranteed (leading-

term) optimal adaptive sorting in practice with negligible overhead to compute the merging
order: our methods are not slower than standard mergesort when no existing runs can be
exploited, but outperform standard mergesort and quicksort when long runs are present in
the input. Finally, we show that Timsort is slower than standard mergesort and our new
methods on certain inputs that do have existing runs, but whose lengths pattern hits a weak
point of Timsort’s heuristic merging-order rule.

Outline: The rest of this paper is organized as follows. In the remainder of this section
we survey related work. Section 2 contains notation and known results on optimal binary
search trees that our work builds on. The new algorithms and their analytical guarantees
are presented in Section 3. Section 4 reports on our running-time study, comparing the new
methods to state-of-the-art sorting methods. Finally, Section 5 summarizes our findings.
Details about the experimental setup and some proofs are found in the extended version of
this article (arXiv: 1805.04154).

1.1 Adaptive Sorting
The idea to exploit existing “structure” in the input to speed up sorting dates (at least) back
to methods from the 1970s [20] that sort faster when the number of inversions is small. A
systematic treatment of this and many further measures of presortedness (e.g., the number of

3 We remark that while stability is a much desired feature, practical, stable sorting methods do not try to
exploit the presence of duplicate elements to speed up sorting, and we will focus on the performance for
distinct keys in this article.

ESA 2018

https://arxiv.org/abs/1805.04154

63:4 Nearly-Optimal Mergesort

inversions, the number of runs, and the number of shuffled up-sequences), their relation and
how to sort adaptively w.r.t. these measures are discussed by Estivill-Castro and Wood [12].

While the focus of earlier works is mostly on combinatorial properties of permutations, a
recent trend is to consider more fine-grained statistical quantities. For example as mentioned
above, Huffman-Merge adapts to the entropy of the vector of run lengths [29, 30, 5]. Similar
measures are the entropy of the lengths of shuffled up-sequences [5] and the entropy of lengths
of an LRM-partition [3], a novel measure that lies between runs and shuffled up-sequences.

For multiset sorting, the fine-grained measure, the entropy of the multiplicities, has
been considered instead of the number of unique values already in early work in the field
(e.g. [22, 26]). A more recent endeavor has been to find sorting methods that optimally
adapt to both presortedness and repeated values. Barbay, Ochoa, and Satti refer to this as
synergistic sorting [6] and present an algorithm based on quicksort that is optimal up to a
constant factor. The method’s practical performance is unclear.

We remark that (unstable) multiset sorting is the only problem from the above list for
which a theoretically optimal algorithm has found wide-spread adoption in programming
libraries: quicksort is known to almost optimally adapt to the entropy of multiplicities on
average [32, 28, 34], when elements equal to the pivot are excluded from recursive calls
(fat-pivot partitioning). Supposedly, sorting is so fast to start with that further improvements
from exploiting specific input characteristics are only fruitful if they can be realized with
minimal additional overhead. Indeed, for algorithms that adapt to the number of inversions,
Elmasry and Hammad [11] found that the adaptive methods could only compete with good
implementations of elementary sorting algorithms in terms of running time for inputs with
extremely few inversions (fewer than 1.5%). Translating the theoretical guarantees of adaptive
sorting into practical, efficient methods is an ongoing challenge.

1.2 Lower bound
How much does it help for sorting an array A[1..n] to know that it contains r runs of
respective sizes L1, . . . , Lr, i.e., to know the relative order of A[1..L1], A[L1 + 1..L1 + L2]
etc.? If we assume distinct elements, there are

(
n

L1,...,Lr

)
permutations that are compatible

with this setup, namely the number of ways to partition n keys into r subsets of given sizes.
We thus need lg(n!)−

∑r
i=1 lg(Li!) = H(L1

n , . . . ,
Lr

n)n−O(n) comparisons to sort such an
input. A formal argument for this lower bound is given by Barbay and Navarro [5] in the
proof of their Theorem 2.

1.3 Results on Timsort and stack-based mergesort
Timsort’s good performance in running-time studies, especially on partially sorted inputs,
have lead to its adoption in several programming libraries, but until recently, no (nontrivial)
worst-case adaptivity guarantee had been known. To make progress towards these, simplified
variations of Timsort were considered [2, 9]. They maintain a stack of runs yet to be merged
and proceed as follows: Find the next run in the input and push it onto the stack. Then
consider the top k elements on the stack (for k a small constant like 3 or 4) and decide based
on these if any pair of them is to be merged. If so, the two runs in the stack are replaced with
the merged result and the rule is applied repeatedly until the stack satisfies some invariant.
The invariant is chosen so as to keep the height of the stack small (logarithmic in n).

The simplest version, “α-stack sort” [2], merges the topmost two runs until the run
lengths in the stack grow at least by a factor of α, (e.g., α = 2). This method can lead to
imbalanced merges (and hence runtime ω(n log r) [9]; the authors of [2] also point this out

J. I. Munro and S. Wild 63:5

in their conclusion): if the topmost run is much longer than what is below it on the stack,
merging the second and third runs (repeatedly until they are at least as big as the topmost
run) is much better. This modification is called “α-merge sort”. It achieves a worst-case
guarantee of O(n+ n log r), but the constant is provably not optimal [9].

Timsort is quite similar to α-merge sort for α = ϕ (the golden ratio) by forcing the run
lengths to grow at least like Fibonacci numbers. The detailed rules for selecting merges are
found in [1] or [9]. They imply a logarithmic stack height, but the actual bounds are much
more involved than it appears at first sight [1]. As mentioned in the introduction, this has
lead to the widespread deployment of faulty library code – twice! For inputs with specific
run-lengths patterns, the implementations access stack cells beyond the (fixed) stack size.

Timsort was conjectured to always sort in O(n+ n log r) time and in their contribution
to these proceedings, Auger et al. [1] finally gave a proof for this bound. The constant of
proportionality is not known exactly, but Buss and Knop [9] gave a family of inputs for which
Timsort incurs asymptotically at least 1.5 times the required effort (in terms of merge costs,
see Section 2.2). This proves that Timsort – like α-merge sort – is not optimally adaptive to
the number of runs r (let alone the entropy of the run length distribution).

2 Preliminaries

Let A[1..n] be an array of n elements that we sort using comparisons. By H, we denote
the binary Shannon entropy, i.e., for p1, . . . , pm ∈ [0, 1] with p1 + · · · + pm = 1 we have
H(p1, . . . , pm) =

∑
pi lg(1/pi), where lg = log2. We always let r denote the number of runs

in the input and L1, . . . , Lr their respective lengths with L1 + · · ·+Lr = n. In the literature,
a run usually means a maximal (contiguous) weakly increasing (i.e., nondecreasing) region,
but we adopt the convention from Timsort in this paper: a run is either a maximal weakly
increasing region or a maximal strictly decreasing region. Decreasing runs are reversed upon
detection; allowing only strictly decreasing runs makes their stable reversal trivial. (Note that
the algorithms are not affected by these details of what constitutes a “run”; they only rely on
a unique partition of the input into sorted segments that can be found by sequential scans.)

2.1 Nearly-Optimal Binary Search Trees
In the optimal binary search tree problem, we are given probabilities β1, . . . , βm to access
the m keys K1 < · · · < Km (internal nodes) and probabilities α0, . . . , αm to access the gaps
(leaves) between these keys (setting K0 = −∞ and Km+1 = +∞) and we are interested in
the binary search tree that minimizes the expected search cost C, i.e., the expected number
of (ternary) comparisons when accesses follow the given distribution.4 Nagaraj [23] surveys
various versions of the problem. We confine ourselves to approximation algorithms here.
Moreover, we only need the special case of alphabetic trees where all βj = 0.

The following methods apply to the general problem, but we present them for the case
of nearly-optimal alphabetic trees. So let α0, . . . , αm with

∑m
i=0 αi = 1 be given. A greedy

top-down approach produces provably good search trees if the details are done right [7, 19]:
choose the boundary closest to 1

2 as the bisection at the root (“weight-balancing heuristic”).
Mehlhorn [21, §III.4.2] discusses two algorithms for nearly-optimal binary search trees that
follow this scheme: “Method 1” is the straight-forward recursive application of the above
rule, whereas “Method 2” (“bisection heuristic”) continues by strictly halving the original
interval in the recursive calls; see Figure 1.

4 We deviate from the literature convention and use m to denote the number of keys to avoid confusion
with n, the length of the arrays to sort, in the rest of the paper.

ESA 2018

63:6 Nearly-Optimal Mergesort

0 1/2 1

0 1/2 1 0 1/2 1

0 1/2 1

0 1/4 1/2 3/4 1

3

2

1

2

4

Figure 1 The two versions of weight-balancing for computing nearly-optimal alphabetic trees.
The gap probabilities in the example are proportional to 5, 3, 3, 14, 1, 2. Left: Mehlhorn’s “Method 1”
chooses the split closest to the midpoint of the subtree’s actual weights (1/2 after renormalization).
Right: “Method 2” continues to cut the original interval in half, irrespective of the total weight of
the subtrees. The italic numbers are the powers of the nodes (see Definition 3 on page 8).

Method 1 was proposed in [31] and analyzed in [18, 7]; Method 2 is discussed in [19].
While Method 1 is arguably more natural, Method 2 has the advantage to yield splits that
are predictable without going through all steps of the recursion. Both methods can be
implemented to run in time O(m) and yield very good trees. (Recall that in the case βj = 0
the classic information-theoretic argument dictates C ≥ H; Bayer [7] gives lower bounds in
the general case.)

I Theorem 1 (Nearly-Optimal BSTs). Let α0, β1, α1, . . . , βm, αm ∈ [0, 1] with
∑
αi+

∑
βj = 1

be given and let H =
∑m

i=0 αi lg(1/αi) +
∑m

j=1 βj lg(1/βj).
(i) Method 1 yields a tree with search cost C ≤ H+ 2. [7, Thm4.8]
(ii) If all βj = 0, Method 1 yields a tree with search cost C ≤ H+ 2− (m+ 3)αmin,

where αmin = min{α0, . . . , αm}. [16]
(iii) Method 2 yields a tree with search cost C ≤ H+ 1 +

∑
αi. [19]

2.2 Merge Costs
In this paper, we are primarily concerned with finding a good order of binary merges for the
existing runs in the input. Following [2] and [9], we define the merge cost M for merging
two runs of lengths m resp. n as M = m+ n, i.e., the size of the result. This quantity has
been studied earlier by Golin and Sedgewick [14] without giving it a name. Merge costs
abstract away from key comparisons and element moves and simplify computations (see next
subsection). Since any merge has to move most elements (except for rare lucky cases), and
the average number of comparisons using standard merge routines is m+ n−

(
m

n+1 + n
m+1

)
,

merge costs are a reasonable approximation, in particular when m and n are roughly equal.
They always yield an upper bound for both the number of comparisons and moves.

2.3 Merge Trees
Let L1, . . . , Lr with

∑
Li = n be the lengths of the runs in the input. Any natural mergesort

can be described as a rule to select some of the remaining runs, which are then merged and
replaced by the merge result. If we always merge two runs this corresponds to a binary
tree with the original runs at leaves 1 , . . . , r . Internal nodes correspond to the result of
merging their children. If we assign to internal node j the size Mj of the (intermediate)
merge result it represents, then the overall merge cost is exactly M =

∑
j Mj (summing

J. I. Munro and S. Wild 63:7

over all internal nodes). Figure 1 shows two examples of merge trees; the merge costs are
given by adding up all gray areas,5 (ignoring the dotted leaves).

Let di be the depth of leaf i (corresponding to the run of length Li), where depth is the
number of edges on the path to the root. Every element in the ith run is counted exactly di

times in
∑

j Mj , so we have M =
∑r

i=1 di · Li. Dividing by n yields M/n =
∑r

i=1 di · αi

for αi = Li/n, which happens to be the expected search time C in the merge tree if i is
requested with probability αi for i = 1, . . . , r. So the minimal-cost merge tree for given
run lengths L1, . . . , Lr is the optimal alphabetic tree for leaf probabilities L1

n , . . . ,
Lr

n and it
holds M ≥ H(L1

n , . . . ,
Lm

n)n. For distinct keys, the lower bound on comparisons (Section 1.2)
coincides up to linear terms with this lower bound on the merge costs.

Combining this fact with the linear-time methods for nearly-optimal binary search trees
from Section 2.1 immediately gives a stable sorting method that adapts optimally to existing
runs up to an O(n) term. We call such a method a nearly-optimal (natural) mergesort.

3 Nearly-Optimal Merging Orders

We now describe two new nearly-optimal mergesort variants that simulate nearly-optimal
search-tree algorithms, but do so without ever storing the entire merge tree or run lengths.

3.1 Peeksort: A Simple Top-Down Method
The first method is similar to standard top-down mergesort in that it implicitly constructs a
merge tree on the call stack. Instead of blindly cutting the input in half, however, we mimic
Mehlhorn’s Method 1. For that we need the run boundary closest to the middle of the input:
this will become the root of the merge tree. Since we want to detect existing runs anyway at
some point, we start by finding the run that contains the middle position. The end point
closer to the middle determines the top-level cut and we recursively sort the parts left and
right of it. A final merge completes the sort.

To avoid redundant scans, we pass on the information about detected runs. In the general
case, we are sorting a range A[`..r] whose prefix A[`..e] and suffix A[s..r] are (maximal) runs.
Depending on whether the middle is contained in one of those runs, we have one of four
different cases; apart from that the overall procedure (Algorithm 1) is quite straight-forward.

The following theorem shows that PeekSort is indeed a nearly-optimal mergesort.
Unlike previous such methods, its code has very little overhead – in terms of both time and
space, as well as in terms of conceptual complexity – over standard top-down mergesort, so
it is a promising method for a practical nearly-optimal mergesort.

I Theorem 2. The merge cost of PeekSort on an input consisting of r runs with respective
lengths L1, . . . , Lr is at most H(L1

n , . . . ,
Lm

n)n+ 2n− (r+ 2), the number of comparisons is at
most H(L1

n , . . . ,
Lm

n) + 3n− (2r + 3). Both is optimal up to O(n) terms (in the worst case).

Proof. The recursive calls of Algorithm 1 produce the same tree as Mehlhorn’s Method 1
with input (α0, . . . , αm) = (L1

n , . . . ,
Lr

n) (i.e., m = r − 1) and βj = 0. By Theorem 1–(ii),
the search costs in this tree are C ≤ H+ 2− (m+ 3)αmin with H = H(L1

n , . . . ,
Lm

n). Since
Lj ≥ 1, we have αmin ≥ 1

n . As argued in Section 2.3, the overall merge costs are then given
by M = Cn ≤ Hn+ 2n− (r + 2), which is within O(n) of the lower bound for M .

5 The left tree is obviously better here and this is a typical outcome. But there are also inputs where
Method 2 yields a better tree than Method 1.

ESA 2018

63:8 Nearly-Optimal Mergesort

Algorithm 1 Peeksort: A simple top-down version of nearly-optimal natural mergesort.
The initial call is PeekSort(A[1..n], 1, n). Procedures ExtendRunLeft (-Right) scan
left (right) starting at A[m] as long as the run continues (and we did not cross the second
parameter).

PeekSort(A[`..r], e, s)
1 if e == r or s == ` then return
2 m = ` +

⌊
r−`

2

⌋
3 if m ≤ e // ` re s

m

4 PeekSort(A[e + 1..r], e + 1, s)
5 Merge(A[`..e], A[e + 1..r])
6 else if m ≥ s // ` re s

m

7 PeekSort(A[`..s− 1], e, s− 1)
8 Merge(A[`..s− 1], A[s..r])
9 else // Find existing run A[i..j] containing position m

10 i = ExtendRunLeft(A[m], `); j = ExtendRunRight(A[m], r)
11 if i == ` and j == r return
12 if m− i < j −m // ` re si j

m

13 PeekSort(A[`..i− 1], e, i− 1)
14 PeekSort(A[i..r], j, s)
15 Merge(A[`..i− 1], A[i..r])
16 else // ` re si j

m

17 PeekSort(A[`..j], e, i)
18 PeekSort(A[j + 1..r], j + 1, s)
19 Merge(A[`..j], A[j + 1..r])

We can save at least one comparison per merge (namely for the last element). In total, we
do exactly r − 1 merge operations. Apart from merging, we need a total of n− 1 additional
comparisons to detect the existing runs in the input. Barbay and Navarro [5, Thm. 2] argued
that Hn−O(n) comparisons are necessary if the elements in the input are all distinct. J

3.2 Powersort: A Cache-Friendly Stack-Based Method

One little blemish remains in PeekSort: we have to use “random accesses” into the middle
of the array to decide how to proceed. Even though we only use cache-friendly sequential
scans, the I/O operations to load the middle run are effectively wasted, since it will often be
merged only much later (after further recursive calls). Timsort proceeds in one left-to-right
scan over the input and merges the top runs on the stack. This increases the likelihood to
still have (parts of) the most recently detected run in cache when it is merged subsequently.

3.2.1 The power of top-down in a bottom-up method

In Method 2 for nearly-optimal search trees, we can unfold the recursion since all its potential
cut points are predetermined: they have the form c ·2−` for ` ∈ N≥1 and odd c. The following
definition characterizes the recursion depth `, at which an internal node j is considered.

I Definition 3 (Node Power). Let α0, . . . , αm,
∑
αj = 1 be leaf probabilities. For 1 ≤ j ≤ m,

let j be the internal node separating the (j − 1)st and jth leaf. The power of (the split at)

J. I. Munro and S. Wild 63:9

0 11
2

1
4

3
4

1
8

7
8

15
16

3 2 1 2 4

Figure 2 Illustration of node powers. The power of a run boundary is the smallest ` so that a
multiple of 2−` lies between the midpoints of the runs it separates.

node j is

Pj = min
{
` ∈ N :

⌊
a

2−`

⌋
<

⌊
b

2−`

⌋}
, where a =

j−1∑
i=0

αi − 1
2αj−1, b =

j−1∑
i=0

αi + 1
2αj .

(Pj is the index of the first bit where the (binary) fractional parts of a and b differ.)

Figure 2 illustrates Definition 3 for the nodes in our example (Figure 1). Intuitively, Pj

is the “intended” depth of j , but nodes occasionally end up higher in the tree if some leaf
has a large weight relative to the current subtree, (see the rightmost branch in Figure 1).
Mehlhorn’s [19, 21] original implementation of Method 2, procedure construct-tree, does not
single out the case that the next desired cut point lies outside the range of a subtree (cf. 7

8
in Figure 2). This reduces the number of cases, but for our application, it is more convenient
to explicitly check for this out-of-range case, and if it occurs to directly proceed to the next
cut point. We refer to the modified algorithm as Method 2 ′. The extended version of this
paper gives the details and shows that the changes do not affect the guarantee for Method 2
in Theorem 1. With this modification, the resulting tree is characterized by the node powers.

I Lemma 4 (Path power monotonicity). Consider the tree constructed by Method 2 ′. The
powers of internal nodes along any root-to-leaf path are strictly increasing.

The proof is given in the extended version.

3.2.2 Merging on-the-fly
Our second algorithm, “powersort”, constructs the merge tree from left to right. Whenever
the next internal node has a smaller power than the preceding one, we are following an edge
from a left child up to its parent. That means that this subtree does not change anymore
and we can execute any pending merges in it before continuing; the subtree then corresponds
to the single resulting run. If we are instead following an edge down to a right child of a
node, that subtree is still “open” and we only push the corresponding run onto the stack.
I Remark. The tree constructed by Method 2′ for leaf probabilities α0, . . . , αm is the
(unique, min-oriented) Cartesian tree6 for the sequence of node powers P1, . . . , Pm. It can be
constructed iteratively (left to right) by the algorithm of Gabow, Bentley, and Tarjan [13],
which effectively coincides with the procedure sketched above, except that we immediately
collapse (merge) completed subtrees instead of keeping the entire tree.
As the runs on the stack correspond to a (right) path in the tree, the nodes have strictly
increasing powers and we can bound the stack height by the maximal Pj . Since our leaf
probabilities are αj = Lj

n ≥
1
n , we have Pj ≤ blgnc+ 1. Algorithm 2 shows the detailed code.

6 The Cartesian tree of an array of numbers is a binary tree. Its root corresponds to the global minimum
in the array and its subtrees are the Cartesian trees of the numbers left resp. right of the minimum.

ESA 2018

63:10 Nearly-Optimal Mergesort

Algorithm 2 Powersort: A one-pass stack-based nearly-optimal natural mergesort. Proce-
dure ExtendRunRight scans right as long as the run continues.

PowerSort(A[1..n])
1 X = stack of runs (capacity blg(n)c + 1)
2 P = stack of powers (capacity blg(n)c + 1)
3 s1 = 1; e1 = ExtendRunRight(A[1], n) // A[s1..e1] is leftmost run
4 while e1 < n

5 s2 = e1 + 1; e2 = ExtendRunRight(A[s2], n) // A[s2..e2] next run
6 p = NodePower(s1, e1, s2, e2, n) // Pj for node j between A[s1..e1] and A[s2..e2]
7 while P.top() > p // previous merge deeper in tree than current
8 P.pop() // merge and replace run A[s1..e1] by result
9 (s1, e1) = Merge(X.pop(), A[s1..e1])

10 end while
11 X.push(A[s1, e1]); P.push(p)
12 s1 = s2; e1 = e2

13 end while // Now A[s1..e1] is the rightmost run
14 while ¬X.empty()
15 (s1, e1) = Merge(X.pop(), A[s1..e1])
16 end while
NodePower(s1, e1, s2, e2, n)
1 n1 = e1 − s1 + 1; n2 = e2 − s2 + 1; ` = 0
2 a = (s1 + n1/2− 1)/n; b = (s2 + n2/2− 1)/n

3 while ba · 2`c == bb · 2`c do ` = ` + 1 end while
4 return `

I Theorem 5. The merge cost of PowerSort is at most H(L1
n , . . . ,

Lm

n) + 2n, the number
of comparisons is at most H(L1

n , . . . ,
Lm

n)+3n−r. Moreover, (apart from buffers for merging)
only O(logn) words of extra space are required.

Proof. The merge tree of PowerSort is exactly the search tree constructed by Method 2′
on leaf probabilities (α0, . . . , αm) = (L1

n , . . . ,
Lr

n) and βj = 0. By Theorem 1–(iii), the
search costs are C ≤ H + 2 with H = H(L1

n , . . . ,
Lm

n), so the overall merge costs are
M = Cn ≤ Hn + 2n, which is within O(n) of the lower bound for M . The comparisons
follow as for Theorem 2. J

4 Running-Time Study

We conducted a running-time study comparing the two new nearly-optimal mergesorts with
current state-of-the-art implementations and elementary mergesort variants. The code is
available on github [33]. The main goal of this study is to show that

1. peeksort and powersort have very little overhead compared to standard (non-natural)
mergesort variants (i.e., they are never (much) slower); and at the same time

2. peeksort and powersort outperform other mergesort variants on partially presorted inputs.
Timsort is arguably the most used adaptive sorting method; a secondary goal is hence to

3. investigate the typical merge costs of Timsort on different inputs, in particular in light of
the recent negative theoretical results by Buss and Knop [9].

J. I. Munro and S. Wild 63:11

4.1 Setup
Oracle’s Java runtime library includes a highly tuned Timsort implementation; to be able to
directly compare with it, we chose to implement our algorithms in Java. We repeated all
experiments with C++ ports of the algorithms and the results are qualitatively the same; we
will comment on a few differences in the following subsections. The Timsort implementation
is used for Object[], i.e., arrays of references to objects. Since the location of objects on
the heap is hard to control, this is likely to yield big variations in the number of cache
misses. We chose to sort int[]s instead to obtain more reproducible results, and modified
the library implementation of Timsort accordingly. This scenario makes key comparisons
and element moves relatively cheap and thereby emphasizes the remaining overhead of the
methods, which is in line with our primary goal 1) from above.

We compare our methods with standard top-down and bottom-up mergesort implementa-
tions. We use the code given by Sedgewick [27, Programs 8.3 and 8.5] as bases. In both cases,
we add a check before calling merge to detect if the runs happen to already be in sorted
order, and we use insertion sort for base cases of size n ≤ w = 24. (For bottom-up mergesort,
we start by sorting chunks of size w = 24.) Our implementations of peeksort and powersort
are described in more detail in the extended version; apart from a mildly optimized version
of the pseudocode, we added the same cutoff / minimal run length (w = 24) as above.

All our methods use Sedgewick’s bitonic merge procedure [27, Program 8.2], whereas the
Java library Timsort contains a custom merge method that tries to save key comparisons:
when only elements from the same run are selected for the output repeatedly, Timsort enters
a “galloping mode” and uses exponential search (instead of the conventional sequential search)
to find the insertion position of the next element. Details are described by Peters [25]. Since
saving comparisons is not of utmost importance in our scenario of sorting ints, we also
added a version of Timsort, called “trotsort”, that uses our plain merge method instead of
galloping, but is otherwise identical to the library Timsort.

We use the following inputs types:
random permutations are a case where no long runs are present to exploit;
“random-runs” inputs are constructed from a random permutation by sorting segments
of random lengths, where the lengths are chosen independently according to a geometric
distribution with a given mean `; since the geometric distribution has fairly large variance,
these inputs tend to have runs whose sizes vary a lot;
“Timsort-drag” inputs are special instances of random-runs inputs where the run lengths
are chosen as Rtim, the bad-case example for Timsort from [9, Thm. 3].

We remark that the above input types are chosen with our specific goals from above in mind;
we do not attempt to model inputs from “real-world” applications in this study.

4.2 Overhead of Nearly-Optimal Merge Order
We first consider random permutations as inputs. Since random permutations contain
(with high probability) no long runs that can be exploited, the adaptive methods will not
find anything that would compensate for their additional efforts to identify runs. (This
is confirmed by the fact that the total merge costs of all methods, including Timsort, are
within 1.5% of each other in this scenario.) Figure 3 shows average running times for input
sizes from 100 000 to 100 million ints. (Measurements for n = 10 000 were too noisy to draw
meaningful conclusions.)

Varying input sizes over several orders of magnitude, we consistently see the following
picture: Arrays.sort(int[]) (dual-pivot quicksort) is the fastest method. It is not a stable

ESA 2018

63:12 Nearly-Optimal Mergesort

105 106 107 108

4

5

6

7

td-mergesort
bu-mergesort
peeksort
powersort
Timsort
trotsort
Arrays.sort(int[])

Figure 3 Normalized running times on random permutations. The logarithmic x-axis shows n,
the y-axis shows the average of t/(n lg n) where t is the running time in ms. Error bars show one
standard deviation (stdev). We plot averages over 1000 repetitions (200 resp. 20 for the largest n).

sort and thus merely serves as a baseline. Top-down and bottom-up mergesort, peeksort and
powersort are 20–30% slower than dual-pivot quicksort. Comparing the four to each other,
no large differences are visible; if anything, bottom-up mergesort was a bit slower than the
others (for large inputs). Since the recursion cutoff resp. minimal run length w = 24 exceeded
the length of all runs in all inputs, we effectively have equal-length runs. Merging left to
right (as in bottom-up mergesort) then performs just fine, and top-down mergesort finds a
close-to-optimal merging order in this case. That peek- and powersort perform essentially
as good as elementary mergesorts on random permutations thus clearly indicates that their
overhead for determining a nearly-optimal merging order is negligible.

The library Timsort performs surprisingly poorly on int[]s, probably due to the relatively
cheap comparisons. Replacing the galloping merge with the ordinary merge alleviates this
(see “trotsort”), but Timsort remains inferior on random permutations by a fair margin
(10–20%). In C++, trotsort with straight insertion sort (instead of binary insertion sort) as
base case was roughly as fast as the other mergesorts.

4.3 Practical speedups by adaptivity
After demonstrating that we do not lose much by using our adaptive methods when there is
nothing to adapt to, we next investigate how much can be gained if there is. We consider
random-runs inputs as described above. This input model instills a good dose of presortedness,
but not in a way that gives any of the tested methods an obvious advantage or disadvantage
over the others. We choose a representative size of n = 107 and an expected run length
` = 3 000, so that we expect roughly

√
n runs of length

√
n.

If this was a random permutation, we would expect merge costs of roughly n lg(n/w) ≈
1.87 · 108 (indeed a bit above this). The right chart in Figure 4 shows that the adaptive
methods can bring the merge cost down to a little over 60% of this number. Powersort
achieved average merge costs of 1.14 · 108 < n lg r ≈ 1.17 · 108, i.e., less than a method would
that only adapts to the number of runs r.

J. I. Munro and S. Wild 63:13

500

600

700

time (ms) on random runs

td-mergesort
bu-mergesort
peeksort
powersort
Timsort
trotsort
Arrays.sort(int[])

0.55

0.6

0.65

0.7

merge costs (normalized) on random runs

Figure 4 Average running times (left) and normalized merge cost (right) on random-runs inputs
with n = 107 and ` = 3 000 ≈

√
n. Error bars show one stdev. Merge costs have been divided by

n lg(n/w) ≈ 1.87 · 108, which is the merge cost a (hypothetical) optimal mergesort that does not pick
up existing runs, but starts with runs of length w = 24. Note that the simple sorted-check before a
merge in the standard mergesorts already reduces the merge costs to roughly 70% of that number.

1,200

1,400

1,600

1,800

2,000

time (ms) on Timsort-drag

td-mergesort
bu-mergesort
peeksort
powersort
Timsort
trotsort
Arrays.sort(int[])

0.8

0.9

1

1.1

1.2

1.3

merge costs (normalized) on Timsort-drag

Figure 5 Average running times (left) and normalized merge cost (right) on “Timsort-drag”
inputs with n = 224 and run lengths Rtim(224/32) multiplied by 32. Error bars show one standard
deviation. Merge costs have been divided by n lg(n/w) ≈ 3.26 · 108.

In terms of running time, powersort is again among the fastest stable methods, and
indeed 20% faster than Arrays.sort(int[]). The best adaptive methods are also 10%
faster than top-down mergesort. (Note that our standard mergesorts are “slightly adaptive”
by skipping a merge of two runs that happened to already be in order, which can be checked
with a single comparisons.) This supports the statement that significant speedups can be
realized by adaptive sorting on inputs with existing order, and

√
n runs suffice for that. If

we increase ` to 100 000, so that we expect only roughly 100 long runs, the library quicksort
becomes twice as slow as powersort and trotsort.

Timsort with galloping merges is again uncompetitive. Trotsort’s running time is a bit
anomalous. Even though it occasionally incurs 10% more merge costs on a given input than
powersort, the Java running times were within 1% of each other. However, merge costs
seem to more accurately predict running time in C++; there trotsort was 8% slower than
powersort.

4.4 Non-optimality of Timsort
Finally, we consider “Timsort-drag” inputs, a sequence of run lengths Rtim(n) specifically
crafted by Buss and Knop [9] to generate unbalanced merges (and hence large merge cost)
in Timsort. Since actual Timsort implementations employ minimal run lengths of up to 32
elements we multiplied the run lengths by 32. Figure 5 shows running time and merge cost
for all methods on a characteristic Timsort-drag input of length 224 ≈ 1.6 · 107.

ESA 2018

63:14 Nearly-Optimal Mergesort

In terms of merge costs, Timsort resp. trotsort now pays 30% more than even a simple
non-adaptive mergesort, whereas peeksort and powersort obviously retain their proven nearly-
optimal behavior. Also in terms of running time, trotsort is a bit slower than top-down
mergesort, and 10% slower than powersort on these inputs. It is remarkable that the
dramatically larger merge cost does not lead to a similarly drastic slow down in Java. In C++,
however, trotsort was 40% slower than powersort, in perfect accordance with the difference
in merge costs.

It must thus be noted that Timsort’s merging-order rules have weaknesses, and it is
unclear if more dramatic examples are yet to be found.

5 Conclusion

In this paper, we have demonstrated that provably good merging orders for natural mergesort
can be found with negligible overhead. The proposed algorithms, peeksort and powersort,
offer more reliable performance than the widely used Timsort, and at the same time, are
arguably simpler.

Powersort builds on a modified bisection heuristic for computing nearly-optimal binary
search trees that might be of independent interest. It has the same quality guarantees as
Mehlhorn’s original formulation, but allows the tree to be built “bottom-up” as a Cartesian
tree over a certain sequence, the “node powers”. It is the only such method for nearly-optimal
search trees to our knowledge.

Buss and Knop conclude with the question whether there exists a k-aware algorithm (a
stack-based natural mergesort that only considers the top k runs in the stack) with merge
cost (1 + or(1)) times the optimal merge cost [9, Question 37]. Powersort effectively answers
this question in the affirmative with k = 3.7

5.1 Extensions and future work
Timsort’s “galloping merge” procedure saves comparisons when we consistently consume
elements from one run, but in “well-mixed” merges, it does not help (much). It would be
interesting to compare this method with other comparison-efficient merge methods.

Another line of future research is to explore ways to profit from duplicate keys in the
input. The ultimate goal would be a “synergistic” sorting method (in the terminology of [6])
that has practically no overhead for detecting existing runs and equals and yet exploits their
combined presence optimally.

References

1 Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau. On the worst-case com-
plexity of TimSort. In Hannah Bast Yossi Azar and Grzegorz Herman, editors, 26th Annual
European Symposium on Algorithms (ESA 2018), Leibniz International Proceedings in In-
formatics (LIPIcs), 2018. doi:10.4230/LIPIcs.ESA.2018.4.

2 Nicolas Auger, Cyril Nicaud, and Carine Pivoteau. Merge strategies: from merge sort to
TimSort, 2015. URL: https://hal-upec-upem.archives-ouvertes.fr/hal-01212839.

7 Strictly speaking, powersort needs a relaxation of the model of Buss and Knop. They require decisions
to be made solely based on the lengths of runs, whereas node power takes the location of the runs within
the array into account. Since the location of a run must be stored anyway, this appears reasonable to us.

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.4
https://hal-upec-upem.archives-ouvertes.fr/hal-01212839

J. I. Munro and S. Wild 63:15

3 Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. LRM-trees: Compressed indices,
adaptive sorting, and compressed permutations. Theoretical Computer Science, 459:26–41,
2012. doi:10.1016/j.tcs.2012.08.010.

4 Jérémy Barbay and Gonzalo Navarro. Compressed representations of permutations, and
applications. In Susanne Albers and Jean-Yves Marion, editors, 26th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2009), pages 111–122, Freiburg,
Germany, 2009. URL: https://hal.inria.fr/inria-00358018.

5 Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting.
Theoretical Computer Science, 513:109–123, 2013. doi:10.1016/j.tcs.2013.10.019.

6 Jérémy Barbay, Carlos Ochoa, and Srinivasa Rao Satti. Synergistic solutions on multisets.
In Juha Kärkkäinen, Jakub Radoszewski, andWojciech Rytter, editors, 28th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM 2017), Leibniz International Proceedings
in Informatics (LIPIcs), pages 31:1–31:14, 2017. doi:10.4230/LIPIcs.CPM.2017.31.

7 Paul J. Bayer. Improved Bounds on the Cost of Optimal and Balanced Binary Search Trees.
Master’s thesis, Massachusetts Institute of Technology, 1975.

8 Jon L. Bentley and M. Douglas McIlroy. Engineering a sort function. Software: Practice
and Experience, 23(11):1249–1265, 1993. doi:10.1002/spe.4380231105.

9 Sam Buss and Alexander Knop. Strategies for stable merge sorting, 2018. arXiv:1801.
04641.

10 Stijn de Gouw, Frank S. de Boer, Richard Bubel, Reiner Hähnle, Jurriaan Rot, and Dominic
Steinhöfel. Verifying OpenJDK’s sort method for generic collections. Journal of Automated
Reasoning, aug 2017. doi:10.1007/s10817-017-9426-4.

11 Amr Elmasry and Abdelrahman Hammad. Inversion-sensitive sorting algorithms in prac-
tice. Journal of Experimental Algorithmics, 13:11:1–11:18, 2009. doi:10.1145/1412228.
1455267.

12 Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Computing Surveys, 24(4):441–476, dec 1992. doi:10.1145/146370.146381.

13 Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and related techniques
for geometry problems. In 16th annual ACM symposium on Theory of computing (STOC
1984), pages 135–143. ACM Press, 1984. doi:10.1145/800057.808675.

14 Mordecai J. Golin and Robert Sedgewick. Queue-mergesort. Information Processing Letters,
48(5):253–259, dec 1993. doi:10.1016/0020-0190(93)90088-q.

15 Chris Hegarty. Replace “modified mergesort” in java.util.Arrays.sort with timsort, 2009.
URL: https://bugs.openjdk.java.net/browse/JDK-6804124.

16 Yasuichi Horibe. An improved bound for weight-balanced tree. Information and Control,
34(2):148–151, jun 1977. doi:10.1016/S0019-9958(77)80011-9.

17 Donald E. Knuth. The Art Of Computer Programming: Searching and Sorting. Addison
Wesley, 2nd edition, 1998.

18 Kurt Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5(4), 1975. doi:
10.1007/BF00264563.

19 Kurt Mehlhorn. A best possible bound for the weighted path length of binary search trees.
SIAM Journal on Computing, 6(2):235–239, 1977. doi:10.1137/0206017.

20 Kurt Mehlhorn. Sorting presorted files. In Theoretical Computer Science 4th GI Conference,
pages 199–212. Springer, 1979. doi:10.1007/3-540-09118-1_22.

21 Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer, 1984.
22 Ian Munro and Philip M. Spira. Sorting and searching in multisets. SIAM Journal on

Computing, 5(1):1–8, 1976. doi:10.1137/0205001.
23 S.V. Nagaraj. Optimal binary search trees. Theoretical Computer Science, 188(1-2):1–44,

nov 1997. doi:10.1016/S0304-3975(96)00320-9.

ESA 2018

http://dx.doi.org/10.1016/j.tcs.2012.08.010
https://hal.inria.fr/inria-00358018
http://dx.doi.org/10.1016/j.tcs.2013.10.019
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.31
http://dx.doi.org/10.1002/spe.4380231105
http://arxiv.org/abs/1801.04641
http://arxiv.org/abs/1801.04641
http://dx.doi.org/10.1007/s10817-017-9426-4
http://dx.doi.org/10.1145/1412228.1455267
http://dx.doi.org/10.1145/1412228.1455267
http://dx.doi.org/10.1145/146370.146381
http://dx.doi.org/10.1145/800057.808675
http://dx.doi.org/10.1016/0020-0190(93)90088-q
https://bugs.openjdk.java.net/browse/JDK-6804124
http://dx.doi.org/10.1016/S0019-9958(77)80011-9
http://dx.doi.org/10.1007/BF00264563
http://dx.doi.org/10.1007/BF00264563
http://dx.doi.org/10.1137/0206017
http://dx.doi.org/10.1007/3-540-09118-1_22
http://dx.doi.org/10.1137/0205001
http://dx.doi.org/10.1016/S0304-3975(96)00320-9

63:16 Nearly-Optimal Mergesort

24 Tim Peters. [Python-Dev] Sorting, 2002. URL: https://mail.python.org/pipermail/
python-dev/2002-July/026837.html.

25 Tim Peters. Timsort, 2002. URL: http://hg.python.org/cpython/file/tip/Objects/
listsort.txt.

26 Robert Sedgewick. Quicksort with equal keys. SIAM Journal on Computing, 6(2):240–267,
1977.

27 Robert Sedgewick. Algorithms in Java. Addison-Wesley, 2003.
28 Robert Sedgewick and Jon Bentley. Quicksort is optimal (talk slides), 2002. URL: http:

//www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf.
29 Tadao Takaoka. A new measure of disorder in sorting – entropy. In The Fourth Australasian

Theory Symposium (CATS 1998), pages 77–86, 1998.
30 Tadao Takaoka. Partial solution and entropy. In MFCS 2009, pages 700–711, 2009. doi:

10.1007/978-3-642-03816-7_59.
31 W.A. Walker and C.C. Gotlieb. A top-down algorithm for constructing nearly optimal

lexicographic trees. In Graph Theory and Computing, pages 303–323. Elsevier, 1972. doi:
10.1016/B978-1-4832-3187-7.50023-4.

32 Lutz M. Wegner. Quicksort for equal keys. IEEE Transactions on Computers, C-34(4):362–
367, 1985. doi:10.1109/TC.1985.5009387.

33 Sebastian Wild. Accompanying code for running time study, 2018. doi:10.5281/zenodo.
1241162.

34 Sebastian Wild. Quicksort is optimal for many equal keys. In ANALCO 2018, pages 8–22.
SIAM, jan 2018. doi:10.1137/1.9781611975062.2.

https://mail.python.org/pipermail/python-dev/2002-July/026837.html
https://mail.python.org/pipermail/python-dev/2002-July/026837.html
http://hg.python.org/cpython/file/tip/Objects/listsort.txt
http://hg.python.org/cpython/file/tip/Objects/listsort.txt
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://dx.doi.org/10.1007/978-3-642-03816-7_59
http://dx.doi.org/10.1007/978-3-642-03816-7_59
http://dx.doi.org/10.1016/B978-1-4832-3187-7.50023-4
http://dx.doi.org/10.1016/B978-1-4832-3187-7.50023-4
http://dx.doi.org/10.1109/TC.1985.5009387
http://dx.doi.org/10.5281/zenodo.1241162
http://dx.doi.org/10.5281/zenodo.1241162
http://dx.doi.org/10.1137/1.9781611975062.2

On a Problem of Danzer

Nabil H. Mustafa1

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, ESIEE Paris
mustafan@esiee.fr

Saurabh Ray
Department of Computer Science, NYU Abu Dhabi, United Arab Emirates
saurabh.ray@nyu.edu

Abstract
Let C be a bounded convex object in Rd, and P a set of n points lying outside C. Further let
cp, cq be two integers with 1 ≤ cq ≤ cp ≤ n−

⌊
d
2
⌋
, such that every cp +

⌊
d
2
⌋
points of P contains

a subset of size cq +
⌊
d
2
⌋
whose convex-hull is disjoint from C. Then our main theorem states

the existence of a partition of P into a small number of subsets, each of whose convex-hull is
disjoint from C. Our proof is constructive and implies that such a partition can be computed in
polynomial time.

In particular, our general theorem implies polynomial bounds for Hadwiger-Debrunner (p, q)
numbers for balls in Rd. For example, it follows from our theorem that when p > q ≥ (1 + β) · d2
for β > 0, then any set of balls satisfying the HD(p, q) property can be hit by O

(
q2p1+ 1

β log p
)

points. This is the first improvement over a nearly 60-year old exponential bound of roughly
O
(
2d
)
.

Our results also complement the results obtained in a recent work of Keller et al. where,
apart from improvements to the bound on HD(p, q) for convex sets in Rd for various ranges of p
and q, a polynomial bound is obtained for regions with low union complexity in the plane.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Convex polytopes, Hadwiger-Debrunner numbers, Epsilon-nets, Balls

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.64

1 Introduction

Given a finite set C of geometric objects in Rd, we say that C satisfies the HD(p, q) property
if for any set C′ ⊆ C of size p, there exists a point in Rd common to at least q objects of C′.
The goal then is to show that there exists a small set Q of points in Rd such that each object
of C contains some point of Q; such a Q is called a hitting set for C.

These bounds for a set C of convex sets in Rd have been studied since the 1950s (see the
surveys [7, 8, 15]), and it was only in 1991 that Alon and Kleitman [1], in a breakthrough
result, gave an upper-bound that is independent of |C|. Unfortunately it depends exponentially
on p, q and d. For the case where C consists of arbitrary convex objects, the current best
bounds remain exponential in p, q and d.

1 The work of Nabil H. Mustafa in this paper has been supported by the grant ANR SAGA (JCJC-14-
CE25-0016-01).

© Nabil H. Mustafa and Saurabh Ray;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 64; pp. 64:1–64:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mustafan@esiee.fr
mailto:saurabh.ray@nyu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 On a Problem of Danzer

I Theorem A ([1, 9]). Let C be a finite set of convex objects in Rd satisfying the HD(p, q)
property, where p, q are two integers with p ≥ q ≥ d+ 1. Then there exists a hitting set for C
of size

O
(
pd

q−1
q−d · logc

′d3 log d p
)
,

(p− q) +O

((
p
q

)d
logc

′d3 log d
(
p
q

))
, for q ≥ log p

p− q + 2, for q ≥ p1− 1
d+ε, p ≥ p(d, ε).

where c′ is an absolute constant independent of |C|, p, q and d, and p(d, ε) is a function
depending only on d and ε.

Consider the basic case where C is a set of balls in Rd satisfying the HD(p, q) property.
Theorem A implies – ignoring logarithmic factors and for general values of p and q – the
existence of a hitting set of size no better than O

(
pd
)
. Furthermore, it requires q ≥ d+ 1 –

a necessary condition for arbitrary convex objects2 but not for balls.

Almost 60 years ago, Danzer [4, 5] considered the HD(p, q) problem for balls. The best
bound that we are aware of, derived from the survey of Eckhoff [7] by combining inequalities
(4.2), (4.4) and (4.5), is stated below. It is better than the one from Theorem A quantitatively,
but also in that it gives a bound requiring only that q ≥ 2. Further, for a very specific case –
namely when p = q and (d− q) is O(log d) – it succeeds in giving polynomial bounds.

I Theorem B ([7]). Let B be a finite set of balls in Rd. If B satisfies the HD(p, q) property
for some d ≥ p ≥ q ≥ 2, then there exists a hitting set for B of size at most√

3π
2 · 2

d−q ·
(

(p− q) · 2q · d 3
2 · g(d) + 4 (d− q + 2)

3
2 · g(d− q + 2)

)
where g(x) = log x + log log x + 1. Ignoring logarithmic terms, the above bound is of the
form Θ

(
(p− q) · 2d · d 3

2 + 2d−q · (d− q) 3
2

)
. If p 6= q the first term dominates, otherwise the

second term dominates.

Turning towards the lower-bound for the case where C is a set of unit balls in Rd, Bourgain
and Lindenstrauss [2] proved a lower-bound of 1.0645d when p = q = 2 in Rd, i.e., one needs
at least 1.0645d points to hit all pairwise intersecting unit balls in Rd.

Our Result
We consider a more general set up for the HD(p, q) problem, as follows.

Let C be a convex object in Rd, and P a set of n points lying outside C. For each p ∈ P ,
let Hp be the set of hyperplanes separating p from C. Let Cp be the set of points in Rd dual
to the hyperplanes in Hp (see [12, Chapter 5.1]), and let S = {Cp : p ∈ P}.

Our goal is to study the HD(p, q) property for S – namely, that out of every p objects of
S, there exists a point in Rd common to at least q of them. This is equivalent to the property
of C and P that out of every p-sized set P ′ ⊆ P , there exists a hyperplane separating C
from a q-sized subset P ′′ ⊂ P ′ – or equivalently, conv(P ′′) is disjoint from C.

Our main theorem is the following. For a simpler expression, let cq, cp be two positive
integers such that p = cp +

⌊
d
2
⌋
and q = cq +

⌊
d
2
⌋
.

2 There are easy examples, e.g. when the convex objects are hyperplanes in Rd.

N.H. Mustafa and S.Ray 64:3

I Theorem 1. Let C be a bounded convex object in Rd and P a set of n points lying outside
C. Further let cp, cq be two integers, with 1 ≤ cq ≤ cp ≤ n−

⌊
d
2
⌋
, such that for every cp+

⌊
d
2
⌋

points of P , there exists a subset of size cq +
⌊
d
2
⌋
whose convex-hull is disjoint from C. Then

the points of P can be partitioned into

λd (cp, cq) = K2
d

cq
·
(√

2K1

) d
cq · (bd/2c+ cq)2 · (bd/2c+ cp)

1+ bd/2c−1
cq · log (bd/2c+ cp)

sets, each of whose convex-hull is disjoint from C. Here K1,K2 are absolute constants
independent of n, d, cp and cq. Furthermore, such a partition can be computed in polynomial
time.

The proof, presented in Section 2, is a combination of three ingredients: the Alon-Kleitman
technique [1], bounds on independent sets in hypergraphs [9] and bounds on (≤ k)-sets for
half-spaces [3]. It is an extension of the proof in [14] which studied Carathéodory’s theorem
in this setting.
I Remark. The restriction that q ≥

⌊
d
2
⌋

+ 1 is necessary – as can be seen when P form the
vertices of a cyclic polytope in Rd and C is a slightly shrunk copy of conv(P).
I Remark. Note that when cq ≥ β · d2 for any absolute constant β > 0, the above bound is
polynomial in the dimension d – it is upper-bounded by O

(
q2p1+ 1

β log p
)
.

I Remark. It was shown in [13] that Cp is a convex object in Rd and thus the bounds of
Theorem A apply. As before, Theorem 1 substantially improves upon this, as the bounds
following from Theorem A are exponential in d and furthermore, require q ≥ d+ 1.

As an immediate corollary of Theorem 1, we obtain the first improvements to the old
bound on the (p, q) problem for balls in Rd. The bound in Theorem B is exponential in d –
except in special cases where p = q and (d− q) is3 O(log d). On the other hand, our result
gives polynomial bounds as long as q ≥ βd for any constant β > 1

2 .

I Corollary 2 (Hadwiger-Debrunner (p, q) bound for balls in Rd). Let B be collection of balls
in Rd such that for every subset of cp +

⌊
d+1

2
⌋
balls in B, some cq +

⌊
d+1

2
⌋
have a common

intersection, where cp and cq are integers such that 1 ≤ cq ≤ cp ≤ n −
⌊
d+1

2
⌋
. Then there

exists a set X of λd+1(cp, cq) points that form a hitting set for the balls in B. Here λd+1(·, ·)
is the function defined in the statement of Theorem 1.

Proof. Observe that one can stereographically ‘lift’ balls in Rd to caps of a sphere S in Rd+1,
where a cap of a sphere is a portion of the sphere contained in a half-space that doesn’t
contain the center of the sphere. Thus we will prove a slightly more general result where B
consists of caps of a d-dimensional sphere S embedded in Rd+1.

For a point x ∈ S, let hx denote the hyperplane tangent to S at x. For any point y lying
outside S, define the separating set of y to be

Sy = {z ∈ S : hz separates y and S} .

Geometrically, Sy is the set of points of S ‘visible’ from y, and form a cap of S. Furthermore,
for any cap K of S, there is a unique point w such that K = Sw. We denote this point w by
apex(K).

3 Recall that Theorem B assumes q ≤ p ≤ d.

ESA 2018

64:4 On a Problem of Danzer

Given the set of caps B on S, consider the point set

apex (B) = {apex(B) : B ∈ B} .

Observe that for a point x ∈ S and a cap B ∈ B, x ∈ B if and only if x ∈ Sapex(B). As B
satisfies the (p, q) property – namely that for every p-sized subset B′ of B, there exists a
point x ∈ S lying in some q elements of B′ – we have that for every p-sized subset A′ of
apex(B), there exists a point x ∈ S lying in the separating set of some q points of A′. In
other words, hx separates these q points from S.

Applying Theorem 1 with C = S and P = apex (B) in dimension d+ 1, we conclude that
P can be partitioned into a family Ξ of λd+1(cp, cq) sets, each of whose convex hull is disjoint
from S. Consider a set P ′ ∈ Ξ. Since the convex hull of P ′ is disjoint from S, we can find a
hyperplane hx tangent to S at x such that hx separates P ′ from S. This implies that all
the caps in B corresponding to the points in P ′ contain the point x. Thus for each set of Ξ
we obtain a point which is contained in all the caps corresponding to the points in that set.
These |X| = λd+1(cp, cq) points form the required set X. J

Our results complement the recent results of Keller, Smorodinsky and Tardos [9, 10] who
obtain polynomial bounds for regions of low union complexity in the plane.

2 Proof of Theorem 1

Given a set P of points in Rd and an integer k ≥ 1, a set P ′ ⊆ P is called a k-set of P if
|P ′| = k and if there exists a half-space h in Rd such that P ′ = P ∩ h. A set P ′ ⊆ P is
called a (≤ k)-set if P ′ is a l-set for some l ≤ k. The next well-known theorem gives an
upper-bound on the number of (≤ k)-sets in a point set (see [17]).

I Theorem 3 (Clarkson-Shor [3]). For any integer k ≥
⌊
d
2
⌋

+ 1, the number of (≤ k)-sets of
any set of n points in Rd is at most

κd (n, k) = 2
(

K1

dd/2e

)dd/2e(
n

bd/2c

)
(k + dd/2e)dd/2e ≤ κ′d (k) · nbd/2c, (1)

where κ′d (k) = 2Kd
1 bd/2c−bd/2c

(
1 + k

dd/2e

)dd/2e
and K1 ≥ e is an absolute constant inde-

pendent of n, d and k.

I Definition 4 (Depth). Given a set P of n points in Rd and any set Q ⊆ P , define the
depth of Q with respect to P , denoted depthP (Q), to be the minimum number of points of
P contained in any half-space containing Q.

For two parameters l ≥ k ≥ 2, let τd (n, k, l) denote the maximum number of subsets of
size k and depth at most l with respect to P in any set P of n points in Rd:

τd (n, k, l) = max
P⊆Rd
|P |=n

|{Q ⊆ P : |Q| = k and depthP (Q) ≤ l}| .

The following statement is easily implied by an application of the Clarkson-Shor tech-
nique [3] (e.g., see [16]).

I Theorem 5. For parameters l ≥ k ≥
⌊
d
2
⌋

+ 1,

τd(n, k, l) ≤ e · κd(n, k) · lk−bd/2c,

where the function κ(·, ·) is as defined in Equation (1).

N.H. Mustafa and S.Ray 64:5

Proof. Let P be any set of n points in Rd. Let t be the number of sets of P of size k and
depth at most l. Pick each element of P independently with probability ρ = 1

l to get a
random sample R. The expected number of k-sets in R satisfies

ρk · (1− ρ)l−k · t ≤ E [number of k-sets in R]

≤ 2
(

K1

dd/2e

)d d2 e
E
[(
|R|⌊
d
2
⌋)](k +

⌈
d

2

⌉)d d2 e
= 2

(
K1

dd/2e

)d d2 e(n⌊
d
2
⌋)ρb d2 c(k +

⌈
d

2

⌉)d d2 e
= κd(n, k) · ρb

d
2 c

=⇒ t ≤ κd(n, k) · ρb
d
2 c

ρk · (1− ρ)l−k ≤ e · κd(n, k) · lk−bd/2c,

as
(
1− 1

l

)−(l−k) ≤ e for any l ≥ k ≥ 2. J

I Lemma 6. Let C be a bounded convex object in Rd, and P a set of n points lying outside
C. Let p ≥ q ≥

⌊
d
2
⌋

+ 1 be parameters such that for every subset Q ⊆ P of size p, there exists
a set Q′ ⊂ Q of size q such that Q′ can be separated from C by a hyperplane. Then there
exists a hyperplane separating at least(

2 q pq−1 · e κ′d(q)
) 1
bd/2c−q

fraction of the points of P from C.

Proof. From [6, 9], it follows that the number of distinct q-tuples of P that can be separated
from C by a hyperplane is, assuming that n ≥ 2p, at least

n− p+ 1
n− q + 1

(
n
q

)(
p−1
q−1
) ≥ nq

2q pq−1 .

Let l be the maximum depth (Definition 4) of any of these separable q-tuples. The number
of such tuples is therefore at most τd(n, q, l). Thus by Theorem 5 we must have

nq

2q pq−1 ≤ τd (n, q, l) ≤ e κd (n, q) lq−bd/2c.

Re-arranging the terms and from inequality (1), we get

l ≥
(

nq

2 q pq−1 · e κd (n, q)

) 1
q−bd/2c

≥

(
nq

2 q pq−1 · e κ′d (q) nb
d
2 c

) 1
q−bd/2c

= n ·
(
2 q pq−1 · e κ′d (q)

) 1
bd/2c−q .

Thus one of the separable q-tuples, say P ′ ⊆ P , must have depth at least l; in other words,
the hyperplane separating P ′ from C must contain at least l points of P . This is the required
hyperplane. J

We now prove a weighted version of the above statement.

ESA 2018

64:6 On a Problem of Danzer

I Corollary 7. Let C be a bounded convex object in Rd, and P a weighted set of n points
lying outside C, where the weight of each point p ∈ P is a non-negative rational number. Let
p ≥ q ≥

⌊
d
2
⌋

+ 1 be parameters such that for every subset Q ⊆ P of size p, there exists a set
Q′ ⊂ Q of size q such that Q′ can be separated from C by a hyperplane. Then there exists a
hyperplane separating a set of points whose weight is at least

αd(p, q) =
(
2e κ′d (q) qq pq−1) 1

bd/2c−q

fraction of the total weight of the points in P .

Proof. By appropriately scaling all the rational weights, we may assume that each weight
is a non-negative integer and we replace a point with weight m by m unweighted copies of
the point. Let P ′ be the new set of points. Observe that any set S of pq points in P ′ either
contains q copies of some point in P or it contains p distinct points from P . In either case,
there is hyperplane separating q points of S from C. Thus, we can apply Lemma 6 to the
point set P ′ with the parameter p in the lemma replaced by pq. The result follows. J

Finally we return to the proof of the main theorem.

I Theorem 1. Let C be a bounded convex object in Rd and P a set of n points lying outside
C. Further let cp, cq be two integers, with 1 ≤ cq ≤ cp ≤ n−

⌊
d
2
⌋
, such that for every cp+

⌊
d
2
⌋

points of P , there exists a subset of size cq +
⌊
d
2
⌋
whose convex-hull is disjoint from C. Then

the points of P can be partitioned into

λd (cp, cq) = K2
d

cq
·
(√

2K1

) d
cq · (bd/2c+ cq)2 · (bd/2c+ cp)

1+ bd/2c−1
cq · log (bd/2c+ cp)

sets, each of whose convex-hull is disjoint from C. Here K1,K2 are absolute constants
independent of n, d, cp and cq. Furthermore, such a partition can be computed in polynomial
time.

Proof. Let p = cp+bd/2c and q = cq+bd/2c. Let H be the set of all hyperplanes separating a
distinct subset of points of P from C. As the number of subsets of P is finite, one can assume
that H is also finite. Consider the following linear program on |H| variables {uh ≥ 0: h ∈ H}:

min
∑
h∈H

uh, such that ∀r ∈ P :
∑
h∈H

h separates r from C

uh ≥ 1. (2)

The LP-dual to the above program, on |P | variables {wr ≥ 0: r ∈ P}, is:

max
∑
p∈P

wp, such that ∀h ∈ H :
∑
r∈P

h separates r from C

wr ≤ 1. (3)

Consider an optimal solution w∗ of the dual linear program and interpret w∗r as the weight
of each r ∈ P . Since the weights are rational, by Corollary 7, there exists a hyperplane
h ∈ H separating a subset of P of combined weight at least ε = αd(p, q) fraction of the total
weight of all the points. Since the total weight of the points in any half-space is constrained
to be at most 1 by the linear program, the total weight of all the points of P must be at
most 1

ε . In other words, the optimal value of linear program (3) is at most 1
ε . Since the

optimal values of both linear programs are equal due to strong duality, the optimal value of
linear program (2) is also at most 1

ε .

N.H. Mustafa and S.Ray 64:7

Let u∗ be the optimal solution of linear program (2). If we interpret uh as the weight of
the hyperplane h, the constraints of the program imply that each point is separated by a set
of hyperplanes in H whose combined weight is at least 1 out of a total weight of at most
1
ε – in other words, at least ε-th fraction of the total weight of H. By associating with each
hyperplane the half-space bounded by it and not containing C, and using the ε-net theorem
for half-spaces in Rd (see [11]), there exists a set of O

(
d
ε log 1

ε

)
hyperplanes which together

separate all points of P from C. Recalling that
1
ε

= 1
αd(p, q)

=
(
2e κ′d(q) qq pq−1) 1

q−bd/2c =
(
2e κ′d(q) qq pq−1) 1

cq .

and that κ′d (q) = 2Kd
1 bd/2c−bd/2c

(
1 + q

dd/2e

)dd/2e
, we get

1
ε

=
(

4Kd
1ebd/2c−bd/2c

(
1 + q

dd/2e

)dd/2e
qq pq−1

) 1
cq

≤
(

4Kd+1
1 bd/2c−d (cq + d)dd/2e qq pq−1

) 1
cq (using e ≤ K1 and q = cq + bd/2c)

≤
(

4Kd+1
1 bd/2c−d(cq + d)dd/2eqcq+bd/2cpcq+bd/2c−1

) 1
cq

= O

(
K

d
cq

1 bd/2c
− d
cq (cq + d)

dd/2e
cq (cq + bd/2c)1+ bd/2c

cq (cp + bd/2c)1+ bd/2c−1
cq

)

= O

K d
cq

1 d
2+ bd/2c−1

cq (1 + cq
d

)
dd/2e
cq

(
1 + cq
bd/2c

)1+ bd/2c
cq
(

1 + cp
bd/2c

)1+ bd/2c−1
cq


= O

K d
cq

1 d
2+ bd/2c−1

cq e
cq
d ·
dd/2e
cq

(
1 + cq
bd/2c

)
e

cq
bd/2c ·

bd/2c
cq

(
1 + cp
bd/2c

)1+ bd/2c−1
cq


= O

K d
cq

1 d
2+ bd/2c−1

cq

(
1 + cq
bd/2c

) (
1 + cp
bd/2c

)1+ bd/2c−1
cq


= O

(
K

d
cq

1 2
d

2cq (bd/2c+ cq) (bd/2c+ cp)
1+ bd/2c−1

cq

)
= O

((√
2K1

) d
cq (bd/2c+ cq) (bd/2c+ cp)

1+ bd/2c−1
cq

)
.

The Big-Oh notation here does not hide dependencies on d – namely we do not treat d as a
constant. From the above it follows that

log 1
ε

= O
(
c−1
q (bd/2c+ cq) log (bd/2c+ cp)

)
.

Thus, dε log 1
ε is

O

(
d ·
((√

2K1
) d
cq (bd/2c+ cq) (bd/2c+ cp)1+ bd/2c−1

cq

)
·
(
c−1

q (bd/2c+ cq) log (bd/2c+ cp)
))

which simplifies to

O

(
d

cq

(√
2K1

) d
cq (bd/2c+ cq)2 (bd/2c+ cp)1+ bd/2c−1

cq log(bd/2c+ cp)
)

.

Since linear programs can be solved in polynomial time and epsilon nets can be computed
in polynomial time, the partition of P into the above number of sets can be achieved in
polynomial time. The theorem follows. J

ESA 2018

64:8 On a Problem of Danzer

References
1 N. Alon and D. Kleitman. Piercing convex sets and the Hadwiger–Debrunner (p, q)-problem.

Adv. Math., 96(1):103–112, 1992.
2 J. Bourgain and J. Lindenstrauss. On covering a set in Rn by balls of the same diameter.

In Geometric Aspects of Functional Analysis, pages 138–144. Springer Berlin Heidelberg,
1991.

3 K. Clarkson and P. Shor. Applications of random sampling in computational geometry, II.
Discrete & Computational Geometry, 4(5):387–421, 1989.

4 L. Danzer. Uber zwei Lagerungsprobleme; Abwandlungen einer Vermutung von T. Gallai.
PhD thesis, Techn. Hochschule Munchen, 1960.

5 L. Danzer. Uber durchschnittseigenschaften n-dimensionaler kugelfamilien. J. Reine Angew.
Math., 208:181–203, 1961.

6 D. de Caen. Extension of a theorem of Moon and Moser on complete subgraphs. Ars
Combin., 16:5–10, 1983.

7 J. Eckhoff. A survey of the Hadwiger-Debrunner (p, q)-problem. In Discrete and Compu-
tational Geometry: The Goodman-Pollack Festschrift, pages 347–377. Springer, 2003.

8 A. Holmsen and R. Wenger. Helly-type theorems and geometric transversals. In J. E.
Goodman, J. O’Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational
Geometry, pages 91–123. CRC Press LLC, 2017.

9 C. Keller, S. Smorodinsky, and G. Tardos. Improved bounds on the Hadwiger-Debrunner
numbers. Israel J. of Math., to appear, 2017.

10 C. Keller, S. Smorodinsky, and G. Tardos. On max-clique for intersection graphs of sets and
the hadwiger-debrunner numbers. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2254–2263, 2017.

11 A. Kupavskii, N. H. Mustafa, and J. Pach. Near-optimal lower bounds for ε-nets for half-
spaces and low complexity set systems. In Martin Loebl, Jaroslav Nešetřil, and Robin
Thomas, editors, A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek,
pages 527–541. Springer International Publishing, 2017.

12 J. Matoušek. Lectures in Discrete Geometry. Springer-Verlag, New York, NY, 2002.
13 N. H. Mustafa and S. Ray. Weak ε-nets have a basis of size O(1/ε log 1/ε). Comp. Geom:

Theory and Appl., 40(1):84–91, 2008.
14 N. H. Mustafa and S. Ray. An optimal generalization of the colorful Carathéodory theorem.

Discrete Mathematics, 339(4):1300–1305, 2016.
15 N. H. Mustafa and K. Varadarajan. Epsilon-approximations and epsilon-nets. In J. E.

Goodman, J. O’Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational
Geometry, pages 1241–1268. CRC Press LLC, 2017.

16 S. Smorodinsky, M. Sulovský, and U. Wagner. On center regions and balls containing
many points. In Proceedings of the 14th annual International Conference on Computing
and Combinatorics, COCOON ’08, pages 363–373, 2008.

17 U. Wagner. k-sets and k-facets. In J.E. Goodman, J. Pach, and R. Pollack, editors,
Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemporary
Mathematics, pages 231–255. American Mathematical Society, 2008.

Quasi-Polynomial Time Approximation Schemes
for Packing and Covering Problems in Planar
Graphs
Michał Pilipczuk1

Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Erik Jan van Leeuwen
Department of Information and Computing Sciences, Utrecht University, The Netherlands
e.j.vanleeuwen@uu.nl

Andreas Wiese2

Department of Industrial Engineering and Center for Mathematical Modeling,
Universidad de Chile, Chile
awiese@dii.uchile.cl

Abstract
We consider two optimization problems in planar graphs. In Maximum Weight Independent
Set of Objects we are given a graph G and a family D of objects, each being a connected
subgraph of G with a prescribed weight, and the task is to find a maximum-weight subfamily
of D consisting of pairwise disjoint objects. In Minimum Weight Distance Set Cover we
are given an edge-weighted graph G, two sets D, C of vertices of G, where vertices of D have
prescribed weights, and a nonnegative radius r. The task is to find a minimum-weight subset of
D such that every vertex of C is at distance at most r from some selected vertex. Via simple
reductions, these two problems generalize a number of geometric optimization tasks, notably
Maximum Weight Independent Set for polygons in the plane and Weighted Geometric
Set Cover for unit disks and unit squares. We present quasi-polynomial time approximation
schemes (QPTASs) for both of the above problems in planar graphs: given an accuracy parameter
ε > 0 we can compute a solution whose weight is within multiplicative factor of (1 + ε) from the
optimum in time 2poly(1/ε,log |D|) · nO(1), where n is the number of vertices of the input graph.
Our main technical contribution is to transfer the techniques used for recursive approximation
schemes for geometric problems due to Adamaszek, Har-Peled, and Wiese [1, 2, 4] to the setting
of planar graphs. In particular, this yields a purely combinatorial viewpoint on these methods.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases QPTAS, planar graphs, Voronoi diagram

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.65

Related Version A full version of the paper is available at http://arxiv.org/abs/1807.07626.

Acknowledgements We thank Dániel Marx for insightful discussions on the approach to opti-
mization problems in geometric and planar settings via Voronoi diagrams.

1 The research of Mi. Pilipczuk was partially supported by Polish National Science Centre
grant UMO-2013/11/D/ST6/03073, and is a part of project TOTAL that has received
funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 677651).

2 The research of A. Wiese is supported by the Millennium Nucleus Information and
Coordination in Networks ICM/FIC RC130003 and by the grant Fondecyt Regular
1170223.

© Michał Pilipczuk, Erik Jan van Leeuwen, and Andreas Wiese;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 65; pp. 65:1–65:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michal.pilipczuk@mimuw.edu.pl
mailto:e.j.vanleeuwen@uu.nl
mailto:awiese@dii.uchile.cl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.65
http://arxiv.org/abs/1807.07626
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

65:2 QPTASes for Packing and Covering Problems in Planar Graphs

1 Introduction

Independent Set and Dominating Set are fundamental optimization problems on graphs.
Given a graph G where each vertex v has a weight w(v), in Independent Set one seeks to
find a vertex subset I ⊆ V (G) of maximum possible weight such that no two vertices in I
are adjacent, whereas in Dominating Set one searches for a vertex subset D of minimum
possible weight such that each vertex v ∈ V (G) is contained in D or adjacent to a vertex
in D. Even in the unit-weight setting, both problems are notoriously hard to approximate
and they are also W[1]-hard, i.e., we do not expect that they admit fixed-parameter tractable
(fpt) algorithms running in time f(k) · nO(1), where k is the expected solution size.

Therefore, special cases of the problems were investigated, for instance the case where the
input graph is planar. On planar graphs, classic layering techniques can be applied to show
that both problems admit EPTASs, i.e., (1 + ε)-approximation algorithms with a running
time of f(1/ε)nO(1) for some function f , and fpt algorithms for the parameterization by
the solution size, i.e., for a parameter k, algorithms running in time f(k)nO(1) that find a
best solution among those of size at most k. Given these results, it is natural to consider
generalizations of the above problems on planar graphs.

In this paper we study the Distance Independent Set and the Distance Dominating
Set problems. Given additionally a value r ∈ R and weights on the edges of G, in the
Distance Independent Set problem we require that any two selected vertices in I are at
distance larger than r from each other, and in the Distance Dominating Set problem
we require that each vertex v ∈ V (G) is at distance at most r from some vertex of D.
Let us stress that we assume that r is part of the input and in particular not assumed
to be a constant; in fact, for constant r and unit edge weights, it is well-known that the
same layering techniques easily yield EPTASs and fpt algorithms on planar graphs. In
the parameterized setting, both problems are W[1]-hard even for unit weights; however,
the trivial nO(k)-time algorithms can be improved to nO(

√
k)-time algorithms [5]. These

parameterized algorithms extend a technique originally developed to design quasi-polynomial
time approximation schemes (QPTASs) for Independent Set and Dominating Set in the
geometric (Euclidean) setting [1, 2, 4]. The idea is to guess a sparse separator that has only
small intersection with the optimal solution and that splits the problem into two roughly
equal-sized subproblems, and then to solve the subproblems recursively. The natural question
arises whether one can transfer the insights obtained in the parameterized setting back to
approximation algorithms, and obtain approximation schemes for Distance Independent
Set and Distance Dominating Set in planar graphs.

Our contribution. In this paper we show that this is indeed possible and we present the
first quasi-polynomial time approximation schemes for Distance Independent Set and
Distance Dominating Set on planar graphs when r is part of the input. In fact, we
give QPTASs for two even more general problems, which we name Maximum Weight
Independent Set of Objects (MWISO) and Minimum Weight Distance Set Cover
(MWDSC). In MWISO we are given a graph G and a family D of objects, each being a
connected subgraph of G with a prescribed weight, and the goal is to find a maximum-weight
subfamily of D consisting of pairwise disjoint objects. In MWDSC we are given an edge-
weighted graph G, subsets of vertices D and C where vertices of D are weighted, and radius
r ∈ R. The goal is to find a minimum-weight subset F ⊆ D that r-covers C in the sense that
each vertex of C is at distance at most r from some vertex of F . MWISO generalizes Distance
Independent Set by taking D to be the family {{v : dist(u, v) ≤ r/2} : u ∈ V (G)} of all
balls of radius r/2 in the graph, while MWDSC generalizes Distance Dominating Set by
taking C = V (G). The following statements summarize our results.

Mi. Pilipczuk, E. J. van Leeuwen, and A. Wiese 65:3

I Theorem 1. The Maximum Weight Independent Set of Objects problem in planar
graphs admits a QPTAS with running time 2poly(1/ε,logN) · nO(1), where n is the vertex count
of the input graph and N = |D| is the number of objects in the input.

I Theorem 2. The Minimum Weight Distance Set Cover problem in planar graphs
admits a QPTAS with running time 2poly(1/ε,logN) · nO(1), where n is the vertex count of the
input graph and N = |D| is the number of vertices allowed to be selected to the solution.

To obtain our QPTASs for MWISO, we extend the machinery developed in [1, 2, 4] for
optimization problems in geometric settings to problems in planar graphs. The heart of our
technical contribution is to show that for any instance of the above problems there is a set
of candidate separators of polynomial size such that one of them splits the given problem
in a balanced way and intersects only a tiny fraction of the given solution. The latter is
important since the intersected objects will be lost (in the case of MWISO) or might be paid
twice (in the case of MWDSC) and hence we need to bound their total weight by εOPT.
We state here an informal version of our separator lemma for the case of MWISO.

I Lemma 3 (Informal). In polynomial time we can compute a set X ⊆ 2D of separators such
that for every solution F ⊆ D, say of weight W , there exists X ∈ X such that w(F∩X) ≤ εW
and in the intersection graph of D−X each connected component C satisfies w(C∩F) ≤ 9

10W .

Using Lemma 3 as abstraction for finding separators, we can apply the same recursive scheme
as [1, 2, 4]: we guess the correct separator X ∈ X, construct a subproblem for each connected
component of the intersection graph of D −X , and recurse in each of them up to recursion
depth O(log |D|). Thus, the only part of the reasoning that uses planarity is Lemma 3.

The proof of Lemma 3 follows the reasoning of Har-Peled [4]. The idea is to prove the
following auxiliary result: for the optimal solution F (and in fact for any feasible solution)
there exists a separator of length roughly s = O(1

ε ln 1
ε) that cuts through at most an

ε-fraction of the weight of F and splits the weight of F in a balanced way. Lemma 3 then
follows by enumerating all candidates for such separators. In [4], the separator was simply
a polygon with roughly s vertices. We lift this concept to planar graphs using Voronoi
separators as in the work of Marx and Pilipczuk [5]. Intuitively, a Voronoi separator of length
r is an alternating cyclic sequence of r objects from D and r faces of the graph, connected
by shortest paths in order to form a closed curve; this curve splits the instance into two
subinstances. Thus, shortest paths in the graph are the analogues of segments in the plane.

The auxiliary result is proved in [4] by showing that if S is a sample of size roughly s2

from F , where each object is sampled independently with probability proportional to its
weight, then a balanced separator of length s in the Voronoi diagram of S satisfies all the
required properties with high probability. We follow the same reasoning, however again we
need to properly understand how geometric concept used in [4] – spokes and corridors –
should be interpreted in planar graphs. Here, the technical toolbox for Voronoi diagrams
and Voronoi separators developed in [5] becomes very useful. In particular, it turns out that
a fine understanding of what faces are candidates for branching points of a Voronoi diagram,
provided in [5], is essential to make the probabilistic argument work. Let us remark that
we also somewhat simplify the original argument of Har-Peled by replacing the Exponential
Decay Lemma with a direct probabilistic calculation.

To give the QPTAS for MWDSC we provide a variant of Lemma 3 suitable for this
problem and then follow a similar recursive scheme as for Theorem 1. It is nice that we can
reuse the above-mentioned auxiliary result introduced for Lemma 3 as a black-box, so the
proof of the variant is relatively short. As in [7], the difference is that in the recursion instead

ESA 2018

65:4 QPTASes for Packing and Covering Problems in Planar Graphs

of removing the guessed separator we preserve it in all the recursive subcalls, thus allowing
double-buying objects from it. Due to space constraints, the proof of Theorem 2 is entirely
deferred to the full version, while in this extended abstract we focus on proving Theorem 1.

Geometric problems. The above recursive machinery based on balanced separators was
first introduced for obtaining a QPTAS for Maximum Weight Independent Set of
Rectangles in the two-dimensional plane [1] and then extended for getting QPTASs for
Maximum Weight Independent Set of Polygons [2, 4] and Weighted Geometric
Set Cover (WGSR) for pseudo-disks [7]. We prove that Theorems 1 and 2 generalize these
results, with the exception that for WGSR we can treat only the cases of unit disks and
axis-parallel unit squares, instead of general families of pseudo-disks. In the full version we
explain how to derive the mentioned results from our theorems.

2 Proof of the Separator Lemma for MWISO

In this section we prove the Separator Lemma for MWISO, which was informally stated
as Lemma 3 and is formally stated below. For a family D of objects, IntGraph(D) denotes
the intersection graph of D: graph with vertex set D where two objects are adjacent iff they
intersect. The reader may think of F being the optimal solution and of W being its weight.

I Lemma 4 (Separator Lemma for MWISO). Let G be an n-vertex planar graph and D be a
weighted family of N objects in G. Let 0 < ε < 1

10 and denote s = 103 · 1
ε ln 1

ε . Then there
exists a family X consisting of subsets of D with the following properties:
(A1) |X| ≤ 63sN15s and X can be computed in time NO(s) · nO(1); and
(A2) for every realW ≥ 0 and subfamily F ⊆ D of pairwise disjoint objects such that w(F) ≤

W and w(p) ≤ s−2W for each p ∈ F , there exist X ∈ X such that w(F ∩ X) ≤ εW

and for every connected component C of IntGraph(D) \ X we have w(C ∩ F) ≤ 9
10W .

The plan is as follows. We first recall the toolbox of Voronoi separators, introduced by
Marx and Pilipczuk [5]. This allows us to state a stronger lemma, phrased as the existence
of a short Voronoi separator appropriately breaking F . We then show how Lemma 4 follows
from this stronger result and subsequently prove the stronger result.

Before we proceed, let us set up the notation and basic assumptions about the input.
Let G be the input graph. We assume the edges of G are assigned positive weights3 so
that we have the shortest-path metric in G: dist(u, v) denotes the shortest length of a path
connecting u and v in G. We may assume that G is given with an embedding in a sphere Σ
and that it is triangulated; that is, every face of G is a triangle. Indeed, adding edges of
infinite weight to triangulate the graph neither distorts the metric nor spoils the connectivity
of the objects. Also, for every face f of G we fix any its internal point c to be its center , and
for each vertex u of f we fix some curve within f with endpoints u and c to be the segment
connecting u and c so that segments connecting vertices of f with c pairwise do not cross.

We assume that shortest paths are unique and the distances between pairs of vertices are
pairwise different: for every pair of vertices u, v there is a unique shortest path connecting u
and v and for {u, v} 6= {u′, v′} we have dist(u, v) 6= dist(u′, v′). This can be ensured by using
lexicographic tie-breaking rules and it increases the running time only by polynomial factors.

3 Obviously, edge weights are immaterial for the MWISO problem. However, it is convenient to think of
G as edge-weighted so that we can define Voronoi diagrams. Furthermore, many results of this section
will be reused for the MWDSC problem, where edge weights play a role in the problem.

Mi. Pilipczuk, E. J. van Leeuwen, and A. Wiese 65:5

We are given a family D of objects in G, where each object p ∈ D is a nonempty, connected
subgraph of G. For any vertex u of G and any object p ∈ D, let dist(u, p) be the length
of the shortest path connecting u with any vertex of p. For each object p ∈ D, we fix any
spanning tree T (p) of p. We also assume that the family D is weighted: every object p ∈ D
is assigned a nonnegative real weight w(p). For F ⊆ D we denote w(F) =

∑
p∈F w(p).

2.1 Basic toolbox
Voronoi partitions and diagrams. A subfamily F ⊆ D is independent if objects in F are
pairwise vertex-disjoint. Such an independent subfamily F induces the Voronoi partition
MF , which is a partition of the vertex set of G into |F| parts according to the closest object
from F . Precisely, for p ∈ F , we say that a vertex u belongs to the Voronoi cell MF (p)
if dist(u, p) < dist(u, p′) for any p′ ∈ F , p′ 6= p. Observe that ties do not happen due to
distinctness of distances in G. We note that Marx and Pilipczuk consider in [5] a more
general notion of a normal subfamily, but we do not need this generality here.

Assuming |F| ≥ 4, we define the Voronoi diagram induced by MF as follows. First,
observe that every Voronoi cell MF (p), for p ∈ F , induces a connected subgraph of G that
contains p entirely (see Lemmas 4.1 and 4.2 in [5]). Extend T (p) to a spanning tree T̂ (p) of
G[MF (p)] by adding, for each vertex u of MF (p) that is not in p, the shortest path from u

to p. Take the dual of G and remove all the edges dual to the edges of T̂ (p), for all p ∈ F .
Then exhaustively remove vertices of degree one, and finally replace each maximal path with
internal vertices of degree 2 (so-called 2-path) by a single edge; the embedding of this edge is
defined as the union of embeddings of edges of G comprising the original 2-path. Thus, we
obtain a connected, 3-regular plane multigraph, called the Voronoi diagram of F , whose faces
bijectively correspond to the cells MF (p) for p ∈ F . More precisely, every face of the Voronoi
diagram of F is associated with a different object p ∈ F so that all the vertices of MF (p) are
contained in this face. The 3-regularity of the diagram follows from the assumption that G
is triangulated. From Euler’s formula it follows that if |F| = k, then H has k faces, 2k − 4
vertices, and 3k − 6 edges. See Lemmas 4.4 and 4.5 of [5] for a formal verification of these
assertions, and Section 4.4 of [5] for a detailed description of the construction.

Branching points. If H is the Voronoi diagram of an independent subfamily F ⊆ D, then
H is constructed from a subgraph of the dual of G by contracting maximal 2-paths. Hence,
vertices of H correspond to faces of G. These primal faces, equivalently dual vertices, are
called the branching points of the diagram H; intuitively, these are faces where the boundaries
of Voronoi cells meet nontrivially. A priori, every face of G could be a branching point of the
Voronoi diagram of some independent subfamily F ⊆ D. However, in [5] it is proved that
the number of candidates for branching points can be bounded polynomially in |D|.

I Theorem 5 (Theorem 4.7 of [5]). There exists a family I of faces of G with |I| ≤ |D|4 such
that the following holds: for every independent subfamily of objects F ⊆ D, all branching
points of the Voronoi diagram of F are contained in I. Moreover, I can be computed in time
polynomial in |D| and n.

We fix the family I provided by Theorem 5 and call its members D-important faces of G.

Voronoi separators. We now recall the concept of Voronoi separators. A Voronoi separator
is a sequence of the form

S = 〈p1, u1, f1, v1, p2, u2, f2, v2, . . . , pr, ur, fr, vr〉,

ESA 2018

65:6 QPTASes for Packing and Covering Problems in Planar Graphs

where pi are pairwise disjoint objects from D, fi are faces of G, and ui, vi are distinct vertices
lying on the face fi. For each i ∈ {1, . . . , r}, define Pi to be the shortest path from ui to pi
and Qi to be the shortest path from vi to pi+1, where indices behave cyclically. For a Voronoi
separator S as above, its length is r and its set of traversed objects is D(S) = {p1, . . . , pr}.

In the notation above, an object q ∈ D is banned by the separator S if either q intersects
some object p ∈ D(S), or there is a vertex w on some path Pi such that dist(w, q) < dist(w, pi),
or there is a vertex w on some path Qi such that dist(w, q) < dist(w, pi+1). In particular,
D(S) is banned by S. Let Ban(S) denote the set of objects in D banned by S. Intuitively,
the banned objects are those that are intersected by the separator and are lost when we
recurse (in MWISO) or that might be selected and paid twice (in MWDSC). Therefore, we
will later ensure that their total weight is small.

The following result is the aforementioned key step toward the proof of Lemma 4. It may
be regarded as a lift of Theorem 4.22 from [5] or of Lemma 4.1 from [4] to our setting.

I Lemma 6. Let W be a positive real, 0 < ε < 1
10 , and s = 103 · 1

ε ln 1
ε . Suppose F ⊆ D is

an independent subfamily of objects such that |F| ≥ 4, w(F) ≤ W , and w(p) ≤ s−2W for
all p ∈ F . Then there exist a Voronoi separator S satisfying the following:
(B1) D(S) ⊆ F and all faces traversed by S are D-important;
(B2) the length of S is at most 3s;
(B3) the total weight of objects of F banned by S is at most εW ;
(B4) for every connected component C of IntGraph(D)− Ban(S), we have w(C) ≤ 9

10W .

It is not hard to see that Lemma 4 follows from Lemma 6: we simply enumerate all
candidates for a Voronoi separator S satisfying 1 and 2, a straightforward estimate using
Theorem 5 shows that there are at most 63sN15s of them, and for each candidate S we add
Ban(S) to the constructed family X. Details can be found in the full version.

Thus, we are left with proving Lemma 6. The idea, borrowed from Har-Peled [4], is that
we construct a sufficiently large random sample from F , where the probability of picking each
object is proportional to its weight. Then we inspect the Voronoi diagram induced by the
sample and we argue that with non-zero probability it has a short separator giving rise to the
sought Voronoi separator S. To implement this plan we need two ingredients: an appropriate
lift of the sampling idea from [4] and the analysis of how separators in the Voronoi diagram
give rise to Voronoi separators in the graph, which is essentially taken from [5] with some
technical details added. These two ingredients are explained in the next two subsections.

2.2 Sampling
Spokes and diamonds. We first adjust technical notions used by Har-Peled [4] in the
geometric context to our setting. Suppose we have an independent family of objects F and
its Voronoi diagram H = HF . Let f be any branching point of H and let u be any vertex of
f . Let p ∈ F be the object of F such that u ∈MF (p). The spoke of u in H is the shortest
path from u to p in G; note all the vertices of this shortest path belong to the cell MF (p).

Consider any subfamily S ⊆ F and let HS be the Voronoi diagram induced by S; in the
following, we consider spokes in the diagram HS . For any spoke P in HS , say connecting a
vertex u with the object p ∈ S satisfying u ∈ MS(p), we say that P is in conflict with an
object p′ ∈ F if there is a vertex v on P such that dist(v, p′) < dist(v, p). Note that this
implies p′ /∈ S, because the spoke P has to be entirely contained in MS(p). Define the weight
of P with respect to F as the total weight of objects from F that are in conflict with P .

Further, suppose e is an edge of HS , with endpoints f1, f2 (not necessarily different). Let
p1, p2 be the objects of S corresponding to the faces of HS incident to e (possibly p1 = p2).

Mi. Pilipczuk, E. J. van Leeuwen, and A. Wiese 65:7

Let u1,1, u1,2 be the vertices of f1 such that u1,1 ∈ MS(p1), u1,2 ∈ MS(p2), and the edge
u1,1u1,2 of G crosses the edge e of HS . Similarly pick vertices u2,1, u2,2 of f2. The diamond
induced by e is the closed curve ∆S(e) on Σ formed by the union of: segments connecting
the center of f1 with u1,1 and u1,2, the unique path between u1,2 and u2,2 in T̂ (p2), segments
connecting the center of f2 with u2,2 and u2,1, and the unique path between u2,1 and u1,1 in
T̂ (p1). The interior of ∆S(e) is the unique region of Σ \∆S(e) that contains e. The weight
of ∆S(e) with respect to F is the total weight of objects of F that are entirely contained in
the interior of ∆S(e); note that these objects do not belong to S.

We remark that while spokes were used in [4] in the form roughly as above, diamonds
correspond to the notion of a corridor from [4].

Sampling lemma: statement. We now state the crucial technical result: there is a bounded-
size subfamily of the optimum solution that induces a Voronoi diagram where every spoke and
every diamond has small weight. We will prove it using a probabilistic sampling argument.

I Lemma 7 (Sampling lemma). Suppose W is a positive real and F is an independent,
weighted family of objects in G such that |F| ≥ 4 and w(F) ≤W . Let ` ≥ 10 be an integer
such that w(p) ≤ W

` for each p ∈ F . Then there exists a subfamily S ⊆ F with 4 ≤ |S| ≤ 2`
such that in the Voronoi diagram HS , the weight with respect to F of every spoke and of
every diamond is at most 10 ln ` · W` .

Later, we will use Lemma 7 with ` = O((1
ε ln 1

ε)2). The reader may imagine that we then
apply a balanced planar graph separator on the Voronoi diagram HS of size O(

√
`) along

which we partition F into two parts, yielding the Voronoi separator claimed by Lemma 6.
Since the weight with respect to F of every spoke and every diamond is at most 10 ln ` · W` ,
the total weight of the objects of F banned by S will be bounded by εW .

Lemma 7 is a roughly an analogue of Lemma 3.3 from [4]. The main difference is that
in the geometric setting, spokes and corridors have a simpler structure due to the fact that
each branching point of the Voronoi diagram is defined by three objects from the solution –
the three ones equidistant from it – so that the branching point is the meeting point of the
three corresponding Voronoi regions. This is no longer the case in planar graphs, as observed
in [5]. More precisely, out of the three regions around a branching point of the diagram, two
or even three may be equal; this happens when there are bridges in the diagram, which is
never the case in the geometric setting.

As part of their proof of Theorem 5, to understand these additional situations Marx and
Pilipczuk define singular faces, which come in three types. The first one corresponds to
“standard” branching points incident to three different regions, while the second and the
third one correspond to branching points incident only to two, respectively one region.

Singular faces. For an independent triple of objects F0 = {p1, p2, p3} ⊆ D, a face f of
G is called a singular face of type 1 for (p1, p2, p3) if in MF0 , all the vertices of f belong
to different cells (note that there are three cells in MF0). For an independent triple of
objects F0 = {p1, p2, p3} ⊆ D, a face f is called a singular face of type 2 for (p1, p2, p3) if
in MF0 , one vertex v1 of f belongs to MF0(p1), the other two vertices v2, v3 of f belong to
MF0(p2), and the closed walk W obtained by taking the union of the unique path in T̂ (p2)
between v2 and v3 and the edge v2v3 on the boundary of f divides the plane into two regions,
one containing p1 and one containing p3. Finally, for an independent quadruple of objects
F0 = {p0, p1, p2, p3} ⊆ D, a face f is called a singular face of type 3 for (p0, p1, p2, p3) if in
MF0 all the vertices of f belong to MF0(p0), but the boundary of face f plus the minimal

ESA 2018

65:8 QPTASes for Packing and Covering Problems in Planar Graphs

subtree of T̂ (p0) spanning the vertices of f divides the plane into four regions: the face f
itself, one region containing p1, one region containing p2, and one region containing p3. See
Figure 8 in [5] for a visualization.

It appears that for a fixed triple or quadruple of objects, there are only few singular faces.

I Lemma 8 (Lemmas 4.8, 4.9, and 4.10 of [5]). For each independent triple of objects
(p1, p2, p3), there are at most 2 singular faces of type 1 for (p1, p2, p3), and at most 1 singular
face of type 2 for (p1, p2, p3). For each independent quadruple of objects (p0, p1, p2, p3), there
is at most 1 singular face of type 3 for (p0, p1, p2, p3).

The next statement explains the connection between branching points and singular faces.

I Lemma 9 (Lemma 4.12 of [5]). Let F ⊆ D be an independent subfamily of objects, and let
H be the Voronoi diagram of F . Then every branching point of H is either a type-1 singular
face for some triple of objects from F , or a type-2 singular face for some triple of objects
from F , or a type-3 singular face for some quadruple of objects from F .

Actually, the two results above may be combined into a proof of Theorem 5. Lemma 9
shows that every branching point of the Voronoi diagram of an independent subfamily of D
is among type-1, type-2, and type-3 singular faces for triples or quadruples of objects in D,
while using Lemma 8 we can bound their total number by |D|4.

Sampling lemma: proof. We now have all the tools needed to prove Lemma 7. Contrary to
Har-Peled [4] we do not use the Exponential Decay Lemma, but direct probability calculations;
this makes the proof somewhat conceptually easier. The main complications are due to the
need to handling different types of singular faces, instead of just one.

Proof of Lemma 7. Denote η = 10 ln ` · W` . First observe that if w(F) ≤ η, then setting
S = F satisfies all the required properties, since no spoke may have larger weight than the
whole of F . Therefore, from now on we assume that w(F) > η.

Construct S by including every object p ∈ F independently with probability qp = w(p)· `W ;
note that this value is at most 1 by the assumption of the lemma. Let X be the random
variable equal to the cardinality of S; then X =

∑
p∈F Xp, where Xp are indicator random

variables, taking value 1 if p is included in F and 0 otherwise. Note that E[Xp] = qp and
E[X] =

∑
p∈F E[Xp] = ` · w(F)

W ≤ `. Since X is a sum of independent indicator variables,
standard concentration inequalities yield the following.

I Claim 10 (♠4). The probability that |S| > 2` or |S| ≤ 100 is at most 7
12 .

Call a spoke in the Voronoi diagram HS heavy if its weight with respect to F is more
than η. We now estimate the probability that there is a heavy spoke in HS .

I Claim 11 (♠). The probability that there is a heavy spoke in HS is at most 1
6 .

Proof sketch. Fix any triple of objects p1, p2, p3 ∈ F and face f and consider the following
event Ap1,p2,p3,f : p1, p2, p3 are all included in S, f is a branching point of HS with vertices
u1, u2, u3 belonging to the cells of p1, p2, p3, respectively, and moreover the spoke P of u1
(which is the shortest path from u1 to p1) is heavy. Let Z ⊆ F be the family of those objects
from F that are in conflict with P ; then w(Z) > η. In order for Ap1,p2,p3,f to happen, all of

4 Proofs of claims or lemmas marked with a ♠ are deferred to the full version.

Mi. Pilipczuk, E. J. van Leeuwen, and A. Wiese 65:9

{p1, p2, p3} have to be included in S and none of Z may be included in S. Since objects are
included in S independently, we have

P(Ap1,p2,p3,f) ≤ w(p1)w(p2)w(p3) · `
3

W 3 ·
∏
q∈Z

(1−w(q)) ≤ w(p1)w(p2)w(p3)
W 3 · `−7;

this follows from simple calculations using the lower bound on w(Z). By Lemma 8, for each
triple p1, p2, p3 ∈ F there are at most two singular faces of type 1, hence at most two faces f
for which Ap1,p2,p3,f has a non-zero probability, each with three vertices. Summing through
all the triples p1, p2, p3 ∈ F , we see that the probability that there is a heavy spoke in HS
incident to a type-1 branching point is at most 6 · `−7 ≤ 10−6. Applying a similar reasoning
to the other two types of branching points yields the claim. y

We are left with diamonds. Call a diamond ∆S(e) in HS heavy if its weight with respect
to F is larger than η. The next check follows by essentially the same estimation as Claim 11.

I Claim 12 (♠). The probability that there is a heavy diamond in HS is at most 1
6 .

Concluding, assertion 4 ≤ |S| ≤ 2` does not hold with probability at most 7
12 , there is a

heavy spoke in HS with probability at most 1
6 , and there is a heavy diamond in HS with

probability at most 1
6 . Hence, with probability at least 1

12 neither of the above holds, so
there exists a subfamily S satisfying all the postulated conditions. J

2.3 Balanced nooses
We proceed with the proof of Lemma 6 by explaining the second ingredient: balanced
separators in Voronoi diagrams. In general, short embedding-respecting separators in the
Voronoi diagram – so-called nooses – correspond to Voronoi separators we are looking for.
We start by defining nooses and showing how the existence of a sphere-cut decomposition
of small width – a hierarchical decomposition of the diagram using nooses – implies the
existence of a short noose that breaks the instance in a balanced way.

We remark that in [4], this part of the reasoning is essentially done by considering the
radial graph of the Voronoi diagram and applying the weighted balanced separator theorem
of Miller [6] to it. Such approach would be also applicable in our case, but we find the
approach via sphere-cut decompositions more explanatory regarding how separators in the
(radial graph of the) diagram correspond to separators in the instance.

Sphere-cut decompositions. We now recall the framework of sphere-cut decompositions,
which are embedding-respecting hierarchical decompositions of planar graphs.

A branch decomposition of a graph H is a pair (T, η) where T is a tree with all internal
nodes having degree 3, and η is a bijection between the edge set of H and the leaf set of T
(for clarity, we always use the term node for a vertex of a decomposition tree). Take any edge
e of T and consider removing it from T ; then T breaks into two subtrees, say T1, T2. Let
A1, A2 be the preimages of the leaf sets of T1, T2 under η, respectively; then (A1, A2) is a
partition of the edge set of H. The width of the edge e is the number of vertices of H incident
to both an edge of A1 and to an edge of A2, and the width of the branch decomposition
(T, η) is the maximum among the widths of the edges of T . The branchwidth of H is the
minimum possible width of a branch decomposition of H.

Let H be a connected plane graph embedded in a sphere Σ. A noose in H is a closed,
directed curve γ on Σ without self-crossings that meets H only at its vertices and visits every
face of H at most once. Note that removing γ from the sphere Σ breaks it into two open

ESA 2018

65:10 QPTASes for Packing and Covering Problems in Planar Graphs

disks: for one of them γ is the clockwise traversal of the perimeter, and for the other it is
the counter-clockwise traversal (fixing an orientation of Σ). The first disk shall be called
enc(γ) while the second shall be called exc(γ) (for enclosed and excluded). Two nooses γ, γ′
are equivalent if they are homotopic on Σ with a homotopy that fixes the embedding of H;
in other words, γ′ can be obtained from γ by continuous transformations within faces of H.

A sphere-cut decomposition of H is a triple (T, η, δ) where (T, η) is a branch decomposition
of H and δ maps ordered pairs of adjacent nodes of T to nooses on Σ (w.r.t. H) such that
the following conditions are satisfied for each pair of adjacent nodes of T :

δ(x, y) is equal to δ(y, x) reversed (in particular enc(δ(x, y)) = exc(δ(y, x)));
enc(δ(x, y)) contains all the edges of H mapped to the component of T −xy containing y,
while exc(δ(y, x)) contains all the edges of H mapped to the other component of T − xy.

The following result follows from [3, 8] and was formulated in exactly this way in [5].

I Theorem 13. Every n-vertex sphere-embedded multigraph that is connected and bridgeless
has a sphere-cut decomposition of width at most

√
4.5n.

We note that in Theorem 13, the assumption that the multigraph is bridgeless is necessary,
as multigraphs with bridges do not have sphere-cut decompositions at all.

Suppose (T, η, δ) is a sphere-cut decomposition of G. It is straightforward to see that we
may adjust the nooses δ(x, y) for x, y ranging over adjacent nodes of T so that the following
condition is satisfied: if node x has neighbors y1, y2, y3 in T , then enc(δ(y1, x)) is the
disjoint union of enc(δ(x, y2)), enc(δ(x, y3)), and (δ(x, y2) ∩ δ(x, y3)) \ δ(y1, x). Sphere-cut
decompositions satisfying this condition will be called faithful. It is easy to see that any
sphere-cut decomposition can be made faithful by changing each noose to an equivalent one.

Separator theorem for nooses. We now state a separator theorem for nooses drawn from a
sphere-cut decomposition of a given sphere-embedded multigraph. The theorem is weighted
with respect to a measure defined as follows. Suppose R is a finite family of pairwise disjoint
objects on a sphere Σ, where each object p ∈ R is a nonempty arc-connected subset of Σ
with associated nonnegative weight w(p). For an open disk ∆ ⊆ Σ, define its R-measure
µR(∆) as the total weight of objects from R that are entirely contained in ∆.

I Lemma 14 (♠). Let H be a connected, bridgeless multigraph embedded on a sphere Σ.
Let R be a weighted family of pairwise disjoint objects on Σ and let W = w(R). Suppose
further (T, η, δ) is a faithful sphere-cut decomposition of H such that for every pair (x, y)
of adjacent nodes in T such that x is a leaf, we have µR(enc(δ(y, x))) < 9

20W . Then there
exists a noose γ w.r.t H, which is one of the nooses in the sphere-cut decomposition (T, η, δ),
such that the following hold:

µR(enc(γ)) ≤ 9
10W and µR(exc(γ)) ≤ 9

10W.

The proof of Lemma 14 is standard: we find a balanced edge (x, y) in the decomposition
(T, η, δ) and δ(x, y) is the sought noose. The fact that nooses appearing in (T, η, δ) may
intersect objects from R requires some technical attention. Details are in the full version.

Proof sketch of Lemma 6. The proof of Lemma 6 now essentially follows by combining
Theorem 13, Lemma 7, and Lemma 14 as follows. Applying Lemma 7 to F with ` = s2

yields a suitable subfamily S ⊆ F . We investigate the Voronoi diagram HS induced by S.
Applying Theorem 13 to HS yields a sphere-cut decomposition of width at most 3s, which
we can feed to Lemma 14 to obtain a balanced noose γ. This noose naturally corresponds to

Mi. Pilipczuk, E. J. van Leeuwen, and A. Wiese 65:11

a Voronoi separator S(γ), obtained by essentially tracing γ and marking the parts of the
Voronoi diagram of S that it visits. The connection between nooses in the Voronoi diagram
and Voronoi separators was largely explored in [5]. Then properties asserted by Lemma 7, in
particular the fact that every spoke in HS has small weight, imply that S(γ) satisfies all the
requested conditions. There is one technical caveat in that the Voronoi diagram HS may
have bridges, so a priori we cannot apply Theorem 13 to it; this requires special technical
treatment. The detailed proof of Lemma 6 can be found in the full version.

3 A QPTAS for Maximum Weight Independent Set of Objects

In this section we use Lemma 4 to design a QPTAS for MWISO, that is, we prove Theorem 1.
Recall that the setting is as follows. The input is (G,D), where G is a graph embedded in a
sphere Σ together with a family of objects D, each being a connected subgraph of G with a
prescribed positive weight. Moreover, we are given an accuracy parameter ε > 0 and we may
assume w.l.o.g. that ε < 1

10 . The goal is to find an independent subfamily F ⊆ D with the
largest possible weight; more precisely, the algorithm shall compute a solution of weight at
least (1− ε) times the optimum. Let n = |V (G)| and N = |D|; w.l.o.g. we assume N ≥ 2.

We will also assume that all objects in D have weights between 1 and M = 2ε−1N . This
assumption is easy to achieve as follows: guess the heaviest object p from the optimum
solution, remove all objects of weight less w(p)/M from D, rescale the weights to the interval
[1,M], and then look for an (1 − ε/2)-approximate solution. To see that this is correct,
observe that in the optimum solution, objects of weight less than w(p)/M in total constitute
at most an ε/2-fraction of the weight of p alone, so by removing them we lose at most an ε/2
fraction of the optimum. A formal reasoning is presented in the full version.

Before we proceed to the algorithm, we fix the following parameters:

dmax = 10 ln(MN), ε̂ = ε

dmax
, s = 103 · 1

ε̂
ln 1
ε̂
.

Parameter dmax is the maximum recursion depth of the algorithm; note that dmax =
O(log(N/ε)). Next, ε̂ = O(ε/ log(N)) is the refined accuracy parameter which will be
used throughout the recursion instead of ε. Similarly as in [1, 2, 4], intuitively we lose
a factor of 1 − ε̂ in each recursion level which yields an overall approximation ratio of
(1− ε̂)dmax = (1− ε/ log(N))O(log(N)) = 1−O(ε). Let us stress that although the algorithm
uses recursion and the number of objects changes in subsequent recursive calls, the values of
dmax, ε̂, s are fixed as above and their definitions always refer to the initial number of objects.

We now explain the algorithm; it is also summarized using pseudocode as Algorithm 1
Let us fix an optimum solution FOPT and denote W = w(FOPT). We shall analyze FOPT,
which will lead to the formulation of the algorithm as a recursive search for FOPT.

We would like to use Lemma 4 to guess a Voronoi separator that breaks FOPT in a
balanced way. However, we first need make sure that every object in question constitutes
only a small fraction of W . This is done by a standard method of guessing exactly “heavy”
objects in the solution, whose number is small, and proceeding only with the “light” ones.

More precisely, call an object p ∈ FOPT heavy if w(p) > s−2W . Observe that the number
of heavy objects in FOPT is at most s2, hence there are at most Ns2 possible ways to select
those heavy objects from D. The algorithm branches into all possible such ways, in each
branch fixing a different candidate for the set of heavy objects. Hence, by increasing the
number of subproblems by a multiplicative factor Ns2 we may assume that the algorithm
fixes the set Fhv consisting of all heavy objects in FOPT. Let D′ be obtained from D by

ESA 2018

65:12 QPTASes for Packing and Covering Problems in Planar Graphs

Algorithm 1: Algorithm AlgMWISO.
Input: An instance (G,D), recursion depth d
Output: An independent family F ⊆ D

if d > dmax then
return ∅

F ← ∅
forall Fhv: independent subfamily of D with |Fhv| ≤ s2 do
D′ ← D − (all objects that intersect any object of Fhv)
X← family computed for D′ using Lemma 4
forall X ∈ X do
D1, . . . ,Dk ← vertex sets of the connected components of
IntGraph(D′)−X

for i = 1 to k do
Fi ← AlgMWISO(G,Di, d+ 1)

Fcand ← Fhv ∪
⋃k
i=1 Fi

if w(Fcand) > w(F) then
F ← Fcand

return F

removing Fhv and all objects intersecting any object from Fhv, and let F ′OPT = FOPT −Fhv.
Note that w(F ′OPT) ≤W and w(p) ≤ s−2W for all p ∈ F ′OPT.

We may now apply Lemma 4 to F ′OPT ⊆ D′ with W being the upper bound on its
weight. Thus, in time NO(s) · nO(1) we may compute a family X consisting of subsets of
D′ with |X| ≤ 63sN15s and satisfying the following property: there exists X ∈ X such that
w(F ′OPT \ X) ≤ εW and within each connected component of the graph IntGraph(D′)−X
the total weight of objects from F ′OPT does not exceed 9

10W . By branching into all the
members of X, via increasing the number of subproblems by a multiplicative factor |X| we
may henceforth assume that the algorithm fixes X with properties as above.

For a fixed choice of Fhv and X as above, let us inspect the connected components of
IntGraph(D′)−X ; let their vertex sets be D1, . . . ,Dk. We apply the algorithm recursively to
the instances (G,Di) for i = 1, . . . , k, yielding independent families F1, . . . ,Fk with Fi ⊆ Di.
We record the family F = Fhv ∪

⋃k
i=1 Fi as a candidate for the solution; it is straightforward

to see from the construction that this family is independent. Finally, as the final solution we
output the heaviest among the recorded candidates; that is, the heaviest solution found for
all choices of Fhv and X . We remark that if for some choice of Fhv it turned out that D′ = ∅,
i.e., every object intersects some objects from Fhv, then X contains only one choice of X being
∅, hence we include F = Fhv among the candidates without invoking any recursive calls.

The base case of the recursion is provided by trimming it at level dmax. More precisely,
all subcalls at depth larger than dmax return empty solutions. This concludes the description
of the algorithm; as mentioned, it is summarized using pseudocode as Algorithm 1.

The above algorithm runs in time 2poly(1/ε,N) · nO(1), because at each node of the
recursion tree the algorithm uses polynomial time and calls itself on NO(s2) subinstances,
where s = poly(1/ε, logN). Together with the bound of dmax = O(log(N/ε)) on the recursion
depth this yields the promised running time. As mentioned, the claimed approximation
ratio follows as intuitively in each of the dmax recursion levels we lose a factor of 1 − ε̂,
accumulating to (1− ε̂)dmax = 1−O(ε) overall. Formal proofs are in the full version.

Mi. Pilipczuk, E. J. van Leeuwen, and A. Wiese 65:13

References
1 Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight inde-

pendent set of rectangles. In Proc. FOCS 2013, pages 400–409. IEEE, 2013.
2 Anna Adamaszek and Andreas Wiese. A QPTAS for maximum weight independent set

of polygons with polylogarithmically many vertices. In Proc. SODA 2014, pages 645–656.
SIAM, 2014.

3 Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with respect
to the largest grid minor size. Algorithmica, 64(3):416–453, 2012.

4 Sariel Har-Peled. Quasi-polynomial time approximation scheme for sparse subsets of poly-
gons. In Proc. SoCG 2014, pages 120–129. SIAM, 2014.

5 Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using Voronoi diagrams. In Proc. ESA 2015, volume 9294 of LNCS,
pages 865–877. Springer, 2015.

6 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J.
Comput. Syst. Sci., 32(3):265–279, 1986.

7 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation
scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM J. Comput.,
44(6):1650–1669, 2015.

8 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

ESA 2018

On Learning Linear Functions from Subset and Its
Applications in Quantum Computing

Gábor Ivanyos
Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary
Gabor.Ivanyos@sztaki.mta.hu

Anupam Prakash
CNRS, IRIF, Université Paris Diderot 75205 Paris, France
anupam@irif.fr

Miklos Santha
CNRS, IRIF, Université Paris Diderot 75205 Paris, France; and
Centre for Quantum Technologies, National University of Singapore, Singapore 117543
miklos.santha@gmail.com

Abstract
Let Fq be the finite field of size q and let ` : Fnq → Fq be a linear function. We introduce
the Learning From Subset problem LFS(q, n, d) of learning `, given samples u ∈ Fnq from a
special distribution depending on `: the probability of sampling u is a function of `(u) and
is non zero for at most d values of `(u). We provide a randomized algorithm for LFS(q, n, d)
with sample complexity (n + d)O(d) and running time polynomial in log q and (n + d)O(d). Our
algorithm generalizes and improves upon previous results [8, 10] that had provided algorithms
for LFS(q, n, q − 1) with running time (n+ q)O(q). We further present applications of our result
to the Hidden Multiple Shift problem HMS(q, n, r) in quantum computation where the goal is
to determine the hidden shift s given oracle access to r shifted copies of an injective function
f : Znq → {0, 1}l, that is we can make queries of the form fs(x, h) = f(x − hs) where h can
assume r possible values. We reduce HMS(q, n, r) to LFS(q, n, q− r+ 1) to obtain a polynomial
time algorithm for HMS(q, n, r) when q = nO(1) is prime and q − r = O(1). The best known
algorithms [5, 8] for HMS(q, n, r) with these parameters require exponential time.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Learning from subset, hidden shift problem, quantum algorithms, linear-
ization

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.66

Related Version A full version of the paper is available at [11], https://arxiv.org/abs/1710.
02581.

Funding A part of the research was accomplished while the first two authors were visiting the
Centre for Quantum Technologies (CQT), National University of Singapore. The research at CQT
was partially funded by the Singapore Ministry of Education and the National Research Found-
ation under grant R-710-000-012-135. This research was supported in part by the QuantERA
ERA-NET Cofund project QuantAlgo and by the Hungarian National Research, Development
and Innovation Office – NKFIH, Grant K115288.

© Gábor Ivanyos, Anupam Prakash, and Miklos Santha;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 66; pp. 66:1–66:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Gabor.Ivanyos@sztaki.mta.hu
mailto:anupam@irif.fr
mailto:miklos.santha@gmail.com
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.66
https://arxiv.org/abs/1710.02581
https://arxiv.org/abs/1710.02581
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

66:2 On Learning Linear Functions from Subset and Its Applications in Quantum Comp.

1 Introduction

1.1 Learning with noise
Let n ≥ 1 and q > 1 be integers. We denote by Zq the ring of integers modulo q, and by Fq
the finite field on q elements, when q is some power of a prime number. When q is prime
then Zq coincides with Fq, and we will use the notation Fq. Let ` : Fnq → Fq be an n-variable
linear function. The main subject of this paper is to learn ` given partial information about
the values `(u) for uniformly random samples u from Fnq . In the ideal setting, when we have
access to the values `(u) for uniformly random samples from Fnq , the problem is canonical and
perfectly understood: after getting n independent samples, we can determine ` by Gaussian
elimination in polynomial time. But when instead of the exact values we receive only some
property satisfied by them, the problem can become much more difficult.

Since an element of Fnq can be specified with n log q bits, we will say that an algorithm
is in polynomial time if it runs in time polynomial in both n and log q. Let f(n, q) be a
function of n and q, then we say that a function g(n, q) ∈ Õ(f) if g(n, q) ≤ f(n, q) logc(nq)
for some constant c for sufficiently large n and q. By the sample complexity of an algorithm
we mean the number of samples used by it.

There is a somewhat similar context to the learning model we investigate, it is the model
where the values `(u) are perturbed by some random noise. The first example of such a work
is by Blum et al. [3] on the Learning Parity with Noise problem LPN(n, η), where η < 1/2.
Here we have access to tuples (u, b) ∈ Fn2 × F2, where u is a uniformly random element of Fn2
and b = `(u) + e, where e is a random 0–1 variable with Pr[e = 1] = η. For constant noise
rate 0 < η < 1/2, the best known algorithm for LPN(n, η) is from [3]. It has both sample
and time complexity of 2O(n/ logn), and therefore only marginally beats the trivial exhaustive
search algorithm of complexity 2O(n).

The Learning With Error problem LWE(q, n, χ) is a generalization by Regev [17] of
LPN to larger fields. Here q can be any prime number, and χ is a probability distribution
on Fq. Similar to LPN, we have access to tuples (u, b) ∈ Fnq × Fq, where u is a uniformly
random element of Fnq and b = `(u) + e, with the random variable e having distribution
χ. Under the assumptions that q is bounded by some polynomial function of n, and that
χ(0) ≥ 1/q + 1/p(n), for some polynomial p, the problem can be solved classically with
sample and time complexity 2O(n). The case when χ = Ψα, the discrete Gaussian distribution
of standard deviation αq, is of particular interest for lattice based cryptography. Indeed, one
of the main results of [17] is that for appropriate parameters, solving LWE(q, n,Ψα) is at
least as hard as quantumly solving several cryptographically important lattice problems in
the worst case. In a subsequent work a classical reduction of some of these lattice problems
to LWE was given by Peikert [15].

In [2] Arora and Ge introduced a more structured noise model for learning linear functions
over Fn2 . In the Learning Parity with Structured Noise problem LPSN(n,m) the samples
arrive in groups of size m, that is in one sampling step we receive (u1, b1), . . . , (um, bm),
where (ui, bi) ∈ Fn2 ×F2, for i = 1, . . . ,m. Here u1, . . . , um are independent random elements
drawn from Fn2 , and bi = `(ui) + ei, where the the noise vector e = (e1, . . . , em) ∈ Fm2
must have Hamming weight less than m/2. The chosen noise vector e can depend on the
sample (u1, . . . , um), but the model has an important restriction (structure) compared to the
previous error models. Since the Hamming weight of e is less than m/2, it is guaranteed that
in every sampling group the majority of the bits bi is correct, that is coincides with `(ui).
In fact, the model of Arora and Ge is somewhat more general. Let P be any m-variable
polynomial over Fm2 , for which there exists a ∈ Fm2 , such that a 6= c + c′ for all c, c′ ∈ Fm2

G. Ivanyos, A. Prakash, and M. Santha 66:3

satisfying P (c) = P (c′) = 0. Then the error vector can be any e ∈ Fm2 satisfying P (e) = 0.
The main result of [2] is that LPSN(n,m) can be solved in time nO(m), implying that the
linear function can be learnt in polynomial time when m is constant.

1.2 Learning from subset
We consider here a different model of learning linear functions where the difficulty doesn’t
come from the noisy sampling process, but from the fact that instead of obtaining the actual
values of the sampled elements, we only receive some partial information about them.

Such a model was first considered by Friedl et al. [8] with the Learning From Disequations
problem LFD(q, n) where q is a prime number. Here we never get sample elements from the
kernel of `, that is we can only sample u if `(u) 6= 0, which explains the name of the problem.
Friedl et al. [8] consider distributions p which are not necessarily uniform on their support,
in fact they only require that p(u) = p(v) whenever `(u) = `(v).

The reason to consider this learning problem in [8] is that the Hidden Shift problem
HS(q, n), a paradigmatic problem in quantum computing, can be reduced in quantum
polynomial time to LFD(q, n). In HS(q, n) we have oracle access to two injective functions
f0 and f1 over Fnq with the promise that for some element s ∈ Fnq , we have f1(x) = f0(x− s),
for all x ∈ Fnq . The element s is called the hidden shift, and the task is to find it. It is proven
in [8] that LFD(q, n) can be solved in time (n+ q)O(q). This result implies that there exists a
quantum algorithm for HS(q, n) of similar complexity. When q is constant, these algorithms
are therefore polynomial time.

In a subsequent paper [10] Ivanyos extended the work of [8] to the case when q is a
prime power, both for LFD(q, n) and HS(q, n). The complexity bounds obtained are very
similar to the bounds of [8], and therefore his results imply that LFD(q, n) can be solved in
polynomial time, and that HS(q, n) in quantum polynomial time when q is a prime power of
constant size.

Observe that the complexity bound (n+ q)O(q) is not only not polynomial in log q, but is
not even exponential, in fact it is doubly exponential. Therefore [8] and [10] not only leave
open the question whether, in general, it is possible to obtain a (quantum) algorithm for
LFD(q, n) and HS(q, n) with running time polynomial in n and q, but also the question
of the existence of algorithms which have running time polynomial in n and log q. These
questions are still open today.

In this work we introduce a generalization of the learning problem LFD. While in LFD
the sampling distribution had to avoid the kernel of `, in our model the input contains a set
A ⊆ Fq, and we sample from distributions whose support contains only those elements u, for
which `(u) ∈ A. As in [8], we require that the elements with the same `-value have identical
probabilities. We allow these probabilities to be exponentially small and even 0.

I Definition 1. Let A ⊂ Fq, where q is a prime power, let ` : Fnq → Fq be a linear function,
and let p be a distribution over Fnq . We say that the `-image of p is A if `(supp(p)) = A.
The distribution is `-symmetric if `(u) = `(v) implies p(u) = p(v). If the `-image of p is a
subset of A and p is also `-symmetric, we say that p is an (A, `)-distribution.

In other words, p is an (A, `)-distribution if p is constant on each affine subspace Vα =
{u ∈ Fnq : `(u) = α}, for α ∈ Fq, and moreover p is zero on Vα, whenever α 6∈ A. It is not hard
to see that for |A| < q, if p is simultaneously an (A, `)-distribution and an (A, `′)-distribution
then `′ is a constant multiple of `. On the other hand, non-zero constant multiples of a linear
function can not be distinguished in general in this model: for example, if A = Fq \ {0}, then
for every c 6= 0, an (A, `)-distribution is also an (A, c`)-distribution.

ESA 2018

66:4 On Learning Linear Functions from Subset and Its Applications in Quantum Comp.

I Definition 2. The Learning From Subset problem LFS(q, n, d) is parametrized by three
positive integers q, n and d, where q is a prime power and 2 ≤ d ≤ q − 1.
Input: A set A ⊂ Fq of cardinality d and a sequence of N samples u1, . . . , uN from an
(A, `)-distribution for some nonzero linear function ` : Fnq → Fq.
Output: A non zero constant multiple of `.

For d < d′, an LFS(q, n, d) instance is also an LFS(q, n, d′) instance, therefore the
problem is harder for bigger d. For d = 1 the problem is simple because it becomes a system
of linear equalities which can be solved by Gaussian elimination. When d = q we don’t
receive any information from the samples and it is impossible to identify the linear function.
When d = q − 1 and A = Fq \ {0}, the problem LFS specializes to LFD, in fact the latter is
the hardest instance of the former.

The first main result of our paper is a randomized algorithm for LFS(q, n, d) whose
complexity depends exponentially on d, but only polynomially on log q. This result shows
that the increase of information by reducing the size of the set A can indeed be algorithmically
exploited. More precisely, we show that for a sample size N which is a sufficiently large
polynomial of nd, there exists a randomized algorithm which in time polynomial in nd and
log q, with probability 1/2, determines ` up to a constant factor.

I Theorem 3. There is a randomized algorithm for LFS(q, n, d) with sample complexity
(n+ d)O(d) and running time polynomial in log q and (n+ d)O(d).

The main interest of this result is that for constant d it gives a polynomial time algorithm
for LFS. For d = q − 1 and A = Fq \ {0} it yields the same complexity bound as [8]
and [10]. But observe, that even for non constant d = o(q), it is asymptotically faster than
the algorithms in the above papers.

1.3 Hidden multiple shifts
The original motivation for [8] to study LFD was its connection to the hidden shift problem.
This problem was implicitly introduced by Ettinger and Høyer [7], while studying the dihedral
hidden subgroup problem. The hidden shift problem can be defined in any group G. We
are given two injective functions f0 and f1 mapping G to some arbitrary finite set. We are
promised that for some element s ∈ G, we have f1(xs) = f0(x), for every x ∈ G, and the task is
to find s. As shown in [7], when G is abelian, the hidden shift in G is quantum polynomial time
equivalent to the hidden subgroup problem in the semidirect product GoZ2. In the semidirect
product the group operation is defined as (x1, b1).(x2, b2) = (x1 + (−1)b1x2, b1 + b2), and the
function f(x, b) = fb(x) hides the the subgroup {(0, 0), (s, 1)}. The quantum complexity of
HS in the cyclic group Zq (or equivalently, the complexity of the hidden subgroup in the
dihedral group Zq o Z2) is a famous open problem in quantum computing. In [7] there is
a quantum algorithm for this problem of polynomial quantum sampling complexity, but
followed by an exponential time classical post-processing. The currently best known quantum
algorithm is due to Kuperberg [13], and it is of subexponential complexity 2O(

√
log q). Note

that one could also consider shifts of non-injective functions. The extension of HS to such
cases can become quite difficult even over Zn2 where HS for injective functions is identical to
the hidden subgroup problem. Results in this direction can be found e.g. in [9], [4] and [18].

As one could expect, the polynomial time algorithm for LFS with constant d has
further consequences for quantum computing. Indeed, using this learning algorithm, we can
solve in quantum polynomial time some instances of the hidden multiple shifts problem, a
generalization of the hidden shift problem, which we define now.

G. Ivanyos, A. Prakash, and M. Santha 66:5

For an element s ∈ Znq , a subset H ⊆ Zq of cardinality at least 2, and a function f : Znq →
{0, 1}l, where l is an arbitrary positive integer, we define the function fs : Znq ×H 7→ {0, 1}l
as fs(x, h) = f(x− hs). We think about fs(x, h) as the hth shift of f by s. The task in the
hidden multiple shift problem is to recover s when we are given oracle access, for some f
and H, to fs. This problem doesn’t necessarily have a unique solution. Indeed, let us define
δ(H, q) as the largest divisor of q such that h− h′ is divisible by δ(H, q) for every h, h′ ∈ H.
Pick h0 ∈ H. Then for any s′ ∈ q

δ(H,q)Z
n
q and h ∈ H, we have hs′ = h0s

′ + (h− h0)s′ = h0s
′

whence h(s+ s′) = hs+ h0s
′ and therefore

fs+s′(v, h) = f(v − h(s+ s′)) = f(v − h0s
′ − hs) = f ′s(v, h),

where f ′(v) = f(v − h0s
′). This means that s and s + s′ are indistinguishable by the set

of shifts of f , and therefore we can only hope to determine (the coordinates of) s modulo
q

δ(H,q) . When q is a prime number, this problem of course doesn’t arise.

I Definition 4. The Hidden Multiple Shift problem HMS(q, n, r) parametrized by three
positive integers q, n and r, where q > 1 and 2 ≤ r ≤ q − 1.
Input: A set H ⊆ Zq of cardinality r.
Oracle input: A function fs : Znq ×H → {0, 1}l, where s ∈ Znq and f : Znq → {0, 1}l is an
injective function.
Output: s mod q

δ(H,q) .

The HMS problem was first considered by Childs and van Dam [5]. They investigated the
cyclic case n = 1 and assumed that H is a contiguous interval and presented a polynomial
time quantum algorithm for such an H of size qΩ(1). Their result could probably be extended
to constant n. However, for ‘medium-size’ n and q, such a result seems to be very difficult
to achieve. Obtaining an efficient algorithm for medium sized n, q is also stated as an
open problem [6], and it is noted that such a result would greatly simplify their algorithm.
Intuitively, for small H the HMS appears to be ‘too close’ to the HS for which the so far
best result is still what is given in [8].

For r = q, the HMS problem can be solved in quantum polynomial time. Indeed, in
that case H = Zq, and Znq × H = Zn+1

q is an abelian group. The function fs hides the
subgroup generated by (s, 1), therefore we have an instance of the abelian hidden subgroup
problem. When r = 1 the problem is void, there is no hidden shift. When r = 2, we have the
standard hidden shift problem for which [8] and [10] gave a quantum algorithm of complexity
(n + q)O(q) = (n + q)O(q+1−r). Their method at a high level is a quantum reduction to
(several instances of) LFS(q, n, q − 1). These extreme cases suggest a strong connection
between the classical complexity of LFS(q, n, d) and the quantum complexity of HMS(q, n, r)
when r = q + 1− d. Indeed, this turns out to be true. In our second main result we give a
polynomial time quantum Turing reduction of HMS(q, n, r) to LFS(q, n, q+ 1− r), to obtain
an algorithm of complexity (n+ q)O((q−r)2) for the former problem.

I Theorem 5. Let q be a prime. Then there is a quantum algorithm which solves HMS(q, n, r)
with sample complexity and in time (n+ q)O((q−r)2).

The above Theorem yields a polynomial time algorithm for HMS(q, n, r) for the case
when q− r is constant and q = nO(1). We also present a Fourier sampling based algorithm for
HMS which is polynomial time for a different set of parameters satisfying r

q = 1− Ω(logn
n).

We have the following result.

I Theorem 6. There is a quantum algorithm that solves HMS(q, n, r) with high probability
in time O(poly(n)(qr)n+O(1)).

ESA 2018

66:6 On Learning Linear Functions from Subset and Its Applications in Quantum Comp.

1.4 Our proof methods
The basic idea of the proof of Theorem 3 is a variant of linearization used in [8] and in
[2], presented in the flavor of [10]. To give a high level description, observe that every u
such that p(u) 6= 0 is a zero of the polynomial f(A,`)(x) =

∏
a∈A(`(x) − a). By Hilbert’s

Nullstellensatz, over the algebraic closure of Fq, the polynomials which vanish on all the
zeros of f(A,`) are multiples of f(A,`). In particular, every such polynomial which is also of
degree at most d must be a scalar multiple of f(A,`). Interestingly, one could show that this
consequence remains true with high probability, if we replace “all the zeros” by sufficiently
many random samples provided that our (A, `)-distribution is uniform (or nearly uniform) in
the sense that p(u) (the probability of sampling u) is the same (or almost the same) for every
u such that `(u) ∈ A, independently on the actual value of `(u). Therefore, in the (nearly)
uniform case one could compute a nontrivial scalar multiple of f(A,`) by finding a nontrivial
solution of a system of N homogeneous linear equations in (n+ d)d unknowns (these are the
coefficients of the various monomials in f(A,`)). Then ` could be determined by factoring
this polynomial. This method would be a direct generalization of the algorithms given in [8]
and [10]. Indeed, in those papers one could just take A = Fq \ {0}. However, the proofs
(and in case of [10] even the algorithmic ingredients) are designed specially for small q and
straightforward extensions would result in algorithms of complexity depending exponentially
not only on d but on log q as well. Here we give an algorithm that depends polynomially
on log q and that works without any assumption on uniformity. (In the case A = Fq \ {0}
uniformity can actually be simulated by multiplying the sample vectors by random nonzero
scalars.) Then, instead of divisibility by f(A,`) we prove that, with high probability, the
polynomials that are zero on sufficiently many samples are divisible by `(x)− a for the “most
frequent” value a ∈ A. Then we find a scalar multiple of ` by factoring a nonzero polynomial
from the space of those which are zeros on all the samples.

The subexponential LWE-algorithm of Arora and Ge [2] is based on implicitly solving a
problem that can be cast as an instance of LFS where one of the coefficients of the linear
function ` is known, 0 ∈ A, and the (A, `) distribution is such that 0 is the most likely value.
More details are given in the full version [11].

The algorithm for solving HMS(q, n, r) in Theorem 5 is based on the following. After
applying some standard preprocessing, we obtain samples of states that are projections to
an r-dimensional space of QFT(|(u, s)〉) where QFT denotes the quantum Fourier transform
on Znq , the vector u ∈ Znq is sampled from the uniform distribution on Znq and (·, ·) denotes
the standard scalar product of Znq . If we are able to determine the scalar product (u, s)
for n linearly independent u using the projected states, then s can also be computed using
Gaussian elimination. However when q is not large enough compared to n then the error
probability for computing (u, s) is too large and we get a system of noisy linear equations
for which no efficient algorithms are known. Instead, we can devise a measurement, that
at the cost of sacrificing a 1− 1/qO(1) fraction of the samples, yields samples u such that
(u, s) belongs to a small subset of Zq for sure. More precisely, the samples follow an (A, `)
distribution where A is of size q − r + 1 and ` = (s, ·). Then we apply Theorem 3 and some
easy other steps to determine s.

Paper organization: In Section 2, we provide the algorithm for LFS(q, n, d) and prove
Theorem 3. In Section 3 we propose a Fourier sampling based algorithm for HMS(q, n, r)
and prove Theorem 6. Finally, in Section 4 we reduce HMS(q, n, r) to LFS(q, n, q − r + 1)
and prove Theorem 5. We provide a complete proof for Theorem 3 here, the proofs for the
other results are given in the full version [11].

G. Ivanyos, A. Prakash, and M. Santha 66:7

2 An algorithm for LFS

Let p be an (A, `)-distribution on Fnq , where |A| = d. We define αp as the element α ∈ A for
which Pr[`(u) = α] is maximal (breaking a tie arbitrarily). We start the proof with our main
technical Lemma 8 which links p to the space of n-variable polynomials of degree d.

The proof of Lemma 8 requires the following variant of the Schwartz-Zippel lemma [21, 19]
(proved in [11]) where the polynomial g(x) is not divisible by a linear function `(x) and the
samples are drawn from an affine subspace Vα = {u ∈ Znq : `(u) = α} for a fixed α ∈ Fq.

I Lemma 7. Let g(x1 . . . , xn), be a degree d polynomial in Fq[x1, . . . , xn] that is not divis-
ible by `(x1, . . . , xn) − α where α ∈ Fq and `(x1, . . . , xn) is a nonzero homogeneous linear
polynomial. Let u = (β1, . . . , βn) be sampled uniformly at random from the affine subspace
Vα = {u ∈ Znq : `(u) = α}, then Pru∼Vα [g(u) = 0] ≤ d

q .

I Lemma 8. Let N = Ω
((
n+d
d

)
d2 log

(
n+d
d

))
and let u1, . . . , uN be sampled independently

from an (A, `)-distribution on Fnq , where |A| = d < q. Then with probability at least 1/2, every
polynomial g(x1, . . . , xn) over Fnq of degree at most d, for which g(ui) = 0 for i = 1, . . . , N ,
is divisible by `(x1, . . . , xn)− αp.

Proof. For j = 0, . . . , N we set Pj to be the set of polynomials in Fq[x1, . . . , xn] of degree at
most d which take zero value on the first j samples:

Pj = {g(x1, . . . , xn) : deg g ≤ d and g(ui) = 0 for i = 1, . . . , j}.
In particular, P0 is the set of all polynomials of degree at most d. We consider P0 as a
vector space of dimension

(
n+d
d

)
over Fq. Since, for u ∈ Fnq , the map g 7→ g(u) is linear on

Fq[x1, . . . , xn], we conclude that P0, . . . , PN is a non-increasing sequence of subspaces of P0.
Set π = Pr[`(u) = αp], and observe that π ≥ 1

d . Let P
′ be the set of polynomials from P0

which are divisible by `(x1, . . . , xn)− αp. Then an equivalent way to state the lemma is that
PN ⊂ P ′, with probability at least 1/2.

We first claim that, for every j = 1, . . . , N ,

Pr[Pj = Pj−1|Pj−1 6⊆ P ′] ≤ 1− 1
d(d+ 1) . (1)

In order to prove this bound, we note that the condition Pj−1 6⊆ P ′ means that there
exists a non zero g ∈ Pj−1 \P ′. Fix such a g. The event Pj = Pj−1 is equivalent to f(uj) = 0,
for all f ∈ Pj−1. Therefore

Pr[Pj = Pj−1|Pj−1 6⊆ P ′] ≤ Pr[∀f ∈ Pj−1, f(uj) = 0] ≤ Pr[g(uj) = 0].

The probability that g(uj) = 0 can be bounded as follows:

Pr[g(uj) = 0] ≤ Pr[g(uj) = 0|`(uj) 6= αp] · (1− π) + Pr[g(uj) = 0|`(uj) = αp] · π

≤ (1− π) + π
d

q
.

The first inequality follows simply by decomposing the event g(uj) = 0 according to whether
`(uj) is different from, or equal to αp. In the second case, which happens with probability
π, Lemma 7 is applicable and it states that g(uj) = 0 with probability at most d/q. This
explains the second inequality. Using π ≥ 1/d and q ≥ d+ 1, a simple calculation gives

1− π + π dq ≤ 1− 1
d(d+1) ,

from which the inequality (1) follows.

ESA 2018

66:8 On Learning Linear Functions from Subset and Its Applications in Quantum Comp.

Algorithm 1 Algorithm for LFS(q, n, d).
Require: A set A ⊂ Fq of cardinality d and a sequence of N elements u1, . . . , uN from Fnq .

1. Find a nonzero polynomial g(x1, . . . , xn) of degree at most d over Fq, if it exists, such
that g(ui) = 0 for i = 1, . . . , N .

2. Compute the linear factors of g.
3. Find a linear factor f of g and a nonzero element γ ∈ Fq, if exist, such that γ(f(ui)−

f(0)) ∈ A, for i = 1, . . . , N . Return the linear function γ(f(x1, . . . , xn)− f(0)).

We can use the conditional probability in (1) to upper bound the probability of the event
that Pj−1 6⊆ P ′ and Pj = Pj−1 hold simultaneously. But if Pj = Pj−1 then Pj−1 ⊆ P ′

is equivalent to Pj ⊆ P ′, therefore we can infer, for every j = 1, . . . , N that Pr[Pj 6⊆
P ′ and Pj = Pj−1] ≤ 1− 1

d(d+1) .

Iterating the above argument k-times, we obtain, for every k ≤ N and j ≤ N − k + 1,

Pr[Pj+k−1 6⊆ P ′ and Pj+k−1 = Pj−1] ≤
(

1− 1
d(d+ 1)

)k
. (2)

Indeed, as before, we can bound the probability on the left hand side by the conditional
probability Pr[Pj+k−1 = Pj−1|Pj+k−1 6⊆ P ′]. Under the condition Pj+k−1 6⊆ P ′, there exists
a non zero g ∈ Pj+k−1 \ P ′, and we fix such a g. Then

Pr[Pj+k−1 6⊆ P ′ and Pj+k−1] ≤ Pr[g(uj+i) = 0, for i = 0, . . . , k − 1]

≤
k−1∏
i=0

Pr[g(uj+i) = 0] ≤ (1− 1
d(d+ 1))k,

where for the second inequality we used that the samples uj+i are independent.
Taking k = Ω(d2 log

(
n+d
d

)
), N = (

(
n+d
d

)
+ 1)k and j = mk + 1, for m = 0, 1, . . . ,

(
n+d
d

)
,

in inequality (2), we get Pr[P(m+1)k 6⊆ P ′ and P(m+1)k = Pmk] ≤ 1
2
(
n+d
d

)−1
.

For the complement of the union of these
(
n+d
d

)
+ 1 events, we derive then

Pr[
(n+d
d)⋂

m=0

(
P(m+1)k ⊆ P ′ or P(m+1)k ⊂ Pmk

)
] ≥ 1

2 .

If P(m+1)k ⊂ Pmk for some m, then dim(P(m+1)k) < dim(Pmk). We can not have simultan-
eously dim(P(m+1)k) < dim(Pmk), for m = 0, 1, . . . ,

(
n+d
d

)
, because otherwise dim(PN) would

be negative. Therefore, with probability at least 1/2, P(m+1)k ⊆ P ′, for some m ≤
(
n+d
d

)
,

implying PN ⊆ P ′. J

We now present an algorithm for LFS(q, n, d) and show that it solves the problem
efficiently when the input contains a polynomially large number of samples u1, . . . , uN ∈ Fnq
from an (A, `)-distribution, with |A| = d constant.

I Theorem 9. There is a randomized implementation of Algorithm 1 which runs in time
polynomial in log q,

(
n+d
d

)
and N . Moreover, when u1, . . . , uN are independent samples from

an (A, `)-distribution on Fnq where |A| = d and N = Ω
((
n+d
d

)
d2 log

(
n+d
d

))
, then it finds

successfully ` up to a constant factor with probability at least 1/2.

G. Ivanyos, A. Prakash, and M. Santha 66:9

Proof. We first describe the randomized implementation with the claimed running time.
Throughout the proof by polynomial time we mean time polynomial in log q,

(
n+d
d

)
and N .

For Step 1, we consider the
(
n+d
d

)
dimensional vector space of n-variable polynomials over

Fq of degree at most d. The system of requirements g(ui) = 0, for i = 1, . . . , N , is equivalent
to a system of N homogeneous linear equations for the

(
n+d
d

)
coefficients of g, where in the

ith equation, the coefficients of the variables are the values of the monomials taken at ui.
Therefore a solution, if it exists, can be computed in polynomial time using standard linear
algebra.

We use Kaltofen’s algorithm [12] (the finite field case is dealt with explicitly in [20]) to
find the irreducible factors of g. It is a Las Vegas randomized algorithm, and it runs in
polynomial time given the representation of the input polynomial as a list of all coefficients.
We can then easily select the linear factors out of the irreducible factors, therefore Step 2
can also be done in polynomial time.

For Step 3, note that g has at most d ≤ n linear factors, therefore it is enough to see that
each individual factor f can be dealt with in polynomial time. This can be done as follows.
If f(ui) = f(0) for every i, then an appropriate γ can be found if and only if 0 ∈ A. Indeed,
if 0 ∈ A then any nonzero γ satisfies the condition, while otherwise no satisfying γ exists.
Otherwise, pick any i such that β = f(ui)− f(0) 6= 0 and try γ = α/β for every α ∈ A.

We now turn to the proof of correctness of the algorithm when the samples come from
an (A, `)-distribution. As

∏
α∈A (`(ui)− α) = 0, for every i, the algorithm finds a nonzero

polynomial g in Step 1. By Lemma 8, with probability at least 1/2, every polynomial of
degree at most d, which is zero on ui, for i = 1, . . . , N , is divisible by `(x1, . . . , xn) − αp.
Assume that this is the case. Then, in particular, g has a linear factor f(x) which is a constant
multiple of `(x)− αp, that is f(x) = β(`(x)− αp), for some non zero β ∈ Fq. It is easy to
check that for γ = β−1, we have γ(f(x)− f(0)) = `(x), and therefore γ(f(ui)− f(0)) ∈ A,
for i = 1, . . . , N . Thus the algorithm in its last step will find successfully and return a linear
function `′(x) such that `′(ui) ∈ A, for every i.

To finish the proof, we claim that `′(x) is a constant multiple of `(x). The polynomial
h(x1, . . . , xn) =

∏
α∈A(`′(x1, . . . , xn) − α) is zero on every ui and hence, by our assump-

tion, h(x1, . . . , xn) is divisible by `(x1, . . . , xn) − αp. Then, as Fq[x1, . . . , xn] is a unique
factorization domain, there exists α ∈ A such that `′(x1, . . . , xn)− α is a scalar multiple of
`(x1, . . . , xn)− αp, implying the claim. J

Theorem 3 is an immediate consequence of this result. For constant d we have the following
corollary.

I Corollary 10. There is a randomized algorithm that solves LFS(q, n, d) for constant d with
sample complexity poly(n) and running time poly(n, log q).

We next present our algorithms for HMS(q, n, r), we first give a basic Fourier sampling based
algorithm in section 3 and then an algorithm that reduces HMS(q, n, r) to LFS(q, n, q−r+1)
in section 4.

3 Fourier sampling algorithm for HMS(q, n, r)

We first describe briefly the standard pre-processing procedure for HMS(q, n, r). starting
with the uniform superposition, append a register consisting of l qubits, initialized to 0 and
query the oracle for fs to obtain,

1√
qnr

∑
v∈Znq

∑
h∈H |v〉 |h〉 →

1√
qnr

∑
v∈Znq

∑
h∈H |v〉 |h〉 |fs(v, h)〉 .

The last l qubits are then measured to obtain the state,

ψws := 1√
r

∑
h∈H |w + hs〉 |h〉 ,

ESA 2018

66:10 On Learning Linear Functions from Subset and Its Applications in Quantum Comp.

where w ∈ Znq is uniformly random. This w is the unique element of Znq such that the
measured value for the function fs equals f(w).

It is standard to then apply the quantum Fourier transform on Znq to the states ψws and
to measure the first register to obtain tuples (u, φus) where u ∈ Znq is uniformly random and
φus := 1√

r

∑
h∈H ω

(u,hs) |h〉 . We therefore assume without loss of generality that the quantum
input for HMS(q, n, r) are N samples of the form (u, φus) for uniformly random u ∈ Znq .

We next give the Fourier sampling based algorithm for HMS(q, n, r) and prove Theorem
6. The basic idea for the algorithm is to consider the input state φus = 1√

r

∑
h∈H ω

(u,hs) |h〉
for HMS(q, n, r), as an approximation to the state κus := 1√

q

∑q−1
h=0 ω

(u,hs) |h〉 . The inner
product between the two states is φus

† · κus = 1√
qr

∑
h∈H 1 =

√
r/q.

The inverse Fourier transform on Zq, when applied to κus gives |(u, s)〉. If we could
determine the inner products |(u, s)〉 for a set of n linearly independent ui for prime q, then s
can be determined by solving a system of linear equations. More generally, in order to make
this approach work k should be large enough so that the ui generate Znq , in this case the
secret s can be recovered from the inner products using linear algebra. In fact, the following
result from [16] shows that the additive group Znq is generated by k = n + O(1) random
elements of Znq with constant probability.

I Fact 11. [16] Let G be a finite abelian group with a minimal generating set of size r. The
expected number of elements chosen independently and uniformly at random from G such
that the chosen elements generate G is at most r + σ where σ < 2.12 is an explicit constant.

The above fact holds for any abelian group, for the special case of Znq we have r = n and the
constant σ can be taken to be 1 [1]. We therefore have that k = 2n+O(1) random elements
of Znq generate the additive group Znq with constant probability.

If we apply the Fourier transform to each φuis , with probability (r/q)k/2 we obtain the
scalar products of s with the members of a generating set for Znq . The answer s may be
verified by repeating the experiment for poly(n)(q/r)k/2 trials and finding the most frequently
occurring solutions over the different trials.

I Theorem 6. There is a quantum algorithm that solves HMS(q, n, r) with high probability
in time O(poly(n)(qr)n+O(1)).

We next show that the above algorithm runs in time poly(n) for parameters q, r such that
r
q = 1− Ω(logn

n). For this choice of parameters, we can bound the factor (qr)n+O(1) in the
running time bound above as follows,(

r

q

)n+O(1)
≥
(

1− c1 logn
n

)c2n+c3

≥ e−c logn = n−O(1)

where c, c1, c2 are suitable constants. We therefore have,

I Corollary 12. If rq = 1−Ω(logn
n), then there is a quantum algorithm that solves HMS(q, n, r)

with high probability in time poly(n).

4 Reducing HMS(q, n, r) to LFS(q, n, q − r + 1)

In this section we assume that q is a prime number and work over the field Fq. Recall that
the input for HMS(q, n, r) is a collection of samples of vector-state pairs (u, φus) where u is
a uniformly random vector from Fnq , and φus = 1√

r

∑
h∈H ω

(u,s)h |h〉 . For t ∈ Fq define the
state µt := 1√

r

∑
h∈H ω

ht |h〉 , so that φus = µ(u,s).

G. Ivanyos, A. Prakash, and M. Santha 66:11

The approach in Section 3 recovers the inner product (ui, s) for O(n) random vectors
ui and then uses Gaussian elimination to determine s with high probability. However, the
µt’s are only nearly orthogonal to each other, so the measurement in Section 3 may fail to
recover the correct value of (u, s) with probability too large for our purposes.

A particularly interesting case is when q = poly(n) and c = q − r is a constant for which
we provide a polynomial time algorithm in Corollary 20. In this case, the error probability
for the measurement in Section 3 is 1 − r/q = c/q, that is there are a constant expected
number of errors for every q samples. If q = O(nα) for α < 1 then there are O(n1−α) errors
in expectation for every n samples. There are no known polynomial time algorithms for
recovering the secret s ∈ Znq from a system of n linear equations where an O(n1−α) fraction
of the equations are incorrect for a constant α.

Instead, we reduce HMS(q, n, r) to LFS(q, n, d) with d = (q−r)+1, A = {r−1, . . . , q−1}
and the linear function `(·) given by `(x) = (s, x). We then use the Algorithm 1 to recover a
scalar multiple of s0 = λs. Further, we show that the scalar λ can be recovered efficiently.

The reduction performs a quantum measurement on φus to determine if (u, s) belongs to
A = {r − 1, . . . , q − 1}. We discard the u’s which do not belong to A, and also some of the
u’s such that (u, s) ∈ A to obtain samples from an (A, `) distribution. We next provide a
sketch of the reduction from HMS(q, n, r) to LFS(q, n, d), the reduction is analyzed over the
next few subsections and a more precise statement is given in Proposition 17.

Let V be the hyperplane spanned by µ0, . . . , µr−2. Let (u, φus) be a pair from the input
samples. We perform the measurement on φus according to the decomposition of Cr = V ⊕V ⊥,
and retain u if and only if the result of the measurement is ‘in V ⊥. Otherwise we discard u.
An efficient implementation of the measurement in (V, V ⊥) is given later in this section.

Observe that measuring a state µj ‘in V ⊥ is only possible if µj 6∈ V , in particular
j 6∈ {0, . . . , r − 2}. Thus if we measure φs(u) ’in V ⊥ we can be sure that (s, u) is in
A = {r − 1, . . . , q − 1}. We only keep u from a sample pair (u, τ) if this measurement,
applied to the state τ , results ‘in V ⊥’. The u’s that are retained are samples from an (A, `)
distribution over Fnq .

We bound the probability of retaining a sample pair (u, φus) for this procedure. We bound
the success probability for the special case when (s, u) = r − 1. As u is uniformly random
over Fnq the value of (s, u) is uniformly distributed over Zq, this bound therefore suffices for
our purposes.

In the standard basis |h〉 (h ∈ H), the vector µt has entry 1√
r
ωht in the h-th position.

Let A ∈ Cr×r be the matrix with rows from the collection {µt : 0 ≤ t ≤ r − 1}, that is

A = 1√
r


1 ωh1 · · · ωh1(r−1)

1 ωh2 · · · ωh2(r−1)

...
...

. . .
...

1 ωhr · · · ωhr(r−1)

 , (3)

where h1, . . . , hr are the elements of H, say, in increasing order. The matrix A is 1√
r
times a

Vandermonde matrix and as such, it is well known that it has determinant r−r/2
∏
j<i≤r(ωhi−

ωhj). In particular, the states µ0, . . . , µr−1 are linearly independent. With a more careful
analysis, we show in Lemma 13 below that detA is sufficiently far from zero.

I Lemma 13. Let c = q − r and A be the matrix in (3) then | detA∗A| = Ω(q−c2 (q
r

)r).
Using the above lemma, we bound the probability of retaining u if (u, s) = r − 1. It might
be possible to prove similar bounds for other values of (s, u) ∈ A, however the bound for the
particular value r − 1 suffices for our purpose.

ESA 2018

66:12 On Learning Linear Functions from Subset and Its Applications in Quantum Comp.

I Lemma 14. The (V, V ⊥)-measurement applied to a state of the form µt, returns “in V ”
with probability 1 if t ∈ {0, . . . , r − 2}, while for t ∈ {r − 1, . . . , q − 1}, the probability that
“in V ⊥” is returned depends only on t and is Ω

(
q−c

2 (q
r

)r) for t = r − 1.

We describe next the implementation of the (V, V ⊥) measurement that acts on O(log q)
qubits. Using universality constructions and the Solovay-Kitaev theorem, it is well known
that an arbitrary unitary operator can be approximated using an exponential number of
elementary gates in the number of qubits.

I Fact 15. [14] An arbitrary unitary operation U on t qubits can be simulated to error ε
using O(t24t logc(t24t/ε)) elementary gates.

The ability to implement an arbitrary unitary operation on log q qubits implies the ability to
perform the measurement (W,W⊥) for an arbitrary subspace W ⊂ Cq.

Denote the quantum state corresponding to unit vector w ∈ Cq as |w〉 :=
∑q
i=1 wi |i〉. Let

k be the dimension of W and let w1, w2, · · · , wk be an orthonormal basis for W . Let UW be
a unitary operation that maps the standard basis vectors |i〉 → |wi〉. Then the measurement
in (W,W⊥) on state |φ〉 can be implemented by first computing U−1

W |φ〉 and then measuring
in the standard basis. The state |φ〉 belongs to W if and only if the result of measurement in
the standard basis belongs to the set {1, 2, · · · , k}. As the (V, V ⊥) measurement is on log q
qubits, by Fact 15 we have,

I Claim 16. The measurement (V, V ⊥) can be implemented to precision 1/qO(1) in time
Õ(q2).

The implementation of the (V, V ⊥) measurement above shows that the sampling procedure
can be performed efficiently. The procedure yields a sample from an (A, `) distribution with
|A| = (q − r) + 1 when the measurement outcome is V ⊥. By Lemma 14 the outcome V ⊥

occurs with probability Ω
(
q−c

2 (q
r

)r) if (u, s) = r − 1. As u is uniformly random on Fnq at

least a Ω
(
q−c

2−1 (q
r

)r) fraction of the samples are retained. We therefore have the following
proposition,

I Proposition 17. There is a quantum procedure that that runs in time Õ(q2), and given
a pair (u, φus) where u ∈ Znq is uniformly random and φus = µ(u,s), with probability at least
O
(
q−c

2−1 (q
r

)r) returns a sample from a (A, `) distribution with |A| = c+1 and `(x) = (s, x).

In order to solve HMS(q, n, r) given a scalar multiple s0 = λs found using Theorem 9,
we need to find the scalar λ. We show that using O(q) further input pairs we can find the
value of λ using a simple trial and error procedure given by the following lemma.

I Lemma 18. Given t ∈ Fq and a state τ ∈ Cr, there is a quantum procedure that returns
YES with probability 1 if τ = µt, while if τ = µt′ for some t′ ∈ Fq \ {t}, it returns YES with

probability at most p :=
{

1/4 if q < 3r/2
1−O(1/q) otherwise.

Combining the results proved in this section with Algorithm 1, we next obtain a quantum
algorithm for HMS(q, n, r) for the case of prime q.

Theorem 9 shows that given N = Ω(
(
n+d
d

)
d2 log(

(
n+d
d

)
)) samples from an (A, `) distribu-

tion, a scalar multiple of the function ` can be found with constant probability. Proposition 17
above shows that the expected time to obtain N samples from the (A, `) distribution is

G. Ivanyos, A. Prakash, and M. Santha 66:13

Õ(Nqc2+3) where we used that each measurment requires time Õ(q2) and ignored the factor
(r/q)r < 1. The number of samples and the time required for determining the scalar λ
in Lemma18 are negligible compared to these quantities. We therefore have the following
theorem,

I Theorem 19. Let q be a prime and let c = q − r. Then there is a quantum algorithm
which solves HMS(q, n, r) with sample complexity Õ(nc+1qc

2+1) and in time Õ(nc+1qc
2+3).

The algorithm runs in time polynomial in n, log q for the case when q = poly(n). We therefore
we have the following corollary,

I Corollary 20. Let q = poly(n) be a prime number and c = q − r be a constant, then there
is an efficient quantum algorithm for HMS(q, n, r).

References
1 Vincenzo Acciaro. The probability of generating some common families of finite groups.

Utilitas Math., 49:243–254, 1996.
2 Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Pro-

ceedings of the 38th International Colloquium on Automata, Languages and Programming
ICALP, Zurich, Switzerland, pages 403–415. Springer, 2011.

3 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

4 Andrew M. Childs, Robin Kothari, Maris Ozols, and Martin Roetteler. Easy and hard
functions for the boolean hidden shift problem. In Simone Severini and Fernando G. S. L.
Brandão, editors, 8th Conference on the Theory of Quantum Computation, Communication
and Cryptography, TQC 2013, May 21-23, 2013, Guelph, Canada, volume 22 of LIPIcs,
pages 50–79. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. doi:10.4230/
LIPIcs.TQC.2013.50.

5 Andrew M. Childs and Wim van Dam. Quantum algorithm for a generalized hidden
shift problem. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, Louisiana, USA, January 7-9, 2007, pages 1225–1232. SIAM, 2007. URL:
http://dl.acm.org/citation.cfm?id=1283383.1283515.

6 Thomas Decker, Gábor Ivanyos, Raghav Kulkarni, Youming Qiao, and Miklos Santha. An
efficient quantum algorithm for finding hidden parabolic subgroups in the general linear
group. In International Symposium on Mathematical Foundations of Computer Science,
pages 226–238. Springer, 2014.

7 Mark Ettinger and Peter Høyer. On quantum algorithms for noncommutative hidden
subgroups. Advances in Applied Mathematics, 25:239–251, 2000. arXiv:arXiv:quant-ph/
9807029.

8 Katalin Friedl, Gábor Ivanyos, Frédéric Magniez, Miklos Santha, and Pranab Sen. Hidden
translation and translating coset in quantum computing. SIAM Journal on Computing,
43(1):1–24, 2014. preliminary version in STOC 2003.

9 Dmitry Gavinsky, Martin Roetteler, and Jérémie Roland. Quantum algorithm for the
boolean hidden shift problem. In Bin Fu and Ding-Zhu Du, editors, Computing and Com-
binatorics - 17th Annual International Conference, COCOON 2011, Dallas, TX, USA,
August 14-16, 2011. Proceedings, volume 6842 of Lecture Notes in Computer Science, pages
158–167. Springer, 2011. doi:10.1007/978-3-642-22685-4_14.

10 Gábor Ivanyos. On solving systems of random linear disequations. Quantum Informa-
tion & Computation, 8(6):579–594, 2008. URL: http://www.rintonpress.com/xxqic8/
qic-8-67/0579-0594.pdf.

ESA 2018

http://dx.doi.org/10.4230/LIPIcs.TQC.2013.50
http://dx.doi.org/10.4230/LIPIcs.TQC.2013.50
http://dl.acm.org/citation.cfm?id=1283383.1283515
http://arxiv.org/abs/arXiv:quant-ph/9807029
http://arxiv.org/abs/arXiv:quant-ph/9807029
http://dx.doi.org/10.1007/978-3-642-22685-4_14
http://www.rintonpress.com/xxqic8/qic-8-67/0579-0594.pdf
http://www.rintonpress.com/xxqic8/qic-8-67/0579-0594.pdf

66:14 On Learning Linear Functions from Subset and Its Applications in Quantum Comp.

11 Gábor Ivanyos, Anupam Prakash, and Miklos Santha. On learning linear functions from
subset and its applications in quantum computing. arXiv, 2018. arXiv:1710.02581.

12 Erich Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral
polynomial factorization. SIAM J. Comput., 14(2):469–489, 1985. doi:10.1137/0214035.

13 Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden sub-
group problem. SIAM Journal on Computing, 35(1):170–188, 2005. arXiv:quant-ph/
0302112.

14 Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information,
2002.

15 Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 333–
342. ACM, 2009.

16 Carl Pomerance. The expected number of random elements to generate a finite abelian
group. Periodica Mathematica Hungarica, 43(1):191–198, Aug 2002. doi:10.1023/A:
1015250102792.

17 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):34, 2009.

18 Martin Roetteler. Quantum algorithms for abelian difference sets and applications to
dihedral hidden subgroups. In Anne Broadbent, editor, 11th Conference on the Theory of
Quantum Computation, Communication and Cryptography, TQC, September 27-29, 2016,
Berlin, Germany, volume 61 of LIPIcs, pages 8:1–8:16. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.TQC.2016.8.

19 Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980.

20 Joachim von zur Gathen and Erich Kaltofen. Polynomial-time factorization of multivariate
polynomials over finite fields. In International Colloquium on Automata, Languages, and
Programming, pages 250–263. Springer, 1983.

21 Richard Zippel. Probabilistic algorithms for sparse polynomials. Symbolic and algebraic
computation, pages 216–226, 1979.

http://arxiv.org/abs/1710.02581
http://dx.doi.org/10.1137/0214035
http://arxiv.org/abs/quant-ph/0302112
http://arxiv.org/abs/quant-ph/0302112
http://dx.doi.org/10.1023/A:1015250102792
http://dx.doi.org/10.1023/A:1015250102792
http://dx.doi.org/10.4230/LIPIcs.TQC.2016.8

Strong Collapse for Persistence
Jean-Daniel Boissonnat
Université Côte d’Azur, INRIA, France
Jean-Daniel.Boissonnat@inria.fr

Siddharth Pritam
Université Côte d’Azur, INRIA, France
siddharth.pritam@inria.fr

Divyansh Pareek
Indian Institute of Technology Bombay, India
divyansh@cse.iitb.ac.in

Abstract
We introduce a fast and memory efficient approach to compute the persistent homology (PH)
of a sequence of simplicial complexes. The basic idea is to simplify the complexes of the input
sequence by using strong collapses, as introduced by J. Barmak and E. Miniam [DCG (2012)],
and to compute the PH of an induced sequence of reduced simplicial complexes that has the
same PH as the initial one. Our approach has several salient features that distinguishes it from
previous work. It is not limited to filtrations (i.e. sequences of nested simplicial subcomplexes)
but works for other types of sequences like towers and zigzags. To strong collapse a simplicial
complex, we only need to store the maximal simplices of the complex, not the full set of all its
simplices, which saves a lot of space and time. Moreover, the complexes in the sequence can be
strong collapsed independently and in parallel. As a result and as demonstrated by numerous
experiments on publicly available data sets, our approach is extremely fast and memory efficient
in practice.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases Computational Topology, Topological Data Analysis, Strong Collapse,
Persistent homology

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.67

Funding This research has received funding from the European Research Council (ERC) under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
No. 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimen-
sions).

Acknowledgements We want to thank Marc Glisse for his useful discussions, Mathijs Win-
traecken for reviewing a draft of the article. We also want to thank Francois Godi and Siargey
Kachanovich for their help with Gudhi and Hannah Schreiber for her help with Sophia.

1 Introduction

In this article, we address the problem of computing the Persistent Homology (PH) of a
given sequence of simplicial complexes (defined precisely in Section 4) in an efficient way. It
is known that computing persistence can be done in O(nω) time, where n is the total number
of simplices and ω ≤ 2.4 is the matrix multiplication exponent [20, 15]. In practice, when
dealing with massive and high-dimensional datasets, n can be very large (of order of billions)
and computing PH is then very slow and memory intensive. Improving the performance

© Jean-Daniel Boissonnat, Siddharth Pritam, and Divyansh Pareek;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 67; pp. 67:1–67:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jean-Daniel.Boissonnat@inria.fr
mailto:siddharth.pritam@inria.fr
mailto:divyansh@cse.iitb.ac.in
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

67:2 Strong Collapse for Persistence

of PH computation has therefore become an important research topic in Computational
Topology and Topological Data Analysis.

Much progress has been accomplished in the recent years in two directions. First, a number
of clever implementations and optimizations have led to a new generation of software for PH
computation [16, 27, 24, 13]. Secondly, a complementary direction has been explored to reduce
the size of the complexes in the sequence while preserving (or approximating in a controlled
way) the persistent homology of the sequence. Examples are the work of Mischaikow and
Nanda [21] who use Morse theory to reduce the size of a filtration, and the work of Dłotko
and Wagner who use simple collapses [14]. Both methods compute the exact PH of the input
sequence. Approximations can also be computed with theoretical guarantees. Approaches
like interleaving smaller and easily computable simplicial complexes, and sub-sampling of
the point sample works well upto certain approximation factor [8, 5, 25, 19, 9, 12].

In this paper, we introduce a new approach to simplify the complexes of the input
sequence which uses the notion of strong collapse introduced by J. Barmak and E. Miniam
[2]. Specifically, our approach can be summarized as follows. Given a sequence Z : {K1

f1−→
K2

g2←− K3
f3−→ · · ·

f(n−1)−−−−→ Kn} of simplicial complexes Ki connected through simplicial maps
{ fi−→ or gj←−}, we independently strong collapse the complexes of the sequence to reach a

sequence Zc : {Kc
1
fc

1−→ Kc
2

gc
2←− Kc

3
fc

3−→ · · ·
fc

(n−1)−−−−→ Kc
n}, with induced simplicial maps { f

c
i−→ or

gc
j←−} (defined in Section 4). The complex Kc

i is called the core of the complex Ki and we
call the sequence Zc the core sequence of Z. We show that one can compute the PH of
the sequence Z by computing the PH of the core sequence Zc, which is of much smaller size.

Our method has some similarity with the work of Wilkerson et. al. [29] who also use
strong collapses to reduce PH computation but it differs in three essential aspects: it is not
limited to filtrations (i.e. sequences of nested simplicial subcomplexes) but works for other
types of sequences like towers and zigzags. It also differs in the way strong collapses are
computed and in the manner PH is computed.

A first central observation is that to strong collapse a simplicial complex K, we only
need to store its maximal simplices (i.e. those simplices that have no coface). The number
of maximal simplices is smaller than the total number of simplices by a factor that is
exponential in the dimension of the complex. It is linear in the number of vertices for a
variety of complexes [4]. Working only with maximal simplices dramatically reduces the time
and space complexities compared to the algorithm of [30]. We prove that the complexity
of our algorithm is O(v2Γ0d + m2Γ0d). Here d is the dimension of the complex, v is the
number of vertices, m is the number of maximal simplices and Γ0 is an upper bound on the
number of maximal simplices incident to a vertex. As observed in [3, 4], usually m is much
smaller than the total number of simplices and Γ0 is much smaller than m (see Section 3 for
a discussion).

We now consider PH computation. All PH algorithms take as input a full representation
of the complexes. We thus have to convert the representation by maximal simplices used for
strong collapses into a full representation of the complexes, which takes exponential time in
the dimension (of the collapsed complexes). This exponential burden is to be expected since
it is known that computing PH is NP-hard when the complexes are represented by their
maximal faces [1]. Nevertheless, we demonstrate in this paper that strong collapses combined
with known persistence algorithms lead to major improvements over previous methods to
compute the PH of a sequence. This is due in part to the fact that strong collapses reduce
the size of the complexes on which persistence is computed. Two other factors also play a
role:

J-D. Boissonnat, S. Pritam, and D. Pareek 67:3

The collapses of the complexes in the sequence can be performed independently and in
parallel. This is due to the fact that strong collapses can be expressed as simplicial maps
unlike simple collapses [28].
The size of the complexes in a sequence does not grow by much in terms of maximal
simplices, as observed in many practical cases. As a consequence, the time to collapse
the i-th simplicial complex Ki in the sequence is almost independent of i. For filtrations,
this is a clear advantage over methods that use a full representation of the complexes
and suffer an increasing cost as i increases.

As a result, our approach is extremely fast and memory efficient in practice as demon-
strated by numerous experiments on publicly available data sets.

An outline of this paper is as follows. Section 2 recalls the basic ideas and constructions
related to simplicial complexes and strong collapses. We describe our core algorithm in
Section 3. In Section 4, we prove that zigzag modules are preserved under strong collapse.
In Section 5, we provide experimental results.

2 Preliminaries

In this section, we provide a brief review of the notions of simplicial complex and strong
collapse as introduced in [2]. We assume some familiarity with basic concepts like homotopic
maps, homotopy type, homology groups and other algebraic topological notions. Readers
can refer to [17] for a comprehensive introduction of these topics.

Simplex, simplicial complex and simplicial map. An abstract simplicial complex K
is a collection of subsets of a non-empty finite set X, such that for every subset A in K,
all the subsets of A are in K. From now on we will call an abstract simplicial complex
simply a simplicial complex or just a complex. An element of K is called a simplex. An
element of cardinality k + 1 is called a k-simplex and k is called its dimension. A simplex
is called maximal if it is not a proper subset of any other simplex in K. A sub-collection L
of K is called a subcomplex, if it is a simplicial complex itself. L is a full subcomplex
if it contains all the simplices of K that are spanned by the vertices (0-simplices) of the
subcomplex L.

A vertex to vertex map ψ : K → L between two simplicial complexes is called a simplicial
map, if the images of the vertices of a simplex always span a simplex. Simplicial maps are thus
determined by the images of the vertices. In particular, there is a finite number of simplicial
maps between two given finite simplicial complexes. Simplicial maps induce continuous maps
between the underlying geometric realisations of the simplicial complexes. Two simplicial
maps φ : K → L and ψ : K → L are contiguous if, for all σ ∈ K, φ(σ) ∪ ψ(σ) ∈ L. Two
contiguous maps are known to be homotopic [22, Theorem 12.5].

Dominated vertex. Let σ be a simplex of a simplicial complex K, the closed star of σ in
K, stK(σ) is a subcomplex of K which is defined as follows, stK(σ) := {τ ∈ K| τ ∪ σ ∈ K}.
The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ) which do not intersect
with σ, lkK(σ) := {τ ∈ stK(σ)|τ ∩ σ = ∅}.

Taking a join with a vertex transforms a simplicial complex into a simplicial cone.
Formally if L is a simplicial complex and a is a vertex not in L then the simplicial cone aL
is defined as aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L}. A vertex v in K is called a
dominated vertex if the link of v in K, lkK(v) is a simplicial cone, that is, there exists a
vertex v′ 6= v and a subcomplex L in K, such that lkK(v) = v′L. We say that the vertex v′

ESA 2018

67:4 Strong Collapse for Persistence

v′v v′ v′v′

Figure 1 Illustration of an elementary strong collapse. In the complex on the left, v is dominated
by v′. The link of v is highlighted in red. Removing v leads to the complex on the right.

is dominating v and v is dominated by v′. The symbol K \ v(deletion of v from K) refers
to the subcomplex of K which has all simplices of K except the ones containing v. Below
is an important remark from [2, Remark 2.2], which proposes an alternative definition of
dominated vertices.

I Remark (1). A vertex v ∈ K is dominated by another vertex v′ ∈ K, if and only if all the
maximal simplices of K that contain v also contain v′ [2].

Strong collapse. An elementary strong collapse is the deletion of a dominated vertex
v from K, which we denote with K ↘↘e K \ v. Figure 1 illustrates an easy case of an
elementary strong collapse. There is a strong collapse from a simplicial complex K to its
subcomplex L, if there exists a series of elementary strong collapses from K to L, denoted as
K ↘↘ L. The inverse of a strong collapse is called a strong expansion. If there exists
a combination of strong collapses and/or strong expansion from K to L then K and L are
said to have the same strong homotopy type.

The notion of strong homotopy type is stronger than the notion of simple homotopy type
in the sense that if K and L have the same strong homotopy type, then they have the same
simple homotopy type, and therefore the same homotopy type [2]. There are examples of
contractible or simply collapsible simplicial complexes that are not strong collapsible.

A complex without any dominated vertex will be called a minimal complex. A core
of a complex K is a minimal subcomplex Kc ⊆ K, such that K ↘↘ Kc. Every simplicial
complex has a unique core up to isomorphism. The core decides the strong homotopy type
of the complex, and two simplicial complexes have the same strong homotopy type if and
only if they have isomorphic cores [2, Theorem 2.11].

Retraction map. If a vertex v ∈ K is dominated by another vertex v′ ∈ K, the vertex map
r : K → K \ v defined as: r(w) = w if w 6= v and r(v) = v′, induces a simplical map that is a
retraction map. The homotopy between r and the identity iK\v over K \ v is in fact a strong
deformation retract. Furthermore, the composition (iK\v)r is contiguous to the identity iK
over K [2, Proposition 2.9].

Nerve of a simplicial complex. A closed cover U of a topological space X is a set of closed
sets of X such that X is a subset of their union. The nerve of a cover U is an abstract
simplicial complex, defined as the set of all non-empty intersections of the elements of U .
The nerve is a well known construction that transforms a continuous space to a combinatorial
space preserving its homotopy type. The nerve N (K) of a simplicial complex K is defined
as the nerve of the set of maximal simplices of the complex K (considered as a cover of
the complex). Hence all the maximal simplices of K will be the vertices of N (K) and their

J-D. Boissonnat, S. Pritam, and D. Pareek 67:5

a

b

c

d

e

f

σ3

σ1

σ2

σ4 σ5
σ3

σ1

σ2

σ4

σ5

Figure 2 Left: K (in grey), Right: N (K) (in grey) and N 2(K) (in blue). N 2(K) is isomorphic
to a full-subcomplex of K highlighted in blue on the left.

non-empty intersection will form the simplices of N (K). For j ≥ 2 the iterative construction
is defined as N j(K) = N (N j−1(K)). This definition of nerve preserves the homotopy type,
K ' N (K)[2]. A remarkable property of this nerve construction is its connection with strong
collapses.

Taking the nerve of any simplicial complex K twice corresponds to a strong collapse.

I Theorem 1. [2, Proposition 3.4] For a simplicial complex K, there exists a subcomplex L
isomorphic to N 2(K), such that K↘↘L.

An easy consequence of this theorem is that a complex K is minimal if and only if it is
isomorphic to N 2(K) [2, Lemma 3.6]. This means that we can keep collapsing our complex
K by applying N 2(.) iteratively until we reach the core of the complex K. The sequence
K,N 2(K), ...,N 2p(K) is a decreasing sequence in terms of number of simplices.

3 Algorithm

In this section, we describe an algorithm to strong collapse a simplicial complex K, provide
the details of the implementation and analyze its complexity. We construct N 2(K) as defined
in Section 2.

Data structure. Basically, we represent K as the adjacency matrix M between the vertices
and the maximal simplices of K. We will simply call M the adjacency matrix of K. The
rows of M represent the vertices and the columns represent the maximal simplices of K. For
convenience, we will identify a row (resp. column) and the vertex (resp. maximal simplex)
it represents. An entry M [vi][σj] associated with a vertex vi and a maximal simplex σj
is set to 1 if vi ∈ σj , and to 0 otherwise. For example, the matrix M in the left of the
Table 1 corresponds to the leftmost simplicial complex K in Figure 2. Usually, M is very
sparse. Indeed, each column contains at most d+ 1 non-zero elements since the simplices
of a d-dimensional complex have at most d+ 1 vertices, and each line contains at most Γ0
non-zero elements where Γ0 is an upper bound on the number of maximal simplices incident
to a given vertex. As already mentionned, in many practical situations, Γ0 is a small fraction
of the number of maximal simplices. It is therefore beneficial to store M as a list of vertices
and a list of maximal simplices. Each vertex v in the list of vertices points to the maximal
simplices that contain v, and each simplex in the list of maximal simplices points to its
vertices. This data structure is similar to the SAL data structure of [3].

ESA 2018

67:6 Strong Collapse for Persistence

Table 1 From left to right M , N (M) and N 2(M).

σ1 σ2 σ3 σ4 σ5
a 0 0 1 0 0
b 1 1 1 0 0
c 1 0 0 0 0
d 0 0 1 1 0
e 0 1 0 1 1
f 0 0 0 0 1

b d e
σ1 1 0 0
σ2 1 0 1
σ3 1 1 0
σ4 0 1 1
σ5 0 0 1

σ2 σ3 σ4
b 1 1 0
d 0 1 1
e 1 0 1

Core algorithm. Given the adjacency matrix M of K, we compute the adjacency matrix C
of the core Kc. It turns out that using basic row and column removal operations, we can
easily compute C from M . Loosely speaking our algorithm recursively computes N 2(K)
until it reaches Kc.

The columns of M (which represent the maximal simplices of K) correspond to the
vertices of N (K). Also, the columns of M that have a non-zero value in a particular row
v correspond to the maximal simplices of K that share the vertex associated with row v.
Therefore, each row of M represents a simplex of the nerve N (K). Not all simplices of N (K)
are associated with rows of M but all maximal simplices are since they correspond to subsets
of maximal simplices with a common vertex. To remedy this situation, we remove all the
rows of M that correspond to non-maximal simplices of N (K). This results in a new smaller
matrix M whose transpose, noted N (M), is the adjacency matrix of the nerve N (K). We
then exchange the roles of rows and columns (which is the same as taking the transpose)
and run the very same procedure as before so as to obtain the adjacency matrix N 2(M) of
N 2(K).

The process is iterated as long as the matrix can be reduced. Upon termination, we
output the reduced matrix C := N 2p(M), for some p ≥ 1, which is the adjacency matrix of
the core Kc of K. Removing a row or column is the most basic operation of our algorithm.
We will discuss it in more detail later in the paragraph Domination test.

Example. As mentioned before, the matrix M in the left of the Table 1 represents the
simplicial complex K in the left of Figure 2. We go through the rows first, rows a and c
are subsets of row b and row f is a subset of e. Removing rows a, c and f and transposing
M yields the adjacency matrix N (M) of N (K) in the middle. Now, row σ1 is a subset of
σ2 and of σ3, and σ5 is a subset of σ2 and of σ4. We remove these two rows of N (M) and
transpose N (M) so as to get N 2(M) (the rightmost matrix of Figure 2), which corresponds
to the core drawn in blue in Figure 2.

Domination test. Now we explain in more detail how to detect the rows that need to be
removed. Let v be a row of M and σv be the associated simplex in N (K). If σv is not
a maximal simplex of N (K), it is a proper face of some maximal simplex σv′ of N (K).
Equivalently, the row v′ of M that is associated with σv′ contains row v in the sense that
the non zero elements of v appear in the same columns as the non zero elements of v′. We
will say that row v is dominated by row v′ and determining if a row is dominated by another
one will be called the row domination test. Notice that when a row v is dominated by a row
v′, the same is true for the associated vertices since all the maximal simplices that contain

J-D. Boissonnat, S. Pritam, and D. Pareek 67:7

vertex v also contain vertex v′, which is the criterion to determine if v is dominated by v′
(See Remark 1 in Section 2). The algorithm removes all dominated rows and therefore all
dominated vertices of K.

After removing rows, the algorithm removes the columns that are no longer maximal in
K, which might happen since we removed some rows. Removing a column may lead in turn
to new dominated vertices and therefore new rows to be removed. When the algorithm stops,
there are no rows to be removed and we have obtained the core Kc of the complex K. Note
that the algorithm provides a constructive proof of Theorem 1.

Removing columns is done in very much the same way: we just exchange the roles of
rows and columns.

Computing the retraction map r. The algorithm also provides a direct way to compute
the retraction map r defined in Section 2. The retraction map corresponding to the strong
collapses executed by the algorithm can be constructed as follows. A row r being removed in
M corresponds to a dominated vertex in K and the row which contains r corresponds to a
dominating vertex. Therefore we map the dominated vertex to the dominating vertex and
compose all such maps to get the final retraction map from K to its core Kc. The final map
is simplicial as well, as it is a composition of simplicial maps.

Reducing the number of domination tests. We first observe that, when one wants to
determine if a row v is dominated by some other row, we don’t need to test v with all other
rows but with at most d of them. Indeed, at most d+ 1 rows can intersect a given column
since a simplex can have at most d+ 1 vertices. For example, in Table 1 (Left), to check if
row e (highlighted in brown) is dominated by another row, we pick the first non-zero column
σ2 (highlighted in Gray) and compare e with the non-zero entries {b} of σ2.

A second observation is that we don’t need to test all rows and columns for domination,
but only the so-called candidate rows and columns. We define a row r to be a candidate
row for the next iteration if at least one column containing one of the non-zero elements
of r has been removed in the previous column removal iteration. Similarly, by exchanging
the roles of rows and columns, we define the candidate columns. Candidate rows and
columns are the only rows or columns that need to be considered in the domination tests of
the algorithm. Indeed, a column τ of M whose non-zero elements all belong to rows that are
present from the previous iteration cannot be dominated by another column τ ′ of M , since τ
was not dominated at the previous iteration and no new non-zero elements have ever been
added by the algorithm. The same argument follows for the candidate rows.

We maintain two queues, one for the candidate columns (colQueue) and one for the
candidate rows (rowQueue). These queues are implemented as First in First out (FIFO)
queues. At each iteration, we pop out a candidate row or column from its respective queue
and test whether it is dominated or not. After each successful domination test, we push
the candidate columns or rows in their appropriate queue in preparation for the subsequent
iteration. In the first iteration, we push all the rows in rowQueue and then alternatively use
colQueue and rowQueue. Algorithm 1 gives the pseudo code of our algorithm.

Time Complexity. The most basic operation in our algorithm is to determine if a row is
dominated by another given row, and similarly for columns. In our implementation, the
rows (columns) of the matrix that are considered by the algorithm are stored as sorted lists.
Checking if one sorted list is a subset of another sorted list can be done in time O(l), where l
is the size of the longer list. Note that the length of a row list is at most Γ0 where Γ0 denotes

ESA 2018

67:8 Strong Collapse for Persistence

Algorithm 1 Core algorithm.
1: procedure Core(M) . Returns the matrix corresponding to the core of K
2: rowQueue← push all rows of M (all vertices of K)
3: colQueue← empty
4: while rowQueue is not empty do
5: v ← pop(rowQueue)
6: σ ← the first non-zero column of v
7: for non-zero rows w in σ do
8: if v is a subset of w then
9: Remove v from M

10: push all non-zero columns τ of v to colQueue if not pushed before
11: break
12: end if
13: end for
14: end while
15: while colQueue is not empty do
16: τ ← pop(colQueue)
17: v ← the first non-zero row of τ
18: for non-zero columns σ in v do
19: if τ is subset of σ then
20: Remove τ from M

21: push all non-zero rows w of τ to rowQueue if not pushed before
22: break
23: end if
24: end for
25: end while
26: if rowQueue is not empty then
27: GOTO 4
28: end if
29: return M . The core consists of the remaining rows and columns
30: end procedure

an upper bound on the number of maximal simplices incident to a vertex. The length of a
column list is at most d+ 1 where d is the dimension of the complex. Hence checking if a
row is dominated by another row takes O(Γ0) time and checking if a column is dominated
by another column takes O(d) time.

At each iteration on the rows (Lines 7-13 of Algorithm 1), each row is checked against at
most d other rows (since a maximal simplex has at most d+ 1 vertices), and at each iteration
of the columns (Lines 18-24 of Algorithm 1), each column is checked against at most Γ0
other columns (since a vertex can belong to at most Γ0 maximal simplices). Since, at each
iteration on the rows, we remove at least one row, the total number of iterations on the rows
is at most O(v2), where v is the total number of vertices of the complex K. Similarly, at each
iteration on the columns, we remove at least one column and the total number of iterations
on columns is O(m2), where m is the total number of maximal simplices of the complex K.
The worst-case time complexity of our algorithm is therefore O(v2Γ0d+m2Γ0d). In practice,
m is much smaller than n, the total number of simplices, and Γ0 is much smaller than Γ, the
maximum number of simplices incident on a vertex. Typically Γ grows exponentially with
d while Γ0 remains almost constant as d increases. See Table 5 in [3] and related results
in [4], and also the plots in Section 5.

J-D. Boissonnat, S. Pritam, and D. Pareek 67:9

4 Strong collapse of zigzag sequences

To be able to present our main result, we need to begin with some brief background on
zigzag persistence. Readers interested in more details can refer to [6, 7, 11].

Given a zigzag sequence of simplicial complexes Z : {K1
f1−→ K2

g2←− K3
f3−→ · · ·

f(n−1)−−−−→
Kn}, if we compute the homology classes of all Kis, we get the sequence P(Z) : {Hp(K1) f∗1−→

Hp(K2) g∗2←− Hp(K3) f∗3−→ · · ·
f∗(n−1)−−−−→ Hp(Kn)}. Here Hp(−) denotes the homology class of

dimension p with coefficients from a field F and ∗ denotes an induced homomorphism. P(Z)
is a sequence of vector spaces connected through homomorphisms, called a Zigzag module.
More formally, a zigzag module V is a sequence of vector spaces {V1 −→ V2 ←− V3 −→ · · · ←→ Vn}
connected with homomorphisms {−→,←−} between them. A zigzag module arising from a
sequence of simplicial complexes captures the evolution of the topology of the sequence.

For two integers b and d, 1 ≤ b ≤ d ≤ n; we can define an interval module I[b, d] by
assigning Vi to F when i ∈ [b, d], and null spaces otherwise, the maps between any two F vector
spaces is identity and is zero otherwise. For example I[2, 4] : {0 0−→ F I←− F I−→ F 0←− 0 0−→ 0},
here n = 6. Any zigzag module can be decomposed as the direct sum of finitely many
interval modules, which is unique upto the permutations of the interval modules [6]. The
multiset of all the intervals [bj , dj] corresponding to the interval module decomposition of any
zigzag module is called a zigzag (persistence) diagram. The zigzag diagram completely
characterizes the zigzag module, that is, there is bijective correspondence between them
[6, 31].

Two different zigzag modules V : {V1 −→ V2 ←− V3 −→ · · · ←→ Vn} and W : {W1 −→ W2 ←−
W3 −→ · · · ←→Wn}, connected through a set of homomorphisms φi : Vi →Wi are equivalent
if the φis are isomorphisms and the following diagram commutes [6, 11].

V1 V2 V3 · · · Vn−1 Vn

W1 W2 W3 · · · Wn−1 Wn

φ1 φ2 φ3 φn−1 φn

Note that the length of the modules and the directions of the arrows in them should
be consistent. Two equivalent zigzag modules will have the same interval decomposition,
therefore the same zigzag diagram.

A zigzag sequence is called a simplicial tower if all maps are forward. i.e. only fis. A
tower is called a filtration if the maps are only inclusions.

Strong collapse of the zigzag module. Given a zigzag sequence Z : {K1
f1−→ K2

g2←−
K3

f3−→ · · ·
f(n−1)−−−−→ Kn}. We define the core sequence Zc of Z as Zc : {Kc

1
fc

1−→ Kc
2

gc
2←−

Kc
3

fc
3−→ · · ·

fc
(n−1)−−−−→ Kc

n}. Where Kc
i is the core of Ki. The forward maps are defined as,

f cj := rj+1fjij ; and the backward maps are defined as gcj := rjgjij+1. The maps ij : Kc
j ↪→ Kj

and rj : Kj → Kc
j are the composed inclusions and the retractions maps defined in Section

2 respectively.

I Theorem 2. Zigzag modules P(Z) and P(Zc) are equivalent.

Proof. Consider the following diagram

ESA 2018

67:10 Strong Collapse for Persistence

K1 K2 K3 · · · Kn−1 Kn

Kc
1 Kc

2 Kc
3 · · · Kc

n−1 Kc
n

f1

r1 r2

g2

r3

fn−1

rn−1 rn

fc
1

gc
2

fc
n−1

and the associated diagram after computing the p-th homology groups

Hp(K1) Hp(K2) Hp(K3) · · · Hp(Kn−1) Hp(Kn)

Hp(Kc
1) Hp(Kc

2) Hp(Kc
3) · · · Hp(Kc

n−1) Hp(Kc
n)

f∗1

r∗1 r∗2

g∗2

r∗3

f∗n−1

r∗n−1 r∗n

(fc
1)∗

(gc
2)∗

(fc
n−1)∗

Since there exists a strong deformation retract between rj and ij , the induced homomorphisms
r∗j and i∗j are isomorphisms [17, Corollary 2.11]. Also, f cj rj = rj+1fjijrj is contiguous to
rj+1fj , since ijrj is contiguous to the identity on Kj and contiguity is preserved under
composition, see [2, Proposition 2.9] and similarly gcjrj+1 is contiguous to rjgj . Now, since
contiguous maps are homotopic at the level of geometric realization and homotopic maps
induce the same homomorphism, we have (f cj rj)∗ = (rj+1fj)∗ and thus (f cj)∗r∗j = r∗j+1f

∗
j

and similarly (gcj)∗r∗j+1 = r∗j g
∗
j , see [17, Proposition (1) page 111]. Therefore all the squares

in the lower diagram commute and the set of maps r∗j s are isomorphisms, therefore P(Z)
and P(Zc) are equivalent and hence their zigzag diagrams are identical. J

In fact, using the more general notion of quiver representation [11], this result follows for
the multidimensional persistence as well.

5 Computational experiments

For each data set, we consider as the input sequence a nested sequence (filtration) of Vietoris-
Rips (VR) complexes associated with a set of increasing values of the scale parameter (called
snapshots). The snapshots are specific values of the scale parameter at which we choose to
strong collapse the complex. The choice of snapshots strongly dictates the performance and
the quality of computed PD. Sparse snapshots will lead to faster computation but to coarser
PD where the points of persistence less than the interval between two snapshots have been
removed. On the other hand, choosing denser snapshots will lead to a comparatively slower
algorithm but will provide more refined PD. We first independently strong collapse all these
complexes, then assemble the resulting individual cores using the induced simplicial maps
introduced in Section 4. The resulting new sequence with induced simplicial maps between
the collapsed complexes is usually a simplicial tower we call the core tower. We then convert
the core tower into an equivalent filtration using the Sophia software [26], which implements
the algorithm described by Kerber and Schreiber in [18]. Finally, we run the persistence
algorithm of the Gudhi library [16] to obtain the persistence diagram (PD) of the equivalent
filtration. By the results of Section 4, the obtained PD is the same as the PD of the initial
sequence.

The total time to compute the PD of the core sequence is the sum of three terms: 1. the
maximum time taken to collapse all the individual complexes (assuming they are computed in
parallel), 2. the time taken to assemble the individual cores to form the core tower, 3. the time
to compute the persistent diagram of the core tower. Table 2 summarises the results of the
experiments. In both cases, the original filtration and the core tower, we use Gudhi through
Sophia using the command <./sophia -cgudhi inputTowerFile outputPDFile>. When we
use the -cgudhi option, Sophia reports two computation times. The first one is the total time

J-D. Boissonnat, S. Pritam, and D. Pareek 67:11

Table 2 The rows are, from top to down: dataset X , number of snapshots (snp), total number
of simplices in the original filtration (Flt) in millions, number of simplices in the collapsed tower
(Twr), total number of simplices in the equivalent filtration (EqF), ratio of Flt and EqF (Flt/EqF)
in thousands, PD computation time for the original filration (PDF), maximum collapse time (MCT),
assembly time (AT), PD computation time of the tower (PDT), sum MCT+AT+PDT (Total), ratio
of PDF and Total (PDF/Total). All times are noted in seconds. For the first three datasets, we
sampled points randomly from the initial datasets and averaged the results over five trials.

X 1-sphere 2-Annulus dragon netw-sc senate eleg
Snp 80 80 46 69 107 77
Flt(106) 0.12 13.91 7.96 22.35 2.56 1.18
Twr 54 252 1,641 380 104 298
EqF 573 1,954 8,437 957 270 431
Flt/EqF(103) 0.21 7.12 0.94 23.35 9.48 2.74
PDF 0.65 174.18 69.92 243.86 24.92 10.87
MCT 0.005 0.022 0.065 0.009 0.003 0.002
AT 0.045 0.136 0.408 0.078 0.06 0.157
PDT 0.01 0.02 0.08 0.01 0.005 0.006
Total 0.060 0.178 0.553 0.097 0.068 0.165
PDF/Total 10.8 978.5 126.4 2514.0 366.5 65.9

taken by Sophia which includes (1) reading the tower, (2) transforming it to a filtration and
(3) computing PD using Gudhi. The second reported time is just the time taken by Gudhi
to compute PD. In our comparisons, we just report the time taken by Gudhi for the original
filtration, while, for the core tower, we report the total time taken by Sophia.

The dataset of the first column (1-sphere) of Table 2 consists of 100 random points sampled
from a unit circle in dimension 2. The dataset of the second column (2-Annulus) consists of
150 random points sampled from a two dimension annulus of radii {0.6, 1}. For all the other
experiments, we use datasets from a publicly available repository [10]. These datasets have
been previously used to benchmark different publicly available software computing PH [23].
For the third experiment (dragon), we randomly picked 150 points from the 2000 points
of the dataset drag 2 of [10]. The fourth and fifth column respectively correspond to the
dataset netw-sc and senate of [10], here we used the distance matrix. The sixth column
corresponds to the dataset eleg of [10], and here again we used the distance matrix. The first
three datasets are point sets in Euclidean space. For the other three, the distance matrices
of the datasets were available at [10]. The [initial value, increment, final value] of the scale
parameter are [0.1, 0.005, 0.5], [0.1, 0.005, 0.5], [0, 0.001, 0.046], [0.1, 0.05, 3.5], [0, 0.001, 0.107]
and [0, 0.001, 0.077] for the examples in Table 2 (from left to right). The filtration value of a
simplex is the value of the snapshot at which it first appeared. For more detail about the
datasets and the computation of the distance matrices of the last three datasets please refer
to [23].

The plots below count the maximal simplices and the dimensions of the complexes across
the filtration (in solid) and the collapsed tower (as dashed). Blue and red correspond re-
spectively to the filtration and the collapsed tower of the data netw-sc. Similarly green and
brown correspond respectively to the filtration and the collapsed tower of the data senate.
Finally, black and cyan correspond to the filtration and the collapsed tower of the data

ESA 2018

67:12 Strong Collapse for Persistence

eleg respectively. We can observe that in all cases the number of maximal simplices never
increases. Also they are far fewer in number compared to the total number of simplices.
Observe that for the uncollapsed filtrations blue, green and black, the dimension of the
complexes increases quite rapidly with the snapshot index. Another key fact to observe is
that the dimension of the complexes in the corresponding core tower are much smaller than
their counterparts in the filtration. This has a huge effect on the performances since the
total number of simplices depends exponentially on the dimension.

0 15 30 45 60 75 90 105
0

50

100

150

200

250

300

350

400

Snapshot index

N
um

of
M
ax

im
al

Si
m
pl
ic
es

Count of maximal simplices across filtrations

0 15 30 45 60 75 90 105
0
2
4

8

12

16

20

Snapshot index

D
im

en
sio

n
of

th
e
co
m
pl
ex

Dimension of the complex across filtrations

Noticeably, in our experiments, the computing time of our approach is reduced by 1 to 3
orders of magnitude, and the gain increases with the size of the filtration. A similar reduction
of 2 to 4 orders of magnitude is achieved for the number of simplices. Observations from the
plots combined with the experimental results of Table 2 clearly indicate that our method is
extremely fast and memory efficient.

The implementation of the Core algorithm 1 bench-marked here is coded in C++ and
will be available as an open-source package of the next release of the Gudhi library [16].
The code was compiled using the compiler <clang-900.0.38> and all computations were
performed on <2.8 GHz Intel Core i5> machine with 16 GB of available RAM.

The experiments above are limited to filtrations of VR-complexes, by far the most
commonly used type of sequences in Topological Data Analysis. We intend to experiment on
Zigzag sequences in future work.

References
1 M. Adamaszek and J. Stacho. Complexity of simplicial homology and independence com-

plexes of chordal graphs. Computational Geometry: Theory and Applications, 57:8–18,
2016.

2 J. A. Barmak and E. G. Minian. Strong homotopy types, nerves and collapses. Discrete
and Computational Geometry, 47:301–328, 2012.

3 Jean-Daniel Boissonnat, C. S. Karthik, and Sébastien Tavenas. Building efficient and
compact data structures for simplicial complexes. Algorithmica, 79:530–567, 2017.

4 Jean-Daniel Boissonnat and Karthik C. S. An efficient representation for filtrations of
simplicial complexes. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017.

5 M. Botnan and G Spreemann. Approximating persistent homology in euclidean space
through collapses. In: Applicable Algebra in Engineering, Communication and Computing,
26:73–101, 2014.

6 Gunnar Carlsson and Vin de Silva. Zigzag persistence. Found Comput Math, 10, 2010.

J-D. Boissonnat, S. Pritam, and D. Pareek 67:13

7 Gunnar Carlsson, Vin de Silva, and Dmitriy Morozov. Zigzag persistent homology and
real-valued functions. SOCG, pages 247–256, 2009.

8 F. Chazal and S. Oudot. Towards persistence-based reconstruction in euclidean spaces.
SOCG, 2008.

9 Aruni Choudhary, Michael Kerber, and Sharath Raghvendra:. Polynomial-sized topological
approximations using the permutahedron. In 32nd International Symposium on Compu-
tational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

10 Datasets. URL: https://github.com/n-otter/PH-roadmap/’’.
11 Harm Derksen and Jerzy Weyman. Quiver representations. Notices of the American Math-

ematical Society, 52(2):200–206, February 2005.
12 Tamal Dey, Dayu Shi, and Yusu Wang. SimBa: An efficient tool for approximating Rips-

filtration persistence via Simplicial Batch-collapse. In European Symp. on Algorithms
(ESA), pages 35:1–35:16, 2016.

13 Dionysus. URL: http://www.mrzv.org/software/dionysus/.
14 P. Dłotko and H. Wagner. Simplification of complexes for persistent homology computa-

tions,. Homology, Homotopy and Applications, 16:49–63, 2014.
15 François Le Gall. Powers of tensors and fast matrix multiplication. ISSAC ’, 14:296–303,

2014.
16 Gudhi: Geometry understanding in higher dimensions. URL: http://gudhi.gforge.

inria.fr/.
17 A. Hatcher. Algebraic Topology. Univ. Press Cambridge, 2001.
18 Michael Kerber and Hannah Schreiber:. Barcodes of towers and a streaming algorithm

for persistent homology. 33rd International Symposium on Computational Geometry, 2017.
arXiv:1701.02208.

19 Michael Kerber and R. Sharathkumar. Approximate cech complex in low and high dimen-
sions. In Algorithms and Computation, pages 666–676. by Leizhen Cai, Siu-Wing Cheng,
and Tak-Wah Lam. Vol. 8283. Lecture Notes in Computer Science, 2013.

20 Nikola Milosavljevic, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in
matrix multiplication time. In Symposium on Computational Geometry (SoCG), 2011.

21 K. Mischaikow and V. Nanda. Morse theory for filtrations and efficient computation of
persistent homology. DCG, 50:330–353, September 2013.

22 J. Munkres. Elements of Algebraic Topology. Perseus Publishing, 1984.
23 N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harrington. A roadmap for the

computation of persistent homology. EPJ Data Science, Springer Nature, page 6:17, 2017.
24 Ripser. URL: https://github.com/Ripser/ripser.
25 Donald Sheehy. Linear-size approximations to the vietoris–rips filtration. Discrete and

Computational Geometry, 49:778–796, 2013.
26 Sophia. URL: https://bitbucket.org/schreiberh/sophia/.
27 J.Reininghausc U. Bauer, M. Kerber and Hagner:. Phat – persistent homology algorithms

toolbox. Journal of Symbolic Computation, 78, 2017.
28 J. H. C Whitehead. Simplicial spaces nuclei and m-groups. Proc. London Math. Soc,

45:243–327, 1939.
29 A. C. Wilkerson, H. Chintakunta, and H. Krim. Computing persistent features in big data:

A distributed dimension reduction approach. ICASSP - Proceedings, pages 11–15, 2014.
30 A. C. Wilkerson, T. J. Moore, and and A. H. Krim A. Swami. Simplifying the homology of

networks via strong collapses. ICASSP - Proceedings, 2013.
31 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete Comput. Geom,

33:249–274, 2005.

ESA 2018

https://github.com/n-otter/PH-roadmap/''
http://www.mrzv.org/software/dionysus/
http://gudhi.gforge.inria.fr/
http://gudhi.gforge.inria.fr/
http://arxiv.org/abs/1701.02208
https://github.com/Ripser/ripser
https://bitbucket.org/schreiberh/sophia/

On the Complexity of the (Approximate) Nearest
Colored Node Problem
Maximilian Probst
BARC, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
probst@di.ku.dk
https://orcid.org/0000-0003-3522-156X

Abstract
Given a graph G = (V,E) where each vertex is assigned a color from the set C = {c1, c2, .., cσ}.
In the (approximate) nearest colored node problem, we want to query, given v ∈ V and c ∈ C,
for the (approximate) distance d̂ist(v, c) from v to the nearest node of color c. For any integer
1 ≤ k ≤ logn, we present a Color Distance Oracle (also often referred to as Vertex-label Distance
Oracle) of stretch 4k − 5 using space O(knσ1/k) and query time O(log k). This improves the
query time from O(k) to O(log k) over the best known Color Distance Oracle by Chechik [6].

We then prove a lower bound in the cell probe model showing that even for unweighted undir-
ected paths any static data structure that uses space S requires at least Ω

(
log logσ

log(S/n)+log logn

)
query time to give a distance estimate of stretch O(polylog(n)). This implies for the important
case when σ = Θ(nε) for some constant 0 < ε < 1, that our Color Distance Oracle has asymp-
totically optimal query time in regard to k, and that recent Color Distance Oracles for trees [23]
and planar graphs [16] achieve asymptotically optimal query time in regard to n.

We also investigate the setting where the data structure additionally has to support color-
reassignments. We present the first Color Distance Oracle that achieves query times matching
our lower bound from the static setting for large stretch yielding an exponential improvement
over the best known query time [7]. Finally, we give new conditional lower bounds proving the
hardness of answering queries if edge insertions and deletion are allowed that strictly improve
over recent bounds in time and generality.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Theory of computation → Graph algorithms analysis, Theory of computation → Cell probe
models and lower bounds

Keywords and phrases Nearest Colored Node, Distance Oracles, Cell-probe lower bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.68

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
03721.

Funding Supported by Basic Algorithms Research Copenhagen (BARC), supported by Thorup’s
Investigator Grant from the Villum Foundation under Grant No. 16582.

Acknowledgements I want to thank Christian Wulff-Nilsen for inspiring the research on this
problem and the guidance during the project.

1 Introduction

In the static nearest colored node problem, we are given a graph G = (V,E) and a color set
C = {c1, c2, .., cσ} with a function c : V −→ C mapping each vertex to a color in C and we
want to compute and store the distance distG(u, c) denoting the distance from each vertex

© Maximilian Probst;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 68; pp. 68:1–68:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto: probst@di.ku.dk
https://orcid.org/0000-0003-3522-156X
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.68
https://arxiv.org/abs/1807.03721
https://arxiv.org/abs/1807.03721
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68:2 On the Complexity of the (Approximate) Nearest Colored Node Problem

Table 1 Best upper and lower bounds for static Color Distance Oracles. N denotes the weight of
the heaviest edge in the graph. The w in the second column refers to the word size and we assume
in this article that w = Θ(logn). N refers to the heaviest edge weight in the graph.

Graph Family Approximation Space Query Time Ref
Unweighted
undirected path O(polylog(n)) S Ω

(
log logσ

log(S/n)+log logn

)
New

Tree Exact O(n) O
(
log logσ

logw

)
[23]

Planar graphs 1 + ε O(n logn) O(log logn) [16]
Planar
digraphs 1 + ε O(n logn) O(log logn

log log(nN)) [16]

General graphs 4k − 5 O(knσ1/k) O(log k) New
General graphs 8(1 + ε)k O(kn1+1/k logn) O

(
log logσ

logw

)
New

u ∈ V to the nearest vertex v of color c ∈ C or more formally distG(u, c) = minv∈Vcdist(u, v)
where Vc denote the set of c-colored vertices. Clearly, if the color set C is of small cardinality,
computing distances and storing a distance matrix is an efficient measure but for large σ, i.e.
σ = Ω(nε) for some ε > 0, this solution becomes impractical for many important applications.
The problem has various applications in navigation, routing and document processing, often
in connection to locating resources or facilities, e.g. the nearest gas station, quickly.

In this article, we present a new data structure that reports for any given v ∈ V, c ∈ C
a distance estimate d̂ist(v, c) in O(log k) time such that dist(v, c) ≤ d̂ist(v, c) ≤ (4k −
5)dist(v, c) using O(knσ1/k) space for every positive integer k, improving on O(k) query
time of the previous data structure with same space consumption and stretch factor [6]. We
refer to the data structure as Color Distance Oracle. In other literature, the problem is also
studied as the vertex-to-label problem and the data structure is referred to as Vertex-label
Distance Oracle [13][6]. The term Distance Oracle originates from the classic Thorup-Zwick
Distance Oracle [22] that reports distance estimates for each pair of vertices. Thorup, Zwick
and Roddity [20] also generalized Distance Oracles by introducing source-restricted Distance
Oracles where only distances in S × V can be queried for some subset S ⊆ V and that uses
space O(n|S|1/k) for stretch 2k − 1. It is tempting to approach the nearest colored node
problem by using an auxiliary vertex for each color c ∈ C linking it to all c-colored vertices
with a zero-weight edge and let the auxiliary vertices define the set S. Unfortunately, this
might decrease some vertex-to-color distances by creating “portals” through the auxiliary
vertices. Instead the underlying sampling techniques can, together with a more advanced
analysis stemming from Compact Routing Schemes [21], be used to construct efficient and
correct Color Distance Oracles. Color Distance Oracles can also be seen as a generalization
of (source-restricted) Distance Oracles as we can choose a color set of size |S| and assign
each vertex in S a unique color.

We first present a Color Distance Oracle of space O(knσ1/k) that reports in O(log k)
time distance estimate of stretch at most (4k− 5). Our Color Distance Oracle matches space
and stretch of the best data structure by Chechik [6] and improves the query time from
O(k) to O(log k). This is in fact achieved by combining Chechiks result with a well-known
technique by Wulff-Nilsen [25] for general distance oracles. Our contribution is to simplify
the technique of Wulff-Nilsen by observing that a Range Minimum Query (RMQ) data
structure can be used to replace his tailor-made data structure even more efficiently resulting
in a concise and simple algorithm; and to generalize the proof technique of Wulff-Nilsen.
Recently, Chechik has also shown that classic Distance Oracles can be implemented with
constant query time [8][7] and it is natural to ask whether this improvement carries over to

M. Probst 68:3

Table 2 Best upper and lower bounds for Color Distance Oracles supporting color-reassignments.
Here N denote the heaviest edge weight in the graph. The lower bound from [12] applies to update
or query time for every ε > 0. More precisely, any algorithm with update time˜̃o(n1−ε) and ˜̃o(n2−ε)
would refute the OMv-conjecture.

Graph Family Approx-
imation Update Time Query Time Ref

Unweighted
undirected path O(polylog(n)) O(polylog(n)) Ω

(
log logσ

log(S/n)+log logn

)
New

Unweighted
tree exact O(polylog(n)) Ω

(
log(n)

log log(n)

)
[11]

Tree exact O(logn) O (logn) [11]
exact O(log1+ε n) O

(
log(n)

log log(n)

)
[11]

Planar
graphs 1 + ε

O(ε−1 log(n)
log log(n))

O(ε−1 log(n) log(nN)
log log(n)) [14]

1 + ε O
(
ε−1 log2(ε−1n)

log log(n)

)
O(ε−1 log1.51(ε−1n)) [14]

Planar
digraphs 1 + ε

O(ε−1 log(n)
log log(nN)) O(ε−1 log3(n) log(nN)) [14]

General
graphs < 3 Ω(n1−ε) Ω(n2−ε) [12]

4k − 5 O(kn1/k log1−1/k n O(k) [6]
log logn)

8(1 + ε)k O
(
ε−1kn1/k log logn

)
O (log logn) New

8(1 + ε)k O (log logn) O
(
ε−1kn1/k log logn

)
New

Color Distance Oracles. Our new lower bound rules out such an improvement and shows
that our Color Distance Oracle has essentially tight query time when σ = Θ(nε) for constant
0 < ε < 1, as the lower bound then simplifies to Ω(log(εk)) for S = n1+1/k for all values
of k = O(polylog(n)). Our result extends to prove asymptotic optimality in query time in
regard to n for the best known Color Distance Oracles for trees [11][23] and planar graphs
[16] even for data structures with higher stretch k = O(polylog(n)). This lower bound, that
is our main contribution, is thus a significant step in understanding Color Distance Oracles
and their limitations. An overview over the best upper bounds for different graph families
and our lower bound is given in table 1.

We also present a new Color Distance Oracle for the setting where the data structure
needs to handle color-reassignments, i.e. updates in which a vertex v ∈ V is assigned a new
color c ∈ C such that afterwards c(v) = c. Our Color Distance Oracle is conceptually simple,
building on some recent results in Ramsey theory[2] and can be constructed deterministically.
It strictly improves on query and update time for any approximation factor k = Ω(logn

log logn)
and dominates existing data structures in query time for k = Ω(log logn). We are also able
to show an elegant trade-off between query and update time that was unknown before. For
k = Ω(logn

log logn) our data structure requires Õ(n) space and updates only take polylogarithmic
time. Therefore our static lower bound extends to this setting as we can start with an
uncolored graph and color vertices in n updates. This implies that our query time is tight
with regard to n. Achieving query time O(log logn) is rather surprising given that queries
for exact distances take Ω(logn

log logn) time even on unweighted balanced trees and that for the
static setting approximation doesn’t admit any query time improvements. An overview over
upper bounds and lower bounds for the color-reassignment setting is given in table 2.

ESA 2018

68:4 On the Complexity of the (Approximate) Nearest Colored Node Problem

Finally, we prove that the dynamic version of the problem, allowing edge insertions
and deletions, cannot process updates in time ˜̃o(σ)1 and queries in time ˜̃o(n/σ) even on
unweighted path graphs for queries that ask to report given a fixed source s ∈ V whether
there is a vertex of color c in the same component, unless Online Matrix Multiplication(OMv)
has a truly subcubic time algorithm. We then show that even update time ˜̃o(σ) and query
time ˜̃o(n) is not possible if we have directed general graph or ask for distance queries of
approximation factor < 5/3. Combined they strictly improve in generality and query time
over a recent lower bound by Gawrychowski et al. [11] showing that for weighted trees, query
and update time ˜̃o(

√
n) where σ = Θ(

√
n) would imply a truly subcubic solution to tripartite

APSP. Our reduction implies an interesting connection to Pagh’s problem and the lower
bound is in fact obtained by adapting the reduction from Pagh’s problem in [12].

2 Preliminaries

We denote by dist(u, v) for u, v ∈ V the shortest-path distance from u to v and by dist(u, c)
with u ∈ V, c ∈ C the shortest-path distance between u and the nearest vertex of color c. When
the context is clear, we often only refer to the nearest colored vertex instead of the nearest
vertex of color c and let c denote the color under consideration. We let v = Nearest(u, c)
denote the nearest vertex of color c to u, i.e. dist(u, c) = dist(u,Nearest(u, c)). We also
make use of the following data structures.

Predecessor Search Problem. In the predecessor search problem, we are given a universe
U = {0, ..,m− 1} = [m] and a subset S ⊆ U of size n = |S|. Given an element x ∈ U , we
ask for the largest element in S that is smaller than x or more formally, we ask for the
predecessor of x, Pred(x) = max{y ∈ S|y < x}. We let the successor of x be Succ(x) =
min{y ∈ S|y > x}. Pǎtraşcu and Thorup present in [18] a predecessor search data structures
that solves queries and updates (insertions and deletions into/from S) in O(log logn) time
and linear space and give a lower bound of Ω(log logn/ log log logn) if m ≤ poly(n) and only
almost linear-space is given.

Range Minimum Query (RMQ). A RMQ is a structure augmenting an array A[1..n]
answering queries of the form Rmq(i, j) = mink∈[i,j] A[k] by returning the index of field with
the minimal value, for any 1 ≤ i ≤ j ≤ n. RMQ can be solved with O(n) preprocessing time,
taking O(n) space and O(1) query time [5][10].

Least Common Ancestor (LCA). The LCA problem is the problem of finding the least
common ancestor in T , which we denote Lca(x, y) T , of any two nodes x, y ∈ V(T). The
LCA problem can be reduced to RMQ and can therefore be implemented within the same
bounds.

Hash table. Given a universe U = [m] and a (dynamic) subset S ∈ U , with n = |S|, we
can query for any x ∈ U whether x is in S. In [9], a data structure is presented that can run
deterministic queries in constant time and updates of the set S, i.e. insertions and deletions,
in constant amortized time.

1 We use the ˜̃o(f(n))-notation as introduced by Henzinger et al. [12] to denote that the running
time is in O(f(n)1−ε) for some ε > 0. For multiple parameters we let ˜̃o(n1n2n3) be equivalent to
O(n1−ε

1 n2n3 + n1n
1−ε
2 n3 + n1n2n

1−ε
3) for some ε > 0.

M. Probst 68:5

3 Static Color Distance Oracle

We construct our Color Distance Oracle as in [6] with the classic techniques by Thorup and
Zwick [22]: For a given positive integer k, we construct the vertex sets V = A0 ⊇ A1 ⊇
A2 ⊇ · · · ⊇ Ak−1, where Ai is obtained by sampling each vertex in Ai−1 with probability
σ−1/k, for 1 ≤ i ≤ k − 1, and define the set Ak = ∅. For each vertex v in V , we store for
each set Ai with 0 ≤ i ≤ k − 1 the closest neighbour in Ai denoted by pi(v), where we
break ties arbitrarily. For every v ∈ V , we define ∆i(v) = dist(v, pi+1(v))− dist(v, pi), for
0 ≤ i < k − 1. We then store all such distances in a consecutive array Pv[0..k − 2] with
Pv[i] = ∆i(v) for all i and augment Pv by a RMQ-structure that returns the maximum value
in a subarray. We denote a query on the RMQ structure over Pv in the range a to b by
Rmqv(a, b) for any 0 ≤ a ≤ b < k − 1. We define a bunch B(v) for every vertex v in V as
follows

B(v) =
k−1⋃
i=0
{u ∈ Ai \Ai+1|dist(v, u) < dist(v, pi+1(v))}

and construct for every color c ∈ C a bunch B(c) =
⋃
v∈Vc

B(v). With each B(c), we store
in a hash table the vertices v ∈ B(c) and associate with their key the distance dist(v, c).
This completes our construction. The following lemma bounds space and construction time,
but we defer the proof to the full version since it only differs by bounding the space of the
RMQ data structures from the proof in [6].

I Lemma 1. We use at most space O(knσ1/k) to represent the Color Distance Oracle and
construction time O(mσ).

Note that the construction cost can be slightly improved for σ > nk/(2k−1) using the
construction of Hermelin et al. [13] but our query time improvement doesn’t carry over to
their construction. We give the following query algorithm for color c ∈ C and vertex v ∈ V :

Listing 1 Query(v,c)
lower_bound← 0
upper_bound← k − 1
While upper_bound 6= lower_bound
Do

i← d(lower_bound+ upper_bound)/2e
// Compute index j such that ∆j(v) = maxa∈{lower_bound,..,i−1}∆a(v)
j ← Rmqv(lower_bound, i− 1)
If pj(v) 6∈ B(c)
Then

lower_bound← i

Else
upper_bound← j

End
End
Return plower_bound(v)

We claim that the query procedure returns a colored vertex wc = plower_bound(v) whose
distance to v is dist(v, c) ≤ dist(v, wc) ≤ (4k − 5)dist(v, c). For the rest of the section, we
let wbest = Nearest(v, c).

As in [25], we let I be the sequence 0, .., k − 1. We call an index j ∈ I, (v, c)-terminal if
pj(v) ∈ B(c). We say that a subsequence i1, .., i2 of I is (v, c)-feasible if (1) dist(v, pi1(v)) ≤
2i1dist(v, c), and (2) i2 is (v, c)-terminal. Using these definitions we are ready to prove our
claim in the ensuing two lemmas.

ESA 2018

68:6 On the Complexity of the (Approximate) Nearest Colored Node Problem

I Lemma 2. Let i1, .., i2 ⊆ I, with |I| > 1, be (v, c)-feasible and let i = d(i1 + i2)/2e. Let I ′
be the sequence i1, .., i− 1. Let j be the index in I ′, that maximizes ∆j(v). Then if j 6∈ B(c)
the subsequence i, .., i2 is (v, c)-feasible. Otherwise, the subsequence i1, .., j is (v, c)-feasible.
The obtained subsequence is of size at most 2

3I.

Proof. If pj(v) ∈ B(c), then j is (v, c)-terminal. Hence i1, ..j is (v, c)-feasible. As j ≤
d(i1 + i2)/2e − 1 < (i1 + i2)/2 and |I| > 1 the subsequence is of size at most 1

2I. Now,
consider the case where pj(v) 6∈ B(c). Then

dist(wbest, pj+1(wbest)) < dist(wbest, pj(v))

We can now employ the analysis from [21]:

dist(v, pj+1(v)) ≤ dist(v, pj+1(wbest)) ≤ dist(wbest, v) + dist(wbest, pj+1(wbest))
< dist(wbest, v) + dist(wbest, pj(v)) ≤ 2dist(wbest, v) + dist(v, pj(v)) (1)

Therefore ∆j(v) = dist(v, pj+1(v))− dist(v, pj(v)) ≤ 2dist(wbest, v). Since i1, .., i2 is (v, c)-
feasible, we have dist(v, pi1(v)) ≤ 2i1dist(v, c). By choice of j,

dist(v, pi(v)) = 2i1dist(v, wbest) +
∑
j′∈I′

∆j′(v)

≤ 2i1dist(v, wbest) + |I ′|max
j′∈I′

∆j′(v)

= 2i1dist(v, wbest) + (i− i1)∆j(v)
= 2idist(v, wbest) (2)

As i2 is (v, c)-terminal, we therefore get that i, .., i2 is (v, c)-feasible. It is now easy to see
that by choice of i and as |I| > 1 the derived sequence is smaller 2

3 |I|. J

I Lemma 3. The algorithm given in procedure Query(v, c) reports a distance estimate with
stretch at most (4k − 5) in time O(log k).

Proof. By lemma 2 the number of potential indices reduces by factor 2
3 by every iteration of

the loop. Therefore, we have at most log 3
2
k iterations. As querying the RMQ data structure

takes constant time the overall running time is O(log k).
To show stretch of at most 4k − 5, we observe that the final sequence has only a single

index j ≤ k − 1, and as the sequence is still (v, c)-feasible, we get by property (1) that
dist(v, pj(v)) ≤ 2jdist(v, wbest) ≤ 2(k − 1)dist(v, wbest). By property (2), we get that
pj(v) ∈ B(c) and we can bound

dist(pj(v), c) = dist(pj(v), wbest) ≤ dist(v, wbest) + dist(v, pj(v))
≤ dist(v, wbest) + 2(k − 1)dist(v, wbest) (3)

giving an overall distance of dist(v, pj(v)) + dist(pj(v), c) ≤ (4k− 3)dist(v, wbest). This can
be slightly improved to stretch 4k − 5 by using the technique from [21](Lemma A.2) even
without changing the overall approach. We only have to adapt property (1) in the definition
of (v, c)-feasible sequences i1, .., i2 to dist(v, pi1(v)) ≤ (2i1 − 1)dist(v, c), and adapt lemma
2 to directly get the improvement. J

We point out that the technique presented to query the Color Distance Oracle extends to
Compact Routing Schemes as described by Thorup and Zwick [21] such that paths can be
computed in O(log k) time. By using a recently devised succinct RMQ structure that is only

M. Probst 68:7

allowed to query intervals where both indices are multiples of log k by Tsur [23], we can
adapt our approach to reduce the intervals as described in lemma 2 down to size O(log k)
and then test each remaining index in O(log k) overall time. The data structure only requires
O
(
k log log k

log k

)
= o(k) additional bits compared to O(k logn) bits required for our preceding

structure. This is an important improvement for routing schemes as the RMQ structure
needs to be appended to each label in order to achieve the query time improvement.

4 Color Distance Oracle supporting color-reassignments

In this section, we let (V,dist) denote a n-point metric space and let the metric be denoted
by ρ. We say that ρ is an ultrametric for V if it is a metric that ensures the strong
triangle inequality ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)} for all x, y, z ∈ V . It is well-known, that a
finite ultrametric can be represented by a rooted hierarchically well-separated tree (HST)2
T = (VT , ET) with a value assigned to each vertex in VT by the function ∆ : VT → (0,∞)
whose leaf set is V and where ∆(v) < ∆(Parent(v)) for any v ∈ VT . Then given x, y ∈ V ,
ρ(x, y) = ∆(lcaT (x, y)). Thus, working with ultrametrics is very convenient as they allow
to reduce problems to problems on trees which are normally well-understood.

In 2005, Mendel and Naor [15] showed a Las Vegas algorithm that given a metric space
(V,dist) finds a ultrametric ρ such that for a subset U ⊆ V of size |U | ≥ |V |1−1/k the
distortion of the ultrametric would be low, i.e. that for each u ∈ U, v ∈ V,dist(u, v) ≤
ρ(u, v) ≤ 128kdist(u, v). They then showed that given this algorithm, a collection of
ultrametrics R = {φ1, φ2, .., φs} with E[s] = O(kn1/k) can be found together with a function
home : V → [1, s] such that for each u, v ∈ V with i = home(v)

dist(u, v) ≤ ρi(u, v) ≤ 128kdist(u, v)

Recently, Abraham et al. [2] gave a deterministic algorithm that improves this result to
stretch 8(1 + ε)k by increasing the size of the collection R by factor O(ε−1). Thus, for fixed
ε the space only differs by a constant factor.

For our Color Distance Oracle, we find a collection of ultrametrics R and build for each
ultrametric ρi ∈ R an HST Ti. Additionally, we store with each v ∈ V a pointer to Thome(v).
We observe that taking

minu∈Vc∆(LcaThome(v)(u, v))

always gives a 8(1 + ε)k approximation on dist(v, c) as we take the smallest distance estimate
among all estimates to colored vertices and each of them is at least 8(1 + ε)k approximate in
the represented metric ρhome(v). Let a be the least common ancestor of v and the nearest
colored node in Thome(v), i.e. a = LcaThome(v)(v,Nearest(v, c)). Then, there cannot be any
vertex a′ on the path from v to a in Thome(v) with a colored vertex in its subtree as otherwise
a′ would be the least common ancestor of v and the colored node and by the property of
HSTs that ∆(x) < ∆(Parent(x)) for all x ∈ V , we would thus derive a contradiction on the
minimality of ∆(a). We conclude that to derive a distance estimate on dist(v, c), we only
need to find the nearest ancestor of v that has a colored node in its subtree. We therefore
construct the data structure described in the following lemma 4 over each HST, whose proof
is deferred to the full version.

2 A good introduction to HSTs and metric representations can be found in [3].

ESA 2018

68:8 On the Complexity of the (Approximate) Nearest Colored Node Problem

I Lemma 4. We can maintain a data structure over a tree T = (V,E) with function
c : V → C as defined before, that given v ∈ V, c ∈ C finds the nearest ancestor of v in T that
has a c-colored vertex in its subtree and that is able to process color-reassignments. Both
operations take O(log logn) worst-case time and the data structure requires O(n) space.

As every HST requires at most O(n) space and s = O(ε−1kn1/k), our data structure
requires space O(ε−1kn1+1/k). To achieve the data structure with fast query time, we answer
a query for d̂ist(v, c) by querying the data structure described in lemma 4 on tree Thome(v)
returning the nearest colored ancestor a and we return ∆(a). Thus only a single invocation
of the tree structure is required which can be implemented in time O(log logn). For updates,
we iterate over all s tree data structures and invoke the color-reassignment on the same
parameters. This takes O(log logn) time per tree and as we have s trees, the running time is
bound by O(ε−1 log lognkn1/k).

For fast update times, we can process a color-reassignment v ∈ V, c ∈ C by changing
the color in Thome(v) only leaving v without a color in all other trees. If we run our query
for v ∈ V, c ∈ C on every of the s HSTs, we also know that our distance estimate is a
8(1 + ε)k approximation as we check every ultrametric and we are sure that for each vertex
u ∈ V, c(u) = c we once queried the HST Thome(u) where u is colored and ∆(Lca(v, u))
is a 8(1 + ε)k approximation. By standard techniques [15], we can also reduce the space
consumption to O(ε−1n1+1/k) for the data structure with fast updates. The data structure
from lemma 4 can easily be adapted to give a c-colored witness û such that dist(v, û) ≤
8(1 + ε)kdist(v, c). Finally, if we are only interested in queries, we can for each vertex v of
color c in a tree color all its ancestors with c where we allow multiple colors. As HSTs can
be balanced, we get an additional factor of O(logn) in our data structures. We can then for
each color use a succinct nearest marked ancestor structure as presented by Tsur [23] with
O(log logσ

logw) query time.

5 Lower bound for static Color Distance Oracles

In this section we prove the following lower bound.

I Theorem 5. Consider an unweighted path G = (V,E) with coloring c : V → C and
σ ≤ O(n1−ε) for any ε > 0. Then, any data structure, using space S on a machine with
word size w = Θ(lgn), reporting nearest colored node distance estimates of approximation
k = O(polylog(n)) has query time

Ω
(

log log σ
log S

n + log logn

)

The theorem applies to deterministic and randomized queries, admitting a constant error
probability.

Our proof extends recent results by Gawrychowski et al. [11] who proved a similar
statement for the exact version of the problem. Before we prove our result, we review their
lower bound and then show how to extend it.

The lower bound for the exact version of the problem is based on a reduction from
the colored predecessor problem which was used to establish hardness of the predecessor
problem [18, 19] in the cell-probe model. Belazzougui and Navarro showed in [4] that colored
predecessor search can be reduced to the rank query problem using partial sum data structures
and clever mapping. In the rank query problem, a sequence S[1, n] and an alphabet [1, σ]

M. Probst 68:9

v15v16v17v18v19v20v21v22v23v24v25v26v27v28v29v30v31v32v33v34

Figure 1 The weight of the edges on our constructed path P where we chose k = 4. We illustrate
heavy edge weight by increased boldness of the edge. For example the edge between vertices v16 and
v17 has weight k2 because 16 | k2 but 16 - k3.

is given with each S[i] ∈ [1, σ] and after the preprocessing, given an index i ∈ [1, n] and
a symbol c ∈ [1, σ] the data structure has to report the number of occurrences of c in the
subsequence S[1, i). Finally, Gawrychowski et al. [11] observed that the rank query problem
can be reduced to the nearest colored node problem as follows: Given the sequence S, we
build a path P = (v1, .., vn) where c(vi) = S[i] for every i ∈ [1, n]. With each vertex v ∈ P ,
we store its rank. Consider a rank query of form i ∈ [1, n], c ∈ [1, σ]. Using a Color Distance
Oracle, we query for the nearest colored vertex vj and if j < i, we return the rank stored at
vj . Otherwise, j ≥ i and we can return the rank stored with vj decreased by 1. Let us now
take the proof for theorem 5.

Proof. We first consider the (approximate) nearest colored node problem on a weighted
path and extend our proof later to the unweighted setting. We assume w.l.o.g. that the
approximation factor is k ≥ logn and that n is an exact power of k. We use the simple
construction of the path P = (v1, .., vn) from the sequence S as before. We assume that
the nearest colored vertex vj = Nearest(vi, c) to vi has j ≥ i. This is sufficient as we can
reverse the path and run a second query giving the nearest colored vertex vj′ with j′ ≤ i

and then take the closer one (in fact one procedure might not find a colored node but we
always ensure that the nearest colored node is found in one of those two queries). We let
P [vi, vj] denote the subpath of P between the vertices vi and vj and sometimes refer to it as
interval [i, j] of the path.

The intuition behind our proof is that we can choose the edge weights so that we can
find the nearest colored node vj = Nearest(vi, c) to vi even if we are only given a distance
estimate d̂ist(vi, c) of approximation factor k. Therefore, we partition the path into intervals
of size kl for every 0 ≤ l ≤ logk n and refer to them as level-l intervals. We assign edge
weights to delimit intervals. By construction, if an edge delimits two level-l intervals then it
also delimits two level-l′ intervals for all l′ ≤ l. Let an edge (vx, vx+1) be assigned weight kl if
it delimits two level-l intervals but doesn’t delimit two level-l+ 1 intervals. More formally, an
edge (vx, vx+1) is assigned the weight kl for the largest kl such that kl | x. This is depicted in
figure 1. Let us now observe that the heavy edges on the path dominate the path weight. A
level-l interval contains kl−l′ level-l′ intervals for l′ < l and therefore there are kl−l′ − kl−l′−1

edges of weight kl′ . Thus the path from the first node to the last node in the level-l interval
has weight

l−1∑
l′=0

(kl−l
′
− kl−l

′−1)kl
′
<

l−1∑
l′=0

kl−l
′
k
′

=
l−1∑
l′=0

kl = lkl ≤ logk nkl ≤ kl+1.

It follows that if we have l = blogk(dist(vi, vj))c for i 6= j, then the path P [vi, vj] contains
an edge delimiting two level-(l − 1), i.e. of weight at least kl−1, as otherwise the path costs
would be strictly less than kl ≤ dist(vi, vj).

Our second idea is that given two vertices vi, vj with i < j and path interval [i, j]
containing no node of color c, then the nearest colored vertex to vj is also the nearest colored
vertex to vi, i.e. Nearest(vi, c) = Nearest(vj , c). We want to provide some special vertices

ESA 2018

68:10 On the Complexity of the (Approximate) Nearest Colored Node Problem

(k − 4)kl (k − 3)kl (k − 2)kl (k − 1)kl kl+1

((k − 4)kl, ι((k − 4)kl, l + 1)]

((k − 3)kl, ι((k − 4)kl, l + 1)]

((k − 2)kl, ι((k − 4)kl, l + 1)]

((k − 1)kl, ι((k − 4)kl, l + 1)]

Figure 2 The drawing shows a subinterval of [1, n]. We see that for every number x that is
divisible by kl, we take the interval from x to the closest number that is divisible by kl+1 which is
illustrated by the red interval.

that can return the nearest colored vertex but we need to do so carefully in order to retain
near-linear space as our lower bound otherwise becomes meaningless. We therefore only
cover intervals starting at special points. To simplify the presentation, we let ι(x, l) be the
function that for any integer x gives the next larger integer divisible by kl. We store with
each vertex vj where j|kl a data structure that can return Nearest(vj , c) for all colors c
that are on the path interval [j, ι(j, l + 1)]. We then say that vj covers [j, ι(j, l + 1)] and
observe that if j is divisible by kl, we cover all level-l intervals starting at vj up to the end
of the current level-(l + 1) interval. This is also depicted in figure 2. In order to have fast
look-ups, we store with each such vertex vj a hash map with an entry for each color c ∈ C
that occurs on the path and the corresponding vertex that is closest to vj .

It is straight-forward to see that given a vertex vj , we can use the function ι to find
logk n special vertices vι(j,l) for 0 ≤ l ≤ logk n such that the union of all covered intervals by
those special vertices is

⋃
0≤l≤logk n

[ι(j, l), ι(j, l + 1)] = [j, n] because ι(j, l) is divisible by kl
by definition hence the hash map at vertex vι(j,l) covers the interval [ι(j, l), ι(j, l + 1)]. Thus,
we could already query the hash maps at these special vertices to extract the nearest colored
node even without any distance estimate but it would incur logk n look-ups.

Let us now combine both ideas to achieve that only a constant number of the associated
hash maps at those special vertices need to be queried. Given a distance estimate d̂ist(vi, c)
with l = blogk d̂ist(vi, c)c, vj = Nearest(vi, c). By our approximation guarantee

dist(vi, vj) ≤ d̂ist(vi, c) ≤ kdist(vi, vj)

we get that kl−1 ≤ dist(vi, vj) ≤ kl+1. We conclude that it suffices to check the hash maps at
the special vertices vι(i,l′) from l′ ∈ {l− 1, l, l+ 1} because j ∈ [ι(i, l− 1), ι(i, l+ 2)]. Consider
that this would not be the case, we know that the path from the interval [i, ι(i, l − 1)] has
path weight strictly less than kl−1. If j would be in interval (ι(i, l + 2), n] then as the edge
(vι(i,l+2), vι(i,l+2)+1) has weight kl+2 and every path to from vi to a vertex with index in that
interval has to include this edge. In both cases, we derive a contradiction.

It remains to prove that the space taken by the hash maps is near-linear. We therefore
observe that the number of entries in each hash map is bounded by the size of the interval is
has to cover as every node in the path interval has only one color. It is easy to see that we
have klogk n−j vertices with indices divisible by kj and each covers an interval of size kj+1.

Thus the number of total entries in all hash maps can be bounded by

logk n∑
l=0

klogk n−jkj+1 =
logk n∑
l=0

klogk n+1 = kn logk n

M. Probst 68:11

As hash maps take space linear in the number of entries and k = O(polylog(n)), we can
bound the space by Õ(n) incurring only a log logn term in the lower bound as required.
Thus, if the space is not dominated by the data structure for distance estimates, we still
ensure the stated bounds.

Finally, we observe that the path P [v1, vn] has total weight at most logk nklogk n = n logk n
as it is a level-logk n interval. We can thus replace edges of weight x with a path of x− 1
dummy vertices and unit weight edges. J

6 Lower bounds for the dynamic setting

During the last years, several techniques were presented to prove conditional lower bounds
for dynamic problems by reducing to problems that are conjectured to be hard [17, 24, 1, 12].
We use the framework given by Henzinger et al. [12] who reduce their problems from a
contrived version of Online-Vector-Multiplication defined as follows.

I Definition 6 (γ-OuMv problem (c.f. Definition 2.6 [12])). Let γ > 0 be a fixed constant. An
algorithm for the γ-OuMv problem is given parameters n1, n2, n3 as its input with the promise
that n1 = bnγ2c. Next, it is given a matrix M of size n1 × n2 that can be preprocessed. Let
p(n1, n2) denote the preprocessing time. After the preprocessing, a sequence of vector pairs
(u1, v1), .., (un3 , vn3) is presented one vector pair after another and the task is to compute
(ut)ᵀMvt, before the pair (ut+1, vt+1) arrives. Let c(n1, n2, n3) denote the computation time
over the whole sequence. The special case where n3 = 1 is called the γ-uMv problem.

They then show that any algorithm solving the γ-OuMv problem in ˜̃o(n1n2n3) time would
give a truly subcubic algorithm to solve Online Vector Multiplication(c.f. Theorem 2.2 [12]).

As stated in the introduction, we consider in this section the existential version of nearest
colored node that is we only ask whether there exists a colored vertex in the same component
as a vertex v. As shown by Abboud and Williams [1] it suffices to prove lower bounds on the
worst-case update and query time for a partially-dynamic version of a problem to establish
amortized lower bounds for the fully-dynamic version. We thus only prove hardness of the
partially-dynamic settings where we reduce from the γ-uMv problem where we are given a
n1 × n2 matrix M to preprocess and only a single pair of vectors (u,v) arrives.

I Lemma 7. Given any algorithm A that is able to process updates in u(n, σ) = ˜̃o(σ) and
queries in q(n, σ) = ˜̃o(n/σ) amortized time, we can solve γ-OuMv in time ˜̃o(n1, n2, n3). The
same lower bounds extend to the worst-case update and query times of the partially-dynamic
version of the problem.

Proof. We first focus on the decremental setting and extend the proof for the fully-dynamic
and incremental version. Recall that we are given a n1 × n2 matrix M. We treat the ith row
of M as a subset of [1, n2], i.e. M[i, j] = 1 iff j ∈M[i]. We create a graph G with a coloring
function c : V → C, with color set C = {c1, .., cn2}, as follows: We first create a special
vertex s. For every row i, we create for each j ∈M[i] a vertex with c cj ∈ C and connect
the vertices by linking every two consecutive vertices created. The created component for
the ith row forms a simple path and is denoted from hereon by Pi. We also include an edge
from s to the first vertex on the path Pi for every i. This completes the preprocessing phase.
Clearly, the graph G has at most O(n1n2) vertices and as the construction forms a tree, we
also have at most O(n1n2) edges. The complete set-up is depicted in figure 3.

Consider that a vector pair (u,v) arrives. For each i where u[i] = 0, we remove the edge
from the first vertex in Ri to vertex s. This incurs at most n1 updates. We have uᵀMv = 1
if and only if there exists a j with v[j] = 1 where s is still connected to the color cj . To
check these connections, we need at most n2 queries.

ESA 2018

68:12 On the Complexity of the (Approximate) Nearest Colored Node Problem

c1 c2 c4 c6

c1 c3 c4 c5

c3 c5

c1

c2 c3 c4 c5 c6

s

Figure 3 Depiction of the set-up of a graph from a 5× 6 matrix. The point s is used as query
point and in the decremental case all dashed red edges are initially in the graph and can be deleted
depending on u.

As shown by Abboud and Williams [1], we can run our algorithm on a machine that
records all changes and reverts them after a single pair (u,v) is processed to the original
state in time proportional to the running time since the original state was left. Our graph
has at most σ = n2 different colors. It is now straight-forward to see that we can solve
γ-OuMv in time O(n3(n1u(n1σ, σ) + σq(n1σ, σ)) thus the stated bound follows.

In the incremental setting, we omit the edges adjacent to s initially. Then, when (u,v)
arrives, let u have the indices u1, u2, .. set to 1. Then, we join the first vertices in Ri and
Ri+1 for even i and the last vertices of Ri and Ri+1 for odd i. Thus, we only construct a
path. Connecting s to the end of the path, allows us to run queries as in the decremental
setting. For the fully-dynamic setting, we can use the same set-up as in the incremental
setting but instead of rolling the edge insertions back in each phase, we can simply run edge
deletions to recover the original state implying that we get an amortized bound. J

We underline the generality of our lower bound which establishes that even on path graphs
the amortized fully-dynamic problem remains hard. To strengthen our lower bound, we
observe that we can decrease the graph size to O(n1) for directed graphs or if we are given
distance estimates of approximation < 5/3 implying that the query bound in the theorem
can be replaced by ˜̃o(n). We therefore create σ = n2 vertices Vc, one of each color. Instead
of constructing an entire row Ri for the i’th set, we construct a single vertex vi and connect
it with edges to vertices in Vc that match elements in vi. We can then run the algorithm
as before. If we direct the edge from s to each vi and from each vi towards the vertices in
Vc our algorithm works as before. For undirected graphs, we have that dist(vi, cj) = 3 iff
uᵀMv = 1 and otherwise dist(vi, cj) ≥ 5. Thus any approximation of factor smaller 5/3
is still sufficient to distinguish the two cases. Clearly the graph has O(n1 + n2) = O(n1)
vertices as σ ≤ n.

We point out that the underlying OMv-conjecture even applies in case of error probability
1/3 thus our lower bound applies even to Monte-Carlo algorithms. Interestingly, the directed
incremental version of our problem can be seen as a graph version of Pagh’s problem (we
follow the definition from [17]). In Pagh’s problem, we are given a collection C of k sets
C1, C2, .., Ck ⊆ [n]. We are then allowed to update by providing two indices i, j ∈ {1, .., k}
adding the set Ci ∩ Cj to C. We then want to be able to query given x ∈ [n], i ∈ {1, .., k}
if x ∈ Ci. Similarly to the proof let us assume that each set Ci is represented by a path

M. Probst 68:13

Pi containing a vertex of color c for each c ∈ Ci. Then updates for i, j ∈ {1, .., k} can be
implemented by adding a new vertex and an edge from it to the beginning of Pi and one to
the first vertex in Pj . Queries can be implemented by asking whether a node of color x ∈ [n]
can be reached from the first node of Pi and by returning the negated answer.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Foundations of Computer Science (FOCS), 2014 IEEE
55th Annual Symposium on, pages 434–443. IEEE, 2014.

2 Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman. Ramsey
spanning trees and their applications. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1650–1664. SIAM, 2018.

3 Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phe-
nomena. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Comput-
ing, STOC ’03, pages 463–472, New York, NY, USA, 2003. ACM. doi:10.1145/780542.
780610.

4 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for represent-
ing sequences. ACM Trans. Algorithms, 11(4):31:1–31:21, 2015. doi:10.1145/2629339.

5 Michael A. Bender and Martin Farach-Colton. The lca problem revisited. In Proceedings
of the 4th Latin American Symposium on Theoretical Informatics, LATIN ’00, pages 88–94,
London, UK, UK, 2000. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
646388.690192.

6 Shiri Chechik. Improved distance oracles and spanners for vertex-labeled graphs. In Pro-
ceedings of the 20th Annual European Conference on Algorithms, ESA’12, pages 325–336,
Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-33090-2_29.

7 Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing, pages 654–663. ACM,
2014.

8 Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 1–10. ACM,
2015.

9 Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auF der Heide, Hans
Rohnert, and Robert E Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738–761, 1994.

10 Johannes Fischer and Volker Heun. Theoretical and Practical Improvements on the RMQ-
Problem, with Applications to LCA and LCE, pages 36–48. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006. doi:10.1007/11780441_5.

11 Pawel Gawrychowski, Gad M Landau, Shay Mozes, and Oren Weimann. The nearest
colored node in a tree. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 54. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

12 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the forty-seventh annual ACM sym-
posium on Theory of computing, pages 21–30. ACM, 2015.

13 Danny Hermelin, Avivit Levy, Oren Weimann, and Raphael Yuster. Distance Oracles for
Vertex-Labeled Graphs, pages 490–501. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
doi:10.1007/978-3-642-22012-8_39.

14 Itay Laish and Shay Mozes. Efficient approximate distance oracles for vertex-labeled planar
graphs. arXiv preprint arXiv:1707.02414, 2017.

ESA 2018

http://dx.doi.org/10.1145/780542.780610
http://dx.doi.org/10.1145/780542.780610
http://dx.doi.org/10.1145/2629339
http://dl.acm.org/citation.cfm?id=646388.690192
http://dl.acm.org/citation.cfm?id=646388.690192
http://dx.doi.org/10.1007/978-3-642-33090-2_29
http://dx.doi.org/10.1007/11780441_5
http://dx.doi.org/10.1007/978-3-642-22012-8_39

68:14 On the Complexity of the (Approximate) Nearest Colored Node Problem

15 Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. In Found-
ations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages
109–118. IEEE, 2006.

16 Shay Mozes and Eyal E Skop. Efficient vertex-label distance oracles for planar graphs.
Theory of Computing Systems, 62(2):419–440, 2018.

17 Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd
ACM Symposium on Theory of Computing (STOC), pages 603–610, 2010.

18 Mihai Pătraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
232–240. ACM, 2006.

19 Mihai Pǎtraşcu and Mikkel Thorup. Randomization does not help searching predecessors.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 555–564. Society for Industrial and Applied Mathematics, 2007.

20 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate
distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming, pages 261–272. Springer, 2005.

21 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the Thirteenth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’01, pages 1–10,
New York, NY, USA, 2001. ACM. doi:10.1145/378580.378581.

22 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
doi:10.1145/1044731.1044732.

23 Dekel Tsur. Succinct data structures for nearest colored node in a tree. Information
Processing Letters, 132:6–10, 2018.

24 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 645–654. IEEE, 2010.

25 Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Pro-
ceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages
539–549. SIAM, 2013.

http://dx.doi.org/10.1145/378580.378581
http://dx.doi.org/10.1145/1044731.1044732

Planar Support for Non-piercing Regions and
Applications
Rajiv Raman
IIIT-Delhi, Delhi, India
rajiv@iiitd.ac.in

Saurabh Ray
Department of Computer Science, NYU Abu Dhabi, United Arab Emirates
saurabh.ray@nyu.edu

Abstract
Given a hypergraph H = (X,S), a planar support for H is a planar graph G with vertex set X,
such that for each hyperedge S ∈ S, the sub-graph of G induced by the vertices in S is connected.
Planar supports for hypergraphs have found several algorithmic applications, including several
packing and covering problems, hypergraph coloring, and in hypergraph visualization.

The main result proved in this paper is the following: given two families of regions R and B in
the plane, each of which consists of connected, non-piercing regions, the intersection hypergraph
HR(B) = (B, {Br}r∈R), where Br = {b ∈ B : b ∩ r 6= ∅} has a planar support. Further, such
a planar support can be computed in time polynomial in |R|, |B|, and the number of vertices in
the arrangement of the regions in R ∪ B. Special cases of this result include the setting where
either the family R, or the family B is a set of points.

Our result unifies and generalizes several previous results on planar supports, PTASs for
packing and covering problems on non-piercing regions in the plane and coloring of intersection
hypergraph of non-piercing regions.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms

Keywords and phrases Geometric optimization, packing and covering, non-piercing regions

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.69

Acknowledgements Part of the work was done when the first author was visiting NYU Abu
Dhabi, and the author thanks the institution for its hospitality.

1 Introduction

Hypergraphs arise naturally in several applications and it is often helpful to capture the
structure of the hypergraph using a sparse graph. One popular way to capture the structure
of a hypergraph is to construct a planar support, which is a planar graph G with the same
vertex set as the hypergraph such that every hyperedge induces a connected subgraph of G.

In this paper, we study hypergraphs that arise in several, primarily geometric settings. For
example, a set of points P , and family of disks D in the plane define a hypergraph, H(P,D),
where each disk d ∈ D defines a hyperedge P ∩d. This is a widely studied hypergraph, and it
is well known that the Delaunay graph of the points is a planar support for this hypergraph.
Another hypergraph on the same objects is H(D,P), where the vertices are the disks, and
each point p ∈ P defines a hyperdge {d ∈ D : d 3 p}. We refer to H(P,D) as the primal
hypergraph, and H(D,P), as the dual hypergraph. A hypergraph that generalizes both these
hypergraphs is the following: Given a family R of red disks, and a family B of blue disks,
we define the intersection hypergraph H(B,R) as follows: the disks B are the vertices, and

© Rajiv Raman and Saurabh Ray;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 69; pp. 69:1–69:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rajiv@iiitd.ac.in
mailto:saurabh.ray@nyu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.69
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2 Planar Support for Non-piercing Regions and Applications

each disk r ∈ R defines a hyperedge Br = {b ∈ B : r ∩ b 6= ∅}. Both the primal and dual
hypergraphs can be seen as special cases of this intersection hypergraph, by viewing the
points in the arrangement as either blue disks, or red disks of radius zero. Our result implies
that this intersection hypergraph has a planar support.

If instead of disks, we use topological generalizations like pseudodisks or k-admissible
regions, the primal hypergraph defined above still admits a planar support [13]. However,
it was not known if the same is true for the dual hypergraph. Our result implies that the
intersection hypergraphs of k-admissible regions (which includes pseudodisks) admits a planar
support which in particular means that the dual hypergraph has a planar support.

We go beyond k-admissible regions, and show that these results are true even if the regions
have holes (i.e., they need not be simply connected1). Previous proofs relied heavily on the
assumption that the regions are simply connected. In addition, our results are constructive
and give polynomial time algorithms. Thus, even for the primal hypergraph of k-admissible
regions, where a planar support was known to exist, we make progress by giving a polynomial
time construction.

The existence of a planar support for the primal hypergraph for k-admissible regions
has a surprising algorithmic consequence: it implies that local search yields a PTAS for the
hitting set problem (the set cover problem for the dual hypergraph) [12] for k-admissible
regions. Since a planar support for the dual hypergraph for k-admissible regions was not
known, the authors in [1] had to construct another suitable graph in order to prove that
local search yields a PTAS for the set cover problem for the primal hypergraph. Similarly,
for the Dominating Set problem for k-admissible regions, an alternate graph construction
was required in [1], which was a generalization of a previous construction of [7] for disks.
We unify these results by considering a problem that generalizes all three problems: hitting
set, set cover, and dominating set for which our result implies a PTAS. Our result is in fact
stronger and is not implied by the previous results.

Prior to our result, Chan and Har-Peled [4] proved that an arrangement of k-admissible
regions of depth two 2 admits a planar support. In fact, in this case, the intersection graph3
of the regions is itself the planar support. They used this result to obtain a PTAS for the
independent set problem for k-admissible regions [4]. Our result also implies PTASs for
generalized versions of packing problems considered in [1] and [6]. For some of the problems,
we obtain a PTAS where only a constant factor approximation was known.

In a different line of work, Keszegh [10], recently proved the following interesting result:
the intersection hypergraph of two families of pseudodisks is four colorable. This result
follows immediately from our result since planar graphs are four colorable. Keszegh’s paper
has several other results but the above result is the central tool to which most of the paper
is devoted and from which the other results follow.

The result of Keszegh extends the result of Keller and Smorodinsky [9] where the
hypergraph is defined by a single family of pseudodisks, the vertex set is the set of pseudodisks
and the hyperedges consists of open or closed neighborhood of each pseudodisk in the
intersection graph.

Before describing our results and other related results in more detail, we introduce the
necessary definitions and notation.

1 A region is simply connected if any loop can be continuously shrunk to a point while staying within the
region, which is true for a disk, but not for an annulus.

2 i.e., no more than two intersect at any point in the plane
3 An intersection graph on a set of regions is a graph whose vertices are the regions, and two vertices are

adjacent if their corresponding regions intersect.

R. Raman and S. Ray 69:3

Definitions and Notation

We will use the term region to refer to a set γ in the plane that can be described as
γ = γ̄ \ int(H1∪ · · ·∪Hk), where H1, · · · , Hk are disjoint, compact, simply connected regions
contained in the compact, simply connected region γ̄. Essentially, γ is a compact connected
region with holes. We will refer to the region γ̄ as the filled region corresponding to γ, and
the regions H1, · · · , Hk as the holes in γ. We will refer to the boundary of γ̄ as the outer
boundary of γ.

We say that a set of regions are in general position if a) the boundaries of any two of the
regions intersect a finite number of times, and cross at these points, b) the boundaries of
three (or more) of the regions do not intersect at a common point, and c) any region can
be expanded by a small non-zero amount without changing the arrangement of the regions
combinatorially (see Definition 8 in Section 2 for a formal definition of expansion of a region).
Furthermore, we say that a set of points and a set of regions are together in general position
if none of the points lie on the boundary of any of the regions. In the rest of the paper,
we will always assume general position. Two regions γ1 and γ2 in the plane are said to be
non-piercing if the sets γ1 \ γ2, and γ2 \ γ1 are both connected. A family Γ of regions is said
to be non-piercing if the regions in Γ are pairwise non-piercing.
I Remark. The term non-piercing has been used previously to refer to a family of regions
defined exactly as we have except that the regions are required to be simply connected (i.e.,
not containing holes). The term k-admissible refers to such non-piercing families where
in addition the boundaries of each pair of regions intersect at most k times. The term
pseudodisks is used to refer to a 2-admissible family of regions. To be more consistent with
the literature, we should be using a term like “non-piercing regions with holes”. However, for
better readability we stick to using a shorter term.

Given a set Γ of non-piercing regions, and a set P of points in the plane, we define the
primal hypergraph H(P,Γ) as the hypergraph in which the vertex set is P , and there is a
hyperedge γ ∩ P corresponding to each γ ∈ Γ. We define the dual hypergraph H(Γ, P) as
the hypergraph in which the vertex set is Γ, and corresponding to each p ∈ P , there is a
hyperedge {γ ∈ Γ : γ 3 p}. Finally, given two families of non-piercing regions R and B, we
define their intersection hypergraph H(B,R) as the hypergraph in which the vertex set is B,
and corresponding to each region r ∈ R there is a hyperedge Br = {b ∈ B : r ∩ b 6= ∅}.

1.1 Our Results and Implications
The main result we prove in this paper is the following:

I Theorem 1. Given two families R and B of non-piercing regions, the intersection hyper-
graph H(B,R) admits a planar support.

We now describe the implications of Theorem 1. Due to shortage of space in this extended
abstract, we do not prove the claimed consequences of Theorem 1, as they follow in a
straightforward manner from standard arguments.

Generalized Set Cover Problem for non-piercing regions

Given a family R of red non-piercing regions, and another family B of blue non-piercing
regions, such that each r ∈ R is intersected by at least one b ∈ B, find the smallest subset
B′ ⊆ B such that each r ∈ R is intersected by at least one b ∈ B′.

The following theorem below follows in a straightforward manner from the framework
in [12] using Theorem 1.

ESA 2018

69:4 Planar Support for Non-piercing Regions and Applications

I Theorem 2. There is a PTAS for the Generalized Set Cover problem for non-piercing
regions.

When B is a set of points in the plane, this problem is equivalent to the hitting set
problem for non-piercing regions: given a set of points and a family of non-piercing regions,
find the smallest subset of points such that each region contains at least one point from our
chosen subset of points. When R is a set of points in the plane, this problem is equivalent
to the set cover problem for non-piercing regions in the plane: given a set of points and
non-piercing regions in the plane, find the smallest subset of the regions so that each input
point is covered by one of the chosen subset of regions. When both B and R are identical
families of non-piercing regions, the problem is equivalent to the dominating set problem
for non-piercing regions: given a family of non-piercing regions, find the smallest subset of
regions so that each of the other regions intersects at least one of the chosen regions. Thus a
PTAS for the generalized set cover problem for non-piercing regions implies a PTAS for all
three problems: hitting set, set cover and dominating set. However, the reverse is not true:
the PTASs for these three problems together do not imply a PTAS for the generalized set
cover problem.

A PTAS for the hitting set problem for simply connected non-piercing regions in the
plane, and halfspaces in R3 was given in [12]. For the set cover problem for disks in the plane
a PTAS follows from the result for halfspaces, via a standard lifting to three dimensions. For
the dominating set problem for disks in the plane, a PTAS was given in [7]. Generalizations
of the PTASs for the set cover and dominating set problems for disks to simply connected
non-piercing regions in the plane were given in [1]. None of the earlier results work in the
setting where the regions are allowed to have holes.

Weighted Covering problems

In the weighted variant of the generalized set cover problem, each region b ∈ B has a non-
negative weight, and the goal is to minimize the total weight of the chosen set B′ ⊆ B. Chan
et. al. [3], building on the work of Varadarajan [14], obtained constant-factor approximation
algorithms for set systems with linear shallow-cell complexity 4. Note that the number of
hyperedges of size 2 in H(B,R) is O(|B|) since each such hyperedge corresponds to an edge
in the planar support which cannot have more than 3|B| − 6 edges. Since this is true for
the projection of the hypergraph on any subset of B, a standard probabilistic argument due
to Clarkson and Shor [5] implies that the number of hyperedges in H(B,R) of size at most
k is O(kn) implying that the shallow cell complexity of H(B,R) is linear. Our result thus
implies a constant factor approximation for the weighted variant of the generalized set cover
problem via the framework of Chan et. al. [3].

I Theorem 3. There is an O(1)-approximation algorithm for the weighted Generalized Set
Cover problem for non-piercing regions.

Generalized Set Packing problem for non-piercing regions

Given a set R of red non-piercing regions, and a set B of blue non-piercing regions where each
red region has a capacity bounded above by a constant C > 0, find a maximum cardinality
subset B′ ⊆ B, such that the number of blue regions in B′ intersecting any r ∈ R does not
exceed the capacity of the region r.

4 See [3] for the definition of Shallow Cell Complexity.

R. Raman and S. Ray 69:5

The theorem below follows in a straightforward manner from the framework in [1] using
Theorem 1.

I Theorem 4. There is a PTAS for the generalized set packing problem for non-piercing
regions, when each region has a capacity bounded above by a constant.

The generalized set packing problem specializes to the region packing problem when the
set R is a set of points: Given a family B of non-piercing regions, and a set R of points, each
with a capacity bounded above by a constant C find a maximum subset B′ ⊆ B, such that no
point r ∈ R is covered by more than its capacity. When C = 1, note that the region packing
problem is the discrete independent set problem which itself generalizes the independent set
problem in the intersection graph of the regions in B. In [4], Chan and Har-Peled gave a
PTAS for the independent set problem for a set of simply connected, non-piercing regions in
the plane. When the set B is a set of points, the generalized set packing problem specializes
to the point packing problem: Given a set of points B, and a family R of non-piercing regions,
each with capacity upper bounded by a constant C, find a maximum cardinality subset of
points B′ ⊆ B, such that the number of points of B′ in any r ∈ R is at most the capacity r.

In [1], a PTAS was given for the region packing problem, when the regions were assumed
to be simply connected non-piercing regions where the boundaries of each pair of regions
intersect at most a constant number of times. For the point packing problem, again [1]
gave a PTAS when C = 1. For larger values of C, only constant-factor approximation
algorithms were known [6]. Our result thus extends the PTAS in [1] for any constant C.
Furthermore, our PTAS for all the above problems works for non-piercing regions with holes,
which generalizes the earlier results, but does not follow from them.

I Remark. All the PTASs mentioned above follow a local search framework, which requires
the construction of a suitable graph for analysis. In earlier work, the graph construction
for all the problems above relied on the fact that the regions were simply connected, and
non-piercing, and did not extend to regions with holes. As far as we are aware, the above
problems were not studied for non-piercing regions with holes. Further, each problem required
a different graph construction. It is satisfying to finally have a unified view of all these
problems.

Hypergraph Coloring

Recently, Keszegh [10], proved the following result which generalizes the result of Keller
and Smorodinsky [9]: Let R and B be two families of pseudodisks. Then, the intersection
hypergraph H(B,R) admits a coloring with 4 colors, and a conflict-free coloring with O(logn)
colors. Keszegh’s result follows from our result due to the fact that the planar support of
H(B,R) is four colorable, and a valid coloring of the planar support is a valid coloring of the
hypergraph. Our result thus extends Keszegh’s result to non-piercing regions. In order to
prove his result, Keszegh proves that the Delaunay graph, G = (B,E) where the vertex set
is B and E is the set of hyperedges of size 2 in H(B,R), is planar. Observe that our result
is stronger since every edge in the Delaunay graph must be in the planar support.

I Theorem 5. Given two families R and B of non-piercing regions, the intersection hyper-
graph H(B,R) can be colored with at most 4 colors.

ESA 2018

69:6 Planar Support for Non-piercing Regions and Applications

α

α

β

β

p2

τ 2 β n α τ 0 2 α n β

Figure 1 The assumption that there is an α, β, α, β subsequence in the sequence of labels along
∂C leads to a contradiction.

2 Cell Bypassing

In this section, we define cell bypassing5, a basic operation that is used to simplify a given
arrangement of non-piercing regions. Let Γ denote a set of non-piercing regions, and let
A denote the arrangement of these regions. We will show that whenever there is a point
contained in at least 3 regions, we can simplify the arrangement by modifying a region γ ∈ Γ,
while maintaining key properties required to construct a planar support.

For a region γ, we let ∂γ denote the boundary of γ, and int(γ) to denote the interior of
γ. For a family of regions Γ, define ∂Γ =

⋃
γ∈Γ ∂γ where ∂γ denotes the boundary of the

region γ. The closure of each connected component of R2 \ ∂Γ defines a cell. For a cell C, we
define the following: ΓC denotes the set of regions containing the cell C, depth(C) denotes
|ΓC |, and ∂C denotes the boundary of C. If an arc of ∂γ lies on ∂C, then the region γ is
said to contribute to ∂C. We define degree(C) as the number of arcs on the boundary of C.
Note that the same region may contribute multiple arcs to ∂C.

We say that two cells are adjacent if their boundaries share an arc of positive length. We
define the cell adjacency graph 6 GΓ of Γ as the graph in which vertices correspond to the cells
and two vertices are adjacent in the graph if the corresponding cells are adjacent. Clearly,
GΓ is a planar graph. Observe that the degree of a cell in GΓ is equal to the number of arcs
on its boundary. Also note that the depth of adjacent cells C and C ′ in an arrangement of
regions differ by exactly 1. If depth(C) < depth(C ′), then ΓC′ = ΓC ∪ {ρ}, where ρ is the
unique region such that the arc C ∩ C ′ ⊆ ∂ρ. We say that a cell C is maximal if its depth is
more than the depth of any cell C ′ adjacent to it.

I Lemma 6. All regions in Γ contributing to the boundary of a maximal cell C in A contain
the cell C.

Proof. For contradiction, assume that there is an arc α of ∂γ that appears on ∂C, but
C 6⊆ γ. Let C ′ be the cell adjacent to C along α. Then, depth(C ′) > depth(C) as all regions
containing C also contain C ′, and C ′ is additionally contained in γ. This contradicts the
maximality of C. J

5 The notion of cell bypassing is similar is spirit to the notion of lens bypassing in [1] and to the notion of
core decomposition in [11]. However, the technical difference is critical for the applications in this paper.

6 The cell adjacency graph is the geometric dual of the arrangement graph in which the intersection
points of the boundaries of the regions are the vertices and two vertices are adjacent in the graph if
they appear consecutively along the boundary of some region.

R. Raman and S. Ray 69:7

I Lemma 7. Let C be a maximal simply connected cell in A, whose boundary arcs are
labelled by the regions in Γ contributing them. Let σ be the cyclic sequence of the labels of
the arcs in counterclockwise order along ∂C. Then, σ is a Davenport Schinzel sequence of
order 2 i.e., it does not contain a subsequence of the form α, β, α, β.

Proof. For contradiction, let a1, b1, a2, b2 be four arcs appearing in cyclic order along ∂C,
where a1 and a2 have the label α, and b1 and b2 have the label β. Since C is a maximal
cell, note that C ⊆ α ∩ β. Let p1 and p2 be points in the interior of the arcs a1 and a2
respectively. Similarly, let q1 and q2 be points in the interior of the arcs b1 and b2 respectively.
See Figure 1. Since q1 and q2 lie on the boundary of α \ β which by assumption is connected,
there is a curve τ joining q1 and q2 whose interior lies in α \ β. Similarly, there is a curve
τ ′ joining p1 and p2 whose interior lies in β \ α. Note that the interiors of neither τ , nor
τ ′ intersect C, since C does not intersect either α \ β or β \ α. Since p1, q1, p2, q2 appear
along ∂C in that order, and since C does not have any holes (i.e., it is simply connected), τ
and τ ′ must intersect at a point outside C and in the interior of both the curves. This is a
contradiction since α \ β and β \ α are disjoint sets. J

I Definition 8 (ε-expansion). For any region R, define an ε-expansion of R, denoted Rε as
the Minkowski sum of R and a ball of an arbitrarily small radius ε centered at the origin.

I Remark. The ε-expansion of a region is necessary for technical reasons. The parameter
ε is always chosen to be small enough so that combinatorial structure of the arrangement
does not change if a region R is replaced by Rε in the family Γ. Due to general position
assumptions, such an ε always exists. The choice of ε thus depends on the other regions in
the family Γ, but we supress this dependency for better readability.

I Definition 9 (Good region). For a maximal cell C in A, a region γ ∈ Γ is said to be a good
region for C if the following conditions hold: i) γ contributes to the boundary of C and ii)
(Γ \ {γ}) ∪ {γ′}, where γ′ = γ \ int(Cε), is a non-piercing family.

I Lemma 10. For any maximal simply connected cell C in A, there is a region γ ∈ Γ that
contributes exactly one arc to the boundary of C. Furthermore, any such region is good for
C.

Proof. First we argue that there is a region that contributes exactly one arc to ∂C. If every
arc on ∂C has a distinct label, we are done. Otherwise, consider two arcs a1 and a2 having
the same label α that are closest to each other in counterclockwise order along ∂C. Let b
be any arc lying between a1 and a2. There is such an arc since consecutive arcs along ∂C
cannot have the same label. Let γ be the label of the arc b. By the choice of a1 and a2 and
Lemma 7 there cannot be any other arc on ∂C with label γ. Thus, there is at least one
region γ that contributes exactly one arc to ∂C.

We now show that any such region γ is a good region for C. The fact that γ contributes
exactly one arc to ∂C, along with the fact that C is simply connected implies that γ′ =
γ \ int(Cε) is connected. For any other region ν ∈ Γ, we now argue that both ν \ γ′ and
γ′ \ ν are connected. Suppose first that ν does not contain C. Then ν \ γ′ = ν \ γ which is
connected. Also γ′ \ ν = (γ \ ν) \ int(Cε), which is connected since the boundaries of γ \ ν
and C intersect only on one arc along ∂C. Now suppose that ν contains C. Then note that
γ′ \ ν is almost the same as γ \ ν. In fact if ν does not contribute to the boundary of C, then
γ′ \ ν = γ \ ν. Otherwise, γ′ \ ν is obtained by shaving off a thin strips of width ε from the
boundary of γ \ ν. Thus γ′ \ ν is connected. Also ν \ γ′ = (ν \ γ) ∪ Cε. Since ν \ γ and Cε
are both connected, and have a non-empty intersection, their union is also connected. J

ESA 2018

69:8 Planar Support for Non-piercing Regions and Applications

I Lemma 11. Any maximal cell C in A of depth at least two, and containing a hole, has
exactly one hole H. Exactly one region γ ∈ Γ contributes to the boundary of H 7. This region
γ does not contribute any other arc to the boundary of C, and is a good region for C.

Proof. First, observe that the boundary of any hole in C can be contributed to by at most
one region. To see this assume to the contrary that two or more regions contribute to the
boundary of a hole in C. If the boundaries of two of these regions intersect on the boundary
of the hole, then the boundaries of those regions intersect the interior of the cell, which is
impossible. Otherwise the hole belongs to at least two distinct regions, which violates the
general position assumption.

Let Hγ be a hole in C whose boundary is contributed to by the region γ. We will show
that Hγ is the only hole in C. If γ contributed to another hole, say H ′γ in C, then for any
other region β (such a region exists, since depth(C) ≥ 2) containing C intersects int(Hγ), as
well as int(H ′γ), and thus β \ γ cannot be connected. Thus γ cannot contribute to any other
hole in C.

Let ρ be any other region containing C. Then, note that ρ intersects int(Hγ) and since
C is contained in both γ and ρ, we must have ρ \ γ ⊂ int(Hγ), as otherwise ρ \ γ would not
be connected. This implies that ρ ⊂ int(γ ∪Hγ). In particular, this means that ρ ⊂ int(γ̄),
where γ̄ is the outer boundary of the region γ. If ρ contributed to the boundary of another
hole Hρ in C, then by the same argument, we would have γ ⊂ int(ρ̄), a contradiction. This
means that Hγ is the only hole in C.

Since the depth of C is at least two, there is at least one other region ρ containing C.
However, as argued before ρ ⊂ int(γ∪Hγ). Since C ⊆ ρ the boundary of γ cannot contribute
any other arc (other than the boundary of Hγ) to the boundary of C.

We now argue that γ is a good region for C. Let γ′ = γ \ Cε. The region γ′ is connected
since γ′ is obtained from γ by replacing the hole Hγ by a larger hole H = Cε ∪Hγ ⊂ int(γ̄) 8

containing Hγ . H is simply connected since Hγ is the only hole in C. Also note that no
other hole of γ intersects H. Let ν be any other region in Γ. We will show that both ν \ γ′,
and γ′ \ ν are connected. Suppose first that ν ∩ C = ∅. Then, ν \ γ′ = ν \ γ, which by
assumption, is connected. Also, note that γ′ \ ν is obtained by replacing the hole Hγ in γ \ ν
by the larger hole H which contains Hγ , is contained in int(γ̄), and does not intersect any
other holes in γ \ ν. Thus γ′ \ ν is connected. Now suppose that C ⊂ ν. Then γ′ \ ν is almost
the same as γ \ ν and is obtained by shaving off a thin strip of width ε from the boundary of
γ \ ν. Thus γ′ \ ν is connected. Also, ν \ γ′ = (ν \ γ) ∪Cε. Since ν \ γ intersects Cε near the
boundary of the hole Hγ , ν \ γ′ is connected. J

Lemmas 10 and 11 imply the following lemma.

I Lemma 12. Any maximal cell C of depth at least two in the arrangement A has a good
region.

I Definition 13 (Cell Bypassing). Let C be a maximal cell and γ be a good region for C.
Then, by cell-bypassing of C by γ, we mean the modification of γ to γ′ = γ \ int(Cε). See
Figures 2a and 2b.

The following observations are immediate.

7 In other words H is a hole of γ.
8 Recall that γ does not contribute to the outer boundary of C.

R. Raman and S. Ray 69:9

γ

C

γ
0

(a) Case 1: C is simply connected. The
portion of the boundary of γ′ distinct from
γ is shown in red.

(b) Case 2: C is not simply connected. The
hole Hγ of γ is expanded to H, so that it
now contains C.

Figure 2 Bypassing of a cell C by a good region γ.

I Observation 14. If a maximal cell C is identical to a region γ, then γ is good for C and
cell-bypassing replaces γ by an empty region, effectively removing γ from the family of regions.

I Observation 15. When a cell C of depth d is bypassed by a region γ, the number of cells
of depth d decreases by 1. The number of cells of lower depth may increase. In fact, there
are at most O(∆) newly created cells of depth either d− 2 or d− 3, where ∆ is the degree of
the cell C.

3 Construction of a planar support

We first give the construction of a planar support for the dual hypergraph defined by a set
of non-piercing regions, and all points in the plane. We then use this to construct a planar
support for the intersection hypergraph of two non-piercing families.

3.1 Planar Support for Dual Hypergraph
In the following, let Γ be a family of non-piercing regions and let A denote their arrangement.
We construct a planar support for the hypergraph H(Γ,R2) 9, which immediately implies
a planar support for any P ⊆ R2. For a set of S ⊆ Γ of the regions and any point p ∈ R2,
we denote the set of regions in S that contain p by Sp. Similarly for a cell C, SC denotes
the set of regions in S containing C. For a graph G and a subset U of the vertices of G, we
denote the subgraph of G induced by U by G[U].

I Lemma 16. Let C be a maximal cell in A with depth(C) ≥ 3. Let Γ′ be the arrangement
obtained by cell bypassing of C by a good region γ of C. Then, a planar support for H(Γ,R2)
can be constructed from a planar support for H(Γ′,R2).

Proof. Suppose ∂C consists of a single arc. Then, C is identical to some region γ ∈ Γ. Since
depth(C) ≥ 3, γ is completely contained in another region ρ ∈ Γ. Bypassing C in this case
results in the arrangement Γ′ = Γ \ {γ}. Given a planar support G′ for H(Γ′,R2), we can
obtain a planar support G for H(Γ,R2) by simply adding a new vertex for γ and an edge
between γ and ρ. Since we obtain G by adding a vertex of degree 1 to the planar graph
G′, G is planar. To see that G is a support, consider any point p in the plane. If p /∈ γ
then Γp = Γ′p and therefore G[Γp] = G′[Γ′p] which is connected. On the other hand, if p ∈ γ,

9 While there are infinitely many points, the hypergraph is still finite, since all points in the same cell of
the arrangement A define the same hyperedge.

ESA 2018

69:10 Planar Support for Non-piercing Regions and Applications

then Γp = Γ′p ∪ {γ}. Since G′ is a planar support for Γ′, G[Γ′p] = G′[Γ′p] is connected. Since
ρ ∈ Γ′(p) and there is an edge between γ and ρ in G, it follows that G[Γ(p)] is connected.

Now, suppose ∂C contains at least two arcs. Let ρ 6= γ be a region that contributes to
∂C. Then, in the arrangement of Γ, there is a cell X adjacent to C such that ΓX = ΓC \ {ρ}.
After γ is modified to bypass C, in the arrangement of Γ′, there is still a cell X ′ such that
Γ′X′ = ΓX and there is a cell C ′ s.t. Γ′C′ = ΓC \ {γ}. Since |ΓC | ≥ 3, the sets Γ′X′ and Γ′C′

intersect. Also note that their union is ΓC . Since G′[Γ′X′] and G′[Γ′C′] are connected, it
follows that G′[ΓC] is connected. Thus G = G′ is a planar support for H(Γ,R2). J

The following lemma follows from [4]. The intersection graph of a set of regions is a graph
in which the vertices correspond to the regions and edges correspond to pairs of intersecting
regions.

I Lemma 17 ([4]). If Γ is a family of non-piercing regions so that no cell in their arrangement
has depth more than 2, then the intersection graph of Γ is planar, and is a support for
H(Γ,R2).

I Remark. Even though the proof presented in [4] is for k-admissible regions, essentially the
same proof works for non-piercing regions (with holes).

I Theorem 18. Let Γ be a family of non-piercing regions. Then, there exists a planar
support for H(Γ,R2).

Proof. For any set of regions Γ, define dΓ to be the maximum depth of any cell in the
arrangement of Γ, and nΓ to be the number of cells in the arrangment with depth dΓ. We
use induction on the pair (dΓ, nΓ). If dΓ ≤ 2, then by Lemma 17, the intersection graph of
Γ is the required planar support. Given a set of regions with dΓ ≥ 3, let Γ′ be the set of
regions obtained after bypassing a cell of maximum depth in the arrangement of Γ. Then,
by Observation 15, the pair (dΓ′ , nΓ′) is lexicographically smaller than (dΓ, nΓ). Inductively,
a planar support for H(Γ′,R2) exists, which by Lemma 16, is also a planar support for
H(Γ,R2). J

3.2 Planar Support for the Intersection Hypergraph
Given a family R of red non-piercing regions, and a family B of blue non-piercing regions, we
prove that there exists a planar support for the intersection hypergraph H(B,R) = (B,E),
where E = {Br : r ∈ R}, and Br = {b ∈ B : b ∩ r 6= ∅}. However, it is not essential for the
rest of the paper. Note that we can assume without loss of generality that any red region
intersects at least one blue region, and we make this assumption throughout this section.
This implies that any maximal cell in the arrangement of R ∪B has depth at least 2.

Let B|r = {b ∩ r : b ∈ Br} be the set of regions obtained by intersecting the regions in B
with the region r. A region in B|r may have multiple connected components, but we still
treat it as a single region. Let G|r(B) be the intersection graph of these regions. We start
with the following simple observation.

I Lemma 19. If for each red region r ∈ R, the graph G|r(B) is connected, then the planar
support for the hypergraph H(B,R2), is also a planar support for the hypergraph H(B,R).

Proof. Let G be the planar support of the hypergraph H(B,R2) defined by the blue regions.
Recall that the graph G guarantees that for each p ∈ R2, the set of blue regions containing p
induce a connected subgraph of G. Consider any red region r ∈ R. Since, by assumption,
the graph G|r(B) is connected, for any pair of blue regions s, t ∈ Br intersecting r, there is

R. Raman and S. Ray 69:11

C

β

Figure 3 The construction of βC , for a non-maximal cell C not contained in a blue region in B.

a sequence s = b1, · · · , bk = t, of regions in Br such that adjacent regions bi, bi+1 intersect
at a point qi ∈ r. This means that there is a path in G between bi and bi+1 via the regions
containing qi, i.e., via regions in Br. This in turn implies that there is a path between s and
t in G via regions in Br. J

The construction of the planar support in the general setting is a reduction to the setting
in Lemma 19.

I Lemma 20. Given a set of red and blue non-piercing regions R and B, we can obtain a
modified set of red regions R′, such that (i) the set of regions R′ is non-piercing, (ii) in the
arrangement of R′ ∪B, each maximal cell is contained in some blue region in B, and (iii)
the intersection hypergraph H(B,R′) is isomorphic to H(B,R).

Proof. Consider a maximal cell C in the arrangement of R ∪ B that is not contained in
any blue region. Then, C is also a maximal cell in the arrangement of R. Since R is a
non-piercing family, by Lemma 12 we can bypass C. This does not change the intersection
hypergraph of the red and blue regions, since no red-blue intersection is lost or gained as a
consequence of bypassing the cell C. We repeat this process until each maximal cell is in
some blue region. The modified set of regions thus obtained satisfy the conditions of the
lemma. J

I Lemma 21. Given two families of red and blue non-piercing regions R and B, such that
each maximal cell in the arrangement A of R ∪ B is contained in some region b ∈ B, we
can add a fake blue region βC corresponding to each cell C in A that is not contained in
any blue region in B, such that R,B′ and B′′, where B′′ is the set of fake blue regions and
B′ = B ∪B′′, satisfy: (i) B′ is a family of non-piercing regions, (ii) each βC intersects only
those regions in R that contain C, and (iii) for each r ∈ R, the intersection graph G|r(B′) is
connected.

Proof. Let C be a cell not contained in any of the blue regions. We define the fake blue
region for this cell as βC = Cε \

⋃
r∈R,C 6⊂r int(rδ), where δ < ε and ε is sufficiently small.

See Figure 3. Intuitively, βC is roughly the same as C but we modify its boundary slightly
so that it intersects all the blue regions that contribute to the boundary C but does not
intersect any red regions not containing C. Defining βC this way ensures that property (ii)
in the statement of the Lemma is satisfied. Choosing ε to be sufficiently small also ensures
that property (i) is satisfied. Finally, choosing δ < ε also ensures that each red region in R
is covered by the union of the blue regions in B′ which implies property (iii). To see this,
consider a point p contained in r ∈ R, and let D be the cell in A containing p. If p is not
contained in a blue region in B, then since D does not lie in any blue region, we add a fake
blue region βD corresponding to D. If p lies at a distance of at least δ from any arc of ∂D,

ESA 2018

69:12 Planar Support for Non-piercing Regions and Applications

contributed by a red region in R not containing D, then note that p lies in βD. Otherwise, if
p lies within distance δ of some arc α contributed by a red region not containing D, the cell
D′ adjacent to D sharing the arc α is also not contained in any blue region in B. In this
case, since ε > δ, βD′ contains p. This implies that G|r(B) is connected for each r ∈ R. J

We are now ready to prove Theorem 1.

Proof of Theorem 1. If G|r(B) is connected for each r ∈ R, then we obtain a planar support
by Lemma 19. If not, let R′ be the set of modified red regions obtained by applying Lemma
20. Let B′′ be the set of fake blue regions added by applying Lemma 21 to the blue regions
B, and the modified red regions R′. Now, by Lemma 19, a planar support for H(B′,R2) is a
planar support for H(B′, R′). Let G′ be this planar support. We show that we can obtain a
planar support G for H(B,R′), by suitably modifying G′. G is also a support for H(B,R)
since H(B,R) is isomorphic to H(B,R′). In the following, we refer to a vertex in the support
graph by the corresponding region. Let A be the arrangement of B ∪R′, and let B′ denote
the arrangement of the regions in B′. Let C be a cell in A not contained in any blue region
in B. By Lemma 20, C is not a maximal cell. Thus, there is a fake blue region βC ∈ B′
corresponding to C. Since C is not maximal, we can pick a cell C ′ (arbitrarily chosen in
case of ties) adjacent to C in A, such that depth(C ′) = depth(C) + 1. Let b be a fake or real
blue region defined as follows: if C ′ is not contained in any blue region in B then b = βC′ ,
otherwise b is the unique blue region in B containing C ′.

Note that b forms a depth 2 intersection with βC in B′ (i.e. there is a point in the plane
contained in just these two regions), and therefore, βC and b are adjacent in G′. We orient
the corresponding edge in G′ from βC to b. Thus, for each fake region in G′, there is exactly
one outgoing oriented edge incident on it. Note that not all edges in G′ are oriented.

By Property (ii) of Lemma 21, any red region intersecting βC contains C. Such a region
also contains C ′ since C and C ′ are adjacent cells in A, and depth(C ′) = depth(C) + 1. Thus
all red regions intersecting βC also intersect b. In other words, the set of red regions in R′
intersecting βC is a subset of the red regions in R′ intersecting b. This is a key property we
will use later. By Lemma 20, each maximal cell in A is contained in a blue region in B, and
therefore there is a unique directed path starting from a fake region βC and ending at a real
blue region b̃ ∈ B. Crucially, the set of red regions intersecting any fake region βC is a subset
of the red regions intersecting b̃ due to the key property mentioned earlier.

The set of oriented edges in G′ form a spanning forest, where each arc is oriented towards
the root of a tree, and the root of each tree corresponds to a real region. We obtain G

by contracting the edges in the forest (i.e., all oriented edges in G), effectively merging all
nodes in a sub-tree to its root. Since edge contraction preserves planarity, it follows that
G is planar. To see that G is a support for H(B,R′), let b, b′ ∈ B be a pair of blue regions
intersecting a red region r ∈ R′. Since G′ is a planar support for H(B′, R′), there is a path
b = b1, . . . , bk = b′ such that each region bi in the path intersects r. Since each fake region
on the path is merged with a real region that also intersects r, it follows that there is a path
in G between b and b′, such that all regions along the path intersect r.

Finally, by Lemma 20, since H(B,R′) is isomorphic to H(B,R), G is the desired planar
support. J

3.3 Algorithms
The proofs for the existence of the planar supports given in Section 3 are constructive and
can be converted to an algorithm with running time O(n3 +m) where n is the number of
regions and m is the number of vertices in the arrangement of the regions. Note that if the

R. Raman and S. Ray 69:13

boundaries of every pair of regions intersect at most O(n) times, then m is O(n3). While
the applications mentioned in this paper require only the existence of a planar support, the
algorithmic question is natural and may have applications in hypergraph visualization (see [2]
and [8]). In the proofs of the existence of the planar support, we modify the arrangement of
the regions by doing cell bypassing. For algorithmic purposes, instead of maintaining the
geometric shapes of the regions, we can maintain the dual arrangement graph. In addition,
we orient the edges from a cell of lower depth to a cell of higher depth and label the edge by
the index of the region whose boundary separates the cells. The vertex corresponding to a
cell also stores the depth of the cell and pointers to neighboring vertices. The size of the
graph is O(m). We assume that the initial dual arrangement graph H of the input set of
region Γ is given. It is not at all apparent that these algorithms run in polynomial time, since
the number of cells in the arrangement can increase after each cell-bypassing. However, using
a more detailed combinatorial analysis, we can define a suitable potential function on the
arrangement of the regions, so that each time we do a cell bypassing operation the potential
goes down by an amount proportional to the time spent in the cell-bypassing operation.
The initial potential can be shown to be O(n3 +m) which implies the upper bound on the
running time. The details of the analysis are not included due to lack of space.

References

1 Aniket Basu Roy, Sathish Govindarajan, Rajiv Raman, and Saurabh Ray. Packing and
covering with non-piercing regions. Discrete & Computational Geometry, Mar 2018. doi:
10.1007/s00454-018-9983-2.

2 Kevin Buchin, Marc Van Kreveld, Henk Meijer, Bettina Speckmann, and Kevin Verbeek.
On planar supports for hypergraphs. In International Symposium on Graph Drawing, pages
345–356. Springer, 2009.

3 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capa-
citated, priority, and geometric set cover via improved quasi-uniform sampling. In Proceed-
ings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’12, pages 1576–1585, 2012.

4 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.

5 Kenneth L Clarkson and Peter W Shor. Applications of random sampling in computational
geometry, ii. Discrete & Computational Geometry, 4(5):387–421, 1989.

6 Alina Ene, Sariel Har-Peled, and Benjamin Raichel. Geometric packing under non-uniform
constraints. In Proceedings of the Twenty-eighth Annual Symposium on Computational
Geometry, SoCG ’12, pages 11–20, New York, NY, USA, 2012. ACM.

7 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier. In Algorithms – ESA 2010 - 18th Annual European Symposium, Liverpool,
United Kingdom, September 6–8, 2010, Proceedings, pages 243–254, 2010.

8 David S Johnson and Henry O Pollak. Hypergraph planarity and the complexity of drawing
venn diagrams. Journal of graph theory, 11(3):309–325, 1987.

9 Chaya Keller and Shakhar Smorodinsky. Conflict-free coloring of intersection graphs of
geometric objects. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
2397–2411, 2018. doi:10.1137/1.9781611975031.154.

10 Balázs Keszegh. Coloring intersection hypergraphs of pseudo-disks. In Proceedings of the
Thirty-fourth International Symposium on Computational Geometry, 2018. URL: http:
//arxiv.org/abs/1711.05473.

ESA 2018

http://dx.doi.org/10.1007/s00454-018-9983-2
http://dx.doi.org/10.1007/s00454-018-9983-2
http://dx.doi.org/10.1137/1.9781611975031.154
http://arxiv.org/abs/1711.05473
http://arxiv.org/abs/1711.05473

69:14 Planar Support for Non-piercing Regions and Applications

11 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation
scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM Journal on
Computing, 44(6):1650–1669, 2015.

12 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

13 Evangelia Pyrga and Saurabh Ray. New existence proofs for ε-nets. In Proceedings of the
Twenty-fourth Annual Symposium on Computational Geometry, SoCG ’08, pages 199–207,
New York, NY, USA, 2008. ACM.

14 Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, pages 641–648, 2010.

An Exact Algorithm for the Steiner Forest
Problem
Daniel R. Schmidt1

Institut für Informatik, Universität zu Köln, Germany
schmidt@informatik.uni-koeln.de

https://orcid.org/0000-0001-7381-912X

Bernd Zey
Fakultät für Informatik, TU Dortmund, Germany
bernd.zey@tu-dortmund.de

François Margot
Carnegie-Mellon-University, Pittsburgh PA, USA

Abstract
The Steiner forest problem asks for a minimum weight forest that spans a given number of ter-
minal sets. The problem has famous linear programming based 2-approximations [1, 15, 20]
whose bottleneck is the fact that the most natural formulation of the problem as an integer lin-
ear program (ILP) has an integrality gap of 2. We propose new cut-based ILP formulations for
the problem along with exact branch-and-bound based algorithms. While our new formulations
cannot improve the integrality gap, we can prove that one of them yields stronger linear program-
ming bounds than the two previous strongest formulations: The directed cut formulation [2, 7]
and the advanced flow-based formulation by Magnanti and Raghavan [25]. In an experimental
evaluation, we show that the linear programming bounds of the new formulations are indeed
strong on practical instances and that our new branch-and-bound algorithms outperform branch-
and-bound algorithms based on the previous formulations. Our formulations can be seen as a
cut-based analogon to [25], whose existence was an open problem.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases branch-and-bound algorithms, Steiner network problems

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.70

Related Version A preliminary version is available at https://arxiv.org/abs/1709.01124.

1 Introduction

The Steiner forest problem (SFP) is one of the fundamental network design problems. Given
an edge-weighted undirected graph G = (V,E) and terminal sets T 1, . . . , TK ⊆ V , it asks
for a minimum weight forest in G such that the nodes inside each terminal set are connected.
Steiner forest is a particularly important problem in the design of real-world communication
networks where unwieldy additional constraints make it hard to obtain hard guarantees
and clean approximation algorithms. Instead, linear programming based branch-and-bound
(B&B) algorithms are a popular choice here: They find an optimum solution in (worst-case)
exponential time, but can also be run in a heuristic mode where the algorithm stops with
a sub-optimum solution after a given time limit. In the latter case, B&B algorithms still

1 Supported by a fellowship in the Postdoc-Program of the German Academic Exchange Service (DAAD).

© Daniel R. Schmidt, Bernd Zey, and François Margot;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 70; pp. 70:1–70:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schmidt@informatik.uni-koeln.de
https://orcid.org/0000-0001-7381-912X
mailto:bernd.zey@tu-dortmund.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.70
https://arxiv.org/abs/1709.01124
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70:2 An Exact Algorithm for the Steiner Forest Problem

formulation

A B C

undirected flow/cut (Luc), lifted cut (Lklsvz) [23] 2 2 4

layered directed, Ldc [2, 7] 3 2 4
Magnanti-Raghavan [25], Lmr 3 3 6

our extended cut-based, Ledc 3 2.5 5.14
our strengthened extended cut-based, Lsedc 3 3 6

integer optimum 3 3 7

Figure 1 A comparison of lower bounds from LP relaxations. The terminal sets of the three
Steiner forest instances are depicted in different shapes (, , , and). All edges have unit cost.

provide a per-instance quality guarantee by linear programming. This per-instance guarantee
is appealing to practitioners: While often only a few selected instances need to be solved, it
is common that they defy theoretical analysis. Hence, B&B algorithms complement the fixed
parameter tractable (FPT) algorithms which exploit special structures of practical instances.
In contrast, however, B&B algorithms allow us to include the real-world constraints without
additional analyses and make no structural assumptions. In this way, they provide another
important tool for problem solving in practice.

A linear programming based B&B algorithm systematically finds an optimum solution to
an integer linear program (ILP). Assume that we are minimizing. The algorithm first removes
the integrality requirement, turning the NP-hard ILP into a polynomial time solvable linear
programming (LP) relaxation. Any solution to the ILP is a solution to the LP relaxation
and thus, the value of any LP solution x∗ is a lower bound on the optimum value of the ILP.
If x∗ is integral, we found an optimum solution to the ILP. Otherwise, there is at least one
fractional variable, say x∗i 6∈ Z. In any optimum integral solution, we have either xi ≤ bx∗i c
or xi ≥ dx∗i e. We create a subproblem for each of the two cases and recurse the algorithm. If
at any point in the recursion (the branch-and-bound tree) we obtain an integral solution or if
a subproblem turns out to be infeasible, we solved the subproblem and we can prune the
corresponding branch from the tree. We keep track of the best integral solution we find (the
incumbent), as it provides an upper bound on the value of an optimum ILP solution. Since
the LP value of each subproblem provides a lower bound for its optimum integral value, we
can equally prune the tree once the LP value rises above the value of the incumbent. This
highlights why strong LP relaxations are paramount for B&B algorithms: The better the LP
bounds, and the sooner the LP relaxation becomes integral, the sooner the recursion can be
pruned. As different ILP formulations for the same problem yield different LP bounds and
finding a strong ILP formulation is an interesting challenge.

While B&B algorithms for the Steiner forest problem all follow the same basic algorithm,
they differ on the LP relaxation they employ to generate lower bounds. From a theoretical
perspective, almost all LP relaxations for the Steiner forest problem have a worst-case
integrality gap of 2, with the only known exception being the lifted cut relaxation by
Könemann, Leonardi, Schäfer, and van Zwam [23] that achieves a gap of 2 − ε. Still, the
different LP relaxations do not all yield equally good bounds: The bound from the directed
cut relaxation will never be worse (and often much better) than the bound from the undirected
cut relaxation, since the former is a specialization of the latter. Likewise, Magnanti and
Raghavan [25] show that their improved flow relaxation is always as least as good as the

D. Schmidt, B. Zey, and F. Margot 70:3

undirected cut relaxation. In that sense, some relaxations are stronger than others, while
others are incomparable (see Figure 1): The lifted cut relaxation is at least as strong as the
undirected cut formulation, but it may yield stronger or weaker bounds than the directed
variant. Experiments support this notion of relaxation strength. For instance, it has been
observed that the directed cut formulation is better suited for B&B algorithms than the
undirected cut formulation [6], at least for the Steiner tree problem (the special case where
K = 1). Magnanti and Raghavan obtain particularly strong bounds from the improved
flow formulations in their experiments where their B&B algorithm can solve many instances
without having to branch. The bounds from the lifted cut relaxation are identical to the
ones from the undirected cut relaxation in our experiments.

Our contribution. The above observations seem to turn the improved flow formulation and
the directed cut formulation into the canonical choices for a B&B algorithm. Unfortunately,
the improved flow relaxation is exponentially large and it is unknown if it can be solved
efficiently. The directed cut relaxation is easy to solve, but its bounds are considerably
weaker if used for the Steiner forest problem (an analysis is given in Section 2).

We propose a branch-and-bound algorithm that is based on a new, cut-based ILP
formulation for the Steiner forest problem. Its LP relaxation is stronger than the improved
flow relaxation and as the directed cut relaxation, and therefore, as the undirected cut
relaxation as well. In contrast to the improved flow formulation it can be solved in polynomial
time. This answers an open problem in [25] which asks for a cut-based ILP formulation that
is at least as strong as the improved flow formulation. In our experiments the LP bounds
are stronger than what can be achieved from any of the previous relaxations. They can also
be computed quickly and reliably. Using known techniques and a computational analysis,
we engineer our branch-and-bound algorithm to solve all medium sized and almost all large
instances from the benchmark set. The algorithm outperforms B&B algorithms based on
the previous formulations. Figure 1 shows a comparison of the formulations on widely-used
small example instances.

While we focus on B&B algorithms here, new integer linear programming formulations
are interesting beyond exact algorithms: Current approximation algorithms for the Steiner
forest problem with a guarantee of 2 are based on iterative rounding [20] and the primal-dual
analysis technique [1, 15]; two techniques that rely on strong LP relaxations. Even though
our new formulation has an integrality gap of 2 as well and thus cannot directly improve the
known LP-based approximation algorithms, we believe that it can inspire new research in
this direction.

Related work. The directed cut relaxation for the Steiner tree problem [2, 6, 22] can be
trivially extended to the Steiner forest case. It cuts off fractional solutions by imposing a
direction on each edge, looking for a rooted directed tree that connects all terminals. In the
Steiner tree case where only one terminal set exists, this process is straight-forward. When
multiple sets are present, however, one directed tree per set is needed and these, in general,
can impose conflicting orientations to the edges. This is a major additional difficulty in
solving the Steiner forest problem. Magnanti and Raghavan [25] show how to consolidate
the conflicts with the improved flow formulation.

The issues with conflicting orientations can be avoided altogether by using strong undi-
rected formulations. Goemans [13], Lucena [24], as well as Margot, Prodon and Liebling [26]
independently propose an ILP formulation for the Steiner tree problem that builds on Ed-
mond’s complete description of the tree polytope [11]. This tree-based formulation has a
straight-forward extension to the Steiner forest problem, but its LP bounds are identical to
the ones from the directed formulations.

ESA 2018

70:4 An Exact Algorithm for the Steiner Forest Problem

The literature for the Steiner tree problem is more extensive: Several surveys compare
ILP formulations and their polyhedral properties [7, 8, 14, 27, 28]. They are the basis for
B&B algorithms [6, 22]. Exact FPT algorithms identify parameters that make the problem
difficult to solve [4, 9, 12, 19]. Similarly, preprocessing techniques reduce the size of Steiner
tree instances by removing trivial parts [10, 27, 28]. While the Steiner tree B&B algorithms
imply B&B algorithms for the general Steiner forest case, the Steiner forest problem was
mostly studied in the context of approximation algorithms [1, 15, 17, 18, 20]. A PTAS on
planar and bounded treewidth graphs exists [3].

Notation. Throughout, let G = (V,E) be an undirected, simple graph and let A =
{(i, j), (j, i) | {i, j} ∈ E} be the arcs of the bidirection of G. A cut-set in G is a subset S ⊆ V .
Any cut-set S ⊆ V induces a cut δ(S) := {{i, j} ∈ E | |{i, j} ∩ S| = 1}. We abbreviate
δ(i) := δ({i}) if S = {i}. If D = (V,A) is a directed graph, we distinguish the outgoing
cut δ+(S) = {(i, j) ∈ A | i ∈ S and j 6∈ S} and the incoming cut δ−(S) = {(i, j) ∈ A | i 6∈
S and j ∈ S}. Given a vector x ∈ Xd, d ∈ Z≥0, and an index set I ⊆ {1, . . . , d} we write
x(I) to abbreviate

∑
i∈I xi. Finally, for k ∈ Z≥1, let [k] := {1, . . . , k}.

The Steiner forest problem. Consider an undirected graph G = (V,E) together with
K ∈ N terminal sets T 1, . . . , TK ⊆ V . A feasible Steiner forest is a forest (VF ⊆ V,EF ⊆ E)
in G that, for all k ∈ [K], contains an s-t-path for all s, t ∈ T k. A feasible forest (VF , EF)
is optimum with respect to edge weights c ∈ R|E|≥0 if it minimizes the total cost

∑
e∈EF

ce.
Assume without loss of generality that the terminal sets are pairwise disjoint: If T k and
T ` share at least one node, then any forest is feasible for T 1, . . . , TK if and only if it is
feasible for the instance where T k and T ` are replaced by T k ∪ T `. We denote the set of
all terminal nodes by T := T 1 ∪ · · · ∪ TK and write τ(t) := k if t ∈ T k. For each terminal
set T k, k ∈ [K], we select an arbitrary node rk ∈ T k as a fixed root node and define
R := {r1, . . . , rK}. A cut-set S ⊆ V is relevant for the terminal set T k if it separates
rk from some terminal t ∈ T k, i.e., if rk ∈ S but t 6∈ S for some t ∈ T k. We write Sk

for the set of all cut-sets that are relevant for T k and S := S1 ∪ · · · ∪ SK for the set
of all relevant cut-sets. If P := {(x, y) ∈ Rn1+n2 | Ax + By = d} is a polyhedron let
Projx(P) := {x ∈ Rn1 | ∃ y ∈ Rn2 : (x, y) ∈ P} be the projection of P onto the x variables.

2 Eliminating cycles from the linear programming relaxation

Let us briefly review the existing branch-and-bound algorithms and how they model the
Steiner forest problem as an ILP. A forest F in G = (V,E) is feasible if and only if any
relevant cut-set S ⊂ V contains at least one edge of F , i.e. if |δF (S)| ≥ 1 for all S ∈ S.
Thus, since c ≥ 0, the undirected cut formulation

min
{
cTx

∣∣ x ∈ Luc and integer
}
where (IPuc)

Luc := {x ∈ [0, 1]E | x(δ(S)) ≥ 1 ∀S ∈ S} (1)

is a valid ILP formulation. While it can be solved efficiently, it yields weak bounds even on
trivial instances (see Figure 1). The reason for the weak bounds becomes apparent when we
see formulation (IPuc) as a set cover problem: We look for a choice of edges such that each
cut δ(S) in G is covered by at least one edge. Consider any cycle C of length s in G. Any
set cover needs s− 1 edges to cover C. On the other hand, we obtain a fractional solution of
value s

2 by setting xe = 0.5 for all edges e ∈ C. Figure 2a shows an example.

D. Schmidt, B. Zey, and F. Margot 70:5

d

a b

c

0.
5

0.5

0.5

0.
5

(a) A feasible solution for (1).
The edges {c, d} and {b, c}
cover the cuts δ({a, b, c}) and
δ({a, b, d}).

d

a b

c

0.5

0.5

0.5

0.50 0 0

0

(b) An infeasible solution for
(2a)–(2d). The arcs (d, c) and
(b, c) cover the cut δ({a, b, d}),
but not the cut δ({a, b, c}).

d

a b

c

0.5

0.5

0.5

0.50 0.5 0

0.5

(c) A feasible solution for (2a)–
(2d). Additional capacity is
needed on (c, d) and (b, a) to
cover all relevant cuts.

Figure 2 An unit cost example where Ldc yields a stronger LP bound than Luc. The instance has
a single terminal set that contains all four nodes of the graph. Node a has been chosen as the root.

The formulation can be improved with a standard construction [7, 2]. Recall that we
choose rk ∈ T k as an arbitrary root node of set T k and consider the bi-directed graph
underlying G. For all k ∈ [K], we now look for an arborescence (a directed tree) rooted at
rk. If any cut-set S is relevant for T k, then at least one arc must leave S:

min{cTx | (x, y) ∈ Ldc and integer} where (IPdc)

Ldc :=
{

(x, y)
∣∣∣ yk(δ+(S)) ≥ 1 ∀ k ∈ [K],∀S ∈ Sk (2a)

ykij + ykji ≤ xij ∀ {i, j} ∈ E,∀k ∈ [K] (2b)
ykij , y

k
ji ∈ [0, 1] ∀ {i, j} ∈ E,∀k ∈ [K] (2c)

xij ∈ [0, 1] ∀ {i, j} ∈ E
}
. (2d)

Since any solution (x, y) of (IPdc) can be turned into a feasible Steiner forest F := {{i, j} ∈
E | ∃ k : ykij + ykji ≥ 1} and any feasible Steiner forest can be turned into a solution to (IPdc),
this strengthened formulation indeed captures the Steiner forest problem. The formulation
eliminates directed cycles from the basic optima of its LP relaxation and indeed the bound of
the relaxation coincides with the integer optimum on instance A from Figure 1. However, a
slightly modified instance makes the problem reappear, see instance B in Figure 1 or Figure 3:
While the support of any yk is free of directed cycles, the union of the supports is not. This
is the reason why the formulation works exceptionally well for the Steiner tree problem
where K = 1. If K > 1, however, the LP relaxation of (IPdc) is again weak. Still, for
practical purposes no better formulation was known prior to this work. The offending cycles
potentially appear whenever two terminal sets T k and T ` – and thus their roots rk and r` –
end up in the same connected component of the solution, i.e. of the support of x. If we knew
beforehand that T k and T ` lie in the same connected component of an optimum solution, we
could simplify the instance, replacing T k and T ` by their union T k ∪ T `. Iterating this idea
would yield a solution where all the arborescences are disjoint and the offending cycles are
eliminated.

Unfortunately, we cannot know the connected components of a Steiner forest a priori.
Instead, Magnanti and Raghavan [25] – we denote their model by (IPmr) and the LP
relaxation by Lmr – propose to compute the connected components of a solution on-the-fly
in the ILP formulation. Then, whenever T k and T `, k ≤ `, lie in the same connected
component, they look for a common arborescence that is rooted at rk and connects all
terminals in T k ∪ T `. Unfortunately, their formulation has a size of Ω(

∏K
k=1

∑K
`=k |T `|), i.e.

it is exponential in the number of terminal sets K. We shall see in the next section how we
achieve the same effect with a much smaller ILP formulation.

ESA 2018

70:6 An Exact Algorithm for the Steiner Forest Problem

d

a b

c

0.5

0.5

0.5

0.50.
5

0.5

0.
5

0.5

0.
5

0.5

0.5

0.5
d

a b

c

1

1

11

1

1
Figure 3 Detailed picture of instance (B) from Figure 1. On the left: The red and blue arcs form

a solution for relaxation (2a)–(2d) for the red () and blue () terminal set. The gray edges show
the values of the x variables. Looking for a Steiner arborescence for each terminal set does not cut
off a fractional optimum of cost 2. On the right. A solution that roots different terminal sets at the
root node of the red () terminal set. The fractional optimum is cut off.

3 An new ILP formulation for the Steiner forest problem

Our extended formulation makes use of three kinds of variables. As before, we use a
variable xij for all edges {i, j} ∈ E to determine if {i, j} is included in the forest F and
two corresponding directed variables yij , yji. Likewise, the variables ykij and ykji for each
k ∈ [K] and each {i, j} ∈ E determine if the arcs (i, j) and (j, i), respectively, are included
in the arborescence rooted at rk. Finally, we introduce an additional variable zk` for each
k ∈ [K] and each ` ≥ k, with the interpretation that zk` = 1 iff T k and T ` both lie in the
arborescence spanned by yk. In the latter case, we say that rk is responsible for the terminals
in T `. To make it easier to state the formulation, we define Ti...j as T i ∪ · · · ∪ T j and let
Ti...jr := Ti...j \ {ri} be the same set without the ith root node (all other root nodes are still
included). In particular, the set T`...Kr contains all the terminal nodes that can potentially
be connected to r`. We extend our previous notion and say that a cut-set S ⊆ V is relevant
for rk and T ` if rk ∈ S and some terminal t ∈ T ` is not in S. The set of all cut-sets that are
relevant for rk and T ` is written by Sk

` in the sequel. Then, our formulation reads:

min
{
cTx

∣∣∣ (x, y, z) ∈ Lsedc and integer
}
where (IPsedc)

Lsedc :=
{

(x, y, z)
∣∣∣ yk(δ+(S)) ≥ zk` ∀ k ∈ [K], ` ≥ k, ∀S ∈ Sk

` (3a)
k∑
`=1

z`k = 1 ∀ k ∈ [K] (3b)

yij ≥
∑
k∈[K]

ykij , yji ≥
∑
k∈[K]

ykji ∀ {i, j} ∈ E (3c)

zkk ≥ zk` ∀ k ∈ [K] \ {1,K},∀` ≥ k + 1 (3d)
yij + yji ≤ xij ∀ {i, j} ∈ E (3e)
y(δ−(v)) ≤ 1 ∀ v ∈ V (3f)
yk(δ−(t)) = 0 ∀ k ∈ [K] \ {1},∀ t ∈ T1...k−1 (3g)

ykij , y
k
ji ∈ [0, 1] ∀ {i, j} ∈ E,∀k ∈ [K] (3h)

xij , yij , yji ∈ [0, 1] ∀ {i, j} ∈ E (3i)

zk` ∈ [0, 1] ∀ k ∈ [K],∀` ≥ k
}
. (3j)

D. Schmidt, B. Zey, and F. Margot 70:7

For any k, `, the left hand side of the directed cut-set constraint (3a) is non-negative and
the constraint is trivially satisfied if zk` = 0. If otherwise zk` = 1, we need to connect all
terminals from T ` to the k-th root rk. Then, any cut-set S separating rk from some terminal
in T ` must have at least one outgoing edge. This is exactly the condition modeled by (3a).
For each k ∈ [K], the constraints (3b) ensure that exactly one root r` is responsible for T k
(and r1 is always responsible for T 1, i.e., z11 = 1). We use constraints (3c) to enforce that
each edge {i, j} is part of at most one arborescence. We also want to make sure that no
“transitive” responsibilities exist: If rk is responsible for T `, then r` cannot be responsible for
some Tm, m 6= `. This is modeled by the symmetry breaking constraints (3d). They make
sure that if root rk is responsible for some terminal set T `, then rk must be responsible for T k
as well. The capacity constraints (3e) say that if an edge {i, j} is used in any arborescence,
then it must be included in the tree. Moreover, no node in any arborescence should have more
than one incoming arc, as modeled by the indegree constraints (3f). Finally, the terminals in
T 1...k−1 cannot be attached to root rk and thus, no arc of the corresponding arborescence
should enter such a terminal, see constraint (3g).

To solve Lsedc efficiently, we only add a subset of the cut-set constraints (3a) at the
beginning. Then, given a solution (x∗, y∗, z∗) to a partially generated Lsedc, we can find a
relevant S, a k and an ` such that yk(δ+(S)) < zk` (or decide that none exist) efficiently:
For each k ∈ [K], each ` ≥ k and each t ∈ T `, we compute a minimum rk-t-cut. If for any
k, ` such a cut δ(S) has a value of strictly less than zkl, then (x∗, y∗, z∗) does not satisfy the
cut-set constraint corresponding to S and we add it to our LP and iterate. Otherwise, all
cuts S ∈ Sk

` must have a value of at least zk` and (x∗, y∗, z∗) ∈ Lsedc.
I Lemma 1. Formulation (IPsedc) models the Steiner forest problem correctly. Its LP
relaxation Lsedc can be solved in time polynomial in the size of G and K.

Strength of the new formulation. How can we compare two LP relaxations LA and LB?
We cannot expect that the bound from LA is stronger than the bound from LB on all
instances: Generally, the optima of both LPs will be integral on some instances and must
coincide then. We can, however, ask that the bound obtained from LA is never worse than
the bound obtained from LB . This is the case if any solution to LA is feasible for LB as well,
i.e. if LA ⊆ LB. We say that LA is strictly stronger than LB if additionally at least one
solution of LB is infeasible for LA, i.e. if LA (LB . In general, some truncation or extension
of the solution might be necessary if LA and LB live in different variable spaces, but we can
project the solutions suitably.

Instead of comparing the models directly, we compare their equivalent flow-based models;
replacing the cut-condition by a flow-balance constraint. We also introduce additional flow
variables f . Any feasible solution to Lsedf defines a flow fk,t from rk to any terminal
t ∈ Tk...K and ensures that the flow value of fk,t is exactly zk`.

Lsedf :=
{

(x, y, f, z)
∣∣∣ fktij ≤ ykij , fktji ≤ ykji ∀k ∈ [K],∀{i, j} ∈ E

∀t ∈ Tk...Kr

(4a)

fkt(δ+(i))− fkt(δ−(i)) = σkt(i)zkτ(t)
∀ i ∈ V,∀k ∈ [K]
∀t ∈ Tk...Kr

(4b)

fkt(δ+(t)) = 0 ∀k ∈ [K],∀t ∈ Tk...Kr (4c)
(3b)–(3j) (4d)

fktij , f
kt
ji ∈ [0, 1]

∀k ∈ [K],∀t ∈ Tk...Kr

∀{i, j} ∈ E
}
. (4e)

ESA 2018

70:8 An Exact Algorithm for the Steiner Forest Problem

(a) Instance with three terminal
sets (1, 2, 3) and unitary
edge costs 1.

0.5
0.5

0.5 0.5

0.5

1.0

1.0

(b) Optimum solution of Lmr

with overall cost 4.5. This solu-
tion is infeasible for Lsedc since
here we would have z22 = 0.5
and z23 = 1.0, conflicting (3d).

1.0

1.0

1.0

1.0

1.0

(c) Optimum solution of Lsedc

which is integer and has cost 5.
Here, non-0 z variables are
z11 = z22 = z23 = 1.0.

Figure 4 Example instance where Lsedc gives a stronger bound than Lmr.

The constant σkt(i) is set to 1 if i = rk, to −1 if i = t, and to 0 otherwise. The constraints
(4c) prohibit fkt from leaving t and facilitate the comparison to Lmr. Analogously, the
relaxation Ldc has an arc-flow-based equivalent Ldf that forces a choice of arcs such that
each root rk is able to send one unit of flow to each terminal in T k \ {rk}.

I Theorem 2. Projx(Lsedc) (Projx(Ldc)

Proof sketch. We prove the claim by showing that Lsedf is strictly stronger than Ldf . Let
thus (x, y, f, z) ∈ Lsedf . We want to show that there exists some y′ and some flow f ′ such
that (x, y′, f ′) ∈ Ldf . Here, the challenge is that there might be a non-zero flow fk,t from
rk to t ∈ T ` whereas in Ldf , all the flow to t must originate from r`. Still, we can morally
obtain a feasible flow f ′ in the following way: Since r` ∈ T `, there must be a flow of value
exactly zk` from rk to r`. But rk also sends a flow with value zk` to t. Thus, if we reverse
fk,r

` we can concatenate it with fk,t and maintain flow conservation. We remove all cycles
and we obtain the desired flow f ′. However, this construction might force us to change the
orientation of some of the arcs, which poses an additional technical difficulty. Finally, we can
iterate this argument and combine all flows fm,t from any root rm to t. By constraint (3b),
these flows must add up to one. Strictness follows from instance (B) in Figure 1. J

Our second theoretical result is that the new relaxation Lsedc is strictly stronger than the
relaxation of [25]. Due to space restrictions we refer the reader to [25] for the description of
Lmr with constraints (14b)–(14j).

I Theorem 3. Projx(Lsedc) (Projx(Lmr)

Proof sketch. As before, we compare Lsedf instead of Lsedc. The major difference be-
tween Lsedf and Lmr is this: While in Lsedf , any two flows fkt and fkt′ for t, t′ ∈ T ` must
have the same flow value zk`, the same flows can have different values in Lmr. In that sense,
Lsedf is more restricted and it makes sense that any flow that is feasible in Lsedf is feasible
in Lmr, too, whereas the converse is not necessarily true (see Figure 4). More formally,
let (x̄, ȳ, z̄, f̄) ∈ Lsedf . We argue that (x̄, ȳ, f̄) ∈ Lmr. It follows from (4b) that (x̄, ȳ, f̄)
satisfies (14b) from [25]. Constraint (14c) follows from (4b), (4c), and (3b). For (14d),
apply (4b), (4b) with t = ¯̀, and (4c). Constraint (14e) follows from (4a), (3c), and (3e).
Likewise, constraint (14f) follows from (4a), (3c), and applying (3f). Finally, the constraint
(14g) is implied by (3g). (14h) is equivalent to (4c). J

D. Schmidt, B. Zey, and F. Margot 70:9

3.1 A smaller cut-based formulation
We remark that (IPsedc) can be written in the slightly different form below. While the
reformulation is smaller and less involved, it turns out that its linear programming bounds
are potentially weaker than the ones from (IPsedc). We need two variables yij , yji, and a
variable xij for each edge {i, j} ∈ E. As before, for all k ∈ [K] and all ` ≥ k, we have a
decision variable zk` that tells us whether the terminals in T ` should be connected to the
root rk.

min
{
cTx

∣∣∣ (x, y, z) ∈ Ledc and integer
}

where (IPedc)

Ledc :=
{

(x, y, z)
∣∣∣ y(δ+(S)) ≥

∑
k≤`:
rk∈S

zk` ∀` ∈ [K],∀S ⊆ V : T ` ∩ S 6= T ` (5a)

k∑
`=1

z`k = 1 ∀k ∈ [K] (5b)

zkk ≥ zk` ∀k ∈ [K] \ {1,K},∀` ≥ k + 1 (5c)
yij + yji ≤ xij ∀{i, j} ∈ E (5d)

yij , yji, xij ∈ [0, 1] ∀{i, j} ∈ E (5e)

zk` ∈ [0, 1] ∀k ∈ [K],∀` ≥ k
}
. (5f)

To see why the formulation is correct, consider a cut-set S ⊆ V with t 6∈ S for some terminal
t ∈ T `. If S contains a root node rk with zk` = 1, then S must have at least one outgoing arc
and the right-hand side of (5a) evaluates to 1 (observe that because of (5b) the right-hand
side can never exceed 1). Otherwise, the right-hand side of (5a) evaluates to 0 and the
constraint is trivially satisfied. The LP relaxation of (IPedc) can be solved in polynomial
time using a similar algorithm as for Lsedc.

I Lemma 4. Projx(Lsedc) (Projx(Ledc).

Proof. Let (x̃, ỹ, z̃) ∈ Lsedc. We argue that (x̃, ỹ, z̃) ∈ Ledc. The constraints (5b)–(5d) are
trivially satisfied. Now, consider a directed cut S ⊆ V : S ∩ T ` 6= ∅, for some set ` ∈ [K].
Any cut S is relevant to the sum in the right-hand side of constraint (5a) if and only if it is
a valid cut for constraint (3a), hence

ỹ(δ+(S))
(3c)
≥

K∑
k=1

ỹk(δ+(S)) ≥
∑̀
k=1

ỹk(δ+(S))
(3a)
≥
∑
k≤`

z̃k` ≥
∑
k≤`:
rk∈S

z̃k`

and thus (5a) is satisfied. Again, strictness follows from instance (B) in Figure 1. J

On the other hand, the model is stronger than the directed model without z variables.

I Lemma 5. Projx(Ledc) (Projx(Ldc).

We summarize the results of the discussion in Figure 5 and remark that the relationship
of Lmr to the models Ldc and Ledc is an open problem. Our conjecture is that it holds
Projx(Lmr) (Projx(Ledc) (Projx(Ldc).

ESA 2018

70:10 An Exact Algorithm for the Steiner Forest Problem

Luf/Luc

Lmr

Lklsvz [23]

Ldf/Ldc

Ledc

Lsedf/Lsedc

[25] [23]

trivial
Lemma 5

Theorem 2

Lemma 4Theorem 3

Figure 5 Relationship of the LP relaxations. The arrows point to the stronger relaxation.

cpu [s]0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600
0

50
100
150
200
250
300
350
400
450
500
550
600

Lmr Ldc Ledc Lsedc

Figure 6 Number of JMP instances (out of 580) solved by B&B after x seconds.

4 Experimental results

Settings. All experiments were performed on a Debian 9.4 machine with an Intel(R)
Xeon(R) CPU E5-2643 running at 3.30GHz. Our code is written in C++ using the ILOG
CPLEX 12.6.3 framework. We compiled with gcc-6.3 and -O2 flags. Automatic symmetry
breaking and presolving was disabled in CPLEX, as well as all general integer cuts.

Instances. For the JMP instance set, we generated 580 random graphs with a frequently
used method by Johnson, Minkoff, and Philipps [21]: First, distribute n nodes uniformly at
random in a unit square. Then, insert an edge {i, j} if the Euclidean distance between i and
j is less than α/

√
n, where α is a parameter for the random generator. The cost of the edge

{i, j} is proportional to the Euclidean distance. Finally, connect all nodes with a minimum
Euclidean spanning tree to ensure that the instance is connected.

To determine K random terminal sets, we first select t · |V | nodes uniformly at random
(the number K ∈ [n/2] of terminal sets and the terminal percentage t ∈ [0, 1] are again
parameters). We then bring the selected nodes into a random order and draw K − 1 distinct
split points from {2, . . . , t · |V | − 1}, thus splitting the random node order into K distinct
terminal sets. For each n ∈ {25, 50, 150, 200, 500}, we choose a small, a medium, and
a large number of terminal sets K. The percentage t of terminal nodes is picked from
{0.25, 0.5, 0.75, 1.0} unless a combination of n,K, and t results in a terminal set size of less
than two. For each choice of n, K, and t, we generate five instances with α = 1.6 and five
instances with α = 2.0; leading to 580 JMP instances. The MR instance set is generated based
on [25] and contains 85 instances.

D. Schmidt, B. Zey, and F. Margot 70:11

|V |

bo
un

d
re

la
tiv

e
to

L
u

c

10 15 20
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

MR instances
Lmr Ldc Ledc Lsedc

|V |

bo
un

d
re

la
tiv

e
to

L
u

c

25 50 100 200 500
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

JMP instances
Ldc Ledc Lsedc

Figure 7 Improvement of the linear programming bound over the bound obtained from Luc: The
plot shows the ratio of the best bound after 1200 seconds over the optimum bound from Luc. The
theoretical maximum improvement is at most 2. On the right: For |V | ∈ {25, 50} all bounds are
optimum; for |V | ∈ {100, 200} only the Ledc and Lsedc bounds are optimum. For |V | = 500, about
50% of the Ledc and Lsedc and none of the Ldc bounds are optimum.

The branch-and-bound algorithm. We solve formulation (IPsedc) by an B&B algorithm.
As the algorithm requires solving the LP relaxation Lsedc in each B&B node, we generate
the LP relaxation dynamically with the separation procedure from Section 3. This allows
us to efficiently solve each B&B node. We follow the same approach for the ILP from [25],
for (IPedc), and for (IPdc) and compare the results. Similar separation procedures using
minimum cuts exist for Ldc and Ledc, so that we can generate the relaxations efficiently as
well. In more detail, we compute a minimum s-t-cut by computing a maximum s-t-flow
f and then deriving a cut-set S, where a node v ∈ V is included in S if and only if there
is a directed path from v to t in the residual network of f . We can then derive a cut-set
inequality based on S. Some algorithmic techniques have the potential to improve this
on-the-fly generation [22]:
Back cuts. Additionally add the cut-set inequality corresponding to S̄ where v ∈ V is

included in S̄ if and only if there is a directed s-v-path in the residual network of f .
Nested cuts. Assign an infinite capacity to all saturated edges in the residual network of f

and iterate. Nested cuts can be combined with back cuts: We first compute S and S̄ and
then compute nested cuts on both sets.

Creep flows. Add a small ε = 10−8 to all capacities. This lets us find a minimum weight
cut that cuts few edges. The creep flow variant works together with both nested cuts and
back cuts.

Cut purging. Finally, it can be beneficial to remove cut-set inequalities from the relaxation
if they have not been binding for a number of iterations.

It is not clear a priori which combination of these variants leads to the best performance
of the algorithm. In a preliminary experiment, we evaluated all 16 combinations for all the
formulations under consideration. To avoid overfitting, we tested on a random subset of the
instances only. Back cuts were beneficial in all cases. The Lsedc relaxation benefited from
additional creep flows, while Ldc worked best with additional nested cuts and purging. In all
cases, we compute the maximum s-t-flows with a custom implementation of the push-relabel
algorithm with the highest-label strategy and the gap heuristic [16, 5]. Since the Lsedc

constraints (3f) and (3g) would be valid for Ldc and Ledc as well, we compare against Lsedc
without (3f) and (3g). This results in a fairer comparison.

ESA 2018

70:12 An Exact Algorithm for the Steiner Forest Problem

Comparison of the algorithms. We compare B&B algorithms based on the previous best
formulations with our new ones in Figure 6 using the JMP instance set. All algorithms are
run in the tuned configuration from the preliminary experiment. The figure shows that
our new Lsedc based algorithm solves almost twice as many instances to optimality as the
previous ones. A more detailed picture would show that all unsolved instances are large
ones with |V | = 500. The Ledc based algorithm solves significantly less instances, but still
performs better than the algorithm based on Ldc. The algorithm based on Lmr mostly solved
the small instances. The Lsedc, the Ledc, the Ldc, and the Lmr based algorithm solved 480,
385, 185, and 97 instances without branching, respectively. In the following, we analyze why
our algorithms perform well.

The new bounds can be computed quickly. We compare our new approach against the
two previous best: The relaxation Ldc of the directed cut formulation and the relaxation Lmr

of [25]. Ideally, we would like to have relaxations that solve quickly and yield a strong bound.
Indeed, the LP relaxations in our new algorithm can be solved to optimality quickly and
reliably: We find the LP optimum of at least 500 out of 580 instances within 1200 seconds.
Moreover, the bulk of the LP relaxations is solved within 100 seconds for Ledc and within 400
seconds for Lsedc. At the same time, the existing B&B algorithms struggle to solve their LP
relaxations: The relaxation Lmr could only be solved to optimality within 1200 seconds in
100 out of 580 times. In the same time frame, the relaxation Ldc could be solved 280 times.

The new bounds are strong. The results from the previous section show that the optimum
bound from the LP relaxations of the advanced formulations will never be worse than the
bound from Luc. We would like to quantify the ratio of the bounds; however, the theoretical
worst-case ratio of the bounds is 1. What ratio can we hope for on non-artificial instances?
To answer this question, we solve the LP relaxations of the advanced formulations. Since
any feasible solution to an LP relaxation yields a valid bound, we stop the computation
after 1200 seconds and take the best bound obtained up to that point. We then compare
this bound with the optimum of Luc in Figure 7. The bounds obtained from the relaxation
of [23] were exactly the same as of Luc and are not shown here. Lmr only solved a significant
number of the small instances from the JMP set. To nonetheless obtain a fair comparison
for Lmr, we instead look at the MR instance set that is based on the original publication
of [25]. The comparison can also be seen in Figure 7. We see that if Lmr can be solved, it
yields a bound that is comparable to the one from the new relaxations.

5 Conclusion

Overall, our new branch-and-bound algorithm works very well and its performance seems
to be due to the strong bounds obtained from the new ILP formulation (IPsedc). While
its relaxation Lsedc is solved less quickly than the simplified relaxation Ledc, its stronger
bounds seem to pay off overall. At the same time, it answers Magnanti’s and Raghavan’s
open problem: There is indeed an equally strong cut-based model to [25]. On the theoretical
side, we would like to obtain an LP relaxation with an integrality gap of much less than 2.
This problem is not solved by Lsedc: We observe that it coincides with Ldc if K = 1. On
the other hand, Könemann et al. [23] propose an LP relaxation that has a better worst-case
integrality gap. In our experiments, however, the relaxation always yields the same bounds
as the weak undirected cut relaxation Luc, making it less suitable for practical purposes.

D. Schmidt, B. Zey, and F. Margot 70:13

References
1 A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for

the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456,
1995.

2 A. Balakrishnan, T. L. Magnanti, and R. T. Wong. A dual-ascent procedure for large-scale
uncapacitated network design. Operations Research, 37(5):716–740, 1989.

3 M. Bateni, M. T. Hajiaghayi, and D. Marx. Approximation schemes for Steiner forest on
planar graphs and graphs of bounded treewidth. Journal of the ACM, 58(5):21:1–21:37,
2011.

4 A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast subset
convolution. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing, STOC ’07, pages 67–74. ACM, 2007.

5 B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the
maximum flow problem. Algorithmica, 19(4):390–410, 1997.

6 S. Chopra, E. R. Gorres, and M. R. Rao. Solving the Steiner tree problem on a graph using
branch and cut. ORSA Journal on Computing, 4(3):320–335, 1992.

7 S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, compositions and
extension of facets. Mathematical Programming, 64(1):209–229, 1994.

8 S. Chopra and M. R. Rao. The Steiner tree problem II: Properties and classes of facets.
Mathematical Programming, 64(1-3):231–246, 1994.

9 S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,
1971.

10 C. W. Duin and A. Volgenant. Reduction tests for the steiner problem in grapsh. Networks,
19(5):549–567, 2006.

11 J. Edmonds. Submodular functions, matroids, and certain polyhedra. In M. Jünger,
G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization — Eureka, You Shrink!,
number 2570 in LNCS, pages 11–26. Springer Berlin Heidelberg, 2003.

12 R. E. Erickson, C. L. Monma, and A. F. Veinott. Send-and-split method for minimum-
concave-cost network flows. Mathematics of Operations Research, 12(4):634–664, 1987.

13 M. X. Goemans. The Steiner tree polytope and related polyhedra. Mathematical Program-
ming, 63(1–3):157–182, 1994.

14 M. X. Goemans and Y.-S. Myung. A catalog of Steiner tree formulations. Networks,
23(1):19–28, 1993.

15 M. X. Goemans and D. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

16 A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal
of the ACM, 35(4):921–940, 1988.

17 M. Groß, A. Gupta, A. Kumar, J. Matuschke, D. R. Schmidt, M. Schmidt, and J. Verschae.
A local-search algorithm for Steiner forest. In A. R. Karlin, editor, 9th Innovations in
Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 31:1–31:17. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018.

18 A. Gupta and A. Kumar. Greedy Algorithms for Steiner Forest. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15, pages
871–878. ACM, 2015.

19 S. Hougardy, J. Silvanus, and J. Vygen. Dijkstra meets Steiner: A fast exact goal-oriented
Steiner tree algorithm. Mathematical Programming Computation, 9(2):135–202, 2017.

20 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001.

ESA 2018

70:14 An Exact Algorithm for the Steiner Forest Problem

21 D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem:
Theory and practice. In Proceedings of the Symposium on Discrete Algorithms, SODA ’00,
pages 760–769. SIAM, 2000.

22 T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32(3):207–232, 1998.

23 J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. A group-strategyproof cost
sharing mechanism for the Steiner forest game. SIAM Journal on Computing, 37(5):1319–
1341, 2008.

24 A. Lucena. Tight bounds for the Steiner problem in graphs. Technical report, RC for
Process Systems Engineering, Imperial College, London, 1993.

25 T. L. Magnanti and S. Raghavan. Strong formulations for network design problems with
connectivity requirements. Networks, 45:61–79, 2005.

26 F. Margot, A. Prodon, and T. M. Liebling. Tree polytope on 2-trees. Mathematical Pro-
gramming, 63(1–3):183–191, 1994.

27 T. Polzin. Algorithms for the Steiner Problem in networks. PhD thesis, Universität des
Saarlandes, 2004. URL: http://scidok.sulb.uni-saarland.de/volltexte/2004/218/
index.html.

28 T. Polzin and V. S. Daneshmand. A comparison of Steiner tree relaxations. Discrete
Applied Mathematics, 112(1):241–261, 2001.

http://scidok.sulb.uni-saarland.de/volltexte/2004/218/index.html
http://scidok.sulb.uni-saarland.de/volltexte/2004/218/index.html

Large Low-Diameter Graphs are Good Expanders
Michael Dinitz1

Dept. of Computer Science, Johns Hopkins University, Baltimore, US
mdinitz@cs.jhu.edu

Michael Schapira
School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel
schapiram@cs.huji.ac.il

Gal Shahaf
Dept. of Mathematics, The Hebrew University, Jerusalem, Israel
gal.shahaf@mail.huji.ac.il

Abstract
We revisit the classical question of the relationship between the diameter of a graph and its
expansion properties. One direction is well understood: expander graphs exhibit essentially the
lowest possible diameter. We focus on the reverse direction, showing that “sufficiently large”
graphs of fixed diameter and degree must be “good” expanders. We prove this statement for
various definitions of “sufficiently large” (multiplicative/additive factor from the largest possible
size), for different forms of expansion (edge, vertex, and spectral expansion), and for both directed
and undirected graphs. A recurring theme is that the lower the diameter of the graph and
(more importantly) the larger its size, the better the expansion guarantees. Aside from inherent
theoretical interest, our motivation stems from the domain of network design. Both low-diameter
networks and expanders are prominent approaches to designing high-performance networks in
parallel computing, HPC, datacenter networking, and beyond. Our results establish that these
two approaches are, in fact, inextricably intertwined. We leave the reader with many intriguing
questions for future research.

2012 ACM Subject Classification Mathematics of computing→ Spectra of graphs, Mathematics
of computing → Extremal graph theory, Networks → Network design principles, Networks →
Network structure

Keywords and phrases Network design, Expander graphs, Spectral graph theory

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.71

Acknowledgements We wish to thank Nati Linial, Alex Samorodnitsky, Elchanan Mossel, and
Noga Alon for fruitful discussions.

1 Introduction

Both the diameter of a graph and its expansion capture the “connectedness” of the graph,
albeit in two very different senses. The diameter, i.e., the maximal distance between a pair
of vertices, provides an upper bound on the length of shortest paths in the graph, whereas
expansion measures the minimal ratio between a subset of vertices and its boundary. We
revisit the classical question of relating these two traits. One direction is well known: good
expansion implies a low diameter. Specifically, the diameter of a graph with good expansion

1 [Supported in part by NSF awards 1464239 and 1535887]

© Michael Dinitz, Michael Schapira, and Gal Shahaf;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 71; pp. 71:1–71:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mdinitz@cs.jhu.edu
mailto:schapiram@cs.huji.ac.il
mailto:gal.shahaf@mail.huji.ac.il
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.71
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

71:2 Large Low-Diameter Graphs are Good Expanders

is O(logn) (see, e.g., [26]), which is asymptotically the lowest possible. We focus on the
opposite, and largely unexplored, direction.

In general, low diameter does not guarantee good expansion. Consider, e.g., a graph on
n vertices that is a disjoint union of two cliques, each of size n

2 . Removing one edge from
each clique and connecting the cliques via two “bridges” results in a (n2 − 1)-regular graph of
diameter 3 with very low expansion (which worsens as n→∞). We observe, however, that
this “bad” graph is significantly smaller than the largest (n2 − 1)-regular graph of diameter
3 (which is of size Ω(n3)). Indeed, our investigation below reveals that, in contrast to the
above, when the degree and the diameter are fixed and the size of the graph is “sufficiently
large”, the graph must have “good” expansion. We formalize this statement for different
notions of “large”, for different forms of expansion (edge, vertex, and spectral expansion),
and for undirected/directed graphs. Our results are presented in Section 1.2, but informally,
“sufficiently large” means that the size of the graph is close to the best-known upper bound
on the size, in either a multiplicative or additive setting.

We formalize the above statements and discuss implications of our results for network
design and beyond, including the unification of two competing approaches to datacenter
network design.

1.1 The Degree/Diameter Problem

Before we can state our results, we must first define what we mean by a “large, low-diameter
graph”. To start off: how large can a d-regular graph of diameter k (which we shall refer to
as a “(d, k)-graph” henceforth) actually be? An upper bound on the size of such a graph
is the classical Moore Bound [25], denoted by µd,k (see Section 2 for a formal definition).
Extensive research has been devoted to determining the existence of graphs whose sizes
match this upper bound (a.k.a., Moore Graphs) or well-approximate it. This line of study,
termed the “degree/diameter problem”, was initiated by Hoffman and Singleton [25]. See [41]
for a detailed survey of results in this active field of research.

Graphs whose sizes exactly match the Moore Bound, referred to as “Moore Graphs”
henceforth, only exist for very few values of d and k [25, 4]. Consequently, various construc-
tions for generating graphs whose sizes come “close” to the Moore Bound, which we call
“approximate-Moore Graphs”, have been devised.

Specifically, constant multiplicative approximations (MMS-graphs [39]) and constant
additive approximations (e.g., polarity graphs [20, 12]) have been devised for the case of
diameter k = 2. Delorme [41, 16, 17] constructed infinite series of (d, k)-graphs whose sizes
arbitrarily approach the Moore Bound for diameters k = 3 and k = 5. Graph constructions
whose sizes approximate the Moore Bound within non-constant multiplicative factors exist for
arbitrary values of k (examples include, e.g., de Bruijn [15] and Canale-Gomez [13] graphs for
the undirected case, and Alegre and [41] Kautz [19] digraphs for the directed analogue of the
problem). While constructing approximate-Moore Graphs whose sizes arbitrarily approach
the Moore Bound for arbitrary values of k remains an important and widely studied open
question, such graphs are believed to exist for sufficiently large d and k, as conjectured, e.g.,
by Bollobás in [10].

Our investigation of the relation between diameter and expansion also uses the Moore
Bound as a benchmark and compares the size of (d, k)-graphs to µd,k. We consider both
multiplicative and additive approximations to the Moore Bound. Our results establish that
good solutions to the degree-diameter problem must be good expanders, establishing a novel
link between two prominent and classical lines of research. In addition, our results yield
new expansion bounds for all of the classical constructions of low-diameter graphs discussed
above.

M. Dinitz, M. Schapira, and G. Shahaf 71:3

Table 1 Summary of Results Relating Expansion and Diameter.

Size Expansion guarantees

(d, k)-graph

n ≥ µd,k −O(dk/2) λ(G) = O(
√
d)

n ≥ (1− ε)µd,k λ(G) = O(ε1/k)d

n = α · µd,k
he(G) ≥ αd

2k ·
(

1− 1
(d−1)k

)
φV (G) ≥ α

2(k−1)+α

k = 2
n λ(G) ≤ 1+

√
1+4(d2+d−n)

2

n = α · d2 he(G) ≥ 2d+1−
√

4(1−α)d2+4d+1
4

φV (G) ≥ 2α
2α+1

k = 3 n = α · d3 φV (G) ≥ α
α+1

(d, k)-digraph n = α · µ̃d,k
he(G) ≥ α

2k (d− 1
dk)

φV (G) ≥ α·d
2(d+1)(k−1)+α·d

1.2 Our Results

Our results relating the size of a (d, k)-graph to its expansion are summarized in Table 1, with
λ(G), he(G), and φV (G) denoting spectral expansion, edge expansion, and vertex expansion,
respectively (formal definitions can be found in Section 2). µ̃d,k is the analogue of the Moore
Bound for directed graphs.

We begin in Section 3 with our main results, which provide bounds on the spectral
expansion of large (d, k)-graphs. In particular, our results establish that if the size of a
graph is very close additively to the Moore bound, then the graph is essentially an optimal
expander. In addition, if the graph has size that is close multiplicatively to the Moore bound,
the spectral expansion might no longer be optimal, but is still very good.

We next turn our attention to combinatorial notions of expansion: edge expansion and
vertex expansion. We provide (in Section 4) guarantees on both the edge and the vertex
expansion of (d, k)-graphs in terms of their multiplicative distance from the Moore Bound.
Our analysis leverages careful counting arguments to bound the ratio between the cardinality
of a set of vertices and the size of its boundary. We also prove, through more refined analyses,
improved results for diameters 2 and 3.

The key technical insight underlying our results for spectral expansion is a novel link,
which we believe is of independent interest, between the nontrivial eigenvalues of a graph’s
adjacency matrix and the distance of the graph from the Moore Bound. Specifically, the
proofs of our results for spectral expansion rely on the analysis of non-backtracking paths
in the graph. A path is said to be non-backtracking if it does not traverse an edge back
and forth consecutively. We prove that the matrix that corresponds to all non-backtracking
paths of length at most k must consist of strictly positive entries and shares all eigenvectors
of the adjacency matrix A. We establish the above algebraic relation between the two
matrices by employing the Geronimus Polynomials [9, 44], a well-known class of orthogonal
polynomials, as operators acting on the adjacency matrix. Given the spectrum of A, an
asymptotic estimation of the polynomials’ coefficients allows us to bound the spectrum of
the non-backtracking paths matrix. We then subtract from the latter the all-ones matrix
and use the leading eigenvalue of the remaining matrix (which can be computed directly) to
bound the nontrivial eigenvalues of the adjacency matrix A.

ESA 2018

71:4 Large Low-Diameter Graphs are Good Expanders

Table 2 Implications for Known Constructions of Low-Diameter Graphs.

Construction Spectral expansion Edge expansion Vertex expansion
de Bruijn (k = 2) [15] - − 1

3

Canale-Gomez [13] - d
2k·1.57k

(
1− 1

(d−1)k

)
1.57−k

2(k−1)+1.57−k

Alegre digraph [41] - 25·2k

32k·dk

(
d− 1

dk

) (2
d)k· 25d

16

2(d+1)(k−1)+(2
d)k· 25d

16

Kautz digraphs [19] - 1
2k

(
d− 1

dk

)
d

2(d+1)(k−1)+d

Polarity graph [20, 12] λ ≤ 1+
√

1+8(d−1)
2

2d+1−
√

4d+1
4

2
3

MMS-graphs [39] λ ≤ 1+ 1
3

√
d2+d+7
2

2d+1−
√

4
9 d

2+4d+1
4

16
25

Our technique should be contrasted with employing Hashimoto’s non-backtracking oper-
ator [24] to reason about non-backtracking paths in a graph (e.g., in the context of localization
and centrality [38], clustering [33], mixing time acceleration [1], and percolation [27] in net-
works). In our context, applying Hashimoto’s operator involves reasoning about intricate
relations between the spectra of the adjacency matrix A and another matrix, called the
“non-backtracking matrix” (via the Ihara-Bass formula [11]). Geronimous Polynomials, a
subfamily of the more renowned Chebyshev polynomials, allow for much simpler analysis. We
believe that our techniques, and the (yet to be explored) connections between Geronimous
Polynomials and Hashimoto’s operator, are of independent interest and may find wider
applicability.

Importantly, our research diverges from the main vein of prior research on expanders.
Expanders are commonly viewed as highly-connected sparse graphs. Indeed, the bulk of
literature on this topic assumes that the degree of these graphs is essentially constant with
respect to the size of the graph (i.e., d� n). In contrast, the size of a “large” (d, k)-graph
graph is O(dk).

Aside from inherent theoretical interest, our motivation stems from the domain of network
design. Low-diameter networks have been widely studied in the context of high-performance-
computing (HPC) architectures (see, e.g., [29, 8, 2, 30]), parallel computing [34], and the
design of fault-tolerant networks [6, 7, 8, 21, 42]. Of special interest in this literature are large
networks of very low diameters (e.g., 2 or 3), as short path lengths translate to low latency
in data delivery and also to low packet-queueing delays and power consumption (due to
having few intermediate network devices en route to traffic destinations [20, 12, 39, 8, 29, 31]).
Similarly to low-degree networks, expanders have been shown to induce high performance in
a broad spectrum of network design contexts.

Recently, the focus on either the diameter or the expansion of a network topology gave
rise to two competing approaches for datacenter architecture design [46, 43, 37, 32, 8, 29, 31].
Specifically, an important line of research in datacenter design (see, e.g., [43, 37, 8, 23]) relies
on (either implicitly or explicitly) utilizing graphs whose sizes are as large as possible for a
given diameter and degree as datacenter network topologies2. A different strand of research
investigates how utilizing expander graphs as datacenter network topologies can be turned
into an operational reality [46, 18, 28].

2 The authors of [37], for instance, write that “Intuitively, the best known degree-diameter topologies
should support a large number of servers with high network bandwidth and low cost (small degree)...
Thus, we propose the best-known degree-diameter graphs as a benchmark for comparison.”

M. Dinitz, M. Schapira, and G. Shahaf 71:5

Our results show that these two approaches are, in fact, inextricably intertwined; not
only do expanders exhibit low (in fact, near-optimal) diameters [26], but constructing large
low-diameter datacenter networks effectively translates to constructing good expanders. Thus
these two approaches to designing datacenter networks can essentially be regarded as one: the
search for extremely strong expanders. Our results provide new expansion guarantees for a
number of well-studied low-diameter networks, including MMS graphs [39] (proposed for the
context high-performance computing and datacenters, see Slim Fly [8]), polarity graphs [20,
12], Canale-Gomez graphs [13], and more. See summary of the implications of our results for
different graph constructions in Table 2. Our results for spectral expansion essentially match
previously established results, thus generalizing and unifying prior construction-specific
bounds.

Beyond the implications for network design, the study of low-diameter networks also
pertains to other areas such as feedback registers [22, 35] and decoders [14].

2 Preliminaries

We provide below a brief exposition of graph expansion and the Moore Bound. We refer the
reader to [26] and [41] for detailed expositions of these topics.

Let G = (V,E) be an undirected graph of size |V | = n. G is said to be d-regular if each
of its vertices is of degree d, and of diameter k if the maximum distance between any two
vertices in the graph is k. d-regular graphs of diameter k are denoted throughout the paper
as (d, k)-graphs.

The combinatorial expansion of the graph reflects an isoperimetric view and is the minimal
ratio between the boundary ∂S of a set S and its cardinality. Different interpretations of ∂S
give rise to different notions of expansion.

The edge expansion of G is

he(G) := min
|S|≤n

2

|e(S, Sc)|
|S|

where e(S, Sc) := {(u, v) ∈ E|u ∈ S, v ∈ Sc}.
The vertex expansion of G is

φV (G) = min
0<|S|≤n

2

|N(S)|
|S|

.

where N(S) := {v ∈ Sc| ∃u ∈ S s.t. (u, v) ∈ E}.3
We next define the algebraic (spectral) notion of expansion. Let A be the adjacency

matrix of the graph. Since A is symmetric it is diagonalizable with respect to an orthonormal
basis, and the corresponding eigenvalues are real, and so can be ordered as follows:

λ1 ≥ λ2 ≥ ... ≥ λn.

The first eigenvalue of a d-regular graph satisfies λ1 = d and has the all-ones vector 1n

as the associated eigenvector. Let λ(G) := max{|λ2|, |λn|}. A graph G is said to be an
expander if λ(G) is bounded away from d by some constant [3]. The algebraic expansion (or
spectral expansion) is then defined as d − λ(G), termed the spectral gap4. The larger the
gap, the better the expansion.

3 The definitions of edge and vertex expansion admit several variants, based on either the size of the cut
or the type of the boundary (see [26] for examples). While we adopt the most common of those, our
results can be stated w.r.t. other variants as well.

4 We use the two-sided notion of spectral gap throughout the paper, as oppsed to d− λ2.

ESA 2018

71:6 Large Low-Diameter Graphs are Good Expanders

How large can a (d, k)-graph be? A straightforward upper bound is obtained by summation
of the vertices according to their distance from a fixed vertex v0 ∈ V . Let mj denote the
number of vertices at distance j from v0. Note that m0 = 1 and m1 = d. As vertices
at distance j ≥ 2 must be adjacent to some vertex at distance j − 1, we have that mj ≤
(d− 1)mj−1. A simple induction implies that mj ≤ d(d− 1)j−1. Now since the diameter is
k, all vertices have distance at most k from v0, and hence n ≤ 1 + d+ d(d− 1) + d(d− 1)2 +
...+ d(d− 1)k−1. We denote this expression, known as the Moore Bound of the graph, by

µd,k := 1 + d

k−1∑
i=0

(d− 1)i =
{

2k + 1 if d = 2
1 + d · (d−1)k−1

d−2 if d > 2

3 Diameter vs. Algebraic Expansion

We establish below a relationship between the nontrivial eigenvalues of A and the distance
of the graph from the Moore Bound. This relationship will enable us to prove a variety of
bounds on the algebraic expansion of approximate-Moore graphs. This novel link relies on
the following class of orthogonal polynomials: let P0(x) = 1, P1(x) = x, P2(x) = x2 − d, and
for every t > 2 define Pt(x) by the recurrence relation

Pt(x) = xPt−1(x)− (d− 1)Pt−2(x).

The significance of this class of polynomials, termed the “Geronimus Polynomials” [9, 44],
is reflected in the main technical theorem of this section:

I Theorem 1. Let G be (d, k)-graph of size n. Then, every nontrivial eigenvalue λ < d of
G satisfies∣∣∣∣∣

k∑
t=0

Pt(λ)

∣∣∣∣∣ ≤ µd,k − n
Before delving into the proof of Theorem 1, we discuss some of its implications. Theorem 1

can be applied to provide meaningful guarantees regarding the spectral expansion of low-
diameter graphs whose sizes approach the Moore Bound. Constructing large graphs of very
low diameter, e.g., k = 2, 3, has received much attention from both a theoretical perspective
(see, e.g., [20, 12, 39]) and a practical perspective (see, e.g., [8, 29, 31]). An immediate
implication of Theorem 1 is the following:

I Theorem 2. Let G be a d-regular graph of diameter k = 2 and size n, then

λ(G) ≤
1 +

√
1 + 4(d2 + d− n)

2 .

Proof. Applying the Geronimus Polynomials Pt(λ) for 0 ≤ t ≤ 2 in Theorem 1 yields

|1 + λ+ (λ2 − d)| ≤ µd,2 − n = d2 + 1− n.

The result follows from solving the quadratic inequality. J

This theorem immediately bounds the algebraic expansion of polarity graphs [20, 12] and
MMS graphs [39] claimed in Table 2, as both of these classes of graphs have diameter 2.
What about graphs of diameter k > 2? A more careful analysis of the Geronimus polynomials

M. Dinitz, M. Schapira, and G. Shahaf 71:7

for larger values of k allows us to use Theorem 1 to prove two different expansion bounds.
The first is an extremely strong expansion bound but requires the size of the graph to be
additively close to the Moore bound, whereas the second allows a small multiplicative gap
between the size and the Moore bound but establishes a weaker expansion guarantee.

I Theorem 3. Let G be a (d, k)-graph of size n ≥ µd,k −O(dk/2), for some constant k > 0.
Then λ(G) = O(

√
d).

Since any d-regular graph must satisfy λ(G) ≥
√
d (see [26] for details), Theorem 3 implies

that an additive approximation of O(dk/2) of the Moore Bound implies essentially optimal
spectral properties.

I Theorem 4. Let G be a (d, k)-graph of size n ≥ (1 − ε)µd,k, for some constant k > 0.
Then λ(G) ≤ O(ε1/k) · d.

Delorme [41, 16, 17] proved the existence of an infinite series of (d, k)-graphs whose sizes
arbitrarily approach the Moore Bound for diameters k = 3 and k = 5. Specifically, Delorme
proved that lim infd→∞ nd,k

dk = 1, for k = 3, 5, where nd,k is the largest possible size of a
(d, k)-graph. This means that for k = 3, 5, for any constant ε > 0 there is some value d′ such
that for all d ≥ d′ there is a (d, k)-graph with at least (1− ε)µd,k vertices. Hence, Theorem 4
implies that these graphs are good expanders.

Bollobás conjectured that (d, k)-graphs of size n ≥ (1− ε)dk always exist for sufficiently
large d and k [10]. Delorme’s results may be perceived as supporting this conjecture. We point
out that proving Bollobás’ conjecture (or even extending Delorme’s results to other specific
values of k and d) would immediately imply, by Theorem 4, similar expansion guarantees.
The remainder of this section is devoted to the proofs of Theorems 1, 3, and 4.

3.1 Bounding the nontrivial eigenvalues (proof of Theorem 1)
Our high-level approach to proving Theorem 1 is the following: We aim to bound λ(G), the
second-largest eigenvalue (in absolute value) of the adjacency matrix A. We instead consider
a different matrix M , obtained by employing the Geronimus Polynomials as operators
over A. The combinatorial properties of this class of polynomials allow us to show that
M1n = (µd,k − n)1n. Applying the Perron-Frobenius Theorem asserts that this eigenvalue
serves as a bound over the entire spectrum of M . We then utilize the algebraic relation
between both matrices: Namely, we bound A’s nontrivial spectrum, using the fact that M
shares the same eigenvectors as A, and that its eigenvalues may be derived from those of A
via an operation of the Geronimus Polynomials. This will then imply Theorem 1.

We begin with the known solution to the recurrence, formulated via a trigonometric
expression that holds for all t > 0 [45]:

Pt(2
√
d− 1 cos θ) = (d− 1)t/2−1 (d− 1) sin((t+ 1)θ)− sin((t− 1)θ)

sin θ (1)

One can easily check that this identity applies for t = 1, 2 and verify that the recurrence
relation holds for t > 2. All roots of Pt are real and lie in the interval [−2

√
d− 1, 2

√
d− 1] [5,

36].
Our framework applies the Geronimus Polynomials as operators over the adjacency matrix

A. This method has several advantages: Algebraically, since Pt(A) is a linear combination
of powers of A, each eigenvector v of A is an eigenvector of Pt(A) as well. Thus, the
spectrum of Pt(A) is given by spec[Pt(A)] = {Pt(λ) | λ is an eigenvalue of A}. Viewed from

ESA 2018

71:8 Large Low-Diameter Graphs are Good Expanders

a combinatorial perspective, this operation allows us to dismiss backtracking paths from
consideration. By backtracking, we refer to paths that traverse an edge in both directions
consecutively. Note that a non-backtracking path need not be simple (a nontrivial cycle is a
typical example of a non-backtracking yet non-simple path). The following claim states this
observation formally. The proof is straightforward and is included for completeness.

I Claim 5. Let A be the adjacency matrix of a d-regular graph G. Then, Pt(A) is the n× n
matrix in which the (u, v)’th entry equals the number of non-backtracking paths of length
exactly t between u and v.

Proof. We use induction on t. Note that P0(A) = I, P1(A) = A and P2(A) = A2 − dI
satisfy the claim. For the induction step, suppose that the claim holds for all Geronimus
Polynomials of order strictly less than t. Consider the term A · Pt−1(A), which corresponds
to paths of length t such that the first t− 1 hops on the path are non-backtracking. Note
that reducible paths in this term are those paths that can only be reduced by eliminating
their last two arcs and so there must be exactly (d− 1)Pt−2(A) of them. Being the difference
between those quantities, it follows that Pt(A) = A · Pt−1(A)− (d− 1)Pt−2(A) corresponds
to the non-backtracking paths. J

As a corollary, the entries of Pt(A) are non-negative for all t ≥ 0. In addition, as
d(d − 1)t−1 is the number of non-backtracking paths of length t > 0 starting from every
v ∈ G, this quantity equals the sum of entries in every row of Pt(A). Hence, Claim 5 implies
that Pt(A)1n = d(d− 1)t−11n.

Summing over the indices 0 ≤ t ≤ k, yields

k∑
t=0

Pt(A)1n =
(

1 +
k∑
t=1

d(d− 1)t−1

)
1n = µd,k · 1n. (2)

We are now ready to prove Theorem 1:

Proof. (of Theorem 1) Given Claim 5, the sum of matrices
∑k
t=0 Pt(A) corresponds to all

non-backtracking paths of length at most k. SinceG is of diameter k, this sum of matrices must
consist of strictly positive entries, and can thus be represented as

∑k
t=0 Pt(A) = J+M , where

J is the all ones matrix andM is non-negative. We now haveM1n =
(∑k

t=0 Pt(A)− J
)

1n =
(µd,k − n) 1n, where the second equality is due to (2).

Recall that A is symmetric and thus diagonalizable w.r.t. an orthogonal basis. Therefore,
any eigenvector v 6= 1n must lie in (span{1n})⊥. Since J1n = n1n and rank(J) = 1, it
follows that Jv = 0. Hence, Mv =

(∑k
t=0 Pt(A)− J

)
v =

∑k
t=0 Pt(A)v =

∑k
t=0 Pt(λ)v.

This implies in particular that

spec(M) =
{

k∑
t=0

Pt(λ) | λ is a nontrivial eigenvalue of A
}
∪ {µd,k − n}.

We now apply the Perron-Frobenius Theorem (see [40]), which states that a non-negative
matrix admits a non-negative eigenvector with a non-negative eigenvalue that is larger or
equal, in absolute value, to all other eigenvalues. Now, since 1n is the only non-negative
eigenvector of M , we conclude that µd,k − n is the leading eigenvalue of M and the claim
follows. J

M. Dinitz, M. Schapira, and G. Shahaf 71:9

3.2 Proof of Theorem 3
Our proof of Theorem 3 utilizes a careful asymptotic estimation of the Geronimus Polynomials’
coefficients. When λ(G) is of order larger than

√
d, our analysis asserts that

∣∣∣∑k
t=0 Pt(λ)

∣∣∣
must be larger then O(dk/2) for some nontrivial eigenvalue λ of G, thus resulting in a
contradiction to Theorem 1.

For our purposes, it will be beneficial to use the representation Pt(x) =
∑t
i=0 at,ix

i,
where at,i is the i’th coefficient of the t’th Geronimous Polynomial. We note the following:
(i) Pt is either odd or even5 for all t > 0, and the parity of Pt equals the parity of t. This
can be shown either by induction using the recurrence relation, or straightforward from
the solution (1); (ii) A comparison of the leading coefficients in the recurrence implies that
at,t = at−1,t−1. Applying the boundary conditions (a1,1 = a0,0 = 1) yields at,t = 1 for all
t > 0; (iii) Setting θ = π

2 in (1) yields at,0 = d(d− 1)t/2−1(−1)t/2 whenever t is even.
The following easy-to-prove claim provides us with asymptotic estimates for the rest of

the coefficients. Note that the Θ(·) notation is hiding factors of t (we will only use this claim
only where t is constant).

I Claim 6. Let Pt(x) =
∑t
i=0 at,ix

i denote the Geronimous polynomial of order t, then

at,i =
{

(−1) t−i
2 Θ

(
d

t−i
2

)
if (t− i) is even

0 if (t− i) is odd

for all 0 ≤ i ≤ t.

This immediately gives the next corollary, which is just a slightly easier to use formulation
of Pt(x).

I Corollary 7. The Geronimus Polynomial of order t can be written as

Pt(x) =
b t

2 c∑
i=0

(−1)i ·Θ(di) · xt−2i.

We are now ready to apply this machinery. The following lemma bounds the value of
these polynomials on values which are “small”.

I Claim 8. Let 1
2 < α ≤ 1, and let |λ| = Θ(dα). Then |Pt(λ)| = Θ(dtα).

Proof. We use induction on t. For t = 0 we have that P0(λ) = 1 = Θ(d0α), and for t = 1
we have that |P1(λ)| = |λ| = |Θ(d1α)|. Assume that the claim holds for the Geronimus
Polynomials of order less than t. Using Corollary 7, we now have

Pt(λ) =
b t

2 c∑
i=0

(−1)iΘ(di)λt−2i =
b t

2 c∑
i=0

(−1)iΘ(di)Θ(dα(t−2i)) =
b t

2 c∑
i=0

(−1)i ·Θ(dtα+i(1−2α)).

Whenever α > 1
2 , the absolute value of this equals Θ(dtα) as claimed. J

Proof. (of Theorem 3) Suppose that A obtains an eigenvalue λ = Θ(dα) for some α > 1
2 .

Then, applying Claim 8, we have:∣∣∣∣∣
k∑
t=0

Pt(λ)

∣∣∣∣∣ =

∣∣∣∣∣
k∑
t=0

Θ(dtα)v

∣∣∣∣∣ = Θ(dkα)v

5 A polynomial q(x) is said to be even if q(x) = q(−x) and odd if q(−x) = −q(x).

ESA 2018

71:10 Large Low-Diameter Graphs are Good Expanders

This expression, however, is upper bounded by µd,k−n (by Theorem 1), which is O(dk/2)
by the assumption of the Theorem 3. We thus have

|Θ(dkα)| ≤ µd,k − n ≤ O(dk/2)

and this is, of course, a contradiction to the assumption α > 1
2 . We therefore conclude that

λ = O(
√
d). J

3.3 Proof of Theorem 4
The proof of Theorem 4 relies on some of the ideas introduced in the proof of Theorem 3.
Let λ be a nontrivial eigenvalue of G. We wish to show that |λ| ≤ O(ε1/k)d. If |λ| ≤ O(d2/3)
then we are done. Suppose, then, that |λ| ≥ ω(d2/3), and hence d = o(|λ|3/2). Consider the
sum |

∑k
t=0 Pt(λ)|. Corollary 7, and the discussion which showed that at,t = 1, imply that

this sum is at least∣∣∣∣∣
k∑
t=0

Pt(λ)

∣∣∣∣∣ ≥ |λk + λk−1| −
bk/2c∑
i=1

(
Θ(di)|λ|k−2i + Θ(di)|λ|k−2i−1)

≥ |λk + λk−1| −
bk/2c∑
i=1

(
Θ(|λ|k−(i/2)) + Θ(|λ|k−1−(i/2))

)
≥ Θ(|λk|),

where the second inequality follows from the assumption that |λ| ≥ ω(d2/3).
When we plug this into Theorem 1, we get that Θ(|λk|) ≤ µd,k − n ≤ εµd,k. Since

µd,k ≤ cdk for some constant c, we get that c′|λk| ≤ εcdk for some constants c and c′, and
hence |λ| ≤

(
c
c′

)1/k
ε1/kd, proving the theorem. J

4 Diameter vs. Combinatorial Expansion

We present below our results for combinatorial expansion. We first point out that applying
the Cheeger inequality [26] to our bounds on spectral expansion immediately implies bounds
on combinatorial expansion. Specifically, the Cheeger inequality states that he(G) ≥ d−λ2

2 .
When combined with Theorems 3 and 4, this yields the following bounds.

I Theorem 9. Let G be a (d, k) graph with n vertices, for some constant k > 0. If
n ≥ µd,k −O(dk/2) then he(G) ≥ d−O(

√
d)

2 .

I Theorem 10. Let G be a (d, k) graph with n vertices, for some constant k > 0. If
n ≥ (1− ε)µd,k then he(G) ≥ (1−O(ε1/k))d

2 .

Observe that, since clearly d/2 is an upper bound on he(G), both of these bounds imply
very high expansion guarantees when n is very close to the Moore Bound. However, when
this is not so, e.g., when n = µd,k/k, neither bound yields nontrivial expansion guarantees.

To provide stronger expansion guarantees for graphs that do not come very close (addit-
ively/ multiplicatively) to the Moore Bound, we analyze combinatorial expansion directly.
We next present our bounds for edge and vertex expansion in undirected and directed graphs.
We discuss the implications of these expansion bounds for known (d, k)-graph constructions
in Table 2.

Our main result of this section is the following:

M. Dinitz, M. Schapira, and G. Shahaf 71:11

I Theorem 11. Let G = (V,E) be a d-regular graph of size n and diameter k. If n = α ·µd,k,
then

he(G) ≥ αd

2k ·
(

1− 1
(d− 1)k

)
and φV (G) ≥ α

2(k − 1) + α
.

Our proof of Theorem 11 utilizes a counting argument. As the graph has diameter k, each
pair of vertices on opposite sides of a cut must be connected via a path of length at most
k that traverses the boundary. However, there is an upper bound, induced by the degree
and diameter of the graph, on the number of such paths that traverse a given edge/vertex.
A careful examination of the implications of these two limitations provides us with a lower
bound on the size of the boundary.

Proof. (first part of Theorem 11) Let (S, Sc) be a cut in the graph, and let |S| = s ≤ n
2 .

As the diameter equals k, every pair of vertices that lie on both sides of the cut must be
connected via a path of length at most k. We thus have s(n− s) such paths, each of which
passes through some edge in the cut.

How many paths of length at most k include a given edge e ∈ E? As G is d-regular,
there are at most (d− 1)l−1 paths of length l for which e is in the i’th position in the path.
It follows that no more than l · (d − 1)l−1 paths of length l use a specific edge, hence the
number of paths of length at most k that utilize a fixed edge is upper bounded by

fd−1(k) =
k∑
l=1

l · (d− 1)l−1.

Let us find a simpler formulation of fd−1(k). Integrating yields

Fd−1(k) =
k∑
l=1

(d− 1)l = (d− 1)k+1 − 1
(d− 1)− 1 .

Differentiating brings us back to

fd−1(k) = (k + 1)(d− 1)k(d− 2)− [(d− 1)k+1 − 1]
(d− 2)2

≤ (k + 1)(d− 1)k(d− 2)− (d− 1)k(d− 2)
(d− 2)2

= k(d− 1)k

(d− 2)

Now, s(n − s) paths use the cut, and every edge in the cut can be a part of at most
fd−1(k) paths. It follows that |e(S, Sc)| ≥ s(n−s)

fd−1(k) for every cut (S, Sc) in G. Hence, the cut
that realizes he(G) satisfies

he(G) = |e(S, S
c)|

|S|
≥ s(n− s)(d− 2)

s · k(d− 1)k ≥ n

2 ·
(d− 2)
k(d− 1)k

= αd · ((d− 1)k − 1)
2(d− 2) · (d− 2)

k(d− 1)k

= αd

2k ·
(

1− 1
(d− 1)k

)
. J

ESA 2018

71:12 Large Low-Diameter Graphs are Good Expanders

4.1 Directed graphs.

We consider directed graphs next. We begin by introducing the relevant terminology
and notation. We say that a directed graph (a.k.a. digraph) G = (V,E) is d-regular
if both the out-degree and the in-degree of each vertex equals d. A cut in a digraph
e(S, Sc) = {(u, v) ∈ E|u ∈ S, v ∈ Sc} is asymmetric, and consists of all edges directed from
S to Sc. The diameter is still defined as the maximal distance between two vertices, and the
corresponding Moore Bound is only slightly different (as there are potentially di vertices of
distance i from a given vertex): µ̃d,k =

∑k
i=0 d

i = dk+1−1
d−1 .

The following result is the directed analogue of Theorem 11:

I Theorem 12. Let G be a d-regular, k-diameter directed graph of size n = α · µ̃d,k, then

h(G) ≥ α

2k

(
d− 1

dk

)
and φV (G) ≥ α · d

2(d+ 1)(k − 1) + α · d
.

Much research on constructing low-diameter graphs focuses on diameters 2 and 3 (see,
e.g., [41, 20, 39]). Graphs of very low diameter are particularly important from a practical
perspective [8, 29, 31]. The following theorems improve upon our results for the edge
expansion and vertex expansion of (d, k)-graphs.

I Theorem 13. Let G = (V,E) be an undirected (d, 2)-graph of size n = α · d2. Then

he(G) ≥
2d+ 1−

√
4(1− α)d2 + 4d+ 1

4 .

I Theorem 14. Let G = (V,E) be an undirected (d, 2)-graph of size n = α · d2. Then
φV (G) ≥ 2α

2α+1 .

We can extend our analysis to graphs of diameter 3, yielding the following theorem.

I Theorem 15. Let G = (V,E) be a (d, 3)-graph of size n = α · d3, then φV (G) ≥ α
α+1 .

5 Conclusion and Open Questions

We revisited the classical question of relating the expansion and the diameter of graphs and
showed that not only do good expanders exhibit low diameter but the converse is also, in
some sense, true. We also discussed the implications of our results for constructions from the
rich body literature on low-diameter graphs. We leave the reader with many interesting open
questions, including: (1) Tightening the gaps. An obvious open question is improving
upon our lower bounds and establishing upper bounds on the expansion of fixed-diameter
graph constructions. (2) Benchmarking against the optimal (largest possible) (d, k)-
graph. We used the Moore Bound as a benchmark. Another approach would be to compare
against the size of the largest possible (d, k)-graph. (3) Geronimus Polynomials vs.
Hashimoto’s non-backtracking operator. The operation of the Geronimus Polynomials
over the adjacency matrix of the graph offers a new perspective on its non-backtracking paths
(as established in Lemma 5). This suggests a non-trivial relation between these polynomials
and Hashimoto’s non-backtracking operator, which we believe is of independent interest and
may find wider applicability.

M. Dinitz, M. Schapira, and G. Shahaf 71:13

References
1 Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random

walks mix faster. Communications in Contemporary Mathematics, 9(04):585–603, 2007.
2 Baba Arimilli, Ravi Arimilli, Vicente Chung, Scott Clark, Wolfgang Denzel, Ben Drerup,

Torsten Hoefler, Jody Joyner, Jerry Lewis, Jian Li, et al. The percs high-performance inter-
connect. In High Performance Interconnects (HOTI), 2010 IEEE 18th Annual Symposium
on, pages 75–82. IEEE, 2010.

3 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

4 Eiichi Bannai and Tatsuro Ito. Regular graphs with excess one. Discrete Mathematics,
37(2):147–158, 1981.

5 Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phe-
nomena. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 463–472. ACM, 2003.

6 J-C Bermond, Nathalie Homobono, and Claudine Peyrat. Large fault-tolerant interconnec-
tion networks. Graphs and Combinatorics, 5(1):107–123, 1989.

7 Jean-Claude Bermond. De bruijn and kautz networks: a competitor for the hypercube?
Hypercube and distributed computers, pages 279–293, 1989.

8 Maciej Besta and Torsten Hoefler. Slim fly: A cost effective low-diameter network topo-
logy. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 348–359. IEEE Press, 2014.

9 Norman Biggs. Algebraic graph theory. Cambridge university press, 1993.
10 B Bollobás. Extremal Graph Theory. Dover Publications, 1978.
11 C Bordenave. A new proof of friedman’s second eigenvalue theorem and its extension to

random lifts. Preprint, available at https://arxiv.org/abs/1502.04482, 2015.
12 William G Brown. On graphs that do not contain a thomsen graph. Canad. Math. Bull,

9(2):1–2, 1966.
13 Eduardo A Canale and José Gómez. Asymptotically large (δ, d)-graphs. Discrete applied

mathematics, 152(1):89–108, 2005.
14 Oliver Collins, Sam Dolinar, Robert McEliece, and Fabrizio Pollara. A vlsi decomposition

of the de bruijn graph. Journal of the ACM (JACM), 39(4):931–948, 1992.
15 DG De Bruijn. A combinatorial problem, koninklijke nederlandsche academie van

wetenschappen et amsterdam. Proceedings Qt the Section gt Sciences, 49:27, 1946.
16 Charles Delorme. Grands graphes de degré et diametre donnés. European Journal of

Combinatorics, 6(4):291–302, 1985.
17 Charles Delorme. Large bipartite graphs with given degree and diameter. Journal of graph

theory, 9(3):325–334, 1985.
18 Michael Dinitz, Michael Schapira, and Asaf Valadarsky. Explicit expanding expanders.

Algorithmica, pages 1–21, 2016. doi:10.1007/s00453-016-0269-x.
19 Bernard Elspas, William H Kautz, and James Turner. Theory of cellular logic networks

and machines. Technical report, DTIC Document, 1968.
20 Paul Erdos, Alfréd Rényi, and VT Sós. On a problem in the theory of graphs. Publ. Math.

Inst. Hungar. Acad. Sci, 7:215–235, 1962.
21 A-H Esfahanian and S. Louis Hakimi. Fault-tolerant routing in de bruijn comrnunication

networks. IEEE Transactions on Computers, 100(9):777–788, 1985.
22 Harold Fredricksen. A survey of full length nonlinear shift register cycle algorithms. SIAM

review, 24(2):195–221, 1982.
23 D. Guo, T. Chen, D. Li, M. Li, Y. Liu, and G. Chen. Expandable and cost-effective network

structures for data centers using dual-port servers. IEEE Transactions on Computers,
62(7):1303–1317, July 2013. doi:10.1109/TC.2012.90.

ESA 2018

http://dx.doi.org/10.1007/s00453-016-0269-x
http://dx.doi.org/10.1109/TC.2012.90

71:14 Large Low-Diameter Graphs are Good Expanders

24 Ki-ichiro Hashimoto. Zeta functions of finite graphs and representations of p-adic groups.
Automorphic forms and geometry of arithmetic varieties., pages 211–280, 1989.

25 Alan J Hoffman and Robert R Singleton. On moore graphs with diameters 2 and 3. IBM
Journal of Research and Development, 4(5):497–504, 1960.

26 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

27 Brian Karrer, Mark EJ Newman, and Lenka Zdeborová. Percolation on sparse networks.
Physical review letters, 113(20):208702, 2014.

28 Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael Schapira, and Ankit Singla. Beyond
fat-trees without antennae, mirrors, and disco-balls. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, pages 281–294. ACM, 2017.

29 John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-driven, highly-
scalable dragonfly topology. In ACM SIGARCH Computer Architecture News, volume 36,
pages 77–88. IEEE Computer Society, 2008.

30 John Kim, William J Dally, and Dennis Abts. Flattened butterfly: a cost-efficient topology
for high-radix networks. In ACM SIGARCH Computer Architecture News, volume 35, pages
126–137. ACM, 2007.

31 John Kim, William J Dally, Steve Scott, and Dennis Abts. Cost-efficient dragonfly topology
for large-scale systems. In Optical Fiber Communication Conference, page OTuI2. Optical
Society of America, 2009.

32 Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D Frank Hsu, and Henri Casanova.
A case for random shortcut topologies for hpc interconnects. In Computer Architecture
(ISCA), 2012 39th Annual International Symposium on, pages 177–188. IEEE, 2012.

33 Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka Zde-
borová, and Pan Zhang. Spectral redemption in clustering sparse networks. Proceedings of
the National Academy of Sciences, 110(52):20935–20940, 2013.

34 F Thomson Leighton. Introduction to parallel algorithms and architectures: Arrays· trees·
hypercubes. Elsevier, 2014.

35 Abraham Lempel. On a homomorphism of the de bruijn graph and its applications to the
design of feedback shift registers. IEEE Transactions on Computers, 100(12):1204–1209,
1970.

36 Nathan Linial, Avner Magen, and Assaf Naor. Girth and euclidean distortion. Geometric
& Functional Analysis GAFA, 12(2):380–394, 2002.

37 Ankit Singla Chi-Yao Hong Lucian and Popa Brighten Godfrey. Jellyfish: Networking data
centers randomly. CoRR, abs/1110.1687, 2011. URL: http://arxiv.org/abs/1110.1687.

38 Travis Martin, Xiao Zhang, and MEJ Newman. Localization and centrality in networks.
Physical Review E, 90(5):052808, 2014.

39 Brendan D McKay, Mirka Miller, and Jozef Širáň. A note on large graphs of diameter two
and given maximum degree. Journal of Combinatorial Theory, Series B, 74(1):110–118,
1998.

40 Carl D Meyer. Matrix analysis and applied linear algebra, volume 2. Siam, 2000.
41 Mirka Miller and Jozef Širán. Moore graphs and beyond: A survey of the degree/diameter

problem. Electronic Journal of Combinatorics, 61:1–63, 2005.
42 Dhiraj K Pradhan. Fault-tolerant multiprocessor link and bus network architectures. IEEE

Trans. Comput.;(United States), 100, 1985.
43 Ankit Singla, P Brighten Godfrey, and Alexandra Kolla. High throughput data center

topology design. In 11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 29–41, 2014.

44 Patrick Solé. The second eigenvalue of regular graphs of given girth. Journal of Combinat-
orial Theory, Series B, 56(2):239–249, 1992.

http://arxiv.org/abs/1110.1687

M. Dinitz, M. Schapira, and G. Shahaf 71:15

45 Gabor Szeg. Orthogonal polynomials, volume 23. American Mathematical Soc., 1939.
46 Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander: Towards

optimal-performance datacenters. In Proceedings of the 12th International on Conference
on Emerging Networking EXperiments and Technologies, CoNEXT ’16, pages 205–219, New
York, NY, USA, 2016. ACM. doi:10.1145/2999572.2999580.

ESA 2018

http://dx.doi.org/10.1145/2999572.2999580

Improved Dynamic Graph Coloring
Shay Solomon
IBM Research, TJ Watson Research Center, Yorktown Heights, NY USA

Nicole Wein
EECS, Massachusetts Institute of Technology, Cambridge, MA USA

Abstract
This paper studies the fundamental problem of graph coloring in fully dynamic graphs. Since the
problem of computing an optimal coloring, or even approximating it to within n1−ε for any ε > 0,
is NP-hard in static graphs, there is no hope to achieve any meaningful computational results for
general graphs in the dynamic setting. It is therefore only natural to consider the combinatorial
aspects of dynamic coloring, or alternatively, study restricted families of graphs.

Towards understanding the combinatorial aspects of this problem, one may assume a black-
box access to a static algorithm for C-coloring any subgraph of the dynamic graph, and investigate
the trade-off between the number of colors and the number of recolorings per update step. Opti-
mizing the number of recolorings, sometimes referred to as the recourse bound, is important for
various practical applications. In WADS’17, Barba et al. devised two complementary algorithms:
For any β > 0, the first (respectively, second) maintains an O(Cβn1/β) (resp., O(Cβ))-coloring
while recoloring O(β) (resp., O(βn1/β)) vertices per update. Barba et al. also showed that the
second trade-off appears to exhibit the right behavior, at least for β = O(1): Any algorithm that
maintains a c-coloring of an n-vertex dynamic forest must recolor Ω(n

2
c(c−1)) vertices per update,

for any constant c ≥ 2. Our contribution is two-fold:
We devise a new algorithm for general graphs that improves significantly upon the first trade-
off in a wide range of parameters: For any β > 0, we get a Õ(Cβ log2 n)-coloring with O(β)
recolorings per update, where the Õ notation supresses polyloglog(n) factors. In particular,
for β = O(1) we get constant recolorings with polylog(n) colors; not only is this an exponential
improvement over the previous bound, but it also unveils a rather surprising phenomenon:
The trade-off between the number of colors and recolorings is highly non-symmetric.
For uniformly sparse graphs, we use low out-degree orientations to strengthen the above
result by bounding the update time of the algorithm rather than the number of recolorings.
Then, we further improve this result by introducing a new data structure that refines bounded
out-degree edge orientations and is of independent interest.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation→ Graph algorithms analysis, Theory of computation→ Dynamic graph algorithms

Keywords and phrases coloring, dynamic graph algorithms, graph arboricity, edge orientations

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.72

Acknowledgements The authors thank Krzysztof Onak, Baruch Schieber and Virginia Vas-
silevska Williams for fruitful discussions.

1 Introduction

1.1 Background
Graph coloring is one of the most fundamental and well studied problems in computer
science, having found countless applications over the years, ranging from scheduling and
computational vision to biology and chemistry. A proper C-coloring of a graph G = (V,E),

© Shay Solomon and Nicole Wein;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 72; pp. 72:1–72:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.72
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72:2 Improved Dynamic Graph Coloring

for a positive integer C, assigns a color in {1, . . . , C} to every vertex, so that no two adjacent
vertices are assigned the same color. The chromatic number of the graph is the smallest
integer C for which a proper C-coloring exists. (We shall write “coloring” as a shortcut for
“proper coloring”, unless otherwise specified.)

This paper studies the problem of graph coloring in fully dynamic graphs subject to edge
updates. A dynamic graph is a graph sequence G = (G0, G1, . . . , GM) on a fixed vertex set
V , where the initial graph is G0 = (V, ∅) and each graph Gi = (V,Ei) is obtained from the
previous graph Gi−1 in the sequence by either adding or deleting a single edge.

We investigate general graphs as well as uniformly sparse graphs. The “uniform density”
of the graph is captured by its arboricity: a graph G = (V,E) has arboricity α if α =
maxU⊆V

⌈
|E(U)|
|U |−1

⌉
, where E(U) = {(u, v) ∈ E | u, v ∈ U}. That is, the arboricity is close to

the maximum density |E(U)|/|U | over all induced subgraphs of G. The class of constant
arboricity graphs, which contains planar graphs, bounded tree-width graphs, and in general
all minor-free graphs, as well as some classes of “real-world” graphs, has been subject to
extensive research in the dynamic algorithms literature [10, 11, 50, 56, 46, 47, 39, 25, 14]. A
dynamic graph of arboricity α is a dynamic graph such that all graphs Gi have arboricity
bounded by α.

It is NP-hard to approximate the chromatic number of an n-vertex graph to within a
factor of n1−ε for any constant ε > 0, let alone to compute the corresponding coloring [60, 33].
Consequently, there is no hope to achieve any meaningful computational results for general
graphs in the dynamic setting. It is perhaps for that reason that the literature on dynamic
graph coloring is sparse (see Section 1.1.1). Nevertheless, as discussed next, one may view
the area of dynamic graph algorithms as lying within the wider area of local algorithms, in
which there has been tremendous success in the context of graph coloring.

When dealing with networks of large scale, it is important to devise algorithms that are
intrinsically local. Roughly speaking, a local algorithm restricts its execution to a small part
of the network, yet is still able to solve a global task over the entire network. There is a
long line of work on local algorithms for graph coloring and related problems from various
perspectives. For example, seminal papers on distributed graph coloring [16, 26, 40, 4, 41, 42]
laid the foundation for the area of symmetry breaking problems, which remains the subject
of ongoing intensive research. Refer to the book of Barenboim and Elkin [7] for a detailed
account on this topic. Additionally, graph coloring is well-studied in the areas of property
testing [27, 17] and local computation algorithms [52, 24].

1.1.1 Dynamic graph coloring

In light of the computational intractability of graph coloring, previous work on dynamic graph
coloring is devoted mostly to heuristics and experimental results [43, 51, 59, 29, 28, 48, 53].
From the theoretical standpoint, it is natural to consider the combinatorial aspects of dynamic
coloring or to study restricted families of graphs; to the best of our knowledge, the only work
on this pioneering front is that of Barba et al. from WADS’17 [5] and Bhattacharya et al.
from SODA’18 [12]. Additionally, Parter, Peleg, and Solomon [49] studied this problem in
the dynamic distributed setting, and Barenboim and Maimon [8] studied the related problem
of dynamic edge coloring. (Our work focuses on amortized time bounds; we henceforth do
not distinguish between amortized and worst-case time bounds, unless explicitly specified.)

Barba et al. [5] studied the combinatorial aspects of dynamic coloring in general graphs.
They assumed that at all times the graph can be C-colored and further assumed black-
box access to a static algorithm for C-coloring any subgraph of the current graph. They

S. Solomon and N. Wein 72:3

investigated the trade-off between the number of colors and the number of recolorings
(i.e., the number of vertices that change their color) per update step. Optimizing the
number of recolorings, sometimes referred to as the recourse bound, is important for various
practical applications They devised two complementary algorithms: for any β > 0, the first
(respectively, second) maintains an O(Cβn1/β) (resp., O(Cβ))-coloring while recoloring O(β)
(resp., O(βn1/β)) vertices per update step. While these trade-offs coincide at β = logn, each
providing O(C logn)-coloring with O(logn) recolorings per update, any slight improvement
on one of these parameters triggers a significant blowup to the other. In particular, the
extreme point β = O(1) on the first and second trade-off curves yields a polynomial number
of colors and recolorings, respectively. Barba et al. [5] also showed that the second trade-off
exhibits the right behavior, at least for β = O(1): Any algorithm that maintains a c-coloring
of an n-vertex dynamic forest must recolor Ω(n

2
c(c−1)) vertices per update, for any constant

c ≥ 2. The following question was left open.

IQuestion 1.1. Does the first trade-off of [5] exhibit the right behavior, and in particular,
does a constant number of recolorings require a polynomial number of colors?

Bhattacharya et al. [12] studied the problem of dynamically coloring bounded degree
graphs. For graphs of maximum degree ∆ they presented a randomized (respectively
deterministic) algorithm for maintaining a (∆+1) (resp., ∆(1+o(1))-coloring with amortized
expected O(log ∆) (resp., polylog(∆)) update time. These results provide meaningful bounds
only when all vertices have bounded degree. The following question naturally arises.

I Question 1.2. Can we get meaningful results for the more general class of bounded
arboricity graphs?

Question 1.2 is especially intriguging because, as shown in [5], dynamic forests (which
have arboricity 1) appear to provide a hard instance for dynamic graph coloring.

Parter, Peleg, and Solomon [49] studied Question 1.2 in dynamic distributed networks:
They showed that for graphs of arboricity α an O(α · log∗ n)-coloring can be maintained with
O(log∗ n) update time. The update time in this context, however, bounds the number of
communication rounds per update, while the number of recolorings done (and number of
messages sent) per update is polynomial in n, even for forests.

1.2 Our results
We use Õ notation throughout to suppress polyloglog factors.

1.2.1 General graphs
The following theorem summarizes our main result for general graphs.

I Theorem 1.3. For any n-vertex dynamic graph that can be C-colored at all times, there
is a fully dynamic deterministic algorithm for maintaining an O(Cβ log3 n)-coloring with
O(β) (amortized) recolorings per update step, for any β > 0. Using randomization (against
an oblivious adversary), the number of colors can be reduced by a factor of Õ(logn) while
achieving an expected bound of O(β) recolorings.

Theorem 1.3 with β = O(1) yields O(1) recolorings with polylog(n) colors, thus answering
Question 1.1 in the negative. Not only is this result an exponential improvement over the

ESA 2018

72:4 Improved Dynamic Graph Coloring

previous bound of [5], but it also unveils a rather surprising phenomenon: The trade-off
between the number of colors and recolorings is highly non-symmetric.

We also note that the number of recolorings can be de-amortized. The details are omitted
due to space constraints.

A runtime bound. Assuming black-box access to two efficient coloring algorithms we can
bound the runtime of the algorithm from Theorem 1.3.

Black-box static algorithm. Let AG,C be a static algorithm that takes as input a graph G
from a graph class G and a subset S of vertices in G, and computes the induced graph G[S]
and a C-coloring of G[S] in time T (|S|).

Black-box dynamic algorithm. Let A′ be a fully dynamic algorithm that colors graphs
of maximum degree ∆ using O(∆) colors. Such algorithms exist: there is a randomized
algorithm with O(1) expected amortized update time and a deterministic algorithm with
O(polylog(∆)) amortized update time [12]. Let T ′(∆, n) ≤ polylog(∆) be the runtime of an
optimal deterministic algorithm for this problem. We state our results in terms of T ′(∆, n)
to emphasize that any improvement over the deterministic algorithm of [12] would yield an
improvement to the runtime of our algorithm.

I Theorem 1.4. The randomized algorithm from Theorem 1.3 has expected amortized update
time O

(
β

n logn
∑logn
i=0 2iT (n/2i)

)
and the deterministic algorithm from Theorem 1.3 has the

same amortized update time with an additional additive factor of T ′(log2 n
β , n).

I Remark. The randomized black-box dynamic algorithm of [12] that we apply in Theorem 1.4
is actually a simple observation (referred to as a “warm-up result” in [12]) which gives a 2∆-
coloring with O(1) expected update time. The main result of [12], however, is an algorithm
to bound the number of colors by only ∆ + 1 (or slightly more).

1.2.2 Uniformly sparse graphs
We answer Question 1.2 in the positive by showing that by applying the algorithms from
Theorem 1.4 to arboricity α graphs we can obtain a bound on the update time rather than
only the number of recolorings.

I Theorem 1.5. There is a fully dynamic deterministic algorithm for graphs of arboricity α
that maintains an O((αβ)2 log4 n)-coloring in amortized T ′(α log3 n

β2 , n) +O(β) time per update
for any β > 0. Using randomization (against an oblivious adversary), the number of colors
can be reduced by a factor of Õ(logn) and the expected amortized update time becomes O(β).

Furthermore, we improve over this result when β = o(
√

logn) by designing an algorithm
that specifically exploits the structure of arboricity α graphs.

I Theorem 1.6. There is a fully dynamic deterministic algorithm for graphs of arboricity α
that maintains an O(α log2 n)-coloring in amortized Õ(1) time.

The proof of Theorem 1.6 relies on a new layered data structure (LDS) for bounded
arboricity graphs that we expect will be more widely applicable. See Section 1.3 for more
details about the LDS and the related notion of bounded out-degree edge orientations.

S. Solomon and N. Wein 72:5

I Definition 1.7. Given a dynamic graph G of arboricity α, a layered data structure (LDS)
with parameters k and ∆ is a partition of the vertices into k layers L1, . . . , Lk so that all
vertices v have at most ∆ neighbors in layers equal to or higher than the layer containing v.

I Theorem 1.8. Let A′′ be an algorithm for arboricity α graphs that maintains an orientation
of the edges with out-degree at most D that performs amortized F (n) flips per update. Then
there is an algorithm to maintain an LDS for a fully dynamic graph of arboricity α with
k = O(logn) and ∆ = O(D + α logn) in amortized deterministic time O(F (n)).

1.3 Technical overview
1.3.1 Low out-degree dynamic edge orientations
All of our results are, in different ways, intimately related to the dynamic edge orientation
problem for arboricity α graphs, where the goal is to dynamically maintain a low out-degree
orientation of the edges in a graph (an orientation with out-degree α always exists [45]).
Our algorithm for general graphs (outlined in Section 1.3.2) is inspired by an algorithm for
the dynamic edge orientation problem. Our algorithm for bounded arboricity graphs from
Theorem 1.5 uses a dynamic edge orientation algorithm as a black-box. Our algorithm for
bounded arboricity graphs from Theorem 1.6 uses a dynamic edge orientation to define a
potential function useful in the runtime analysis (outlined in Section 3.1).

Brodal and Fagerberg [14] initiated the study of the dynamic edge orientation problem and
gave an algorithm that maintains an O(α) out-degree orientation in amortized O(α+ logn)
time. To analyze this algorithm, they reduced the “online” setting, where we have no
knowledge of the future, to the “offline” settings, where we know the entire sequence of edge
updates in advance. Thus, in the the subsequent results, it sufficed to consider only the offline
setting. Kowalik [36] used an elegant argument to derive a result complementary to [14]: one
can maintain an O(α logn) out-degree orientation in amortized O(1) time. He, Tang, and
Zeh [30] completed the picture with a trade-off bound: for all β ≥ 1, one can maintain an
O(βα) out-degree orientation in amortized O(logn

β) time. The worst-case update time of this
problem has also been studied by Kopelowitz et al. [34] and Berglin and Brodal [9].

Dynamic bounded out-degree orientations are a key ingredient in a number of dynamic
algorithms for graphs of bounded arboricity [37, 35, 10, 11, 46, 47, 25, 22], as well as in
dynamic algorithms for general graphs [55, 10, 11, 13].

1.3.2 Overview of algorithm for general graphs
We apply two black-box coloring algorithms defined in Section 1.2.1, one static and one
dynamic. For each vetex v, if it is assigned color c1 by the static algorithm and color c2 by
the dynamic algorithm, its true color is defined by the pair (c1, c2).

Periodically, we run the static algorithm on a carefully chosen induced subgraph of the
current graph. To select these subgraphs, we keep track of the recent degree of each vertex v:
the number of edges incident to v that were inserted since the last time v was included as
input to an instance of the static algorithm. Then, we choose the vertices of highest recent
degree as input to the static algorithm, thus setting the recent degree of these vertices to
zero. By repeatedly setting the recent degree of the highest recent degree vertices to zero,
we obtain a bound on the maximum recent degree in the graph. Then we apply the dynamic
algorithm for bounded degree graphs on only the edges that contribute to recent degrees.

We can further reduce the maximum recent degree in the graph by employing randomiza-
tion: In addition to the vertices already chosen to participate in the static algorithm, we
randomly select some vertices incident to newly inserted edges.

ESA 2018

72:6 Improved Dynamic Graph Coloring

To obtain an upper bound on the maximum recent degree at all times, we model the
changes in recent degree by an online 2-player balls and bins game. The game was first
introduced in 1988 [38, 19] and has found a number of applications in the dynamic algorithms
literature for obtaining worst-case guarantees [20, 15, 1, 57, 2, 44, 57, 58, 9, 21, 32]. To
the best of our knowledge, our techniques are the first to demonstrate improved amortized
guarantees using the game. We anticipate that this game will find additional applications in
amortized algorithms as well as in translating offline strategies to online strategies.

The main technical content that remains are the details of each instance of the static
algorithm: we have not specified when to run each instance, the precise subgraph to input,
and which palette of colors to draw from. Understanding these details illuminates the key
insight that allows us to improve the number of colors from the polynomial bound in [5]
to polylogarithmic. We hierarchically bipartition the update sequence into log2 n levels of
nested time intervals and at the end of each interval, we apply the static algorithm. We use
a separate palette of colors for each level of intervals but for subsequent instances of the
static algorithm on the same level we use the same palette. To avoid color conflicts caused
by this reuse of colors, we ensure that when a vertex participates in an instance of the static
algorithm at the end of an interval I on a level L, it also participates in the instance of the
static algorithm at the end of every superinterval of I; thus it is recolored once for each
superinterval. This recoloring frees the level L color palette for future instances of the static
algorithm at level L. In summary, the hierarchical partition of the update sequence into
levels provides the structure that allows us to reuse colors without creating color conflicts.

This partition of the update sequence is inspired by the offline algorithm of [30] for the
dynamic edge orientation problem. Adapting their ideas to our setting requires overcoming
two main hurdles: a) transitioning from graphs of bounded arboricity to general graphs, and
b) transitioning from the offline setting to the online setting.

1.3.3 Overview of algorithm for low arboricity graphs
The proof of Theorem 1.5 is based on the following observation: the black-box static algorithm
used in Theorem 1.3 can be made efficient if G is the class of arboricity α graphs and we
have access to a low out-degree orientation of the graph.

The bulk of the proof of Theorem 1.6 concerns the LDS (defined in Section 1.2.2). The
definition of the LDS is inspired by the following property of arboricity α graphs: there
exists an ordering of the vertices v1, . . . , vn such that every vertex has at most 2α neighbors
that appear after it in the ordering [3]. Given such an ordering, consider the procedure of
iteratively removing the vertices from the graph in order (or adding the vertices to the graph
in reverse order) so that when each vertex is removed (or added) its degree to the current
graph is only 2α. This procedure has been a key ingredient in algorithms in a variety of
settings including distributed algorithms [6], parallel algorithms [3], property testing [23],
and social network analysis [31, 54, 18]. We are the first to devise a data structure that
dynamically maintains (an approximate version of) this ordering.

The LDS is useful for maintaining a proper coloring of a graph because the graph induced
by each layer of vertices has low degree. Thus, we can apply a dynamic algorithm for graphs
of bounded maximum degree on the graph induced by each individual layer. Then, because
there are not too many layers in total, we can use a disjoint palette of colors for each layer.

On the other hand, simply using a low out-degree orientation of the edges does not
seem to suffice for solving dynamic coloring. In general, one shortfall of a low out-degree
orientation is that it is an inherently local data structure; each vertex only keeps track of
information about its immediate neighborhood. In contrast, an LDS maintains a global

S. Solomon and N. Wein 72:7

Figure 1 The set of interals.

partition of the vertices into layers. Furthermore, the LDS is designed to store strictly more
information than a bounded out-degree edge orientation; by orienting all edges in an LDS
from lower to higher layers, we get a bounded out-degree edge orientation. We anticipate that
the LDS could be useful for solving more dynamic problems for which a bounded out-degree
edge orientation does not appear to suffice.

2 Algorithm for general graphs

In this section we prove Theorem 1.3. We omit the proof of Theorem 1.4.

I Theorem 2.1 (Restatement of Theorem 1.3). There is a fully dynamic deterministic
algorithm for maintaining an O(Cβ log3 n)-coloring with O(β) (amortized) recolorings per
update step, for any β > 0. Using randomization (against an oblivious adversary), the number
of colors can be reduced to O(Cβ log2 n(log logn+ log β)) while achieving an expected bound
of O(β) recolorings.

The algorithm is as follows. At all times, each vertex v is assigned a color c1 by the black-
box static algorithm (from the last time v was input to an instance of the static algorithm)
and a color c2 by the black-box dynamic algorithm. The true color of each v defined by the
pair (c1, c2), so the total number of colors is the product of the number of colors used in each
black-box algorithm. As mentioned in the algorithm overview (Section 1.3.2), we define a
hierarchical partition of the update sequence to specify the instances of the static algorithm.
First, we describe this partition, then we describe how to apply the static algorithm, and
then we describe how to apply the dynamic algorithm.

2.1 Partition of update sequence

We partition the update sequence (without knowing its contents) into a set of intervals as
follows. An interval is said to be of length ` if it contains ` update steps. We partition the
entire update sequence into intervals of length n` for some parameter ` (which we will later
set to logn

β). We say that this set of intervals is on level 0. Next, for each i = 1, . . . , log2 n,
the level-i intervals are obtained from the i− 1-level intervals by splitting each i− 1 interval
in two subintervals of equal length. Note that the intervals on level logn are of length ` and
in general the intervals on level i are of length n`/2i.

It will be easier to work with these intervals if no two have the same ending point. So,
for every pair of intervals with the same endpoint, we remove the interval on the higher
numbered level. The resulting set of intervals, shown in Figure 1 is the set of intervals that
we work with in the algorithm.

ESA 2018

72:8 Improved Dynamic Graph Coloring

2.2 Applying the black-box static algorithm

At the end of each interval, we apply the black-box static algorithm. For each interval I,
let AI be the instance of the black-box algorithm that is executed at the end of interval I.
If I is an interval on level i, we say that AI is on level i. For each level, we use a separate
palette of C colors, and all instances of the algorithm on the same level use the same palette
of colors. In particular, if AI is on level i, it uses the C colors in the range from i · C + 1 to
(i+ 1)C.

We determine the input to each AI as follows. If I is on level 0, the input to AI is simply
the entire graph. Otherwise, we decide the input based on the update sequence. For each
vertex v, we keep track of its recent degree, defined as the number of edges incident to v
that were inserted since the last time v was included as input to an instance of the static
algorithm. For each interval I, we let vI be the vertex of highest recent degree at the end of
interval I (breaking ties arbitrarily). For the deterministic algorithm, the input to each AI is
the set {vI′ |I ′ is a subinterval of I} (where an interval is considered a subinterval of itself).

For the randomized algorithm, in addition to vI we select another vertex uI at the end of
each interval I. Specifically, we pick uniformly at random an edge insertion (y, z) from the
last ` updates (if one exists) and then we let uI be either y or z, chosen at random. Then
the input to each AI is the set {vI′ ∪ uI′ |I ′ is a subinterval of I}.

We note that each interval on level log2 n contains only 1 subinterval (itself), and generally,
each interval on level i contains n/2i subintervals. Thus, each AI on level i takes O(n/2i)
vertices as input.

2.3 Applying the black-box dynamic algorithm

We apply the black-box dynamic algorithm on the graph with the full vertex set but only the
edges that count towards the recent degree of both of its endpoints. Specifically, if G denotes
the input dynamic graph then the dynamic graph G′ that we input to the black-box dynamic
algorithm is defined as follows. G′ is initially the empty graph on the same vertex set as G
and whenever there is an edge update to G, the same edge is updated in G′. Additionally,
when a vertex v is included as input to the static algorithm, every edge incident to v is
deleted from G′.

To apply the black-box dynamic algorithm, we need to show that G′ has bounded
maximum degree. To do this, we apply an online 2-player balls and bins game. The game
begins with N empty bins. The goal of Player 1 is to maximize the size of the largest bin and
the goal of Player 2 is the opposite. At each step, the players each make a move according
the following rules.

Player 1 distributes at most k new balls to its choice of bins.
Player 2 removes all of the balls from the largest bin (breaking ties arbitrarily).

I Theorem 2.2 ([19]). In the balls and bins game, every bin always contains O(k logN)
balls.

A randomized variant of the game will be useful in analyzing our randomized algorithm.
In this variant, in addition to emptying the largest bin, Player 2 also chooses a number i
from [k] uniformly at random and empties the bin to which Player 1 added its ith ball during
its last turn. Player 1 is oblivious to the behavior of Player 2.

S. Solomon and N. Wein 72:9

I Theorem 2.3 ([20]). In the randomized variant of the balls and bins game, in a game with
N moves every bin always contains O(k log logN + k log k) balls with high probability.1

Recall that ` is a parameter introduced in Section 2.1.

I Lemma 2.4. In the deterministic algorithm the maximum degree of G′ is always O(` logn).
In the randomized algorithm the maximum degree of G′ is always O(` log logn+ ` log `).

Proof. We will argue that in the balls and bins game with N = n and k = 2`, the number
of balls in the largest bin is an upper bound for the maximum degree of G′. Then, applying
Theorems 2.2 and 2.3 completes the proof.

We first note that by construction, the degree of each vertex v in G′ is at most the recent
degree of v so it suffices to bound recent degree. (In particular, the recent degree of v could
be larger because it counts edges to vertices that have recently been included as input to the
static algorithm.)

The only way for the recent degree of a vertex v to increase is due to the insertion of an
edge incident to v. On the other hand, the recent degree of a vertex v decreases when a) an
edge incident to v is deleted causing its recent degree to decrement, and b) v is included as
input to the static algorithm causing its recent degree to be set to 0.

We consider the special case of the balls and bins game where for each edge insertion (u, v),
Player 1 places one ball in the bin corresponding to u and one ball in the bin corresponding
to v. Then, when each interval ends (which happens once every ` updates), Player 2 moves.
Recall that at this point the recent degree of vI is set to 0 (and in the randomized algorithm,
so is that of uI). It is clear from this description that the balls and bins game parallels all of
the increases and some of the decreases in recent degree in the algorithm. From here, it is
easy to verify that the number of balls in the largest bin is an upper bound for the maximum
recent degree in both the deterministic and randomized settings. We omit the formal proof
of this fact due to space constraints. J

2.4 Correctness
We will show that our algorithm produces a proper coloring after every update. Recall that
the color of each vertex v is defined by the pair of colors (c1, c2) where c1 is the color assigned
to v by the black-box static algorithm and c2 is the color assigned to v by the black-box
dynamic algorithm.

Consider an edge (u, v) in the graph at a fixed point in time. We will show that our
algorithm assigns different colors to u and v. If (u, v) is included as input to the black-box
dynamic algorithm (i.e. if (u, v) is in G′), then its two endpoints are assigned different colors
by this algorithm, and are thus assigned different colors by the overall algorithm.

Otherwise, by the definition of the input to the black-box dynamic algorithm, after the
edge (u, v) was last inserted at least one of u or v was included as input to the static algorithm.
We claim that u and v are assigned different colors by the static algorithm. If u and v were
last colored by the same instance AI of the static algorithm, then AI was executed after the
edge (u, v) was inserted (by assumption). Thus, the edge (u, v) was included as input to AI ,
causing u and v to be assigned different colors. If u and v were last colored by instances
of the static algorithm on different levels, then they are assigned different colors since each
level uses a separate palette of colors.

1 “High probability” means that for all c > 0, there is an N such that the probability is at least 1 − N−c

ESA 2018

72:10 Improved Dynamic Graph Coloring

The only remaining case is that u and v were last included as input to the static algorithm
by two different instances of the static algorithm on the same level i. We will show that
this is impossible. This case is the crux of the correctness argument and the reason that
we define the intervals in precisely the way that we do. It cannot be the case that i = 0
since every vertex is recolored at the end of every interval on level 0. Suppose by way of
contradiction that u was most recently colored by AI (the instance of the static algorithm at
the end of interval I) and v was most recently colored by AI′ where interval I comes before
interval I ′ and both are on level i. We will show that between the end of interval I and
the end of interval I ′, u is recolored by an instance of the static algorithm on a level j < i

(a contradiction). By the construction of the intervals (see Figure 1), between the ending
points of I and I ′ is the end of an interval I ′′ on a level j < i that contains interval I as a
subinterval. By the definition of the algorithm, every vertex that is included as input to AI
is also included as input to AI′′ . Thus, u is recolored on level j before AI′ was executed, a
contradiction.

2.5 Analysis

Static algorithm. Number of colors. The static algorithm uses C colors per level and there
are O(logn) levels for a total of O(C logn) colors.
Number of recolorings. In the deterministic algorithm, each interval I has an associated
vertex vI and in the randomized algorithm, each interval has two associated vertices vI and
uI . Each such vertex is included as input to the static algorithm for all superintervals of
I. Since there are O(logn) levels and each level consists of a set of disjoint intervals, each
interval has at most O(logn) superintervals. Thus, for each interval I, vI and uI are included
as input to O(logn) instances of the static algorithm. Every interval ends after a multiple of
` updates so the number of recolorings is amortized O(logn

`).

Dynamic algorithm. Number of colors. Given a dynamic graph of maximum degree ∆,
the black-box dynamic algorithm maintains an O(∆)-coloring. By Lemma 2.4, G′ (the
graph input to the black-box dynamic algorithm) has maximum degree O(` logn) in the
deterministic setting and O(` log logn+ ` log `) in the randomized setting. The randomized
bound is with high probability and in the low probability event that the maximum degree
exceeds the bound, we will immediately end all intervals, thereby recoloring the entire graph.
Thus, the runtime bound is probabilistic but the bound on the number of colors is not.
Number of recolorings. Using the following simple greedy algorithm we can get constant
number of recolorings per update. When an edge is added between two vertices of the same
color, simply scan the neighborhood of one of them and recolor it with a non-conflicting
color. If the maximum degree of the graph is ∆, this algorithm produces a ∆ + 1 coloring.

Combining the static and dynamic algorithms. Number of colors. Recall that if a vertex v
is assigned color c1 by the black-box static algorithm and color c2 by the black-box dynamic
algorithm, then our algorithm assigns v the color (c1, c2). So the number of colors is the
product of the number of colors used in each black-box algorithm, which is O(C` log2 n) for
the deterministic algorithm and O(C` logn(log logn log `)) for the randomized algorithm.
Number of recolorings. The total number of recolorings is the sum of the number of recolorings
performed in each of the black-box algorithms, which is O(logn

`). Setting ` = logn
β completes

the proof.

S. Solomon and N. Wein 72:11

3 Algorithm for low arboricity graphs

In this section we prove Theorem 1.6. The bulk of the argument is to prove Theorem 1.8.
We omit the proof of Theorem 1.5.

I Theorem 3.1 (Restatement of Theorem 1.6). There is a fully dynamic deterministic
algorithm for graphs of arboricity α that maintains an O(α log2 n)-coloring in amortized Õ(1)
time.

Given a partition of the vertices of a graph into layers L1, L2, . . . , for all vertices v let
dup(v) (the up-degree of v) be the number of neighbors of v in layers equal to or higher than
that of v.

I Definition 3.2. Given a dynamic graph G of arboricity α, a layered data structure (LDS)
with parameters k and ∆ is a partition of the vertices into k layers L1, . . . , Lk so that for all
vertices v, dup(v) ≤ ∆.

I Theorem 3.3 (Restatement of Theorem 1.8). Let A′′ be an algorithm for arboricity α graphs
that maintains an orientation of the edges with out-degree at most D that performs amortized
F (n) flips per update. Then there is an algorithm to maintain an LDS for a fully dynamic
graph of arboricity α with k = O(logn) and ∆ = O(D + α logn) in amortized deterministic
time O(F (n)).

3.1 Proof overview

The idea of the algorithm is essentially to move vertices to new layers when the required
properties of the data structure are violated. Roughly, when there is a vertex v with
dup(v) ≥ ∆ we move v to a higher layer so that dup(v) decreases to O(α). Additionally, to
control the number of layers, whenever a vertex v has up-degree less than d = O(α) and v
can be moved to a lower layer while maintaining up-degree less than d, we move v to a lower
layer. The fact that d and ∆ differ by a logarithmic factor ensures that vertices don’t move
between layers too often which is essential for bounding the runtime.

To help with the runtime analysis, we maintain two dynamic orientations of the edges:
one is defined by the algorithm A′′ and the other is maintained by our algorithm and ensures
that all edges with endpoints in different layers are oriented toward the higher layer. We
compare the number of edge flips in the orientation defined by our algorithm to the number
of edge flips in the orientation algorithm A′′ using a potential function: φ(i) = the number of
oppositely oriented edges in the two algorithms. This potential function is also used in [14].

The main idea of the analysis is to observe how φ changes in response to vertices
moving between levels. We claim that when we move a vertex to a higher level, φ decreases
substantially. Our algorithm is defined so that we only move a vertex to a higher layer if its
up-degree decreases substantially as a result. Because our algorithm orients edges from lower
to higher layers, when we move a vertex v to a higher layer many edges incident to v are
flipped towards v. Then because A′′ maintains an orientation of low out-degree, many of
these edges flipped towards v end up oriented in the same direction in the two orientations.
Thus, φ decreases substantially as a result of v moving to a higher layer. On the other hand,
when a vertex moves to a lower layer, φ might increase. The idea of the argument is to use
the substantial decreases in φ that result from moving vertices to higher layers to pay for the
increases in φ that result from moving vertices to lower layers.

ESA 2018

72:12 Improved Dynamic Graph Coloring

3.2 Invariants

In this section we introduce four invariants that together imply that dup(v) ≤ ∆ and
k = O(logn).

We maintain two dynamic orientations of the edges in the graph, one defined by our
algorithm and the other defined by the algorithm A′′. Unless otherwise stated, when we refer
to an orientation, we mean the orientation defined by our algorithm.

For ease of notation, let d = 4α and let d′ = ∆/2.
We define the following for each vertex v:

L(v) is the layer containing v.
Lmax(v) is the lowest layer for which if v were in this layer, dup(v) would be at most d.
d+(v) is the out-degree of v.
d−L (v) is the in-degree of v from neighbors in L(v).

Invariant 1 defines how edges are oriented between layers and is useful for analyzing the
update time of the algorithm, as outlined in Section 3.1.

I Invariant 1. All edges with endpoints in different layers are oriented towards the vertex in
the higher layer.

The next two invariants bound d+(v) and d−L (v), which helps to bound dup(v).

I Invariant 2. For all vertices v, d+(v) ≤ d′.

I Invariant 3. For all vertices v, d−L (v) ≤ d′.

I Claim 3.4. Invariants 1-3 together imply that dup(v) ≤ 2d′ = ∆.

Proof. By Invariant 1, for all vertices v, every neighbor of v in a layer equal to or higher than
L(v) is either an out-neighbor of v or an in-neighbor of v in L(v), so dup(v) = d+(v) + d−L (v).
Then by Invariants 2 and 3, d+(v) + d−L (v) ≤ 2d′. J

Invariant 4 serves to bound the number of layers k.

I Invariant 4. For all vertices v, L(v) ≤ Lmax(v).

I Claim 3.5. Invariant 4 implies that k = O(logn).

Proof. First we observe that under Invariant 4, all vertices of degree at most d are in L1.
Now, consider removing all vertices in L1 from the graph. In the remaining graph, all vertices
of degree at most d are in layer L2. More generally, after removing all vertices in layers 1
through i for any i, all vertices of degree at most d must be in layer Li+1.

The total number of edges in a graph of arboricity alpha is less than αn. So at least a
(1− 2α/d) fraction of the vertices have degree at most d. Any subgraph of an arboricity α
graph also has arboricity α so after the vertices in any given layer are removed, the graph
still has arboricity α. Thus, after removing the vertices in layers 1 through i for any i, at
least a a (1− 2α/d) fraction of the remaining vertices are in Li+1. Therefore, the number k
of layers total is at most log d

2α
n = O(logn). J

S. Solomon and N. Wein 72:13

3.3 Algorithm
The idea of the algorithm is essentially to move vertices to new layers when the required
properties of the data structure are violated. We define two recursive procedures Rise and
Drop which move vertices to higher and lower layers respectively. In particular, when a
vertex v violates Invariant 2 or 3 (i.e. either d+(v) > d′ or d−L (v) > d′), we call the procedure
Rise(v) which moves v up to the layer Lmax(v). The movement of v to a new higher layer
may increase the up-degree of some neighbors u of v causing u to violate Invariant 2 or
3, in which case we recursively call Rise(u). On the other hand, when a vertex v violates
Invariant 4 (i.e. Lmax(v) < L(v)), we call the procedure Drop(v) which moves v down to
the layer Lmax(v). The movement of v to a new lower layer may decrease Lmax(u) for some
neighbors u of v causing u to violate Invariant 4, in which case we recursively call Drop(u).

We defer the pseudocode of the algorithm, the analysis of the algorithm, and the proof of
Theorem 1.6 to the full version.

References
1 Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest

paths with worst-case update-time revisited. In Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, January 16-19, 2017,
pages 440–452, 2017.

2 A. Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search trees. J.
ACM, 54(3):13, 2007.

3 Srinivasa R Arikati, Anil Maheshwari, and Christos D Zaroliagis. Efficient computation
of implicit representations of sparse graphs. Discrete Applied Mathematics, 78(1-3):1–16,
1997.

4 Baruch Awerbuch, Michael Luby, Andrew V Goldberg, and Serge A Plotkin. Network
decomposition and locality in distributed computation. In FOCS, 1989., 30th Annual
Symposium on, pages 364–369. IEEE, 1989.

5 Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen, Marcel
Roeloffzen, and Sander Verdonschot. Dynamic graph coloring. In Proceedings of the 15th
International Symposium on Algorithms and Data Structures, WADS 2017, St. John’s, NL,
Canada, July 31 - August 2, 2017, pages 97–108, 2017.

6 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed mis algorithm for sparse
graphs using nash-williams decomposition. Distributed Computing, 22(5-6):363–379, 2010.

7 Leonid Barenboim and Michael Elkin. Distributed graph coloring: Fundamentals and recent
developments. Synthesis Lectures on Distributed Computing Theory, 4(1):1–171, 2013.

8 Leonid Barenboim and Tzalik Maimon. Fully-dynamic graph algorithms with sublinear
time inspired by distributed computing. In Proceedings of the International Conference on
Computational Science, ICCS 2017, Zurich, Switzerland, June 12-14, 2017, pages 89–98,
2017.

9 Edvin Berglin and Gerth Stølting Brodal. A simple greedy algorithm for dynamic graph
orientation. In LIPIcs-Leibniz International Proceedings in Informatics, volume 92. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

10 Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Proceedings
of the 42nd International Colloquium on Automata, Languages, and Programming, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Part I, pages 167–179, 2015.

11 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 692–711, 2016.

ESA 2018

72:14 Improved Dynamic Graph Coloring

12 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 1–20, 2018.

13 Greg Bodwin and Sebastian Krinninger. Fully dynamic spanners with worst-case update
time. arXiv preprint arXiv:1606.07864, 2016.

14 G. S. Brodal and R. Fagerberg. Dynamic representation of sparse graphs. In Proc. of 6th
WADS, pages 342–351, 1999.

15 Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking
the polynomial barrier for worst-case time bounds. arXiv preprint arXiv:1711.06883, 2017.

16 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control, 70(1):32–53, 1986.

17 Artur Czumaj and Christian Sohler. Testing hypergraph coloring. In International Collo-
quium on Automata, Languages, and Programming, pages 493–505. Springer, 2001.

18 Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse real-world
graphs. communities, 28:43, 2018.

19 Paul Dietz and Daniel Sleator. Two algorithms for maintaining order in a list. In Proceedings
of the nineteenth annual ACM symposium on Theory of computing, pages 365–372. ACM,
1987.

20 Paul F Dietz and Rajeev Raman. Persistence, amortization and randomization. In Pro-
ceedings of the second annual ACM-SIAM symposium on Discrete algorithms, pages 78–88.
Society for Industrial and Applied Mathematics, 1991.

21 Paul F Dietz and Rajeev Raman. A constant update time finger search tree. Information
Processing Letters, 52(3):147–154, 1994.

22 Zdeněk Dvořák and Vojtěch Tuma. A dynamic data structure for counting subgraphs in
sparse graphs. In Workshop on Algorithms and Data Structures, pages 304–315. Springer,
2013.

23 Talya Eden, Reut Levi, and Dana Ron. Testing bounded arboricity. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2081–2092.
SIAM, 2018.

24 Guy Even, Moti Medina, and Dana Ron. Deterministic stateless centralized local algo-
rithms for bounded degree graphs. In European Symposium on Algorithms, pages 394–405.
Springer, 2014.

25 Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic short-
est paths in digraphs with arbitrary arc weights. Journal of Algorithms, 49(1):86–113, 2003.

26 Andrew V Goldberg, Serge A Plotkin, and Gregory E Shannon. Parallel symmetry-breaking
in sparse graphs. SIAM Journal on Discrete Mathematics, 1(4):434–446, 1988.

27 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

28 Bradley Hardy, Rhyd Lewis, and Jonathan Thompson. Modifying colourings between time-
steps to tackle changes in dynamic random graphs. In European Conference on Evolutionary
Computation in Combinatorial Optimization, pages 186–201. Springer, 2016.

29 Bradley Hardy, Rhyd Lewis, and Jonathan Thompson. Tackling the edge dynamic graph
colouring problem with and without future adjacency information. Journal of Heuristics,
pages 1–23, 2017.

30 M. He, G. Tang, and N. Zeh. Orienting dynamic graphs, with applications to maximal
matchings and adjacency queries. In Proc. 25th ISAAC, pages 128–140, 2014.

31 Shweta Jain and C Seshadhri. A fast and provable method for estimating clique counts
using turán’s theorem. In Proceedings of the 26th International Conference on World Wide
Web, pages 441–449. International World Wide Web Conferences Steering Committee, 2017.

S. Solomon and N. Wein 72:15

32 Alexis Kaporis, Christos Makris, George Mavritsakis, Spyros Sioutas, Athanasios Tsaka-
lidis, Kostas Tsichlas, and Christos Zaroliagis. Isb-tree: a new indexing scheme with efficient
expected behaviour. In International Symposium on Algorithms and Computation, pages
318–327. Springer, 2005.

33 Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for max-
clique, chromatic number and min-3lin-deletion. In Proc. 33rd ICALP, pages 226–237,
2006.

34 T. Kopelowitz, R. Krauthgamer, E. Porat, and Shay Solomon. Orienting fully dynamic
graphs with worst-case time bounds. In Proc. 41st ICALP, pages 532–543, 2014.

35 Łukasz Kowalik. Fast 3-coloring triangle-free planar graphs. In European Symposium on
Algorithms, pages 436–447. Springer, 2004.

36 Łukasz Kowalik. Adjacency queries in dynamic sparse graphs. Information Processing
Letters, 102(5):191–195, 2007.

37 Lukasz Kowalik and Maciej Kurowski. Oracles for bounded-length shortest paths in planar
graphs. ACM Transactions on Algorithms (TALG), 2(3):335–363, 2006.

38 Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O (1) worst-
case update time. Acta Inf., 26(3):269–277, 1988.

39 Min Chih Lin, Francisco J Soulignac, and Jayme L Szwarcfiter. Arboricity, h-index, and
dynamic algorithms. Theoretical Computer Science, 426:75–90, 2012.

40 Nathan Linial. Distributive graph algorithms-global solutions from local data. In 28th
Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA,
27-29 October 1987, pages 331–335, 1987.

41 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
1992.

42 Michael Luby. Removing randomness in parallel computation without a processor penalty.
J. Comput. Syst. Sci., 47(2):250–286, 1993.

43 Cara Monical and Forrest Stonedahl. Static vs. dynamic populations in genetic algorithms
for coloring a dynamic graph. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pages 469–476. ACM, 2014.

44 Christian Worm Mortensen. Fully dynamic orthogonal range reporting on ram. SIAM
Journal on Computing, 35(6):1494–1525, 2006.

45 C St JA Nash-Williams. Decomposition of finite graphs into forests. Journal of the London
Mathematical Society, 1(1):12–12, 1964.

46 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Proceedings of the 45th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2013, Palo Alto, CA, USA, June 1-4, 2013, pages 745–754, 2013.

47 K. Onak, B. Schieber, S. Solomon, and N. Wein. Fully dynamic mis in uniformly sparse
graphs. In Proc. 45th ICALP, 2018.

48 Linda Ouerfelli and Hend Bouziri. Greedy algorithms for dynamic graph coloring. In Com-
munications, Computing and Control Applications (CCCA), 2011 International Conference
on, pages 1–5. IEEE, 2011.

49 Merav Parter, David Peleg, and Shay Solomon. Local-on-average distributed tasks. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 220–239, 2016.

50 David Peleg and Shay Solomon. Dynamic (1 + ε)-approximate matchings: A density-
sensitive approach. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, 2016.

51 Davy Preuveneers and Yolande Berbers. Acodygra: an agent algorithm for coloring dynamic
graphs. Symbolic and Numeric Algorithms for Scientific Computing (September 2004),
6:381–390, 2004.

ESA 2018

72:16 Improved Dynamic Graph Coloring

52 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Proc. of 1st ITCS, pages 223–238, 2011.

53 Scott Sallinen, Keita Iwabuchi, Suraj Poudel, Maya Gokhale, Matei Ripeanu, and Roger
Pearce. Graph colouring as a challenge problem for dynamic graph processing on dis-
tributed systems. In High Performance Computing, Networking, Storage and Analysis,
SC16: International Conference for, pages 347–358. IEEE, 2016.

54 Stephen B Seidman. Network structure and minimum degree. Social networks, 5(3):269–
287, 1983.

55 Shay Solomon. Fully dynamic maximal matching in constant update time. In Proceedings
of the 57th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2016,
New Brunswick, NJ, USA, October 9-11, 2016, pages 325–334, 2016.

56 Shay Solomon. Local algorithms for bounded degree sparsifiers in sparse graphs. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 94. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018.

57 Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Proceedings of the 37th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2005, Baltimore, MD, USA, May 21-24, 2005, pages 112–119, 2005.

58 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1130–1143, 2017.

59 Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. Effective and efficient
dynamic graph coloring. Proceedings of the VLDB Endowment, 11(3):338–351, 2017.

60 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

Soft Subdivision Motion Planning for Complex
Planar Robots
Bo Zhou
Department of Computer Science and Engineering, New York University, Brooklyn, NY, USA
bz387@nyu.edu

Yi-Jen Chiang
Department of Computer Science and Engineering, New York University, Brooklyn, NY, USA
chiang@nyu.edu

Chee Yap
Department of Computer Science, New York University, New York, NY, USA
yap@cs.nyu.edu

Abstract
The design and implementation of theoretically-sound robot motion planning algorithms is chal-
lenging. Within the framework of resolution-exact algorithms, it is possible to exploit soft pre-
dicates for collision detection. The design of soft predicates is a balancing act between easily
implementable predicates and their accuracy/effectivity.

In this paper, we focus on the class of planar polygonal rigid robots with arbitrarily complex
geometry. We exploit the remarkable decomposability property of soft collision-detection predic-
ates of such robots. We introduce a general technique to produce such a decomposition. If the
robot is an m-gon, the complexity of this approach scales linearly in m. This contrasts with the
O(m3) complexity known for exact planners. It follows that we can now routinely produce soft
predicates for any rigid polygonal robot. This results in resolution-exact planners for such robots
within the general Soft Subdivision Search (SSS) framework. This is a significant advancement
in the theory of sound and complete planners for planar robots.

We implemented such decomposed predicates in our open-source Core Library. The exper-
iments show that our algorithms are effective, perform in real time on non-trivial environments,
and can outperform many sampling-based methods.

2012 ACM Subject Classification Theory of computation → Computational geometry, Com-
puting methodologies → Robotic planning

Keywords and phrases Computational Geometry, Algorithmic Motion Planning, Resolution-
Exact Algorithms, Soft Predicates, Planar Robots with Complex Geometry

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.73

Related Version A full version of the paper is available at [20], http://cse.poly.edu/chiang/
esa18-full.pdf.

1 Introduction

Motion planning is widely studied in robotics [9, 10, 5]. Many planners are heuristics,
i.e., without a priori guarantees of its performance. In this paper, we are interested in
non-heuristic algorithms for the basic planning problem: this basic problem involves
only kinematics and the existence of paths. The robot R0 is fixed, and the input is a triple
(α, β,Ω) where α, β are the start and goal configurations of R0, and Ω ⊆ Rd is a polyhedral

© Bo Zhou, Yi-Jen Chiang, and Chee Yap;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 73; pp. 73:1–73:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bz387@nyu.edu
mailto:chiang@nyu.edu
mailto:yap@cs.nyu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.73
http://cse.poly.edu/chiang/esa18-full.pdf
http://cse.poly.edu/chiang/esa18-full.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

73:2 Soft Subdivision Motion Planning for Complex Planar Robots

Figure 1 Some rigid planar robots ((a)-(b):
star-shaped; (c)-(e): general shaped).

Figure 2 GUI interface for planner for a
3-legged robot.

environment in d = 2 or 3. The algorithm outputs an Ω-avoiding path from α to β if one
exists, and NO-PATH otherwise. See Figure 1 for some rigid robots, and also Figure 2 for our
GUI interface for path planning.

The basic planning problem ignores issues such as the optimality of paths, robot dynamics,
planning in the time dimension, non-holonomic constraints, and other considerations of a real
scenario. Despite such an idealization, the solution to this basic planning problem is often
useful as the basis for finding solutions that do take into account the omitted considerations.
E.g., given a kinematic path, we can plan a smooth trajectory with a homotopic trace.

The algorithms for this basic problem are called “planners”. In theory, it is possible to
design exact planners because the basic path planning is a semi-algebraic (non-transcendental)
problem. Even when such algorithms are available, exact planners have relatively high
complexity and are non-adaptive, even in the plane (see [12]). So we tend to see inexact
implementations of exact algorithms, with unclear guarantees. When fully explicit algorithms
are known, exact implementation of exact planners is possible using suitable software tools
such as the CGAL library [7].

In current robotics [10, 5], those algorithms that are considered practical and have some
guarantees may be classified as either resolution-based or sampling-based. The guarantees
for the former is the notion of resolution completeness and for the latter, sampling
completeness. Roughly speaking, if there exists a path then:

resolution completeness says that a path will be found if the resolution is fine enough;
sampling completeness says that a path will be found with high probability if “enough”
random samples are taken.

But notice that if there is no path, these criteria are silent; indeed, such algorithms would
not halt except by artificial cut-offs. Thus a major effort in the last 20 years of sampling
research has been devoted to the so-called “Narrow Passage” problem. It is possible to view
this problem as a manifestation of the Halting Problem for the sampling approaches: how
can the algorithm halt when there is no path? (A possible approach to address this problem
might be to combine sampling with exact computation, as in [13].)

Motivated by such issues, as well as trying to avoid the need for exact computation,
we in [15, 17] introduced the following replacement for resolution complete planners: a
resolution-exact planner takes an extra input parameter ε > 0 in addition to (α, β,Ω),
and it always halts and outputs either an Ω-avoiding path from α to β or NO-PATH. The
output satisfies this condition: there is a constant K > 1 depending on the planner, but
independent of the inputs, such that:

if there is a path of clearance Kε, it must output a path;
if there is no path of clearance ε/K, it must output NO-PATH.

B. Zhou, Y.-J. Chiang, and C. Yap 73:3

Notice that if the optimal clearance lies between Kε and ε/K, then the algorithm may output
either a path or NO-PATH. So there is output indeterminacy. Note that the traditional way of
using ε is to fix K = 1, killing off indeterminacy. Unfortunately, this also leads us right back
to exact computation which we had wanted to avoid. We believe that indeterminacy is a
small price to pay in exchange for avoiding exact computation [15]. The practical efficiency
of resolution-exact algorithms is demonstrated by implementations of planar robots with
2, 3 and 4 degrees of freedom (DOF) [15, 11, 16], and also 5-DOF spatial robots [8]. All
these robots perform in real-time in non-trivial environments. In view of the much stronger
guarantees of performance, resolution-exact algorithms might reasonably be expected to have
a lower efficiency compared to sampling algorithms. Surprisingly, no such trade-offs were
observed: resolution-exact algorithms consistently outperform sampling algorithms. Our
2-link robot [11, 16] was further generalized to have thickness (a feat that exact methods
cannot easily duplicate), and can satisfy a non-self-crossing constraint, all without any
appreciable slowdown. Finally, these planners are more general than the basic problem: they
all work for parametrized families R0(t1, t2 . . .) of robots, where ti’s are robot parameters.
All these suggest the great promise of our approach.

What is new in this paper. In theoretical path planning, the algorithms often focused on
simple robots like discs or line segments. In this paper, we address the issue of “complex
robots” where the complexity comes from the geometry of the robots rather than from the
degrees of freedom. Complex robots provide more realistic models for real-world robots. We
focus on planar robots that are rigid and connected. Such a robot may be represented by a
compact connected polygonal set R0 ⊆ R2 whose boundary is an m-sided polygon, i.e., an
m-gon. Informally, we call R0 a “complex robot” if it is a non-convex m-gon for “moderately
large” values of m, say m ≥ 5. By this criterion, all the robots in Figure 1 are “complex”.
According to [19], no exact algorithms for m > 3 have been implemented; in this paper,
we have robots with m = 18. To see why complex robots may be challenging, recall that
the free space of such robots may have complexity O((mn)3 log(mn)) (see [1]) when the
robot and environment have complexity m and n, respectively. Even with m fixed, this can
render the algorithm impractical. For instance, if m = 10, the algorithm may slow down by
3 orders of magnitude. But our subdivision approach does not have to compute the entire
free space before planning a path; hence the worst-case cubic complexity of the free space is
not necessarily an issue.

More importantly, we show that the complexity of our new method grows only linearly
with m. To achieve this, we exploit a remarkable property of soft predicates called “decom-
posability”. We show how an arbitrary complex robot can be decomposed (via triangulation
that may introduce new vertices) into an ensemble of “nice triangles” for which soft predicates
are easy to implement. As we see below, there is a significant difference between a single
triangle and an ensemble of triangles. In consequence of our new techniques, we can now
routinely construct resolution-exact planners for any reasonably complex robot provided by a
user. This could lead to a flowering of experimentation algorithmics in this subfield.

Technically, it is important to note that the previous soft predicate construction for a
triangle robot in [15, 18] requires that the rotation center, i.e., the origin of the (rotational)
coordinate system, be chosen to be the circumcenter of the triangle. But for our new soft
predicates the triangles in the triangulation of the complex robot cannot be treated in the
same way. This is because all the triangles of the triangulation must share a common
origin, to serve as the rotation center of the robot. To ensure easy-to-compute predicates,
we introduce the notion of a “nice triangulation” relative to a chosen origin: all triangles
must be “nice” relative to this origin. These ideas apply for arbitrary complex robots, but
we also exploit the special case of star-shaped robots to achieve stronger results.

ESA 2018

73:4 Soft Subdivision Motion Planning for Complex Planar Robots

Figure 2 shows our experimental setup for complex robots. A demo showing the real-time
performance of our algorithms is found in the video clip available through this web link:
https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4. All proofs are
deferred to the full version of this paper [20].

Remark. Although it is not our immediate concern to address noisy environments and
uncertainties, it is clear that our work can be leveraged to address these issues. E.g., users
can choose ε > 0 to be correlated with the uncertainty in the environment and the precision of
the robot sensors. By using weighted Voronoi diagrams [4], we can achieve practical planners
that have obstacle-dependent clearances (larger clearance for “dangerous” obstacles).

Previous related work. An early work is Zhu-Latombe [21] who also classify boxes into
FREE or MIXED or STUCK (using our terminology below). They introduced the concept of
M-channels (comprised of FREE or MIXED leaf boxes), as a heuristic basis to find an F-
channel comprising only of FREE boxes. Subsequent researchers (Barbehenn-Hutchinson [2]
and Zhang-Manocha-Kim [19]) continued this approach. Researchers in resolution-based
approaches were interested in detecting the non-existence of paths, but their solutions remain
partial because they do not guarantee to always detect non-existence of paths (of sufficient
clearances) [3, 19]. The challenge of complex robots was taken up by Manocha’s group who
implemented a series of such examples [19]: a “five-gear” robot, a “2-D puzzle” robot a
certain “star” robot with 4 DOFs, and a “serial link” robot with 4 DOFs. Except for the
“star”, the rest are planar robots.

2 Review: Fundamentals of Soft Subdivision Approach

Our soft subdivision approach includes the following three fundamental concepts (see [15]
and the Appendix of [11] for the details):

Resolution-exactness. This is an alternative replacement for the standard concept of
“resolution completeness” in the subdivision literature. Briefly, a planner is resolution-
exact if there is a constant K > 1 such that if there is a path of clearance Kε, it will
return a path, and if there is no path of clearance ε/K, it will return NO-PATH. Here,
ε > 0 is an additional input to the planner, in addition to the normal parameters.
Soft Predicates. Let Rd be the set of closed axes-aligned boxes in Rd. We are interested
in predicates that classify boxes. Let C : Rd → {+1, 0,−1} be an (exact) predicate where
+1,−1 are called definite values, and 0 the indefinite value. For motion planning, we
may also identify +1/− 1/0 with FREE/STUCK/MIXED, respectively. In our application,
if p is a free configuration, then C(p) = FREE; if p is on the boundary of the free space,
C(p) = MIXED; otherwise C(p) = STUCK. We extend C to boxes B ∈ Rd as follows:
for a definite value v ∈ {+1,−1}, C(B) := v if C(x) = v for every x ∈ B. Otherwise,
C(B) := 0. Call C̃ : Rd → {+1, 0,−1} a “soft version” of C if whenever C̃(B) is a
definite value, C̃(B) = C(B), and moreover, if for any sequence of boxes Bi (i ≥ 1) that
converges monotonically to a point p, C̃(Bi) = C(p) for i large enough.
Soft Subdivision Search (SSS) Framework. This is a general framework for a broad class
of motion planning algorithms. One must supply a small number of subroutines with
fairly general properties in order to derive a specific algorithm. For SSS, we need a
predicate to classify boxes in the configuration space as FREE/STUCK/MIXED, a method to
split boxes, a method to test if two FREE boxes are connected by a path of FREE boxes,
and a method to pick MIXED boxes for splitting. The power of such frameworks is that
we can explore a great variety of techniques and strategies. Indeed we introduced the
SSS framework to emulate such properties found in the sampling framework.

https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4

B. Zhou, Y.-J. Chiang, and C. Yap 73:5

(a) triangular set
(unbounded case)

apex

C
B′

C ′

BA

C

B′

C ′

(c) swept area by a nice triangle(b) truncated triangular set (d) sweeping [A, B, C] to [A, B′, C ′]
A

B

Figure 3 Truncated triangular set and swept areas.

Feature-Based Approach. Following our previous work [15, 11], our computation and
predicates are “feature based” whereby the evaluations of box primitives are based on a set
φ̃(B) of features associated with the box B. Given a polygonal set Ω ⊆ R2 of obstacles, the
boundary ∂Ω may be subdivided into a unique set of corners (points) and edges (open line
segments), called the features of Ω. Let Φ(Ω) denote this feature set. Our representation of
f ∈ Φ(Ω) ensures this local property of f : for any point q, if f is the closest feature to q,
then we can decide if q is inside Ω or not. To see this, first note that if f is a corner, then q
is outside Ω iff f is a convex corner of Ω. But if f is an edge, our representation assigns an
orientation to f such that q is inside Ω iff q lies to the left of the oriented line through f .

3 Star-Shaped Robots

We first consider star-shaped robots. A star-shaped region R is one for which there exists
a point A ∈ R such that any line through A intersects R in a single line segment. We call
A a center of R. Note that A is not unique. When a robot R0 is a star-shaped polygon,
we decompose R0 into a set of triangles that share a common vertex at a center A. The
rotations of the robot R0 about the point A can then be reduced to the rotations of “nice”
triangles about A. The soft predicates of nice triangles will be easy to implement because
their footprints have special representations.

3.1 Nice Shapes for Rotation
From now on, by a triangular set we mean a subset T ⊆ R2 which is written as the
non-redundant intersection of three closed half-spaces: T = H1 ∩H2 ∩H3. Non-redundant
means that we cannot express T as the intersection of only two half-spaces. Note that if T is
bounded, this is our familiar notion of a triangle with 3 vertices. But T might be unbounded
and have only 2 vertices as in Figure 3(a). If T is a triangular set, we may arbitrarily call one
of its vertices the apex and call the resulting T a pointed triangular set. By a truncated
triangular set (TTS), we mean the intersection of a pointed triangular set T with any
disc centered at its apex A, as shown in Figure 3(b).

Notation for Angular Range: It is usual to identify S1 (unit circle) with the interval [0, 2π]
where 0 and 2π are identified. Let α 6= β ∈ S1. Then [α, β] denote the range of angles from α

counter-clockwise to β. Thus [α, β] and [β, α] are complementary ranges in S1. If Θ = [α, β],
then its width, |Θ| is defined as β − α if β > α, and 2π + β − α otherwise. Moreover, we
will write “α < θ < β” to mean that θ ∈ [α, β].

Fix an arbitrary bounded triangular set T0, represented by its three vertices A,B,C
where A is the apex. For θ ∈ S1, let T0[θ] denote the footprint of T0 after rotating T0 counter-
clockwise (CCW) by θ about the apex. If Θ ⊆ S1, we write T0[Θ] =

⋃
{T0[θ] : θ ∈ Θ}. The

ESA 2018

73:6 Soft Subdivision Motion Planning for Complex Planar Robots

sets T0[θ] and T0[Θ] are called footprints of T0 at θ and Θ, respectively. If Θ = [α, β], write
T0[α, β] for T0[Θ], and call T0[α, β] the swept area as T0 rotates from α to β.

One of our concerns is to ensure that the swept area T0[Θ] is “nice”. Consider an example
where [A,B,C] is a triangular set with apex A (see Figure 3(c)). Consider the area swept by
rotating [A,B,C] in a CCW direction about its apex to position [A,B′, C ′]. This sweeps
out the truncated triangular set shown in Figure 3(b). This truncated triangular set (TTS)
is desirable since it can be easily specified by the intersection of three half-spaces and a
disc. On the other hand, if [A,B,C] is the triangular set in Figure 3(d), then no rotation of
[A,B,C] would sweep out a truncated triangular set. So the triangular set in Figure 3(d) is
“not nice”, unlike the triangular set in Figure 3(c).

In general, let T = [A,B,C] be a bounded triangular set. Let a, b, c denote the corres-
ponding angles at A,B,C. We say T is nice if either b or c is at least π/2 (= 90◦). We call
the corresponding vertex (B or C) a nice vertex. Assuming T is non-degenerate and nice,
there is a unique nice vertex. In the following, we assume (w.l.o.g.) that B is the nice vertex.
The reason for defining niceness is the following.

I Lemma 1. Let T be a pointed triangular set. Then T is nice iff for all α ∈ S1 (0 < α <

π − a), the footprints T [0, α] and T [−α, 0] are truncated triangular sets (TTS).

I Lemma 2. Let R0 be a star-shaped polygonal region with A as center. If the boundary of
R0 is an n-gon, then we can decompose R0 into an essentially disjoint1 union of at most 2n
bounded triangular sets (i.e., at most 2n triangles) that are nice and have A as the apex.

3.2 Complex Predicates and T/R Subdivision Scheme
For complex robots in general (not necessarily star-shaped), we can exploit the remarkable
decomposability property of soft predicates. More specifically, suppose R0 = ∪m

j=1Tj where
each Tj is a triangle or other shapes and not necessarily pairwise disjoint. If we have soft
predicates C̃j(B) for each Tj (where B is a box), then we immediately obtain a soft predicate
for R0 defined as follows:

C̃(B) =


FREE if each C̃j(B) is FREE
STUCK if some C̃j(B) is STUCK
MIXED otherwise.

(1)

Let σ > 1 and C̃ be the soft version of an exact predicate C. Recall [15, 18] that C̃ is
σ-effective if for all boxes B, if C(B) = FREE then C̃(B/σ) = FREE.

Proposition A.
(1) C̃ is a soft version of the exact classification predicate for R0.
(2) Moreover, if each C̃j is σ-effective, then C̃ is σ-effective.

We need σ-effectivity in soft predicates in order to ensure resolution-exactness; see [15, 18]
where this proposition was proved. There are two important remarks. First, this proposition
is false if the C̃j and C̃ were exact predicates. More precisely, suppose C is the exact
predicate for R0 and Cj is the exact predicate for each Tj . It is true that if C(B) = FREE
then Cj(B) = FREE for all j. But if C(B) = STUCK, it does not follow that Cj(B) = STUCK
for some j. Second, the predicates C̃j(B) for all the Tj ’s must be based on a common

1 A set {A1, . . . , Ak} where each Ai ⊆ R2 is said to be essentially disjoint if the interiors of the Ai’s
are pairwise disjoint.

B. Zhou, Y.-J. Chiang, and C. Yap 73:7

coordinate system. As mentioned in Sec. 1, the soft predicate construction for a triangle
robot in [15] does not work here. A technical contribution of this paper is the design of soft
predicates C̃j(B) for all the Tj ’s that are based on a common coordinate system. In the case
of star-shaped robots, we apply Lemma 2 and use the apex A as the origin of this common
coordinate system. Let rj be the length of the longer edge out of A in Tj . We define r0 as
r0 = maxj rj (i.e., r0 is the radius of the circumcircle of R0 centered at A).

T/R Splitting. The simplest splitting strategy is to split a box B ⊆ Rd into 2d congruent
subboxes. In the worst case, to reduce all boxes to size < ε requires time Ω(log(1/ε)d); this
complexity would not be practical for d > 3. In [11, 16] we introduced an effective solution
called T/R splitting which can be adapted to configuration space2 SE(2) in the current
paper. Write a box B ⊆ SE(2) as a pair (Bt, Br) where Bt ⊆ R2 is the translational box
and Br ⊆ S1 an angular range Θ. We say box B = (Bt, Br) is ε-small if Bt and Br are
both ε-small; the former means the width of Bt is ≤ ε; the latter means the angle (in radians)
satisfies |Br| ≤ ε/r0. Our splitting strategy is to only split Bt (leaving Br = S1) as long as
Bt is not ε-small. This is called a T-split, and produces 4 children. Once Bt is ε-small, we
do binary splits of Br (called R-split) until Br is ε-small. We discard B when it is ε-small.
The following lemma (and proof) in [15] can be carried over here:

I Lemma 3. ([15]) Assume 0 < ε ≤ π/2. If B = (Bt, Br) is ε-small and Bt is a square,
then the Hausdorff distance between the footprints of R0 at any two configurations in B is at
most (1 +

√
2)ε.

Soft Predicates. Suppose we want to compute a soft predicate C̃(B) to classify boxes B.
Following the previous work [15, 11], we reduce this to computing a feature set φ̃(B) ⊆ Φ(Ω).
The feature set φ̃(B) of B is defined as comprising those features f such that

Sep(mB , f) ≤ rB + r0 (2)

where mB and rB are respectively the midpoint and radius of the translational box Bt of
B = (Bt, Br) (also call them themidpoint and radius of B), and Sep(X,Y) := inf{‖x−y‖ :
x ∈ X, y ∈ Y } denotes the separation of two Euclidean sets X,Y ⊆ R2. We say that B is
empty if φ̃(B) is empty but φ̃(B1) is not, where B1 is the parent of B. We may assume the
root is never empty. If B is empty, it is easy to decide whether B is FREE or STUCK: since
the feature set φ̃(B1) is non-empty, we can find the f1 ∈ φ̃(B1) such that Sep(mB , f1) is
minimized. Then Sep(mB , f1) > rB , and by the local property of features (see Feature-Based
Approach in Sec. 2), we can decide if mB is inside (B is STUCK) or outside Ω (B is FREE).

For a box B where Bt = S1, we maintain its feature set φ̃(B) as above. But when
Bt 6= S1, we compute its feature set φ̃(B) as follows. Recall that we decompose R0 into a
set of nice triangles Tj with a common apex A. For each Tj , consider the footprint of Tj

with A at mB and rotating Tj about A from θ1 to θ2, where Br = [θ1, θ2]. By Lemma 1 the
resulting swept area is a truncated triangular set (TTS); call it TTSj . We define (cf. [15]) for
a 2D shape S the s-expansion of S, denoted by (S)s, to be the Minkowski sum of S with
the Disc(s) of radius s centered at the origin. For a TTS, recall that TTS = T ∩D where
T = H1 ∩H2 ∩H3 is an unbounded triangular set (with each Hi a half space) and D is a disk
(Figure 3). Note that (TTS)s is a proper subset of (H1)s ∩ (H2)s ∩ (H3)s ∩ (D)s; a theorem
in the next section gives an exact representation of (TTS)s. We now specify the feature

2 The configuration space of planar rigid robots is SE(2) = R2×S1 where S1 is the unit circle representing
angles [0, 2π).

ESA 2018

73:8 Soft Subdivision Motion Planning for Complex Planar Robots

LA

LB

A

B

C

O

Figure 4 Nice tri-
angle [A,B,C].

O

B

C
C’

C"

O

A

A’

B’

Figure 5 Nicely swept
set (NSS, in blue) with
A,B,C in CCW order.

O

C

C"

O

A

A’

Figure 6 Expansion of
TruncStrip(A,C;A′, C′′) (in
red).

set φ̃(B): for each Tj , let φ̃j(B) comprise those features f satisfying Sep(mB , f) ≤ rB + rj

(replacing r0 with rj in Eq. (2)), such that f also intersects the rB-expansion of TTSj .
We can think of φ̃(B) as a collection of these φ̃j(B)’s, each of which is used by the soft
predicate C̃j(B) so that we can apply Proposition A.

4 General Complex Robots

When R0 is a general polygon, not necessarily star-shaped, we can still decompose R0 into a
set of triangles Tj (j = 1, . . . ,m), and consider the rotation of these triangles relative to a
fixed point O (we may identify O with the origin). In this section, we define what it means
for Tj to be “nice” relative to a point O. If O lies in the interior of Tj , we could decompose
Tj into at most 6 nice pointed triangles at O, as in the previous section. Henceforth, assume
that O does not lie in the interior of Tj .

4.1 Basic Representation of Nicely Swept Sets
Let T = [A,B,C] be any non-degenerate triangular region defined by the vertices A,B,C.
Let the origin O be outside the interior of T . We define what it means for T to be “nice
relative to O”. W.l.o.g., let 0 ≤ ‖A‖ ≤ ‖B‖ ≤ ‖C‖ where ‖A‖ is the Euclidean norm.

We say that T is nice if the following three conditions hold:

〈A,B −A〉 ≥ 0, 〈A,C −A〉 ≥ 0, 〈B,C −B〉 ≥ 0. (3)

Here 〈u, v〉 denotes the dot product of vectors u, v.
A more geometric view of niceness is as follows (see Figure 4). Draw three concentric

circles centered at O with radii ‖A‖, ‖B‖, ‖C‖, respectively. Two circles would coincide if
their radii are equal, but we will see that the distinctness of the vertices and niceness prevent
such coincidences. Let LA be the line tangent to the circle of radius ‖A‖ and passing through
the point A. Let HA denote the closed half-space bounded by LA and not containing O. The
first condition in (3) 〈A,B −A〉 ≥ 0 says that B ∈ HA. Similarly, the second condition says
that C ∈ HA. Finally, the last condition says that C ∈ HB (where HB is analogous to HA).

If T is a nice triangle, then T [α, β] is called a nicely swept set (NSS). See Figure 5,
where T [α, β] is shaded in blue. Let T [α] be the triangle [A,B,C] and T [β] be [A′, B′, C ′].
W.l.o.g., assume3 that A,B,C appear in counter-clockwise (CCW) order as indicated in Fig-
ure 5. Then we can subdivide T [α, β] into two parts: a triangular region [A,B,C] and
another part which we call a swept segment.

3 In case A,B,C appear in clockwise (CW) order, the boundary of T [α, β] can be similarly decomposed
into two parts, comprising the swept segment S[α, β] and the triangle [A′, B′, C′].

B. Zhou, Y.-J. Chiang, and C. Yap 73:9

Notation for Swept Segment: if S is the line segment [A,C], then write S[α, β] for this
swept segment. The boundary of S[α, β] is decomposed into the following sequence of four
curves given in clockwise (CW) order: (i) the arc (A,A′) centered at O of radius ‖A‖ from
A to A′, (ii) the segment [A′, C ′], (iii) the arc (C ′, C) centered at O of radius ‖C‖ from C ′

to C, (iv) the segment [C,A].
Our next goal is to consider s-expansion of the swept segment, i.e.,

X = S[α, β]⊕Disc(s). (4)

Specifically, we want an easy way to detect the intersection between this expansion with
any given feature (corner or edge). To do so, we want to express X as the union of “basic
shapes”. A subset of R2 is a 0-basic shape if it is a half-space, a disc or complement of a
disc. We write Disc(r) for the disc of radius r centered at O, and Ann(r, r′) for the annulus
with inner radius r and outer radius r′ centered at O. A shape X is said to be 1-basic if it
can be written as the finite intersection X =

⋂k
j=1 Xj where Xj ’s are 0-basic shapes. The

1-size of X is the minimum k in such an intersection. So polygons with n sides have 1-size
of n. Truncated triangular sets have 1-size of 4. We need some other 1-basic shapes:

Strips: Strip(a, b; a′, b′) is the region between the two parallel lines a, b and a′, b′. Here
a, b, a′, b′ are distinct points.
Truncated strips: TruncStrip(a, b; a′, b′) is the intersection of Strip(a, b; a′, b′) with
an annulus; the boundary of this shape is comprised of two line segments [a, b] and [a′, b′]
and two arcs (a, a′) and (b, b′) from the boundary of the annulus.
Sectors: Sector(a, b, b′) denotes any region bounded by a circular arc (b, b′) and two
segments [a, b] and [a, b′].

Finally, a shape X is said to be 2-basic if it can be written as a finite union of 1-basic
shapes, X =

⋃m
j=1 Xj whereXj ’s are 1-basic. We call {X1, . . . , Xm} a basic representation

of X. The 2-size of the representation is the sum of the 1-sizes of Xj ’s. Thus, for any box
Bt ⊆ R2, the s-expansion of Bt is a 2-basic shape since it is the union of four discs and an
octagon. We now consider the case where X is the s-expansion of a swept segment S[α, β].
We first decompose S[α, β] into two shapes as follows: suppose C ′′ lies on the circle of radius
‖C‖ = ‖C ′‖. There are two possible representations:
(1) If [A′, C ′′] is parallel to [A,C] and [A′, C ′′] ⊆ Ann(‖A‖, ‖C‖), then we have

S[α, β] = Sector(A′, C ′, C ′′) ∪ TruncStrip(A,C;A′, C ′′) (5)

(2) If [A,C ′′] is parallel to [A′, C ′] and [A,C ′′] ⊆ Ann(‖A‖, ‖C‖), then we have

S[α, β] = Sector(A,C ′, C ′′) ∪ TruncStrip(A,C ′′;A′, C ′). (6)

The swept segment in Figure 5 supports the representation (5), but not (6). Also, if the
angular range of [α, β] is greater than 90 degrees, and the points O,A,C are collinear, then
both representations fail! We next show when at least one of the representations succeeds:

I Lemma 4. Assume the width of the angular range [α, β] is at most π/2. Then swept
segment S[α, β] can be decomposed into a sector and a truncated strip as in (5) or (6).

Clearly, the s-expansion of a sector is 2-basic. This is also true for truncated strips:

I Lemma 5. Let X = TruncStrip(A,C;A′, C ′′). There is a basic representation of X⊕D(s)
of the form {D1, D2, D3, D4, X

′} where Di’s are discs and X ′ is the intersection of a convex
hexagon with an annulus.

ESA 2018

73:10 Soft Subdivision Motion Planning for Complex Planar Robots

Combining all these lemmas, we conclude:

I Theorem 6. Let T [α, β] be a nicely swept set where [α, β] has width ≤ π/2. Then T [α, β]
can be decomposed into a triangle, a sector and a truncated strip. The s-expansion of T [α, β]
has a basic representation which is the union of the s-expansions of the triangle, sector and
truncated strip.

The complexity of testing intersection of 2-basic shapes with any feature is proportional
to its 2-size, which is O(1). This theorem assures us that the constants in “O(1)” is small.

4.2 Partitioning an n-gon into Nice Triangles
Suppose P is an n-gon. We can partition it into n−2 triangles. W.l.o.g., there is at most one
triangle that contains the origin O. We can split that triangle into at most 6 nice triangles,
using our technique for star-shaped polygons (Lemma 2).

I Lemma 7. If T is an arbitrary triangle and O is exterior to T , then we can partition T
into at most 4 nice triangles.

The number 4 in this lemma is the best possible: if T is a triangle with circumcenter O,
then any partition of T into nice triangles would have at least 4 triangles because we need to
introduce vertices in the middle of each side of T .

I Theorem 8. Let P be an n-gon.
(i) Given any triangulation of P into n− 2 triangles, we can refine the triangulation into

a triangulation with ≤ 4n− 6 nice triangles.
(ii) This bound is tight in this sense: for every n ≥ 3, there is triangulation of P whose

refinement has size 4n− 6.

4.3 Soft Predicates and T/R Subdivision Scheme
We can now follow the same paradigm as for star-shaped robots in Sec. 3.2. We first apply
Theorem 8(i) to partition the robot R0 into a set of nice triangles, R0 = ∪jTj , where all Tj ’s
share a common origin O, and we will use the soft predicates developed for Tj and apply
Proposition A. The origin O plays a similar role as the apex in Sec. 3.2. The T/R splitting
scheme is exactly the same: we first perform T-splits, splitting only the translational boxes
until they are ε-small, and then we perform R-splits, splitting only the rotational boxes until
they are ε-small. Essentially the top part of the subdivision tree is a quad-tree, and the
bottom parts are binary subtrees (see Sec. 3.2).

The feature set for a subdivision box B where we perform T-splits is the same as before;
the only difference is that now for a box B where we perform R-splits, we use a new feature set
φ̃j(B) for each nice triangle Tj where O is not at its vertex (there are at most 6 nice triangles
with O at a vertex/apex; see Theorem 8(i)). Suppose Tj = [a, b, c] with 0 ≤ ‖a‖ ≤ ‖b‖ ≤ ‖c‖.
Let rj = ‖c‖. Also, suppose the angle range of box B = (Bt, Br) is Br = [θ1, θ2]. Recall the
footprint of Tj [θ1, θ2] is a nicely swept set (NSS); denote it NSSj . Then the new feature
set φ̃j(B) for Tj comprises those f where Sep(mB , f) ≤ rB + rj and f also intersects the
rB-expansion of NSSj (where mB and rB are the midpoint and radius of B).

5 Experimental Results

We have implemented our approaches in C/C++ with Qt GUI platform. The software and
data sets are freely available from the web site for our open-source Core Library [6]. All

B. Zhou, Y.-J. Chiang, and C. Yap 73:11

Table 1 Running Our Planner (R: radius of the robot’s circumcircle around its rotation center;
P?: path found? (Yes/No); Time is in s; S-shaped*: thin version).

Exp# Robot Envir. R ε α β P? Time

0 L-shaped gateway 50 2 (18, 98, 340◦) (458,119,270◦) Yes 10.106
1 L-shaped gateway 50 4 (18, 98, 340◦) (458,119,270◦) No 8.431
2 snowflake sparks 56 2 (108, 136, 0◦) (358, 155, 0◦) Yes 17.846
3 snowflake sparks 56 2 (108, 136, 0◦) (358, 155, 180◦) Yes 3.370
4 S-shaped sparks 74 4 (132, 80, 90◦) (333, 205, 90◦) Yes 34.284
5 S-shaped sparks 74 4 (132, 80, 90◦) (333, 205, 60◦) No 57.371
6 3-legged sparks 70 2 (108, 136, 0◦) (368, 155, 0◦) Yes 41.745
7 L-shaped corridor 68 2 (75, 420, 0◦) (370, 420, 0◦) Yes 4.012
8 L-shaped corridor 68 3 (75, 420, 0◦) (370, 420, 0◦) Yes 1.926
9 L-shaped corridor 68 5 (75, 420, 0◦) (370, 420, 0◦) Yes 2.684
10 L-shaped corridor-L 68 5 (75, 420, 0◦) (370, 420, 0◦) No 2.908
11 L-shaped corridor-L 68 3 (75, 420, 0◦) (370, 420, 0◦) Yes 2.255
12 C-shaped corridor-S 80 4 (80, 450, 0◦) (380, 450, 0◦) Yes 26.200
13 S-shaped maze 38 2 (38, 38, 0◦) (474, 474, 90◦) No 90.097
14 S-shaped* maze 38 2 (38, 38, 0◦) (474, 474, 90◦) Yes 79.518

Table 2 Comparing with OMPL (“#”: Exp#; “Time/P?”: our run time (in s)/path found?
(Y/N). Each OMPL method: Average Time (in s)/Standard Deviation/Success Rate, over 10 runs).

Time/P? PRM RRT EST KPIECE

0 10.106/Y 4.18/2.53/1 42.13/38.49/1 76.22/110.44/0.9 300/0/0
2 17.846/Y 9.22/6.82/1 210.41/144.25/0.3 271.75/89.31/0.1 240.00/126.47/0.2
3 3.370/Y 300/0/0 300/0/0 300/0/0 300/0/0
4 34.284/Y 5.93/7.20/1 217.33/134.53/0.3 300/0/0 300/0/0
5 57.371/N 300/0/0 300/0/0 300/0/0 300/0/0
6 41.745/Y 2.72/4.89/1 154.22/141.77/0.5 104.32/78.10/0.7 3.16/4.28/1
8 1.926/Y 0.63/0.55/1 300/0/0 3.02/4.71/1 0.41/0.28/1
11 2.255/Y 1.49/0.84/1 300/0/0 241.24/124.88/0.2 1.58/1.47/1
12 26.200/Y 3.16/4.21/1 300/0/0 172.506/120.38/0.7 93.88/88.03/0.8
13 90.097/N 300/0/0 300/0/0 300/0/0 300/0/0
14 79.518/Y 300/0/0 236.72/106.44/0.3 300/0/0 39.81/91.57/0.9

experiments are reproducible as targets of Makefiles in Core Library. Our experiments
are on a PC with one 3.4GHz Intel Quad Core i7-2600 CPU, 16GB RAM, nVidia GeForce
GTX 570 graphics and Linux Ubuntu 16.04 OS. The results are summarized in Table 1 and
Table 2. Table 1 is only concerned with the behavior of our complex robots; Table 2 gives
comparisons with the open-source OMPL library [14]. The robots are as shown in Figure 1.

We select some interesting experiments to explain characteristic behavior of our plan-
ner. Please see Table 1 and the video (https://cs.nyu.edu/exact/gallery/complex/
complex-robot-demo.mp4). In Exp0-1, we show how the parameter ε affects the result.
With a narrow gateway, when we change ε from 2 to 4, the output changes from a path to
NO-PATH for the same configuration. In Exp2-3, we observe how the snowflake robot rotates
and maneuvers to get from the start to two different goals. For Exp4-5, the difference is in
the angles of the goal configuration; in Exp5 this is designed to be an isolated configuration

ESA 2018

73:12 Soft Subdivision Motion Planning for Complex Planar Robots

Figure 7 Six Environments in our experiments.

and the planner outputs NO-PATH as desired. Exp6 shows how the robot can move to use
its complex shape and the environment to squeeze through the obstacles. Exp7-9 are of
the same configuration with only the differences in ε. The planner can find three totally
different paths. When ε is small (Exp7), the path is very carefully adjusted to move the
robot around the obstacles. When ε is larger (Exp8), the planner finds an upper path with a
higher clearance. When ε is even larger (Exp9), the planner chooses a very safe but much
longer path at the bottom. Note that using a larger ε usually makes the search faster, since
we stop splitting boxes smaller than ε, but a longer path can make the search slower. In
Exp10-11, we modify the environment of Exp7-9 by putting a large obstacle at the bottom,
which forces the robot to find a path at the top. Exp12 uses an environment similar to
those in Exp7-11 but with much smaller scattered obstacles. It is designed for the C-shaped
robot, which can rotate while having an obstacle in its pocket. Exp13-14 use a challenging
environment where the small scattered obstacles force the S-shaped robot to rotate around
and only the “thin” version (Exp14, also in Fig. 7 “maze”) can squeeze through.

In Table 2 we compare our planner with several sampling algorithms in OMPL: PRM,
RRT, EST, and KPIECE. These experiments are correlated to those in Table 1 (see the Exp
#). Each OMPL planner is run 10 times with a time limit 300 seconds (default), where all
planner-specific parameters use the OMPL default values. We see that for OMPL planners
there are often unsuccessful runs and they have to time out even when there is a path. On the
other hand, our algorithm consistently solves the problems in a reasonable amount of time,
often much faster than the OMPL planners, in addition to being able to report NO-PATH.

6 Conclusions

Although the study of rigorous algorithms for motion planning has been around for over 40
years, there has always been a gap between such theoretical algorithms and the practical
methods. Our introduction of resolution-exactness and soft predicates on the theoretical
front, together with matching implementations, closes this gap. Moreover, it eliminated the
“narrow passage” problem that plagued the sampling approaches. The present paper extends
our approach to challenging planning problems for which no exact algorithms exist.

What are the current limitations of our work? We implement everything in machine
precision (the practice in this field). But it can be easily modified to achieve the theoretical
guarantees of resolution-exactness if we use arbitrary precision BigFloats number types.

We pose two open problems: One is to find an optimal decomposition of m-gons into nice
triangles (currently, we simply give an upper bound). Such decompositions will have impact
for practical complex robots. Second, we would like to develop similar decomposability of
soft predicates for complex rigid robots in R3.

B. Zhou, Y.-J. Chiang, and C. Yap 73:13

References

1 F. Avnaim, J-D. Boissonnat, and B. Faverjon. A practical exact motion planning algorithm
for polygonal objects amidst polygonal obstacles. In Boissonnat J.D. and Laumond J.P.,
editors, Geometry and Robotics, LNCS Vol 391. Springer, Berlin-Heidelberg, 1989.

2 M. Barbehenn and S. Hutchinson. Efficient search and hierarchical motion planning by
dynamically maintaining single-source shortest paths trees. IEEE Trans. Robotics and
Automation, 11(2), 1995.

3 J. Basch, L.J. Guibas, D. Hsu, and A. Nguyen. Disconnection proofs for motion planning.
In IEEE Int’l Conf. on Robotics Animation, pages 1765–1772, 2001.

4 Huxley Bennett, Evanthia Papadopoulou, and Chee Yap. Planar minimization diagrams via
subdivision with applications to anisotropic Voronoi diagrams. Eurographics Symposium
on Geometric Processing, 35(5), 2016. SGP 2016, Berlin, Germany. June 20-24, 2016.

5 H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT
Press, Boston, 2005.

6 Core Library. https://cs.nyu.edu/exact/core_pages/downloads.html.
7 Dan Halperin, Efi Fogel, and Ron Wein. CGAL Arrangements and Their Applications.

Springer-Verlag, Berlin and Heidelberg, 2012.
8 Ching-Hsiang Hsu, Yi-Jen Chiang, and Chee Yap. Rods and rings: Soft subdivision planner

for Rˆ3 x Sˆ2, 2018. Available at http://cse.poly.edu/chiang/rod-ring18.pdf.
9 Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.
10 Steven M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, 2006.
11 Zhongdi Luo, Yi-Jen Chiang, Jyh-Ming Lien, and Chee Yap. Resolution exact algorithms

for link robots. In Proc. 11th Intl. Workshop on Algorithmic Foundations of Robotics
(WAFR ’14), volume 107 of Springer Tracts in Advanced Robotics (STAR), pages 353–370,
2015. 3-5 Aug 2014, Boǧazici University, Istanbul, Turkey.

12 Victor Milenkovic, Elisha Sacks, and Steven Trac. Robust complete path planning in the
plane. In Proc. 10th Workshop on Algorithmic Foundations of Robotics (WAFR 2012),
Springer Tracts in Advanced Robotics, vol.86, pages 37–52. Springer, 2012.

13 O. Salzman, M. Hemmer, B. Raveh, and D. Halperin. Motion planning via manifold
samples. In Proc. European Symp. Algorithms (ESA), 2011.

14 I.A. Şucan, M. Moll, and L.E. Kavraki. The Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72–82, 2012. doi:10.1109/MRA.2012.2205651.

15 Cong Wang, Yi-Jen Chiang, and Chee Yap. On Soft Predicates in Subdivision Motion
Planning. Comput. Geometry: Theory and Appl. (Special Issue for SoCG’13), 48(8):589–
605, 2015.

16 Chee Yap, Zhongdi Luo, and Ching-Hsiang Hsu. Resolution-exact planner for thick non-
crossing 2-link robots. In Proc. 12th Intl. Workshop on Algorithmic Foundations of Ro-
botics (WAFR ’16), 2016. 13-16 Dec 2016, San Francisco. The appendix in the full paper
(and arXiv from http://cs.nyu.edu/exact/ (and arXiv:1704.05123 [cs.CG]) contains
proofs and additional experimental data.

17 Chee K. Yap. Soft Subdivision Search in Motion Planning. In A. Aladren et al., editor,
Proceedings, 1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013. Robot-
ics Science and Systems Conference (RSS 2013), Berlin. In arXiv:1402.3213. Full paper:
http://cs.nyu.edu/exact/papers/.

18 Chee K. Yap. Soft Subdivision Search and Motion Planning, II: Axiomatics. In Frontiers
in Algorithmics, volume 9130 of Lecture Notes in Comp.Sci., pages 7–22. Springer, 2015.
Plenary Talk at 9th FAW. Guilin, China. Aug 3-5, 2015.

ESA 2018

https://cs.nyu.edu/exact/core_pages/downloads.html
http://cse.poly.edu/chiang/rod-ring18.pdf
http://dx.doi.org/10.1109/MRA.2012.2205651

73:14 Soft Subdivision Motion Planning for Complex Planar Robots

19 Liangjun Zhang, Young J. Kim, and Dinesh Manocha. Efficient cell labeling and path non-
existence computation using C-obstacle query. Int’l. J. Robotics Research, 27(11–12):1246–
1257, 2008.

20 Bo Zhou, Yi-Jen Chiang, and Chee Yap. Soft subdivision motion planning for complex
planar robots, 2018. Full version available at http://cse.poly.edu/chiang/esa18-full.
pdf.

21 D.J. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path plan-
ning. IEEE Transactions on Robotics and Automation, 7:9–20, 1991.

http://cse.poly.edu/chiang/esa18-full.pdf
http://cse.poly.edu/chiang/esa18-full.pdf

	p00-Frontmatter
	Preface
	Program Committees
	List of External Reviewers

	p01-Ahmadian
	Introduction
	Problem definitions, notation, and preliminaries
	The inverse shortest path problem
	A polynomial time exact algorithm for ISP
	Multicommodity ISP with node-disjoint subgraphs

	Inverse polyhedral optimization
	Applications to inverse min-cost flow and inverse bipartite matching

	Inverse matroid-basis optimization
	Extensions and variants

	p02-Amir
	Introduction
	Related Work
	Definition of 2D Maximal Repetition
	1D Maximal Repetitions
	2D Maximal Repetitions

	Bounds on the Number of 2D Maximal Repetitions
	Algorithm to Find 2D Maximal Repetitions
	Step 1: Preprocessing the matrix
	Queries Used in Algorithm

	Step 2: Populate the Set H
	Step 3: Extending 2D Repetitions Vertically
	Step 4: Unknown Vertical Period
	Algorithm Correctness and Time Complexity

	p03-Arya
	Introduction
	Convex Intersection
	Minkowski Sum
	Width
	Techniques

	Preliminaries
	Fattening
	Projective Duality and Width

	Approximate Convex Intersection
	Convex Minimization

	Minkowski Sum Approximation

	p04-Auger
	Introduction
	TimSort core algorithm
	TimSort runs in Lg
	Refined analysis parametrized with the number of runs
	About the Java version of TimSort
	Conclusion

	p05-Balogh
	Introduction
	Algorithm AH

	p06-Bannach
	Introduction
	Preliminaries
	An Interface for Dynamic Programming on Tree Decompositions
	The Tree Automaton Perspective
	The Interface
	Example: 3-Coloring

	A Lightweight Model-Checker for a Small MSO-Fragment
	Description of the Fragment
	A Syntactic Extension of the Fragment
	Description of the Model-Checker
	Extending the Model-Checker to Optimization Problems
	Handling Symmetric and Non-Symmetric Joins

	Applications and Experiments
	Conclusion and Outlook

	p07-Becchetti
	Introduction
	Preliminaries
	First moment analysis
	Second Moment Analysis
	Second moment analysis for sparse cuts
	Second moment analysis for dense cuts

	Distributed Community Detection
	The Sign-Labeling protocol for sparse cuts
	The Jump-Labeling protocol for dense cuts

	p08-Becker
	Introduction
	New metric embedding results
	Related Work

	Preliminaries
	Embedding for Graphs of Bounded Aspect-Ratio
	Main Embedding: Proof of Theorem 4
	Embedding Construction
	Proof of Error Bound
	Tree Decomposition

	Capacitated Vehicle Routing
	PTAS for Bounded Highway Dimension

	p09-Brandt
	Introduction
	Related Work
	Preliminaries
	The Construction
	Hardness of Finding the Cop Number

	p10-Cao
	Introduction
	Maximal cliques
	The kernel
	Maximal cliques of type i
	Maximal cliques of type ii

	A cubic kernel for diamond-free edge deletion

	p11-Carstens
	Introduction
	Preliminaries and Notation
	External-Memory Model
	TFP: Time Forward Processing

	Randomisation schemes
	Edge-Switching
	Simple Undirected Curveball algorithm
	Global Trades

	Novel Curveball algorithms for undirected graphs
	EM-CB: A sequential I/O-efficient Curveball algorithm
	IM-CB: An internal memory version of EM-CB
	EM-GCB: An I/O-efficient Global Curveball algorithm
	EM-PGCB: An I/O-efficient parallel Global Curveball algorithm

	Experimental Evaluation
	Mixing of Edge-Switching, Curveball and Global Curveball
	Runtime performance benchmarks

	Conclusion and outlook

	p12-Chakraborty
	Introduction
	Related works
	Our technique

	Preliminaries
	Construction of Gray codes

	Chinese Remainder Theorem for Counters
	Permutation Group and Construction of Counters
	Counters via Linear Transformation
	Construction of the counter

	Space-optimal Counters over Z_m^n for any Odd m

	p13-Chakraborty
	Introduction
	Previous work on space efficient graph algorithms
	In-place model for graph algorithms
	Definitions, computational complexity and notations
	Our Results
	Techniques
	Consequences of our BFS and DFS results

	DFS algorithms in the rotate model
	Proof of Theorem 1(a) for undirected graphs
	Proof of Theorem 1(b) for undirected graphs
	Proof of Theorem 1(c) for undirected graphs

	Simulation of algorithms for rotate model in the implicit model
	DFS algorithms in the implicit model – proof of Theorem 2
	Concluding remarks

	p14-Chalk
	Introduction
	Definitions and Model
	Assembly of General Shapes with Constant Tiles
	Key idea: precise-width rectangle using O(1) tile types
	Growing
	Finishing

	From rectangle to shape

	Future Work

	p15-Chan
	Introduction
	Preliminaries
	Overview

	Sparsity Estimator for PC^X
	Decomposition into Sparse Instances

	p16-Chang
	Introduction
	Distance Emulators for Unit-Monge Matrices
	The bipartite case
	The non-bipartite case

	Distance Emulators for Planar Graphs
	The construction
	Space analysis
	Time analysis

	p17-Chaplick
	Introduction
	Our Contribution

	Color-Balanced Divisions
	Proof of Theorem 2: PTAS for f-Separable Maximum Coverage

	p18-Cheung
	Introduction
	Preliminaries and Results
	Key Ideas and Lemmas
	Analysis
	Phi is a Decreasing Function
	The Sum of the Last Two Terms in Eq. (6) is Non-negative
	Upper Bounds on the Local Lipschitz Parameters, and Determining the Gamma's

	p19-Chimani
	Introduction
	Preliminaries
	Stronger Constraints Based on Cycles
	Cycle Model
	Relaxations and D-Hierarchy
	Strengthening the Cycle Model

	Experiments
	Conclusion and Open Questions

	p20-Chitnis
	Introduction
	Our results
	Our techniques

	An approximation scheme for Bi-DSN_Planar

	p21-Cygan
	Introduction
	The model
	Online facility location
	Online facility location with deletions
	Online capacitated facility location

	Related work
	New results

	Online uncapacitated facility location
	Asymptotically optimal competitive ratio for uncapacitated facility location with deletions

	Capacitated online facility location (with insertions only)
	Capacitated facility location with deletions
	Hierarchically well-separated trees and facility location
	Algorithm for fully dynamic capacitated facility location in HSTs

	Conclusions

	p22-Bonichon
	Introduction
	The MixedChordArc Algorithm
	Bounding |{P}{langle s,t rangle}| in a Balanced Configuration
	Analysis Technique
	Proof of Lemma 5
	Proof of Lemma 4

	Bounding {P}{langle s,t rangle} in the General Case
	Conclusion and Future Work

	p23-Ding
	Introduction
	Our Main Contributions and Related Work

	Preliminaries
	Core-set for Reducing the Data Size
	Solving Issue I
	Solving Issue II
	Some Extensions
	The Time Complexity

	Experiments
	Future Work

	p24-Dorfman
	Introduction
	Multipass pairing heaps
	Path-balanced binary search trees

	p25-El-Zein
	Introduction
	Our Results

	Previous Work
	Static Range Mode Query
	Static Range Least Frequent Query
	Dynamic Range Mode
	Lower Bounds

	Preliminaries
	Data Structure Setup
	Range Mode Query
	Update Operation
	Range Least Frequent Query, Allowing Zero
	Range k-Frequency Query

	p26-Englert
	Introduction
	The model and our contribution
	Related work

	Lower bounds
	Scheduling algorithm
	Analysis of the algorithm
	Bounding the number of migrated jobs
	Bounding the competitive ratio

	p27-Eden
	Introduction
	Related Work
	Organization of this paper

	The Model
	Modeling weight one jobs with arbitrary Processing times
	Modeling unit length jobs of arbitrary weight

	Dynamic Menu for Jobs with Heterogeneous Processing Times
	The S_k Integer and Interval Sequences
	O(log Pmax) Competitive Dynamic Menu
	High level overview of the analysis

	Arbitrary processing times, weight <= B_{max}

	Lower Bound on the Competitive Ratio for any Prompt Online Algorithm, Arbitrary Lengths

	p28-Fichte
	Introduction
	Solving #SAT by Dynamic Programming
	GPU-based DP Architecture
	Experimental Results
	Conclusion & Future Work

	p29-Filtser
	Introduction
	Spanners
	Stochastic Decompositions
	Our Results

	Preliminaries
	Light Spanner Construction
	Corollaries and Extensions
	High Dimensional Normed Spaces
	Doubling Metrics
	Graph Spanners

	LSH Induces Decompositions
	Decomposition for d-Dimensional Euclidean Space

	p30-Fomin
	Introduction
	H-graphs have logarithmic boolean-width
	H-graphs have few minimal separators
	Parameterized complexity of basic problems for H-graphs
	Hardness of of Dominating Set and Independent Set for H-graphs
	Dominating Set for T-graphs
	A polynomial kernel for Clique

	p31-Fomin
	Introduction
	Preliminaries
	 ETH lower bounds on pseudopolynomial solvability of (IP)
	Path-width parameterization: SETH bounds
	Proof of Theorem 7

	Conclusion

	p32-Galvez
	Introduction
	Preliminaries
	Algorithms with robust structure
	Rounding procedure

	A simple (1.7+eps)-competitive algorithm with O(1/eps) migration.
	Online jump-optimality.

	LPT online with migration Õ(1/eps³).

	p33-Ganczorz
	Introduction
	Definitions and basic reductions
	Locally consistent parsing
	Approximation via embedding into normed vector spaces
	Compressed Input

	p34-Garg
	Introduction
	Our results
	Overview of our approach
	Further related work
	Preliminaries and notation

	Simple instances with wildcards
	A DP for SWC-instances

	Subinterval-free instances
	A QPTAS for general instances
	Length classes
	The general QPTAS

	p35-Ghosh
	Introduction
	Preliminaries
	Graph Metric Embedding for Generalized Theta graphs
	Graph Metric Embedding and connected treewidth
	Open Questions

	p36-Gkenosis
	Introduction
	Results and open questions
	Further definitions and background
	Algorithms for the weighted adaptive SSClass problem
	Constant-factor approximations for unit-cost problems
	Adaptive Evaluation of k-of-n Functions
	Modified Round Robin
	A Round Robin Approach to Non-adaptive Evaluation
	The Unanimous Vote Function: Adaptive Setting
	A Non-adaptive phi-approximation for the Unanimous Vote Function

	p37-Goldstein
	Introduction
	Our Results

	Preliminaries
	Self-Reduction From kSUM to mSUM
	Improved Deterministic Solution for kSUM
	Las Vegas Variant of Wang's Linear Space Algorithm
	Space-Time Tradeoffs for Large Space
	Space Efficient Solutions to 6SUM

	p38-Golin
	Introduction
	Preliminaries
	Approximate Weights
	Warm-Up: Almost-Optimal Static Trees
	Almost-Optimal Dynamic Trees
	Faster Updates
	Worst-Case Updates
	Fast Updates

	p39-Goranci
	Introduction
	Preprocessing phase
	Processing updates
	Data Structure
	Finding all balls containing a given point

	p40-Goranci
	Introduction
	Our Results
	Our Techniques

	Basic Tools
	Useful Properties of Approximate Schur Complement
	Dynamic Algorithms for Effective Resistances in Separable Graphs
	Dynamic Approximate Schur Complement
	Extension to Dynamic All-Pairs Effective Resistances

	Lower Bounds for Partially Dynamic Effective Resistances

	p41-Goswami
	Introduction
	Results

	Background
	External-Memory Model
	Count-Min Sketch: Preliminaries

	Buffered Count-Min Sketch
	Analysis of Buffered Count-Min Sketch
	Evaluation
	Experimental setup
	Configuring the sketch
	Update Performance
	Estimate Performance
	Overestimates

	Conclusion

	p42-Grinten
	Introduction
	Preliminaries
	Notation
	Related work

	Iterative improvement of Katz bounds
	Per-node bounds for Katz centrality
	Efficient rankings using per-node bounds

	Updating Katz centrality in dynamic graphs
	Experiments
	Evaluation of the static Katz algorithm
	Evaluation of the dynamic Katz algorithm
	Real-time Katz computation using parallel CPU and GPU implementations

	Conclusion

	p43-Grossi
	Introduction
	Round-Mapping and Round-Hashing
	Implementation of findBucket(u)

	Distributed Servers
	External-Memory Tables
	Conclusions

	p44-Gu
	Introduction
	Related Work
	Our Model and Simulator
	Unordered Sets and Maps
	The k-level Hash Table
	Experiments
	Conclusions

	Graph Traversal Algorithms
	Breadth-First Search
	Dijkstra's Algorithm

	p45-He
	Introduction
	Notations and Previous Work
	Our Contributions

	Upper Bounds
	Non-evasiveness of Bifix-free Patterns
	The General Case

	Proof of Theorem 7
	Proofs of the Two Lemmas

	A Sufficient Condition for Evasiveness
	The KMP Automaton and the Transition Matrix
	The Skolem Problem and Finite Zeroes
	The Characteristic Polynomial and Periods

	Conclusions

	p46-Holm
	Introduction
	Preliminaries
	Overview of Our Approach
	Decremental SPQR-trees

	p47-Jansen
	Introduction
	Preliminaries
	Upper bounds for Graph Coloring
	A deterministic algorithm
	A randomized algorithm

	Lower Bounds for Graph Coloring
	Conclusion

	p48-Jansen
	Introduction
	Preliminaries
	Overview of the main lemma
	Kernelization for F-Deletion
	Conclusion

	p49-Jarret
	Introduction
	Contributions
	Open Problems

	Preliminaries
	Linear Algebra Notation
	Graph Theory
	Span Programs and Witness Sizes

	Effective Capacitance and st-connectivity
	Estimating the Capacitance of a Circuit
	Deciding Connectivity

	Spectral Algorithm for Deciding Connectivity
	Estimating the connectivity when G is a complete graph

	p50-Jelinek
	Introduction
	Basic definitions
	Tractable merges
	NLOL-recognizable classes
	2D-NLOL-recognizable classes

	Grid-width
	GT-recognizable classes

	Hard cases of merge-recognition
	Concluding remarks and open problems

	p51-Kanj
	Introduction
	A Polynomial Kernel for Monopolar Recognition Parameterized by the Number of Clusters
	Kernel-size lower bound

	p52-Kempa
	Introduction
	Notation and definitions
	Overview of the contributions

	A better reduction to set-cover
	Faster algorithms
	Checking the attractor property
	Checking minimality
	Computing a minimum k-attractor
	Sharp attractors

	p53-Korenwein
	Introduction
	Kernelization Algorithms
	Experimental Evaluation
	Setup & Implementation Details
	Evaluation

	Conclusion

	p54-Boczkowski
	Introduction
	The Noisy Advice Model
	Our Results
	Upper Bounds
	Lower Bounds
	Memory-less Algorithms

	Related Work
	Notations
	Organization

	Optimal Walking Algorithm
	Algorithm Design following a Greedy Bayesian Approach
	Algorithm A_{walk}
	Analysis

	Query Algorithms
	An O(sqrt{Delta}log Delta log^2 n) Queries Algorithm
	An Almost Tight Result for Regular Trees

	Lower Bounds
	Exponential Complexity Above the Threshold

	Open Problems

	p55-Kratsch
	Introduction
	Preliminaries
	Maximum Matching
	Triangle Counting
	Conclusion

	p56-Kunnemann
	Introduction
	Further Motivation and Consequences
	Structural Results: Avenues Via Other Problems
	Algorithmic Results: Progress on Integer Matrix Product Verification
	Further Related Work
	Paper Organization

	Preliminaries
	Technical Overview
	Structural Results: Avenues Via Other Problems
	3SUM
	UPIT

	Deterministically Detecting Presence of 0< z <= t Errors
	Open Questions

	p57-Lee
	Introduction
	Model
	Results and Techniques
	Further Related Work

	OCRS Assuming an Ex-Ante Prophet Inequality
	Using LP Duality
	Solving the LP Efficiently

	Ex-Ante Prophet Inequalities for a Matroid
	Notation
	Reducing to Bernoulli Distributions
	Adversarial Order
	Random Order

	p58-Bhaskar
	Introduction
	Preliminaries
	An Algorithm with Complexity Exponential in the Number of Players
	An Algorithm with Complexity Exponential in Number of Edges
	Hardness of Computing Equilibria

	p59-Lucarelli
	Introduction
	Our Result and Approach
	Related Works

	Definitions and Notations
	Problem definition
	Linear Programming Formulation
	Notations

	The Algorithm
	Scheduling policy
	Rejection policies
	Dispatching policy
	Dual variables

	Analysis
	Proof of theorem 1

	p60-Mai
	Introduction
	Overview of results and technical ideas
	A matter of nomenclature

	Preliminaries
	The stable matching problem
	The lattice of stable matchings
	Rotations help traverse the lattice
	The rotation poset
	The notion of shift

	Structural Results
	The stable matchings in M_{A} setminus M_{B} form a sublattice
	Rotations going into and out of a sublattice
	The rotation poset for the sublattice M_{AB}

	Algorithm for finding a robust stable matching
	Discussion

	p61-Martin
	Introduction
	Preliminaries and Basic Results
	Circular-Arc Graphs
	Line Graphs
	Claw-Free Graphs
	Cobipartite Structures versus Disconnected Cuts
	Structure of Claw-Free Graphs and Solving Disconnected Cut

	Open Problems

	p62-Matheny
	Introduction
	Overview and Proof for Fast epsilon-Samples
	Overview of Algorithms for Constructing the Partition
	Implementation Particulars of Partitions
	Experiments on epsilon-Samples and Applications

	p63-Munro
	1 Introduction
	1.1 Adaptive Sorting
	1.2 Lower bound
	1.3 Results on Timsort and stack-based mergesort

	2 Preliminaries
	2.1 Nearly-Optimal Binary Search Trees
	2.2 Merge Costs
	2.3 Merge Trees

	3 Nearly-Optimal Merging Orders
	3.1 Peeksort: A Simple Top-Down Method
	3.2 Powersort: A Cache-Friendly Stack-Based Method

	4 Running-Time Study
	4.1 Setup
	4.2 Overhead of Nearly-Optimal Merge Order
	4.3 Practical speedups by adaptivity
	4.4 Non-optimality of Timsort

	5 Conclusion
	5.1 Extensions and future work

	References

	p64-Mustafa
	Introduction
	Proof of Theorem 1

	p65-Pilipczuk
	Introduction
	Proof of the Separator Lemma for MWISO
	Basic toolbox
	Sampling
	Balanced nooses

	A QPTAS for Maximum Weight Independent Set of Objects

	p66-Ivanyos
	Introduction
	Learning with noise
	Learning from subset
	Hidden multiple shifts
	Our proof methods

	An algorithm for LFS
	Fourier sampling algorithm for HMS(q,n,r)
	Reducing HMS(q,n,r) to LFS(q,n, q-r +1)

	p67-Boissonnat
	Introduction
	Preliminaries
	Algorithm
	Strong collapse of zigzag sequences
	Computational experiments

	p68-Probst
	Introduction
	Preliminaries
	Static Color Distance Oracle
	Color Distance Oracle supporting color-reassignments
	Lower bound for static Color Distance Oracles
	Lower bounds for the dynamic setting

	p69-Raman
	Introduction
	Our Results and Implications

	Cell Bypassing
	Construction of a planar support
	Planar Support for Dual Hypergraph
	Planar Support for the Intersection Hypergraph
	Algorithms

	p70-Schmidt
	Introduction
	Eliminating cycles from the linear programming relaxation
	An new ILP formulation for the Steiner forest problem
	A smaller cut-based formulation

	Experimental results
	Conclusion

	p71-Dinitz
	Introduction
	The Degree/Diameter Problem
	Our Results

	Preliminaries
	Diameter vs. Algebraic Expansion
	Bounding the nontrivial eigenvalues (proof of Theorem 1)
	Proof of Theorem 3
	Proof of Theorem 4

	Diameter vs. Combinatorial Expansion
	Directed graphs.

	Conclusion and Open Questions

	p72-Solomon
	Introduction
	Background
	Dynamic graph coloring

	Our results
	General graphs
	Uniformly sparse graphs

	Technical overview
	Low out-degree dynamic edge orientations
	Overview of algorithm for general graphs
	Overview of algorithm for low arboricity graphs

	Algorithm for general graphs
	Partition of update sequence
	Applying the black-box static algorithm
	Applying the black-box dynamic algorithm
	Correctness
	Analysis

	Algorithm for low arboricity graphs
	Proof overview
	Invariants
	Algorithm

	p73-Zhou
	Introduction
	Review: Fundamentals of Soft Subdivision Approach
	Star-Shaped Robots
	Nice Shapes for Rotation
	Complex Predicates and T/R Subdivision Scheme

	General Complex Robots
	Basic Representation of Nicely Swept Sets
	Partitioning an n-gon into Nice Triangles
	Soft Predicates and T/R Subdivision Scheme

	Experimental Results
	Conclusions

