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Editors’s Preface

The annual conference of the European Association for Computer Science Logic (EACSL),
CSL 2011, was held in Bergen, Norway, from 12 to 15 September 2011. CSL started as a
series of international workshops on Computer Science Logic, and then at its sixth meeting
became the Annual Conference of the EACSL. This conference was the 25th workshop and
20th EACSL conference; it was organized by the Department of Informatics of the University
of Bergen.

CSL 2011 was preceded by TYPES 2011, the 18th Workshop Types for Proofs and
Programs (8–11 September), and by the pre-conference workshop Epsilon Calculus and
Constructivity organized by Matthias Baaz and Georg Moser (11 September). The technical
program of TYPES 2011 was independent and the TYPES 2011 post-proceedings will be
published elsewhere.

The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in
Computer Science. The recipient of the Ackermann Award for 2011 is Benjamin Rossman,
and the award was officially presented at the conference (14 September). The citation of the
award, an abstract of the thesis, and a biographical sketch of the recipient may be found on
page xv of the proceedings.

This is the first year that the CSL proceedings are not published as a Springer LNCS
but in the series LIPIcs. In response to the call for papers, a total of 116 abstracts were
registered and 91 of these were followed by full papers submitted to CSL 2010. The Program
Committee (PC) selected 37 papers for presentation at the conference and publication in
these proceedings. Each paper was assigned to four PC members. In the call for papers,
authors were encouraged to include a well written introduction. One of the four PC members
for each paper had the particular task to assess the accessibility of the introduction to
the computer science logic community at large. Also this year the overall high quality of
the submissions made that many good papers had to be rejected due to lack of space. In
addition to the contributed talks, CSL 2011 had four invited speakers: Thomas Ehrhard
(Université Paris Diderot), Martin Otto (Technische Universität Darmstadt), Moshe Vardi
(Rice University), Frank Wolter (University of Liverpool). Abstracts of the invited talks are
included in the proceedings.

I thank the PC and all external reviewers for their help in reviewing the papers. I also
thank the Organizing Committee, in particular Michal Wałicky and Isolde Adler, for their
capable efforts in organizing the conference. The conference received generous support from
the Research Council of Norway and from the Kurt Gödel Society. We are grateful to these
institutions for their sponsorship. Special thanks go to Janos Makowsky, our President during
an extended term 2004–2010. The EACSL has flourished under his presidency, thanks to his
many good initiatives. Among these, I just mention the creation of the Ackermann Award
and his consistent efforts to move with the CSL proceedings from a commercial publisher to
open access. A detailed personal account can be found in his Retiring President’s Address at
the end of the proceedings.

September 2011 Marc Bezem
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The Ackermann Award 2011

Report of the Jury

The seventh Ackermann Award will be presented at this CSL’11, held in Bergen, Norway.
This is the fifth year the EACSL Ackermann Award is generously sponsored. Our sponsor
for the period of 2011-2013 is the Kurt Gödel Society (KGS). Besides providing financial
support for the Ackermann Award, the KGS also committed itself to inviting the receiver of
the Award for a special lecture to be given in Vienna.

Eligible for the 2011 Ackermann Award were PhD dissertations in topics specified by the
EACSL and LICS conferences, which were formally accepted as Ph.D. theses at a university or
an equivalent institution between 1.1. 2009 and 31.12. 2010. The Jury received 10 nominations
for the Ackermann Award 2011. The candidates came from 9 different countries in Europe,
North America, South America and Australia, and received their degrees in 6 different
countries in Europe and North America.

The topics covered the full range of Logic and Computer Science as represented by the
LICS and CSL Conferences. All the submissions were of very high standard and contained
outstanding results in their particular domain. The Jury wishes to congratulate all the
nominated candidates for their outstanding work. The Jury encourages them to continue
their scientific careers, and hopes to see more of their work in the future. The Jury decided
unanimously to give the Ackermann Award 2011 to

Benjamin Rossman.

Citation
Benjamin Rossman receives the Ackermann Award 2011 of the European Association of
Computer Science Logic (EACSL) for his thesis

Average Case Complexity of Detecting Cliques.

The thesis represents a breakthrough in our understanding of circuit complexity. It settles a
long-standing open question on the expressive power of first-order logic on ordered graphs
and does so by developing innovative methods of proving lower bounds on the complexity
of circuits. These methods advance the state of the art and represent the most significant
breakthrough in circuit complexity in many years.

Background
While the main results in the thesis are in the area of circuit complexity, the motivation
for the work comes from questions of logic and, ultimately, the results obtained have a
strong connection with these motivating questions. Indeed, they also provide one of the most
significant breakthroughs in the field of finite model theory in many years.

The motivating problem in logic is the following. Can we express more with first-order
logic using k + 1 variables than we can with k on ordered finite graphs? This question is
deceptively simple to state, but turns out to be very difficult to answer. If we drop either of
the restrictions to finite or to ordered graphs, it is easy to show that an infinite hierarchy of
expressive power is obtained by increasing the number of variables. On the other hand, if,
instead of graphs, we consider linear orders with unary relations only, it is known that every
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xvi The Ackermann Award 2011

first-order sentence is equivalent to one with just 3 variables. The question for finite linear
orders with one binary relation, i.e. finite ordered graphs, however, turns out to be tied to
difficult complexity theoretic considerations.

The connections with complexity theory emerge from the work of Neil Immerman on
descriptive complexity in the 1980s. Following Fagin’s proof that the class of problems
definable in existential second-order logic is exactly the complexity class NP, Immerman
established the connection between a number of different complexity classes and corresponding
definability classes. Most of these correspondences require us to assume that structures are
ordered or even that they have rich arithmetic predicates available as these are necessary in
order to give defining formulas the power to simulate computations. Indeed, the weaker the
complexity class, the richer the fragment of arithmetic required. Thus, while NP is captured
by existential second-order logic without any requirement for order, the characterization
of P as definability in least fixed-point logic only works on ordered structures and AC0 is
captured by first-order logic with order and arithmetic predicates.

While the work on descriptive complexity had raised hopes that model-theoretic methods
could be deployed to prove complexity lower bounds, the best known such methods really
only provided inexpressibility results in the absence of order. Thus, the challenge before
the field of finite model theory was to develop methods that could be used to establish
lower bounds on ordered structures. An iconic problem, representing this challenge, was the
question of showing that increasing the number of variables leads to an increase in expressive
power on ordered finite graphs.

There is a first-order sentence with k variables that expresses that a graph contains a
clique on k vertices. This sentence does not require an order. But are k variables really
necessary? Or, at least, can one show that no fixed number of variables suffice to express the
clique problem for all k? The question was posed in essentially this form by Immerman in
1982. It was beyond the boundary of the model-theoretic methods available yet appeared
simpler than a full-fledged complexity lower bound. Indeed, it is closely connected to a
question of circuit complexity. A first-order sentence φ with k variables can be translated to a
family of circuits Cn of bounded depth (bounded by the quantifier depth of the sentence) and
size nk, such that Cn accepts encodings of those graphs of size n that satisfy φ. Conversely,
any such family translates into a first-order sentence, but one that requires an order and
arithmetic relations in addition to the graph relation in its vocabulary. Thus, Immerman’s
question could be answered if one could show a suitable lower bound on the size of circuits
required to solve the clique problem. That is, that there is no fixed k such that circuits of
bounded depth and size nk suffice to decide the l-clique problem for all l. This was widely
believed, but considered beyond the methods of circuit complexity at the time.

This lower bound is what Rossman establishes. He proves that there is no family of
constant-depth circuits of size O(nk/4) that can decide the k-clique problem. It follows that
there is no sentence of first-order logic using fewer than k/4 variables, even with order and
arbitrary arithmetic predicates that can express the existence of a k-clique. He then shows
(using a previously unpublished construction due to Immerman) that it follows that for each
k there is a sentence with k + 1 variables that is not equivalent to one with k.

In the 1980s, the clique problem was well-studied in the context of circuit lower bounds.
Methods based on Håstad’s switching lemma were used to establish a trade-off between the
size and depth of circuits required. In particular, Beame showed in 1990 that any family of
circuits of depth d that decided k-clique would require size nΩ(k/d2). However, it was widely
held that the methods could not be extended to obtain a lower bound that was independent
of depth and this is where Rossman has made a breakthrough.
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Rossman’s Contribution

The innovation in Rossman’s method is to combine methods based on the switching lemma
with considering sparse random graphs. Let G(n, p) denote the probability distribution on
graphs on the set of vertices {1, . . . , n} obtained by letting each pair (i, j) with i < j have an
edge with probability p. Then p(n) = n−2/(k−1) is the threshold for the existence of k-cliques.
That is, with p much below this, the probability that a graph in G(n, p) contains a k-clique
goes to 0 while with p much higher than the threshold, it goes to 1. What Rossman proves
is that for any family of constant depth circuits of size O(nk/4), with high probability the
same answer is obtained on a random graph in G(n, p) as on one in which k-clique has been
planted.

This result not only establishes a lower-bound on the worst-case complexity of the clique
problem, it shows that the average-case complexity is worse than had been shown before. To
be precise, it shows that any algorithm which can be represented as a bounded-depth family
of circuits (i.e. it is sufficiently parallelizable) must take time Ω(nk/4) on average to decide
the presence of a k-clique.

In another set of results, Rossman considers monotone circuits (i.e. circuits that do not
use not gates). This is another class of circuits where lower bounds have previously been
obtained. Razborov showed in 1985 that the k-clique problem cannot be decided by a family
of monotone circuits of size O((n/ log2 n)k) and the bound was subsequently further improved
by Alon and Boppana. What Rossman establishes is new lower bounds on the average case
complexity of monotone circuits for the clique problem. This is again done by considering
sparse random graphs at the threshold for the existence of k-clique.

In some sense the results of this thesis close a line of research within finite model theory.
The open problem which had inspired much interesting work has been settled. Moreover, the
breakthrough has not come from extending methods from logic as had been hoped at some
point but rather, it is a breakthrough in complexity theory that has settled the long-standing
problem in logic. Yet, this breakthrough does provide new methods and which can and will
be applied to other problems.

Among the methods that should be highlighted are a new notion of sensitivity which
provides a powerful analytical tool for studying bounded-depth circuits that work on graph
properties. It is this that enables Rossman to extend methods based on the switching lemma
far beyond their previous use. There are also new combinatorial tools among which one
should mention the quasi-sunflower lemma which provide an interesting extension of the
Erdös-Renyi sunflower lemma in the “average case”.

Finally, the thesis is to be commended for its presentational style, which makes difficult
mathematical material so accessible.

Biographic Sketch

Benjamin Rossman received his B.A. and M.A. degrees in Mathematics from the University
of Pennsylvania in 2001 and 2002 respectively. He completed his PhD in 2010 at the Mas-
sachusetts Institute of Technology under the supervision of Madhu Sudan. Since September
2010 he is at the Tokyo Institute of Technology supported by an NSF Mathematical Sciences
Postdoctoral Research Fellowship. He has twice (in 2003 and 2005) received the Kleene
award for best student paper at the IEEE Symposium on Logic in Computer Science. His
thesis received the George M. Sprowls award at MIT.
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The members of the Jury were
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P.-L. Curien (Paris, France),
A. Dawar (Cambridge, U.K., Vice-president of EACSL),
J.-P. Jouannaud (Paris, France and Beijing, China),
D. Niwinski (Warsaw, Poland, President of EACSL),
L. Ong (Oxford, U.K., LICS representative), and
W. Thomas (Aachen, Germany).

They were helped by the non-voting coordinator of the Jury, J.A. Makowsky (Haifa,
Israel, Secretary of the Jury and Member of the EACSL Board).
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The Ackermann Award

The EACSL Board decided in November 2004 to launch the EACSL Outstanding Dissertation
Award for Logic in Computer Science, the Ackermann Award, The award is named after the
eminent logician Wilhelm Ackermann (1896-1962), mostly known for the Ackermann function,
a landmark contribution in early complexity theory and the study of the rate of growth of
recursive functions, and for his coauthorship with D. Hilbert of the classic Grundzüge der
Theoretischen Logik, first published in 1928. Translated early into several languages, this
monograph was the most influential book in the formative years of mathematical logic. In
fact, Gödel’s completeness theorem proves the completeness of the system presented and
proved sound by Hilbert and Ackermann. As one of the pioneers of logic, W. Ackermann left
his mark in shaping logic and the theory of computation. Details concerning the Ackermann
Award and a biographic sketch of W. Ackermann were published in the CSL’05 proceedings
and can also be found at http://www.eacsl.org/award.html.

The Ackermann Award is presented to the recipients at the annual conference of the
EACSL. The Jury is entitled to give more than one award per year. The award consists of a
diploma, an invitation to present the thesis at the CSL conference, the publication of the
abstract of the thesis and the citation in the CSL proceedings, and travel support to attend
the conference.

Previous winners of the Ackermann Award

2005, Oxford:
Mikołaj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from The Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

2009, Coimbra:
Jakob Nordström from Sweden.

2010, Brno:
No award was given.

Detailed reports of the Jury, and the work of the recipients, appeared in the CSL’05,
CSL’06, CSL’07, CSL’08, CSL’09 and CSL’10 proceedings, and are also available via the
EACSL homepage http://www.eacsl.org/award.html.
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Resource lambda-calculus: the differential
viewpoint∗

Thomas Ehrhard

CNRS, PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité
F-75205 Paris, France
thomas.ehrhard@pps.jussieu.fr

Abstract
Milner’s π calculus features a clear dichotomy between replicable and non-replicable resources,

very much in the spirit of Linear Logic (LL). Analyzing Milner’s encoding of the lazy λ-calculus
in the π-calculus, Boudol introduced the λ-calculus with resources [1, 2] where functions can be
applied to bags made of replicable and non-replicable arguments. This refinement of the syntax
required to stick to a lazy reduction strategy implemented with explicit substitutions, used to
postpone linear substitutions of non replicable resources.

Motivated by the discovery of denotational models of LL such as [3] where all morphisms of
the associated cartesian closed category can be differentiated, we introduced in [4] the differential
λ-calculus which features two ways of applying a function to an argument: the standard one and
a linear one, implementing differentiation. This approach allows to generalize Boudol’s idea:
linear β-reduction – understood now as differentiation – can be performed everywhere in terms,
and explicit substitutions are not needed anymore. Moreover, these differential operations fit
very well in the LL framework: differentiation appears as a logical rule dual to dereliction, and
the nice par/tensor symmetry of multiplicative LL extends to the exponentials, see [5]. In the
conclusion of [6], Girard contemplated the possibility of introducing differential ideas in LL. There
were probably very good reasons for not doing so at this early stage, since differential constructs
are incompatible with both determinism and totality.

We present differential linear logic and its models, the associated resource and differential λ-
calculi, and the Taylor expansion of promotion boxes. We also describe an antiderivative which
seems to be available in many models of differential LL, and we present a very simple categorical
axiom for this operation.
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The Freedoms of Guarded Bisimulation
Martin Otto

Department of Mathematics
Technische Universität Darmstadt
otto@mathematik.tu-darmstadt.de

Abstract
Guarded logics have been shown to be amazingly versatile and tractable logics since their incep-
tion by Andréka, van Benthem, Németi in [1]. Features otherwise known from modal logics are
lifted to the richer setting of general relational structures. The leading idea in this generalisation
is the relativisation of quantifiers to tuples that are guarded by relational atoms. In a sense that
can be made precise for many specific issues, guarded logics relate to general relational struc-
tures and hypergraphs in much the same way that modal logics relate to Kripke structures and
graphs. This is particularly apparent for the associated semantic equivalence games. Guarded
bisimulation can be seen as derived from a hypergraph version of ordinary (modal) bisimulation
for graph-like structures. Just like preservation under ordinary bisimulation accounts for much
of the good model-theoretic behaviour of modal logics, so hypergraph bisimulation and guarded
bisimulation are the keys to understanding the model theory of guarded logics [1, 3, 4]. Model
constructions and transformations that are compatible with guarded bisimulation account for the
malleability of models and the tractability of the finite and algorithmic model theory of various
guarded logics. They can often be cast in terms of hypergraph constructions [5, 6]. Here I intend
to survey and summarise a number of results in the light of such model constructions including
some more recent developments from [2, 6]. Results to be surveyed include finite and small model
properties, decidability results, complexity and expressive completeness issues. At the concep-
tual as well as at the technical level, guarded bisimulations and local versus global properties in
the overlap patterns of (finite) hypergraph structures form one of the leading themes, and offer
intriguing combinatorial challenges.
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Branching vs. Linear Time: Semantical
Perspective∗

Moshe Y. Vardi

Department of Computer Science, Rice University
Houston, TX 77005, USA
vardi@cs.rice.edu.com

Abstract
The discussion of the relative merits of linear- versus branching-time frameworks goes back to the
early 1980s. One of the beliefs dominating this discussion has been that the linear-time framework
is not expressive enough semantically, making linear-time logics lacking in expressiveness. In this
talk we examine the branching-linear issue from the perpsective of process equivalence, which
is one of the most fundamental notions in concurrency theory. Defining a notion of process
equivalence essentially amounts to defining semantics for processes. Over the last three decades
numerous notions of process equivalence have been proposed. Researchers in this area do not
anymore try to identify the “right” notion of equivalence. Rather, focus has shifted to providing
taxonomic frameworks, such as “the linear-branching spectrum”, for the many proposed notions
and trying to determine suitability for different applications.

We revisit here this issue from a fresh perspective. We postulate three principles that we
view as fundamental to any discussion of process equivalence. First, we borrow from research
in denotational semantics and take contextual equivalence as the primary notion of equivalence.
This eliminates many testing scenarios as either too strong or too weak. Second, we require
the description of a process to specify all relevant behavioral aspects of the process. Finally, we
require the observable behavior of a process to be reflected in its input/output behavior. Under
these principles, linear-time semantics emerges as the right approach. As an example, we apply
these principles to the framework of transducers, a classical notion of state-based process that
dates back to the 1950s and is well suited to reactive systems. We show that our principles yield
a unique notion of process equivalence, which is trace based, rather than tree based.
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Ontology-Based Data Access and Constraint
Satisfaction
Frank Wolter

University of Liverpool, Department of Computer Science
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wolter@liverpool.ac.uk

Abstract
In recent years, the use of ontologies (=logical theories) to access instance data has become
increasingly popular. The general idea is that an ontology provides a vocabulary or conceptual
model for the application domain, which can then be used as an interface for querying instance
data and to derive additional facts [2, 6].

In this presentation, I will introduce ontology-based data access for ontologies given in de-
scription logics and investigate the following non-uniform complexity problem: what is the data
complexity of conjunctive query answering for a fixed ontology? I will present general conditions
under which this problem is in PTime and, respectively, coNP-hard. Then it is shown that for
the basic description logic ALC (=modal logic), conjunctive query answering is equivalent to
solving constraint satisfaction problems with finite templates. Examples of consequences of this
result include: (i) a P/coNP dichotomy holds for conjunctive query answering with ALC if, and
only if, Feder and Vardi’s dichotomy conjecture [3] for constraints satisfaction problems holds;
(ii) first-order constraint satisfaction problems investigated and characterized in [4] correspond
exactly to reductions of ontology based data access with ALC to standard query answering over
relational databases known as FO-rewriting.

By employing results from [1], we also show that if functional relations are added to ALC, then
the word problem of every non-deterministic polynomial time Turing Machine can be reduced
to conjunctive query answering. Thus, by Ladner’s Theorem, ontologies with coNP-intermediate
conjunctive query answering exist.

The talk is based on joint work with Carsten Lutz. Preliminary results are published in [5].
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Power-Set Functors and Saturated Trees∗
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2 Department of Mathematics, Indiana University
Bloomington, IN, USA

3 Departamento de Matemática, Instituto Politécnico de Viseu,
Portugal

Abstract
We combine ideas coming from several fields, including modal logic, coalgebra, and set theory.
Modally saturated trees were introduced by K. Fine in 1975. We give a new purely combinatorial
formulation of modally saturated trees, and we prove that they form the limit of the final ωop-
chain of the finite power-set functor Pf . From that, we derive an alternative proof of J. Worrell’s
description of the final coalgebra as the coalgebra of all strongly extensional, finitely branching
trees. In the other direction, we represent the final coalgebra for Pf in terms of certain maximal
consistent sets in the modal logic K. We also generalize Worrell’s result to M -labeled trees for
a commutative monoid M , yielding a final coalgebra for the corresponding functor Mf studied
by P. Gumm and T. Schröder. We introduce the concept of an i-saturated tree for all ordinals
i, and then prove that the i-th step in the final chain of the power set functor consists of all i-
saturated trees. This leads to a new description of the final coalgebra for the restricted power-set
functors Pλ (of subsets of cardinality smaller than λ).
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Languages; G.2.2 Graph Theory

Keywords and phrases Saturated tree, extensional tree, final coalgebra, power-set functor, modal
logic
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1 Introduction

Final coalgebras play a fundamental rôle in the theory of systems represented as coalgebras:
J. Rutten [18] demonstrated that the final coalgebra describes all possible behaviors of
states of systems. For Kripke structures considered as the coalgebras for the finite power-set
functor Pf two beautiful descriptions of the final coalgebra exist: as the set of all hereditarily
finite sets in the non-wellfounded set theory due to P. Aczel, see [2], and as the set of all
strongly extensional, finitely branching trees1 due to J. Worrell [21]. He used metric spaces:
he described the limit Pω

f 1 of the final chain of Pf as the set of all strongly extensional,
compactly branching trees. From that he derived the above description of the final coalgebra.
We give below two new descriptions that do not need topology, one combinatorial and one

∗ Extended Abstract
1 Throughout the paper trees are directed graphs with a distinguished node called the root from which

every other node can be reached by a unique directed path, and they are always considered up to
isomorphism. Strong extensionality for trees is recalled in Section 2 below.
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6 Power-Set Functors and Saturated Trees

using modal logic. We prove that the limit Pω
f 1 consists (a) of all saturated trees or (b) of

all maximal consistent theories of the modal logic K. And an alternative description of the
final coalgebra is: the set of all hereditarily finite (maximal consistent) theories. Related
descriptions were provided by S. Abramsky [1], A. Kurz and D. Pattinson [14] and by
J. Rutten [17, Theorem 7.4].

We also present a generalization in two directions: one uses finite multisets with mul-
tiplicities drawn from a given commutative monoid M , as introduced by H. P. Gumm and
T. Schröder [12]. Form the functor Mf of all such finite multisets; its coalgebras are la-
beled transition systems with actions from M \ {0}. We prove a direct generalization for
all monoids for which Mf preserves weak pullbacks: the final coalgebra for Mf consists of
all finitely branching, strongly extensional M -labeled trees. For general monoids this result
is not true, but we prove that the final coalgebra for Mf is the coalgebra of extensional,
finitely branchingM -labeled trees modulo an equivalence generalizing M. Barr’s equivalence
for Pf , see [7].

The other direction of generalization of the final coalgebra for Pf is from finite subsets
to subsets of cardinality less than λ, where λ is an infinite cardinal. The corresponding
power-set functor Pλ has the final coalgebra of all strongly extensional λ-branching trees,
as proved by D. Schwencke [19]. We present a different proof based on the description of the
final chain Pi1 of the (full) power-set functor P. We introduce the concept of an i-saturated
tree for every ordinal i (where ω-saturated is the above concept), and we describe Pi1 as
the set of all strongly extensional i-saturated trees.

2 Extensional and saturated trees

For an endofunctor H of Set recall that a coalgebra is a set A together with a morphism
a : A → HA. A coalgebra homomorphism into b : B → HB is a morphism f : A → B with
b·f = Hf ·a. The final coalgebra, if it exists, is denoted by νH; by Lambek’s Lemma [15]
its coalgebra structure is an isomorphism νH

∼−−→ H(νH). For example Kripke struc-
tures (W,R, l) where R ⊆ W × W and l : W → 2AP are precisely the coalgebras for
HX = PX × 2AP where AP is a fixed set of atomic propositions and P is the power-
set functor. In the present paper we restrict ourselves to the case AP = ∅. Then Kripke
structures are simply graphs, or coalgebras for P. And the finitely branching graphs are
coalgebras for the finite power-set functor Pf .

In this and the next section we describe the final coalgebra for Pf . Lambek’s Lemma
implies that P does not have a final coalgebra, but we describe the final chain of P in
Section 5.

Recall from [7], dualizing the initial chain of [4], the final chain of H which is the chain
W : Ordop → Set determined (uniquely up-to natural isomorphism) by its objects Wi,
i ∈ Ord, and connecting morphisms wi,j : Wi →Wj (i ≥ j) as followsW0 = 1,Wi+1 = HWi,
and Wi = limj<iWj for limit ordinals i and wi+1,j+1 = Hwi,j , whereas (wi,j)j<i is a limit
cone for limit ordinals i. If this chain converges at some ordinal i, i.e., the connecting map
HWi → Wi is an isomorphism, then its inverse yields the final coalgebra for H. The finite
steps of the final chain of H are called the final ωop-chain of H.

I Remark 2.1. Recall that coalgebras for P are simply graphs. When speaking about
morphisms between graphs (in particular trees) we always mean coalgebra homomorphisms
f : A→ B. That is, f preserves edges, and for every edge from f(a) to b in B there exists
an edge from a to a′ in A with b = f(a′). Quotients of graphs are, as usual, represented by
epimorphisms, that is, surjective morphisms.
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I Definition 2.2. A tree is extensional if distinct children of any node define non-isomorphic
subtrees.

The extensional modification of a tree t is the smallest quotient of t which is extensional.
It is obtained from t by recursively identifying isomorphic subtrees whose roots have a joint
parent.

I Example 2.3. The extensional modification of the complete binary tree is the single path.

I Notation 2.4. For every tree t denote by ∂nt the extensional tree obtained by cutting t
at level n (i.e. deleting all nodes of depth > n) and forming the extensional modification.
For all trees t and u, we write t ∼n u to mean that ∂nt = ∂nu (remember that we identify
isomorphic trees).

I Remark 2.5. The final ωop-chain of Pf can be described as follows:

Pn
f 1 = all extensional trees of depth ≤ n with the connecting maps ∂n : Pn+1

f 1→Pn
f 1.

Indeed, the unique element of 1 can be taken to be the root-only tree. Given a set
M ⊆Pn

f 1, we identify it with the tree tupling of its elements and obtain a tree in Pn+1
f 1.

The first connecting map from Pf1 to 1 is obviously ∂0, and given that the n-th connecting
map is ∂n : Pn+1

f 1 → Pn
f 1, it follows that the next connecting map, Pf∂n, is (with the

above tree tupling identification) precisely ∂n+1.

I Definition 2.6. Two trees t and u are called Barr equivalent, notation t ∼ω u, provided
that t ∼n u holds for all n < ω.

I Remark 2.7. The set B of all finitely branching extensional trees is a coalgebra for Pf :
the coalgebra map is the inverse of tree tupling. This coalgebra is weakly final, and a final
coalgebra can be described as its quotient:

I Theorem 2.8 (see [7]). The final coalgebra for Pf can be described as the quotient B/∼ω
of the coalgebra of all finitely branching, extensional trees modulo Barr-equivalence.

I Definition 2.9 (see [21]). For trees t and s a tree bisimulation is a relation R ⊆ t× s such
that the roots are related, two related child nodes always have related parents, and R is a
bisimulation w.r.t. P; i.e., given related nodes a R b then for every child a′ of a in t there
exists a child b′ in s with a′ R b′, and vice versa.

I Example 2.10. The first two trees in the picture below are Barr-equivalent trees. The
third and fourth trees are two extensional trees (the third tree has n children of the n-th
node) that are bisimilar. In fact, every tree without leaves is bisimilar to the infinite path.
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8 Power-Set Functors and Saturated Trees

I Definition 2.11 (see [21]). A tree t is called strongly extensional if distinct children of
any node are not bisimilar. Equivalently, every tree bisimulation R ⊆ t× t satisfies R ⊆ ∆t,
where ∆t is the diagonal relation on t.

I Example 2.12. (1) Every finite extensional tree is strongly extensional.
(2) The infinite path is a strongly extensional tree. This is the only strongly extensional

tree without leaves: for every tree t without leaves the relation

x R y iff x and y have the same depth

is a tree bisimulation. Thus, the third tree in Example 2.10 shows an extensional tree which
is not strongly extensional.

I Definition 2.13. Given a tree t, the subtree of t rooted at the node x is denoted by tx.
A tree t is called saturated provided that for all nodes x of t and all trees s, if for all n,
there are children xn of x with s ∼n txn

(n < ω), then there is some fixed child y of x with
s ∼ω ty.

I Example 2.14. (1) Every finite tree is saturated.
(2) More generally: all finitely branching trees are saturated. Indeed, given xn as above,

there exists k < ω with xn = xk for infinitely many n, and then s ∼n txk
for infinitely

many n, proving s ∼ω txk
.

(3) The left-hand tree of Example 2.10 is not saturated. We obtain a saturated tree by
adding a new child whose subtree is the infinite path.

(4) For every set A ⊆ ω the following tree rA is saturated and strongly extensional: take
an infinite path and add a leaf at depth n iff n+ 1 lies in A. We know from item (2) that
rA is saturated, and strong extensionality is obvious.

I Lemma 2.15. Given saturated, strongly extensional trees t and u with t ∼ω u, we have
t = u. Therefore there exist precisely 2ℵ0 saturated, strongly extensional trees and they have
branching at most 2ℵ0 .

Proof. (a) For every child z of the root of u there exists a child y of the root of t with
ty ∼ω uz. Indeed, since t ∼n u for every n there exist children xn with txn

∼n uz (n < ω)
and then y exists since t is saturated. Conversely, for every y there exists z with ty ∼ω uz.
By continuing to lower nodes we conclude that the relation R ⊆ t×u defined recursively by

y R z iff
{

either y and z are the roots
or y and z have R-related parents and ty ∼ω uz

is a tree bisimulation. Clearly, the opposite relation Rop is a tree bisimulation, too, and, as
Pf preserves weak pullbacks, so are the composite relations Rop ◦R ⊆ t× t and R ◦Rop ⊆
u× u. Since t and u are strongly extensional, we conclude Rop ◦R ⊆ ∆t and R ◦Rop ⊆ ∆u.
Finally, since R and Rop are total relations, the last two inequalities are equalities, and this
implies that R is the graph of an isomorphism from t to u, i.e., t = u.

(b) The number of saturated, strongly extensional trees is at least 2ℵ0 by Example 2.14(4).
It is at most 2ℵ0 because every saturated strongly extensional tree t is determined by the
set M = {tx;x a child of the root of t}, and M is determined, due to (a), by the sequence
of sets Mn = {∂ns; s ∈ M} for n < ω. Since Mn is finite, the number of these sequences is
at most 2ℵ0 .

The last statement follows since every subtree of a saturated tree is saturated. J



J. Adámek, S. Milius, L. S. Moss, L. Sousa 9

Recall Worrell’s description of the limit Pω
f 1 = lim

n<ω
Pn
f 1 of the final chain of Pf as the

set of all compactly branching trees [21]. Here is a new combinatorial description:

I Theorem 2.16. The limit Pω
f 1 of the final ωop-chain of Pf can be described as the set

of all saturated, strongly extensional trees. The limit cone is (∂n)n<ω.

Proof. Let S be the set of all saturated, strongly extensional trees. We prove that ∂n : S →
Pn
f 1 (see Remark 2.5) is a limit cone. For definiteness, we denote the connecting morphism

of the final ωop-chain by ∂′n : Pn+1
f 1→Pn

f 1. It is obvious that ∂n = ∂′n·∂n+1, thus (∂n) is
a cone on the final ωop-chain.

(a) The cone ∂n is collectively monic by Lemma 2.15.
(b) For every compatible family rn ∈Pn

f 1 we prove that there exists t ∈ S with ∂nt = rn

for every n. Compatibility means rn = ∂′n(rn+1) for n < ω. Let r̂n+1 be the tree obtained
by cutting rn+1 at depth n. Since rn is extensional, the above equation tells us that rn is
a quotient of r̂n+1. Let en : r̂n+1 → rn be the corresponding epimorphism. Define a tree t
to have as nodes of depths k = 0, 1, 2 . . . all sequences x̄ = (x̄k, x̄k+1, x̄k+2 . . . ) of nodes
x̄n ∈ rn of depth k with en(x̄n+1) = x̄n for all n ≥ k. Thus the sequence of roots of
r0, r1, r2 . . . is the root of t. And edges are defined componentwise: there is an edge from
(x̄k, x̄k+1, x̄k+2 . . . ) to (ȳk+1, ȳk+2, ȳk+3, . . . ) iff (x̄n, ȳn) is an edge of rn for all n ≥ k + 1.
It is easy to verify that t is a well-defined tree.

(b1) We prove ∂nt = rn. To this end it suffices to establish that there is an epimorphism
of graphs from the cutting of t at level n to rn (the desired equality then follows since rn is
extensional). Consider the n-th projection. This is surjective:

For every node z ∈ rn there exists a node x̄ ∈ t with z = x̄n. Indeed, put x̄n = z, and
since en is an epimorphism, choose x̄n+1 ∈ e−1

n (x̄n), etc. Then x̄ = (x̄n, x̄n+1, x̄n+2 . . . ) has
the required property.

It is clear that the projection is a graph morphism: it preserves edges by the definition
of t. And analogously to the argument of surjectivity above, for every x̄ in t and every edge
from z = x̄n to z′ in rn there exists an edge from x̄ to x′ in t with z′ = (x̄′)n.

(b2) t is strongly extensional. Indeed, given a tree bisimulation R ⊆ t× t, we prove that
x̄ R ȳ implies x̄ = ȳ. Let k be the depth of x̄ and ȳ. From (b1) it follows that rnx̄n = ∂n(tx̄)
and rnȳn = ∂n(tȳ) for all n ≥ k. But x̄ R ȳ implies that R restricts to a tree bisimulation
between tx̄ and tȳ, thus, tx̄ ∼n tȳ. Consequently, rnx̄n = rnȳn . This implies x̄n = ȳn. (This is
clear from extensionality of rn in case k = 1. This finishes the proof of x̄ = ȳ if k = 1. For
k = 2, we conclude that x̄ and ȳ have the same parent, z̄, and apply the above to tz̄ in lieu
of t, etc.)

(b3) The tree t is saturated. Indeed, let s be a tree for which the condition of Defini-
tion 2.13 holds, taking x to be the root of t. (The proof for all other nodes x of t is completely
analogous.) That is, we have children x̄n of the root of t with s ∼n tx̄n

for n < ω. We prove
that the node ȳ of t with components ȳn =

(
x̄n
)n for all n ≥ 1 fulfils s ∼ω ty.

Firstly, we need to verify that ȳ is a node: en(ȳn+1) = ȳn. Both of these nodes are
children of the root of rn, thus, by extensionality we only need to prove that they define the
same subtree of rn. Let t̂x̄n be the cutting of tx̄n at level n− 1, then from (b1) we know
that rnȳn is the image of t̂x̄n

under the n-th projection t → rn. Since rnȳn
is extensional,

this proves ∂ntx̄n
= rnȳn

and analogously for n+ 1. Moreover, from tx̄n
∼n s ∼n+1 tx̄n+1 we

deduce tx̄n
∼n tx̄n+1 . Consequently,

rnȳn = ∂ntx̄n+1 and rn+1
ȳn+1 = ∂n+1tx̄n+1 .

We also have ∂′nrn+1
ȳn+1 = rnen(ȳn+1) because the right-hand tree is extensional, and it is the

CSL’11



10 Power-Set Functors and Saturated Trees

image of r̂n+1
ȳn+1 under en. Consequently, rnen(ȳn+1) = ∂′n∂n+1tx̄n+1 = ∂ntx̄n+1 . This proves

rnen(ȳn+1) = rnȳn
, thus, en(ȳn+1) = ȳn by extensionality of rn.

Next, we need to verify s ∼n tȳ for every n < ω. Indeed, we have s ∼n tx̄n
, and to prove

tx̄n
∼n tȳ observe that the n-th projection t → rn maps the cutting of tȳ onto rnȳn , thus,

rnȳn = ∂tȳ. We already observed that rnȳn = ∂ntx̄n
, thus, ∂ntx̄n

= ∂ntȳ. J

I Corollary 2.17 (J. Worrell). The final chain of Pf converges in ω + ω steps with the
step ω + n given by the set Pω+n

f 1 of all saturated, strongly extensional trees finitely branch-
ing up to level n− 1. Moreover, the final coalgebra for Pf is given by

Pω+ω
f 1 = all finitely branching, strongly extensional trees.

Indeed, for n = 1 we have Pω+1
f = Pf (Pω

f 1) and we identify, again, every finite
set M ⊆ Pω

f 1 of saturated trees with its tree-tupling. This is, by Example 2.14(2), a
saturated, strongly extensional tree which is finitely branching at the root—and conversely,
every such tree is a tree tupling of a finite subset of Pω

f 1. Analogously for n = 2: we have
Pω+2
f = Pf (Pω+1

f 1) and the resulting trees are precisely those trees in Pω
f 1 that are

finitely branching at levels 0 and 1, etc. The connecting maps are the inclusion maps. The
limit Pω+ω

f 1 = limn<ω Pω+n
f 1 is the intersection of these subsets of Pω

f 1 which consists of
all finitely branching, strongly extensional trees: they are saturated, see Example 2.14(2).

3 Modally saturated trees

K. Fine [10] introduced the concept of modal saturatedness for Kripke structures in modal
logic. In this section, we review all of the needed definitions, and we prove that modally
saturated trees are the same as saturated trees.

(a) We work with modal logic formulated without atomic propositions. The sentences ϕ
of modal logic are then given by

ϕ ::= > | ¬ϕ | ϕ ∧ ϕ | �ϕ

We use the usual abbreviations:

⊥ = ¬> ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ = ¬ϕ ∨ ψ � ϕ = ¬ � ¬ϕ.

A sentence has depth n if n is the maximum of nested � in it.
(b) We interpret modal logic on Kripke structures. Since we have no atomic sentences,

our Kripke structures are just graphs G = (G,→), where → is a binary relation on the set
G. The main semantic relation is the satisfaction relation |= between the node set of a given
graph and the sentences of the logic. This is defined as follows:

a |= > always
a |= ¬ϕ iff it is not the case that a |= ϕ

a |= ϕ ∧ ψ iff a |= ϕ and a |= ψ

a |= �ϕ iff for all neighbors b of a, b |= ϕ

Given a tree t we write t � ϕ if the root satisfies ϕ.
(c) A theory is a set S of sentences. We write a � S if a � ϕ for all ϕ ∈ S and call a

a model of S.
(d) Turning to the proof system, the modal logic K extends the propositional logic

(Hilbert’s style) by one axiom �(ϕ → ψ) → (�ϕ → �ψ), called K, and one deduction rule:
if ϕ ∈ K then �ϕ ∈ K. We write ` ϕ if ϕ can be derived in this logic.
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This logic is sound and complete. That is, ` ϕ holds iff for every node a of any graph,
a � ϕ.

(e) A theory S is inconsistent if for some finite {ϕ1, . . . , ϕn} ⊆ S, ` ¬
∧
ϕi. S is

consistent if S is not inconsistent. Or, equivalently, S has a model. If, moreover, S ∪ {ϕ} is
inconsistent for every sentence ϕ /∈ S, then S is maximal consistent.

(f) �S denotes the theory {�ϕ : ϕ ∈ S}, and �kS = �(�k−1S) for k ≥ 2.

I Definition 3.1. We define canonical sentences χ of depth n by recursion on n, as follows:
(a) > is the only canonical sentence of depth 0, and
(b) canonical sentences of depth n+ 1 are precisely the sentences

∇S = (
∧
�S) ∧ �

∨
S

where S is a set of canonical sentences of depth n. We use the conventions that
∧
∅ = >,∨

∅ = ⊥, and we often identify sentences ϕ and ψ when ` ϕ↔ ψ in K.

I Example 3.2. We have two canonical sentences of depth 1.

∇∅ = > ∧ � ⊥ = �⊥ and ∇{>} = �> ∧ �> = �>
distinguishing whether the given node has a neighbor or not.

I Theorem 3.3 (K. Fine [10] and L. Moss [16]). For every node a of a graph and every n ∈ N
there exists a unique canonical sentence χ of depth n satisfied by a. Moreover, for every
canonical sentence χ of depth n and every sentence ψ of depth at most n, either ` χ → ψ

or ` χ→ ¬ψ.

I Notation 3.4. (a) For every tree t we denote by χn(t) the unique canonical sentence of
depth n satisfied in the root. It is easy to prove that

χn+1(t) = ∇
{
χn(tx) : x child of the root of t

}
.

(b) For any graph G, and any a ∈ G, we denote by Sa the set of all sentences ϕ with
a � ϕ in G. For a tree t, we similarly denote by St the set of sentences satisfied by the root
of t.

(c) Recall from [8] that the canonical model of K is the graph C whose nodes are the
maximal consistent theories, and with S → S′ iff �S′ ⊆ S (equivalently, �S ⊆ S′). The
Truth Lemma (see [8], Lemma 4.21) is the statement that for all S ∈ C,

{ϕ : S |= ϕ in C} = S.

This lemma is easy to check by induction on ϕ.

I Corollary 3.5. For two trees t and s we have t ∼n s iff t � χn(s). Consequently, t ∼ω s
iff St = Ss.

I Proposition 3.6. The limit Pω
f 1 can be described as the set C of all maximal consistent

theories in K.

Proof. We have described Pω
f 1 as the set of all saturated, strongly extensional trees. We

prove that t 7→ St is a bijection between this set and C. This finishes the proof. (a) For
every t ∈ Pω

f 1 the theory St is maximal consistent. Indeed, it is is obviously consistent.
Given ϕ /∈ S of depth n, we have t 2 ϕ and t � χn(t), thus, 6` χn(t) → ϕ. By Theorem 3.3
` χn(t)→ ¬ϕ. Therefore, St∪{ϕ} is inconsistent. (b) By the Truth Lemma, every maximal
consistent theory S is of the form St for some t: let t be the expansion of the canonical graph
C at S. Moreover, t can be taken as saturated and strongly extensional, since the saturation
operation on trees preserves modal theories (see Corollary 3.5). J
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12 Power-Set Functors and Saturated Trees

I Definition 3.7. A theory S is called hereditarily finite if it is maximal consistent and for
every k ∈ N there exist only finitely many maximal consistent theories S′ with �kS′ ⊆ S.

I Theorem 3.8. The set of all hereditarily finite theories is a final coalgebra for Pf via the
coalgebra map S 7→ {S′ : �S′ ⊆ S}.

Proof. We prove that the bijection t 7→ St of Proposition 3.6 has the property that for
t ∈ Pω

f 1 we have that t is finitely branching iff St hereditarily finite. From that our
theorem follows, since the coalgebra map above corresponds to the coalgebra map of νPf .
Indeed:

(a) If St is hereditarily finite, then t is finitely branching. It is sufficient to verify that
t is finitely branching at the root. Given a node x of depth k, we then apply this to tx: the
theory of this subtree is also hereditarily finite, since �kStx ⊆ St (indeed: if tx � ϕ then
t � �kϕ).

Every child a of the root of t fulfils �Sta ⊆ St. Thus, there are only finitely many such
theories Sta . Now let a and b be children of the root of t with Sta = Stb , whence ta ∼ω tb
by Corollary 3.5. So since ta and tb are saturated and strongly extensional, we have ta = tb
by Lemma 2.15. Therefore, the root has only finitely many children.

(b) If t is finitely branching, then St is hereditarily finite. Indeed, for every maximal
consistent theory S′ with �kS′ ⊆ St let s be a tree with S′ = Ss (see Proposition 3.6). Then
for every n ∈ N we have t � �kχn(s), i.e., some node of t of depth k satisfies χn(s). Since
we have only finitely many such nodes, one of them, say a, satisfies χn(s) for all n. That
is, ta ∼n s for n ∈ N, hence, Sta = S′, see Corollary 3.5. Since we have only finitely many
nodes a of depth k, we see that St is hereditarily finite. J

I Definition 3.9 (see [10]). A graph is called modally saturated if for every node a, given a
theory S such that

a � �
∧
S0 for every finite S0 ⊆ S (3.1)

there exists a neighbor b of a satisfying S.

I Theorem 3.10. A tree is saturated iff it is modally saturated.

Proof. (a) Let t be modally saturated. Let a be a node in t, and let s be a tree with the
property that there exist children xn of a with s ∼n txn (n < ω). We prove s ∼ω tb for
some child b. The theory Ss fulfils (3.1): given S0 ⊆ Ss finite, let n be the maximum of the
depths of all ψ ∈ S0; then ` χn(s)→ ψ for all ψ ∈ S0 (see Theorem 3.3). By Corollary 3.5,
s ∼n txn

iff xn |= χn(s), and this implies xn � ψ for all ψ ∈ S0. Thus, a � �
∧
S0. Let b be

a neighbor of a satisfying Ss. Then tb � χn(s) for all n; i.e., s ∼ω tb by Corollary 3.5.
(b) Let t be saturated. Let a be a node of t and S be a theory satisfying (3.1). For every

natural number n define Sn to be a set of representatives of all ψ ∈ S of depth at most
n modulo logical equivalence in K. As a corollary of Theorem 3.3 one readily proves that
there is only a finite set of sentences of depth at most n (up to logical equivalence). So we
have that Sn is finite. By (3.1) we see that for every n, there exists a child bn of a such that

bn � ψ for all ψ ∈ Sn.

It is our task to prove that a has a child b satisfying S.
Let v be the graph whose nodes are all canonical sentences χ of depth any n = 0, 1, 2, . . .

such that a � �χ and ` χ → ψ for all ψ ∈ Sn. We make v a graph using the converse of
logical implication in K. So the neighbors of the node χ are all the nodes χ′ of depth n+ 1
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with ` χ′ → χ. The root is >, and every node χ′ of v has indeed a unique parent (so v
is a tree): since a � �χ′, we have a child c of a with c � χ′ which by Theorem 3.3 implies
χ′ = χn+1(tc). Put χ = χn(tc), then ` χ′ → χ. (This is because ` χ′ → ¬χ cannot happen
due to c � χ′ and c � χ. Now use Theorem 3.3). Consequently, χ is a parent of χ′. And
the uniqueness of the parent is obvious: suppose ` χ → χ′ where χ′ ∈ v has depth n, then
tc � χ′, therefore χ′ = χn(tc).

The tree v is obviously finitely branching. And since each χn(tbn
) lies in v and each of

these formulas has a different depth, they form an infinite set of nodes of v. By König’s
Lemma, v has an infinite branch

> = χ0 ← χ1 ← χ2 . . .

Each S ∪ {χn} is consistent. Indeed, by compactness it is sufficient to verify that Sk ∪ {χn}
is consistent for every k ≥ n: due to a � �χk we have a child c of a satisfying χk, then tc is a
model of Sk (due to ` χk → ψ for all ψ ∈ Sk) and of χn (due to ` χk → χn). Consequently,
S ∪ {χ0, χ1, χ2, . . . } is consistent: use compactness again. Let s be a tree which is model
of the last theory. Then s � χn which by Theorem 3.3 implies χn = χn(s) for every n. On
the other hand, since a � �χn, we have a child cn of a with cn � χn, thus, χn = χn(tcn).
By Corollary 3.5 this proves s ∼n tcn

. Since t is saturated, there exists a child b of a with
s ∼ω tb. Then S ⊆ Ss = Stb which concludes the proof: b satisfies S. J

4 Finite multisets with multiplicities in a commutative monoid

Here we follow the approach of P. Gumm and T. Schröder [12] who investigated finitely
branching Kripke structures with transitions having weights from a given commutative
monoid (M,+, 0). These are just coalgebras for the functor Mf : Set → Set (denoted
by Mω in [12]) assigning to every set X the set MfX of all finite multisets in X, i.e. all
functions A : X → M with A−1[M \ {0}] finite. Given a function h : X → Y , the functor
Mf assigns to every finite multiset A : X →M the finite multiset Mfh(A) sending y ∈ Y to∑
x∈X,h(x)=y A(x).

I Example 4.1. The Boolean monoid P = {0, 1} yields the finite power-set functor Pf .
The cyclic group C = {0, 1} yields a functor Cf which coincides with Pf on objects but is
very different on morphisms.

I Definition 4.2. By an M -labeled graph G is meant a graph whose edges are labeled
in M \ {0}. We denote by wG : G × G → M the corresponding “weight” function with
wG(x, y) 6= 0 iff y is a neighbor of x.

I Remark 4.3. (a) The coalgebras for Mf are precisely the finitely branching M -labeled
graphs. Indeed, given such a graph G, define the coalgebra structure G→MfG by assigning
to every vertex x the finite multiset wG(x,−) : G→M . Conversely, every finitely branching
M -labeled graph is obtained from precisely one coalgebra of Mf .

(b) Coalgebra homomorphisms between two finitely branching M -labeled graphs G
and H are precisely the functions f : G→ H between the vertex sets such that

wH
(
f(x), y

)
=

∑
x′∈X,f(x′)=y

wG(x, x′) for all x ∈ G, y ∈ H. (4.1)

(c) We identify, once again, two M -labeled trees whenever they are isomorphic (as coal-
gebras for Mf ).
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14 Power-Set Functors and Saturated Trees

I Definition 4.4. An M -labeled tree is extensional if distinct children of any node define
non-isomorphic M -labeled subtrees.

We use ∼n and ∼ω in an obvious analogy to Notation 2.4 and Definition 2.6.

I Remark 4.5. The concepts of tree bisimulation and strong extensionality (see Definitions
2.9 and 2.11) also immediately generalize to M -labeled trees. We now generalize Theo-
rem 2.8, using B again for the coalgebra of all finitely branching extensional M -labeled
trees.

I Theorem 4.6. Let M be a commutative monoid. The coalgebra B/∼ω of all finitely
branching, extensional, M -labeled trees modulo Barr equivalence is final for Mf .

Sketch of proof. (1) B is weakly final. Indeed, for every finitely branching M -labeled
graph (A,α) we define a coalgebra homomorphism h : A → B by assigning to every ver-
tex a ∈ A the extensional modification of the tree expansion of a. Recall that the nodes of
the tree expansion of a are the paths a0, a1, . . . , ak of A starting in a, including the empty
path, a, which is the root. A child of a1, . . . , ak is any extension a1, . . . , ak, ak+1 and its
weight in the tree expansion of a is wG(ak, ak+1), see Definition 4.2.

(2) The final coalgebra is obtained from B by the quotient modulo the largest congruence.
This follows from the fact that the category of coalgebras for Mf is complete. Thus, by
Freyd’s Adjoint Functor Theorem a weakly final object always has the final object as the
quotient modulo the greatest congruence.

(3) The Barr equivalence is a congruence on B. That is, the quotient B/∼ω carries
a coalgebra structure for Mf such that the quotient map q : B → B/∼ω is a coalgebra
homomorphism.

(4) Every congruence ≈ on B is contained in ∼ω. That is, our task is to prove the
implication

t ≈ t′ implies ∂nt = ∂nt
′.

This follows by induction on n since ≈ being a congruence means that for the quotient map
q : B → B/≈ we have a coalgebra structure B/≈ making q a homomorphism. J

I Definition 4.7 (See [12]). A commutative monoid M is called
(a) positive if a+ b = 0 implies a = 0 = b and
(b) refinable if a1 + a2 = b1 + b2 implies that there exists a 2× 2 matrix with row sums a1
and a2, respectively, and column sum b1 and b2, respectively.

I Theorem 4.8. The following conditions on a commutative monoid M are equivalent
(a) The functor Mf weakly preserves pullbacks
(b) M is positive and refinable, and
(c) whenever a1 + · · ·+ an = b1 + · · ·+ bk, there exists an n× k-matrix whose vector of row
sums is a1, . . . , an and the vector of column sums is b1, . . . , bk.

In [12] this theorem is proved except that in lieu of (a) weak preservation of non-empty
pullbacks is requested. However, the functor Mf has a unique distinguished point in the
sense of V. Trnková [20], namely, the empty set ∅ ∈MfX. Since Mf∅ = {∅}, it follows from
the result in [20] that Mf preserves weak pullbacks iff it preserves the nonempty ones. Now
for (a) ⇐⇒ (b), see [12], Theorem 5.13, and concerning (b) ⇐⇒ (c), Proposition 5.10 of
loc. cit. states that refinability is equivalent to condition (c) with n, k > 1 and positivity of
M is equivalent to condition (c) with n > 1 and k = 0. For n = 1, condition (c) is trivial.
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I Example 4.9 (See [12]). The Boolean monoid P = {0, 1} and the monoids (N,+, 0)
and (N, ·, 1) are positive and refinable. The cyclic group C = {0, 1} is refinable but not
positive. For every lattice L the monoid L = (L,∨, 0) is positive, and it is refinable iff L is
a distributive lattice.

I Theorem 4.10. LetM be a positive and refinable monoid. The coalgebra Bs of all strongly
extensional, finitely branching M -labeled trees is final for Mf .

I Remark 4.11. For the coalgebra B of extensionalM -labeled trees all strongly extensional
trees clearly form a subcoalgebra m : Bs ↪→ B. We prove that the composite of m with the
quotient homomorphism q : B → B/∼ω is an isomorphism q·m : Bs → B/∼ω. This proves
that Bs is final.

Sketch of proof. Since q·m is a homomorphism of coalgebras, it is sufficient to prove that
it is a bijection, then it is an isomorphism. In other words: we are to prove that Bs is a
choice class of ∼ω on the set B.

(1) Every tree t in B is Barr equivalent to a strongly extensional tree t/R̄. Indeed, recall
from Theorem 4.8 that Mf weakly preserves pullbacks. Thus the greatest bisimulation
R ⊆ t × t is an equivalence relation which is also the greatest congruence. And for the
greatest tree bisimulation R̄ contained in R, the strongly extensional tree t/R̄ is bisimilar
to t. Since B/∼ω is the final coalgebra, this proves that t ∼ω t/R̄.

(2) If two strongly extensional trees are Barr equivalent, then they are equal. Instead,
we prove in items (3) and (4) below that given trees t, s ∈ B then if t ∼ω s then t is bisimilar
to s. Thus, we obtain a tree bisimulation R ⊆ t× s and, by symmetry, a tree bisimulation
S ⊆ s × t. Since Mf weakly preserves pullbacks, S ◦ R ⊆ t × t is a tree bisimulation. This
proves in the case t and s are strongly extensional, that S◦R = ∆. By symmetry, R◦S = ∆.
Then R is a graph of an isomorphism from t to s, i.e., t = s.

(3) We consider the given trees t ∼ω s as elements of the coalgebra B of Theorem 4.6.
We know that ∼ω is the greatest congruence, hence, the greatest bisimulation on B. As
proved in [12], Lemma 5.5, this means that there exists a matrix m : B ×B →M such that
(a) wB(t, t′) =

∑
s′∈B

m(t′, s′) for all t′ ∈ B

(b) wB(s, s′) =
∑
t′∈B

m(t′, s′) for all s′ ∈ B, and

(c) m(t′, s′) 6= 0 implies t′ ∼ω s′.
Since M is positive, whenever m(t′, s′) 6= 0, we have wB(t, t′) 6= 0, that is, there exists a

child x of the root x0 of t with t′ = tx and wB(t, t′) = wt(x0, x). Analogously, m(t′, s′) 6= 0
implies s′ = sy for some child y of the root y0 of s with wB(s, s′) = ws(y0, y). Since t and s
are extensional, the trees t′ ∈ B with wB(t, t′) 6= 0 are in bijective correspondence with the
children x of x0 in t via x 7→ tx. Analogously for s. Thus we can translate (a)–(c) as follows:
(a∗) wt(x0, x) =

∑
y∈s

m(tx, ty) for all x ∈ t

(b∗) ws(y0, y) =
∑
x∈t

m(tx, ty) for all y ∈ s, and

(c∗) m(t′, s′) 6= 0 implies that there exists a unique child x of x0 in t and a unique child y
of y0 in s with tx ∼ω ty, t′ = tx and s′ = sy.

(4) We prove that given trees t̄, s̄ ∈ B with t̄ ∼ω s̄, it follows that the relation R ⊆ t̄× s̄
defined recursively by x R y iff t̄x ∼ω s̄y and x and y are roots or have R-related parents is
a tree bisimulation. J
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16 Power-Set Functors and Saturated Trees

I Example 4.12. The above theorem does not generalize to all positive monoids. Indeed,
consider the monoid L = (L,∨, 0) for the lattice {0, a, b, c, 1} where a, b, c are pairwise
incomparable. Then strongly extensional finitely branching L -labeled trees do not form a
final coalgebra, since they are not a choice class of the Barr equivalence. The following trees
are easily seen to be Barr equivalent:

t :

•

•

•

•...

1

1

1

s :

•

• •

• • • •

• • • •

. . . . . .

. . . . . .. . . . . .

a c

a b b c

a b b c

Here s has as nodes the binary words, and the weights are, for all x ∈ {0, 1}∗, defined by
ws(x0, x00) = a, ws(x1, x11) = c and ws(x0, x01) = b = ws(x1, x10). It is obvious that t is
strongly extensional. To prove that so is s, let R ⊆ s× s be a tree bisimulation. Using the
conditions (a)–(c) in the preceding proof it is easy to verify that R ⊆ ∆s.

5 The final chain of P

Although the power-set functor P has no final coalgebra, one can describe its final chain
concretely: we now prove that the i-th step Pi1 consists of all i-saturated, strongly ex-
tensional trees. This generalization from saturated to i-saturated turns out the be quite
nontrivial. In addition, this allows us to describe the final chain of the restricted power set
functors Pλ (see Corollary 5.13).

I Notation 5.1. Recall that the subtree of t rooted at the node x is denoted by tx. We
define equivalences ∼i on the class of all trees for every ordinal i (cf. Notation 2.4 and
Definition 2.6) by transfinite induction:

s ∼0 t holds for all pairs s, t;
s ∼i+1 t holds iff for every child x of the root of s there is a

child y of the root of t with sx ∼i ty, and vice versa

and for limit ordinals i, s ∼i t means s ∼j t for all j < i.

I Example 5.2. ∼ω is Barr equivalence, see Definition 2.6. The first and second trees in
Example 2.10 are trees s and t with s �ω+1 t which are Barr equivalent.

There exist, for every ordinal i, trees s and t with s ∼i t but s �i+1 t, see [5].

I Definition 5.3. We define the concept of i-saturated tree for every ordinal i by transfinite
induction: A tree t is i-saturated iff
(a) i = 0: t consists of the root only
(b) i = j + 1: tx is j-saturated for every child x of the root
(c) i a limit ordinal: given a tree s and a node x of t having children xj with s ∼j txj (j < i),
then x has a child y with s ∼i ty.

I Examples 5.4. (a) For i finite, a tree is i-saturated iff it has height at most i. And
s ∼i t holds iff ∂is = ∂it. Therefore, a tree is ω-saturated iff it is saturated in the sense of
Definition 2.13.
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(b) An example of an (ω + 1)-saturated tree which is not ω-saturated is the left-hand
tree in Example 2.10.

(c) For every infinite cardinal λ, all λ-branching trees t are λ-saturated.

I Remark 5.5. For every tree s there exists a Barr-equivalent tree which is ω-saturated
and strongly extensional. We denote it by ∂ωs and call it the ω-saturation of s. In fact, for
the sequence rn = ∂ns of trees in Pn

f 1, which is clearly compatible, apply the construction
in the proof of Theorem 2.16: the resulting tree t in Pω

f 1 is Barr equivalent to s because
∂nt = rn = ∂ns for every n < ω. Put ∂ωs = t. We generalize this to all ordinals:

I Definition 5.6. By the i-saturation of a given tree s is meant an i-saturated, strongly
extensional tree ∂is with s ∼i ∂is.

I Example 5.7. (1) For i finite, Notation 2.4 yields the desired tree.
(2) An example of ω-saturation can be seen in Example 2.10: for the left-hand tree s the

second tree is ∂ωs.

I Remark 5.8. If t and u are bisimilar trees, then they are equivalent under all of the above
equivalences ∼i. This is easy to see by transfinite induction.

Also, if t is i-saturated, then every tree bisimilar to t is i-saturated (in fact, every tree
equivalent under ∼i is). In particular, the strongly extensional quotient of a tree t, which is
the quotient modulo the largest tree bisimulation R ⊆ t× t, is i-saturated whenever t is.

So even though a tree t is i-saturated it might not be its own i-saturation. Indeed, the
third tree in Example 2.10 is ω-saturated but its ω-saturation is the fourth tree.

I Proposition 5.9. Every tree has for every ordinal i a unique i-saturation.

I Remark 5.10. For infinite ordinals we will see that there is a canonical tree morphism di
from a tree s to its i-saturation ∂is. Moreover, if i = α+ n where α is a limit ordinal and
n < ω, then di is surjective when restricted to nodes of depths at most n.

Sketch of proof. (1) Uniqueness. Given i-saturated, strongly extensional trees t and u, we
need to prove that t ∼i u implies t = u. The step from i to i+ 1 is easy. For i = ω this was
established in Theorem 2.16. For all other limit ordinals i, this is proved analogously.

(2) Existence. For i < ω we have ∂is as in Section 2. The isolated steps are trivial:
given ∂i we define ∂i+1 by taking a tree s and letting s′ be the tree-tupling of all ∂isx,
where x ranges over the children of the root of s. Then the strong extensional quotient of s′
is ∂i+1s, see Remark 5.8.

The canonical morphism is the composite di+1 = e·d′i where d′i : s → s′ is the tree
morphism acting on every maximal subtree sx as the corresponding canonical morphism
d

(sx)
i : sx → ∂isx, and e is the strong extensional quotient. This composite is, in the case
i = α+ n for a limit ordinal α, surjective on nodes of depths at most n+ 1 since each d(sx)

i

is surjective on nodes of depths at most n.
For limit ordinals i we construct, for every tree t, the i-saturation in two steps: first t′ will

be a possibly large tree (with a class of nodes) which is i-saturated and fulfils t ∼i t′. Then
∂it is the strong extensional quotient. This is an i-saturation of t because Remark 5.8 holds
clearly for large trees, too. And the resulting tree ∂it is small, in fact, it is λi-branching for
a specific cardinal λi analogously to 2ℵ0 for i = ω (see Lemma 2.15). J

I Theorem 5.11. The final chain of P can be described for all ordinals i by

Pi1 = all i-saturated, strongly extensional trees

with the connecting maps into Pj1 given by ∂j for all j < i.
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18 Power-Set Functors and Saturated Trees

Sketch of proof. For i finite this is obvious since Pi1 = Pi
f1, for i = ω use Theorem 2.16.

We proceed by transfinite induction for all infinite ordinals. If the statement holds
for i then it holds for i+ 1 provided that every set M ⊆ P(Pi1) = Pi+11 of trees is
identified with the tree-tupling tM of all members of M . Obviously, tM is (i+ 1)-saturated
and strongly extensional. Conversely, every (i+ 1)-saturated strongly extensional tree is
obtained by tree tupling via a unique set M . Thus, Pi+11 = P(Pi1) is the set of all
(i+ 1)-saturated, strongly extensional trees. If ∂j : Pi1 → Pj1 is the given connecting
map, then the connecting map P∂j corresponds to ∂j+1 when the above identification ofM
and tM is performed.

Thus, it remains to prove, for every limit ordinal α > ω, that the cone ∂i : Pα1 →
Pi1 (i < α) is a limit cone. This is technically more involved than the proof of Theorem 2.16
but the ideas are similar. J

I Remark 5.12. J. Worrell [21] proved that since Pλ preserves intersections of chains of
subobjects and is λ-accessible, the final chain converges in λ+ ω steps, where all steps after λ
are given by monomorphisms. We can describe the individual steps Pi

λ1 for all i < λ in
terms of trees. If i is an infinite ordinal then it has the form i = α+ n, n < ω and α a limit
ordinal.

I Corollary 5.13. The final chain of Pλ has the steps Pi
λ1 for all ordinals i < λ given by

Pi
λ1 = all i-saturated, strongly extensional trees whose i-saturation

is λ-branching at the first n levels for all i = α+ n.

The connecting maps are ∂j : Pi
λ1→Pj

λ1 for all j < i.

I Corollary 5.14. Let λ be an infinite cardinal. The final coalgebra for Pλ can be described
as the coalgebra of all strongly extensional, λ-branching trees.

Indeed, each such tree is λ-saturated, see Example 5.4. Thus, it lies in Pλ+ω
λ 1. Con-

versely, every tree in Pλ+ω
λ 1 is λ-branching because the connecting map Pλ+n+1

λ 1 →
Pλ+n
λ 1 is a monomorphism for every n < ω: this follows from Pλ being a λ-accessible

functor, see [21]. Consequently, the limit Pλ+ω
λ 1 = limn<ω Pλ+n

λ 1 is the intersection of the
subsets Pλ+n

λ 1 of Pλ
λ1. Since all tree in Pλ+n

λ 1 are λ-branching at the first n levels, it
follows that every tree in Pλ+ω

λ 1 is λ-branching.
A completely different proof has been presented by D. Schwencke [19].

6 Conclusions and future work

We proved several results which generalize Worrell’s description [21] of the final coalgebra
of Pf as the coalgebra of all strongly extensional, finitely branching trees. We described the
final coalgebra for the functor Mf of finite multisets with weights from a given commutative
monoid M . This final coalgebra consists of all finitely branching strongly extensional M -
labeled trees. This holds for all positive and refinable monoids. Our proof is substantially
different from Worrell’s, since it is based on congruences on the coalgebra of all extensional
trees. We would like to generalize our work on saturated trees to the case of functors Mf .
And we plan to apply our methods to probabilistic transition systems.

For Pf we also described the limit Pω
f 1 of the final ωop-chain as the set of all saturated

strongly extensional trees, or the set of all maximal consistent theories in the modal logic K.
We proved that saturated trees are precisely those trees which are modally saturated in the
sense of K. Fine [10]. This also is related to (but quite different from) Worrell’s description
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of Pω
f 1 by means of compactly branching trees. We then generalized saturatedness to i-

saturatedness and proved that the final chain Pi1 of the full power-set functor consists
of all strongly extensional i-saturated trees. From this we derived e.g. that the countable
power-set functor Pc has the final coalgebra consisting of all strongly extensional countably
branching trees. We leave as open problem the decision whether ω1 + ω is the smallest
ordinal for the convergence of the final chain of Pc.

We have characterizations of the initial algebras of the functors Mf . There are open
questions concerning the final chains for these functors: for the Boolean monoid, yielding Pf ,
the chain needs ω + ω steps, as proved by Worrell. However, for the monoid (N,+, 0), the
corresponding functor Nf is analytic, hence, the convergence needs only ω steps. We do not
know what happens in the case of a general monoid.
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Abstract
We present a simple-to-state, abstract computational problem, whose solution implies the 1-
consistency of various systems of predicative Analysis and offers a way of extracting witnesses
from classical proofs. In order to state the problem, we formulate the concept of transfinite update
procedure, which extends Avigad’s notion of update procedure to the transfinite and can be seen
as an axiomatization of learning as it implicitly appears in various computational interpretations
of predicative Analysis. We give iterative and bar recursive solutions to the problem.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Update procedure, epsilon substitution method, predicative classical
analysis, bar recursion

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.20

1 Introduction

The aim of this paper is to provide an abstract description of learning as it is appears
in various computational interpretations of predicative fragments of classical second order
Arithmetic. Our account has a twofold motivation and interest.

Its first purpose is to provide a foundation that will serve to extend Aschieri and Berardi’s
learning based realizability for Heyting Arithmetic with EM1 (see [3]) to predicative fragments
of Analysis: a possible path to follow is the one suggested here. In particular, we describe
and prove the termination of the learning processes that should arise when extending the
approach of learning based realizability to predicative Arithmetic.

Secondly, we continue the work of Avigad on update procedures [4] and extend it to the
transfinite case by introducing the concept of transfinite update procedure. The concept
may be seen as an axiomatization of learning as implicitly used in the epsilon substitution
method for Elementary Analysis and Ramified Analysis as formulated in the work of Mints
et al. ([8], [9]). The idea is that one can associate with any classical proof in those systems of
any formula ∃xNP (x), with P computable, a transfinite update procedure. Each transfinite
update procedure has a so called zero, representing a finite approximation of some transfinite
sequence of oracles thanks to which it is possible to compute a n such that P (n) holds. The
problem is both to formulate efficient learning processes that build step by step this finite
zero and to prove their termination. The notion of update procedure is useful to understand
the combinatorial content and the fundamental ideas of the epsilon method in a totally
abstract way. By formulating an abstract self-contained concept, we also hope to present to
non-specialists a very challenging computational problem, whose efficient solution is of great
importance for program extraction purposes in the proof theory of classical logic.
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Plan of the Paper. In section §2 we introduce and motivate the concept of transfinite
update procedure and give a very short non-constructive proof of the existence of finite zeros.

In section §3 we formulate the notion of “learning process generated by an update
procedure” and prove that every learning process terminates with a zero for the associated
update procedure. The result represents a semi-constructive proof of the existence of finite
zeros and the learning processes generated are “optimal”, in the sense that one may provide
constructively the best possible ordinal bounds to their length and to the size of finite zeros
(by applying techniques of Mints et al. [8]).

In sections §4 and §5 we formalize the notion of update procedure in typed lambda
calculus plus bar recursion and prove the existence of zeros for update procedures of ordinal
less than ωω by writing down simple bar recursive terms. These results are enough to give
computational interpretation to proofs of Elementary Analysis and Ramified Analysis, as
formulated in [8], [9] (see the full version of this paper [1]). In fact, our methods yield bar
recursive proofs of termination for epsilon substitution method as formulated in [9].

Acknowledgments. I’d like to thank Paulo Oliva for his advice throughout this work.

2 Learning in Predicative Analysis

It is very well-known and of fundamental importance that intuitionistic Arithmetic is
constructive. This in particular implies that from a proof that there exists an object with a
given property, one can always extract a computer program that construct an object with
that property. Such feature of intuitionistic Arithmetic depends on the fact that all its
axioms and inference rules never assert the existence of something that has not already been
implicitly constructed.

In the classical framework, the situation is much different. From the computational point
of view, any classical predicative subsystem of second order Arithmetic poses very difficult
problems. The axioms that it adds on top of intuitionistic Arithmetic are ontologically very
strong. For every formula φ(x), there is an axiom of comprehension asserting the existence
of a function g able to decide the truth of φ(x):

∃gN→N∀xN. g(x) = 0↔ φ(x)

Axioms of countable choice assert the existence of functions computing existential witnesses
of truth of formulas:

(∀xN∃yA φ(x, y))→ ∃gN→A∀xNφ(x, g(x))

In order to give a natural computational interpretation even for the most simple form of the
excluded middle

EM1 : ∀nN.∃xNPnx ∨ ∀yN¬Pny

one would have to provide a program for deciding, given any number n, the truth of the
formula ∃xNPnx, with P decidable.

Given the situation, a direct computational interpretation of classical logic might seem
impossible. Fortunately, there is a fundamental observation that enables us to partially solve
this problem: whatever the function or the decision procedure whose existence is assumed,
it will be used only a finite number of times in actual computations of finite results! In
other words, non-computable functions exist – and we cannot do anything about that –
but one only needs to compute finite approximations of them in order to carry out actual
computations.

CSL’11



22 Transfinite Update Procedures for Predicative Systems of Analysis

Over this observation, what we call “learning-based computational interpretations” of
classical Arithmetic build their success. We include in this category Hilbert’s epsilon
substitution method, Avigad’s update procedures [4] and Aschieri and Berardi’s learning-
based realizability [3] for intuitionistic Arithmetic plus EM1.

2.1 Learning Based Realizability for Intuitionistic Arithmetic with EM1

In the case of learning-based realizability for Intuitionistic Arithmetic with EM1, one just
considers a class of realizers recursive in the oracle for the Halting problem. Such programs
easily interpret EM1, but are ineffective; to recover effectiveness they are evaluated with
respect to finite oracle approximations. Since approximations may be inadequate, results of
computations may be wrong. But learning-based realizers are self-correcting programs, able
to identify wrong oracle values used during computations and to correct them with right
values that they learn during the same computations. Realizers keep correcting mistakes
until they find a good finite approximation of the oracle they use.

2.2 Avigad’s Finite Update Procedures for Peano Arithmetic
If one wants to provide a direct computational interpretation of excluded middle EM for
arbitrary arithmetical formulas

∀nN. ∃xN
1∀yN

1 . . . ∃xN
k∀yN

k P (n, x1, y1, . . . , xk, yk) ∨ ∀xN
1∃yN

1 . . . ∀xN
k∃yN

k¬P (n, x1, y1, . . . , xk, yk)

he needs much more computational power: an oracle for the Halting problem is no longer
enough. For example, if one wants to interpret

EM2 := ∀nN. ∃xN∀yNP (n, x, y) ∨ ∀xN∃yN¬P (n, x, y)

he also needs an oracle for the Halting problem for programs recursive in the oracle for the
Halting problem. This is due to the fact that in order to check, for any fixed m, whether
the formula ∀yNP (n,m, y) is true, one can use a program p(m) recursive in the oracle of
the Halting problem. But in order to determine the truth of ∃xN∀yNP (n, x, y), one has to
determine whether there exists an m such that p(m) outputs the answer that the formula
∀yNP (n,m, y) is true.
In general, in order to interpret EMn one needs a sequence of oracles Φ0, . . . ,Φn such that
for every 1 ≤ i ≤ n, Φi is an oracle for the Halting problem for programs recursive in the
subsequence {Φj}1≤j<i. More precisely, let Ti(x, y, z) the predicate, recursive in {Φj}1≤j<i,
that holds iff the x-th Kleene’s partial recursive function fx, recursive in {Φj}1≤j<i, terminates
on input y after z reduction steps. Then Φi must satisfy the following Skolem axiom:

∀xN, yN, zN. Ti(x, y, z)→ Ti(x, y,Φi(|x, y|))

where |_,_| is a bijective coding of pairs of natural numbers into natural numbers.
Now, an Avigad update procedure is a functional U that takes as argument a finite

sequence of functions f0, . . . , fn approximating some oracles Φ0, . . . ,Φn. Then, it uses those
functions to compute some witnesses for some provable Σ0

1 formula of Peano Arithmetic PA
(i.e. a formula of the form ∃xNP (x), with P computable). Afterwards, it checks whether the
result of its computation is sound. If it is not, it identifies some wrong value of fi used in the
computation and it corrects it with a new one. U , remarkably, can always do that, thanks to
the fact that in this case an instance of the Skolem axiom for Φi, for some i, (computed by
substituting its oracles with their approximation f0, . . . , fn) must be false. But if an instance

Ti(n,m, l)→ Ti(n,m, fi(|n,m|))
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is false, then its antecedent is true and its consequent is false. Therefore, U learns a new value
for fi on argument |n,m|, namely l, which will replace its former wrong value fi(|n,m|).

I Definition 1 (Avigad’s Finite Update Procedures). A k-ary update procedure, k ∈ N+, is
a continuous function U : (N → N)k → N3 ∪ {∅} (i.e., its output is determined by a finite
number of values of the input functions) such that the following holds:
1. for all function sequences f = f1, . . . , fk

Uf = (i, n,m) =⇒ 1 ≤ i ≤ k

2. for all function sequences f = f1, . . . , fk and g = g1, . . . , gk, for all 1 ≤ i < k, if
Uf = (i, n,m)
for all j < i, fj = gj
gi(n) = m

then: Ug = (i, h, l) =⇒ h 6= n.

If U is a k-ary update procedure, a zero for U is a sequence f = f1, . . . , fk of functions such
that Uf = ∅.

Condition (2) of definition 1 means that the values of the i-th function depend on the
values of some of the functions fj , with j < i, and learning on level i is possible only if
all the lower levels j have “stabilized". In particular, if U is a k-ary update procedure and
f : (N → N)k is a sequence of functions approximating the oracles Φ1, . . . ,Φk, there are
two possibilities: either f is a fine approximation and then Uf = ∅; or f is not and then
Uf = (i, n,m), for some numerals n,m: U says the function fi should be updated as to
output m on input n. Moreover, if Uf = (i, n,m), one in a sense has learned that Φi(n) = m:
by definition of update procedure, if g is a function sequence agreeing with f in its first i− 1
elements, gi is another candidate approximation of Φi and gi(n) = m, then Ug does not
represent a request to modify the value of gi at point n, for Ug = (i, h, l) implies h 6= n.

The main theorem about update procedures is that they always have zeros and these
latter can be computed through learning processes guided by the former. Intuitively a zero of
an update procedure represents a good approximation of the oracles used in a computation,
and in particular a good enough one to yield some sought classical witness.

2.3 Transfinite Update Procedures for Predicative Systems of Analysis
In general, learning based computational interpretations of predicative fragments of classical
analysis (see Mints et al. [8], [9]) provide answers to the computational challenges of classical
axioms by the following three-stage pattern:

1. They identify a sequence {Φβ}β<α – possibly transfinite – of non-computable functions
N→ N.

2. They define classical witnesses for provable Σ0
1 formulas by using programs recursive in Φ.

3. They define update procedures through which it is possible to find, for every particular
computation, a suitable finite approximation of the functions of Φ such that one can
effectively compute the witnesses defined at stage two.

The functions in the sequence Φ of stage (1) are the computational engine of the
interpretation. Given the difficulty of computing witnesses in classical Arithmetic, they are
always non-computable. It is therefore not surprising that given this additional computational
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power, one is able to define at stage (2) witnesses for classical formulas. If we picture the
sequence Φ as a sequence of infinite stacks of numbers, the learning process of point (3) finds
a “vertical" approximation of Φ: functions of Φ are infinite stacks of numbers whereas their
finite approximations are finite stacks. Moreover, a crucial point is that the sequence Φ is not
an arbitrary sequence. In a sense, Φ is also “horizontally" approximated: for every ordinal
α, the recursion theoretic Turing degree of Φα is approximated by the degrees of Φβ , for
β < α. This property is very important: in this way, the values of the functions in Φ can be
gradually approximated and learned.

More precisely, Φ can be seen as a sequence of functions obtained by transfinite iteration
of recursion theoretic jump operator (see for example Odifreddi [10]). That is, for every β, if
β is a successor, Φβ has the same Turing degree of an oracle for the halting problem for the
class of functions recursive in Φβ−1 (jump); if β is limit, Φβ has the same Turing degre of
the function mapping the code of a pair (α, n), with α < β, into Φα(n) (join or β-jump). A
fundamental property of such a sequence is that the assertion Φβ(n) = m depends only on
the values of the functions Φα, for α < β, and the values of Φβ are learnable in the limit1 by
a program g recursive in the join of Φα for α < β, which is a guarantee that the learning
processes will terminate.

We now give an informal example of the kind of analysis which is needed to carry out the
first stage of a learning-based interpretation, in the case of Elementary Analysis EA.

I Example 2 (Elementary Analysis). Consider a subsystem EA of second order Peano Arith-
metic in which second order quantification is intended to range over arithmetical sets and
hence over arithmetical formulas (formulas with only numerical quantifiers and possibly
set parameters). Since one has to interpret excluded middle over arbitrary formulas, it
is necessary to provide at least programs that can decide truth of formulas. Numerical
quantifiers correspond to Turing jumps. That is, if we have a program t (with the same
function parameters of φ) such that for every pair of naturals n,m

t(n,m) = True ⇐⇒ φ(n,m)

then the truth of ∃xNφ(n, x) is equivalent to the termination of a program Q(n) exhaustively
checking

t(n, 0), t(n, 1), t(n, 2), . . .

until it finds - if there exists - an m such that t(n,m) = True. Applying the jump operator to
the Turing degree t belongs to, one can write down a program χt which is able to determine
whether Q(n) terminates. That is

χt(n) = True ⇐⇒ ∃xNφ(n, x)

Similarly, one eliminates universal numerical quantifiers, thanks to the fact that ∀ ≡ ¬∃¬.
Iterating these reasoning and applying 2k times the jump operator - and given a recursive
enumeration φ0, φ1, . . . , of arithmetical formulas - one can obtain for every Σ0

2k formula

φn(m) := ∃xN
1∀yN

1 . . . ∃xN
k∀yN

k P (m,x1, y1, . . . , xk, yk)

a program tn such that

tn(m) = True ⇐⇒ φn(m)

1 In the sense of Gold [7]: Φβ(n) = m ⇐⇒ limk→∞ g(n, k) = m. We remark that we need here the
sequence of oracles {Φα}α<β ; without it, it would not be to possible learn values of the powerful Φβ .
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Using the ω-jump operator, one can write down a program u such that

u(n,m) = True ⇐⇒ tn(m) = True

and hence

u(n,m) = True ⇐⇒ φn(m)

Now a Σ1
1 formula ∃fN→Boolφi - provided we assume that fN→Bool ranges over arithmetical

predicates - can also be expressed as

∃nNti[λmNu(n,m)/f ]

So applying again a jump operator to the recursive degree of ti[λmNu(n,m)/f ], one is able
to write a program determining the truth value of ∃fN→Boolφi. Iterating this reasoning, one
can decide the truth of arbitrary Σ1

n formulas.
Summing up, in order to decide truth in Elementary Analysis, one needs to apply the jump
operator ω + ω times and thus produces a sequence Φ of non-computable functions Φ of
length ω + ω. All the programs that we have described can be thought as recursive in some
initial segment of Φ.

We are now in a position to introduce our axiomatization of the learning procedures cited
in point (3) above.

I Definition 3 (Transfinite Update Procedures). Let α ≥ 1 be a numerable ordinal. An update
procedure of ordinal α is a function U : (α→ (N→ N))→ (α× N× N) ∪ {∅} such that:

1. U is continuous. i.e. for any f : α → (N → N) there is a finite subset A of α × N such
that for every g : α→ (N→ N) if fγ(n) = gγ(n) for every (γ, n) ∈ A, then Uf = Ug.

2. For all functions f, g : α→ (N→ N) and every ordinal β ∈ α, if
t(f) = (β, n,m)
for all γ < β, fγ = gγ
gβ(n) = m

then: t(g) = (β, i, j) =⇒ i 6= n

The concept of transfinite update procedure is a generalization of Avigad’s notion of finite
update procedure. A transfinite update procedure, instead of taking just a finite number of
function arguments, may get as input an arbitrary transfinite sequence of functions, which are
intended to approximate a target sequence Φ; as output, it may return an update (β, n,m),
which means that the β-th function taken as argument is an inadequate approximation of
Φβ and must be updated as to output m on input n. Condition (2) means that the values
for the β-th function depend only on the values of functions of ordinal less than β in the
input sequence and an update procedure returns only updates which are relatively verified
and hence need not to be changed. In this sense, if Uf = (β, n,m), one has learned that
Φβ(n) = m; so if gβ is a candidate approximation of Φβ and gβ(n) = m, then Ug does not
represent a request to modify the value of gβ at point n, whenever f and g agree on all
ordinals less than β.
We remark that the choice of the type for an update procedure is somewhat arbitrary: we
could have chosen it to be

(α→ (X → Y ))→ (α×X × Y ) ∪ {∅}
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as long as the elements of the sets X and Y can be coded by finite objects. Since such coding
may always be performed by using natural numbers, we choose to consider X = Y = N.

The use of transfinite update procedures made by learning-based computational inter-
pretations of classical arithmetic can be described as follows. Suppose those interpretations
are given a provable formula with an attainable computational meaning, for example one of
the form ∀xN∃yN Pxy, with P decidable. Then, for every numeral n, they manage to define
a term tn : (α→ (N→ N))→ N and an update procedure Un of ordinal α such that

Un(f) = ∅ =⇒ Pn(tn(f))

for all f : α→ (N→ N). The idea is that a witness for the formula ∃yNPny is calculated by
tn with respect to a particular approximation f of the oracle sequence Φ we have previously
described. If the formula Pn(tn(f)) is true, there is nothing to be done. If it is false, then
Un(f) = (β, n,m) for some β, n,m: a new value for Φβ is learned. This is what we call
“learning by counterexamples": from every failure a new positive fact is acquired. An instance
of this kind of learning appears in the case on learning-based realizability for HA + EM1,
when one defines realizability for atomic formulas: in that case the pair (n,m) is produced
by the realizer of the excluded middle. We have seen another example in the section on
Avigad update procedures for PA and will see a further one in the full version of this paper
([1]) in the case α = ω + k, with k ∈ N: the triple (β, n,m) will be produced through the
evaluation of Skolem axioms for epsilon terms in the system EA. In general, the Skolem
axioms used to define oracles are those who make possible learning by counterexamples.

The effectiveness of the above approach depends on the fact that every update procedure
has a finite zero, as defined below.

I Definition 4 (Finite Functions, Finite Zeros, Truncation and Concatenation of Function
Sequences). Let U be an update procedure of ordinal α.
1. f : α→ (N→ N) is said to be a finite function if the set of (γ, n) such that fγn 6= 0 is finite.

2. A finite zero for U is a finite function f : α→ (N→ N) such that Uf = ∅.

3. Let f : α→ (N→ N) and β < α. Let f<β : β → (N→ N) be the truncation of f at β:

f<β := γ ∈ β 7→ fγ

4. Let α1, α2 be two ordinals, f1 : α1 → (N→ N) and f2 : α2 → (N→ N). Then the
concatenation f1 ∗ f2 : (α1 + α2)→ (N→ N) of f and g is defined as:

(f ∗ g)γ(n) :=
{
fγ(n) if γ < α1

gβ(n) if γ = α1 + β < α1 + α2

5. With a slight abuse of notation, a function f : N→ N will be sometimes identified with
the corresponding length-one sequence of functions 0 7→ (n ∈ N 7→ f(n)).

We now prove that every update procedure has a finite zero. We will give other more and
more constructive proofs of this theorem, that will allow to compute finite zeros for update
procedures and thus witnesses for classically provable formulas, thanks to learning-based
interpretations. But for now we are only interested in understanding the reason of the
theorem’s truth and give a very short non-constructive proof. All the subsequent proofs
can be seen as more and more sophisticated and refined constructivizations of the following
argument.
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I Theorem 5 (Zero Theorem for Update Procedures of Ordinal α). Let U be an update
procedure of ordinal α. Then U has a finite zero.

Proof. We define, by transfinite induction, a function f : α→ (N→ N) as follows. Suppose
we have defined fγ : N→ N, for every γ < β. Define the sequence f<β : β → (N→ N) of
them all

f<β := γ ∈ β 7→ fγ

Then define

fβ(x) =
{

0 if ∀g(α−β)→(N→N) ∀zN U(f<β ∗ g) 6= 〈β, x, z〉
y otherwise, for some y such that ∃g(α−β)→(N→N) U(f<β ∗ g) = 〈β, x, y〉

By axiom of choice and classical logic, for every β, f<β and fβ are well defined. So we can let

f := f<α

Suppose U(f) = 〈β, x, z〉, for some β < α: we show that it is impossible. For some
h : (α− (β + 1))→ (N→ N), f = f<β ∗ fβ ∗ h. Hence, for some g : (α− β)→ (N→ N)

U(f<β ∗ g) = 〈β, x, y〉 ∧ fβ(x) = y

by definition of f . But U is an update procedure and so

(U(f<β ∗ g) = 〈β, x, y〉 ∧ fβ(x) = y ∧ U(f<β ∗ fβ ∗ h) = 〈β, x, z〉) =⇒ x 6= x

which is impossible. We conclude that U(f) = ∅ and, by continuity, that U has a finite zero.
J

3 Learning Processes Generated by Transfinite Update Procedures

In this section we show that every update procedure U generates a learning process and this
learning process always terminates with a finite zero of U . This result is an abstract version
of the termination of the H-process as defined in the various versions of epsilon substitution
method (see Mints et al. [8]). The proof of termination is semi-constructive and is similar to
the one in Mints et al. [8] (which however is by contradiction while ours is not).

If U is an update procedure and U(f) = 〈γ, n,m〉, then the value of fγ at argument n
must be updated as to be equal to m. But as explained in the introduction, we may imagine
that all the values of all the functions fβ , with β > γ, depend on the values of the current
fγ . Therefore, if we change some of the values of fγ , we must erase all the values of all
the functions fβ , for β > γ, because they may be inconsistent with the new values of fβ .
In a sense, f is a fragile structure, that may be likened to an house of cards: if we change
something in a layer, then all the higher ones collapse. We define an update operator ⊕ that
performs those operations.

I Definition 6 (Controlled Update of Functions). Let f : α → (N→ N) and 〈γ, n,m〉 ∈
α× N× N. We define a function f ⊕ 〈γ, n,m〉 : α→ (N→ N) such that

(f ⊕ 〈γ, n,m〉)β(x) :=


fβ(x) if β < γ or (β = γ and x 6= n)
m if γ = β and x = n

0 otherwise

We also define f ⊕ ∅ := f .
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We now define the concept of “learning process generated by an update procedure U”. It
may be thought as a process of updating and learning new values of functions, which is guided
by U . It corresponds to the step three of the learning based computational interpretations of
classical arithmetic we have described in the introduction. Intuitively, such a learning process
starts from the always zero function 0α. If U says that some value of 0α must be updated - i.e.
U(0α) = 〈γ, n,m〉 - then the learning process generates the function U (1) := 0α ⊕ 〈γ, n,m〉.
Similarly, if U says that some value of U (1) must be updated - i.e. U(U (1)) = 〈γ′, n′,m′〉 -
then the learning process generates the function U (2) := U (1) ⊕ 〈γ′, n′,m′〉. The process goes
on indefinitely in the same fashion.

I Definition 7 (Learning Processes Generated by U). Let U be an update procedure of ordinal
α. For every n ∈ N, we define a function U (n) : α→ (N→ N) by induction as follows:

U (0) := 0α := γ ∈ α 7→ (n ∈ N 7→ 0)

U (n+1) := U (n) ⊕ U(U (n))

Moreover, a function f : α → (N→ N) is said to be U-generated if there exists an n such
that f = U (n).

The aim of the learning process generated by U is to find a finite zero for U . Indeed, if for
some n, U(U (n)) = ∅, then for all m ≥ n, U (m) = U (n) and we thus say that the learning
process terminates. We now devote ourselves to the proof that learning processes always
terminate. In other words, every update procedure U has a U-generated finite zero.

Given an update procedure U , its useful to define a new “simpler” update procedure,
obtained from U by fixing some initial segment of its input, ignoring all updates relative to
this fixed part of the input and adjusting their indices.

I Definition 8. Let U be an update procedure of ordinal α. Then, for any function
g : β → (N→ N), with β < α, define a function

Ug : ((α− β)→ (N→ N))→ (α− β)× N× N ∪ {∅}

as follows:

Ug(f) =
{
〈γ, n,m〉 if U(g ∗ f) = 〈β + γ, n,m〉
∅ otherwise

(We point out that if β = 0 = ∅, Ug = U as it should be)

Indeed Ug as defined above is an update procedure.

I Lemma 9. Let U be an update procedure of ordinal α. Then, for any function g : β →
(N→ N), with β < α:
1. Ug is an update procedure of ordinal α− β.

2. For every h : N→ N, Ug∗h = (Ug)h.

Proof. Immediate. J
The strategy of our termination proof can be described as follows. Given an update

procedure U of ordinal α, we shall define a sequence of functions g : α→ (N→ N) such that
a “reduction lemma” can be proved: if, for some β < α, Ug<β has a Ug<β -generated finite
zero, then for some γ < β also Ug<γ has a Ug<γ -generated finite zero. But the greater the
ordinal β the easier it is to compute with a learning process a finite zero for Ug<β , because
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the sequence g<β becomes so long that the input for U<β becomes short. So we shall be able
to show that for some large enough β, β < α, Ug<β has a Ug<β -generated finite zero, which
proves the theorem in combination with the reduction lemma. This technique can be seen as
a generalization of Avigad’s [4] to the transfinite case.

We now prove the reduction lemma in the limit case.

I Lemma 10 (Reduction Lemma, Limit Case). Let U be an update procedure of ordinal α and
g : β → (N→ N), with β limit ordinal and β < α. Then
1. If f : (α− β)→ (N→ N) is Ug-generated, then there exists γ < β such that 0β−γ ∗ f is
Ug<γ -generated.

2. If Ug has a Ug-generated finite zero, then there exists γ < β such that Ug<γ has a
Ug<γ -generated finite zero.

Proof. See the full version of this paper [1]. J
We now prove the reduction lemma in the successor case.

I Lemma 11 (Reduction Lemma, Successor Case). Let U be an update procedure of ordinal
α. Define g : N→ N as follows:

g(x) :=
{
y if ∃i. U(U (i)) = 〈0, x, y〉 ∧ i = min{n | ∃z U(U (n)) = 〈0, x, z〉}
0 otherwise

Then:
1. For every finite function g0 ≤ 2g, if g0 ∗ 0α−1 is U-generated and f is Ug0-generated, then

g0 ∗ f is U-generated.

2. If Ug has a Ug-generated finite zero, then U has a U-generated finite zero.

Proof. See the full version of this paper [1]. J
We are now able to prove the main theorem: update procedures generate terminating

learning processes.

I Theorem 12 (Termination of Learning Processes). Let U be an update procedure of ordinal
α. Then, U has a finite zero. In particular, there exists k ∈ N such that U(U (k)) = ∅.

Proof. See the full version of this paper [1]. J

4 Spector’s System B and Typed Update Procedures of Ordinal ωk

Zeros of trasfinite update procedures cannot in general be computed in Gödel’s system T: as
we will show, already update procedures of ordinal ω + k, with k ∈ ω, can be used to give
computational interpretation to Elementary Analysis and hence their zeros can be used to
compute the functions provably total in Elementary Analysis. We will show however that
Spector’s system B is enough to compute zeros.

2 We define g0 ≤ g iff for all x g0(x) 6= 0 =⇒ g0(x) = g(x)
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I Definition 13 (Bar Recursion Operator, Spector’s System B, Type Level of Bar Recursion).
In the following, we will work with Spector’s system B (see Spector [12] and, for a mod-
ern exposition, Kohlenbach [6]) which is Gödel’s T augmented with constants BRτ,σ,Ψτ,σ

respectively of type

T1 → T2 → T3 → T4 → τ and T1 → T2 → T3 → T4 → Bool→ τ

with

T1 = (N→ σ)→ N

T2 = σ∗ → τ

T3 = σ∗ → (σ → τ)→ τ

T4 = σ∗

where σ∗ is a type representing finite sequences of objects of type σ. The meaning of BRτ,σ
is defined by the equation

BRτ,σY GHs
τ=

{
Gs if Y ŝ < |s|
Hs(λxσBRτ,σY GH(s ∗ x)) otherwise

(1)

where s ∗ x denotes the finite sequence s followed by x, ŝ denotes the function mapping n to
sn, if n < |s|, to 0σ otherwise, where sn is the n-th element of s and |s| is the number of
elements in s. If σ, τ, Y,G,H are determined by the context, we we will just write BR(s) in
place of BRτ,σY GHs.
BRτ,σ is said to be bar recursion of type σ. The type level of bar recursion BRτ,N of type
N (said also type 0), is the type level of the constant BRτ,N, that is, assuming N∗ = N,
max(1, typelevel(τ)) + 2.
In order to obtain a strongly normalizing system such that equation 1 holds, we have to add
to system B the following reduction rules (for a proof of strong normalization, see Berger [5]):

BRτ,σY GHs 7→ Ψτ,σY GHs(Y ŝ < |s|)
Ψτ,σY GHs(True) 7→ Gs

Ψτ,σY GHs(False) 7→ Hs(λxσBRτ,σY GH(s ∗ x))

where < is a term coding the correspondent relation on natural numbers.

Since we are interested only in computable update procedures, we now fix a system for
representing them. For the aim of computationally interpreting Elementary Analysis, update
procedures can be assumed to belong to system T. However, for more powerful systems one
may need more capable update procedures, so we define them to belong to B. Here, we limit
ourselves to the ordinal ωk, for k ∈ ω, since this ordinal is enough to interpret Elementary
Analysis and even fragments of Ramified Analysis (see for example, Mints et al. [9])

I Definition 14 (Representation of Ordinals and Typed Update Procedures of Ordinal ωk).
We will represent ordinal numbers of the form ωk, with k ∈ ω, by exploiting the order
isomorphism between ωk and Nk lexicographically ordered. So, for k ∈ ω, k > 0, we set

[ω0] := ν, [ωk] := Nk

where ν is the empty string and

[ω0 → (N→ N)] := N→ N
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and, if k ∈ ω

[ωk+1 → (N→ N)] := N→ [ωk → (N→ N)]

where N is the type representing N in typed lambda calculus. Define moreover

[(ωk × N× N) ∪ {∅}] := [ωk]× N× N

Unfortunately, ∅ does not have a code. So we have to use an injective coding |_| of the set
(ωk×N×N)∪{∅} into the set of closed normal terms of type [(ωk×N×N)∪{∅}]. To fix ideas,
we define |(β, n,m)| = 〈β′, n+1,m+1〉, with β′ : Nk the code of β, and |∅| = 〈〈0, . . . , 0〉, 0, 0〉.
A typed update procedure of ordinal ωk is a term of Spector’s system B of type:

[ωk → (N→ N)]→ [(ωk × N× N) ∪ {∅}]

satisfying point (2) of definition 3, where for simplicity function quantification is assumed
to range over functions definable in system B. Equality as it appears in the definition is
supposed to be extensional.

5 Bar Recursion Proof of the Zero Theorem for Typed Update
Procedures of Ordinal ωk

In this section we give a constructive proof of the Zero theorem for typed update procedures
of ordinal less than ωk. In particular we show that finite zeros can be computed with bar
recursion of type 1. We start with the base case.

I Theorem 15 (Zero Theorem for Update Procedures of Ordinal 1=ω0). Let U be a typed
update procedure of ordinal 1. Then U has a finite zero σ. Moreover, σ can be calculated as
the normal form of a bar recursive term Zero(U) (defined uniformly on the parameter U) of
system T plus bar recursion of type 0.

The result follows by Oliva [11]. We give below another proof, which is a simplification of
Oliva’s one, made possible by the slightly stronger condition we have imposed on the notion
of update procedure.
The informal idea of the construction - but with some missing justifications - is the following.
We reason over the well-founded tree of finite sequences of numbers s such that U(ŝ) = |(n,m)|
and n ≥ |s|. We want to construct a function σ : N→ N which is a zero of U . Suppose that
we have constructed a “good" initial approximation σ(0) ∗ · · · ∗ σ(i) of σ; we want to prove
that it can be extended to a long enough approximation of σ. Our first step is to continue
with σ(0) ∗ · · · ∗ σ(i) ∗ 0. If this is a good guess, by well-founded induction hypothesis, we
can extend σ(0) ∗ · · · ∗ σ(i) ∗ 0 to a complete approximation σ(0) ∗ · · · ∗ σ(n) of σ, with n > i.
Since we are not sure that our previous guess was lucky, we compute U(σ(0) ∗ · · · ∗ σ(n)). If
for all m

U(σ(0) ∗ · · · ∗ σ(n)) 6= |(i+ 1,m)|

then our approximation for σ(i+ 1) is adequate, and we claim that σ(0) ∗ · · · ∗ σ(n) is the
approximation of σ we were seeking. Otherwise

U(σ(0) ∗ · · · ∗ σ(n)) = |(i+ 1,m)|

for some m: U tells us that our guess for the value of σ(i+1) is wrong. But now we know that
σ(0) ∗ · · · ∗ σ(i) ∗m is a good initial approximation of σ and we have made progress. Again
by well-founded induction hypothesis, we conclude that we can extend σ(0) ∗ · · · ∗ σ(i) ∗m
to a good approximation of σ.
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Proof. of Theorem 15. We formalize and complete the previous informal argument. In the
following s will be a variable for finite sequences of numbers. Using bar recursion of type 0,
we can define a term which builds directly the finite zero we are looking for and is such that:

BR(s) =


ŝ if U ŝ = |(n,m)| and n < |s|
ŝ if U ŝ = |∅|
BR(s ∗m) if U(BR(s ∗ 0)) = |(|s|,m)|
BR(s ∗ 0) if U(BR(s ∗ 0)) 6= |(|s|,m)| for all m

(we assume that BR(s) checks in order every condition in its definition and executes the
action corresponding to the first statisfied condition). We let σ be the normal form of

Zero(U) := BR(〈〉)

where 〈〉 is the empty sequence. Let us prove that σ is a finite zero of U . Suppose Uσ = |(n,m)|:
by showing that this is impossible, we obtain that Uσ = |∅|. The normalization of BR(〈〉)
leads to the following chain of equations:

BR(〈〉) = BR(σ(0))
= BR(σ(0) ∗ σ(1))
. . .

. . .

= BR(σ(0) ∗ · · · ∗ σ(i))

= ̂σ(0) ∗ · · · ∗ σ(i)
= σ

with

n < |σ(0) ∗ · · · ∗ σ(i)| = i+ 1

In particular BR(〈〉) = BR(σ(0) ∗ · · · ∗ σ(n− 1)). Now, we have two cases:
1. U(BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0)) = |(n, l)|. Then

BR(〈〉) = BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ l)

and so σ(n) = l, which is impossible, by definition 3 of update procedure, point (2), for
Uσ = |(n,m)|.

2. for all l, U(BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0)) 6= |(n, l)|. Then by definition

BR(σ(0) ∗ · · · ∗ σ(n− 1)) = BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0)

Therefore

|(n,m)| = Uσ = U(BR(〈〉)) = U(BR(σ(0) ∗ · · · ∗ σ(n− 1) ∗ 0))

again impossible, by assumption of this case.
We have then proved that σ is the sought finite zero. J

We now prove that every typed update procedure of ordinal ω has a finite zero.
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I Theorem 16 (Zero Theorem for Typed Update Procedures of Ordinal ω). Let U be a typed
update procedure of ordinal ω. Then U has a finite zero σ. Moreover, σ can be calculated as
the normal form of a bar recursive term Zeroω(U) (defined uniformly on the parameter U) of
system T plus bar recursion of type 1 := N→ N.

Proof. The finite function σ : [ω → (N→ N)] we are going to construct can be represented
as a finite function sequence σ(0) ∗ σ(1) ∗ · · · ∗ σ(n), for a large enough n. In the following s
is a variable ranging over finite sequences of natural number functions. Using bar recursion
of type 1, we can define in a most simple way a term which builds directly the finite zero we
are looking for. We present the construction gradually. To begin with, suppose we are able
to define - uniformly on s - terms BR(s) and gs : (N→ N) satisfying the following equation
for every s:

BR(s) =


ŝ if U ŝ = |(γ, n,m)| and γ < |s|
ŝ if U ŝ = |∅|
BR(s ∗ gs) otherwise, where ∀n,m U(BR(s ∗ gs)) 6= (|s|, n,m)

Let

σ := Zeroω(U) := BR(〈〉)

We prove that σ is a finite zero of U . We show this by proving that Uσ = (γ, n,m) is
impossible. As in the proof of theorem 15

BR(〈〉) = BR(σ(0) ∗ · · · ∗ σ(i)) = ̂σ(0) ∗ · · · ∗ σ(i)

with γ < i+ 1. Let

r := σ(0) ∗ · · · ∗ σ(γ − 1)

By some computation

Uσ = U(BR(〈〉))
= U(BR(σ(0) ∗ · · · ∗ σ(γ − 1)))
= U(BR(r))
= U(BR(r ∗ gr))

Since by construction for all n,m

U(BR(r ∗ gr)) 6= |(|r|, n,m)| = |(γ, n,m)|

we obtain that Uσ 6= (γ, n,m): impossible.
It remains to show that a gs such that appears in the definition of BR(s) exists. Indeed, it is
enough to set

gs := Zero(λfN→NU|s|(BR(s ∗ f)))

where, for i ∈ N, we have defined

Ui := λfN→(N→N). if U(f) = |(i, n,m)| then |(n,m)| else |∅|

We prove now that in fact U(BR(s ∗ gs)) 6= |(|s|, n,m)| for all n,m. First, observe again that
for every s

BR(s) = ̂s ∗ h1 ∗ · · · ∗ hn
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for some terms h1, . . . , hn of type N→ N. Now, fix any finite sequence s of type-N→ N terms.
We want to show that

Fs := λfN→NU|s|(BR(s ∗ f))

is an update procedure of ordinal 1. Suppose Fsg1 = |(n,m)|, g2(n) = m and Fsg2 = |(h, l)|.
Then, by definition of Fs, it must be that

U(BR(s ∗ g1)) = |(|s|, n,m)| and U(BR(s ∗ g2)) = |(|s|, h, l)|

Moreover,

BR(s ∗ g2)|s|(n) = g2(n) = m

Since U is an update procedure, h 6= n must hold; therefore Fs is an update procedure of
ordinal 1. But by definition of gs, Zero and theorem 15, this means that

|∅| = Fs(Zero(Fs)) = U|s|(BR(s ∗ gs))

By definition of U|s| it must be true that U(BR(s ∗ gs)) 6= |(|s|, n,m)| for all n,m. J
The previous argument can be generalized in order to prove the Zero theorem for typed

update procedures of ordinal ωk.

I Theorem 17 (Zero Theorem for Typed Update Procedures of Ordinal ωk, with k ∈ ω). Let
U be a typed update procedure of ordinal ωk. Then U has a finite zero σ. Moreover, σ can be
calculated as the normal form of a bar recursive term Zeroωk(U) (defined uniformly on the
parameter U) of system T plus bar recursion of some type A, where typelevel(A) = 1.

Proof. The idea is to break the zero we want to construct in ω blocks of length ωk−1 and
build each block by using Zeroωk . See the full version of this paper [1]. J
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Abstract
In a seminal article, Kahn has introduced the notion of process network and given a semantics for
those using Scott domains whose elements are (possibly infinite) sequences of values. This model
has since then become a standard tool for studying distributed asynchronous computations. From
the beginning, process networks have been drawn as particular graphs, but this syntax is never
formalized. We take the opportunity to clarify it by giving a precise definition of these graphs,
that we call nets. The resulting category is shown to be a fixpoint category, i.e. a cartesian
category which is traced wrt the monoidal structure given by the product, and interestingly this
structure characterizes the category: we show that it is the free fixpoint category containing a
given set of morphisms, thus providing a complete axiomatics that models of process networks
should satisfy. We then use these tools to build a model of networks in which data vary over a
continuous time, in order to elaborate on the idea that process networks should also be able to
encompass computational models such as hybrid systems or electric circuits. We relate this model
to Kahn’s semantics by introducing a third model of networks based on non-standard analysis,
whose elements form an internal complete partial order for which many properties of standard
domains can be reformulated. The use of hyperreals in this model allows it to formally consider
the notion of infinitesimal, and thus to make a bridge between discrete and continuous time:
time is “discrete”, but the duration between two instants is infinitesimal. Finally, we give some
examples of uses of the model by describing some networks implementing common constructions
in analysis.
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1 Introduction

Process networks have been introduced by Kahn, together with an associated semantics
based on Scott domains, as one of the first model for concurrent and asynchronous compu-
tations [19]. These networks are constituted of processes (which may be thought as com-
puters on a network or threads on a computer for instance) which perform computations
and can exchange information through channels acting as unbounded FIFO queues. Finite
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or infinite sequences of values, that are called streams, are communicated on the channels,
and the semantics of the whole process network is considered to be the streams that can
be exchanged, depending on the data provided by the environment. The set of streams
can be structured as a complete partial order, and the semantics of networks is modeled by
Scott-continuous functions on this domain: the fact that these functions admit a smallest
fixpoint turns out to be crucial in order to model “loops” formed by channels in the net-
work. A series of subsequent works have provided a precise understanding of this fixpoint
construction [11, 16].

In this model, time is discrete in the sense that a countable number of values might
be exchanged during an execution: we can consider that each value occurs at a given in-
stant t ∈ N. In this article, we are interested in understanding how to extend the usual
semantics of process networks in order to consider computations in continuous time, by
replacing N by R+ for the domain of time, so as to embrace computational models such
as electric circuits or hybrid systems, with which it bears many similarities. However, how
would such a semantics relate to the usual discrete semantics of networks? The fundamental
intuition in order to relate the two models is the following: if we allow ourselves to con-
sider infinitesimal durations dt, then we can think of continuous time as being somehow
“discrete”, its instants being 0,dt, 2 dt, 3 dt, . . . This idea of infinitesimal time originates in
the works of Bliudze and Krob [7], and was later on developed by Benveniste, Caillaud
and Pouzet [6], who formalized it by using tools provided by non-standard analysis [27, 12]
in order to give a rigorous meaning to infinitesimals. Here, we develop on these ideas by
structuring the resulting notion of stream into internal Scott domains, which are shown to
provide a model of process networks, and explain how the resulting model provides a nice
bridge between discrete and continuous time.

For this purpose, we introduce a new model for Kahn process networks. However, what
is precisely the syntax for these networks that we want to model? Here, we formalize the
definition of the graphs which are often used to informally represent process networks, by a
structure that we call nets. We show here that the resulting category is a fixpoint category,
i.e. a cartesian category which is traced [18] wrt the monoidal structure provided by products.
Moreover, this structure characterizes the category in the sense that the category of nets
is a free category of such kind. This result thus provides a complete description of the
axioms that a model of nets should satisfy. We finally use this structure to show that
streams in infinitesimal time form such a model. We elaborate here on a series of earlier
works. The structure of traced monoidal category for the Kahn model has been introduced
by Hildebrandt, Panangaden and Winskel [16] and the construction of nets introduced here
is a generalization of the one introduced in [15]. Properties of fixpoint categories and their
relationship to fixpoint operators have been studied in details by Hasegawa [14].

We begin by defining nets (Section 2.1), show that they are free fixpoint categories
(Section 2.2) and explain that Scott-domain semantics can be given for nets (Section 2.3).
We then recall basic constructions and properties of non-standard analysis (Section 3.1),
define the notion of internal domain of which infinitesimal-time streams are an instance
(Section 3.2) and relate models in infinitesimal and continuous time (Section 3.3). We
finally conclude in Section 4.
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2 Nets and their semantics

α
β

A Kahn process network [19] can be thought as a finite set of boxes, with
inputs and outputs, linked through wires, producing outputs depending
on their inputs which will be asynchronously transmitted over the wires.
Over time, data circulates through the network, producing streams of
data. The dataflow semantics of these networks has been well-studied in relation with
Scott domains and category theory [25, 16]. However, there is no canonical syntax for
them, even though a graphical notation (as pictured on the right) is often used. Since
the purpose of this paper is to provide a new semantics for process networks, we take this
opportunity to clarify the definition of the syntax, by formalizing the graphical notation and
relating it with the categorical structure of the models. The ideas developed here in order
to develop an axiomatics for Kahn process networks originate in various previous works in
the field. Kahn’s original paper [19] mentions results of decidability of the equivalence of
graphs representing networks (which are called schemata) based on earlier works [9]. Many
subsequent articles underline the importance of operations on networks such as sequential
composition, parallel composition, tupling (products) and feedback [11, 25], and a traced
monoidal category modeling Kahn networks was constructed in [16]. On the categorical side,
the “drawings” used here have been formalized as string diagrams representing morphisms
in monoidal categories [17]. Traced monoidal categories were introduced in [18] and turned
out to be a fundamental tool in computer science [1]. Their axiomatics was simplified and
studied in the cartesian case [14] and constructions of free traced monoidal categories were
provided in [2, 15].

2.1 Nets
A signature Σ = (Σ, σ, τ) consists of a set Σ of symbols and two functions σ, τ : Σ→ N,
which to every symbol α associate its arity and coarity respectively – we thus sometimes
write α : σ(α) → τ(α): the symbols should be thought as possible building blocks for a
process network, with specified number of inputs and outputs. Given such a signature, a
net consists of instances of symbols (called operators) whose inputs and outputs are linked
together through wires (called ports) defined as follows. Given an integer n, we write 〈n〉
for the set {0, . . . , n− 1}.

I Definition 1 (Net). A net N = (P,O, λ, s, t) from m to n, with m,n ∈ N, consists of
– a finite set P of ports,
– a finite set O of operators,
– a labeling function λ : O → Σ,
– a source function s : SN → P and an injective target function t : TN → P , where

SN = {(x, i) | x ∈ O, i ∈ 〈σ◦λ(x)〉}]〈n〉 TN = {(x, i) | x ∈ O, i ∈ 〈τ ◦λ(x)〉}]〈m〉

We sometimes write N : m→ n to indicate that N is a net from m to n.

I Example 2. Suppose that Σ contains two symbols α and β whose sources (given by σ) are
both 2 and targets (given by τ) are respectively 1 and 2. The net drawn in the introduction of
this section can be formalized as a net N : 2→ 2 defined by P = {p0, . . . , p4}, O = {x0, x1},
λ(x0) = α, λ(x1) = β, s and t are defined by

s(x0, 0) = p0 s(x0, 1) = p4 s(x1, 0) = p2 s(x1, 1) = p1 s(0) = p3 s(1) = p4

and t(x0, 0) = p2 t(x1, 0) = p3 t(x1, 1) = p4 t(0) = p0 t(1) = p1

CSL’11
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• p0
• p2x0 • •p3 •

x1
• p1
• •p4 •

Graphically, this can be pictured as on the right. The bullets
on the left and on the right indicate the source and target m
and n and the dotted lines represent the induced source and
target functions 〈m〉 → P and 〈n〉 → P respectively. Notice that a port can be used as
input for multiple wires as it is the case for the port p4 in the example. However, t being
injective, two wires cannot have the same output port.

I Definition 3. A morphism ϕ : M → N between two nets M,N : m → n (with the
same source and target) consists of a pair of functions ϕP : PM → PN and ϕO : OM → ON
such that for every operator x ∈ OM , λN (ϕO(x)) = λM (x), for every source (x, i) ∈ SM ,
ϕP (sM (x, i)) = sN (ϕO(x), i), for every k ∈ 〈n〉, ϕP (sN (k)) = sM (k) and similar equations
for target functions. Two nets M and N are isomorphic when there exists an invertible
morphism between them, which we write M ≈ N .

I Definition 4. In order to define a category whose objects are integers and morphisms are
nets (considered up to isomorphism), we introduce the following constructions:
– Identity. The identity net N : n → n is the net such that P = 〈n〉, O = ∅ and

s, t : 〈n〉 → P are both the identity function.
– Composition. Given two nets M : n1 → n2 and N : n2 → n3, their composite

N ◦M : n1 → n3 is the net defined by P = PM ]PN/∼ where ∼ is the smallest equiva-
lence relation such that sM (k) ∼ tN (k) for every k ∈ 〈n2〉, O = OM]ON , λ = λM]λN , s
is defined by s(x, i) = sM (x, i) if x ∈ OM , s(x, i) = sN (x, i) if x ∈ ON and s(k) = sN (k)
if k ∈ 〈n3〉, and t is defined similarly.

– Tensor. Given two nets M : m → m′ and N : n → n′, their tensor product net
M ⊗N : m+ n→ m′ + n′ is the net which is defined by P = PM ] PN , O = OM ]ON ,
λ = λM ] λN , s is defined by s(x, i) = sM (x, i) if x ∈ OM and s(x, i) = sN (x, i) if
x ∈ ON , s(k) = sM (k) if k ∈ 〈m′〉 and s(k) = sN (k −m′) if k ∈ 〈n′〉, and t is defined
similarly.

– Trace. Given a net N : n1 + n → n2 + n, we define the net Trnn1,n2
(N) : n1 → n2 by

P = PN/ ∼ where∼ is the smallest equivalence relation such that sN (n2+k) = tN (n1+k)
for every k ∈ 〈n〉, O = ON , λ = λN , s = q ◦ sN and t = q ◦ tN where q : PN → P is the
canonical quotient map.

It can easily be shown that the constructions above are compatible with isomorphisms
of nets (e.g. if M ≈M ′ and N ≈ N ′ then M ⊗N ≈M ′⊗N ′). It thus makes sense to define
the following category:

I Definition 5. We write NetΣ for the category NetΣ whose objects are natural integers,
morphisms N : m→ n are isomorphism classes of nets, identities and composition are given
by the constructions of Definition 4.

I Lemma 6. The category NetΣ is well-defined and is monoidal with the tensor product of
Definition 4 and 0 as unit.

I Remark. In order to make a more fine-grained study of the categorical structure of nets,
we could have avoided quotienting morphisms by isomorphisms of net and defined a bicat-
egory [5] whose 0-cells are integers, 1-cells are nets and 2-cells are morphisms of nets. We
did not do this here to simplify the presentation.
I Remark. This construction, as well as the following, can be extended without difficulty
to define multisorted nets (i.e. where the various inputs of operators have different types),
see [15] for a similar construction. A nice and abstract description of this construction can
be carried on using polygraphs [8], in a way similar to [24].
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Even though the output of an operator can be duplicated or erased, the category NetΣ
fails to have finite products. This is essentially due to the fact that duplication and erasure
are not natural, e.g. the following nets (of type 1→ 2 and 1→ 0 respectively) are different:

α • •
• •

α • •
6=

•
• • α •

•
• • α • 6= • •

We can however recover products by considering the two inequalities above as rewriting
rules on nets from left to right as follows.
– Sharing. Given a net N : m→ n, suppose that there exists two operators x, y ∈ O

with the same label and the same inputs, i.e. λ(x) = λ(y) and for every i ∈ 〈σ ◦ λ(x)〉,
s(x, i) = s(y, i). We define a net N ′ : m→ n by P = PN/ ∼ where ∼ is the smallest
equivalence relation such that t(x, i) ∼ t(y, i) for every i ∈ 〈τ ◦ λ(x)〉, O = ON/ ∼′
where ∼′ is the smallest equivalence relation identifying x and y, and λ, s and t are
obtained by quotienting the corresponding functions of N . The net N ′ is said to be
obtained from N by sharing.

– Erasing. Given a net N : m→ n, suppose that there exists an operator x ∈ O such that
for every i ∈ 〈τ ◦λ(x)〉, s−1(t(x, i)) = ∅. Informally, none of the outputs of the operator x
is used as an input for some other operator. We write N ′ : m→ n for the net obtained
from N by removing the operator x as well as all the ports t(x, i) for i ∈ 〈τ ◦ λ(x)〉. The
net N ′ is said to be obtained from N by erasing.

We say that N se-rewrites to N ′ when N ′ can be obtained from N by sharing or erasing.
The se-equivalence is the smallest equivalence relation containing the se-rewriting relation.

I Proposition 1. The category sNetΣ obtained from NetΣ by quotienting morphisms by
se-equivalence has finite products, given on objects by the tensor product of NetΣ.

Proof. The terminal object is 0 and the product of two objects m and n is m + n with
the projection of m defined as the net N : m + n → m such that P = 〈m + n〉, O = ∅,
s : 〈m〉 → P is the canonical injection and t : 〈m+n〉 → P is the identity (and the projection
on n is defined similarly). All required axioms are easily verified. J

It can be shown that the se-rewriting rules form a terminating (they decrease the number of
operators) and confluent rewriting system. The normal forms are nets which do not contain
two operators with the same label and input ports, and do not contain operators such that
none of the outputs are inputs for some other operator. A direct alternative description of
nets modulo se-equivalence, called shared nets, can thus be defined as follows.

I Definition 7. A shared net N = (P,O, s, t) from m to n consists of
– a finite set P of ports,
– a finite set O of operators which are pairs (α, (si)i∈〈σ(α)〉) where α ∈ Σ is a symbol and

(si)i∈〈σ(α)〉 is a family of ports called the sources of the operators,
– a source function s : 〈n〉 → P ,
– an injective target function t : TN → P , where TN = {(x, i) | x ∈ O, i ∈ 〈τ ◦λ(x)〉}]〈m〉,
such that for every operator x ∈ O, s−1(t(Tx)) 6= ∅ where Tx = {(x, i) | i ∈ 〈τ ◦ λ(x)〉}.

I Proposition 2. A category whose objects are integers and morphisms are shared nets
modulo (suitably defined) isomorphism can be defined in a similar way as previously, and
this category can be shown to be equivalent to sNetΣ through product-preserving functors.

Proof. The canonical forms of nets wrt se-rewriting are in bijection with shared nets. J

Next section justifies why the category sNet provides a convincing definition of the networks.
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2.2 Nets as free fixpoint categories
We now study the structure of the category sNetΣ in order to define a proper denotational
model this category. Recall that a (strict)monoidal category (C,⊗, I) consists of a category C
together with a bifunctor ⊗ : C×C → C, called tensor, and an object I, called unit, such that
the tensor is strictly associative and admits units as neutral elements. A (strict) symmetric
monoidal category consists of a monoidal category (C,⊗, I) equipped with a natural family
γA,B : A⊗B → B ⊗A of isomorphisms satisfying γB,A ◦ γA,B = idA⊗B as well as other
coherence axioms, see [22] for details. Any category C with finite products admits a structure
of symmetric monoidal category with the cartesian product × as tensor and the terminal
object 1 as unit, and this structure can be chosen to be strict in the case of sNetΣ (thus we
only consider strict monoidal categories in the following for simplicity). A natural notion of
“feedback” was formalized in monoidal categories by Joyal, Street and Verity [18] as follows:

I Definition 8 (Trace). A trace on a symmetric monoidal category C consists of a natural

A f B
X

family of functions TrXA,B : C(A⊗X,B⊗X)→ C(A,B). Given a morphism
f : A⊗X → B ⊗X, the morphism TrXA,B(f) : A → B is often drawn as
on the right. A trace should satisfy the following axioms.
1. Vanishing: for every f : A⊗X ⊗ Y → B ⊗X ⊗ Y , TrX⊗YA,B (f) = TrXA,B(TrYA⊗X,B⊗X(f))

A B
f =

A B
f

2. Superposing:
for every f : A⊗X → B ⊗X and g : C → D, g ⊗ TrXA,B(f) = TrXC⊗A,D⊗B(g ⊗ f)

C g D

A f B
=

C g D

A f B

3. Yanking: for every object X, TrXX,X(γX,X) = idX

X X
=

X X

I Proposition 3. The construction of Definition 4 induces a trace on NetΣ and on sNetΣ.

The category sNetσ is a traced cartesian category that we call a fixpoint category in the
following. Interestingly, it is actually characterized by this structure in the sense that it is
the free fixpoint category containing a Σ-object.

I Definition 9 (Σ-object). Given a signature Σ, a Σ-object in a monoidal category C consists
of an object A together with a morphism fα : ⊗σ(α)A → ⊗τ(α)A for every symbol α ∈ Σ,
called the interpretation of α, where ⊗nA denotes the tensor product of n copies of the
object A. A Σ-morphism between two Σ-objects (A, fα) and (B, gα) consists of a mor-
phism h : A→ B such that for every α ∈ Σ, (⊗τ(α)h) ◦ fα = gα ◦ (⊗σ(α)h).

I Theorem 10. The category sNetΣ is the free category containing a Σ-object in the sense
that for every fixpoint category C, the category Mod(Σ, C) of Σ-objects and Σ-morphisms
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is equivalent to the category Fix(sNetΣ, C) whose objects are fixpoint functors (preserving
cartesian product and trace) and morphisms are monoidal natural transformations.

Proof. The category sNetΣ contains a Σ-object whose underlying object is 1 and the in-
terpretation of a symbol α with σ(α) = m and τ(α) = n is the net N : m → n such
that P = 〈m+ n〉, O = {x}, λ(x) = α, s(x, i) = i, s(k) = m+ k, t(x, i) = m+ i, t(k) = k:

1 m•
2
• •

m+ 1
•

• • x • •
...

...• • • •
m− 1 m+n−1

A construction of the free traced symmetric monoidal category containing a Σ-object was
provided in [2] and reformulated in [15] using a variant of the nets defined here, that we call
traced nets. It is easy to see that we recover traced nets by restricting sNetΣ to the nets such
that the source function s is a bijective function. We thus have to show that our category
of nets is the free category over the category of traced nets. Recall that a cocommutative
comonoid (M, δ, ε) in a symmetric monoidal category consists of an object M together with
two morphisms δ : M → M ⊗ M (called duplication) and ε : M → I (called erasure),
which are such that (δ ⊗ idI) ◦ δ = (idI ⊗ δ) ◦ δ, (ε ⊗ idI) ◦ δ = δ = (idI ⊗ ε) ◦ δ and
γM,M ◦ δ = δ. Now, it has been shown [8] that the category whose objects are integers and
whose morphisms f : m → n are functions f : 〈m〉 → 〈n〉 is the free monoidal symmetric
monoidal category containing a commutative monoid, and that the free cartesian category
over a symmetric monoidal category is obtained by freely adding a natural structure of
cocommutative comonoids over each object: precisely, this means that each object M is
equipped with a structure (M, δM , εM ) of cocommutative comonoid and these are natural
in the sense that for every morphism f : M → N , δN ◦ f = (f ⊗ f) ◦ δM and εN ◦ f = εM .
From this it can be deduced that going from nets with bijective s to nets with any function
as s, and quotienting by se-equivalence, amounts to construct the free cartesian category
over the category of traced nets. Namely, allowing any function equips the object 1 with a
structure of comonoid with the duplication δ1 being the net Nδ1 : 1→ 2 such that P = {p},
O = ∅, s(k) = p and t(k) = p and the duplication ε1 being the net Nε1 : 1 → 0 such that
P = {p}, O = ∅ and t(k) = p:

Nδ1 =
•

• •
•

Nε1 = • •

(and every object can be equipped with a structure of cocommutative comonoid in a similar
way). Quotienting by se-equivalence amounts to impose that the structures of cocommuta-
tive comonoid on the objects are natural. J

2.3 Models of nets
The properties of fixpoint categories have been studied in details by Hasegawa and Hy-
land [14]. In particular, they have shown that a cartesian category C is traced if and only if
it contains a fixpoint operator satisfying suitable axioms (these are sometimes called Conway
fixpoint operators). For instance, the category of Scott domains recalled below admits such
a fixpoint and is therefore a fixpoint category thus providing a natural semantics for nets.

A directed complete partial order (or dcpo) is a poset (D,6) such that every directed
subset X has a supremum

∨
X and a complete partial order (or cpo) is a dcpo with a least

element ⊥ [3, 4, 10]. A function f : A → B between two dcpo is Scott-continuous when
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it preserves supremums. By the Kleene fixpoint theorem, every Scott-continuous function
f : X → X admits a least fixpoint fixX(f) defined by fixX(f) =

∨
n∈N f

n(⊥X), where fn
denotes the composite of n instances of f . Suppose given a function f : A×X → B ×X.
We write πB : B ×X → B and πX : B ×X → X for the canonical projections. Given a ∈ A,
we write fa = x 7→ f(a, x) for the partial application of f to a. A trace can defined on f by

TrXA,B(f) = a 7→ πB(fixB×X(fa ◦ πX)) (1)

and this function can be shown to be Scott-continuous.

I Proposition 4. The category Cpo of cpo and Scott-continuous functions is a fixpoint
category with (1) as trace.

By Theorem 10, any Σ-object in Cpo canonically induces a functor F : NetΣ → Cpo
which associates to every net its domain semantics: once we have interpreted each symbol
as a Scott-continuous function (by fixing a Σ-object), the interpretation of each network
is also fixed. In particular, when the Σ-object is the domain R∞ of R-valued streams
(for some set R), we recover the usual Kahn semantics [19] of nets: R∞ is the domain
whose elements are finite or infinite sequences (called streams) of elements of R, ordered by
inclusion. The intuition here is that time is discrete (because we only consider the times
where some information is passed on a wire as instants) and the elements of the domain are
the sequences of values passed on wires at the various instants.

I Example 11. Consider a signature Σ containing two symbols + : 2→ 1 and ι : 1→ 1. We
consider the Σ-object R∞ in Cpo such that the interpretation of + is the Scott-continuous

• •
+ • •

• ι

function R∞ × R∞ → R∞ such that the image of two
streams of same length is their pointwise addition and
the interpretation of ι is the function R∞ → R∞ which
prepends a 0 to streams. The interpretation of the net
on the right is the function which returns the stream whose n-th value is the sum of the
n+ 1 first values of the stream.

An element of the Kahn domain can be considered as a partial function s : N → R

whose domain of definition is an initial segment of N (the integers in N represent the in-
stants of the time). Our goal here is to consider a semantics where time is continuous,
i.e. streams are generalized to partial functions s : R+ → R defined on an initial segment
of R+ and to relate it to the Kahn semantics. In order to build bridge between the two
models, the intuition here is that continuous time can be considered as “discrete” if we allow
ourselves to consider infinitesimals: the time in R+ can namely be thought as a sequence of
instants 0,dt, 2 dt, 3 dt, . . . where dt is an infinitesimal, thus enabling us to extend techniques
developed for Kahn networks to continuous time semantics. Moreover, many operations of
common use in analysis can be simply formulated by an appropriate net with the continuous
time semantics. For instance, the derivative of a function whose definition can be formulated
as f ′(t) = (f(t)− f(t− dt))/ dt can be implemented by a net of the form (4) which directly
translates to nets the above formula. The rest of the paper is devoted to explaining and
formalizing these ideas by using of non-standard analysis which allows us to rigorously make
sense of the notion of infinitesimal.
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3 A non-standard semantics for Kahn networks in continuous time

3.1 Hyperreals
We give here a brief introduction to non-standard analysis and refer the reader to text-
books [12, 27, 26] for details. The motivation underlying the construction of hyperreals is
to extend the field R of real numbers into a field ∗R in which one can give a meaning to the
notions of infinitesimal and infinite numbers. Basically, hyperreal numbers are defined as
countable sequences (xi)i∈N of real numbers, the sequences converging towards 0 represent-
ing infinitesimals. Any real x can be seen as the hyperreal which is the constant sequence
whose elements are equal to x, moreover the usual operations are extended pointwise to
hyperreals, e.g. the multiplication is defined by (xi)× (yi) = (xi × yi). In order for suitable
axioms to be satisfied (for instance every non-null hyperreal should have an inverse) one has
to consider equivalence classes of such sequences; in particular, any two sequences which only
differ on a finite number of values should be equivalent. The starting point of non-standard
analysis is the fact that a suitable equivalence relation can be defined from an ultrafilter:

I Definition 12 (Ultrafilter). A filter on a set I is a collection F of sets which is closed
under intersection and under supersets (i.e. if U ⊆ V ⊆ I and U ∈ F then V ∈ F). A
filter is proper when ∅ 6∈ F . An ultrafilter on I is a proper filter such that for every U ⊆ I,
either U ∈ F or I \ U ∈ F . An ultrafilter F is principal when there exists i ∈ I such that
F = {U ⊆ I | i ∈ U}, and non-principal otherwise.

Assuming Zorn’s lemma (which is equivalent to the axiom of choice), it can be shown that

I Proposition 5. Any infinite set I has a non-principal ultrafilter on it.

We now fix such an ultrafilter F on N whose elements are called large sets. The fact
that F is non-principal implies that it does not contain any finite subset of N: the construc-
tion of the ultrafilter can thus be thought as a way of constructing a set, starting from all
cofinite sets, and coherently adding either I or its complement for every set I ⊆ N which
is neither finite nor cofinite. We define an equivalence relation ≡ on countable sequences
of reals by (xi) ≡ (yi) when {i ∈ N | xi = yi} ∈ F and denote by 〈xi〉 the equivalence class
of (xi).

I Definition 13 (Hyperreals). The set ∗R of hyperreals is the set of equivalence classes
(wrt ≡) of countable sequences of reals.

The set ∗N of hyperintegers is defined similarly and there is a canonical inclusion ∗N ⊆ ∗R.
Any countable sequence (xi) of reals induces an hyperreal 〈xi〉, and in particular a real r

can be seen as an hyperreal ∗r = 〈r〉 by considering the equivalence class of the constant
sequence whose elements are equal to r (we sometimes leave this conversion implicit). Sim-
ilarly, a countable sequence (Xi) of subsets of R induces a set 〈Xi〉 of hyperreals defined as
the set of 〈xi〉 ∈ ∗R such that {i ∈ N | xi ∈ Xi} ∈ F . A subset of ∗R is an internal set if it
can be obtained this way, in particular any set X ⊆ R induces an internal set ∗X = 〈X〉, as-
sociated to the constant sequence (for instance 〈R〉 = ∗R). Similarly, a countable sequence
of functions (fi : Ai → Bi), where the Ai and Bi are subsets of R, extends to a func-
tion 〈fi〉 : 〈Ai〉 → 〈Bi〉, defined on 〈xi〉 ∈ 〈Ai〉 by 〈fi〉(〈xi〉) = 〈fi(xi)〉 where fi(xi) = fi(xi)
if xi ∈ Ai and fi(xi) = 0 otherwise. Such a function is called an internal function. Any
real-valued function f : A → B may be seen as an internal function ∗f = 〈f〉 : 〈A〉 → 〈B〉.
The notion of internal relation is defined similarly.
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I Remark. As we explain in Section 3.1.1, it is important to keep in mind that not every
set X ⊆ ∗R (or function, or relation) is internal.

Notice that in the above definition of an internal function, we have used 0 as “default value”
for the functions fi on the elements xi 6∈ Ai. This could be avoided by choosing a suitable
representative in the equivalence class 〈xi〉:

I Lemma 14. Given an element x of an internal set 〈Ai〉, there exists a sequence (yi), such
that yi ∈ Ai for every index i, satisfying 〈yi〉 = x.

In the way described above, all the usual operations on reals extend to hyperreals (and
similarly for hyperintegers). For instance, the absolute value of an hyperreal x = 〈xi〉 is
defined by |x| = 〈|xi|〉. An hyperreal x of ∗R is infinitesimal whenever |x| < r for every
real r > 0, and unlimited if r < |x| for every real r ∈ R. Given a hyperreal x which is not
unlimited, there exists a unique real y such that x− y is infinitesimal: this real is called the
standard part of x and denoted by st(x). We define an equivalence relation ≈ on hyperreals
by x ≈ y whenever st(x− y) = 0.

I Remark. The existence of a standard part might be surprising at first: for instance,
given the sequence xi such that xi = 0 if i is even and xi = 1 otherwise, what should be
the standard part of 〈xi〉? The result is given by the chosen ultrafilter F : if the set I of
even integers is in F then st(〈xi〉) = 0, otherwise the set N \ I of odd integers is in F
and st(〈xi〉) = 1.

I Remark. The method used to construct ∗R is an instance of a very general construction of
ultraproducts in model theory, which can be used to define a non-standard model ∗X from
any model X [21, 27, 12]. In particular, given sets X and Y, this construction applied to
the set YX of functions from X to Y constructs the set ∗(YX) of internal functions from ∗X
to ∗Y.

3.1.1 The transfer principle

A fundamental tool in non-standard analysis is the transfer principle, which follows from
Łoś theorem [21]. Informally, this principle can be formulated as follows

I Proposition 6 (Transfer principle). A first-order formula ϕ is satisfied in R if and only if
it is satisfied in ∗R, if we assume that all the sets, functions and relations involved in the
formula are internal.

A similar theorem can be formulated for ∗N. Many constructions of standard analysis
can thus be transferred to non-standard analysis. For instance, the sets ∗N and ∗R are,
respectively, a ring and a field and both are totally ordered.

I Remark. The assumption that we consider only internal objects is very important. For
instance the formula ((∀x ∈ A. x ∈ N) ∧ (∃x ∈ N. x ∈ A)) ⇒ (∃x ∈ A.∀y ∈ A. x 6 y) is
true in N: every non-empty subset A of N admits a smallest element. From this, we can
deduce by transfer that every non-empty internal subset of ∗N admits a smallest element.
However, this property does not hold for every subset of ∗N: for instance, ∗N \ N does not
have a smallest element since it can be shown to be closed under predecessor, and is thus
not internal. Likewise a subset of ∗N (resp. ∗R) is internal if and only if it is finite.
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3.1.2 Non-standard analysis
One of the most interesting property of hyperreals is that it allows one to rigorously consider
infinitesimals and thus formalize in an elegant way many of the tools in common use in
standard analysis. We give below some of these reformulations which will be of use afterward.

I Proposition 7 (Continuity). A function f : R → R is continuous at x when for ev-
ery y ∈ ∗R such that y ≈ x, we have ∗f(y) ≈ f(x). Otherwise said, f is continuous at x when
for every infinitesimal δ ≈ 0, there exists an infinitesimal ε ≈ 0 such that ∗f(x+δ) = f(x)+ε.

I Proposition 8 (Differentiation). A function f : R→ R admits y ∈ R as derivative at x ∈ R
when for every non-null infinitesimal δ ≈ 0, we have (∗f(x+δ)−f(x))/δ ≈ y. Furthermore,
if f is continuously differentiable on R, then for any two non-null distinct infinitesimals δ
and ε, and for any x ∈ R, we have

f ′(x) = st
(∗f(x+ δ)− ∗f(x+ ε)

δ − ε

)
Given a continuous function f : R→ R, its integral on an interval [a, b] is defined by∫ b

a

f(x) dx = lim
n→∞

(
n−1∑
k=0

f

(
a+ k

n
(b− a)

)
1
n

)
Notice that each sum makes sense because it is finite since it is indexed over the finite
set {k ∈ N | 0 6 k < n}. This notion of finite set can be generalized to internal
sets as follows: an internal set A = 〈Ai〉 is hyperfinite if almost all the Ai are finite,
i.e. {i ∈ N | Ai is finite} ∈ F . By an argument similar to Lemma 14, we can always
suppose that all the Ai are finite by choosing a suitable sequence of finite sets Bi such
that 〈Bi〉 = 〈Ai〉. Given such an internal set and an internal function 〈fi〉, we define∑
〈xi〉∈〈Ai〉〈fi〉(〈xi〉) = 〈

∑
xi∈Ai

fi(xi)〉.

I Proposition 9 (Integration). Given a function f : R → R which is continuous on an
interval [a, b], excepting possibly a finite number of points of discontinuity, we have∫ b

a

f(x) dx = st
(∑
x∈N

∗f(a+ x(b− a))δ
)

(2)

where δ = 1/n for some unlimited n = 〈ni〉 ∈ ∗N and N is the hyperfinite set N = 〈Ni〉 ⊆ ∗R
with Ni = {ki/ni ∈ R | ki ∈ N, 0 6 ki < ni}. In particular, the result does not depend on
the choice of the unlimited hyperinteger n ∈ ∗N.

The notion defined above corresponds to the Riemann integral. More refined notions (such
as the Lebesgue integral) can also be adapted to the non-standard setting.

3.2 Internal domains
In this section, we introduce the notion of internal domain, which we use to define a non-
standard denotational semantics for process networks. Given a totally ordered set T and a
set R, we write R6T for the set of partial functions s : T → R defined on an initial segment
of T , called the domain of definition of s. The elements of R6T are called streams: the
set T can be thought as time and the elements of R as the possible values of a stream over
time. Every such set can be equipped with a partial order v such that, given r, s ∈ R6T ,
we have f v g whenever the definition domain of r is included in the definition domain of s
and r and s coincide on the domain of definition of r.
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I Proposition 10. The poset (R6T ,v) is a cpo with smallest element ⊥ being the function
nowhere defined.

I Example 15. The Kahn domain described in Section 2.3 is R6N.

Every function f : R→ R lifts to a function f̃ : R6T → R6T such that, given s ∈ R6T , the
domain of definition of f̃(s) is the same as the domain of definition of s and the image of s
is defined by f̃(s)(t) = f ◦ s(t). The function f̃ is called the lifting of f to R6T . It is easy
to show that every such lifting is Scott-continuous.

In the following, we will be interested in modeling nets operating in a time which varies
continuously. We thus introduce the following domain in order to model the data flowing
through the wires:

I Definition 16 (Continuous-time domain). The continuous-time domain is the complete
partial order CT = R6R+ . The continuous-time domain of continuous functions CCT is
the subdomain of CT whose elements are continuous partial functions R+ → R.

As explained in the introduction, the purpose of this paper is to explain how to implement
Scott-continuous functions over this domain using Kahn networks by formalizing the follow-
ing intuition using non-standard semantics: continuous time can be considered as “discrete”
where the duration between two instants is infinitesimal. A natural candidate for this would
be the domain ∗R6∗N. Namely, in the view of Proposition 9, we would like to relate a
stream s ∈ R6R+ with the stream s ∈ ∗R6∗N defined on t ∈ ∗N by s(t) = ∗s(tδ), from some
infinitesimal δ ∈ ∗R. It turns out that the fixpoints computed in ∗R6∗N are not satisfactory. (3)

ι • • (3)
For instance, consider the net on the right such that the interpretation
of the operator ι is the function ι : ∗R6∗N → ∗R6∗N such that the
image of a stream r is the stream s defined by s(0) = 0 and for any non-null hyperinteger t,
s(t) = r(t − 1). We expect the interpretation of this net to be the constant function
equal to 0. However, this is not the case: the semantics s of this net is given by the
fixpoint s = fix(ι) =

∨
k∈N ι

k(⊥) of ι. Given k ∈ N, the domain of definition of the
stream ιk(⊥) is the set {p ∈ ∗N | 0 6 p < k}. Therefore, given an unlimited n ∈ ∗N,
ιk(⊥)(n) is undefined for every k ∈ N and thus fix(ι)(n) is undefined. Intuitively, the
induction on k ∈ N defining the smallest fixpoint is not powerful enough to reach all elements
of ∗N. The cpo ∗R6∗N is thus not the appropriate domain, however we explain below that
internal domains are a more suitable notion, because they support an induction principle
on ∗N.

I Definition 17 (Internal cpo). An internal cpo (D,6) in a non-standard model consists of
an internal set D = 〈Di〉 and an internal relation 6= 〈6i〉 such that for every integer i,
(Di,6i) is a cpo. Similarly, an internal Scott-continuous function f : D → E between two
internal cpo D = 〈Di〉 and E = 〈Ei〉 consists of an internal function 〈fi : Di → Ei〉 such
that all the fi are continuous. We write ICpo for the category of internal cpo and internal
Scott-continuous functions.

I Remark. Notice that such an internal cpo (D,6) is not necessarily a cpo: only internal
directed subsets are required to have a supremum. For instance suppose fixed an unlimited
hyperinteger n ∈ ∗N. The set D = {k ∈ ∗N | k 6 n} equipped with the usual total order
is an internal cpo, but not a cpo because the (non-internal) subset N ⊆ D is directed and
does not have a supremum.

I Proposition 11. Any internal Scott-continuous function f : D → D, where D is an
internal cpo, admits a least fixpoint fix(f) which satisfies fix(f) =

∨
{fn(⊥) | n ∈ ∗N}.

Here, if f = 〈fi〉 and n = 〈ni〉, fn is defined as 〈fni
i 〉.
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The axioms of fixpoint categories can be formulated in first-order logic. Using the transfer
principle (Proposition 6), it can be shown that the fact that Cpo is a fixpoint category
implies that

I Proposition 12. The category ICpo is a fixpoint category.

In the category ICpo, we will be particularly interested in the following domain:

I Definition 18 (Infinitesimal-time domain). The infinitesimal-time domain is the internal
complete partial order IT = ∗(R6N).

As explained in the remark in the end of Section 3.1, the elements of IT = ∗(R6N) are
the internal partial functions from ∗N to ∗R. The order v on this domain is such that for
any r, s ∈ IT , we have r v s whenever the domain of definition of r is included in the
domain of definition of s and r and s coincide on the domain of definition of r.

3.3 Comparing continuous time and infinitesimal time
In this section, we explain how the semantics of nets in IT can “simulate” operations in CT .
We now suppose fixed an infinitesimal δ called sampling period. We define a function
S : CT → IT , called sampling, which to every stream s ∈ CT associates the stream
S(s) = k 7→ ∗s(kδ), and a function T : IT → CT , called standardization, which to every
stream s associates T (s) = x 7→ st (s(b∗x/δc)), where b−c : ∗R → ∗N denotes the floor
function, and is defined on the biggest initial segment of R+ for which this definition makes
sense. These functions enable us to show that CCT (the domain of continuous streams) is a
retract of IT . We discuss afterward the possible extensions of this result to elements of CT .

I Proposition 13. The restriction of the composite T ◦ S to CCT is the identity.

Proof. Suppose given a stream s ∈ CCT . For any x ∈ R+, the fact that s is continuous at x
implies, by Proposition 7, that for every k ∈ ∗N such that kδ ≈ x, we have S(s)(kδ) ≈ s(x).
From this we deduce that T (S(s))(x) = s(x). J

I Remark. The function T ◦ S is generally not the identity on CT . For instance, suppose
that δ = 1/n, where n ∈ ∗N is unlimited, and consider the stream s ∈ CT whose value is 0
everywhere except at

√
2 where s(

√
2) = 1. Using the transfer principle, it is easy to show

that for every k ∈ ∗N, we have k/n 6=
√

2. From this we can deduce that T ◦ S(s) is the
constant stream equal to 0.
In order to make a more convincing case of the interest of the domain IT as a model
of nets and study further its relationship with CT , we give below some examples of nets
interpreted in IT which implement common constructions in analysis, and relate them to the
corresponding constructions in CT through S and T . For concision, we do not detail the easy
verification that the interpretations of operators are internal Scott-continuous functions.

As a first simple example, consider the net (3). From the characterization of the fixpoint
of internal Scott-continuous functions given by Proposition 11, it is easy to check that its
semantics s in the domain IT is the constant function (defined everywhere) as expected: if
we write c0 : R+ → R for the constant function equal to 0, we have s = S(c0) and c0 = T (s).

3.3.1 Differentiation
The differentiation is the following net where “ε” is interpreted as the function which drops
the first element of a stream (i.e. ε(s)(k) = s(k + 1)), “−” is interpreted as the pointwise
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difference (i.e. (−(s, t))(k) = s(k) − t(k)), and “/δ” is interpreted as the pointwise division
by δ (i.e. (s/δ)(k) = s(k)/δ).

ε •
• • − • /δ • • (4)

We write ϕ : IT → IT for the semantics of the net. By Proposition 8, we have immediately:

I Proposition 14. For any continuously differentiable function s : R+ → R in CCT ,
T (ϕ(S(s))) = s′.

Proof. Given k ∈ ∗N such that st(kδ) ∈ R+, ϕ(S(s))(k) = S(s)(k+1)−S(s)(k)
δ ≈ s′(st(kδ)).

The second step is proved by Proposition 8. Therefore, T (ϕ(S(s))) = s′. J

3.3.2 Integration
The integration is the following net where “×δ” is the pointwise multiplication of a stream
by δ, “+” is the pointwise addition of streams, and ι prepends 0 to a stream (see Section 3.2).
• • ×δ •

+ • •
• ι

(5)

We write ϕ : IT → IT for the semantics of the net. By Proposition 9, we have immediately:

I Proposition 15. For any function s : R+ → R in CCT , T (ϕ(S(s))) = x 7→
∫ x

0 s(t) dt.

Proof. The semantics ϕ of the net is computed by a fixpoint as explained in Section 2,
defined by ϕ(S(s))(0) = δS(s)(0) and ϕ(S(s))(n+1) = ϕ(S(s))(n)+δS(s)(n+1). Therefore
we have ϕ(S(s))(n) = δ

∑n
k=0 S(s)(k). Finally, by Proposition 9, it can be shown that if

st(xδ) = x ∈ R+, then δ
∑n

k=0 S(s)(k) ≈
∫ x

0 s(t) dt and thus T (ϕ(S(s)))(x) =
∫ x

0 s(t) dt. J

This construction can be generalized in order to describe solvers for ordinary differential
equations [7, 6]. It should be noticed that the above propositions show that the choice of
the infinitesimal sampling period δ is essentially irrelevant.

Most of the preceding results can be adapted to the case where the streams considered
are only piecewise continuous, with a finite number of discontinuities. In particular, for any
such stream s we have T ◦ S(s)=̂s where =̂ denotes the equality almost everywhere (this
weakening of equality is necessary because of phenomena such as the one described in the
remark following Proposition 13). However, the formalization of this is obscured by the fact
that piecewise continuous functions, with a finite number of discontinuities, do not form a
cpo because the supremum in CT of a directed set of such functions might have an infinite
number of points of discontinuity: this is sometimes referred to as the Zeno phenomenon in
the study of hybrid systems.

4 Conclusion and future works

We have defined nets which provide a formal syntax for process networks, studied the cate-
gorical structure of their models, and constructed the infinitesimal-time model as an internal
cpo. The fascinating links between denotational semantics of concurrent systems and non-
standard analysis have started to be explored only recently and many structures are still
yet to be clarified. As explained above, the study of the infinitesimal-time domain has to
be refined in order to cope with streams which are not necessarily continuous, and thus to
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properly model full-fledged hybrid systems. In particular, Proposition 13 fails to be true
if we replace CCT by CT : we plan to investigate generalizations of this property where S
and T form an adjunction. We are also investigating possible adaptations of nets in the
case where we consider a synchronous semantics (in which there is a notion of simultaneity
of events). In this setting, the usual delay operator can elegantly be modeled in feedback
categories [20] (which are traced monoidal categories with the yanking axiom removed) and
we plan to study nets for those categories. Finally, we envisage many connections with
other areas of denotational semantics. For instance, the trace semantics of Kahn networks
is closely related to game semantics [23] and it is thus natural to wonder if non-standard
analysis can provide insights about a possible definition of a “continuous game semantics”
in the spirit of the geometric models for concurrent programs [13].

Acknowledgments: the authors would like to warmly thank Simon Bliudze, Paul-André
Melliès, Michael Mislove and Marc Pouzet for all the discussions they had, directly or in-
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Abstract
This paper revisits models of typed λ-calculus based on filters of intersection types:

By using non-idempotent intersections, we simplify a methodology that produces modular
proofs of strong normalisation based on filter models. Non-idempotent intersections provide a
decreasing measure proving a key termination property, simpler than the reducibility techniques
used with idempotent intersections.

Such filter models are shown to be captured by orthogonality techniques: we formalise an
abstract notion of orthogonality model inspired by classical realisability, and express a filter
model as one of its instances, along with two term-models (one of which captures a now common
technique for strong normalisation).

Applying the above range of model constructions to Curry-style System F describes at dif-
ferent levels of detail how the infinite polymorphism of System F can systematically be reduced
to the finite polymorphism of intersection types.
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1 Introduction

M :A M :B
M :A ∩B

Intersection types were introduced in [9], extending the simply-typed
λ-calculus with a notion of finite polymorphism. This is achieved by a
new construct A ∩B in the syntax of types and new typing rules such
as the one on the right, where M :A denotes that a term M is of type A.

One of the motivations was to characterise strongly normalising λ-terms, the property
that a λ-term can be typed if and only if it is strongly normalising. Variants of intersection
types systems have been studied to characterise other evaluation properties of λ-terms and
served as the basis of corresponding semantics [4, 23, 31, 17, 14, 1].

In particular, intersection types were used to build filter models of λ-calculus as early
as [4]. For instance, [1] reveals how the notion of intersection type filter can be tuned so
that the corresponding filter models identify those λ-terms that are convertible by various
restrictions of β- and η-conversion. Here we rather develop the approach of [10] showing
how filters of intersection types can be used to produce models of various source typing
systems; [10] provides a modular proof that λ-terms that are typable in some (dependent)
type theory (the source system) are typable in a unique strongly normalising system of
intersection types (the target system), and are therefore strongly normalising.
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The contributions of this paper are threefold:
A new target system.
First, we show an improvement on the methodology of [10], changing the target system of

idempotent intersection types to a target system that uses non-idempotent intersection types
(which also departs from [1]). In other words we drop the assumption A ∩ A = A, which
corresponds to the understanding of the judgement M :A ∩B as follows: M can be used as
data of type A or data of type B. By dropping idempotency the meaning of M :A ∩ B is
strengthened in that M will be used once as data of type A and once as data of type B.

The benefit of that move is that the strong normalisation of this new target system follows
from the fact that typing trees get strictly smaller with every β-reduction. This is significantly
simpler than the strong normalisation of the simply-typed λ-calculus and, even more so,
of its extension with idempotent intersection types (for which [10] involves reducibility
techniques [18, 30]). Strangely enough there is no price to pay for this simplification, as the
construction and correctness of the filter models with respect to a source system is not made
harder by non-idempotency.

While this improvement concerns any of the source systems treated in [10], we choose to
illustrate the methodology with a concrete source system that includes the impredicative
features of System F [18], as suggested in the conclusion of [10]. As explained below, this
choice is motivated by an original study of polymorphism.

We propose as a target system a variant of the system in [6], which refined with quantitative
information the property that a λ-term is strongly normalising if and only if it can be typed:
the length of the longest β-reduction sequence starting from a strongly normalising λ-term
can be read off its typing tree. That system was inspired by the pioneering work of [20, 27] as
well as [12, 13], where these ideas were connected to the tradition of resource and differential
λ-calculi [8, 15] and semantics of linear logic [19]. Although from linear logic have emerged
typing systems providing control over the complexity of functional programs [2, 3, 22, 16],
let us emphasise that no linearity constraint is here imposed and all strongly normalising
λ-terms can be typed (including non-linear ones). In this we also depart from the complexity
results specific to the simply-typed λ-terms [29, 5].

Orthogonality models.
The second main contribution of this paper is to show how the above methodology can

be formalised in the framework of orthogonality. Orthogonality underlies linear logic and its
models [19] as well as classical realisability [11, 21, 26], and is used to prove properties of
proofs or programs [28, 25, 24].

We formalise here a parametric model construction by introducing an abstract notion of
orthogonality model, which we illustrate with three different instances:

one instance based on strongly normalising λ-terms, which captures the traditional use of
orthogonality to prove strong normalisation (adapted from [28, 24])
one instance based on λ-terms that are typable with intersection types
one instance based on filters of intersection types

To our knowledge, this is the first time that some filter models are shown to be captured by
orthogonality techniques. Also, the systematic and modular approach offered by the abstract
notion of orthogonality model facilitates the comparison of different proof techniques, e.g.
while studying polymorphism.

Polymorphism.
The third contribution of this paper is to use the above technology to shed some new

light on finite and infinite polymorphism:
System F and its extensions can assign a type ∀αA to a λ-term M , a form of infinite
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polymorphism, as M can be used with any of the infinitely many instances of A as its type.
Terms that are typed in System F are strongly normalising [18, 30], and strongly normalising
terms can be typed with intersections [9], so a direct corollary is that terms that are typed
with infinite polymorphism can in fact be typed with finite polymorphism.

Our model constructions analyse this phenomenon at various levels. The finer-grained
analysis is obtained from our filter models, as these give some insight on how the typing
trees of System F are transformed into typing trees with finite intersections, where the useful
instances of System F types have been computed. Similar ideas were investigated in [32].

Section 2 presents a target system λ∩ of non-idempotent intersection types and its basic
properties like strong normalisation. In Section 3 we build filters of non-idempotent intersec-
tion types, showing how the use of a target system such as λ∩ simplifies the methodology
of [10]; full details are given for concrete examples of source systems such as System F .
Section 4 presents the abstract notion of orthogonality model, for the source systems already
mentioned. Section 5 presents three instances, one of which captures the construction of a
filter model by orthogonality techniques. In Section 6 we discuss how the infinite polymorph-
ism of System F is reduced to the finite polymorphism of intersection types, comparing the
different models we have built; then we conclude.

2 Non-idempotent intersection types, improved

Our first goal is to show how non-idempotent intersection types simplify the methodology
introduced in [10]. We can use for that the system of non-idempotent intersection types
of [6], yet we take in this section the opportunity to make this paper self-contained and
present a more syntax-directed variant λ∩ that makes the proofs even simpler.

2.1 Grammar of types and properties
I Definition 1 (Types). Intersection types are defined by the following syntax:

F,G, . . . ::= τ | A→ F F -types
A,B, . . . ::= F | A ∩B A-types
U, V, . . . ::= A | ω U -types

The intersection U ∩ V of arbitrary U -types U and V can be defined by extending the
intersection of A-types with: A ∩ ω := A, ω ∩A := A and ω ∩ ω := ω.

Note that we do not assume any implicit equivalence between intersection types (such as
idempotency, associativity, commutativity).
I Remark. For all U and V , we have U ∩ ω = ω ∩ U , and if U ∩ V = ω then U = V = ω.

I Definition 2 (≈). We inductively define U ≈ V by the following rules:

F ≈ F A ∩B ≈ B ∩A

A ≈ A′ B ≈ B′

A ∩B ≈ A′ ∩B′
A ≈ B B ≈ C

A ≈ C

(A ∩B) ∩ C ≈ A ∩ (B ∩ C) A ∩ (B ∩ C) ≈ (A ∩B) ∩ C ω ≈ ω

The intersection types that we use here differ from those of [6], in that the associativity
and commutativity (AC) of the intersection ∩ are only featured “on the surface” of types,

CSL’11
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and not underneath functional arrows →. This will make the typing rules much more
syntax-directed, simplifying the proofs of soundness and completeness of typing with respect
to the strong normalisation property. More to the point, this approach reduces the use of
the AC properties to the only places where they are needed. Interestingly enough, the idea
of not using an equational theory beneath functional arrows is suggested in [1], Remark 3,
but not investigated. We have the following properties (the proof can be found in [7]):

I Lemma 3. For all U , V , W , F , U ′, V ′,
1. ≈ is an equivalence relation.
2. If U ≈ ω then U = ω and if U ≈ F then U = F .
3. U ∩ V ≈ V ∩ U and (U ∩ V ) ∩W ≈ U ∩ (V ∩W ).
4. If U ≈ U ′ and V ≈ V ′ then U ∩ V ≈ U ′ ∩ V ′.
5. For all U and V , if U ∩ V ≈ U then V = ω.

We equip intersection types with a notion of sub-typing:

I Definition 4 (⊆). We write U ⊆ V if there exists U ′ such that U ≈ V ∩ U ′.

I Lemma 5. For all U , U ′, V , V ′ :
1. ⊆ is a partial pre-order for intersection types,

and U ≈ U ′ if and only if U ⊆ U ′ and U ′ ⊆ U .
2. U ∩ V ⊆ U and U ⊆ ω
3. If U ⊆ U ′ and V ⊆ V ′ then U ∩ V ⊆ U ′ ∩ V ′

2.2 Typing contexts

We now lift those concepts to typing contexts before presenting the typing rules.

I Definition 6 (Contexts). A context Γ is a total map from variables to U -types such that
Dom(Γ) := {x | Γ(x) 6= ω} is finite. The intersection of contexts Γ ∩∆, and the relations
Γ ≈ ∆ and Γ ⊆ ∆, are defined point-wise.

By () we denote the context mapping every variable to ω and by x :U the context mapping
x to U and every other variable to ω.

The special case of Γ ∩∆ when Dom(Γ) and Dom(∆) are disjoint is denoted Γ,∆.

I Lemma 7 (Properties of contexts). For all contexts Γ, Γ′, ∆, ∆′, Γ′′,
1. Γ ∩ () = Γ = () ∩ Γ (for instance Γ, x :ω = Γ = x :ω,Γ)
2. If Γ ∩∆ = () then Γ = ∆ = () and if Γ ≈ () then Γ = ()
3. ≈ is an equivalence relation on contexts
4. Γ ∩∆ ≈ ∆ ∩ Γ and (Γ ∩ Γ′) ∩ Γ′′ ≈ Γ ∩ (Γ′ ∩ Γ′′)
5. If Γ ≈ Γ′ and ∆ ≈ ∆′ then Γ ∩ Γ′ ≈ ∆ ∩∆′

6. Γ ⊆ ∆ if and only if there exists Γ′ such that Γ ≈ ∆ ∩ Γ′.
7. ⊆ is a partial pre-order for contexts, and Γ ≈ ∆ if and only if Γ ⊆ ∆ and ∆ ⊆ Γ.
8. Γ ∩∆ ⊆ Γ
9. If Γ ⊆ Γ′ and ∆ ⊆ ∆′ then Γ ∩∆ ⊆ Γ′ ∩∆′.

10. (Γ, x :U) ⊆ Γ, in particular Γ ⊆ ().
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2.3 The target system λ∩

We finally present the typing rules for system λ∩, and its basic properties.

I Definition 8 (λ-calculus). Let Λ be the set of λ-terms defined by the grammar

M,N ::= x | λx.M |MN

λx.M binds x in M , the free variables fv(M) of a term M are defined as usual and terms
are considered up to α-equivalence. The reduction rule is β-reduction:

(λx.M) N −→
{
N�x
}
M

The congruent closure of this rule is denoted −→β . SN denotes the set of strongly normalising
λ-terms (for β-reduction).

x :F `̀̀ x :F

Γ, x :U `̀̀ M :F A ⊆ U

Γ `̀̀ λx.M :A→ F

Γ `̀̀ M :A→ F ∆ `̀̀ N :A
Γ ∩∆ `̀̀ MN :F

Γ `̀̀ M :A ∆ `̀̀ M :B
Γ ∩∆ `̀̀ M :A ∩B `̀̀ M :ω

Figure 1 System λ∩

I Definition 9 (Typability in System λ∩). The judgement Γ `̀̀∩ M :A denotes the derivability
of Γ `̀̀ M :A with the rules of Fig. 1. We write Γ `̀̀n∩ M :A if there exists a derivation with n
uses of the application rule.

Note that the rule deriving `̀̀ M :ω does not interfere with the rest of the system as ω is
not an A-type. It is only here for convenience to synthetically express some statements and
proofs that would otherwise need a verbose case analysis (e.g. Lemma 11).

x :F, y :ω `̀̀ λy.x :F
x :F `̀̀ λy.x :A→F

Only strongly normalising terms can be assigned an A-type by the
system (Theorem 13). In fact, all of them can (Theorem 39), see for
instance how the example on the side correctly uses the abstraction
rule (A ⊆ ω). Owing to non-idempotency, no closed term inhabits
the simple type (τ→τ→τ ′)→(τ→τ ′) (with τ 6= τ ′), but its natural
inhabitant λf.λx.f x x in a simply-typed system can here be given
type (τ→τ→τ ′)→(τ ∩ τ→τ ′).

Finally, note that the introduction rule for the intersection is directed by the syntax of
the type: deciding which rule instance is at the root of a derivation tree typing a term with
an intersection, is entirely deterministic. We are not aware of any intersection type system
featuring this property, which is here a consequence of dropping the implicit AC properties
of intersections, and a clear advantage over the system in [6].

I Lemma 10 (Basic properties of λ∩).
1. If Γ `̀̀n∩ M :U ∩ V then there exist Γ1, Γ2, n1, n2 such that n = n1 + n2, Γ = Γ1 ∩ Γ2,

Γ1 `̀̀n1
∩ M :U and Γ2 `̀̀n2

∩ M :V .
2. If Γ `̀̀∩ M :U , then Dom(Γ) = fv(M).
3. If Γ `̀̀n∩ M :U and U ≈ U ′ then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩ M :U ′
4. If Γ `̀̀n∩ M : U and U ⊆ V then there exist m and ∆ such that m ≤ n, Γ ⊆ ∆ and

∆ `̀̀m∩ M :V .

CSL’11
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2.4 Strong normalisation of λ∩

This is where non-idempotent intersections provide a real advantage over idempotent ones,
as every β-reduction strictly reduces the number of application rules in the typing trees. The
proofs, easily adapted from those in [6], can be found in [7].

I Lemma 11 (Typing substitutions). If Γ, x :U `̀̀n∩ M :A and ∆ `̀̀m∩ N :U then there exists
Γ′ such that Γ′ ≈ Γ ∩∆ and Γ′ `̀̀n+m

∩
{
N�x
}
M :A.

I Theorem 12 (Subject Reduction). If Γ `̀̀n∩ M :A and M −→β M ′ then there exist m and
∆ such that m < n, Γ ⊆ ∆ and ∆ `̀̀m∩ M ′ :A.

I Theorem 13 (Strong Normalisation). If Γ `̀̀∩ M :A then M ∈ SN.

The converse is also true (strongly normalising terms can be typed in λ∩), see Theorem 39
and more generally Appendix A (with Subject Expansion, etc. ).

3 Building an I-filter model for a source system

In this section we show how to use non-idempotent intersection types to simplify the
methodology of [10], which we briefly review here:

The goal is to produce modular proofs of strong normalisation for various source typing
systems. The problem is reduced to the strong normalisation of a unique target system of
intersection types, chosen once and for all. This is done by interpreting each λ-term t as the
set JtK of the intersection types that can be assigned to t in the target system. Two facts
then remain to be proved:
1. if t can be typed in the source system, then JtK is not empty
2. the target system is strongly normalising
The first point is the only part that is specific to the source typing system: it amounts to
turning the interpretation of terms into a filter model of the source typing system. The
second point depends on the chosen target system: as [10] uses a system of idempotent
intersection types (extending the simply-typed λ-calculus), their proof involves the usual
reducibility technique [18, 30]. But this is somewhat redundant with point 1 which uses
similar techniques to prove the correctness of the filter model with respect to the source
system.1

In this paper we propose to use non-idempotent intersection types for the target system,
so that point 2 can be proved with simpler techniques than in [10] while point 1 is not
impacted by the move. In practice we propose λ∩ as the target system (that of [6] would
work just as well).2 We now show the details of this alternative.

3.1 I-filters of non-idempotent intersection types
The following filter constructions only involve the syntax of types and are independent from
the chosen target system.

I Definition 14 (I-filter).
An I-filter is a set v of A-types such that:

1 If reducibility techniques are needed for the latter, why not use them on the source system directly
(besides formulating a modular methodology)?

2 Correspondingly, there is no simple way to embed the simply-typed λ-calculus into λ∩, other than
considering it as the source system of the present methodology.
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for all A and B in v we have A ∩B ∈ v
for all A and B, if A ∈ v and A ⊆ B then B ∈ v

In particular the empty set and the sets of all A-types are I-filters and we write them ⊥
and > respectively.
Let D be the set of all non-empty I-filters; we call such I-filters values.
Let E be the set of all I-filters (E = D ∪ {⊥}).

While our intersection types differ from those in [10] (in that idempotency is dropped),
the stability of a filter under type intersections makes it validate idempotency (it contains A
if and only if it contains A ∩A, etc). This makes our filters very similar to those in [10], so
we can plug-in the rest of the methodology with minimal change.
I Remark (Basic properties of I-filters).
1. If (vi)i∈I is an non empty family of E then

⋂
i∈I vi ∈ E .

2. If v is a set of A-types then there is a smallest v′ ∈ E such that v ⊆ v′ and we write
< v >:= v′.

3. If v is a set of F -types then < v > is the closure of v under finite intersections.
4. If v ∈ E then v =< {F | F ∈ v} >.
5. If u and v are sets of F -types such that < u >=< v > then u = v.
Hence, in order to prove that two I-filters are equal we just have to prove that they contain
the same F -types.

I-filters form an applicative structure:

I Definition 15 (Application of I-filters). If u, v are in E then define

u@v := < {F | ∃A ∈ v, (A→ F ) ∈ u} >

I Remark. For all u ∈ E , u@⊥ = ⊥@u = ⊥, and for all u ∈ D, >@u = >.

I Definition 16 (Environments and contexts). An environment is a map from term variables
x, y, . . . to I-filters. If ρ is an environment and Γ is a context, we say that Γ ∈ ρ, or Γ is
compatible with ρ, if for all x, Γ(x) = ω or Γ(x) ∈ ρ(x).

I Remark (Environments are I-filters of contexts). 3 Let ρ be an environment.
1. If Γ ∈ ρ and Γ′ ∈ ρ then Γ ∩ Γ′ ∈ ρ.
2. If Γ ∈ ρ and Γ′ is a context such that Γ ⊆ Γ′ then Γ′ ∈ ρ.

3.2 Interpretation of terms
The remaining ingredients now involve the target system; we treat here λ∩.

I Definition 17 (Interpretation of terms). If M is a term and ρ is an environment we define

JMKρ := {A | ∃Γ ∈ ρ,Γ `̀̀∩ M :A}

I Remark. JMKρ ∈ E , and therefore JMKρ =< {F | ∃Γ ∈ ρ,Γ `̀̀∩ M :F} >.

I Theorem 18 (Inductive characterisation of the interpretation).
1. JxKρ = ρ(x)
2. JMNKρ = JMKρ@JNKρ

3 Conversely, if E is an I-filter of contexts then ρ, defined by ρ(x) = {Γ(x) 6= ω | Γ ∈ E} for all x, is an
environment.
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3. Jλx.MKρ@u = JMKρ,x 7→u for any value u

This theorem (proved in [7]) makes λ∩ a suitable alternative as a target system: the filter
models of the source systems treated in [10] can be done with a system of non-idempotent
intersection types. While we could develop those constructions, we prefer to cover a new
range of source systems: those with second-order quantifiers such as System F , as this will
shed a new light on polymorphism.

3.3 Concrete examples for the source system
I Definition 19 (Types and Typing System). Types are built as follows:

A,B, . . . ::= α | A→B | A ∩B | ∀αA

where α denotes a type variable, ∀αA binds α in A, types are considered modulo α-conversion,
and ftv(A) denotes the free (type) variables of A.

Typing contexts, denoted G, H, . . . are partial maps from term variables to types, (x :A)
denotes the map from x to A, and . G,H denotes the union of G and H (as graphs). Fig. 2
shows a collection of well-known typing rules to type pure λ-terms.

G, x :A `̀̀ x :A

G, x :A `̀̀ M :B
G `̀̀ λx.M :A→B

G `̀̀ M :A→B G `̀̀ N :A
G `̀̀ M N :B

G `̀̀ M :A G `̀̀ M :B
G `̀̀ M :A ∩B

G `̀̀ M :A ∩B

G `̀̀ M :A
G `̀̀ M :A ∩B

G `̀̀ M :B

G `̀̀ M :A
α /∈ ftv(G)

G `̀̀ M :∀αA

G `̀̀ M :∀αA
G `̀̀ M :

{
B�α
}
A

Figure 2 Miscellaneous Typing Rules

Let S be the typing system consisting of an arbitrary subset of the rules. Typability in
system S will be expressed by judgements of the form G `̀̀S M :A.

We now build the modelMi
F , starting with a notion of realisability candidate:

I Definition 20 (Realisability Predicate). A realisability predicate is a subsetX of D containing
>. We define TP(D) as the set of realisability predicates.

I Lemma 21 (Shape of realisability predicates).
1. If (Xi)i∈I an non empty family of TP(D) then

⋂
i∈I Xi ∈ TP(D).

2. If X and Y in TP(D) then X → Y ∈ TP(D) where X → Y is defined as

X → Y := {u | ∀v ∈ X,u@v ∈ Y }

Proof. The only subtle point is the second one: First, for all v ∈ X, v 6= ⊥ and thus
>@v = > ∈ Y . So > ∈ X → Y . Second, suppose that ⊥ ∈ X → Y . As X 6= ∅, there is
u ∈ X, for which ⊥@u = ⊥ ∈ Y , which contradicts Y ∈ TP(D). J

The modelMi
F consists of the interpretations of terms (Definition 17) and types:
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I Definition 22 (Interpretation of types).
Valuations are mappings from type variables to elements of TP(D).

Given such a valuation σ, the interpretation of types is defined as follows:

JαKσ := σ(α)
JA→BKσ := JAKσ→JBKσ

JA ∩BKσ := JAKσ ∩ JBKσ
J∀αAKσ :=

⋂
X∈TP(D) JAKσ,α 7→X

The interpretation of typing contexts is defined as follows:

JGKσ := {ρ | ∀(x :A) ∈ G, ρ(x) ∈ JAKσ}

Finally we get Adequacy, by a simple induction on derivations, using Theorem 18:

I Lemma 23 (Adequacy Lemma). If G `̀̀S M : A, then for all valuations σ and for all
mappings ρ ∈ JGKσ we have JMKρ ∈ JAKσ.

I Corollary 24 (Strong normalisation of S). If G `̀̀S M :A then M ∈ SN.

Proof. Applying the previous lemma with σ mapping every type variable to {>} and ρ

mapping all term variable to >, we get JMKρ ∈ JAKσ, so JMKρ 6= ⊥. Hence, M can be typed
in λ∩, so M ∈ SN. J

The advantage of non-idempotent intersection types (over idempotent ones) lies in the very
last step of the above proof: here the typing trees of λ∩ get smaller with every β-reduction
(proof of Theorem 13), while a reducibility technique as in [10] combines yet again an induction
on types with an induction on typing trees similar to that in the Adequacy Lemma.

4 Orthogonality models of typed λ-calculi

In this section we show how the above methodology can be integrated to the theory of
orthogonality, i.e. how this kind of filter model construction can be captured by orthogonality
techniques [19, 11, 21, 26]. These techniques are particularly suitable to prove that typed terms
satisfy some property [28, 25, 24], the most well-known of which being Strong Normalisation.

For this we define an abstract notion of orthogonality model for a system S built from the
rules of Fig. 2. Our definition thus applies to the simply-typed λ-calculus, the idempotent
intersection type system, System F , etc but we could also adapt it with no difficulty to
accommodate System Fω.

Orthogonality techniques and the filter model construction from Section 3 (with the sets
D and E) inspire the notion of orthogonality model below. First we need notations:

I Notation. Given a set D, let D∗ be the set of lists of elements of D, with [] representing
the empty list and u ::−→v representing the list of head u and tail −→v .

I Definition 25 (Orthogonality model).
An orthogonality model is a 4-tuple (E ,D, ⊥⊥ , J_K_) where
E is a set, called the support
D ⊆ E is a set of elements called values
⊥⊥ ⊆ D ×D∗ is called the orthogonality relation

J_K_ is a function mapping every λ-term M (typed or untyped) to an element JMKρ of
the support, where ρ is a parameter called environment mapping term variables to values.
the following axioms are satisfied:

(A1) For all ρ, −→v , x, if ρ(x) ⊥⊥ −→v then JxKρ ⊥⊥
−→v .
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(A2) For all ρ, −→v , M1, M2, if JM1Kρ ⊥⊥ (JM2Kρ ::−→v ) then JM1 M2Kρ ⊥⊥
−→v .

(A3) For all ρ, −→v , x, M and for all values u, if JMKρ,x7→u ⊥⊥
−→v then Jλx.MKρ ⊥⊥ (u ::−→v ).

In fact, D and ⊥⊥ are already sufficient to interpret any type A as a set JAK of values
(see Definition 28 below): if types are seen as logical formulae, we can see this construction
as a way of building some of their realisability / set-theoretical models.

There is no notion of computation pertaining to values, but the interplay between the
interpretation of terms and the orthogonality relation is imposed by the axioms so that the
Adequacy Lemma (which relates typing to semantics) holds:

If `̀̀ M :A then JMK ∈ JAK

4.1 Interpretation of types and Adequacy Lemma
I Definition 26 (Orthogonal).

If X ⊆ D then let X⊥ := {−→v ∈ D∗ | ∀u ∈ X,u ⊥⊥ −→v }
If Y ⊆ D∗ then let Y ⊥ := {u ∈ D | ∀−→v ∈ Y, u ⊥⊥ −→v }

I Remark. If X ⊆ D or X ⊆ D∗ then X ⊆ X⊥⊥ and X⊥⊥⊥ = X⊥.

I Definition 27 (Lists and Cons construct). If X ⊆ D and Y ⊆ D∗, then define

X ::Y := {u ::−→v | u ∈ X,−→v ∈ Y }

I Definition 28 (Interpretation of types).
Mappings from type variables to subsets of D∗ are called valuations.

Given such a valuation σ, the interpretation of types is defined as follows:

[α]σ := σ(α)
[A→B]σ := JAKσ :: [B]σ

[A ∩B]σ := [A]σ ∪ [B]σ
[∀αA]σ :=

⋃
Y⊆D∗ [A]σ,α 7→Y

JAKσ := [A]⊥σ

The interpretation of typing contexts is defined as follows:

JGKσ := {ρ | ∀(x :A) ∈ G, ρ(x) ∈ JAKσ}

I Remark. Note that [
{
B�α
}
A]
σ

= [A]σ,α 7→[B]σ
and J

{
B�α
}
AK

σ
= JAKσ,α 7→[B]σ

.
Also note that JA ∩BKσ = JAKσ ∩ JBKσ and J∀αAKσ =

⋂
Y⊆D∗ JAKσ,α 7→Y .

An orthogonality model is a sufficiently rich structure for Adequacy to hold:

I Lemma 29 (Adequacy Lemma). If G `̀̀S M : A, then for all valuations σ and for all
mappings ρ ∈ JGKσ we have JMKρ ∈ JAKσ.

Proof. By induction on G `̀̀S M :A, using axioms (A1), (A2) and (A3). See [7]. J

4.2 The special case of applicative structures
In the next section we present instances of orthogonality models. They will have in common
that E is an applicative structure, as we have seen with I-filters. This motivates the following
notion:

I Definition 30 (Applicative orthogonality model).
An applicative orthogonality model is a 4-tuple (E ,D,@, J_K_) where:



Alexis Bernadet and Stéphane Lengrand 61

E is a set, D is a subset of E , @ is a (total) function from E × E to E , and J_K_ is a
function (parameterised by an environment) from λ-terms to the support.
(E ,D, ⊥⊥ , J_K_) is an orthogonality model,
where the relation u ⊥⊥ −→v is defined as (u@−→v ) ∈ D
(writing u@−→v for (. . . (u@v1)@ . . .@vn) if −→v = v1 :: . . . vn :: []).

I Remark. Axioms (A1) and (A2) are ensured provided that JM NKρ = JMKρ@JNKρ and
JxKρ = ρ(x). These conditions can hold by definition (as in term models, cf. the next Section),
or can be proved (as in Theorem 18, which also proves (A3)).

5 Three instances of orthogonality models

We now give three instances of (applicative) orthogonality models with well-chosen sets of
values, applications, and interpretations of terms, so that, from JMK ∈ JAK, we can eventually
derive the strong normalisation of the λ-term M .

I Definition 31 (Interpretation of terms in a
term model).

JxKterm
ρ := ρ(x)

JM1 M2K
term
ρ := JM1K

term
ρ JM2K

term
ρ

Jλx.MKterm
ρ := λx.JMKterm

ρ,x7→x

I Remark. J
{
N�x
}
MKterm

ρ
= JMKterm

ρ,x7→JNKterm
ρ

The first two instances are term models:
Terms are interpreted as themselves (see
Definition 31), so the support is the set of
all λ-terms seen as an applicative structure
(using term application: M1@termM2 :=
M1 M2).

In the first instance, values are strongly
normalising terms themselves; that instance
rephrases, with an orthogonality model,
standard proofs of strong normalisation by
orthogonality or reducibility candidates [28, 24]. In the second instance, values are the terms
that can be typed with intersection types, for instance in system λ∩.

The third instance is not a term model but a syntax-free model, where a term is interpreted
as the filter of the intersection types that it can be assigned (e.g. in λ∩, see Definition 17),
and orthogonality is defined in terms of filters being non-empty.

In the second and third instances, Strong Normalisation follows from the fact that terms
typable with intersection types are themselves strongly normalising (Theorem 13 for λ∩).

I Theorem 32. The structures
M⊥⊥SN = (Λ,SN,@term, J_Kterm

_ )
M⊥⊥∩ = (Λ,Λ∩,@term, J_Kterm

_ ) (where Λ∩ is the set of λ-terms typable in λ∩)
M⊥⊥F = (E ,D,@, J_K_) (with the four components as defined in Section 3)

are applicative orthogonality models.

Indeed, as mentioned in Section 4.2, the applicative structures M⊥⊥SN andM⊥⊥∩ already
satisfy axioms (A1) and (A2) because of Definition 31. The structureM⊥⊥F satisfies them, as
well as axiom (A3), as immediate consequences of Theorem 18. Axiom (A3) holds inM⊥⊥SN
andM⊥⊥∩ because of their respective expansion properties:

I Lemma 33 (Expansion).
1. If

{
P�x
}
M
−→
N ∈ SN and P ∈ SN then (λx.M) P −→N ∈ SN.

2. If
{
P�x
}
M
−→
N ∈ Λ∩ and P ∈ Λ∩ then (λx.M) P −→N ∈ Λ∩.

Admittedly, once λ∩ has been proved to characterise SN (Theorems 13 and 39), the two
points are identical and so are the two modelsM⊥⊥SN andM⊥⊥∩. But involving the bridge of
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this characterisation goes much beyond than needed for either point: point 1 is a known fact
of the literature; point 2 is a simple instance of Subject Expansion (Theorem 38, Appendix A)
not requiring Subject Reduction (Theorem 12) while both are involved at some point in
the more advanced property SN = Λ∩. In brief, as we are interested in comparing proof
techniques for the strong normalisation of System S, the question of which properties are
used and in which order matters.

I Remark. In both structuresM⊥⊥SN andM⊥⊥∩ we can check that:
For all −→N ∈ SN∗ and any term variable x, x ⊥⊥ −→N .
Hence, for all valuations σ and all types A, x ∈ JAKσ.
ForM⊥⊥F we have instead: For all list of values −→v , > ⊥⊥ −→v .
Hence, for all valuations σ and all types A, > ∈ JAKσ.

Now using the Adequacy Lemma (Lemma 29), we finally get:

I Corollary 34. If G `̀̀S M :A, then:
M⊥⊥SN For all valuations σ and all mappings ρ ∈ JGKσ we have JMKterm

ρ ∈ SN.
Hence, M ∈ SN.

M⊥⊥∩ For all valuations σ and all mappings ρ ∈ JGKσ
there exist Γ and A such that Γ `̀̀∩ JMKterm

ρ :A. Hence, M ∈ SN.
M⊥⊥F For all valuations σ and all mappings ρ ∈ JGKσ we have JMKρ 6= ⊥.

Hence, there exist Γ and A such that Γ `̀̀∩ M :A, and finally M ∈ SN.

Proof.
M⊥⊥SN The second statement is obtained by choosing σ to map every type variable to the empty

set, and ρ to map every term variable to itself.
M⊥⊥∩ The second statement is obtained by choosing σ to map every type variable to the empty

set, and ρ to map every term variable to itself; then we conclude using Theorem 13.
M⊥⊥F The first statement holds because ⊥ /∈ D and JAKσ ⊆ D. To prove the second, we need

to show that there exist such a σ and such a ρ; take σ to map every type variable to
the empty set and take ρ to map every term variable to >. The final result comes from
Theorem 13.

J

6 A new light on polymorphism

System λ∩ is a convenient call on the journey from typability in S to strong normalisation, as
it divides the path into two parts that are different in nature: first, proving that being typable
in some system implies being typable in another (a result on the transformation of typing
trees); second, proving that being typable in the latter system implies strong normalisation,
which is trivial in the case of λ∩ (for each reduction makes the typing tree smaller).

The first part of the journey is described by the Adequacy Lemma in the filter models
M⊥⊥F andMi

F , as well as in the term modelM⊥⊥∩: It shows that being typable in System S
implies being typable in System λ∩. This is interesting in itself when applied to System F ,
as it sheds an interesting light on polymorphism:

As mentioned in the introduction, terms that are typed in System F , i.e. with infinite
polymorphism, are strongly normalising (cf. modelM⊥⊥SN), and can therefore be typed with
intersection types (see e.g. Theorem 39), i.e. with finite polymorphism.

The cut or detour in the above proof can be eliminated, and this paper shows the resulting
proof as the construction of another orthogonality model: namely, the term-model M⊥⊥∩,
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where no mention is made of the strong normalisation property. The model construction
is purely about the transformation of typing trees and appears to disregard normalisation
properties. Yet it makes no explicit connection between the type of a λ-term in System F

and the type that it gets in λ∩ via this method. The filter modelsM⊥⊥F andMi
F address

this issue. Indeed, a System F type A (say a closed one) is interpreted as a collection JAK of
filters of intersection types; computing this can be done before inhabitants of types are even
considered. Each of the filters in the collection represents the exact set of intersection types
that a λ-term of type A (in System F ) could potentially get in λ∩.

I Example 35. For instance inMi
F ,

1. ∀αα is interpreted as J∀ααK =
⋂
X∈TP (D)X = {>}.

This means that a λ-term of type ∀αα can necessarily be given any intersection type (>
is the set of all intersection types).

2. (∀αα)→(∀ββ) is interpreted as

{>}→{>} = {u ∈ D | u@> = >} = {u ∈ D | ∀F,∃A,A→F ∈ u}

Such a filter u contains an arrow towards each F -type.
3. ∀αα→α is interpreted as {u ∈ D | ∀X ∈ TP (D),∀v ∈ X,u@v ∈ X}.

Such a filter u contains, for all F -types F , a type of the form (F ∩ . . . ∩ F )→F (take
v =< F > and X = {v,>}).

In brief, this interpretation of System F types transforms infinite polymorphism into
finite polymorphism, generating collections of potential instances. The Adequacy Lemma
then proves that those instances are sufficient to type the λ-terms.

In [32], a preorder with greatest lower bounds is identified in the syntax of System F types,
into which intersection types can therefore be embedded. The converse is studied by a form
of surjectivity of that embedding, but the example of `̀̀F λx.x . . . x : (∀αα)→(∀ββ) is used
to show that no intersection type exists that can type all the λ-terms of type (∀αα)→(∀ββ).
As we interpret System F types by collections of filters, different filters can be used for
different terms.

While further work should relate our filters to inverse forms of the aforementioned
embedding, the comparison with [32] also raises the question of whether or not the different
versions of the proof that typable in System S implies typable in System λ∩, avoid the
computation of the λ-terms down to their normal forms. This computation is of course present
in the proof with the cut (the construction of modelM⊥⊥SN combined with Theorem 39) and also
present in [32] (type-preservation is proved by an induction on longest β-reduction sequences).
One could argue that this computation is still present (yet hidden) in the construction of
modelM⊥⊥∩ as it relies on the Subject Expansion property for λ∩ (Theorem 38).4 It seems
it is not the case for M⊥⊥F and Mi

F : Indeed, while Adequacy does rely on the property
that JMKρ,x7→JNKρ

@−→v 6= ⊥ implies J(λx.M) NKρ@
−→v 6= ⊥, this property is not obtained by

computing
{
N�x
}
M but rather by analysing the typing trees of M and N separately.5 This

contrasts with the term modelsM⊥⊥SN andM⊥⊥∩, where
{
N�x
}
M is computed in the process

and can generate new redexes to be further analysed.
Of course one could argue that, the typing trees in λ∩ of a λ-term M being bigger than

the longest β-reduction sequence starting from M , producing one of them (be it with the

4 It probably uses it as many times as there are reduction steps from a term to its normal form.
5 The property JMKρ,x 7→JNKρ

= J
{
N�x
}
MK

ρ
holds, but not by definition.
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Adequacy Lemma) is at least as hard as computing the term to its normal form. YetM⊥⊥F and
Mi
F could well have been defined with a traditional idempotent intersection type system [9]

(in which typing trees are not correlated to the lengths of β-reduction sequences), adapting
directly [10] to System F .6

7 Conclusion

We have seen how the use of non-idempotent intersection types simplifies the methodology
from [10] by cutting a second use of reducibility techniques to prove strong normalisation.
We have seen how the corresponding filter model construction can be done by orthogonality
techniques, with an abstract notion of orthogonality model. As illustrated in Section 5,
this notion allows a lot of work (e.g. proving the Adequacy Lemma) to be factorised, while
building models likeM⊥⊥SN ,M⊥⊥∩ andM⊥⊥F . Note that, whileM⊥⊥F andMi

F share the same
ingredients E , D, @ and J_K_, they are different in the way types are interpreted; see the
discussion in [7].

We have also compared the models in the way they enlighten the transformation of infinite
polymorphism into finite polymorphism, although more examples should be computed to
illustrate and better understand the theoretical result. An objective could be to identify
(and eliminate), in the interpretation of a type from System F , those filters that are not the
interpretation of any term of that type. What could help this, is to force filters to be stable
under type instantiation, in the view that interpretations of terms are generated by a single
F -type, i.e. a principal type.

Proving Subject Expansion as generally as possible led us to identify a sub-reduction of
β which also helps understanding how and when the semantics J_K_ of terms is preserved,
see Appendix A. This is similar to [1], and future work should adapt their methodology to
accommodate our non-idempotent intersections.

Finally, as non-idempotent intersection types were used in [6] to measure the complexity of
strongly normalising term, we would like to see whether we can adapt our model constructions
to lift such results to the source typing systems. The hope would be to recover for instance
results that are known for the simply-typed calculus [29, 5], with a methodology that can be
adapted to other source systems such as System F .
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A Completeness and preservation of semantics

We obtain completeness by identifying a reduction strategy ↪−−→ (if a term can be β-reduced
then one of its sub-terms can be reduced by ↪−−→). Proofs can be found in [7].
I Definition 36 (↪−−→). We define the reduction M ↪−−→Ω M ′, where Ω is either a term
or ε (a dummy placeholder for which fv(ε) = ∅) as follows:

x ∈ fv(M)
(λx.M)N ↪−−→ε

{
N�x
}
M

x /∈ fv(M)
(λx.M)N ↪−−→N M

M1 ↪−−→Ω M ′1

M1M2 ↪−−→Ω M ′1M2

M2 ↪−−→Ω M ′2

M1M2 ↪−−→Ω M1M
′
2

M ↪−−→Ω M ′ x /∈ fv(Ω)
λx.M ↪−−→Ω λx.M ′

I Lemma 37 (Typing substitutions). If Γ `̀̀∩
{
N�x
}
M :A then there exists Γ1, Γ2 and U

such that Γ ≈ Γ1 ∩ Γ2, Γ1, x :U `̀̀∩ M :A and Γ2 `̀̀∩ N :U .
I Theorem 38 (Subject Expansion). Assume Γ′ `̀̀∩ M ′ :A and M ↪−−→Ω M ′.
Assume ∆ `̀̀∩ N :B if Ω = N , otherwise let ∆ = () when Ω = ε.
Then there exists Γ such that Γ ≈ Γ′ ∩∆ and Γ `̀̀∩ M :A.
Proof. First by induction on the derivation M ↪−−→Ω M ′, then by induction on A, using
Lemma 37 for the base case. J

I Theorem 39 (Completeness). If M ∈ SN there exist Γ and A such that Γ `̀̀∩ M :A.
I Corollary 40. If M ↪−−→Ω M ′ and M ′ ∈ SN and Ω ∈ SN ∪ {ε} then M ∈ SN.
Preservation of term interpretation under reduction can also be described in terms of ↪−−→:
I Theorem 41. 1. If M −→β M ′ then for all ρ, JMKρ ⊆ JM ′Kρ.
2. If M ↪−−→ε M

′ then JMKρ = JM ′Kρ.
3. If M ↪−−→N M ′ and JNKρ 6= ⊥, then JMKρ = JM ′Kρ.
4. If M ↪−−→N M ′ and JNKρ = ⊥, then JMKρ = ⊥.
But there are cases where M −→β M ′ and JMKρ 6= JM ′Kρ (even with JMKρ 6= ⊥).
Take M := (λz.(λy.a)(zz)) and M ′ := λz.a.
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Abstract
We prove that for the class of sets of words indexed by countable scattered linear orderings, there is
an equivalence between definability in first-order logic, star-free expressions with marked product,
and recognizability by finite aperiodic semigroups which satisfy the equation xωx−ω = xπ.
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1 Introduction

One of the fundamental results in formal language theory is the equivalence between automata
on finite words, rational expressions, recognizability by finite semigroups, and definability in
monadic second-order logic (see e.g. [26]). This has been specified by Schützenberger [25],
McNaughton and Papert [13], which show equivalence between counter-free automata, star-
free expressions, recognizability by finite aperiodic semigroups, and definability in first-order
logic.

These results have been extended to many classes of structures like infinite words [6, 14],
bi-infinite words [10, 15], transfinite words [7, 1], traces, trees, pictures...

In [5], Bruyère and Carton introduce automata and rational expressions for words indexed
by linear orderings. These notions unify naturally previously defined notions for finite words,
left- and right-infinite words, bi-infinite words, and ordinal words. The question to know
whether the above equivalence results hold in this setting has been addressed in several
papers since then. Up to now, most results hold when one restricts to sets of words indexed
by countable scattered orderings; recall that a linear ordering is scattered if it does not
contain any dense sub-ordering. For this class of sets, the paper [5] already proves that a
Kleene-like theorem holds. The works [23, 22] introduce a notion of �-semigroup and show
equivalence between recognizability by finite �-semigroups and rational expressions. Finally
[2] shows equivalence between rational expressions and monadic second-order logic.

Let us now consider the extension of Schützenberger-McNaughton-Papert results for sets
of words indexed by countable scattered orderings. Bedon and Rispal [3] prove equivalence
between star-free expressions and recognizability by finite aperiodic �-semigroups. From
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their work it is possible to obtain a characterization of star-free expressions in terms of FO
definability in structures where one can quantify over elements and cuts of the underlying
ordering. However it seems natural to consider the more classical logical framework (used
e.g. in [2]) where the domain of the structure consists only of elements of the ordering, and
ask for a characterization of FO-definable sets. For many classes of words (such as words
indexed by ω, Z, an ordinal, or R [20]), the equivalence between star-free expressions with
FO logic is a relatively simple generalization of McNaughton-Papert proof. Let us try to
explain why this is not the case here. A crucial point in the proof that star-free sets are
FO-definable is the possibility to define in FO the product L = L1 · L2 of two FO-definable
sets L1 and L2. Intuitively, this can be done by expressing (with a FO sentence) that w ∈ L
iff there exists some position x in w such that the prefix of w which corresponds to positions
before x belongs to L1, and the remaining suffix of w belongs to L2. The existence of x is
ensured by the fact that the underlying ordering is complete. We cannot use this idea when
considering any countable scattered ordering.

In this paper we characterize FO-definable sets in terms of rational expressions and
recognizability by semigroups. For rational expressions, we consider the class of star-free
marked sets, which is a variant of the class of star-free sets where one uses the marked
product instead of the classical product. The operation of marked product has already
been studied extensively, in particular in connection with the hierarchy of concatenation
[19, Sect 7.1]. For the algebraic side, this corresponds to the class of sets which can be
recognized by a �-semigroup which is finite and aperiodic, and satisfies the additional equation
xωx−ω = xπ. As an immediate corollary of this characterization, we prove that it is decidable
whether a rational set of words indexed by countable scattered orderings is star-free marked
or, equivalently, FO-definable. We obtain as a byproduct that marked products are less
expressive than usual products for linear ordering whereas they have the same expressive
power for finite words.

Let us mention partial results for the class of words indexed by any linear ordering. The
paper [4] introduces a new rational operation of shuffle of sets which allows to deal with dense
orderings, and extends the Kleene-like theorem proved in [5] to sets of words indexed by all
linear orderings. The work [2] shows that rational sets are definable in MSO logic, but not
the converse (for instance, it is shown that the class of scattered orderings is MSO-definable
but not rational). The decidability of FO can also be obtained with automata through linear
temporal logic which is equivalent on linear orderings [9].

The paper is organized as follows. Definitions and useful results concerning linear
orderings, rational sets, logic, and semigroups are recalled respectively in Sections 2, 3, 4
and 5. Section 6 states and gives a sketch of the proof of the main result.

2 Words on scattered linear orderings

2.1 Scattered linear orderings
This section recalls basic definitions on linear orderings but the reader is referred to [24] for
a complete introduction. Hausdorff’s characterization of countable scattered linear orderings
is given and words indexed by linear orderings are introduced.

A linear ordering (J,<) is a total ordering. A cut of a linear ordering J is a pair (K,L)
of intervals such that J = K ∪ L and such that for any k ∈ K and l ∈ L, k < l. The set of
all cuts of the ordering J is denoted by Ĵ . This set Ĵ can be linearly ordered by the relation
defined by c1 < c2 if and only if K1 ( K2 for any cuts c1 = (K1, L1) and c2 = (K2, L2). This
linear ordering can be extended to J ∪ Ĵ by setting j < c1 whenever j ∈ K1 for any j ∈ J .
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A gap of an ordering J is a cut (K,L) such that K 6= ∅, L 6= ∅, K has no last element
and L has no first element. An ordering J is complete if it has no gap. For example, the
linear ordering of the real numbers R is complete, whereas the linear ordering of the rational
numbers Q is not.

For any linear ordering J , we denote by −J the opposite linear ordering that is the set
J equipped with the opposite ordering. For instance, −ω is the linear ordering of negative
integers.

The sum J +K of two linear orderings is the set J ∪K equipped with the ordering <
extending the orderings of J and K by setting j < k for any j ∈ J and k ∈ K. Next, the sum∑
j∈J Kj is the set of all pairs (k, j) such that k ∈ Kj equipped with the ordering defined by

(k1, j1) < (k2, j2) if and only if j1 < j2 or (j1 = j2 and k1 < k2 in Kj1).
A linear ordering J is dense if for any j and k in J such that j < k, there exists an

element i of J such that j < i < k. It is scattered if it contains no dense sub-ordering. The
ordering ω of natural integers and the ordering ζ of relative integers are scattered. More
generally, ordinals are scattered orderings. We denote by N the subclass of finite linear
orderings, O the class of countable ordinals and S the class of countable scattered linear
orderings. The following characterization of scattered linear orderings is due to Hausdorff.

I Theorem 1. [Hausdorff [12]] A countable linear ordering J is scattered if and only if J
belongs to

⋃
α∈O

Vα where the classes Vα are inductively defined by:

1. V0 = {0,1}
2. Vα = {

∑
j∈J

Kj | J ∈ N ∪ {ω,−ω, ζ} and Kj ∈
⋃
β<α

Vβ}.

where 0 and 1 are respectively the orderings with zero and one element.

The rank r(J) of a countable scattered ordering J is defined as the least ordinal α such that
J ∈ Vα.

2.2 Words
Let A be a finite alphabet. A word w = (aj)j∈J indexed by a linear ordering J is a function
from J to A. J is called the length of w. For instance ω is the length of right-infinite words
a0a1 · · · and ζ is the length of bi-infinite words · · · a−1a0a1 · · · .

The sum of linear orderings helps to define the products of words. Let J be a linear
ordering and let (xj)j∈J be words of respective length Kj for any j ∈ J . The word
x =

∏
j∈J xj obtained by concatenation of the words xj with respect to the ordering on J is

of length L =
∑
j∈J Kj . For instance, if for any j ∈ ω, we set xj = aω

j , then x =
∏
j∈ω xj

is the word x = aω
ω of length

∑
j∈ω ω

j = ωω. The sequence (xj)j∈J of words is called a
J-factorization of the word x =

∏
j∈J xj .

We denote by A� the set of all words over A indexed by countable scattered linear
orderings. The rank r(w) of a word w ∈ A�, is, by definition the rank of its length J .

3 Rational sets of words on linear orderings

Bruyère and Carton have introduced rational expressions and automata for words indexed
by countable scattered linear orderings [5]. They have proved that a set of words is described
by a rational expression if and only if it is accepted by some finite automaton. Such a set is
called rational in this paper. This result is an extension of the classical Kleene theorem on
finite words. This section briefly recalls definitions of rational operations. In this paper, we
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will mainly use union and concatenation but the other operations are often useful to denote
sets of words.

Let A be a fixed finite alphabet. We consider the rational operations defined for any
subsets X and Y of A� by :

X + Y = {z | z ∈ X ∪ Y } X · Y = {x · y | x ∈ X, y ∈ Y },
X∗ = {

∏
j∈{1,...,n} xj | n ∈ N , xj ∈ X}, X� = {

∏
j∈J xj | J ∈ S, xj ∈ X},

Xω = {
∏
j∈ω xj | xj ∈ X}, X−ω = {

∏
j∈−ω xj | xj ∈ X},

X] = {
∏
j∈α xj | α ∈ O, xj ∈ X}, X−] = {

∏
j∈−α xj | α ∈ O, xj ∈ X}.

As usual, the dot denoting concatenation is omitted in rational expressions. A marked
product of X and Y is a product of the form XaY for some letter a ∈ A.

The operator � that we have defined above is actually a special case of a more general
binary operator defined in [5]. This binary operator is really needed to capture all rational
sets but it is not used in this paper.

Let us define the main classes of sets that we use in this paper.
The class Rat(A�) of all rational sets over A indexed by countable scattered linear
orderings is the smallest set containing {a} for any a ∈ A, the empty set, and closed under
all rational operations. It is proved in [23] that this class is closed under complementation
and thus under all boolean operations.
The set SF(A�) of star-free sets over A indexed by countable scattered linear orderings is
the smallest set containing {a} for any a ∈ A, the empty set, and closed under product
and all boolean operations.
The set SFM(A�) of star-free marked sets over A indexed by countable scattered linear
orderings is the smallest set containing {a} for any a ∈ A, the empty set, and closed
under marked product and all boolean operations.

It is interesting to note that, for finite words, the corresponding classes SF(A∗) and
SFM(A∗) coincide. Any product KL is indeed equal to a finite union Kε(L) +

∑
a∈AKaLa

where La = a−1L. They do not coincide in our case as it is shown by Example 4. Let us
illustrate these definitions by some examples.

I Example 2. Consider the set X1 ⊆ A� of words w over A = {a, b} such that every position
in w (apart from the last position, if any) admits a next position, and every position (apart
from the first position, if any) admits a previous position. We have

X1 = A� \ [(A�AA�)ωAA� +A�A(A�AA�)−ω].

Moreover (A�AA�)ω = A�AA� \A�A and (A�AA�)−ω = A�AA� \AA�, thus X1 is a star-free
marked set.

I Example 3. Consider the set X2 = (a�aa�)ω(b�bb�)−ω of words w over A = {a, b} which
can be written as w = w1w2 where w1 is non-empty, contains only a and has no last a and
w2 is non-empty, contains only b and has no first b. There is then a gap between w1 and w2.
A star-free marked expression for X2 is

A�aA�bA� \ (A�bA�aA� ∪ a�ab� ∪ a�bb�).

Observe that a� = A� \A�bA� and b� = A� \A�aA�.
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The following example gives a set X3 which seems very close to the set X2 of the previous
example. This set will be star-free but our characterization of SFM(A�) will allow us to
prove that X3 is not a star-free marked set (see Example 17).

I Example 4. Consider the set X3 = (A�AA�)ω(A�AA�)−ω of words w over A = {a, b}
such that the underlying ordering of w contains at least one gap. We have X3 ∈ SF (A�).

4 Logic

Let us recall useful elements of logic, and settle some notations. For more details we refer
e.g. to Thomas’ survey paper [26].

We consider first-order (shortly: FO) logic over relational signatures. As usual, we will
often identify logical symbols with their interpretation. We call FO sentence every FO
formula without free variable.

For every finite alphabet A = {a1, . . . , an} we consider the relational signature LA = {<
,Pa1 , . . . , Pan

} where < denotes a binary predicate symbol and every Pai
denotes a unary

predicate symbol. One can associate to every word w = (aj)j∈J over A (where aj ∈ A for
every j) the LA-structure Mw = (J ;<, (Pa)a∈A) where < is interpreted as the ordering over
J , and Pa(x) holds if and only if ax = a. In order to take into account the case w = ε, which
leads to the structure Mε which has an empty domain, we will allow structures to be empty.

Given an FO sentence ϕ over the signature LA, we define the set Lϕ as the set of words
w ∈ A� such that Mw |= ϕ. This definition extends to the case of FO formulas with free
variables. For every word w = (aj)j∈J over A and every n-tuple b1, . . . , bn of elements of J ,
we define w(b1, . . . , bn) as the word w′ = (a′j)j∈J over the alphabet {0, 1}n × A such that
for every j ∈ J , the last component of a′j equals aj , and for every i ∈ {1, . . . , n}, the i-th
component of a′j equals 1 if and only if j = bi. Now, given a FO formula ϕ(x1, . . . , xn) with
free variables x1, . . . , xn, we define Lϕ as the class of words of the form w(b1, . . . , bn) over
the alphabet {0, 1}n ×A such that Mw |= ϕ(b1, . . . , bn).

We will say that a set X ⊆ A� is FO-definable if there exists an FO-formula ϕ over the
signature LA such that X = Lϕ.

I Example 5. The set X1 of Example 2 is FO definable. We first define the auxiliary
predicate suc(x, y) as x < y ∧ ¬∃z(x < z ∧ z < y). Then X1 is definable by the formula

∀x[(∃y x < y −→ ∃y suc(x, y)) ∧ (∃y y < x −→ ∃y suc(y, x))].

I Example 6. The set X2 of Example 3 can be defined by the FO-formula

∃x Pa(x) ∧ ∃y Pb(y) ∧ ¬∃x∃y(x < y ∧ Pb(x) ∧ Pa(y)) (1)
∧∀x(Pa(x)→ ∃y(y > x ∧ Pa(y))) (2)
∧∀y(Pb(y)→ ∃x(x < y ∧ Pb(x))) (3)

The sub-formula (1) expresses that the word contains some a and some b, and that no a
occurs after some b. The sub-formula (2) (resp. (3)) ensures that there is no last a (resp. no
first b).

5 Algebraic characterization of rational sets

The algebraic objets that we use to characterize FO over countable scattered linear orderings
are semigroups enriched with operations that make them suitable for linear orderings. We
start with the definition of a semigroup.
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A semigroup is a set S equipped with an associative binary product. Since the product is
associative, the product s1 · · · sn of n elements s1, . . . , sn is well-defined. The semigroup S1

is S if S has already a neutral element and it is the semigroup obtained by adding a neutral
element otherwise. An idempotent e of a semigroup is an element such that e2 = e.

5.1 �-semigroups
The product of semigroups is generalized to recognize sets of words indexed by countable
scattered linear orderings. A �-semigroup is a generalization of a usual semigroup. The
product of a sequence indexed by any scattered ordering is defined. For any set S, recall
that S� denotes the set of words over S indexed by any countable scattered linear ordering.

I Definition 7. A �-semigroup is a set S equipped with product π : S� → S which maps
any word of S� to an element of S such that

for any element s of S, π(s) = s;
for any word x of S� and for any factorization x =

∏
j∈J xj where J ∈ S,

π(x) = π(
∏
j∈J

π(xj)).

The latter condition is a generalization of associativity. It states that for any factorization
x =

∏
j∈J xj of some word x ∈ S�, the product of x can be obtained by first computing the

product π(xj) of each word xj to get a word y =
∏
j∈J π(xj) of length J and then computing

the product π(y) of that word y.
Note that a �-semigroup (S, π) is already a semigroup. For any two elements s and t

of S, the finite product π(st) (more precisely, the product of the sequence st of length 2)
is defined. It is merely denoted by st. The generalization of associativity ensures that
r(st) = π(rπ(st)) = π(rst) = π(π(rs)t) = (rs)t for any r, s, t ∈ S.

The set A� equipped with the concatenation is a �-semigroup. All �-semigroups considered
in this paper are either of the form A� for some alphabet A or they are finite. The following
example is a �-semigroup where the underlying set S is finite (these �-semigroups will be
studied in Section 5.2).

I Example 8. The set S = {0, 1} equipped with the product π defined for any u ∈ S�

by π(u) = 0 if u has at least one occurrence of the letter 0, and π(u) = 1 otherwise, is a
�-semigroup.

A sub-�-semigroup T of a �-semigroup S is a subset of S closed under product. Amorphism
of �-semigroup is an application which preserves the product. A function ϕ : S → T is a
morphism from (S, πS) to (T, πT ) if for any word x = (sj)j∈J , one has πT (ϕ(x)) = ϕ(πS(x))
where ϕ(x) = (ϕ(sj))j∈J . A �-semigroup T is a quotient of a �-semigroup S if there exists
an onto morphism from S to T . A �-semigroup T divides S if T is the quotient of a
sub-�-semigroup of S.

5.2 Finite �-semigroups
A �-semigroup (S, π), of course, is said to be finite if S is finite. Even when S is finite, the
function π is not easy to describe because the product of any sequence has to be given. It
turns out that the function π can be described using a semigroup structure on S with two
additional functions from S to S. This gives a finite description of the product π.

It has already been noted that a �-semigroup (S, π) has already a structure of semigroup
since π is defined on words of length 2. Let us define two functions τ : S → S and −τ : S → S.
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The images of these functions are denoted using exponentiation : τ : s 7→ sτ and −τ : s 7→ s−τ .
For any s ∈ S, sτ and s−τ are respectively equal to π(sω) and π(s−ω) where sω = sss · · ·
and s−ω = · · · sss are the two words of length ω and −ω in which s occurs at all positions.

The functions τ and −τ satisfy the following equations. For any s, t ∈ S and for any
integer n, one has s(ts)τ = (st)τ , (sn)τ = sτ , (st)−τs = (ts)−τ and (sn)−τ = s−τ . Equations
for τ follow from the equality between the ω-words (sn)ω and sω and from the equality
between the ω-words (st)ω and s(ts)ω. Equations for −τ follow from similar relations for
words of lengths −ω. Functions satisfying these equations are respectively called compatible
to the right and compatible to the left with S.

Note that these two functions τ and −τ can be defined even when the �-semigroup is
not finite. When the �-semigroup (S, π) is finite, the semigroup structure of S and the
two functions τ and −τ completely describe its product π. This is stated in the following
theorem.

I Theorem 9 ([23, 22]). Let S be a finite semigroup and let τ and −τ be functions respectively
compatible to the right and to the left with S. Then S can be uniquely endowed with a structure
of �-semigroup (S, π) such that sτ = π(sω) and s−τ = π(s−ω).

The previous theorem means that a finite �-semigroup has a finite description. It suffices
to give a semigroup product and two compatible functions to fully characterize the product.

We briefly explain how the product π can be recovered from the semigroup structure and
the compatible functions. The construction of π is based on the next Lemma which follows
directly from Ramsey’s Theorem [21].

Let S be a semigroup. We denote by ϕ the natural morphism from S∗ to S which maps
any finite sequence of elements to their product. Let x = (sj)j∈ω be an ω-word over S. A
ω-factorization of x is ω-sequence (xj)j∈ω of finite words such that x =

∏
j∈ω xj . A right

linked pair of a semigroup S is a pair (s, e) such that se = s and e2 = e.

I Lemma 10. For any ω-word x over a semigroup S, there is an ω-factorization x =
∏
j∈ω xj

and a right linked pair (s, e) such that ϕ(x0) = s and ϕ(xj) = e for any j ≥ 1.

Such a factorization is called a ramseyan factorization, see Theorem 3.2 in [17]. If
x =

∏
j∈ω xj is a ramseyan factorization of x, then π(x) must be equal to seτ since π satisfies

a generalized associativity. The product π is then defined on all words in S� by induction on
their rank. A word of rank α is, indeed, either a finite, or an ω , or a −ω-product of words
of ranks smaller than α.

Note that a given ω-word over S may have several ramseyan factorizations related to
different right linked pairs (s1, e1) and (s2, e2). It turns out that these linked pairs are then
conjugated. There exist elements x, y ∈ S1 such that s1x = s2, e1 = xy and e2 = yx. Since
the function τ is compatible, one has s1e

τ
1 = s1(xy)τ = s1x(yx)τ = s2e

τ
2 .

The functions τ and −τ are usually denoted ω and −ω. This may cause a small confusion
since sω is either an ω-word over S or its product in S but it is always clear from the context
which one is meant.

I Example 11. Consider again the �-semigroup S = {0, 1} of Example 8. Its semigroup
structure is {0, 1} with the usual multiplication (11 = 1 and 00 = 01 = 10 = 0). The
compatible functions ω and −ω are defined by 0ω = 0−ω = 0 and 1ω = 1−ω = 1.

I Example 12. The set S = {0, 1} equipped with the product π defined for any u ∈ S� by
π(u) = 1 if only 1 occurs in u and if the length of u is an ordinal and π(u) = 0 otherwise, is
a �-semigroup. Its semigroup structure is again {0, 1} with the usual multiplication but the
compatible functions ω and −ω defined by 0ω = 0−ω = 1−ω = 0 and 1ω = 1.
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Since any element s of a finite semigroup has a power sn which is an idempotent and
since (sn)ω = sω, it suffices to give the values of eω when e is an idempotent to completely
describe the function ω. The same applies to the function −ω.

5.3 Recognizability
It is well known that rational sets of finite words are exactly those recognized by finite
semigroups (see e.g. [18]). This result can be generalized for words indexed by countable
scattered linear orderings.

Let S and T be two �-semigroups. The �-semigroup T recognizes a subset X of S if and
only if there exists a morphism ϕ : S → T and a subset P ⊆ T such that X = ϕ−1(P ).

The following theorem states that finite �-semigroups are equivalent to rational expressions
and automata for words indexed by countable scattered orderings.

I Theorem 13 ([23]). A set X ⊆ A� is rational if and only if it is recognized by a finite
�-semigroup.

It is also proved in [23] that any rational set X of words over countable scattered linear
orderings has a syntactic �-semigroup. This is a smallest �-semigroup recognizing X in a
strong way. Not only it is the smallest in cardinality but it also divides any other �-semigroup
recognizing X. As in the case of finite words, this syntactic �-semigroup can be obtained by
quotienting any �-semigroup recognizing X by the relation that identifies elements which
cannot be distinguished by contexts (intuitively, contexts are terms which involve ω and
−ω−products, and with a hole in it).

The following example shows how the �-semigroup introduced in Example 12 can be used
to recognize the set of words of ordinal length.

I Example 14. Consider the �-semigroup S defined in Example 12 and the morphism
ϕ : A� → S defined by ϕ(a) = 1 for any a ∈ A. The set of words with countable ordinal
length is recognizable since it is equal to ϕ−1({1}). It will be shown after Theorem 21 that
this set is not FO-definable. This is a variant of Tarski’s result (see [24, Theorem 13.13])
that the class of well-orderings is not elementary.

We give below some examples of morphisms from A� into finite �-semigroups that
recognize subsets of A� that have been already encountered in Examples 2, 3 and 4. It can be
checked that, in each example, the given �-semigroup is actually the syntactic �-semigroup
of the set it recognizes. For each �-semigroup, we give the D-classes structure.

∗
e t

s
∗

f

∗ 0

Figure 1 D-classes structure of �-semigroup of Example 15

I Example 15. The set X1 of Example 2 is recognized by the �-semigroup S1 = {0, e, t, s, f}
whose product is defined by ts = e2 = e, et = tf = t, se = fs = s, st = f2 = f , eω = t,
e−ω = s, fω = f−ω = f and any other product is equal to 0. Define the morphism
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ϕ1 : A� → S1 by ϕ1(a) = ϕ1(b) = e. Observe that ϕ−1
1 (e) is the set of words which have a

first and a last element, and ϕ−1
1 (f) is the set of words which have neither a first nor a last

element. We have X1 = ϕ−1
1 (S1 \ {0}).

∗
e
∗

f

∗
g

∗
h

s

∗ 0

Figure 2 D-classes structure of �-semigroup of Example 16

I Example 16. The setX2 of Example 3 is recognized by the �-semigroup S2 = {0, e, f, g, h, s}
whose product is defined by e2 = fe = e−ω = e, f2 = ef = eω = fω = f−ω = f ,
g2 = gh = gω = g, h2 = hg = hω = g−ω = h−ω = h, fh = es = fs = sg = sh = s, and any
other product is equal to 0. Define the morphism ϕ2 : A� → S2 by ϕ2(a) = e and ϕ2(b) = g.
We have X2 = ϕ−1

2 (s). It will be seen after Theorem 21 that X2 is FO-definable.

∗
e
∗

f

∗
g s

∗ 0

Figure 3 D-classes structure of �-semigroup of Example 17

I Example 17. The set X3 of Example 4 is recognized by the �-semigroup S3 = {0, e, f, g, s}
whose product is defined by e2 = fe = eg = e, f2 = ef = es = eω = fω = f , g2 = ge =
se = e−ω = g−ω = g, gs = sf = gf = gω = f−ω = s and any other product is equal to
0. Define the morphism ϕ3 : A� → S3 by ϕ3(a) = ϕ3(b) = e. We have X3 = ϕ−1

3 (0). Our
characterization of FO-definability (Theorem 21) will imply that X3 is not FO-definable.

5.4 Equivalence between rational sets, �-semigroups, and logic
The equivalence between rational expressions, �-semigroups and logic was proved in [23, 22, 2].
The logical side involves Monadic Second-Order (shortly: MSO) logic. Recall that MSO logic
is an extension of first-order logic that allows to quantify over elements as well as subsets of
the domain of the structure. The notion of MSO-definable set extends in a natural way the
one of FO-definable set. For more details about MSO logic we refer e.g. to [11, 26].

The following theorem is an extension of the classical theorem of Büchi [6] which states
that, for finite words, MSO exactly defines rational sets of words.

I Theorem 18 ([23, 22, 2]). Let A be a finite alphabet, and let X ⊆ A� be a set of words
indexed by countable scattered linear orderings. Then the following properties are equivalent:
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1. X is rational;
2. X is recognizable by a finite �-semigroup;
3. X is MSO-definable.

Bedon and Rispal [3] extended Schützenberger’ theorem [25] to the class of sets of words
indexed by countable scattered linear orderings. In order to state their result, we recall the
definitions of an aperiodic semigroup and of an aperiodic �-semigroup.
I Proposition 19. ([17, Annex A,Prop. 2.9]) Let S be a finite semigroup. The following
conditions are equivalent.
1. There exists an integer n such that sn+1 = sn for any s ∈ S;
2. every group in S is trivial;
3. Each H-class is trivial.
A semigroup S satisfying these conditions is called aperiodic.

Note that if sn+1 = sn, then sm+1 = sm for any m ≥ n. If a finite semigroup S is
aperiodic, then sn+1 = sn for any s ∈ S and for any large enough integer n. Such an
integer is traditionally denoted by ω in semigroup theory but we will denote it π. This
symbol π is also used for the product of the �-semigroup but this will not lead to ambiguous
interpretations in the sequel. A �-semigroup S is said to be aperiodic whenever its semigroup
structure is an aperiodic semigroup. This definition allows us to state the characterization of
star-free sets due to Bedon and Rispal.

I Theorem 20 ([3]). Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed
by countable scattered linear orderings. Then the following properties are equivalent:
1. X is star-free;
2. X is recognizable by a �-semigroup which is finite and aperiodic;
3. X can be defined by FO over the cuts.

In the previous theorem, “defined by FO over the cuts” means that X is defined by a
first order formula with quantification over positions of the words, (that is, elements of its
length) but also over cuts of its length. This is not, strictly speaking, FO since the cuts are
not part of the structureMw of a word w. The last statement is not given in [3] but the
equivalence between star-freeness and FO over the cuts is not difficult. In this paper, we
give the equivalence between marked star-freeness and FO (without the cuts). The proof
carries easily over star-freeness and the cuts.

For sets of finite words, McNaughton-Papert theorem [13] states that star-free sets coincide
with FO-definable sets. For sets of words indexed by countable scattered linear orderings,
one can prove that FO-definable sets are star-free (see Proposition 23), but the converse
does not hold anymore. For instance, it is easy to check that the set X = {aω} is star-free,
but it can be shown that X is not FO-definable (this comes from the fact that the ordering
ω is undistinguishable from any ordering of the form ω + ζ × α in FO logic, see e.g. [24,
Proposition 6.12]). In the next section we provide a characterization of FO-definable sets.

6 Main result

We finally come to the main result of the paper, characterization of FO for words over
countable scattered linear orderings

I Theorem 21. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. Then the following properties are equivalent:
1. X is a star-free marked set;
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2. X is FO-definable;
3. X is recognizable by a finite aperiodic �-semigroup satisfying the equation xωx−ω = xπ;
4. the syntactic �-semigroup of X is finite, aperiodic and satisfies the equation xωx−ω = xπ.

In the sequel, a finite aperiodic �-semigroup satisfying the equation xωx−ω = xπ is called
an FO-semigroup. The theorem is illustrated by the following examples.

The set X1 of Example 2 is star-free marked, FO-definable (see Example 5) and the
�-semigroup provided in Example 15 is a FO-semigroup. Similarly, the set X2 of Example 3 is
star-free marked, FO-definable (see Example 6) and the �-semigroup provided in Example 16
is a FO-semigroup. On the other hand, the set X3 of Example 4 is star-free but its syntactic �-
semigroup given in Example 17 is not a FO-semigroup. Indeed we have eωe−ω = fg = 0 6= eπ

since eπ = e. Thus X3 is not a star-free marked set, and is not FO-definable.
Theorem 21 yields an effective procedure to test whether a rational set X ⊆ A� is star-free

marked. Indeed Theorem 18 allows to compute effectively the finite syntactic �−semigroup of
X, from which one can decide whether S is aperiodic and satisfies the equation xωx−ω = xπ.

I Corollary 22. Let X ⊆ A� be a rational set of words indexed by countable scattered linear
orderings. Then it is decidable whether X is FO-definable.

The proof of Theorem 21 is organized as follows. Section 6.1 proves the equivalence
between (1) and (2). This is a straightforward generalization of the case of sets of finite
words. In Proposition 24 we prove that (1) implies (3); it is again a rather easy extension
of the case of finite words. The most difficult part is to prove that (3) implies (1), namely
that sets recognizable by FO-semigroups are star-free marked sets. The proof is long and
technically involved. It relies on the study of the structure of D-classes of a FO-semigroup
which recognizes the set. In Section 6.2.2 we give the general structure of the proof, but
details are omitted.

6.1 First-order logic vs star-free marked sets
In this section we state equivalence between star-free marked expressions and FO-definability.
I Proposition 23. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. The set X is a star-free marked set if and only if X is
definable in first-order logic.

Proof. (sketch) The proof is a straightforward generalization of the proof of McNaughton-
Papert Theorem given in [26, Theorem 4.4].

The “only if" part is proved by induction on a star-free marked expression denoting X.
For the converse, consider a first-order formula ϕ(x1, . . . , xn) with quantifier-depth m,

and assume (without loss of generality) that ϕ holds only if x1 < x2 · · · < xn. Then one
can prove by induction on m (using Ehrenfeucht-Fraïssé games) that ϕ is equivalent to a
disjunction of formulas of the form

ψ0 ∧ Pa1(x1) ∧ ψ1 ∧ · · · ∧ Pan(xn) ∧ ψn

where all formulas ψi have quantifier depth m, and for every 1 ≤ i ≤ n − 1 (respectively
i = 0, i = n), ψi is a formula where all quantifiers are relativized to the interval (xi, xi+1),
except for ψ0 (respectively ψn) for which all quantifiers are relativized to elements less than
x0 (respectively greater than xn).

Now assume that X is FO-definable by a sentence ψ. Assume first that ψ is of the form
∃xϕ(x). Then using the above result, ψ is equivalent to a disjunction of formulas of the form
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∃x(ψ0 ∧Pai(x)∧ψ1). Each such formula defines a star-free marked set, thus X ∈ SFM(A�).
In case ψ has the form ∀xϕ(x), we use the equivalence ψ ≡ ¬∃x¬ϕ(x). J

6.2 FO-semigroups vs star-free marked sets
6.2.1 From star-free marked sets to FO-semigroups
I Proposition 24. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. If X is a star-free marked set then X is recognizable by
a FO-semigroup.

The proof is very close to the one given in [16] for the case of sets of finite words. It goes
by induction on a star-free marked expression denoting the set X. Here we have to show, in
addition, that a �-semigroup S which recognizes X satisfies the equation xωx−ω = xπ.

For every set X ⊆ A� recognizable by a finite aperiodic �-semigroup S, we define
i(X) as the least integer n such that for every x ∈ A� and every context C, we have
C(xn+1) ∈ X ⇔ C(xn) ∈ X (let us recall that a context is, intuitively, a term with a hole in
it).

Proof. The proof goes by induction on a star-free marked expression denoting X.
The cases when X = ∅, and X = {a} with a ∈ A, are easy.
Assume now that X1 and X2 are star-free marked sets which are recognized by the FO-

semigroup S1 and S2, respectively. The proof that the sets Y1 = X1 +X2 and Y2 = A� \X1
are recognizable by a FO-semigroup is easy. They are both recognized by the �-semigroup
S1 × S2 with the component-wise product. This �-semigroup is obviously a FO-semigroup.

Let us prove that every set X ⊆ A� of the form X = X1aX2 with a ∈ A, is recognizable
by a FO-semigroup.

Let S be a finite �-semigroup which recognizes X, and let ϕ : A� → S be the associated
morphism. Let us show that S is aperiodic with i(X) ≤ i(X1) + i(X2) + 1. This amounts
to show that for all words u, v, w ∈ A� and every integer n ≥ i(X1) + i(X2) + 1, one has
uvnw ∈ X if and only if uvn+1w ∈ X. It is actually sufficient to prove that if uvnw ∈ X,
then uvn+1w ∈ X since the finiteness of S implies that there always exists an integer p ≥ 1
such that for n large enough, one has uvnw ∈ X if and only if uvn+pw ∈ X. Assume first that
uvnw ∈ X. By definition of X there exists z1 ∈ X1 and z2 ∈ X2 such that uvnw = z1az2.
We consider several cases:

if uvnw′ = z1 for some prefix w′ of w, then it follows from our hypothesis on X1 and the
fact that n ≥ i(X1) that uvn+1w′ ∈ X1, thus uvn+1w ∈ X.
The case when u′vnw = z2 for some suffix u′ of u is similar to the previous case.
Assume now that z1 = uvn1v1 and z2 = v2v

n2w with v1av2 = v and n1 + n2 + 1 = n.
By hypothesis we have n1 + n2 + 1 ≥ i(X1) + i(X2) + 1, thus either n1 ≥ i(X1), or
n2 ≥ i(X2). If n1 ≥ i(X1) then it follows from our hypothesis on X1 that uvn1+1v1 ∈ X1,
which yields uvn+1w ∈ X. The case when n2 ≥ i(X2) is similar.

Let us now prove that xωx−ω = xπ for every x ∈ S. This amounts to show that for all
words u, v, w ∈ A�, there exists an integer n > i(X) such that uvωv−ωw ∈ X if and only if
uvnw ∈ X. The case v = ε is trivial. We suppose now that v 6= ε.

Assume first that uvωv−ωw ∈ X. By definition of X there exists z1 ∈ X1 and z2 ∈ X2
such that uvωv−ωw = z1az2. We consider several cases:

if uvω is a prefix of z1, then it is a strict prefix since az2 cannot be equal to v−ωw. Thus
z1 = uvωv−ωw′ for some prefix w′ of w. It follows from our hypothesis on X1 that for
every n ≥ i(X1) we have uvnw′ ∈ X1, thus uvnw ∈ X.
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the case when z1 is a prefix of uvω is similar.
Note that we have really used here that this is a marked product.

Conversely assume that uvnw ∈ X for some integer n > i(X), and let uvnw = z1az2
with z1 ∈ X1 and z2 ∈ X2. By definition of i(X) we can assume that n ≥ i(X1) + i(X2) + 1.
Let y = uvnw.

If y can be written as y = uvn1w1w2 with n1 ≥ i(X1) and uvn1w1 ∈ X1, then the
induction hypothesis implies that uvωv−ωw1 ∈ X1, hence uvωv−ωw ∈ X.

The case where y can be written as y = u1u2v
n2w with n2 ≥ i(X2) and u2v

n2w ∈ X2 is
similar. J

6.2.2 From FO-semigroups to star-free marked sets
In this section we state the following result, and discuss about its proof.
I Proposition 25. Let A be a finite alphabet, and let X ⊆ A� be a set of words indexed by
countable scattered linear orderings. If X is recognizable by a FO-semigroup then X is a
star-free marked set.

Let us explain the main ingredients of the proof of Proposition 25. The structure of the
proof is similar to the one of the proof of Schützenberger’s theorem given in [16]. The proof
goes by induction on the D-classes of the FO-semigroup recognizing X.

Let us give some details. Assume that X is recognized by the morphism ϕ : A� → S

into a FO-semigroup S. There exists a subset P of S such that X = ϕ−1(P ). Since
X =

⋃
s∈P ϕ

−1(s) and since star-free marked sets are closed under union, it is sufficient to
prove that ϕ−1(s) is a star-free marked set for each s ∈ S.

For every subset P of S, let XP = ϕ−1(P ). In case P is reduced to a singleton set {s},
we simply denote XP as Xs. We shall prove that for every s ∈ S, the set Xs is marked
star-free. This is proved by induction on the integer h(s) = |S| − |S1sS1| where |P | denotes
the cardinality of P .

The following definition is frequently used in the proof. Let X and Y be two subsets
of A� and let D be a D-class of S. We say that Y is a D-approximation of X if

X ⊆ Y ⊆ X ∪ ϕ−1({s | s <J D})

We often use this definition when X = ϕ−1(P ) for some subset P of D.
The main difference with the proof of Schützenberger’s theorem in [16], is that sets of

the form XsXt for s, t ∈ S appear in some rational expressions. Since these products are not
marked, it is necessary to prove that these sets are also star-free marked. To cope with this
problem, we actually prove by induction on k ≥ 0 the following two statements.

(P1) for every s ∈ S, if h(s) ≤ k then Xs is a star-free marked set.
(P2) for all s, t ∈ S, if h(s) ≤ k, h(t) ≤ k and h(st) > k then XsXt is a star-free marked set.

Note that XsXt is contained in Xst. If h(st) ≤ k, the set XsXt can always be replaced in
expressions by Xst, which is already star-free marked by (P1).

We do not discuss the case k = 0 which is easy. Assume now that k > 0. Observe first
that the set {s | h(s) = k} is a union of D-classes. Indeed for all s, t ∈ S, the relation s D t

implies h(s) = h(t). Let D be one of these D-classes and let s0 be an element of D. Let R
and L be the R-class and the L-class of s0, respectively. The main steps of the proof of (P1)
are the following.

1. We show that there exist two star-free marked sets YR and YL which are D-approximations
of XR and XL. Since S is aperiodic, we have {s0} = R ∩ L, and YR ∩ YL is a D-
approximation of Xs0 .
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2. We show that the set Z = ϕ−1({s | s <J D}) is star-free marked set. This gives the
equality Xs0 = (YR ∩ YL) \ Z which shows that Xs0 is star-free marked.

7 Conclusion

Let us mention a few problems that are raised by our work.
We proved that for countable scattered orderings, FO logic captures the class of star-free

marked sets. Which extension of FO does capture the class of star-free sets ? By [2], we know
that this logic is a strict fragment of MSO. It can be shown that the existential fragment of
MSO is not convenient, since for instance even the set {aω} is not definable in this fragment.

In the case of finite words, some subclasses of FO have already been algebraically
characterized. Let us mention, for instance, that FO with two variables, usually called FO2,
correspond to a class of semigroups called DA. It would be interesting to know whether this
is still true for linear orderings.

A lot of results concerning FO over linear orderings are obtained with Ehrenfeucht-Fraïssé
games [24]. Some of them may deserve to be reconsidered using an algebraic approach.

Another interesting question is to remove the hypothesis countable or scattered. Very
recently, the second author, together with Colcombet and Puppis [8], have extended the
algebraic framework, and also the equivalence with MSO logic, to the case of all countable
orderings. Does the characterization of FO still hold in that framework ?

Acknowledgements We thank the anonymous referees for useful suggestions.

References
1 N. Bedon. Finite automata and ordinals. Theoret. Comput. Sci., 156:119–144, 1996.
2 N. Bedon, A. Bès, O. Carton, and C. Rispal. Logic and rational languages of words indexed

by linear orderings. Theory of Computing Systems, 46(4):737–760, 2010.
3 N. Bedon and C. Rispal. Schützenberger and Eilenberg theorems for words on linear

orderings. In C. De Felice and A. Restivo, editors, DLT’2005, volume 3572 of Lect. Notes
in Comput. Sci., pages 134–145. Springer-Verlag, 2005.

4 A. Bès and O. Carton. A Kleene theorem for languages of words indexed by linear orderings.
Int. J. Found. Comput. Sci., 17(3):519–542, 2006.

5 V. Bruyère and O. Carton. Automata on linear orderings. J. Comput. System Sci., 73(1):1–
24, 2007.

6 J. R. Büchi. On a decision method in the restricted second-order arithmetic. In Proc.
Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960, pages 1–11.
Stanford University Press, 1962.

7 J. R. Büchi. Transfinite automata recursions and weak second order theory of ordinals. In
Proc. Int. Congress Logic, Methodology, and Philosophy of Science, Jerusalem 1964, pages
2–23. North Holland, 1965.

8 O. Carton, T. Colcombet, and G. Puppis. Regular languages of words over countable linear
orderings. 2011. submitted.

9 J. Cristau. Automata and temporal logic over arbitrary linear time. CoRR, abs/1101.1731,
2011.

10 D. Girault-Beauquier. Bilimites de langages reconnaissables. Theoret. Comput. Sci., 33(2–
3):335–342, 1984.

11 Y. Gurevich. Monadic second-order theories. In J. Barwise and S. Feferman, editors,
Model-Theoretic Logics, pages 479–506. Springer-Verlag, Perspectives in Mathematical Lo-
gic, 1985.



A. Bès and O. Carton 81

12 F. Hausdorff. Set Theory. Chelsea, New York, 1957.
13 R. McNaughton and S. Papert. Counter free automata. MIT Press, Cambridge, MA, 1971.
14 D. E. Muller. Infinite sequences and finite machines. In Switching Circuit Theory and

Logical Design: Proc. Fourth Annual Symp., pages 3–16. I.E.E.E., New York, 1963.
15 M. Nivat and D. Perrin. Ensembles reconnaissables de mots bi-infinis. In Proceedings of

the Fourteenth Annual ACM Symposium on Theory of Computing, pages 47–59, 1982.
16 D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, volume B, chapter 1, pages 1–57. Elsevier, 1990.
17 D. Perrin and J.-É. Pin. Infinite Words. Elsevier, 2004.
18 J.-É. Pin. Variétés de Langages Formels. Masson, Paris, 1984.
19 J.-É. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume 1, pages 679–746. Springer-Verlag, 1997.
20 A. Rabinovich. Star free expressions over the reals. Theoret. Comput. Sci., 233(1–2):233–

245, 2000.
21 F. P. Ramsey. On a problem on formal logic. Proc. London Math. Soc., 30(2):264–286,

1929.
22 C. Rispal. Automates sur les ordres linéaires: complémentation. PhD thesis, University of

Marne-la-Vallée, France, 2004.
23 C. Rispal and O. Carton. Complementation of rational sets on countable scattered linear

orderings. In C. S. Calude, E. Calude, and M. J. Dinneen, editors, DLT’2004, volume 3340
of Lect. Notes in Comput. Sci., pages 381–392, 2004.

24 J. G. Rosenstein. Linear orderings. Academic Press, New York, 1982.
25 M. P. Schützenberger. On finite monoids having only trivial subgroups. Inform. Control,

8:190–194, 1965.
26 W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, volume III, pages 389–455. Springer-Verlag, 1997.

CSL’11



Determinizing Discounted-Sum Automata∗

Udi Boker1,2 and Thomas A. Henzinger2

1 Hebrew University of Jerusalem
2 IST Austria

Abstract
A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights,
which values a run by the discounted sum of visited edge weights. More precisely, the weight in
the i-th position of the run is divided by λi, where the discount factor λ is a fixed rational number
greater than 1. Discounted summation is a common and useful measuring scheme, especially for
infinite sequences, which reflects the assumption that earlier weights are more important than
later weights. Determinizing automata is often essential, for example, in formal verification, where
there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence
problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum auto-
mata are, in general, not determinizable: it is currently known that for every rational discount
factor 1 < λ < 2, there is an NDA with λ (denoted λ-NDA) that cannot be determinized.

We provide positive news, showing that every NDA with an integral factor is determinizable.
We also complete the picture by proving that the integers characterize exactly the discount
factors that guarantee determinizability: we show that for every rational factor λ 6∈ N, there is a
nondeterminizable λ-NDA. Finally, we prove that the class of NDAs with integral discount factors
enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not
the case for general NDAs nor for deterministic NDAs. This shows that for integral discount
factors, the class of NDAs forms an attractive specification formalism in quantitative formal
verification. All our results hold equally for automata over finite words and for automata over
infinite words.
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Discounted summation is of special interest for automata over infinite words. There are
two common ways to adjust standard summation for handling infinite sequences: discounting
and limit-averaging. The latter, which relates to the input suffixes, has been studied a lot in
mean-payoff games and, more recently, in limit-average automata [2, 6]; the former, which
relates more to the input prefixes, has received comparatively little attention.

Automata are widely used in formal verification, for which automata comparison is
fundamental. Specifically, one usually considers the following three questions, ordered
from the most difficult one to the simplest one: general comparison (language inclusion),
universality, and emptiness. In the Boolean setting, where automata assign Boolean values to
the input words, the three questions, with respect to automata A and B, are whether A ⊆ B,
A = True, and A = False. In the quantitative setting, where automata assign numeric
values to the input words, the universality and emptiness questions relate to a constant
threshold, usually 0. Thus, the three questions are whether A ≤ B, A ≤ 0, and A ≥ 0.

A central problem with these quantitative automata is that only the emptiness question is
known to be solvable. For limit-average automata, the two other questions are undecidable [6].
For NDAs, it is an open question whether universality and comparison are decidable. This is
not the case with DDAs, for which all three questions have polynomial solutions [12, 1, 2].
Unfortunately, NDAs cannot, in general, be determinized. It is currently known that for
every rational discount-factor 1 < λ < 2, there is a λ-NDA that cannot be determinized [2].

It turns out, quite surprisingly, that discounting by an integral factor forms a “well behaved”
class of automata, denoted “integral NDAs”, allowing for determinization (Section 3) and
closed under the algebraic operations min, max, addition and subtraction (Section 5). The
above closure is of special interest, as neither NDAs nor DDAs are closed under the max
operation (Theorem 9). Furthermore, the integers, above 1, characterize exactly the set of
discount factors that guarantee determinizability (Section 4). That is, for every rational
factor λ 6∈ N, there is a non-determinizable λ-NDA.

The discounted summation intuitively makes NDAs more influenced by word-prefixes
than by word-suffixes, suggesting that some basic properties are shared between automata
over finite words and over infinite words. Indeed, all the above results hold for both models.
Yet, the equivalence relation between automata over infinite words is looser than the one on
finite words. That is, if two automata are equivalent with respect to finite words then they
are also equivalent with respect to infinite words, but not vice versa (Lemma 3).

The above results relate to complete automata; namely, to automata in which every
state has at least one transition over every alphabet letter. For incomplete automata or,
equivalently, for automata with ∞-weights, no discount factor can guarantee determinization
(Section 4.2).

Our determinization procedure, described in Section 3.1, is an extension of the subset
construction, keeping a “recoverable-gap” value to each element of the subset. Intuitively, the
“gap” of a state q over a finite word u stands for the extra cost of reaching q, compared to the
best possible value so far. This extra cost is multiplied, however, by λ|u|, to reflect the λ|u|
division in the value-computation of the suffixes. A gap of q over u is “recoverable” if there
is a suffix w that “recovers” it, meaning that there is an optimal run over uw that visits q
after reading u. Due to the discounting of the future, once a gap is too large, it is obviously
not recoverable. Specifically, for every λ, we have that

∑∞
i=0( 1

λi ) = 1
1− 1

λ

= λ
λ−1 ≤ 2. Hence,

our procedure only keeps gaps that are smaller than twice the maximal difference between
the automaton weights.

The determinization procedure may be used for an arbitrary λ-NDA, always providing
an equivalent λ-DDA, if terminating. Yet, it is guaranteed to terminate for a λ-NDA with
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λ ∈ N, while it might not terminate in the case that λ ∈ Q \N.
For integral NDAs, the key observation is that there might only be finitely many recov-

erable gaps (Lemma 2). More precisely, for an integral NDA A, there might be up to m
recoverable gaps, where m is the maximal difference between the weights in A, multiplied
by the minimal common divider of all weights. Accordingly, our determinization procedure
generates a DDA with up to mn states, where n is the number of states in A. We show that
this state blow-up is tight, using a rich alphabet of size exponential in the number of states
(Theorem 6). The unavoidable state blow-up for the case that the alphabet size is linear in
the number of states is left as an open problem.

For nonintegral NDAs, the key observation is that the recoverable gaps might be arbitrarily
dense (Theorem 7). Hence, the bound on the maximal value of the gaps cannot guarantee a
finite set of recoverable gaps. Different gaps have, under the appropriate setting, suffixes that
distinguish between them, implying that an equivalent deterministic automaton must have
a unique state for each recoverable-gap (Lemma 5). Therefore, an automaton that admits
infinitely many recoverable gaps cannot be determinized.

It turns out that closure under algebraic operation is also closely related to the question
of whether the set of recoverable gaps is finite. Considering the operations of addition,
subtraction, minimization, and maximization, the latter is the most problematic one, as the
value of a word is defined to be the minimal value of the automaton runs on it. For two
NDAs, A and B, one may try to construct an automaton C = max(A,B), by taking the
product of A and B, while maintaining the recoverable gaps of A’s original states, compared
to B’s original states. This approach indeed works for integral NDAs (Theorem 10). Note
that determinizability is not enough, as neither NDAs nor DDAs are closed under the
max operation. Furthermore, we show, in Theorem 9, that there are two DDAs, A and B,
such that there is no NDA C with C = max(A,B). For precluding the existence of such a
nondeterministic automaton C, we cannot make usage of Lemma 5, and thus use a more
involved, “pumping-style”, argument with respect to recoverable gaps.

Related work. Weighted automata are often handled as formal power series, mapping
words to a semiring [7]. By this view, the weight of a run is the semiring-multiplication
of the transition weights along it, while the weight of a word is the semiring-addition of
its possible run weights. For this setting, there are numerous works, including results on
determinization [11, 7]. However, discounted-sum automata do not fall into this setting, as
discounted summation cannot be described as the multiplication operation of a semiring. The
latter is required to have an identity element 1̄, such that for every element e, 1̄e = e1̄ = e.
One can check that discounted summation cannot allow for an identity element, which is,
in a sense, the core reason for its different behavior. Formal power series are generalized,
in [8], for handling discounted summation. The weight of a run is defined to be a “skewed
multiplication” of the weights along it, where this “skewing” corresponds to the discounting
operation. Yet, [8] mainly considers the equivalence between recognizable series and rational
series, and does not handle automata determinization.

Discounted Markov decision processes (e.g. [10, 9]) and discounted games (e.g. [12,
1]) generalize, in some sense, deterministic discounted-sum automata. The former adds
probabilities and the latter allows for two player choices. However, they do not cover
nondeterministic automata. One may note that nondeterminism relates to “blind games”, in
which each player cannot see the other player’s moves, whereas in standard games the players
have full information on all moves. Indeed, for a discounted-game, one can always compute an
optimal strategy [12], while a related question on nondeterministic discounted-sum automata,
of whether the value of all words is below 0, is not known to be decidable.
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The discounted-sum automata used in [2] are the same as ours, with only syntactic
differences – they use the discount-factor λ as a multiplying factor, rather than as a dividing
one, and define the value of a word as the maximal value of the automaton runs on it, rather
than the minimal one. The definitions are analogous, replacing λ with 1

λ and multiplying all
weights by (−1). In [2], it is shown that for every rational discount-factor 1 < λ < 2, there is
a λ-NDA that cannot be determinized. We generalize their proof approach, in Theorem 7,
extending the result to every λ ∈ Q \N.

2 Discounted-Sum Automata

We consider discounted-sum automata with rational weights and rational discount factors
over finite and infinite words.

Formally, given an alphabet Σ, a word over Σ is a finite or infinite sequence of letters in
Σ, with ε for the empty word. We denote the concatenation of a finite word u and a finite or
infinite word w by u·w, or simply by uw.

A discounted-sum automaton (NDA) is a tuple A = 〈Σ, Q, qin, δ, γ, λ〉 over a finite
alphabet Σ, with a finite set of states Q, an initial state qin ∈ Q, a transition function
δ ⊆ Q × Σ × Q, a weight function γ : δ → Q, and a discount factor 1 < λ ∈ Q. We write
λ-NDA to denote an NDA with a discount factor λ, for example 5

2 -NDA, and refer to an
“integral NDA” when λ in an integer. For an automaton A and a state q of A, we denote by
Aq the automaton that is identical to A, except for having q as its initial state.

Intuitively, {q′
∣∣ (q, σ, q′) ∈ δ} is the set of states that A may move to when it is in the

state q and reads the letter σ. The automaton may have many possible transitions for each
state and letter, and hence we say that A is nondeterministic. In the case where for every
q ∈ Q and σ ∈ Σ, we have that |{q′

∣∣ (q, σ, q′) ∈ δ}| ≤ 1, we say that A is deterministic,
denoted DDA.

In the case where for every q ∈ Q and σ ∈ Σ, we have that |{q′
∣∣ (q, σ, q′) ∈ δ}| ≥ 1, we

say that A is complete. Intuitively, a complete automaton cannot get stuck at some state. In
this paper, we only consider complete automata, except for Section 4.2, handling incomplete
automata.

A run of an automaton is a sequence of states and letters, q0, σ1, q1, σ2, q2, . . ., such that
q0 = qin and for every i, (qi, σi+1, qi+1) ∈ δ. The length of a run, denoted |r|, is n for a finite
run r = q0, σ1, q1, . . . , σn, qn, and ∞ for an infinite run.

The value of a run r is γ(r) =
∑|r|−1
i=0

γ(qi,σi+1,qi+1)
λi . The value of a word w (finite or

infinite) is A(w) = inf{γ(r)
∣∣ r is a run of A on w}. A run r of A on a word w is said to be

optimal if γ(r) = A(w). By the above definitions, an automaton A over finite words realizes
a function from Σ∗ to Q and over infinite words from Σω to R. Two automata, A and A′,
are equivalent if they realize the same function.

Next, we provide some specific definitions, to be used in the determinization construction
and in the non-determinizability proofs.

The cost of reaching a state q of an automaton A over a finite word u is cost(q, u) =
min{γ(r)

∣∣ r is a run of A on u ending in q}, where min ∅ =∞. The gap of a state q over a
finite word u is gap(q, u) = λ|u|(cost(q, u)−A(u)). Note that when A operates over infinite
words, we interpret A(u), for a finite word u, as if A was operating over finite words.

Intuitively, the gap of a state q over a word u stands for the weight that a run starting
in q should save, compared to a run starting in u’s optimal ending state, in order to make
q’s path preferable. A gap of a state q over a finite word u is said to be recoverable if
there is a suffix that makes this path optimal; that is, if there is a word w, such that
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cost(q, u) + Aq(w)
λ|u| = A(uw). The suffix w should be finite/infinite, depending on whether A

operates over finite/infinite words.
Notes on notation-conventions: The discount factor λ is often used in the literature as a

multiplying factor, rather than as a dividing factor, thus taking the role of 1
λ , compared to our

definitions. Another convention is to value a word as the maximal value of its possible runs,
rather than the minimal value; the two definitions are analogous, and can be interchanged
by multiplying all weights by (−1).

3 Determinizability of Integral Discounted-Sum Automata

In this section, we show that all complete NDAs with an integral factor are determinizable.
Formally, we provide the following result.

I Theorem 1. For every complete λ-NDA A with an integral factor λ ∈ N, there is an
equivalent complete λ-DDA with up to mn states, where m is the maximal difference between
the weights in A, multiplied by the minimal common divider of all weights, and n is the
number of states in A.

Proof. Lemmas 2-4, given in the subsections below, constitute the proof. J

Theorem 1 stands for both automata over finite words and over infinite words.
The determinization procedure extends the subset construction, by keeping a recoverable-

gap value to each element of the subset. It resembles the determinization procedure of
non-discounting sum automata over finite words [11, 7], while having two main differences:
the weight-differences between the reachable states is multiplied at every step by λ, and
differences that exceed some threshold are removed.

The procedure may be used for an arbitrary λ-NDA, always providing an equivalent
λ-DDA, if terminating. It is guaranteed to terminate for a λ-NDA with λ ∈ N, which is not
the case for λ ∈ Q \N.

The state blow-up involved in the construction is shown to be tight for a rich alphabet
of size exponential in the number of states (Theorem 6). The unavoidable blow-up for an
alphabet of size linear in the number of states is left as an open problem.

We start, in Subsection 3.1, with the determinization procedure, continue, in Subsec-
tion 3.2, with its termination and correctness proofs, and conclude, in Subsection 3.3, showing
that the involved state blow-up is tight for a rich alphabet.

3.1 The Construction

Consider an NDA A = 〈Σ, Q, qin, δ, γ, λ〉. We inductively construct an equivalent DDA
D = 〈Σ, Q′, q′in, δ′, γ′, λ〉. (An example is given in Figure 4.)

Let T be the maximal difference between the weights inA. That is, T = max{|x−y|
∣∣x, y ∈

range(γ)}. Since
∑∞
i=0( 1

λi ) = 1
1− 1

λ

= λ
λ−1 ≤ 2, we define the set G = {v

∣∣ v ∈ Q and 0 ≤
v < 2T} ∪ {∞} of possible recoverable-gaps. The ∞ element denotes a non-recoverable gap,
and behaves as the standard infinity element in the arithmetic operations that we will be
using. Note that our discounted-sum automata do not have infinite weights; it is only used
as an internal element of the construction.

A state of D extends the standard subset construction by assigning a gap to each state
of A. That is, for Q = {q1, . . . , qn}, a state q′ ∈ Q′ is a tuple 〈g1, . . . , gn〉, where gh ∈ G for
every 1 ≤ h ≤ n. Intuitively, the gap gh of a state qh stands for the extra cost of reaching
qh, compared to the best possible value so far. This extra cost is multiplied, however, by λl,
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for a finite run of length l, to reflect the λl division in the value-computation of the suffixes.
Once a gap is obviously irreducible, by being larger than or equal to 2T , it is set to be ∞.

In the case that λ ∈ N, the construction only requires finitely many elements of G, as
shown in Lemma 2 below, and thus it is guaranteed to terminate.

For simplicity, we assume that qin = q1 and extend γ with γ(〈qi, σ, qj〉) = ∞ for every
〈qi, σ, qj〉 6∈ δ. The initial state of D is q′in = 〈0,∞, . . . ,∞〉, meaning that qin is the only
relevant state and has a 0 gap.

We inductively build D via the intermediate automata Di = 〈Σ, Q′i, q′in, δ′i, γ′i, λ〉. We
start with D1, in which Q′1 = {q′in}, δ′1 = ∅ and γ′1 = ∅, and proceed from Di to Di+1, such
that Q′i ⊆ Q′i+1, δ′i ⊆ δ′i+1 and γ′i ⊆ γ′i+1. The construction is completed once Di = Di+1,
finalizing the desired deterministic automaton D = Di.

In the induction step, Di+1 extends Di by (possibly) adding, for every state q′ =
〈g1, . . . , gn〉 ∈ Q′i and letter σ ∈ Σ, a state q′′, a transition 〈q′, σ, q′′〉 and a weight
γi+1(〈q′, σ, q′′〉) = c, as follows:

For every 1 ≤ h ≤ n, ch := min{gj + γ(〈qj , σ, qh〉)
∣∣ 1 ≤ j ≤ n}

c := min
1≤h≤n

(ch)

For every 1 ≤ h ≤ n,
xh := λ(ch − c);
if xh ≥ 2T then xh :=∞

q′′ := 〈x1, . . . , xn〉
Q′i+1 := Q′i+1 ∪ q′′

δ′i+1 := δ′i+1 ∪ 〈q′, σ, q′′〉
γ′i+1(〈q′, σ, q′′〉) = c

3.2 Termination and Correctness

We prove below that the above procedure always terminates for a discount factor λ ∈ N,
while generating an automaton that is equivalent to the original one. We start with the
termination proof.

I Lemma 2. The above determinization procedure always terminates for a complete integral
λ-NDA A. The resulting deterministic automaton has up to mn states, where m is the
maximal difference between the weights in A, multiplied by the minimal common divider of
all weights, and n is the number of states in A.

Proof. The induction step of the construction, extending Di to Di+1, only depends on A,
Σ and Q′i. Furthermore, for every i ≥ 0, we have that Q′i ⊆ Q′i+1. Thus, for showing the
termination of the construction, it is enough to show that there is a general bound on the
size of the sets Q′i. We do it by showing that the inner values, g1, . . . , gn, of every state q′ of
every set Q′i are from the finite set Ḡ, defined below.

Let d ∈ N be the minimal common divider of the weights in A, and let m ∈ N be the
maximal difference between the weights, multiplied by d. That is, m = d×max{|x−y|

∣∣x, y ∈
range(γ)}. We define the set Ḡ = {λcd

∣∣ 2m
λ > c ∈ N} ∪ {∞}

We start with Q′1, which satisfies the property that the inner values, g1, . . . , gn, of
every state q′ ∈ Q′1 are from Ḡ, as Q′1 = {〈0,∞, . . . ,∞〉}. We proceed by induction on
the construction steps, assuming that Q′i satisfies the property. By the construction, an
inner value of a state q′′ of Q′i+1 is derived by four operations on elements of Ḡ: addition,
subtraction (x− y, where x ≥ y), multiplication by λ ∈ N, and minimization.
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D:

A:

〈∞, 0〉

λ = 3

〈0, 1〉〈0, 3〉

〈3, 0〉

s0 s1

〈0,∞〉

c = min(1,∞) = 1

x2 = 3(∞− 1) =∞

c1 = min(∞− 1, 0 + 1) = 1

a, 1
a, 0
b,−1

a,−2

x2 = 3(−2− (−2)) = 0
x1 = 3(1− (−2)) = 9 ;∞

a,−1

c = min(1,−2) = −2

a, 0

c1 = min(0 + 0, 3 + 1) = 0
c2 = min(0 + 1, 3− 2) = 1
c = min(0, 1) = 0
x1 = 3(0− 0) = 0
x2 = 3(1− 0) = 1

a, 0 b,−1
b,−1

c2 = min(3 + 1, 0− 2) = −2
c1 = min(3 + 0, 0 + 1) = 1

a,−2

a,−2

b, 1a, 1
b, 0

b,−1

b, 1
b, 1

c2 = min(∞+ 1, 0 +∞) =∞

x1 = 3(1− 1) = 0

Figure 1 Determinizing the 3-NDA A into the 3-DDA D. The gray bubbles detail some of the
intermediate calculations of the determinization procedure.

One may verify that applying these four operations on ∞ and numbers of the form λc
d ,

where λ, c ∈ N, results in ∞ or in a number v
d , where v ∈ N. Since the last operation in

calculating an inner value of q′′ is multiplication by λ, we have that v is divided by λ. Once
an inner value exceeds 2m

d , it is replaced with ∞. Hence, all the inner values are in Ḡ.
Having up to m possible values to the elements of an n-tuple, provides the mn upper

bound for the state space of the resulting deterministic automaton. J

Before proceeding to the correctness proof, we show that equivalence of automata over
finite words implies their equivalence over infinite words. Note that the converse need not
hold.

I Lemma 3. If two NDAs, A and B, are equivalent with respect to finite words then they
are also equivalent with respect to infinite words. The converse need not hold.

Proof. Assume, by contradiction, two NDAs, A and B, that are equivalent with respect to
finite words and not equivalent with respect to infinite words. Then there is an infinite word
w and a constant number c 6= 0, such that A(w)−B(w) = c. Let m be the maximal difference
between a weight in A and a weight in B. Since for every 1 < λ,

∑∞
i=0( 1

λi ) = 1
1− 1

λ

= λ
λ−1 ≤ 2,

it follows that the difference between the values that A and B assign to any word is smaller or
equal to 2m. Hence, the difference between the values of their runs on suffixes of w, starting
at a position p, is smaller or equal to 2m

λp .
Now, since A and B are equivalent over finite words, it follows that they have equally-

valued optimal runs over every prefix of w. Thus, after a long enough prefix, of length p such
that 2m

λp < c, the difference between the values of A’s and B’s optimal runs on w must be
smaller than c, leading to a contradiction.
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A: B:

λ = 2
Σ, 2 Σ, 0Σ, 1

Figure 2 The automata A and B are equivalent with respect to infinite words, while not equivalent
with respect to finite words.

A counter example for the converse is provided in Figure 2. J

We proceed with the correctness proof. By Lemma 3, it is enough to prove the correctness
for automata over finite words.

Note that the correctness holds for arbitrary discount factors, not only for integral ones.
For the latter, the determinization procedure is guaranteed to terminate (Lemma 2), which
is not the case in general. Yet, in all cases that the procedure terminates, it is guaranteed to
be correct.

I Lemma 4. Consider a λ-NDA A over Σ∗ and a DDA D, constructed from A as above.
Then, for every w ∈ Σ∗, A(w) = D(w).

Proof. Consider an NDA A = 〈Σ, Q, qin, δ, γ, λ〉 and the DDA D = 〈Σ, Q′, q′in, δ′, γ′, λ〉
constructed from A as above. Let T be the maximal difference between the weights in A.
That is, T = max{|x− y|

∣∣ x, y ∈ range(γ)}.
For a word w, let q′w = 〈g1, . . . , gn〉 ∈ Q′ be the last state of D’s run on w. We show by

induction on the length of the input word w that:
For every 1 ≤ h ≤ n, gh = gap(qh, w) if gap(qh, w) < 2T and ∞ otherwise.
A(w) = D(w).

The assumptions obviously hold for the initial step, where w is the empty word. As for
the induction step, we assume they hold for w and show that for every σ ∈ Σ, they hold for
w·σ. Let q′w·σ = 〈x1, . . . , xn〉 ∈ Q′ be the last state of D’s run on w·σ.

For every 1 ≤ h ≤ n, as long as gh < 2T , the value that the determinization-construction
assigns to xh, as well as the weight that is set on the transition from q′w to q′w·σ, directly follows
the gap definitions, and accordingly satisfy the required properties. Therefore, it is left to show
that if gh ≥ 2T then gap(qh, w·σ) ≥ 2T . Indeed, gap(qh, w·σ) = λi+1(cost(qh, w·σ)−A(w·σ)) >
λi+1(cost(qh, w)−A(w)− ( 1

λ

i)T ) > λ(2T − T ) = λ(T ) ≥ 2T .
J

3.3 State Complexity

For an integral NDA A, the deterministic automaton constructed as in Subsection 3.1 has
up to mn states, where m is the maximal difference between the weights in A, multiplied by
the minimal common divider of all weights, and n is the number of states in A (Lemma 2).

We show below that the above state blow-up is asymptotically tight, using a rich alphabet
of size in O(mn). For an alphabet of size linear in m and n, the unavoidable state blow-up is
left as an open problem.

A family of automata Am,n, with which we provide the lower bound, is illustrated in
Figure 3. Intuitively, the rich alphabet allows to set every gap in {0, 1, 2, . . . ,m+ 1} to each
of the n states. Two different gaps have, under the appropriate setting, two suffixes that
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distinguish between them. Hence, an equivalent deterministic automaton must have a unique
state for each recoverable-gap, yielding at least mn states.

We start by providing a sufficient condition, under which two different gaps must be asso-
ciated with two different states of a deterministic automaton. The lemma below generalizes
an argument given in [2].

I Lemma 5. Consider an NDA A for which there is an equivalent DDA D. If there is a
state q of A, finite words u and u′, and words w and z, such that:
i. A has runs on u and on u′ ending in q;
ii. gap(q, u) 6= gap(q, u′);
iii. The gaps of q over both u and u′ are recoverable with w, that is, A(uw) = cost(q, u)+A

q(w)
λ|u|

and A(u′w) = cost(q, u′) + Aq(w)
λ|u′| ; and

iv. A is indifferent to concatenating z to u and to u′, that is A(uz) = A(u) and A(u′z) =
A(u′)

then the runs of D on u and on u′ end in different states.
The words w and z should be finite for automata over finite words and infinite for

automata over infinite words. In the former case, z is redundant as it can always be ε.

Proof. Consider the above setting. Then, we have that A(uw) − A(uz) = gap(q,u)+Aq(w)
λ|u|

and A(u′w)−A(u′z) = gap(q,u′)+Aq(w)
λ|u′| . Thus,

(I) gap(q, u) = λ|u|[A(uw)−A(uz)]−Aq(w); gap(q, u′) = λ|u
′|[A(u′w)−A(u′z)]−Aq(w)

Now, assume, by contradiction, a single state p of D in which the runs of D on both u
and u′ end. Then, we have that

(II) D(uw)−D(uz) = D
p(w)
λ|u|

; D(u′w)−D(u′z) = D
p(w)
λ|u′|

Since A and D are equivalent, we may replace between [A(uw)−A(uz)] and [D(uw)−D(uz)]
as well as between [A(u′w)−A(uz′)] and [D(u′w)−D(u′z)]. Making the replacements in
equations (I) above, we get:

(I&II) gap(q, u) = λ|u|
Dp(w)
λ|u|

−Aq(w); gap(q, u′) = λ|u
′|Dp(w)
λ|u′| −A

q(w)

Therefore, gap(q, u) = gap(q, u′), leading to a contradiction.
J

We continue with the tightness proof.

I Theorem 6. For every λ,m, n ∈ N, there is a complete λ-NDA with n + 2 states and
weights in {−λm,−λm+ 1, . . . ,−1, 0, 1}, such that every equivalent DDA has at least mn

states.

Proof. For every λ,m, n ∈ N, we define the NDA A = 〈Σ, Q, qin, δ, γ, λ〉, illustrated in
Figure 3 as Am,n, where:

Σ = {〈v1, . . . vn〉
∣∣ for every 1 ≤ i ≤ n, vi ∈ {−λm,−λm+ 1, . . . ,−1, 0, 1}}

Q = {qin, q0, q1, . . . , qn}
δ = {〈qin, σ, qi〉, 〈qi, σ, qi〉

∣∣ 0 ≤ i ≤ n and σ ∈ Σ}
For every σ = 〈v1, . . . vn〉 ∈ Σ and 0 ≤ i ≤ n: γ(〈qin, σ, q0〉) = 0, γ(〈qin, σ, qi〉) = 0,
γ(〈q0, σ, q0〉) = 0 and γ(〈qi, σ, qi〉) = vi
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Am,n:

Σ = {‘〈v1, . . . , vn〉’
∣∣ for every 1 ≤ i ≤ n, vi ∈ weights}

q1

weights = {−λm, λm+ 1, . . . ,−1, 0, 1}
qin

q0 qn

〈v1, . . . , vn〉, vnΣ, 0 ‘〈v1, . . . , vn〉’, v1

. . .

Figure 3 The family of integral NDAs, where for every m and n, a deterministic automaton
equivalent to Am,n must have at least mn states.

Note that, for simplicity, we define the alphabet letters of Σ as tuples of numbers.
Consider a DDA D equivalent to A. We will show that there is a surjective mapping

between D’s states and the set of vectors V = {〈g1, . . . , gn〉
∣∣ for every 1 ≤ i ≤ n, 1 ≤ gi ≤

m}.
We call an n-vector of gaps, G = 〈g1, . . . , gn〉, a combined-gap, specifying the gaps of

q1, . . . , qn, respectively. Due to the rich alphabet, for every combined-gap G ∈ V , there is a
finite word uG, such that for every 1 ≤ i ≤ n, gap(qi, uG) = gi.

Every two different combined gaps, G and G′, are different in at least one dimension j of
their n-vectors. Thus, A satisfies the conditions of Lemma 5, by having u = uG, u′ = uG′ ,
z =‘〈0, . . . , 0〉’ω, and w =‘〈0, . . . 0,−λm, 0, . . . 0〉’ω, where the repeated word in w has 0 in
all dimensions except for −λm in the j’s dimension. Hence, A has two different states
corresponding to each two different vectors in V , and we are done.

J

4 Nondeterminizability of Nonintegral Discounted-Sum Automata

The discount-factor λ plays a key role in the question of whether a complete λ-NDA
is determinizable. In Section 3, we have shown that an integral factor guarantees the
automaton’s determinizabilty. In Subsection 4.1 below, we show the converse for every
nonintegral factor.

In the whole paper, except for Subsection 4.2 below, we only consider complete automata.
In Subsection 4.2, we show that once allowing incomplete automata or, equivalently, adding
infinite weights, there is a non-determinizable automaton for every discount-factor λ, including
integral ones.

4.1 Complete Automata

We show below that for every noninntegral discount factor λ, there is a complete λ-NDA
that cannot be determinized. The proof generalizes the approach taken in [2], where the case
of 1 < λ < 2 was handled.

Intuitively, for a discount factor that is not a whole number, a nondeterministic auto-
maton might have arbitrarily dense recoverable-gaps. Two different gaps have, under the
appropriate setting, two suffixes that distinguish between them (Lemma 5). Hence, an
equivalent deterministic automaton must have a unique state for each recoverable-gap, which
is impossible for infinitely many gaps.

I Theorem 7. For every nonintegral discount factor λ, there is a complete λ-NDA for which
there is no equivalent DDA (with any discount factor).
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A:

Σ = { ‘−5’, ‘−4’, ‘−2’, ‘0’, ‘2’ }

q0 q1

qin

λ = 5
2

Σ, 0

Σ, 0

‘v’, v (e.g. ‘2’, 2 )

‘v’, v

Figure 4 The non-determinizable 5
2 -NDA A.

Proof. For every 1 < λ ∈ Q \N, we define a complete λ-NDA A = 〈Σ, Q, qin, δ, γ, λ〉 and
show that A is not determinizable. Let λ = h

k , where h and k are mutually prime, and define:
Σ = {−jk

∣∣ j ∈ N and jk < h} ∪ {−h, k}
Q = {qin, q1, q2}
δ = {〈qin, σ, q1〉, 〈qin, σ, q2〉, 〈q1, σ, q1〉, 〈q2, σ, q2〉

∣∣ σ ∈ Σ}
For every σ ∈ Σ and q ∈ Q: γ(〈q, σ, q1〉) = 0 and γ(〈q, σ, q2〉) = σ

Note that, for simplicity, we define the alphabet letters of Σ as numbers. The NDA A for
λ = 5

2 is illustrated in Figure 1.
We show that A cannot be determinized by providing an infinite word w, such that q2

has a unique recoverable gap for each of w’s prefixes. By Lemma 5, such a word w implies
that A cannot be determinized.

We inductively define w, denoting its prefix of of length i by wi, as follows: the first letter
is k and the i + 1’s letter is ‘−jk’, such that 0 ≤ gap(q2, wi)hk − jk ≤ k. Intuitively, each
letter is chosen to almost compensate on the gap generated so far, by having the same value
as the gap up to a difference of k.

We show that w has the required properties, by the following steps:
1. The word w is infinite and q2 has a recoverable-gap for each of its prefixes.
2. There is no prefix of w for which q2’s gap is 0.
3. There are no two different prefixes of w for which q2 has the same gap.
Indeed:
1. Since γ(〈q2,−h, q2〉) = −h, a gap g of q2 is obviously recoverable if g ≤ h. We show by

induction on the length of w’s prefixes that for every i ≥ 1, we have that gap(q2, wi) ≤ h.
It obviously holds for the initial step, as w1 =‘k’ and gap(q2, w1) = k hk = h. Assuming
that it holds for the i’s prefix, we can choose the i+ 1’s letter to be some ‘−jk’ ∈ Σ, such
that 0 ≤ gap(wi)− jk ≤ k. Hence, we get that gap(wi+1) = (gap(wi)− jk)hk ≤ k.

2. Assume, by contradiction, a prefix of w of length n+ 1 whose recoverable-gap is 0. We
have then that:

(((kh
k
− j1k)h

k
− j2k)h

k
. . .− jnk)h

k
= 0

for some j1, . . . , jn ∈ N. Simplifying the equation, we get that

hn − j1kh
n−1 − j2k

2hn−2 − . . .− jnkn

kn−1 = 0

Therefore, hn = j1kh
n−1 + . . . + jnk

n. Now, since k divides j1kh
n−1 + . . . + jnk

n, it
follows that k divides hn, which leads to a contradiction, as h and k are mutually prime.

3. Assume, by contradiction, that q2 has the same gap x for two prefixes, n ≥ 1 steps apart.
We have then that:

((((x− j1k)h
k
− j2k)h

k
− j3k)h

k
. . .− jnk)h

k
= x
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B:

q0 q1

qin

Σ, 0

a, 0 b, 1
a, 1

Σ, 0

Figure 5 The incomplete automaton B is not determinizable with respect to any discount-factor.

for some j1, . . . , jn ∈ N. Simplifying the equation, we get that

xhn − j1kh
n − j2k

2hn−1 − . . .− jnknh
kn

= x

Thus,
xhn − xkn = j1kh

n + j2k
2hn−1 + . . .+ jnk

nh

Hence, k divides x(hn − kn). Now, since there is no prefix for which q2 has a zero gap,
it follows that k does not divide x. (Otherwise, q2 would have had a zero gap for the
prefix right after the one with x). Therefore, k divides hn − kn. But, since k divides kn,
it follows that k also divides hn, which leads to a contradiction.

J

4.2 Incomplete Automata

Once considering incomplete automata or, equivalently, automata with∞-weights, no discount
factor can guarantee determinization. The reason is that there is no threshold above which a
gap becomes irrecoverable – no matter how (finitely) bad some path is, it might eventually
be essential, in the case that the other paths get stuck.

Formally:

I Theorem 8. For every rational discount factor λ, there is an incomplete λ-NDA for which
there is no equivalent DDA (with any discount factor).

Proof. Consider the incomplete automaton B presented in Figure 5 with a discount factor
λ ∈ Q.

For every n ∈ N, we have that gap(q2, a
n) =

∑n
i=0 λ

i. Since q1 has no transition for
the letter b, it follows that all these gaps are recoverable. Hence, for every i, j ∈ N such
that i 6= j, we satisfy the conditions of Lemma 5 with u = ai, u′ = aj , z = aω and w = bω

(for automata over finite words, z = ε and w = b). Therefore, an equivalent deterministic
automaton must have infinitely many states, precluding its existence. J

5 Closure Properties

Discounted-sum automata realize a function from words to numbers. Hence, one may wish
to consider their closure under arithmetic operations. The operations are either between two
automata, having the same discount factor, as minimization and addition, or between an
automaton and a scalar, as multiplication by a positive rational number c.

We consider the class of complete NDAs, as well as two of its subclasses: DDAs and
integral NDAs.
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Class � Operation min max + − ×c ≥ 0 ×(−1)

NDAs 3 7 3 7 3 7

DDAs 7 3

Integral NDAs 3

Table 1 Closure of discounted-sum automata under arithmetic operations.

The closure properties, summarized in Table 1, turn out to be the same for automata
over finite words and over infinite-words. By arguments similar to those of Lemma 3’s proof,
it is enough to prove the positive results with respect to automata over finite words and the
negative results with respect to automata over infinite words.

Some of the positive results are straightforward, as follows.
Nondeterministic: Minimization is achieved by taking the union of the input automata,
addition by taking the product of the input automata and adding the corresponding
weights, and multiplication by a positive scalar c is achieved by multiplying all weights
by c.
Deterministic: Addition/subtraction is achieved by taking the product of the input
automata and adding/subtracting the corresponding weights. Multiplication by (positive
or negative) scalar c is achieved by multiplying all weights by c.
Discount factor ∈ N: Since these automata can always be determinized, they obviously
enjoy the closure properties of both the deterministic and non-deterministic classes.

All the negative results can be reduced to the max operation, as follows. Closure under sub-
traction implies closure under (−1)-multiplication, by subtracting the given automaton from
a constant 0 automaton. For nondeterministic automata, closure under (−1)-multiplication
implies closure under the max operation, by multiplying the original automata by (−1)
and taking their minimum. As for deterministic automata, closure under the min and max
operations are reducible to each other due to the closure under (−1)-multiplication.

It is left to show the results with respect to the max operation. We start with the classes
of deterministic and nondeterministic automata.

I Theorem 9. NDAs and DDAs are not closed under the max operation.

Proof. We prove a stronger claim, showing that there are two DDAs, A and B, defined
in Figure 6, for which there is no NDA equivalent to max(A,B). Intuitively, we show
that the recoverable-gap between A and B can be arbitrarily small, and therefore, by
pumping-arguments, an NDA for max(A,B) cannot be of a finite size.

Assume, by contradiction, an NDA C with n states equivalent to max(A,B). The value of
A over every word is obviously 0. Thus, for every infinite word w, C(w) = B(w) if B(w) > 0
and 0 otherwise.

For a finite word u, we shall refer to λ|u|B(u) as the gap of B over u, denoted gap(B, u).
Intuitively, this gap stands for the weight that B should save over a suffix z for having a
negative value over the whole word. That is, B(uz) < 0 if and only if B(z) < −gap(B, u).
Within this proof, λ is fixed to 5

2 .
A key observation is that the gap of B can be arbitrarily small. Specifically, we show

that for every natural numbers k ≥ 3 and j ≤ d 2k
5 e, there is a finite word uj,k such that

gap(B, uj,k) = 5j
2k . It goes by induction on k. For k = 3, it holds with u0,3 =‘0’, u1,3 =‘ 2

5 ’
‘− 1

2 ’ ‘−1’, and u2,3 =‘ 2
5 ’ ‘−

1
2 ’. As for the induction step, consider a number 0 ≤ j ≤ d 2k+1

5 e.
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A: B:

λ = 5
2 Σ = { ‘−1’, ‘− 1

2 ’, ‘−
1
4 ’, ‘−

1
8 ’, ‘0’, ‘

2
5 ’ }

‘v’, v (e.g. ‘−1’, −1 )Σ, 0

Figure 6 The DDAs A and B, for which there is no NDA equivalent to max(A,B).

One may verify that multiplying 2k by each of 1, 1
2 ,

1
4 ,

1
8 , and 0, provides a different reminder

when divided by 5. Hence, there is a number v ∈ {−1,− 1
2 ,−

1
4 ,−

1
8 , 0} and a natural number

j′ ≤ d 2k
5 e such that j′ = j−v2k

5 . Thus, we can have, by the induction assumption, the required
word uj,k+1, by uj,k+1 = uj′,k‘v’ , as gap(B, uj,k+1) = 5

2 (gap(B, uj′,k) + v) = 5
2 ( 5j′

2k + v) =
5
2 ( j−v2k

2k + v) = 5j
2k+1 .

By the above observation, there is a finite word u, such that 1
λ2n < gap(B, u) < 1

λn . We
define the infinite word w = u‘0’n‘−1’‘0’ω. Since a 0-weighted letter multiplies the gap by λ,
we get that 0 < gap(B, u‘0’n) < 1, and therefore B(w) < 0 and C(w) = 0.

Let r be an optimal run of C on z. Since C has only n states, there is a state q of C and
two positions |u| < p1 < p2 < |u|+ n, such that r visits q on both p1 and p2. Let w1 and w2
be the prefixes of w of lengths p1 and p2, respectively. Let z be the suffix of w after w2, that
is w = w2z. Let r1, r2 and rz be the portions of r on w1, w2 and z, respectively.

Let v1 and v2 be the values of r1 and r2, respectively, and define g1 = λp1v1 and
g2 = λp2v2. Let vz be the value of a run equivalent to rz. Since the value of r is 0, we have
that v2 + vz

λp2 = 0, and therefore, vz = −g2.
We shall reach a contradiction by showing that g1 6< g2, g1 6> g2, and g1 6= g2. Indeed:
If g1 < g2 then there is a run r′ = r1rz of C on the word w′ = w1z, whose value is
v1 + vz

λp2 = g1+vz
λp2 . However, since g1 < g2 = −vz, it follows that the value of C on w′ is

negative, which leads to a contradiction.
If g1 > g2 then there is a negative-valued run of C on the word w1‘0’2(p2−p1)z, analogously
to the previous case.
If g1 = g2 then there is a 0-valued run of C on the word w′ = w1‘0’2nz, however B(w′) > 0,
leading to a contradiction.

J

We continue with the class of automata with an integral factor.

I Theorem 10. For every λ ∈ N, the class of λ-NDAs is closed under the max operation.

Proof. Consider a discount-factor 1 < λ ∈ N and two λ-NDAs, A and B. By Theorem 1, A
and B can be determinized to equivalent λ-DDAs. Thus, we may only consider deterministic
automata. Since deterministic automata are closed under (−1)-multiplication, we may also
consider the min operation rather than the max operation.

The construction of a DDA C equivalent to min(A,B) is analogous to the determinization
construction of Section 3.1, with the difference of extending automata-product rather than
the subset-construction. Namely, we iteratively construct the product of A and B, where a
state of C contains a state of A and a state of B, together with their recoverable-gaps. That
is, for a state p of A and a state q of B, a state c of C is of the form c = 〈〈p, gp〉, 〈q, gq〉〉.
When A and B read a finite word u and reach the states p and q, respectively, we have that
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gp = λ|u|(A(u) −min(A(u),B(u))) and gq = λ|u|(B(u) −min(A(u),B(u))). Once a gap is
too large, meaning that it is bigger than twice the maximal difference between a weight in A
and a weight in B, it is changed to ∞.

The termination and correctness proofs of the above construction are analogous to the
proofs of Lemmas 2 and 4. J

6 Conclusions

Recently, there has been a considerable effort to extend formal verification from the Boolean
setting to a quantitative one. Automata theory plays a key role in formal verification,
and therefore quantitative automata, mainly limit-average automata and discounted-sum
automata, have a central role in quantitative formal verification. Yet, a bothering problem is
that among the basic automata questions underlying a verification task, namely emptiness,
universality, and inclusion, only emptiness is known to be solvable for these automata. The
other questions are either undecidable, with limit-average automata, or not known to be
decidable, with discounted-sum automata.

We showed that discounted-sum automata with an integral factor form a robust class,
having algorithms for all the above questions, closed under natural composition relations,
as min, max, addition and subtraction, and always allowing for determinization. Hence, we
find this class of integral discounted-sum automata a promising direction in the development
of formal quantitative verification.
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Abstract
We study the semantics of a resource sensitive extension of the λ-calculus in a canonical reflexive
object of a category of sets and relations, a relational version of the original Scott D∞ model of
the pure λ-calculus. This calculus is related to Boudol’s resource calculus and is derived from
Ehrhard and Regnier’s differential extension of Linear Logic and of the λ-calculus. We extend it
with new constructions, to be understood as implementing a very simple exception mechanism,
and with a “must” parallel composition. These new operations allow to associate a context of
this calculus with any point of the model and to prove full abstraction for the finite sub-calculus
where ordinary λ-calculus application is not allowed. The result is then extended to the full
calculus by means of a Taylor Expansion formula.
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ential linear logic
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1 Introduction

In concurrent calculi like CCS [11], guarded processes are resources which can be used
only once by other processes. This fundamental linearity of resources leads naturally to
non-determinism, since several agents (senders and receivers) can interact on the same
channel. In general, various synchronization scenarios are possible, giving rise to different
behaviours. On the other hand in the λ-calculus, a function (receiver) can duplicate its
argument (sender) arbitrarily. Thanks to this asymmetry, the λ-calculus enjoys a strong
determinism (Church-Rosser), but it lacks any form of control on resource handling.

Resource Lambda Calculi. Resource λ-calculi stem from an attempt to combine the
functionality of the λ-calculus and the resource sensitivity of process calculi. Boudol has
been the first to design a resource conscious functional programming language, the resource
λ-calculus, extending the usual one along two directions [2]: a function is not necessarily
applied to a single argument but can also be applied to a multiset of arguments called
resources; a resource can be either linear (it must be used exactly once) or reusable (it can
be used ad libitum). In this context, the evaluation of a function applied to a multiset of
resources gives rise to several possible choices, corresponding to the different possibilities of
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distributing the resources in the multiset among the occurrences of the formal parameter.
From the viewpoint of concurrent programming, this was a natural step to take since one
of the main features of this programming setting is the consumption of resources which
cannot be copied. Milner’s π-calculus [12] features this phenomenon in great generality, and
Boudol’s calculus keeps track of it in a functional setting.

Together with Regnier, Ehrhard observed that this idea of resource consumption can
be understood as resulting from a differential extension of λ-calculus (and of Linear Logic)
[6]. Instead of considering two kinds of resources, they defined two kinds of applications:
the ordinary application and a linear one. In a simply typed setting, linear application of
a term M : A→ B to a multiset made of n terms N1, . . . , Nn : A, combined with ordinary
application to a term N : A, corresponds to computing M (n)(N)(N1, . . . , Nn) : B, where
M (n) is the n-th derivative ofM , which is of type A→ (An → B) and associates a symmetric
n-linear map with any element of A. The symmetry of this multilinear map corresponds to
the Schwarz Lemma of differential calculus and is implemented in the resource λ-calculus by
the use of multisets for representing linear applications.

The main difference between the resource λ-calculus and the differential λ-calculus is
that the first is lazy and is endowed with an explicit substitution mechanism. Therefore,
Boudol’s calculus is not an extension of the ordinary λ-calculus. Also, the resource λ-calculus
is rather affine than linear, since depletable resources cannot be duplicated but can be erased.
Another difference lies in the respective origins of these calculi: the resource λ-calculus
originates from syntactical considerations related to the theory of concurrent processes,
while the differential one arises from denotational models of linear logic where the existence
of differential operations has been observed. These models are based on the well known
relational model of Linear Logic and the interpretation of the new differential constructions
is as natural and simple as the interpretation of the ordinary LL constructions.

Two main syntaxes have been proposed for the differential λ-calculus: Ehrhard and
Regnier’s original one [6], simplified by Vaux in [16], and Tranquilli’s resource calculus of [15]
whose syntax is close to Boudol’s one. These calculi share a common semantical backbone as
well as similar connections with differential Linear Logic and proof nets. We adopt roughly
Tranquilli’s syntax and call our calculus ∂λ-calculus.

Full Abstraction. A natural open problem when a new calculus is introduced is to
characterize when two programs are operationally equivalent, namely when one can be
replaced by the other in every context without noticing any difference with respect to a given
observational equivalence. In this paper we prove a full abstraction result (a semantical
characterization of operational equivalence) for the ∂λ-calculus in the spirit of [3]. As in
that paper, we extend the language with a convergence testing mechanism. Implicitly, this
extension already appears in [5], in a differential LL setting: it corresponds to the 0-ary tensor
and par cells. To implement the corresponding extension of the λ-calculus, we introduce two
sorts of expressions: the terms (variable, application, abstraction, “throw” τ̄(P ) where P is
a test) and the tests (empty test, parallel composition of tests and “catch” τ(M) where M is
a term). Parallel composition allows to combine tests in such a way that the combination
succeeds if and only if each test succeeds. Outcomes of tests (convergence or divergence) are
the only observations allowed in our calculus, and the corresponding contextual equivalence
and preorder on terms constitute our main object of study.

This extended ∂λ-calculus, that we call ∂λ-calculus with tests, has a natural denotational
interpretation in a model of the pure λ-calculus introduced by Bucciarelli, Ehrhard and
Manzonetto in [4], which is indeed a denotational model of the differential pure nets of [5]
as one can check easily. This model is a reflexive object D in the Kleisli category of the LL
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model of sets and relations where !X is the set of all finite multisets over X. An element
of D can be described as a finite tree which alternates two kinds of layers: multiplicative
layers where subtrees are indexed by natural numbers and exponential layers where subtrees
are organized as non-empty multisets. To be more precise, `−? (negative) pairs of layers
alternate with ⊗−! (positive) pairs, respecting a strict polarity discipline very much in the
spirit of Ludics [9]. The empty positive multiplicative tree corresponds to the empty tensor
cell and the negative one to the empty par cell. The corresponding constructions τ , τ̄ are
therefore quite easy to interpret.

We use this logical interpretation to turn the elements of D into ∂λ-calculus terms with
tests. More precisely, with each element α of D, we associate a test α+L·M with a hole L·M for
a term, and we show that α belongs to the interpretation of a (closed) term M iff the test
α+LMM converges. From this fact, we derive a full abstraction result for the fragment of the
∂λ-calculus with tests in which all ordinary applications are trivial, that we call ∂0λ-calculus
with tests. To extend this result to the ∂λ-calculus with tests, we use the Taylor formula
introduced in [6] which allows to turn any ordinary application into a sum of infinitely many
linear applications of all possible arities. One exploits then the fact that the Taylor formula
holds in the model, as well as a simulation lemma which relates the head reduction of a term
with the head reduction of its Taylor expansion.

Contributions. The definability of the elements of D in the ∂λ-calculus with tests
is the main conceptual contribution of this paper: it shows that, in the ∂λ-calculus with
tests, the standard syntax versus semantics dichotomy is essentially meaningless. We also
consider the use of the Taylor expansion to reduce the full abstraction problem to its ∂0λ

version as an original and promising reduction technique. Notice that the tests added to the
calculus are needed to develop this new methodology, although we conjecture they do not
add discriminating power to the calculus (contrary to [3]).

Notations and basic definitions. We denote by N the set of natural numbers and by
1 an arbitrary singleton set. We write Sk for the set of all permutations of {1, . . . , k}.

Let S be a set. We write P(S) (resp. Pf(S)) for the set of all (resp. finite) subsets of S.
A multiset a over S is defined as an unordered list a = [α1, α2, . . .] with repetitions such that
αi ∈ S for all indices i. A multiset a is called finite if it is a finite list, we denote by #a its
cardinality. We writeMf(S) for the set of all finite multisets over S. Given two multisets
a, b we denote their union by a ] b. Given two finite sequences of multisets ~a,~b of the same
length n we define ~a ]~b = (a1 ] b1, . . . , an ] bn).

An operator F (−) is extended by linearity by setting F (Σixi) = ΣiF (xi).

2 The ∂0λ-Calculus with Tests

We now introduce the ∂0λ-calculus with tests which is the promotion-free fragment of the
∂λ-calculus with tests presented in Section 5. The ∂0λ-calculus with tests has four syntactic
categories: terms that are in functional position, bags that are in argument position and
represent multisets of linear resources, tests that are “corked” multisets of terms having
only two possible outcomes and finite formal sums representing all possible results of a
computation. Formally, we have the following grammar:

(Λτ̄ ) M,N,L,H ::= x | λx.M | MP | τ̄(Q) terms
(Λb) P ::= [L1, . . . , Lk] bags
(Λτ ) Q,R ::= τ [L1, . . . , Lk] tests
(Λe) A,B ::= M | P | Q expressions

CSL’11



100 Full Abstraction for Resource Calculus with Tests

Tests are multisets of terms, the “τ” being a tag for distinguishing them from bags.
Throughout the paper, we will enforce the distinction between bags and tests by using

systematically the following notational conventions.
For bags, we use the usual multiset notation: [] is the empty bag and P ] P ′ is the union.
For tests, ε is the empty multiset and Q|R is the multiset union of Q and R. In other
words, ε = τ [] and τ [L1, . . . , Lk] | τ [Lk+1, . . . , Ln] = τ [L1, . . . , Ln].

Terms are the real protagonists of the ∂0λ-calculus with tests. The term λx.M represents
the λ-abstraction and MP the application of a term M to a bag P of linear resources. Thus,
in (λx.M)P , each resource in P is available exactly once for λx.M and if the number of
occurrences of x in M “disagrees” with the cardinality of P then the result is 0 (see later,
when sums are introduced). We set I := λx.x, where ‘:=’ denotes definitional equality.

Tests are expressions which can produce two results: either success, represented by ε, or
failure, represented by 0. The test Q|R represents the (must-)parallel composition of Q and
R (i.e., Q|R succeeds if both Q and R succeed). The composition is parallel in the sense
that the order of evaluation is inessential.

The operator τ̄(·) allows to build a term out of a test: intuitively, the term τ̄(Q) may be
thought of as Q preceded by an infinite sequence of dummy λ-abstractions. Dually, the “cork
construction” τ [L1, . . . , Lk] may be thought of as an operator applying to all its arguments
an infinite sequence of empty bags. This suggests that it is sound to reduce τ [τ̄(Q)] to Q.

Hence the term τ̄(Q) raises an exception encapsulating Q and the test τ [L1, . . . , Lk]
catches the exception possibly raised by any of the Li’s and replaces Li by the multiset
of terms encapsulated in that exception. The context of the exception is thrown away by
the dummy abstractions of τ̄ and the dummy applications of τ . A test needs to catch an
exception in order to succeed; for instance, τ [M ] fails as soon as M is a τ̄ -free, closed term.

We will write ‖ni=1 Ri for R1| · · · |Rn; obviously we have ‖0i=1 Ri = ε and ‖1i=1 Ri = R1.
Expressions are either terms, bags or tests.
Sums. Let 2 be the semiring {0, 1} with 1 + 1 = 1 and multiplication defined in the

obvious way. For any set A, we write 2〈A〉 for the free 2-module generated by A, so that
2〈A〉 ∼= Pf(A) with addition corresponding to union, and scalar multiplication defined in
the obvious way. However we prefer to keep the algebraic notations for elements of 2〈A〉,
hence set unions will be denoted by + and the empty set by 0. This amounts to say that
2〈Λτ̄ 〉 (resp. 2〈Λτ 〉, 2〈Λb〉) is the set of finite formal sums of terms (resp. tests, bags) with an
idempotent sum. We also set 2〈Λe〉 = 2〈Λτ 〉 ∪ 2〈Λτ̄ 〉 ∪ 2〈Λb〉. This is an abuse of notation
as 2〈Λe〉 here does not denote the 2-module generated over Λτ ∪ Λτ̄ ∪ Λb, but rather the
union of the three 2-modules; this means that sums should be taken only in the same sort.

Typical metavariables to denote sums are: M,N,L,H ∈ 2〈Λτ̄ 〉, P ∈ 2〈Λb〉, Q,R ∈ 2〈Λτ 〉,
A,B ∈ 2〈Λe〉. The α-equivalence relation and the set FV(A) of free variables of A are
defined as usual, like in the ordinary λ-calculus [1]. We write degx(A) for the number of free
occurrences of x in A. Hereafter, (sums of) expressions are considered up to α-equivalence.

2.1 Two Kinds of Substitutions
Notice that the grammar for terms and tests does not include any sums, so they may arise
only on the “surface”. However, as syntactic sugar – and not as actual syntax – we extend all
the constructors to sums by multilinearity, setting for instance (ΣiMi)(ΣjPj) := Σi,jMiPj ,
in such a way that the following equations hold:

λx.(ΣiMi) = Σiλx.Mi M(ΣiP ) = ΣiMPi (ΣiMi)P = ΣiMiP τ [ΣiMi] = Σiτ [Mi]
(ΣiRi) | Q = Σi Ri | Q [ΣiLi] = Σi[Li] (ΣiPi) ] P = ΣiPi ] P τ̄(ΣiRi) = Σiτ̄(Ri)
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As an example of this extended (meta-)syntax, we may write (x1 + x2)[y1 + y2] for x1[y1] +
x1[y2] + x2[y1] + x2[y2]. This kind of meta-syntactic notation is discussed thoroughly in [8].

Observe that in the particular case of empty sums, we get λx.0 := 0, M0 := 0, 0P := 0,
τ [0] := 0, τ̄(0) := 0, R|0 := 0, [0] := 0, 0 ] P := 0. Thus 0 annihilates any term, bag or test.

We now introduce two kinds of substitutions: the usual λ-calculus substitution and a
linear one, which is proper to differential and resource calculi (see [2, 6, 15]).

Let A ∈ Λe and N ∈ Λτ̄ . The (capture-free) substitution of N for x in A, denoted by
A{N/x}, is defined as usual. Accordingly, A{N/x} denotes a term of the extended syntax.
Finally, we extend this operation to sums as in A{N/x} by linearity in A.

The linear (capture-free) substitution of N for x in A, denoted by A〈N/x〉, is defined as
follows (in this definition we strongly use the extended syntax):

y〈N/x〉 =

{
N if y = x,
0 otherwise,

[L1, . . . , Lk]〈N/x〉 = Σki=1[L1, . . . , Li〈N/x〉 . . . , Lk],
τ [L1, . . . , Lk]〈N/x〉 = Σki=1τ [L1, . . . , Li〈N/x〉, . . . , Lk],

(MP )〈N/x〉 = M〈N/x〉P +M(P 〈N/x〉), τ̄(Q)〈N/x〉 = τ̄(Q〈N/x〉),
(λy.M)〈N/x〉 = λy.M〈N/x〉, (in the abstraction case we assume wlog x 6= y).
Roughly speaking, linear substitution replaces the resource to exactly one linear free

occurrence of x. If there is no occurrence of x then the result is 0. In presence of multiple
occurrences, all possible choices are made and the result is the sum of them. For example,
we have (y[x][x])〈I/x〉 = y[I][x] + y[x][I].

An example of regular substitution is (x[x]){(z1 + z2)/x} = z1[z1] + z1[z2] + z2[z1] + z2[z2].
Turning to the extension of linear substitution to sums: the term A〈N/x〉 belongs to the

extended syntax, and we extend it to sums as in A〈N/x〉 by linearity in A, as we did for
usual substitution.

Observe that A〈N/x〉 is linear in A and in N, whereas A{N/x} is linear in A but not in N.
Linear substitutions commute in the sense expressed by the next lemma.

I Lemma 1 (Schwarz Lemma, cf. [6]). For A ∈ 2〈Λe〉, M,N ∈ 2〈Λτ̄ 〉 and y /∈ FV(M)∪FV(N)
we have A〈M/y〉〈N/x〉 = A〈N/x〉〈M/y〉+ A〈M〈N/x〉/y〉. In particular, if x /∈ FV(M) then
the two substitutions commute.

Given a bag P = [L1, . . . , Lk] such that x /∈ FV(P ) it makes sense to define A〈P/x〉 :=
A〈L1/x〉 · · · 〈Lk/x〉, because this expression does not depend on the enumeration L1, . . . , Lk.
In particular, A〈[]/x〉 = A. Given bags P1, . . . , Pn we set A〈~P/~x〉 := A〈P1/x1〉 · · · 〈Pn/xn〉.

2.2 The Operational Semantics
We are going to introduce the reduction rules defining the operational semantics of the
∂0λ-calculus with tests and show that it enjoys Church-Rosser and strong normalization,
even in the untyped version of the calculus.

I Definition 2. The reduction semantics of the ∂0λ-calculus with tests is generated by the
following rules (in the abstraction case we suppose wlog that x 6∈ FV(P )):

(λx.M)P →β M〈P/x〉{0/x}, τ̄(Q)P →τ̄

{
τ̄(Q) if P = [],
0 otherwise,

τ [λx.M ]|R→τ τ [M{0/x}]|R, τ [τ̄(Q)]|R→γ Q|R.

Notice that the reduction preserves the sort of an expression in the sense that terms
rewrite to (sums of) terms and tests to (sums of) tests. Also remark that, if M has k
free occurrences of x (represented by x1, . . . , xk) then we have M〈L1/x〉 · · · 〈Lk/x〉{0/x} =
Σσ∈Sk

M{Lσ(1)/x
1, . . . , Lσ(k)/x

k}; it is equal to 0 otherwise (namely, when degx(M) 6= k).
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We denote by → ⊆ 2〈Λe〉 × 2〈Λe〉 the contextual closure of →β ∪ →τ̄ ∪ →τ ∪ →γ . In
particular, parallel composition is treated asynchronously, thus R→ R entails Q|R→ Q|R
(which is equal to R|Q). This means, for instance, that if L → τ̄(Q), then τ [L, ~N ] →
τ [τ̄(Q), ~N ]→ Q | τ [ ~N ]. We write � for the transitive and reflexive closure of →.

I Definition 3. An expression A is in normal form (nf, for short) if there is no B such that
A→ B. A sum of expressions A is in nf if A 6= 0 and all its summands are in nf.

It is easy to check that a term M ∈ Λτ̄ is in normal-form if either M = λ~x.yP1 · · ·Pn or
M = λ~x.τ̄(‖ni=1 τ [yiP i1 · · ·P iki

]) where n ≥ 0, ki ≥ 0 and each P ij is a bag of terms in nf.

I Theorem 4. The ∂0λ-calculus with tests is strongly normalizing and Church-Rosser.

Proof. The fact that there are no infinite reduction chains is trivial, since every reduction step
decreases the size of an expression (which is straightforward to define). For the Church-Rosser
property just check local confluence and conclude by Newman’s lemma. J

I Lemma 5. For any closed term M , either τ [M ]� ε or τ [M ]� 0.

Proof. As ∂0λ-calculus with tests is strongly normalizing, we have that M � Σki=1Mi, where
each Mi is a closed nf. If k = 0 then τ [M ]� 0 since τ [0] = 0. Otherwise for each Mi there
are two possibilities:

Mi = λ~x.xjP1 · · ·Pn with xj ∈ ~x and n ≥ 0. Then τ [Mi] � τ [(xjP1 · · ·Pn){0/~x}] =
τ [0] = 0.
Mi = λ~x.τ̄(‖nj=1 τ [xjP j1 · · ·P

j
kj

]) with n ≥ 0 and xj ∈ ~x. If n = 0 then we have
‖nj=1 τ [xjP j1 · · ·P

j
kj

] = ε and τ [λ~x.τ̄(ε)]� τ [τ̄(ε)]→ ε. If n > 0, then we have τ [Mi]�
τ [τ̄(‖nj=1 τ [0P j1 {0/~x} · · ·P

j
kj
{0/~x}])] = 0.

We conclude since τ [M ]� Σki=1τ [Mi], and this latter expression reduces to a finite (possibly
empty) sum of ε’s, which is thus equal either to 0 or to ε. J

I Corollary 6. If R is a closed test then either R� ε or R� 0.

Contexts. A test-context CL·M is a test having one occurrence of a hole, denoted by L·M,
appearing in term-position. The set of test-contexts is denoted by ΛτL·M. Given M ∈ Λτ̄ we
indicate by CLMM the test resulting by blindly replacing M for the hole (allowing capture of
free variables) in CL·M. We say that CL·M is closed if it contains no free variable; it is closing
M if CLMM is closed. We say that a test Q converges, and we write Q↓, if Q� ε.

I Definition 7. The operational pre-order vO is defined by:

M vO N ⇔ ∀CL·M ∈ ΛτL·M closing M,N (CLMM↓ ⇒ CLNM↓).

We set M ≈O N if and only if M vO N and N vO M .

The choice of test-convergence as the basic observation in our calculus is very natural.
Indeed, tests provide a canonical notion of observation since – by design – they either converge
(to ε) or diverge.

3 A Relational Semantics

This section is devoted to build a relational model D of ∂0λ-calculus with tests, that has
been first introduced in [4] as a model of the ordinary λ-calculus. We first give a sketchy
presentation of the Cartesian closed category MRel where D lives.
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The objects of MRel are all the sets. A morphism from S to T is a relation fromMf(S)
to T , in other words, MRel(S, T ) = P(Mf(S) × T ). The identity of S is the relation
IdS = {([α], α) : α ∈ S}. The composition of s : S → T and t : T → U is defined by:

t ◦ s = {(m, c) : ∃(m1, β1), ..., (mk, βk) ∈ s such that m = ]ki=1mi and ([β1, ..., βk], c) ∈ t}.

The categorical product S & T of two sets S and T is their disjoint union. The terminal
object is the empty set ∅. The exponential object internalizing MRel(S, T ) isMf(S)× T .

An infinite sequence α = (a1, a2, . . . ) of multisets is quasi-finite if ai = [] holds for all but
a finite number of indices i. If S is a set, we denote byMf(S)(ω) the set of all quasi-finite
N-indexed sequences of multisets over S.

We build a family of sets (Dn)n∈N as follows: D0 = ∅, Dn+1 =Mf(Dn)(ω). Since the
operation S 7→ Mf(S)(ω) is monotonic with respect to inclusion and D0 ⊆ D1, we have
Dn ⊆ Dn+1 for all n ∈ N. Finally, we set D =

⋃
n∈N Dn.

To define an isomorphism between D andMf(D)×D just remark that every element
α = (a1, a2, a3, . . .) ∈ D stands for the pair (a1, (a2, a3, . . .)) and vice versa. Hence D ∼= [D⇒
D] (we have a canonical bijection between these two sets, and therefore an isomorphism
in MRel). Given α = (a1, a2, a3, . . .) ∈ D and a ∈ Mf(D), we write a ::α for the element
(a, a1, a2, a3, . . .) ∈ D. We set ∗ = ([], [], . . . , [], . . .) ∈ D. Remark that [] :: ∗ = ∗.

3.1 Interpreting the ∂0λ-calculus with tests
For all terms M , bags P , tests Q and repetition-free sequences ~x, ~y, ~z respectively con-
taining the free variables of M,P,Q, we define by mutual induction the interpretations
JMK~x : Dn → D, JP K~y : Dm →Mf(D) and JQK~z : Dk → 1 (n,m, k are the lengths of ~x, ~y, ~z)
as follows1:

JxiK~x = {(([], . . . , [], [α], [], . . . , []), α) : α ∈ D}, where [α] stands in i-th position,
Jλy.MK~x = {(~a, b ::α) : ((~a, b), α) ∈ JMK~x,y}, where we suppose wlog that y /∈ ~x,
JMP K~x = {(~a0 ] ~a1, α) : ∃b ∈Mf(D) (~a0, b ::α) ∈ JMK~x, (~a1, b) ∈ JP K~x},
J[L1, . . . , Lk]K~x = {(]ki=1~ai, [β1, . . . , βk]) : (~ai, βi) ∈ JLiK~x, 1 ≤ i ≤ k},
Jτ̄(Q)K~x = {(~a, ∗) : ~a ∈ JQK~x},
Jτ [M ]K~x = {~a : (~a, ∗) ∈ JMK~x},
JQ|RK~x = {~a0 ] ~a1 : ~a0 ∈ JQK~x,~a1 ∈ JRK~x},
JεK~x = {([], . . . , [])}.

The interpretation is then extended to sums by setting JΣki=1AiK~x = ∪ki=1JAiK~x.
Note that J[]K~x = {([], . . . , [])} ∈ Mf(D)n+1. Since every test R is of the form τ [L1, . . . , Lk]
we might define its interpretation directly as JRK~x = {]ki=1~ai : (~ai, ∗) ∈ JLiK~x, 1 ≤ i ≤ k}.

Hereafter, whenever we write JAK~x we suppose that ~x is a repetition-free list of variables
of length n containing FV(A). Moreover, we will sometimes silently use the fact JMK~x,y =
{((~a, []), α) : (~a, α) ∈ JMK~x} whenever y /∈ ~x.

Clearly the interpretation is monotonic, i.e., for any test context CL·M with free variables
~y, if JMK~x ⊆ JNK~x then JCLMMK~x,~y ⊆ JCLNMK~x,~y.

The following substitution lemmas are needed for proving the invariance of the interpret-
ation under reduction. The proofs are lengthy but not difficult, and are omitted.

1 Since Mf(S & T ) ∼= Mf(S) ×Mf(T ) we have, up to isomorphism, JMK~x ⊆ Mf(D)n × D, JP K~y ⊆
Mf(D)m+1 and JQK~z ⊆Mf(D)k × 1 ∼=Mf(D)k.
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I Lemma 8 (Linear Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and P = [L1, . . . , Lk] ∈ Λb
such that degy(M) = degy(Q) = k. We have:
(i) (~a, α) ∈ JM〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n

such that ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ]ki=0~ai = ~a.
(ii) ~a ∈ JQ〈P/y〉K~x iff there exist (~ai, βi) ∈ JLiK~x (for 1 ≤ i ≤ k) and ~a0 ∈ Mf(D)n such

that (~a0, [β1, . . . , βk]) ∈ JQK~x,y and ]ki=0~ai = ~a.

I Lemma 9 (Regular Substitution Lemma). Let M ∈ Λτ̄ , Q ∈ Λτ and N ∈ 2〈Λτ̄ 〉. We have:
(i) (~a, α) ∈ JM{N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈ Mf(D)n such that

(~ai, βi) ∈ JNK~x (for 1 ≤ i ≤ k), ((~a0, [β1, . . . , βk]), α) ∈ JMK~x,y and ~a = ]kj=0~aj,
(ii) ~a ∈ JQ{N/y}K~x iff ∃k ∈ N, ∃β1, . . . , βk ∈ D, ∃~a0, . . . ,~ak ∈Mf(D)n such that (~ai, βi) ∈

JNK~x (for 1 ≤ i ≤ k) and (~a0, [β1, . . . , βk]) ∈ JQK~x,y and ~a = ]kj=0~aj.

The substitution lemmas above generalize straightforwardly to sums. Although Lemma 9
is stated in full generality, for the ∂0λ-calculus with tests it is only useful for N = 0. However,
this formulation will be needed in Section 5 for the ∂λ-calculus with tests.

I Theorem 10. D is a model of the ∂0λ-calculus with tests, i.e., if A� B then JAK~x = JBK~x.

Proof. It is easy to check that the interpretation is contextual. The fact that the semantics
is invariant under reduction follows from Lemmas 8 and 9. J

4 First Full Abstraction Results

A model is equationally fully abstract (FA, for short) if the equivalence induced on terms
by their interpretations is exactly ≈O; it is inequationally FA if the induced preorder is vO.
Every inequationally FA model is also FA. In this section we prove that D is inequationally
FA for the ∂0λ-calculus (Thm. 19), i.e., that JMK~x ⊆ JNK~x iff M vO N .

4.1 Building Separating Test-Contexts
In this section we are going to associate a test-context α+L·M with each element α ∈ D, the
idea being that – for every closed term M – we have α ∈ JMK iff α+LMM converges.

I Definition 11. Let α ∈ D. The rank of α, written rk(α), is the least n ∈ N such that
α ∈ Dn+1; the length of α, written `(α), is 0 if α = ∗, and it is the unique r such that
α = a1 :: · · · ::ar ::∗ with ar 6= [], otherwise.

Note that if α = a1 :: · · · :: ar :: ∗ then for all 1 ≤ i ≤ r and for all α′ ∈ ai we have
rk(α) > rk(α′). Hence rk(α) = 0 entails α = ∗ and the following definition is well-founded.

I Definition 12. For α ∈ D of the form α = [α1
1, . . . , α

1
k1

] :: · · · :: [αr1, . . . , αrkr
] :: ∗ with

`(α) = r, define by mutual induction a closed term α– and a test-context α+L·M as follows:
α– = λx1 . . . xr.τ̄(‖ri=1 ((αi1)+LxiM| · · · |(αiki

)+LxiM)),
α+L·M = τ [L·M[(α1

1)–, . . . , (α1
k1

)–] · · · [(αr1)–, . . . , (αrkr
)–]].

Given a = [α1, . . . , αk] we set a– = [α–1, . . . , α–k].

For instance, we have ∗– = τ̄(ε) (as the empty parallel composition is equal to ε) and
∗+L·M = τ [L·M].

The next lemma, along with its corollaries, shows the interplay between the elements of
D and the terms/tests of Definition 12. It provides the main motivation for our extension of
the ∂λ-calculus.
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I Lemma 13. Let α ∈ D. Then:
(i) Jα–K = {α},
(ii) Jα+LxMKx = {[α]}.

Proof. The points (i) and (ii) are proved simultaneously by induction on rk(α). We write
IH(i) and IH(ii) for the induction hypotheses concerning (i) and (ii), respectively.

If rk(α) = 0 then α = ∗, hence J∗–K = Jτ̄(ε)K = {∗} and J∗+LxMKx = Jτ [x]Kx = {[∗]}.
If rk(α) > 0 and `(α) = r, then we have α = a1 :: · · · ::ar ::∗ with ai = [αi1, . . . , αiki

] for
1 ≤ i ≤ r.

We prove (i). Remember that by definition Jα–K = Jλy1 . . . yr.τ̄(‖ri=1‖
ki
j=1 (αij)+LyiM)K.

So we have β ∈ Jα–K iff β = b1 :: · · · :: br :: ∗ and for all 1 ≤ i ≤ r, 1 ≤ j ≤ ki there
is ~d ij ∈ J(αij)+LyiMK~y such that ~b = ]ri=1 ]

ki
j=1

~d ij . By IH(ii) we have ~d ij ∈ J(αij)+LyiMK~y iff
~d ij = (~[], [αij ], ~[]) where [αij ] appears in i-th position. Therefore ]ki

j=1
~d ij = (~[], ai, ~[]) and bi = ai

for every index i. Thus β = α.
We prove (ii). By def. Jα+LxMKx = Jτ [xa–1 · · · a–r]Kx. So we have c ∈ Jα+LxMKx iff there are

bi = [βii , . . . , βiki
], c0, c i1 , . . . , c iki

∈Mf(D) (for 1 ≤ i ≤ r) such that (c0, b1 :: · · · ::br ::∗) ∈ JxKx,
(cij , βij) ∈ J(αij)–Kx (for all 1 ≤ i ≤ r and 1 ≤ j ≤ ki) and c = c0 ] (]ri=1 ]

ki
j=1 c

i
j). As, by

IH(i), J(αiji
)–Kx = {([], αij)} we get cij = [] and βij = αij . Thus c = c0, α = b1 :: · · · ::br ::∗ and

from this it follows that (c, α) ∈ JxKx. We conclude that c = [α]. J

I Corollary 14. Jα+LMMK~x = {~c : (~c, α) ∈ JMK~x}.

Proof. By Lemma 13(ii) we have Jα+LyMK~x,y = {([], . . . , [], [α])}. As α+L·M does not have outer
λ-abstractions we have α+LMM = α+LyM〈[M ]/y〉. We then apply Lemma 8 to conclude. J

I Corollary 15. All finite subsets of D are definable.

Proof. By Lemma 13(i), for every finite set u = {α1, . . . , αk} we have Jα–1 +· · ·+α–kK = u. J

Lemma 13 reveals the behaviour of a test-context α+L·M when applied to a term β–.

I Corollary 16. Let α, β ∈ D. If α = β then α+Lβ–M� ε, otherwise α+Lβ–M� 0.

Proof. By Lemma 13, Jα+Lβ–MK = {()} ⊆ Mf(D)0 if α = β, ∅ otherwise. By Corollary 6, we
know that α+Lβ–M reduces either to ε or to 0. The result follows by soundness (Thm. 10). J

4.2 (In)equational Full Abstraction
We now show that the operational preorder vO (Def. 7) coincides with the inclusion of
interpretations in D. The proof of this full abstraction result needs some preliminary lemmas.

I Lemma 17. Let Q ∈ Λτ , FV(Q) ⊆ ~x and ~a ∈Mf(D)n. Then ~a ∈ JQK~x ⇔ JQ〈~a–/~x〉K 6= ∅
and degxi

(Q) = #ai.

Proof. By applying n times (one for each variable in ~x) Lemma 8 and Corollary 14. J

The ensuing lemma is the key argument for proving that D is inequationally fully abstract.

I Lemma 18. Let M ∈ Λτ̄ , ~x ⊇ FV(M), α ∈ D, ~a ∈Mf(D). The following are equivalent:
(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M↓.

Proof. We have the following chain of equivalences:
(~a, α) ∈ JMK~x ⇔ ~a ∈ Jα+LMMK~x, by Corollary 14,
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⇔ Jα+LM〈~a–/~x〉MK 6= ∅ and degxi
(M) = #ai, by Lemma 17, using (α+LMM)〈~a–/~x〉 =

α+LM〈~a–/~x〉M,
⇔ α+LM〈~a–/~x〉M � ε, by Corollary 6, i.e. the fact that closed tests can only reduce to

either ε or 0, and Theorem 10, i.e. the soundness of the model. J

I Theorem 19. D is inequationally fully abstract for the ∂0λ-calculus with tests:

JMK~x ⊆ JNK~x ⇔M vO N

Proof. (⇒) Assume that JMK~x ⊆ JNK~x, and let CL·M be a context closing both M and N
and such that CLMM � ε. By Thm. 10, JCLMMK = JεK = {()}. By monotonicity of the
interpretation we get JCLMMK ⊆ JCLNMK, thus JCLNMK 6= ∅. By Cor. 6 this entails CLNM↓.

(⇐) Suppose, by the way of contradiction, that M vO N holds but there is an element
(~a, α) ∈ JMK~x − JNK~x. Then the test-context CL·M = α+L(λ~x.L·M)~a–M is such that CLMM �
α+LM〈~a–/~x〉M� ε and CLNM 6� ε by Lemma 18. This leads to a contradiction. J

The rest of the paper is devoted to extend the above result to the ∂λ-calculus with tests.
The main ingredients will be the Taylor expansion and the head-reduction introduced in
Subsections 6.1 and 5.1, respectively.

5 The ∂λ-Calculus with Tests

The ∂λ-calculus with tests is an extension of the ∂0λ-calculus with tests with a promotion
available on resources. In this calculus a resource can be linear (it must be used exactly once)
or not (it can be used ad libitum) and in the latter case it is decorated with a “!” superscript.

Syntax. The grammar generating the terms, the tests and the expressions of the ∂λ-
calculus with tests, is the same as the one for the ∂0λ-calculus with tests (in particular
tests are still plain multisets of linear resources), except for the rule concerning bags which
becomes:

P ::= [L1, . . . , Lk,N!] bags

where N is a finite sum of terms of this new syntax. We write Λτ̄! for the set of terms
generated by this new grammar, Λτ! for the set of tests, Λb! for the set of bags, Λe! for
the set of expressions. From now on bags are no more plain multisets of terms: they are
compound objects, consisting of a multiset of terms [L1, . . . , Lk] and a sum of terms N,
denoted as [L1, . . . , Lk,N!]. We shall deal with them as if they were multisets, defining
union by [L1, . . . , Lk,N!] ] [Lk+1, . . . , Ln,M!] := [L1, . . . , Ln, (N + M)!]. This operation is
commutative, associative and has [0!] as neutral element.

The ∂0λ-calculus with tests is the sub-calculus of ∂λ-calculus with tests in which all bags
have shape [L1, . . . , Lk, 0!], and this identification is compatible with the reduction rules.

As in the ∂0λ-calculus with tests, we extend this syntax by multilinearity to sums of
expressions with the only exception that the bag [~L, (N + M)!] is not required to be equal
to [~L,N!] + [~L,M!]. The intuition is that in the first expression N + M can be used several
times and each time one can choose either N or M, whereas in the second expression one has
to choose once and for all one of the summands, and then use it as many times as needed.

Substitutions. Linear substitution is denoted and defined as in the ∂0λ-calculus with tests,
except of course for bags, where we set:

[L1, . . , Lk,N!]〈N/x〉 = Σki=1[L1, . . , Li〈N/x〉, . . , Lk,N!] + [L1, . . , Lk,N〈N/x〉,N!] .
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For example, (x[x!])〈y/x〉〈z/x〉 = y[z, x!] + z[y, x!] + x[y, z, x!]. Remark that in the !-free
case, that is when N = 0, the above definitions and notations agree with those introduced in
Subsection 2.1, because in that case we have [L1, . . . , Lk,N〈N/x〉,N!] = 0, since 0〈N/x〉 = 0.

We also define the regular substitution A{N/x} for the ∂λ-calculus with tests, by simply
replacing each occurrence of x in the expression A with N: in that way we get an expression of
the extended syntax, since N is a sum in general. E.g., x[x!]{(y + z)/x} = y[y!, z!] + z[y!, z!].

Both substitutions are then generalized to sums: linear substitution is extended to A〈N/x〉
by bilinearity in A and N, while ordinary substitution to A{N/x} by linearity in A.

A Schwarz lemma, analogous to Lemma 1, holds for the ∂λ-calculus with tests. Hence,
given a sum of expressions A and a bag P = [L1, . . . , Lk] with x /∈ FV(P ), it still makes
sense to set A〈P/x〉 := A〈L1/x〉 · · · 〈Lk/x〉 because this expression does not depend on the
enumeration of L1, . . . , Lk. In particular we have A〈[]/x〉 = A.

Operational semantics. The reduction rules of ∂λ-calculus extend those of the ∂0λ-calculus
with tests in the sense that they are equivalent on !-free expressions.

The rules (τ) and (γ) are exactly the same, while the β-reduction and τ̄ -reduction are
rephrased as follows:

(λx.M)[L1, . . , Lk,N!]→β M〈[L1, . . , Lk]/x〉{N/x}, where wlog x 6∈ FV([L1, ..., Lk]),

τ̄(Q)[L1, . . . , Lk,N!]→τ̄

{
τ̄(Q) if k = 0,
0 otherwise.

The ∂λ-calculus with tests is still Church-Rosser (just adapt the proof in [14]), while it
is no more strongly normalizing. For instance the term Ω = (λx.x[x!])[(λx.x[x!])!] has an
infinite reduction chain, just like the paradigmatic homonymous unsolvable λ-term. Indeed,
the usual λ-calculus can be embedded into the ∂λ-calculus with tests by translating every
application MN into M [N !].

In this framework a test-context CL·M is a test of the ∂λ-calculus with tests having a single
occurrence of its hole, appearing in term-position. The set of test-contexts is denoted by Λτ !

L·M.
A test Q converges, notation Q↓, if there exists a sum Q such that Q� ε+ Q.

I Definition 20. The operational pre-order v!
O on the ∂λ-calculus with tests is defined by:

M v!
O N ⇔ ∀CL·M ∈ Λτ !

L·M closing M,N (CLMM↓ ⇒ CLNM↓).

We then set M ≈!
O N if and only if M v!

O N and N v!
O M .

Relational semantics. The ∂λ-calculus with tests can be interpreted into D by extending the
interpretation of the ∂0λ-calculus with tests as follows:

J[L1, . . . , Lk,N!]K~x = {(]k+m
r=1 ~ar, [β1, . . . , βk+m]) : (~aj , βj) ∈ JLjK~x, 1 ≤ j ≤ k and

(~ai, βi) ∈ JNK~x, k < i ≤ k +m}.

It is easy to check that both Lemma 8 and Lemma 9 generalize to this context. From these
lemmas it ensues that D is also a model of the ∂λ-calculus with tests.

I Theorem 21. D is a model of ∂λ-calculus with tests.

5.1 Head Reduction
We now provide a notion of head-reduction for the ∂λ-calculus with tests. Intuitively, the
head-reduction is obtained by reducing a head-redex, that is a redex occurring in head-
position in an expression A. The interest of introducing this reduction strategy is that it
“behaves well” with respect to the Taylor expansion in the sense of Proposition 31.

We start by defining the notion of redex.
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x◦ = {x}, (λx.M)◦ = {λx.M ′ : M ′ ∈M◦}, (MP )◦ = {M ′P ′ : M ′ ∈M◦, P ′ ∈ P ◦},
(τ̄(Q))◦ = {τ̄(Q′) : Q′ ∈ Q◦}, (τ [M1, . . . ,Mk])◦ = {τ [M ′1, . . . ,M ′k] : M ′i ∈M◦i , for 1 ≤ i ≤ k},

[L1, . . . , Lk,N!]◦ = {[L′1, . . . , L′k] ] P : L′i ∈ L◦i , for 1 ≤ i ≤ k, P ∈Mf(N◦)},
(Σki=1Ai)◦ = ∪ki=1A

◦
i .

Figure 1 The Taylor expansion A◦ of A ∈ 2〈Λe! 〉.

I Definition 22. A term-redex is any term of the form (λx.M)P or τ̄(Q)P . A test-redex is
any test of the form τ [λx.M ], τ [τ̄(Q)].

Among term- and test-redexes we distinguish those redexes that are in “head” position.

I Definition 23. A head-redex is:
either a term-redex H in terms of shape λ~y.H ~P ,
or a term-redex H in tests of shape τ [H ~P ]|Q,
or a test-redex R in tests of shape R|Q.

I Definition 24. We say that A→ B is a step of head-reduction if B is obtained from A by
contracting a head-redex. If A→ B is a step of head-reduction then also A+ A→ B + A is.

One-step head-reduction is denoted by →h, while�h indicates its reflexive and transitive
closure. Notice that, unlike in ordinary λ-calculus, an expression A may have more than one
head-redex, hence there may be more than one head-reduction steps starting from A.

The head-reduction induces a notion of head-normal form on (finite sums of) expressions.

I Definition 25. An expression A is in head-normal form (hnf, for short) if there is no B
such that A→h B; a sum A is in hnf if A 6= 0 and each summand is in hnf.

This notion of hnf differs from that given by Pagani and Ronchi della Rocca in [13]. We keep
this name since their definition captures the notion of “outer-nf” rather than that of hnf.

It is easy to check that a term M is in hnf iff M := λ~x.y ~P or M := λ~x.τ̄(Q); a test R is
in hnf iff R := ε, R := τ [x~P ] or R := Q1|Q2 for some tests Q1, Q2 in hnf.

The following two lemmas concern reduction properties of !-free closed tests.

I Lemma 26. Let R ∈ Λτ . If R is closed and R 6= ε then it has a head-redex (hence,
R→h R′ for some R′).

Proof. By induction on R. It suffices to consider the case R = τ [M ]. We then proceed by
cases on the structure of M (which must be closed). If M = λx.N then R head-reduces
using (τ). If M is an application then it must be written either as M = (λy.N)P1 · · ·Pk or
as M = τ̄ [Q]P1 · · ·Pk (in both cases k ≥ 1) and hence R head-reduces using either (β) or
(τ̄), respectively. If M = τ̄(Q) then R head-reduces using (γ). J

I Lemma 27. If R ∈ Λτ is closed then R� ε iff R�h ε.

Proof. (⇒) Suppose, by contradiction, that R � ε but R 6�h ε. By confluence (Thm. 4),
we cannot have R�h 0. Thus, since R ∈ Λτ is strongly normalizing, the only way to have
R 6�h ε is that R�h R where R 6= ε is in hnf. This is impossible by Lemma 26.

(⇐) Trivial since �h ⊆ �. J

One should be careful when trying to extend the above result to terms M ∈ Λτ̄ . For instance,
it is false that M � 0 iff M �h 0. Indeed M := λx.x[I[]] is in hnf but M → λx.x[0] := 0.
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6 Full Abstraction via Taylor Expansion

In this section we are going to define the Taylor expansion of terms and tests of the ∂λ-calculus
with tests. We will then use this expansion, combined with head-reduction, to generalize the
full abstraction results obtained in Subsection 4.2 to the framework of ∂λ-calculus with tests.

6.1 Taylor Expansion
The (full) Taylor expansion was first introduced in [6, 7], in the context of λ-calculus. The
Taylor expansion M◦ of an ordinary λ-term M gives an infinite formal linear combination of
terms of the ∂0λ-calculus. In the case of ordinary application it looks like:

(MN)◦ =
∞∑
n=0

1
n!M [N, . . . , N︸ ︷︷ ︸

n times

]

in accordance with the intended meaning and the denotational semantics of application in
the resource calculus. In the syntax of differential λ-calculus [6] the above formula looks like∑∞
n=0

1
n!M

(n)(0)(N, . . . , N), hence the connection with analytical Taylor expansion is clear.
Following [10], we extend the definition of Taylor expansion from ordinary λ-terms to

the expressions of the ∂λ-calculus with tests. Since the sum is idempotent, the coefficients
disappear and our Taylor expansion corresponds to the support of the actual Taylor expansion.

As the set 2〈Λe〉∞ of possibly infinite formal sums of expressions is isomorphic to P(Λe),
in the following we may use sets instead of sums.

I Definition 28. Let A ∈ 2〈Λe! 〉. The (full) Taylor expansion of A is the set A◦ ⊆ Λe which
is defined (by structural induction on A) in Figure 1.

As previously announced, the Taylor expansion of an expression A can be infinite. For
example, we have that (λx.x[x!])◦ = {λx.x[xn] : n ∈ N}.

To lighten the notations, we adopt for infinite sets of expressions the same abbreviations as
introduced for finite sums in Subsection 2.1 (including those for substitutions). For instance, if
X,Y ⊆ Λτ̄ then λx.X denotes the set {λx.M ′ : M ′ ∈ X} and X〈Y/x〉 = ∪M∈X,N∈YM〈N/x〉.

In [10] it is proved that MRel is a differential Cartesian closed category that “models
the Taylor expansion”. This property entails that Taylor expansion preserves the meaning of
an expression in D, as expressed in the next theorem.

I Theorem 29. JAK~x = ∪A∈A◦JAK~x, for all A ∈ 2〈Λe! 〉.

Proof. By adapting the proof in [10] of the analogous result for the differential λ-calculus. J

We now need the following lemma stating the commutation of Taylor expansion with respect
to ordinary and linear substitutions. The proof is lengthy but not difficult and is omitted.
For the sake of readability, in the next statements we use sums and unions interchangeably.

I Lemma 30. Let A ∈ Λe! , N ∈ Λτ̄! and N ∈ 2〈Λτ̄! 〉. Then, for x /∈ FV(N) ∪ FV(N):
(i) (A〈N/x〉)◦ = A◦〈N◦/x〉,
(ii) (A{N/x})◦ =

⋃
P∈Mf(N◦)A

◦〈P/x〉{0/x}.

The next proposition is devoted to show how Taylor expansion interacts with head-
reduction. To ease the formulation of the next proposition we assimilate 2〈Λe! 〉 to Pf(Λe! ).

I Proposition 31. Let A ∈ Λe! and let A′ ∈ A◦ be such that A′ →h B′, for some B′. Then
there exists B such that A→h B and B′ ⊆ B◦.
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Proof. The idea is that the syntactic tree of A has the same structure as that of A′ and we
can define a surjective mapping of the redexes of A′ into those of A.

We only treat the case A′ = λ~x.H ′P ′1 · · ·P ′p where H ′ = (λy.M ′)P ′ is a head-redex. From
A′ ∈ A◦ we get A = λ~x.HP1 · · ·Pp for some H such that H ′ ∈ H◦. Hence, supposing
wlog P ′ = [~L′, ~N ′], we have that H = (λy.M)[~L,N!] where M ′ ∈ M◦, the lengths of
~L′ and ~L coincide, L′i ∈ L◦i for all i and [ ~N ′] ∈ Mf(N◦). We now know that H ′ →h

M ′〈[~L′]/y〉〈[ ~N ′]/y〉{0/y} and H →h M〈[~L]/y〉{N/y}. By Lemma 30, (M〈[~L]/y〉{N/y})◦ =
∪P∈Mf(N◦)M

◦〈[~L◦]/y〉〈P/y〉{0/y} ⊇M〈P ′/y〉{0/y}.
We can conclude that λ~x.M ′〈P ′/y〉{0/y}P ′1 · · ·P ′p ⊆ (λ~x.M〈[~L]/y〉{N/y}P1 · · ·Pp)◦. J

Note that the above proposition is false for regular β-reduction. E.g., take A := x[(I[y])!]
and A′ := x[I[y], I[y]] ∈ A◦, then A′ →β x[y, I[y]] and A→β x[y!] but x[y, I[y]] /∈ (x[y!])◦.

I Corollary 32. Let R ∈ Λτ! be closed. If there is an R′ ∈ R◦ such that R′ � ε, then R↓.

Proof. Suppose that there exists R′ ∈ R◦ such that R′ � ε. By Lemma 27 there is a
head-reduction chain of the form R′ →h R′1 →h · · · →h R′n = ε. By iterated application of a
corollary2 of Prop. 31 there are tests Ri (for i = 1, . . . , n) such that R→h R1 →h · · · →h Rn
with R′i ⊆ R◦i . We conclude since ε ∈ R◦n is only possible when ε ∈ Rn. J

6.2 Full Abstraction for the ∂λ-Calculus with Tests
We now prove that the relational model D is fully abstract for the ∂λ-calculus with tests.

I Lemma 33. Given A ∈ Λe! and M ∈ Λτ̄! we have:

(i) (α+LMM)◦ = α+LM◦M, for all α ∈ D,
(ii) (A〈a–/x〉)◦ = A◦〈a–/x〉, for all a ∈Mf(D).

Proof. As α+L·M and a– are !-free, and (·)◦ behaves like the identity on !-free expressions. J

I Proposition 34. Let M ∈ Λτ̄! , ~x ⊇ FV(M), α ∈ D and ~a ∈ Mf(D). Then the following
statements are equivalent:
(i) (~a, α) ∈ JMK~x,
(ii) α+LM〈~a–/~x〉M↓.

Proof. (i ⇒ ii) Suppose (~a, α) ∈ JMK~x, then by Thm. 29 there is an M ′ ∈ M◦ such
that (~a, α) ∈ JM ′K~x. Applying Lemma 18 we know that α+LM ′〈~a–/~x〉M � ε. Now, since
α+LM ′〈~a–/~x〉M ∈ (α+LM〈~a–/~x〉M)◦ (by Lemma 33), we can apply Corollary 32 and get
α+LM〈~a–/~x〉M↓.

(ii ⇒ i) Suppose that α+LM〈~a–/~x〉M � ε + Q, for some Q; then Jα+LM〈~a–/~x〉MK~x 6= ∅.
Hence, by Theorem 29, there is a closed test R ∈ (α+LM〈~a–/~x〉M)◦ such that JRK 6= ∅. By
Lemma 33 R = α+LM ′〈~a–/~x〉M for some M ′ ∈M◦ and since its interpretation is non-empty
we have R� ε. By applying Lemma 18 we get (~a, α) ∈ JM ′K~x ⊆ JMK~x (by Theorem 29). J

I Theorem 35. D is inequationally fully abstract for the ∂λ-calculus with tests:

JMK~x ⊆ JNK~x ⇔M v!
O N.

2 If A′ ⊆ A◦ and A′ →h B′ then there exists B such that A→h B and B′ ⊆ B◦.
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Proof. (⇒) Suppose that JMK~x ⊆ JNK~x and there is a test-context CL·M (closing M,N) such
that CLMM↓. Since CLMM� ε+Q, for some Q, we have JCLMMK 6= ∅. Thus, by monotonicity
of the interpretation we get JCLMMK ⊆ JCLNMK = J(CLNM)◦K 6= ∅. By Corollary 6 there is
R ∈ (CLNM)◦ such that R� ε and we conclude that CLNM↓ by applying Proposition 34.

(⇐) Suppose by contradiction that M v!
O N , but there is an (~a, α) ∈ JMK~x − JNK~x. By

Prop. 34 α+LM〈~a–/~x〉M↓ and since M v!
O N we have α+LN〈~a–/~x〉M↓. Again, by Prop. 34

(~a, α) ∈ JNK~x. Contradiction. J

Further Work. We proved that D is a fully abstract model of the ∂λ-calculus and of the
∂0λ-calculus with tests. We strongly conjecture that it also (in)equationally fully abstract
for the corresponding calculi without tests. A possible approach to obtain these results might
be to define a “test-expansion” translating every test-context CL·M sending M ∈ Λτ̄! to ε+ R
into a term-context C ′L·M sending M to I + N. This generalization is non trivial and is kept
for future work. Another open problem is to find a fully abstract model of these calculi where
+ is treated as must non-determinism (a sum converges if all its summands converge).
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Abstract
Complementation of finite automata on infinite words is not only a fundamental problem in
automata theory, but also serves as a cornerstone for solving numerous decision problems in
mathematical logic, model-checking, program analysis and verification. For Streett complement-
ation, a significant gap exists between the current lower bound 2Ω(n lgnk) and upper bound
2O(nk lgnk), where n is the state size, k is the number of Streett pairs, and k can be as large as 2n.
Determining the complexity of Streett complementation has been an open question since the late
80’s. In this paper we show a complementation construction with upper bound 2O(n lgn+nk lg k)

for k = O(n) and 2O(n2 lgn) for k = ω(n), which matches well the lower bound obtained in [3].
We also obtain a tight upper bound 2O(n lgn) for parity complementation.
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1 Introduction

Automata on infinite words (ω-automata) have wide applications in synthesis and verification
of reactive concurrent systems. Complementation plays a fundamental role in many of these
applications, especially in solving the language containment problem: whether a language
recognized by automaton A is contained by another language represented by automaton
B, which is equivalent to whether the language of A and the complementary language of B
intersect. In automata-theoretic model checking [10, 27], both system behaviors and logical
specifications are represented as formal languages, and model checking by and large amounts
to solving the corresponding language containment problem. As both language intersection
and emptiness test are rather easy, the efficiency of complementation becomes crucial to
practical deployment of model-checking tools. For this reason and many others, determining
the state complexity of the complementation problem has been extensively studied in the
last four decades [26].
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Related Work

ω-automata were invented by Büchi in 1962 as a method of attack on definability and
decision problems for monadic second order logic on arithmetics (S1S) [1]. That type of
ω-automata are nowadays called Büchi automata. The initial Büchi complementation was
not explicitly constructive and required double exponential blow-up [1]. But since then Büchi
complementation has been extensively studied. The upper bound was continuously improved
to 2O(n2) [24], 2O(n lgn) [21], O((6n)n) [11], O((0.97n)n) [6] and finally to O(n2L(n)) where
L(n) ≈ (0.76n)n [23], which matched well the lower bound Ω(L(n)) [28].

Complementation for automata with rich acceptance conditions, such as Rabin automata
and Streett automata, is much more sophisticated. Kupferman and Vardi showed a 2O(nk lgn)

complementation construction for Rabin automata [14], and we showed this construction
is essentially optimal [2]. This leaves Streett complementation the last classical problem
where the gap between the lower and upper bounds is substantial. Besides that, Streett
complementation has an importance of its own. Streett automata share identical algebraic
structures with Büchi automata, except being equipped with richer acceptance conditions. A
Streett acceptance condition comprises a finite list of indexed pairs of sets of states. Each
pair consists of an enabling set and a fulfilling set. A run is accepting if for each pair, if
the run visits states in the enabling set infinitely often, then it also visits states in the
fulfilling set infinitely often. This naturally corresponds to the strong fairness condition
that infinitely many requests are responded infinitely often, a necessary requirement for
meaningful computations [5, 7]. Another advantage of Streett automata is that they are
much more succinct than Büchi automata; it is unavoidable in the worst case to have 2n
state blow-up to translate a Streett automaton with O(n) states and O(n) index pairs to an
equivalent Büchi automaton [25]. An interesting question is: to what extent does the gain
from the succinctness have to be paid back at the time of complementation?

The first construction for Streett complementation was given by Safra and Vardi, and
that construction required 2O((nk)5) state blow-up [25]. Klarlund improved this bound to
2O(nk lgnk) [8]. The same bound was achieved by Safra via determinization [22], by Piterman
with an improved determinization construction [19], and by Kupferman and Vardi [14].
However, so far no construction has been proved to cost less than 2O(nk lgnk) states. The
question of whether Streett complementation can be further improved from 2O(nk lgnk) has
been constantly raised in the recent literature [14, 28, 26]. In this paper we answer this
question affirmatively.

Ranking-based Complementation

A Ranking-based complementation was first proposed by Klarlund [8]. Klarlund’s Büchi
complementation (resp. Streett complementation) relies on quasi co-Büchi measure (resp.
quasi Rabin measure), which is a ranking function on states in a run graph, measuring the
progress of a run toward being accepted. By this complementation scheme, Klarlund gave a
2O(n lgn) Büchi complementation and a 2O(nk lgnk) Streett complementation [8]. Kupferman
and Vardi developed a similar idea into an elegant and comprehensive framework [13, 9],
obtaining complementation constructions for Büchi [11], generalized Büchi [12], Rabin and
Streett [14].

Our Results

Our Streett complementation is obtained by improving Kupferman and Vardi’s construction
in [14]. We show that the larger the Rabin index size k, the higher the correlation between
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Type Bound Lower Upper
Büchi 2Θ(n lg n) [17] [21]
Generalized Büchi 2Θ(n lg nk) k = O(2n) [28] [14]

Streett 2Θ(n lg n+nk lg k) k = O(n) [3] this
2Θ(n2 lg n) k = ω(n)

Rabin 2Θ(nk lg n) k = O(2n) [2] [14]
Parity 2Θ(n lg n) k = O(n) [17] this

Figure 1 The complementation complexities for ω-automata of common types.

infinite paths in a run graph satisfying a universal Rabin condition (the dual of an existential
Streett condition), and characterize the correlation using two tree structures: ITS (Increasing
Tree of Sets) and TOP (Tree of Ordered Partitions), both with elegant combinatorial proper-
ties. We show that our construction renders a upper bound U(n, k), which is 2O(n lgn+nk lg k)

for k = O(n) and 2O(n2 lgn) for k = ω(n). U(n, k) is a significant improvement from the
previous best bound when k = ω(n). Speaking loosely, we gain succinctness without paying
a dramatically higher price for complementation. U(n, k) also matches the lower bound
L(n, k), which is 2Ω(n lgn+nk lg k) for k = O(n) and 2Ω(n2 lgn) for k = ω(n) [3]. By a similar
technique, we also obtain a 2O(n lgn) upper bound for parity complementation, which is
essentially optimal, as parity automata generalizes Büchi automata, whose complementation
lower bound is 2Ω(n lgn) [17, 15]. This is surprising as the index size k (though small as
k ≤ b(n + 1)/2c) has no appearance in the asymptotical bound. We believe this is of
practical interest as well, because it tells us that parity automata provide a richer acceptance
condition without incurring an asymptotically higher cost on complementation. Combining
the result with the one in [3] and previous findings in the literature, we now have a complete
characterization of complementation complexity for ω-automata of common types. Figure 1
summarizes these results.

Paper Organization

Section 2 introduces basic notations and terminology in automata theory. Section 3 presents
the framework of ranking based complementation; it introduces Büchi complementation [11],
generalized Büchi complementation [12] and Streett complementation [14]. Section 4 presents
our Streett complementation construction and Section 5 proves its complexity. Section 6
establishes a tight upper bound for parity complementation. Section 7 concludes with a
discussion of future work. Due to space limit, all proofs are omitted, but they can be found
in the full version of this paper at arXiv:1102.2960.

2 Preliminaries

Basic Notations

Let N denote the set of natural numbers. We write [i..j] for {k ∈ N | i ≤ k ≤ j}, [i..j)
for [i..j − 1], [n] for [0..n), and [n]even and [n]odd for even numbers and odd numbers in
[n], respectively. For an infinite sequence %, we use %(i) to denote the i-th component for
i ∈ N. For a finite sequence α, we use |α| to denote the length of α, α[i] (i ∈ [1..|α|]) to
denote the object at the i-th position, and α[i..j] (resp. α[i..j)) to denote the subsequence
of α from position i to position j (resp. j − 1). When we compare finite sequences of
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numbers, >m,≥m,=m, <m,≤m mean the corresponding standard lexicographical orderings
up to position m. We reserve n and k as parameters of complementation instances (n for
state size and k for index size), and define µ = min(n, k) and I = [1..k].

Automata and Runs.

A finite automaton on infinite words (ω-automaton) is a tuple A = (Σ, Q,Q0,∆,F) where Σ
is an alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, ∆ ⊆ Q× Σ×Q is
a set of transitions, and F is an acceptance condition.

An infinite word (ω-word) over Σ is an infinite sequence of letters in Σ. A run %

of A over an ω-word w is an infinite sequence of states in Q such that %(0) ∈ Q0 and,
〈%(i), w(i), %(i+1)〉 ∈ ∆ for i ∈ N. Let Inf(%) be the set of states that occur infinitely many
times in %. An automaton accepts w if a run % over w exists that satisfies F , which is usually
defined as a predicate on Inf(%). The language of A, written L (A), is the set of ω-words
accepted by A.

Acceptance Conditions and Types

ω-automata are classified according to their acceptance conditions. Below we list automata
of common types. Let G and B be functions from I to 2Q.

Generalized Büchi: 〈B〉I : ∀i ∈ I, Inf(%) ∩B(i) 6= ∅.
Büchi: 〈B〉I with I = {1} (i.e., k = 1).
Streett: 〈G,B〉I : ∀i ∈ I, Inf(%) ∩G(i) 6= ∅ → Inf(%) ∩B(i) 6= ∅.
Parity: 〈G,B〉I with B(1) ⊂ G(1) ⊂ · · · ⊂ B(k) ⊂ G(k).
Generalized co-Büchi: [B]I : ∃i ∈ I, Inf(%) ∩B(i) = ∅.
Co-Büchi: [B]I with I = {1} (i.e., k = 1).
Rabin: [G,B]I : ∃i ∈ I, Inf(%) ∩G(i) 6= ∅ ∧ Inf(%) ∩B(i) = ∅.

We use GB, B, S, P, GC, CB, and R, respectively, to denote the above acceptance conditions.
By T -automata we mean the ω-automata with T -condition. Note that B and CB, GB and
GC, and S and R are dual to each other, respectively. Also note that generalized Büchi and
parity automata are both subclasses of Streett automata, and so are generalized co-Büchi
and parity automata to Rabin automata. Let J ⊆ I. We use [G,B]J to denote the Rabin
condition with respect to only indices in J . When J is a singleton, say J = {j}, we simply
write [G(j), B(j)] for [G,B]J . The same convention is used for other conditions. For a Streett
condition 〈G,B〉I , we can assume that B is injective, because if B(i) = B(i′) for two different
i, i′ ∈ I, then we can replace 〈G,B〉{i,i′} by 〈G(i) ∪ G(i′), B(i)〉. The same assumption is
made for any Rabin condition [G,B]I .

∆-Graphs.

A ∆-graph of an ω-word w under A is a directed graph Gw = (V,E) where V = Q× N and
E = {〈〈q, l〉, 〈q′, l + 1〉〉 ∈ V × V | q, q′ ∈ Q, i ∈ N, 〈q, w(i), q′〉 ∈ ∆ }. By the i-th level, we
mean the vertex set Q× {i}. Let S be a subset of Q. We call a vertex v = 〈q, l〉 S-vertex if
q ∈ S. When level index is of no importance in the context, we use q and v interchangeably.
In particular, by an abuse of notation we write v ∈ S to mean v = 〈q, l〉 for some l ∈ N and
q ∈ S. ∆-graphs for finite words are similarly defined. The length of a finite ∆-graph is the
number of levels minus 1. By unit ∆-graphs we mean ∆-graphs of length 1. A unit ∆-graph
encodes all possible transitions upon reading a letter. By width of Gw (written width(Gw))
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we mean the maximum number of pairwise non-intersecting infinite paths in Gw. Clearly, for
any w, width(Gw) ≤ |Q|.

3 Ranking-based Complementation

In this section we introduce ranking-based complementation constructions developed by
Klarlund, Kupferman and Vardi [8, 11, 13, 9]. Note that all complexity related notions are
parameterized with n and k, but we do not list them explicitly unless required for clarity. We
adopt the following naming convention: when we talk about behaviors of a source automaton,
a T -condition means an existential one (i.e., a path in a ∆-graph that satisfies T ), while in
the context of complementation, a T -condition means a universal one (i.e., every path in a
∆-graph satisfies T ).

Ranking-based Complementation Scheme

Let A be a T -automaton and CA a purported Büchi automaton that complements A. An
ω-word w is accepted by A if and only if the ∆-graph Gw contains an infinite path that
satisfies the T -condition. Consequently, w is accepted by CA if and only if all paths in Gw
satisfy the dual co-T condition (for short, Gw is co-T accepting). Complementation essentially
amounts to transforming a universal co-T condition into an existential Büchi condition.
Rankings on ∆-graphs provide a solution; Gw satisfying a universal co-T condition is precisely
captured by the existence of a so-called odd co-T ranking on Gw. Complementation then
reduces to recognition of ∆-graphs that admit odd co-T rankings.

The general scheme goes as follows. Vertices of Gw are associated with certain values.
The association at a level can be viewed as a function with domain Q (with level indices
dropped), called co-T level ranking. The values in the range of a co-T level ranking are called
co-T ranks, and the n-tuple of co-T ranks at a level is called a co-T level rank. By a co-T
ranking we mean an ω-sequence of co-T level rankings, each of which is associated with a
level in Gw. Co-T rankings are required to satisfy a local property, which holds between every
two adjacent levels and is solely defined with respect to the unit ∆-graph of the two levels.
The local property therefore can be enforced in a step-by-step check by the transitions of CA.
But the local property itself is not enough to ensure that a co-T condition holds universally.
A special kind of co-T ranking, called odd co-T ranking, is singled out. A co-T ranking
is odd if and only if every path visits certain vertices (called odd vertices) infinitely many
times. This global property can be captured by a Büchi condition, using the Miyano-Hayashi
breakpoint technique for universality (alternation) elimination [16].

Let A = 〈Q,Q0,Σ,∆,FT 〉 be a source T -automaton. The complementation algorithm
produces a target Büchi automaton CA = 〈Q′, Q′0,Σ,∆′, 〈F ′〉〉. The state setQ′ is 2Q×2Q×R,
where for 〈S,O, g〉 ∈ Q′, S records the reachable states, O ⊆ S records the reachable states
that have an obligation to visit odd vertices in the future, and g is a guessed co-T level
ranking, all at the current level. The transition function ∆′ : Q′ → 2Q′ is defined such that
∆′(〈S,O, g〉) is

{ 〈∆(S, σ),∆(O, σ) \ odd(g′), g′〉 : g′ ∈ Succ(g, S, σ) } (O 6= ∅), (1)
{ 〈∆(S, σ),∆(S, σ) \ odd(g′), g′〉 : g′ ∈ Succ(g, S, σ) } (O = ∅), (2)

where Succ(g, S, σ) returns the set of legitimate level rankings provided that the current
level ranking is g and the current letter is σ, and odd(g′) gives the set of odd vertices at
the level ranked by g′. When CA reads the letter w(i) at level i with a level ranking fi
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and reachable state set Si, it nondeterministically guesses a level ranking fi+1 such that
fi+1 ∈ Succ(fi, Si, w(i)). The evolvement of both S and O are done by the classic subset
construction [20] with the exception that odd vertices are excluded from O (see “\odd(g′)”
in (1) and (2)). Once O becomes empty, it takes the value of the current S in the next stage
(see the second S in (2)). The final state set F ′ is 2Q × {∅} ×R. This Büchi condition 〈F ′〉
requires that O be cleared infinitely often, which in turn enforces that every path visits odd
vertices infinitely many times [16]. It is now clear that Succ represents the local property
(being co-T ) and F ′ captures the global property (being odd).
I Procedure 1 (Generic Complementation).
Input: T -automaton A = 〈Σ, Q,Q0,∆,FT 〉.
Output: Büchi automaton CA = 〈Σ, Q′, Q′0,∆′, 〈F ′〉〉:

Q′ = 2Q × 2Q ×R, Q′0 = Q0 × {∅} ×R,

∆′ : Q′ → 2Q
′
defined as in (1) and (2), F ′ = 2Q × {∅} ×R.

The state complexity of complementation is |Q′|. For every instantiation shown below, |R|
dominates 2|Q| and hence the complexity is O(|R|).

We now show complementation constructions for Büchi, GB and Streett, with the
corresponding co-T rankings being co-Büchi, GC and Rabin, respectively. We use DT to
denote the set of T -ranks, RT the set of T level rankings and LT the set of level ranks.
Clearly, |RT | = |LT |.

Büchi Complementation

Let A = 〈Q,Q0,Σ,∆, 〈F 〉〉 be a Büchi automaton. Gw is co-Büchi accepting if every path in
Gw visits F -vertices finitely often. Let DCB (the set of co-Büchi ranks) be [2n+ 1].

I Definition 1 (Co-Büchi Ranking). A co-Büchi ranking on Gw is a function f : V → DCB

such that:

1.1 for all vertices v ∈ V , if f(v) ∈ [2n]odd, then v 6∈ F ;
1.2 for all edges 〈v, v′〉 ∈ E, f(v) ≥ f(v′).

A vertex v ∈ V is odd if f(v) ∈ [2n]odd. A co-Büchi ranking f is odd if every path in Gw visits
infinitely many odd vertices. A path % stabilizes at a rank r if (∃i ∈ N)(∀j ≥ i), f(%(j)) =
f(%(i)) = r and the smallest such i is called the stabilization point of %. If Gw admits an odd
co-Büchi ranking f , then by (1.2) every path eventually stabilizes at an odd rank. Then
by (1.1), every path eventually does not visit F -vertices; that is, Gw is co-Büchi accepting.

Conversely, if Gw is co-Büchi accepting, then an odd co-Büchi ranking can be constructed
through a series of graph transformations. Let G0 = Gw. Vertices with only a finite number
of descendants are called finite. Vertices that are not F -vertices and have no F -vertices as
their descendants are called F -free. At stage 0, we assign all finite vertices rank 0 and remove
them, obtaining G1, in which there is no finite vertices. Because G0 is co-Büchi accepting,
there must exist in G1 an F -free vertex; otherwise we can select a path on which F -vertices
occur infinitely often. We assign all F -free vertices rank 1 and remove them too, obtaining
G2. Now some vertices in G2 are finite due to the removal of F -free vertices in stage 0. We
repeat this process in the following manner: at the first phase of stage i, we assign even rank
2i to finite vertices and remove them; at the second phase, we assign F -free vertices odd
rank 2i+ 1 and remove them. By F -freeness, removing F -free vertices from G2i+1 gets rid
of at least one infinite path, and hence width(G2i+2) < width(G2i). Therefore, this process

CSL’11



118 Tight Upper Bounds for Streett and Parity Complementation

terminates at a stage j ≤ n. In the following summary, by G \ V we mean removing from G

all vertices in V and their incoming and outgoing edges.
I Procedure 2 (Co-Büchi Ranking Assignment).
Input: a co-Büchi accepting G0. Output: a co-Büchi ranking f . Repeat for i ∈ [0..n] if
G2i 6= ∅.
2.1 (a) V2i = {v ∈ V | v is finite in G2i};

(b) f(v) = 2i for v ∈ V2i;
(c) G2i+1 = G2i \ V2i.

2.2 (a) V2i+1 = {v ∈ V |
v is F -free in G2i+1};
(b) f(v) = 2i+ 1 for v ∈ V2i+1;
(c) G2i+2 = G2i+1 \ V2i+1.

I Lemma 2 ([11]). Gw is co-Büchi accepting if and only if Gw admits an odd co-Büchi
ranking.

We have |DCB| = O(n), and hence |RCB| = (O(n))n = 2O(n lgn).

GB Complementation

Let A = 〈Q,Q0,Σ,∆, 〈B〉I〉 be a generalized Büchi automaton. GC ranking is meant to be
used for GB complementation. A Gw is GC accepting if for every path % in Gw there exists
j ∈ I such that % only visits B(j)-vertices finitely often. Let DGC = ([2n]odd×I)∪[2n+ 1]even

be the set of GC ranks. We refer to values in [2n]odd×I as odd ranks, and values in [2n+ 1]even

as even ranks. For an odd GC rank 〈t, u〉, we call t numeric rank (r-rank) and u index
rank (h-rank). Even GC ranks are just numeric ranks. The greater-than and less-than
orders on GC ranks are solely defined on r-ranks. For example, 〈t, u〉 > 〈t′, u′〉 (or 〈t, u〉 > t′,
t > 〈t′, u′〉) if and only if t > t′. This definition is sound with respect to its usage in this
paper; as shown below, we never need to compare two odd GC ranks having the same r-rank
but different h-ranks.

I Definition 3 (GC Ranking). A GC ranking on Gw is a function f : V → DGC such that:

3.1 for every vertex v ∈ V , if f(v) = 〈2i+ 1, j〉 for some j ∈ I, then v 6∈ B(j);
3.2 for every edge 〈v, v′〉 ∈ E, f(v) ≥ f(v′).

A vertex v is called odd (resp. even) if f(v) ∈ [2n]odd × I (resp. f(v) ∈ [2n+ 1]even). A
GC ranking f is odd if every path in Gw visits infinitely many odd vertices. Note that (3.2)
implies that if two adjacent odd vertices have the same r-rank, then they have the same
h-rank. As in Büchi complementation, if Gw admits an odd GC ranking, then every path
eventually stabilizes at an odd GC rank 〈t, j〉, and from the stabilization point on never
visits B(j)-vertices. Therefore, Gw is GC accepting.

Conversely, if Gw is GC accepting, then we can find a GC ranking by a series of graph
transformations as in Büchi complementation. Each stage has two phases. We begin stage i
with G2i (G0 = Gw). In the first phase, finite vertices receive even rank 2i and are removed,
resulting in G2i+1. Thanks to GC condition, if G2i+1 is not empty, then for some j ∈ I

and v ∈ V , v is B(j)-free. In the second phase, those B(j)-free vertices receive odd rank
〈2i+ 1, j〉 and are removed, producing G2i+2. This procedure repeats for all i ∈ [0..n] unless
G2i is empty. The termination condition is justified by width(G2i+2) < width(G2i), just as
before.
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I Procedure 3 (GC Ranking Assignment).
Input: a GC accepting G0. Output: a GC ranking f . Repeat for i ∈ [0..n] if G2i 6= ∅.
3.1 (a) V2i = {v ∈ V | v is finite in G2i};

(b) f(v) = 2i for v ∈ V2i;
(c) G2i+1 = G2i \ V2i.

3.2 (a) V2i+1 = {v ∈ V | v is B(j)-free in
G2i+1} for a j ∈ I such that B(j)-free ver-
tices exist;
(b) f(v) = 〈2i+ 1, j〉 for v ∈ V2i+1;
(c) G2i+2 = G2i+1 \ V2i+1.

In (3.2), it does not matter which j ∈ I is chosen. But this flexibility plays an important
role in our Streett complementation construction (see Procedure 5).

I Lemma 4 ([12]). Gw is GC accepting if and only if Gw admits an odd GC ranking.

We have |DGC| = O(nk), and hence |RGC| = (O(nk))n = 2O(n lgnk).

Streett Complementation

Let A = 〈Q,Q0,Σ,∆, 〈G,B〉I〉 be a Streett automaton. Rabin ranking is meant for Streett
complementation. Let us first examine the simple case where k = 1, i.e., every path satisfies
[G(1), B(1)]. Easily seen, Gw admits a co-Büchi ranking, and hence we can instantiate
Procedure 1 with R being co-Büchi level rankings (which are also GC level rankings with
index size 1). The only modification needed is to enforce that every path visits G(1)-vertices,
which can be easily realized by a Büchi accepting condition (see the definition of 〈F ′〉
in Procedure 1). This simple procedure fails for k > 1, because a path visiting a finite
number of B(j)-vertices may not have to visit infinitely many G(j)-vertices; it just satisfies
[G(j′), B(j′)] for j′ 6= j. Nevertheless, if we could find a way to reduce the number of Rabin
pairs one by one, eventually the simple scenario has to occur. The idea in [14] is to use GC
rankings to approximate Rabin accepting behaviors step by step until finally obtaining the
precise characterization. As a result, Rabin ranks are tuples of GC ranks, considerably more
sophisticated than GC ranks. We first put aside the formal definition of Rabin rankings and
show how a Rabin ranking can be obtained provided Gw is Rabin accepting. Once again,
this is done through a series of graph transformations.
I Procedure 4 (Rabin Ranking Assignment).
Input: a Rabin accepting G0. Output: a Rabin ranking f . Repeat for i ∈ [0..k] if Gi 6= ∅.

4.1 Assign Gi a GC ranking gci+1.
4.2 Remove all vertices v if gci+1(v) is even.
4.3 Remove all edges 〈v, v′〉 if gci+1(v) > gci+1(v′).
4.4 Remove all edges 〈v, v′〉 if gci+1(v) is odd with index j and v is a G(j)-vertex.
4.5 f(v) = 〈gc1(v), . . . gci+1(v)〉 iff v is removed from Gi.

Obviously, if Gw is Rabin accepting for a Rabin condition [G,B]I , then it is also GC accepting
for the GC condition [B]I . By Lemma 4, a GC ranking gc1 exists for G0, which justifies
Step (4.1) at stage 0. Steps (4.2)-(4.3) may break up G0 into a collection of graph components
(in the undirected sense). Let C be such a component. Steps (4.2)-(4.3) ensure that vertices
in C have the same odd rank with some index j ∈ I, and hence all are B(j)-free. Step (4.4),
deleting all outgoing edges from G(j)-vertices, may further break up C into more components.
In particular, any infinite path is destroyed (i.e., broken into a collection of finite paths) if the
path satisfies [G(j), B(j)] (i.e., visiting infinitely many G(j)-vertices but only finitely many
B(j)-vertices). Let C′ ⊆ C be a resulting component after Step (4.4). As a result, C′ should
satisfy the reduced Rabin condition [G,B]I\{j}, and hence the reduced GC condition [B]I\{j}.
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So after stage 0, G1 is composed of a collection of pairwise disjoint components, each of which
satisfies a Rabin condition whose cardinality is at most k − 1. Precisely speaking, at the
beginning of each stage i ≥ 1, Gi is composed of a collection of pairwise disjoint components,
and at Step (4.1), gci+1 is obtained by independently assigning each component in Gi a GC
ranking according to the reduced GC condition the component satisfies. By induction, at
stage i ≥ 1, vertices in each component in Gi have been assigned the same tuple of odd GC
ranks of length i and each component satisfies a Rabin condition whose cardinality is at most
k − i. It follows that the procedure terminates and each vertex in Gw eventually gets a tuple
of GC ranks of length at most k + 1. Note that the last GC rank in a tuple is always an
even GC rank (r-rank).

Let DR denote the set of Rabin ranks of the form 〈〈r1, i1〉, . . . , 〈rm, im〉, rm+1〉 (m ≤ k).
Ordering relations (<m,≤m, >m,≥m,=m) on Rabin ranks are defined to be the standard
lexicographical extension (up to m-th component) of orderings on GC ranks. For a Rabin
rank γ of the above form, the index projection (or the h-projection) of γ, written Projh γ,
is 〈i1, . . . , im〉 and the numeric projection (or the r-projection) of γ, written Projr γ, is
〈r1, . . . , rm+1〉. With respect to a given function f : V → DR, the width of v ∈ V is the
length of f(v), denoted by |v|f (or |v|, when f is clear from the context). We say that v is
odd (called happy in [14]) if |v| > 1 and v is a G(|v| − 1)-vertex. We arrive at the formal
definition of Rabin rankings.

I Definition 5 (Rabin Ranking). A Rabin ranking is a function f : V → DR satisfying the
following conditions.

5.1 For every vertex v ∈ V with |v| = m+ 1 ≥ 2 and α = Projh f(v), we have
a. for i ∈ [1..m), v 6∈ G(α[i]); b. for i ∈ [1..m], v 6∈ B(α[i]).

5.2 For every edge 〈v, v′〉 ∈ E with |v| = m+ 1, |v′| = m′ + 1 and m′′ = min(m,m′), we have
a. f(v) ≥m′′ f(v′); b. f(v) ≥m′′+1 f(v′), or v is odd.

A Rabin ranking is odd if every path in Gw visits infinitely many odd vertices.

I Lemma 6 ([14]). Gw is Rabin accepting if and only if Gw admits an odd Rabin ranking.

We have |DR| = (O(nk))k+1 and hence |RR| = ((O(nk))k+1)n = (nk)O(nk) = 2O(nk lgnk).

4 Improved Streett Complementation

The above construction requires 2O(nk lgnk) state blow-up [14], which is substantially larger
than the lower bound in [3]. In the extreme case of k = O(2n), the construction is double
exponential in n. Intuitively, the larger the k, the more overlaps between B(i)’s and between
G(i)’s (i ∈ I). A natural question is: can all Rabin pairs [G(i), B(i)] independently impose
behaviors on a Rabin accepting Gw? We showed in [2] that in Rabin complementation we
can build a Streett accepting Gw for which no Streett pair 〈G(i), B(i)〉 is redundant. We
observed the opposite in Streett complementation; the larger the k, the higher the correlation
between infinite paths that satisfy [G,B]I . By exploiting this correlation, we can walk in
big steps in approximating Rabin accepting behaviors using GC rankings. As a result, our
Rabin ranks are tuples of GC ranks of length at most µ = min(n, k). This simple but crucial
observation leads to a significant improvement on the construction complexity. We elaborate
on this below.

The first idea is that at Step (4.4) in stage i, in a component C of Gi, instead of removing
all outgoing edges from G(j)-vertices, we can remove all outgoing edges from G(j′)-vertices
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for all j′ such that B(j′) ⊆ B(j). Let J = {j′ ∈ I | B(j′) ⊆ B(j)}. Since vertices in C are
B(j)-free, they are also B(j′)-free for any j′ ∈ J . Recall that Step (4.4) is to break all infinite
paths that satisfy [G(j), B(j)] so that in each resulting component we have a simpler Rabin
condition to satisfy. If an infinite path in C satisfies [G,B]J , then removing all outgoing
edges from G(j′)-vertices (for j′ ∈ J) certainly serves the same purpose, and moreover, any
resulting component only needs to satisfy a Rabin condition whose cardinality is |J | less
than at the beginning of stage i.

The second idea is that at Step (4.1) in stage i, we can assign special GC rankings to
components in Gi. Recall that a GC ranking is obtained by a series of graph transformations
too. In Step (3.2), we assign and remove B(j)-free vertices for some j ∈ I. In fact any fixed
j ∈ I is sufficient as long as B(j)-free vertices exist. Therefore, we can choose a j such that
not only B(j)-free vertices exist, but also for any other j′ ∈ I, B(j′) 6⊂ B(j), if B(j′)-free
vertices also exist. Intuitively, we prefer a j such that B(j) is minimal (with respect to set
inclusion) because more vertices would be B(j)-free and subject to removal.

We refine those ideas by taking into account the history of GC rankings. In stage i, right
before Step (4.1), vertices in Gi were assigned a tuple of GC ranks of length i. Consider a
component C ⊆ Gi. No vertices in C received an even GC rank in stage i′ ∈ [0..i), because
otherwise they were already removed by Step (4.2) in that stage. Also all vertices in Gi
received the same odd GC rank in each stage i′ ∈ [0..i), for otherwise Step (4.3) in stage i′
would have broken the component. Now let 〈〈r1, j1〉, . . . , 〈ri, ji〉〉 be the tuple that has been
assigned to all vertices in C. Let B′ = ∪t∈[1..i]B(jt) and J ′ = {j′ ∈ I | B(j′) ⊆ B′}. So all
vertices in C are B′-free. When we assign GC rankings for C, in each stage at Step (3.2) (in
Procedure 3), we choose a j ∈ I \ J ′ such that (1) B(j)-free vertices exist, (2) B(j) 6⊆ B′ (we
say B(j) is not covered by B′), and (3) no B(j′)-free vertices exist for any other j′ ∈ I \ J ′
with B′ ∪B(j′) ⊂ B′ ∪B(j). In other words, we choose a j such that not only we can find
B(j)-free vertices, but also B′∪B(j) minimally extends B′. Now let C′ be a component right
before Step (4.4) is taken and let 〈〈r1, j1〉, . . . , 〈ri+1, ji+1〉〉 be the tuple of ranks that has been
assigned to all vertices in C′ (for the same reason as before, all vertices in C′ have received the
same sequence of odd GC ranks). Let B′′ = B′ ∪B(ji+1) and J ′′ = {j′′ ∈ I | B(j′′) ⊆ B′′}.
In Step (4.4) we remove all outgoing edges of G(j′′)-vertices if B(j′′) ⊆ B′′. This deletion
destroys all infinite paths that satisfy [G,B]J′′ because all vertices in C′ are B′′-free. Let
C′′ be a resulting component and % an infinite path in C′′. Then % only needs to satisfy
[G,B]I\J′′ .

Now let us assume that we have incorporated the above ideas into Procedure 4 and
obtained a new Rabin rank γ = 〈〈r1, j1〉, . . . , 〈rm, jm〉, rm+1〉〉. Let α = Projh γ. The
non-covering condition stated above requires α to satisfy:

∀i ∈ [1..m] B(α[i]) 6⊆ ∪i−1
j=1B(α[j]), (3)

which implies |α| ≤ n. By definition, |α| ≤ k and so we have |α| ≤ µ and |γ| ≤ µ+ 1. From
now on we switch to terms µR ranks (i.e., minimal Rabin ranks), µR rankings, µR level
rankings and µR level ranks. Their precise definitions are to be given below. We define two
functions Cover : I∗ → 2I and Mini : I∗ → 2I to formalize the intuition of minimal extension.
Cover maps tuples of indices to subsets of I such that

Cover(α) = { j ∈ I | B(j) ⊆ ∪|α|i=1B(α[i]) }.

Note that Cover(ε) = ∅. Mini maps tuples of indices to subsets of I such that j ∈ Mini(α) if
and only if j ∈ I \ Cover(α) and

∀j′ ∈ I \ Cover(α)
(
j′ 6= j → B(j′) ∪ Cover(α) 6⊂ B(j) ∪ Cover(α)

)
, (4)
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∀j′ ∈ I \ Cover(α)
(
j′ < j → B(j′) ∪ Cover(α) 6= B(j) ∪ Cover(α)

)
. (5)

Mini(α) consists of choices of indices to minimally enlarge Cover(α); ties (with respect to set
inclusion) are broken by numeric minimality (Condition (5)). Before introducing µR ranking
assignment, we need a new GC ranking assignment which takes a tuple of I-indices as an
additional input. We call so obtained GC rankings (resp. GC ranks) µGC rankings (resp.
µGC ranks).
I Procedure 5 (µGC Ranking Assignment).
Input: a GC accepting G0, a tuple of I-indices α. Output: a µGC ranking f .
Repeat for i ∈ [0..n] if G2i 6= ∅.
5.1 (a) V2i = {v ∈ V | v is finite in G2i};

(b) f(v) = 2i for v ∈ V2i;
(c) G2i+1 = G2i \ V2i.

5.2 (a) V2i+1 = {v ∈ V | v is B(j)-free in
G2i+1} for a j ∈ Mini(α) such that B(j)-
free vertices exist;
(b) f(v) = 〈2i+ 1, j〉 for v ∈ V2i+1;
(c) G2i+2 = G2i+1 \ V2i+1.

As in GC ranking assignment, in (5.2) there maybe more than one j such that B(j)-free
vertices exist, and it does not matter which one we choose. But in case Mini(α) is a singleton,
we have a unique j at all stages, essentially synchronizing all h-ranks in the µGC ranks
obtained. This synchronization is crucial in our construction for parity complementation
(see Section 6).

I Procedure 6 (µR Ranking Assignment).
Input: a Rabin accepting G0. Output: a µR ranking f . Repeat for i ∈ [0..µ] if Gi 6= ∅.

6.1 Assign Gi a µGC ranking gci+1.
6.2 Remove all vertices v ∈ V if gci+1(v) is even.
6.3 Remove all edges 〈v, v′〉 ∈ E if gci+1(v) > gci+1(v′).
6.4 Remove all edges 〈v, v′〉 ∈ E if v ∈ G(t) for some t ∈ Cover(Projh(〈gc1, . . . , gci+1〉)).
6.5 f(v) = 〈gc1(v), . . . gci+1(v)〉 iff v is removed from Gi.

Note that Step (6.1) actually means that Procedure 5 is called upon for every component
C ⊂ Gi, with the corresponding α being Projh(〈gc1(v), . . . , gci(v)〉) for some v ∈ C (α is
well-defined since all vertices in C have received the same sequence of µGC ranks). It is time
to formally define µR ranking. Let f be a function V → (DGC)µ+1. We say that v is odd if
|v| > 1 and v is a G(t)-vertex for some t ∈ Cover(α[1..|v| − 1]) where α = Projh f(v).

I Definition 7 (µR Ranking). A µR ranking is a function f : V → (DGC)µ+1 satisfying the
following conditions.

7.1 For every vertex v ∈ V with |v| = m+ 1 ≥ 2 and α = Projh f(v), we have

a. for i ∈ [1..m), v 6∈ G(t) for t ∈ Cover(α[1..i]);
b. for i ∈ [1..m], v 6∈ B(t) for t ∈ Cover(α[1..i]);
c. for i ∈ [1..m], α[i] ∈ Mini(α[1..i)).

7.2 For every edge 〈v, v′〉 ∈ E with |v| = m+ 1, |v′| = m′ + 1 and m′′ = min(m,m′), we have
a. f(v) ≥m′′ f(v′); b. f(v) ≥m′′+1 f(v′), or v is odd.

A µR ranking is odd if every infinite path in Gw visits infinitely many odd vertices.

I Lemma 8. Gw is Rabin accepting if and only if Gw admits an odd µR ranking.
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5 Complexity

In this section we analyze the complexity of our construction. As shown below, all complexity
related notions X are also parameterized with B (besides n and k). Still, we choose to
list some or all of them when clarity is needed. In particular, we use |X| to abbreviate
|X(n, k)| = maxB |X(B,n, k)|.

Let DµR be the set of µR ranks that can be produced by Procedure 6. Formally,
DµR = ∪f range(f) where f ranges over all possible outputs of Procedure 6. In a similar
manner, we define RµR and LµR. We have |RµR| = |LµR|. We note that these notions are
defined differently from their counterparts in Section 3; due to two kinds of correlations (which
we refer to as horizontal and vertical correlation), |LµR| is much smaller than |DµGC|n(µ+1).
We view LµR as a set of n × (µ + 1) matrices of µGC ranks and carry out a further
simplification. Let MµR be a set of n × µ matrices obtained from LµR by the following
mapping: each n × (µ + 1) matrix M is mapped to an n × µ matrix M ′ by (a) deleting
from M even ranks at the end of each row, (b) changing odds rank of the form 〈2i− 1, j〉 to
〈i, j〉, and (c) aligning each row to length µ by filling 〈1, 0〉’s. Clearly, |LµR| ≤ nn · |MµR|;
the factor nn suffices to compensate (a), the deletion of even ranks, and (b) and (c) have
no effect to the cardinality (for (b), i→ 2i− 1 is one-to-one from [1..n] onto [2n]odd). Let
M ∈ MµR be called µR-matrices. We write ProjrM and ProjhM to mean, respectively,
the projection of M on numeric ranks (called an r-matrix) and on index ranks (called an
h-matrix). Let Mr = ProjrMµR, Mh = ProjhMµR, and Dr and Dh be the sets of rows
occurring in matrices inMr andMh, respectively. Obviously, we have |MµR| ≤ |Mr| · |Mh|
and |Mh| ≤ (|Dh|)n.

I Example 9 (µR-Matrix). Let us consider a case where n = 3, k = 3, and Q = {q0, q1, q2}.
Below we show that a µR level rank f corresponds to a µR-matrix M , which projects to Mr

and Mh.q0
q1
q2

 ∣∣∣∣∣∣
〈1, 2〉 〈1, 3〉 4
〈1, 2〉 〈3, 1〉 2
〈1, 2〉 〈3, 1〉 〈3, 3〉 0

∣∣∣∣∣∣
∣∣∣∣∣∣
〈1, 2〉 〈1, 3〉 〈1, 0〉
〈1, 2〉 〈2, 1〉 〈1, 0〉
〈1, 2〉 〈2, 1〉 〈2, 3〉

∣∣∣∣∣∣
∣∣∣∣∣∣
1 1 1
1 2 1
1 2 2

∣∣∣∣∣∣
∣∣∣∣∣∣
2 3 0
2 1 0
2 1 3

∣∣∣∣∣∣
Q f M Mr Mh

Bounding |Mh|

It turns out that we only need to exploit a horizontal correlation to bound |Mh|. Recall that
each α ∈ I∗ names a subset of Q, namely Cover(α). The idea is to order all α that could
occur in Dh into a tree structure. Consider an unordered tree where the root is labeled by ε
and each non-root node is labeled by an index in I. With little confusion, we identify a node
α with the path from the root to α and represent α by the sequence of indices on the path.
So a non-root node α has α[|α|] as its label and names Cover(α). We arrive at the following
important notion.

I Definition 10 (Increasing Tree of Sets (ITS)). An ITS T (n, k,B) is an unordered I-labeled
tree (except the root which is labeled by ε) such that

10.1 A non-root node α exists in T (n, k,B) iff ∀i ∈ [1..|α|], α[i] ∈ Mini(α[1..i)).

Property (10.1) succinctly encodes three important features of ITS. First, an ITS is
maximal in the sense that no node can be added. Second, if β is a direct child of α, then β
must name at least one new state that has not been named by α. Third, the new contributions
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ε : ∅

4 : {q2}

2 : {q0}

1 : {q0, q1}

3 : {q1, q2}

2 : {q0}

2 : {q0}

4 : {q2}

1 : {q0, q1}

1 : {q0, q1}

3 : {q1, q2}

ε : ∅

4 : {q2}

2 : {q0}

1 : {q0, q1}

3 : {q1, q2}

2 : {q0}

2 : {q0}

4 : {q2}

1 : {q0, q1}

1 : {q0, q1}

3 : {q1, q2}

5 : {q1}

4 : {q2}

2 : {q0}

2 : {q0}

4 : {q2}

T (3, 4, B) T (3, 5, B′)

Figure 2 Two ITS in Example 11.

by β cannot be covered by contributions made by any another sibling β′. In particular,
if more than one sibling can make the same contribution, then the one with the smallest
index is selected. It follows that each tuple of n, k and B uniquely determines T (n, k,B) (in
the unordered sense). Note that the height of T (n, k,B) (the length of the longest path in
T (n, k,B)) is bounded by µ.

I Example 11 (ITS). Consider n = 3, k = 4, Q = {q0, q1, q2}, B : [1..4] → 2Q and
B′ : [1..5]→ 2Q,

B(1) = {q0, q1}, B(2) = {q0}, B(3) = {q1, q2}, B(4) = {q2},

and B′ extends B with B′(5) = {q1}. T (3, 4, B) and T (3, 5, B′) are given in Figure 2. For
clarity, for each non-root node α, we also list B(α[|α|]) as the set label of α. In T (3, 4, B),
neither {q0, q1} nor {q1, q2} can appear at height 1, because {q0, q1} covers {q0} and {q1, q2}
covers {q2}. The leftmost node at the bottom level is labeled by {q1, q2} instead of by {q2}
due to the index minimality requirement. For the same reason, in T (3, 5, B′), we have nodes
〈2, 1〉, 〈2, 4, 1〉 and 〈4, 2, 1〉 all labeled with {q0, q1}, and nodes 〈2, 1, 3〉 and 〈4, 3〉 all labeled
with {q1, q2}.

It is easily seen that Property (7.1c) corresponds exactly to Property (10.1). So a
one-to-one correspondence exists between non-root nodes in T (n, k,B) and elements in
Dh(n, k,B). Let |T (n, k,B)| denote the number of non-root nodes in T (n, k,B) andH(n, k) =
maxB |T (n, k,B)|. Clearly, we have |Mh| ≤ (H(n, k))n.

I Lemma 12. H(n, k) = 2O(k lg k) for k = O(n) and H(n, k) = 2O(n lgn) for k = ω(n).

Bounding |Mr|

Here we need to exploit both horizontal and vertical correlations. We show that every n× µ
r-matrix induces a 2Q-labeled ordered tree with at most n leaves and with height at most µ.
Such a tree is called an n× µ tree. We bound |Mr| by counting the number of n× µ trees.

Let M be an r-matrix. Since M comes from a µR level rank, M is associated with
vertices at a level. To facilitate the discussion below, we use term states to specifically mean
those vertices at the level where M is associated with, and use term vertices just as before.
By rank i we simply mean a number i in M , which corresponds to the numeric µGC rank
2i− 1.

Let us first consider ranks in column 1 of M . A state q being ranked with an odd µGC
rank means that at certain stage of µGC ranking assignment, q becomes B(j)-free for some
j ∈ I, which implies that there exists an infinite path starting from q (recall that all finite
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vertices have been removed before this odd µGC rank is assigned). If two states q, q′ are
ranked with different odd µGC ranks, say q with 〈2i− 1, j〉 and q′ with 〈2i′ − 1, j′〉 where
i > i′, then there exist two infinite paths % and %′ such that % starts from q, %′ starts from q′,
and % and %′ never intersect. This is due to the nature of µGC ranking assignment; 〈2i−1, j〉
is assigned to some B(j)-free vertices only after those B(j′)-free vertices with odd µGC rank
〈2i′ − 1, j′〉 have been removed.

Note that it is perfectly possible that an infinite path starting from q intersects another
infinite path starting from q′. But a maximal subset S(1) of states, all with the same rank,
called a cell at column 1, should “own” at least one private infinite path that does not
intersect the private paths owned by any other cells at column 1. We call a path named if it
is owned by a cell. Let m(1) be the maximum rank in column 1, and note that not all ranks
in [1..m(1)] necessarily appear in column 1. But again, by the way µGC ranking assignment
is carried out, for each non-occurring rank, at least one private infinite path exists, which
is called hidden and viewed as being owned by ∅. Easily seen now, each rank in [1..m(1)]
corresponds to a non-empty set of private infinite paths.

In general, a cell at column l is a maximal subset of states, each of which is assigned the
same tuple of ranks up to column l. Consider a cell S(l) = {qi1 , . . . , qij} at column l. Let
m(l+1) = max{M [i1, l + 1], . . . ,M [ij , l + 1]}. By the same reasoning as before, each rank
in [1..m(l+1)] corresponds to a non-empty set of private infinite paths. The private paths
associated with rank M [ij′ , l + 1] are owned by S(l+1)

j′ ⊆ S(l) which is a cell at column l + 1
with rank M [ij′ , l + 1] (S(l+1)

j′ = ∅ if no states in S(l) is mapped to M [ij′ , l + 1]). Moreover,
none of these paths, hidden or named, should intersect private paths owned by any cell at
column l that is a subset of Q \ S(l), because states in Q \ S(l) and states in S(l) are not in
the same component at stage l (the l + 1-th stage) in Procedure 6. Now we are ready to
show how to build an n× µ tree from M .

Each node in the tree is associated with a label which is a subset of Q. The root is
labeled with set Q. For each rank i ∈ [1..m(1)], we add a child to the root and we order those
children increasingly by the ranks associated with them. If i does not appear in column 1,
the i-th child (from left to right) is labeled with ∅ and is a terminal node (leaf). Otherwise,
the child is labeled with the cell at column 1 with rank i and the child is non-terminal if
its height is less than µ. We repeat the process column by column. Each maximal S(l) at
column l < µ corresponds to a non-terminal node at height l, from which we spawn a child
for each rank in i ∈ [1..m(l)], and we order and label the children using the rule stated above.
After processing column µ, we obtain an n× µ tree, because the number of leaves in the tree
cannot exceed width(Gw) ≤ n, which we refer to as the maximum width property (MWP).
Now we call an n× µ tree a TOP (Tree of Ordered Partitions) and let T r(n, k) denote the
set of TOPs. We have |Mr| ≤ |T r(n, k)|.

I Example 13 (TOP). Four 3× 3 matrices M1-M4 and their corresponding tree representa-
tions T1-T4 are given in Figure 3. M1-M3 obey MWP and hence T1-T3 are TOPs. T4 is not
a TOP because it has more than 3 leaves.

I Lemma 14 (Numeric Bound). |T r(n, k)| = 2O(n lgn).

Since |RµR| ≤ nn · |MµR|, |MµR| ≤ |Mr| · |Mh|, |Mr| ≤ |T r(n, k)|, and |Mh| ≤
(H(n, k))n, by Lemmas 12 and 14, we have

I Theorem 15 (Streett Upper Bound). Streett complementation is 2O(n lgn+nk lg k) for k =
O(n) and 2O(n2 lgn) for k = ω(n).
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Figure 3 Four 3× 3 matrices and their corresponding tree representations in Example 13.

Note that we put bounds in the form 2O(·) just for simplicity. Even for a small k (i.e.
k = O(n)), our upper bound is substantially smaller than the current best one (nk)O(nk),
established by respective constructions in [8, 22, 14, 19]. Easily seen from the proofs of
Lemmas 12 and 14, our upper bound is in fact nO(n) · kO(nk) when k = O(n). Also note
that Lemma 14 is crucial in tightening parity complementation.

6 Parity Complementation

Parity automata is a special kind of Streett automata where a Streett condition 〈G,B〉I
is augmented with the so-called Rabin chain condition B(1) ⊂ G(1) ⊂ · · · ⊂ B(k) ⊂ G(k).
Now the short length of µR ranks is not enough to give us a better bound, because we
already have k ≤ b(n + 1)/2c. Nevertheless, the Rabin chain condition makes the GC
condition [B]I degenerate to the CB condition [B(1)], because being B(1)-free is equivalent
to being B(i)-free for some i ∈ I. This coincides with the way Mini works. Intuitively, Mini
synchronizes all components at a stage of µR ranking assignment. In the first stage of µR
ranking assignment, in Step (4.1), Mini makes every vertex get the h-rank 1, though vertices
may get different r-ranks. After disabling G(1) vertices (by deleting all outgoing edges from
them in Step (4.4)), we have a collection of components satisfying parity condition 〈G,B〉[2..k].
Then in the second stage of µR ranking assignment, Mini gives every vertex the h-rank
2. Repeating this process, the h-projection of a final µR rank is just 〈1, . . . ,m〉 for some
m ∈ [1..k], which is completely redundant, because the only useful information (having length
m) is already encoded by the corresponding r-projection. As a consequence, h-matrices
contribute nothing to the complexity. A customized construction for parity complementation
is given in the appendix.

I Theorem 16 (Parity Upper Bound). Parity complementation is in 2O(n lgn).

This bound matches the lower bound of Büchi complementation, and hence it is tight as
Büchi automata are a subclass of parity automata. To the best of our knowledge, the previous
best upper bound is 2O(nk lgn), which can be easily inferred from [14] by treating parity
automata as Rabin automata.



Y. Cai and T. Zhang 127

7 Concluding Remarks

In this paper we improved Kupferman and Vardi’s construction and obtained tight upper
bounds for Streett and parity complementation (with respect to the 2Θ(X) asymptotic
notation). Figure 1 in the appendix rounds up the complementation complexities for ω-
automata of common types.

Our inquiry also leads to some unexpected outcomes, which we believe, would help
understand the strength and weakness of different types of ω-automata in modeling and
specifying system behaviors.

1. Parity complementation has the same asymptotical bound as Büchi complementation
while parity automata have richer and more elegant acceptance conditions than Büchi
automata.

2. Streett automata are exponentially more succinct than Büchi automata while Rabin
automata are not. On the other hand, Streett complementation is much easier than Rabin
complementation when k is large (i.e., k = ω(n)). In the extreme case where k = Θ(2n)
and N = Θ(nk) (the automata size), Streett complementation is in O(N lg2 N ) = O(2lg3 N )
while Rabin complementation is still in 2Ω(N).

Further investigation on Streett and parity complementation is desired as exponential
gaps can hide in the asymptotical notations of the form 2Θ(X). The situation is different
from that of Büchi where the best lower and upper bounds have been shown polynomially
close.

We think that ITS and TOP characterize intrinsic combinatorial properties on run graphs
with universal Rabin conditions. Interesting questions remain for further investigation.
What would be the counterparts for run graphs with existential Streett conditions? The
discovery of such combinatorial properties might help us understand the complexity of
Streett determinization, for which there exists a huge gap between the current lower bound
2Ω(n2 lgn) [3] and upper bound 2O(nk lgnk) [19] when k = ω(n). Also of theoretical interest
is whether there exists a type of ω-automata whose determinization is considerably harder
than complementation. In the case of Büchi, the two operations were both proved to be in
2Θ(n lgn).
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Indian Journal of Statistics (1933-1960), Vol. 21, (1959) 91-98.
19 N. Piterman. From Nondeterministic Büchi and Streett Automata to Deterministic Parity

Automata. In Proc. 21th LICS, pages 255-264, 2006.
20 M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of

Research and Development, 3:115-125, 1959.
21 S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pages 319-327, 1988.
22 S. Safra. Exponential Determinization for ω-Automata with Strong-Fairness Acceptance

Condition. In Proc. 24th STOC, pages 275-327, 1992.
23 S. Schewe. Büchi complementation made tight. In Proc. 26th STACS, pages 661-672, 2009.
24 A. P. Sistla, M.Y. Vardi, and P.Wolper. The complementation problem for Büchi automata

with applications to temporal logic. Theoretical Computer Science, 49:217-327, 1987.
25 S. Safra and M.Y. Vardi. On ω-Automata and Temporal Logics. In Proc. 29th STOC, pages

127-137, 1989.
26 M.Y. Vardi. The Büchi complementation saga. In Proc. 24th STACS, pages 12-22, 2007.
27 M.Y. Vardi. and P. Wolper. An automata-theoretic approach to automatic program veri-

fication. In Proc. 1st LICS, pages 332-334, 1986.
28 Q. Yan. Lower bound for complementation of ω-automata via the full automata technique.

In Proc. 33th ICALP, volume 4052 of LNCS, pages 589-600, 2006.



A Decidable Quantified Fragment of Set Theory
Involving Ordered Pairs with Applications to
Description Logics
Domenico Cantone, Cristiano Longo, and Marianna Nicolosi
Asmundo

Dipartimento di Matematica e Informatica, Università di Catania
Viale Andrea Doria 6, 95125, Catania, Italy
{cantone|longo|nicolosi}@dmi.unict.it

Abstract
We present a decision procedure for a quantified fragment of set theory, called ∀π0 , involving
ordered pairs and some operators to manipulate them. When our decision procedure is applied
to ∀π0-formulae whose quantifier prefixes have length bounded by a fixed constant, it runs in
nondeterministic polynomial-time.

Related to the fragment ∀π0 , we also introduce a description logic, DL〈∀π0〉, which provides
an unusually large set of constructs, such as, for instance, Boolean constructs among roles. The
set-theoretic nature of the description logics semantics yields a straightforward reduction of the
knowledge base consistency problem for DL〈∀π0〉 to the satisfiability problem for ∀π0-formulae
with quantifier prefixes of length at most 2, from which the NP-completeness of reasoning in
DL〈∀π0〉 follows. Finally, we extend this reduction to cope with SWRL rules.
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1 Introduction

Computable Set Theory is a research field, started around thirty years ago, devoted to the
study of the decision problem for fragments of set theory (see [4, 7] for a thorough account of
the state-of-the-art until 2001). The most efficient decision procedures devised in this context
have been implemented in the inferential core of the system ÆtnaNova/Referee, described
in [8, 17, 19].

The first unquantified sublanguage of set theory that has been proved decidable is Multi-
Level Syllogistic (in short MLS). MLS involves the set predicates ∈, ⊆, =, the Boolean
set operators ∪, ∩, \, and the connectives of propositional logic (cf. [10]). Subsequently,
several extensions of MLS with various combinations of operators (such as singleton, powerset,
unionset, etc.) and predicates (on finiteness, transitivity, etc.) have been proved to have a
solvable satisfiability problem. Also, some extensions of MLS with various map1 constructs
have been shown to be decidable (cf. [9, 5]).

Concerning quantified fragments, of particular interest to us is the restricted quantified
fragment of set theory ∀0, which has been proved to have a decidable satisfiability problem

1 According to [20], we use the term ‘maps’ to denote sets of ordered pairs.
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in [2]. We recall that ∀0-formulae are propositional combinations of restricted quantified
prenex formulae (∀y1 ∈ z1) · · · (∀yn ∈ zn)p, where p is a Boolean combination of atoms of the
forms x ∈ y, x = y, and no zj is a yi (i.e., nesting among quantified variables is not allowed).
The same paper considered also the extension with another sort of variables representing
single-valued maps, the map domain operator, and terms of the form f(t) (representing the
value of the map f on a function-free term t). However, neither one-to-many, nor many-to-one,
nor many-to-many relationships can be represented in this language. We observe that the
∀0-fragment is very close to the undecidability boundary, as shown in [18]. In fact, if nesting
among quantified variables in prenex formulae of type (∀y1 ∈ z1) · · · (∀yn ∈ zn)p are allowed
and a predicate stating that a set is an unordered pair is also admitted, then it turns out
that the satisfiability for the resulting collection of formulae is undecidable.

In this paper we present a decision procedure for the novel fragment of set theory ∀π0 ,
which extends the fragment ∀0 with ordered pairs and various constructs related to them,
thus further thinning the gap between the decidable and the undecidable. A considerable
amount of set-theoretic constructs can be expressed by ∀π0-formulae, in particular constructs
on multi-valued maps like map inverse, Boolean operator among maps, map transitivity,
and so on. Furthermore, when restricted to formulae with quantifier nesting bounded by a
constant, our decision procedure runs in nondeterministic polynomial-time. This fragment
has also interesting applications in the field of knowledge representation.

Applications of Computable Set Theory to knowledge representation have been recently
proposed in [6], where the correspondence between (decidable) fragments of set theory and
Description Logics (a well established framework for knowledge representation systems; see
[1] for a quite complete overview) is exploited by introducing the very expressive description
logic DL〈MLSS×2,m〉.

Description logics are a family of logic based formalisms widely used in knowledge
representation. In particular, several results and decision procedures devised in this context
have been profitably employed in the area of the Semantic Web (cf. [11]). The key problem
in description logic is to determine whether a knowledge base K is consistent (knowledge
base consistency is formally described in Section 4), and many other reasoning tasks can be
reduced to it. Unfortunately, this problem is ExpTime-hard (cf. [1, Theorem 3.27, page
132]) also for AL, a basic description logic with a very limited expressive power. However, [6]
shows how a better computational complexity can be achieved by imposing some limitations
on the usage of existential quantification and number restrictions (definitions of these two
constructs are reported in Table 1).

The quantified nature of the language ∀π0 and the pair-related constructs it provides
allow a straightforward mapping of numerous description logic constructs to ∀π0-formulae.
The resulting description logic, called DL〈∀π0〉, extends those presented in [6] with several
constructs like, for instance, role transitivity, self restrictions, and role identity. It also allows
finite existential restrictions of the form ∃R.{a1, . . . , an} to be used without limitations.
Furthermore, it turns out that the consistency problem for DL〈∀π0〉-knowledge bases is
NP-complete. This is a quite significant result since in most of the cases in which Boolean
operators among roles are present the consistency problem turns out to be NExpTime-hard
(cf. [14]).

Finally, we observe that SWRL rules (cf. [12]) can be easily embedded in DL〈∀π0〉 without
disrupting decidability. SWRL rules are a simple form of Horn-style rules, which were
proposed with the aim of increasing the expressive power of description logics. Here we
consider only a restricted set of SWRL rules, namely those which do not contain data literals.
Extending description logics with SWRL rules in general leads to undecidability. In [16] this
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issue has been overcome by restricting the applicability of rules to a finite set of named
individuals. Another approach, studied in [13], consists in restricting to rules which can be
internalized, i.e. rules which can be converted into knowledge base statements.

The paper is organized as follows. Section 2 presents the precise syntax and semantics of
the language ∀π0 . A decision procedure for ∀π0 is then developed in Section 3. In Section 4
the correspondences of ∀π0 with description logics are exploited by introducing the novel
description logic DL〈∀π0〉, whose extension with SWRL rules is studied in Section 5. Finally,
concluding remarks and some hints to future work are given in Section 6.

2 The language ∀π
0

The language ∀π0 is a quantified fragment of set theory which contains a denumerable infinity
of variables, Vars = {x, y, z, . . .}, the binary pairing operator [·, ·], the monadic function π̄(·),
which represents the non-pair members of a set, the relators ∈,=, the Boolean connectives
of propositional logic ¬,∧,∨,→,↔, parentheses, and the universal quantifier ∀.

A quantifier-free ∀π0-formula is any propositional combination of atomic ∀π0-formulae.
These are expressions of the following types:

x ∈ π̄(z), [x, y] ∈ z, x = y, (1)

with x, y, z ∈ Vars. Intuitively, terms of the form [x, y] represent ordered pairs of sets.
A simple prenex ∀π0-formula is a formula Q1 · · ·Qnϕ, with n ≥ 0, where ϕ is a quantifier-

free ∀π0-formula, each Qi is a restricted universal quantifier of form (∀x ∈ π̄(y)) or of the form
(∀[x, x′] ∈ y) (we will refer to x and x′ as quantified variables and to y as domain variable),
and no variable can occur both as a quantified and a domain variable, i.e., roughly speaking,
no x can be a y.

Finally, a ∀π0-formula is any finite conjunction of simple prenex ∀π0-formulae.
Semantics of the ∀π0-language is based upon the von Neumann standard cumulative

hierarchy V of sets, which is defined as follows:

V0 = ∅
Vγ+1 = P(Vγ) , for each ordinal γ
Vλ =

⋃
µ<λ Vµ , for each limit ordinal λ

V =
⋃
γ∈On Vγ ,

where P(·) is the powerset operator and On denotes the class of all ordinals.
A ∀π0-interpretation is a pair I = (MI, πI), where MI is a total function which maps each

variable into a set of V, and πI is a pairing function over sets. We recall that a pairing
function π is a binary operation over sets such that π(u, v) = π(u′, v′) ⇐⇒ u = u′ ∧ v = v′

and the class u×π v =Def {π(s, t) : s ∈ u ∧ t ∈ v} is a set of V, for all u, v, u′, v′ ∈ V.
Let W be a finite subset of Vars, we say that I′ = (MI′ , πI) is a W -variant of I if

MI′y = MIy, for y ∈ Vars\W . To any term of the form x, [x, y], and π̄(x), a ∀π0-interpretation
I associates a set in V as follows:

Ix =Def MIx

I[x, y] =Def πI(Ix, Iy)
Iπ̄(x) =Def Ix \ {πI(u, v) : u, v ∈ V},

for all x, y ∈ Vars.
A ∀π0-interpretation evaluates atomic ∀π0-formulae to the truth values t (true) and f (false)

in the usual way, by interpreting ‘∈’ and ‘=’ as the membership and the equality relations
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between sets, respectively. Evaluation of quantifier-free ∀π0-formulae is carried out according
to the standard rules of propositional logic, and simple prenex ∀π0-formulae are evaluated as
follows:

I(∀x ∈ π̄(y))ϕ = t iff I′ϕ = t for every {x}-variant I′ of I such that I′x ∈ I′π̄(y),
I(∀[x, y] ∈ z)ϕ = t iff I′ϕ = t for every {x, y}-variant I′ of I such that I′[x, y] ∈ I′z.

A ∀π0-interpretation I which evaluates a ∀π0-formula ϕ to true is said to be a model for
ϕ (and we write I |= ϕ). A ∀π0-formula is said to be satisfiable if it admits a model. Thus
the satisfiability problem (in short, s.p.) for ∀π0-formulae consists in determining whether a
∀π0-formula is satisfiable or not. Observe that in the context of satisfiability, all free variables
in a ∀π0-formula may be regarded as existentially quantified.

In the following section we present a decision procedure for the s.p. for ∀π0-formulae.

3 A decision procedure for ∀π
0

In this section we solve the s.p. for ∀π0-formulae. In particular, we will prove that a ∀π0-formula
is satisfiable if and only if there exists a finite collection of atomic ∀π0-formulae which represents
a model for the formula. We begin by introducing the notions of skeletal representations
and of their realizations: these are, respectively, collections of atomic ∀π0-formulae with an
acyclic membership relation among their variables, and suitably defined ∀π0-interpretations.
In particular, we will focus on skeletal representations “completed” w.r.t. the predicate
“=” over a set of variables V , which we call V -extensional. It turns out, as will be shown
in Lemma 2, that each V -extensional skeletal representation is modeled correctly by any
realization associated with it. Finally, we prove the main result of this section, namely that a
∀π0-formula ϕ with free variables V is satisfiable if and only if it is satisfied by the realization
associated with a suitable V -extensional skeletal representation whose size is bounded by the
cardinality of V (cf. Theorem 3). The latter result entails immediately the decidability of
the fragment ∀π0 of our interest.

Given a ∀π0-formula ϕ, we denote with ϕxy the formula obtained by replacing each free
occurrence of x in ϕ with y and with Vars(ϕ) the collection of the free variables of ϕ. Likewise,
given a finite collection S of atomic ∀π0-formulae, we denote with Vars(S) the collection of the
variables occurring in the formulae of S. In addition, we indicate with ∈+

S (the membership
closure of S) the minimal transitive relation on Vars(S) such that the following conditions
hold:

if “x ∈ π̄(z)” ∈ S, then x ∈+
S z;

if “[x, y] ∈ z” ∈ S, then x ∈+
S z ∧ y ∈

+
S z.

A collection S of atomic ∀π0-formulae is a skeletal representation if x 6∈+
S x, for all

x ∈ Vars(S).
Let S be a skeletal representation. We define the height of a variable x ∈ Vars(S) with

respect to S (which we write heightS(x)) as the length n of the longest ∈+
S -chain of the

form x1 ∈+
S . . . ∈

+
S xn ∈

+
S x ending at x, with x1, . . . , xn ∈ Vars(S). Thus, heightS(x) = 0 if

y 6∈+
S x, for all y ∈ Vars(S).
A skeletal representation S is said to be V -extensional, for a given set of variables V , if

the following conditions hold:

if “x = y” ∈ S, then x, y ∈ V and αxy and αyx belong to S, for each atomic formula α in S;
if “x = y” /∈ S, for some x, y ∈ V , then the variables x and y must be explicitly
distinguished in S either by some variable z, in the sense that “z ∈ π̄(x)” ∈ S iff “z ∈
π̄(y)” /∈ S, or by some pair [z, z′], in the sense that “[z, z′] ∈ x” ∈ S iff “[z, z′] ∈ y” /∈ S.
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Skeletal representations allow one to define special ∀π0-interpretations, called realizations,
which were first introduced in [3], though with a slightly different meaning. To this purpose
we introduce the following family {πn}n∈N of pairing functions, recursively defined by

π0(u, v) =Def {u, {u, v}}
πn+1(u, v) =Def {πn(u, v)} ,

for every u, v ∈ V.

I Definition 1 (Realization). Let S be a skeletal representation, let V and T be two
finite, nonempty, and disjoint sets of variables such that Vars(S) ⊆ V ∪ T , and let σ be a
bijection from T onto {1, 2, . . . , |T |}. We extend the function heightS(·) also to variables
x ∈ (V ∪ T ) \Vars(S) by putting for such variables heightS(x) =Def 0.

Then the realization of S relative to (V, T ) is the ∀π0-interpretation R = (MR, πR) such
that πR =Def π|V |+|T | and, recursively on heightS(x) for x ∈ V ∪ T ,

MRx =Def {Ry : “y ∈ π̄(x)” ∈ S} ∪ {R[y, z] : “[y, z] ∈ x” ∈ S} ∪ s(x) ,

where

s(x) =Def

{
{{k + 1, k, σ(x)}} if x ∈ T
∅ otherwise,

with k = |V | · (|V |+ |T |+ 3).2 J

Realizations have useful properties, stated by the following lemma.

I Lemma 2. Let S, V , T , σ, and k be as in Definition 1 and let R be the realization of
S relative to (V, T ). If S is V -extensional, then for every x, y, z ∈ V ∪ T the following
conditions hold:

(R1) Rx 6= πR(u, v) for u, v ∈ V;
(R2) Rx 6= {k + 1, k, i} for 1 ≤ i ≤ |T |;
(R3) Rx = Ry iff either “x = y” ∈ S or x and y coincide;
(R4) Rx ∈ Rπ̄(y) iff “x ∈ π̄(y)” ∈ S;
(R5) R[x, y] ∈ Rz iff “[x, y] ∈ z” ∈ S.

Proof. To prove (R1), we establish the more general property

if heightS(x) ≤ n ≤ |V |+ |T |, then Rx 6= πn(u, v), for x ∈ V ∪ T and u, v ∈ V. (2)

Let n ≤ |V |+ |T | and let us assume by way of contradiction that Rx = πn(u, v) for some
u, v ∈ V and some x ∈ V ∪ T of minimal height such that 0 ≤ heightS(x) ≤ n.

We can rule out at once the case in which n = 0, as in this case heightS(x) = 0, so that
|Rx| ≤ 1, and therefore Rx 6= π0(u, v), since |π0(u, v)| = 2.

Thus, we can assume that n > 0. Let us consider first the case in which heightS(x) = 0.
If x ∈ V then, by the very definition of realization, we have Rx = ∅ 6= πn(u, v). On the
other hand, if x ∈ T , then Rx = {{k+ 1, k, σ(x)}} and since |{k+ 1, k, σ(x)}| > |πn−1(u, v)|
and πn(u, v) = {πn−1(u, v)}, it follows that Rx 6= πn(u, v). In both cases we found a
contradiction, so that we must have heightS(x) > 0.

On the other hand, if heightS(x) > 0, our absurd hypothesis Rx = πn(u, v) = {πn−1(u, v)}
and the definition of realization imply that either

2 We are assuming that integers are represented à la von Neumann, namely 0 =Def ∅ and, recursively,
n+ 1 =Def n ∪ {n}.
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(i) πn−1(u, v) = {k + 1, k, σ(x)}, but provided that x ∈ T , or
(ii) πn−1(u, v) = Ry, for some y such that “y ∈ π̄(x)” ∈ S, or

(iii) πn−1(u, v) = R[y, z] = π|V |+|T |(Ry,Rz), for some y, z such that “[y, z] ∈ x” ∈ S.

We can exclude at once case (i), since |πn−1(u, v)| ≤ 2 < |{k + 1, k, σ(x)}|. Case (ii) can
be excluded as well, since it would contradict the minimality of heightS(x), as heightS(y) <
heightS(x). In case (iii), from elementary properties of our pairing functions πi it would
follow that |V |+ |T | = n− 1, contradicting our initial assumption that n ≤ |V |+ |T |. Thus
(2) holds.

In view of (2), to establish (R1) it is now enough to observe that heightS(x) < |V |+ |T |.
Next, since rank({k + 1, k, i}) = k + 2, for 1 ≤ i ≤ |T | (as k > |T |),3 to establish (R2) it

will be enough to show that rank(Rx) 6= k+ 2, for x ∈ V ∪T . Thus, let x ∈ V ∪T . If y ∈+
S x,

for some y ∈ T , then rank(Rx) ≥ rank(Ry) ≥ k+3. The same conclusion can be reached also
in the case in which x ∈ T . On the other hand, if y 6∈+

S x, for any y ∈ T , and x ∈ V , it can
easily be proved by induction on heightS(x) that rank(Rx) ≤ (|V |+ |T |+ 3) · heightS(x) ≤
|V | · (|V |+ |T |+ 3) = k. Hence, in any case rank(Rx) 6= k + 2 holds, proving (R2).

Concerning (R3), we observe preliminarily that if “x = y” ∈ S, then Rx = Ry is a
direct consequence of the V -extensionality of S. Thus, to complete the proof of (R3) it is
enough to show that if Rx = Ry, for distinct variables x, y ∈ V ∪ T , then “x = y” ∈ S.
So, assume that “x = y” /∈ S, for two distinct variables x, y ∈ V ∪ T and consider first the
case in which either x or y, say y, is a variable in T . From the definition of realization
it follows that {k + 1, k, σ(y)} ∈ Ry, while from (R2) and the fact that {k + 1, k, σ(y)}
is not a pair with respect to π|V |+|T |, it follows that {k + 1, k, σ(y)} /∈ Rx, unless x ∈ T
and {k + 1, k, σ(y)} = {k + 1, k, σ(x)}. But in such a case, we would have σ(x) = σ(y)
and therefore x and y must coincide, contradicting our initial assumption that x and y are
distinct variables. Therefore we have Rx 6= Ry.

Next, let us assume that x, y ∈ V . We will induction on max(heightS(x), heightS(y)).
From the V -extensionality of S it follows that x, y are distinguished in S by a variable z
or by a pair [z′, z′′]. Let us first assume that x, y are distinguished in S by a variable z.
If “z ∈ π̄(x)” ∈ S and “z ∈ π̄(y)” /∈ S, then for all w such that “w ∈ π̄(y)” ∈ S we have
Rz 6= Rw by the inductive hypothesis, since heightS(z) < heightS(x) and heightS(w) <
heightS(y). Furthermore, from (R1) it follows also that Rz 6= R[w,w′], for all w,w′ such
that “[w,w′] ∈ y” ∈ S. Thus Rz ∈ Rx \Ry. If “z ∈ π̄(y)” ∈ S and “z ∈ π̄(x)” /∈ S we can
prove that Rz ∈ Ry \Rx in an analogous way. In both case we have Rx 6= Ry. On the
other hand, if x, y are distinguished by a pair [z′, z′′], we can argue as follows. Assume first
that “[z′, z′′] ∈ x” ∈ S and “[z′, z′′] ∈ y” /∈ S. Plainly, R[z′, z′′] ∈ Rx. If R[z′, z′′] ∈ Ry,
then by (R1) R[z′, z′′] = R[w′, w′′], for a pair [w′, w′′] such that “[w′, w′′] ∈ y” ∈ S. Since
π|V |+|T | is a pairing function, we have Rz′ = Rw′ and Rz′′ = Rw′′. Considering that
heightS(z′), heightS(z′′) < heightS(x) and that heightS(w′), heightS(w′′) < heightS(y), the
inductive hypothesis yields that

z′ and w′ coincide or “z′ = w′” is in S, and
z′′ and w′′ coincide or “z′′ = w′′” is in S.

But then, by the V -extensionality of S, “[z′, z′′] ∈ y” would be in S, a contradiction. Hence,
R[z′, z′′] ∈ Rx \ Ry. Analogously, if “[z′, z′′] ∈ x” /∈ S and “[z′, z′′] ∈ y” ∈ S, we have
R[z′, z′′] ∈ Ry \Rx. Therefore, in both cases we have Rx 6= Ry, proving (R3).

3 We recall that the rank of a set u ∈ V denotes the least ordinal γ such that u ⊆ Vγ (i.e., u ∈ Vγ+1).
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The cases (R4) and (R5) are easy consequences of (R1), (R2), and (R3). Details are
left to the reader. This completes the proof of the lemma. J

Realizations act as minimal models for skeletal representations, in the sense that if V, T
are two disjoint sets of variables, S is a V -extensional skeletal representation such that
Vars(S) ⊆ V ∪ T , and R is the realization of S relative to (V, T ) (and to a bijection σ), then
R |= α if and only if α ∈ S.

In the next theorem we show how skeletal representations can be used to witness the
satisfiability of ∀π0-formulae.

I Theorem 3. Let ϕ be a ∀π0-formula, and let V = Vars(ϕ). Then ϕ is satisfiable iff there
exists a V -extensional skeletal representation S such that:

(i) Vars(S) ⊆ V ∪ T , for some T such that 1 ≤ |T | < 2|V |;
(ii) R |= ϕ, where R is the realization of S relative to (V, T ).

Proof. To prove the theorem, it is enough to exhibit a skeletal representation S that satisfies
conditions (i) and (ii) above, given a model I for ϕ.

Thus, let I be a model for ϕ and let Σ = {Ix : x ∈ V }. As shown in [3], there exists
a collection Σ0 of size strictly less than |Σ| which witnesses all the inequalities among the
members of Σ, in the sense that s ∩ Σ0 6= s′ ∩ Σ0 for any two distinct s, s′ ∈ Σ. Let us split
the pairs present in Σ0 (relative to the pairing function πI of I) forming the collection

Σ1 =Def {s : s ∈ Σ0 ∧ (∀u, v ∈ V)(s 6= πI(u, v))} ∪
⋃
{{u, v} : πI(u, v) ∈ Σ0} .

Then we put

Σ2 =Def

{
Σ1 \ Σ if Σ1 \ Σ 6= ∅
{∅} otherwise

and let T be any collection of variables in Vars, not already occurring in ϕ, such that
|T | = |Σ2| (so that |T | ≥ 1). Notice that |T | ≤ 2|Σ0|+ 1 < 2|V |.

Finally, we define our skeletal representation as the collection S of atomic ∀π0-formulae
such that:

“x ∈ π̄(y)” ∈ S ⇐⇒ Ix ∈ Iπ̄(y)
“[x, y] ∈ z” ∈ S ⇐⇒ I[x, y] ∈ Iz

“x = y” ∈ S ⇐⇒ Ix = Iy and x, y ∈ V

for all x, y, z ∈ V ∪ T .
As can be easily verified, the above construction process yields a V -extensional skeletal

representation S satisfying condition (i) of the theorem.
We prove next that also condition (ii) is satisfied, i.e. R |= ϕ holds, where R is the

realization of S relative to (V, T ). This amounts to showing that R models correctly all
conjuncts of ϕ. These are simple prenex ∀π0-formulae whose free variables belong to V ∪ T
and whose domain variables belong to V , which are correctly modeled by I. It will therefore
be enough to prove the following general property stating that

I |= ψ =⇒ R |= ψ, (3)

for every simple prenex ∀π0-formula ψ such that Vars(ψ) ⊆ V ∪T and whose domain variables,
if any, belong to V .
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We prove (3) by induction on the length of the quantifier prefix of ψ.
When ψ is quantifier-free, (3) follows from propositional logic, by observing that the

definition of S together with conditions (R3), (R4), and (R5) of Lemma 2 yield that
Iα = Rα, for each atomic ∀π0-formula α such that Vars(α) ⊆ V ∪ T .

For the inductive step, let ψ have either the form (∀x ∈ π̄(y))χ or the form (∀[x, y] ∈ z)χ,
with χ a simple prenex ∀π0-formula having one less quantifier than ψ. For the sake of simplicity,
we consider here only the case in which ψ has the form (∀x ∈ π̄(y))χ, as the other case can
be dealt with much in the same manner. We remark that, by hypothesis, the domain variable
y in (∀x ∈ π̄(y))χ belongs to V .

Let us assume that I |= ψ. To complete the inductive proof of (3) we need to show that
R |= ψ. From I |= ψ it follows that I |= (w ∈ π̄(y)) → χxw, for every variable w, and in
particular for every variable w ∈ W , where W =Def {w ∈ V ∪ T : “w ∈ π̄(y)” ∈ S}. Let
w ∈ W . We clearly have I |= w ∈ π̄(y), and therefore I |= χxw. Plainly, Vars(χxw) ⊆ V ∪ T .
In addition, all domain variables in χxw belong to V , since this is the case for all domain
variables in χ and w can not appear in χxw as a domain variable, since x is a quantified
variable of ψ and as such can not appear also as a domain variable in ψ, and therefore in χ.
Hence, by inductive hypothesis, we have R |= χxw and, a fortiori, R |= (w ∈ π̄(y))→ χxw.

Notice that the latter relation holds also for w ∈ (V ∪ T ) \ W , since in this case
I 6|= (w ∈ π̄(y)) and therefore, as observed above, R 6|= (w ∈ π̄(y)). Thus we have

R |= (w ∈ π̄(y))→ χxw, (4)

for every w ∈ V ∪ T . We show that (4) implies R |= (∀x ∈ π̄(y))χ, which is what we want to
prove.

Indeed, if by contradiction R 6|= (∀x ∈ π̄(y))χ, then R′ 6|= (x ∈ π̄(y)) → χ, for some
{x}-variant R′ of R, so that R′ |= (x ∈ π̄(y)) and R′ 6|= χ. But then

R′x ∈ R′π̄(y) = Rπ̄(y) ⊆ {Rz : “z ∈ π̄(y)” ∈ S}.

Therefore R′x = Rz0, for some variable z0 (in V ∪ T ) such that the literal “z0 ∈ π̄(y)”
belongs to S. Thus we have R |= z0 ∈ π̄(y) and R 6|= (z0 ∈ π̄(y)) → χxz0

, contradicting
(4). Hence, R |= (∀x ∈ π̄(y))χ holds, completing the inductive proof of (3) and, in turn, the
proof of condition (ii) of the theorem. J

Theorem 3 yields a decision test for the s.p. for ∀π0-formulae, as the number of possible
V -extensional skeletal representations satisfying condition (i) of the theorem is finite, for
any given ∀π0-formula, and condition (ii) is effectively verifiable. In the following section, we
analyze the s.p. for ∀π0-formulae from a complexity point of view.

3.1 Complexity issues
The s.p. for propositional logic can be easily reduced to the one for ∀π0-formulae as follows.
Given a propositional formula Q, we construct in linear time a quantifier-free ∀π0-formula
ϕQ, by replacing each propositional variable p in Q with a corresponding atomic ∀π0-formula
xp ∈ π̄(U), where U is a set variable distinct from all set variables xp so introduced. It is
then immediate to check that Q is propositionally satisfiable if and only if the resulting
∀π0-formula ϕQ is satisfiable. Thus the NP-hardness of the satisfiability of ∀π0-formulae follows
immediately.

Having shown a lower bound for the s.p. for ∀π0-formulae, we next give an upper bound for
it, proving that it is in the NExpTime class and, furthermore, when restricted to a certain
useful collection of ∀π0-formulae, it is NP-complete.
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As proved in Theorem 3, satisfiability of a ∀π0-formula ϕ can be tested by first guessing
a skeletal representation S, whose size is polynomial in the size |ϕ| of ϕ (since |Vars(S)| <
3 · |Vars(ϕ)|), and then verify that the formula ϕ is modeled correctly by the realization R
of S relative to (V, T ), where V = Vars(ϕ) and T = Vars(S) \Vars(ϕ). Construction of the
realization R takes polynomial time, however to verify that R |= ϕ can take exponential time.
Indeed, it is easy to check that R models correctly ϕ if and only if it satisfies the expansion
ExpS(ϕ) of ϕ relative to S, which we define shortly. For a simple prenex ∀π0-formula ψ, we
put

expS(ψ) =Def


ψ if ψ is quantifier-free,∧

“x′∈π̄(y)”∈S
expS(χxx′) if ψ = (∀x ∈ π̄(y))χ,∧

“[x′,y′]∈z”∈S
expS(χx, yx′,y′) if ψ = (∀[x, y] ∈ z)χ.

Then we put

ExpS(ϕ) =Def expS(ϕ1) ∧ . . . ∧ expS(ϕn),

where ϕ1, . . . , ϕn are the (simple prenex) conjuncts of ϕ. If ` is the longest quantifier prefix
of the formulae ϕ1, . . . , ϕn, then it turns out that |ExpS(ϕ)| = O(|ϕ|2`) = O(|ϕ|2·|ϕ|), and
therefore to test whether R |= ExpS(ϕ) takes at most exponential time, showing that the s.p.
for ∀π0-formula is in NExpTime.

However, the same proof shows that if we restrict to the collection of ∀π0-formulae whose
quantifier prefixes are bounded by a constant h ≥ 0, which we call (∀π0 )≤h, then |ExpS(ϕ)| is
only polynomial in |ϕ|, for any (∀π0 )≤h-formula ϕ, and therefore to test whether R models
correctly ExpS(ϕ), and in turn to test whether R |= ϕ, takes polynomial time in |ϕ|, proving
the following result:

I Corollary 4. The s.p. for (∀π0 )≤h-formulae is NP-complete, for any h ≥ 0. J

In the rest of the paper we describe some applications of ∀π0-formulae in the field of
knowledge representation. More specifically, in the next section we introduce a novel
description logic whose consistency problem can be reduced to the s.p. for (∀π0 )≤2-formulae.
Such description logic will then be extended with Horn-style rules in Section 5.

4 The description logic DL〈∀π
0〉

Description logics are a family of logic-based formalisms which allow to represent knowledge
about a domain of interest in terms of concepts (which denote sets of elements), roles (which
represent relations between elements), and individuals (which denote domain elements). Each
language in this family is mainly characterized by its set of constructors, which allow to
form complex terms starting from concept names, role names, and individual names (see
Table 1 for the syntax and semantics of the most widely used description logic constructs).
A description logic knowledge base is a finite set of statements which define constraints on
the domain structure.

Description logic semantics4 is given in terms of interpretations. An interpretation I
consists of a nonempty domain ∆I and an interpretation function assigning to each concept

4 Here we are recalling the descriptive semantics. There are several other semantics that are out of the
scope of this paper.

CSL’11



138 A Quantified Fragment of Set Theory Involving Ordered Pairs

name a subset of ∆I , to every role name a relation over ∆I , and to every individual name
a domain item in ∆I . An interpretation I extends recursively to complex terms. An
interpretation I that satisfies all the constraints of a knowledge base K is said to be a model
for K. A knowledge base is said to be consistent if it admits a model. Thus the consistency
problem for description logic knowledge bases is to determine whether a knowledge base is
consistent or not.

It turns out that the semantical definitions of several description logic statements Σ may
be expressed as formulae of the form

I |= Σ iff
(
∀x1 ∈ ∆I

)
. . .
(
∀xn ∈ ∆I

)
ΓΣ,

where ΓΣ is a Boolean combination of expressions of the types

u ∈ CI , [u, u′] ∈ RI , u = aI , u = u′,

with C,R, a respectively a concept term, a role term, and an individual name, and with u, u′
ranging over the variables x1, . . . , xn (see Table 1).

This holds in particular for all the knowledge base statements allowed in the novel
description logic DL〈∀π0〉 defined next.

I Definition 5. Let N c,N r,N i be the three denumerable, infinite and mutually disjoint
collections of, respectively, concept, role, and individual names. DL〈∀π0〉-concept terms and
DL〈∀π0〉-role terms are formed according to the following syntax rules:

C,D −→ A | > |⊥ | ¬C |C tD |C uD | {a} | ∃R.Self | ∃R.{a}
R,S −→ P |U |R− | ¬R |R t S |R u S |RC| |R|D |RC|D | id(C) | sym(R)

where C,D denote DL〈∀π0〉-concept terms, R,S denote DL〈∀π0〉-role terms, A,P denote
a concept and a role name, respectively, and a denotes an individual name. A DL〈∀π0〉-
knowledge base is then a finite collection of statements of the following types:

C ≡ D , C v D , R ≡ S , R v S , C v ∀R.D ,

∃R.C v D , R ◦R′ v S , Trans(R) , Ref(R) , ASym(R)

where C,D are DL〈∀π0〉-concept terms and R,S,R′ are DL〈∀π0〉-role terms.

Notice that the above definition of DL〈∀π0〉 is not minimal, as we intended to give a clear
and immediate overview of its expressive power.

The major limitation of DL〈∀π0〉 (with respect to other description logics) is that value
restriction and existential quantification are restricted to the left-hand side and right-hand
side of inclusions, respectively. Moreover, number restrictions are not allowed. On the other
hand, the set of allowed constructs is extremely large. In particular, complex role constructors
can be used freely, in contrast with most expressive description logics. Additionally, reasoning
in DL〈∀π0〉 is NP-complete, as will be proved in the following theorem.

I Theorem 6. The consistency problem for DL〈∀π0〉-knowledge bases is NP-complete.

Proof. We will show that the consistency problem for DL〈∀π0〉-knowledge bases reduces to
the satisfiability problem for (∀π0 )≤2-formulae.

We begin with observing that we can restrict our attention to DL〈∀π0〉-knowledge bases
containing only statements of the following types:

A ≡ > , A ≡ ¬B , A ≡ B tB′ , A ≡ {a} , A v ∀P.B , ∃P.A v B , A ≡ ∃P.{a},
P ≡ U , P ≡ ¬Q , P ≡ Q tQ′ , P ≡ Q− , P ≡ id(A) , P ≡ QA| , P ◦ P ′ v Q,
Ref(P )
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AI ⊆ ∆I (concept name)
P I ⊆ ∆I ×∆I (role name)
aI ∈ ∆I (individual name)

>I = ∆I (universal concept)
⊥I = ∅ (bottom concept)

(¬C)I = ∆I \ CI (concept negation)
(C tD)I = CI ∪DI (concept union)
(C uD)I = CI ∩DI (concept intersection)

{a}I = {aI} (nominal)
(∃R.Self)I = {x ∈ ∆I : [x, x] ∈ RI} (self restriction)

(∀R.C)I = {x ∈ ∆I : (∀[x, y] ∈ RI)(y ∈ CI)} (value restriction)
(∃R.C)I = {x ∈ ∆I : (∃y ∈ CI)([x, y] ∈ RI)} (existential quantifier)

(≤ nR.C)I = {x ∈ ∆I : |{y ∈ CI : [x, y] ∈ RI}| ≤ n} (number restrictions)
(≥ nR.C)I = {x ∈ ∆I : |{y ∈ CI : [x, y] ∈ RI}| ≥ n}

(R ⊆ S)I = {x ∈ ∆I : (∀y ∈ ∆I)([x, y] ∈ RI →
[x, y] ∈ SI)} (role-value-map)

UI = ∆I ×∆I (universal role)
(¬R)I = (∆×∆) \RI (role negation)

(R t S)I = RI ∪ SI (role union)
(R u S)I = RI ∩ SI (role intersection)

(R−)I = {[x, y] ∈ ∆I ×∆I : [y, x] ∈ RI} (role inverse)
(RC|)I = {[x, y] ∈ RI : x ∈ CI} (role restrictions)
(R|D)I = {[x, y] ∈ RI : y ∈ DI}

(RC|D)I = (RC|)I ∩ (R|D)I
id(C)I = {[x, x] : x ∈ CI} (role identity)

(R ◦ S)I = RI ◦ SI (role composition)
(R∗)I = (RI)∗ (transitive closure)

(sym(R))I = RI ∪ (R−)I (symmetric closure)

I |= C v D ⇐⇒ CI ⊆ DI (inclusion axioms)
I |= R v S ⇐⇒ RI ⊆ SI
I |= C ≡ D ⇐⇒ CI = DI (equivalence axioms)
I |= R ≡ S ⇐⇒ RI = SI

I |= Trans(R) ⇐⇒ RI ◦RI ⊆ RI (role transitivity)
I |= Ref(R) ⇐⇒ (id(∃R.>))I ⊆ RI (role reflexivity)

I |= ASym(R) ⇐⇒ RI ∩ (R−)I = ∅ (role asymmetry)

I |= C(a) ⇐⇒ aI ∈ CI (concept assertion)
I |= R(a, b) ⇐⇒ [aI , bI ] ∈ RI (role assertion)

Table 1 Description logic constructs
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where A,B,B′ are concept names, P, P ′, Q,Q′ are role names, and a is an individual name,
since any DL〈∀π0〉-knowledge base K can be easily transformed into a knowledge base K′
which contains only statements of these types, and such that K is consistent if and only if K′
is.

Next, we define a mapping τ from DL〈∀π0〉-statements to simple prenex ∀π0-formulae as
follows:

τ(A ≡ >) =Def (∀x ∈ π̄(∆)) (x ∈ π̄(A))
τ(A ≡ ¬B) =Def (∀x ∈ π̄(∆)) (x ∈ π̄(A)↔ x /∈ π̄(B))

τ(A ≡ B tB′) =Def (∀x ∈ π̄(∆)) (x ∈ π̄(A)↔ x ∈ π̄(B) ∨ x ∈ π̄(B′))
τ(A ≡ {a}) =Def (∀x ∈ π̄(∆)) (x ∈ π̄(A)↔ x = a) ∧ a ∈ π̄(A)

τ(A v ∀P.B) =Def (∀[x, y] ∈ P ) (x ∈ π̄(A)→ y ∈ π̄(B))
τ(∃P.A v B) =Def (∀[x, y] ∈ P ) (y ∈ π̄(A)→ x ∈ π̄(B))

τ(A ≡ ∃P.{a}) =Def (∀x ∈ π̄(∆)) (x ∈ π̄(A)↔ [x, a] ∈ P )
τ(P ≡ U) =Def (∀[x, y] ∈ ∆) ([x, y] ∈ P )

τ(P ≡ ¬Q) =Def (∀x, y ∈ π̄(∆)) ([x, y] ∈ P ↔ [x, y] /∈ Q)
τ(P ≡ Q tQ′) =Def (∀x, y ∈ π̄(∆)) ([x, y] ∈ P ↔ [x, y] ∈ Q ∨ [x, y] ∈ Q′)

τ(P ≡ Q−) =Def (∀x, y ∈ π̄(∆)) ([x, y] ∈ P ↔ [y, x] ∈ Q)
τ(P ≡ QA|) =Def (∀x, y ∈ π̄(∆)) ([x, y] ∈ P ↔ [x, y] ∈ Q ∧ x ∈ π̄(A))
τ(P ≡ id(A)) =Def (∀x, y ∈ π̄(∆)) ([x, y] ∈ P ↔ x = y ∧ x ∈ π̄(A))
τ(P ◦ P ′ v Q) =Def (∀[x, y] ∈ P ) (∀[y′, z] ∈ P ′) (y = y′ → [x, z] ∈ Q)

τ(Ref(P )) =Def (∀[x, y] ∈ P ) ([x, x] ∈ P )

We remark that in the above definition of the mapping τ we are assuming that the collection
Vars of the variables of the language ∀π0 contains all the concept, role, and individual
names. Moreover, we used the same symbol ∆ which is also used to denote the domain of a
description logic interpretation, under the assumption that ∆ /∈ N c∪N r∪N i. These are just
technical assumptions (not strictly necessary for the proof) which have been just introduced
to enhance readability of the formulae τ(·) and to emphasize the strong correlation between
the semantical definitions of DL〈∀π0〉-statements and their corresponding ∀π0-formulae.

Now let K be a DL〈∀π0〉-knowledge base. We define the ∀π0-formula ϕ, expressing the
consistency of K, as follows

ϕ =Def ϕ∆ ∧ ϕC ∧ ϕR ∧ ϕI ∧ ϕK
ϕ∆ =Def (∀[x, y] ∈ ∆) ([x, y] /∈ ∆)
ϕC =Def

∧
A∈Cpts

((∀x ∈ π̄(A)) (x ∈ π̄(∆)) ∧ (∀[x, y] ∈ A) ([x, y] /∈ A))

ϕR =Def

∧
P∈Rls

((∀x ∈ π̄(P )) (x /∈ π̄(P )) ∧ (∀[x, y] ∈ P ) (x ∈ π̄(∆) ∧ y ∈ π̄(∆)))

ϕI =Def

∧
a∈Inds

a ∈ π̄(∆)

ϕK =Def

∧
Σ∈K

τ(Σ)

where Cpts,Rls, and Inds are respectively the sets of concept, role and individual names
occurring in K.

The consistency problem for K is equivalent to the satisfiability of ϕ, as we prove next.
Plainly, ϕ∆, ϕC , ϕR, and ϕI guarantee that each model of ϕ can be easily turned into a

DL〈∀π0〉-interpretation. Additionally, ϕK ensures that the DL〈∀π0〉-interpretation obtained in
this way satisfies all the statements in K.

Conversely, let I be a model for K. Without loss of generality, we may assume that ∆I
is a set belonging to the von Neumann hierarchy V (otherwise, we embed ∆I in V). Let
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I = (MI, πI) be the ∀π0-interpretation, induced by I, defined by

πI(u, v) =Def {u, {u, v},∆I} for all u, v ∈ V
MI∆ =Def ∆I
MIA =Def AI for all A ∈ N c

MIP =Def {πI(u, v) : [u, v] ∈ P I} for all P ∈ N r

MIa =Def aI for all a ∈ N i.

Since I∆ ∈ πI(u, v) for all u, v ∈ V, from the well-foundedness of the membership relation it
follows that I∆ does not contain any pair (with respect to πI). Thus x ∈ Iπ̄(A) ⇐⇒ x ∈ AI
and πI(x, y) ∈ IP ⇐⇒ [x, y] ∈ P I follow from the definition of I, and then Iτ(Σ) = true if
and only if I satisfies Σ, for all the statements Σ ∈ K.

We conclude the proof by observing that each conjunct in ϕ contains at most two
quantifiers (i.e., ϕ is a formula of (∀π0 )≤2), thus in view of Corollary 4 the satisfiability of ϕ
can be checked in nondeterministic polynomial time, while the NP-hardness of this problem
follows directly from the NP-completeness of the satisfiability problem for propositional
formulae. J

5 Extending DL〈∀π
0〉 with SWRL rules

In order to increase the expressive power of description logics, in [12] it was proposed to
extend this framework with a simple form of Horn-style rules called SWRL rules. SWRL rules
have the form

H → B1 ∧ . . . ∧Bn

where H,B1, . . . , Bn are atoms of the forms A(x), P (x, y), x = y, x 6= y, with A a concept
name, P a role name, and x, y either SWRL-variables or individual names.

A binding B(I) is any extension of the interpretation I which assigns a domain item to
each SWRL-variable. An interpretation I satisfies a rule H → B1 ∧ . . . ∧Bn if each binding
B(I) which satisfies all the atoms B1, . . . , Bn satisfies H also.

A DL〈∀π0〉-knowledge base K extended with a finite set of SWRL rules R is said to be
satisfiable if and only if it has a model which satisfies all the rules in R.

The reduction provided in Section 4 can be easily extended to cope with DL〈∀π0〉-knowledge
bases extended with finite sets of SWRL rules, as shown in the following theorem.

I Theorem 7. The consistency problem for DL〈∀π0〉-knowledge bases extended with finite
sets of SWRL rules is decidable.

Proof. Let K be a DL〈∀π0〉-knowledge base, and let R be a finite set of SWRL rules. Let us
extend the mapping τ , defined in Theorem 6, to SWRL rules and atoms as follows:

τ(H → B1 ∧ . . . ∧Bn) =Def (∀x1, . . . , xm ∈ π̄(∆)) (τ(H)→ τ(B1) ∧ . . . ∧ τ(Bn))
τ(A(x)) =Def x ∈ π̄(A)

τ(P (x, y)) =Def [x, y] ∈ P
τ(x = y) =Def x = y

τ(x 6= y) =Def x 6= y

where H,B1, . . . Bn are SWRL atoms, x1, . . . , xm are the SWRL variables occurring in H →
B1∧. . .∧Bn, x, y can be either SWRL variables or individual names, and A,P are respectively
a concept and a role name.
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We conclude the proof by observing that the following ∀π0-formula ϕ′ is satisfiable if and
only if the knowledge base K extended with R is consistent:

ϕ′ =Def

∧
ρ∈R

τ(ρ) ∧ ϕ,

where ϕ is built from K as described in Theorem 6, extending Cpts, Rls and Inds with the
concept, role and individual names occurring in R, respectively. J

6 Conclusions and future works

We have introduced the collection of quantified ∀π0-formulae of set theory, which allow the
explicit manipulation of ordered pairs, and proved that they have a decidable satisfiability
problem. In fact, when restricted to ∀π0-formulae whose conjuncts have quantifier prefixes of
length bounded by a constant, the satisfiability problem is NP-complete.

In addition, we have introduced the novel description logic DL〈∀π0〉 and shown that
its consistency check is NP-complete, since it can be reduced to the satisfiability test for
a ∀π0-formula whose conjuncts involve at most two quantifiers. Finally we have extended
the description logic DL〈∀π0〉 with SWRL rules without disrupting the decidability of the
knowledge base consistency problem.

In contrast with description logics, the semantics of set theory is multi-level, so that
sets (and consequently relations) can be nested arbitrarily. In the light of this observation,
we intend to investigate whether the description logic DL〈∀π0〉 can be extended with meta-
modeling features (cf. [15]), which would allow to state relationships among elements of the
conceptual model.

Finally, we intend to investigate if ∀π0 (and consequently DL〈∀π0〉) can be extended
with concrete domains, in order to promote definitively ∀π0 as a language for knowledge
representation, and, consequently, for the semantic web.
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Abstract
Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qual-
itative properties of continuous-space and continuous-time labelled Markov processes (CMPs).
The modalities of CML approximate the rates of the exponentially distributed random variables
that characterize the duration of the labeled transitions. In this paper we present a sound and
complete Hilbert-style axiomatization of CML for the CMP-semantics and prove some meta-
properties including the small model property. CML characterizes stochastic bisimulation and
supports the definition of a quantified extension of satisfiability relation that measures the com-
patibility of a model and a property. Relying on the small model property, we prove that this
measure can be approximated, within a given error, by using a distance between logical formulas.
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1 Introduction

Many complex natural and man-made systems (e.g., biological, ecological, physical, social,
financial, and computational) are modeled as stochastic processes in order to handle either a
lack of knowledge or inherent randomness. These systems are frequently studied in interaction
with discrete systems, such as controllers, or with interactive environments having continuous
behavior. This context has motivated research aiming to develop a general theory of systems
able to uniformly treat discrete, continuous and hybrid reactive systems. Two of the central
questions of this research are “when do two systems behave similarly up to some quantifiable
observation error?” and “is there any (algorithmic) technique to check whether two systems
have similar behaviours?”. These questions are related to the problems of state space
reduction (collapsing a model to an equivalent reduced model) and discretization (reduce a
continuous or hybrid system to an equivalent discrete one), which are cornerstones in the
field of stochastic systems.

In the case of probabilistic systems, probabilistic bisimulation [17] has been introduce
to relate systems with identical probabilistic behaviours and probabilistic multimodal logic
(PML) [16, 17, 1, 11, 13] has been used to characterize this equivalence: the logical equivalence
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induced by PML on probabilistic models coincides with probabilistic bisimulation [17, 20, 10].
However, in spite of the elegant theories supporting it, the concept of bisimulation remains too
strict for applications. In modelling, the values of the parameters (rates or probabilities) are
often approximated and consequently, one is interested to know whether two processes that
differ by a small amount in real-valued parameters show similar (not necessarily identical)
behaviours. In such cases, instead of bisimulation relation, one needs a metric to estimate
the degree of similarity of two systems in terms of their behaviours.

For quantifying the behavioral similarity of probabilistic systems it has been introduced a
class of pseudometrics [21, 6, 20]. In these settings, the distance between two processes is zero
iff they are bisimilar; otherwise, they are closer when they differ by a small amount in their
probabilistic behaviours. These pseudometrics can be defined on top of PML, as shown in
[6, 20], by extending the satisfiability relation P  φ to a function d such that d(P, φ) ∈ [0, 1]
measures the "degree of satisfiability" between the process P and the property φ. The function
d induces a distance D between processes by D(P, P ′) = sup{|d(P, φ) − d(P ′, φ)|, φ ∈ L},
where L is the set of logical formulas. However, the computability of D is sometimes
problematic, as it is the computability of d(P, φ) for an infinite or extremely big process P
and for this reason approximation techniques such as statistical model checking [15, 22] are
used to evaluate d(P, φ) within a given error.

In this paper we develop and study the continuous Markovian logic (CML) which is
similar to PML but developed for general stochastic (Markovian) systems. Our models
are continuous-time and continuous-space labelled Markovian processes (CMPs) [10, 3, 4].
They generalize other probabilistic models such as labeled Markov processes [20, 9, 5, 8]
and Harsanyi type spaces [12, 19]. CML contains modal operators indexed with transition
labels a and positive rationals r. The formula Larφ expresses the fact that the rate of the
a-transitions from a given state to the set of states satisfying φ is at least r; similarly, Ma

r φ

states that the rate is at most r.
In spite of their syntactic similarities, CML and PML are very different. While in the

probabilistic case the two modal operators are dual, being related by the De Morgan duality
Ma
r φ ↔ La1−r¬φ, in the stochastic case they are independent. Moreover, there exists no

sound equivalence of type ¬Xa
r φ ↔ Y as ¬φ for X,Y ∈ {L,M}, hence no positive normal

forms can be defined for CML formulas. This is because the rate of the transitions from a
given state m to the set of states satisfying φ is not related to the rate of the transitions
from m to the set of states satisfying ¬φ. The differences are reflected in the sound-complete
axiomatizations that we present both for CML and for its fragment without Ma

r -operators.
Many axioms of PML, such as ` Lar> or ` Larφ→ ¬Las¬φ for r + s < 1 from [23]1, are not
sound for CMPs. Also at the level of the small model property, which in the case of PML
relies on the fact that for a fixed integer q there exists a finite number of integers p such that
p/q ∈ [0, 1] (see [23]), a series of nontrivial additional problems rise in the stochastic case.

The construction of a small model for a consistent CML-formula is the cornerstone of this
paper supporting not only the weak completeness proofs, but also approximation techniques
to evaluate the extension d(P, φ) ∈ [0, 1] of satisfiability relation. In the context of a sound
and complete axiomatization, one can turn the bisimulation-distance problem, which in the
probabilistic case has been addressed semantically, into a syntactic problem centered on
provability. Formally, the distance d(φ, ψ) = sup{|d(P, φ)− d(P,ψ)|, P ∈ P}, where P is the
class of CMPs, measures the similarity between logical formulas in terms of provability: φ
and ψ are close in d if they (or their negations) can be both proved from the same hypothesis.

1 The semantics of [23] is in terms of systems where each action is enabled with probability 1.
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In this context we prove the strong robustness theorem: d(P, φ) ≤ d(P,ψ) + d(φ, ψ). In case
that d is not computable or it is very expensive, one can use our finite model construction to
approximate its value. Let d̃(φ, ψ) = max{|d(P, φ)− d(P,ψ)|, P ∈ Ωp[φ, ψ]}, where Ωp[φ, ψ]
is the finite model (finite set of processes) constructed for φ ∧ ψ if it is consistent, or for
¬(φ∧ψ) otherwise, and p ∈ N is the parameter involved in the construction. This guarantees
the weak robustness theorem: d(P, φ) ≤ d(P,ψ) + d̃(φ, ψ) + 2/p. Using this theorem, one can
evaluate d(P, φ) from the value of d(P,ψ) and this can be used, for instance, in the context
of statistical model checking. Of course, the accuracy of this approximation depends on
the similarity of φ and ψ from a provability perspective, which influences both the distance
d̃(φ, ψ) and the parameter p of the finite model construction.

To summarize, the achievements of this paper are as follows.
We introduce Continuous Markovian Logic, a modal logic that expresses quantitative and
qualitative properties of continuous Markov processes. CML is endowed with operators
that approximate the labelled transition rates of CMPs and allows us to reason on
approximated properties. This logic characterizes the stochastic bisimulation of CMPs.
We present sound and complete Hilbert-style axiomatizations for CMP and for its Ma

r -
free fragment. These are very different from the similar probabilistic cases, due to the
structural differences between probabilistic and stochastic models and the differences are
reflected by the axioms.
We prove the finite model properties for CML and its restricted fragment. The construction
of a finite model for a consistent formula is novel in the way it exploits the granularity
and the Archimedian properties of positive rationals.
We define a distance between logical formulas that corroborates with the distance
between a model and a formula proposed in the literature for probabilistic systems. The
organization of the space of logical formulas as a pseudometrizable space with a topology
sensitive to provability is a novelty in the field of metric semantics. This structure
guarantees the strong robustness theorem.
We show that the complete axiomatization and the finite model construction can be used
to approximate the syntactic distance d. This idea opens new research perspectives on
the direction of designing algorithms to estimate such distances within given errors.

The structure of the paper. The first section establishes some preliminary concepts and
notations used in the paper. Section 3 introduces CMPs and their bisimulation. In Section 4
we define the logic CML and in Section 5 we present sound-complete axiomatizations for
both CML and its Ma

r -free fragment proving, at the same time, the small model properties.
Section 6 introduces the metric semantics and the results related to metrics and bisimulation.
The paper also contains a conclusive section where we discuss new research directions deriving
from this paper.

2 Preliminary definitions and notations

In this section we introduce some notations and establish the terminology used in the paper.
For arbitrary sets A,B, 2A denotes the powerset of A and [A→ B] the set of functions

from A to B.
If (M,Σ) is a measurable space with σ-algebra Σ ⊆ 2M , we use ∆(M,Σ) to denote the

set of measures2 µ : Σ → R+ on (M,Σ). We organize ∆(M,Σ) as a measurable space by

2 Notice that in this paper we do not consider infinite rates.
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considering the σ-algebra generated, for arbitrary S ∈ Σ and r > 0, by the sets

{µ ∈ ∆(M,Σ) : µ(S) ≥ r}.

Given two measurable spaces (M,Σ) and (N,Θ), we use JM → NK to denote the class of
measurable mappings from (M,Σ) to (N,Θ).

Given a relation R ⊆M ×M , the set N ⊆M is R-closed iff {m ∈M | ∃n ∈ N, (n,m) ∈
R} ⊆ N . If (M,Σ) is a measurable space and R ⊆ M ×M , then Σ(R) denotes the set of
measurable R-closed subsets of M .

3 Continuous Markov processes

Based on an equivalence between the definitions of Harsanyi type spaces [12, 19] and labelled
Markov processes [20, 9, 5, 8] evidenced by Doberkat in the light of the Giry monad [7],
we introduce the continuous Markov processes (CMPs). CMPs are models of stochastic
systems with continuous state space and continuous time transitions. They are defined for
a fixed countable set A of transition labels representing the types of interactions with the
environment. If a ∈ A, m is the current state of the system and N is a measurable set of
states, the function θ(a)(m) is a measure on the state space and θ(a)(m)(N) ∈ R+ represents
the rate of an exponentially distributed random variable that characterizes the duration of
an a-transition from m to arbitrary n ∈ N . Indeterminacy in such systems is resolved by
races between events executing at different rates.
I Definition 1 (Continuous Markov processes). Given an analytic set (M,Σ), where Σ is
the Borel algebra generated by the topology, an A-continuous Markov kernel is a tuple
M = (M,Σ, θ), where θ : A → JM → ∆(M,Σ)K. M is the support set of M denoted by
supp(M). If m ∈M , (M,m) is an A-continuous Markov process.

Notice that θ(a) is a measurable mapping between (M,Σ) and ∆(M,Σ). This is equivalent
with the conditions on the two-variable rate function used in [10] to define continuous Markov
processes (for the proof of the equivalence see, e.g. Proposition 2.9, of [7]).

In the rest of the paper we assume that the set of transition labels A is fixed. We denote
by M the class of A-continuous Markov kernels (CMKs) and we useM,Mi,M′ to range
over M. We denote by P the set of A-CMPs and we use P, Pi, P ′ to range over P.

The stochastic bisimulation for CMPs follows the line of Larsen-Skou probabilistic
bisimulation [17, 8, 20].
I Definition 2 (Stochastic Bisimulation). Given M = (M,Σ, θ) ∈ M, a rate-bisimulation
relation onM is a relation R ⊆M ×M such that (m,n) ∈ R iff for any C ∈ Σ(R) and any
a ∈ A,

θ(a)(m)(C) = θ(a)(n)(C).
Two processes (M,m) and (M, n) are stochastic bisimilar, written m ∼M n, if they are
related by a rate-bisimulation relation.

Observe that, for anyM∈M there exist rate-bisimulation relations as, for instance, is
the identity relation onM; the stochastic bisimulation is the largest rate-bisimulation.

If M = (M,Σ, θ),M′ = (M ′,Σ′, θ′) ∈ M, then M′′ = (M ′′,Σ′′, θ′′) = M ]M′ if
M ′′ = M ]M ′, Σ′′ is generated by Σ ] Σ′ and for any a ∈ A, N ∈ Σ and N ′ ∈ Σ′,

θ′′(a)(m)(N ]N ′) =
{
θ(a)(m)(N) if m ∈M
θ′(a)(m)(N ′) if m ∈M ′

Notice that M′′ ∈ M. If m ∈ M and m′ ∈ M ′, we say that (M,m) and (M′,m′) are
bisimilar written (M,m) ∼ (M′,m′) whenever m ∼M]M′ m′.
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4 Continuous Markovian Logics

In this section we introduce the continuous Markovian logic (CML) for semantics based on
CMPs. In addition to the Boolean operators, this logic is provided with stochastic modal
operators that approximate the rates of transitions. For a ∈ A and r ∈ Q+, Larφ characterizes
(M,m) whenever the rate of the a-transition from m to the class of the states satisfying
φ is at least r; symmetrically, Ma

r φ is satisfied when this rate is at most r. CMLs extends
the probabilistic logics [1, 16, 13, 23, 11] to stochastic domains. The obvious structural
similarities between the probabilistic and the stochastic models are not preserved when we
consider the logic. By focusing on general measures instead of probabilistic measures in the
definition of the transition systems, many of the axioms of probabilistic logics are not sound
for stochastic semantics. This is the case, for instance, with ` Lar> or ` Larφ→ ¬Las¬φ for
r + s < 1 which are proposed in [11]. Moreover, while in probabilistic settings the operators
Lar and Ma

S are dual, satisfying Ma
r φ = La1−r¬φ, they became independent in stochastic

semantics. For this reason, in the next section we study two CML logics with complete
axiomatizations, L involving only the stochastic operators of type Lar and L+ that contains
both Lar and Ma

s .

I Definition 3 (Syntax). Given a countable set A, the formulas of L(A) and L+(A) respect-
ively are introduced by the following grammars, for arbitrary a ∈ A and r ∈ Q+.

L(A) : φ := >| ¬φ | φ ∧ φ | Larφ,

L+(A) : φ := >| ¬φ | φ ∧ φ | Larφ | Ma
r φ.

In addition, we assume all the Boolean operators and ⊥ = ¬>, as well as the derived
operator Earφ = Larφ ∧Ma

r φ.
In what follows we use the same set A of labels used with CMPs. The semantics of

L(A) and L+(A), called in this paper Markovian semantics, are defined by the satisfiability
relation for arbitrary A-CMPs (M,m) withM = (M,Σ, θ) ∈M, by:
M,m  > always,
M,m  ¬φ iff it is not the case thatM,m  φ,
M,m  φ ∧ ψ iffM,m  φ andM,m  ψ,
M,m  Larφ iff θ(a)(m)(JφKM) ≥ r,
M,m Ma

r φ iff θ(a)(m)(JφKM) ≤ r,
where JφKM = {m ∈M |M,m  φ}.

When it is not the case thatM,m  φ, we writeM,m 6 φ.
We have thatM,m 6 ⊥ always and thatM,m  Earφ iff θ(a)(m)(JφKM) = r. Notice

that Earφ characterizes the process that can do an a-transition to the set of processes satisfying
φ with the rate r. So, in this case one can express the exact rate of the transitions. This is
always possible in probabilistic logic where Ma

r and Lar are dual operators and consequently
Ear is always definable. In the stochastic case Lar , Ma

r and Ear are mutually independent. We
chose not to study a Markovian logic that involves only the Ear operators because in many
applications we do not know the exact rates of the transitions and it is more useful to work
with approximations such as Ma

r or Lar .
The semantics of Larφ and Ma

r φ are well defined only if JφKM is measurable. This is
guaranteed by the fact that θ(a) is a measurable mapping between (M,Σ) and ∆(M,Σ), as
proved in the next lemma.

I Lemma 4. For any φ ∈ L+(A) and anyM = (M,Σ, θ) ∈M, JφKM ∈ Σ.
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Proof. Induction on φ: for φ = Larψ, the inductive hypothesis guarantees that JψKM ∈ Σ,
hence, {µ ∈ ∆(M,Σ)|µ(JψKM) ≥ r} is measurable in ∆(M,Σ). Because θ(a) is a measurable
mapping, we obtain that JLarψKM = (θ(a))−1({µ ∈ ∆(M,Σ)|µ(JψKM) ≥ r}) is measurable.
Similarly it can be proved for φ = Ma

r ψ. J

A formula φ is satisfiable if there exists M = (M,Σ, θ) ∈ M and m ∈ M such that
M,m  φ. φ is valid, denoted by  φ, if ¬φ is not satisfiable.

5 Complete axiomatizations

In this section we present two Hilbert-style axiomatizations, one for L(A) and one for L+(A),
and we prove that they are sound and (weak) complete against the Markovian semantics.
Both axiomatizations, as in the case of the axiomatization proposed in [23] for probabilistic
systems, contain infinitary rules that encode the Archimedean properties of Q+ ∪ {+∞}.
However, as has been shown in [14] following the lines of [13], a finitary axiomatic system can
be given at the price of replacing the stochastic operators with some more complex operators.
For our purpose of reasoning on approximated properties of Markovian processes, a complete
axiomatization involving only the stochastic operators (and their Archimedian rules) is more
useful.

5.1 Axiomatization for L(A)
Table 1 contains a Hilbert-style axiomatization for L(A). The axioms and rules, considered
in addition to the axiomatization of classic propositional logic, are given for propositional
variables φ, ψ ∈ L(A), for arbitrary a ∈ A and s, r ∈ Q+.

(A1): ` La0φ
(A2): ` Lar+sφ→ Larφ

(A3): ` Lar(φ ∧ ψ) ∧ Las(φ ∧ ¬ψ)→ Lar+sφ

(A4): ` ¬Lar(φ ∧ ψ) ∧ ¬Las(φ ∧ ¬ψ)→ ¬Lar+sφ
(R1): If ` φ→ ψ then ` Larφ→ Larψ

(R2): If ∀r < s,` φ→ Larψ then ` φ→ Lasψ

(R3): If ∀r > s,` φ→ Larψ then ` φ→ ⊥

Table 1 The axiomatic system of L(A)

This axiomatic system has some similarities to the axiomatic system of probabilistic
logic proposed in [23] for Harsanyi type spaces. The main difference is that the axioms of
probabilistic logic ` Lar> and ` Larφ→ ¬Las¬φ for r+ s ≤ 1 are not sound for the Markovian
semantics and this changes the entire proof structure. We also have two Archimedean
properties reflected in (R2) and (R3); while the first allows us to argue on convergent
sequences of rationals, the second excludes the models with infinite rates.

As usual, we say that a formula φ is provable, denoted by ` φ, if it can be proved from the
given axioms and rules. We say that φ is consistent, if φ→ ⊥ is not provable. Given a set Φ
of formulas, we say that Φ proves φ, Φ ` φ, if from the formulas of Φ and the axioms one
can prove φ. Φ is consistent if it is not the case that Φ ` ⊥. For a sublanguage L ⊆ L+(A),
we say that Φ is L-maximally consistent if Φ is consistent and no formula of L can be added
to it without making it inconsistent.
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I Theorem 5 (Soundness). The axiomatic system of L(A) is sound for the Markovian
semantics, i.e., for any φ ∈ L(A), if ` φ then  φ.

In what follows we prove the finite model property for L(A) using the filtration method
adapted for CMPs. This result will eventually establish the (weak) completeness of the
axiomatic system for the Markovian semantics, meaning that everything that is true for all
the models is also provable. This logic is not complete because the stochastic operators are
not compact.

To prove the weak completeness we will construct, for an arbitrary consistent formula
ψ ∈ L(A), a model (Mψ,Γ) where supp(Mψ) is a finite set of L(A)-consistent sets of
formulas. As usual with the filtration method, the key argument is the truth lemma: ψ ∈ Γ
iffMψ,Γ  ψ. A similar construction has been proposed in [23] for probabilistic logic, where
the finite model property derives from the fact that the number of rationals of type p

n , for a
fixed integer n, is finite within [0, 1]. The same property does not hold in our case, as the
focus is on [0,∞), and instead we need a more complicated construction.

Before proceeding with the construction, we fix some notations.
For n ∈ N, n 6= 0, let Qn = { pn : p ∈ N}. If S ⊆ Q is finite, the granularity of S, gr(S), is

the least common multiple of the denominators of the elements of S.
The modal depth of φ ∈ L(A) is defined by md(>) = 0, md(¬φ) = md(φ), md(φ ∧ ψ) =
max(md(φ),md(ψ)) and md(Larφ) = md(φ) + 1.
The granularity of φ ∈ L is gr(φ) = gr(R), where R ⊆ Q+ is the set of indexes r of the
operators Lar present in φ; the upper bound of φ is max(φ) = max(R).
The actions of φ is the set act(φ) ⊆ A of indexes a ∈ A of the operators Lar present in φ.
For arbitrary n ∈ N and A ⊆ A, let Ln(A) be the sublanguage of L(A) that uses only modal
operators Lar with r ∈ Qn and a ∈ A. For Λ ⊆ L(A), let [Λ]n = Λ ∪ {φ ∈ Ln(A) : Λ ` φ}.

Consider a consistent formula ψ ∈ L(A) with gr(ψ) = n and act(ψ) = A.
Let L[ψ] = {φ ∈ Ln(A) | max(φ) ≤ max(ψ),md(φ) ≤ md(ψ)}.

In what follows we constructMψ ∈M such that each Γ ∈ supp(Mψ) is a consistent set of
formulas that contains an L[ψ]-maximally consistent set of formulas and each L[ψ]-maximally
consistent set is contained in some Γ ∈ supp(Mψ). And we will prove that for φ ∈ L[ψ],
φ ∈ Γ iffMψ,Γ  φ.

Let Ω[ψ] be the set of L[ψ]-maximally consistent sets of formulas. Ω[ψ] is finite and any
Λ ∈ Ω[ψ] contains finitely many nontrivial formulas3; in the rest of this construction we only
count non-trivial formulas while ignoring the rest and we use

∧
Λ to denote the conjunction

of the nontrivial formulas of Λ.
For each Λ ∈ Ω[ψ], such that {φ1, ..., φi} ⊆ Λ is its set of its non-trivial formulas, we

construct Λ+ ⊇ [Λ]n with the property that ∀φ ∈ Λ and a ∈ A there exists ¬Larφ ∈ Λ+.
The construction step [φ1 versus Λ:]

(R3) guarantees that ∃r ∈ Qn s.t. [Λ]n ∪ {¬Larφ1} is consistent (suppose that this is not
the case, then `

∧
Λ → Larφ1 for all r ∈ Qn implying that

∧
Λ inconsistent - impossible).

Let ya1 = min{s ∈ Qn : [Λ]n ∪ {¬Lasφ1} is consistent} and xa1 = max{s ∈ Qn : Lasφ1 ∈ [Λ]n}
((R3) guarantees the existence of max, because otherwise `

∧
Λ→ Larφ1 for all r implying

∧
Λ

inconsistent - impossible). (R2) implies that ∃r ∈ Q\Qn s.t., xa1 < r < ya1 and {¬Larφ1}∪[Λ]n
is consistent (otherwise, `

∧
Λ → Larφ1 for all r < ya1 and due to (R2), `

∧
Λ → Laya

1
φ1 -

3 By nontrivial formulas we mean the formulas that are not obtained from more basic consistent ones by
boolean derivations. For instance p ∨ q → p, p ∧ p, p ∨ p are trivial formulas.
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contradiction with the consistency of Λ). Obviously, r 6∈ Qn. Let n1 = gran{1/n, r}. Let
sa1 = min{s ∈ Qn1 : [Λ]n1 ∪ {¬Lasφ1} is consistent}, Λa1 = Λ ∪ {¬Lasa

1
φ1} and Λ1 =

⋃
a∈A

Λa1 .

The construction step [φ2 versus Λ1:]
As before, let ya2 = min{s ∈ Qn1 : [Λ1]n1 ∪ {¬Lasφ2} is consistent} and xa2 = max{s ∈
Qn1 : Lasφ2 ∈ [Λ1]n1}. There exists r ∈ Q \ Qn1 s.t., xa2 < r < ya2 and {¬Larφ2} ∪ [Λ1]n1 is
consistent. Let n2 = gran{1/n1, r}. Let sa2 = min{s ∈ Qn2 : [Λ]n2 ∪ {¬Lasφ2} is consistent},
Λa2 = Λ1 ∪ {¬Lasa

2
φ2} and Λ2 =

⋃
a∈A

Λa2 .

We repeat this construction step for [φ3 versus Λ2],..,[φi versus Λi−1] and in a finite
number of steps we eventually obtain Λ ⊆ Λ1 ⊆ ... ⊆ Λi, where Λi is a consistent set
containing a finite set of nontrivial formulas. Let nΛ = gran{1/n1, .., 1/ni}. We make this
construction for all Λ ∈ Ω[ψ]. Let p = gran{1/nΛ : Λ ∈ Ω[ψ]}. Notice that p > n. Let
Λ+ = [Λi]p and Ω+[ψ] = {Λ+ : Λ ∈ Ω[ψ]}.
I Remark. Any consistent formula φ ∈ L[ψ] is an element of a set Λ+ ∈ Ω+[ψ]. For each
Λ ∈ Ω[ψ], each φ ∈ Λ and a ∈ A, there exist s, t ∈ Qp, s < t, such that Lasφ,¬Lat φ ∈ Λ+.
Moreover, for any Λ+ there exists a formula ρ such that φ ∈ Λ+ iff ` ρ→ φ.

Let Ωp be the set of Lp(A)-maximally consistent sets of formulas. We fix an injective
(choice) function f : Ω+[ψ]→ Ωp such that for any Λ+ ∈ Ω+[ψ], Λ+ ⊆ f(Λ+). We denote by
Ωp[ψ] = f(Ω+[ψ]). For φ ∈ L[ψ], let JφK = {Γ ∈ Ωp[ψ] : φ ∈ Γ}. Anticipating the further
construction, we will use Ωp[ψ] as the support-set forMψ. For this reason we establish some
properties for this set.

I Lemma 6. 1. Ωp[ψ] is finite.
2. 2Ωp[ψ] = {JφK : φ ∈ L[ψ]}.
3. For any φ1, φ2 ∈ L[ψ], ` φ1 → φ2 iff Jφ1K ⊆ Jφ2K.
4. For any Γ ∈ Ωp[ψ], φ ∈ L[ψ] and a ∈ A there exist x = max{r ∈ Qp : Larφ ∈ Γ},

y = min{r ∈ Qp : ¬Larφ ∈ Γ} and y = x+ 1/p.

Proof. 4. Laxφ,¬Layφ ∈ Γ implies x 6= y. If x > y, Laxφ ∈ Γ entails (Axiom (A2)) Layφ ∈ Γ,
contradicting the consistency of Γ. If x + 1/p < y, then Lax+1/pφ 6∈ Γ, i.e. ¬Lax+1/pφ ∈ Γ
implying that x+ 1/p ≥ y - contradiction. J

Let Ω be the set of L(A)-maximally consistent sets of formulas. We fix an injective
(choice) function g : Ωp → Ω such that for any Γ ∈ Ωp, Γ ⊆ π(Γ); we denote g(Γ) by Γ∞.

I Lemma 7. For any Γ ∈ Ωp[ψ], φ ∈ L[ψ] and a ∈ A, there exists

z = sup{r ∈ Q : Larφ ∈ Γ∞} = inf{r ∈ Q : ¬Larφ ∈ Γ∞} and x ≤ z < y.

Proof. Let x∞ = sup{r ∈ Q : Larφ ∈ Γ∞} and y∞ = inf{r ∈ Q : ¬Larφ ∈ Γ∞}. Suppose
that x∞ < y∞. Then there exists r ∈ Q such that x∞ < r < y∞. Hence, ¬Larφ,Larφ ∈ Γ∞ -
impossible because Γ∞ is consistent. Suppose that x∞ > y∞. Then there exists r ∈ Q such
that x∞ > r > y∞. As Γ∞ is maximally consistent we have either Larφ ∈ Γ∞ or ¬Larφ ∈ Γ∞.
The first case contradicts the definition of x∞ while the second the definition of y∞.
Hence, x ≤ z ≤ y. If z = y, then Lazφ,¬Lazφ ∈ Γ contradicting the consistency of Γ. J

We denote z by aΓ
φ and now we can defineMψ.

I Lemma 8. If θψ : A → [Ωp[ψ] → ∆(Ωp[ψ], 2Ωp[ψ])] is defined for arbitrary a ∈ A,
Γ ∈ Ωq[ψ] and φ ∈ L[ψ] by θψ(a)(Γ)(JφK) = aΓ

φ, thenMψ = (Ωp[ψ], 2Ωp[ψ], θψ) ∈M.
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Proof. The central problem is to prove that for arbitrary Γ ∈ Ωp[ψ] and a ∈ A, the function
θψ(a)(Γ) : 2Ωp[ψ] → R+ is well defined and a measure on (Ωp[ψ], 2Ωp[ψ]). Further, because
the space is discrete with finite support, we obtain that θψ(a) ∈ JΩp[ψ]→ ∆(Ωp[ψ], 2Ωp[ψ])K.

Suppose that for φ1, φ2 ∈ L[ψ] we have Jφ1K = Jφ2K. Then, from Lemma 6, ` φ1 ↔ φ2
and ` Larφ1 ↔ Larφ2. Hence, aΓ

φ1
= aΓ

φ2
proving that θψ(a)(Γ) is well defined.

Now we prove that θψ(a)(Γ) is a measure.
For showing θψ(a)(Γ)(∅) = 0, we show that for any r > 0, ` ¬Lar⊥. This is sufficient,
as (A1) guarantees that ` La0⊥ and J⊥K = ∅. Suppose that there exists r > 0 such
that Lar⊥ is consistent. Let ε ∈ (0, r) ∩ Q. Then (A2) gives ` Lar⊥ → Laε⊥. Hence,
` Lar⊥ → (Lar(⊥ ∧⊥) ∧ Laε (⊥ ∧ ¬⊥)) and applying (A3), ` Lar⊥ → Lar+ε⊥. Repeating this
argument, we can prove that ` Lar⊥ → Las⊥ for any s and (R3) confirms the inconsistency
of Lar⊥.

We show now that if A,B ∈ 2Ωp[ψ] with A ∩B = ∅, then θψ(a)(Γ)(A) + θψ(a)(Γ)(B) =
θψ(a)(Γ)(A ∪ B). Let A = Jφ1K, B = Jφ2K with φ1, φ2 ∈ L[ψ] and ` φ1 → ¬φ2. Let
x1 = θψ(a)(Γ)(A), x2 = θψ(a)(Γ)(B) and x = θψ(a)(Γ)(A ∪B). We prove that x1 + x2 = x.

Suppose that x1 + x2 < x. Then, there exist ε1, ε2 ∈ Q+ such that x′1 + x′2 < x, where
x′i = xi + εi for i = 1, 2. From the definition of xi, ¬Lax′

i
φi ∈ Γ∞. Further, using (A4), we

obtain ¬Lax′
1+x′

2
(φ1 ∨ φ2) ∈ Γ∞, implying that x′1 + x′2 ≥ x - contradiction.

Suppose that x1 + x2 > x. Then, there exist ε1, ε2 ∈ Q+ such that x′′1 + x′′2 > x, where
x′′i = xi − εi for i = 1, 2. But the definition of xi implies that Lax′′

i
φi ∈ Γ∞. Further, (A3)

gives Lax′′
1 +x′′

2
(φ1 ∨ φ2) ∈ Γ∞, i.e. x′′1 + x′′2 ≤ x - contradiction.

J

Now we can prove the Truth Lemma.

I Lemma 9 (Truth Lemma). If φ ∈ L[ψ], then [Mψ,Γ  φ iff φ ∈ Γ].

Proof. Induction on the structure of φ. The only nontrivial case is φ = Larφ
′.

(=⇒) Suppose thatMψ,Γ  φ and φ 6∈ Γ. Hence ¬φ ∈ Γ. Let y = min{r ∈ Qp : ¬Larφ ∈
Γ}. Then, from ¬Larφ′ ∈ Γ, we obtain r ≥ y. But Mψ,Γ  Larφ

′ is equivalent with
θψ(a)(Γ)(Jφ′K) ≥ r, i.e. aΓ

φ′ ≥ r. On the other hand, from Lemma 6, aΓ
φ′ < y - contradiction.

(⇐=) If Larφ′ ∈ Γ, then r ≤ aΓ
φ and r ≤ θψ(a)(Γ)(JφK). Hence,Mψ,Γ  Larφ. J

The previous lemma implies the small model property for our logic.

I Theorem 10 (Small model property). For any L(A)-consistent formula φ, there exists
M ∈ M with finite support of cardinality bound by the structure of φ, and there exists
m ∈ supp(M) such thatM,m  φ.

The small model property proves the (weak) completeness of the axiomatic system.

I Theorem 11 (Weak Completeness). The axiomatic system of L(A) is complete with respect
to the Markovian semantics, i.e. if  ψ, then ` ψ.

Proof. We have that [ ψ implies ` ψ] is equivalent with [ 6` ψ implies 6 ψ], that is equivalent
with [the consistency of ¬ψ implies the existence of a model (M,m) for ¬ψ] and this is
guaranteed by the finite model property. J
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(B1): ` La0φ
(B2): ` Lar+sφ→ ¬Ma

r φ, s > 0
(B3): ` ¬Larφ→Ma

r φ

(B4): ` ¬Lar(φ ∧ ψ) ∧ ¬Las(φ ∧ ¬ψ)→ ¬Lar+sφ
(B5): ` ¬Ma

r (φ ∧ ψ) ∧ ¬Ma
s (φ ∧ ¬ψ)→ ¬Ma

r+sφ

(S1): If ` φ→ ψ then ` Larφ→ Larψ

(S2): If ∀r < s,` φ→ Larψ then ` φ→ Lasψ

(S3): If ∀r > s,` φ→Ma
r ψ then ` φ→Ma

s ψ

(S4): If ∀r > s,` φ→ Larψ then ` φ→ ⊥

Table 2 The axiomatic system of L+(A)

5.2 Axiomatization for L+(A)
Table 2 contains a Hilbert-style axiomatization for L+(A).

Notice the differences between these axioms and the axioms in Table 1. First of all Axiom
(A2) had to be enforced by (B2) and (B3) which depict the connection between the two
stochastic operators. In the probabilistic case these relations are encoded by the duality rule
Ma
r φ = La1−r¬φ and by the axiom ` Larφ→ ¬Las¬φ for r + s < 1; these two are not sound

for stochastic models. Rule (A3) has been itself enforced by (B5). We also have an extra
Archimedean rule for Ma

r . We prove below that all the theorems of L(A) are also theorems
of L+(A) and we state some theorems of L+(A) that are central for the weak completeness
proof of L+(A).

I Lemma 12. 1. ` Lar+sφ→ Larφ, 2.`Ma
r φ→Ma

r+sφ,
3. ` Lar(φ ∧ ψ) ∧ Las(φ ∧ ¬ψ)→ Lar+sφ, 4. `Ma

r (φ ∧ ψ) ∧Ma
s (φ ∧ ¬ψ)→Ma

r+sφ,
5. ` ¬Ma

r φ→ Larφ, 6. `Ma
r φ→ ¬Lar+sφ, s > 0,

7. If ` φ→ ψ, then `Ma
r ψ →Ma

r φ.

I Theorem 13 (Soundness). The axiomatic system of L+(A) is sound for the Markovian
semantics, i.e., for any φ ∈ L+(A), if ` φ then  φ.

The finite model property for L+(A) is proved, similarly to the case of L(A), by using
the filtration method. In what follows we will not reproduce the entire construction already
presented for L(A), but we only emphasize the major differences.

We keep the notations introduced before with the only differences that for an arbitrary
φ ∈ L+(A), the definition of the modal depth of φ also includes md(Ma

r ψ) = md(ψ) + 1 and
gr(φ), max(φ) and act(φ) take into account, in addition, the indexes of the operators of type
Ma
r that appear in φ. With these modifications, we define L+

n (A), for any integer n and
A ⊆ A, as before and for Λ ⊆ L+(A), [Λ]n = Λ ∪ {φ ∈ L+

n (A) : Λ ` φ}.
Consider a consistent formula ψ ∈ L+(A) with gr(ψ) = n and act(ψ) = A. We define

L+[ψ] = {φ ∈ L+
n (A) | max(φ) ≤ max(ψ),md(φ) ≤ md(ψ)}. Let Ω[ψ] be the set of L+[ψ]-

maximally consistent sets of formulas. We remake the construction done in the previous
subsection for L(A).

The first important difference with respect to the previous case appears due to (B2): for
each Λ ∈ Ω[ψ], φ ∈ Λ and a ∈ A, there exist s, t ∈ Qp, s < t, such that Lasφ,Ma

r φ ∈ Λ+.
Secondly, for any Γ ∈ Ωp[ψ], φ ∈ L+[ψ] and a ∈ A, there exist x = max{r ∈ Qp : ¬Ma

r φ ∈ Γ},
y = min{r ∈ Qp : Ma

r φ ∈ Γ} and y = x+ 1/p. In effect, in the correspondent of Lemma 7,
one can prove that there exists z = sup{r ∈ Q : Larφ ∈ Γ∞} = inf{r ∈ Q : ¬Larφ ∈ Γ∞} =
inf{r ∈ Q : Ma

r φ ∈ Γ∞} = sup{r ∈ Q : ¬Ma
r φ ∈ Γ∞}.
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As before, we denote z by aΓ
φ and we proceed with the definition of the modelMψ.

I Lemma 14. If θψ : A → [Ωp[ψ] → ∆(Ωp[ψ], 2Ωp[ψ])] is defined for arbitrary a ∈ A,
Γ ∈ Ωq[ψ] and φ ∈ L+[ψ] by θψ(a)(Γ)(JφK) = aΓ

φ, thenMψ = (Ωp[ψ], 2Ωp[ψ], θψ) ∈M.

This last result allows us to prove the Truth Lemma for L+(A).

I Lemma 15 (Truth Lemma). If φ ∈ L+[ψ], then [Mψ,Γ  φ iff φ ∈ Γ].

The proof of Lemma 15 requires, in addition to the proof of Lemma 9, the case φ = Ma
r φ
′

which is proved similarly to the case φ = Larφ
′.

As before, the truth lemma implies the finite model property and the weak completeness
theorem for L+(A) with Markovian semantics.

I Theorem 16 (Small model property). For any L+(A)-consistent formula φ, there exists
M ∈ M with finite support of cardinality bound by the structure of φ, and there exists
m ∈ supp(M) such thatM,m  φ.

I Theorem 17 (Weak Completeness). The axiomatic system of L+(A) is complete with
respect to the Markovian semantics, i.e. if  ψ, then ` ψ.

6 From bisimulation to the metric space of logical formulas

To start with, we state that the logical equivalences induced by L(A) and by L+(A) on the
class of CMPs coincide with stochastic bisimulation. The proofs follow closely the proof of
the corresponding result for probabilistic systems [8, 10, 20] and consist in showing that the
negation free-fragment of L(A) characterizes stochastic bisimulation while the negation and
Ma
r do not differentiate bisimilar processes.

I Theorem 18 (Logical characterization of stochastic bisimulation). LetM = (M,Σ, τ),M′ =
(M ′,Σ′, τ ′) ∈M, m ∈M and m′ ∈M ′. The following assertions are equivalent.
1. (M,m) ∼ (M′,m′);
2. For any φ ∈ L(A),M,m  φ iffM′,m′  φ;
3. For any φ ∈ L+(A),M,m  φ iffM′,m′  φ.

One of the main motivation for studying quantitative logics for probabilistic and stochastic
processes was, since the first papers on this subject [17, 16], the characterization of stochastic/-
probabilistic bisimulation. In the context of Theorem 18, one can turn the bisimulation
question into a series of model-checking problems. But the concept of stochastic/probabilistic
bisimulation is a very strict concept: it only verifies whether two processes have identical
behaviours. In applications we need instead to know whether two processes that may differ by
a small amount in the real-valued parameters (rates or probabilities) have similar behaviours.
To solve this problem a class of pseudometrics have been proposed in the literature [6, 20],
to measure how similar two processes are in terms of stochastic/probabilistic behaviour.

Because these pseudometrics are quantitative extensions of bisimulation, they can be
defined relying on the quantitative logics. Thus, for a class P of stochastic or probabilistic
processes and for a quantitative logic L that characterizes the bisimulation of processes, the
pseudometric can be induced by a function d : P×L → [0, 1] which extends the (characteristic
function of the) satisfiability relation : P×L → {0, 1}; the function d evaluates the "degree
of satisfiability" [6, 20].

In this paper we work with the function d : P×L → [0, 1], defined below for the set P of
CMPs and L = L+(A) (or L = L(A)).
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d((M,m),>) = 0,
d((M,m),¬φ) = 1− d((M,m), φ),
d((M,m), φ ∧ ψ) = max{d((M,m), φ), d((M,m), ψ)},
d((M,m), Larφ) = 〈r, θ(a)(m)(JφK)〉,
d((M,m),Ma

r φ) = 〈θ(a)(m)(JφK), r〉,
where for arbitrary a, b ∈ R+, 〈a, b〉 = (a− b)/a if a(a− b) > 0 and 〈a, b〉 = 0 otherwise.
The results presented in this section relay on the fact that d, as most of the functions that
quantify satisfiability for stochastic or probabilistic logics, is defined on top of the transition
function θ. For this reason, these results can be similarly proved for other bisimulation
pseudometrics.

The first result states that d characterizes stochastic bisimulation.

I Lemma 19. If (M,m), (M′,m′) ∈ P, then

(M,m) ∼ (M′,m′) iff [∀φ ∈ L, d((M,m), φ) = d((M′,m′), φ)].

Proof. (=⇒) Induction on φ. The Boolean cases are trivial and the cases φ = Larψ and
φ = Ma

r ψ derive from the fact that θ(a)(m)(JψK) = θ′(a)(m′)(JψK).
(⇐=) For an arbitrary φ ∈ L, ∀r ∈ Q, d((M,m), Larφ) = d((M′,m′), Larφ); and for r big
enough d((M,m), Larφ) = 1 − θ(a)(m)(JφK)/r, d((M′,m′), Larφ) = 1 − θ′(a)(m′)(JφK)/r.
Hence, θ(a)(m)(JφK) = θ′(a)(m′)(JφK) which implies (M,m) ∼ (M′,m′). J

As we have anticipated, a function d : P× L → [0, 1] which characterizes bisimulation in
the sense of Lemma 19, induces a distance between stochastic processes, D : P×P→ [0, 1]
by

D(P, P ′) = sup{|d(P, φ)− d(P ′, φ)|, φ ∈ L}, for arbitrary P, P ′ ∈ P.

D is, indeed, a pseudometric and its kernel is the stochastic bisimulation.

I Lemma 20. D : P×P→ [0, 1] defined before is a pseudometric such that

D(P, P ′) = 0 iff P ∼ P ′.

Similarly, one can use d to define a pseudometric d : L × L → [0, 1] over the space of
logical formulas by

d(φ, ψ) = sup{|d(P, φ)− d(P,ψ)|, P ∈ P}, for arbitrary φ, ψ ∈ L.

I Lemma 21. d : L × L → [0, 1] defined before is a pseudometric and

d(φ, ψ) = d(¬φ,¬ψ).

Proof. We prove that it satisfies the triangle inequality. We have
sup{|d((Ω,Γ), φ) − d((Ω,Γ), ψ)|} + sup{|d((Ω,Γ), ψ) − d((Ω,Γ), ρ)|} ≥ sup{|d((Ω,Γ), φ) −
d((Ω,Γ), ψ)|+ |d((Ω,Γ), ψ)− d((Ω,Γ), ρ)|} ≥ sup{|d((Ω,Γ), φ)− d((Ω,Γ), ρ)|}. J

This construction allow us to introduce the first robustness theorem.

I Theorem 22 (Strong Robustness). For arbitrary φ, ψ ∈ L and P ∈ P,

d(P,ψ) ≤ d(P, φ) + d(φ, ψ).

Proof. From the definition of d we have that d(P,ψ)− d(P, φ) ≤ d(φ, ψ). J
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Similar constructions can be done for any class of stochastic or probabilistic models for
which it has been defined a correspondent logic that characterizes bisimulation. But in spite
of the obvious utility of the robustness theorem, in most of the cases such a result is not
computable due to the definition of d that involves the quantification over the entire class of
continuous Markov processes.

This is exactly where the sound and complete axiomatizations of L(A) and L+(A) for
the Markovian semantics and the finite model properties play their role. In what follows, we
use the construction of the small model for an L-consistent formula presented in the previous
section4 to effectively compute an approximation of d within a given error ε > 0. Below we
reuse the notations of section 5.

Let Ω be the set of the L-maximally consistent sets of formulas. For arbitrary Γ∞ ∈ Ω,
a ∈ A and φ ∈ L, let

aΓ∞

φ = sup{r ∈ Q : Larφ ∈ Γ∞} = inf{r ∈ Q : ¬Larφ ∈ Γ∞} =

inf{r ∈ Q : Ma
r φ ∈ Γ∞} = sup{r ∈ Q : ¬Ma

r φ ∈ Γ∞}.

The existence of these inf and sup and their equalities can be proved as in Lemma 6 (4).

I Lemma 23 (Extended Truth Lemma). If θ : A → [Ω→ ∆(Ω, 2Ω)] is defined for arbitrary
a ∈ A, Γ∞ ∈ Ω and φ ∈ L by θ(a)(Γ∞)(JφK) = aΓ∞

φ , thenML = (Ω, 2Ω, θ) ∈M. Moreover,
for arbitrary φ ∈ L,

ML,Γ∞  φ iff φ ∈ Γ∞.

The proof of this lemma is the sum of the proofs of the lemmas 8, 9, 14 and 15.
The next lemma states that d can be characterized by only using the processes ofML.

In this way it relates d to provability, as these processes are L-maximally consistent sets of
formulas.

I Lemma 24. For arbitrary φ, ψ ∈ L,

d(φ, ψ) = sup{|d((ML,Γ∞), φ)− d((ML,Γ∞), ψ)|,Γ∞ ∈ Ω}.

Proof. Any (M,m) ∈M satisfies a maximally-consistent set of formulas, hence there exists
Γ∞ ∈ Ω such that (M,m) ∼ (ML,Γ∞), i.e., for any φ ∈ L, d((M,m), φ) = d((ML,Γ∞), φ).

J

In what follows we reduce the quantification space to the domain of a finite model. For
an arbitrary consistent formula ψ ∈ L, letMψ = (Ωp[ψ], 2Ωp[ψ], θψ) ∈M be the model of ψ
constructed in the previous section; we call p the parameter of Mψ.
Let d̃ : L × L → [0, 1] be defined as follows.

d̃(φ, ψ) = max{|d((Mφ∧ψ,Γ), φ)−d((Mφ∧ψ,Γ), ψ)|,Γ ∈ Ωp[φ∧ψ]} if φ∧ψ is consistent,
d̃(φ, ψ) = max{|d((M¬(φ∧ψ),Γ), φ)− d((M¬(φ∧ψ),Γ), ψ)|,Γ ∈ Ωp[¬(φ ∧ ψ)]}, otherwise.

I Lemma 25. For arbitrary φ, ψ ∈ L,

d(φ, ψ) ≤ d̃(φ, ψ) + 2/p.

4 These results hold for both L = L(A) and L = L+(A).
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Proof. To prove the inequality, we return to the notations of lemmas 6 and 7. We have
x, y ∈ Qp, y = x+ 1/p and x ≤ z < y. This implies that for any φ ∈ L[ψ],
|d((ML,Γ∞), φ)− d((Mφ∧ψ,Γ), φ)| ≤ 1/p. Consequently, for arbitrary φ, ψ ∈ L,
|d((ML,Γ∞), φ) − d((ML,Γ∞), ψ)| ≤ |d((Mφ∧ψ,Γ), φ) − d((Mφ∧ψ,Γ), ψ)| + 2/p, which
proofs our inequality (if φ ∧ ψ is inconsistent we takeM¬(φ∧ψ)). J

This last result finally allows us to prove a weaker version of the robustness theorem
which evaluates d((M,m), ψ) from d((M,m), φ), based on d̃(φ, ψ) and a given error.

I Theorem 26 (Weak Robustness). For arbitrary φ, ψ ∈ L and P ∈ P,

d(P,ψ) ≤ d(P, φ) + d̃(φ, ψ) + 2/p,

where p is the parameter ofMφ∧ψ if φ ∧ ψ is consistent, or ofM¬(φ∧ψ) otherwise.

BecauseMφ∧ψ (orM¬(φ∧ψ)) is finite, d̃(φ, ψ) can be computed and the error 2/p can
be controlled while constructingMφ∧ψ. Hence, we can evaluate d(P, φ) from d(P,ψ). This
is useful when P is infinite or very large and it is expensive to repeatedly evaluate d(P, φ)
for various φ. Instead, our theorem allows us to evaluate d(P,ψ) from d(P, φ) that we can
get, for instance, using statistical model checking techniques.

7 Conclusions and future works

We have introduced Continuous Markovian Logic, a multimodal logic designed to specify
quantitative and qualitative properties of continuous Markov processes. CML is endowed
with operators that approximate the rates of the labelled transitions of CMPs. This logic
characterizes the stochastic bisimulation of CMPs.

We have presented two sound and complete Hilbert-style axiomatizations: one for the
entire CML and one for its fragment without Ma

r -operators. These axiomatic systems are
significantly different from the probabilistic case and from each other. The two completeness
proofs relay on the finite model properties. The constructions of the finite models adapts the
filtration method of modal logics to stochastic settings, where a series of specific problems
had to be solved. The small model constructions and the complete axiomatizations allow
us to approach syntactically the problems of bisimulation-distances, which before in the
literature have only been treated semantically. In effect, we can define a distance between
logical formulas that allows us to prove the robustness theorems.

This paper opens a series of interesting research questions regarding the relation between
satisfiability, provability and metric semantics summarized in [18]. There are many open
questions related to the definition of d and to the structure of the metric space of formulas.
One of the problems, that we postpone for future work, is finding a classification of the
functions d to reflect properties of d. For instance, we have a partial result showing that if
d satisfies some continuity conditions, then d characterizes the logical equivalence between
positive formulas (formulas without negation), i.e., [d(φ, ψ) = 0 iff  φ ↔ ψ] [18]. There
exist, however, distances enjoying even stronger properties such as [ φ → ψ iff ∀P ∈ P,
d(P,ψ) ≤ d(P, φ)]. Each of these metrics organizes the set of logical formulas as a metric
space with specific topological properties. The complete axiomatization is probably the key
for classifying these structures and for understanding the relationship between the topological
space of models and the topological space of logical formulas.
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Abstract
The focusing theorem identifies a complete class of sequent proofs that have no inessential non-
deterministic choices and restrict the essential choices to a particular normal form. Focused proofs
are therefore well suited both for the search and for the representation of sequent proofs. The
calculus of structures is a proof formalism that allows rules to be applied deep inside a formula.
Through this freedom it can be used to give analytic proof systems for a wider variety of logics
than the sequent calculus, but standard presentations of this calculus are too permissive, allowing
too many proofs. In order to make it more amenable to proof search, we transplant the focusing
theorem from the sequent calculus to the calculus of structures. The key technical contribution is
an incremental treatment of focusing that avoids trivializing the calculus of structures. We give a
direct inductive proof of the completeness of the focused calculus of structures with respect to a
more standard unfocused form. We also show that any focused sequent proof can be represented in
the focused calculus of structures, and, conversely, any proof in the focused calculus of structures
corresponds to a focused sequent proof.

1998 ACM Subject Classification F.4.1 Proof theory

Keywords and phrases Focusing, polarity, calculus of structures, linear logic

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.159

1 Introduction

Logic has traditionally been seen as a means of representing and systematizing mathematical
knowledge, but it is increasingly being used to encode and reason about formal systems—
programming languages, process calculi, transition systems, etc.—that are inherently com-
putational. In this use of logic, the syntax of proofs is important to build correspondences
between the proofs in logic and the computations of the encoded systems, also known as the
problem of representational adequacy. An adequate encoding is not only manifestly correct,
i.e., it represents all and only the computations of the encoded system, but is also useful
as a device to automate the reasoning in and about the encoded system. In standard proof
systems such as Gentzen’s sequent calculus, it is usually impossible to construct adequate
encodings: there are more proofs than computational traces, because the inference rules are
more non-deterministic than the computational steps.

In recent years the focusing theorem of Andreoli [1] has been used to create certain
“normal forms” of sequent proofs where the question of representational adequacy becomes
considerably easier, often trivial, for focused proofs. Focusing was originally developed for
(classical) linear logic but has since been extended to a wide spectrum of logics [3, 14].
The essential observation of focusing is that sequent rules have certain natural permutative
affinities that can be exploited to fuse logical connectives into larger synthetic connectives;
for example, the synthetic connective −� (−�−) behaves as a ternary connective instead
of as a composition of two binary connectives. The problem of representational adequacy
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is reduced to that of encoding the computational steps in such a way that they correspond
exactly to the synthetic connectives.

This technique has been successful for the standard classical, intuitionistic, and linear
logics where the sequent calculus is most natural. The sequent calculus is, however, in-
herently limited in its expressivity: it cannot be used to give analytic (i.e., cut-free) proof
systems for many modal and non-commutative logics that have been used for program safety,
operational semantics, or linguistics. The common feature of many of these logics is that
they rely on deep inference or the ability to perform deduction inside a formula. Proof
systems for many such logics need to generalize the sequent calculus; some popular gener-
alizations include: hypersequents [2], nested sequents [5], or the display calculus [4]. The
most permissive, and therefore most expressive, of such generalizations is the calculus of
structures [10, 11, 6] that does not differentiate between formulas and sequents and can
therefore perform deduction anywhere inside a formula. Besides the increased expressivity,
proofs in the calculus of structures can also exploit features that are not available in the
other shallower formalisms; for example, they can be exponentially smaller than sequent
proofs [7], or they can be decomposed in a number of ways [20].

A main distinguishing feature of the calculus of structures is that it divides the sequent
rules into smaller components, thereby introducing more non-deterministic choices. The
sequent calculus operates on entire (multi-)sets of formulas, with a single sequent rule able
to split whole contexts multiplicatively or test for the absence of certain elements. The rules
of the calculus of structures, on the other hand, perform such operations incrementally on
fragments of contexts. Some of the inessential choices introduced by this incremental nature
can be removed by restricting the syntactic congruence in the original formulation of the
calculus [10, 11], leading to the system LS for classical propositional linear logic (outlined
in Section 3.1), which can be seen as a variant of the original formulation in [17, 18] that is
more amenable to automation. One important feature of LS is that contraction is the sole
rule that makes proofs unbounded, and it permutes below all other rules (Proposition 8), a
property that is crucial for the cut-elimination result for LS (also presented in Section 3.1).
The contraction-free fragment of LS is therefore decidable.

Yet, despite its more parsimonious design, LS is still at least as non-deterministic as the
unfocused sequent calculus. It is natural to ask if a result similar to focusing can tame LS
in the same way that the sequent system LLK (without cut) for linear logic (Figure 1)
was tamed to produce the focused system LLKF (Figure 2). For the purely multiplicative
fragment, this question has already been investigated in [9], but the strategy there seems
difficult to generalize. In this paper (in Section 3.2) we construct a focused variant of the
calculus LS, called LSF, for full classical propositional linear logic. It uses the technical device
of polarized formulas [12]; polarities make the synthetic connectives manifest in the syntax,
and the rules of LSF are organized to respect polarity, i.e., to never introduce a polarity
change that did not already exist. Synthetic connectives are thus preserved in LSF proofs.

To show LSF complete with respect to LS in its own right, i.e., that any LS proof can
be turned into an LSF proof, we build a equivalent synthetic variant of LSF called LSS (see
Section 3.2). A special rule that breaks the polarity restriction is added to LSS to represent
unfocused LS proofs directly, and then this rule is shown to be admissible in LSS. We thus
have a simple internal proof of completeness of LSS (and hence of LSF) with respect to
LS. This style of showing completeness of focusing for the calculus of structures can pave
the way for focused variants of other logics that lack an analytic sequent system. Although
we limit our attention to classical propositional linear logic in this paper, we consider it an
important future work to extend our focusing result to logics for which focusing in terms of
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id −−−−−−−
` a, a

` Γ, ?A, ?A
ct −−−−−−−−−−−−−−−

` Γ, ?A
` Γ

wk −−−−−−−−−−
` Γ, ?A

` Γ, A ` ∆, (A)⊥
cut −−−−−−−−−−−−−−−−−−−−−−−−−

` Γ,∆

` Γ, A ` ∆, B
� −−−−−−−−−−−−−−−−−−−−
` Γ,∆, A�B

1 −−−−
` 1

` Γ, A
�1 −−−−−−−−−−−−−−` Γ, A�B

` Γ, B
�2 −−−−−−−−−−−−−−` Γ, A�B

` ?Γ, A
! −−−−−−−−−−−
` ?Γ, !A

` Γ, A,B
O −−−−−−−−−−−−−−
` Γ, AOB

` Γ
⊥ −−−−−−−−
` Γ,⊥

` Γ, A ` Γ, B
N −−−−−−−−−−−−−−−−−−−−

` Γ, ANB
> −−−−−−−−
` Γ,>

` Γ, A
? −−−−−−−−−−
` Γ, ?A

Figure 1 LLK: a one-sided single-zoned sequent calculus for classical propositional linear logic

the sequent calculus is inapplicable. This includes logics like BV [10], the logic of bunched
implications [16], and various modal logics.

We also compare LSF and LLKF by first showing that any LLKF proof can be simulated
in LSF (in Section 4.1), i.e., that LSF is powerful enough to represent focused sequent proofs.
Then we also give an algorithm to extract an LLKF proof from any LSF proof that is unique
up to permutations between negative rules (in Section 4.2). These two results justify the
use of the adjective “focused” for LSF. Together with the completeness of LSF for LS, this
result can be used to give an alternative proof of completeness of LLKF for LLK.

2 The Sequent Calculus and Focusing for Linear Logic

We begin with a quick overview of the standard sequent calculus and the focusing theorem
for classical propositional linear logic whose formulas (A,B, . . .) have the following grammar:

A,B ::= a A�B 1 A�B 0 !A a AOB ⊥ ANB > ?A

The atoms (a, b, . . .) are drawn from some countably infinite set. Formulas are in negation
normal form, with the negation of a written as a, and negation of formulas (−)⊥ as follows:
(a)⊥ = a (A�B)⊥ = (A)⊥ O (B)⊥ (1)⊥ = ⊥ (A�B)⊥ = (A)⊥ N (B)⊥ (0)⊥ = > (!A)⊥ = ? (A)⊥

(a)⊥ = a (AOB)⊥ = (A)⊥ � (B)⊥ (⊥)⊥ = 1 (ANB)⊥ = (A)⊥ � (B)⊥ (>)⊥ = 0 (?A)⊥ = ! (A)⊥

The standard sequent calculus for linear logic, called LLK and shown in Figure 1, is given in
terms of one-sided single-zoned sequents of the form ` Γ where Γ is a context (a multi-set
of formulas).

I Theorem 1 (cut elimination). The cut rule is admissible in LLK \ {cut}. J

Let us now sketch the focused variant of LLK, called LLKF. For this, the formulas are di-
vided into two polarity classes—positive and negative—based on the permutation properties
of their sequent rules. The negative formulas have invertible rules, i.e., rules that may be
applied whenever the formula occurs in the context, while the rules for the positive formulas
are sensitive to the order of application of rules and are therefore generally non-invertible.
Following [12], we syntactically distinguish these two classes and mediate between them by
a pair of shift connectives ( and ):

P,Q ::= a P �Q 1 P �Q 0 !N N (Positive Formulas)
N,M ::= a N OM ⊥ N NM > ?P P (Negative Formulas)

Here, ( N)⊥ = (N)⊥ and ( P )⊥ = (P )⊥. We use the following contexts for LLKF:
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Structural
` Γ, P ; Π, [P ]

wdc −−−−−−−−−−−−−−−−−−
` Γ, P ; Π

` Γ ; Π, [P ]
dc −−−−−−−−−−−−−−

` Γ ; Π, P

` Γ ; Π, N
−−−−−−−−−−−−−−−−
` Γ ; Π, [ N ]

Positive phase

id −−−−−−−−−−−−−
` Γ ; a, [a]

` Γ ; Π1, [P ] ` Γ ; Π2, [Q]
� −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ ; Π1, Π2, [P �Q]
1 −−−−−−−−−−

` Γ ; [1]

` Γ ; Π, [P ]
�l −−−−−−−−−−−−−−−−−−−−

` Γ ; Π, [P �Q]
` Γ ; Π, [Q]

�r −−−−−−−−−−−−−−−−−−−−
` Γ ; Π, [P �Q]

no rule for 0
` Γ ; N

! −−−−−−−−−−−−
` Γ ; [!N ]

Negative phase

` Γ ; ∆, N, M
O −−−−−−−−−−−−−−−−−−−−

` Γ ; ∆, N OM

` Γ ; ∆
⊥ −−−−−−−−−−−−−

` Γ ; ∆, ⊥
` Γ ; ∆, N ` Γ ; ∆, M

N −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ ; ∆, N NM

> −−−−−−−−−−−−−
` Γ ; ∆, >

` Γ, P ; ∆
? −−−−−−−−−−−−−−−

` Γ ; ∆, ?P

Figure 2 LLKF: a two-zoned focused variant of cut-free LLK

Γ ::= · Γ, P (Positive Sequent Contexts)
∆ ::= · ∆, N (Negative Sequent Contexts)
Π ::= · Π, P Π, a (Reactive Sequent Contexts)

LLKF proofs consist of alternating maximal phases based on the polarity of the principal
formulas. These two phases are represented by two different sequent forms, given below. We
follow Andreoli’s original two-zoned (dyadic) convention for presenting the system because
it is the most common style in presenting focused proof systems.

` Γ ; ∆ (Negative Sequents)
` Γ ; Π, [P ] (Positive Sequents)

The sequent ` Γ ; ·, [P ] is abbreviated as ` Γ ; [P ].
The focused rules of inference are shown in Figure 2. The most important rules are the

decision rules wdc and dc that begin1 a positive phase; in this phase, the focused formula
(written inside [ ]) is principal, and the focus persists on the principal operands if they are of
the same polarity. All essential choices are confined to this phase; they include: disjunctive
choice (for �), multiplicative choice (for �), possible failures (for atoms, 1, and !, if the
context is not of the correct form), and guaranteed failure (for 0, which has no rules). The
positive phase switches to the negative phase with the rules for or !. Observe that in the
negative phase the rules can be applied in any order, and none of the negative rules can fail
to apply. When no more negative rules can apply, a decision rule must be applied to restart
the cycle. There are no structural rules of weakening or contraction because the rules treat
the unrestricted context Γ as a set; in particular, contraction is part of the wdc rule.

The soundness of LLKF with respect to cut-free LLK is straightforward: forgetting the
polarities, the focusing distinctions in sequents, and the rules {dc, }; prefixing the elements
of Γ with ? and using ct and wk to account for its additive treatment in the �, 1 and id
rules; and replacing wdc with the sequence ct then ? on the focused formula produces valid
LLK proofs from LLKF proofs.

I Notation 2. Write bP c (resp. bNc) for the unpolarized formula obtained from P (resp. N)
by erasing all occurrences of and . Similarly we define b∆c.

1 As usual, the intended reading of sequent rules is from conclusion to premises.
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I Theorem 3 (completeness of focusing). If ` b∆c in LLK, then ` · ; ∆ in LLKF.

There are many ways to prove this theorem; we refer the interested reader to one of the
standard approaches [13, 15]. One interesting feature of all such proofs is their unusual com-
plexity forced by the rigidity of the focusing calculus. It is easier to show the completeness
of focusing in the sequent calculus with more synthetic approaches [8].

3 Linear Logic in the Calculus of Structures

The calculus of structures is based on the observation that the connectives of linear logic pre-
serve logical entailment, and therefore, any valid implication in the logic can be turned into
a rewrite step on any subformula. Hence, there is no need to maintain a distinction between
the connectives used in formulas, and structural meta-connectives such as the comma used
to write sequents, or the meta conjunction among the premises of a binary rule. The origi-
nal formulations of the calculus of structures [10, 11, 6] used structures, which are formulas
modulo a syntactic congruence. We deviate from this tradition and use just the formulas,
i.e., we remove the syntactic congruence. Then, inference rules are allowed to operate on
any subformula. These rules are therefore written in terms of formula contexts (ξ, ζ, . . .),
which are formulas with a single hole (written { }), i.e., they have the following grammar:

ξ, ζ ::= { } A ? ξ ξ ? A !ξ ?ξ (Formula Contexts)

where ? can stand for any binary connective (�, �, O, or N). We write ξ{A} for the formula
formed by replacing the single occurrence of { } in ξ with the formula A. For example, if ξ
is ! (aN ({ }� b)) O ?c and A is a � b, then ξ{A} is ! (aN ((a � b)� b)) O ?c.

A derivation D in a system S with premise A and conclusion B is a rewriting path from

A to B, using the rules in S. It is usually depicted as
A

S
∥∥∥D

B

. A proof P in a system S,

depicted as
−

S
∥∥∥P

B
, is a derivation in S with premise 1.

3.1 The Unfocused Systems SLS and LS
The inference rules of the system SLS are given in Figure 3. The first two columns constitute
the multiplicative fragment, the next two columns the exponential fragment, and the last
two columns the additive fragment. The multiplicative and exponential fragment constitute
system SELS, which is a variant of the system studied in [19]. The first four rows in Figure 3
constitute the down fragment of SLS, denoted by SLS↓, and the last four rows the up
fragment, denoted by SLS↑. The down fragment corresponds to the cut-free version of the
system, and following the tradition, we will call it LS. Each rule in either fragment is the
dual of some rule in the other fragment, where the duals of a rule are formed by exchanging
the premise and conclusion and negating both. Note that the two rules sl and sr (read
switch left and switch right) are self-dual and therefore part of both fragments.2 The rules
ai↓ and ai↑, called atomic identity and atomic cut, have the following general versions:

ξ
{

1
}

i↓ −−−−−−−−−−−−−−−−−
ξ
{
AO (A)⊥

} ξ
{

(A)⊥ �A
}

i↑ −−−−−−−−−−−−−−−−−
ξ
{
⊥
}

2 Note that our system SLS is slightly different from the presentation in [17, 18]. The reason for the
differences is that we get stronger results (e.g., the down fragment does not need associativity for �,
�, and N), their proofs become simpler, and the relation to the focused systems is more evident.
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ξ
{

1
}

ai↓ −−−−−−−−−−−
ξ
{
aO a

} ξ
{

1
}

!↓ −−−−−−−
ξ
{

!1
} ξ

{
1
}

>↓ −−−−−−−
ξ
{

>
} ξ

{
1
}

N↓ −−−−−−−−−−−
ξ
{

1 N 1
}

ξ
{
A

}
⊥↓ −−−−−−−−−−−−

ξ
{
AO ⊥

} ξ
{
B OA

}
com↓ −−−−−−−−−−−−−

ξ
{
AOB

} ξ
{

!(AO ?C)
}

pr↓ −−−−−−−−−−−−−−−−−
ξ
{

!AO ?C
} ξ

{
A

}
?↓ −−−−−−−−
ξ
{

?A
} ξ

{
>

}
gc↓ −−−−−−−−−−−−−

ξ
{

> O C
} ξ

{
A

}
�l↓ −−−−−−−−−−−−−

ξ
{
A�B

}
ξ
{

1
}

�↓ −−−−−−−−−−−
ξ
{

1 � 1
} ξ

{
AO (B O C)

}
asc↓ −−−−−−−−−−−−−−−−−−−−−

ξ
{

(AOB) O C
} ξ

{
?AO ?A

}
ct↓ −−−−−−−−−−−−−−−

ξ
{

?A
} ξ

{
⊥

}
wk↓ −−−−−−−−

ξ
{

?A
} ξ

{
(AO C) N (B O C)

}
dt↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ
{

(ANB) O C
} ξ

{
B

}
�r↓ −−−−−−−−−−−−−

ξ
{
A�B

}
ξ
{

(AO C) �B
}

sl −−−−−−−−−−−−−−−−−−−−−
ξ
{

(A�B) O C
} ξ

{
A� (B O C)

}
sr −−−−−−−−−−−−−−−−−−−−−
ξ
{

(A�B) O C
}

ξ
{

⊥ O ⊥
}

�↑ −−−−−−−−−−−−−
ξ
{

⊥
} ξ

{
(A�B) � C

}
asc↑ −−−−−−−−−−−−−−−−−−−−−

ξ
{
A� (B � C)

} ξ
{

!A
}

ct↑ −−−−−−−−−−−−−−
ξ
{

!A� !A
} ξ

{
!A

}
wk↑ −−−−−−−−

ξ
{

1
} ξ

{
(A�B) � C

}
dt↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ
{

(A� C) � (B � C)
} ξ

{
ANB

}
�r↑ −−−−−−−−−−−−−

ξ
{
B

}
ξ
{
A� 1

}
⊥↑ −−−−−−−−−−−−

ξ
{
A

} ξ
{
A�B

}
com↑ −−−−−−−−−−−−−

ξ
{
B �A

} ξ
{

?A� !C
}

pr↑ −−−−−−−−−−−−−−−−−
ξ
{

?(A� !C)
} ξ

{
!A

}
?↑ −−−−−−−−

ξ
{
A

} ξ
{

0 � C
}

gc↑ −−−−−−−−−−−−
ξ
{

0
} ξ

{
ANB

}
�l↑ −−−−−−−−−−−−−

ξ
{
A

}
ξ
{
a � a

}
ai↑ −−−−−−−−−−−

ξ
{

⊥
} ξ

{
?⊥

}
!↑ −−−−−−−−
ξ
{

⊥
} ξ

{
0
}

>↑ −−−−−−−
ξ
{

⊥
} ξ

{
⊥ � ⊥

}
N↑ −−−−−−−−−−−−−

ξ
{

⊥
}

Figure 3 SLS, a symmetric calculus of structures for classical propositional linear logic. The
fragment containing the first four rows is called LS.

Like in the sequent calculus, the general identity rule is derivable. By duality the same
is true for the general cut rule. We have the following proposition, which is standard for
systems in the calculus of structures (see. e.g., [17]).

I Proposition 4. The rule i↓ is derivable in SLS↓, and the rule i↑ is derivable in SLS↑.
Furthermore, every rule in SLS↑ is derivable in SLS↓+ i↑, and dually, every rule in SLS↓ is
derivable in SLS↑+ i↓. J

By an easy induction on the size of the proofs, one can show the following implications,
expressing the relation to the sequent calculus.

I Proposition 5. A formula A is provable in LLK with cut if and only if it is provable
in SLS. And if A is provable in LLK without cut, then it is provable in LS. J

We can now use Theorem 1 to show that provability in SLS implies provability in LS and
that provability in LS, implies provability in LLK without cut.

I Theorem 6 (cut elimination). If a formula A is provable in SLS then it is provable in LS.

I Corollary 7. The rule i↑ is admissible for LS. J

The proof given in [17] for Theorem 6 relies on the sequent calculus and Theorem 1. In the
following, we present a proof that is internal to SLS, i.e., not using the sequent calculus. Due
to lack of space, we can only give a sketch—all details can be found in [18]. First, observe
that in any derivation D in LS, all the instances of the contraction rule can be permuted to
the bottom. This can be shown by an easy inductive argument.

I Proposition 8. For every
A

LS
∥∥∥D

B

there is a B′ such that
A

LS\{ct↓}
∥∥∥D′

B′
and

B′

{ct↓}
∥∥∥D′′

B

. J

For the internal cut-elimination proof of SLS, we will use a technique called splitting, first
used in [10]. The central ingredients are Lemmas 10 – 12 and Lemma 14 below. Lemmas
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10 – 12 say how the connectives behave in a shallow context, and Lemma 14 says how a
general deep context can be reduced to a shallow one. For formally stating these lemmas,
we need the notions of linear killing context and killing context, denoted by λ〈 〉 and κ〈 〉,
respectively, and generated by this grammar:

λ ::= > | { } | λN λ | λ� 1 | 1� λ (Linear Killing Contexts)
κ ::= > | { } | κN κ | κ� 1 | 1� κ | !κ (Killing Contexts)

We write λ〈 〉n (resp. κ〈 〉n) to indicate that there are exactly n occurrences of { }. Then, we
write λ〈A1, . . . , An〉 (resp. κ〈A1, . . . , An〉) for the formula obtained from λ〈 〉n (resp. κ〈 〉n)
by replacing, from left to right, the n occurrences of { } by the formulas A1, . . . , An. The
two main properties of killing contexts are summarized in the following lemma.

I Lemma 9. Let A,B1, . . . , Bn, and λ〈 〉n and κ〈 〉n be given.

1. If B1, . . . , Bn are provable in LS, then so are λ〈B1, . . . , Bn〉 and κ〈B1, . . . , Bn〉.

2. There are derivations
λ〈AOB1, . . . , AOBn〉

LS
∥∥∥

AO λ〈B1, . . . , Bn〉
and

κ〈?AOB1, . . . , ?AOBn〉
LS
∥∥∥

?AO κ〈B1, . . . , Bn〉
. J

We can now state the splitting lemmas.

I Lemma 10 (binary splitting). Let A, B, and K be formulas.

1. If (ANB)OK is provable in LS, then so are AOK and B OK.
2. If (A�B)OK is provable in LS, then there is an n ≥ 0 and K1, . . . ,Kn and λ〈 〉n, such

that
λ〈K1, . . . ,Kn〉

LS
∥∥∥
K

and for all i ≤ n we have
−

LS
∥∥∥

AOKi
or

−
LS
∥∥∥

B OKi
.

3. If (A�B)OK is provable in LS, then there are n ≥ 0 and KA1,KB1, . . . ,KAn,KBn and

λ〈 〉n, such that
λ〈KA1 OKB1, . . . ,KAn OKBn〉

LS
∥∥∥
K

and
−

LS
∥∥∥

AOKAi
and

−
LS
∥∥∥

B OKBi

for all i ≤ n.

I Lemma 11 (unit and atomic splitting). Let x be an atom or a negated atom, and let K be
a formula.

4. If 1OK is provable in LS, then there is a λ〈 〉n and a derivation
λ〈⊥, . . . ,⊥〉

LS
∥∥∥
K

.
5. If ⊥OK is provable in LS, then so is K.
6. If 0 OK is provable in LS, then there is a λ〈 〉n and a derivation from λ〈>, . . . ,>〉 to

K in LS.
7. If xOK is provable in LS, then there is a λ〈 〉n and a derivation

λ〈x⊥, . . . , x⊥〉
LS
∥∥∥
K

.

I Lemma 12 (exponential splitting). Let A and K be formulas.

8. If !A OK is provable in LS, then there are n ≥ 0 and K1, . . .Kn and λ〈 〉n, such that
λ〈K1, . . . ,Kn〉

LS
∥∥∥
K

and for all i ≤ n we have
−

LS
∥∥∥

AOKi

with Ki = ⊥ or Ki = ?Ki1O· · ·O?Kihi

for some hi ≥ 1.
9. If ?AOK is provable in LS \ {ct↓}, then either K is provable in LS \ {ct↓}, or there are

n ≥ 1 and K1, . . .Kn and κ〈 〉n, such that
κ〈K1, . . . ,Kn〉

LS\{ct↓}
∥∥∥
K

and
−

LS\{ct↓}
∥∥∥

AOKi

for all i ≤ n.
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All three splitting lemmas are proved in a similar way by an induction on the size of the
given proof, and a case analysis on the bottommost rule instance. Although the statements
of the splitting lemmas are different from the ones in [18], the proofs are almost literally the
same. The purpose of the splitting lemmas is to prove the following lemma, which says that
the rules of the up-fragment are admissible in a shallow context.

I Lemma 13. Let K be a formula and let
ξ
{
F
}

r↑ −−−−−−
ξ
{
G
} be a rule in SLS↑. If F OK is provable

in LS, then so is GOK.

This is proved by using splitting to decompose the proof of F OK into smaller pieces which
can then be rearranged to build a proof of G OK. For the rules pr↑ and !↑, we also need
Proposition 8.

For proving Theorem 6, we need to extend Lemma 13 to general contexts. This is done
by the context reduction lemma, whose proof is a straightforward induction on the context,
repeatedly applying splitting.

I Lemma 14 (context reduction). Let A be a formula and ξ be a context in which { } does
not appear inside the scope of a ?-modality. If ξ

{
A
}

is provable in LS, then there exist an
n ≥ 0, a killing context κ〈 〉, and formulas KA1, . . . ,KAn, such that

κ〈C OKA1, . . . , C OKAn〉
LS
∥∥∥

ξ
{
C
} for every formula C and

−
LS
∥∥∥

AOKAi
for every i ≤ n. J

I Lemma 15. Let
ξ
{
F
}

r↑ −−−−−−
ξ
{
G
} be a rule in SLS↑ and let ξ be a context in which { } does not

appear inside the scope of a ?-modality. If ξ
{
F
}

is provable in LS, then so is ξ
{
G
}

.

This follows immediately from Lemma 13 and Lemma 14. In order to deal with ?-contexts,
we use the following lemma, proved by a simple rule permutation argument: any rule applied
inside the scope of a ? can be permuted up until it leaves the scope of the ?-modality.

I Lemma 16 (?-reduction). For every proof P in SLS there is a proof P ′ in SLS with the
same conclusion as P, such that in P ′ no inference rule is applied inside the scope of a
?-modality. J

Now Theorem 6 can be shown by first applying Lemma 16 and then eliminating all up-rules,
starting with the topmost one, using Lemma 15.

3.2 LSF and LSS: Polarized, Focused, and Synthetic Variants of LS
In this section we study two complete polarized and focused variants of LS. Like in Andreoli’s
original formulation of focusing in the sequent calculus [1], we keep the general form of the
rules of LS but modify them to respect polarity. The resulting calculus, called LSF, can be
seen to be related to LS in the same way that LLKF is related to LLK. (In Section 4 below,
we formalize the comparison between LLKF and LSF.) Just as in the sequent calculus, the
proofs of completeness of the focusing restriction will become more manageable in a synthetic
formulation of LSF, that we call LSS, which we present immediately after LSF.

Because LSF uses polarized formulas, the contexts in LSF are sensitive to the polarity of
their holes. We use π and ρ for positive formula contexts, i.e., π{P} is a well-formed polarized
formula for any positive formula P . Likewise, we use ν and µ for negative formula contexts.
Note that the polarity of π

{
P
}
(resp. ν

{
N
}
) need not itself be positive (resp. negative).
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Decision
ν
{
P

}
?F −−−−−−−−
ν
{

?P
} ν

{
(P : L)

}
intF −−−−−−−−−−−−−−−

ν
{
P O L

}
Interaction

π
{

1
}

aiF −−−−−−−−−−−
π

{
a: a

} π
{

(P : L)�Q
}

slF −−−−−−−−−−−−−−−−−−−
π

{
(P �Q): L

} π
{
P � (Q: L)

}
srF −−−−−−−−−−−−−−−−−−−

π
{

(P �Q): L
} π

{
P

}
�lF −−−−−−−−−−−−

π
{
P �Q

} π
{
Q

}
�rF −−−−−−−−−−−−

π
{
P �Q

}
π

{
(N O L)

}
pcF −−−−−−−−−−−−−−−−

π
{
N : L

} π
{

!(N O ?P )
}

prF −−−−−−−−−−−−−−−−−
π

{
!N : ?P

}
Superposition

ν
{

(M1 ON)N (M2 ON)
}

dtF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{

(M1 NM2)ON
} ν

{
>

}
gcF −−−−−−−−−−−−

ν
{

>ON
}

Exponentiation
ν
{

?P O ?P
}

ctF −−−−−−−−−−−−−−−
ν
{

?P
} ν

{
⊥

}
wkF −−−−−−−−

ν
{

?P
}

Start
π

{
1
}

−−−−−−−−
π

{
1
} π

{
1
}

−−−−−−−−−−
π

{
1� 1

} π
{

1
}

−−−−−−−−
π

{
! 1

} ν
{

1
}

−−−−−−−−−−−−−
ν
{

1N 1
} ν

{
1
}

−−−−−−−
ν
{

>
}

Congruence
ν
{
N

}
−−−−−−−−−−−−
ν
{
N O⊥

} ν
{
N OM

}
−−−−−−−−−−−−−
ν
{
M ON

} ν
{

(N1 ON2)ON3
}

−−−−−−−−−−−−−−−−−−−−−−−
ν
{
N1 O (N2 ON3)

}
Figure 4 LSF: a polarized and focused variant of LS

Inside positive contexts, we will use a notational device to mark the foci. To motivate this
notation, consider the properties of the foci in LLKF sequents: they interact with the context
by splitting it (for �), by testing it for emptiness (for 1 and !), or by checking for the presence
of negated atoms (for id). For LSF, these interactions need to be made incremental—formula
by formula—because the formulas of the corresponding sequent context may not (yet) be
present in a O relation at the point of the switch rules.

I Definition 17. An interaction formula (or simply an interaction) is a positive formula of
the form P : L. We call P in P : L the focus of the interaction, and L its spine.

Here, we use L to stand for reactive formulas, which correspond to the formulas that occur
in LLKF sequents ` Γ ; Π, which are precisely those sequents that are introduced by the
decision rules wdc and dc. Recall that such sequents represent formulas of the formO(?Γ,Π).
Reactive formulas, and their duals, the active formulas, therefore have this grammar:

R ::= a !N N (Active Formulas)
L ::= a ?P P (Reactive Formulas)

Figure 4 lists the inference rules of LSF. A proof in LSF is a derivation with premise 1
or 1. The start rules in Figure 4 define what it means to finish an LSF proof. The first
start rule removes a pair of shifts from a 1, and the other four are polarized versions of
the rules �↓, !↓, N↓, and >↓ of LS (Figure 3). Interactions are created by the intF rule,
which corresponds to dc in LLKF. When the focus of the interaction involves a polarity shift,
the interaction dissipates into an ordinary O using pcF, which is the analogue of the rule
of LLKF. In order to remain true to the spirit of LS, we keep contraction and decision as
separate rules instead of building a specialized version of intF that incorporates contraction.
This lets us preserve the permutability of contraction (Proposition 8) even in the focused
setting. To retain completeness, the ?F rule derelicts a ? to a . The remaining rules for
interactions follow the shape of the focus of the interaction, just as in the sequent calculus.
For example, for �, the rules slF and srF (that are the focused versions of the sl and sr rules of
LS) send the spine of the interaction into one of the components of the focus. The remaining
(non-interaction) rules are simply the direct polarity-respecting translations of the LS rules.
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I Theorem 18 (soundness). For any N , if N is provable in LSF, then bNc is provable in LS.

Proof. Just replace P : L with P O L and erase the polarity shifts. J

To show completeness, we will now move to a synthetic variant of LSF, called LSS, that
keeps a sequence of interactions on subformulas of a focus together. While the correspon-
dence with LLKF is clearer in LSF without this synthetic step, the proof of completeness is
drastically simplified with synthetic formulations, a phenomenon that has also been observed
for focusing in the sequent calculus [8].

The key observation needed to produce a synthetic variant of LSF is the following: in an
interaction formula P :L, the spine L is switched (using slF and srF) deep inside P until the
focus of the interaction become active. During this switching, any �-formulas in the focus
are destructed by removing (using �lF and �rF) one of its operands. Thus, we can define a
special tensor context, written using π⊗ and ρ⊗, with this grammar:

π⊗ ::= { } | π⊗ � P | P � π⊗ (Tensor Contexts)

Note that, because π⊗ contains no shift or exponential connectives, any substitution π⊗
{
P
}

is itself positive. Tensor contexts allow us to write the following synthetic forms of the
interaction rules:

ν
{
π⊗
{

1
}}

saiF −−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
a
}
O a
} ν

{
π⊗
{

(N O L)
}}

spcF −−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
N
}
O L
} ν

{
π⊗
{

!(N O ?P )
}}

sprF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{

!N
}
O ?P

}
I Definition 19. The system LSS is LSF \ {intF, aiF, slF, srF, pcF, prF} ∪ {saiF, spcF, sprF}.

I Theorem 20. Any formula is provable in LSS if and only if it is provable in LSF.

Proof. Each instance of saiF, spcF, or sprF can be derived by one of

ν
{
π⊗
{

1
}}

aiF −−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
a: a

}}
{slF,srF}

∥∥∥D

ν
{

(π⊗
{
a
}
: a)

}
intF −−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗
{
a
}
O a
}

ν
{
π⊗
{

(M O L)
}}

pcF −−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
M : L

}}
{slF,srF}

∥∥∥D

ν
{

(π⊗
{
M
}
: L)

}
intF −−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗
{
M
}
O L
}

ν
{
π⊗
{

!(M O ?P )
}}

prF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{

!M : ?P
}}

{slF,srF}
∥∥∥D

ν
{

(π⊗
{

!M
}
: ?P )

}
intF −−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗
{

!M
}
O ?P

}
where D can be constructed by a straightforward induction on π⊗.

In the other direction, note that : is not commutative, i.e., the order of the spines is
fixed in iterations of :. We can therefore permute any LSF proof to guarantee that the
focus of any interaction isn’t itself an interaction. Finally, we permute all instances of �lF
and �rF as low as possible in the LSF proof so that all interactions are introduced by aiF,
pcF or prF. The synthetic rules saiF, spcF and sprF can now be easily recovered. J

For giving the proof of completeness of LSS with respect to LS, we proceed by inductive
transformation of LS proofs in three steps. First, we rewrite the instances of the switch
rules in LS to respect the restriction of the spines to reactive formulas, which corresponds
to applying negative rules eagerly like in LLKF. Second, we use an auxiliary rule, called psF,
that breaks the polarity restrictions by means of an extra pair of shifts in the premise. This
rule allows us to transform any LS proof into a proof in LSS ∪ {psF}. And third, we show
that psF can be eliminated from LSS ∪ {psF}.

For the first step, let LSr stand for LS where the rules sl and sr (see Figure 3) are replaced
by the following rules slr and srr, respectively:

ξ
{

(AO bLc)�B
}

slr −−−−−−−−−−−−−−−−−−−−−−−
ξ
{

(A�B)O bLc
} ξ

{
A� (B O bLc)

}
srr −−−−−−−−−−−−−−−−−−−−−−−

ξ
{

(A�B) O bLc
}
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Recall that L stands for reactive formulas. The following can be shown by an easy induction:

I Lemma 21. The rules
ξ
{

(ANB) � C
}

cc↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ
{

(A� C) N (B � C)
} ξ

{
> �A

}
ga↓ −−−−−−−−−−−−

ξ
{

>
} ξ

{
AO ⊥

}
⊥̄↓ −−−−−−−−−−−−

ξ
{
A

} ξ
{

(ANB) O C
}

d̄t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ
{
AO C

}
N (B O C)

ξ
{

> O C
}

ḡc↓ −−−−−−−−−−−−−
ξ
{

>
}

are admissible in LSr. J

I Lemma 22. If a formula A is provable in LS, then it is also provable in LSr.

Proof. Let the size of an instance of sl or sr with conclusion ξ
{

(A�B)OC
}
be defined as

the number of symbols used in C. For transforming an LS proof into an LSr proof we take
two steps:

−
LS
∥∥∥D1

A
−−−−−−→

−
LSr∪{cc↓,ga↓,⊥̄↓,d̄t↓,ḡc↓}

∥∥∥D2

A

Lemma 21−−−−−−→
−

LSr
∥∥∥D3

A

For the first step, proceed by induction on the multi-set of the sizes of all switch instances
in D1, under multi-set ordering, showing that all instances of sl and sr can be reduced to slr

and srr. Any instance of sl but not of slr can be replaced by one of the following derivations,
reducing the size. (Note that we omitted some instances of asc↓ and com↓.)

(B O (G O H)) � C
sl −−−−−−−−−−−−−−−−−−−−−−−−

((B O G) � C) O H
sl −−−−−−−−−−−−−−−−−−−−−−−−

(B � C) O (G O H)

(B O ⊥) � C
⊥̄↓ −−−−−−−−−−−−−−−−

B � C
⊥↓ −−−−−−−−−−−−−−−−(B � C) O ⊥

(B O (G N H)) � C
d̄t↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−((B O G) N (B O H)) � C

cc↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−((B O G) � C) N ((B O H) � C)
sl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

((B O G) � C) N ((B � C) O H)
sl −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

((B � C) O G) N ((B � C) O H)
dt↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(B � C) O (G N H)

(B O >) � C
ḡc↓ −−−−−−−−−−−−−−−−> � C

ga↓ −−−−−−−>
gc↓ −−−−−−−−−−−−−−−−(B � C) O >

The cases for sr are similar. J

The second step of the transformation of LS proofs to LSS proofs involves the following
partial switch synthetic rule:

ν
{
π⊗
{

( P O L)
}}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
P
}
O L
}

This rule has more shifts in the premise than in the conclusion and is therefore not derivable
in LSS. It can permute above any rule in LSS \ {saiF, spcF, sprF}. Before we can show that
psF can always be eliminated from any proof of LSS, we need a lemma stating that can
be removed from an LSS proof with the use of psF.

I Lemma 23. If there is a proof D of a negative formula π
{

P
}

in LSS∪{psF}, then there
is a proof of π

{
P
}

in LSS ∪ {psF} of at most the same height as D .

Proof. Proceed by induction on the height of D . In the base case, π
{

P
}
is 1 and the

result is immediate. In the general case, consider the bottommost rule instance r in D ; in
most cases the induction hypothesis is directly applicable so the pair of shifts can simply be
removed. The only interesting case is where r is a matching instance of spcF. We replace it
by an instance of psF as follows:

ν
{
π⊗
{

( P O L)
}}

spcF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{

P
}
O L
} −→

ν
{
π⊗
{

( P O L)
}}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗
{
P
}
O L
} J

I Remark. Note that we also have the converse: if there is a proof of π
{
P
}
in LSS ∪ {psF},

then there is also a proof of π
{

P
}
in LSS ∪ {psF}.
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I Lemma 24. For every N , if bNc is provable in LSr, then N is provable in LSS ∪ {psF}.

Proof. Proceed by induction on the height of the LSr proof D of bNc to build a proof of
N in LSS ∪ {psF}. The base case, where bNc is 1, is trivial. Now make a case analysis
for the bottommost rule instance r in D . In most cases, we can simply replace r with the
corresponding rule in LSS, and appeal to the induction hypothesis on the proof above r.
The four interesting cases involve r being an instance of ai↓, slr, srr, or pr↓. We can apply
the induction hypothesis to the proof above r and glue the result to one the following rule
instances depending on the case:

ν
{

1
}

saiF −−−−−−−−−−−−−
ν
{
aO a

} ν
{

( ( P O L)�Q)
}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{

(P �Q) O L
} ν

{
(P � ( QO L))

}
psF −−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{

(P �Q) O L
} ν

{
!(N O ?P )

}
sprF −−−−−−−−−−−−−−−−−−−

ν
{

!N O ?P
}

If the premises and conclusions do not match (because of extra pairs) we appeal to
Lemma 23 and the remark above. J

I Lemma 25. The rule psF is height-preserving admissible in LSS.

Proof. Given a proof D of a negative formula N in LSS ∪ {psF}, we prove by induction on
the height of D that there is a proof of N in LSS of at most the same height as D . In the
base case, N is 1 and we are done. In the general case, we case-analyze the bottommost
rule instance r in D . If this is not an instance of psF, we appeal to the induction hypothesis
on the proof above r and compose the result with r. In the case where r is an instance of
psF, we consider the rule instance r1 above r in D , and consider the cases for r1. If r1 is
not a synthetic rule, then we can permute r up above r1 and then appeal to the induction
hypothesis on the proof now above r1. If r1 was an instance of ctF or dtF, then we need to
appeal to the induction hypothesis twice, which is possible because our reduction does not
increase the height of D . If r1 was wkF or gcF, we do not need to appeal to the induction
hypothesis. If r1 ∈ {saiF, spcF, sprF}, we merge r and r1 by replacing them with a new
instance of r1, as follows:

ν
{
π⊗

{
ρ⊗

{
1
}}}

saiF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗

{
( ρ⊗

{
a
}

O a)
}}

psF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗

{
ρ⊗

{
a
}}

O a
}

ν
{
π⊗

{
ρ⊗

{
M O L

}}}
spcF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
( ρ⊗

{
M

}
O L)

}}
psF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
M

}}
O L

}
ν
{
π⊗

{
ρ⊗

{
!(M O ?L)

}}}
sprF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
( ρ⊗

{
!M

}
O ?P )

}}
psF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
!M

}}
O ?P

}
↓ ↓ ↓

ν
{
π⊗

{
ρ⊗

{
1
}}}

saiF −−−−−−−−−−−−−−−−−−−−−−−−−−−−
ν
{
π⊗

{
ρ⊗

{
a
}}

O a
} ν

{
π⊗

{
ρ⊗

{
M O L

}}}
spcF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
M

}}
O L

} ν
{
π⊗

{
ρ⊗

{
!(M O ?L)

}}}
sprF −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ν
{
π⊗

{
ρ⊗

{
!M

}}
O ?P

}
Now we appeal to the induction hypothesis on the proof above r1 to produce a new proof
on which we apply Lemma 23 to get a proof D ′, with a conclusion matching the premise of
the new instances resulting from the merge. We appeal to the induction hypothesis again
on D ′ and plug the result above the merged instance. Lastly, if r1 is also an instance of psF,
then we appeal to the induction hypothesis on the proof above r1 and apply the technique
used for the other cases. J

We now have all the ingredients for the completeness theorem for LSS.

I Theorem 26. For any N , if bNc is provable in LS, then N is provable in LSS.

Proof. Let a proof of bNc in LS be given. By Lemma 22, there is a proof of bNc in LSr. By
Lemma 24, we have a proof of N in LSS ∪ {psF}, and thus by Lemma 25 also in LSS. J

Note that since LSS and LSF are equivalent, Theorem 26 also proves the completeness
of LSF with respect to LS.
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4 Comparing Sequent and Structural Focusing

In order to justify the adjective “focused” for LSF, it is important to give a precise comparison
with LLKF. In this section we shall prove that every LLKF proof can be simulated in LSF, and,
conversely, every LSF proof has a corresponding LLKF proof. Both results are surprising, as
there is no reason a priori that the two systems should have such a close correspondence.
Indeed, there are significant differences such as the treatment of weakening and contraction
and the incremental splitting of contexts around �.

4.1 Simulating LLKF in LSF
First, let us simulate LLKF proofs in LSF, i.e., show that LSF is adequate with respect to
LLKF. The two proof systems are not isomorphic, so we use an abstraction.

I Definition 27. For a non-empty LLKF sequent σ and a polarized formula A, we say that
A is a structural interpretation of σ, written A≈ σ, iff it can be derived from these rules:

−−−−−−−−−−−−−−−−−−−
P ≈ ( ` · ; [P ])

Q≈ ( ` Γ ; Π, [P ])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Q : L)≈ ( ` Γ ; Π, L, [P ])

Q≈ ( ` Γ, P ; Π, [P ′])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Q : ?P )≈ ( ` Γ, P ; Π, [P ′])

Q≈ ( ` Γ ; Π, [P ′])
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Q≈ ( ` Γ, P ; Π, [P ′])

−−−−−−−−−−−−−−−−−−
N ≈ ( ` · ; N)

M ≈ ( ` Γ ; ∆)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(M O N)≈ ( ` Γ ; ∆, N)

M ≈ ( ` Γ, P ; ∆)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(M O ?P )≈ ( ` Γ, P ; ∆)

M ≈ ( ` Γ ; ∆)
−−−−−−−−−−−−−−−−−−−−−−−
M ≈ ( ` Γ, P ; ∆)

In other words, structural interpretations can arbitrarily reorder the LLKF sequent and
potentially erase or duplicate the unrestricted formulas, but they must preserve the multi-
plicities of the linear formulas. The simulation theorem shows that LSF can preserve the
structural interpretations of each rule of LLKF.

I Theorem 28 (simulation). For any Γ, ∆, Π, and P ,
If ` Γ ; Π, [P ] in LLKF, then there is a Q≈ ( ` Γ ; Π, [P ]) such that

1
LSF\{ctF}

∥∥∥
Q

.

If ` Γ ; ∆ in LLKF, then there is a N ≈ ( ` Γ ; ∆) such that
1

LSF\{ctF}
∥∥∥
N

.

Proof. By structural induction on the given LLKF proofs. J

I Corollary 29 (completeness). If ` P1, . . . , Pm ; N1, . . . , Nn is provable in LLKF,
then N1 O · · ·ONn O ?P1 O · · ·O ?Pm is provable in LSF.

Proof. We have:
1∥∥∥Theorem 28

N1 O · · ·ONn Ou1 ?P1 Ou2 · · ·Oum ?Pm

ctF,wkF

∥∥∥
N1 O · · ·ONn O ?P1 O · · ·O ?Pm

where M1 Ou M2 stands for M1 O (M2 O · · ·OM2︸ ︷︷ ︸
u times

) if u ≥ 1, and for M1 if u = 0. J

4.2 Extracting LLKF Proofs from LSF Proofs
Let an LSF proof D with conclusion N0 be given. We present here an algorithm that extracts
an LLKF proof of ` · ; N0 that is unique up to rule permutations which are entirely confined
to the negative phases, i.e., the extraction does not make any essentially non-deterministic
choices. We begin by labelling the active and reactive formulas in N0, i.e., we modify the
grammar of formulas as follows:
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P,Q ::= au !uN uN P �Q 1 P �Q 0 P :N

N,M ::= au ?uP uP N NM > N OM ⊥

We use u, v, . . . for labels drawn from some infinite set, and Λ for a multi-set of labels. We
write Lu or Ru to denote that the (re)active formula L or R has label u. The rules of LSF
(Figure 4) are modified to be label-sensitive. The key cases are as follows:

ν
{

u(P : Lv)
}

intF −−−−−−−−−−−−−−−−−−−
ν
{

uP O Lv

} π
{

1
}

aiF −−−−−−−−−−−−−−−
π
{
au : av

} π
{

u(N O Lv)
}

pcF −−−−−−−−−−−−−−−−−−−−
π
{

uN : Lv

} π
{

!u (N O ?vP )
}

prF −−−−−−−−−−−−−−−−−−−−−
π
{

!uN : ?vP
}

ν
{

uP
}

?F −−−−−−−−−−
ν
{

?uP
} ν

{
u1P O u2P

}
ctF −−−−−−−−−−−−−−−−−−−−− [{u} {u1, u2}]

ν
{

uP
} ν

{
⊥
}

wkF −−−−−−−−−− [{u} ∅]
ν
{

?uP
}

For all other rules the labelling is straightforward. The rules {intF, aiF, prF, pcF} in the first
line above induce an ordering, written <, among the labels, with u < v in each case. For
ctF, the labels u1 and u2 in the premise are assumed to be different from each other and
from all labels in the conclusion of the rule. The rules ctF and wkF induce a rewrite relation
 on multi-sets of labels that tracks the exponential uses of ?-formulas. We assume that if
u < v and {v} Λ, w, then u < w. We label all active and reactive formulas in N0 with
unique labels and label every rule instance in D as above. Note that the reflexive-transitive
closure of this label ordering, written ≤, is a partial order.

Our algorithm will extract a labelled LLKF proof of ` · ; N0 where the unrestricted
contexts contain positive formulas annotated with a multi-set of labels, i.e., their elements
will be of the form PΛ. The wdc rule is modified to consume one of the available labels in
this multi-set; if this multi-set is empty, then the rule is inapplicable. Likewise, the dc rule
consumes the label of the linear reactive formula. Finally, in the ? rule, the label of the ? is
normalized with respect to  .

` Γ, PΛ ; Π, [P ]
wdc −−−−−−−−−−−−−−−−−−−−

` Γ, PΛ,u ; Π
` Γ ; Π, [P ]

dc −−−−−−−−−−−−−−−−
` Γ ; Π, uP

({u} ⇓ Λ) ` Γ, PΛ ; ∆
? −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ ; ∆, ?uP

The remaining rules of LLKF (Figure 2) can be modified to use labelled formulas in a
straightforward manner. We say that a label is available in a labelled LLKF sequent if it is
the label of some top-level formula in the sequent. The extraction of the labelled LLKF proof
of ` · ; N0 proceeds by backwards proof search (i.e., proof search from this goal sequent
upwards by applying LLKF rules from conclusion to premises) with some constraints:

For a negative sequent for which there are available negative rules (i.e., rules in the
negative phase in Figure 2), we apply one of these rules. The choice and order of the
application of these rules is immaterial.
From a negative sequent where no negative rules apply, we pick the unique ≤-smallest
label from the available labels, and use wdc or dc as appropriate. Each pair of formulas
in such a sequent has a corresponding pair of formulas in a O-relation in D . Because we
normalize with respect to  , every surviving available label in this sequent is involved
in some instance of intF with another available label of the sequent in D . Thus, the
available labels are ≤-connected, and, because there is a sub-proof in D of the O-formula
corresponding to this sequent, there is always a unique ≤-smallest label.
For the � rule of LLKF focused on P � Q, we send those side formulas to the premise
involving P whose labels are ≤-larger than some label of a subformula of P , and the
rest to the premise involving Q. There is no splitting ambiguity: the sets of labels in
subformulas of P and Q are disjoint because the labelling is unique.
For �, we repeat the same choices made in D .
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This algorithm is deterministic and always succeeds: it has no choice points that require
backtracking. There are no labels in any subformula of 1, so no formula will ever be sent to
a branch of a � that has focus on 1, guaranteeing that its LLKF rule will succeed. Similarly,
the sole formula that can be sent to a branch with focus on au will be a formula av with
u < v, and therefore the id rule of LLKF will succeed. Lastly, the only formulas that have
labels ≤-greater than a !-formula are ?-formulas, as ensured by the prF rule in LSF, so the
corresponding ! rule of LLKF succeeds. The algorithm terminates because each decision rule
consumes one of the finitely many labels of D . We can erase the labels from the computed
labelled LLKF proofs as a post-processing step.
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Abstract
This work introduces the theory of illative combinatory algebras, which is closely related to
systems of illative combinatory logic. We thus provide a semantic interpretation for a formal
framework in which both logic and computation may be expressed in a unified manner. Systems
of illative combinatory logic consist of combinatory logic extended with constants and rules of
inference intended to capture logical notions. Our theory does not correspond strictly to any
traditional system, but draws inspiration from many. It differs from them in that it couples the
notion of truth with the notion of equality between terms, which enables the use of logical for-
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is the conditional Cond. It acts as a connector between logic and computation, allowing to
choose between two branches in a (generalized) program depending on the truth value of
a quantified formula. Furthermore, formulas themselves are nothing else than generalized
programs, and may contain S and K.

Our formalization is very natural and straightforward. What is non-obvious here is that
it is actually correct. Modifying sligthly our axioms in seemingly harmless ways leads to
inconsistent theories. In the presence of unrestricted abstraction and fixed points of arbitrary
elements it is far from obvious how to formulate a consistent logical system.

Very closely related to our theory are applicative theories of Feferman (see [7]), which
form the basis of his systems of explicit mathematics. These systems were intended to
provide a foundation for constructive mathematics. Applicative theories are, however, usually
based on partial logic. In terms of methods employed perhaps the total applicative theories
with non-constructive µ-operator (see [8]) come even closer to our theory than does illative
combinatory logic. Indeed, the key idea in the proofs leading to the central Corollary 42 is
essentially analogous to that in the proof from the appendix of [8], where similar techniques
are used in a much less general context. The author did not know about [8] until after having
written down the proof in full.

Our consistency proof for first-order illative combinatory algebras is based on a non-trivial
construction of a term model. We show how to extend any left-linear applicative term
rewriting system satisfying some mild additional conditions into a term rewriting system
whose associated quotient algebra is a first-order illative combinatory algebra. The extension
is constructed by transfinitely iterating a process of expanding the term rewriting system with
rules implementing quantification, until a fixpoint is reached. This bears some resemblance
to transfinite truth definitions as used by Kripke (cf. [10]), which were also the inspiration
for the three-valued semantics of logic programming. The details, however, are much more
complicated.

The outline of the rest of this paper is as follows. Section 2 contains the definition of first-
order illative combinatory algebras. In Section 3 we define a translation from first-order logic
to illative language and prove its soundness. Section 4 introduces the class of functional term
rewriting systems and recapitulates some known results from the theory of term rewriting.
Section 5 contains the details of the term model construction. In Section 6 we use the result
of Section 5 to prove completeness of the translation from Section 3.

2 Illative combinatory algebras

In this section we introduce the central concept of this work – illative combinatory algebras.
Basic familiarity with ordinary combinatory logic is assumed.

I Definition 1. An applicative algebra A is a tuple 〈ω, ·, υ〉 where:
(1) ω is a set of combinators
(2) · : ω × ω → ω is the application function
(3) υ ⊆ ω is the set of undefined combinators
We call δ = ω \ υ the set of defined combinators. By ω(A), υ(A) we denote respectively the
ω and υ components of A, by δ(A) we denote ω(A) \ υ(A).

In expressions involving the application function we customarily omit parentheses and
adopt the convention of association to the left, i.e. M ·X · Y · Z stands for ((M ·X) · Y ) · Z.
We will also sometimes omit the dots. We adopt the convention of referring to the elements
of an algebra as combinators.
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I Definition 2. An illative combinatory algebra (ICA) is an applicative algebra A with
elements T , F , K, S, P , Q, Cond, Aδ which satisfy the following for any X,Y, Z ∈ ω(A):
(1) T 6= F

(2) T, F ∈ δ

(3) K ·X · Y = X

(4) S ·X · Y · Z = X · Z · (Y · Z)

(5)


P · F ·X = T

P ·X · T = T

P · T · F = F

P ·X · Y ∈ υ otherwise

(6)


Cond · T ·X · Y = X

Cond · F ·X · Y = Y

Cond ·X · Y · Z ∈ υ if X /∈ {T, F}

(7)


Q ·X ·X ∈ {T} ∪ υ
Q ·X · Y ∈ {F} ∪ υ for X 6= Y

Q ·X · Y ∈ δ if X,Y ∈ δ

(8)
{
Aδ ·X = T if X ∈ δ
Aδ ·X ∈ {F} ∪ υ if X ∈ υ

We will sometimes write A for Aδ.

I Remark. Intuitively, in an illative combinatory algebra undefined combinators are inter-
preted as meaningless at the object level, but not necessarily completely meaningless. Indeed,
there may be undefined combinators which applied to a defined combinator give a defined
result. The set δ is intuitively interpreted as the universe of discourse. It is intended to
encompass everything we may meaningfully talk about at the object level. In particular, it
includes the truth values T and F . The combinator A stands for a partial predicate which is
true for elements of δ, and false or undefined for elements of υ. This predicate cannot be
defined from the other combinators. The combinator Q is intended to represent a partial
equality predicate.
I Remark. Any illative combinatory algebra satisfies the principle of combinatory abstraction
and has a fixed point combinator. Thus, for every equation of the form

M ·X1 · . . . ·Xn = Φ(M,X1, . . . , Xn)

where Φ(Y,X1, . . . , Xn) is a combination of Y , X1, . . . , Xn and some of the combinators
postulated in the definition of an ICA, there exists a combinator M such that the equation
holds for any combinators X1, . . . , Xn. We will often rely on this fact and define combinators
by such equations. Sometimes we will also use the lambda-notation λxΦ(x) to denote
a combinator M such that MX = Φ(X) for all X ∈ ω. If there can be more than one
combinator satisfying a given equation, then it is tacitly understood that we choose one such
specific combinator and it does not matter which one.
I Remark. Our aim is to make as many combinators belong to δ as possible, since these are
the combinators on which our additional elements are guaranteed to “work”. However, one
cannot get rid of υ altogether because the existence of fixed points of arbitrary combinators
would lead to a contradiction. In fact, it can be easily shown that if M ·X ∈ δ for all X ∈ ω
then M ·X = M · Y for all X,Y ∈ ω.

For brevity, we will mostly omit explicit references to illative combinatory algebras. The
following facts and definitions are to be understood that they are relative to some fixed
illative combinatory algebra.
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We use the notation N for λx.PxF , ∧ for λx.λy.N(Px(Ny)), and ∨ for λx.λy.P (Nx)y.
We occasionally adopt infix notation for ∧ and ∨.

It is easy to see that P , N , ∧ and ∨ satisfy the following equations for any X,Y ∈ ω:

PXY = T iff X = F or Y = T

PXY = F iff X = T and Y = F

NX = T iff X = F

NX = F iff X = T

∧XY = T iff X = T and Y = T

∧XY = F iff X = F or Y = F

∨XY = T iff X = T or Y = T

∨XY = F iff X = F and Y = F

I Definition 3. A set of combinators τ ⊆ ω is a type represented by M ∈ ω if the following
conditions hold:
(1) M ·X = T for X ∈ τ
(2) M ·X ∈ {F} ∪ υ for X ∈ ω \ τ

Note that ω and δ are types represented by K ·T and A respectively. We use the notation
b for the type represented by Ab = λx.(QxT ) ∨ (QxF ).

I Definition 4. Let σ, ρ ⊆ ω. A function space σ ⇒ ρ from σ to ρ is the set of all combinators
M such that M ·X ∈ ρ for X ∈ σ.

We use small Greek letters τ , σ, ρ, ω, etc. both to denote subsets of ω and as parts of
symbols denoting constants or combinators, e.g. in Aτ . In the second case the subscript does
not have a meaning of its own, but only highlights a connection of the symbol with some
set τ , which may even be defined only after introducing the symbol itself. Analogously, we
use subscripts of the form σ → ρ when we intend to highlight a connection to the function
space σ ⇒ ρ. In compound expressions → and ⇒ are assumed to be right-associative. We
adopt the notation σn ⇒ ρ for σ ⇒ . . .⇒ σ ⇒ ρ where σ occurs n times. Analogously, we
use σn → ρ in subscripts.

I Definition 5. A combinator M is τ -total, for τ ⊆ ω, if MX ∈ δ for all X ∈ τ .

I Definition 6. Let τ ⊆ ω. A τ -quantifier is any combinator Πτ such that:

Πτ ·X = T if for all Y ∈ τ we have X · Y = T

Πτ ·X = F if there exists Y ∈ τ such that X · Y = F

Πτ ·X ∈ υ otherwise

We use the notation Στ for λx.N(Πτ (S(KN)x)). A combinator Πδ satisfying the above
equations for τ = δ is a first-order quantifier. We will sometimes write Π instead of Πδ.

It is straightforward to verify that Πτ and Στ satisfy the following for any X ∈ ω:

ΠτX = T iff XY = T for all Y ∈ τ
ΠτX = F iff XY = F for some Y ∈ τ
ΣτX = T iff XY = T for some Y ∈ τ
ΣτX = F iff XY = F for all Y ∈ τ
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It is easy to see that if Aτ is a δ-total combinator representing a type τ ⊆ δ, then the
combinator λx.Πδλy.P (Aτy) (xy) is a τ -quantifier. Moreover, if Πτ1 is a τ1-quantifier and
Aτ2 represents a type τ2, then τ1 ⇒ τ2 is a type represented by Aτ1→τ2 = λx.Πτ1λy.Aτ2(xy).

I Definition 7. A first-order illative combinatory algebra (FO-ICA) is an illative combinatory
algebra with signature extended with Πδ, and with the laws from Definition 6 for Πδ added
as axioms.

I Remark. One may wonder why we postulate the existence of Πδ instead of Πω, whose range
of quantification is broader. After all, we could use Π′δ = λx.Πωλy.P (Ay)(xy). However,
Π′δ is not a δ-quantifier. The reason is the existence of undefined combinators and the
fact that they are included in the range of quantification of Πω. For instance, suppose M
is such that M · X = T iff X ∈ δ. One may easily show that there is Y ∈ υ such that
A · Y ∈ υ. Hence, P (AY )(MY ) ∈ υ. Moreover, by definitions of A and M there is no Z
such that P (AZ)(MZ) = F . So the last equation in the definition of Πω applies, and we
have Π′δM ∈ υ.

More generally, if Aτ represents a type τ 6= ω, then by an analogous argument we could
prove that Πωλx.P (Aτx)(Mx) ∈ υ for any M ∈ ω such that M · X = T iff X ∈ τ . This
shows that Πω is not particularly interesting, because its range cannot be restricted in a
meaningful way.
I Remark. Logic based on the theory of first-order illative combinatory algebras is, in a
practical sense, more expressive than traditional predicate logic. For example, denote by n
the Church numeral representing n ∈ N. Now we can write a recursive definition of U as
follows:

Un = Cond (Qn 0) (SKK) (λf.Πλx.Σλy.U(Predn)(fxy))

where Pred is the predecessor combinator for Church numerals. By simple induction one can
show:

Un = λf.Πλx1.Σλy1. . . .Πλxn.Σλyn.fx1y1x2y2 . . . xnyn

Now assume that we have a δ-total combinator which represents the type N consisting of
Church numerals, and that all Church numerals are in δ. Theorem 43 implies that the
definition of a FO-ICA may be modified to satisfy these assumptions without sacrificing
any of the results in this paper. Then there exists an N -quantifier ΠN . Now, given a
combinator M , the expression

ΣNλx.UxM

is true iff there exists an alternation of 2n quantifiers such that

Πλx1.Σλy1. . . .Πλxn.Σλyn.Mx1y1 . . . xnyn

is true. To be precise, ΣNλx.UxM will most often be in υ if such an alternation does not
exist.

The power comes from the fact that quantifiers may be freely combined with S and K.
This allows for recursive definitions involving logical operators.

Another important feature of our theory is the presence of the combinator Cond and the
fact that the truth notion at the meta-level is coupled with the notion of equality between
terms. In other words, being true is equivalent to evaluating to a concrete value T , which
may be used in the “program” itself. This is significantly different from simply stating that
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some terms are “true” or “derivable” by means of some meta-level definition, but without
providing any possibility of using this information inside the system.

For instance, with our approach one can write recursive definitions of the form:

M = λx.Ψ (Cond (ΠΦ1(x,M)) Φ2(x,M) Φ3(x,M))

and they behave as expected – if ΠΦ1(X,M) is true then the first branch constitutes the
value of MX, if false then the second. What is more, it may happen that we know that
ΠΦ1(X,M) is true regardless of what X is, and we may conclude that M = λx.Ψ (Φ2(x,M)).
The combinator Cond acts as a connector between logic and computation.

3 Translation from first-order to illative theories

In this section we define a natural translation from the language of first-order logic to
illative language and prove its soundness with respect to FO-ICAs. We defer the proof of
completeness to Section 6. Much of the present section contains some fairly obvious but
necessary definitions.

We will be dealing mostly with applicative terms, i.e. terms from languages over signatures
consisting solely of a single binary function symbol · and constants including all the constants
postulated in the definition of a FO-ICA. We denote such a language by L(Σ, V ), where Σ
is a set of constants, and V is a set of variables. All terms are assumed to be applicative,
unless qualified with the phrase first-order. We use the symbols t, s, etc. for terms, x, y,
etc. for variables, and M , X, etc. for combinators (elements of an algebra), except that
we use the same symbols for primitive constants and corresponding combinators defined in
Section 2. The intended meaning of a symbol will always be clear from the context.

We use the notation JtKuA for the value of t under variable valuation u in the structure A.
We omit the decorations when obvious from the context or irrelevant. We also adopt the
notation t1[x/t2] for the term t1 with all free occurences of x substituted for t2. Analogously,
we use u[x/M ] for the valuation u′ such that u′(y) = u(y) for y 6= x and u′(x) = M .

We define lambda-abstraction at the syntactic level by the standard abstraction algorithm:
λ∗x.x = SKK, λ∗x.t = Kt if x /∈ FV (t), and λ∗x.t1t2 = S(λ∗x.t1)(λ∗x.t2). In what follows
the symbols Ab, ∧, etc. will sometimes stand for terms defined completely analogously to
the corresponding combinators in Section 2, but at the syntactic level using the abstraction
algorithm. We still use these symbols to denote the combinators as well. Again, the intended
meaning will always be clear from the context.

Let A be a FO-ICA, and u a valuation. It is easy to verify that for any terms t1, t2
we have J(λ∗x.t1)t2KuA = Jt1[x/t2]KuA. Also for any term t and any M ∈ ω(A) we have the
identity Jλ∗x.t1KuA ·M = Jt1Ku

′

A where u′ = u[x/M ].
We now redefine some standard notions from elementary first-order logic. Subseqently,

we will refer to the original notions by qualifying them with the phrase first-order. The
redefined notions will be qualified with illative, but the qualification will often be dropped.
By an illative theory we mean a set of applicative terms. We say that a FO-ICA A satisfies
a term t under variable valuation u, denoted by A |=u t, if JtKuA = T . We define the notions
of illative semantic consequence (Γ |= t) and illative model (A |= Γ) completely analogously
to standard definitions in first-order logic, but with arbitrary terms in place of formulas and
requiring all structures to be FO-ICAs.

We use the symbol ∆ for a first-order theory, φ, ψ for first-order formulas, |=FO for the
first-order semantic consequence relation.
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By a first-order expression we mean a first-order formula or a first-order term. We extend
the notion of first-order valuation to formulas. If A |=u

FO φ then JφKuA = T , otherwise
JφKuA = F .

We assume that in a first-order language the only logical connective is →, the only
quantifier ∀, and there is a constant ⊥ for false. We also assume that we have a new constant
Aς in the illative signature, and the signature contains as constants all symbols (of any arity)
from the corresponding first-order language.

We write Aι for the term λ∗x.(Aςx) ∧ (Aδx) and Πι for λ∗y.Πδλ
∗x.P (Aιx)(yx). We

define Aιn+1→ι inductively as λ∗x.Πιλ
∗y.Aιn→ι(xy), where Aι0→ι = Aι. Analogously, we

define Aιn+1→b as λ∗x.Πιλ
∗y.Aιn→b(xy).

I Definition 8. The illative theory Γ0 constains the terms Πδ (S (KAb)Aι), ΣδAι, Aιn→ι f
for all function symbols f of arity n ≥ 0, and Aιn→b r for all relation symbols r of arity
n > 0.

I Definition 9. We define inductively a translation Ψ as follows.
For first-order terms:
Ψ(x) = x for a variable x
Ψ(f(t1, . . . , tn)) = f ·Ψ(t1) · . . . ·Ψ(tn) for a function symbol f of arity n ≥ 0

For first-order formulas:
Ψ(⊥) = F

Ψ(r(t1, . . . , tn)) = r ·Ψ(t1) · . . . ·Ψ(tn) for a relation symbol r of arity n
Ψ(t1 = t2) = Q ·Ψ(t1) ·Ψ(t2)
Ψ(φ1 → φ2) = P ·Ψ(φ1) ·Ψ(φ2)
Ψ(∀xφ) = Πιλ

∗x.Ψ(φ)

For a first-order theory ∆ we define Ψ(∆) to be the sum of Γ0 and the image ImΨ(∆) of
Ψ on ∆.

The general idea of the soundness proof is to construct for every illative model B of Ψ(∆)
a first-order structure A which satisfies exactly those sentences whose translations are true
in B. Such a structure will obviously be a model of ∆. Hence, any semantic consequence φ
of ∆ will be satisfied by A, so Ψ(φ) will be true in B.

I Definition 10. Let B be an illative model of Γ0. We define ιB to be the set of all
combinators M ∈ ω(B) such that JAιKB ·M = T . The subscript will be dropped when
obvious from the context.

It is easy to see that if B is an illative model of Γ0, then JAιKB is a δ-total combinator
representing the non-empty type ιB ⊆ δ(B). It is also true that in every illative model B
of Γ0 the combinator JΠιKB is a ιB-quantifier.

I Definition 11. A first-order structure A and a FO-ICA B are correspondent if the universe
U of A is a subset of ω(B) and the following conditions hold:

every function symbol f of arity n is interpreted in A by the function

{(X1, . . . , Xn, Y ) ∈ Un+1 | JfKB ·X1 · . . . ·Xn = Y }

every relation symbol r of arity n is interpreted in A by the relation

{(X1, . . . , Xn) ∈ Un | JrKB ·X1 · . . . ·Xn = T}
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I Lemma 12. Assume B is an illative model of Γ0 and A is a first-order structure with
ιB as the universe. If A and B are correspondent, then JeKuA = JΨ(e)KuB for any first-order
expression e and any valuation u such that Rg(u) ⊆ ιB.

Proof. Simple induction on the complexity of e.
For instance, assume e = ∀xψ and J∀xψKuA = T . Then for every X ∈ ι we have

T = JψKu
′

A = JΨ(ψ)Ku′

B by inductive hypothesis, where u′ = u[x/X]. So for every X ∈ ι we
have Jλ∗x.Ψ(ψ)KuB ·X = JΨ(ψ)Ku′

B = T . Hence, by the fact that JΠιKB is a ι-quantifier in B
we have JΠιλ

∗x.Ψ(ψ)KuB = T .
The other cases are similar. We need the assumption of correspondence in the cases

e = f(t1, . . . , tn) and e = r(t1, . . . , tn). In the second of these Aιn→b r ∈ Γ0 is also needed. J

I Theorem 13. Soundness
Let φ and all formulas in ∆ be closed. If ∆ |=FO φ then Ψ(∆) |= Ψ(φ).

Proof. Suppose ∆ |=FO φ. Because all terms in Ψ(∆) as well as Ψ(φ) are closed by our
construction, it suffices to show that every illative model of Ψ(∆) is an illative model of Ψ(φ).

So assume B is an illative model of Ψ(∆). Since Γ0 ⊆ Ψ(∆) then B is an illative model
of Γ0. Hence, ιB ⊆ δ(B) is a non-empty type represented by JAιKB.

Let A be a first-order structure with universe ι and functions and relations as in Def-
inition 11. Note that it is not immediately obvious that this is well-defined, because the
interpretation of a function symbol f of arity n must be a total function from ιn to ι. However,
this is satisfied because Aιn→ι f ∈ Ψ(∆). Note also that the non-emptiness of ι is necessary
because the universe of a first-order structure is always assumed to be non-empty.

Therefore, by Lemma 12 we may conclude that JψKA = JΨ(ψ)KB for every closed first-
order formula ψ. We have A |=FO ∆, because JψKA = JΨ(ψ)KB = T for ψ ∈ ∆. From
the initial assumption ∆ |=FO φ we may now conclude that A |=FO φ. This implies
JΨ(φ)KB = JφKA = T . Therefore, B |= Ψ(φ). J

4 Functional term rewriting systems

This section defines the class of functional term rewriting systems and briefly recapitulates
some known results from the term rewriting theory for the sake of completeness. Term
rewriting notation and terminology conforms to that from [1].

I Definition 14. The set of positions of a term t ∈ L(Σ, V ) is a set Pos(t) of strings over the
alphabet {0, 1} defined inductively as follows: Pos(t0 ·t1) = {ε}∪{0p | p ∈ Pos(t0)}∪{1p | p ∈
Pos(t1)}, and Pos(x) = ε, where ε is the empty string and x ∈ V . The leftmost position of t
is the position 0i, where 0n for n ∈ N means 0 repeated n times, such that no position of t is
of the form 0j for j > i. For p ∈ Pos(t), the subterm of s at position p, denoted by t|p, is
defined by induction on the length of p: t|ε = t, (t0 · t1)|bq = tb|q. A context C is a term over
L(Σ ∪ {�}, V ) with exactly one occurence of �. By C[t] for t ∈ L(Σ, V ) we denote the term
C with � replaced by t.

I Definition 15. A rewrite rule, or simply rule, over L(Σ, V ) is a pair (l, r) ∈ L(Σ, V ) ×
L(Σ, V ) such that l is not a variable and Var(r) ⊆ Var(l). Rewrite rules will be written as
l→ r. The term l is called the left side of the rule, r the right side. A rule l→ r is left-linear
if no variable occurs twice in l. A rule l→ r is trivial if l = r. A term rewriting system is a
set of rewrite rules. A term rewriting system is left-linear if each of its rules is left-linear.

Let R be a term rewriting system. The reduction relation →R⊆ L(Σ, V ) × L(Σ, V ) is
defined as follows:
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t→R s iff there exist l→ r ∈ R, a context C and a substitution σ
such that t = C[σl] and s = C[σr].

We sometimes write t→p
R s to indicate at which position the reduction takes place.

We say that a rule l→ r ∈ R applies to t if there exist p ∈ Pos(t) and a substitution σ
such that t|p = σl. We say that a term is in R-normal form if no rule from R applies to it.

I Notation 16. Let→ be a binary relation on terms. We denote by→≡ the reflexive closure
of →, by ∗→ the reflexive transitive closure, and by ∗↔ the reflexive transitive symmetric
closure. We write t→ s to indicate that (t, s) ∈→. Analogously for →≡, ∗→ and ∗↔.

I Definition 17. A position p of a term t ∈ L(Σ, V ) is a function position if either p = q0 or
the size of t is 1 and p = ε. A term t ∈ L(Σ, V ) is functional if it does not have any variables
at function positions. We use the notation Σf (t) for the set of constants at function positions
in a term t. By H(t) we denote the constant at the leftmost position in a functional term
t. A rule l → r is functional if l is a functional term. A functional term rewriting system
(FTRS) is a term rewriting system over L(Σ, V ), such that all rules are functional. We use
the notation Σf (R) for

⋃
l→r∈R Σf (l), and H(R) for {H(l) | l→ r ∈ R}.

I Fact 18. If t is a functional term and s is such that Σf (t) * Σf (s), then there is no
substitution σ and position p such that s|p = σt. Moreover, if s is a functional term and
H(t) /∈ Σf (s), then t does not unify with a non-variable subterm of s.

I Definition 19. A functional term rewriting system R generates an applicative algebra
AR = 〈ω, ·, υ〉 where ω = {[t]R} is the set of equivalence classes of ∗↔R on closed terms, υ is
the set of those [t]R for which there is no t′ in R-normal form such that t ∗↔R t′, and · is
defined by [t1]R·[t2]R = [t1 · t2]R.

I Definition 20. Let l1 → r1 ∈ R1, l2 → r2 ∈ R2, let p be a position such that l1|p is not
a variable. We assume the rules do not share variable names. Let σ be the most general
unifier of l1|p and l2. Then 〈σr1, (σl1)[σr2]p〉 is a critical pair between R1 and R2. A critical
pair is a root critical pair if p = ε. The set of all critical pairs between R1 and R2 is denoted
by Crit(R1, R2), the set of all root critical pairs by Critr(R1, R2), and Criti(R1, R2) is the
set of all non-root critical pairs between R1 and R2. A critical pair 〈u1, u2〉 ∈ Crit(R1, R2)
may be closed if u1 →R2 u2 or u2 →R1 u1.

I Definition 21. R1 is compatible with R2 if
for all 〈u1, u2〉 ∈ Crit(R1, R2) there is u such that u1

∗→R2 u and u2 →≡R1
u,

for all 〈u2, u1〉 ∈ Criti(R2, R1) we have u1 →≡R2
u2.

Two term rewriting systems R1, R2 are compatible if R1 is compatible with R2 or vice versa.

I Fact 22. If R1, R2 are FTRSes such that Σf (R1)∩Σf (R2) = ∅, then they are compatible.

I Definition 23. We say that two relations →1 and →2 commute whenever t ∗→1 t1 and
t
∗→2 t2 implies the existence of s such that t1

∗→2 s and t2
∗→1 s. Two term rewriting systems

R1 and R2 commute if →R1 and →R2 commute.

I Lemma 24. Commutative Union Lemma
If R1 and R2 are confluent and they commute, then R1 ∪R2 is confluent.

The following theorem is a special case of the result from [12]. We do not state it in its
full generality mostly due to lack of space to introduce the necessary concepts.

I Theorem 25. Compatible left-linear term rewriting systems commute.

It follows from Theorem 25 and the Commutative Union Lemma that if R is left-linear
and compatible with itself, then it is confluent.
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5 Extensions of standard systems

This section contains the mathematically non-trivial part of this work. We show how to
extend any FTRS satisfying some mild additional conditions into an FTRS that generates a
FO-ICA.

I Definition 26. A functional term rewriting system R is standard if it is left-linear, confluent,
and Σf (R) ∩ {Π, Q,A} = ∅.

I Definition 27. The term rewriting system PROP is defined by the following rules:

K · x · y → x (1)
S · x · y · z → x · z · (y · z) (2)
P · F · x → T (3)
P · x · T → T (4)
P · T · F → F (5)
P · x · y → P · x · y (6)

Cond · T · x · y → x (7)
Cond · F · x · y → y (8)
Cond · x · y · z → Cond · x · y · z (9)

I Lemma 28. The term rewriting system PROP is standard.

Proof. There are only the following root critical pairs, all of which satisfy the requirements
of compatibility.

The pair 〈T, P · F · x〉 between rules (3) and (6). We have P · F · x→ T by rule (3).
The root critical pairs between rules (6) and (3), (4) and (6), (6) and (4), (5) and (6),
(6) and (5), (7) and (9), (9) and (7), (8) and (9), (9) and (8) are dealt with completely
analogously to the above one.
The trivial critical pair 〈T, T 〉 between rules (3) and (4) or (4) and (3).

J

Note that it follows directly from Lemma 28, Theorem 25 and the Commutative Union
Lemma that R ∪ PROP is standard.

I Definition 29. A term t is R-standard if it is a closed term in R ∪ PROP-normal form
such that Σf (t) ⊆ Σf (R ∪ PROP).

For the rest of this section we assume a fixed standard functional term rewriting system
R compatible with PROP, and a fixed family TI = {Ti | i ∈ I} of sets of R-standard terms,
where I is some arbitrary index set.

I Definition 30. The term rewriting system RI is defined by the following rules:

Π · x → Π · x
Q · x · y → Q · x · y
A · x → A · x

ATi · ti → T

ATi · x → ATi · x

for all i ∈ I and all terms ti ∈ Ti, where ATi are new symbols not present in Σf (R) ∪
Σf (PROP) ∪ {Π, Q,A}.
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It is easy to see that every R-standard term is in RI -normal form.

I Definition 31. The term rewriting system RII is defined by the following rules:

Q · t · t → T

Q · t1 · t2 → F

A · t → T

ATi · ti → F

for all i ∈ I and all closed terms t, t1, t2, ti in R∪PROP∪RI -normal form, such that t1 6= t2
and ti /∈ Ti.

Below we use the notation R0 for R ∪ PROP ∪RI ∪RII .

I Lemma 32. The term rewriting system R0 is left-linear and confluent.

Proof. It is evident that R0 is left-linear. Notice that R ∪ PROP ∪RI is confluent because
R ∪ PROP and RI are compatible by Fact 22 and the fact that R ∪ PROP is standard.

We now prove that RII is confluent. It is evident from Definition 31 that there are no
root critical pairs. For two rules to form a non-root critical pair the left side of one of the
rules has to unify with a proper subterm of the left side of the other rule. Because all left
sides are closed terms, this is equivalent to the situation when the left side of one rule is
equal to a proper subterm of another. It follows directly from definitions that all proper
subterms of left sides of rules are in R ∪ PROP ∪ RI -normal form. However, no left side
of a rule is in R ∪ PROP ∪RI -normal form because the corresponding trivial rule from RI
applies. This implies that there are no critical pairs.

We show that R ∪ PROP ∪RI is compatible with RII . Because R ∪ PROP is standard,
then by Fact 22 we need to consider only critical pairs between RI and RII . It is evident
that all such pairs are root critical pairs between a trivial rule from RI and a rule from RII .
They may be closed by simply applying the rule from RII . J

I Definition 33. For an ordinal α > 0, define Rα as the sum of
⋃
β<αRβ and the rules:

Π · t→ T for all closed terms t such that for any closed term s in R0-normal form there
is an ordinal β < α for which t · s ∗→Rβ T .
Π · t→ F for all closed terms t such that there is a closed term s in R0-normal form and
an ordinal β < α for which t · s ∗→Rβ F .

A simple cardinality argument shows that there exists the least ordinal ζ such that
Rζ =

⋃
α<ζ Rα. We sometimes write RTIζ for Rζ when TI is not obvious from the context.

I Lemma 34. For α ≥ 0, a term t is in R∪PROP∪RI-normal form iff it is in Rα-normal
form.

Proof. If a rule from Rα \ (R ∪ PROP ∪RI), e.g. Q · s · s → T , applies to t, then the
corresponding trivial rule, e.g. Q · x · x→ Q · x · x, from RI also applies. The other direction
of the equivalence follows from the fact that R ∪ PROP ∪RI ⊆ Rα. J

I Lemma 35. If l→ r ∈ RI ∪RII and p 6= ε is such that l|p is not a variable, then σl|p is
in Rα-normal form for any substitution σ.

Proof. We show that σl|p is in R ∪PROP ∪RI -normal form. If l→ r ∈ RI then l = ATi · ti
where ti is an R-standard term. Hence ti is in R∪PROP∪RI -normal form. Because p 6= ε and
ti is closed, this implies that σl|p = l|p is in R∪PROP∪RI -normal form as well. Analogously,



Łukasz Czajka 185

if l→ r ∈ RII then the fact that σl|p = l|p is a closed term in R ∪ PROP ∪RI -normal form
follows directly from Definition 31 and from p 6= ε.

Therefore, an application of Lemma 34 establishes our claim. J

I Lemma 36. If t is in R ∪ PROP-normal form and Σf (t) ⊆ Σf (R ∪ PROP), then t is in
Rα-normal form.

Proof. From H(RI ∪RII)∩Σf (R∪PROP) = ∅ and Fact 18 it follows that t is in R0-normal
form. Lemma 34 implies that it is also in Rα-normal form. J

I Notation 37. We use Sα for Rα \
⋃
β<αRβ , →≤α for →Rα , and →=α for →Sα .

We will now prove a series of lemmas which together imply that Rα and Rβ commute for
all α, β ≤ ζ, and therefore Rζ is confluent. The key idea in the proofs of these lemmas could
be summarized by the following two diagrams.

Π · t =α//

=β ��

Π · t′

≤β
{{w

w
w

w
w

T

because t · s =α//

≤γ
∗

��

t′ · s

∗

≤γ
||y

y
y

y
y

T

by IH, for γ < β, all s

Π · t

=α ��

=β// T

F

implies t · s

≤δ
∗

��

≤γ
∗

// T

F

for δ < α, γ < β, some s

We adopt the notation →∗α for →Rα\R0 when α > 0, and →∗0 for →=0. In the following,
whenever we write a reduction sequence of the form t0

∗→∗α1 t1
∗→∗α2 . . .

∗→∗αn tn we tacitly
assume that there exists α ≤ ζ such that each αi for i = 1, . . . , n is either 0 or α, and there
is no j ∈ {1, . . . , n− 1} such that αj = αj+1. It is easy to see that every reduction t ∗→≤α s
can be represented by a reduction sequence in this form.

I Lemma 38. If R0 and Rα \R0 commute, then so do R0 and Rα.

Proof. Let t ∗→=0 t1 and t = s0
∗→∗α1 s1

∗→∗α2 . . .
∗→∗αn sn = t2 for some n ≥ 1 and

α1, . . . , αn ∈ {0, α}. The proof proceeds by simple induction on n. J

I Lemma 39. For all α ≤ ζ the term rewriting systems R0 and Rα \R0 commute.

Proof. We use transfinite induction on α to show that R0 is compatible with Rα \ R0 =⋃
0<β≤α Sβ .
Let 〈u1, u2〉 ∈ Crit(R0, Sβ) for some 0 < β ≤ α. Because R ∪ PROP is standard and

Π /∈ Σf (R ∪ PROP), the critical pair must be between a rule from RI ∪RII and a rule from
Sβ . Therefore, we have rules l1 → r1 ∈ RI ∪ RII , l2 → r2 ∈ Sβ , a substitution σ, and a
position p such that u1 = σr1, u2 = (σl1)[σr2]p, σl1|p = σl2, and p is such that l1|p is not a
variable. If p = ε then l1 = r1 by definition of RI and RII , and we have u1 →≤β u2. The
case p 6= ε is impossible by Lemma 35.

Now let 〈u2, u1〉 ∈ Criti(Sβ , R0) for some 0 < β ≤ α. We have u2 ∈ {T, F}. There are
terms t, t′ and a context C such that u1 = Π · C[t′], t→=0 t

′ and Π · C[t]→ε
=β u2. Assume

u2 = T . The proof for u2 = F is analogous. So let s be a term in R0-normal form. We have
C[t] · s ∗→≤γ T for some γ < β. But we may invoke the inductive hypothesis to conclude that
R0 and Rγ \ R0 commute. So by Lemma 38 we obtain that R0 and Rγ commute as well.
Hence C[t′] · s ∗→≤γ T , because C[t] · s ∗→≤γ T , C[t] · s→=0 C[t′] · s and T is in R0-normal
form. But s was an arbitrary term in R0-normal form, so we obtain u1 = Π · C[t′]→=δ T

for some 0 < δ ≤ β. J
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I Lemma 40. If Rα \R0 and Rβ \R0 commute then so do Rα and Rβ.

Proof. The proof may be easily reconstructed from the following diagram. J

t

∗α1

∗

��

∗β1

∗ // u1

∗α1

∗

���
�
� ∗β2

∗ // . . .
∗βm

∗ // t2

∗α1

∗

���
�
�

s1

∗α2

∗

��

∗β1

∗ //___ r0
∗β2

∗ //___ . . .
∗βm

∗ //___ r1

by IH

∗α2

∗

���
�
�

...

∗αn

∗

��

...

∗αn

∗

���
�
�

t1 ∗β1

∗ //___
∗β2

∗ //___ . . .
∗βm

∗ //___ r2

by IH

I Lemma 41. For α′, β′ ≤ ζ the term rewriting systems Rα′ \R0 and Rβ′ \R0 commute.

Proof. We use induction on pairs 〈α′, β′〉 of indices of Rα′ , Rβ′ ordered lexicographically.
Let 〈u2, u1〉 ∈ Criti(Sβ , Sα) for some 0 < α ≤ α′, 0 < β ≤ β′. The term u2 is a constant.

There are terms t, t′ and a context C such that t→ε
=α t

′, u1 = Π ·C[t′], and Π ·C[t]→ε
=β u2.

Assume u2 = F . There is a term s in R0-normal form such that C[t]·s ∗→≤γ F for some γ < β.
By the inductive hypothesis Rα \ R0 and Rγ \ R0 commute. Therefore, by Lemma 40 we
may conclude that →≤α and →≤γ commute. Hence C[t′] · s ∗→≤γ F , because C[t] · s ∗→≤γ F ,
C[t] · s →=α C[t′] · s and F is in Rα-normal form. Therefore, u1 = Π · C[t′] →≤β F = u2.
The argument for u2 = T is analogous.

Now let 〈u1, u2〉 ∈ Crit(Sα, Sβ) for some α ≤ α′, β ≤ β′. The case when 〈u1, u2〉 is a
non-root critical pair is analogous to the case we have just considered. If 〈u1, u2〉 is a root
critical pair, then both u1, u2 ∈ {T, F}, and we need to show that u1 = u2. It may happen
otherwise only when there is a term t such that Π · t→=α u1, Π · t→=β u2. Without loss of
generality assume u1 = T , u2 = F . So there is a closed term s in R0-normal form such that
t · s ∗→≤δ T and t · s ∗→≤γ F for some δ < α, γ < β. The inductive hypothesis and Lemma 40
imply that →≤δ and →≤γ commute, which gives a contradiction.

We have thus shown that Rα′ \ R0 and Rβ′ \ R0 are compatible, so they commute by
left-linearity and Theorem 25. J

I Corollary 42. The term rewriting system Rζ has the Church-Rosser property.

I Theorem 43. Let R be a standard FTRS compatible with PROP, and TI = {Ti | i ∈ T}
be a family of sets of R-standard terms. The applicative algebra ARζ generated by RTIζ is a
FO-ICA such that for each i ∈ I the set {[t]Rζ | t ∈ Ti} is a type represented by [ATi ]Rζ which
is a δ-total combinator. Furthermore, if t1, t2 ∈ L(Σ) are in R∪PROP-normal form, t1 6= t2,
and Σf (t1),Σf (t2) ⊆ Σf (R ∪ PROP), then [t1]Rζ , [t2]Rζ ∈ δ(ARζ ) and [t1]Rζ 6= [t2]Rζ .

Proof. First, we check that ARζ is a first-order illative combinatory algebra. To save on
notation we use the same symbols for terms and corresponding abstraction classes in ARζ .

The axioms T 6= F and T, F ∈ δ(ARζ ) follow from the Church-Rosser property of Rζ and
the fact that T and F are in Rζ-normal form.
The axioms (3)-(6) in Definition 2 follow directly from the definition of PROP.
The axioms (7) and (8) follow directly from the definitions of RI , RII and from Lemma 34,
which is needed to prove that A ·X ∈ {F} ∪ υ for X ∈ υ.
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The axioms for Π follow from the Church-Rosser property of Rζ , Lemma 34 and the fact
that Rζ =

⋃
α<ζ Rα.

The fact that each set {[t]Rζ | t ∈ Ti} is a type represented by [ATi ]Rζ which is a δ-total
combinator follows directly from Lemma 34 and the definitions of RI and RII . Finally, the
last claim follows from Lemma 36 and the Church-Rosser property of Rζ . J

6 Completeness of the first-order translation

In this section we prove completeness of the translation introduced in Section 3. We work
under the same assumptions and definitions as in Section 3.

I Theorem 44. Completeness
Let φ and all formulas in ∆ be closed. If Ψ(∆) |= Ψ(φ) then ∆ |=FO φ.

Proof. Suppose Ψ(∆) |= Ψ(φ). Let A be a first-order model of ∆.
We construct a functional term rewriting system R as follows. The signature of R consists

of all elements of the universe of A, all relation and function symbols from LFO and the
constants T , F . We assume the relation and function symbols are different from T , F , P ,
Q, etc. For every n-ary relation rA on A, which interprets a relation symbol r, the rule
r · a1 · . . . · an → T belongs to R for exactly those a1, . . . , an for which rA(a1, . . . , an) holds,
the rule r · a1 · . . . · an → F when rA(a1, . . . , an) does not hold. For every n-ary function
fA on A, which interprets a function symbol f , the rule f · a1 · . . . · an → b belongs to R if
fA(a1, . . . , an) = b. Nothing else belongs to R.

It is straightforward to verify that R is standard and compatible with PROP. By ς we
denote the universe of A. Let B be the applicative algebra generated by R{ς}ζ . For convenience
we use the same symbols for terms and corresponding abstraction classes. Analogously for
sets of terms. By Theorem 43 the algebra B is a FO-ICA with a δ-total combinator Aς
representing ς, and we have ς ⊆ δ(B). Note that ς = ιB, where ιB is the type represented by
Aι = λx.(Aςx) ∧ (Aδx), as in Definition 10.

It is easy to check that B is an illative model of Γ0, and that A and B are correspondent
in the sense of Definition 11. Hence by Lemma 12 we may conclude that JψKA = JΨ(ψ)KB
for any closed first-order formula ψ. This implies that B |= ImΨ(∆). Therefore B |= Ψ(∆),
and consequently B |= Ψ(φ), which implies A |=FO φ, because JφKA = JΨ(φ)KB. J

References

1 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

2 Henk Barendregt, Martin W. Bunder, and Wil Dekkers. Systems of illative combinatory
logic complete for first-order propositional and predicate calculus. Journal of Symbolic
Logic, 58(3):769–788, 1993.

3 Alonzo Church. A set of postulates for the foundation of logic I. Annals of Mathematics,
ser. 2, 33:346–366, 1932.

4 Haskell B. Curry. Grundlagen der kombinatorischen Logik. American Journal of Mathe-
matics, 52:509–536, 789–834, 1930.

5 Wil Dekkers, Martin W. Bunder, and Henk Barendregt. Completeness of the propositions-
as-types interpretation of intuitionistic logic into illative combinatory logic. Journal of
Symbolic Logic, 63(3):869–890, 1998.

CSL’11



188 A semantic approach to illative combinatory logic

6 Wil Dekkers, Martin W. Bunder, and Henk Barendregt. Completeness of two systems of
illative combinatory logic for first-order propositional and predicate calculus. Archive for
Mathematical Logic, 37(5-6):327–341, 1998.

7 Gerhard Jäger, Reinhard Kahle, and Thomas Strahm. On applicative theories. In A. Can-
tini, E. Casari, and P. Minari, editors, Logic and Foundation of Mathematics, pages 88–92.
Kluwer Academic Publishers, 1999.

8 Gerhard Jäger and Thomas Strahm. Totality in applicative theories. Annals of Pure and
Applied Logic, 74(2):105–120, 1995.

9 Stephen C. Kleene and J. Barkley Rosser. The inconsistency of certain formal logics. Annals
of Mathematics, 36:630–636, 1935.

10 Saul A. Kripke. Outline of a theory of truth. Journal of Philosophy, 72(19):690–716, 1975.
11 Jonathan P. Seldin. The logic of Church and Curry. In Dov M. Gabbay and John Woods,

editors, Logic from Russell to Church, volume 5 of Handbook of the History of Logic, pages
819–873. North-Holland, 2009.

12 Yoshihito Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott,
editors, Programming of Future Generation Computers II, pages 393–407. North-Holland,
1988.



Enumeration Complexity of logical query problems
with second order variables
Arnaud Durand and Yann Strozecki

Université Paris Diderot, IMJ, Projet Logique, CNRS UMR 7586
Case 7012, 75205 Paris cedex 13, France
durand@logique.jussieu.fr, strozecki@logique.jussieu.fr

Abstract
We consider query problems defined by first order formulas of the form Φ(x,T) with free first
order and second order variables and study the data complexity of enumerating results of such
queries. By considering the number of alternations in the quantifier prefixes of formulas, we
show that such query problems either admit a constant delay or a polynomial delay enumeration
algorithm or are hard to enumerate. We also exhibit syntactically defined fragments inside the
hard cases that still admit good enumeration algorithms and discuss the case of some restricted
classes of database structures as inputs.
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Introduction

Query answering for logical formalisms is a fundamental problem in database theory. There
are two natural ways to consider the answering process and consequently to evaluate the
complexity of such problems. Given a query ϕ on a database structure S, one may consider
computing the result ϕ(S) as a global process and measure its data complexity in terms
of the database and the output sizes. Alternatively, one can see this task as a dynamical
process in which one computes the tuples of the solution set one after the other. In this
case, the main measure is the delay spent between two successive output tuples. In recent
years, this approach has deserved some attention in the context of logical query problems:
see, for example, [3] for a study on conjunctive queries, or [4, 1] for monadic second order
logic on bounded tree-width structures or [6, 11] for first order queries on structures of
bounded degree. However, having only free first order variables in formulas is not enough
to capture complex objects of non-constant size. This is the case when one wants to obtain,
for example, cliques or hypergraph transversals of arbitrary size (see Example 2) or classical
NP properties.

It is known since Fagin’s theorem [7] that NP corresponds exactly to problems definable
in existential second order logic. That is, the language L is in NP, if and only if there
exists an existential second order formula Φ(T) over a signature σ ∪ {T}, such that, for all
σ-structure S :

S ∈ L ⇐⇒ S |= ∃T Φ(T).

In this paper, we consider first order query with possibly free second order variables and
study their enumeration complexity. Since in full generality such formulas may be very
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expressive, we consider fragments defined by the quantifier alternation of formulas1. The
hardness of counting the number of solutions of a problem may sometimes be seen as a
first approach of enumeration complexity. In [12], a descriptive complexity point of view
of counting problems is proposed. They show that for the Σ0 (quantifier free) fragment,
counting the number of solutions can be done in polynomial time and that already at the
first universal level Π1 (only one block of universal quantifiers) ]P-complete problems can be
defined. They also show that the Σ1 level (one block of existential quantifiers) and another
syntactically defined fragment admit a fully polynomial randomized approximation scheme
to count the number of solutions. In this paper, we show that the situation for enumeration
is more complex. Our contributions are as follows.

For any fixed formula Φ(x,T) ∈ Σ0, there exists an algorithm that, given a structure
S, enumerates Φ(S) with polynomial time precomputation and constant delay. Under
a parameterized complexity assumption, the degree of the polynomial in the precompu-
tation step depends on the formula size. To show constant delay enumeration we prove
that one can pass from one solution (of the form (x,T)) to another by only a constant
number of local changes.
We also prove that, for any k, if the structure S is of degree bounded by k, then there is
an enumeration algorithm for the Σ0 fragment with linear precomputation and constant
delay.
For any fixed formula Φ(x,T) ∈ Σ1, there exists an algorithm that, given a structure
S, enumerates Φ(S) with polynomial time precomputation and polynomial time delay.
To this aim, we study the closure under union problem in the context of enumeration
and prove that some closure result holds even for the union of two problems which are
efficiently enumerable but relatively to different orderings (of their respective solution
space).
The class Π1 already contains problems that are hard to enumerate and Π2 is enough to
capture all FO definable problems on ordered structures up to parsimonious reductions.
Finally, we exhibit natural fragments above Π1 that admit efficient enumeration proced-
ures.

Basic definitions about logical query problems, enumeration problems and main enumeration
complexity measures are given in Section 1. Results about the enumeration complexity of
Σ0 query problems are given in Section 2 and about the Σ1 query problems in Section 3.
In this latter section, we also discuss the intimate relationship between the enumeration of
models of propositional formulas in disjunctive normal form and Σ1 query problems. The
Π1 fragment is studied in Section 4 where both the hardness results are given and some
tractable fragments are exhibited.

1 Preliminaries

Enumeration problem and complexity

Let I,O be two sets and R be a polynomially balanced binary predicate R ⊆ I×O decidable
in polynomial time. In particular, given x ∈ I and y ∈ O, checking whether R(x, y) can be
done in time polynomial in |x|. One defines the enumeration function associated to R as
follows.

1 Note that this is the approach to define the classes of the W hierarchy in parameterized complexity
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Enum·R
Input: x ∈ I
Output: an enumeration of elements in R(x) = {y : R(x, y)}
In this paper, we consider the random access machine model (RAM) with addition and

subtraction as its basic arithmetic operations. It has read-only input registers I1, I2, . . . (con-
taining the input x), read-write work registers R1, R2, . . . and output registers O1, O2, . . . .
Our model is equipped with an additional instruction Output which, when executed, in-
dicates that the non empty output registers contain a partial output y ∈ R(x). Time
complexity is used under the uniform cost model. A RAM is of space complexity O(h(n))
if, for all inputs of size n, it uses working registers Ri of addresses i = O(h(n)) and content
O(max(n, h(n))).

A scheme A = (Ap,Ae) (see [2] for a similar definition) computes the enumeration
problem Enum·R if, for any input x:

Ap computes from x an extended input ext(x). This is called the precomputation phase.
Given ext(x), Ae computes one after the other and without repetition the elements of
R(x) and stops immediately after writing the last one.

We denote by timej(x) the moment when A has completed the writing of the jth solu-
tion i.e. after the jth Output instruction is executed (by convention, time0(x) = 0). Let
delayj(x) = timej(x)− timej−1(x).

I Definition 1. Let g : N→ N, f : N→ N be two functions. The problem Enum·R belongs
to the class Delay(g, f) if there exists an enumeration scheme A = (Ap,Ae) that computes
Enum·R such that, for all input x:

Precomputation uses time and space O(g(|x|)),
Solutions y ∈ R(x) are computed successively from ext(x) using delay O(f(|x|)) and
space O(maxy∈R(x)(f(|x|), |y|))

The two enumeration classes below are classical (see the second chapter of [13] and the
references therein):

DelayP =
⋃
k,h

Delay(nk, nh), Constant-Delay =
⋃
k

Delay(nk, 1).

Logical definitions

We suppose the reader is familiar with the basics of finite model theory and first order
logic [10]. A signature σ = {R1, ..., Rk} is a set of relational symbols (constant symbols will
also be authorized). The arity of a predicate Ri is denoted by ar(Ri). A σ-structure S =
〈D,RS1 , . . . , RSk 〉 is composed of a domain D, together with an interpretation RSi ⊆ Dar(Ri)

for symbols Ri of σ. When the context is clear, the interpretation RSi of Ri is denoted by
R∗i . The size of S is equal to the cardinality |D| of its domain plus the sum of the number
of tuples times the arity for all relations. It is denoted by |S|. If n ∈ N such that |D| = n

then, D will often be identified with the initial segment of the positive integers [n].
Let σ be a signature and T = (T1, . . . , Th) be a tuple of predicate symbols not in σ,

let z = (z1, . . . , zl) be a tuple of variables. We consider first order formulas Φ(z,T) with
free first order and second order variables. Such formulas, of signature σ ∪ T have atomic
formulas (atoms) built over relations of σ ∪ T and equality symbol =. We denote by Σ0
(or Π0) the set of quantifier free first order formulas. A formula Φ(z,T) is in Σi+1 (resp.
Πi+1), for i ≥ 0, if it is of the form: ∃xψ (resp. ∀xψ) where ψ is in Πi (resp. Σi).
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192 Enumeration Complexity of logical query problems with s.o. variables

Enumeration Query problems and data complexity

Let F be a subclass of first order formulas and Φ(z,T) ∈ F , we consider the following
variant of the classical query problem.

Enum·Φ
Input: A σ-structure S
Output: an enumeration of elements in Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

We denote by Enum·F the collection of problems Enum·Φ for Φ ∈ F . Note that it can
be supposed without loss of generality that the tuple T contains only one relation T of arity
r = maxi≤h ar(Ti) + 1. To do this, one simply represents each predicate Ti by T and a new
constant symbol ai and replace in formulas each Ti(x) by T (ai,x) where the length of ai is
r − ar(Ti). It suffices to add the new constants in the signature.

I Example 2. The formula IS(T ) ≡ ∀x∀y T (x) ∧ T (y) ⇒ ¬E(x, y) holds if and only if
T is an independent set. Remark that the previous formula is in Π1, thus Enum·IS is in
Enum·Π1.

I Example 3. Enum·HS : given a hypergraph H, enumerate the hitting sets (vertex covers)
ofH. The hypergraphH is represented by the incidence structure 〈D, {V,E,R}〉 where V (x)
means that x is a vertex, E(y) that y is an hyperedge and R(x, y) that x is a vertex of the
hyperedge y.

HS(T ) ≡ ∀x(T (x)⇒ V (x)) ∧ ∀y∃xE(y)⇒ (T (x) ∧R(x, y))

Therefore the problem Enum·HS is in Enum·Π2.

Note that in the query problem Enum·Φ the formula is fixed i.e. is not part of the input.
The complexity is evaluated in terms of the structure/data only. For such problems, the
notion of constant delay makes sense:

- when the free variables are all first order (in that case each output is of constant size)
- but also and more interestingly when there are second order variables and that comput-

ing the next solution from the preceding one can be done by changing a constant number of
tuples.

2 Enumeration for Σ0 formulas

In this section, we give enumeration algorithms for the most simple class of Enum·Σ0.
Since it is a core procedure of our algorithms, we need to recall how to enumerate all k-ary
relations over any domain with constant delay.

I Lemma 4 (Gray code enumeration). Let D be a finite set, k ∈ N and t1, . . . , ta, s1, . . . , sb

in Dk. Let R = {R ⊆ Dk : t1, . . . , ta ∈ R, s1, . . . , sb 6∈ R}. Then, starting from the relation
R = {t1, . . . , ta}, one can enumerate the relations belonging to R with precomputation and
delay in O(1). Moreover, the process ends by producing a relation R′ such that |R′| = |R|+1.

Proof. Since the tuples t1, ..., ta must belong to each output, they can simply be fixed
and the problem reduces to generate all subsets of Dk\{t1, . . . , ta, s1, . . . , sb} of size up to
n = |D|k−a−b starting from the empty set. Clearly, it is equivalent to generate all subsets of
[n]. Such problems have been widely studied under the name of Gray code enumeration. It
is well known that the enumeration can be done in such a way that the size of the symmetric
difference R1∆R2 between two successive outputs R1 and R2 is 1. Given an output R1, one
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can proceed as follows. If R1 has an even number of elements, then set R2 = R1∆{n}. If
not, let R2 = R1∆{i−1} where i is the greatest element in R1. Clearly, the delay is constant
provided we have access to the information on the parity of number of elements in R1 and
on the value of such i above. The parity can be stored in one bit, that is changed at each
step, while the latter is easy to maintain in constant time by a linked list on the tuples of
each produced relation. To start, one only needs to build this data structure on the first
relation R which is of size a. It is easy to see that the enumeration ends up with the relation
R′ containing t1, ..., ta and the tuple of Dk\{t1, . . . , sb} indexed by 1. J

I Remark. Note that the memory space required by the preceding algorithm is linear in
n, the size of one output. It may seem important since, in contrast, the enumeration itself
is constant delay. However, some data structure is required only to navigate inside each
output relation and make the necessary local changes easily.

There is a standard way to represent a first order query problem by a propositional satis-
fiability problem. We recall it below. We will later introduce a more complex representation.

Let σ be a relational signature and let S be a σ-structure of domain D with |D| = n. Let
Φ(z, T ) be a first order formula where z is a k-tuple of first order variables and T is a second
order variable of arity r. One rewrites Φ(z, T ) by

∨nk−1
i=0 Φ(zi, T ) where zi is the ith element

of Dk (for, say, lexicographic ordering on Dk). In each Φ(zi, T ) one replaces inductively
(bottom-up in the tree representation of the formula) each sub-formula ∃yϕ(zi,y, T ) by
a disjunction

∨np−1
j=0 ϕ(zi,yj , T ) with |y| = p (and similarly universal quantification by

conjunction). Finally, one calls Φ̃i the propositional formula obtained from Φ(zi, T ) by
replacing every atomic formula R(w) with R ∈ σ by its truth value in S and we set Φ̃ =∨nk−1

i=0 Φ̃i. Variables of Φ̃ are of the form T (w) with w ∈ Dr.

We are now ready to state the first result of this section.

I Theorem 5. Enum·Σ0 ⊆ Constant-Delay. More precisely, it can be computed with
precomputation O(|D|k) and delay O(1) where k is the number of free first order variables
of the formula and D is the domain of the input structure.

Proof. Let S be a σ-structure of domain D. Let Φ(z, T ) ∈ Σ0 with T of arity r and let
Φ̃ =

∨nk−1
i=0 Φ̃i be its associated propositional formula.

The idea of the proof consists in determining some canonical assignments for each Φ̃i from
which one can enumerate all models of Φ̃i and then all models of Φ̃ by disjoint union. Since
constant delay is expected, one has to be careful that two consecutive partial enumerations,
say for models of Φ̃i and of Φ̃j with i 6= j, respectively ends and starts with solutions that
are "close" to each other.

Since there is no first order variable other than z, the number of propositional variables
appearing in each Φ̃i is bounded by a constant ci independent of |S|. Let T (yi,j), j ≤ ci, be
such variables with yi,j ∈ Dr.

Let I(Φi) be the set of up to 2ci models of Φ̃i. For I ∈ I(Φi), let I0 (resp. I1) the
set of variables set to false (resp. true) in I. Let T (zi, I) be the set of r-uples yi,j such
that T (yi,j) ∈ I1. This relation contains at most ci tuples. Let now [T (zi, I)] be the set of
relations generated by T (zi, I) i.e. the relations T ∗ that agrees with T (zi, I) on yi,1, . . . ,yi,ci .
Clearly, for each i ≤ nk − 1, the set Φ(S)} is equal to the set:

⋃
I∈I(Φi)

⋃
T∗∈[T (zi,I)]

(zi, T
∗).
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The enumeration process to compute Φ(S) when Φ ∈ Σ0 can now be described. The
precomputation steps are as follows.

For each zi ∈ Dk, compute Φ̃i and the set I(Φi).
Compute the set Z = {zi ∈ Dk : I(Φi) 6= ∅}.

It holds that |I(Φi)| ≤ 2ci i.e. is constant. Thus, the precomputation requires time
O(|D|k). Now, the enumeration itself proceeds as follows.

For each zi ∈ Z, for each I ∈ I(Φi), generate all relations T ∗ ∈ [T (zi, I)] and output
(zi, T

∗).

From Lemma 4, for given zi and I, one can enumerate the set [T (zi, I)] in delay O(1).
Note that for two distinct zi and zj , the set of outputs are disjoints. Similarly, since two
distinct assignments I, I ′ ∈ I(Φi) differ for at least one variable, it holds that [T (zi, I)] ∩
[T (zi, I

′)] = ∅.
For each zi and I, one starts the enumeration with the relation T (zi, I) of size less than

ci and ends by a relation T ′(zi, I) ∈ [T (zi, I)] with |T ′(zi, I)| = |T (zi, I)|+ 1. Then, for all
I ′ ∈ I(Φi), I ′ 6= I:

|T ′(zi, I)∆T (zi, I
′)| ≤ 2ci + 1.

Similarly, for all zj 6= zi, and all I ′ ∈ I(Φj) it holds:

|T ′(zi, I)∆T (zj , I
′)| ≤ ci + cj + 1.

Then, the enumeration process remains constant delay when branching from one assign-
ment I to the next and when branching from one zi to the next. J

Is it possible to improve Theorem 5 to find a constant delay enumeration algorithm
for Σ0 formulas with a fixed polynomial (i.e. of degree independent of the formula size)
precomputation? A partial negative answer comes from the following remark. Note that
the k-Clique problem can be expressed at this level on finite ordered graph. For instance,
for k = 3 (see [12]):

Φ(z1, z2, z3) ≡ z1 < z2 ∧ z2 < z3 ∧ E(z1, z2) ∧ E(z2, z3) ∧ E(z3, z1)

Recall that the precomputation plus the delay (which is constant in Theorem 5) cor-
respond to the time necessary to produce the first output, hence to decide if the problem
has at least one solution. Then, a fixed polynomial precomputation for Enum·Σ0 would
provide a fixed parameter tractable algorithm for the parameterized clique problem (see [8]
for definition and references on parameterized complexity). Such an algorithm is generally
not believed to exist (unless the two parameterized classes W[1] and FPT coincide). How-
ever, as shown below, such an improvement of Theorem 5 can be found for some restricted
class of structures as input.

A structure S = 〈D,R1, . . . , Ri〉 is of degree bounded by d ∈ N (i.e. is d-degree bounded),
if for every x ∈ D, x occurs in at most d tuples of each relation Ri. The following result
shows that in the case of bounded degree structures as input an algorithm with linear
precomputation can be found. It is proved by using a representation of the query problem by
a mixed problem combining querying (but without second order variable) and satisfiability
testing.
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I Theorem 6. Let d ∈ N. On d-degree bounded input structures, Enum·Σ0 ∈ Delay(|D|, 1)
where D is the domain of the input structure S.

Proof. One difference with the proof of Theorem 5 is that Φ(z, T ) is now represented by a
pair made of a propositional formula Φ and a set of Σ0 formulas (interpreted on bounded
structure) without second order free variables.

Let c be the total number of distinct atomic formulas that appears in Φ(z, T ). Each
atom is of the form T (y) or of the form R(x) with R ∈ σ and x,y subsets of z. Clearly,
Φ(z,T) can be seen as an “abstract“ propositional formula denoted by Φ over propositional
variables T (y) and R(x) where y and x are simply viewed as indices. Let J (Φ) be the set
of up to 2c models of Φ. One can recover elements (z∗,T∗) of Φ(S) from the satisfying
assignments of Φ as follows. Let J ∈ J (Φ) and J0 (resp. J1) the set of variables set to false
(resp. true) in J . Let us consider the first-order formula ϕJ(z) on signature σ below:

∧
T (y)∈J0

∧
T (y′)∈J1

r∨
j=1

yj 6= y′j ∧
∧

R(x)∈J1

R(x) ∧
∧

R(x)∈J0

¬R(x),

Let also:

ϕJ(S) = {z∗ : 〈S, z∗〉 |= ϕJ(z)}.

For z∗ ∈ ϕJ(S), we denote by J(z∗) the truth assignments of the c-tuples (of the form
T (y) or R(x) with x and y subsets of variables taken from z) induced by J after instantiation
of the variables in z by z∗. In other words, in J(z∗), T ∗(y∗) is true iff T (y) ∈ J1 and R∗(x∗)
is true iff R(x) ∈ J1.

We now compare with the formulas Φ̃ in Theorem 5. The following are true:
- Let J ∈ J (Φ) and zi, the ith element of Dk. Suppose that zi ∈ ϕJ(S) then, J(zi) ∈

I(Φi).
- Conversely, let zi ∈ Dk and I ∈ I(Φi) then, there exists J ∈ J (Φ) such that zi ∈ ϕJ(S)

and I = J(zi)
From the discussion above, the following holds:

Φ(S) =
⋃

J∈J (Φ)

⋃
z∗∈ϕJ (S)

⋃
T∗∈[T (z∗,J(z∗))]

(z∗, T ∗) (1)

Let J and J ′ be distinct assignments. Observe that, if there exists an atomic formula
R(x) over which J and J ′ has a different value then ϕJ(S) ∩ ϕJ′(S) = ∅. In this case, the
two sets

⋃
z∗∈ϕJ (S)

⋃
T∗∈[T (z∗,J(z∗))]

(z∗, T ∗) and
⋃

z∗∈ϕJ′ (S)

⋃
T∗∈[T (z∗,J′(z∗))]

(z∗, T ∗)

are obviously disjoint. Moreover, if J and J ′ agree on all atomic formulas of the form R(x),
then they differ on at least one T (y) and, in this case [T (z∗, J(z∗))] ∩ [T (z∗, J ′(z∗))] = ∅.
Thus the two above sets are also disjoint even if there might exist z∗ ∈ ϕJ(S) ∩ ϕJ′(S).

We can now describe how to enumerate Φ(S). The precomputation process is as follows.

Compute Φ, J (Φ) and, for each J ∈ J (Φ), the formula ϕJ(z). All this can be achieved
in constant time.
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For each J ∈ J (Φ), run the necessary precomputation phase to enumerate the elements
of ϕJ(S). From [6] it is known that enumerating the result of a first order query over
a structure of bounded degree i.e. computing ϕJ(S) can be done with a O(|D|) pre-
computation and a O(1) delay. Hence, the total precomputation phase requires O(|D|)
steps.

For the enumeration phase, we conclude as for Theorem 5, taking into account that all
components in Equation (1) are pairwise disjoints. J

I Remark. Each query ϕJ(z) in the above proof is evaluated on a bounded degree structure
which makes the global enumeration tractable. However, the representation of a Σ0 formula
Φ(z, T ) by an abstract propositional formula Φ and a collection of Σ0 formulas ϕJ(z) without
second order variable is general. Then, if S is any class of structures on which queries of
the form ϕJ(z) admit a linear precomputation and constant delay algorithm then, on S , it
also holds that Enum·Σ0 ⊆ Delay(|D|, 1).

3 Enumeration for Σ1 formulas

In this section, we prove a lemma, which allows to enumerate the union of the solu-
tions of two enumeration problems with a manageable delay. It is then used to prove that
Enum·Σ1 ⊆ DelayP.

I Definition 7. Let R(x, y) and S(x, y) be two polynomially balanced predicates. The union
of R and S, denoted by (R ∪ S), is defined by: for all x, y, (R ∪ S)(x, y) holds if and only if
R(x, y) holds or S(x, y) holds.

Recall that R(x) is the finite set {y | R(x, y)}. Assume that Enum·R and Enum·S are in
Delay(g(n), f(n)). If, for all x, R(x) ∩ S(x) = ∅ then Enum·(R ∪ S) ∈ Delay(g(n), f(n)).
Similarly, if there exist algorithms with precomputation g(n) and delay f(n) that enumerate
the solutions of Enum·R and Enum·S with respect to the same linear ordering < on the
output space, then Enum·(R ∪ S) ∈ Delay(g(n), f(n)) ([6, 2]). The following result shows
that some kind of closure under union can be established without disjointness conditions
nor assumption on the ordering of enumeration.

Algorithm 1: Enumeration algorithm for Enum·(R ∪ S)
Data: An instance x
Result: The elements of R(x) ∪ S(x)
y1 ←− First element of the enumeration of R(x)
y2 ←− First element of the enumeration of S(x)
while y1 6= END ∨ y2 6= END do

if y1 6= END ∧ y1 /∈ S(x) then
Output y1

else
Output y2 ;
y2 ←− next element of the enumeration of S(x)

if y1 6= END then
y1 ←− next element of the enumeration of R(x)
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I Proposition 8. Let f : N → N, g : N → N, h : N → N and R,S be two polynomially
balanced predicates such that S can be decided in time O(h(n)). Suppose that Enum·R
and Enum·S are in Delay(g(n), f(n)) then, Enum·(R∪S) is in Delay(g(n), f(n) + h(n)).

Proof. Let MR and MS be two RAM machines, which solve Enum·R and Enum·S. One
builds a machine M(R∪S) which solves Enum·(R∪S) by running MR and MS in parallel on
the instance x. The behavior of M(R∪S) is described in Algorithm 1.

At each step M(R∪S) produces a new solution y of R(x) thanks to MR and it tests if
y ∈ S(x) in time h(|x|), by hypothesis. If y /∈ S(x) it outputs it, otherwise it is discarded
and the next solution of S(x) given by MS is computed and outputted2. If there is no
solution left in R(x) (resp. S(x)), it finishes the enumeration thanks to MR (resp. MS).

Remark that if M(R∪S) has enumerated k elements of S(x) thanks to MS then it has
also found and discarded k elements of R(x) ∩ S(x) given by MR. Therefore if M(R∪S) has
outputted all S(x), it has used MR to produce |S(x)| elements of R(x) ∩ S(x), which must
then satisfy S(x) = S(x) ∩ R(x). Therefore the enumeration of the remaining elements of
R(x) does not create any repetition. Moreover all elements of R(x) ∩ S(x) are enumerated
by MS only, thus the algorithm makes no repetition.

Since, at each step of the algorithm we simulate MR and MS to let them produce at
most one solution, the delay of M(R∪S) is bounded by the sum of the delays of MR and MS ,
that is 2f(|x|) plus h(|x|) the time to do one membership test. J

I Corollary 9. Let Φ(y, T ) = ∃xϕ(x,y, T ) be a first order formula with |x| = k. Assume that
there is an algorithm such that, for all input structures S of domain D and for all k-tuples
x∗ of S, enumerates the elements of Φx∗(S) where Φx∗(y, T ) = ϕ(x∗,y, T ), with precom-
putation g(|D|) and delay f(|D|). Then Enum·Φ can be computed with a O(g(|D|)|D|k)
precomputation and a delay O(f(|D|)|D|k).

Proof. Remark that, for all models S of domain D, Φ(S) = ∪x∗∈Dk Φx∗(S). We can apply
the previous proposition to this union of |D|k enumerations problems. For each x∗ ∈ Dk,
one has to compute Φx∗(y, T ) and do the corresponding precomputation in time O(g(|D|)),
which accounts for a total precomputation of O(g(|D|)|D|k). A formula Φx∗(y, T ) is of
constant size, therefore checking if (S,y∗, T ∗) |= Φx∗(y, T ) can be done in constant time.
By induction, one can easily generalize Proposition 8 to handle the union of |D|k predicates.
This yields a delay in O(|D|k × f(|D|) + |D|k) = O(f(|D|)|D|k). J

The previous corollary allows to remove the first level of existential quantification of any
formula with a polynomial slowdown only. As a consequence, we have a polynomial delay
enumeration algorithm for any problem in Enum·Σ1.

I Theorem 10. Enum·Σ1 ⊆ DelayP. More precisely, Enum·Σ1 can be computed with
precomputation O(|D|h+k) and delay O(|D|k) where h is the number of free first order vari-
ables of the formula, k the number of existentially quantified variables and D is the domain
of the input structure.

Proof. Let ∃xϕ(x,y, T ) be a formula of Σ1 and S be a structure. By Theorem 5, we know
that for each k-uple x∗, the solutions of ϕ(x∗,y, T ) can be enumerated with precomputation
O(|D|h) and a delay O(1). Thus, by Corollary 9, we know that Enum·∃xϕ(x, y, T ) can be
computed with precomputation O(|D|h+k) and delay O(|D|k). J

2 note that it can be y itself

CSL’11



198 Enumeration Complexity of logical query problems with s.o. variables

Again, for Σ1 queries on structures of bounded degree a better bound can be found at
least for the model checking problem. The following holds with a proof similar to (the first
steps of) that of Theorem 6.
I Proposition 11. Let d ∈ N. Checking whether Φ(S) = ∅ where Φ(z, T ) ∈ Σ1 and S is a
d-degree bounded input structures can be done in time O(|D|) (in data complexity).

It is however open whether the result can be extended in the enumeration setting to
prove a linear delay algorithm for this latter kind of query.

3.1 Relation with DNF formulas
In this section, we examine more closely the relationships between the enumeration problem
for Σ1-queries and the enumeration of the solutions of restricted DNF formulas. Let ψ be a
DNF formula such that each clause is of size at most l. Remark that the number of clauses
cannot be larger than nl where n is the number of variables. We say that such a formula is
in DNF(l) and we note Enum·DNF(l) the problem Enum·DNF restricted to DNF(l).

Let now be Φ a formula ∃xϕ(x, T ) where T is a second order variable of arity 1 and
the tuple x is such that |x| = k. We also assume that ϕ is quantifier-free in disjunctive
normal form and that each of its clauses contains at most l occurrences of a term involving
T . Remark that l ≤ k, because each occurrence of T in a clause must be applied to a
different variable. On the other hand, one can rename the l variables used in one clause
without changing the satisfying assignments of ∃xϕ(x, T ). Therefore, we can use the same l
variables in each clause and delete the others to obtain an equivalent formula with l variables.
Thus, the parameters k and l are essentially the same. We denote by Σ1(l) the set of such
formulas (with k = l).
I Remark. Here we do not allow free first-order variables. It is always possible to take care
of them with a polynomial slowdown in the precomputation only.

Moreover, the restriction on the arity of the second order variable could be lifted and we
would obtain essentially the same results. We choose this restriction, because in this setting,
we have the parameters k and l equal which makes the next propositions easier to state and
to understand.
I Proposition 12. If Enum·DNF(l) can be solved with precomputation g(n) and delay f(n),
where n is the number of variables of the formula, then for all formulas Φ ∈ Σ1(l), Enum·Φ
can be solved with precomputation g(n) and delay f(n), where n is the size of the domain.

Proof. To prove that, fix a formula Φ ≡ ∃xϕ(x, T ) ∈ Σ1(l). Let S be the input structure
and D its domain. Let Φ̃ be the propositional formula associated to Φ as before. It is the
disjunction of the nl formulas Φ(x∗, T ). Each of the formula Φ(x∗, T ) is a DNF formula
with clauses of size at most l. Therefore the formula Φ̃ is in DNF(l), has |D| variables and
its solutions are in bijection with the solutions of Φ. J

I Proposition 13. There is a formula Φ in Σ1(l, l) such that the following holds. If Enum·Φ
can be solved with precomputation g(n) and delay f(n), where n is the size of the domain,
then Enum·DNF(l) can be solved with precomputation g(n) and delay f(n), where n is the
number of variables of the formula.

Proof. Let σ be the language {Pi,j}i+j≤l, where Pi,j is an l-ary predicate. A predicate Pi,j

represents, in the reduction, a clause whose first i variables appear positively and the next
j appear negatively. The second order variable T represents the set of variables set to true.
Let
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θi,j(T, x1, . . . , xl) ≡
∧
s≤i

xs ∈ T ∧
∧

i<s≤l

xs /∈ T

and let
Φ ≡ ∃x1, . . . , xl

∨
i+j≤l

(Pi,j(x1, . . . , xl) ∧ θi,j(T, x1, . . . , xl)).

Let now ψ be a DNF formula over the variables V = {v1, . . . , vn}. We reduce the
enumeration of the solutions of ψ to the enumeration of Φ(S ). The domain of S is the set
V and Pi,j(x1, . . . , xl) holds if and only if there is a clause in ψ whose variables appearing
positively are x1, . . . , xi and those appearing negatively are xi+1, . . . , xi+j . Remark now that
T ∗ ∈ Φ(S) if and only if T ∗ represents an assignment of the variables in V which satisfies
ψ. Thus the solutions of ψ are in bijection with Φ(S) which achieves the proof. J

The above propositions justify in some sense why the enumeration complexity of Σ1
queries and Enum·DNF are intimately related. Hence, to improve our results on Enum·Σ1,
one has to study the problem Enum·DNF(l). The following question seems quite challenging:

Open Question: prove (or disprove) that there exists an enumeration algorithm for
Enum·DNF(l) whose delay does not depend on l or at least is better than O(nl).

4 Enumeration for Π1 formulas and beyond

In [12], it is shown that the propositional satisfiability problem for a 3-CNF formula can
be expressed as a query problem for a Π1 formula. The following result then holds.
I Proposition 14. Unless P = NP, there is no polynomial delay algorithm for Enum·Π1.
The results still hold even for structure of bounded degree as input.

Proof. See [12]. For the case of bounded degree structures, remark that it is well-known
that the satisfiability problem is hard even for 3-CNF formulas such that each variable
appears (positively or negatively) in at most 3 clauses. For such propositional formulas, the
structures obtained after reduction in [12] is of bounded degree. J

As it is shown below, it is even possible to define the satisfiability problem by a quite
restricted Π1 formula. A 3-CNF formula ϕ can be encoded by a structure Sϕ of signature
{C, a1, a2, a3, a4} where C is a 4-ary predicate and a1, a2, a3, a4 are constants. The domain
of Sϕ contains as many elements as variables in ϕ. Let x, y and z be elements of the
domain, C(ai, x, y, z, ) is true if the clause ¬i,1x∨¬i,2y ∨¬i,3z appears in ϕ where ¬i,j = ¬
if i ≤ j (and ¬i,j = ε if not). In other words, i encodes the number of variables that appear
negatively in the clause. Let Ψ(T, T1, T2, T3) be the following Π1 formula:

∀x1∀x2∀x3∀a
(C(a, x1, x2, x3)→ T1(a, x1) ∨ T2(a, x2) ∨ T3(a, x3))∧∧4

i=1
∧3

j=1 Tj(ai, x1)↔ ¬i,jT (x1)
(2)

Clearly, there is a bijective correspondence between the satisfying assignments of ϕ and
the set Ψ(Sϕ). Remark now that the quantifier free part of Ψ is in CNF and is such that all
its clauses except one have at most two occurences of a second-order free variable.

In [12], a first-order formula Φ defines the problem of computing the cardinal of Φ(S).
Theorem 2 of [12] describes the strict inclusions of the classes of counting functions defined
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by the number of quantifier alternations. It can be easily transposed into the following
theorem on enumeration problems, if we assume the set of all models to have a total order.

I Theorem 15. On linearly ordered structures, the following inclusions hold:

Enum·Σ0 ( Enum·Σ1 ( Enum·Π1 ( Enum·Σ2 ( Enum·Π2.

Moreover, there is a problem in Enum·Π2 which is complete up to parsimonious reduction
for all problems definable by a polynomially balanced predicate (a polynomial time reduction
f between two decision problems A and B is parsimonious if, for each valid instance x, it
establishes a bijective correspondence between the solutions sets A(x) and B(f(x)). See, for
example, [12] for a precise definition). Therefore the hierarchy collapses at Enum·Π2.

4.1 Feasible classes beyond Σ1

We now consider fragments of Π2 and Σ2 with a good expressive power and whose associated
enumeration problems remain tractable. Let C be a subclass of propositional formulas.

Enum·SAT(C)
Input: A propositional CNF formula ϕ in C
Output: an enumeration of the satisfying assignments of ϕ.

A CNF formula is Horn (resp. anti-Horn) if it is equivalent to a formula whose clauses
have at most one positive (resp. negative) literal. It is bijunctive if it is equivalent to a
CNF formula with clauses of length at most two. Finally, it is affine if it is equivalent to
a system of linear equations over the two-element field. We first investigate the immediate
consequence of the following result and the fact that to solve Enum·Φ, one only has to
enumerate the solutions obtained from those of Φ̃ as in Theorem 5.

I Proposition 16 ([5]). The problem Enum·SAT(C) is in DelayP when C is one of the
following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2-CNF)
formulas

I Corollary 17. Let Φ(z, T ) be a formula, such that, for all σ structures, all propositional
formulas Φ̃i are either Horn, anti-Horn, affine or bijunctive. Then Enum·Φ ∈ DelayP.

Proof. Let Φ(z, T ) be a formula, with |z| = k and S a structure of domain D. Let zi be an
enumeration of the k-tuples of D. Recall that the set of solutions of Φ(zi, T ) is equal to:

⋃
I∈I(Φi)

⋃
T∗∈[T (zi,I)]

(zi, T
∗).

Furthermore, we know that Φ̃i is either Horn, anti-Horn, affine or bijunctive and that
it is a Π1 formula. By construction, it is of size polynomial in |D|, hence its models can
be enumerated in polynomial delay by Proposition 16. The enumeration of the solutions of
Enum·Φ on the model S is done in polynomial delay as follows:

for each zi compute the formula Φ̃i

enumerate the models of each Φ̃i in polynomial delay
for each model I of Φ̃i, build in polynomial time the solution (zi, T (zi, I))
for each solution (zi, T (zi, I)), generate by Gray code enumeration the solutions (zi, T

∗)
with T ∗ ∈ [T (zi, I)]
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Remark that for two different zi the enumerated solutions are disjoint.
Moreover, for I 6= J , T (zi, I) and T (zi, J) differs on at least one value. Hence, T (zi, I)∩

T (zi, J) = ∅. Therefore, there are no repetition in the previously described algorithm. J

The condition in Corollary 17 is semantic: it applies to Φ̃ and not to Φ, which makes it not
obvious to characterize. The following result holds in contrast with the case of Formula (2)
which shows that Π1 queries in conjunctive normal form that have one clause with three
occurrences of a second order variable are hard to enumerate.

I Corollary 18. Let Φ(z, T ) ≡ ∃y∀xΨ(x,y, z, T ) where Ψ is in conjunctive normal form and
all its clauses contain at most 2 occurrences of a free predicate then Enum·Φ ⊆ DelayP.

Proof. Let S be a finite structure and Φ(z, T ) as above. For such a Φ(z, T ), the formula Φ̃i

is of the form (set |y| = p)

np−1∨
j=1

Ψi(zi,yj)

where Ψi(zi,yj) is a 2-CNF formula of size polynomial in |S|. From Proposition 16, models
of such formulas can be enumerated with polynomial delay. The union of models of the poly-
nomially many formulas Ψi(zi,yj) can be enumerated following the method of Proposition 8.
The delay is then polynomial. J

The above corollary applies to RΣ2 formulas defined in [12]. It has been shown there
that counting the models of such formulas can be done by a fully polynomial randomized
approximation scheme.

I Example 19. The formula IS(T ) ≡ ∀x∀yT (x)∧T (y)⇒ ¬E(x, y) satisfies the condition of
the previous corollary therefore Enum·IS ∈ DelayP. Some other interesting objects such
as vertex covers can be defined by a formula of this form.

The next result is similar to Corollary 18, but in its proof it uses a Horn or an anti-Horn
formula instead of a 2 CNF formula.

I Corollary 20. Let Φ(z, T ) ≡ ∀x∃yΨ1(x, y, z, T ) where Ψ is in disjunctive normal form
such that each of its clauses contain only one occurrence of a free second order variable and
all these occurrences are of the same polarity. Then Enum·Φ ⊆ DelayP.

I Example 21. The formula DS(T ) ≡ ∀x∃yT (t) ∧ E(x, y) holds if and only if T is a
dominating set. Since DS(T ) satisfies the hypothesis of Corollary 20, Enum·DS ∈ DelayP.

I Example 22. Recall that HS(T ) ≡ ∀x(T (x) ⇒ V (x)) ∧ ∀y∃xE(y) ⇒ (T (x) ∧ R(x, y))
characterizes the hitting sets of an hypergraph. It does not exactly satisfy the hypothesis of
the previous corollary because T appears with a different polarity in ∀x(T (x)⇒ V (x)) and
in ∀y∃xE(y)⇒ (T (x)∧R(x, y)). However, if we consider the formula H̃S(T )i, we see that it
is a Horn formula which enables us to conclude by Corollary 17 that Enum·HS ∈ DelayP.
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5 Concluding remarks

The results of this paper try to give a first overview of the complexity of first order query
problems with possibly free second order variables. Not surprisingly, the complexity in-
creases rapidly with alternation of quantifiers: if the first levels Σ0 and Σ1 admit efficient
enumeration algorithm (with constant or polynomial delay), the Π1 is already able to ex-
press hard problems. However, some interesting subcases beyond Σ1 are exhibited which
admit rather efficient enumeration algorithms.

An interesting question is whether one can extend our result for first order logic with
additional operators (such as fixpoint or maximization/minimization operators). Among
them, let Enum·MaxTΦ(T ) be the problem of enumerating all maximal models of ϕ.

It is easy to see that if Φ satisfies the hypotheses of Corollary 18, then Enum·MaxTϕ(T )
is in DelayP by a result of [9] (this case captures among other things the problem of
enumerating the maximal (for inclusion) independent sets of a graph). On the other hand,
since enumerating the maximal models of a Horn formula is hard (see [9] also), obtaining
such a result when hypotheses of Corollary 20 are satisfied seems very unlikely.
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Abstract
Symmetric Datalog, a fragment of the logic programming language Datalog, is conjectured to
capture all constraint satisfaction problems (CSP) in logarithmic space [10]. Therefore developing
tools that help us understand whether or not a CSP can be defined in symmetric Datalog is an
important task. A simple, well-known fact is that for any CSP, a fixed set of structures O (an
obstruction set) can be defined such that a CSP instance I is a yes-instance iff no structure in
O maps homomorphically to I. A CSP having X-duality means that the set O can be chosen to
have property X. It is widely known that a CSP is definable in Datalog and linear Datalog iff
that CSP has bounded treewidth [12] and bounded pathwidth duality [6], respectively. In the case
of symmetric Datalog, Bulatov, Krokhin and Larose ask for such a duality in [4]. We provide
two such dualities, and we give applications. In particular, we give a short and simple new proof
of the main result of [8] that “Maltsev + Datalog ⇒ symmetric Datalog”.

In the second part of the paper, we provide some evidence for the conjecture that every CSP
in nondeterministic logarithmic space (NL) is definable in the Datalog fragment linear Datalog
[6]. We recall that every problem in NL can be defined by a linear Datalog program with
negation and access to an order over the domain of its input (linDat(suc,¬)) [6, 13, 15], or
by a poly-size family of nondeterministic branching programs [20]. We consider the following
restrictions of the previous models: read-once linDat(suc) (1-linDat(suc)), and monotone read-
once nondeterministic branching programs (mnBP1). Although restricted, these models can still
define NL-complete problems such as directed st-Connectivity, and also nontrivial problems in
NL which are not definable in linear Datalog. We show that any CSP definable by a 1-linDat(suc)
program or by a poly-size family of mnBP1s can also be defined by a linear Datalog program.
It also follows that a wide class of CSPs–CSPs which do not have bounded pathwidth duality
(e.g. the P-complete Horn-3Sat problem)–cannot be defined by any 1-linDat(suc) program or
by any poly-size family of mnBP1s.
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1 Introduction

Constraint satisfaction problems (CSP) constitute a unifying framework to study various
computational problems arising naturally in various branches of computer science, including
artificial intelligence, graph homomorphisms, and database theory. Loosely speaking, an
instance of a CSP consists of a list of variables and a set of constraints, each specified by an
ordered tuple of variables and a constraint relation over some specified domain. The goal is

∗ Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
We thank Benoit Larose and Pascal Tesson for useful discussions and comments. We also thank the
anonymous referees for their in-depth reviews.

© László Egri;
licensed under Creative Commons License ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 203–217

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2011.203
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


204 On Constraint Satisfaction Problems below P

then to determine whether variables can be assigned domain values such that all constraints
are simultaneously satisfied.

Recent efforts have been directed at classifying the complexity of the so-called nonuniform
CSP. For a fixed finite set of finite relations Γ, CSP(Γ) denotes the nonuniform CSP
corresponding to Γ. The difference between an instance of CSP(Γ) and an instance of the
general CSP is that constraints in an instance of CSP(Γ) take the form (xi1 , . . . , xik ) ∈ R
for some R ∈ Γ. Examples of nonuniform CSPs include k-Sat, Horn-3Sat, Graph
H-Coloring, and many others.

For a relational structure B, the homomorphism problem HOM(B) takes a structure
A as input, and the task is to determine if there is a homomorphism from A to B. For
instance, consider structures that contain a single symmetric binary relation, i.e. graphs. A
homomorphism from a graph G to a graph H is a mapping from VG to VH such that any edge
of G is mapped to an edge of H. If H is a graph with a single edge then HOM(H) is the set
of graphs which are two-colorable. There is a well-known and straightforward correspondence
between the CSP and the homomorphism problem. For this reason, from now on we work
only with the homomorphism problem instead of the CSP. Nevertheless, we call HOM(B) a
CSP and we also write CSP(B) instead of HOM(B), as it is often done in the literature.

The CSP is of course NP-complete, and therefore research has focused on identifying
“islands” of tractable CSPs. The well-known CSP dichotomy conjecture of Feder and Vardi
[12] states that every CSP is either tractable or NP-complete, and progress towards this
conjecture has been steady during the last fifteen years. From a complexity-theoretic
perspective, the classification of CSP(B) as in P or being NP-complete is rather coarse and
therefore somewhat dissatisfactory. Consequently, understanding the fine-grained complexity
of CSPs gained considerable attention during the last few years. Ultimately, one would like
to know the precise complexity of a CSP lying in P, i.e. to identify a “standard” complexity
class for which a given CSP is complete. Towards this, it was established that Schaefer’s
P− NP dichotomy for Boolean CSPs [19] can indeed be refined: each CSP over the Boolean
domain is either definable in first order logic, or complete for one of the classes L, NL, ⊕L,
P or NP under AC0-reductions [2]. The question whether some form of this fine-grained
classification extends to non-Boolean domains is rather natural. The two most important
tools to study CSPs whose complexity is below P are symmetric Datalog and linear Datalog,
syntactic restrictions of the database-inspired logic programming language Datalog. We
say that co-CSP(B)–the complement of CSP(B)–is definable in (linear, symmetric) Datalog
if the set of structures that do not homomorphically map to B is accepted by a (linear,
symmetric) Datalog program.1

Symmetric Datalog programs can be evaluated in logarithmic space (L), and in fact, it
is conjectured that if co-CSP(B) is in L then it can also be defined in symmetric Datalog
[10]. There is a considerable amount of evidence supporting this conjecture (see, for example,
[10, 9, 8, 16, 5]), and therefore providing tools to show whether co-CSP(B) can be defined
in symmetric Datalog is an important task. It is well known and easy to see that for any
structure B, there is a set of structures O, called an obstruction set, such that a structure A
homomorphically maps to B iff there is no structure in O that homomorphically maps to A.
In fact, there are many possible obstruction sets for any structure B. We say that B has
duality X, if B has an obstruction set which has the special property X. The following two
well-known theorems relate definability of co-CSP(B) in Datalog and linear Datalog to B

1 The reason we define co-CSP(B) instead of CSP(B) in (linear, symmetric) Datalog is a technicality
explained in Section 2.5.
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having bounded treewidth duality and bounded pathwidth duality, respectively:
1. co-CSP(B) is definable in Datalog iff B has bounded treewidth duality [12];
2. co-CSP(B) is definable in linear Datalog iff B has bounded pathwidth duality [6].

It was stated as an open problem in [4] to find a duality for symmetric Datalog in the
spirit of the previous two theorems. We provide two such dualities: symmetric bounded
pathwidth duality (SBPD) and piecewise symmetric bounded pathwidth duality (PSBPD).
We note that SBPD is a special case of PSBPD. For both bounded treewidth and bounded
pathwidth duality, the structures in the obstruction sets are restricted to have some special
form. For SBPD and PSBPD the situation is a bit more subtle. In addition that we require
the obstruction sets to contain structures only of a special form (they must have bounded
pathwidth), the obstruction sets must also possess a certain “symmetric closure” property.
To the best of our knowledge, this is the first instance of a duality where in addition to the
local requirement that each structure must be of a certain form, the set must also satisfy an
interesting global requirement.

Using SBPD, we give a short and simple new proof of the main result of [8] that “Maltsev
+ Datalog ⇒ symmetric Datalog”. Considering the simplicity of this proof, we suspect
that SBPD (or PSBPD) could be a useful tool in an attempt to prove the symmetric
Datalog conjecture [16], a conjecture that proposes an algebraic characterization of all CSPs
lying in L. An equivalent form of this conjecture is that “Datalog + n-permutability ⇒
symmetric Datalog” (by combining results from [14],[3] and [17]), where n-permutability is a
generalization of Maltsev.

One way to gain more insight into the dividing line between CSPs in L and NL is through
studying the complexity of CSPs corresponding to oriented paths. The only known thing
regarding the complexity of these CSPs is that they are all in NL (by combining results from
[11, 7, 6]). To make progress in this direction, it is natural to ask whether there are oriented
paths for which the CSP is NL-complete and L-complete. We provide two classes of oriented
paths, C1 and C2, such that for any B1 ∈ C1, the corresponding CSP is NL-complete, and for
any B2 ∈ C2, the corresponding CSP is L. In fact, it can be seen with the help of [16] that
for most B2 ∈ C2, CSP(B2) is L-complete. To prove the membership of CSP(B2) in L (for
B2 ∈ C2), we use PSBPD in an essential way. One can hope to build on this work to achieve
an L-NL dichotomy for oriented paths.

In the second part of the paper, we investigate CSPs in NL. Based on the observation
that any CSP known to be in NL is also known to be definable by a linear Datalog program,
Dalmau conjectured that every CSP in NL can be defined by a linear Datalog program [6].
Linear Datalog(suc,¬) (linDat(suc,¬)) denotes the extension of linear Datalog in which we
allow negation and access to an order over the domain of the input. It is known that any
problem in NL can be defined by a linDat(suc,¬) program [6, 13, 15], and therefore one
way to prove the above conjecture would be to show that any CSP that can be defined by
a linDat(suc,¬) program can also be defined by a linear Datalog program. We consider a
restriction of the conjecture because proving it in its full generality would separate NL from
P (using [1]).

Read-once linear Datalog(suc) (1-linDat(suc)) is a subclass of linDat(suc,¬), but a subclass
that has interesting computational abilities, and for which we are able to find the chink in the
armor. We can easily define some NL-complete problems in 1-linDat(suc), such as the CSP
directed st-connectivity (st-Conn), and also problems that are not homomorphism-closed,
such as determining if the input graph is a clique on 2n vertices, n ≥ 1. Because any problem
that can be defined with a linear Datalog program must be homomorphism closed, it follows
that 1-linDat(suc) can define nontrivial problems which are in NL but which are not definable
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by any linear Datalog program. However, our main result shows that if co-CSP(B) can be
defined by a 1-linDat(suc) program, then co-CSP(B) can also be defined by a linear Datalog
program. The crux of our argument applies the general case of the Erdős-Ko-Rado theorem
to show that a 1-linDat(suc) program does not have enough “memory” to handle structures
of unbounded pathwidth.

Our proof establishing the above result for 1-linDat(suc) programs can be adapted to
show a parallel result for a subclass of nondeterministic branching programs, which constitute
an important and well-studied class of computational models (see the book [20]). More
precisely, we show that if co-CSP(B) can be defined by a poly-size family of read-once2
monotone nondeterministic branching programs (mnBP1(poly)) then co-CSP(B) can also
be defined by a linear Datalog program.3

Finally, our results can be interpreted as lower-bounds on a wide class of CSPs: if B
does not have bounded pathwidth duality, then co-CSP(B) cannot be defined with any
1-linDat(suc) program or with any mnBP1(poly). A specific example of such a CSP would
be the P-complete Horn-3Sat problem, and more generally, Larose and Tesson showed that
any CSP whose associated variety admits the unary, affine or semilattice types does not have
bounded pathwidth duality (see [16] for details).

2 Preliminaries

2.1 Algebra

A vocabulary (or signature) is a finite set of relation symbols with associated arities. The
arity function is denoted with ar(·). If A is a relational structure over a vocabulary τ , then
RA denotes the relation of A associated with the symbol R ∈ τ . The lightface equivalent of
the name of the structure denotes the universe of the structure, e.g. the universe of A is A.

A tuple structure Ã over a vocabulary τ is a set of pairs (R, t) where R ∈ τ and t
is an ar(R)-tuple. We associate a domain Ã with a tuple structure: Ã contains every
element that appears in some tuple in A, and possibly some other elements. Clearly, tuple
structures are equivalent to relational structures. If A is a relational structure, we denote the
equivalent tuple structure with Ã, and vice versa. For convenience, we use the two notations
interchangeably. We note that all structures in this paper are finite.

Let B be a structure of the same signature as A. A homomorphism from A to B is a map
f from A to B such that f(RA) ⊆ RB for each R ∈ τ . A structure is called a core if it has
no homomorphism to any of its proper substructures. If there exists a homomorphism from
A to B, we often denote it with A→ B. If that homomorphism is f , we write A f−→ B. We
denote by CSP(B) the class of all τ -structures A such that A→ B, and by co-CSP(B) the
complement of CSP(B). If we are given a class of τ -structures C such that for any A ∈ C,
and any B such that A→ B it holds that B ∈ C, then we say that C is homomorphism-closed.
Isomorphism closure is defined in a similar way.

An n-ary operation on a set A is a map f : An → A. Given an h-ary relation R and
an n-ary operation f on the same set A, we say that f preserves R or that R is invariant
under f if the following holds: given any matrix M of size h× n whose columns are in R,

2 Our read-once restriction for nondeterministic branching programs is less stringent than the usual
definition because we require the programs to be read-once only on certain inputs.

3 A 1-linDat(suc) can be converted into an mnBP1(poly), so another way to present our results would be
to do the proofs in the context of mnBP1s, and then to conclude the parallel result for 1-linDat(suc).
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applying f to the rows of M produces an h-tuple in R. A polymorphism of a structure B is
an operation f that preserves each relation in B.

I Definition 1 (Maltsev Operation). A ternary operation f : A3 → A on a finite set A is
called Maltsev if it satisfies the following identities: f(x, y, y) = f(y, y, x) = x, ∀x, y ∈ A.

2.2 Datalog
We provide only an informal introduction to Datalog and its fragments, and the reader can
find more details, for example, in [18, 6, 10]. Datalog is a database-inspired query language
whose connection with CSP-complexity is now relatively well understood (see e.g. [3]). Let τ
be some finite vocabulary. A Datalog program over τ is specified by a finite set of rules of
the form h← b1 ∧ · · · ∧ bt, where h and the bi are atomic formulas R(x1, . . . , xk). When we
specify the variables of an atomic formula, we always list the variables from left to right, or
we simply provide a tuple x of variables whose i-th variable is x[i]. We distinguish two types
of relational predicates occurring in a Datalog program: predicates I that occur at least once
in the head of a rule (i.e., its left-hand side) are called intensional database predicates (IDBs)
and are not in τ . The predicates which occur only in the body of a rule (its right-hand side)
are called extensional database predicates (EDBs) and must all lie in τ . A rule that contains
no IDB in the body is called a nonrecursive rule, and a rule that contains at least one IDB in
the body is called a recursive rule. A Datalog program contains a distinguished IDB of arity
0 which is called the goal predicate; a rule whose head IDB is a goal IDB is called a goal rule.

Linear Datalog is a syntactic restriction of Datalog in which there is at most one IDB in
the body of each rule. The class of linear Datalog programs that contains only rules with at
most k variables and IDBs with at most j ≤ k variables is denoted with linear (j, k)-Datalog.
We say that the width of such a linear Datalog program is (j, k).

Symmetric Datalog is a syntactic restriction of linear Datalog. A linear Datalog program
P is symmetric if for any recursive rule I(x) ← J(y) ∧ Ē(z) of P (except for goal rules),
where Ē(z) is a shorthand for the conjunction of the EDBs of the rule over variables in z,
the symmetric pair J(y)← I(x) ∧ Ē(z) of that rule is also in P. The width of a symmetric
Datalog program is defined similarly to the width of a linear Datalog program.

We explain the semantics of linear (symmetric) Datalog using derivations (it could also
be explained with fixed point operators, but that would be inconvenient for the proofs). Let
P be a linear Datalog program with vocabulary τ . A P-derivation with codomain D is a
sequence of pairs D = (ρ1, λ1), . . . , (ρq, λq), where ρ` is a rule of P , and λ` is a function from
the variables V` of ρ` to D, ∀` ∈ [q]. The sequence D must satisfy the following properties.
Rule ρ1 is nonrecursive, and ρq is a goal rule. For all ` ∈ [q − 1], the head IDB I of ρ` is the
IDB in the body of ρ`+1, and if the variables of I in the head of ρ` and the body of ρ`+1 are
x and y, respectively, then λ`(x[i]) = λ`+1(y[i]), ∀i ∈ [ar(I)].

Let R(z) be an EDB with variables in some rule ρ` of a derivation D . Then we write
R(t) to denote that λ`(z) = t, i.e. that λ` instantiates the variables of R(z) to t, and we say
that R(t) appears in ρ`, or less specifically, that R(t) appears in D . Given a structure A and
a derivation D with codomain A for a program P , we say that D is a derivation for A if for
every R(t) that appears in a rule of D , (R, t) ∈ Ã. We denote a P-derivation for a structure
A with DP(A). A linear (symmetric) Datalog program P accepts an input structure A if
there exists a P-derivation for A.

I Definition 2 (Read-Once Derivation). We say that a derivation D is read-once if every
R(t) that appears in D appears exactly once in D , except when R is the special EDB suc,
first, or last, defined in Section 4.
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An example is given in Fig. 1. The vocabulary is τ =
{
E2, S1, T 1}, where the superscripts

denote the arity of the symbols. Notice that in the symmetric Datalog program P, rules of
types 2 and 3 form a symmetric pair. It is not difficult to see that P accepts a τ -structure A
iff there is an oriented path (see Section 3.1) in EA from an element in SA to an element in
TA.

[rcl]I(x) ← S(x) (1)
I(y) ← I(x) ∧ E(x, y)(2)
I(x) ← I(y) ∧ E(x, y)(3)
G ← I(x) ∧ T (x)(4)

a

b
c

d

SG = {a}
TG = {d}

e
f g

I(a)

S(a)

I(b)

E(a, b)

I(c) I(d) G

E(c, b) E(c, d) T (d)

ρ1 ρ2 ρ3 ρ4 ρ5

λ1(x) = a λ2(x) = a
λ2(y) = b

λ3(x) = c
λ3(y) = b

λ4(x) = c
λ4(y) = d

λ5(x) = d

Figure 1 Top left: Symmetric Datalog program P. Top right: Input structure G where
the binary relation EG is specified by the digraph. Bottom: Visualization of a P-derivation
DP(G) = (ρ1, λ1), . . . , (ρ5, λ5) for G, where ρ1 is nonrecursive, ρ2, ρ4 are rules of type 2, ρ3 is a rule
of type 4, and ρ5 is the goal rule. For example, the dashed box corresponds to rule ρ2, and it is the
rule I(y)← I(x) ∧ E(x, y) of P, where λ2 assigns a to variable x and b to variable y. Observe that
DP(G) is read-once.

2.3 Path-Decompositions and Derivations
I Definition 3. [Path-Decomposition] Let S be a τ -structure. A (j, k)-path-decomposition
of S is a sequence S0, . . . , Sn−1 of subsets of A such that
1. For every (R, (a1, . . . , aar(R))) ∈ Ã, ∃` ∈ {0, . . . , n− 1} such that

{
a1, . . . , aar(R)

}
⊆ S`;

2. If a ∈ Si ∩ Si′ (i < i′) then a ∈ S` for all i < ` < i′;
3. ∀` ∈ {0, . . . , n− 1}, |S`| ≤ k, and ∀` ∈ {0, . . . , n− 2}, |S` ∩ S`+1| ≤ j.

For ease of notation, it will be useful to introduce a concept closely related to path-
decompositions. Let τ be a vocabulary. Let S be a τ -structure that can be expressed as
S = S0 ∪ · · · ∪ Sn−1, where the S0, . . . , Sn−1 (the universes of the Si) satisfy properties 2
and 3 above. Note that ∪ here denotes union, not disjoint union of τ -structures. We say that
S is a (j, k)-path, and that (S0, . . . ,Sn−1) is a (j, k)-path representation of S. We denote
(j, k)-path representations with script letters, e.g. S = (S0, . . . ,Sn−1). The substructure
Si ∪ · · · ∪ Si′ of S (assuming a (j, k)-representation is fixed) is denoted with S[i,j]. We call
n the length of the representation. Obviously, a structure is a (j, k)-path iff it admits a
(j, k)-path-decomposition.

Let D = (ρ1, λ1), . . . , (ρq, λq) be a derivation for some linear or symmetric program P
with vocabulary τ . We can extract from D a τ -structure Ex(D) such that D is a derivation
for Ex(D). We specify Ex(D) as a tuple structure Ã: for each R(t) that appears in D
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(R ∈ τ), we add the pair (R, t) to Ã, and set Ã to be the set of those elements that appear
in a tuple.

Let D = (ρ1, λ1), . . . , (ρq, λq) be a derivation. For each x that is in a rule ρ` for some
` ∈ [q], call x` the indexed version of x. We define an equivalence relation Eq(D) on the set
of indexed variables of D . First we define a graph G = (V,E) as:

V is the set of all indexed versions of variables in D ;
(x`, y`′) ∈ E if `′ = `+ 1, x is the i-th variable of the head IDB I of ρ`, and y is the i-th
variable of the body IDB I of ρ`+1.

Two indexed variables x` and y`′ are related in Eq(D) if they are connected in G. Observe
that if C =

{
x`1

1 , x
`2
2 , . . . , x

`c
c

}
is a connected component of G, then it must be that

λ`1(x1) = λ`2(x2) = · · · = λ`c
(xc).

I Definition 4 (Free Derivation). Let P be a linear Datalog program and D = (ρ0, λ0), . . . ,
(ρq, λq) be a derivation for P. Then D is said to be free if for any two (x`, y`′) 6∈ Eq(D),
λ`(x) 6= λ`′(y).

Intuitively, this definition says that D is free if any two variables in D which are not “forced”
to have the same value are assigned different values.

2.4 Canonical Programs
Fix a τ -structure B and j ≤ k. Let Q1, . . . , Qn be all possible at most j-ary relations over B.
The canonical linear (j, k)-Datalog program for B ((j, k)-CanL(B)) contains an IDB Im of the
same arity as Qm for each m ∈ [n]. The rule Ic(x)← Id(y) ∧ Ē(z) belongs to the canonical
program if it contains at most k variables, and the implication Qc(x)← Qd(y)∧ Ē(z) is true
for all possible instantiation of the variables to elements of B. The goal predicate of this
program is the 0-ary IDB Ig, where Qg = ∅.

The canonical symmetric (j, k)-Datalog program for B ((j, k)-CanS(B)) has the same
definition as (j, k)-CanL(B), except that it has less rules due to the following additional
restriction. If Ic(x)← Id(y)∧ Ē(z) is in the program, then both Qc(x)← Qd(y)∧ Ē(z) and
Qd(y)← Qc(x)∧ Ē(z) must hold for all possible instantiation of the variables to elements of
B. The program (j, k)-CanS(B) is obviously symmetric. When it is clear from the context,
we write CanL(B) and CanS(B) instead of (j, k)-CanL(B) and (j, k)-CanS(B), respectively.

2.5 Defining CSPs
The following discussion applies not just to Datalog but also to its symmetric and linear
fragments. It is easy to see that the class of structures accepted by a Datalog program is
homomorphism-closed, and therefore it is not possible to define CSP(B) in Datalog. However,
it is often possible to define co-CSP(B) in Datalog. The following definition is key.

I Definition 5 (Obstruction Set). A set O of τ -structures is called an obstruction set for B,
if for any τ -structure A, A 6→ B iff there exists S ∈ O such that S→ A.

If O above can be chosen to have property X, then we say that B has X-duality.

3 On CSPs in symmetric Datalog

3.1 Definitions
An oriented path is a digraph obtained by orienting the edges of an undirected path, i.e.
an oriented path has vertices v0, . . . , vq+1 and edges e0, . . . , eq, where ei is either (vi, vi+1),
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or (vi+1, vi). The length of an oriented path is the number of edges it contains. We call
(vi, vi+1) a forward edge and (vi+1, vi) a backward edge. Oriented paths can be thought of as
relational structures over the vocabulary

{
E2}, so we denote them with boldface letters.

For an oriented path P, we can find a mapping level : P → {0, 1, 2, . . . } such that
level(b) = level(a) + 1 whenever (a, b) is an edge of P. Clearly, there is a unique such
mapping with the smallest possible values. The level of an edge (a, b) of P is level(a), i.e. the
level of the starting vertex of (a, b). The height(P) of an oriented path P is maxa∈P level(a).
We say that an oriented path P is minimal if there is precisely one vertex a such that
level(a) = 0, and precisely one vertex b such that level(b) = height(P).

A zigzag operator ξ takes a (j, k)-path representation S = (S0, . . . ,Sn−1) of a (j, k)-path
S and a minimal oriented path P = e0, . . . , eq such that height(P) = n, and it returns
another (j, k)-path ξ(S ,P). Intuitively, ξ(S ,P) is the (j, k)-path S “modulated” by P such
that the forward and backward edges ei of P are mimicked in ξ(S ,P) by “forward and
backward” copies of Slevel(ei). Before the formal definition, it could help the reader to look
at the right side of Fig. 2, where the oriented path used to modulate the (j, k)-path over
the vocabulary E2 (i.e. digraphs) with representation (S0,S1,S2) is P on the left side. The
right side is a more abstract example, and the reader might find it useful after reading the
definition.

We inductively define the (j, k)-path ξ(S ,P) as (Se0 ,Se1 , . . . ,Seq ) together with a
sequence of isomorphisms ϕe0 , ϕe1 , . . . , ϕeq

, where ϕei
is an isomorphism from Sei

to Slevel(ei),
0 ≤ i ≤ q. For the base case, we define Se0 to be an isomorphic copy of S0, and ϕe0 to
be the isomorphism that maps Se0 back to S0. Assume inductively that Se0 , . . . ,Sei−1 and
ϕe0 , . . . , ϕei−1 are already defined. Let S′ei

be an isomorphic copy of Slevel(ei) with domain
disjoint from Se0 ∪ · · · ∪ Sei−1 , and fix ϕ′ei

to be the isomorphism that maps back S′ei
to

Slevel(ei). We “glue” S′ei
to Sei−1 by renaming some elements of S′ei

to elements of Sei−1 . To
facilitate understanding, we can think of the already constructed structures Se0 , . . . ,Sei−1 as
labels of the edges e0, . . . , ei−1 of P, respectively, and we want to determine Sei

, the label of
the next edge. The connection between Sei−1 and Sei

will be defined such that Sei−1 and
Sei “mimic” the orientation of the edges ei−1 and ei.

We resume our formal definition. Set ` = level(ei), and let `′ = `− 1 if ei is a forward
edge, and `′ = `+ 1 if ei is a backward edge. If an element x ∈ S′ei

and an element y ∈ Sei−1

are both copies of the same element a ∈ S` ∩ S`′ , then rename x to y in S′ei
. After all such

elements are renamed, S′ei
becomes Sei . That is, for all a ∈ S` ∩ S`′ , rename ϕ′−1

ei
(a) in S′ei

to ϕ−1
ei−1

(a) to obtain Sei
.

We define the isomorphism ϕei from Sei to Slevel(ei) as:

ϕei
(x) =

{
ϕ′ei

(x) if x ∈ Sei
and x 6∈ Sei−1

ϕei−1(x) if x ∈ Sei ∩ Sei−1 .

3.2 Two Dualities for Symmetric Datalog
The two main theorems (Theorems 9 and 16) of this section can be combined to obtain:

I Theorem 6. For a finite structure B, TFAE:
1. There is a symmetric Datalog program that defines co-CSP(B);
2. B has symmetric bounded pathwidth duality (for some parameters);
3. B has piecewise symmetric bounded pathwidth duality (for some parameters).
Details follow.
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S0

S1

S2

e0

e1 e3

e4

e2

Se0

Se2 Se3

Se4

ba b′a′

dc

S P ξ(S ,P)

d′′c′′

b′′a′′

Se1

d′c′

S0

S1

S2

Se0

Se2 Se3

Se4

Se1

S ξ(S ,P)

ξ

Figure 2 Left: Applying a zigzag operator to the (j, k)-path S with the (j, k)-representation
S = (S0,S1,S2). Suppose that S0 ∩ S1 = {a, b} and S1 ∩ S2 = {c, d}. We demonstrate how Se0

and Se2 are obtained. Se0 is a disjoint copy of S0 (and the copy of a and b in Se0 are a′ and b′,
respectively). To obtain Se2 , first make a disjoint copy S′

e2 of Slevel(e2) = S1. Set ` = level(e2) = 1.
Since e1 is a forward edge and e2 is a backward edge, `′ = ` + 1 = 2. Therefore to “glue” S′

e2 to
Se1 , we need to look at S` ∩ S`′ = {c, d}. Assume that the copy of c and d in Se1 are c′ and d′,
respectively. Furthermore, assume that the copy of c and d in S′

e2 are c̃ and d̃, respectively. To
obtain Se2 , we rename c̃ to c′, and d̃ to d′ in S′

e2 . Right: A specific example when S0,S1,S2 are the
digraphs in the boxes. The dashed lines indicate identification of vertices.

3.2.1 Symmetric Bounded Pathwidth Duality
IDefinition 7 ((j, k)-symmetric). Assume thatO is a set of (j, k)-paths. Suppose furthermore
that a (j, k)-path representation can be fixed for each structure in O such that the following
holds. For every S ∈ O with representation S of some length n, and every minimal oriented
path P of height n, it holds that ξ(S ,P) ∈ O. Then O is said to be (j, k)-symmetric.

I Definition 8 (SBPD). A structure B has (j, k)-symmetric bounded pathwidth duality
((j, k)-SBPD) if there is an obstruction set O for B that consists of (j, k)-paths, and in
addition, O is (j, k)-symmetric.

I Theorem 9. For a finite structure B, co-CSP(B) can be defined by a symmetric (j, k)-
Datalog program if and only if B has (j, k)-SBPD.

To prove Theorem 9, first we prove Lemma 10 using the standard canonical Datalog
argument:

I Lemma 10. If CanS(B) accepts a structure A, then A 6→ B.

The following is the main technical lemma of the section.

I Lemma 11. For any τ -structures A and B, if there exists a structure S with a (j, k)-path
representation S of some length n such that S→ A, and for any minimal oriented path P
of height n, it holds that ξ(S ,P) 6→ B, then (j, k)-CanS(B) accepts A.

Proof of Theorem 9. If CSP(B) is defined by a symmetric (j, k)-Datalog program P, then
using the symmetric property of P, it is laborious but straightforward to show that

O =
⋃

D is a free
derivation of P

{Ex(D)}
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is a (j, k)-symmetric obstruction set for B.
For the converse, assume that B has (j, k)-SBPD. Let O be a symmetric obstruction set

of width (j, k) for B. We claim that (j, k)-CanS(B) defines CSP(B). Assume that A→ B.
Then by Lemma 10, (j, k)-CanS(B) does not accept A. Suppose now that A 6→ B. Then by
assumption, there exists a (j, k)-path S ∈ O with a representation S of length n such that
S→ A. Furthermore, since O is symmetric, for any minimal oriented path P of height n,
ξ(S ,P) 6→ B. It follows from Lemma 11 that CanS(B) accepts A. J

From the above proof it is obvious that:

I Corollary 12 ([8]). If a symmetric (j, k)-Datalog program defines CSP(B), then so does
(j, k)-CanS(B).

3.2.2 Piecewise Symmetric Bounded Pathwidth Duality
Piecewise symmetric bounded pathwidth duality (PSBPD) for symmetric Datalog is less
stringent than SBPD; however, the price is larger program width. Although the following
definitions might seem technical, the general idea is simple: a piecewise symmetric obstruction
set O does not need to contain all (j, k)-paths obtained by zigzagging (j, k)-paths in O in
all possible ways. It is sufficient to zigzag a (j, k)-path S using only oriented paths which
“avoid” certain segments of S: some constants c and d are fixed for O, and there are at most
c fixed segments of S that are avoided by the zigzag operator, each of size at most d. We
give the formal definitions.

I Definition 13 ((c, d)-filter). Let S be a (j, k)-path with a representation S = S0, . . . ,Sn−1.
A (c, d)-filter F for S is a set of intervals {[s1, t1], [s2, t2], . . . , [sc′ , tc′ ]} such that

c′ ≤ c; 0 ≤ s1; tc′ ≤ n− 1; si ≤ ti,∀i ∈ [c′]; and t` + 2 ≤ s`+1,∀` ∈ [c′ − 1];
|
⋃
i∈[s`,t`] Si| ≤ d,∀` ∈ [c′].

Elements of F are called delimiters. An oriented path P of height n obeys a (c, d)-filter F

if for any delimiter [si, ti] ∈ F , the set of edges e of P such that si ≤ level(e) ≤ ti form a
(single) directed path. A demonstration is given in Fig. 3.

S FS P

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

Figure 3 S is a (j, k)-path representation of S. FS is the (3, 2k)-filter {[0, 0][3, 4][7, 8]} for S .
P is an oriented path that obeys the filter. For example, observe that the edges at levels 3 and 4
form a directed subpath, and that “zigzagging” happens only at those parts of P that do not fall
into the intervals of the filter.

I Definition 14 (Piecewise Symmetric). Assume that O is a set of (j, k)-paths, and c and d
are nonnegative integers. Suppose furthermore that for each S ∈ O, there is a (j, k)-path
representation S , and a (c, d)-filter FS such that the following holds. For every S ∈ O of
some length n, and every minimal oriented path P of height n that obeys the filter FS, it
holds that ξ(S ,P) ∈ O. Then O is (j, k, c, d)-piecewise symmetric.
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Roughly speaking, an oriented path P is allowed to modulate only those segments of S

which do not correspond to any delimiters in FS. Compare Definition 14 with Definition 7,
and observe that the only difference is that in the piecewise case, the oriented paths must
be of a restricted form. Therefore a set that is (j, k)-symmetric is also (j, k, c, d)-piecewise
symmetric for any c and d. We simply associate the empty (c, d)-filter with each structure.

I Definition 15 (PSBPD). A structure B has (j, k, c, d)-piecewise symmetric bounded path-
width duality ((j, k, c, d)-PSBPD) if there is an obstruction set O for B that consists of
(j, k)-paths, and in addition, O is (j, k, c, d)-piecewise symmetric.

I Theorem 16. For a finite structure B, B has SBPD (for some parameters) if and only if
B has PSBPD (for some parameters).

3.3 Applications
3.3.1 Datalog + Maltsev ⇒ symmetric Datalog
Using SBPD, we give a short and simple re-proof of the main result of [8]:

I Theorem 17 ([8]). Let B be a finite core structure. If B is invariant under a Maltsev
operation and co-CSP(B) is definable in Datalog, then co-CSP(B) is definable in symmetric
Datalog (and therefore CSP(B) is in L by [10]).

We only need to show that if co-CSP(B) is in linear Datalog and B is preserved by a
Maltsev operation, then co-CSP(B) is in symmetric Datalog. The “jump” from Datalog
to linear Datalog essentially follows from already established results, as observed in [8].
Therefore to re-prove Theorem 17, we show the following lemma using an SBPD argument.

I Lemma 18. If co-CSP(B) is definable by a linear Datalog program and B is invariant
under a Maltsev operation m, then co-CSP(B) is definable by a symmetric Datalog program.

To get ready for the proof of Lemma 18, we define an N of size s as an oriented path that
consists of s forward edges, followed by s backward edges, followed by another s forward
edges. Proposition 19 is easy to prove, and the Maltsev properties are used in Lemma 20.

I Proposition 19. A minimal oriented path is either a directed path, or it contains a subpath
which is an N .

I Lemma 20. Let B be a structure invariant under a Maltsev operation m, S be a (j, k)-path
with a (j, k)-representation S = (S0, . . . ,Sn−1), and P = e0, . . . , eq be a minimal oriented
path of height n. If ξ(S ,P)→ B, then S→ B.

Proof. Using Proposition 19, there is an index t such that Q = et, et+1, . . . , et+(3s−1) is an
N of size s in P. Assume that the first and last vertices of Q are v and w, respectively.
Let P′ be the oriented path obtained from P by removing Q, and adding a directed path
Q′ = ft, ft+1, . . . , ft+(s−1) of length s from v to w. We claim that there is a homomorphism γ

from ξ(S ,P′) to B. Once this is established, a repetition of this argument sufficiently many
times yields that S → B because if we repeatedly “remove” N -s from a minimal oriented
path, eventually we must reach a directed path.

Let ξ(S ,P) = (Se0 , . . . ,Seq
), and ϕe0 , . . . , ϕeq

be the corresponding isomorphisms (recall
the zigzag operator definition in Section 3.1). Similarly, let ξ(S ,P′) = (Sf0 , . . . ,Sfq−2s

),
and ψf0 , . . . , ψfq−2s

be the corresponding isomorphisms. Because S[e0,et−1] and S[et+3s,eq ] are
isomorphic to S[f0,ft−1] and S[ft+s,fq−2s], respectively, γ for elements in S[f0,ft−1]∪S[ft+s,eq−2s]
is defined in the natural way. It remains to define γ for every d ∈ S[ft,ft+(s−1)].
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Assume that d ∈ Sft+`
for some ` ∈ {0, . . . , s− 1}. Find the original of d in S and let it be

do, i.e. do = ψft+`
(d). Then we find the three copies d1, d2, d3 of do in S[ft,ft+(3s−1)]. That is,

first we find the three edges e`1 , e`2 , e`3 of Q which have the same level as ft+` (all levels are
with respect to P and P′). Then di = ϕ−1

e`i
(do), i ∈ [3]. We define γ(d) = m(d1, d2, d3). By the

Maltsev properties of m, γ is well-defined. As B is invariant under m, ξ(S ,P′) γ−→ B. J

Proof of Lemma 18. If co-CSP(B) can be defined by a linear (j, k)-Datalog program, then
there is an obstruction set O for B in which every structure is a (j, k)-path by [6]. We
construct a symmetric obstruction set Osym for B as follows. First we define a sequence of
sets O1,O2, . . . inductively, where O1 = O. To construct Oi+1, for every (j, k)-path S with
a (j, k)-representation S = S0, . . . ,Sn−1 in Oi, and any minimal oriented path P of height
n, place ξ(S ,P) into Oi+1. Set Osym =

⋃
1≤iOi. By construction Osym is symmetric.

Observe that O ⊆ Osym, so it remains to show that no element of Osym maps to B.
For contradiction, take an element T ∈ Osym such that T → B. By definition of Osym,
there is a T0 ∈ O and a sequence of oriented paths P1, . . . ,Pd such that T is obtained from
T0 as follows. First T1 = ξ(T0,P1) was constructed (and placed into O1), where T0 is a
(j, k)-path representation of T0. Then T2 = ξ(T1,P2) was constructed (and placed into O2),
where T1 is a (j, k)-path representation of T1, and so on, until Td = T is constructed. We
find the largest i such that Ti 6→ B. Lemma 20 tells us that if Ti+1 → B, then Ti → B, a
contradiction. J

3.3.2 A class of oriented paths for which the CSP is in L, and a class
for which the CSP is NL-complete

In this section we define a class C of oriented paths such that if B ∈ C then co-CSP(B) is
in symmetric Datalog. Our strategy is to find an obstruction set O for B ∈ C, and then to
show that our obstruction set is piecewise symmetric. We need some notation.

We say that a directed path is forward to mean that its first and last vertices are the
vertices with indegree zero and outdegree zero, respectively. Let P be an oriented path with
first vertex v and last vertex w. Then the reverse of P, denoted with P̄, is a copy of the
oriented path P in the reverse direction, i.e. the first vertex of P̄ is a copy of w and its last
vertex is a copy of v. Let Q be another oriented path. The concatenation of P and Q is the
oriented path PQ in which the last vertex of P is identified with the first vertex of Q. For a
nonnegative integer r, Pr denotes P1P2 . . .Pr, where the P` are disjoint copies of P. Given
two vertices v and w, we denote the presence of an edge from v to w with v → w.

I Definition 21 (Wave). If an oriented path Q can be expressed as E1(PP̄)rPE2, where
Ei (i ∈ [2]) denotes the forward directed path that is a single edge, P is a forward directed
path of length `, and r ≥ 0, then Q is called an `-wave. A 2-wave is shown in Fig. 4, 1.

I Theorem 22. Let Q be a wave. Then Q has PSBPD, co-CSP(Q) is definable in symmetric
Datalog, and CSP(Q) is in L.

We state the following generalization of waves.

I Definition 23 (Staircase). A monotone wave is an oriented path of the form (P̄P)rP̄,
where P is a forward directed path and r ≥ 0. We call the vertices of a monotone wave in
the topmost level peaks, and the vertices in the bottommost level troughs.

If a minimal oriented path Q can be expressed as P1W1P2W2 . . .Pn−1Wn−1Pn, where
P1, . . . ,Pn are forward directed paths, W1, . . . ,Wn−1 are monotone waves, and for any
i ∈ [n− 1], the troughs of Wi are in a level strictly below the level of the troughs of Wi+1,
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and also, the peaks of Wi are in a level strictly below the level of the peaks of Wi+1, then
Q is called a staircase. An example is given in Fig. 4, 2.

I Theorem 24. Let Q be a staircase. Then Q has PSBPD, co-CSP(Q) is definable in
symmetric Datalog, and CSP(Q) is in L.

We also give a large class of oriented paths for which the CSP is NL-complete.

I Theorem 25. Let B be a core oriented path that contains a subpath P1P2P3 of some
height h with the following properties: P1,P2 and P3 are minimal oriented paths, they
all have height h, and there is a minimal oriented path Q of height h such that Q → P1,
Q→ P3 but Q 6→ P2. Then CSP(B) is NL-complete.

An example is given in Fig. 4, 3 and 4.

P1

P2

P3

P4

P5

E1

E2

Q

1 2 3 4

P1

P2

P3

Figure 4 1: A 2-wave. 2: A staircase. 3: An example oriented path for which the CSP is
NL-complete. 4: The oriented path Q in Theorem 25 corresponding to the oriented path in 3.

4 On CSPs in NL

4.1 Preliminaries and Definitions
Let τ be a vocabulary. A successor τ -structure S is a relational structure with vocabulary
τ ∪ {first, last, suc}, where first and last are unary symbols and suc is a binary symbol. The
domain S is defined as {1, . . . , n}, firstS = {1}, lastS = {n}, and sucS contains all pairs
(i, i+ 1), i ∈ [n− 1]. Because firstS, lastS and sucS depend only on n, they are called built-in
relations. When we say that a class of successor structures is homomorphism/isomorphism-
closed, all structures under consideration are successor structures, and we understand that
homomorphism/isomorphism closure, respectively, is required only for non-built-in relations.

I Definition 26 (Split Operation). A split operation produces a τ -structure A′ from a
τ -structure A as follows. For an element a ∈ A let Ta be defined as

Ta =
{

(t, R, i) | t = (t1, . . . , tr) ∈ RA where R ∈ τ , and ti = a
}
.

If |Ta| ≤ 1, no split operation can be applied. Otherwise we choose a strict nonempty
subset T of Ta, and for each triple (t, R, i) ∈ T , we replace t = (t1, . . . , tr) in RA with
(t1, . . . , ti−1, a

′, ti+1, . . . , tr) to obtain A′ (and A′ = A ∪ {a′}).

I Definition 27 (Split-Minimal, Critical). Let C be a class of structures over the same
vocabulary. We say that a structure A ∈ C is split-minimal in C if for every possible
nonempty sequence of split operations applied to A, the resulting structure is not in C. We
say that a structure A ∈ C is critical in C if no proper substructure of A is in C.

For a class of isomorphism-closed successor τ -structures, criticality and split-minimality
is meant only with respect to the non-built-in relations.
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I Definition 28 (Read-Once Datalog). Let P be a (linear, symmetric) Datalog program that
defines a class of structures C. If for every critical and split-minimal element of C there is a
P-derivation that is read-once, then we say that P is read-once.

I Definition 29 (Read-Once mnBP1). A monotone nondeterministic branching program
(mnBP) H with variables X = {x1, . . . , xn} computes a Boolean function fH : {0, 1}n →
{0, 1}. H is a directed graph with distinguished nodes s and t and some arcs labeled with
variables from X (not all arcs must be labeled). An assignment σ to the variables in X

defines in a natural way a subgraph Hσ of H. The function fH is defined as fH(σ) = 1 iff
Hσ has a directed path from s to t (an accepting path). The size of an mnBP is |VH |.

Let F be a poly-size family of mnBP1s (mnBP1(poly)) that defines a class of structures
C over a vocabulary τ . (The encoding is done in the straightforward manner, i.e. there is a
variable for every possible (R, t) where R ∈ τ and t is a tuple.) If for every structure in C
there is an accepting path that queries every variable at most once, then we say that F is
read-once. (This read-once condition can be made a bit weaker.)

We give some examples of problems definable by a 1-linDat(suc) program or by an
mnBP1(poly). The program in Section 2.2, Fig. 1 without rule 3 is a read-once linear
Datalog(suc) program that defines the problem directed st-Conn. To see that this program
Pst−Conn is read-once, let G be any input that is accepted (we do not even need G to be
critical and split-minimal). Then we find a directed path in EG connecting an element of
SG to an element of TG without repeated edges. We build a Pst−Conn-derivation for this
path in the obvious way.

Let EvenCliques be the class of undirected graphs which are cliques of even size. A bit of
work shows that EvenCliques can be defined with a 1-linDat(suc) program. In fact, we can
easily test much more complicated arithmetic properties than the property of being even (e.g.
being a power of k) with a 1-linDat(suc) program. We note that EvenCliques or “cliques
with any domain size property” cannot be defined by a linear Datalog program because
a (nontrivial) set of cliques is never closed under homomorphisms. Since a 1-linDat(suc)
program can be converted into an mnBP1(poly), the aforementioned problems can also be
defined with an mnBP1(poly).

4.2 Main Results
We simply state the results for 1-linDat(suc) and poly-size families of mnBP1s discussed in
the Introduction.

I Theorem 30. Let C be a homomorphism-closed class of successor τ -structures. If C can
be defined by a 1-linDat(suc) program of width (j, k), then every critical and split-minimal
element of C has a (j, k + j)-path-decomposition.

I Corollary 31. If co-CSP(B) can be defined by a 1-linDat(suc) program of width (j, k), then
co-CSP(B) can also be defined by a linear (j, k + j)-Datalog program.

I Theorem 32. Let C be a homomorphism-closed class of successor τ -structures. If C can be
defined by a family of mnBP1s of size O(nj), then every critical and split-minimal element
of C has a (j, r + j)-path-decomposition, where r is the maximum arity of the symbols in τ .

I Corollary 33. If co-CSP(B) can be defined by a family of mnBP1s of size O(nj), then
co-CSP(B) can also be defined by a linear (j, r+j)-Datalog program, where r is the maximum
arity of the relation symbols in the vocabulary of B.
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As discussed before, a wide class of CSPs–CSPs whose associated variety admits the unary,
affine or semilattice types–does not have bounded pathwidth duality [16]. It follows that all
these CSPs are not definable by any 1-linDat(suc) program, or with any mnBP1 of poly-size.
An example of such a CSP is the P-complete CSP Horn-3Sat.
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First-Order Logic
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Abstract
We investigate the expressive power of randomised first-order logic (BPFO) on restricted classes
of structures. While BPFO is stronger than FO in general, even on structures with a built-
in addition relation, we show that BPFO is not stronger than FO on structures with a unary
vocabulary, nor on the class of equivalence relations. The same techniques can be applied to
show that evenness of a linear order, and therefore graph connectivity, can not be defined in
BPFO. Finally, we show that there is an FO[≤]-definable query on word structures which can
not be defined in BPFO[+1].
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1 Introduction

In [5], we introduced randomised logics as a tool for analysing randomised complexity classes
using descriptive complexity theory. Randomised algorithms can be defined from determ-
inistic ones by introducing a second input, namely a string of random bits whose length
depends only on the length of the input and which is drawn uniformly at random from the
set of all strings of that length. The outcome of such an algorithm A may then depend both
on its input and on the particular choice of the random string, and for each fixed input x
we get a certain acceptance probability, say pA(x).

To define randomised complexity classes, one restricts attention to algorithms which have
a probability gap, i.e., there is a certain interval (α, β] ⊆ [0, 1] such that pA(x) 6∈ (α, β] for all
inputs x. Such an algorithm is said to accept its input if pA(x) > β. By parallel repetition
and thresholding, this gap may be amplified, so that the definition of, say, randomised
polynomial time or randomised logspace is very robust under the choice of the interval (α, β]
(cf. [1]). However, if one does not demand any probability gap, the resulting complexity
class PP becomes rather powerful, as witnessed by Toda’s theorem [13] stating that PPP

contains the full polynomial hierarchy.
In [5], we defined randomised first-order logic BPFO in a similar manner by introducing

additional relation symbols which are interpreted randomly. This way, we can define the
satisfaction probability Pr(A |= ϕ) of a sentence ϕ in a structure A, and just like in the
case of randomised algorithms we demand this to be outside of some interval (α, β] for
all finite structures A. We then say that A |= ϕ if this probability is > β (see section 3
for details). Barrington et al.’s famous result that FO captures dlogtime-uniform AC0 on
structures with addition and multiplication easily carries over to the randomised world, i.e.,
one obtains a logic capturing dlogtime BPAC0 on such structures. Similarly, randomised
least fixed-point logic BPLFP captures BPP on ordered structures. Equipped with very
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weak counting abilities, one also obtains a logic capturing BPP on all structures, albeit one
with an undecidable syntax.

Previous research on the expressive power of logics on random structures mostly dealt
with finite relational structures in which all relations were defined randomly. In some cases,
the underlying universe was assumed to be ordered, but the ordering was not accessible to
the logic. This holds true, for example, of the various 0-1-laws for first-order and infinitary
logics [8, 6], which imply that derandomisation is possible on structures over the empty
vocabulary. While these results have been generalised to probability distributions other
than uniform (cf. [11]), hardly any work has been done on structures with random as well as
non-random relations. Reasoning about partly random structures appears to require much
more powerful tools, and the only previous work in this direction which we are aware of is
by Shelah [10] and Boppana and Spencer [2], who prove what they call smoothness laws for
ordered random structures, i.e., they only consider the case where the non-random part is
a linear order. While there is no convergence law in this case, Boppana and Spencer prove
that for every first-order sentence ϕ,

|Pr(On |= ϕ)− Pr(On+1 |= ϕ)| = O

(
logd n
n

)
,

where d is the quantifier depth of ϕ. We use essentially the same proof technique to show
that BPFO can be derandomised on structures with a unary vocabulary and on equivalence
classes; with the minor adjustment that we allow for arbitrary random relations instead
of just random undirected graphs, their results imply theorem 8(a). Our application of
that technique in proving Lemma 5 is complicated by the fact that we consider, for the
non-random part, any structure defined over a unary vocabulary.

In contrast to randomised complexity classes such as BPP, for which there is evidence
towards the fact that they can be derandomised (i.e., BPP = PTIME, cf. [9]), first-order
logic provably gains expressive power by randomisation. In [5], we obtained the following
results:

on additive structures, BPFO 6� FO, i.e., there is a query of additive structures which is
definable in BPFO but not in FO
on ordered structures, BPFO 6� MSO
BPFO 6� Cω∞ω (infinitary counting logic)

On the other hand, we obtained the derandomisation results that BPFO � MSO on additive
structures and BPFO � Σ2 on all structures (both of which are basically translations of the
Sipser-Gács-Lautemann-Theorem that BPP ⊆ Σp2) and BPFO � FO on structures over the
empty vocabulary.

There is an elaborate machinery of tools for proving non-definability results in classical
logics, most importantly game theoretic methods such as Ehrenfeucht-Fraïssé games and
applications of Håstad’s Switching lemma to first-order logic via a translation to AC0 circuit
families. To apply these methods to show that, say, the class of all connected graphs is not
definable in first-order logic, one constructs, for each sentence ϕ, a pair of graphs G and G′
such that G |= ϕ⇔ G′ |= ϕ, but only exactly one of the two is connected.

For proving non-definability in randomised logics, however, one has to prove that certain
sentences can not have a probability gap. Therefore one has to investigate the behaviour of
these sentences on all finite structures. For example, let A be a {P,R}-structure, where P
is a unary relation and R a binary relation. We view the relation R as a function

f :
{
V (A) → 2P (A)

a 7→ {b ∈ P (A) | (a, b) ∈ R(A)}
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from the universe ofA to subsets of P (A) (cf. Figure 1). The following sentence in FO[{P,R}]
is satisfied iff f is injective:

ϕinj = ∀x∀y∃z (Pz ∧ ¬(Rxz ↔ Ryz))

a f

V (A)

P (A)P {(A)

f(a) = {b ∈ P (A) | (a, b) ∈ R(A)}

Figure 1 The random relation R interpreted as a function.

Up to isomorphism, a {P}-structure A is determined by its total number of element
n and the number of elements k in P (A). Now fix a {P}-structure A and let X be a
randomly chosen {P,R}-expansion of A. The probability that f as defined above is injective
is monotonely decreasing in n for fixed k and monotonely increasing in k for fixed n. In
fact, because the range of the function f doubles if k is increased by 1, for almost all n this
probability makes a sudden jump from nearly 0 for k ≤ kn to nearly 1 at k > kn + 1 for
some kn. In this sense, ϕinj almost has a gap. In [5] we used a similar sentence together
with a binary relation to impose additional structures on V (A) and P (A) which can not be
of size n and k such that Pr(A |= ϕ) is in (0.2, 0.5).

In the present paper we show that binary relation symbols are actually necessary for
this: On the class of all structures over vocabularies of only unary relations, BPFO is not
more expressive than FO. For our above example this implies that for every 0 < α < β < 1,
there is a {P}-structure A such that Pr(A |= ϕinj) ∈ (α, β). Our proof uses a result of
Boppana [3] on the average sensitivity of AC0-circuits; a similar approach has been taken
in [2] to proof smoothness laws for first-order logic.

In section 6, we then investigate the question of how expressive BPFO is on word models,
i.e., structures in which all non-unary relations depend only on the size of the structure. Let
Σ be a finite alphabet. With every word w ∈ Σ∗ we associate a structure which has one
universe element for each position in w. The vocabulary of the structure contains one unary
predicate Pa for each a ∈ Σ, along with some relations which only depend on the length of
w. Two common choices for these relations are

a binary successor relation, which we denote by +1 or y =̇ x+ 1 and which is supposed
to hold true iff y is the position immediately to the right of x, and
a binary linear ordering relation ≤, where x ≤ y is supposed to hold true iff x is to the
left of or identical to y.

The expressive power of various logics on these word models has been the subject of intensive
study, cf. [12] for a comprehensive overview. As for complexity theory, while MSO-model-
checking on word models is fixed-parameter tractable when parameterised by the size of the
formula, this is not the case for general structures unless PTIME = NP.

When we speak of FO[+1], FO[≤], BPFO[+1], and BPFO[≤], we mean (randomised)
first-order logic restricted to word models of the appropriate type. The very low expressive
power of first-order logic on word models suggests that, as in the case of BPFO on unary
structures, it might not be possible to ensure a probability gap on all finite structures (or
at least on all word models) to get a BPFO-definable query on word models which is not
definable in FO. As a first step in this direction, we show that there is an FO[≤]-definable
query which can not be defined in BPFO[+1].
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2 Preliminaries

We consider only finite structures over relational vocabularies. That is, a vocabulary σ is a
finite set of relation symbols, each with an associated arity r > 0. A σ-structure A is a finite
set V (A) together with a subset R(A) ⊆ V (A)r for each relation symbol R ∈ σ of arity r.
An isomorphism f : A ∼→ B is a bijective function f : V (A)→ V (B) such that for all r-ary
R ∈ σ,

(a1, . . . , ar) ∈ R(A) iff (f(a1), . . . , f(ar)) ∈ R(B),

and two structures A and B are called isomorphic (written A ∼= B) if such an isomorphism
exists. A query Q is a class of structures closed under isomorphisms. A partial isomorphism
a1 . . . ak 7→ b1 . . . bk consists of k elements a1, . . . , ak ∈ V (A) and k elements b1, . . . , bk ∈
V (B) such that

(ai1 , . . . , air ) ∈ R(A) iff (bi1 , . . . , bir ) ∈ R(B)

for every r-ary R ∈ σ and 1 ≤ i1, . . . , ir ≤ k. For vocabularies σ ⊆ τ , a τ -expansion of a
σ-structure A is any τ -structure B for which V (B) = V (A) and R(B) = R(A) for all R ∈ σ.

First-order (FO) formulas are built from atomic formulas x =̇ y and Rx1 . . . xr for r-ary
R ∈ σ by boolean junctors, existential and universal quantification. The models relation
|=, free variables, and quantifier depth of a formula are defined as usual. A sentence is a
formula without free variables. For an FO-sentence ϕ, we denote by Mod(ϕ) the class of all
finite structures A with A |= ϕ. A query Q is said to be definable in FO if there is a sentence
ϕ such that Q = Mod(ϕ).

Two structures A and B are called m-equivalent, written A ≡m B, if they satisfy exactly
the same FO-formulas of quantifier rank up to m. By Ehrenfeucht’s Theorem (cf. [4]), this
is equivalent to the existence of a winning strategy for Duplicator in the following game
(called Ehrenfeucht-Fraïssé game):

Two players, called Spoiler and Duplicator, take turns in choosing elements from two
structures A and B. Spoiler moves first. If, in the k-th round, Spoiler chooses an element
ak from structure A, Duplicator has to answer with an element bk from structure B, and
vice versa. Duplicator wins if, after m rounds have been played, a1 . . . am 7→ b1 . . . bm is a
partial isomorphism.

After fixing a linear order on σ, a σ-structure A may be encoded (non-uniquely) by a
string xA ∈ {0, 1}∗ of length polynomial in |V (A)|, by encoding the information (a1, . . . , ar) ∈
R(A) for every tuple (a1, . . . , ar) ∈ V (A)r and every relation symbol R ∈ σ by one letter.
An FO-sentence ϕ of quantifier depth d may be translated into a family of boolean circuits
(Cn)n≥1 of depth d and size nO(1) such that

A |= ϕ iff C|A|(xA) = 1,

and the outcome of C|A|(xA) is independent of the particular string representing A. The
circuits Cn are composed of negation gates and ∨ and ∧ gates of arbitrary fan-in.

A result of Boppana gives a bound on the sensitivity of such circuit families:

I Theorem 1. Let f : {0, 1}∗ → {0, 1} be a boolean function computable by a family (Cn)n≥0
of boolean circuits of depth d, size nO(1) consisting of negation gates and ∨ and ∧-gates of
unbounded fan-in. If x is chosen uniformly at random from {0, 1}n then

E

∣∣∣{1 ≤ i ≤ n | f(x) 6= f(x(i))}
∣∣∣ ≤ O(logd−1 n),

where x(i) is the string x with the i-th bit flipped.

The expected value in the theorem is called the average sensitivity of f . For a proof, see [3].
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3 Randomised logics

We briefly review the definition of randomised logics given in [5]. Throughout this section,
let τ and ρ be disjoint vocabularies. Relations over ρ will be “random”, and we will reserve
the letter R for relation symbols from ρ. We are interested in random (τ ∪ ρ)-expansions of
τ -structures. For a τ -structure A, by X (A, ρ) we denote the class of all (τ ∪ ρ)-expansions
of A. We view X (A, ρ) as a probability space with the uniform distribution. Note that we
can “construct” a random X ∈ X (A, ρ) by deciding independently for all k-ary R ∈ ρ and
all tuples ~a ∈ V (A)k with probability 1/2 whether ~a ∈ R(X). We are mainly interested in
the probabilities

Pr
X∈X (A,ρ)

(X |= ϕ)

that a random (τ ∪ρ)-expansion of a τ -structure A satisfies a sentence ϕ of vocabulary τ ∪ρ
of some logic. For brevity, we denote the above probability by Pr(A |= ϕ) whenever the
vocabulary ρ of random relations is clear from the context.

I Definition 2. Let L be a logic and 0 ≤ α ≤ β ≤ 1.

1. A formula ϕ ∈ L[τ ∪ ρ] that defines a k-ary query has an (α, β]-gap if for all τ -structures
A and all ~a ∈ V (A)k it holds that

Pr(A |= ϕ[~a]) ≤ α or Pr(A |= ϕ[~a]) > β.

2. The logic P(α,β]L is defined as follows: For each vocabulary τ ,

P(α,β]L[τ ] :=
⋃
ρ

{
ϕ ∈ L[τ ∪ ρ]

∣∣ ϕ has an (α, β]-gap
}
,

where the union ranges over all vocabularies ρ disjoint from τ . To define the semantics,
let ϕ ∈ P(α,β]L[τ ] be a sentence (the definition for arbitrary formulas is straightforward).
Let ρ be such that ϕ ∈ L[τ ∪ ρ]. Then for all τ -structures A,

A |= ϕ :⇔ Pr(A |= ϕ) > β,

and Mod(ϕ) is the class of all structures A with A |= ϕ.

It is easy to see that for every logic L and all α, β with 0 ≤ α ≤ β ≤ 1 the logic P(α,β]L is
a well-defined logic, in the sense that the |=-relation is invariant under isomorphisms of the
structure and under renamings and extensions of the vocabulary (see [5] for details). We
will be focusing on the logic

BPFO := P(1/3,2/3]FO

in this paper. The strength of this logic does not depend on the exact choice of the paramet-
ers α and β, which justifies the arbitrary choice of the constants 1/3, 2/3 in the definition.
As for first-order logic, we say that a query Q is definable in BPFO if there is a sentence
ϕ ∈ BPFO with Q = Mod(ϕ).

4 BPFO = FO on structures with unary vocabulary

In [5] we gave several examples of queries which were definable in BPFO but (in particular)
not in FO. A common feature of these queries is that they are defined on structures over a
vocabulary with at least binary relations. In this section we will prove that this is in fact
necessary:
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I Theorem 3. Let τ = {P1, . . . , Ps} be a vocabulary containing only unary relations, and
let ϕ ∈ BPFO. Then there is a (non-randomised) FO[τ ]-sentence defining the same query as
ϕ.

We may restrict ourselves to structures in which every element satisfies exactly one of
the Pi, and we call these τ -coloured structures. In fact, a τ -structure can be seen as a
set partitioned into 2s classes, where the elements in each class satisfy exactly the same
predicates Pi. We introduce a new vocabulary τ ′ = {P ′I | I ⊆ [s]} and associate with each
τ -structure a τ ′-coloured structure and vice versa in the obvious way. Similarly, each atomic
formula Pix can be expressed as a boolean combination of atomic formulas P ′Ix and vice
versa.

Up to isomorphism, a (finite) τ -coloured structure is described uniquely by a tuple ~n =
(n1, . . . , ns) ∈ Ns of non-negative integers giving the size of each class, and we will denote
structures by such tuples. We denote the size of such a structure by ‖~n‖ :=

∑s
i=1 ni. For

each k ∈ N we define an equivalence relation ∼k on Ns by saying ~n ∼k ~m iff

ni = mi or ni ≥ k and mi ≥ k

for all 1 ≤ i ≤ s. Then ∼k gives exactly the expressive power of first-order sentences of
quantifier rank k on τ -coloured structures:

I Lemma 4. Let ϕ be an FO[τ ]-sentence of quantifier rank ≤ k. Then on τ -coloured
structures, Mod(ϕ) is a union of ∼k-equivalence classes. Conversely, every union of ∼k-
equivalence classes can be defined by an FO[τ ]-sentence of quantifier rank ≤ k.

Proof. This is a standard application of Ehrenfeucht-Fraïssé games, see, e.g., [4, ex. 2.3.12].
J

We may thus restate Theorem 3 as follows:

I Lemma 5. Let τ = {P1, . . . , Ps} be as above and let ρ be any relational vocabulary with
τ ∩ ρ = ∅. Then for every ϕ ∈ FO[τ ∪ ρ] and 0 < α < β < 1 one of the following holds:

1. there is a tuple (n1, . . . , ns) ∈ Ns with

Pr(A |= ϕ) ∈ (α, β)

or
2. there is a k ∈ N such that for all ~n, ~m with ~n ∼k ~m the probabilities Pr(~n |= ϕ) and

Pr(~m |= ϕ) are either both ≤ α or both ≥ β.
The proof of this lemma is based on the fact that, if we make a large colour class a little
smaller by removing one element, the satisfaction probability of an FO[τ ∪ ρ]-sentence does
not change by much. Here, large means both absolutely large (at least a certain number of
elements) and relatively large, i.e., containing at least some constant fraction of all elements.
This is made precise in the following lemma, which we prove below:

I Lemma 6. Let τ = {P1, . . . , Ps} and ρ be vocabularies as above, and ϕ ∈ FO[τ ∪ ρ]. For
every c, ε > 0 there is a k = kc,ε,ϕ ∈ N such that the following holds: If ~n ∈ Ns is a tuple
such that ni ≥ c ‖~n‖ and ni ≥ k, then

|Pr(~n |= ϕ)− Pr(~n′ |= ϕ)| < ε,

where n′i = ni − 1 and n′j = nj for j 6= i.
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Proof of Lemma 5. Let ϕ be any FO[τ ∪ρ]-sentence and let k = k1/s,β−α,ϕ be the constant
which Lemma 6 yields for c = 1/s and ε = β − α. For any tuple ~n = (n1, . . . , ns) ∈ Ns, the
tuple ~ν with

νi = min{ni, k}

is a canonical representative of its ∼k-equivalence class. We give a sequence

~n = ~n0, ~n1, . . . , ~nl = ~ν

of tuples such that ~ni ∼k ~ni+1 and

|Pr(~ni |= ϕ)− Pr(~ni+1 |= ϕ)| < β − α

hold for all 0 ≤ i < l. We define such a sequence by successively decreasing one of the
maximal entries which are greater than k until there are no such entries left. Because any
maximal entry of a tuple ~n ∈ Ns must be at least ‖~n‖ /s, Lemma 6 precisely states that the
satisfaction probability of ϕ never changes by more than β − α in each step, as claimed.

But now the satisfaction probabilities Pr(~ni |= ϕ) along the sequence are either all ≤ α,
all ≥ β, or one of them is in the open interval (α, β). Because ~ν is the same for all tuples in
a ∼k-equivalence class, the statement of the theorem follows. J

Notice that there may well be ~n and ~m with ~n ∼k ~m and such that |Pr(~n |= ϕ)− Pr(~m |= ϕ)|
is arbitrarily close to 1, but in that case, for every Pr(~n |= ϕ) < α < β < Pr(~m |= ϕ) we can
find a ~u with Pr(~u |= ϕ) ∈ (α, β).

Proof of lemma 6. We introduce a new unary relation symbol Q and define an FO[τ ∪ ρ ∪
{Q}]-formula ψ by restricting all quantifiers of ϕ to Q ∪

⋃
j 6=i Pj . That is, we define ψ

recursively from ϕ by
if ϕ = ∃xϕ′ then ψ := ∃x(Qx ∨

∨
j 6=i Pjx) ∧ ψ′,

if ϕ = ∀xϕ′ then ψ := ∀x
(
(Qx ∨

∨
j 6=i Pjx)→ ψ′

)
,

if ϕ = ¬ϕ′, then ψ := ¬ψ′,
if ϕ = ϕ′ ∨ ϕ′′, then ψ := ψ′ ∨ ψ′′,
if ϕ = ϕ′ ∧ ϕ′′, then ψ := ψ′ ∧ ψ′′, and
ψ := ϕ otherwise.

Define ~m by

mi := 2ni and mj := nj for j 6= i.

Treating Q as a random relation (along with the relations in ρ) and conditioning on the size
of Q ∩ Pi we get

Pr(~n |= ϕ) = Pr
X∈X (~m,ρ∪{Q})

(
X |= ψ

∣∣ |Q ∩ Pi| = ni
)

and

Pr(~n′ |= ϕ) = Pr
X∈X (~m,ρ∪{Q})

(
X |= ψ

∣∣ |Q ∩ Pi| = ni − 1
)
.

Our goal is to show that these two (conditional) probabilities are not too far apart. We first
translate the sentence ψ into a bounded-depth, polynomial-size circuit C as in Figure 2. The
depth d of this circuit is equal to the quantifier depth of ψ, and it has one input for each
relation symbol in ρ ∪ {Q} and each tuple of universe elements of appropriate arity. (We
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. . .
depth d

. . .. . .
inputs for ρ inputs for Q inputs for Q

C, size m
O(1)
i

mi1

on Pi on ∪j 6=iPj

1 M

Figure 2 A polynomial-size, bounded-depth circuit for ψ

assume the unary predicates P1, . . . , Ps to be hard-wired into the circuit.) In particular,
there are mi = 2ni inputs which determine the set Q ∩ Pi.

The inputs corresponding to Q∩
⋃
j 6=i Pj are, by our construction of ψ, irrelevant and we

fix them to 0. Suppose there areM inputs corresponding to random relations in ρ. For each
way of fixing these inputs to a certain value y ∈ {0, 1}M we get a circuit Cy on mi inputs,
which is of the same depth as C. Furthermore, because M = ‖~n‖O(1) and we assumed ni to
be Ω(‖~n‖), the size of Cy is polynomial in mi.

By Theorem 1, the average sensitivity of Cy is polylogarithmic in ni, and therefore also
in mi. This means that if Q ⊆ [mi] and q ∈ [mi] are chosen uniformly and independent of
each other, then

Pr(Cy(Q) 6= Cy(Q4{q})) < (logmi)O(1)

mi
< m−0.9

i

for mi large enough. Notice that Boppana’s upper bound depends only on the size and
depth of the Cy and thus it is independent of the particular choice of y.

Let A be the event that both |Q ∩ Pi| = ni and q ∈ Q. Then

Pr(A) = 1
22ni+1

(
2ni
ni

)
,

which is Θ(n−1/2
i ) and therefore Θ(m−1/2

i ) by standard calculations (see, e.g., [7]). By the
independence of the inputs of C we have

Pr(~n |= ϕ) = 2−M
∑
y

Pr (Cy(Q) = 1 |A)

and

Pr(~n′ |= ϕ) = 2−M
∑
y

Pr (Cy(Q4{q}) = 1 |A)

We may now bound the difference of these probabilities as follows:

|Pr(~n |= ϕ)− Pr(~n′ |= ϕ)|

≤ 2−M
∑

Pr
(
Cy(Q) 6= Cy(Q4{q})

∣∣A)
≤ 2−M

∑ Pr (Cy(Q) 6= Cy(Q4{q}) ∩A)
Pr(A)

≤ 2−M
∑ Pr (Cy(Q) 6= Cy(Q4{q}))

Pr(A)
≤ m−0.9

i ·Θ(m1/2) < m−0.3
i

for mi large enough. We assumed mi ≥ k, and thus this difference is < ε if we choose k
large enough. J
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The above proof technique can be adapted to yield the following somewhat stronger
result:

I Theorem 7. Let σ = {E} be a vocabulary containing just one binary relation E, and let
EQ be the class of all finite structures A for which E(A) is an equivalence relation. Then
BPFO = FO on EQ.

I Remark. Note that because EQ is definable in FO, for every sentence ϕ with a probability
gap on EQ there is a sentence ϕ′ which is equivalent to ϕ on EQ and has a probability gap
on all finite structures.

Proof. Up to isomorphism, a structure A ∈ EQ is determined by a function fA : N →
N such that fA(s) counts the number of equivalence classes of size s (so that |V (A)| =∑
sfA(s) =: ‖f‖). For each k ∈ N we define a function

fAk (s) =


min{k, fA(s)} if s < k,

min{k,
∑
i≥k f

A(i)} if s = k,

0 if s > k.

We say A ∼k B if fAk (s) = fBk (s) for all s ∈ N. By standard techniques, a query Q ⊆ EQ
is definable in FO iff it is a union of ∼k-equivalence classes for some k. A function f is
k-canonical if f(s) ≤ k for all s and f(s) = 0 for all s > k. The k-canonical functions form a
system of representatives for the equivalence relation ∼k, and we denote the representative
equivalent to f by f̃ .

For notational convenience, again we assume there is only one random relation symbol
R. Fix a formula ϕ ∈ {E,R} and an ε > 0. As in Lemma 6 we show that there is a k such
that for every f there is a sequence

f = f0 ∼k f1 ∼k f2 ∼k · · · ∼k fl = f̃

with |Pr(fi |= ϕ)− Pr(fi+1 |= ϕ)| < ε along the sequence. To get from fi to fi+1 we proceed
as follows: Suppose n := ‖fi‖ > k3. If one equivalence class has > n1/3 elements (i.e.
fi(s) > 0 for some s > n1/3) we remove one element from that class. Otherwise, there must
be an s ≤ n1/3 such that f(s) > n1/3.In this case, remove an entire equivalence class of size
s. Finally, if ‖fi‖ ≤ k3, we may remove elements from equivalence classes of size > k and
remove an equivalence class of size s if there are more than k classes of that size. Proceeding
in this way we eventually reach f̃ .

Removing an element from a class is done by randomly choosing from a class of twice
the size, and removing a class of a certain size is done by randomly choosing among twice
as many classes of that size. We defer details to the full version of this paper. J

5 Some queries which are not definable in BPFO

Using the same techniques as in the proof of Theorem 3, we obtain the following non-
definability results:

I Theorem 8. The following queries on finite structures are not definable in BPFO:

(a) Over the vocabulary {≤} containing a binary relation symbol ≤, the query “≤ defines a
linear order of even cardinality”
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(b) Over the vocabulary {E} containing a binary relation symbol E, the query “E defines a
connected graph”

(c) Over the vocabulary {+1} containing a binary relation symbol +1, the query “the uni-
verse elements form an initial segment of the natural numbers, treating +1 as a successor
relation”.

Proof. Denote by On the linear order on n elements. For query (a), introduce a new random
unary relation P on a linear order of length 2n and relativise all quantifiers to P as in the
proof of Lemma 6. Letting n tend to infinity, this shows that∣∣∣∣ Pr

On,ρ
(X |= ϕ)− Pr

On−1,ρ
(X |= ϕ)

∣∣∣∣→ 0

for any FO[{≤}∪ρ]-sentence ϕ. In a different context, this result had already been obtained
by Boppana and Spencer [2], using essentially the same argument.

Non-definability of query (b) follows because we can define a graph on On in FO which
is connected iff n is even. Namely, identifying the elements of the linear order with the first
n natural numbers, connect elements

x and x+ 2 for all 1 ≤ x ≤ n− 2,
2 and n− 1.

Thus a BPFO-sentence defining connected graphs could be used to define evenness of a linear
order (see [4] for details). A similar argument works for query (c). J

6 Randomised First-Order Logic on Words

As before, we denote by FO[+1], FO[≤], BPFO[+1], and BPFO[≤] (randomised) first-order
logic restricted to word models of the appropriate type. There are two natural definitions
of BPFO on restricted classes of structures, namely one which demands BPFO sentences to
have a gap on all finite structures, and one which demands this only on structures from the
restricted class. Because the fact that ≤ defines a linear order is definable in FO, word models
of the second type can be defined in FO and this distinction does not affect the expressive
power of BPFO[≤]. In contrast to this, the successor relation +1 can not be defined in
FO, because connexness of the transitive closure of +1 is not definable. By Theorem 8(c),
this holds true also for BPFO. Therefore, the two definitions of BPFO[+1] potentially have
different expressive power. Our counterexample in Theorem 9 works for both variants.

The expressive power of FO[+1] and FO[≤] is well understood, see [12]. In particular,
the query

Q := a∗ba∗ca∗ ⊆ {a, b, c}∗

of all words which contain exactly one b to the left of exactly one c and an arbitrary number
of as is not definable in FO[+1]. It is easily seen to be definable in FO[≤] by the sentence

∃x∃y(Pbx ∧ Pcy ∧ x ≤ y ∧ ∀z(Paz ∨ z=̇x ∨ z=̇y)).

We show that Q is not definable in BPFO[+1]:

I Theorem 9. There is no BPFO[+1]-sentence ϕ such that

w |= ϕ ⇔ w ∈ Q

for all w ∈ {a, b, c}∗.
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Proof. Let σ = {+1, Pa, Pb, Pc} be the vocabulary of our word models. We show the
theorem by exhibiting a sequence of pairs of words vn, wn such that

(i) vn ∈ Q, wn 6∈ Q for all n ≥ 1 and
(ii) for every vocabulary ρ disjoint from σ and every FO[σ ∪ ρ]-sentence ϕ,

|Pr(vn |= ϕ)− Pr(wn |= ϕ)| → 0 (n→∞).

In fact, choosing

vn = anbancan wn = ancanban

will do. Condition (i) is obviously satisfied. For condition (ii), let ρ be disjoint from σ and
let ϕ be a sentence of quantifier rank r. The successor relation induces a distance measure
on the elements of the structures, which we denote by d; we assume d(x, y) = 1 if x = y+ 1
or y = x+ 1. We denote by dr the bounded distance function

dr(x, y) :=
{
d(x, y) if d(x, y) ≤ r
∞ otherwise.

By Sr(x) we denote the r-ball around an element x in (a (σ ∪ ρ)-expansion of) a word
structure A, i.e.,

Sr(x) := {y ∈ V (A) | d(x, y) ≤ r},

and if a1, . . . , ak are elements of V (A), then A|Sr(a1,...,ak) denotes the induced substructure
of A on the union

⋃k
i=1 S

r(ak) of the r balls around these elements. We say that two sets
U, V ⊆ V (A) touch if there are x ∈ U and y ∈ V with x = y + 1 or y = x+ 1.

For n > 3r, the word structures vn and wn satisfy exactly the same first-order sentences
of quantifier rank up to r. A winning strategy for the r-move Ehrenfeucht-Fraïssé-game on
vn and wn can be given explicitly as follows: For ease of notation, we denote the first and the
last position of vn by a1 and a2, the unique position containing a b by a3 and that containing
a c by a4, and likewise for b1, . . . , b4. Suppose after k moves, elements a5, . . . , ak+4 have been
chosen in vn, and elements b5, . . . , bk+4 have been chosen in wn. Assume Spoiler chooses an
element a in vn. Throughout the game, Duplicator maintains the property that

d3r−k (ai, aj) = d3r−k (bi, bj) (1)

for 1 ≤ i, j ≤ k+ 4. Notice that this property holds before the first move (i.e., for a1, . . . , a4
and b1, . . . , b4) if n > 3r. Let r′ = r − k − 1 be the number of rounds remaining after the
k-th move.

(I) If a is in vn|S3r′ (a1,...,ak+4), then choose the corresponding element in wn, i.e., the
unique element b ∈ V (wn) which has

d3r′ (ai, a) = d3r′ (bi, b)

for 1 ≤ i ≤ k + 4. This is possible because if d(bi, b), d(bj , b) ≤ 3r′ , then d(bi, bj) ≤
2 · 3r′ < 3r−k and d3r−k (ai, aj) = d3r−k (bi, bj) by property (1).

(II) Otherwise, choose any element of wn which has distance > 3r′ from all elements
b1, . . . , bk+4.
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Duplicator’s answer if Spoiler chooses an element b in wn is determined analogously. After
r rounds have been played, the map ai 7→ bi is a partial isomorphism, because all relations
in σ are determined by d1-distances. This is because on the words vn and wn, the relations
Pa, Pb and Pc depend only on the d1-distance from u and v, which are parts of the tuples.

We now extend this strategy to random expansions X of vn and Y of wn. Let

c0 := 1, ci+1 := 4ri + 2.

In the game on X and Y , Duplicator maintains the stronger property that after the k-th
move,

Xk := X|Scr−k (a1,...,ak+4)
∼= Y |Scr−k (b1,...,bk+4) =: Yk, (2)

treating the ais and bis as constants. That this, there is an isomorphism f : Xk
∼→ Yk such

that f(ai) = bi for 1 ≤ 1 ≤ k + 4. This is of course not possible for all random expansions:
At the very least, the random expansions have to agree on the cr-balls around min, max, u
and v. If this is the case, then with very high probability Duplicator can indeed maintain
property (2), as we will now show. The argument resembles the proof of the classical 0-1-
law for first-order logic (cf. [4]), but it involves some more housekeeping to deal with the
additional structure introduced by the +1-relation.

Let µw denote the uniform probability measure on the set X (w, ρ), i.e.,

µw(V ) := |V |
|X (w, ρ)|

for V ⊆ X (w, ρ). For ease of notation we drop the subscript w. Let s be the number of non-
isomorphic (σ ∪ ρ)-expansions of v2cr+2|Scr (min,max,u,v), and let A1, . . . , As be structures
representing these isomorphism types. Notice that the four cr-balls which make up the
universe of this substructure do not touch, as is the case in all vn and wn for large enough
n. We let V (j)

n be the set of all (σ ∪ ρ)-expansions X of vn with

X|Scr (min,max,u,v) ∼= Aj ,

and analogously for W (j)
n . If the cr-balls around min, max, u and v do not touch, then the

induced substructures of vn and wn on the union of these balls are isomorphic. Thus for
large enough n, the V (j)

n (W (j)
n ) form a partition of X (vn, ρ) (X (wn, ρ)), and

µ
(
V (j)
n

)
= µ

(
W (j)
n

)
= 1
s
.

For any two structures X ∈ V (j)
n and Y ∈ W (j)

n , the tuples a1, . . . , a4 and b1, . . . , b4 as
defined above satisfy property (2). We now show that there are subsets V̂ (j)

n ⊂ V
(j)
n and

Ŵ
(j)
n ⊂ W

(j)
n such that Duplicator can maintain property (2) for r moves on structures

taken from these subsets.
To be precise, we define Duplicator’s strategy if Spoiler chooses a from structure X as

follows:

(I) If a is in X|S2c
r′+1(a1,...,ak+4), then choose the corresponding element in Y , i.e., the

unique element b ∈ V (Y ) which has

dcr′ (ai, a) = dcr′ (bi, b)

for 1 ≤ i ≤ k + 4. These are exactly the a whose cr′ -ball touches the cr′ -ball around
some previously chosen ai.
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(II) Otherwise, choose any element of Y which has distance > 2cr′ + 1 from all elements
b1, . . . , bk+4. Thus the cr′ -ball around the newly chosen element touches no cr′ -ball
around a previously chosen element.

Moves of type (I) in the above strategy can always be carried out by Duplicator and
maintain property (2). Moves of type (II) can only fail if there is a tuple b1, . . . , bk+4 in Y
and a (σ ∪ ρ)-structure Z containing elements a1, . . . , ak+4 and a such that

Z ∈ X (vn, ρ),
Z|Scr−k (a1,...,ak+4)

∼= Y |Scr−k (b1,...,bk+4),
d(a, ai) > 2cr′ + 1 for 1 ≤ i ≤ k + 4, and
Z|Sc

r′ (a1,...,ak+4,a) 6∼= Y |Sc
r′ (b1,...,bk+4,b) for all b ∈ V (Y ).

Let m := 3n + 2 = |V (Y )|. There are O(mr) many possible tuples b1, . . . , bk+4, and for
each such tuple, there are only constantly (depending only on ρ) many choices for Z and
a1, . . . , ak+4, a with non-isomorphic Z|Sc

r′ (a1,...,ak+4,a). But for each of these O(mr) possib-
ilities, there is a subset M ⊂ V (Y ) with
|M | = Ω(n),
d(b, bi) > 2cr′ + 1, for each b ∈M and 1 ≤ i ≤ k + 4, and
d(b, b′) > 2cr′ + 1 for every b, b′ ∈M .

Because the cr′ -balls around the elements of M do not overlap, each of the elements in M
satisfies

Z|Sc
r′ (a1,...,ak+4,a) ∼= Y |Sc

r′ (b1,...,bk+4,b)

independently with some probability p > 0 depending only on r′ and ρ. The probability
that none of the b ∈M satisfies this is therefore (1− p)|M | = e−Ω(n), and by a union bound,
there is a subset Ŵ (j)

n ⊂WV
(j)
n with

µ
(
Ŵ (j)
n

)
=
(
1− o(1)

)
µ
(
W (j)
n

)
and such that on structures Y ∈ Ŵ (j)

n , Duplicator can maintain property (2) for r many
moves when challenged to move in Y . A subset V̂ (j)

n ⊂ V (j)
n can be defined analogously.

But now we have defined disjoint sets V̂ (1)
n , . . . , V̂

(s)
n ⊂ X (vn, ρ) and Ŵ

(1)
n , . . . , Ŵ

(s)
n ⊂

X (wn, ρ) such that

(a)
∣∣∣µ(V̂ (j)

n )− µ(Ŵ (j)
n )
∣∣∣→ 0 for n→∞ and all 1 ≤ j ≤ s,

(b) µ
(⋃

j V̂
(j)
n

)
→ 1 for n→∞

(c) for every n and j, if X ∈ V̂ (j)
n and Y ∈ Ŵ (j)

n , then X ∼=r Y .
This implies that for every FO[σ ∪ ρ]-sentence ϕ,

|Pr(vn |= ϕ)− Pr(wn |= ϕ)| → 0

as n→∞, and therefore Q is not definable in BPFO[+1]. J

7 Conclusion

We have shown non-definability results for randomised first-order by bounding the difference

|Pr(A |= ϕ)− Pr(B |= ϕ)|

for certain pairs of σ-structures A and B and FO[σ ∪ ρ]-sentences ϕ. We did so using two
very different tools:
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Boppana’s result on the average sensitivity of bounded-depth polynomial size circuits,
and
Ehrenfeucht-Fraïssé-games on (partially) random structures.

These two approaches have very different strengths and weaknesses: The Ehrenfeucht-
Fraïssé-game approach worked well on the query Q because all but a finite number of
positions in each of the strings vn and wn looked exactly the same to any FO-sentence
of quantifier rank ≤ r. This is not the case in the two-coloured structure with colour-class
sizes n and logn, for example. This approach might be extended by drawing the random
expansions of A and B from a well-chosen joint distribution.

In order to apply Boppana’s result to bound the difference

|Pr(A |= ϕ)− Pr(B |= ϕ)|

between the acceptance probability of ϕ in two structures A and B, we defined a larger
structure within which we were able to define a structure C (using an additional random
relation) such that C ∼= A with probability at least n−1+ε, and such that changing the
additional random relation on one tuple resulted in C ∼= B with high probability. With
this method we could bound the above difference for enough pairs of structures to actually
derandomise BPFO on structures with a unary vocabulary completely. This approach was
made possible by the fact that the structures A and B for which we applied it had lots
of automorphisms, making it easy to define them within the bigger structure with high
probability.

It seems reasonable to conjecture that BPFO[+1] can be derandomised to FO[+1]. This is
because to an FO-sentence of quantifier rank r, two positions in the string which are further
apart than 3r are completely non-related, and thus it should be possible to generate chains
of strings w0, . . . , wl by only changing small parts in each step to get a version of Lemma 5
for strings. However, neither the Ehrenfeucht-Fraïssé-game approach nor the approach using
Boppana’s lemma seem to suffice for this.
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Abstract
We show that the finite product of selection functions (for all finite types) is primitive recursively
equivalent to Gödel’s higher-type recursor (for all finite types). The correspondence is shown to
hold for similar restricted fragments of both systems: The recursor for type level n+1 is primitive
recursively equivalent to the finite product of selection functions of type level n. Whereas the
recursor directly interprets induction, we show that other classical arithmetical principles such as
bounded collection and finite choice are more naturally interpreted via the product of selection
functions.
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1 Introduction

In his 1958 paper published in the journal dialectica [7] Gödel introduced a novel interpretation
of intuitionistic arithmetic into a quantifier-free calculus of functionals, the so-called system
T. System T is essentially primitive recursive arithmetic PRA with the schema of recursion
extended to all finite types {N,N → N, (N → N) → N, . . .}. Gödel’s aim was to show that
quantifier dependencies in arithmetic could be captured by this class of primitive recursive
functionals, and therefore that the consistency of arithmetic could be reduced to that of
system T.

In Gödel’s dialectica interpretation, the recursors play a fundamental role in the inter-
pretation of the induction axioms. Parsons [15] studied the precise relationship between the
complexity of the type of the recursor and the logical complexity of the induction formula,
establishing a correspondence between the well-known fragments of arithmetic based on
restricted induction and fragments of system T based on restricted recursion.

The dialectica interpretation of arithmetic was quickly extended to classical analysis
by Spector [17], via a new form of recursion on well-founded trees known as bar recursion.
Spector’s dialectica interpretation of arithmetical comprehension goes via the classical axiom
of countable choice, which in turn is reduced to the double negation shift (see [17] for details)

∀i¬¬A(i)→ ¬¬∀iA(i).
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234 System T and the Product of Selection Functions

Hence, the computational interpretation of full classical analysis was reduced to the inter-
pretation of this seemingly harmless (obviously true) principle.

The first two authors have recently shown [3, 2, 5] that Spector’s bar recursion is primitive
recursively equivalent to an unbounded iteration of the product of selection functions, a
highly intuitive construction that has appeared over and over again in various guises in game
theory, fixed point theory, algorithms, and proof theory. For further details see Section 3,
their original paper [3] or a recent survey [6].

In [3] it is observed that just as an unbounded iteration of the product of selection
functions provides an intuitive interpretation of the double negation shift, a finite iteration
of the product directly interprets the finite double negation shift

∀m(∀i≤m¬¬A(i)→ ¬¬∀i≤mA(i)),

which in turn is closely related to a number of well-known ‘set theoretic’ principles such as
finite choice and bounded collection. In Section 4 we show that just as the computational
analogue of induction is Gödel’s primitive recursion on all finite type, a natural computational
analogue of finite choice is given by the product of selection functions. Furthermore, analogous
to Parsons result for induction we establish a correspondence between the logical complexity
of the choice formula and the complexity of the product.

It is well-known, however, that both bounded collection and finite choice are equivalent
to number induction. More specifically, Parsons proved that the hierarchy of bounded
collection axioms is strictly interleaving on the hierarchy of induction axioms [14]. Therefore
it is natural to ask precisely how the product of selection functions is related to primitive
recursion. Our main result (Section 5) is that Gödel’s primitive recursor of type level n+ 1
is equivalent, over a weak base theory, to the finite product of selection functions of type
level n. In particular, the finite product of selection functions of lowest types already defines
the Ackermann function.

There are several advantages of considering this equivalent form of the Gödel primitive
recursor R
1. Given the equivalence of the unbounded product of selection functions with Spector’s

bar recursion [3], the equivalence of the finite product with the recursor R provides for a
smooth passage from the functional interpretation of arithmetic (finite fixed number of
iterations) to that of analysis (finite but unbounded number of iterations). Therefore, we
obtain the correspondence

Finite product of selection functions
Arithmetic = Unbounded product of selection functions

Analysis

In this sense, the product of selection functions allows for a uniform transition from
arithmetic to analysis. This is discussed further in Section 6.

2. The product of selection functions has a natural reading in terms of calculations of
optimal strategies in sequential games. Hence, witnessing terms involving the product of
selection functions (rather than R or Spector’s bar recursion) can normally be given a
clear intuitive meaning. The connection between games and the product is explained in
Section 3.

3. Whereas the recursor directly interprets induction, we show that when interpreting other
classical arithmetical principles closely related to bounded collection and finite choice
it is the finite product of selection functions which allows for a direct, and hence more
illuminating, interpretation. See Section 4 for details.
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2 Fragments of Arithmetic

We take as a base theory the standard induction-free fragment of arithmetic Q (cf. [1]),
which contains axioms for the non-logical symbols 0, S, +, · and ≤. It is well known that we
can construct a hierarchy of strong fragments of arithmetic by adding induction axioms, or
alternatively choice or collection axioms, to our base theory. The axiom scheme of induction
is specified as

IND : A0 ∧ ∀i<m (Ai → Ai+1)→ Am.

The scheme of finite choice is specified as

FAC : ∀i≤m ∃xAi(x)→ ∃s∀i≤mAi(si).

The scheme of bounded collection is specified as

BC : ∀i≤m∃xAi(x)→ ∃k∀i≤m ∃x≤k Ai(x)

As usual, if S is one of our schemata, Σn-S (Πn-S) denotes S restricted to Σn (Πn) formulas.

I Definition 1 (Fragments of arithmetic). In this paper we will consider the following
fragments of classical arithmetic.
1. The weak theory PA0 consists of the base theory Q plus induction restricted to quantifier-

free formulas.
2. The theories IΣn, FΣn, BΣn consist of PA0 plus the Σn-IND, Σn-FAC, Σn-BC schema

respectively. The theories IΠn, FΠn and BΠn are defined similarly.
3. Full Peano arithmetic PA consists of PA0 plus induction for all formulas (or, equivalently

as we will discuss, finite choice or bounded collection for all formulas).

It is easy to show (cf. [13, 14]) that PA0 proves the equivalences

Σn-IND ↔ Πn-IND,

Σn+1-FAC ↔ Πn-FAC, and

Σn+1-BC ↔ Πn-BC

for all n. Hence, the fragments IΣn and IΠn are equivalent, similarly FΣn+1 = FΠn and
BΣn+1 = BΠn.

It has also been shown by Sieg [16] that FΠn and BΠn are equivalent. Although the
fragment based on bounded collection BΠn is more widely used, we will see that the
dialectica interpretation of finite choice is slightly more natural and direct than that of
bounded collection.

The precise relationship between the fragments of arithmetic based on induction and
those based on choice and collection principles was established by Parsons [14] and Paris
and Kirby [13].

I Theorem 2 ([13, 14]). Let T ⊆ S mean that every theorem of T is a theorem of S. Then
1. BΠn ⊆ IΣn+1 but IΣn+1 * BΠn

2. IΣn ⊆ BΠn but BΠn * IΣn.

Proof. These results are collected together in [13]. We remark that IΣn+1 * BΠn was
discovered independently by Lessan [12]. J
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2.1 Fragments of Gödel’s system T

In this section we recall some basic facts about Gödel’s dialectica interpretation. As we
mentioned in the introduction, Gödel showed that intuitionistic arithmetic can be interpreted
in the quantifier-free system T. Combining the dialectica interpretation with the usual
negative translation allows us to reduce full classical arithmetic to T. For that we shall
normally take Kuroda’s negative translation A 7→ AN ≡ ¬¬A∗, which places double negations
after universal quantifiers and in front of the whole formula [11].

We are interested in fragments of system T that correspond, under the dialectica inter-
pretation, to the fragments of arithmetic discussed above. We take as a base theory the
fragment T0 in which recursion is restricted to type 0.

I Definition 3 (Fragment T0). We work in a many-sorted language in which the set of types
is defined inductively, containing the type N of natural numbers, function types X → Y

(also written as Y X), product types X × Y and types X∗ representing finite sequences of
elements of type X. As usual, the degree of each type is defined inductively as

deg(N) := 0

deg(X → Y ) := max{deg(X) + 1, deg(Y )}

deg(X × Y ) := max{deg(X), deg(Y )}

deg(X∗) := deg(X).

The set of terms of T0 are those of the simply typed λ-calculus with finite products and
function types, plus constants for all functions definable using primitive recursion of type 0.
The axioms of T0 consist of:

1. standard axioms of classical propositional logic, axioms for (fully extensional) equality,
substitution and induction,

2. defining axioms for each constant symbol.

Notation. We will denote the operation of concatenating a finite sequence s : X∗ with an
infinite sequence α : XN as s∗α : XN. We will use the same notation also when concatenating
two finite sequences, or appending an element to a sequence. For q : XN → R and s : X∗ we
write qs : XN → R for the function qs(α) = q(s ∗ α).

We obtain extensions of T0 by adding constant symbols for higher type recursion together with
their defining axioms. For any typeX the recursor RX of typeX → (N→ X → X)→ N→ X

has defining axioms:

RX0 (y, z) X= y

RXn+1(y, z) X= z(n,RXn (y, z))

where y : X and z : N→ X → X.

I Definition 4 (Fragments of system T). We consider the following well-known extensions
of T0.
1. The theory Tn consists of T0 plus recursors RX and their defining axioms for all types

X with deg(X) ≤ n.
2. System T consists of T0 plus recursors of all finite types.
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Gödel’s dialectica interpretation interprets each formula A of Heyting arithmetic as a
formula AD of the form ∃x∀yAD(x, y), where AD is a quantifier-free formula in the language
of T and x, y are tuples of potentially higher type. For details of the translation, the reader
is referred to [1].

I Theorem 5 ([7]). Gödel’s key results are the following:
1. If Heyting arithmetic proves the formula A, then there is a sequence of terms t in system

T such that T proves AD(t, y).
2. If Peano arithmetic proves the formula A, then there is a sequence of terms t such that

T proves (AN )D(t, y), where AN denotes the negative translation of A.

The recursors in T are essentially only required to interpret the non-logical axioms of
arithmetic, and form a natural functional analogue of induction. There is in fact a precise
correspondence under the dialectica interpretation between the arithmetic hierarchy IΣn and
the functional hierarchy Tn, which is a consequence of the following lemma.

I Lemma 6. Given an arbitrary formula A, suppose that (AN )D = ∃x∀y(AN )D(x, y). Then
for n > 1:
1. if A is a Π0

n formula then the tuple x contains variables of degree at most n− 1 and the
tuple y contains variables of degree at most n− 2;

2. if A is a Σ0
n formula then the tuple x contains variables of degree at most n and the tuple

y contains variables of degree at most n− 1.

Proof. Simple induction on n. J

I Theorem 7 ([15]). The functional interpretation of Πn-IND only requires primitive
recursion of level n− 1. Therefore the fragment of arithmetic IΠn (or equivalently IΣn) is
interpreted in Tn−1, in the sense that if IΠn proves A then there is a sequence of terms t in
Tn−1 such that Tn−1 proves (AN )D(t, y).

Proof. Follows from Lemma 6. See [15] for details. J

3 The Product of Selection Functions

In [5], a selection function is defined to be any function of type (X → R)→ X. The intuition
behind the name is that we view functions X → R as predicates over the type X (where R
is interpreted as a set of truth values), and the selection function as a choice procedure that
for each predicate selects some element of X. Selection functions are closely related to the
notion of generalised quantifiers, functionals of type (X → R)→ R, in the sense that every
selection function ε is associated with a quantifier ε̄p := p(εp).

Notation. We abbreviate the types (X → R)→ X by JRX, and the types (X → R)→ R

by KRX.

I Example 8. 1. By the law of excluded middle, for any non-empty type X we have
∀p∃yX(∃xXp(x)⇒ p(y)). Hence, by the axiom of choice there exists a selection function
ε : JBX that satisfies ∃x p(x)⇔ p(εp) for any logical predicate p : X → B (this is similar
to Hilbert’s ε operator of the ε-calculus). Similarly, there is also a selection function δ
such that ∀x p(x)⇔ p(δp) for all p. These selection functions are associated, respectively,
with the usual logical quantifiers ∃,∀ : KBX.
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2. By the extreme value theorem there exists a selection function argsup : JR[0, 1] that for
any continuous function f : [0, 1]→ R returns a point at which f attains it supremum i.e.
sup(f) = f(argsupf). The selection function arginf : JR[0, 1] is defined similarly. These
selection functions are associated with the quantifiers sup, inf : KR[0, 1].

The theory of generalised quantifiers and selection functions is explored in detail in
[3, 5, 6], where in particular, a product operation on selection functions is defined. The main
achievement of these papers has been to demonstrate that this product of selection functions
is an extremely versatile construction that appears naturally in several different areas of
mathematics and computer science, such as fixed point theory (Bekič’s lemma), game theory
(backward induction), algorithms (backtracking), and proof theory (bar recursion).

For the rest of this section we shall define this product of selection functions, and explain
how it has an intuitive meaning in terms of optimal plays in sequential games. In Section
4 we then show how the number theoretic principle of finite choice is naturally (dialectica)
interpreted by this product.

I Definition 9 (Binary product of selection functions, [5]). Given selection functions δ : JRX
and ∆: JRXN and a functional q : XN → R, let

A(xX) XN

:= ∆(λα.qx(α)),

a
X:= δ(λx.qx(A(x))),

where qx(α) abbreviates q(x∗α). Then we define the binary product of the selection functions
δ and ∆, denoted δ ⊗∆: JRXN, by

(δ ⊗∆)(q) := a ∗A(a).

As described in [5], one can iterate the binary product above on a given sequence of
selection functions. In this paper we will only consider the finite iteration of the binary
product.

I Definition 10 (Finite product of selection functions). We define the finite product of selection
functions for types (X,R), denoted PX,Ri , by the recursion schema

PX,Ri (ε)(m) JRX
N

=
{

0JRX
N if i > m

εi ⊗ PX,Ri+1 (ε)(m) if i ≤ m

where m ∈ N, 0 is the constant 0 functional of appropriate type, and εi are selection functions
of type JRX. Expanding the definition of the binary product (Definition 9) this is equivalent
to the schema

PX,Ri (ε)(m)(q) X
N

=
{

0XN if i > m

a ∗ PX,Ri+1 (ε)(m)(qa) if i ≤ m

where a := εi(λx.qx(PX,Ri+1 (ε)(m)(qx))).

As opposed to in [5] here the finite product is taken over an infinite stream of selection
functions. In what follows, where only ε0, . . . , εm are specified it is implicit that the finite
product PX,Ri (ε)(m) is taken over a canonical extension of this finite sequence.

As an alternative to adding the recursors R to T0, as in Definition 4, we shall also consider
extending T0 with the finite product operator P instead.



M. Escardó, P. Oliva and T. Powell 239

I Definition 11. 1. The theory Pn consists of T0 plus a symbol for the finite product of
selection functions PX,R and its defining axiom for all types X with deg(X) ≤ n.

2. T0 + P consists of T0 plus the finite product PX,R for all finite types.

I Remark. The complexity of the type R has no effect on the recursive strength of PX,R, as
one can show that PX,R, for arbitrary type R, is definable over T0 from PX,XN . Formally,
given εi : JRX and q : XN → R define a new selection function εq : JXNX as

εqi (P
X→XN

) X= ε(λxX .q(P (x))).

We have that P(ε)(m)(q) = P(εq)(m)(id), where id : XN → XN is the identity functional.

The main result of this article is that T0 + P is equivalent to T0 + R (and hence to
Gödel’s system T), and that more specifically there is a direct correspondence between the
restricted fragments of both systems. But first we explain how selection functions and their
finite product are fundamental in the study of sequential games.

3.1 Finite sequential games
One of the most interesting aspects of the product of selection functions is that it computes
optimal strategies for a general class of sequential games. This concrete setting offers the
most insight into how the product works, so we explain it briefly here.

I Definition 12 (Finite sequential games). An m-round sequential game is defined by a tuple
(R,X, ε, q) where R and X are arbitrary types.

X is the set of possible moves for any round. A play is a sequence α : Xm.
R is the set of possible outcomes.
q : Xm → R is the outcome function that maps a play to its outcome.
εi : JRX is the selection function for round i ≤ m.

These kind of games have been defined in full generality in [3, 6], where in particular
the set of moves may vary from one round to the other. Moreover, the games defined there
allows for arbitrary quantifiers to describe the goal of each round. When these quantifiers
have associated selection functions an optimal strategy for the game can be computed. Here,
for simplicity, we will assume the selection functions are explicitly given in the definition of
the game.

Also in [3, 6], the notions of optimal strategy and optimal play are defined. The intuition
is as follows. We think of the selection functions εi as specifying at round i what the optimal
move at that round would be if we knew the final outcome corresponding to each of the
candidate moves, i.e. p : X → R. The selection function takes this mapping of moves to
outcomes and tells us what the “best” move would be in that particular case εi(p) : X. Now,
a play is considered optimal if at all rounds the best move has indeed been played. That
is to say that, there are functions pi which compute the real outcome from the move being
played, i.e. pi(α(i)) = qα, and that α(i) is exactly what the selection function at round i
would choose, i.e. α(i) = εi(pi).

The main theorem of [6] is that the product of the given selection functions for each
round, when applied to the outcome function, computes an optimal play α in the game.

I Theorem 13 ([6]). Given a sequential game as above, let

α := P0(ε)(m)(q).
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Then, α is an optimal play in the sense that setting

pi := λx.q[α](i)∗x
(
Pi+1(ε)(m)(q[α](i)∗x)

)
,

where [α](i) is the finite initial segment of α of length i, we have

α(i) X= εi(pi) (1)

pi(α(i)) R= qα

for all i ≤ m.

In more general terms, the equations (1) characterise the product as an operation that
generates a state of equilibrium from a finite sequence of selection functions. An optimal
strategy is one instance of such an equilibrium. The significance of the product of selection
functions lies in the fact that these governing equations appear repeatedly in a variety of
different contexts.

4 Interpreting the Principle of Finite Choice

In this section we show how the finite product of selection functions allows for a more direct
interpretation of (the classical) finite choice and bounded collection principles. As observed by
Spector [17], the interpretation of the negative translation of choice follows intuitionistically
from choice itself given the double negation shift

∀i¬¬A(i)→ ¬¬∀iA(i).

The same applies to finite choice, where the negative translation of finite choice follows from
finite choice plus the finite double negation shift

∀m(∀i≤m¬¬A(i)→ ¬¬∀i≤mA(i)).

Contrary to the double negation shift, the finite double negation shift is provable in Heyting
arithmetic, by induction on m. The proof, however, is rather intricate, and when interpreted
(via the dialectica) leads to witnesses based on the recursor R which are difficult to grasp
computationally. This is in stark contrast with the proof of the following theorem:

I Theorem 14. The finite product of selection functions interprets (via the dialectica
interpretation) the finite double negation shift.

Proof. Assume A(i) has dialectica interpretation ∃x∀yAi(x, y). The (partial) dialectica
interpretation of the finite double negation shift is equivalent to

∀m(∃ε∀p∀i≤mAi(εip, p(εip))→ ∀q∃α∀i≤mAi(α(i), qα)).

Given m, ε and q then taking α, pi as in Theorem 13 we clearly have

Ai(εipi, pi(εipi))→ Ai(α(i), qα)

for all i ≤ m, so the α, pi computed directly via the product of selection function witness
the interpretation of the double negation shift. J
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It should be observed that when using modified realizability (instead of the dialectica
interpretation) it is the so-called J-shift which is directly interpreted by the product of selec-
tion functions (cf. [4]). It is, therefore, rather interesting that when applying the dialectica
interpretation the same product of selection functions allows for a direct interpretation of
the double negation shift instead.

A closer look at the dialectica interpretation of the double negation shift sheds some light
on why an operation that computes optimal plays in sequential games crops up in proof
theory in this manner. The selection functions εi above act as realisers for the premise of
the double negation shift, and as such can be seen as a collection of strategies (εi)i<m that
for each i refute any counterexample functions p (in the sense of Kreisel [9, 10]) attempting
to disprove the predicate Ai.

The functional interpretation of the double negation shift calls for a procedure that takes
this collection of ‘point-wise’ strategies and produces a co-operative strategy in which the
εi work together to refute a global counterexample function q attempting to disprove the
predicate ∀i < mAi. Such a procedure is provided naturally by the product of selection
functions.

I Corollary 15. The finite product of selection functions interprets the principle of finite
choice.

Proof. The negative translation of finite choice, assuming that Ai is Π0
n, is equivalent to

∀i ≤ m¬¬∃xA∗i (x)→ ¬¬∃α∀i ≤ mA∗i (αi),

where A∗ is obtained by placing double negations after each universal quantifier in A. This
follows directly from the double negation shift applied to the formula ∃xA∗i (x), and its
dialectica interpretation is precisely that of this double negation shift. Hence, the product of
selection functions realises the dialectica interpretation of (the negative translation of) finite
choice. J

Analogous to Theorem 7, we can extend Corollary 15 to fragments of arithmetic based
on choice.

I Theorem 16. The fragment of arithmetic FΠn is interpreted in Pn−1.

Proof. This is clear for n = 1. For n > 1 by Lemma 6 if Ai is a Π0
n formula the functional

interpretation of ∃xA∗i (x) is of the form ∃x, x̃∀y(A∗i )D(x, x̃, y) where the variables of the
tuple 〈x0, x̃〉 have degree at most n− 1 (note that AD ↔ A∗ for Π0

n formulas). Hence, by
inspecting the proof of Theorem 14 we see that an instance of Πn-FAC is interpreted in
Pn−1. J

Finally we remark that bounded collection and its consequences, such as the infinite
pigeonhole principle (cf. [8], p. 173), are naturally interpreted by the product of selection
functions in a similar manner, given that finite choice straightforwardly implies bounded
collection. The realiser for the negative translation of bounded collection, namely

∀i ≤ m¬¬∃xA∗i (x)→ ¬¬∃k∀i ≤ m¬¬∃x ≤ k A∗i (x)

based on the product of selection functions is obtained from that for finite choice by essentially
applying the maximum operator to the first m elements of the sequence α (see [6] for more
details).
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5 The Recursor and the Product of Selection Functions

Although the recursor R directly interprets the induction schema, we have seen in Section 4
that it is the finite product of selection functions which directly interprets finite choice and
bounded collection. As discussed in Section 2, Parson showed that the hierarchy of bounded
collection axioms is strictly interleaving on the hierarchy of induction axioms. Therefore, one
might conjecture that the hierarchy of finite products of selection functions would be also
strictly interleaved in the hierarchy of Gödel’s primitive recursors. In this section we show
that this is not the case, and in fact the recursor of type level n+ 1 is primitive recursively
equivalent to the finite product of selection functions of type level n.

I Definition 17. It will be convenient to make use of the functional B(ε)(m)(q) : X∗ → XN

defined as

B(ε)(m)(q)(s) := P|s|(ε)(m)(qs).

By using the expanded definition of P (cf. Definition 10), it is easy to see that B, for fixed
ε,m and q, satisfies the recursion schema

B(s) :=
{

λn.0X if |s| > m

as ∗ B(s ∗ as) if |s| ≤ m

where as = ε|s|(λx.q(s ∗ x ∗ B(s ∗ x))). The intuitive reading of B is an operation that takes
a partial play s and returns s ∗ α where α is a continuation of s that is optimal up to round
m. In particular, an easy induction argument proves that for all i ≤ m

P0(ε)(m)(q)i ≡ B(〈 〉)i = B(x0, . . . , xi−1)0 (2)

where xj := P0(ε)(m)(q)j for j < i. In what follows the parameters of B will always be clear
from the context, so we will omit them for simplicity.

Notation. Given two fragments of T, say T′ and T′′, we write T′ ⇒ T′′ if all functionals
definable in T′′ can be already defined in T′.

I Theorem 18. PX,R is definable in T0 + RX∗→XN , so in particular Tn+1 ⇒ Pn.

Proof. Looking at the definition of the finite product, namely

PX,Ri (ε)(m)(q) X
N

=
{

λn.0X if i > m

a ∗ PX,Ri+1 (ε)(m)(qa) if i ≤ m

where a := εi(λx.qx(PX,Ri+1 (ε)(m)(qx))), it is clear that the schema is just a standard recursion
of typeX∗ → XN in which the quantitym+1−i decreases along the recursion until it reaches 0.
Formally, define the functionals yε,q,m : X∗ → XN and zε,q,m : N×(X∗ → XN)→ (X∗ → XN)
parametrised by ε, q and m as

yε,q,m(s) := λn.0X

zε,q,m(i, FX
∗→XN

)(s) := as ∗ F (s ∗ as)

where as := εm•−i(λx.qs∗x(F (s ∗ x))) and m•−i denotes truncated subtraction. We claim that
for all s

B(s) = RX
∗→XN

m+1•−|s|(yε,q,m, zε,q,m)(s),
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where B is as in Definition 17. In particular, it would follow that

PX,R0 (ε)(m)(q) = B(〈 〉) = RX
∗→XN

m (yε,q,m, zε,q,m)(〈 〉).

The claim is proved by induction on m+ 1 •−|s|. For |s| ≥ m+ 1 we have

Rm+1•−|s|(s) = R0(s) = yε,q,m(s) = λn.0X = B(s).

Now for |s| = i < m+ 1 we have

Rm+1•−|s|(s) = R(m•−i)+1(s) = zε,q,m(m•−i,Rm•−i)(s) = as ∗ Rm•−i(s ∗ as)

where as := εi(λx.qs∗x(Rm•−i(s ∗ x))). But by induction hypothesis we have that

Rm•−i(s ∗ x) = B(s ∗ x)

for all |s| = i. Therefore Rm+1•−i(s) = B(s). This completes the induction. J

We will show that the the types above are optimal, in the sense that we also have
the converse Pn ⇒ Tn+1. But before showing that, lets us first show how one easily has
Pn ⇒ Tn. The stronger result will require a more involved argument.

I Theorem 19. RX is definable in T0 + PX,XN , so in particular Pn ⇒ Tn.

Proof. Given arbitrary functionals y : X and z : N→ (X → X), define selection functions
εy,z : N→ JXNX parametrised by y and z as

εy,zi (pX→X
N
) X:=

{
y if i = 0

z(i− 1, p(0X)i−1) if i > 0.

Clearly λy, z.εy,z can be constructed in T0. We prove by induction on m that

Rm(y, z) = (B(εy,z)(m)(id)(〈 〉))m,

where id : XN → XN is the identity λ-term. We shall actually think of m as fixed and show

Ri(y, z) = (B(εy,z)(m)(id)(〈 〉))i,

for i ≤ m, by induction on i. When i = 0 we have (abbreviating B(s) ≡ B(εy,z)(m)(id)(s))

B(〈 〉)0 = εy,z0 (λx . . .) = y = R0(y, z).

Assuming that xj = Rj(y, z) = B(〈 〉)j , for j < i. We have

B(〈 〉)i
(2)= B(x0, . . . , xi−1)0

= εi(λx.〈x0, . . . , xi−1, x〉 ∗ B(x0 . . . , xi−1, x)) = z(i− 1, xi−1) = Ri(y, z).

J

Already, we obtain the following key result.

I Corollary 20. Gödel’s system T, i.e. T0 + R, can be equivalently defined as T0 + P.
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The intuition behind the proof of Theorem 19 is that the type R = XN represents a
register of elements of type X on which we perform a computation. The selection function εi
sets the entry xi at position i on the register to be z(i− 1, xi−1), where xi−1 is the entry at
position i− 1. The product P0(m)(εi)(id) carries out the first m steps of this computation,
returning Rm(y, z) at position m.

Of course the finite product of selection functions is able to perform a variety of com-
putations on a register XN in this manner - in which the εi determine the entry in the ith
position of the register. However, in general the selection functions are capable of making
this decision based not only on the previous entries but depending on the effect that potential
choices have on subsequent entries. This suggests that the finite product of type X is a more
powerful construction than the recursor of type X.

I Theorem 21. RX→X is definable in T0 + PX,XN .

Proof. Given arbitrary functionals y : XX and z : N → (XX → XX), define selection
functions εy,z,n,ai : JXNX parametrised by y : XX and z : N → (XX → XX) and n : N and
a : X as

εy,z,n,ai (pX→X
N
) X:=



z(n− 1, λx.p(x)1)(a) if i = 0

z(n− i− 1, λx.p(x)i+1)(p(0X)i−1) if 0 < i < n

y(p(0X)i−1) if i = n

0X otherwise

for n > 0, and

εy,z,0,ai (pX→X
N
) X:=

{
y(p(a)0) if i = 0

0X otherwise.

The functional λy, z, n, a.εy,z,n,a can be constructed in T0 since we only make use of com-
binatory completeness and definition by cases (which is primitive recursive of level 0 and
allowed in T0). We prove that R can be defined as

Rn(y, z) = λa.(P0(εy,z,n,a)(n)(id))0.

This is trivial for n = 0, so in the following we assume that n > 0. Once again, for convenience
we set B(s) := P|s|(εy,z,n,a)(n)(ids). First, we claim that

(B(x0, . . . , xi−1))0 = Rn−i(y, z)(xi−1)

for all 0 < i ≤ n. We proceed by induction on n− i. For i = n we have

(B(x0, . . . , xn−1))0 = εn(λx.〈x0, . . . , xn−1, x〉 ∗ λn.0X) = y(xn−1) = R0(y, z)(xn−1).

For 0 < i < n,

(B(x0, . . . , xi−1))0 = εi(λx.〈x0, . . . , xi−1, x〉 ∗ B(x0, . . . , xi−1, x))
= z(n− i− 1, λx.B(x0, . . . , xi−1, x)0)(xi−1)
= z(n− i− 1, λx.Rn−i−1(y, z)(x))(xi−1)
= Rn−i(y, z)(xi−1),
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assuming, by hypothesis, that B(x0, . . . , xi−1, x) = Rn−(i+1)(y, z)(x). This proves the claim,
and the theorem follows directly:

P0(ε)(n)(id)0 = B(〈 〉)0

= ε0(λx.x ∗ B(x))
= z(n− 1, λx.B(x)0)(a)
= z(n− 1, λx.Rn−1(y, z)(x))(a) = Rn(y, z)(a).

J

I Corollary 22. Pn ⇔ Tn+1.

Proof. One direction is given by Theorem 18. The other follows from Theorem 21: It can be
shown that any type of level n is isomorphic to the pure type of that level, and consequently
any two recursors of the same type level are inter-definable over T0. If deg(X) = n then
deg(X → X) = n+ 1, therefore by Theorem 21, Pn ⇒ Tn+1. J

Theorem 22 tells us that, in particular, the product of selection functions over the type X
is strictly stronger than primitive recursion of type X. For the case X = N we can illustrate
this directly by constructing the Ackermann function in P0.

I Example 23 (Ackermann function). Define the selection functions εn,ai : JNNN parametrised
by natural numbers n and a as

εn,ai (pN→NN
) N:=



(λx.p(x)1)(a+1)(1) if i = 0

(λx.p(x)i+1)(p(0X )i−1+1)(1) if 0 < i < n

p(0X)i−1 + 1 if i = n

0 otherwise

for n > 0, and

ε0,a
i (pN→NN

) N:=
{

p(a)0 + 1 if i = 0

0 otherwise

where f (j) is defined in T0 by f (0)(x) = x and f (j+1)(x) = f(f (j)(x)). We claim that

A(n, a) = (P0(εn,a)(n)(id))0 = (B(〈 〉))0

where A is the Ackermann function. For instance, A(3, a) is the first entry in an optimal
play of a sequential game with selection functions ε3,a

i and id as the outcome function. We
sketch its derivation below.

B(x0, x1, x2) = ε3,a
3 (λx.〈x0, x1, x2, x, 0, 0, . . .〉), 0, 0, . . . = x2 + 1, 0, . . . .

B(x0, x1) = ε3,a
2 (λx.〈x0, x1, x, x+ 1, 0, . . .〉), . . . = (λx.x+ 1)(x1+1)(1), . . . = x1 + 2, . . .

B(x0) = ε3,a
1 (λx.〈x0, x, x+ 2, . . .〉), . . . = (λx.x+ 2)(x0+1)(1), . . . = 2x0 + 3, . . .

B(〈 〉) = ε3,a
0 (λx.〈x, 2x+ 3, . . .〉), . . . = (λx.2x+ 3)(a+1)(1), . . . = 2(a+3) − 3, . . . .

Similarly, the first entry in the 5-round game with selection functions ε4,a
i is (2 ↑2 n+ 3)− 3

and so on. Thus the product of selection functions over N allows a much higher rate of
growth than primitive recursion over N.
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Figure 1 Fragments of Peano arithmetic and corresponding fragments of system T.

To summarise, we have shown that the finite product of selections is equivalent to the
higher type recursor in the sense that Pn ⇔ Tn+1 over T0. We conclude by pointing out
that these equivalences actually hold over a much weaker base theory, and that in particular
the finite product of lowest type defines the primitive recursors of lowest type over a weak
fragment of T0. This follows from the observation that in establishing the equivalences we
only make use of a very restricted class of primitive recursive functions, namely concatenation
of sequences and definition by cases.

I Definition 24. 1. The fragment Tb ⊂ T0 of system T is defined to be the T0 but with
constants for primitive recursion eliminated, save for definition by cases and concatenation
∗ for all types.

2. The binary product of selection functions can be defined in the language of Tb. Therefore,
we define the theory P̃n to be Tb plus the finite product of selection functions PX,R for
all types X with deg(X) ≤ n.

It is easy to see that in the proof of Theorem 19 we only need to assume Tb (rather than
T0). Therefore we obtain the following:

I Theorem 25. P̃0 ⇒ T0, so in particular P̃n can be identified with Pn, for all n.

Hence all uses of T0 above can be replaced by Tb, and as such the finite product of
selection functions PX,R is truly interchangeable with Gödel’s primitive recursor RX (for all
types X).

6 Final Remarks

The first two authors have studied in [2] an unbounded product of selection functions

PX,Ri (ε)(ψ)(q) X
N

=

 0XN if i > ψ(q(0))(
εi ⊗ PX,Ri+1 (ε)(ψ)

)
(q) if i ≤ ψ(q(0))

where the fixed bound m (cf. Definition 10) is replaced by a bounding function ψ on the
canonical outcome q(0). When ψ is the constant functional m we obtain the finite product
as a particular case of this. They have shown that this unbounded product is primitive
recursively equivalent to Spector’s bar recursion [17], and hence it is precisely what is needed
to (dialectica) interpret full classical analysis. Combining this with our results above show
that the iterated product of selection functions P provides a uniform link between Gödel’s
primitive recursor R and Spector’s bar recursion, and hence, a uniform way to interpret
arithmetic and analysis.

Figure 1 shows the different subsystems of Peano arithmetic we have considered, and
the corresponding fragments of system T needed for a dialectica interpretation. Parsons
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has shown that the fragment of PA based on Πn finite choice is strictly weaker than the
fragment based on Σn+1 induction. Nevertheless, we have shown that the product of selection
functions of type level n− 1 (which directly interprets Πn-FAC) is equivalent (over a weak
theory) to the recursor of type n (which directly interprets Σn+1-IND).

Given that FΠn is strictly weaker than IΣn+1, we conclude with the question of whether
FΠn can be (dialectica) interpreted in a fragment of T that is strictly weaker than Pn, or
whether it is in fact equivalent to IΣn+1 on a computational level, despite being logically
weaker?

Acknowledgements. The authors are grateful to Ulrich Kohlenbach for pointing out the
proof in [16] of the equivalence between Πn-FAC and Πn-BC.
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Abstract
Complementation of Büchi automata, required for checking automata containment, is of major
theoretical and practical interest in formal verification. We consider two recent approaches to
complementation. The first is the rank-based approach of Kupferman and Vardi, which operates
over a dag that embodies all runs of the automaton. This approach is based on the observation
that the vertices of this dag can be ranked in a certain way, termed an odd ranking, iff all runs
are rejecting. The second is the slice-based approach of Kähler and Wilke. This approach tracks
levels of “split trees” – run trees in which only essential information about the history of each
run is maintained. While the slice-based construction is conceptually simple, the complementing
automata it generates are exponentially larger than those of the recent rank-based construction
of Schewe, and it suffers from the difficulty of symbolically encoding levels of split trees.

In this work we reformulate the slice-based approach in terms of run dags and preorders over
states. In doing so, we begin to draw parallels between the rank-based and slice-based approaches.
Through deeper analysis of the slice-based approach, we strongly restrict the nondeterminism it
generates. We are then able to employ the slice-based approach to provide a new odd ranking,
called a retrospective ranking, that is different from the one provided by Kupferman and Vardi.
This new ranking allows us to construct a deterministic-in-the-limit rank-based automaton with
a highly restricted transition function. Further, by phrasing the slice-based approach in terms of
ranks, our approach affords a simple symbolic encoding and achieves Schewe’s tight bound.
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1 Introduction
The complementation problem for nondeterministic automata is central to the automata-
theoretic approach to formal verification [22]. To test that the language of an automaton
A is contained in the language of a second automaton B, check that the intersection of A
with an automaton that complements B is empty. In model checking, the automaton A
corresponds to the system, and the automaton B corresponds to a property [22]. While it is
easy to complement properties given as temporal logic formulas, complementation of prop-
erties given as automata is not simple. Indeed, a word w is rejected by a nondeterministic
automaton A if all runs of A on w reject the word. Thus, the complementary automaton
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has to consider all possible runs, and complementation has the flavor of determinization.
Representing liveness, fairness, or termination properties requires automata that recognize
languages of infinite words. Most commonly considered are nondeterministic Büchi au-
tomata, in which some of the states are designated as accepting, and a run is accepting if
it visits accepting states infinitely often [2]. For automata on finite words, determinization,
and hence also complementation, is done via the subset construction [15]. For Büchi au-
tomata the subset construction is not sufficient, and optimal complementation constructions
are more complicated [11].

Efforts to develop simple complementation constructions for Büchi automata started
early in the 60s, motivated by decision problems of second-order logics. Büchi suggested a
complementation construction for nondeterministic Büchi automata that involved a Ramsey-
based combinatorial argument and a doubly-exponential blow-up in the state space [2]. Thus,
complementing an automaton with n states resulted in an automaton with 22O(n) states. In
[19], Sistla et al. suggested an improved implementation of Büchi’s construction, with only
2O(n2) states, which is still not optimal. Only in [16] Safra introduced a determinization
construction, based on Safra trees, which also enabled a 2O(n logn) complementation con-
struction, matching a lower bound described by Michel [11]. A careful analysis of the exact
blow-up in Safra’s and Michel’s bounds, however, reveals an exponential gap in the constants
hiding in the O() notations: while the upper bound on the number of states in the comple-
mentary automaton constructed by Safra is n2n, Michel’s lower bound involves only an n!
blow up, which is roughly (n/e)n. In addition, Safra’s construction has been resistant to
optimal implementations [1], which has to do with the complicated combinatorial structure
of its states and transitions, which can not be encoded symbolically.

The use of complementation in practice has led to a resurgent interest in the exact
blow-up that complementation involves and the feasibility of a symbolic complementation
construction. In 2001, Kupferman and Vardi suggested a new analysis of runs of Büchi
automata that led to a simpler complementation construction [10]. In this analysis, one
considers a dag that embodies all the runs of an automaton A on a given word w. It is
shown in [10] that the nodes of this dag can be mapped to ranks, where the rank of a node
essentially indicates the progress made towards a suffix of the run with no accepting states.
Further, all the runs of A on w are rejecting iff there is a bounded odd ranking of the dag:
one in which the maximal rank is bounded, ranks along paths do not increase, paths become
trapped in odd ranks, and nodes associated with accepting states are not assigned an odd
rank. Consequently, complementation can circumvent Safra’s determinization construction
along with the complicated data structure of Safra trees, and can instead be based on an
automaton that guesses an odd ranking. The state space of such an automaton is based
on annotating states in subsets with the guessed ranks. Beyond the fact that the rank-
based construction can be implemented symbolically [20], it gave rise to a sequence of works
improving both the blow-up it involves and its implementation in practice. The most notable
improvements are the introduction of tight rankings [5] and Schewe’s improved cut-point
construction [17]. These improvements tightened the (6n)n upper bound of [10] to (0.76n)n.
Together with recent work on a tighter lower bound [23], the gap between the upper and
lower bound is now a quadratic term. Addressing practical concerns, Doyen and Raskin
have introduced a useful subsumption technique for the rank-based approach [4].

In an effort to unify Büchi complementation with other operations on automata, Kähler
and Wilke introduced yet another analysis of runs of nondeterministic Büchi automata [7].
The analysis is based on reduced split trees, which are related to the Müller-Schupp trees
used for determinization [13]. A reduced split tree is a binary tree whose nodes are sets of
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states as follows: the root is the set of initial states; and given a node associated with a set
of states, its left child is the set of successors that are accepting, while the right child is the
set of successors that are not accepting. In addition, each state of the automaton appears
at most once in each level of the binary tree: if it would appear in more than one set, it
occurs only in the leftmost one. The construction that follows from the analysis, termed
the slice-based construction, is simpler than Safra’s determinization, but its implementation
suffers from similar difficulties: the need to refer to leftmost children requires encoding of a
preorder, and working with reduced split trees makes the transition relation between states
awkward. Thus, as has been the case with Safra’s construction, it is not clear how the slice-
based approach can be implemented symbolically. This is unfortunate, as the slice-based
approach does offer a very clean and intuitive analysis, suggesting that a better construction
is hidden in it.

In this paper we reveal such a hidden, elegant, construction, and we do so by unifying
the rank-based and the slice-based approaches. Before we turn to describe our construction,
let us point to a key conceptual difference between the two approaches. This difference has
made their relation of special interest and challenge. In the rank-based approach, the ranks
assigned to a node bound the visits to accepting states yet to come. Thus, the ranks refer
to the future of the run, making the rank-based approach inherently nondeterministic. In
contrast, in the slice-based approach, the partition of the states of the automaton to the
different sets in the tree is based on previous visits to accepting states. Thus, the partition
refers to the past of the run, and does not depend on its future.

In order to draw parallels between the two approaches, we present a formulation of the
slice-based approach in terms of run dags. A careful analysis of the slice-based approach
then enables us to reduce the nondeterminism in the construction. We can then employ
this improved slice-based approach in order to define a particular odd ranking of rejecting
run dags, called a retrospective ranking. In addition to revealing the theoretical connections
between the two seemingly different approaches, the new ranks lead to a complementa-
tion construction with a transition function that is smaller and deterministic in the limit:
every accepting run of the automaton is eventually deterministic. This presents the first
deterministic-in-the-limit complementation construction that does not use determinization.
Determinism in the limit is central to verification in probabilistic settings [3] and has proven
useful in experimental results [18]. Phrasing slice-based complementation as an odd ranking
also immediately affords us the improved cut-point of Schewe, the subsumption operation
of Doyen and Raskin, and provides an easy symbolic encoding.

2 Preliminaries

A nondeterministic Büchi automaton on infinite words (NBW) is a tupleA=〈Σ, Q,Qin, ρ, F 〉,
where Σ is a finite alphabet, Q a finite set of states, Qin ⊆ Q a set of initial states, F ⊆ Q a
set of accepting states, and ρ : Q× Σ → 2Q a nondeterministic transition relation. A state
q ∈ Q is deterministic if for every σ ∈ Σ it holds that |ρ(q, σ)| ≤ 1. We lift the function ρ to
sets R of states in the usual fashion: ρ(R, σ) =

⋃
q∈R ρ(q, σ).

A run of an NBW A on a word w = σ0σ1 · · · ∈ Σω is an infinite sequence of states
p0, p1, . . . ∈ Qω such that p0 ∈ Qin and, for every i ≥ 0, we have pi+1 ∈ ρ(pi, σi). A run is
accepting iff pi ∈ F for infinitely many i ∈ IN. A word w ∈ Σω is accepted by A if there
is an accepting run of A on w. The words accepted by A form the language of A, denoted
by L(A). The complement of L(A), denoted L(A), is Σω \ L(A). We say an automaton is
deterministic in the limit if every state reachable from an accepting state is deterministic.
Converting A to an equivalent deterministic in the limit automaton involves an exponential
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Figure 1 Left, the NBW A, in which all states are initial. Right, the rejecting run dag G of A
on w = babaabaaabaaaa · · · . Nodes are superscripted with the prospective ranks of Section 2.

blowup [3, 16]. One can simultaneously complement and determinize in the limit, via co-
determinization into a parity automaton [14], and then converting that parity automaton
to a deterministic-in-the-limit Büchi automaton, with a cost of (n2/e)n.

Consider an NBW A and an infinite word w = σ0σ1 · · · . The runs of A on w can be
arranged in an infinite dag (directed acyclic graph) G = 〈V,E〉, where

V ⊆ Q× IN is such that 〈q, i〉 ∈ V iff some run p of A on w has pi = q.
E ⊆

⋃
i≥0 (Q×{i})×(Q×{i+1}) is s.t. E(〈q, i〉, 〈q′, i+1〉) iff 〈q, i〉 ∈ V and q′ ∈ ρ(q, σi).

The dag G, called the run dag of A on w, embodies all possible runs of A on w. We are
primarily concerned with initial paths in G: paths that start in Qin × {0}. Define a node
〈q, i〉 to be an F -node when q ∈ F , and a path in G to be accepting when it is both initial
and contains infinitely many F -nodes. An accepting path in G corresponds to an accepting
run of A on w. When G contains an accepting path, call G an accepting run dag, otherwise
call it a rejecting run dag. We often consider dags H that are subgraphs of G. A node u
is a descendant of v in H when u is reachable from v in H. A node v is finite in H if it has
only finitely many descendants in H. A node v is F -free in H if it is not an F -node, and
has no descendants in H that are F -nodes. We say a node splits when it has at least two
children, and conversely that two nodes join when they share a common child.
Example 1. In Figure 1 we describe an NBW A that accepts words with finitely many b’s.
On the right is a prefix of the rejecting run dag of A on w = babaabaaabaaaa · · · .

If an NBW A does not accept a word w, then every run of A on w must eventually cease
visiting accepting states. The notion of rankings, foreshadowed in [9] and introduced in [10],
uses natural numbers to track the progress of each run in the dag towards this point. A
ranking for a dag G = 〈V,E〉 is a mapping from V to IN, in which no F -node is given an
odd rank, and in which the ranks along all paths do not increase. Formally, a ranking is
a function r : V → IN such that if u ∈ V is an F -node then r(u) is even; and for every
u, v ∈ V , if (u, v) ∈ E then r(u) ≥ r(v). Since each path starts at a finite rank and ranks
cannot increase, every path eventually becomes trapped in a rank. A ranking is called an
odd ranking if every path becomes trapped in an odd rank. Since F -nodes cannot have odd
ranks, if there is an odd ranking r, then every path in G must stop visiting accepting nodes
when it becomes trapped in its final, odd, rank, and G must be a rejecting dag.

I Lemma 1. [10] If a run dag G has an odd ranking, then G is rejecting.

A ranking is bounded by l when its range is {0, ..., l}, and an NBW A is of rank l when for
every w 6∈ L(A), the rejecting dag G has an odd ranking bounded by l. If we can prove that
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an NBW A is of rank l, we can use the notion of odd rankings to construct a complementary
automaton. This complementary NBW, denoted AlR, tracks the levels of the run dag and
attempts to guess an odd ranking bounded by l. An l-bounded level ranking for an NBW A is
a function f : Q→ {0, . . . , l,⊥}, such that if q ∈ F then f(q) is even or ⊥. Let Rl be the set
of all l-bounded level rankings. The state space of AlR is based on the set of l-bounded level
rankings for A. To define transitions of AlR, we need the following notion: for σ ∈ Σ and
f, f ′ ∈ Rl, say that f ′ follows f under σ when for every q ∈ Q and q′ ∈ ρ(q, σ), if f(q) 6= ⊥
then f ′(q′) 6= ⊥ and f ′(q′) ≤ f(q): i.e. no transition between f and f ′ on σ increases in
rank. Finally, to ensure that the guessed ranking is an odd ranking, we employ the cut-point
construction of Miyano and Hayashi, which maintains an obligation set of nodes along paths
obliged to visit an odd rank [12]. For a level ranking f , let even(f) = {q | f(q) is even} and
odd(f) = {q | f(q) is odd}.

I Definition 2. For an NBW A = 〈Σ, Q,Qin, ρ, F 〉 and l ∈ IN, define AlR to be the NBW
〈Σ,Rl × 2Q, 〈f in, ∅〉, ρR,Rl × {∅}〉, where

f in(q) = l for each q ∈ Qin, ⊥ otherwise.

ρR(〈f,O〉, σ) =
{
{〈f ′, ρ(O, σ) \ odd(f ′)〉 | f ′ follows f under σ} if O 6= ∅,
{〈f ′, even(f ′)〉 | f ′ follows f under σ} if O = ∅.

By [10], for every l ∈ IN, the NBW AlR accepts only words rejected by A — exactly all
words for which there exists an odd ranking with maximal rank l. In addition, [10] proves
that for every rejecting run dag there exists a bounded odd ranking. Below we sketch the
derivation of this ranking. Given a rejecting run dag G, we inductively define a sequence
of subgraphs by eliminating nodes that cannot be part of accepting runs. At odd steps we
remove finite nodes, while in even steps we remove nodes that are F -free. Formally, define
a sequence of subgraphs as follows:

G0 = G.
G2i+1 = G2i \ {v | v is finite in G2i}.
G2i+2 = G2i+1 \ {v | v is F -free in G2i+1}.

It is shown in [6, 10] that only m = 2|Q \ F | steps are necessary to remove all nodes
from a rejecting run dag: Gm is empty. Nodes can be ranked by the last graph in which
they appear: for every node u ∈ G, the prospective rank of u is the index i such that u ∈ Gi
but u 6∈ Gi+1. The prospective ranking of G assigns every node its prospective rank. Paths
through G cannot increase in prospective rank, and no F -node can be given an odd rank:
thus the prospective ranking abides by the requirements for rankings. We call these rankings
prospective because the rank of a node depends solely on its descendants. By [10], if G is a
rejecting run dag, then the prospective ranking of G is an odd ranking bounded by m. By
the above, we thus have the following.
I Theorem 3. [10] For every NBW A, it holds that L(AmR ) = L(A).
Example 2. In Figure 1, nodes for states s and t are finite in G0. Without these nodes,
r-nodes are F -free in G1. Similarly, q-nodes are finite in G2, and p-nodes are F -free in G3.

Karmarkar and Chakraborty derive both theoretical and practical benefits from exploit-
ing properties of this prospective ranking: they demonstrated an unambiguous complemen-
tary automaton that, for certain classes of problems, is exponentially smaller than AmR [8].

Tight Rankings: For an odd ranking r and l ∈ IN, let max_rank(r, l) be the maximum
rank that r assigns a vertex on level l of the run dag. We say that r is tight 1 if there exists

1 This definition of tightness is weaker that of [5], but does not affect the resulting bounds.
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an i ∈ IN such that, for every level l ≥ i, all odd ranks below max_rank(r, l) appear on
level l. It is shown in [5] that the retrospective ranking is tight. This observation suggests
two improvements to AmR . First, we can postpone, in an unbounded manner, the level in
which it starts to guess the level ranking. Until this point, AmR may use sets of states to
deterministically track only the levels of the run dag, with no attempt to guess the ranks.
Second, after this point, AmR can restrict attention to tight level rankings – ones in which
all the odd ranks below the maximal rank appear. Formally, say a level ranking f with a
maximum rank mr = max{f(q) | q ∈ Q, f(q) 6= ⊥} is tight when, for every odd i ≤ mr,
there exists a q ∈ Q such that f(q) = i. Let RmT be the subset of Rm that contains only tight
level rankings. The size of RmT is at most (0.76n)n [5]. Including the cost of the cut-point
construction, this reduces the state space of AmR to (0.96n)n.

3 Analyzing DAGs With Profiles
In this section we present an alternate formulation of the slice-based complementation con-
struction of Kähler and Wilke [7]. Whereas Kähler and Wilke approached the problem
through reduced split trees, we derive the slice-based construction directly from an analysis
of the run dag. This analysis proceeds by pruning G in two steps: the first removes edges,
and the second removes vertices.

Profiles: Consider a run dag G = 〈V,E〉. Let l : V → {0, 1} be such that l(〈q, i〉) = 1
if q ∈ F and l(〈q, i〉) = 0 otherwise. Thus, l labels F -nodes by 1 and all other nodes by
0. The profile of a path in G is the sequence of labels of nodes in the path. The profile
of a node is then the lexicographically maximal profile of all initial paths to that node.
Formally, let ≤ be the lexicographic ordering on {0, 1}∗ ∪ {0, 1}ω. The profile of a finite
path b = v0, v1, . . . , vn in G, written hb, is l(v0)l(v1) · · · l(vn), and the profile of an infinite
path b = v0, v1, . . . is hb = l(v0)l(v1) · · · . Finally, the profile of a node v, written hv, is
the lexicographically maximal element of {hb | b is an initial path to v}. The lexicographic
order of profiles induces a preorder over nodes.

We define the sequence of preorders �i over the nodes on each level of the run dag as
follows. For every two nodes u and v on a level i, we have that u ≺i v if hu < hv, and u ≈i v
if hu = hv. For convenience, we conflate nodes on the ith level of the run dag with their
states when employing this preorder, and say q �i r when 〈q, i〉 �i 〈r, i〉. Note that ≈i is an
equivalence relation. Since the final element of a node’s profile is 1 iff the node is an F -node,
all nodes in an equivalence class must agree on membership in F . We call an equivalence
class an F -class when all its members are F -nodes, and a non-F -class when none of its
members is an F -node. We now use profiles in order to remove from G edges that are not
on lexicographically maximal paths. Let G′ be the subgraph of G obtained by removing all
edges 〈u, v〉 for which there is another edge 〈u′, v〉 such that u ≺|u| u′. Formally, G′ = 〈V,E′〉
where E′ = E \ {〈u, v〉 | there exists u′ ∈ V such that 〈u′, v〉 ∈ E and u ≺|u| u′}.

I Lemma 4. For every two nodes u and v, if (u, v) ∈ E′, then hv ∈ {hu0, hu1}.

Proof. Assume by way of contradiction that hv 6∈ {hu0, hu1}. Recall that hv is the lexico-
graphically maximal element of {hb | b is an initial path to v}. Thus our assumption entails
an initial path b to v so that hb > hu1. Let u′ be b|u|: the node on the same level of G as
u. Since b is a path to v, it holds that (u′, v) ∈ E. Further, since hb > hu1, it must be that
hu′ > hu. By definition of E′, the presence of (u′, v) where hu′ > hu precludes the edge
(u, v) from being in E′ — a contradiction. J
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Note that while it is possible for two nodes with different profiles to share a child in G,
Lemma 4 precludes this possibility in G′. If two nodes join in G′, they must have the same
profile and be in the same equivalence class. We can thus conflate nodes and equivalence
classes, and for every edge (u, v) ∈ E′, consider [v] to be the child of [u]. Lemma 4 then
entails that the class [u] can have at most two children: the class of F -nodes with profile
hu1, and the class of non-F -nodes with profile hu0. We call the first class the F -child of [u],
and the second class the non-F -child of [u].

By using lexicographic ordering we can derive the preorder for each level i+1 of the run
dag solely from the preorder for the previous level i. To determine the relation between two
nodes, we need only know the relation between the parents of those nodes, and whether the
nodes are F -nodes. Formally, we have the following.

I Lemma 5. For all nodes u, v on level i, and nodes u′, v′ where E′(u, u′) and E′(v, v′):
If u ≺i v, then u′ ≺i+1 v

′.
If u ≈i v and either both u′ and v′ are F -nodes, or neither are F -nodes, then u′ ≈i+1 v

′.
If u ≈i v and v′ is an F -node while u′ is not, then u′ ≺i+1 v

′.

Proof. If u ≺i v, then hu < hv and, by Lemma 4, we know that hu′ ∈ {hu0, hu1} must be
smaller than hv′ ∈ {hv0, hv1}, implying that u′ ≺i+1 v

′. If u ≈i v, we have three sub-cases.
If v′ is an F -node and u′ is not, then hu′ = hu0 = hv0 < hv1 = hv′ , and u′ ≺i+1 v

′. If both
u′ and v′ are F -nodes, then hu′ = hu1 = hv1 = hv′ , and u′ ≈i v′. Finally, if neither are
F -nodes, then hu′ = hu0 = hv0 = hv′ and u′ ≈i v′. J

We now demonstrate that by keeping only edges associated with lexicographically max-
imal profiles, G′ captures an accepting path from G.

I Lemma 6. G′ has an accepting path iff G has an accepting path.

Proof. In one direction, if G′ has an accepting path, then its superset G has the same path.
In the other direction, assume G has an accepting path. Consider the set P of accepting

paths in G. We prove that there is a lexicographically maximal element π ∈ P . To begin,
we construct an infinite sequence, P0, P1, . . ., of subsets of P such that the elements of Pi
are lexicographically maximal in the first i +1 positions. If P contains paths starting in
an F -node, then P0 = {b | b ∈ P, b0 is an F -node} is all elements beginning in F -nodes.
Otherwise P0 = P . Inductively, if Pi contains an element b such that bi+1 is an F -node,
then Pi+1 = {b | b ∈ Pi, bi+1 is an F -node}. Otherwise Pi+1 = Pi. For convenience, define
the predecessor of Pi to be P if i = 0, and Pi−1 otherwise. Note that since G has an
accepting path, P is non-empty. Further, every set Pi is not equal to its predecessor P ′ only
when there is a path in P ′ with an F -node in the ith position. In this case, that path is in
Pi. Thus every Pi is non-empty.

First, we prove that there is a path π ∈
⋂
i≥0 Pi. Consider the sequence U0, U1, U2, . . .

where Ui is the set of nodes that occur at position i in runs in Pi. Formally, Ui =
{u | u ∈ G, b ∈ Pi, u = bi}. Each node in Ui+1 has a parent in Ui, although it may not
have a child in Ui+2. We can thus connect the nodes in

⋃
i>0 Ui to their parents, forming a

sub-dag of G. As every Pi is non-empty, every Ui is non-empty, and this dag has infinitely
many nodes. Since each node has at most n children, by Kon̈ig’s Lemma there is an initial
path π through this dag, and thus through G. We now show by induction that π ∈ Pi for
every i. As a base case, π ∈ P . Inductively, assume π is in the predecessor P ′ of Pi. The set
Pi is either P ′, in which case π ∈ Pi, or the set {b | b ∈ P ′, bi is an F -node}. In this latter
case, as Ui consists only of F -nodes, the node πi must be an F -node. and π ∈ Pi.
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Second, having established that there must be an element π ∈
⋂
i≥0 Pi, we prove π

is lexicographically maximal in P . Assume by way of contradiction that there exists an
accepting path π′ so that hπ′ > hπ. Let k be the first point where hπ′ differs from hπ.
At this point, it must be that πk is not an F node, while π′k is an F node. However,
π′ is an accepting path that shares a profile with π up until this point. As π is in the
predecessor P ′ of Pk, it must also be that π′ is in P ′. By definition, Pk then would be
{b | b ∈ P ′, bk is an F -node}. This would imply π 6∈ Pk, a contradiction.

Finally, we demonstrate that every edge in π occurs in G′. Assume by way of contradic-
tion that some edge (πi, πi+1) is in E but not in E′. This implies there is a node u on level
i such that (u, πi+1) is in E and πi ≺i u. Since u ∈ G, there is an initial path b to u. Thus,
the path b, u, πi+1, πi+2 . . . is an accepting path in G. This path is lexicographically larger
than π, contradicting the second claim above. Hence, π is an accepting path in G′. J

In the next stage, we remove from G′ finite nodes. Let G′′ = G′ \ {v | v is finite in G′}.
Note there may be nodes that are not finite in G, but are finite in G′. It is not hard to see
that G may have infinitely many F -nodes and still not contain a path with infinitely many
F -nodes. Indeed, G may have infinitely many paths each with finitely many F -nodes. We
now show that the transition from G via G′ to G′′ removes this possibility, and the presence
of infinitely many F -nodes in G′′ does imply a path with infinitely many F -nodes.

I Lemma 7. G has an accepting path iff G′′ has infinitely many F -nodes.

Proof. If G has an accepting path, then by Lemma 6 G′ contains an accepting path. Every
node in this path is infinite in G′, and thus this path is preserved in G′′. This path contains
infinitely many F -nodes, and thus G′′ contains infinitely many F -nodes.

In the other direction, we consider the dag over equivalence classes induced by G′′.
Given a node u in G′′, recall that its equivalence class in G′′ contains all states v such that
v ∈ G′′ and hu = hv. Given two equivalence classes U and V , recall that V is a child of
U when there are u ∈ U , v ∈ V , and E′′(u, v). As mentioned above, once we have pruned
edges not in G′, two nodes of different classes cannot join. Thus this dag is a tree. Further,
as every node u in G′′ is infinite and has a child, its equivalence class must also have a child.
Thus the dag of classes in G′′ is a leafless tree. The width of this tree must monotonically
increase and is bounded by n. It follows that at some level j the tree reaches a stable width.
We call this level j the stabilization level of G.

After the stabilization level, each class U has exactly one child: as noted above, U cannot
have zero children, and if U had two children the width of the tree would increase. Therefore,
we identify each equivalence class on level j of G′′ with its unique branch of children in G′′,
which we term its pipe. These pipes form a partition of nodes in G′′ after j. Every node
in these pipes has an ancestor, or it would not be in the dag, and has a child, or it would
not be infinite and in G′′. Therefore each node is part of an infinite path in this pipe.
Thus, the pipe with infinitely many F -classes contains only accepting paths. These paths
are accepting in G, which subsumes G′′. J

In the proof above we demonstrated there is a stabilization level j at which the number
of equivalence classes in G′′ stabilized, and discussed the pipes of G′′: the single chain of
descendants from each equivalence class on the stabilization level j of G′′.
Example 3. Figure 2 displays G′′ for the example of Figure 1. Edges removed from G′ are
dotted: at levels 1 and 3. When both r and s transition to t, they have the same profile and
both edges remain. All but the first q-node are finite in G′. The stabilization level is 0.
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Figure 2 The run dag G′′, where dotted edges were removed from G and dotted states were
removed from G′. Nodes are superscripted with their l-labels. Bold lines denote the pipes of G′′.
The lexicographic order of equivalence classes for each level of G′ is to the right.

Complementing With Profiles: We now complement A by constructing an NBW, AS ,
that employs Lemma 7 to determine if a word is in L(A). This construction is a reformulation
of the slice-based approach of [7] in the framework of run dags. The NBW AS tracks the
levels of G′ and guesses which nodes are finite in G′ and therefore do not occur in G′′. To
track G′, the automaton AS stores at each point in time a set S of states that occurs on each
level. The sets S are labeled with a guess of which nodes are finite and which are infinite.
States that are guessed to be infinite, and thus correspond to nodes in G′′, are labeled >,
and states that are guessed to be finite, and omitted from G′′, are labeled ⊥. In order to
track the edges of G′, and thus maintain this labeling, AS needs to know the lexicographic
order of nodes. Thus AS also maintains the preorder �i over states on the corresponding
level of the run dag. To enforce that states labeled ⊥ are indeed finite, AS employs the
cut-point construction of Miyano and Hayashi [12], keeping an “obligation set” of states
currently being verified as finite. Finally, to ensure the word is rejected, AS must enforce
that there are finitely many F -nodes in G′′. To do so, SA uses a bit b to guess the level from
which no more F -nodes appear in G′′. After this point, all F -nodes must be labeled ⊥.

Before we define AS , we formalize preordered subsets and operations over them. For a
set Q of states, define Q = {〈S,�〉 | S ⊆ Q and � is a preorder over S} to be the set of
preordered subsets of Q. Let 〈S,�〉 be an element in Q. When considering the successors
of a state, we want to consider edges that remain in G′. For every state q ∈ S and σ ∈ Σ,
define ρ〈S,�〉(q, σ) = {r ∈ ρ(q, σ) | for every q′ ∈ S, if r ∈ ρ(q′, σ) then q′ � q}. Now define
the σ-successor of 〈S,�〉 as the tuple 〈ρ(S, σ),�′〉, where for every q, r ∈ S, q′ ∈ ρ〈S,�〉(q, σ),
and r′ ∈ ρ〈S,�〉(r, σ):

If q ≺ r, then q′ ≺′ r′
If q ≈ r and either both r′ ∈ F and q′ ∈ F , or both r′ 6∈ F and q′ 6∈ F , then q′ ≈′ r′.
If q ≈ r and one of q′ and r′, say r′, is in F while the other, q′, is not, then q′ ≺′ r′.

We now define AS . The states of AS are tuples 〈S,�, λ,O, b〉 where: 〈S,�〉 ∈ Q is
preordered subset of Q; λ : S → {>,⊥} is a labeling indicating which states are guessed to
be finite (⊥) or infinite (>), O ⊆ S is the obligation set, and b ∈ {0, 1} is a bit indicating
whether we have seen the last F -node in G′′. To transition between states of As, say that
t′ = 〈S′,�′, λ′, O′, b′〉 follows t = 〈S,�, λ,O, b〉 under σ when:

(1) 〈S′,�′〉 is the σ-successor of 〈S,�〉.
(2) λ′ is such that for every q ∈ S:

If λ(q) = >, then there exists r ∈ ρ〈S,�〉(q, σ) such that λ′(r) = >,



Seth Fogarty, Orna Kupferman, Moshe Y. Vardi, and Thomas Wilke 257

If λ(q) = ⊥, then for every r ∈ ρ〈S,�〉(q, σ), it holds that λ′(r) = ⊥.

(3) O′ =
{⋃

q∈O ρ〈S,�〉(q, σ) O 6= ∅,
{q | q ∈ S′ and λ′(q) = ⊥} O = ∅.

(4) b′ ≥ b.
We want to ensure that runs of AS reach a suffix where all F -nodes are labeled finite. Given
a state of AS 〈S,�, λ,O, b〉, say that λ is F -free if for every q ∈ S ∩ F we have λ(q) = ⊥.

IDefinition 8. For an NBWA = 〈Σ, Q,Qin, ρ, F 〉, letAS be the NBW 〈Σ, QS , QinS , ρS , FS〉,
where:

QS = {〈S,�, λ,O, b〉 | if b = 1 then λ is F -free},
QinS = {〈Qin,�, λ, ∅, 0〉 | for all q, r ∈ Qin, q � r iff q 6∈ F or r ∈ F},
ρS(t, σ) = {t′ | t′ follows t under σ}, and
FS = {〈S,�, λ, ∅, 1〉}.

I Theorem 9. For every NBW A, it holds that L(AS) = L(A).

The proof of correctness for Theorem 9 is straightforward and based on correlating runs
of AS with G and its subgraphs. If n= |Q|, the number of preordered subsets is roughly
(0.53n)n [21]. As there are 2n labelings, and a further 2n obligation sets, the state space of
As is at most (2n)n. The slice-based automaton obtained in [7] coincides with AS , modulo
the details of labeling states and the cut-point construction. Whereas the correctness proof
in [7] is given by means of reduced split trees, here we proceed directly on the run dag.

4 Retrospection
Consider an NBW A. So far, we presented two complementation constructions for A,
generating the NBWsAmR andAS . In this section we present a third construction, generating
an NBW that combines the benefits of the two constructions above. Both constructions refer
to the run dag of A. In the rank-based approach applied in AmR , the ranks assigned to a
node bound the visits in accepting states yet to come. Thus, the ranks refer to the future,
making AmR inherently nondeterministic. On the other hand, the NBW AS refers to both
the past, using profiles to prune edges from G, as well as to the future, by keeping in G′′

only nodes that are infinite in G′. Guessing which nodes are infinite and labeling them >
inherently introduces nondeterminism into the automaton.

Our first goal in the combined construction is to reduce this latter nondeterminism.
Recall that a labeling is F -free if all the states in F are labeled ⊥. Observe that the fewer
labels of ⊥ (finite nodes) we have, the more difficult it is for a labeling to be F -free and,
consequently, the more difficult it is for a run of AS to proceed to the F -free suffix in which
b = 1. It is therefore safe for AS to underestimate which nodes to label ⊥, as long as the
requirement to reach an F -free suffix is maintained. We use this observation in order to
introduce a purely retrospective construction.

For a run dag G, say that a level k is an F -finite level of G when all F -nodes after level
k (i.e. on a level k′ where k′ > k) are finite in G′. By Lemma 7, G is rejecting iff there is a
level after which G′′ has no F -nodes. As finite nodes in G′ are removed from G′′, we have:

I Corollary 10. A run dag G is rejecting iff it has an F -finite level.

Retrospective Labeling: The labeling function λ used in the construction of AS labels
nodes by {>,⊥}, with ⊥ standing for “finite” and > standing for “infinite”. In this section
we introduce a variant of λ that again maps nodes to {>,⊥} except that now > stands for
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“unrestricted”, allowing us to underestimate which nodes to label ⊥. To capture the relaxed
requirements on labelings, say that a labeling λ is legal when every ⊥-labeled node is finite
in G′. This enables the automaton to track the labeling and its effect on F -nodes only after
it guesses that an F -finite level k has been reached: all nodes at or before level k (i.e. on a
level k′ where k′ ≤ k) are unrestricted, whereas F -nodes after level k and their descendants
are required to be finite. The only nondeterminism in the automaton lies in guessing when
the F -finite level has been reached. This reduces the branching degree of the automaton to
2, and renders it deterministic in the limit.

The suggested new labeling is parametrized by the F -finite level k. The labeling λk is
defined inductively over the levels of G. Let Si be the set of nodes on level i of G. For i ≥ 0,
the function λk : Si → {>,⊥} is defined as follows:

If i ≤ k, then for every u ∈ Si we define λk(u) = >.
If i > k, then for every u ∈ Si:

If u is an F -node, then λk(u) = ⊥.
Otherwise, λk(u) = λk(v), for a node v where E′(v, u).

For λk to be well defined when i > k and u is not an F -node, we need to show that λk(u)
does not depend on the choice of the node v where E′(v, u) holds. By Lemma 4, all parents
of a node in G′ belong to the same equivalence class. Therefore, it suffices to prove that all
nodes in the same class share a label: for all nodes u and u′, if u′ ≈|u| u then λk(u) = λk(u′).
The proof proceeds by an induction on i = |u|. Consider two nodes u and u′ on level i where
u′ ≈i u. As a base case, if i ≤ k, then u and u′ are labeled >. For i > k, if u is an
F -node, then u′ is also an F -node and λk(u) = λk(u′) = ⊥. Finally, if u and u′ are both
non-F -nodes, recall that all parents of u are in the same equivalence class V . As u ≈i u′,
Lemma 4 implies that all parents of u′ are also in V By the induction hypothesis, all nodes
in V share a label, and thus λk(u) = λk(u′).

I Lemma 11. For a run dag G and k ∈ IN, the labeling λk is legal iff k is an F -finite level
for G.

Proof. If λk is legal, then every ⊥-labeled node is finite in G′. Every F -node after level k is
labeled ⊥, and thus k is an F -finite level for G. If λk is not legal, then there is a ⊥-labeled
node u that is infinite in G′. Every ancestor of u is also infinite. Let u′ be the earliest
ancestor of u (possibly u itself) so that λk(u′) = ⊥. Observe that only nodes after level k
can be ⊥-labeled, and so u′ is on a level i > k. It must be that u′ is an F -node: otherwise
it would inherit its parents’ label, and by assumption the parents of u′ are >-labeled. Thus,
u′ is an F -node after level k that is infinite in G′, and k is not an F -finite level for G. J

I Corollary 12. A run dag G is rejecting iff, for some k, the labeling λk is legal.

From Labelings to Rankings: In this section we derive an odd ranking for G from the
function λk, thus unifying the retrospective analysis behind λk with the rank-based analysis
of [10]. Consider again the dag G′ and the function λk. Recall that every equivalence class
U has at most two child equivalence classes, one F -class and one non-F -class. Past the
F -finite level k, only non-F -classes can be labeled >. Hence, after level k, every >-labeled
equivalence class U can only have a one child that is >-labeled. For every class U on level
k, we consider this possibly infinite sequence of >-labeled non-F -children. The odd ranking
we are going to define, termed the retrospective ranking, gives these sequences of >-labeled
children odd ranks. The ⊥-labeled classes, which lie between these sequences of >-labeled
classes, are assigned even ranks. The ranks increase in inverse lexicographic order, i.e. the
maximal >-labeled class in a level is given rank 1. As with λk, the retrospective ranking is
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parametrized by k. The primary insight that allows this ranking is that there is no need to
distinguish between two adjacent ⊥-labeled classes. Formally, we have the following.

I Definition 13 (k-retrospective ranking). Consider a run dag G, k ∈ IN, and a labeling
λk : G → {>,⊥}. Let m = 2|Q \ F |. For a node u on level i of G, let α(u) be the number
of >-labeled classes lexicographically larger than u; α(u) = |{[v] | λk(v) = > and u ≺i v}|.
The k-retrospective ranking of G′ is the function rk : V → {0..m} defined for every node u
on level i as follows.

rk(u) =


m if i ≤ k,
2α(u) if i > k and λk(u) = ⊥,
2α(u) + 1 if i > k and λk(u) = >.

Note that rk is tight. As defined in Section 2, a ranking is tight if there exists an i ∈ IN
such that, for every level l ≥ i, all odd ranks below max_rank(r, l) appear on level l. For
rk this level is k + 1, after which each >-labeled class is given the odd rank greater by two
than the rank of the next lexicographically larger >-labeled class.

I Lemma 14. For every k ∈ IN, the following hold:
(1) If u ≺|u| u′ then rk(u) ≥ rk(u′).
(2) If (u, v) ∈ E′, then rk(u) ≥ rk(v).

Proof. As both claims are trivial when u is at or before level k, assume u is on level i > k.
To prove the first claim, note that α(u) ≥ α(u′): every class, >-labeled or not, that is
larger than u′ must also be larger than u. If α(u) > α(u′), then (1) follows immediately.
Otherwise α(u) = α(u′), which implies that λk(u′) = ⊥: otherwise [u′] would be a >-
labeled equivalence class larger than u, but not larger than itself. Thus rk(u′) = 2α(u), and
rk(u) ∈ {2α(u), 2α(u)+1} is at least rk(u′).

As a step towards proving the second claim, we show that α(u) ≥ α(v). Consider every
>-labeled class [v′] where v ≺i+1 v

′. The class [v′] must have a >-labeled parent [u′]. Since
v ≺i+1 v

′, the contrapositive of Lemma 5, part 1, entails that u �i u′. By the definition
of λk, the class [u′] can only have one >-labeled child class: [v′]. We have thus established
that for every >-labeled class larger than v, there is a unique >-labeled class larger than u,
and can conclude that α(u) ≥ α(v). We now show by contradiction that rk(u) ≥ rk(v). For
rk(u) < rk(v), it must be that α(u) = α(v), that rk(u) = 2α(u), and that rk(v) = 2α(u) +1.
In this case, λk(u) = ⊥ and λk(v) = >. Since a ⊥-labeled node cannot have a >-labeled
child in G′, this is impossible. J

When k is an F -finite level of G, the k-retrospective ranking is a bounded odd ranking.

I Lemma 15. For a run dag G and k ∈ IN, the function rk is a ranking bounded by m.
Further, if the labeling λk is legal then rk is an odd ranking.

Proof. There are three requirements for rk to be a ranking bounded by m:
(1) Every F -node must have an even rank. At or before level k, every node has even rank

m. After k only >-labeled nodes are given odd ranks, and every F -node is labeled ⊥.
(2) For every (u, v) ∈ E, it must hold that rk(u) ≥ rk(v). If u is at or before level k, then

it has the maximal rank of m. If u is after level k, we consider two cases: edges in
E′, and edges in E \ E′. For edges in E′, this follows from Lemma 14 (2). For edges
(u, v) ∈ E \E′, we know there exists a u′ where u ≺|u| u′ and (u′, v) ∈ E′. By Lemma
14, rk(u) ≥ rk(u′) ≥ rk(v).
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Figure 3 The run dag G′, where 0 is an F -finite level. The labels of λ0 and ranks in r0

are displayed as superscripts and subscripts, respectively. The bold lines display the sequences of
>-labeled classes in G′. The lexicographic order of states is repeated on the right.

(3) The rank is bounded by m. No F -node can be >-labeled. Thus the maximum number
of >-labeled classes on every level is |Q \ F |. The largest possible rank is given to a
node smaller than all >-labeled classes, which must be be a F -node and ⊥-labeled.
Thus this node is given a rank of at most m = 2|Q \ F |.

It remains to show that if λk is legal, then rk is an odd ranking. Consider an infinite
path u0, u1, . . . in G. We demonstrate that for every i > k such that rk(ui) is an even
rank e, there exists i′ > i such that rk(ui′) 6= e. Since a path cannot increase in rank, this
implies rk(ui′) < e. To do so, define the sequence Ui, Ui+1, . . ., of sets of nodes inductively
as follows. Let Ui = {v | rk(v) = e}. For every j ≥ i, let Uj+1 = {v | v′ ∈ Uj , (v′, v) ∈ E′}.
As rk(v) is even only when λk(v) = ⊥, if λk is legal then every node given an even rank
(such as e) must be finite in G′. Therefore every element of Ui is finite in G′, and thus at
some i′ > i, the set Ui′ is empty. Since Ui′ is empty, to establish that rk(ui′) 6= e, it is
sufficient to prove that for every j, if rk(uj) = e, then uj ∈ Uj .

To show that rk(uj) = e entails uj ∈ Uj , we prove a stronger claim: for every j ≥ i and
v on level j, if uj �j v and rk(v) = e, then v ∈ Uj . We proceed by induction over j. For the
base case of j = i, this follows from the definition of Ui. For the inductive step, take a node
v on level j +1 where rk(v) = e and uj+1 �j+1 v. We consider two cases. If rk(uj+1) 6= e

then the path from ui to uj+1 entails that rk(uj+1) < e, and this case of the subclaim
follows from Lemma 14 (1). Otherwise, it holds that rk(uj+1) = e, and thus rk(uj) = e.
Let u′ and v′ be nodes on level j so that (u′, uj+1) ∈ E′ and (v′, v) ∈ E′. As uj+1 �j+1 v,
the contrapositive of Lemma 5, part 1, entails that u′ �j v′. Further, since (u′, uj+1) ∈ E′
and (uj , uj+1) ∈ E, we know uj �j u′. By transitivity we can thus conclude that uj �j v′,
which along with Lemma 14 (1) entails rk(u′) = e ≥ rk(v′). As (v′, v) ∈ E, Lemma 14 (2)
entails that rk(v′) ≥ rk(v) = e. Thus rk(v′) = e, and by the inductive hypothesis v′ ∈ Uj .
As E′(v′, v) holds, by definition v ∈ Uj+1, and our subclaim is proven. J

The ranking of Definition 13 is termed retrospective as it relies on the relative lexico-
graphic order of equivalence classes; this order is determined purely by the history of nodes
in the run dag, not by looking forward to see which descendants are infinite or F -free in
some subgraph of G.

Example 4. Figure 3 displays λ0 and the 0-retrospective ranking of our running example.
In the prospective ranking (Figure 2), the nodes for state t on levels 1 and 2 are given rank
0, like other t-nodes. In the absence of a path forcing this, their retrospective rank is 2.
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We are now ready to define a new construction, generating an NBW AL, which combines
the benefits of the previous two constructions. The automaton AL guesses the F -finite level
k, and uses level rankings to check if the k-retrospective ranking is an odd ranking. We
partition the operation of AL into two stages. Until the level k, the NBW AL is in the
first stage, where it deterministically tracks preordered subsets. After level k, the NBW
AL moves to the second stage, where it tracks ranks. This stage is also deterministic.
Consequently, the only nondeterminism in AL is indeed the guess of k. Before defining AL,
we need some definitions and notations.

Recall that Q denotes the set of preordered subsets of Q, and RmT the set of tight level
rankings bounded bym. We distinguish between three types of transitions of AL: transitions
within the first stage, transitions from the first stage to the second, and transitions within
the second stage. The first type of transition is similar to the one taken in AS , by means of
the σ-successor relation between preordered subsets. Below we explain in detail the other
two types of transitions. Recall that in the retrospective ranking rk, each class in G′ labeled
> by λk is given a unique odd rank. Thus the rank of a node u depends on the number of
>-labeled classes larger than it, denoted α(u).

We begin with transitions where AL moves between the stages: from a preordered subset
〈S,� 〉 to a level ranking. On level k + 1, a node is labeled > iff it is an non-F -node. Thus
for every q ∈ S, let β(q) = |{[v] | v ∈ S \ F, u ≺ v}| be the number of non-F -classes larger
than q. We now define torank : Q → RmT . Let torank(〈S,�〉) be the tight level ranking f
where for every q:

f(q) =


⊥ if q 6∈ S,
2β(q) if q ∈ S ∩ F,
2β(q) +1 if q ∈ S \ F.

We now turn to transitions within the second stage, between level rankings. The rank
of a node v is inherited from its predecessor u in G′. However, λk may label a finite
class >. If a >-labeled class larger than u has no children, then α(u) ≥ α(v). In this
case the rank of v decreases. Given a level ranking f , for every q ∈ Q where f(q) 6= ⊥,
let γ(q) = |{f(q′) | q′ ∈ Q, f(q′) is odd, f(q′) < f(q)}| be the number of odd ranks in the
range of f lower than f(q). We define the function tighten : Rm → RmT . Let tighten(f)
be the tight level ranking f ′ where for every q:

f ′(q′) =


⊥ if f(q) = ⊥,
2γ(q) if f(q) 6= ⊥ and q ∈ F,
2γ(q) +1 if f(q) 6= ⊥ and q 6∈ F.

Note that if f is tight, then f ′ = f , and that while tighten may merge two even ranks, it
cannot merge two odd ranks.

For a level ranking f , letter σ ∈ Σ, and q′ ∈ Q, let pred(q′, σ, f) = {q | f(q) 6= ⊥, q′ ∈
ρ(q, σ)} be the predecessors of q′ given a non-⊥ rank by f . The lowest ranked element in
this set corresponds to the predecessor in G with the maximal profile. With two exceptions,
q′ will inherit this lowest rank. First, tighten might shift the rank down. Second, if q′ is in
F , it cannot be given an odd rank. For n ∈ IN, let bnceven be: n when n is even; and n−1
when n is odd. Define the σ-successor of f to be tighten(f ′) where for every q′ ∈ Q:

f ′(q′) =


⊥ if pred(q′, σ, f) = ∅,
bmin({f(q) | q ∈ pred(q′, σ, f)})ceven if pred(q′, σ, f) 6= ∅ and q′ ∈ F ,
min({f(q) | q ∈ pred(q′, σ, f)}) if pred(q′, σ, f) 6= ∅ and q′ 6∈ F .
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I Definition 16. For an NBW A = 〈Σ, Q,Qin, ρ, F 〉, let AL be the NBW
〈Σ,Q ∪ (RmT × 2Q), QinL , ρL,RmT × {∅}〉, where

QinL = {〈Qin,�in〉} where �in is such that for all q, r ∈ Qin, q � r iff q 6∈ F or r ∈ F .
ρL(S, σ) = {S ′} ∪ {〈torank(S ′), ∅〉}, where S ′ is the σ-successor of S.
ρL(〈f,O〉, σ) = {〈f ′, O′〉} where f ′ is the σ-successor of f

and O′ =
{
ρ(O, σ) \ odd(f ′) if O 6= ∅,
even(f ′) if O = ∅.

Theorem 17 follows from Lemmas 1 and 15 and Corollary 12.

I Theorem 17. For every NBW A, it holds that L(AL) = L(A).

Analysis: Like the tight-ranking construction in Section 2, the automaton AL operates
in two stages. In both, the second stage is the set of tight level rankings and obligation
sets. The tight-ranking construction uses sets of states in the first stage, and is bounded
by the size of the second stage: (0.96n)n [5]. The automaton AL replaces the first stage
with preordered subsets. As the number of preordered subsets is O(( n

e ln 2 )n) ≈ (0.53n)n
[21], the size of AL remains bounded by (0.96n)n. This can be improved to (0.76n)n: see
below. Further, AL has a very restricted transition relation: states in the first stage only
guess whether to remain in the first stage or move to the second, and have nondeterminism
of degree 2. States in the second stage are deterministic. Thus the transition relation is
linear in the number of states and size of the alphabet, and AL is deterministic in the limit.

5 Discussion

We have unified the slice-based and rank-based approaches by phrasing the former in the lan-
guage of run dags. This enables us to define and exploit a retrospective ranking, providing a
deterministic-in-the-limit complementation construction that does not employ determiniza-
tion. Experiments show that the more deterministic automata are, the better they perform
in practice [18]. By avoiding determinization, we reduce the cost of such a construction from
(n2/e)n to (0.76n)n [14]. In addition, our transition generates a transition relation that is
linear in the number of states and size of the alphabet. Schewe demonstrated how to achieve
a similar linear bound on the transition relation, but the resulting relation is larger and is
not deterministic in the limit [17].

The use of level rankings affords several improvements from existing research on the
rank-based approach. First, the cut-point construction of Miyano and Hayashi [12] can be
improved. Schewe’s construction only checks one even rank at a time, reducing the size
of the state space to (0.76n)n, only an n2 factor from the lower bound [17]. As Schewe’s
approach does not alter the progression of the level rankings, it could be applied directly
to the second stage of Definition 16. The resulting construction inherits the asymptotic
state-space complexity of [17]. Second, symbolically encoding a preorder is complicated.
In contrast, ranks are easily encoded, and the transition between ranks is nearly trivial to
implement in SMV [20]. By changing the states in first stage of AL from preordered subsets
to simple subsets, and guessing the appropriate transition to the second stage, we obtain a
symbolic representation while maintaining determinism in the limit. This approach sacrifices
the linear-sized transition relation, but this is less important in a symbolic encoding. Finally,
the subsumption relations of Doyen and Raskin [4] could be applied to the second stage of
the automaton, while it is unclear if it could be applied at all to the slice-based construction.

From a broader perspective, we find it very interesting that the prospective and retrospec-
tive approaches are so strongly related. Odd rankings seem to be inherently “prospective,”
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depending on the descendants of nodes in the run dag. By investigating the slice-based
approach, we are able to pinpoint the dependency on the future to a single component:
the F -free level. This suggests it may be possible to use odd rankings for determinization,
automata with other accepting conditions, and automata on infinite trees.
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Abstract
We continue the investigation of delay games, infinite games in which one player may postpone
her moves for some time to obtain a lookahead on her opponent’s moves. We show that the
problem of determining the winner of such a game is undecidable for deterministic context-free
winning conditions. Furthermore, we show that the necessary lookahead to win a deterministic
context-free delay game cannot be bounded by any elementary function. Both results hold already
for restricted classes of deterministic context-free winning conditions.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams; F.4.3 Formal Languages

Keywords and phrases Infinite games, delay, context-free languages

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.264

1 Introduction

Many of today’s problems in computer science are no longer concerned with programs that
transform data and then terminate, but with non-terminating reactive systems which have to
interact with an (possibly) antagonistic environment for an unbounded amount of time. The
framework of infinite two-player games is a powerful and flexible tool to verify and synthesize
such systems [6]. The seminal theorem of Büchi and Landweber [2] states that the winner of
an infinite game on a finite arena with a regular winning condition can be determined and a
corresponding finite-state winning strategy can be constructed effectively.

Ever since, this result was extended along different dimensions, e.g., the number of
players, the type of arena, the type of winning condition, the type of interaction between the
players (alternation or concurrency), zero-sum or nonzero-sum, and complete or incomplete
information. In this work, we consider two of these dimensions, namely context-free winning
conditions and the possibility for one player to delay her moves.

Walukiewicz showed that games with deterministic context-free winning conditions can
be solved in exponential time [12]. On the other hand, the problem of determining the winner
of a game with (non-deterministic) context-free winning condition is undecidable, which can
be shown by a reduction from the universality problem for non-deterministic ω-pushdown
automata (see, e.g. [5]).

In a delay game, one of the players can postpone her moves for some time, thereby
obtaining a lookahead on the moves of her opponent. This allows her to win some games
which she loses without lookahead, e.g., if her first move depends on the third move of her
opponent. On the other hand, there are simple winning conditions that cannot be won with
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any finite lookahead, e.g., if her first move depends on all of the infinitely many moves of
her opponent. Delay arises naturally when transmission of data in networks or components
equipped with buffers are modeled. Also, from a theoretical point of view, uniformization of
relations by continuous functions can be expressed and analyzed in this setting.

Hosch and Landweber proved that it is decidable, whether a game with regular winning
condition can be won with bounded lookahead (i.e., only finitely many moves are post-
poned) [8]. This result was improved by Holtmann, Kaiser, and Thomas [7] who showed that
if a player wins a game with arbitrary lookahead, then already with (doubly-exponential)
bounded lookahead, and gave a streamlined decidability proof.

We consider games in which two players pick letters from alphabets ΣI and ΣO, respec-
tively, thereby producing two infinite sequences α and β. Thus, a strategy for the second
player induces a mapping σ : Σω

I → Σω
O. It is winning for the second player if (α, σ(α)) is

contained in the winning condition L ⊆ Σω
I × Σω

O for every α. In this case, we say that
σ uniformizes L. In the classical setting, in which the players pick letters in alternation,
the n-th letter of σ(α) depends only on the first n letters of α. A strategy with bounded
lookahead induces a Lipschitz-continuous function σ (in the Cantor topology on Σω) and a
strategy with arbitrary lookahead induces a continuous function (or equivalently, a uniformly
continuous function, as Σω is compact).

Thus, stated in these terms, Hosch and Landweber proved the decidability of the uni-
formization problem for regular relations by Lipschitz-continuous functions. Holtmann,
Kaiser, and Thomas proved the equivalence of the existence of a continuous uniformization
function and the existence of a Lipschitz-continuous uniformization function for regular
relations. They observe that this equivalence does not hold for deterministic context-free
winning conditions by giving an example in which every other move has to be postponed, i.e.,
the lookahead grows linearly. They ask whether the winner of such a game can be determined
effectively and what kind of lookahead is necessary to win. We answer these questions.

Firstly, by applying the result of Walukiewicz [12] it is easy to see that if we only allow a
fixed bounded lookahead, then determining the winner is decidable. Then, we show that
determining whether a given player wins the game with arbitrary lookahead is undecidable
for deterministic context-free winning conditions. We complement this by giving a criterion
to determine when this question is decidable, if the lookahead is restricted to some fixed
class of functions. Intuitively, if there is no global bound on the lookahead provided by the
class, then the problem of determining the winner is undecidable. If there is such a bound,
then it follows from the decidability result that the winner can be determined effectively.

By closely inspecting the winning conditions constructed in the proofs, it follows that
these undecidability results already hold for winning conditions given by visibly one-counter
automata. These are pushdown automata that have a single stack symbol, i.e., their stack
is essentially a counter which can be incremented, decremented, and tested for zero, and
whose input letters control the behavior of the stack, i.e., a letter either always triggers a
push transition, a pop transition, or a skip transition (the stack is not changed). Visibly
pushdown automata are a popular choice to model recursive processes as their languages are
closed under all boolean operations (as opposed to (deterministic) context-free languages in
general), they can be determinized, and have good algorithmic properties (for a thorough
discussion see [1], for the determinization procedure for visibly pushdown automata on
ω-words see [9]). At the same time, we do not need the full strength of the parity or Muller
acceptance condition: all winning conditions can be recognized by automata with weak
acceptance conditions that refer only to the set of visited states, and not to the set of states
visited infinitely often.
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Finally, we consider the lookahead necessary to win delay games with deterministic
context-free winning conditions. We present a deterministic context-free delay game which
can be won if arbitrary lookahead is available, but not with lookahead that is bounded
by an elementary function, i.e., bounded by a k-fold exponential for some fixed k. Again,
the winning condition can be recognized by a visibly one-counter automaton with weak
acceptance condition.

In terms of uniformization of relations by continuous functions, we show that it is
undecidable to determine whether a deterministic context-free relation is uniformized by
some continuous function and to determine whether it is uniformized by some Lipschitz-
continuous function. Furthermore, the example by Holtmann, Kaiser, and Thomas shows
that the equivalence between the existence of a continuous uniformization function and the
existence of a Lipschitz-continuous uniformization function does not hold for deterministic
context-free relations, as opposed to the regular case.

Our results show that, unlike in the regular case, adding lookahead to deterministic
context-free games significantly changes their algorithmic properties. Bounded lookahead,
which is sufficient to win regular games, can always be encoded into the winning condition,
hence the classical algorithms to solve regular games without lookahead are still applicable.
However, in case of deterministic context-free games, where unbounded lookahead is necessary,
one cannot encode it into the winning condition while preserving its context-freeness. This is
a reason why these games are hard to handle algorithmically.

This work is structured as follows: in Section 2, we introduce infinite games with delay
formally and present the types of pushdown automata we consider. Then, in Section 3 we
present the decidability and undecidability results. The lower bound for the lookahead is
presented in Section 4. In Section 5, we conclude with some open questions.

2 Definitions

The set of non-negative integers is denoted by N, and we define N+ = N \ {0}. For an
integer n > 0 let [n] denote the set {0, . . . , n− 1}. We define the k-fold exponential function
expk : N → N inductively by exp0(n) = n, and expk+1(n) = 2expk(n). An alphabet Σ is a
non-empty finite set of letters, Σ∗ denotes the set of finite words over Σ, Σn denotes the set
of words over Σ of length n, and Σω denotes the set of infinite words over Σ. The empty
word is denoted by ε. For α ∈ Σ∗ ∪Σω and n ∈ N we write α(n) for the n-th letter of α. For
w ∈ Σ∗ and a ∈ Σ, |w|a denotes the number of a’s in w.

2.1 Games with Delay
Given a delay function f : N→ N+ and an ω-language L ⊆ (ΣI × ΣO)ω, the game Γf (L) is
played by two players (the input player I and the output player O) in rounds i = 0, 1, 2, . . . as
follows: in round i, Player I picks a word ui ∈ Σf(i)

I , then Player O picks one letter vi ∈ ΣO.
We refer to the sequence (u0, v0), (u1, v1), (u2, v2), . . . as a play of Γf (L), which yields two
infinite words α = u0u1u2 · · · and β = v0v1v2 · · · . Player O wins the play if and only if the
induced word

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · is in L.

Given a delay function f , a strategy for Player I is a mapping τI : Σ∗O → Σ∗I such that
|τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗I → ΣO. Consider a play
(u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). Such a play is consistent with τI , if ui = τI(v0 · · · vi−1)
for every i; it is consistent with τO, if vi = τO(u0 · · ·ui) for every i. A strategy τ for Player p
is winning for her, if every play that is consistent with τ is won by Player p. In this case, we
say Player p wins Γf (L).
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For a delay function f : N→ N+ define its distance function df by df (i) =
(∑i

j=0 f(j)
)
−

(i+ 1), i.e., df (i) is the lookahead attained by Player O after i rounds. We say that f is a
constant-delay function with delay d, if df (i) = d for all i; f is a linear-delay function with
delay k > 0, if df (i) = (i + 1)(k − 1) for all i; and we say that f is an elementary-delay
function, if df ∈ O(expk) for some fixed k. Here, “constant”, “linear”, and “elementary”
refer to the lookahead for Player O, i.e., to the kind of distance function df , and not to the
kind of delay function f .

I Example 1. Consider the language L over {0, 1, ]} × {0, 1, ]} containing the words of the
form

(0
0
)n0(0

1
)n0(]

]

)(0
0
)n1(0

1
)n1(]

]

)(0
0
)n2(0

1
)n2(]

]

)
· · · with ni > 0 for all i, as well as all words

whose first component is not of the form 02n0]02n1]02n2] · · · with ni > 0 for all i. In order to
win a game with winning condition L, Player I has to produce infinitely many blocks of 0’s,
all of even length. If he does this, then Player O can still guarantee to win by answering the
first half of every block by 0 and the second half by 1. To do so, she needs to know in which
half of a block she currently is, which is guaranteed by the linear-delay function with delay 2.

2.2 Pushdown Automata

A deterministic pushdown machine (DPDM) is a tuple M = (Q,Σ,Γ, δ, qin,⊥) where
Q is a finite set of states, Σ is an input alphabet, Γ is a pushdown alphabet, ⊥ /∈ Γ
is the initial pushdown symbol (let Γ⊥ = Γ ∪ {⊥}), qin ∈ Q is the initial state, and
δ : Q× (Σ ∪ {ε})× Γ⊥ → Q× Γ∗⊥ is a partial transition function satisfying for every q ∈ Q
and every A ∈ Γ⊥: either δ(q, a,A) is defined for all a ∈ Σ and δ(q, ε, A) is undefined, or
δ(q, ε, A) is defined and δ(q, a,A) is undefined for all a ∈ Σ. We require that the initial
pushdown symbol ⊥ can neither be written on the stack nor be deleted from the stack.

A stack content is a word from Γ∗⊥, we assume the leftmost symbol to be the top of the
stack. A configuration is a pair (q, γ) consisting of a state q ∈ Q and a stack content γ ∈ Γ∗⊥.
We write (q, Aγ) a7− (q′, γ′γ), if (q′, γ′) = δ(q, a,A) for a ∈ Σ ∪ {ε}, γ, γ′ ∈ Γ∗⊥ and A ∈ Γ⊥.
For an ω-word α ∈ Σω an infinite sequence of configurations ρ = (q0, γ0)(q1, γ1)(q2, γ2) · · · is
a run ofM on α if and only if (q0, γ0) = (qin,⊥) and for all i ∈ N exists ai ∈ Σ ∪ {ε} such
that (qi, γi)

ai7− (qi+1, γi+1) and a0a1a2 · · · = α. For a run ρ we define the set of states visited
in ρ as Occ(ρ) = {q ∈ Q | ∃j : ρ(j) = (q, γj) for some γj}. Similarly, we define the set of
states visited infinitely often in ρ as Inf(ρ) = {q ∈ Q | ∀i∃j > i : ρ(j) = (q, γj) for some γj}.

A parity pushdown automaton (parity-DPDA) is a tuple A = (MA, col) whereMA is a
DPDM and col : Q→ [d] is a priority function assigning to each state ofMA a natural number.
It accepts an ω-word α ∈ Σω if there exists a run ρ of A on α, such that min{col(q) | q∈ Inf(ρ)}
is even. The set of ω-words accepted by a parity-DPDA A is denoted by L(A).

2.2.1 Weak Automata

A weak-parity pushdown automaton (weak-parity-DPDA) is a tuple A = (MA, col) where
MA is a DPDM and col : Q → [d] is a priority function assigning to each state of MA a
natural number. It accepts an ω-word α ∈ Σω if there exists a run ρ of A on α, such that
min{col(q) | q ∈ Occ(ρ)} is even. The set of ω-words accepted by a weak-parity-DPDA A is
again denoted by L(A).

A weak-parity-DPDA is an E-DPDA, if col(Q) ⊆ {0, 1}, i.e., a run is accepting if it visits
a state with priority 0 at least once. A weak-parity-DPDA is an A-DPDA, if col(Q) ⊆ {1, 2},
i.e., a run is accepting if it never visits a state with priority 1.
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2.2.2 Visibly and One-counter Automata
A DPDM is one-counter, if Γ is a singleton set. A visibly pushdown alphabet Σ = Σc∪Σr∪Σint
is an alphabet partitioned into three disjoint alphabets: Σc is a set of calls, Σr a set of
returns, Σint is a set of internal actions. A deterministic visibly pushdown machine is a
DPDMM = (Q,Σ,Γ, δ, qin,⊥) where Σ is a visibly pushdown alphabet and the transition
function is composed of three functions δ = δc ∪ δr ∪ δint where δc : Q× Σc × Γ⊥ → Q× Γ,
δr : Q × Σr × Γ⊥ → Q, and δint : Q × Σint × Γ⊥ → Q. A deterministic visibly pushdown
machine can be seen as a DPDM with transition function δ′ by defining

δ′(q, a,A) = (q′, A′A), if a ∈ Σc and δc(q, a, A) = (q′, A′),

δ′(q, a,A) =
{

(q′, ε) if A 6= ⊥,
(q′,⊥) if A = ⊥,

if a ∈ Σr and δr(q, a,A) = q′, and

δ′(q, a,A) = (q′, A), if a ∈ Σint and δint(q, a,A) = q′.

Note that a deterministic visibly pushdown machine treats a return symbol as an internal
action when the stack is empty.

Any type of DPDA introduced above is called visibly one-counter, denoted by DV1CA, if
the underlying DPDM is visibly and one-counter. We prefix the abbreviation DV1CA by the
type of acceptance condition of the automaton (parity, weak-parity, E, or A).

3 Decision Problems

In this section, we consider various decision problems regarding delay games with context-free
winning conditions. We begin by showing that the winner for a fixed delay function with
bounded distance function can be determined effectively. Then, we show that determining
whether Player O has a winning strategy for some finite delay is undecidable. As a corollary
we obtain that determining whether Player O has a winning strategy for some constant-delay
or linear-delay function is undecidable, too. We conclude by giving a general criterion to
classify the sets F of delay functions for which it is decidable whether Player O can win a
given delay game with some function from F .

As we consider winning conditions L that are recognizable by parity-DPDA, Γf (L) can
be modeled as a parity game on a countable arena with finitely many priorities. Since parity
games are determined [4, 10], we conclude that delay games are also determined.

I Theorem 2. Let A be a parity-DPDA and f : N→ N+. Then, Γf (L(A)) is determined.

By encoding the delay into the winning condition the following theorem is obtained. Note
that the property “{i | f(i) 6= 1} is finite” covers all constant-delay functions f .

I Theorem 3. The following problem is decidable:
Input: Parity-DPDA A and f : N→ N+ such that {i | f(i) 6= 1} is finite.
Question: Does Player O win Γf (L(A))?

Proof. Let ] be a letter not occurring in ΣO. For a word β = β(0)β(1)β(2) · · · ∈ ΣωO, define
shiftf (β) = β′(0)β′(1)β′(2) · · · ∈ (ΣO ∪ {]})ω by

β′(n) =

β(i) if n =
(∑i

j=0 f(j)
)
− 1 for some i,

] otherwise.

Figure 1 shows an example for this operation.
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β: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 · · ·
shiftf (β): ] ] a0 a1 ] a2 ] a3 a4 a5 · · ·

Figure 1 The shiftf -operation where f(0) = 3, f(2) = 2, f(3) = 2, and f(i) = 1 otherwise.

Now, let L = L(A) and define

Lshiftf
=
{(

α(0)
β′(0)

)(
α(1)
β′(1)

)(
α(2)
β′(2)

)
· · ·
∣∣∣∣(α(0)
β(0)

)(
α(1)
β(1)

)(
α(2)
β(2)

)
· · · ∈ L and

shiftf (β(0)β(1)β(2) · · · ) = β′(0)β′(1)β′(2) · · ·
}

.

Since L is deterministic context-free and {i | f(i) 6= 1} is finite, Lshift is also deterministic
context-free. Furthermore, Player p wins Γf (L) if and only if she wins the game Γg(Lshiftf

)
where g(i) = 1 for all i ∈ N. As Γg(Lshiftf

) is a game without delay, its winner can be
determined effectively [12]. J

It turns out that Theorem 3 is the most general decidability result for arbitrary parity-
DPDA: relaxing the finiteness condition on {i | f(i) 6= 1} makes the problem undecidable
(see Theorem 6).

We continue with the undecidability results which are obtained by a reduction from the
halting problem for 2-register machines. A 2-register machine R is a list (0 : I0), . . . , (k −
2: Ik−2), (k − 1: STOP), where the first entry of a pair (` : I`) is the line number and the
second one is the instruction, which is of the form INC(Xi), DEC(Xi), or IF Xi=0 GOTO m
where i ∈ {0, 1} is the number of a register and m ∈ [k]. A configuration of R is a tuple
(`, n0, n1) where ` ∈ [k] is a line number and n0, n1 ∈ N are the contents of the registers. The
semantics are defined in the obvious way with the convention that a decrease of a register
holding a zero has no effect. We say that R halts, if it reaches a configuration (k − 1, n0, n1)
for some n0, n1 ∈ N when started with the initial configuration (0, 0, 0). It is well-known that
the halting problem for 2-register machines is undecidable [11].

I Theorem 4. The following problem is undecidable:
Input: Parity-DPDA A.
Question: Is there a delay function f such that Player O wins Γf (L(A))?

Proof. We proceed by a reduction from the halting problem for 2-register machines. Given
such a machine R = (0: I0), . . . , (k − 2: Ik−2), (k − 1: STOP), we encode a configuration
(`, n0, n1) by the word `rn0

0 rn1
1 . Note that if c encodes a configuration, then we have

|c′| ≤ |c|+ 1 for the encoding c′ of the successor configuration.
Now, define Conf = {`rn0

0 rn1
1 | ` ∈ [k], n0, n1 ∈ N}, Conf0 = 0, and consider the following

game specification over ΣI × ΣO, where ΣI = {], r0, r1} ∪ [k] and ΣO = {N,E0, E1, L}:
Player I builds up a word of the form ]Conf0(]Conf)ω (if he does not, he loses). Consider
such a word ]c0]c1]c2] · · · with c0 = Conf0 and ci ∈ Conf for all i > 0. In order to win,
Player O has to find a pair cj , cj+1 such that cj+1 does not encode the successor configuration
of the configuration encoded by cj . To do this, she indicates at each position where Player I
has played a ] whether she believes that the following two configurations are indeed successive
configurations (by playing the letter N) or whether she claims an error (by playing E0, E1, L

indicating that the first register, the second register, or the line number is not updated
correctly). At any other position, she may pick an arbitrary letter.
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· · · ]

N

(3,3,1)︷ ︸︸ ︷
3
∗
r0

∗
r0

∗
r0

∗
r1

∗
]

E0

(4,4,1)︷ ︸︸ ︷
4
∗
r0

∗
r0

∗
r0

∗
r0

∗
r1

∗
]

N

(5,5,0)︷ ︸︸ ︷
5
∗
r0

∗
r0

∗
r0

∗
r0

∗
r0

∗
]

N
· · ·

Figure 2 Part of a play encoding three configurations.

Figure 2 depicts the encoding of three configurations (here, ∗ denotes an arbitrary letter).
Assuming that line 3 contains INC(X0) and line 4 contains DEC(X1), then the first update is
correct, while the second one is not: the first register is increased incorrectly, an error which
is claimed by the letter E0 in front of the second encoding.

This winning condition can be recognized by a parity-DPDA AR. The automaton checks
whether the first component is a word in ]Conf0(]Conf)ω. If it encounters a letter

(
]
E0

)
,
(
]
E1

)
,

or
(
]
L

)
it has to check the next two encodings `rn0

0 rn1
1 ]`′r

n′0
0 r

n′1
1 ].

Case
(
]
Ei

)
for i ∈ {0, 1}: AR has to verify ni + s 6= n′i, where s = 1, if I` = INC(Xi),

s = −1, if I` = DEC(Xi) and ni > 0, and s = 0 otherwise.
Case

(
]
L

)
: AR has to verify ` + 1 6= `′, if I` = INC(Xi), I` = DEC(Xi), or I` =

IF Xi=0 GOTO m and ni > 0; and AR has to verify `′ 6= m, if I` = IF Xi=0 GOTO m
and ni = 0.

All these tests can be implemented in terms of a parity-DPDA AR that accepts a word if
and only if the first component is not a word in ]Conf0(]Conf)ω or if the first occurrence of
a letter E0, E1, or L in the second component correctly claims an error.

We show that R halts if and only if there exists a delay function f such that Player O
wins the game Γf (L(AR)).

Suppose R halts and consider the linear-delay function f(i) = 6 for all i. We claim that
Player O has a winning strategy for Γf (L(AR)) which finds the first error introduced by
Player I. In round 0 Player I chooses 6 letters which are sufficient for Player O to check
whether Player I has encoded the initial configuration and its successor configuration, as
the length of such an encoding is bounded by 6. Now consider a round i > 0: if the i-th
input letter is not a ], then Player O can choose an arbitrary output letter. So suppose
that it is a ] and that Player O has not yet signaled an error up to this position: Player I
has produced a word ]x]y of length 6(i + 1) where |x| = i − 1 and hence, |y| = 5(i + 1).
Note that both x and y might contain the letter ]. Let c denote the last encoding of a
configuration in x and c′ the first encoding of a configuration in y. As Player O has not
signaled an error at the previous ], we know that c′ is well-defined and that it is the encoding
of the successor configuration of the configuration encoded by c. We have |c| ≤ |x| = i− 1
and hence |c′| ≤ i. Thus, the successor configuration of c′ is encoded by at most i+ 1 letters.
As i+ (i+ 1) + 2 < 5(i+ 1) for all i > 0, in every round Player O has enough information to
detect an error if one is introduced. This strategy is indeed winning for Player O as an error
will eventually be introduced, since a halting configuration has no successor.

Now suppose R does not halt. Player I has a winning strategy in Γf (L(AR)) for any
function f by building up the word ]c0]c1]c2] · · · where c0, c1, c2, . . . are the encodings of the
infinite run of R starting with the initial configuration. Hence, due to determinacy, Player O
does not win Γf (L(AR)). J

The game induced by L(AR) can be won by Player O with some suitable constant-delay
function or with the linear-delay function with delay 6 if and only if R halts. Hence, we
obtain the following corollary.
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I Corollary 5. The following problems are undecidable:
1. Input: Parity-DPDA A.

Question: Is there a constant-delay function f such that Player O wins Γf (L(A))?
2. Input: Parity-DPDA A.

Question: Is there a linear-delay function f such that Player O wins Γf (L(A))?
3. Input: Parity-DPDA A and k ∈ N.

Question: Let f(i) = k for all i. Does Player O win Γf (L(A))?

By slightly modifying the game described above, one shows that all undecidability results
hold even for winning conditions given by E-DV1CA. To this end, we supply Player O
with additional letters C,R, Int and define Σc = ΣI × {C}, Σr = ΣI × {R}, and Σint =
ΣI ×{Int, N, L,E0, E1}, i.e., Player O controls the behavior of the stack. As soon as she has
answered a ] by one of the letters E0, E1, L she has to use the letters C,R, Int to enable the
automaton to compare the respective parts of the following two encodings. If she fails to do
so, she loses immediately. This can be implemented by means of a finite automaton, which
can be combined with the parity-DPDA AR to obtain a visibly parity-DPDA. Furthermore,
all necessary tests can be implemented using a single stack symbol. Finally, by modifying
the game specification such that the first component is no longer required to be of the form
]Conf0(]Conf)ω, it can be recognized by an E-DV1CA. If Player I does not produce an
infinite sequence of encodings of configurations, Player O has the possibility to claim an
error and thereby win.

Based on the proofs of the previous theorems, we conclude this section by giving a general
criterion to determine for a set F of delay functions whether it is decidable whether Player O
wins a given delay game with some delay function from F . We say that a set F of delay
functions f : N→ N+ is bounded, if there exists a d ∈ N such that for every f ∈ F and every
i ∈ N we have df (i) ≤ d, i.e., there is a global bound on the lookahead for Player O given by
the functions in F . Notice that since F is not part of the input, we can state the following
theorem for any set of delay functions without having to represent the set effectively.

I Theorem 6. Let F be a set of delay functions. The following problem is decidable if and
only if F is bounded:

Input: Parity-DPDA A.
Question: Does there exist an f ∈ F such that Player O wins Γf (L(A))?

Proof. Consider a bounded set F of delay functions. We define a partial order on delay
functions as follows: f ≤ g if and only if df (i) ≤ dg(i) for all i, i.e., g allows at any round at
least as much lookahead as f does. Applying Dickson’s Lemma [3] and the boundedness of
F one shows that there exists a finite set of maximal elements Fmax ⊆ F (a function f ∈ F
is maximal if for all g ∈ F , f ≤ g implies f = g). We claim that there exists an f ∈ F such
that Player O wins Γf (L(A)) if and only if there exists an g ∈ Fmax such that Player O
wins Γg(L(A)). As Fmax is finite and every g ∈ Fmax satisfies “{i | g(i) 6= 1} is finite”, the
latter property can be decided by Theorem 3.

The implication from right to left is trivially true, so assume there exists an f ∈ F \Fmax
such that Player O wins Γf (L(A)). Then, there is a function g ∈ Fmax such that f ≤ g, i.e.,
the function g admits Player O at least as much lookahead as f . Hence, a winning strategy
for Player O in Γf (L(A)) can easily be turned into a winning strategy for her in Γg(L(A)).

Now consider an unbounded set F of delay functions, i.e., for every d ∈ N there exists
an f ∈ F and an i ∈ N such that df (i) > d. We adapt the specification described in the
proof of Theorem 4 by allowing Player O to postpone the beginning of the simulation of a

CSL’11



272 Degrees of Lookahead in Context-free Infinite Games

computation of R until she has attained enough lookahead to inspect the complete halting
computation of R (if there exists one) before she has to indicate potential errors.

Given a 2-register machine R with k instructions, define Conf0 and Conf as in the
proof of Theorem 4, and consider the following game specification over ΣI × ΣO, where
ΣI = {], r0, r1, $} ∪ [k] and ΣO = {N,E0, E1, L, S, $}: Player I builds a word of the form
$∗Conf0(]Conf)ω or $ω. If he does not adhere to the format, he loses. Player I may produce
the word $ω if and only if Player O never plays the letter S to start the simulation. If
Player O plays the letter S, then Player I has to play a word of the form $∗c0]c1]c2] · · · with
c0 = Conf0 and ci ∈ Conf for every i > 0. Again, in order to win, Player O has to find a
pair cj , cj+1 such that cj+1 does not encode the successor configuration of the configuration
encoded by cj . The mechanism to do so is similar to the one described in the proof of
Theorem 4. We denote the parity-DPDA recognizing this winning condition by A′R.

Suppose R halts after n computation steps. Then, the full computation of R is encoded
by at most d =

∑n+1
j=1 (j + 1) letters. Let f ∈ F and i ∈ N such that df (i) ≥ d. Player O

has a winning strategy in Γf (L(A′R)). In the first i rounds, she chooses $. If Player I has
picked in a round j ≤ i+ 1 a word uj 6= $f(j), then Player O wins by playing $ ad infinitum.
Otherwise, she plays S in round i+ 1. Hence, in order to win Player I has to start simulating
R, say at position j > i. As df is non-decreasing, Player O has at least d letters lookahead
when picking her letter in any round j′ ≥ j. As the machine halts, this lookahead enables
her to detect an error which Player I has to introduce, since a halting configuration does not
have a successor configuration.

If R does not halt, then Player I has a winning strategy in Γf (L(A′R)) for every delay
function f ∈ F : as long as Player O has not played S, pick $f(i) in round i. As soon as she
has played S, he starts producing the word ]c0]c1]c2] · · · , where c0, c1, c2, . . . are encodings
of the infinite run of R starting in the initial configuration. J

Using the ideas presented above, one can show that Theorem 6 holds even for weak-parity-
DV1CA. However, E-acceptance and A-acceptance are not sufficient, since Player O has to
be forced to play an S and Player I has to be forced to start the simulation after Player O
played an S.

4 Lower Bounds on Delays

In this section we show that there exists a deterministic context-free winning condition L such
that Player O wins the game Γf (L) for some delay function f , but not for any elementary-
delay function. To this end, we adapt the idea of the previous section: Player I produces an
ω-word which can be decomposed into blocks on which a successor relation is defined. In
order to win, Player O has to find a pair of consecutive blocks that are not in the successor
relation and the game specification forces Player I to produce such an error at some point.
In contrast to the specifications of the previous section, Player O does not signal a potential
error in front of the i-th block, but with her i-th bit. By ensuring that a valid successor
block is exponentially longer than its predecessor we obtain our result.

I Theorem 7. There exists a parity-DPDA A and a delay function f such that Player O
wins Γf (L(A)), but Player I wins Γf ′(L(A)) for every elementary-delay function f ′.

Proof. Let S] = {]N , ]D, ]C} and S[ = {[N , [H} be two sets of signals for Player I and define
B = S[0(S[0+)∗ and B0 = S[0. We say that a block w = [00[10n1[2 · · · [k−10nk−1 ∈ B has k
[-blocks. Consider a word ]0w0]1w1]2w2]3 · · · where w0 ∈ B0 and wi ∈ B, ]i ∈ S] for all i.
We say that a block wi = [00n0[10n1[2 · · · [k−10nk−1 has a doubling error at position j in the
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]N

N

w0︷ ︸︸ ︷
[N

ED

0
N

]C

N

w1︷ ︸︸ ︷
[N

H

0
N

[N

N

0
N

]N

N

w2︷ ︸︸ ︷
[N

N

0
N

[N

N

0
N

0
N

[N

N

0
N

0
N

0
N

0
N

]N

N
· · ·

Figure 3 A play prefix with three blocks w0, w1, and w2.

range 0 ≤ j < k−1 if nj+1 6= 2nj (note that n0 = 1 for every wi ∈ B). The doubling error at
position j in block wi is signaled, if ]i = ]D, [j = [H , and [j′ = [N for all j′ < j. We say that
two consecutive blocks wi and wi+1 constitute a copy error, if |wi| 6= |wi+1|[N

+ |wi+1|[H

(i.e., in the absence of a copy error, wi+1 has |wi| [-blocks). For two blocks wi and wi+1 the
copy error is signaled if ]i = ]C .

Figure 3 depicts the encoding of three blocks in the first component. The blocks w1 and
w2 constitute a copy error, as w2 contains only three [-blocks, and not the required four (due
to |w1| = 4). This error is signaled by the letter ]C in front of w1. Furthermore, the block
w1 contains a doubling error at position 0 which is not signaled.

Consider the following game specification over ΣI × ΣO, where ΣI = {0} ∪ S] ∪ S[ and
ΣO = {N,ED, EC , H}: Player I builds a word α = ]0w0]1w1]2w2]3 · · · ∈ S]B0(S]B)ω while
Player O produces a word β ∈ Σω

O. Player O uses her letters to announce errors in α: if
β(i) = EC , then she claims that the pair wi and wi+1 constitutes a copy error. If β(i) = ED,
then she claims that wi = [00n0[10n1[2 · · · [k−10nk−1 contains a doubling error at a position j,
which she has to specify by answering [j by H (and every [j′ for j′ < j not by H).

Going back to the example in Figure 3, we see that Player O claims the doubling error in
w1 by choosing β(1) = ED and identifying its position by playing H directly in front if it.

Player O wins a play if and only if the induced word
(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · satisfies at

least one of the following conditions.

α /∈ S]B0(S]B)ω (i.e., Player I does not adhere to the format).
There exists an i such that β(i) = ED, β(j) = N for all j < i, ]j = ]N for all j < i, the
`-th [ of wi is answered by H (and ` is minimal with this property) and wi contains a
doubling error at position ` (i.e., Player O detects a doubling error in block wi and there
is no error signaled by Player I in front of any block wj for some j < i. Note that the
doubling error in block wi may have been signaled by Player I).
There exists an i such that β(i) = EC , β(j) = N for all j < i, ]j = ]N for all j < i, and
the pair wi and wi+1 constitutes a copy error (i.e., Player O detects a copy error in blocks
wi and wi+1 and there is no error signaled by Player I in front of any block wj for some
j < i. Note that the copy error in the blocks wi and wi+1 may have been signaled by
Player I in front of wi).
There exists an i such that ]i = ]D and ]j = ]N for all j < i, and β(j) = N for all j ≤ i,
and wi does not contain [H or the two blocks following the first [H do not constitute a
doubling error (i.e., Player I signals a doubling error but does not indicate its position
correctly).
There exists an i such that ]i = ]C and ]j = ]N for all j < i, and β(j) = N for all j ≤ i,
and the pair wi and wi+1 does not constitute a copy error (i.e., Player I signals a copy
error without producing one).
]i = ]N for all i (i.e., Player I never signals an error).

Hence, the play indicated in Figure 3 is winning for Player O as her correct claim
β(1) = ED precedes the signal ]1 = ]C of Player I.
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Let L = {ρ ∈ (ΣI × ΣO)ω | ρ is winning for Player O}. We show that L can be
recognized by a parity-DPDA A: on an ω-word ρ =

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · where α =

]0w0]1w1]2w2]3 · · · ∈ S]B0(S]B)ω, A proceeds in four phases described below. If α is
not of the required format or contains no letter ]C or ]D, then ρ is accepted.

In the first phase, it prepares its stack to be able to find the beginning of wi when starting
at letter ρ(i) as required in the second phase. To do so, it counts the number of letters
processed so far minus the number of letters from S] in the first component. This phase is
stopped as soon as a letter ]C or ]D in the first component is read or a letter EC or ED in
the second component is read. In the first case, the automaton jumps to phase four, in the
second it starts with phase two.

The second phase starts if β(i) is EC or ED for the first time. Then, the automaton uses
the information on the stack to find the beginning of wi by decreasing the stack every time
a ]N in the first component is processed. If ]j = ]C or ]j = ]D for j < i is processed, the
automaton jumps to phase four. Otherwise, phase two continues until the beginning of wi is
reached. Then, A continues with phase three.

In phase three, A checks whether the error indicated by β(i) occurs (for this purpose,
it stores β(i) at the beginning of phase two). If β(i) = EC , then it checks whether wi and
wi+1 constitute a copy error. If β(i) = ED, then it checks whether wi contains a doubling
error, which has to be indicated in the second component by an H right before the error. If
the first H does not indicate an error correctly (or if none is read), then A rejects ρ. The
automaton accepts in phase three if and only if the error indicated by β(i) is detected.

Finally, in phase four A checks whether the error indicated by ]j occurs. If ]j = ]C , then
it checks whether wj and wj+1 constitute a copy error. If ]j = ]D, then it checks whether
wj contains a doubling error, which is signaled properly by a [H at the appropriate position.
If the first [H does not indicate an error correctly (or if wj does not contain a [H), then A
accepts ρ. The automaton accepts in phase four if and only if the error indicated by ]j is
not detected.

All the tests described in phases three and four can be implemented by a parity-DPDA.

We continue by showing that there exists a delay function f such that Player O wins
the game Γf (L). To this end, note that the following holds true for two consecutive blocks
w and w′ not containing a copy or doubling error: |w′| = 2|w| + |w| − 1. Hence, we define
the auxiliary function g by g(0) = 2 and g(n+ 1) = 2g(n) + g(n)− 1 for every n ≥ 0. Now,
define the delay function f by f(0) = g(0) + g(1) + 3 and f(n) = g(n+ 1) + 1 for every n > 0
(note that f is non-elementary). We claim that Player O has a winning strategy for Γf (L):
if Player I does not pick ]0[000]1[100[1100]2 in the first round, then he has committed some
error within his first two blocks, which can be claimed by Player O with v0. Now assume he
has produced a play prefix ]0w0]1w1]2 · · · ]iwi]i+1 after round i− 1 without introducing a
doubling error in the blocks wj for all j < i and no copy error in the pairs wj and wj+1 for all
j < i. If he produces an x in the next round i that is of the form w] such that wi and w do
not constitute a copy error and if wi does not contain a doubling error, then Player O picks
vi = N . Otherwise, she claims the error that occurs. This strategy is winning for Player O,
as Player I is not able to signal and produce an error that cannot be claimed by Player O.

Finally, consider an elementary-delay function fe ∈ O(expk). Player I can always play
blocks without introducing errors until the length of the block wi exceeds the lookahead(∑i

j=0 fe(j)
)
− i of Player O. At such a position, Player O has to make a claim concerning

a block which is not completed yet. So, Player I signals a doubling error for this incomplete
block. If Player O does not claim a doubling error, then he can introduce a doubling error
while completing the block. Then, Player I wins, if he sticks to the input format, since he is
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the first to claim an error. Vice versa, if Player O claims the doubling error, then Player I
does not introduce a doubling error while completing the block. Then he continues to stick
to the input format and wins, as his claim is preceded by the claim of Player O. J

Using ideas as presented in Section 3 one can show that Theorem 7 holds even for A-DV1CA.
However, the game specification as described above, cannot be accepted by a visibly one-
counter automaton: the problem arises if the automaton has to change from phase two to
phase four. In this situation, the stack is not yet empty and the automaton has to check a
claimed error. To do this using one stack symbol, the stack has to be emptied before the next
letter is processed, which cannot be done by a visibly automaton, as it has no ε-transitions.
To resolve this, we modify the game specification such that if this situation occurs (changing
from phase two to phase four), Player O loses immediately. Player O has still the possibility
to win by additionally never claiming an error in a block wi if Player I already claimed an
error in a block wj for some j < i. This modified game specification is visibly one-counter.
Finally, as a play is only winning for Player I, if he claims an existing error before Player O
does, the set of winning plays for Player O can be accepted by an A-DV1CA.

5 Conclusion

In this paper we continued the investigation of delay games. We showed that determining the
winner of deterministic context-free delay games is undecidable. Also, we presented a game
that is won by Player O with finite delay, but the necessary lookahead is non-elementary.
Both results already hold for the restricted class of winning conditions recognized by visibly
one-counter automata with weak acceptance conditions.

Our undecidability results and lower bounds on the delay for visibly winning conditions
hold even for the more restricted case where Player O controls the behavior of the stack
(more formally, the membership of a letter to Σc, Σr, or Σint respectively, depends only on its
second component). An interesting open question is whether these results also hold if Player I
obtains control over the stack behavior, i.e., the first component of a letter determines to
which alphabet it belongs. The following example shows that linear delay is necessary in this
case, even for one-counter winning conditions.

Let ΣI = {c, r} and ΣO = {0, 1}. We partition the alphabet ΣI × ΣO into the alphabets
Σc = {c}×ΣO and Σr = {r}×ΣO, i.e., Player I controls the behavior of the stack. Consider
the following game specification L with ρ =

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · ∈ L if one of the following

conditions holds:

α(0) = r, i.e., Player O wins immediately if Player I’s first letter is a return,
|α(0) · · ·α(n)|c > |α(0) · · ·α(n)|r for all n ∈ N, i.e., the stack is never empty, or
for the minimal n such that |α(0) · · ·α(n)|c = |α(0) · · ·α(n)|r we have β(m) = 1 and
β(m′) = 0 for all m′ < m, where m < n is the maximal position such that α(m) = c, i.e.,
Player O indicates the last call position before the stack is empty for the first time.

This winning condition requires a linear-delay function with delay at least 2 for Player O,
which is also sufficient for her to win. This is due to the fact that the stack height after
processing n letters is bounded by n. Hence, Player I can play at most n returns before the
stack is empty.

It is open whether linear delay is always sufficient for visibly winning conditions, if
Player I controls the behavior of the stack. Moreover, it is open whether the winner of such
a game can be determined effectively.
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Abstract
We extend first-order logic with counting by a new operator that allows it to formalise a limited
form of recursion which can be evaluated in logarithmic space. The resulting logic LREC has a
data complexity in LOGSPACE, and it defines LOGSPACE-complete problems like deterministic
reachability and Boolean formula evaluation. We prove that LREC is strictly more expressive than
deterministic transitive closure logic with counting and incomparable in expressive power with
symmetric transitive closure logic STC and transitive closure logic (with or without counting).
LREC is strictly contained in fixed-point logic with counting FP+C. We also study an extension
LREC= of LREC that has nicer closure properties and is more expressive than both LREC and
STC, but is still contained in FP+C and has a data complexity in LOGSPACE.

Our main results are that LREC captures LOGSPACE on the class of directed trees and that
LREC= captures LOGSPACE on the class of interval graphs.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes; F.4.1 Mathematical
Logic

Keywords and phrases Descriptive complexity, logarithmic space, fixed-point logics

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.277

1 Introduction

Descriptive complexity theory gives logical characterisations for most of the standard com-
plexity classes. For example, Fagin’s Theorem [6] states that a property of finite structures
is decidable in NP if and only if it is definable in existential second-order logic Σ1

1. More
concisely, we say that Σ1

1 captures NP. Similarly, Immerman [11] and Vardi [23] proved
that fixed-point logic FP captures PTIME,1 and Immerman [13] proved that deterministic
transitive closure logic DTC captures LOGSPACE. However, these and all other known logical
characterisations of PTIME and LOGSPACE and all other complexity classes below NP have
a serious drawback — they only hold on ordered structures. (An ordered structure is a
structure that has a distinguished binary relation which is a linear order of the elements of
the structure.) The question of whether there are logical characterisations of these complexity
classes on arbitrary, not necessarily ordered structures, is viewed as the most important open
problem in descriptive complexity theory. For the class PTIME this problem goes back to
Chandra and Harel’s fundamental article [3] on query languages for relational databases.

1 More precisely, Immerman and Vardi’s theorem holds for least fixed-point logic and the equally expressive
inflationary fixed-point logic. Our indeterminate FP refers to either of the two logics. For the counting
extension FP+C considered below, it is most convenient to use an inflationary fixed-point operator. See
any of the textbooks [4, 9, 14, 20] for details.
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For PTIME, at least partial positive results are known. The strongest of these say that
fixed-point logic with counting FP+C captures PTIME on all classes of graphs with excluded
minors [10] and on the class of interval graphs [17]. It is well-known that fixed-point logic
FP (without counting) is too weak to capture PTIME on any natural class of structures that
are not ordered. The idea that the extension FP+C by counting operators might remedy the
weakness of FP goes back to Immerman [12]. Together with Lander he proved that FP+C
captures PTIME on the class of trees [15]. Later, Cai, Fürer, and Immerman [2] proved that
FP+C does not capture PTIME on all finite structures.

Much less is known for LOGSPACE. In view of the results described so far, an obvious
idea is to try to capture LOGSPACE with the extension DTC+C of deterministic transitive
closure logic DTC by counting operators. However, Etessami and Immerman [5] proved that
(directed) tree isomorphism is not definable in DTC+C, not even in the stronger transitive
closure logic with counting TC+C. Since Lindell [21] proved that tree isomorphism is decidable
in LOGSPACE, this shows that DTC+C does not capture LOGSPACE.

We introduce a new logic LREC and prove that it captures LOGSPACE on directed trees.
An extension LREC= captures LOGSPACE on the class of interval graphs (and on the class
of undirected trees). The logic LREC is an extension of first-order logic with counting by
a “limited recursion operator”. The logic is more complicated than the transitive closure
and fixed-point logics commonly studied in descriptive complexity, and it may look rather
artificial at first sight. To explain the motivation for this logic, recall that fixed-point logics
may be viewed as extensions of first-order logic by fixed-point operators that allow it to
formalise recursive definitions in the logics. LREC is based on an analysis of the amount
of recursion allowed in logarithmic space computations. The idea of the limited recursion
operator is to control the depth of the recursion by a “resource term”, thereby making sure
that we can evaluate the recursive definition in logarithmic space. Another way to arrive at
the logic is based on an analysis of the classes of Boolean circuits that can be evaluated in
LOGSPACE. We will take this route when we introduce the logic in Section 3.

LREC is easily seen to be (semantically) contained in FP+C. We show that LREC contains
DTC+C, and as LREC captures LOGSPACE on directed trees, this containment is strict and,
moreover, LREC is not contained in TC+C. Then we prove that undirected graph reachability
is not definable in LREC. Hence LREC does not contain transitive closure logic TC, not even
in its symmetric variant STC, and therefore LREC is strictly contained in FP+C.

It can be argued that our proof of the inability of LREC to express graph reachability
reveals a weakness in our definition of the logic rather than a weakness of the limited recursion
operator underlying the logic: LREC is not closed under (first-order) logical reductions. To
remedy this weakness, we introduce an extension LREC= of LREC. It turns out that undirected
graph reachability is definable in LREC= (this is a convenient side effect of the definition and
not a deep result). Thus LREC= strictly contains symmetric transitive closure logic with
counting. We prove that LREC= captures LOGSPACE on the class of interval graphs. To
complete the picture, we prove that plain LREC, even if extended by a symmetric transitive
closure operator, does not capture LOGSPACE on the class of interval graphs.

The paper is organised as follows: After giving the necessary preliminaries in Section 2,
in Section 3 we introduce the logic LREC and prove that its data complexity is in LOGSPACE.
Then in Section 4, we prove that directed tree isomorphism and canonisation are definable in
LREC. As a consequence, LREC captures LOGSPACE on directed trees. In Section 5, we study
the expressive power of LREC and prove that undirected graph reachability is not definable
in LREC. The extension LREC= is introduced in Section 6. Finally, our results on interval
graphs are presented in Section 7. We close with concluding remarks and open problems.
Due to space limitations, we defer many of the proofs to the full version of this paper.
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2 Basic Definitions

N denotes the set of all non-negative integers. For all m,n ∈ N, we define [m,n] := {p ∈ N |
m ≤ p ≤ n}, and [n] := [1, n]. For mappings f : A→ B, and tuples ā = (a1, . . . , ak) over A,
we let f(ā) := (f(a1), . . . , f(ak)). For a tuple ā = (a1, . . . , ak), we let ã := {a1, . . . , ak}.

A vocabulary is a finite set τ of relation symbols, where each R ∈ τ has a fixed arity ar(R).
A τ -structure A consists of a non-empty finite set V (A), its universe, and for each R ∈ τ a
relation R(A) ⊆ V (A)ar(R). For logics L, L′ we write L ≤ L′ if L is semantically contained in
L′, and L < L′ if this containment is strict.

All logics considered in this paper are extensions of first-order logic with counting (FO+C);
see, e.g., [4, 9, 14, 20] for a detailed discussion of FO+C and its extensions. FO+C extends first-
order logic by a counting operator that allows for counting the cardinality of FO+C-definable
relations. It lives in a two-sorted context, where structures A are equipped with a number
sort N(A) := [0, |V (A)|]. FO+C-variables are either structure variables that range over the
universe of a structure, or number variables that range over the number sort. For each variable
u, let Au := V (A) if u is a structure variable, and Au := N(A) if u is a number variable.
Tuples (u1, . . . , uk) and (v1, . . . , v`) of variables are compatible if k = `, and for every i ∈ [k]
the variables ui and vi have the same type. Let A(u1,...,uk) := Au1×· · ·×Auk . An assignment
in A is a mapping α from the set of variables to V (A) ∪N(A), where for each variable u
we have α(u) ∈ Au. For tuples ū = (u1, . . . , uk) of variables and ā = (a1, . . . , ak) ∈ Aū, the
assignment α[ā/ū] maps ui to ai for each i ∈ [k], and each variable v 6∈ ũ to α(v).

FO+C is obtained by extending first-order logic with the following formula formation
rules: p ≤ q is a formula for all number variables p, q; and #ū ψ = p̄ is a formula for all
tuples ū of variables, all tuples p̄ of number variables, and all formulae ψ. Free variables are
defined in the obvious way, with free(#ū ψ = p̄) := (free(ψ) \ ũ) ∪ p̃. Formulas #ū ψ = p̄

hold in a structure A under an assignment α in A if |{ā ∈ Aū | (A,α[ā/ū]) |= ψ}| = 〈α(p̄)〉A ,
where for tuples n̄ = (n1, . . . , nk) ∈ N(A)k we let 〈n̄〉A be the number

〈n̄〉A :=
k∑

i=1
ni · (|V (A)|+ 1)i−1.

If A is understood from the context, we write 〈n̄〉 instead of 〈n̄〉A.
We write ϕ(u1, . . . , uk) to denote a formula ϕ with free(ϕ) ⊆ {u1, . . . , uk}. Given a

formula ϕ(u1, . . . , uk), a structure A and a1, . . . , ak ∈ A(u1,...,uk), we write A |= ϕ[a1, . . . , ak]
if ϕ holds in A with ui assigned to the element ai, for each i ∈ [k]. We use similar notation
for substitution: For a tuple (v1, . . . , vk) of variables that is compatible to (u1, . . . , uk), we
let ϕ(v1, . . . , vk) be the result of substituting vi for ui for every i ∈ [k]. We write ϕ[A,α; ū]
for the set of all tuples ā ∈ Aū with (A,α[ā/ū]) |= ϕ.

In many places throughout this paper we refer to various transitive closure and fixed-point
logics (all mentioned in the introduction). Our results and remarks about the relation
between these logics and our new logics LREC and LREC= are relevant for a reader familiar
with descriptive complexity theory to put our results in context, but they are not essential
to follow the technical core of this paper. Therefore, we omit the definitions and refer the
reader to the textbooks [4, 9, 14, 20].

3 The Logic LREC

Let us start our development of LREC by looking at how certain kinds of Boolean circuits
can be evaluated in LOGSPACE.
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∧

∨

1 0

1 ¬

∧

1 0 1 1

The figure on the right shows a Boolean formula, i.e., a Boolean
circuit whose underlying graph is a tree. It is easy to evaluate such
circuits in LOGSPACE: Start at the output node, determine the
value of the first child recursively, then determine the value of the
second child, and so on. We only have to store the current node and
its value (if it has been determined already), since the parent node
and the next child of the parent (if any) are uniquely determined
by the current node. It is known that Boolean formula evaluation is LOGSPACE-complete
under NC1-reductions [1].2 In contrast, Boolean circuit evaluation is PTIME-complete.

≥ 2

≥ 1

1 0

1 ¬

≥ 2

1 0 1 1

Let us now turn to formulas with threshold gates, which may
contain gates of the form “≥ i” for a number i in addition to the
Boolean gates. An example is shown on the left. To evaluate such
formulas in LOGSPACE, we again start at the root and evaluate
the values of the children recursively. For each node we count how
many 1-values we have seen already. To this end, when evaluating
the values of the children of a node v, we begin with the child with

the largest subtree and proceed to children with smaller subtrees. Note that the ith child of
v in this order has a subtree of size at most s/i, where s is the size of the subtree of v. So,
we can store a counter of up to log2 i bits for the number of 1-values seen so far. It is easy to
extend the algorithm to formulas with other arithmetic gates such as modulo-gates.

∧
∨

∨ ∧

≥ 2 ∧ ¬ ∨

¬ ∧ ≥ 2 ∧

0 1 1 1

As a more complicated example, let us consider the following
circuits. A circuit C has the m-path property if for all paths P in C
the product of the in-degrees of the nodes on P is at most m. For
example, formulas have the 1-path property, whereas the circuit
on the right has the 16-path property. It is not hard to see that
for every k ≥ 1, circuits C having the |C|k-path property can be
evaluated in LOGSPACE. The |C|k-path property here guarantees
that in addition to a counter we can also store the path from the
current node to the root, so that we can always find the parent of
the current node. Another way of evaluating the circuit is to first
“unravel” the circuit to a tree (i.e., a formula) which can be done in
LOGSPACE due to the |C|k-path property, and then to evaluate the formula as above.

The logic LREC allows it to recursively define sets X of tuples based on graphs G that
have the |G|k-path property for some k ≥ 1.

We turn to the formal definition of the logic LREC. To define the syntax, let τ be a
vocabulary. The set of all LREC[τ ]-formulae is obtained by extending the formula formation
rules of FO+C[τ ] by the following rule: If ū, v̄, w̄ are compatible tuples of variables, p̄, r̄ are
non-empty tuples of number variables, and ϕE and ϕC are LREC[τ ]-formulae, then

ϕ := [lrecū,v̄,p̄ ϕE , ϕC ](w̄, r̄) (1)

is an LREC[τ ]-formula, and we let free(ϕ) := (free(ϕE) \ (ũ∪ ṽ))∪ (free(ϕC) \ (ũ∪ p̃))∪ w̃∪ r̃.
To define the semantics of LREC[τ ]-formulae, let A be a τ -structure and α an assignment

in A. The semantics of LREC[τ ]-formulae that are not of the form (1) is defined as usual.
Let ϕ be an LREC[τ ]-formula of the form (1). We define a set X ⊆ Aū × N recursively

as follows. We consider E := ϕE [A,α; ū, v̄] as the edge relation of a directed graph with

2 Here, the Boolean formula is represented by the list of all edges plus gate types in the circuit representing
the formula.
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vertex set V := Aū. Moreover, for each vertex ā ∈ V we think of the set C(ā) := {〈n̄〉 |
n̄ ∈ ϕC [A,α[ā/ū]; p̄]} of integers as the label of ā. Let āE := {b̄ ∈ V | āb̄ ∈ E} and
Eb̄ := {ā ∈ V | āb̄ ∈ E}. Then, for all ā ∈ V and ` ∈ N,

(ā, `) ∈ X :⇐⇒ ` > 0 and
∣∣∣∣{b̄ ∈ āE ∣∣∣∣ (b̄,⌊`− 1

|Eb̄|

⌋)
∈ X

}∣∣∣∣ ∈ C(ā).

Notice that X contains only elements (ā, `) with ` > 0. Hence, the recursion eventually stops
at ` = 0. We call X the relation defined by ϕ in (A,α). Finally, we let

(A,α) |= ϕ :⇐⇒
(
α(w̄), 〈α(r̄)〉

)
∈ X.

I Example 3.1 (Boolean circuit evaluation). Let σ := {E,P∧, P∨, P¬, P0, P1}. A Boolean
circuit C may be viewed as a σ-structure, where E(C) is the edge relation of C, and
P?(C) contains all ?-gates for ? ∈ {∧,∨,¬, 0, 1}. If C has the |C|-path-property, then
∃r1, r2 [lrecx,y,p E(x, y), ϕC ](z, (r1, r2)) with ϕC(x, p) := (P∧(x)∧#y E(x, y) = p)∨(P∨(x)∧
“p > 0”) ∨ (P¬(x) ∧ “p = 0”) ∨ P1(x) states that gate z evaluates to 1. J

I Example 3.2 (Deterministic transitive closure). Let ψ(ū, v̄) be an LREC[τ ]-formula, and let
s̄, t̄ be tuples of variables such that ū, v̄, s̄, t̄ are pairwise compatible. We give a formula ϕ
such that for any τ -structure A and assignment α in A, we have (A,α) |= ϕ(s, t) iff in the
graph G = (V,E) defined by V := Aū and E := ψ[A,α; ū, v̄] there is a deterministic path
from α(s̄) to α(t̄), i.e., a path v1, . . . , vn from α(s̄) to α(t̄) such that for every i ∈ [n − 1],
vi+1 is the unique out-neighbour of vi. This is the same as reversing the edges of G and
finding a path vn, . . . , v1 from α(t̄) to α(s̄) such that for every i ∈ [n− 1], vi+1 is the unique
in-neighbour of vi. Therefore,

ϕ := ∃r̄ [lrecū,v̄,p̄ ϕE(ū, v̄), ϕC(ū, p̄)](t̄, r̄), (2)

where p̄ and r̄ are (|ū|+ 1)-tuples of number variables, and

ϕE(ū, v̄) := ψ(v̄, ū) ∧ ∀ū′(ψ(v̄, ū′)→ ū′ = ū), ϕC(ū, p̄) := ū = s̄ ∨ (ū 6= s̄ ∧ p̄ 6= 0̄).

In the following, we use [dtc ū,v̄ ψ](s̄, t̄) as an abbreviation for the LREC-formula in (2). J

The following theorem shows that the data complexity of LREC is in LOGSPACE.

I Theorem 3.3. For every vocabulary τ , and every LREC[τ ]-formula ϕ there is a deterministic
logspace Turing machine that, given a τ -structure A and an assignment α in A, decides
whether (A,α) |= ϕ.

I Remark. It follows from Example 3.2 that DTC+C ≤ LREC. This containment is strict
as directed tree isomorphism is definable in LREC (we will show this in the next section),
but not in DTC+C. On the other hand, it is easy to see that the relation X defined by an
LREC-formula of the form (1) in an interpretation (A,α) can be defined in fixed point logic
with counting FP+C. Hence, LREC ≤ FP+C, and this containment is strict since we show in
Section 5 that undirected graph reachability is not LREC-definable.

4 Capturing Logspace on Directed Trees

In this section we show that LREC captures LOGSPACE on the class of all directed trees.
Our construction is based on Lindell’s LOGSPACE tree canonisation algorithm [21]. Note,
however, that Lindell’s algorithm makes essential use of a linear order on the tree’s vertices
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that is given implicitly by the encoding of the tree. Here we do not have such a linear order,
so we cannot directly translate Lindell’s algorithm to an LREC-formula. We show that we
can circumvent using the linear order if we have a formula for directed tree isomorphism.
Hence, our first task is to construct such a formula.

4.1 Directed Tree Isomorphism
Let T be a directed tree. For every v ∈ V (T ) let Tv be the subtree of T rooted at v, let
size(v) := |V (Tv)| be the size of v, and let #s(v) be the number of children of v of size
s. We construct an LREC[{E}]-formula ϕ∼=(x, y) that is true in a directed tree T with
interpretations v, w ∈ V (T ) of x, y if and only if Tv

∼= Tw. We assume that |V (T )| ≥ 4, but
it is easy to adapt the construction to directed trees with less than 4 vertices.

We implement the following recursive procedure to check whether Tv
∼= Tw:

1. If size(v) 6= size(w) or if #s(v) 6= #s(w) for some s ∈ [0, |V (Tv)| − 1], return “Tv 6∼= Tw”.
2. If for all children v̂ of v there is a child ŵ of w and a number k such that

a. Tv̂
∼= Tŵ,

b. there are exactly k children ẘ of w with Tv̂
∼= Tẘ, and

c. there are exactly k children v̊ of v with Tv̊
∼= Tŵ,

then return “Tv
∼= Tw”.

3. Return “Tv 6∼= Tw”.
Clearly, this procedure outputs “Tv

∼= Tw” if and only if Tv
∼= Tw.

To simplify the presentation we fix a directed tree T and an assignment α in T , but the
construction will be uniform in T and α.

We construct a directed graph G = (V,E) with labels C(v) ⊆ N for each v ∈ V as follows.
Let V := N(T )× V (T )4×N(T ). The first component of each vertex is its type; the meaning
of the other components will become clear soon. Although G will not be a tree, it is helpful
to think of it as a decision tree for deciding Tv

∼= Tw. For each pair (v, w) ∈ V (T )2, we
designate the vertex āv,w = (0, v, w, v, w, 0) to stand for “Tv

∼= Tw”. Let us call (v, w) easy if
v, w satisfy the condition in line 1 of the procedure (i.e., size(v) 6= size(w), or #s(v) 6= #s(w)
for some s ∈ [0, |V (Tv)| − 1]). Note that the set of all such easy pairs is LREC-definable.3 If
(v, w) is easy, then āv,w has no outgoing edges and C(āv,w) = ∅. On the other hand, if (v, w)
is not easy, then G contains the following edges and labels (see Figure 1 for an illustration):

The vertex āv,w has an outgoing edge to āv,w,v̂ := (1, v, w, v̂, w, 0), for each child v̂ of v.
Furthermore, C(āv,w) = {# of children of v}. This corresponds to “for all children v̂ of
v. . . ” in the above procedure’s step 2.
The vertex āv,w,v̂ has an outgoing edge to āv,w,v̂,ŵ,k := (2, v, w, v̂, ŵ, k), for each child ŵ of
w with size(ŵ) = size(v̂) and each k ∈ [#size(v̂)(v)]. Furthermore, C(āv,w,v̂) = N(T )\{0}.
This branching corresponds to “. . . there is a child ŵ of w and a number k such that. . . ”.
The vertex āv,w,v̂,ŵ,k has an outgoing edge to āv̂,ŵ. If v̂ is the only child of v of size
size(v̂), then this is the only outgoing edge, and we let C(āv,w,v̂,ŵ,k) = {1}. Otherwise,
there are additional outgoing edges to āi

v,w,v̂,ŵ,k = (3 + i, v, w, v̂, ŵ, k) for i ∈ {0, 1}, and
we let C(āv,w,v̂,ŵ,k) = {3}. This corresponds to conditions 2a–2c.
The vertex ā0

v,w,v̂,ŵ,k has outgoing edges to āv̂,ẘ for each child ẘ of w of size size(v̂),
and ā1

v,w,v̂,ŵ,k has outgoing edges to āv̊,ŵ for each child v̊ of v of size size(ŵ) = size(v̂).

3 Using the dtc-operator from Example 3.2 we can construct an LREC[{E}]-formula defining the descendant
relation between vertices in a directed tree, and using this formula it is easy to determine the size and
the number of children of size s of a vertex.
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āv,w n = # children of v

āv,w,v̂ n > 0

āv,w,v̂,ŵ,k n = 1 if #size(v̂)(v) = 1; n = 3 otherwise

ā0
v,w,v̂,ŵ,kn = k ā1

v,w,v̂,ŵ,k n = kāv̂,ŵ

āv̂,ẘ āv̊,ŵ

Figure 1 Sketch of “decision tree” for deciding Tv
∼= Tw. Here, v̂, v̊ range over the children of v;

ŵ, ẘ range over the children of w; and k ∈ [#size(v̂)(v)]. Moreover, v̂, v̊, ŵ, ẘ all have the same size.
Labels indicate which integers n belong to the set C(ā) labelling each vertex ā. If v̂ is the only child
of v of size size(v̂), then āv̂,ŵ is the only child of āv,w,v̂,ŵ,k.

Furthermore, C(āi
v,w,v̂,ŵ,k) = {k}. The vertex āi

v,w,v̂,ŵ,k corresponds to condition 2b for
i = 0, and to 2c for i = 1.

From the above description it should be easy to construct LREC[{E}]-formulae ϕE(ū, ū′) and
ϕC(ū, p), where ū = (qt, x, y, x̂, ŷ, qk) and ū′ = (q′t, x′, y′, x̂′, ŷ′, q′k), such that ϕE [T, α; ū, ū′] =
E, and {〈n〉 | n ∈ ϕC [T, α[ā/ū]; p]} = C(ā) for each ā ∈ V .

Let ϕ∼=(x, y) := ∃r̄ [lrecū,ū′,p ϕE , ϕC ]((0, x, y, x, y, 0), r̄), where r̄ is a 5-tuple of number
variables.4 Let X be the relation defined by ϕ∼= in (T, α). By induction on size(v) it is easy
to see that (āv,w, `) ∈ X implies Tv

∼= Tw. It remains to prove completeness:

I Lemma 4.1. If Tv
∼= Tw, then for all ` ≥ size(v)5 we have (āv,w, `) ∈ X.

Proof. The proof is by induction on size(v). Suppose that size(v) = 1 and Tv
∼= Tw. Then

size(w) = 1 which implies that (v, w) is not easy. Furthermore, as v has no children in T ,
we know that āv,w has no children in G and C(āv,w) = {0}. Hence, (āv,w, `) ∈ X for all
` ≥ 1 = size(v)5.

Now suppose that size(v) = s+ 1 for some s ≥ 1, and Tv
∼= Tw. First note that (v, w) is

not easy. Let ` ≥ (s+ 1)5. We show that (āv,w,v̂, `− 1) ∈ X for all children v̂ of v, which
implies (āv,w, `) ∈ X. Let v̂ be a child of v in T . Since Tv

∼= Tw, there is a child ŵ of w of
size s′ := size(v̂) and a number k ∈ [#s′(v)] such that

Tv̂
∼= Tŵ,

there are exactly k children ẘ of w of size s′ such that Tv̂
∼= Tẘ, and

there are exactly k children v̊ of v of size s′ such that Tv̊
∼= Tŵ.

Pick such ŵ and k.
Let us deal with the case #s′(v) = 1 first. In this case, āv̂,ŵ is the only child of

āv,w,v̂,ŵ,k; moreover, āv,w,v̂,ŵ,k and āv̂,ŵ have exactly one incoming edge each. Since Tv̂
∼= Tŵ

and ` − 3 ≥ (s′)5, the induction hypothesis implies (āv̂,ŵ, ` − 3) ∈ X. Consequently
(āv,w,v̂, `− 1) ∈ X.

In the following we assume #s′(v) ≥ 2. Let d := 3 ·#s′(v)2. Note that all vertices in
Figure 1 except the type 0-vertices have exactly one incoming edge, and that the in-degree
d′ of a type 0-vertex āv′,w′ , where v′, w′ are children of v and w, respectively, of size s′ is at
most d, because it has incoming edges from

vertices āv,w,v′,w′,k, where v and w are the (unique) parents of v′ and w′, respectively,
and k ∈ [#s′(v)];

4 We use 0 as a constant, but clearly we can modify ϕ∼= to a formula that does not use the constant 0.
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vertices ā0
v,w,v′,ŵ,k, where v, w, k are as above and ŵ is a child of w of size s′; and

vertices ā1
v,w,v̂,w′,k, where v, w, k are as above and v̂ is a child of v of size s′.

Let `′ := b(`− 4)/dc. Then

`′ ≥ `− d− 3
d

≥ s5

d
+ s4

d
− 2 ≥ #s′(v)5 · (s′)5

3 ·#s′(v)2 + #s′(v)4

3 ·#s′(v)2 − 2 ≥ 2(s′)5 − 1 ≥ (s′)5,

where for the second inequality we use (s+1)5 ≥ s5+s4, for the third one we use #s′(v)·s′ ≤ s,
and for the fourth one we use #s′(v) ≥ 2. Hence, by the induction hypothesis we have:

(āv̂,ŵ, b(`− 3)/d′c) ∈ X (note that b(`− 3)/d′c ≥ `′).
There are exactly k children ẘ of w of size s′ with (āv̂,ẘ, b(` − 4)/d′c) ∈ X (note that
b(`− 4)/d′c ≥ `′), which implies (ā0

v,w,v̂,ŵ,k, `− 3) ∈ X.
There are exactly k children v̊ of v of size s′ with (āv̊,ŵ, b(`− 4)/d′c) ∈ X, which implies
that (ā1

v,w,v̂,ŵ,k, `− 3) ∈ X.
It follows immediately that (āv,w,v̂,ŵ,k, `− 2) ∈ X, and therefore (āv,w,v̂, `− 1) ∈ X. J

Finally, let (v, w) ∈ V (T )2. Then we have size(v)5 ≤ |V (T )|5 ≤ |N(T )||r̄| − 1, and
therefore T |= ϕ∼=[v, w] iff (āv,w, |N(T )||r̄| − 1) ∈ X iff Tv

∼= Tw.

4.2 Defining an Order on Directed Trees
Lindell’s tree canonisation algorithm is based on a logspace-computable linear order on
isomorphism classes of directed trees. We show that a slightly refined version of this order is
LREC-definable.

Let T be a directed tree. For each v ∈ V (T ) let π(v) :=
(
size(v),#1(v), . . . ,#size(v)−1(v)

)
be the profile of v.5 Let � be the total preorder on V (T ),6 where v ≺ w whenever
1. π(v) < π(w) lexicographically, or
2. π(v) = π(w) and the following is true: Let v1, . . . , vk and w1, . . . , wk be the children of v

and w, respectively, ordered such that v1 � · · · � vk and w1 � · · · � wk. Then there is
an i ∈ [k] with vi ≺ wi, and for all j < i we have vj � wj and wj � vj .

Note that v � w and w � v imply Tv
∼= Tw. We show that � is LREC-definable.

To simplify the presentation, we again fix a directed tree T and an assignment α, and we
assume that |V (T )| ≥ 4.

We apply the lrec-operator to the following graph G = (V,E) with labels C(v) ⊆ N
for each v ∈ V . Let V := N(T ) × V (T )4 × N(T ). For each (v, w) ∈ V (T )2, the vertex
āv,w = (0, v, w, v, w, 0) represents “v ≺ w”. If π(v) < π(w), then āv,w has no outgoing edges
and C(āv,w) = {0}. If π(v) > π(w), then āv,w has no outgoing edges and C(āv,w) = ∅. Note
that the relation “π(v) ≤ π(w)” is LREC-definable.

Suppose that π(v) = π(w). For all t, u ∈ V (T ) let θu(t) be the number of children u′ of
u with Tu′ ∼= Tt. Call a child v̂ of v good if θv(v̂) > θw(v̂) and for all children v′ of v with
size(v′) < size(v̂) we have θv(v′) = θw(v′). Then it is not hard to see that v ≺ w precisely if
there is a good child v̂ of v, a child ŵ of w of size s := size(v̂) and a k ∈ [#s(v)] such that
v̂ ≺ ŵ, there are exactly k children ẘ of w of size s with ẘ ≺ v̂, there are exactly k children
v̊ of v of size s with v̊ ≺ ŵ and Tv̊ 6∼= Tv̂, and for all k children w′ of w of size s with w′ ≺ v̂
we have θv(w′) = θw(w′). The “decision tree” in Figure 2 checks precisely these conditions.

Using the formula ϕ∼= from the previous section it is now straightforward to construct
LREC[{E}]-formulae ϕE(ū, ū′) and ϕC(ū, p) that define the edge relation E of G and the

5 Lindell’s order can be obtained by replacing π(v) with π′(v) :=
(
size(v),#children of v

)
.

6 That is, � is a preorder on V (T ) such that for all v, w ∈ V (T ) we have v � w or w � v.
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āv,w n > 0

(1, v, w, v̂, ŵ, k) n = 1 if #size(v̂)(v) = 1; n = 4 otherwise

āv̂,ŵ (2, v, w, v̂, ŵ, k) n = k

āẘ,v̂

(3, v, w, v̂, ŵ, k) n = k

āv̊,ŵ

(4, v, w, v̂, ŵ, k) n = k

āw′,v̂

Figure 2 Gadget for deciding v ≺ w when π(v) = π(w). Here, v̂ ranges over good children of v;
v̊ ranges over children of v of size s := size(v) and Tv̊ 6∼= Tv̂; ŵ, ẘ range over children of w of size
s; w′ ranges over children of w of size s with θv(w′) = θw(w′); and k ∈ [#s(v)]. The edges from
(2, v, w, v̂, ŵ, k) to (t, . . . ) for t ∈ {2, 3, 4} exist only if #s(v) > 1. Labels indicate which integers n
belong to the set C(ā) labelling each vertex ā.

sets C(ā) for each ā ∈ V , where ū and ū′ are as in the definition of ϕ∼=. Let ϕ≺(x, y) :=
∃r̄ [lrecū,ū′,p ϕE , ϕC ]((0, x, y, x, y, 0), r̄), where r̄ is a 5-tuple of number variables. Let X be
the relation defined by ϕ≺ in (T, α). It is then possible to show by induction on size(v) that
(āv,w, `) ∈ X implies v ≺ w and that v ≺ w implies (āv,w, `) ∈ X for all ` ≥ size(v)5. Hence,
T |= ϕ≺[v, w] iff (āv,w, |N(T )||r̄| − 1) ∈ X iff v ≺ w.

4.3 Canonising Directed Trees
We now construct an LREC-formula γ(p, q) such that for every directed tree T we have
T ∼= ([|V (T )|], γ[T ; p, q]). Since DTC captures LOGSPACE on ordered structures [13] and a
linear order is available on the number sort, we immediately obtain:

I Theorem 4.2. LREC captures LOGSPACE on the class of directed trees.

Since directed tree isomorphism is in LOGSPACE by Lindell’s tree canonisation algorithm,
but not TC+C-definable [5], we obtain:

I Corollary 4.3. LREC 6≤ TC+C on the class of all directed trees.

We use l-recursion to define a set X ⊆ V (T ) × N(T )2 (for simplicity, we omit the
“resources” in the description) such that for every v ∈ V (T ) the set Xv := {(m,n) ∈ N(T )2 |
(v,m, n) ∈ X} is the edge relation of an isomorphic copy ([|V (Tv)|], Xv) of Tv. Each vertex
of T is numbered by its position in the preorder traversal sequence, e.g., the root is numbered
1, its first child v1 is numbered 2, its second child v2 is numbered 2 + size(v1), and so on.

To apply the lrec-operator, we define a graph G = (V,E) with labels C(v) ⊆ N for each
v ∈ V as follows. Let V := V (T )×N(T )2, where (v,m, n) ∈ V stands for “(m,n) ∈ Xv?”.
If v is a leaf, then Xv should be empty, so for all m,n ∈ N(T ) we let (v,m, n) have
no outgoing edges and define C((v,m, n)) := ∅. Suppose that v is not a leaf and w is
a child of v. Let Sw be the set of all children w′ of v with w′ ≺ w, and let ew be the
number of children w′ of v with Tw

∼= Tw′ . For each i ∈ [0, ew − 1], the set Xv will
contain an edge from 1 to pw,i := 2 +

∑
w′∈Sw

size(w′) + i · size(w), and the edges in
{(pw,i − 1 +m, pw,i − 1 + n) | (m,n) ∈ Xw}. Hence we let (v, 1, pw,i) have no outgoing edges
and define C((v, 1, pw,i)) := {0}. Furthermore, for all m,n ∈ N(T ) and all i < ew, we let
ā := (v, pw,i − 1 +m, pw,i − 1 + n) have an edge to (w,m, n) and define C(ā) := {1}.

It is now easy to construct LREC-formulae ϕE(x1, p1, p
′
1, x2, p2, p

′
2) and ϕC(x1, p1, p

′
1, q)

that define the graph G and the labels C(·). Let

γ(p1, p2) := ∃x∃r
(
“x is the root” ∧ [lrec(x1,p1,p′

1),(x2,p2,p′
2),q ϕE , ϕC ]((x, p1, p2), r)

)
.
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Noting that the in-degree of each vertex (v,m, n) is at most ev, it is straightforward to show
that γ defines an isomorphic copy of a directed tree.

5 Inexpressibility of Reachability in Undirected Graphs

In LREC it is not possible to define reachability in undirected graphs:

I Theorem 5.1. There is no LREC[{E}]-formula ϕ(x, y) such that for all undirected graphs
G and all v, w ∈ V (G), G |= ϕ[v, w] iff there is a path from v to w in G.

As an immediate corollary we obtain:

I Corollary 5.2. STC 6≤ LREC

For the proof of Theorem 5.1, we consider the following undirected graphs Gn, for n ≥ 1.
Each graph Gn consists of 2 · n2 vertices partitioned into layers V 1

1 , . . . , V
1

n , V
2
1 , . . . , V

2
n with

|V j
i | = n, where every two vertices in consecutive layers V j

i and V j
i+1 are connected by an

edge, i.e., E(Gn) = {(v, w) ∈ V j
i × V j

i+1 | i ∈ [n− 1], j ∈ [2]}. Vertices of Gn that belong to
the same layer are called siblings. We show that reachability is not LREC-definable on the
class C of all graphs that are isomorphic to Gn for some n ≥ 1.

More precisely, we show that on C every LREC[{E}]-formula ϕ is equivalent to a formula
in the infinitary counting logic L∗∞ω(C) (see [19] or [20, Section 8.2]). Theorem 5.1 then
immediately follows from the fact that every L∗∞ω(C)-formula without free number variables
is Gaifman-local [19].

To construct an equivalent L∗∞ω(C)-formula we proceed by induction on the structure
of the formula ϕ. The only interesting case is that of an LREC[{E}]-formula of the form
ϕ = [lrecū1,ū2,p̄ ϕE , ϕC ](w̄, r̄). Let v̄E be an enumeration of all variables in free(ϕE) that are
not listed in ū1ū2 and let v̄C be an enumeration of all variables in free(ϕC) that are not listed
in ū1p̄. Let n > |ū1|+ |v̄E |+ 2, and consider an assignment α in Gn. Further, let V := Gū1

n

and E := ϕE [Gn, α; ū1, ū2]. For every ā ∈ V and ` ∈ N, let Pn,`(ā) be the set of all sequences
((ā0, `0), . . . , (ām, `m)) ∈ (V × [0, `])m+1, where m ∈ N, (ā0, `0) = (ā, `), (ā0, . . . , ām) is a
path in (V,E), and `i = b(`i−1 − 1)/|Eāi|c for each i ∈ [m]. The key property which enables
us to construct a L∗∞ω(C)-formula equivalent to ϕ on C is:

I Lemma 5.3. Let ā ∈ V , ` ∈ N, and ((ā0, `0), . . . , (ām, `m)) ∈ Pn,`(ā). Let I be the set of
all i ∈ [m] such that (ãi−1 ∪ α(ṽE)) ∩ V (Gn) 6= (ãi ∪ α(ṽE)) ∩ V (Gn). Then |I| is bounded
by a constant that depends only on ϕ.

The main insight for proving the lemma is that for every two siblings b, b′ ∈ V (Gn) there is
an automorphism of Gn swapping b and b′ and fixing all other vertices pointwise. Therefore, if
((ā0, `0), . . . , (ām, `m)) ∈ Pn,`(ā) and i ∈ [m] is such that ãi−1∩V (Gn) * (ãi∪α(ṽE))∩V (Gn),
then for any b ∈ ãi−1 ∩ V (Gn) with b /∈ ãi ∪ α(ṽE), there is a linear number of siblings of b
that do not occur in ãi ∪ α(ṽE) ∪ {b}, each leading to an incoming edge at āi. It is not hard
to bound the number of all other i ∈ I by a constant.

6 An Extension of LREC

The previous section’s Theorem 5.1 reveals that LREC is not closed under (first-order) logical
reductions.7 To remedy this weakness, we introduce the following extension LREC= of LREC.

7 There is an FO-reduction that takes the graphs Gn, n ≥ 3, considered in Section 5 to disjoint unions Ĝn

of two undirected paths on n vertices each by identifying siblings. It is not hard to see that reachability
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The idea is to admit a third formula ϕ= in the lrec-operator that generates an equivalence
relation on the vertices of the graph defined by ϕE .

Let τ be a vocabulary. The set of all LREC=[τ ]-formulae is obtained from LREC[τ ] by
replacing the rule for the lrec-operator from Section 3 as follows: If ū, v̄, w̄ are compatible
tuples of variables, p̄, r̄ are non-empty tuples of number variables, and ϕ=, ϕE and ϕC are
LREC=-formulae, then the following is an LREC=[τ ]-formula:

ϕ := [lrecū,v̄,p̄ ϕ=, ϕE , ϕC ](w̄, r̄). (3)

We let free(ϕ) :=
(
free(ϕ=) \ (ũ ∪ ṽ)

)
∪
(
free(ϕE) \ (ũ ∪ ṽ)

)
∪
(
free(ϕC) \ (ũ ∪ p̃)

)
∪ w̃ ∪ r̃.

To define the semantics of LREC=[τ ]-formulae ϕ of the form (3) let A be a τ -structure and
α an assignment in A. Let V0 := Aū and E0 := ϕE [A,α; ū, v̄]. We define ∼ to be the reflexive,
symmetric, transitive closure of the binary relation ϕ=[A,α; ū, v̄] over V0. For every ā ∈ V0
let [ā] be the equivalence class of ā with respect to ∼. Now consider the graph with vertex set
V := {[ā] | ā ∈ V0} and edge set E := {[ā][b̄] ∈ V 2 | there are ā′ ∈ [ā], b̄′ ∈ [b̄] with ā′b̄′ ∈ E0}.
To every [ā] ∈ V we assign the set C([ā]) := {〈n̄〉 | n̄ ∈ ϕC [A,α[ā′/ū]; p̄], ā′ ∈ [ā]} of labels.
Then the definition of X can be taken verbatim from Section 3. We let (A,α) |= ϕ if and
only if

(
[α(w̄)], 〈α(r̄)〉

)
∈ X.

As for LREC, the data complexity of LREC= is in LOGSPACE and LREC= ≤ FP+C.
Furthermore, LREC= is closed under logical reductions.

The following example shows that undirected graph reachability is definable in LREC=.
This does not involve an implementation of Reingold’s algorithm in our logic, but just
uses the observation that the computation of the equivalence relation ∼ boils down to the
computation of undirected reachability.

I Example 6.1 (Undirected reachability). The following LREC-formula defines undirected
graph reachability:

ϕ(s, t) := [lrecx,y,p ϕ=(x, y), ϕE(x, y), ϕC(x, p)](s, 1),

where ϕ=(x, y) := E(x, y), ϕE(x, y) := x 6= x and ϕC(x, p) := x = t. Let G be an undirected
graph and α an assignment in G. Define V , E, C and the set X as above. Clearly, the set
V consists of the connected components of G. Furthermore, the set E is empty since ϕE is
unsatisfiable. Therefore, for all v ∈ V (G) we have ([v], 1) ∈ X iff 0 ∈ C([v]). The latter is
true precisely if α(t) ∈ [v], i.e., if v and α(t) are in the same connected component of G. It
follows that for all v, w ∈ V (G) we have G |= ϕ[v, w] if and only if v and w are in the same
connected component of G, that is, if there is a path from v to w in G. J

It follows immediately from the previous example that STC+C ≤ LREC=. Actually, the
containment is strict, because LREC 6≤ STC+C. Since trees can be made directed in STC+C,
the results from Section 4 imply that LREC= captures LOGSPACE on the class of all trees.

7 Capturing Logspace on Interval Graphs

We now prove that LREC= captures LOGSPACE on the class of all interval graphs. The result
is shown by describing an LREC=-definable canonisation procedure for interval graphs, which
relies on a specific decomposition of graphs known as modular decomposition (first introduced

on the class of all graphs Ĝn is LREC-definable. Hence, if LREC was closed under FO-reductions, then
reachability on the class of all graphs Gn would be LREC-definable, contradicting Theorem 5.1.
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by Gallai [7]). It combines algorithmic techniques from [16] with the logical definability
framework in [17]. The results in [17] are stated for fixed-point logic with counting only, but
many of the results that are of interest for our construction hold in fact for STC+C. Parts of
Sections 7.1 and 7.2 can be found in more detail in [18].

7.1 Definition of Interval Graphs and Basic Properties
I Definition 7.1 (Interval graph). Let I be a finite collection of closed intervals Ii = [ai, bi] ⊂
N. The graph GI = (V,E) has vertex set V = I and edge relation IiIj ∈ E :⇔ Ii ∩ Ij 6= ∅.
I is called an interval representation of a graph G if G ∼= GI , and a graph G is an interval
graph if there is a collection of closed intervals I which is an interval representation of G.

A clique of a graph G = (V,E) is a subset C ⊆ V of the vertex set, such that the subgraph
induced by C is complete. A maximal clique, or max clique, is a clique that is not properly
contained in another clique. It is known [8, 22] that a graph G is an interval graph if and only
if its max cliques can be brought into a linear order, so that each vertex of G is contained
in consecutive max cliques. Let us denote the set of a graph’s max cliques by M. For
canonisation it is essential to linearly order the max cliques of G.

Let Nc(v) denote the closed neighbourhood of a vertex v, i.e. the set containing v and all
vertices adjacent to v. The first lemma shows that the maximal cliques are FO-definable, as
is the equivalence relation on V 2 of vertex pairs defining the same max clique.

I Lemma 7.2 ([17], Lemma 4.1). Let G be an interval graph and let M be a max clique of G.
Then there are vertices u, v ∈M , not necessarily distinct, such that M = Nc(u) ∩Nc(v). J

The span of a vertex v ∈ V , denoted span(v), is the number of max cliques of G that v is
contained in. Since equivalence classes can be counted in STC+C (Lemma 2.7. in [17]), the
span of a vertex is STC+C-definable on the class of interval graphs.

7.2 Modular Decomposition Tree
A set W of vertices in a graph G = (V,E) is a module if for all vertices v ∈ V \W either
{v}×W ⊆ E or ({v}×W )∩E = ∅. The vertex set V and all vertex sets of size 1 are trivial
modules by this definition. A module W is proper if W ⊂ V .

Let us call a vertex of G which is adjacent to all other vertices an apex of G. If G is a
connected interval graph without an apex, then the complement graph of G is connected
as well, and by [7] the set of maximal proper modules of G is a partition of G’s vertex set.
Thus, the set of proper modules WG = {W1, . . . ,Wk} of G which replaces every maximal
proper module that is a subset of just one maximal clique by modules of size 1 for all
contained vertices is also partition of G’s vertex set. Each pair of modules Wi,Wj , i 6= j,
is either completely connected or completely disconnected. Let ∼G be the equivalence
relation corresponding to the partition WG, and let LG = G

/
∼G:= (V

/
∼G, EL), where

[u][v] ∈ EL ⇔ ∃x ∈ [u], y ∈ [v] such that xy ∈ E. If G contains an apex, we let ∼G be the
equivalence relation for which x ∼G y if and only if x = y or x, y ∈ V \A, where A ⊆ V is
the set of apices, and define LG equivalently.

It is easy to see that LG is an interval graph, that if A is a max clique of G, then
ALG

:= {[v] | v ∈ A} is a max clique of LG, and that all max cliques of LG are of this form.
The following lemma gives further information about LG.

I Lemma 7.3. Let m be the number of max cliques of LG.
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1. There are STC+C-formulae ϕ∼G
, ϕLG

such that for all connected interval graphs, ϕ∼G

defines the equivalence relation ∼G, and ϕLG
the graph LG.

2. If m > 1, then there exist exactly two linear orderings of LG’s max cliques, each the
reverse of the other. There is an STC+C-formula that given a max clique A of G defines
the one with ALG

appearing within the first bm
2 c max cliques of LG.

3. There is an STC+C-formula that for all connected interval graphs G canonises LG.

According to the preceding lemma we can define an isomorphic copy K(LG) of LG on
the number sort. What is left is to deal with the contents of the non-singular modules
Wi1 , . . . ,Wil

of WG. If we continue decomposing the graphs G[Wi1 ], . . . , G[Wil
] inductively

until we arrive at singular sets everywhere, we obtain a modular decomposition of G.
Let P ′ =

{
(M,n)

∣∣M ∈M, n ∈ [|V |]
}
. For each (M,n) ∈ P ′ define VM,n as the set of

vertices of the connected component of G[
{
v ∈ V

∣∣ span(v) ≤ n
}

] which intersects M (if
non-empty).

Let W be a non-singular maximal proper module. We define C to be the set of max
cliques C such that C ∩W 6= ∅. It is immediate from the definition of a module W that
W =

⋃
C∈C VC,|C|. Thus, for any C ∈ C, the set VC,|C| defines a component of W .

Let P be the set of those (M,n) ∈ P ′ for which n is maximal among all n′ with the property
that VM,n′ = VM,n and which satisfy that VM,n is the connected component of a module
occurring in the modular decomposition of G. Then P contains exactly all the components of
modules occurring in the modular decomposition. There exists an STC+C-formula deciding
whether (M,n) is in P .

Now we want to construct a coloured modular decomposition tree T = (VT , ET ). An
illustration of the tree can be found in the full version. We will later need STC+C-definability
of this coloured tree. Thus, notice that the tree’s vertices are equivalence classes, which are
STC+C definable. Also the edge relation and the colours are STC+C-definable (Lemma 7.3).

Let VT be the union of the following sets:
the set V of component vertices vVM,n

, one for each set VM,n with (M,n) ∈ P ,
the set A of arrangement vertices a≺Q,VM,n

where ≺Q is the distinguished order on
LVM,n

’s max cliques if K(LVM,n
) is not order isomorphic under its two linear orderings,

and if K(LVM,n
) is order isomorphic under its two linear orderings, then max clique Q

identifies an order ≺Q, namely, the order where QLVM,n
occurs first. (Q defines both

orders if QLVM,n
is in the middle.)

the set S of module vertices sWA,VM,n
for which WA is the module of VM,n that contains

vertices of max clique A, and
{sV }, where sV is a special vertex acting as the root of T .

We colour the vertices in V by assigning to each vVM,n
∈ V the ordered graph K(LVM,n

).
The vertices in A remain uncoloured and may therefore be exchanged by an automorphism of
T whenever their subtrees are isomorphic. Each sWA,VM,n

∈ S is coloured with the multiset
of integers corresponding to the positions that the max clique ALVM,n

takes in the orders of
LVM,n

.
The edge relation ET of T is now defined in a straight-forward manner, with all edges

directed away from the root sV .

sV is connected to all vVM,n
∈ V with n = |V |.

Each vVM,n
∈ V is connected to all vertices in A of the form a≺Q,VM,n

with Q∩ VM,n 6= ∅.
Each a≺Q,VM,n

∈ A is connected to all those sWA,VM,n
∈ S so that ≺Q belongs to the

set of orders of LVM,n
under which module WA ∈ LVM,n

attains its minimal position,
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that is, for every max clique Q that intersects with a non-singular module of VM,n

vertex a≺Q,VM,n
∈ A is connected to sWQ,VM,n

∈ S.
Every sWA,VM,n

∈ S is connected to those vVM′,n′ ∈ V for which VM ′,n′ is a connected
component of the module WA, that is, sWA,VM,n

∈ S is connected to vVA,n′ ∈ V with
n′ = max{m < n | (VA,m) ∈ P}.

The point of the arrangement vertices A is to ensure that the order of submodules is
properly accounted for. If our modular tree did not have such a safeguard, exchanging
modules in symmetric positions might give rise to a non-isomorphic graph, but it would not
change the tree, so T would be useless for the task of distinguishing between these two graphs.

Lemma 7.4 below shows that our modular trees are a complete invariant of interval
graphs, so modular trees can be used to tell whether two interval graphs are isomorphic.

I Lemma 7.4 ([16], see full version for further remarks). Let G and H be interval graphs. If
their modular trees are isomorphic, then so are G and H. J

7.3 Canonisation
We can now make use of the STC+C-definable modular decomposition tree:

I Lemma 7.5. Let θV (ū), θ≈(ū, v̄), θE(ū, v̄) and θL(ū, q̄) be STC+C-formulae with ū, v̄

compatible tuples and q̄ a tuple of number variables, such that for all interval graphs G
and assignments α, θ≈[G,α; ū, v̄] generates an equivalence relation ≈, θV [A,α; ū]

/
≈ the

vertices, θE [A,α; ū, v̄]
/
≈ the edge relation and θL[A,α; ū, q̄]

/
≈ the colours of the modular

decomposition tree TG. Then there is an LREC=-formula ψ�′(ū, v̄) such that ψ�′ [A,α; ū, v̄]
/
≈

defines for all G a total preorder on the vertices of TG, which is more precisely, a linear order
on the isomorphism classes of the (coloured) subtrees of TG identified by its root vertices.

Finally, we can use the modular decomposition tree and the total preorder on its vertices
for canonisation. We use l-recursion on the modular decomposition tree, and as we have done
for canonising trees we build the canon from the leaves to the root of the tree. Recursively,
we construct the canon by first building the disjoint union of the canons of the components
of submodules, then use the arrangement vertices to insert all submodules at the correct side
and build the canon of the correspondent component of a module.
I Remark. It is possible to show that there is no LREC+TC[{E}]-sentence ϕ such that for
all connected interval graphs G1, G2 we have G1 ]G2 |= ϕ if and only if G1 ∼= G2. The proof
is based on similar ideas as the proof of Theorem 5.1.

8 Conclusion

We introduce the new logics LREC and LREC=, extending first-order logic with counting by
a recursion operator that can be evaluated in logarithmic space. By capturing LOGSPACE
on trees and interval graphs, we obtain the first nontrivial descriptive characterisations of
LOGSPACE on natural classes of unordered structures. It would be interesting to extend our
results to further classes of structures such as the class of planar graphs or classes of graphs
of bounded tree width.

The expressive power of LREC= is not yet well-understood. For example, it is an open
question whether directed graph reachability is expressible in LREC=, and even whether
LREC= has the same expressive power as FP+C. (Of course assumptions from complexity
theory indicate that the answer to both questions is negative.) It is also an open question
whether reachability on undirected trees is expressible in plain LREC.
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It is obvious that our capturing results can be transferred to nondeterministic logarithmic
space NL by adding a transitive closure operator to the logic. However, it would be much
nicer to have a natural “nondeterministic” variant of our limited recursion operator that
allows it to express directed graph reachability and thus yields a logic that contains TC. We
leave it as an open problem to find such an operator.
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Abstract
We investigate and implement a model of typed streaming I/O. Each type determines a language
of traces analogous to regular expressions on strings, and programs are modelled by certain
monotone functions on these traces. We show that sequential composition forms a lax braided
monoid in the category of types and programs. This lax braided structure allows programs to
be represented diagrammatically using Joyal and Street’s string diagrams in 3D space. Mono-
tone functions over traces cannot be executed efficiently, so we present an equivalent monoidal
category of transducers. We demonstrate that transducers can be executed efficiently, theoret-
ically by showing that programs with diagrams embedded in the plane can be executed in O(1)
space, and experimentally by an implementation in the Agda dependently typed functional lan-
guage. Agda supports machine-assisted proof: we have mechanically verified that the transducer
implementation and the I/O model form lax braided monoidal categories.
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1 Introduction

1.1 Semantics

There are many models of streaming I/O, such as Kahn’s dataflow networks [22] and Mil-
ner’s [26] and Hoare’s [16] process models. In these models, streams are stateless, for example
a stream might be given the type Byteω, and a consumer is allowed to read a Byte from such
a stream at any time.

To motivate the use of stateful streams, consider a typical Java program which consumes
a steam of data:

Iterator<A> stream = ...;
while (stream.hasNext()) { A a = stream.next(); ... }

The contract for using an Iterator<A> stream is that hasNext is called, and depending on
its value the stream is either terminated, or next can be called, and the stream’s contract
is back to its initial state:
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Bool A
true

false

a

In Java, such contracts are enforced dynamically; they are enforced statically by systems of
typestates [9]. Typestates are modelled as automata, and so come with the usual definition
of sequential composition. We will write T & U for the sequential composition of T and U ;
a typical member is given by concatenating a member of T with a member of U . There is
a matching notion of sequential composition of functions on traces, and so we investigate
monoidal categories. There has been work on formal models of computation over stateful
streams, notably session types [17] and games models [4, 18]. These models emphasise the
concurrent, rather than sequential, composition of streams, for example in games models
T ⊗ U is modelled by interleaving.

This paper provides the first categorical model for typed streaming I/O with a monoidal
structure for sequential composition. We will show that this category has lax braided [8]
structure (§2.5), and so has a dataflow presentation as string diagrams in three dimen-
sions (§2.6). Braided monoidal categories are common in mathematical physics [5]; it is
surprising that they also come up in the setting of streaming.

1.2 Pragmatics

This paper grew from an attempt to provide an I/O library for the Agda [1] dependently
typed functional programming language. Since Agda compiles to Haskell [3], it is possible
to link against Haskell’s lazy I/O model. Unfortunately, lazy I/O does not respect Agda’s
semantics. Consider:

hello1 [] = putStr "Hello" hello2 xs = putStr "Hello"
hello1 (x : xs) = putStr "Hello"

Agda includes a mechanized proof assistant, in which it is routine to prove that hello1 and
hello2 are extensionally equivalent. Unfortunately, executing these programs using Haskell
lazy I/O (main = getContents >>= hello*) results in hello1 blocking waiting for input,
and hello2 immediately printing "Hello". Kiselyov [23] has proposed an alternative to lazy
I/O: the iteratee model; Millikin [25] has written a good introduction to the topic. Iteratees
are similar to transducers [24] or resumptions [15]. Similar to this, we present a streamlined
process model and show that processes are equivalent to functions over traces (§3.1).

We give a characterization of the regular functions on streams, which can be executed
in O(1) space. We show (§3.2) that regular programs can be presented as planar dataflow
diagrams. We provide an implementation of processes as an Agda library (§3.3) that links
processes against the Haskell I/O library, and verify experimentally that our implementation
of a simple wc program runs in constant space. We have used Agda to mechanically validate
many of the theorems in this paper. This verification is of the I/O library implementation,
not just its model, and caught some corner case buffering bugs. This is the first mechanical
verification of the categorical structure of an I/O library.

CSL’11



294 The Lax Braided Structure of Streaming I/O

2 Semantics

2.1 Types
We model stateful types as the grammar:

T
ν::= I | Σ(a :A)Ta

I is the unit type and Σ(a : A)Ta is a sum type, where A is a set1, and T is an A-indexed
family of types. Types are defined coinductively, that is each type can be viewed as a
(possibly infinitely deep and infinitely wide) tree, where each node is either: an I node, with
no children, or a Σ(A) node, with A-indexed children. We indicate that the grammar of
types is to be interpreted coinductively by the annotation ν::= ; we will annotate inductive
grammars by µ::= . For example, the type: 〈Bool〉 def= Σ(b : Bool) I has tree representation:

Bool

true

false

which can be viewed as the tree unfolding of the graph:

Bool b

In general, the character type 〈A〉 is:

A
a 〈A〉 def= Σ(a :A) I

The iterator character type 〈A〉∗ is:

Bool A
true

false

a

〈A〉∗ def= Σ(b : Bool)Tb
Ttrue

def= Σ(a :A) 〈A〉∗

Tfalse
def= I

The stream character type 〈A〉ω is:

A a 〈A〉ω def= Σ(a :A) 〈A〉ω

As these examples show, types can be viewed as (potentially infinite state) automata, where
the only acceptor is I.

I Theorem 1. Types are in one-to-one correspondence with minimal deterministic automata
where every acceptor is a sink state.

1 For readers who care about cardinality, let A range over a universe of small sets, and let the set of
types be a large set.
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2.2 Traces
Since types are automata, we can look at their languages. Define the transition relation on
types and the language of a type:

Σ(a :A)Ta
b−→ Tb (b ∈ A) L(T ) = { a1 · · · an | T

a1−→ · · · an−→ I }

Following [29], we will call the elements of this set complete traces of T . Equivalently, we
can present the complete traces as a grammar:

t
µ::= ε | a · t

together with a type judgement t : XT :

ε : XI
a ∈ A t : XTa

a · t : XΣ(a :A)Ta
We can also define the language of (potentially incomplete) traces as:

T (T ) = { a1 · · · an | ∃U . T
a1−→ · · · an−→ U }

or equivalently as a type judgement t : T :

ε : T
a ∈ A t : Ta

a · t : Σ(a :A)Ta
We are interested in incomplete traces, because we will view programs as functions from
input traces to output traces. If we only recorded complete traces, then every program has
an equivalent program which blocks waiting for its input to complete.

2.3 Categories
We have discussed our model of types as languages of traces, and now consider our model
of programs as functions on traces. For any function f : T (T )→ T (U), define:

f is monotone whenever t ≤ u implies f(t) ≤ f(u), where ≤ is prefix order, and
f respects completion whenever t is complete implies f(t) is complete.

Monotonicity is a standard requirement for trace models, for example [22], as it expresses
that a program must commit to its output. Respecting completion is a termination property.
This leads us to our first category of functions over traces. Tr is the category with:

Objects are types.
Morphisms f :T → U are monotone functions f :T (T )→ T (U) which respect completion.
Identity and composition are as expected.

It turns out that we will use two other conditions on functions in Sections 2.4 and 2.5.
Define:

f reflects completion whenever f(t) is complete implies t is complete, and
f is strict whenever f(ε) = ε.

We can then define three subcategories of Tr, all with the same objects:
in RTr, morphisms reflect completion,
in STr, morphisms are strict, and
in RSTr, morphisms reflect completion and are strict.

It is routine to verify that identity and composition preserve monotonicity, respecting com-
pletion, reflecting completion, and strictness, and so form categories.

I Theorem 2. Tr, RTr, STr and RSTr are categories.

Proof. Mechanically verified [19]. J

CSL’11



296 The Lax Braided Structure of Streaming I/O

2.4 Monoidal structure
Since types are automata, they come equipped with a monoidal action: sequential composi-
tion. We define the type T & U by tree substitution :

I & U
def= U (Σ(a :A)Ta) & U

def= Σ(a :A) (Ta & U)

This is the usual definition of composition of automata, replacing any moves to the acceptor
in T by a move to the initial state of U , for example:

Bool A

Bool B

true

false

a

true

false

a

〈A〉∗ & 〈B〉∗

It is easy to check that on types, & forms a monoid with unit I. To define the action of
& on morphisms, we first define concatenation of traces: given t : T and u : U , we define
t _ u : T & U . If t is complete, the definition is as expected:

ε _ u
def= u (a · t) _ u

def= a · (t _ u)

We cannot, however, use this definition when t is incomplete, as it does not typecheck;
instead we define:

t _ u
def= t when t is incomplete

Given t : T & U , we define frontT (t) : T and backT (t) : U as:

frontI(t) def= ε

frontΣ(a:A) Ta
(ε) def= ε

frontΣ(a:A) Ta
(a · t) def= a · frontTa

(t)

backI(t) def= t

backΣ(a:A) Ta
(ε) def= ε

backΣ(a:A) Ta
(a · t) def= backTa

(t)

We will often elide the types from front and back. From concatenation and projection,
we can define the action of & on morphisms. Given f : T → U and g : T ′ → U ′, define
f & g : T & T ′ → U & U ′ as:

(f & g)(t) def= f(front(t)) _ g(back(t))

Unfortunately, this is not a monoid on Tr, as it is not a functor, for which we would need:

(f1; g1) & (f2; g2) = (f1 & f2); (g1 & g2)

This fails for morphisms (of type 〈Bool〉 → 〈Bool〉):

f1(t) def= g2(t) def= t f2(t) def= g1(t) def= true · ε lhs(ε) = true · true · ε 6= true · ε = rhs(ε)

To show functoriality, it is sufficient to show:
g1 reflects completion, or
f1 respects completion, and f2 is strict.

I Theorem 3. RTr, STr and RSTr are monoidal categories.

Proof. Mechanically verified [19]. J
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2.5 Lax braided structure
We can define a family of morphisms:

swap : T & U → U & T swap(t) def= back(t) _ front(t)

Unfortunately, swap does not form a symmetry, as this would require swap(swap(t)) = t,
which is only true (for non-I types) when t is complete:

swap(swap(t)) = ε when t is incomplete

The problem is that swap has to buffer the front of the input until the the input is complete.
We will discuss this form of space usage in Section 3.2.

We have shown that swap is not a symmetry, and in fact it is it not even an isomorphism.
For example, for swap : 〈Bool〉& U → U & 〈Bool〉 we have, for any f :

f(swap(true · ε)) = f(ε) = f(swap(false · ε))

and so f cannot be the inverse of swap.
Categories in which swap is an isomorphism have been studied in depth: they are braided

monoidal categories, and have applications in mathematical physics, as surveyed, for ex-
ample, by Baez and Stay [5]. Braided monoidal categories can be regarded as the categorical
version of braid groups, where every braiding has an inverse. Positive braid monoids [10]
drop this requirement; their categorical equivalent, lax braided monoidal categories have only
recently been investigated by Day et al. [8], see Figures 2–3.

We will see that RSTr is a lax braided monoidal category. Unfortunately, RTr and STr
are not lax braided, as swap is not natural, for which we need:

(f & g); swap = swap; (g & f)

To see that reflecting completion without strictness is not enough to guarantee naturality,
consider:

f(t) def= t g(t) def= a · t lhs(ε) = ε 6= a · ε = rhs(ε)

To see that strictness without reflecting completion is not enough, consider, for any complete
t 6= ε, incomplete u 6= ε and complete s:

f(t) def= t g(t) def=
{
ε if t = ε

s otherwise lhs(t _ u) = s _ t 6= s = rhs(t _ u)

Naturality of swap can be shown when f respects completion, and g is strict and reflects
completion.

I Theorem 4. RSTr is a lax braided monoidal category.

Proof. Mechanically verified [19]. J

2.6 String diagrams
Braided monoidal categories have an associated graphical language of string diagrams, as
shown by Joyal and Street [20]. String diagrams have been used in various guises for quite
some time now and we refer the reader to Baez and Stay [5] or Selinger [27] up to date
surveys of graphical languages.
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words

bytes

back

report

encode

〈Byte〉∗
〈Byte〉∗

〈Nat〉〈Byte〉∗ 〈Nat〉

〈Nat〉
〈Char〉∗

〈Byte〉∗

Figure 1 Example dataflow diagram.

Such diagrams are often used to represent the dataflow of programs, for example in Kahn
networks [22]. An example dataflow program is shown in Figure 1: a simple wc program,
which counts the number of bytes and the number of words in an input stream. (We draw
diagrams flowing from top to bottom in line with Baez and Stay rather than Selinger).

The categorical structure of such dataflow diagrams is well-known: they form a sym-
metric monoidal category, with combinators shown in Figure 2. It is routine to verify that
dataflow graphs up to isomorphism satisfy the properties given in Figures 3 and 4, which
are the defining equations of a (strict) symmetric monoidal category. Joyal and Street
have shown that not only are these equations sound, but they are also complete for graph
isomorphism [20, Thm. 2.3], as discussed by Selinger [27, Thm. 3.12].

In a braided monoidal category, Figure 4 is replaced by Figure 5. This is accompanied
by a matching change in the interpretation of diagrams; rather than graph isomorphism, we
consider equivalence in three dimensional space. It is routine to verify that string diagrams
up to isotopy2 satisfy the properties given in Figures 3 and 5, which are the defining equations
of a (strict) braided monoidal category. Again, Joyal and Street have shown that not only
are these equations sound, but they are also complete for isotopy [20, Thm. 3.7], as discussed
by Selinger [27, Thm. 3.7].

In string diagrams, swap is interpreted as a left-over-right crossing, and so has an inverse
right-over-left crossing. In a lax braided monoidal category, the requirement that swap has
an inverse is dropped, and we are left with the equations presented in Figure 3. This provides
us with a graphical language of a lax braided monoidal category: we conjecture that this
graphical language is sound and complete.
I Conjecture 2.1. A well-formed equation between morphisms in the language of lax braided
monoidal categories follows from the axioms of lax braided monoidal categories if and only
if it holds in the graphical language up to isotopy in 3 dimensions.

Proof sketch. Given Joyal and Street’s results, it is enough to show that the equational
theory of a braided monoidal category is a conservative extension of the equational theory

2 More precisely, progressive isotopy of smooth string diagrams in three dimensions, see Joyal and
Street [20].
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··· ··· ··· ··· ··· ··· ···

G

f ··· G H

H

··· ··· ··· ··· ··· ··· ···

id G;H swapG⊗Hf

Figure 2 Combinators of a (strict) symmetric monoidal category.

··· ··· ···

···

G G G

···

··· ··· ···

··· ···

G G

H H

I I

··· ···

··· ··· ··· ···

G H G H

I J I J

··· ··· ··· ···

··· ··· ···

G G G

··· ··· ···

··· ··· ··· ··· ··· ···

G H I G H I

··· ··· ··· ··· ··· ···

G;id G id;G

id⊗G G G⊗id (G⊗H)⊗I G⊗(H⊗I)

(G;H);I G;(H;I)
(G⊗H);(I⊗J) (G;I)⊗(H;J)

= =

= = =

= =

··· ··· ··· ···

G H

··· ··· ··· ···

H G

··· ··· ··· ···

··· ··· ··· ··· ··· ···

··· ··· ···

··· ··· ··· ··· ··· ···

··· ··· ··· ··· ··· ···

··· ··· ···

··· ··· ··· ··· ··· ···

··· ···

··· ···

··· ···

··· ···
(G⊗H);swap swap;(H⊗G)

(swap⊗id);(id⊗swap) swap

(id⊗swap);(swap⊗id) swap

swap id

swap id

=

=

=

=

=

Figure 3 The equations of a (strict) lax braided monoidal category

··· ··· ···

··· ···

··· ··· ···
swap;swap id

=

Figure 4 Symmetry

··· ··· ···

··· ···

··· ··· ···

swap;swap−1 id

=

··· ··· ···

··· ···

··· ··· ···

swap−1;swap id

=

Figure 5 Braiding
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of a lax braided monoidal category. That is, given any two morphisms f and g in the free
lax braided monoidal category over a given signature, if f =B g then f =L g (where =B is
the theory of a braid, and =L is the theory of a lax braid). In the case without generating
morphisms, this problem collapses to the case of showing that the free positive braid monoid
embeds into the free braid group, which was shown by Garside [10]3.

Let w range over wiring morphisms (that is, morphisms without generators) and p range
over planar morphisms (that is, morphisms without swap). Define a stratified morphism
to be one of the form: w0; p1;w1; . . . ; pn;wn such that if pi;wi =L w; f for some w, then
w =L id, and if wi; pi+1 =L p; f for some p, then p =L id. Now, if we can show that:

every morphism can be stratified up to =L,
stratified terms are a normal form for =B , and
Conjecture 3.4 of Selinger [27],

then we can prove our conjecture. Assume morphisms f and g in the free lax braided mon-
oidal category, such that f =B g. Stratify each of them to get f =L w0; f1;w1; . . . ; fn;wn
and g =L v0; g1; v1; . . . ; gb;wn. Since these are normal forms for =B , we have: vi =B wi
and fi =B gi. Each vi =L wi from Garside [10]. Since fi =B gi, we have that fi and gi are
isotopic as string diagrams in three dimensions, so Selinger’s conjecture implies fi =L gi.
The result then follows. J

We leave the full proof of this conjecture as future work. If this conjecture is true, it provides
a powerful, and unexpected, proof technique for equivalence of streaming programs: draw
the dataflow diagrams for the programs as string diagrams in three dimensions, and check
that an isotopy exists. Isotopies can often be checked “by eye”, so this technique would
allow many routine rewiring steps in a proof to be elided.

3 Pragmatics

3.1 Processes
One of the major drawbacks of functions on partial traces as a model of streaming I/O is
that they cannot easily be executed directly. Imagine an execution of f after receiving input
t: when a new input symbol a arrives, we need to know the matching output, so we have to
apply f to the new history t · a. This is inefficient in both time (potentially O(n2) rather
than O(n)) and space (potentially O(n) rather than O(1)). Delimited call/cc [28] would
avoid this, at the cost of sophisticated language features.

Therefore, as a move towards an implementation we find it useful to introduce a syntactic
representation of programs as a small language of transducer processes:

S
ν::= inp(a :A)Pa | done P

µ::= S | out aP

In this definition:
inp(a :A)Pa is an input process, A is a set, and P is an A-indexed family of processes,
done is the terminated process, and
out aP is an output process.

Notice that the two levels of grammar define strict processes S and (lazy) processes P .
Laziness here refers to not being reliant on an input in order to generate output. Also note

3 Thanks to Ross Street for discussions on this topic, and for pointing us to Garside’s work.
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the coinductive annotation on the grammar of strict processes, and the inductive annotation
on P , which ensures that there are no infinite sequences of output actions.

The type rules for processes are given coinductively:

done : I → I

Pa : Ta → U for all a ∈ A
inp(a :A)Pa : Σ(a :A)Ta → U

a :A P : T → Ua

out aP : T → Σ(a :A)Ua

Note that since there are no infinite sequences of output actions, well=typed processes
respect completion.

We can define4 the operation of composition on processes � as (in order):

P � out aQ def= out a (P � Q)
inp(a :A)Pa � Q

def= inp(a :A) (Pa � Q)
out aP � inp(b :B)Qb

def= P � Qa

done� Q
def= Q

P � done def= P

The identity processes for this composition are:

idI = done idΣ(a:A)Ta
= inp(a :A) out a idTa

This leads us to a category of processes. Pr has:
Objects are types.
Morphisms P : T → U are processes.
Identity and composition are id and �.

We have already defined the strict processes. A process reflects completion when it can be
typed with an additional side-condition on the type rule for input:

Pa : Ta → U for all a ∈ A
inp(a :A)Pa : Σ(a :A)Ta → U

(U 6= I)

We can then define three subcategories of Pr, all with the same objects:
in RPr, processes reflect completion,
in SPr, processes are strict, and
in RSPr, processes reflect completion and are strict.

We can define a sequential composition operator P &Q on typed processes as (in order):

P & out bQ def= out b (P &Q) if P : T → I

done &Q
def= Q

inp(a :A)Pa &Q
def= inp(a :A) (Pa &Q)

out aP &Q
def= out a (P &Q)

This definition is straightforward except for the first clause in which a process that has
completed its output will not block immediate output from Q.

4 Some care is required to ensure that this definition is well formed, since it uses a mix of induction and
coinduction. This has been mechanically verified [19].
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The lax braided structure on processes is given by the swapT,U process defined (in order):

swapI,U
def= idU

swapT,I
def= idT

swapT,U
def= swapT,U (ε)

swapI,I(u) def= outu done
swapI,Σ(a:A)Ua

(u) def= inp(a :A) out a swapI,Ua

swapΣ(a:A)Ta,U (u) def= inp(a :A) swapTa,U (u · a)

out ε P def= P

out (u · a)P def= outu out aP

This process explicitly maintains a buffer u of actions which are output after its input has
completed.

I Theorem 5.
1. Pr is a category.
2. RPr and SPr are monoidal categories.
3. RSPr is a lax braided monoidal category.

Proof. Mechanically verified [19]. J

In order to show that our transducer processes accurately represent our model, we show
equivalences of categories. Given a morphism P : T → U in Pr we give a morphism [[P ]] :
T → U in Tr as follows:

[[done]](ε) def= ε

[[out aP ]](t) def= a · [[P ]](t)
[[inp(a :A)Pa]](ε) def= ε

[[inp(a :A)Pa]](b · t) def= [[Pb]](t)

On traces, define t u−→ t′ as:

t
ε−→ t

t
u−→ t′

a · t a·u−→ t′

that is, whenever t can be partitioned into a prefix u and suffix t′. On morphisms, define:

f
t/u−→ f ′ whenever s t−→ s′ implies f(s) u−→ f ′(s′)

This allows us to view morphisms as (possibly infinite state) transducers [24]: f responds to
input t by producing output u and changing state to f ′. Given a strict morphism f :T → U ,
define the strict process (|f |)sT : T → U as:

(|f |)sI
def= done

(|f |)sΣ(a:A) Ta

def= inp(a :A) out t (|f ′|)sT where f a/t−→ f ′

Given a morphism f : T → U , define the process (|f |)T : T → U as:

(|f |)T

def= out t (|f ′|)sT where f ε/t−→ f ′

We can show that (|·|) and [[·]] are inverses and respect categorical structure, and so form
equivalences.
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I Theorem 6. (|·|) and [[·]] form equivalences:
1. Tr and Pr as categories.
2. RTr and RPr as monoidal categories.
3. STr and SPr as monoidal categories.
4. RSTr and RSPr as lax braided monoidal categories.

Proof. Mechanically verified [19]. J

3.2 Space usage
In Section 2.5, we discussed the fact that swap introduces buffering: we will now discuss
space usage more formally.

An online algorithm is one which can be implemented by a multi-tape Turing Machine
where only rightward moves are allowed on the input and output tapes. The space usage
of such an implementation is the space usage of the scratch tapes: for example the identity
function is considered to be in O(1) space. It is routine to show that if f and g can be
implemented in O(1) space, then so can f ; g and f & g. The only constructor of a lax
braided monoidal category to introduce O(n) space usage is swap.

Another way to characterize the space usage is by analogy with regular trees. In our
setting, we are interested in the infinite trees generated by the coinductive definition of types.
A type is regular whenever: {T ′ | T t−→ T ′ } is finite and a morphism is regular whenever:
{ f ′ | f t/u−→ f ′ } is finite It is routine to see that regular types (resp. morphisms) can be
implemented as deterministic finite-state automata (resp. sequential finite-state transducers
[24]), and so can be executed in O(1) space (provided the alphabet can be represented in
O(1) space).

The identity function is regular, and regularity of morphisms is preserved by f ; g, and
f & g, so we can form the subcategory (resp. strict monoidal subcategory) of Tr (resp. RTr,
STr and RSTr) where morphisms are regular.

We can now show that swap is irregular. Consider the type N def= 1.N + 0.I whose
complete traces are of the form 1n0, and whose incomplete traces are of the form 1n. Now,
for any m and n, if (at type N &N):

swap 1m/ε−→ f swap 1n/ε−→ f

then we must have: 01m0 = swap(1m00) = f(00) = swap(1n00) = 01n0 and hence m =
n. Thus there must be infinitely many such f , and so swap is irregular. This argument
is essentially a replay of the Pumping Lemma in the setting of transducers rather than
automata.

Since any plane dataflow graph can be expressed without swap [27], this gives a surprising
method for showing that a function can be implemented in O(1) space: check that its
dataflow diagram is embedded in a plane. Moreover, if Conjecture 2.1 is true, then this
means that planarity only has to hold up to isotopy in three dimensions.

I Theorem 7. Any plane dataflow diagram whose generating morphisms can be implemented
in online O(1) space determines a morphism which can be implemented in online O(1) space.

3.3 Implementation
Agda [1] is a dependently typed functional programming language, which supports mechan-
ical theorem proving. Its core language is similar to that of Coq [2], although it does not
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have a separate language of tactics. It has a compiler to Haskell [3], and a foreign function
interface, which allows calls out to Haskell code.

The transducer process language and type system discussed in Section 3.1 is implemented
as an Agda library. It is linked against the Haskell I/O monad, and compiles to simple
pipes from standard input to standard output. The implementation allows us to verify
experimentally that regular programs run in constant space, for example the wc program
from Figure 1 can word count 29Mb of data (1M lines of XML) in 120k heap, with 22k live:

head -1000000 h_sapiens.xml | WC +RTS -A50k -M120k -s
29294872 1339150

16,796,509,664 bytes allocated in the heap
477,860,144 bytes copied during GC

22,112 bytes maximum residency (1 sample(s))
32,512 bytes maximum slop

Many of the theorems in this paper have been mechanically verified, which shows correctness
not just of the model Tr, but also of its implementation in Pr. This proof of correctness
caught some subtle bugs, for example in the definition of P &Q there is a clause:

P & out bQ def= out b (P &Q) if P : T → I

This clause was originally not present, which causes subtle buffering errors in the corner case
where P ’s output has completed even though its input has not. For unit testing to catch
this bug, a test harness would be required which supports mocking an I/O library to allow
testing with incomplete traces. Such mock libraries are difficult to construct, which in turn
makes unit testing of I/O-bound programs difficult.

In summary, we have provided an executable library of streaming I/O, together with a
mechanically verified proof of its categorical structure. This is the first such library.

4 Related work

Our model is based on monotone functions over traces, and so is strongly related to Kahn
dataflow networks [22]. Kahn networks are for streams of type Aω, and so do not support
a notion of stream termination, or concatenation of streams. The main difference between
Kahn’s model and ours is that we require streams to be consumed in left-to-right order, that
is a function of type f : T & U → V must consume all of its T input before consuming any
of its U input.

Games models [4, 18] have a similar structure to our model: arenas are (essentially)
automata with additional structure, and strategies are (essentially) transducers. Games,
however, are designed to have symmetric monoidal structure, rather than braided monoidal
structure, since the tensor on types is an interleaving rather than a sequencing of automata.
Games models are also compact closed, since they have a dualising action ·⊥. This corres-
ponds to the bidirectional nature of strategies in a game: a morphism f : T → U supports
input on the right and output on the left, as well as the left-to-right communication allowed
by our model.

Session types [17] also provide a bidirectional extension of the types considered here. We
can define the first-order output-only sessions in our system as:

end def= I ![A].T def= Σ(a :A)T ⊕{`i : Ti}
def= Σ(a : {`1, . . . , `n})Ua where U`i

def= Ti

Session types do support a notion of terminated session, and so could support a sequential
composition operator, but this has not been investigated. Moreover, much of the work on
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session types has been in the context of processes rather than functions, with the exception
of recent work by Gay and Vasconcelos [11]. There has been no work on categorical session
models. Linear logic [14] has symmetric monoidal structure, which has been generalized to
the non-commutative case (up to cyclic permutations) by Yetter [30]. Kiselyov’s iteratees [23]
provide a similar model to our transducer process model, although they also support impure
iteratees and exceptions. The more fundamental difference between the models is output,
which in Millikin’s [25] notation is: Yield(Chunk[~b])[~a]. Here, an iteratee is being built with
input type A, and output type U ; it is outputting ~b, and also returning the unconsumed
input ~a. In our terms, this is a process of type 〈A〉∗ → 〈B〉∗ & 〈A〉∗, that is iteratees are
given by the state transformer construction applied to processes. A similar syntactic model
for stream processing is provided by Ghani et al. [12], and has been generalized to arbitrary
coinductive datatypes [13].

5 Future work

Cyclic graphs are modelled categorically as traced monoidal categories [21], as discussed by
Selinger [27]. Braided traced categories are well-known, but it is not immediately obvious
what the right notion of lax braided traced category is. Cyclic graphs would allow modelling
of recursive dataflow programs, although there may be a requirement that only contraction
maps (with respect to an appropriate metric on traces) can be made cyclic.

Games models and session types are naturally bidirectional, so there exist duals for
all types; categorically games form compact closed categories. It is not obvious how to
generalize the notion of autonomous category from the braided to the lax braided setting.
Compact closed categories are monoidal closed, where T ⇒ U is defined to be T⊥⊗U . This
should extend to a higher order sequential model, where T⊥ & U is a type for programs
which consume all their arguments before producing any results.

There is a natural improvement order on functions, given pointwise by prefix order,
for example swap; swap ≤ id. Such an improvement order would make our category a 2-
category. These come with natural minimal and maximal elements, for example the the
maximal natural transform of type T → T is the identity function, and the minimal natural
transform is a “delay” function that returns ε on any incomplete input, and acts as the
identity on complete input. Moreover, Tr comes with the right combinators to form a
category with finite products, but the equations are only satisfied up to two-cells, for example
〈f, g〉;π2 ≤ g. This may be given an interesting restriction category structure [7] or form a
variant of a cartesian bicategory [6].
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Abstract
Church’s Problem asks for the construction of a procedure which, given a logical specification
ϕ(I,O) between input strings I and output strings O, determines whether there exists an operator
F that implements the specification in the sense that ϕ(I, F (I)) holds for all inputs I. Büchi and
Landweber gave a procedure to solve Church’s problem for MSO specifications and operators
computable by finite-state automata.

We consider extensions of Church’s problem in two orthogonal directions: (i) we address the
problem in a more general logical setting, where not only the specifications but also the solutions
are presented in a logical system; (ii) we consider not only the canonical discrete time domain of
the natural numbers, but also the continuous domain of reals.

We show that for every fixed bounded length interval of the reals, Church’s problem is decid-
able when specifications and implementations are described in the monadic second-order logics
over the reals with order and the +1 function.
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1 Introduction

Church’s synthesis problem [3] is to automatically construct an implementation of a specific-
ation relating the inputs and outputs of a state-based system. The specification is assumed
to be an MSO(<)-formula S(I,O), which determines a binary relation between input strings
I and output strings O. An implementation is a function (or operator) P from strings to
strings that uniformizes S in the sense that S(I, P (I)) holds for all inputs I. Church required
that P be computable by a finite-state machine that at every moment t ∈ N reads an input
symbol I(t) and produces an output symbol O(t). Hence, the output O(t) produced at t
depends only on input symbols I(0), I(1), . . . , I(t) received before t, that is, P should be a
causal operator. Another property of interest is that the machine computing P be finite-state.
In the light of Büchi’s proof [1] of the expressive equivalence of MSO(<) and finite automata,
P is finite-state if and only if it is MSO(<)-definable.

Church’s synthesis problem can therefore be stated formally as follows.
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Church Synthesis Problem
Input: an MSO(<) formula ϕ(X,Y ).
Task: Check whether there is a causal operator F such that

〈N, <〉 |= ∀Xϕ(X,F (X)) and if so, construct this operator.

This problem, which is more general than the satisfiability problem for MSO over 〈N, <〉,
was shown decidable in a landmark paper of Büchi and Landweber [2]. Their main theorem
is stated as follows:

I Theorem 1 (Büchi and Landweber). Given an MSO(<) formula ϕ(X,Y ) one can decide
whether there is a causal operator that uniformizes ϕ. If such an operator exists then it can
be represented by a finite-state automaton which can be computed from ϕ.

Note that this theorem guarantees that whenever ϕ has a uniformizer then it has
a uniformizer that is computable by a finite-state automaton (equivalently, definable in
MSO(<)).

In the continuous-time setting, one can naturally consider the synthesis problem over the
non-negative reals rather than the naturals. Here we think of a specification as a relation
between signals rather than words. As specification language one again takes MSO(<), which
has a natural interpretation over the non-negative reals. As implementations one again takes
MSO(<)-definable causal operators.

Shelah [13] proved that MSO(<) is undecidable over the reals if we allow quantification over
arbitrary predicates. In Computer Science however, it is natural to restrict to finitely variable
predicates, that is, predicates whose characteristic function has finitely many discontinuities
in any bounded interval. Under the finite-variability interpretation, MSO is decidable over
the reals and there are automata that have the same expressive power [10].

However, the full extension of the Büchi and Landweber theorem fails over the nonnegative
reals, even under the finite-variability assumption. For example, the formula that says that
Y has at least two points of discontinuity can be uniformized by a causal operator, but not
by an MSO(<)-definable causal operator (see Example 7 for details).

Nevertheless, we are able to show the following result:

I Theorem 2. Given a MSO(<) formula ϕ(X,Y ) one can decide whether there is an
MSO(<)-definable causal operator that uniformizes ϕ over 〈R≥0, <〉. If so, the algorithm
computes a formula that defines such an operator.

In the continuous setting a deficiency of MSO(<) is that it cannot express metric properties
such as “the distance between two points is one”. Thus we consider specifications expressed
in MSO(<,+1), which extends MSO(<) with the +1 function.

Unfortunately, even with the finitely-variable interpretation, the satisfiability problem
over the non-negative reals is undecidable for MSO(<,+1) [5]. However in [9] we proved that
MSO(<,+1) is decidable for every fixed bounded-length intervals of the reals. The main
result of our paper is that Church’s synthesis problem is also decidable for MSO(<,+1) for
every fixed bounded-length interval of the reals. Specifically,

I Theorem 3. Given an MSO(<,+1) formula ϕ(X,Y ) and N ∈ N, one can decide whether
there is an MSO(<,+1)-definable causal operator that uniformizes ϕ over the the interval
[0, N). If such an operator exists, the algorithm computes a formula that represents the
operator.

In order to prove Theorem 3 we need to consider the Church synthesis problem with
parameters—additional predicates that the specification may reference but which do not have
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to be considered in a causal way by the implementation. This problem was considered in [11]
for MSO(<) over 〈N, <〉. Here we extend the Church synthesis problem with parameters to
the non-negative reals.

Finally, we show that the synthesis problem over bounded intervals of reals is non-
elementary, even for specifications expressed in fragments of MSO(<,+1) with an elementary
satisfiability problem.

2 Monadic Second-Order Logic

We consider monadic second-order logic MSO(<,+1) over a signature consisting of the
binary relations < and +1 and a countable family of monadic predicate names P0, P1, . . ..
The vocabulary of MSO(<,+1) also includes first-order variables t0, t1, . . . and monadic
second-order variables X1, X2, . . .. Atomic formulas are of the form X(t), P (t), t1 < t2,
+1(t1, t2) or t1 = t2. Well-formed formulas are obtained from atomic formulas using Boolean
connectives, the first-order quantifiers ∃t and ∀t, and the second-order quantifiers ∃X and
∀X. We denote by MSO(<) the sub-language consisting of all formulas that do not mention
the +1 relation.

We are interested in structures of the formM = 〈A,<,+1,P1, . . . ,Pm〉 where A is an
interval of non-negative reals with the usual order, +1(x, y) holds if and only if y = x+ 1,
and P1, . . . ,Pm are subsets of A that interpret the monadic predicate names P1, . . . , Pm.
(Generally we use boldface to denote interpretations of predicate names.) We omit the
standard definition of what it means for a structure to satisfy a sentence. A formula
ϕ(P1, . . . , Pm, X1, . . . , Xn) with free second-order variables among X1, . . . , Xn is interpreted
in a structure 〈M,X1, . . . ,Xn〉 obtained by expandingM with interpretations of X1, . . . , Xn.

We say that a subset P ⊆ R≥0 is finitely variable if its characteristic function has finitely
many discontinuities in any bounded sub-interval of R≥0. Likewise we say that P is right-
continuous if its characteristic function is right continuous. In our semantics for MSO(<,+1)
we restrict interpretations of monadic predicate names and variables to be finitely variable
and right-continuous. The finite variability restriction is essential: it is known that allowing
unrestricted second-order quantification leads to an undecidable satisfiability problem [13].
On the other hand, the assumption of right-continuity is only for simplicity of presentation.
In case the domain A is unbounded we also make the simplifying assumption that at least
one of the predicates in any structure 〈A,<,P〉 is not eventually constant.

We also consider discrete structures for MSO(<) of the form 〈A,<,P1, . . . ,Pm〉, where A
is an initial segment of the natural numbers with the usual order and P1, . . . ,Pm are subsets
of A. In line with our assumption for structures over the reals we assume that if A = N then
in any structure 〈A,<,P〉, at least one of the predicates is not eventually constant.

Let ΣP = {0, 1}m be a finite alphabet. A structure 〈A,<,P1, . . . ,Pm〉 corresponds to a
function f : A→ ΣP , where f(t)i = 1 if t ∈ Pi and f(t)i = 0 otherwise. If A ⊆ R≥0 then f
is called a signal and if A ⊆ N then f is a (finite or infinite) word. By assumption, a signal is
finitely variable, right-continuous and if its domain is unbounded it is not eventually constant.
We denote by Σω the set of all infinite words over an alphabet Σ and by Sig(Σ) the set of
all signals over Σ with domain R≥0. An MSO(<)-sentence ϕ(P ) that mentions predicate
names P1, . . . , Pm respectively defines a word language LN(ϕ) def= {w ∈ (ΣP )ω : w |= ϕ} and
a signal language LR(ϕ) def= {f ∈ Sig(ΣP ) : f |= ϕ}.
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3 Transforming Between Words and Signals

In this paper we answer questions about MSO over the non-negative reals under the finite
variability and right-continuous interpretation by reduction to questions about MSO over
the naturals. This section presents the foundations of this reduction—semantic translations
between signal languages and word languages and corresponding syntactic translations on
MSO(<) formulas. We concentrate here on signals with domain R≥0 and on infinite words,
though the ideas easily apply to signals with bounded domain and to finite words.

Let f : R≥0 → Σ be a signal over alphabet Σ. Recall that by assumption f has a
countably infinite and unbounded set of discontinuities. Define a sampling sequence for f to
be an unbounded strictly increasing sequence of reals 0 = τ0 < τ1 < τ2 < . . . that includes
all discontinuities of f . Given a sampling sequence τ we define the word Wτ (f) ∈ Σω by
Wτ (f) = f(τ0)f(τ1)f(τ2) . . .. Given a language L ⊆ Sig(Σ) we define the corresponding word
language L† ⊆ Σω to comprise all words Wτ (f) where f ∈ L and τ is a sampling sequence
for f .

Motivated by the translation above we define the relation ∼ of stutter equivalence on Σω
to be the least equivalence relation such that

a0a1 . . . ak−1akak+1 . . . ∼ a0a1 . . . ak−1akakak+1 . . .

for any k. A word language L ⊆ Σω is stutter-closed if it saturates ∼. It is straightforward
that if L is a signal language then the corresponding word language L† is stutter-closed.

Define the stutter-closure of a language L ⊆ Σω to be the smallest stutter-closed language
L′ that contains L. It is straightforward that L′ is ω-regular if L is ω-regular.

Given a word w = w0w1w2 . . . ∈ Σω and an unbounded strictly increasing sequence of
reals 0 = τ0 < τ1 < τ2 < . . ., define the signal Sτ (w) : R≥0 → Σ by Sτ (t) = wk for the unique
interval [τk, τk+1) containing t. Given a word language L ⊆ Σω, the corresponding signal
language L? comprises all signals Sτ (w) for some w ∈ L and unbounded sequence of reals τ .

Define the relation ∼ of stretching equivalence on the set Sig(Σ) of signals over alphabet Σ
by f ∼ g iff f = g ◦ρ for some order isomorphism ρ : dom(f)→ dom(g). A signal language L
is speed-independent if it saturates ∼. It is straightforward that LR(ϕ) is speed-independent
for any MSO(<)-formula ϕ. It is also clear that L? is speed-independent for any word
language L ⊆ Σω.

The operators (−)† and (−)? define a bijection between stutter-closed word languages
and speed-independent signal languages:

I Proposition 4. If L ⊆ Σω is stutter-closed then L?† = L. If L ⊆ Sig(Σ) is speed
independent then L†? = L.

Next we recall from [10] syntactic analogs of the language operators (−)† and (−)?. The
following results show that the language operators (−)† and (−)? preserve MSO-definability.
We briefly justify these constructions and refer the reader to [10] for full details.

I Proposition 5. Given an MSO(<)-sentence ϕ(P ) we can compute another MSO(<)-
sentence ϕ†(P ) such that LR(ϕ)† = LN(ϕ†).

Proof. (Sketch.) In order to define ϕ† we first rewrite ϕ by replacing first-order variables
with second-order variables. Intuitively we represent an element t ∈ R≥0 by a set with left
endpoint t. (Recall that the restriction to finitely variable right-continuous signals means
any set interpreting a second-order variable has a least element.) To this end we introduce
the following new atomic formulas: Ls(X,Y ), which is true if the left endpoint of X is less
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than the left endpoint of Y ; Eq(X,Y ), which is true if the left endpoint of X equals the left
endpoint of Y ; In(X,Y ), which is true if the left endpoint of X is an element of Y . These
atoms are clearly MSO(<)-definable, moreover it is straightforward to construct a formula
equivalent to ϕ using only these atoms, Boolean connectives and second-order quantification.

Having performed this translation, we proceed to define ϕ† by structural induction on ϕ.
The new atomic formulas Ls(X,Y ), Eq(X,Y ) and In(X,Y ) go unchanged, as do negation
and conjunction. The only non-trivial element of the transformation concerns second-order
quantification. If ϕ def= ∃Xψ we let ϕ† be the formula that defines the stutter closure of
the language LN(∃Xψ†). (We have already observed above that this language is definable.)
After this process it is trivial to replace occurrences of Ls(X,Y ), Eq(X,Y ) and In(X,Y )
with their MSO(<)-equivalents. J

I Proposition 6. Given an MSO(<)-sentence ϕ(P ) we can compute another MSO(<)-
sentence ϕ?(P ) such that LR(ϕ?) = LN(ϕ)?.

Proof. (Sketch.) It is straightforward to write an MSO(<)-formula Sample(P ,D) that is
satisfied when each discontinuity of the characteristic signal of P is also a discontinuity of the
characteristic signal of D. Given ϕ(P ) let ϕ′(P ,D) be obtained by relativizing all first-order
quantification in ϕ to the set of discontinuities in D. We now define

ϕ? := ∃D(Sample(P ,D) ∧ ϕ′(P ,D)) . J

4 Church’s Problem with Parameters

Recall that a binary relation R is uniformized by a partial function f if f ⊆ R and
dom(f) = dom(R). In this paper we are interested in uniformizing MSO-definable relations
by MSO-definable functions. The problem of uniformizing MSO-definable relations on the
structure 〈N, <〉 was first studied over fifty years ago by Church [3], motivated by the problem
of synthesizing circuits from relational input-output specifications. Later Rabinovich [11]
and Hänsch, Slaats and Thomas [4] considered the problem of uniformization over labelled
chains 〈N, <,P〉.

Our eventual goal is to study uniformization of MSO-definable relations over the structure
〈A,<,+1〉 for A a bounded interval of reals. We delay a treatment of the +1 relation until
the following section. Here we lay the groundwork by considering uniformization of labelled
chains 〈R≥0, <,P〉. This extends the treatment of the labelled case from [4, 11] to dense
orders.

4.1 The Uniformization Problem
Consider a second-order language over a signature including the binary relation symbol <
and monadic predicate names P1, . . . , Pm. LetM = 〈A,<,P1, . . . ,Pm〉 be a labelled chain.
We say that an MSO-formula ψ(P ,X, Y ) uniformizes an MSO-formula ϕ(P ,X, Y ) overM
ifM satisfies the following sentences:
1. ∀X∀Y

(
ψ(P ,X, Y )→ ϕ(P ,X, Y )

)
2. ∀X∃=1Y ψ(P ,X, Y )
We say that ψ(P ,X, Y ) uniformizes ϕ(P ,X, Y ) over a class of chains C if ψ(P ,X, Y )
uniformizes ϕ(P ,X, Y ) over each individual chain in C. Notice that the above conditions can
only hold if ϕ(P ,X, Y ) is a total relation, however there is no loss of generality in considering
only uniformization for total relations.
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We say that a formula ψ(P ,X, Y ) satisfying 1 above is faithful to ϕ and a formula
satisfying 2 above is functional. We furthermore say that ψ is causal if the following sentence
holds inM:
3. ∀X Y U V ∀t

[
ψ(P ,X, Y ) ∧ ψ(P ,U, V ) ∧

(
∀s ≤ t (X(s) = U(s))

)
⇒ Y (t) = V (t)

]
Intuitively a function is causal if its output at any time only depends on its input in the
past—a reasonable assumption for any realizable function.

Roughly speaking, the uniformization problem is to determine whether a given formula
ϕ(P ,X, Y ) has a uniformizer over a given structure, or class of structures, and if so to
compute such a uniformizer. We are interested here in uniformizers which are definable by
an MSO formula and this proves an important restriction over structures with real-valued
domains. The following example illustrates a case where one can easily think of a uniformizer
for ϕ, but no such uniformizer can be definable in MSO.

I Example 7. There is a formula ϕ(X,Y ) (even without parameters) such that there is
a causal operator which uniformizes ϕ over the reals however, no MSO-definable causal
operator uniformizes it.

Proof. Let ϕ(X,Y ) be an MSO(<)-formula which says that Y has at least two points of
discontinuity. It is clear that the operator F which ignores its input and sets F (X)(t) = 1 if
and only if t ∈ ([0, 1) ∪ [2, 3)) uniformizes this formula, however we prove below there is no
MSO-definable uniformizer ψ(X,Y ).

Let ψ(X,Y ) be an MSO(<)-formula that defines a functional operator. Interpret X by
the constant false signal X and let Y be the unique interpretation of Y such that ψ(X,Y)
holds. For any order isomorphism ρ : R≥0 → R≥0, since every MSO(<)-formula is speed-
independent, ψ(X ◦ ρ,Y ◦ ρ) also holds. But X ◦ ρ = X; as ψ is functional we must also have
Y ◦ ρ = Y. It is easy to see that this entails that Y be constant, contrary to the requirement
that it have two discontinuities. J

Motivated by failures such as this, we seek to compute the set of parameter values
for which there exists a definable uniformizer along with a single formula which defines a
uniformizer for all such parameter values. We formally state the main result of this section
as follows:

I Theorem 2. Given an MSO(<)-formula ϕ(P ,X, Y ) one can compute a sentence θ(P )
and formula ψ(P ,X, Y ) such that for every structure M = 〈R≥0, <,P〉, ϕ has a causal
uniformizer overM if and only ifM |= θ and in this case ψ is such a causal uniformizer.

In Theorem 2 we call ϕ the winning condition, ψ the uniformizer and θ the domain
formula. We call the predicate names P parameters and X,Y variables.

We sketch a proof of Theorem 2 in Sections 4.2 and 4.3.

4.2 From Signals to Words
Let L1 be a speed-independent language of signals over alphabet ΣP = {0, 1}m and let
L2 = (L1)† be the corresponding stutter-closed language of words. We identify a signal f
with the corresponding structure 〈R≥0, <,P1, . . . ,Pm〉, where f is the characteristic function
of P; we similarly identify a word w with the corresponding structure 〈N, <,P〉. We further
identify a language L with the class of stuctures that correspond to the elements of L.

We reduce the problem of computing a uniformizer of an MSO(<)-formula ϕ(P ,X, Y )
over the class of signals L1 to the problem of computing a uniformizer for the corresponding
formula ϕ†(P ,X, Y ) over the class of words L2. Superficially these two problems are quite
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different since L1 is a class of dense orders and L2 a class of discrete orders. The key fact
that makes this reduction work is that for each signal f ∈ L1 we include in L2 the whole
stutter-closed class of words representing f . Given this, the reduction is simply stated:

I Theorem 8. If ψ(P ,X, Y ) is a causal uniformizer for ϕ(P ,X, Y ) over L1 then ψ†(P ,X, Y )
is a stutter-closed causal uniformizer for ϕ†(P ,X, Y ) over L2. Conversely if ψ(P ,X, Y ) is
a stutter-closed causal uniformizer for ϕ†(P ,X, Y ) over L2, then ψ?(P ,X, Y ) is a causal
uniformizer for ϕ(P ,X, Y ) over L1.

The proof of Theorem 8 relies on the relations between speed-independent signal languages
and stutter-closed word languages developed in Section 3.

We will use Theorem 8 to reduce the problem of uniformizing classes of signals, considered
in Theorem 2, to the problem of computing stutter-closed uniformizers of stutter-closed
formulas over words. We therefore undertake to prove the following Theorem.

I Theorem 9. Given a stutter-closed MSO(<)-formula ϕ(P ,X, Y ) one can compute a stutter-
closed sentence θ(P ) and stutter-closed formula ψ(P ,X, Y ) such that for any stutter-closed
language of words L ⊆ (ΣP )ω, ϕ has a causal uniformizer over L if and only if L |= θ and
in this case ψ is such a causal uniformizer.

Considering ϕ over signals, we observe that the word language defined by ϕ† is always
stutter-closed. We therefore first apply Theorem 9 then Theorem 8 to ϕ† to derive Theorem 2.

4.3 Stutter-Closed Uniformizers
Say that a formula ψ(P ,X, Y ) defines a stutter-preserving relation onM = 〈N, <,P〉 ifM
satisfies ∀X,Y (ψ(P ,X, Y )→ StutPres(P ,X, Y )), where

StutPres(P ,X, Y ) def= ∀n(X(n) = X(n+ 1) ∧ P (n) = P (n+ 1)→ Y (n) = Y (n+ 1)) (1)

In other words, in the function defined by ψ the output Y can only change when either the
input X or parameters P change.

The following is straightforward.

I Proposition 10. Let L ⊆ (ΣP )ω be a stutter-closed language of words. If ψ(P ,X, Y ) is
functional over L and stutter-closed then it is also stutter-preserving over L.

Say that an ω-word u = u0u1 . . . is stutter-free if ui 6= ui+1 for all i. Recall that we
assume that for any structure 〈N, <,P〉 one of the predicates Pi is not eventually constant.
This means that the characteristic ω-word of the structure is stutter equivalent to a unique
stutter-free word.

Proof of Theorem 9. We define a game based on ϕ such that the uniformizer ψ defines a
winning strategy in this game. Our proof is based on the construction of Hänsch, Slaats
and Thomas [4] but requires non-trivial modification to handle various issues related to
stuttering.

Step 1: definition of game arena G. Define a formula ϕ′(P ,X, Y ) by

ϕ′(P ,X, Y ) def= (ϕ(P ,X, Y ) ∧ StutPres(P ,X, Y )) ∨ EvConst(P ) , (2)

where StutPres is the formula in (1) expressing stutter preservation and EvConst(P ) expresses
that P is eventually constant. The inclusion of StutPres is justified by the observation in
Proposition 10 that a stuttering-closed uniformizer is stutter-preserving. The inclusion of
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EvConst(P ) is connected with our semantic assumption that the characteristic words of
structures over N are not eventually constant.

The formula ϕ′ mentions predicate names P = (P1, . . . , Pm) and free variables X =
(X1, . . . , Xn) and Y = (Y1, . . . , Y`). Then interpretations for ϕ′ over domain N are ω-words
over the alphabet {0, 1}m × {0, 1}n × {0, 1}`. The first step is to construct a deterministic
parity automaton A over this alphabet that accepts precisely those words that satisfy ϕ′. We
transform this automaton into a parity game arena G by separating each transition s (p,x,y)−−−−→ t

of A into a pair of transitions s −→ (s, p, x) and (s, p, x) −→ t controlled by Player 1 and
Player 2 respectively. The priorities of the states in G are inherited from A.

Step 2: definition of parity game Gπ. Next, given a stutter-free ω-word π over alphabet
{0, 1}m, representing an interpretation of the parameters, we transform the arena G into an
infinite-state parity game denoted Gπ. This game is stratified into finite levels—one level for
each letter of π, the states at each level being a copy of those of G. Multiple rounds of the
game can be played at each level, with Player 1 controlling passage from one level to the
next.

The states of Gπ are pairs consisting of a state of G and a level number i. For each
Player-1 edge s −→ (s, p, x) in G and index i ∈ N we include a Player-1 edge (s)i −→ (s, p, x)i
if p = πi and an edge (s)i −→ (s, p, x)i+1 if p = πi+1. For each Player-2 edge (s, p, x) −→ t

in G and index i ∈ N we include an edge (s, p, x)i −→ (t)i in Gπ. Finally we add a new initial
Player-1 state (ŝ)0 to Gπ, where s is the initial state of G. From this state there is an edge
to a state (s, p, x)0 if p = π0.

Note that due to the disjunct EvConst(P ) in (2) Player 1 cannot win Gπ by choosing
never to leave a given level.

The key property of the game Gπ, which depends on the fact that A is stutter-closed, is
as follows:

Player 2 wins Gπ if and only if ϕ(P ,X, Y ) has a causal uniformizer over the class of
all infinite words π′ that are stutter equivalent to π.

The easier direction in the proof of the above claim is the right-to-left implication: one
can easily show that a causal uniformizer for ϕ(P ,X, Y ) over the stutter equivalence class of
π yields a winning strategy in Gπ. Below we concentrate on the left-to-right implication.

Step 3: coding and testing strategies. As Gπ is a parity game it is determined and has
memoryless winning strategies. To compute winning strategies we first divide the set of
game states into levels Si which contain those nodes annotated with level number i. We can
encode the possible levels by a finite alphabet Σ and thus represent the game as an ω-word
σ ∈ Σω in which σi represents level Si. Note that σ can be produced as the output of a
transducer S on input π.

A memoryless strategy for Player 2 in Gπ maps each node (s, p, x)i to a node (t)i and
can be represented by an word γ over a finite alphabet Γ whose letters encode the finite
sub-strategy for each level i. We build a deterministic parity automaton T that takes as
input pairs of words π and γ and accepts if and only if the strategy γ is winning in Gπ.
The automaton T incorporates the transducer S to transform the input word π into a word
σ representing the game Gπ in the manner described above. For each level i of Gπ and
level-i Player-2 strategy γi, automaton T computes the finite set of all possibilities over
Player-1 moves for the first state, last state and lowest-priority intermediate state of the
level-i segment of of a play of Gπ.

The strategy tester automaton T is equivalent to an MSO(<)-formula χ(P , S), where
S encodes letters of the strategy alphabet Γ. Note that χ is only satisfied by stutter-free
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interpretations of P .
Step 4: selecting a winning strategy. The formula χ(P , S) allows us to detect when S

encodes a winning strategy in Gπ. A key issue here is that there may be more than one
winning strategy for a given set of parameters π: a uniformizer corresponds to a particular
winning strategy.

We can compute an MSO(<)-formula that picks a winning strategy using a result of
Lifsches and Shelah [8] on the computability of selectors in MSO(<). We say that a formula
α(P , S) is a selector for a formula β(P , S) over a structureM = 〈N, <,P〉 if:
1. M |= ∃≤1S α(P , S);
2. M |= ∀S(α(P , S)→ β(P , S));
3. M |= (∃Sβ(P , S))→ (∃Sα(P , S)).

I Lemma 11 (Selector Lemma [12]). There is an algorithm that for every formula β(P , S)
constructs a formula α(P , S) such that α is a selector for β over all structuresM = 〈N, <,P〉.

Applying Lemma 11 we can compute a selector χ′(P , S) for χ(P , S). Then χ′(P , S) is
satisfied when P is interpreted by a stutter-free word π and S is interpreted by a word
representing a winning strategy γ in Gπ.

Step 5: definition of θ(P ) and ψ(P ,X, Y ).
Similar to the definition of the strategy tester automaton we can compute a formula

Strat(P ,X, Y , S) that is true precisely when in Gπ, for π the unique stutter-free word
equivalent to P , the sequence of moves X by Player 1 generates the sequence of responses Y
by Player 2 given that his strategy on the k-th round is S(k).

Note that Strat(P ,X, Y , S) defines a stutter-closed language. Closure under removing
stutters follows from the fact that S encodes a memoryless strategy and (it can be assumed
without loss of generality that) A doesn’t change state when its input stutters. Closure under
adding stutters follows similarly using in addition the fact that S encodes a stutter-preserving
strategy.

We also define χ′′(P , S) to be the stutter-closure of the strategy selection operator
χ′(P , S). To define χ′′ consider positions where P changes and state that χ′ holds over this
set of positions (just relativization) and that S does not change between changes of P .

Finally we are able to define

θ(P ) def= ∃Sχ′′(P , S)

ψ(P ,X, Y ) def= ∃S
(
χ′′(P , S) ∧ Strat(P ,X, Y , S)

)
.

Then both θ and ψ are stutter-closed since both χ′′ and Strat are stutter-closed.
By construction, θ(P) holds if and only if there exists S that encodes a winning strategy

for Player 2 in Gπ, where π the unique stutter-free word equivalent to the characteristic
ω-word uP. Since Strat encodes plays of this game that follow this winning strategy, ψ
uniformizes ϕ.

This concludes the proof of Theorem 9. J

5 Uniformizing Metric Formulas

In this section we show decidability of the uniformization problem for MSO(<,+1) over
bounded real time domains.

Note that as an immediate corollary of Theorem 2, we can establish an analogous result
over bounded domains.
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I Corollary 12. Let T = [0, N) be a bounded interval of reals. Given an MSO(<)-formula
ϕ(P ,X, Y ) one can compute a sentence θ(P ) and formula ψ(P ,X, Y ) such that for every
structureM = 〈T, <,P〉, ϕ has a causal uniformizer overM if and only ifM |= θ and in
this case ψ is such a causal uniformizer.

We now seek to apply this result to formulas of MSO(<,+1) by first removing all references
to the +1 relation using the following translation.

5.1 Eliminating the Metric
Given an MSO(<,+1)-formula ϕ, we define a straightforward syntactic transformation into
an MSO(<)-formula ϕ such that there is a natural bijection between models of ϕ with domain
[0, N) and models of ϕ with domain [0, 1).

With each monadic predicate X that appears in ϕ, we associate a collection X0, . . . , XN−1
of N fresh monadic predicates. Intuitively, each Xi is a predicate on [0, 1) that represents X
over the subinterval [i, i + 1). Formally, an interpretation of X over domain [0, N) yields
interpretations of the Xi over [0, 1) by defining Xi(t) if and only if X(i+ t). Note that this
correspondence yields a bijection between interpretations of X on [0, N) and interpretations
of X0, . . . , XN−1 on [0, 1).

We can assume that ϕ does not contain any (first- or second-order) existential quantifiers,
by replacing them with combinations of universal quantifiers and negations if need be. It is
also convenient to rewrite ϕ into a formula that makes use of a unary function +1 instead of the
+1 relation. To this end, replace every occurrence of +1(x, y) in ϕ by (x < N −1∧x+ 1 = y).

Next, replace every instance of ∀xψ in ϕ by the formula

∀x (ψ[x/x] ∧ ψ[x+ 1/x] ∧ . . . ∧ ψ[x+ (N − 1)/x]) ,

where ψ[t/x] denotes the formula resulting from substituting every free occurrence of the
variable x in ψ by the term t. Intuitively, this transformation is legitimate since first-order
variables in our target formula will range over [0, 1) rather than [0, N).

Having carried out these substitutions, use simple arithmetic to rewrite every term in ϕ
as x+ k, where x is a variable and k ∈ N is a non-negative integer constant.

Every inequality occurring in ϕ is now of the form x + k < N − 1 or x + k1 < y + k2.
Replace every inequality of the first kind by true if k + 2 ≤ N and by false otherwise, and
replace every inequality of the second kind by (i) x < y, if k1 = k2; (ii) true, if k1 < k2; and
(iii) false otherwise.

Every equality occurring in ϕ is now of the form x + k1 = y + k2. Replace every such
equality by x = y if k1 = k2, and by false otherwise.

Every use of monadic predicates in ϕ now has the form X(x+ k), for k ≤ N − 1. Replace
every such predicate by Xk(x).

Finally, replace every occurrence of ∀X ψ in ϕ by ∀X0 ∀X1 . . . ∀XN−1 ψ. The resulting
formula is the desired ϕ. Note that ϕ does not mention the +1 function, and is therefore indeed
a non-metric (i.e., purely order-theoretic) sentence in MSO(<). The following proposition is
then clear.

I Proposition 13 ([9]). 〈[0, N), <,+1,P〉 |= ϕ if and only if 〈[0, 1), <,P0, . . . ,PN−1〉 |= ϕ.

5.2 Main Result
The following result, concerning the computability of uniformizers in MSO(<,+1), is the
main result of the paper. We state this problem for unlabelled intervals, although considering
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labelled intervals is essential in the proof. Our proof technique generalises straightforwardly to
handle a more general result involving uniformisation of MSO(<,+1) over labelled intervals [6].

I Theorem 3. Let T = [0, N) be a bounded interval of reals. Given an MSO(<,+1)-formula
ϕ(X,Y ) one can decide whether ϕ has an MSO(<,+1)-definable causal uniformizer over
〈T, <,+1〉 and if so one can compute such a uniformizer ψ(X,Y ).

Proof. To simplify notation, we consider the special case where ϕ has only X and Y as free
variables.

Step 1. Applying the transformation described in Section 5.1 to ϕ(X,Y ) yields an MSO(<
)-formula ϕ(X0, . . . , XN−1, Y0, . . . , YN−1), such that there is a natural bijection between the
models of ϕ over [0, N) and the models of ϕ over [0, 1), where Xi(t) holds if and only if
X(i+ t) holds for i = 0, 1, . . . , N − 1 and 0 ≤ t < 1.

Step 2. We reduce the problem of uniformizing ϕ over 〈T, <,+1〉 to an N-phase
uniformization procedure applied to ϕ. In the first phase, we construct a causal operator
to determine the values of Y0 from the values of X0. The second phase then constructs a
causal operator to determine the values of Y1 from those of X1, treating the values of X0
and Y0 generated in the previous phase as parameters that are already fixed. At the end
of the N -th phase we wish ϕ to be satisfied by the values of X and Y we have determined.
Our claim is that we can construct a series of functions in such a scenario if and only if we
can uniformize ϕ over 〈T, <,+1〉.

We formalise the above idea by defining N uniformization problems G0, G1 . . . , GN−1
involving only MSO(<) over [0, 1). The basic data of each problem Gk, 0 ≤ k < N are
illustrated in Figure 1.

We define the problems Gk by backward induction, starting with GN−1. The winning
condition in this problem is

ϕN−1(X0, . . . , XN−1, Y0, . . . , YN−1) def= ϕ(X0, . . . , XN−1, Y0, . . . , YN−1) ,

where X0, . . . , XN−2 and Y0, . . . , YN−2 are considered as parameters and XN−1 and YN−1
as variables. Applying Corollary 12 we obtain a domain formula θN−1 and uniformizer ψN−1
for ϕN−1.

Suppose that we have defined Gk, with basic data as given in Figure 1. Then we
define Gk−1 as follows. The formula to be uniformized, denoted ϕk−1, is defined to be the
domain formula θk from the preceding problem Gk. In Gk−1 we consider X0, . . . , Xk−2 and
Y0, . . . , Yk−2 as parameters and Xk−1 and Yk−1 as variables. The domain formula θk−1 and
uniformizer ψk−1 are then obtained by applying Corollary 12 to the problem Gk−1.

Notice that the domain formula θ0 is equivalent to either the sentence true or the sentence
false. Below we show that θ0 ≡ true just in case ϕ(X,Y ) has a uniformizer over 〈T, <,+1〉.

Step 3: Definition of uniformizer ψ(X,Y ) for ϕ(X,Y ). Let

ψ
def= ψ0 ∧ · · · ∧ ψN−1 .

Then ψ is a formula in variables X0, . . . , XN−1 and Y0, . . . , YN−1. The MSO(<,+1)-formula
ψ(X,Y ) is obtained from ψ by replacing every occurrence of Xi(t) with X(i+ t) and Yi(t)
with Y (i+t). The transformation from ψ to ψ can be seen as the reverse of the transformation
in Section 5.1, motivating our choice of notation.

This completes the description of the procedure to decide whether ϕ(X,Y ) has a uni-
formizer and if so to construct such a uniformizer. We turn now to the correctness of this
construction.

CSL’11



318 The Church Synthesis Problem with Metric

Uniformization Problem Gk

Input:
Winning condition ϕk(X0, . . . , Xk, Y0, . . . , Yk)
Parameters X0, . . . , Xk−1, Y0, . . . , Yk−1

Variables Xk, Yk

Output:
Domain formula θk(X0, . . . , Xk−1, Y0, . . . , Yk−1)
Uniformizer ψk(X0, . . . , Xk, Y0, . . . , Yk)

Figure 1 Basic data for Gk.

Suppose that θ0 ≡ true. We show that ψ(X,Y ) defines a causal uniformizer for ϕ(X,Y )
on 〈T, <,+1〉.

Let X ⊆ T. We must show that there is a unique Y ⊆ T such that ψ(X,Y) and for this
Y also ϕ(X,Y). Write X = X0, . . . ,XN−1 for the tuple of subsets of [0, 1) defined by Xi(t)
if and only if X(i+ t).

Since θ0 ≡ true we know that ψ0 uniformizes ϕ0. Thus there exists Y0 ⊆ [0, 1) such that
ψ0(X0,Y0) and ϕ0(X0,Y0) both hold. But θ1 ≡ ϕ0, so θ1(X0,Y0) also holds. Since ψ1
uniformizes ϕ1 there exists Y1 ⊆ [0, 1) such that ψ1(X0,X1,Y0,Y1) and ϕ1(X0,X1,Y0,Y1)
both hold. Continuing in this vein we successively generate predicates Y0, . . . ,YN−1 such
that

ψ0(X0,Y0) ∧ ψ1(X0,X1,Y0,Y1) ∧ · · · ∧ ψN−1(X0, . . . ,XN−1,Y0, . . . ,YN−1) .

Thus by definition of ψ we have ψ(X0, . . . ,XN−1,Y0, . . . ,YN−1).
Now define Y ⊆ T by having Y(t+ i) hold if and only if Yi(t) holds for i = 0, . . . , N − 1

and 0 ≤ t < 1. Then by definition of ψ we have ψ(X,Y). Furthermore, since ψN−1
uniformizes ϕN−1 we also have that

ϕN−1(X0, . . . ,XN−1,Y0, . . . ,YN−1) .

But ϕN−1 was defined to be ϕ and thus by Proposition 13 we have that ϕ(X,Y) also holds.
The fact that ψ is functional and causal can easily be obtained from the corresponding

properties of ψ0, . . . , ψN−1 in the above construction. Reversing the above argument also
allows us to deduce that if ϕ(X,Y ) has a uniformizer over 〈T, <,+1〉 then θ0 ≡ true: given a
uniformizer ψ(X,Y ) for ϕ one successively generates uniformizers for ϕN−1 down to ϕ0. J

6 Lower Bounds

Define a family of functions expk : N → N by exp0(n) = n and expk+1(n) = 2expk(n). A
function f : N→ N is non-elementary if it grows faster than any expk.

The procedure for uniformizing MSO(<,+1)-formulas over bounded time domain T =
[0, N) described in Section 5.2 has non-elementary complexity. This blow-up arises not only
from the non-elementary transformation of MSO(<,+1) to automata—repeated application
of Corollary 12 leads to an N -fold exponential blow-up.

In this section we give a non-elementary lower bound for the bounded uniformization
problem for FO(<,+1) that holds even for formulas of a fixed quantifier alternation depth (for
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which satisfiability over bounded intervals is elementary1). This is proven by reduction from
the language emptiness problem for star-free regular expressions. The construction we outline
below can also be used to show that uniformization is non-elementary also for the temporal
logic MTL for which satisfiability over bounded intervals is EXPSPACE-complete [9]. We
have used a related idea to show that the language emptiness problem for alternating timed
automata over bounded time domains is non-elementary [7].

A star-free regular expression over alphabet Σ is built from the symbols ∅ and σ, for any
σ ∈ Σ, using the operations of union (+), concatenation (·), and complementation (¬). Such
an expression E denotes a language L(E) ⊆ Σ∗ which is defined as follows:

L(∅) = ∅ and L(σ) = {σ};
L(¬E) = Σ∗ \ L(E);
L(E + E′) = L(E) ∪ L(E′);
L(E · E′) = L(E) · L(E′).

The operator depth odp(E) of a star-free regular expression E is defined as follows:
odp(∅) = odp(σ) = 1;
odp(¬E) = odp(E);
odp(E + E′) = max{odp(E), odp(E′)}+ 1;
odp(E · E′) = max{odp(E), odp(E′)}+ 1.

Note that negation does not count toward the operator depth.
The following result was shown in [14].

I Theorem 14. The language emptiness problem for star-free regular expressions is non-
elementary.

Given a star-free regular expression E over alphabet Σ and a word w = w0w1 . . . wn−1 ∈ Σ∗
we define the membership game G(w,E). This is a two-player game with N rounds, where
N is the operator depth of E. The two players are Prover, who is trying to show w ∈ E, and
Refuter, who is trying to show w 6∈ E. The positions of the game are triples (b, e, F ) where b
and e are positions in the word w and F has the form G or ¬G for G a sub-expression of E.
The initial position is (0, n, E). If the position at the start of a given round is (b, e, F ) the
goal of Prover is to show that wbwb+1 . . . we−1 ∈ F . The round proceeds as follows:

If F ≡ F1 · F2 then Prover moves first by choosing an index i with b ≤ i ≤ e. Refuter
responds by selecting either (b, i, F1) or (i, e, F2) as the position in the next round;
If F ≡ ¬(F1 · F2) then Refuter moves first by choosing an index i with b ≤ i ≤ e. Prover
responds by selecting either (b, i,¬F1) or (i, e,¬F2) as the position in the next round;
If F ≡ F1 + F2 then Prover selects either (b, e, F1) or (b, e, F2) as the position in the next
round;
If F ≡ ¬(F1 + F2) then Refuter selects either (b, e,¬F1) or (b, e,¬F2) as the position in
the next round.

The positions (b, e, σ), (b, e,¬σ), (b, e, ∅) and (b, e,¬∅) are terminal and are classified as
winning for Prover or Refuter according to whether ub, ub+1 . . . , ue−1 is a member of the
corresponding expression.

It is clear that Prover has a winning strategy in G(w,E) if and only if w ∈ L(E).
For any regular expression F , let Sub(F ) be the set of sub-expressions of E along with their

negations. Given that a position in G(w,E) is a triple from the set Π def= {0, . . . , n}2×Sub(E),

1 The paper [9] provides an elementary reduction of the satisfiability problem for FO(<,+1) over bounded
intervals to the problem for FO(<) which does not change the quantifier alternation depth.
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Figure 2 A signal encoding a play

a play of G(w,E) can be represented as a word in Π∗ denoting a sequence of successive
positions. The idea of our reduction is to encode plays as signals over a domain [0, N + 1)
and to construct a formula of FO(<,+1) that is satisfied by a signal if and only it encodes a
winning play for Prover. In this encoding successive game positions are encoded in successive
unit-length subintervals of the domain.

Our encoding represents plays using monadic predicates Pb, Pe, P#, PSPr , PLPr , PRPr ,
PSRf , PLRf , PRRf and two families of predicates Pσ, σ ∈ Σ and PF , F ∈ Sub(E). For a signal
to encode a play of G(w,E) we require, among other things, that:

The predicates PF , F ∈ Sub(E), hold on intervals [k, k + 1) for k = 0, 1, . . . , N and are
mutually exclusive.
Exactly one of the predicates Pσ, σ ∈ Σ, and P# holds at any given point. Moreover
these predicates hold in sequence Pw0 , Pw1 , . . . , Pwn−1 , P# over the interval [0, 1).
If s = t+ 1 then Pσ holds at s if and only if Pσ holds at t; likewise P# holds at s if and
only if P# holds at t.
In each successive unit interval [k, k + 1) the predicate Pb holds in one sub-interval over
which some predicate Pσ or P# also holds. The same restriction applies to Pe.
If PE1·E2 holds on [k, k + 1) then PSPr holds in exactly one sub-interval in this time unit
and either PLRf holds at the same time as P# during this time unit and PE1 holds in
the next time unit, or PRRf holds at the same time as P# during this time unit and PE2

holds in the next time unit.
Notice how the third clause ensures that a copy of the word w is propagated between
successive time units, cf. Figure 2.

A game position (i, j, F ) is encoded in a unit-length subinterval [k, k + 1) by having PF
hold throughout the interval, Pb hold at the same time as Pwi

and Pe hold at the same time
as Pwj

(where we take wn = #). The idea is that the propositions PSPr , PLPr and PRPr

encode moves of Prover and the propositions PSRf , PLRf and PRRf encodes moves of Refuter;
the respective position of these S propositions indicate the position around which the input
word is split while the L and R propositions indicate whether that player wished to continue
playing in the left or right subword.

Given a star-free regular expression E we can define a formula ϕE(X,Y ) such that ϕE
has a uniformizer if and only if there exists a word w ∈ Σ∗ such that Prover has a winning
strategy in the game G(w,E). The tuple X just includes the predicates PSRf , PLRf and PRRf

while the tuple Y includes all the other predicates mentioned above. We define ϕE such
that it is true on any signal that represents a play of G(w,E) that is winning for Prover
according to the encoding defined above. For signals that do not encode such plays ϕE is
only satisfied if the predicates PSRf , PLRf or PRRf do not obey the above rules (intuitively
Refuter broke the rules of the game). Details of this encoding can be found in [6].



Mark Jenkins, Joël Ouaknine, Alexander Rabinovich, and James Worrell 321

I Theorem 15. The time-bounded uniformization problem for FO(<,+1) is non-elementary
for formulas of quantifier alternation depth at most three.

7 Conclusion

In this paper, we considered extensions of Church’s synthesis problem to the continuous-
time domain of the reals. We proved that under the finite-variability and right-continuous
assumption, Church’s problem is decidable when we require that the uniformizer be definable
in the same logic as the specification. This result holds over unbounded intervals when only
the < relation is available and over every fixed bounded-length interval when the +1 relation
is also used.
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A Pumping Lemma for Collapsible Pushdown
Graphs of Level 2∗
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Abstract
We present a pumping lemma for the class of collapsible pushdown graphs of level 2. This
pumping lemma even applies to the ε-contractions of level 2 collapsible pushdown graphs. Our
pumping lemma also improves the bounds of Hayashi’s pumping lemma for indexed languages.
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1 Introduction

Recently, generalisations of pushdown systems have gained attention for the verification of
higher-order functional programs. This stems from the fact that collapsible higher-order
pushdown systems generate exactly the same trees as higher-order recursion schemes [6].
Recursion Schemes can be fruitfully applied in the verification of functional programs [11].
The correspondence between collapsible pushdown trees and higher-order recursion schemes
improves a result of Knapik et al. [10] showing that higher-order pushdown systems generate
the same trees as safe higher-order recursion schemes. Safety is a syntactic condition whose
semantical status is still open: it is conjectured that there is a recursion scheme that generates
a tree which is not generated by any safe scheme.1

Also from a model-theoretic point of view, the classes of collapsible and higher-order
pushdown systems are interesting. Carayol and Wöhrle [3] proved that the ε-contractions of
graphs generated by higher-order pushdown systems are exactly the graphs in the Caucal-
hierarchy. Thus, all these graphs have decidable monadic second-order theories. Collapsible
pushdown graphs display a rather different behaviour: even on the second level of the
hierarchy, there is a graph with undecidable monadic second-order theory. Nevertheless, the
first-order model checking on level 2 collapsible pushdown graphs is decidable because all
these graphs are tree-automatic [8]. Recently, Broadbent [2] proved that even first-order
logic is undecidable on the collapsible pushdown graphs of level 3. Moreover, Hague et al. [6]
showed that the modal µ-calculus is decidable on all collapsible pushdown graphs. These
decidability results give collapsible pushdown graphs a unique status among natural classes
of graphs. There is (almost2) no other known natural class of graphs with decidable modal
µ-calculus model checking but undecidable monadic second-order theories.

∗ This research was carried out while the author was working at TU Darmstadt and funded by the DFG
grant OT 147/5-1

1 Recently, Parys [13] showed that the uniform safety conjecture is true: there is a level 2 recursion scheme
which generates a tree that is not generated by any safe level 2 scheme

2 Nested pushdown trees share the same status. But these form in some sense a subclass of collapsible
pushdown graphs (cf. [9])
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Even though (collapsible) pushdown systems generate important classes of graphs, useful
characterisations of their structure are still rare. We [8] showed that the second-level of
the collapsible pushdown graph hierarchy is tree-automatic. Nevertheless, we still miss
techniques for disproving membership in the collapsible pushdown hierarchy. In classical
automata-theory, pumping lemmas form a good tool for disproving membership in languages
defined by finite automata or pushdown systems. On higher levels, similar results are still
missing. The only results in this direction that are known to the author are a pumping lemma
of Hayashi [7] and a shrinking lemma of Gilman [5], both for indexed languages. Since the
class of string-languages accepted by the second level of the collapsible higher-order pushdown
hierarchy is the class of indexed languages, this is a first step towards pumping on higher-order
pushdown systems. Blumensath [1] published an extension of this pumping lemma to all
levels of the higher-order pushdown hierarchy. Unfortunately, there is an irrecoverable error
in his proof (cf. [12]). Thus, the question for pumping lemmas for higher-order pushdown
systems of level at least 3 is still open. Moreover, even for the second level of collapsible
pushdown graphs no pumping lemma was known so far.

In this paper, we close the latter gap. As already mentioned, collapsible pushdown graphs
are tree-automatic, i.e., there is an encoding of configurations in trees such that a (finite
tree-)automaton accepts the encodings of configurations reachable form the initial one. Of
course, the regular pumping lemma applies to this finite automaton. Since accepting runs of
this automaton encode runs of the collapsible pushdown system, the trees obtained by regular
pumping can be turned into runs of the collapsible pushdown system. Thus, the existence of
a large configuration in the collapsible pushdown graph implies the existence of infinitely
many runs. A refinement of this argument yields a pumping lemma for all ε-contractions of
collapsible pushdown graphs of level 2.

1.1 Outline of the paper

In the next section, we recall the standard notion of trees, finite tree-automata and the
pumping lemma for finite tree-automata. At the end of that section we introduce the
general approach how tree-automaticity of the reachability predicate can be turned into a
pumping lemma. In Section 3 we present the notion of level 2 collapsible pushdown graphs.
Furthermore, we recall the main result from [8], i.e., we present an encoding of configurations
of 2-CPG in trees that turns the set of reachable configurations into a regular set of trees.
We also recall what an automaton determining the reachable configurations looks like. In
Section 4 we compute the specific bounds of the pumping lemma for level 2 collapsible
pushdown graphs obtained from our general approach. We then refine this result in Section
5 to ε-contractions of such graphs. In Section 6 we apply our pumping lemma and prove that
certain trees are not ε-contractions of any 2-CPG. Section 7 contains concluding remarks
and points to open questions.

2 A Pumping Lemma for Structures with Automatic Reachability
Relation

A Σ-labelled tree is a function T : D → Σ for a finite set D ⊆ {0, 1}∗ which is closed under
prefixes. For d ∈ D we denote by Td the subtree rooted at d. It is useful to define trees
inductively by describing their left and right subtrees. For this purpose we fix the following
notation. Let T̂ and T ′ be Σ-labelled trees and σ ∈ Σ. Then we write T := σ(T̂ , T ′) for the
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Σ-labelled tree T with the following three properties

1. T (ε) = σ, 2. T0 = T̂ , and 3. T1 = T ′ .

Finally, let dp(T ) := max{|d| : d ∈ dom(T )} + 1 be the depth of T . A straightforward
induction gives a bound on the number of nodes of a tree of a fixed depth.

I Lemma 1. If T is a tree of depth d, then |dom(T )| ≤ 2d − 1.

I Corollary 2. There are at most (|Σ|+ 1)2d−1 many Σ-labelled trees of depth d.

We briefly recall the notion of a (finite tree-) automaton and the pumping lemma for
these automata.

I Definition 3. A (finite tree-)automaton is a tuple A = (Σ, Q,∆, qI) where Σ is a finite
alphabet, Q a finite set of states with a distinguished symbol ⊥ ∈ Q, ∆ ⊆ Q× Σ×Q×Q a
transition relation and qI ∈ Q the initial state. An accepting run of A on a Σ-labelled tree T
is a map ρ : {0, 1}∗ → Q such that
1. (ρ(d), T (d), ρ(d0), ρ(d1) ∈ ∆ for all d ∈ dom(T ) and
2. ρ(ε) = qI and ρ(d) = ⊥ for all d ∈ {0, 1}∗ \ dom(T ).

The language accepted by A is L(A) := {T : ∃ accepting run of A on T}.

In order to develop a pumping lemma for structures with automatic reachability relation,
we will use the pumping lemma for regular languages.

I Lemma 4 (see [4]). Let A = (Σ, Q,∆, qI) be an automaton recognising the (tree-)language
L, let T ∈ L and let ρ be an accepting run of A on T . If d ∈ dom(T ) with dp(Td) > |Q|,
then there are nodes d ≤ d1 ≤ d2 ∈ dom(T ) such that the following holds. If we replace in t
the subtree rooted at d1 by the subtree rooted at d2, the tree T0 resulting from this replacement
satisfies T0 ∈ L. Furthermore, let T1, T2, T3, . . . be the infinite sequence of trees where T1 = T

and Ti+1 arises from Ti by replacing the subtree rooted at d2 in Ti by the subtree rooted at d1
in Ti, then Ti ∈ L for all i ∈ N. Furthermore, for each i ∈ N there is an accepting run ρi on
Ti that coincides with ρ on all positions except for those in the subtree induced by d.

In order to define the notion of an automatic reachability relation, we recall the definition
of the convolution of two Σ-labelled trees T and T ′. This is the tree

T ⊗ T ′ : dom(T ) ∪ dom(T ′)→ (Σ ∪ {�})2

(T ⊗ T ′)(d) :=


(T (d), T ′(d)) if d ∈ dom(T ) ∩ dom(T ′)
(T (d),�) if d ∈ dom(T ) \ dom(T ′)
(�, T ′(d)) if d ∈ dom(T ′) \ dom(T )

where � is a new symbol for padding. The convolution of trees is the standard concept if
one wants to use a finite tree automaton for recognising some relation on trees. We say A
recognises some relation R if L(A) := {T1 ⊗ T2 ⊗ · · · ⊗ Tn : (T1, T2, . . . , Tn) ∈ R}. In this
case we say that R is automatic.

Using the regular pumping lemma, we obtain the following two pumping lemmas for
structures with automatic reachability relation.

I Lemma 5. Let G = (D,`) be some graph such that D is a regular set of trees over the
alphabet Σ. Assume that the reachability relation R on G is recognised by some tree-automaton
with q states. If there starts a finite path p at d ∈ D of length (|Σ|+ 1)2(dp(d)+q) then there
start infinitely many paths at d.
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Proof. If p visits some vertex d′ ∈ D twice then there is obviously an infinite path starting
at d and passing d′ infinitely many times.

Otherwise, p passes (|Σ|+ 1)2(dp(d)+q) many different trees. Due to Corollary 2, p passes
some d′ of depth dp(d′) > dp(d) + q. Since dp(d′) − dp(d) > q, we may apply the regular
pumping lemma to d⊗ d′ in such a way that we obtain infinitely many trees d1, d2, . . . such
that (d, di) ∈ R. This means that for each i there is a path from d to di. J

I Lemma 6. Let G = (D,`) be some graph such that D is a regular set of trees over the
alphabet Σ. Assume that the reachability relation R on G is recognised by some tree-automaton
with q states. If |{x ∈ D : (d, x) ∈ R}| > (|Σ|+ 1)2(dp(d)+q) , then {x ∈ D : (d, x) ∈ R} is an
infinite set.

Proof. Assume that |{x ∈ D : (d, x) ∈ R}| > (|Σ|+ 1)2(dp(d)+q) There must be some d′ ∈ D
such that (d, d′) ∈ R and dp(d′) > dp(d) + q. We conclude as in the previous lemma. J

In the rest of this paper, we develop an adaptation of these lemmas to collapsible pushdown
graphs of level 2.

3 Collapsible Pushdown Systems and Graphs

In this section we define our notation of collapsible pushdown systems (of level 2). For a
more detailed introduction, we refer the reader to [6] or [9]. Afterwards, we present those
results from [8] that are relevant for the results of this paper.

3.1 Collapsible Pushdown Stacks of Level 2
First, we provide some terminology concerning stacks of (collapsible) higher-order pushdown
systems. We write Σ∗2 for (Σ∗)∗ and Σ+2 for (Σ+)+. We call an s ∈ Σ∗2 a 2-word.

Let us fix a 2-word s ∈ Σ∗2 which consists of an ordered list w1, w2, . . . , wm ∈ Σ∗.
We separate the words of this list by colons writing s = w1 : w2 : . . . : wm. We write
wdt(s) := m for the width of s and hgt(s) := max{|wi| : 1 ≤ i ≤ m} for the height of s.
For a second word s′ = w′1 : w′2 : . . . : w′n ∈ Σ∗2, we write s : s′ for the concatenation
w1 : w2 : . . . : wm : w′1 : w′2 : . . . : w′n. If w ∈ Σ∗, we write [w] for the 2-word that consists of
a list of one word which is w.

A level 2 collapsible pushdown stack is a special element of (Σ× {1, 2} × N)+2 that is
generated by certain stack operations from an initial stack. We introduce these in the
following definitions. The natural numbers following the stack symbol represent a pointer:
every element in a collapsible pushdown stack has a pointer to some substack and applying
the collapse operation returns the substack to which the topmost symbol of the stack points.
Here, the first number denotes the collapse level. If it is 1 the collapse pointer always points to
the symbol below the topmost symbol and the collapse operations just removes the topmost
symbol. The more interesting case is when the collapse level of the topmost symbol of the
stack s is 2. Then the stack obtained by the collapse contains the first n words of s where n
is the second number in the topmost element of s.

The initial level 1 stack is ⊥1 := (⊥, 1, 0) and the initial level 2 stack is ⊥2 := [⊥1].
Let k ∈ {1, 2} and let s = w1 : w2 : . . . : wn ∈ (Σ× {1, 2} × N)+2 be a 2-word such that

wn = a1a2 . . . am with ai ∈ Σ× {1, 2} × N for all 1 ≤ i ≤ m.

We define the topmost (k − 1)-word of s as topk(s) :=
{
wn if k = 2
am if k = 1.
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For top1(s) = (σ, i, j) ∈ Σ× {1, 2} × N, we define the topmost symbol Sym(s) := σ, the
collapse-level of the topmost element CLvl(s) := i, and the collapse-link of the topmost
element CLnk(s) := j.

For s, wn and k as before, σ ∈ Σ\{⊥}, and w′n := a1 . . . am−1, we define the stack operations

popk(s) :=


w1 : w2 : . . . : wn−1 if k = 2, n ≥ 2,
w1 : w2 : . . . : wn−1 : w′n if k = 1,m ≥ 2,
undefined otherwise,

clone2(s) := w1 : w2 : . . . : wn−1 : wn : wn,

pushσ,k(s) :=
{
w1 : w2 : . . . : wn(σ, 2, n− 1) if k=2,
w1 : w2 : . . . : wn(σ, 1,m) if k=1,

collapse(s) :=


w1 : w2 : . . . : wCLnk(s) if CLvl(s) = 2, n ≥ CLnk(s) > 0,
pop1(s) if CLvl(s) = 1,
undefined otherwise.

The set of level 2-operations is OP :=
{

pushσ,1, pushσ,2, clone2,pop1, pop2, collapse
}
. The

set of level 2 stacks, Stck(Σ), is the smallest set that contains ⊥2 and is closed under all
operations from OP.

Note that collapse- and popk-operations are only allowed if the resulting stack is a
nonempty list of nonempty words. This avoids the special treatment of empty words or
stacks. Furthermore, a collapse on level 2 summarises a non-empty sequence of pop2-
operations. For example, starting from ⊥2, we can apply a clone2, a pushσ,2, a clone2, and
finally a collapse. This sequence first creates a level 2 stack that contains 3 words and
then performs the collapse and ends in the initial stack again. This example shows that
clone2-operations are responsible for the fact that collapse-operations on level 2 may remove
more than one word from the stack. Since there is no level 1 clone operation, a collapse of
level 1 always simulates exactly one pop1.

For s, s′ ∈ Stck(Σ), we call s′ a substack of s if there are n1, n2 ∈ N such that
s′ = pop1

n1(pop2
n2(s)). We write s′ ≤ s if s′ is a substack of s.

3.2 Collapsible Pushdown Systems and Collapsible Pushdown Graphs
of Level 2

We introduce collapsible pushdown systems (CPS) and graphs (CPG) which are analogues
of pushdown systems and pushdown graphs using collapsible pushdown stacks instead of
ordinary stacks.

I Definition 7. A collapsible pushdown system is a tuple S = (Σ, Q,∆, q0) where Σ is a
finite stack alphabet with a special symbol ⊥ ∈ Σ, Q a finite set of states, q0 ∈ Q the initial
state, and ∆ ⊆ Q× Σ×Q×OP the transition relation.

For q ∈ Q and s ∈ Stck(Σ) the pair (q, s) is called a configuration. We define labelled trans-
itions on pairs of configurations by setting (q1, s) `δ (q2, t) if there is a δ = (q1, σ, q2, op) ∈ ∆
such that Sym(s) = σ and op(s) = t. The union of these relations is denoted by `:=

⋃
δ∈∆ `δ.

We set C(S) to be the set of all configurations that are reachable from (q0,⊥2) via `-paths.
We call C(S) the set of reachable configurations. The collapsible pushdown graph generated
by S is CPG(S) :=

(
C(S), C(S)2∩ `

)
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Figure 1 Example of blocks in a stack. These form a c-blockline.

I Definition 8. Let S be a CPS. A run ρ of S of length n is a function

ρ : {0, 1, 2, . . . , n} → Q× (Σ× {1, 2} × N)∗2 such that ρ(0) ` ρ(1) ` · · · ` ρ(n).

We write len(ρ) := n and call ρ a run from ρ(0) to ρ(n). We say ρ visits a stack s at i if
ρ(i) = (q, s) for some q ∈ Q.

For runs ρ, π of length n and m, respectively, with ρ(n) = π(0), we define the composition
ρ ◦ π of ρ and π in the obvious manner.

I Remark. Note that we do not require runs to start in the initial configuration.

From now on, we consider a fixed set of states Q and a fixed stack alphabet Σ with
bottom-of-stack symbol ⊥.

3.3 Encoding of Configurations as Trees
In [8] we proved that collapsible pushdown graphs are tree-automatic via an encoding function
CEnc. We recall this function in this section. The concept underlying the encoding is that
of blocks and blocklines. A blockline is a list of words that start with the same letter and
a block is a list of words that start with the same two letters. We encode a blockline as
follows. The root is labelled by the first letter of all words; for each block of the blockline, we
add one subtree encoding the corresponding block. We present the details after the formal
introduction of blocks and blocklines. For w ∈ Σ∗ and s = w1 : w2 : . . . : wn ∈ Σ∗2, we write
s′ := w \ s for s′ = [ww1] : [ww2] : . . . : [wwn].

I Definition 9 (γ-block(line)). For Γ some set and γ ∈ Γ, we call b ∈ Γ∗2 a γ-block if
b = [γ] or b = γτ \ s′ for some τ ∈ Γ and s′ ∈ Γ∗2. See Figure 1 for examples of blocks. If
b1, b2, . . . , bn are γ-blocks, then we call b1 : b2 : . . . : bn a γ-blockline.

Note that every stack forms a (⊥, 1, 0)-blockline. Furthermore, every blockline l decom-
poses uniquely as l = b1 : b2 : . . . : bn of maximal blocks bi. Another crucial observation is
that a γ-block b ∈ Γ∗2 \ Γ decomposes as b = γ \ l for some blockline l and we say l is the
induced blockline of b. For b ∈ Γ the induced blockline of [b] is just the empty 2-word.

Now we encode a (σ, n,m)-blockline l in a tree by labelling the root with (σ, n), by
encoding the blockline induced by the first block of l in the left subtree, and by encoding the
rest of the blockline in the right subtree. In order to avoid repetitions, we do not repeat the
symbol (σ, n) in the right subtree, but replace it by the default letter ε.

I Definition 10. Let s = w1 : w2 : . . . : wn ∈ (Σ× {1, 2} × N)+2 be a (σ, l, k)-blockline. Let
w′i be words such that s = (σ, l, k) \ (w′1 : w′2 : . . . : w′n). Set s′ := w′1 : w′2 : . . . : w′n. As an
abbreviation we write hsi := wh : wh+1 : . . . : wi. Furthermore, let w1 : w2 : . . . : wj be a
maximal block of s. Note that j > 1 implies wj′ = (σ, l, k)(σ′, l′, k′)w′′j′ for all j′ ≤ j, some
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(c, 2, 1) (e, 1, 3)
(b, 2, 0) (b, 2, 0) (c, 1, 2) (d, 2, 3)
(a, 2, 0) (a, 2, 0) (a, 2, 2) (a, 2, 2) (a, 2, 2)
(⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0)

c, 2 e, 1

b, 2 // ε

OO

c, 1 d, 2

OO

a, 2

OO

a, 2 //

OO

ε //

OO

ε

⊥, 1 //

OO

ε

OO

Figure 2 A stack s and its encoding Enc(s): right arrows lead to 1-successors (right successors),
upward arrows lead to 0-successors (left successors).

fixed (σ′, l′, k′) ∈ Σ× {1, 2} × N, and appropriate w′′j′ ∈ Σ∗. For ρ ∈
(
Σ× {1, 2}

)
∪ {ε}, we

define recursively the
(
Σ× {1, 2}

)
∪ {ε}-labelled tree Enc(s, ρ) via

Enc(s, ρ) :=


ρ if |w1| = 1, n = 1
ρ(∅,Enc(2sn, ε)) if |w1| = 1, n > 1
ρ(Enc(1s

′
n, (σ′, l′)), ∅) if j = n, |w1| > 1

ρ(Enc(1s
′
j , (σ′, l′)),Enc(j+1sn, ε)) otherwise.

Enc(s) := Enc(s, (⊥, 1)) is called the (tree-)encoding of the stack s ∈ Stck(Σ).

Figure 2 shows a configuration and its encoding.

I Remark. In this encoding, the first block of a (σ, l, k)-blockline is encoded in a subtree
whose root d is labelled (σ, l). For every node labelled by some element in Σ×{1, 2}, i.e., for
every d ∈ Enc(s) ∩ {0, 1}∗0, we can restore k from the position of d in Enc(s) as follows. If
l = 1 then k = |d|0, i.e., the number of occurrences of 0 in d. This is due to the fact that level
1 links always point to the preceding letter and that we always introduce a left-successor
tree in order to encode letters that are higher in the stack. If l = 2 then

k = |{d′ ∈ dom(Enc(s)) ∩ {0, 1}∗1 : d′ ≤lex d}|,

where ≤lex is the lexicographic order. This is due to the fact that every right-successor
corresponds to the separation of some block from another block further left.

Having defined the encoding of stacks, we define the encoding of configurations.

I Definition 11. For q ∈ Q and s some stack, we define CEnc(q, s) := q(Enc(s), ∅).

The image of CEnc contains only trees of a very specific type. We call this class TEnc.

I Definition 12. Let TEnc be the class of all trees T that satisfy the following conditions.
1. The root of T is labelled by some element of Q (T (ε) ∈ Q).
2. Every element of the form {0, 1}∗0 is labelled by some (σ, l) ∈ Σ × {1, 2}; especially,

T (0) = (⊥, 1) and there are no other occurrences of (⊥, 1) or (⊥, 2).
3. Every element of the form {0, 1}∗1 is labelled by ε.
4. 1 /∈ dom(T ), 0 ∈ dom(T ).
5. For all t ∈ T , if T (t0) = (σ, 1) then T (t10) 6= (σ, 1).

I Lemma 13 ([8]). The image of CEnc is TEnc.

The following lemma shows that TEnc is a regular set.
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I Lemma 14. There is a finite automaton ATEnc with f0(Σ) := 2 + 3|Σ| many states that
recognises TEnc.

Proof. Set ATEnc := (Q ∪ (Σ× {1, 2}) ∪ {ε}, QA,∆A, qI) where QA and ∆A are defined as
follows. Let QA := {⊥, qI} ∪ (Σ× {1, 2}) ∪ {Pσ : σ ∈ Σ}. The states of the form (σ, i) are
used to guess that a node of the tree is labelled by (σ, i) while the states Pσ are used to
prohibit that the left successor of a certain node is labelled by (σ, 1). The transitions ensure
that whenever we guess that d0 is labelled by (σ, 1) then d1 is reached in state Pσ ensuring
that d10 cannot be labelled by (σ, 1). ∆A is defined as follows.

(qI , q, (⊥, 1),⊥) ∈ ∆A for all q ∈ Q,
((σ, i), (σ, i), (τ, 1), Pτ ) ∈ ∆A for all σ ∈ Σ, τ ∈ Σ \ {⊥}, i ∈ {1, 2},
((σ, i), (σ, i), (τ, 2), P⊥) ∈ ∆A for all σ ∈ Σ, τ ∈ Σ \ {⊥}, and i ∈ {1, 2},
((σ, i), (σ, i), (τ, j),⊥) ∈ ∆A for all σ ∈ Σ, τ ∈ Σ \ {⊥}, i, j ∈ {1, 2},
((σ, i), (σ, i),⊥, P⊥) ∈ ∆A for all σ ∈ Σ, and i ∈ {1, 2},
((σ, i), (σ, i),⊥,⊥) ∈ ∆A for all σ ∈ Σ, and i ∈ {1, 2},
(Pσ, ε, (τ, 1), Pτ ) ∈ ∆A for all σ ∈ Σ and τ ∈ Σ \ {σ,⊥}
(Pσ, ε, (τ, 2), P⊥) ∈ ∆A for all σ ∈ Σ and τ ∈ Σ \ {⊥}
(Pσ, ε, (τ, i),⊥) ∈ ∆A for all σ ∈ Σ and (τ, i) ∈ (Σ× {1, 2}) \ {(σ, 1), (⊥, 1), (⊥, 2)},
(Pσ, ε,⊥, P⊥) ∈ ∆A for all σ ∈ Σ
(Pσ, ε,⊥,⊥) ∈ ∆A for all σ ∈ Σ J

The next lemma is a straightforward observation concerning the depth of the encoding of
a configuration in terms of the width and height of the stack.

I Lemma 15. Given a stack s and a state q, such that (q, s) is reachable from the initial
configuration by some path of length l then dp(CEnc(q, s)) < hgt(s) + wdt(s) ≤ l + 2.

Proof. We have seen that successors to the right correspond to the separation of different
words of s. More precisely, wdt(s) = |{d ∈ {0, 1}∗{1} : d ∈ CEnc(q, s)}|+ 1. Furthermore,
we have seen that every element d ∈ CEnc(q, s) encodes some word of length |d|0. Thus,
hgt(s) = max{|d|0 : d ∈ CEnc(q, s)}. We immediately conclude that |d| < hgt(s) + wdt(s)
for all d ∈ CEnc(q, s).

The second part of the claim is proved by induction. Note that the initial configuration is
encoded by a tree of depth 2. Any stack operation increases the width or height of the stack
by at most 1 and no operation increases the height and the width at the same time. J

3.4 Milestones
We now recall the concept of milestones from [8]. The milestones of a stack s are those
substacks that every run to s has to pass. Thus, the concept of a milestone forms an essential
key to understanding our pumping arguments in the next section.

I Definition 16 (Milestone). A substack s′ of s = w1 : w2 : . . . : wn is a milestone if
s′ = w1 : w2 : . . . : wi : w′ such that 0 ≤ i < n and wi u wi+1 ≤ w′ ≤ wi+1.3 We denote by
MS(s) the set of milestones of s.

I Lemma 17 ([8]). If s, t,m are stacks with m ∈ MS(t) but m 6≤ s, then every run from s

to t visits m.

3 u is the greatest common prefix operator.
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I Corollary 18. If ρ is a run from a stack s to a stack t, then ρ visits some stack m ∈ MS(t)
with dp(m) ≤ dp(s) + 1.

Proof. ρ has to pass some common substack u of s and t. It is an easy exercise to show that
pop1 and pop2-operations do not increase the depth of the encoding of a stack. If u ∈ MS(t)
we are done. Otherwise, there is a minimal sequence of level 1 push operations that generate
a milestone m ∈ MS(t) from u. For c := wdt(u), top2(u) < wc−1 u wc where wi denotes
the i-th word of t and top2(m) = wc−1 u wc. Since wc−1 is also the (c − 1)-st word of s,
the height of m is bounded by hgt(s). It is straightforward to show that the encodings of
m and u differ in exactly two nodes. There is some d ∈ dom(Enc(u)) such that Enc(m)
is Enc(u) where we delete the node d1 and add some node d01k101k2 . . . 01kl+1 such that
d01k101k2 . . . 01kl ∈ dom(Enc(u)). This operation increases the depth by at most 1. J

Milestones form an effectively regular set. This stems from the close correspondence
between milestones of a stack s and the elements of CEnc(s) as follows.

I Definition 19. Let c = (q, s) be some configuration. For T := CEnc(c) the encoding of
c, let d ∈ T \ {ε}. Then the left and downward closed tree induced by d is LT (d, T ) := T �D
where D := {d′ ∈ T : d′ ≤lex d} \ {ε}. Then we denote by LStck(d, T ) the unique stack s′
such that CEnc(q, s′) = LT (d, T ). We call LStck(d, T ) the left stack induced by d.

I Remark. LStck(d,CEnc(q, s)) is a substack of s for all d ∈ dom(Enc(s)). This observation
follows from the fact that the left stack is induced by a lexicographically downward closed
subset. In fact, LStck(d,Enc(q, s)) is a milestone of s. See [8] for more details.

I Lemma 20. [8] The map given by g : d 7→ LStck(d,CEnc(q, s)) is an order isomorphism
between (dom(CEnc(q, s)) \ {ε},≤lex) and (MS(s),≤).

I Lemma 21. There is an automaton A with 5 states such that for all configurations (q, s)
and (q′,m) the automaton A accepts CEnc(q′,m)⊗ CEnc(q, s) if and only if m ∈ MS(s).

Proof. A has to check that CEnc(q′,m) is a left and downward closed subtree of CEnc(q, s)
(except for the label at the root). The states of A are {qI ,⊥,=, 6=,=∗}. The transition
relation ∆ consists of the following transitions:
1. (qI , (q1, q2),=,⊥) for q1, q2 ∈ Q
2. (=, (X,X),=∗,=) for X ∈ {ε} ∪ (Σ× {1, 2}),
3. (=, (X,X),=,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
4. (=, (X,X), 6=,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
5. (=, (X,X),=, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
6. (=, (X,X),⊥,=) for X ∈ {ε} ∪ (Σ× {1, 2}),
7. (=, (X,X),⊥, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
8. (=, (X,X), 6=, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
9. (=, (X,X),⊥,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),

10. (=∗, (X,X),=∗,=∗) for X ∈ {ε} ∪ (Σ× {1, 2}),
11. (=∗, (X,X),=∗,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
12. (=∗, (X,X),⊥,=∗) for X ∈ {ε} ∪ (Σ× {1, 2}),
13. (=∗, (X,X),⊥,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
14. (6=, (⊥, X),⊥,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
15. (6=, (⊥, X), 6=,⊥) for X ∈ {ε} ∪ (Σ× {1, 2}),
16. (6=, (⊥, X),⊥, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}),
17. (6=, (⊥, X), 6=, 6=) for X ∈ {ε} ∪ (Σ× {1, 2}).

J
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4 Pumping on Encodings of Configurations

The main result of [8] is that there is an automaton that accepts the encoding of a configuration
if and only if this configuration is reachable from the initial one. This automaton guesses
this run by labelling each node of the encoding with the initial and final state corresponding
to the subrun starting at the corresponding milestone. In the following, we will use variants
of this automaton in order to develop a pumping lemma on collapsible pushdown systems.

I Theorem 22 ([8]). For each collapsible pushdown system S = (Σ, Q,∆, q0), there is a
finite tree automaton A with

f1(Q,Σ) := 2 · (2|Q×Q|)2 · |Q|2 · |Σ× {1, 2}| · |Σ|

many states that accepts a tree CEnc(q, s) if and only if (q, s) ∈ CPG(S), i.e., if there is a
run of S from the initial configuration to (q, s).

I Remark. In [8], we did non state the explicit bound on the number of states. This bound
is extracted as follows. A guesses at each node d ∈ CEnc(q, s) states q1, q2 such that there is
a run from (q1,LStck(d,CEnc(q, s))) to some configuration (q2, t) where the definition of t
depends on whether d is in the rightmost branch.

Let t′ be the block encoded in the subtree rooted at d. If d is in the rightmost path,
then t = LStck(d,CEnc(q, s)) \ t′.4 At all other positions t = (LStck(d,CEnc(q, s)) \ t′) :
top2(LStck(d,CEnc(q, s))). Thus, we obtain a factor 2 for keeping track of the rightmost
branch. Furthermore, in order to verify the guesses q1, q2 at each node d, A stores the values
of Sym(LStck(d,CEnc(q, s))), CLvl(LStck(d,CEnc(q, s))), Sym(pop1(LStck(d,CEnc(q, s))))
and the existence of loops and returns starting at LStck(d,CEnc(q, s)). A loop starting in a
stack s is a run from (q1, s) to (q2, s) for q1, q2 ∈ Q that does not visit substacks of pop2(s)
and a return is a run from (q1, s) to (q2, pop2(s)) that does not visit any substack of pop2(s)
before its final configuration. At each node d, the automaton A has to keep track of the sets

{(q1, q2) : ∃ a loop from (q1, t) to (q2, t)} and
{(q1, q2) : ∃ a return from (q1, t) to (q2, pop2(t))}

where t = LStck(d,CEnc(q, s)).

I Corollary 23. For each collapsible pushdown system S = (Σ, Q,∆, q0), there is a fi-
nite tree automaton AS such that AS accepts a tree T if and only if there is some con-
figuration c such that T = CEnc(c) and c is contained in CPG(S). Moreover, AS has
f2(Σ, Q) := f0(Σ) · f1(Q,Σ) many states.

Proof. A is the product of the automaton from Theorem 22 and that from Lemma 14. J

In fact, every run from the initial configuration to some configuration c induces an
accepting run of A on CEnc(c). There is a close correspondence between the states of the run
of A at positions d ∈ CEnc(c) and the states in which the run to c visits LStck(d,CEnc(c)).
We state this correspondence in the following lemma.

I Lemma 24 ([8]). For each stack t and each state q ∈ Q there is a state qq,t of AS such
that the following holds. Given an arbitrary configuration c = (q, s) such that t ∈ MS(s),

4 s1 \ s2 is an abbreviation for pop2(s1) : (top2(s1) \ s2).
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there is a run ρ from the initial configuration to c that passes t in state q for the last time if
and only if there is an accepting run ρAS of AS on CEnc(c) such that ρAS (d) = qq,t for d
the unique node such that t = LStck(d,CEnc(c)).

In analogy to the general pumping lemma 5, we now prove a specific pumping lemma
for collapsible pushdown graphs. In order to obtain better bounds, we do not use the
automaticity of the reachability predicate. Instead, we use reachability only restricted to
pairs (q1, s1), (q2, s2) where s1 is a milestone of s2.

I Theorem 25. Let S = (Σ, Q,∆, q0) be a CPS. Let ρ0 be a run from the initial configuration
to some configuration c with len(ρ0) = l. If ρ is a run starting at c of length

len(ρ) > f3(Q,Σ, l) := |Q| · (2|Σ|+ 1)2l+2+f2(Q,Σ)

then there are infinitely many runs starting at c.

Proof. If there are i < j ≤ len(ρ) such that ρ(i) = ρ(j) then πi := ρ�[0,i] ◦(ρ�[i,j])i ◦ρ�[j,len(ρ)]
is an infinite sequence of runs starting at c.

Otherwise, the run visits more configurations than there are configurations whose encoding
has depth at most l + 2 + f2(Q,Σ). Thus, there is some i ≤ len(ρ) such that

dp(CEnc(ρ(i))) > l + 2 + f2(Q,Σ)

Set (q, s) := ρ(i). Due to Lemma 15, dp(CEnc(c)) < l + 2. Due to Corollary 18, there
is a maximal 0 ≤ j < i such that ρ(j) = (q̂,m) for some milestone m ∈ MS(s) and some
state q̂ ∈ Q such that dp(CEnc(q̂,m)) ≤ l + 2. Since m is a milestone of s, there is some
node dm ∈ CEnc(q, s) such that LStck(dm,CEnc(q, s)) = m. This implies that the left and
downward closed subtree induced by dm is Enc(m).

Using Lemma 24, q̂ and m define a state qq̂,m of A such that there is an accepting run of
A on CEnc(q, s) that labels dm with qq̂,m.

Note that LT (dm,CEnc(q, s)) is a tree of depth at most l+ 2. Hence, CEnc(q, s) contain
a subtree of depth greater than f2(Q,Σ) that does not intersect with LT (dm,CEnc(q, s)).
Since f2(Q,Σ) is a bound on the number of states of A, Lemma 4 gives an infinite set of
configurations (q, s1), (q, s2), . . . , (q, si), . . . that are accepted by A. Since the pumping does
not affect LT (dm,CEnc(q, s)), we have LT (dm,CEnc(q, s)) = LT (dm,CEnc(q, s1)) = · · · =
LT (dm,CEnc(q, si)) = . . . and the accepting run of A on CEnc(q, si) labels d by qq̂,m. Using
Lemma 24, we conclude that for each 1 ≤ i there is a run πi from the initial configuration
to (q, si) passing (q̂,m) at position ki. Recall that ρ(j) = (q̂,m). Thus, the composition
ρ�[0,j] ◦ πi�[ki,len(πi)] is a run from c to (q, si). Hence, we constructed infinitely many runs
starting at configuration c. J

5 ε-Contractions of Collapsible Pushdown Graphs of Level 2

In this section we lift the pumping lemma from the previous section to ε-contractions of
collapsible pushdown systems. Let G be a graph with labelled edges where the labels come
from the set Γ ∪ {ε}. The ε-contraction of G is then the graph G/ε that consists of the
vertices of G where v and v′ are connected by a γ-labelled edge (for γ ∈ Γ) if there is a path
from v to v′ in G such that all edges of this path are labelled by ε except for the last edge,
which is labelled by γ. We denote by `γ the relation induced by the γ-labelled edges in the
ε-contraction. From now on, we consider the transitions of a collapsible pushdown system to
be labelled with elements from some finite set Γ ∪ {ε}.
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We first prove a slight variation of Theorem 22. Then we show that in every finitely
branching ε-contraction of some CPS the stack size of connected configurations cannot differ
too much. Finally, we develop the analogue of Theorem 25 for ε-contractions of CPG.

I Lemma 26. For each collapsible pushdown system S = (Σ, Q,∆, q0) and each subset
∆′ ⊆ ∆, there is a finite tree automaton A∆′ with f4 := 2 · f1(Q,Σ) many states that accepts
a tree CEnc(q′, t)⊗ CEnc(q, s) for t ∈ MS(s) if and only if there is a run ρ from the initial
configuration to (q, s) passing t at position i for the last time such that ρ(i) = (q′, t) and
ρ�[i,len(ρ)] only uses transitions from ∆′.

Proof. The automaton nondeterministically guesses the rightmost path of CEnc(q′, t). After
this path, i.e. on dom(CEnc(q, s)) \ dom(CEnc(q′, t)) and at the lexicographically greatest
node of dom(CEnc(q′, t)), it simulates the automaton A from Theorem 22 but with respect to
the transition relation ∆′. Along the rightmost path of CEnc(q′, t) (except for the maximal
node of this path), it simulates A in guessing final states for the corresponding subtrees. But
it keeps the initial state fixed to q′. Thus, the automaton looks for runs to (q, s) that only
use transitions from ∆′, but it is forced to pass t′ in state q′. J

I Corollary 27. For each collapsible pushdown system S = (Σ, Q,∆, q0) and each subset
∆′ ⊆ ∆, there is a finite tree automaton A with

f5(Q,Σ) := 5 · f0(Σ) · f0(Σ) · f4(Q,Σ)

many states that accepts a tree T if and only if T = CEnc(q′, t) ⊗ CEnc(q, s) for some
configurations (q′, t), (q, s) such that t ∈ MS(s) and such that there is a run ρ from the initial
configuration to (q, s) passing t at position i for the last time such that ρ(i) = (q′, t) and
ρ�[i,len(ρ)] only uses transitions from ∆′.

Proof. T has to consists of two components, each one from TEnc. Taking a product of two
adaptations of the Automaton from Lemma 14 we can check that T = CEnc(q′, t)⊗CEnc(q, s)
for some configurations (q′, t) and (q, s). Furthermore, taking the product with the automaton
from Lemma 21, we can ensure that t ∈ MS(s). Finally, taking the product with the
automaton from Lemma 26 yields the automaton A. J

Completely analogously to the proof of Theorem 25 we now derive a bound of the size
of stacks of configurations connected by an edge in a finitely branching ε-contraction of
collapsible pushdown graphs.

I Lemma 28. For each transition δ ∈ ∆ there is an automaton Aδ with 10 states that
accepts CEnc(q, s)⊗ CEnc(q′, s′) if and only if (q, s) `δ (q′, s′).

The proof of this lemma can be found in the long version of this article. It is obtained by
explicit construction of the automaton informally described in [8].

I Corollary 29. For each collapsible pushdown system S = (Σ, Q,∆, q0) and each transition
δ ∈ ∆, there is a finite tree automaton with f7(Σ) := 10f0(Σ) · f0(Σ) states that accepts a
tree T , if and only if T = CEnc(q, s)⊗ CEnc(q′, s′) and (q, s) `δ (q′, s′).

Proof. T has to consists of two components, each one from TEnc. Taking a product of two
adaptations of the Automaton from Lemma 14 (one for each component) and of Aδ from the
previous lemma does the job. J

We now give a bound on the branching degree of ε-contractions of collapsible pushdown
graphs.
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I Lemma 30. Let S be some collapsible pushdown system with stack alphabet Σ and state
set Q. Set G := CPG(S)/ε. If there are configurations c′, c ∈ G such that G |= c′ `γ c and

dp(CEnc(c)) > 1 + dp(CEnc(c′)) + f7(Σ) · f5(Q,Σ)

then G is infinitely branching.

Proof. Assume that c′ `γ c in G. Let ∆′ ⊆ ∆ be the ε-labelled transitions of the CPS
S generating G. Let A′ denote the automaton of Corollary 27 with respect to S and ∆′.
Furthermore, let Aγ denote the automaton of Corollary 29. There is an automaton Â that
accepts a tree T if and only if T = CEnc(q1, s1)⊗ CEnc(q2, s2)⊗ CEnc(q3, s3) such that
1. s1 ∈ MS(s2),
2. (q1, s1) ∈ CPG(S),
3. there is a run from (q1, s1) to (q2, s2) that only uses transitions from ∆′, and
4. (q2, s2) `γ (q3, s3).
A is basically a product of A′ and Aγ . Thus, this automaton can be realised with f7(Σ) ·
f5(Q,Σ) many states.

Fix a run ρ witnessing that c′ `γ c in G. Writing (q, s) := c and ĉ := ρ(len(ρ) − 1),
Corollary 18 gives us a milestone m such that for some qm ∈ Q the automaton A accepts
CEnc(qm,m)⊗ CEnc(ĉ)⊗ CEnc(c). Furthermore,

dp(CEnc(c)) > dp(CEnc(qm,m)) + f7(Σ) · f5(Q,Σ).

Thus, we can apply the regular pumping argument to some subtree of CEnc(qm,m) ⊗
CEnc(ĉ) ⊗ CEnc(c) where the first component is undefined. This yields infinitely many
configurations c1, c2, c3, . . . such that (qm,m) `γ cj for each j ∈ N. Since ρ�[0,i] is an ε-path
from c′ to (qm,m), this implies c′ `γ cj for each j ∈ N in G. Hence, `γ in G is infinitely
branching at c′. J

I Corollary 31. Let G be the ε-contraction of some collapsible pushdown system with stack
alphabet Σ and state set Q. If G is finitely branching and if a path of length n connects the
initial configuration with c ∈ G, then

dp(CEnc(c)) ≤ 2 + n (1 + f7(Σ) · f5(Q,Σ))

The proof is by induction using the previous lemma. The straightforward adaptation of
Theorem 25 yields the following pumping lemma for ε-contractions of collapsible pushdown
graphs of level 2.

I Theorem 32. Let S = (Σ, Q,∆, q0) be a CPS. Let G := CPG(S)/ε be finitely branching.
Let ρ0 be a path from the initial configuration to some configuration c of length l in G.

If there is a path ρ starting in c such that

len(ρ) > f6(Q,Σ, l) := |Q| · (2|Σ|+ 1)2L+K

for L := 2 + l (1 + f7(Σ) · f5(Q,Σ))
and for K := 1 + f7(Σ) · f5(Q,Σ)

then there are infinitely many paths in G starting at c.

Proof. There may be i < j such that ρ(i) = ρ(j) and we can iterate ρ�[i,j] arbitrarily many
times. Otherwise, due to the length of ρ, there is some i such that

dp(CEnc(ρ(i))) > L+K ≥ dp(CEnc(ρ(0))) +K.

Analogous to the proof of Lemma 30, pumping yields runs ρ1, ρ2, . . . starting at c and ending
in pairwise different configurations of G. J
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Using the same bounds, the second general pumping lemma 6 has a collapsible pushdown
version:

I Theorem 33. Let S = (Σ, Q,∆, q0) be a CPS. Let G := CPG(S)/ε be finitely branching.
Let ρ0 be a path from the initial configuration to some configuration c of length l in G.

If there are more than f6(Q,Σ, l) many configurations reachable from c then there are
infinitely many paths in G starting at c.

Again, one of the configurations reachable form c must be encoded by a tree of depth
dp(CEnc(ρ(i))) > dp(CEnc(ρ(0))) +K and we may apply the pumping argument from the
previous proof.
I Remark. There is some function f8 such that f6(Q,Σ, l) ≤ 22f8(Q,Σ)·l .

6 Applications

I Corollary 34. Let S be some CPS and G := CPG(S)/ε. It is decidable whether G is finite.

We can also use the pumping lemma in order to prove that certain graphs are not
ε-contractions of CPG.

I Example 35. Let ϕ : N→ N be an unbounded monotone function. The tree

T =
{

0i−11j ∈ {0, 1}∗ : j ≤ 22ϕ(i)·i
+ 1
}

(with left and right successor relation) is not the ε-contraction of any CPG of level 2.
Heading for a contradiction, assume there was such a CPS S. Choose k ∈ N such that

ϕ(k) ≥ f8(Q,Σ). Thus, 22ϕ(k)·k ≥ f6(Q,Σ, k) whence we may apply Theorem 32 to the path
connecting 0k−11 with 0k−11ϕ(k)k+1 and obtain infinitely many paths starting in 0k−11. But
this contradicts the definition of T .

Using the second pumping lemma, one proves analogously that the tree

T = {0n : n ∈ N} ∪ {0n1 : n ∈ N} ∪
{

0i−11j : j ≤ 22ϕ(i)·i
+ 1
}

is not the ε-contraction of any CPS of level 2.

7 Conclusions

To our knowledge, we presented the first pumping lemma for collapsible pushdown graphs of
level 2. Moreover, the result also improves Hayashi’s pumping lemma for indexed languages
[7]. An analysis of his proof shows that his pumping lemma applies to runs of level 2
pushdown systems that have length three-fold exponential in the size of the pushdown system.
Our lemma already applies to runs that have length doubly exponential in the size of the
system.

Unfortunately, our approach does not extend directly to higher levels of the collapsible
pushdown hierarchy. Higher levels are not tree-automatic. But perhaps it is possible to
represent the reachability relations of higher-order collapsible pushdown graphs by other
types of automata for which pumping lemmas exist. These could then be turned into pumping
lemmas for higher-order collapsible pushdown graphs. Another approach towards pumping
on higher-order graphs stems from the the technical tools of milestones and loops developed
in [8]. It is an interesting question whether these notions can be adapted to higher levels in
order to obtain pumping lemmas for all higher-order (collapsible) pushdown graphs.

CSL’11
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Abstract
We show that the satisfiability and the finite satisfiability problems for two-variable logic, FO2,
over the class of structures with three linear orders, are undecidable. This sharpens an earlier
result that FO2 with eight linear orders is undecidable. The theorem holds for a restricted case
in which linear orders are the only non-unary relations. Recently, a contrasting result has been
shown, that the finite satisfiability problem for FO2 with two linear orders and with no additional
non-unary relations is decidable. We observe that our proof can be adapted to some interesting
fragments of FO2, in particular it works for the two-variable guarded fragment, GF2, even if the
order relations are used only as guards. Finally, we show that GF2 with an arbitrary number
of linear orders which can be used only as guards becomes decidable if except linear orders only
unary relations are allowed.
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1 Introduction

In the field of logic in computer science the two-variable fragment of first order logic, FO2,
plays a prominent role. With respect to the number of variables it appears to be the maximal
fragment whose satisfiability problem is decidable. The importance of FO2 can be justified
by the fact that it, or its natural extensions and variants, embeds many formalisms used in
computer science, such as modal, temporal or description logics.

The decidability of FO2 was shown in [18] by establishing a finite model property, namely,
that every satisfiable formula has a finite model of size at most doubly exponential with
respect to its length. This bound on the size of models was later improved in [7] to singly
exponential, which implied NExpTime-upper bound on the complexity of the satisfiability
problem. A corresponding lower bound follows from [15, 5], so the satisfiability problem for
FO2 is NExpTime-complete.

One particular drawback of FO2 is that it cannot express transitivity of a binary relation.
Similarly, it is not possible to say that a relation is, e.g., an equivalence relation or a linear
order. Such properties of relations are very natural and desirable in practical applications.
Thus researchers started to investigate FO2 over restricted classes of structures, in which
some distinguished binary symbols have to be interpreted as transitive relations, equival-
ences, or linear orders. The idea for such a kind of research comes from the world of modal
logics, where, e.g., in Kripke structures for multimodal logic K4 accessibility relations are
transitive and for multimodal logic S5 they are equivalences. Linear orders are very natural
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when we consider temporal logics, where they model time flow, but can be also applicable in
different scenarios, like in databases or description logics, to compare objects with respect
to some parameters.

Unfortunately, the results are generally negative. It appeared that both the satisfiability
and the finite satisfiability problems for FO2 are undecidable in the presence of several
equivalence or several transitive relations [8, 9]. These results were later strengthened: FO2

is undecidable in the presence of two transitive relations [11, 10], three equivalence relations
[12], one transitive and one equivalence relation [14], or eight linear orders [19]. On the
positive side it is known that FO2 with one or two equivalence relations [12, 14], or with one
linear order [19] are decidable.

A related line of work, motivated by XML, concerns the so called data words. A data
word is a word over a finite alphabet. Positions of a word are naturally ordered by the linear
order and may be related by an equivalence relation (such an equivalence relation models
equality of data values). It was shown in [3] that FO2 is decidable over data words, even in
the case when except the linear order we are allowed to use the associated successor relation.
Some other interesting results related to data words have been recently obtained in [4], [17]
and [20]. In particular it is shown in [17] that FO2 is decidable over words whose positions
are ordered by two linear orders, with the assumption that the orders are only accessible by
the successor relations.

In this paper we perform a next step towards completing the classification of FO2 with
linear orders. We show that the satisfiability and the finite satisfiability problems for FO2 are
undecidable in the presence of three linear orders. The proof works for a restricted language,
in which, besides three linear orders, only unary predicates are used. This theorem improves
the above mentioned result from [19], where eight linear orders were used. It also sharpens
a theorem from [21] that FO2 is undecidable in the presence of two linear orders and one
total preorder. Our result seems to be optimal with respect to the number of linear orders,
since it contrasts with the main theorem from [21], that the finite satisfiability problem for
FO2 with a linear order and a total preorder (and thus also for FO2 with two linear orders)
is decidable. The proof of the last result works only in the case in which the order relations
are the only non-unary symbols; it is very likely however that it can be extended to the
general case.

It is an interesting question if there exists a natural decidable fragment of FO2 in which
elements could be compared by an unbounded number of linear orders (or, at least, by more
than two orders). When looking for analogous fragments with transitive or equivalence
relations the attention is often turned to the two-variable guarded fragment, GF2. In the
guarded fragment each occurrence of a quantifier has to be relativised by an atomic formula
containing all the variables that are free in the scope of this quantifier, e.g. ∀xy(x < y →
(Px ∧ Qy ∧ Bxy)). The guarded fragment was introduced in [1] to simulate the way ac-
cessibility relations in modal logics or roles in description logics are used. The satisfiability
problem for the guarded fragment is 2ExpTime-complete and for its two-variable version –
ExpTime-complete [6].

It appeared that GF2 is decidable with an arbitrary number of transitive or equivalence
relations, if the usage of transitive or equivalence symbols is restricted only to guards [22,
11, 13]. This last restriction is natural, since to the obtained fragment we may still translate
multimodal logics K5, S4 or some description logics with transitive roles.

In the case of linear orders the situation appears to be different. Our undecidability
proof for FO2 can be easily adapted to the case of GF2, even if linear orders are allowed to
appear only as guards. This can be done by enforcing that some additional binary relations
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are identical to the linear orders. On the other hand, if we assume that linear orders are
the only non-unary symbols and are used only as guards then GF2 becomes decidable. The
obtained variant allows only for a very limited interaction among different linear orders
(in fact, because of the syntactic restrictions, such interaction can be obtained only in an
indirect way), however it seems that not much more can be done: we explain that, e.g.,
extending the fragment by allowing guards built from conjunctions of atoms instead of just
atoms, e.g. guards like x ≤1 y ∧ x ≤2 y ∧ y ≤3 x, leads to undecidability.

The organisation of the paper is as follows. In Section 2 we present our main undecidab-
ility result for FO2 with three linear orders and discuss some of its refinements. In Section
3 we show that GF2 with an arbitrary number of linear orders is decidable if linear orders
are used only as guards and if there are no additional non-unary symbols.

2 Undecidability

2.1 Tilings and grids
The reduction of the tiling problem to satisfiability of some variants of two-variable logic
was presented in [8, 9]. Some ramifications, particularly suited for the case of linear orders,
were given in [19]. For convenience we present (adaptations of) some basic definitions and
lemmas (without proofs) from [19].

Let GZ be the canonical grid structure on Z × Z: GZ = (Z2, H, V ), H = {((p, q), (p +
1, q)) : p, q ∈ Z}, V = {((p, q), (p, q + 1)) : p, q ∈ Z}. Similarly, let GN be the canonical grid
on N × N and let Gm denote the standard grid on a finite m ×m torus: Gm = (Z/mZ ×
Z/mZ, H, V ), H = {((p, q), (p′, q)) : p′ − p ≡ 1 mod m}, V = {((p, q), (p, q′)) : q′ − q ≡ 1
mod m}.

Let Gi = (Gi, Hi, Vi), i = 1, 2. G1 is homomorphically embeddable into G2 if there is a
homomorphism π : G1 → G2, i.e. a mapping π such that for all v, v′ ∈ G1: (v, v′) ∈ H1 ⇒
(π(v), π(v′)) ∈ H2 and (v, v′) ∈ V1 ⇒ (π(v), π(v′)) ∈ V2.

We are interested in structures which are grid-like in the following sense.

I Definition 1. An infinite structure G = (G,H, V ) is called grid-like if GN is homomorph-
ically embeddable into G; a finite G is grid-like if some Gm is homomorphically embeddable
into G.

Grid-likeness is implied by a simple local criterion. We say that H is complete over V
in G = (G,H, V ) if G satisfies ∀xyx′y′((Hxy ∧ V xx′ ∧ V yy′)→ Hx′y′).

I Lemma 2. Assume that G = (G,H, V ) satisfies the FO2-axiom ∀x(∃yHxy ∧ ∃yV xy). If
H is complete over V , then G is grid-like.

I Lemma 3. Let C be a class of structures. If there exists an FO2 sentence η such that:

(a) GZ can be expanded to a structure in C satisfying η,
(b) for every n ∈ N there exists k ∈ N such that Gkn can be expanded to a structure in C
satisfying η,

(c) every model of η from C is grid-like,

then both satisfiability and finite satisfiability of FO2 over C are undecidable. In fact FO2

forms even a conservative reduction class over C. If at least (a) and (c) hold then the
(general) satisfiability problem is undecidable.

CSL’11
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For a more detailed exposition of the technique see [19]. For some background on con-
servative reduction classes see [2].

The general idea of our proof of the undecidability of FO2 with three linear orders is
similar to the idea from the proof for the case of eight linear orders from [19], however details
are much tricker.

To postpone some technical problems and present the main ideas of the proof clearly, in
the first instance we consider only the (general) satisfiability case. First, we describe the
expansion ḠZ of the standard infinite Z×Z grid by three linear orders ≤1,≤2,≤3 and some
unary predicates. Then we construct a formula η capturing some important properties of
ḠZ. We argue that every model of η, interpreting symbols ≤i as linear orders, is grid-like.
By Lemma 3 this implies the undecidability of the satisfiability problem for FO2 over the
class of structures with three linear orders.

Further, we describe expansions of the finite 12k×12k grids, Ḡ′12k in a signature contain-
ing some additionall unary symbols. We modify slightly the formula η, obtaining η′ which
will be satisfied in Ḡ′12k for all k ∈ N. It will also appear that η′ satisfies all assumptions of
Lemma 3, which shows that FO2 forms a conservative reduction class (in particular the finite
satisfiability problem is undecidable) over the class of structures with three linear orders.

2.2 Intended infinite model
We describe the expansion ḠZ of the standard Z × Z grid. The basic repeating pattern of
the grid expansion consists of 24 elements, forming a 4×6 rectangle. To distinguish types of
elements inside such rectangles we use unary predicates Pij , 0 ≤ i ≤ 3, 0 ≤ j ≤ 5. Namely,
if a = (k, l) then ḠZ |= Pija if and only if i = k mod 4 and j = l mod 6.

In Fig. 1 we illustrate the order ≤1. The set of elements Z×Z is divided into horizontal
≤1-zones, each of them consisting of three rows of elements. Formally, the ≤1-zones are
defined as Z≤1

k = {(i, 3k), (i, 3k + 1), (i, 3k + 2) : i ∈ Z} for k ∈ Z. If a ∈ Z≤1
k , b ∈ Z≤1

l ,
and k < l then ḠZ |= b ≤1 a. The points in a zone are organised in U-shaped six-element
blocks, called ≤1-blocks. If for elements a, b ∈ Z≤1

k , a belongs to a ≤1-block located to the
left from the ≤1-block of b then ḠZ |= b ≤1 a. Look at Fig. 1 to see the ≤1-ordering inside
the ≤1-blocks. Note that the ≤1-blocks in the odd zones are shifted by 1 with respect to
the even zones.

The orders ≤2 and ≤3 follow the same pattern, but are shifted with respect to the order
≤1. To obtain the picture for ≤2 we shift the picture for ≤1 by the vector (1, 1). Similarly,
the picture for ≤3 is obtained by shifting the picture for ≤1 by (0, 2). This implies that
the zones determined by different order relations do not coincide. See Fig. 2 to see how
≤i-blocks of all three orders are located in the grid. For clarity ≤i-relations are shown only
inside ≤i-blocks. Recall that ≤i-arrows among ≤i-zones go from up to down and among the
≤i-blocks inside a zone – from right to left.

Fig. 3 shows relations ≤1 and ≤3 between the neighbouring points from two consecutive
rows of the grid. Note that elements connected by H or by V are related by ≤1, ≤3
incompatibly. This observation extends to the crucial property of ḠZ, which will be used to
axiomatise the grid relations H, V : all three orders coincide on points whose y-coordinates
differ by at least 3, or which belong to the same row and their x-coordinates differ by at least
2; and, on the other hand, points connected by the grid relation H or by the grid relation V
are related incompatibly by some pair of the orders. We state it precisely in the following
observation. We also formalise another important property of our grid expansion (part (iv))
which will be captured by the formula η; this will allow to show that in all models of η, H
is complete over V .
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Figure 1 The order ≤1. Solid arrows represent the successor relation, dotted arrows illustrate
relations among ≤1-zones. The lower-left element is the point (0, 0).

I Observation 4. (i) Let (k, l), (k′, l′) ∈ Z × Z be two points in ḠZ, such that l′ − l ≥ 3.
Then for all i we have (k′, l′) ≤i (k, l).

(ii) Let (k, l), (k′, l′) ∈ Z× Z be two points in ḠZ, such that l = l′ and k′ − k ≥ 2. Then
for all i we have (k′, l′) ≤i (k, l).
(iii) If (k, l) and (k′, l′) are connected by H or by V , i.e, if k = k′ and l′ − l = 1 or l = l′

and k′ − k = 1, then there exist i, j such that (k, l) ≤i (k′, l′) and (k′, l′) ≤j (k, l) or
(k, l) ≤j (k′, l′) and (k′, l′) ≤i (k, l). Namely, if l mod 3 = 0 then i = 1, j = 3, if l
mod 3 = 1 then i = 1, j = 2, and if l mod 3 = 2 then i = 2, j = 3.
(iv) For all points a, b, c, d ∈ Z × Z, if ḠZ |= V ba ∧Hbc ∧ V cd, then there exist i, j such
that a ≤i b ≤i c ≤i d and d ≤j c ≤j b ≤j a. Namely, if b = (k, l) then i, j can be chosen
as in point (iii).

Proof. Claim (i) follows from the fact that for all i the point (k′, l′) belongs to a ≤i-zone
located above the zone of (k, l). Claim (ii) follows from the fact that for all i both points
belong to the same ≤i-zone, and that for all orders the point (k, l) belongs to a ≤i-block
located to the left from the ≤i-block of (k′, l′). Claims (iii),(iv) follow from an inspection of
Fig. 2. J

2.3 The formula η

The formula η consists of four conjuncts η = ηG∧ηH ∧ηV ∧ηC . The first conjunct explicitly
enforces horizontal and vertical successors in the grid:

ηG = ∀x(∃yHxy ∧ ∃yV xy).

CSL’11
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Figure 2 U-shaped blocks in the orders: ≤1 (black arrows), ≤2 (blue arrows), ≤3 (red arrows).
For clarity only successor ≤i-connections inside ≤i-blocks are shown.

Figure 3 Relations ≤1 (black arrows) and ≤3 (red arrows) between the neighbouring points
from two consecutive rows. Solid arrows represent successor relations, dotted arrows represent
non-successor ≤i-relations.

The next conjunct ηH axiomatises H:

ηH = ∀xy(Hxy ↔
∨

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi+1,jy ∧ λHij (x, y))),

where i+ 1 is calculated modulo 4, and λHij (x, y) says how points x, y are related by two of
the three orders; namely λHi0 and λHi3 speak about ≤1 and ≤3, λHi1 and λHi4 speak about ≤1
and ≤2, λHi2 and λHi5 speak about ≤2 and ≤3, e.g.:

λH00 = x ≤1 y ∧ y ≤3 x,

λH01 = x ≤1 y ∧ y ≤2 x,

λH31 = y ≤1 x ∧ x ≤2 y.
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The next conjunct ηV speaks about V -connections. It is similar to ηH , however this time
we impose only the implication from left to right:

ηV = ∀xy(V xy →
∨

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi,j+1y ∧ λVij(x, y)),

where j + 1 is calculated modulo 6; again λVi0 and λVi3 speak about ≤1 and ≤3, λVi1 and λVi4
speak about ≤1 and ≤2, λVi2 and λVi5 speak about ≤2 and ≤3, e.g.:

λV00 = y ≤1 x ∧ x ≤3 y,

λV10 = x ≤1 y ∧ y ≤3 x,

λV21 = y ≤1 x ∧ x ≤2 y.

Finally, ηC says that some points, related incompatibly by two of the three orders are
connected by the third one in a specific way:

ηC = ∀xy
∧

0 ≤ i ≤ 3
0 ≤ j ≤ 5

((Pijx ∧ Pi+1,jy)→ κij(x, y)),

where i+ 1 is calculated modulo 4. Formulae κi0 and κi3 enforce ≤1 relations, κi1 and κi4
– ≤2 relations, κi2 and κi5 – ≤3 relations, e.g.:

κ01 = (x ≤1 y ∧ y ≤3 x)→ y ≤2 x

κ15 = (x ≤1 y ∧ y ≤2 x)→ x ≤3 y

It can be readily checked that ḠZ is a model of η. In particular, the implication from
right to left in ηH does not impose any unwanted H-connections. Indeed, by Observation 4
(i), (ii) the formula

∨
i,j

(Pija ∧ Pi+1,jb ∧ λHij (a, b)) is not satisfied by non-neighbouring points

a, b of the grid, since λHij (a, b) says that a, b are related incompatibly by some two orders.

2.4 Grid-likeness
Now let us see that every model M |= η interpreting ≤1,≤2,≤3 as linear orders1 is grid like.
Since M |= ηG, by Lemma 2, it suffices to check that H is complete over V . Assume, that
a, b, c, d ∈M are such that M |= Hbc∧V ba∧V cd. We want to see that M |= Had. We need
to consider several cases, depending on the Pij-type of b. Let us go through one of them.
Assume that M |= P00b. Then, the implications from left to right in ηH and ηV imply

M |= P10c ∧ P01a ∧ P11d ∧ a ≤1 b ∧ b ≤1 c ∧ c ≤1 d ∧ d ≤3 c ∧ c ≤3 b ∧ b ≤3 a.

Since ≤1 and ≤3 are linear orders, and thus transitive, it follows that M |= a ≤1 d∧ d ≤3 a.
Now, consider ηC . It follows that M |= κ01(a, d). The implication in κ01 guarantees that
M |= d ≤2 a. Thus M |= P01a ∧ P11d ∧ λH01(a, d), so the implication from right to left in ηH
finally enforces M |= Had.

The remaining cases can be treated in a similar way.
This finishes the proof of the undecidability of the general satisfiability problem. To

obtain the undecidability of finite satisfiability we need to work further on some details.

1 Actually, for grid-likeness it is enough to assume that they are interpreted as transitive relations.
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2.5 Finite models

We describe first how to construct our intended expansions Ḡ′12k of the standard grids on
12k×12k tori, for k ≥ 1. Then we explain how to modify η to a formula η′ which is satisfied
in such expansions, without losing the property that all models of η′ are grid-like.

To simplify the presentation we describe the grid expansion Ḡ′12. The larger grid expan-
sions are constructed analogously. Let Ḡ12 be the restriction of ḠZ to the set {0, . . . , 11} ×
{0, . . . , 11} in which additionally, for all l, the element (11, l) is connected by H to (0, l), and
the element (l, 11) is connected by V to (l, 0) (i.e. the sides of the square are appropriately
glued). Ḡ12 is not a model of η for some trivial reasons; among other things the implication
from left to right in ηH is violated, e.g. (11, 1) is inappropriately related to (0, 1) by ≤1.

Thus we slightly modify Ḡ12 to obtain Ḡ′12. In Fig. 4 the order≤1 is shown. The≤1-zones
are defined analogously to the infinite case. In all odd zones, i.e. zones built from elements
of types Pi3, Pi4, Pi5, the ≤1-connections remain as they are in Ḡ12. The ≤1-connections
are modified in even zones. We describe the zone built from the rows 0, 1, 2. The element
(10, 2) is made the minimal element in this zone. The next elements in the order are (10, 1),
(10, 0), as in Ḡ12, the next one however is not (11, 0) but (8, 2). Then the order coincides
with the order in Ḡ12 until the element (1, 2) is reached. Its successor is (11, 0), the next
element is (11, 1), and the maximal element in this zone is (11, 2). More intuitively, we may
think that the rightmost U in Ḡ12 is cut into two parts: the left one is made minimal in the
zone and the right one – maximal, with respect to ≤1.

Analogously to the case of infinite models, to obtain the pictures for ≤2 and ≤3 we shift
the picture for ≤1 by the vectors (1, 1) and (0, 2), respectively, taking into account that this
time shifts are made on a torus, so, e.g., the minimal element with respect to ≤2 will be the
element (0, 0).

We also introduce new unary symbols S0 – S3, intended to mark four consecutive columns
of the grid (columns 10, 11, 0, 1 in our example) and Z0 – Z3, intended to mark four consec-
utive rows of the grid (rows 2, 1, 0, 11 in our example). Their relevance will become clear in
a moment.

The described structure Ḡ′12 satisfies ηG, ηV and the implication from left to right in ηH .
Unfortunately, parts (i) and (ii) of Observation 4 are not true this time, which makes the
implication from right to left in ηH not satisfied. Let us explain why.

Note first that ηH enforces H-connections between distant elements from the same row.
Consider e.g. the element (11, 1). In its row this element is maximal with respect to ≤1 and
minimal with respect to ≤2. Thus ηH enforces a H-connection e.g. from (2, 1) to (11, 1).

Similarly, some unwanted H-connections are enforced also between elements from dif-
ferent zones. Each of the orders divides the set of elements into four zones. In Fig. 5 it is
shown how ≤1-, ≤2- and ≤3-zones are related by ≤1, ≤2 and ≤3, respectively. Note that the
elements in the row marked Z1 belong to the ≤3-zone which is minimal with respect to ≤3,
and to the ≤2- and ≤3-zones which are maximal with respect to, resp., ≤1 and ≤3. Similarly,
the elements in the row marked Z2 belong to the ≤2- and ≤3-zones which are minimal with
respect to, resp., ≤2 and ≤3, and to the ≤1-zone which is maximal with respect to ≤1. This
means that ηH enforces some unwanted H-connections to (or from) Z1 and Z2, from (or to)
some distant elements in the grid, e.g. the element (1, 0) should be connected by H to (2, 6).

To fix the problems we use the mentioned unary relations S0, S1, S2, S3 and Z0, Z1, Z2, Z3.
Let

αS(x, y) = (S0x ∧ S1y) ∨ (S1x ∧ S2y) ∨ (S2x ∧ S3y) ∨ (¬S1x ∧ ¬S1y ∧ ¬S2x ∧ ¬S2y),
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Figure 4 The order ≤1 in the finite grid Ḡ′
12

αZ(x, y) =
∧

0≤i≤3
(Zix↔ Ziy).

For Ḡ′12k we have now a slightly weaker observation than Observation 4 part (i) and (ii).
I Observation 5. Let a = (k, l), b = (k′, l′) ∈ Z×Z be two distinct points in Ḡ′12k, such that
Ḡ′12k |= αS(a, b) ∧ αZ(a, b). Then:

(i) If the distance in the torus between the row l and the row l′ is at least 3 then for all
i we have (k′, l′) ≤i (k, l) or for all i we have (k, l) ≤i (k′, l′).
(ii) If l = l′ and the distance in the torus between columns k′ and k is at least 2 then for
all i we have (k′, l′) ≤i (k, l) or for all i we have i we have (k, l) ≤i (k′, l′).

Proof. To see claim (i) note that elements a, b cannot belong to the rows marked by Zi (since
they satisfy αZ(a, b)). For the remaining rows an argument similar to the argument from the
proof of Observation 4 (i) works. To see claim (ii) note that the elements a, b cannot belong
to the columns marked S1 or S2 (since they satisfy αS(a, b)). For the remaining columns an
argument similar to the argument from the proof of Observation 4 (ii) works. J

Observe that points (iii) and (iv) from Observation 4 remain true.
We modify η to allow and impose H-connection to S1 only from S0, to S2 only form S1,

from S1 only to S2, from S2 only to S3; and to Zi only from Zi, for 0 ≤ i ≤ 3.
We change ηH to:

η′H = ∀xy(Hxy ↔ (αS(x, y) ∧ αZ(x, y) ∧
∨

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi+1,jy ∧ λHij (x, y))).
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Figure 5 The ≤1- ≤2- and ≤3-zones in Ḡ′
12

We define additional conjuncts which say that V -connected elements are given consistent
Si- and Zi-values:

ηS =
∧

0≤i≤3
∀xy(V xy → (Six↔ Siy)),

ηZ = ∀xy(V xy → ((δ(x) ∧ δ(y)) ∨ (δ(x) ∧ Z3y) ∨ (Z0x ∧ δ(y)) ∨
∨

1≤i≤3
(Zix ∧ Zi−1y))),

where δ(x) =
∧

0≤i≤3 ¬Zix.
We modify also ηC , since it may also generate some unwanted relations:

η′C = ∀xy
∧

0 ≤ i ≤ 3
0 ≤ j ≤ 5

(Pijx ∧ Pi+1,jy ∧ αS(x, y) ∧ αZ(x, y))→ κij(x, y)).

Finally, let the conjunct ηU says that every element satisfies at most one of the Si-
predicates and at most one of the Zi-predicates, and the Si and Zi-values imply proper Pij
values, e.g. ∀x(Z0x→ (P02x ∨ P12x ∨ P22x ∨ P32x)).

Now let η′ = ηG ∧ η′H ∧ ηV ∧ ηS ∧ ηZ ∧ η′C ∧ ηU . Every grid G12k can now be expanded to
a model Ḡ′12k of η′ analogously to the described expansion of G12. Also the infinite grid GZ
has an expansion to a model of η′. It is enough to take ḠZ and mark columns −2,−1, 0, 1
with, resp., S0, S1, S2, S3, and rows 2, 1, 0,−1 with, resp., Z0, Z1, Z2, Z3.

Let us finally sketch a fragment of the argument that every model M of η′ interpreting ≤i
as linear orders is grid-like. Assume, that a, b, c, d ∈M are such that M |= Hbc∧V ba∧V cd.
We want to see that M |= Had. This time the cases we have to consider are distinguished
not only by the values o Pij but also by the values of the additional relations Si, Zi. Let us
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consider one of the cases, namely, M |= P00b∧S2b∧Z2b. Then, the implication from left to
right in η′H , and the formulae ηV , ηS , and ηZ imply

M |= P10c ∧ P01a ∧ P11d ∧ S2a ∧ Z1a ∧ S3c ∧ Z2c ∧ S3d ∧ Z1d

and
M |= a ≤1 b ∧ b ≤1 c ∧ c ≤1 d ∧ d ≤3 c ∧ c ≤3 b ∧ b ≤3 a.

Since ≤1 and ≤3 are linear orders, and thus transitive, it follows that M |= a ≤1 d∧ d ≤3 a.
Now, consider η′C . Note that αS(a, d) and αZ(a, d) are true. It follows that M |= κ01(a, d).
The implication in κ01 guarantees that M |= d ≤2 a. Thus M |= P01a ∧ P11d ∧ λH01(a, d) ∧
αS(a, d) ∧ αZ(a, d). Finally, the implication from right to left in ηH enforces M |= Had.

We left the remaining cases to the reader.

We have proved that FO2 forms a conservative reduction class over the class of structures
with three linear orders.

2.6 Remarks on the proof and discussion
In our proof we use the binary symbols H and V . They are convenient to present the
construction but do not play a crucial role. In a reduction from the tiling problem they
can be simulated by combinations of unary predicates and the order relations. Namely, in η
the conjunct ηG can be substituted by the conjunction of formulae enforcing for every x the
existence of two elements related to x by the linear orders in a specific way:

∧
i,j

∀x(Pijx →

∃y(ηHij (x, y) ∧ Pi+1,jy) ∧ ∃y(ηVij(x, y) ∧ Pi,j+1y)). The formulae ηH and ηV can then be
omitted. Thus we obtain the following, strong version of our main undecidability result.

I Theorem 6. FO2 forms a conservative reduction class over the structures with three linear
orders and no additional non-unary symbols.

A question arises whether there exists an elegant and useful fragment of FO2 which is
decidable in the presence of an arbitrary number of linear orders (or at least in the presence
of three linear orders). A natural candidate is the two-variable guarded fragment, GF2. Let
us recall the definition of the guarded fragment. The guarded fragment, GF, of first-order
logic is defined as the least set of formulae such that: (i) every atomic formula belongs to
GF; (ii) GF is closed under logical connectives ¬,∨,∧,→; and (iii) quantifiers are relativised
by atoms, i.e. if ϕ(x,y) is a formula of GF and γ(x,y) is an atomic formula containing all
the free variables of ϕ, then the formulae ∀y(γ(x,y) → ϕ(x,y)) and ∃y(γ(x,y) ∧ ϕ(x,y))
belong to GF. The atoms γ(x,y) are called guards.

Syntactically, not all of the formulae we use in our undecidability proof are guarded.
However there is no problem to make them guarded, since linear orders are total and thus
can be used as guards if necessary, e.g. ∀xyψ(x, y) can be rewritten as ∀xy(x ≤1 y →
ψ(x, y)) ∧ ∀xy(y ≤1 x → ψ(x, y)). Thus GF2 is undecidable in the presence of three linear
orders. This situation is similar to the case of GF2 with equivalence or transitive relations,
which are also undecidable (with three equivalences [12], and with two transitive relations
[11, 10]). However if we restrict the usage of special relations (i.e. equivalence or transitive
relations) to guards only, then GF2 becomes decidable, with an arbitrary number of special
relations [22, 11, 13]. Unfortunately, a similar restriction does not help in the case of linear
orders. A simple formula ∀xy(x ≤i y → (x 6= y → (Rixy ∧ ¬Riyx))) ∧ ∀xRixx, in which
Ri is a fresh binary symbol, enforces Ri to behave exactly as ≤i. Thus Ri can replace all
occurrences of ≤i outside guards.
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I Corollary 7. The satisfiability and the finite satisfiability problems for GF2, in the class
of structures with three linear orders, are undecidable even if linear orders are used only in
guards.

We emphasise that to obtain Corollary 7 some binary symbols except linear orders are
required. It appears that if we allow only unary symbols except linear orders and allow
to use linear orders only as guards then, as it is argued in the next section, GF2 becomes
decidable with an arbitrary number of linear orders. The obtained decidable variant, which
will be called monadic GF2, allows only for a very restricted interaction among different
linear orders (in fact, because of the syntactic restrictions such interaction can be obtained
only in an indirect way). However, it seems that the situation cannot be improved too
much. For example, if instead of just linear orders we allow conjunctions of linear orders as
guards then the logic becomes undecidable. This fact can be inferred using the exponential
translation of FO2 to a variant of Boolean modal logic from [16], but can be also proved
directly, by observing that the formulae we construct in Section 2 can be rewritten to the
desired variant. Indeed, consider the place which looks most problematically, i.e. the formula
ηC . It says e.g. that elements x, y satisfying P01x and P11y which are related by ≤1 and ≤3
in the following way: x ≤1 y ∧ y ≤3 x should satisfy also y ≤2 x. This can be enforced by
saying: ∀xy((x ≤1 y∧y ≤3 x∧x ≤2 y)→ (¬P01x∨¬P11y)). Again we use the fact that x, y
has to be connected by ≤2 and we only forbid the connection in the unwanted direction.

I Corollary 8. The satisfiability and the finite satisfiability problems for the extension of
monadic GF2 with three linear orders, which allows conjunctions of atoms of the form x ≤i y
and y ≤i x (for i = 1, 2, 3) as guards, are undecidable.

3 Decidability

In this section we work with signatures of the form (σ,≤1, . . . ,≤k), where σ is a set of
unary symbols and ≤i are binary symbols. We assume that the equality is also allowed.
Formally, monadic GF2 is the fragment of GF2 containing formulae over such signatures in
which symbols ≤1, . . . ,≤k are used only as guards. We consider satisfiability of monadic
GF2 in the class of structures in which ≤1, . . . ,≤k are interpreted as linear orders, which
we denote as LIN (≤1, . . . ,≤k). We will simply say that a monadic GF2 sentence ϕ has a
model (is satisfiable, finitely satisfiable) if it has a model (is satisfiable, finitely satisfiable)
in LIN (≤1, . . . ,≤k).

A 1-type (over σ) is a subset of σ. If α is a 1-type then we denote by α(x) the conjunction
of the atoms Px, for all P ∈ α, and the atoms ¬Qx, for all Q 6∈ α. For a given structure A

we say that an element a realises a type α if A |= α(a).

I Definition 9. A monadic GF2 sentence ϕ is in normal form if it is a conjunction of
formulae of the following form:
∃x(γ(x) ∧ ψ(x)),
∀x(γ(x)→ ∃y(x ≤i y ∧ x 6= y ∧ ψ(x, y))),
∀x(γ(x)→ ∃y(y ≤i x ∧ x 6= y ∧ ψ(x, y))),
∀x(γ(x)→ ψ(x)),
∀xy(x ≤i y → (x 6= y → ψ(x, y))).

where all γ(x) are atomic formulae (possibly of the form x = x), and ψ(x), ψ(x, y) are
quantifier-free formulae over monadic vocabulary σ.

The (finite) satisfiability problem for monadic GF2 can be reduced to the (finite) satis-
fiability problem for disjunctions of exponential number of linearly bounded monadic GF2
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sentences in normal form. See [22] for the proof of a similar result. Since we are going to
show that (finite) sastisfiability is in NExpTime it is enough to consider formulae in normal
form.

The decidability proof for monadic GF2 is based on the proof for FO2 with one linear
order from [19]. Roughly speaking, after fixing the universe, the (slightly simplified) con-
struction from [19] is applied here to the particular orders. Below we present a sketch of the
proof.

3.1 General satisfiability
I Definition 10. Let a tuple (T ,K,S1, . . .Sk) be such that:
T is a set of 1-types over σ,
K is a subset of T , called the set of royal 1-types,
for every 1 ≤ i ≤ k, Si = (Si1, . . . , Siki

) is a sequence of subsets of T , such that
⋃ki

j=1 S
i
j =

T , each type from K belongs to exactly one set from Si, and the types from K appear
only in singletons.

We say that such a tuple is a certificate of satisfiability for a normal form monadic GF2

sentence ϕ if the following conditions hold:

(a) For every conjunct of ϕ of the form ∃x(γ(x) ∧ ψ(x)) there exists a type α ∈ T such
that α(x) |= γ(x) ∧ ψ(x).

(b) For every i, j, for every type α ∈ Sij and for every conjunct of ϕ of the form ∀x(γ(x)→
∃y(x ≤i y ∧ x 6= y ∧ ψ(x, y))), if α(x) |= γ(x) then there exists α′ in Sij′ , such that
α(x), α′(y) |= ψ(x, y), where j′ ≥ j, and if α ∈ K then j′ > j.

(c) For every i, j, for every type α ∈ Sij and for every conjunct of ϕ of the form ∀x(γ(x)→
∃y(y ≤i x ∧ x 6= y ∧ ψ(x, y))), if α(x) |= γ(x) then there exists α′ in Sij′ , such that
α(x), α′(y) |= ψ(x, y), where j′ ≤ j, and if α ∈ K then j′ < j.
(d) For every type α ∈ T and for every conjunct of ϕ of the form ∀x(γ(x) → ψ(x)), we
have α(x) |= γ(x)→ ψ(x).
(e) For every i, j ≤ j′, for every pair of types α ∈ Sij , α′ ∈ Sij′ , such that it is not the
case that α = α′ and α ∈ K, then for every conjunct of the form ∀xy(x ≤i y → (x 6=
y → ψ(x, y))), we have α(x), α′(y) |= ψ(x, y).

I Lemma 11. Let ϕ be a monadic GF2 sentence in the normal form. Then ϕ is satisfiable
if and only if it has a certificate of satisfiability.

Proof. ⇐ Assume that (T ,K,S1, . . .Sk) is a certificate of satisfiability for ϕ. We build
a model A whose universe A consists of exactly one realisation of each type from K and
infinitely many realisations of each type from T \K. For every i we define the order ≤i. We
split A into sets Ai1, . . . , Aiki

in such a way that Aij contains infinitely many realisations of
α ∈ Sij if α 6∈ K and exactly one realisation of α ∈ Sij if α ∈ K. Now if a ∈ Aij , a′ ∈ Aij′
and j < j′ then we set A |= a ≤i a′. If Sij consists of non-royal types α0, . . . , αl−1 then
we make the order ≤i on Aij isomorphic to the natural order on Z, in such a way that the
element corresponding to the number m has 1-type αm mod l. It is readily checked that the
conditions on the certificate imply that A |= ϕ.
⇒ Let A |= ϕ. We show how to extract a certificate of satisfiability for ϕ from A. We

define T to be the set of 1-types realised in A and K to be the set of 1-types realised exactly
once in A.

For a given i and a type α ∈ T we define Biα to be the minimal set containing all the
realisations of α such that for all a ≤i b ≤i c, if a, c ∈ Biα then b ∈ Biα. Let us denote by
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Aiα− the subset of A consisting of the elements smaller than all the elements from Biα, and
by Aiα+ the union of Biα and Aiα− . Observe that the sets Aiα+ , Aiα− are closed downwards.
Let F i0, . . . , F iki

be an ordered list of all the sets from {Aiα+ , Aiα− : α ∈ T } such that if k < l

then F ik ⊆ F il . Note that ki is linear in the number of 1-types and that F i0 = ∅ and F iki
= A.

Let us define Di
j = F ij \ F ij−1 for 1 ≤ j ≤ ki. The sets Di

j are called i-regions.
Let Sij be the set of 1-types realised inDi

j . This finishes the definition of (T ,K,S1, . . .Sk).
The properties (a)-(d) of the certificate are satisfied in an obvious way. Let us prove (e).

If j < j′ then the conclusion is straightforward. Similarly, if j = j′ and α = α′ is a royal
type. Assume that j = j′ and α, α′ ∈ Sij are two non-royal types. It is enough to show that
in A there are two distinct elements aα, bα of type α and two distinct elements a′α′ , b′α′ of
type α′ such that A |= aα ≤i a′α′ and A |= b′α′ ≤i bα.

If α = α′ then we have at least two realisations a, b of α in A. Assume that a ≤i b.
Then we can take aα = b′α = a and a′α = bα = b. If α 6= α′ consider elements a, a′ from A,
of types α, α′, respectively, in the i-region Di

j . Assume that a ≤i a′ (the opposite case is
symmetric). Assume that there is no realisation of α, which is greater, with respect to ≤i
than a′. It means that a′ 6∈ Biα (since otherwise Biα would not be minimal). Since a ∈ Biα
we have a contradiction with the assumption that a, a′ are member of the same i-region.
So there exists a realisation b of α such that A |= a′ ≤i b. We can take aα = a, bα = b,
aα′ = bα′ = a′. J

The construction in the proof of the lemma shows that every satisfiable monadic GF2

sentence ϕ in the normal form has a certificate of size polynomial in the number of 1-types.
Since we may assume that σ contains only symbols appearing in ϕ it implies that the size
of a certificate can bounded exponentially in |ϕ|. Checking that a given tuple is indeed a
certificate of satisfiability can easily be done in polynomial time. Thus:

I Corollary 12. The satisfiability problem for monadic GF2 is decidable in NExpTime.

3.2 Finite satisfiability
The case of finite satisfiability is even simpler than the case of general satisfiability.

I Lemma 13. Let ϕ be a GF2 sentence in normal form. If ϕ is finitely satisfiable then ϕ

has a model with at most 2k · 2|σ| elements, where k is the number of linear orders in the
signature.

Proof. Let A be a model of ϕ. Mark in A all the elements whose 1-types are realised only
once. For every 1-type α, such that there are at least two realisations of α in A, and for
every 0 ≤ i ≤ k, mark the ≤i-minimal and the ≤i-maximal realisations of α. Let A′ be the
substructure of A induced by the marked elements. It is easy to verify that A′ |= ϕ. J

I Corollary 14. The finite satisfiability problem for monadic GF2 is in NExpTime.

3.3 Lower bound
The satisfiability problem for GF2 in the class of all structures is in ExpTime [6]. On the
other hand FO2 is NExpTime-hard even if only unary symbols are allowed [15, 5]. Clearly
such monadic FO2 can be reduced to monadic GF2 with just one linear order ≤, since
this order can alway be used as a guard, e.g. a formula ∀xyψ(x, y) can be translated to
∀xy(x ≤ y → ψ(x, y)) ∧ ∀xy(y ≤ x→ ψ(x, y)). Thus:

I Theorem 15. The satisfiability and the finite satisfiability problems for monadic GF2 are
NExpTime-complete.
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Abstract
Coalgebra may be used to provide semantics for SLD-derivations, both finite and infinite. We first
give such semantics to classical SLD-derivations, proving results such as adequacy, soundness and
completeness. Then, based upon coalgebraic semantics, we propose a new sound and complete
algorithm for parallel derivations. We analyse this new algorithm in terms of the Theory of
Observables, and we prove soundness, completeness, correctness and full abstraction results.

1998 ACM Subject Classification D.1.6 Logic Programming; F.3.2 Semantics of Programming
Languages; F.1.2 Models of Computation

Keywords and phrases Logic programming, SLD-resolution, coalgebra, Lawvere theories, coin-
ductive logic programming, concurrent logic programming

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.352

1 Introduction

In the standard formulations of logic programming, such as in Lloyd’s book [19], a first-order
logic program P consists of a finite set of clauses of the form A← A1, . . . , An, where A and
the Ai’s are atomic formulae, typically containing free variables, and where A1, . . . , An is
understood to mean the conjunction of the Ai’s: note that n may be 0.

A running example of a logic program in this paper is as follows.

I Example 1.1. Let ListNat denote the logic program

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

The program involves variables x and y, function symbols 0, s, nil and cons, and predicate
symbols nat and list, with the choice of notation designed to make the intended meaning
of the program clear.

SLD-resolution, which is a central algorithm for logic programming, takes a goal G,
typically written as ← B1, . . . , Bn, where the list of Bi’s is again understood to mean a
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conjunction of atomic formulae, typically containing free variables, and constructs a proof for
an instantiation of G from substitution instances of the clauses in P [19]. The algorithm uses
Horn-clause logic, with variable substitution determined universally to make a selected atom
in G agree with the head of a clause in P , then proceeding inductively. Section 2 recalls the
various definitions.

SLD-resolution is sound and complete with respect to least fixed point semantics [19]. But
the analysis afforded by least fixed point operators pertains only to finite SLD derivations,
whereas infinite SLD derivations are also common in the practice of programming. An
example is as follows.

I Example 1.2. The following program Stream defines the infinite stream of binary bits:

bit(0) ←
bit(1) ←

stream(scons (x,y)) ← bit(x), stream(y)

Programs like Stream can be given declarative semantics via the greatest fixed point of
the semantic operator TP , see also Section 2. But greatest fixed point semantics is incomplete
in general [19] as it fails for some infinite derivations.

I Example 1.3. The program R(x)← R(f(x)) is characterised by the greatest fixed point
of the TP operator, which contains R(fω(a)), but no infinite term is computed by SLD-
resolution.

There have been numerous attempts to resolve the mismatch between infinite derivations
and greatest fixed point semantics, e.g., [2, 11, 13, 19, 20, 22, 25]. But infinite SLD derivations
of both finite and infinite objects have not yet received a uniform semantics, see Figure 1.

In [15, 17], we described an algebraic (fibrational) semantics for logic programming and
proved soundness and completeness results for it with respect to SLD-resolution. Other
forms of algebraic semantics for logic programming have been given in [1, 5]. Here, we give
coalgebraic semantics for both finite and infinite SLD derivations, and prove soundness and
completeness results for it, see Sections 3, 4. That constitutes the first main contribution of
the paper.

Finite
SLD-derivations

Least fixed
point of TP

?> =<
89 :;

Algebraic
fibrational
semantics

?> =<
89 :;

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

?> =<
89 :;

Coalgebraic
fibrational
semantics

?> =<
89 :;

�������

CC

�������

��

8888888

[[

8888888

��

7777777

[[ CC

��

Figure 1 Alternative declarative semantics for finite and infinite SLD-derivations. The arrows ↔
show the semantics that are both sound and complete, and the arrow → indicates sound incomplete
semantics. The dotted arrow indicates the sound and complete semantics we propose here.

Another distinguishing feature of logic programming languages is that they allow implicit
parallel execution of programs. The three main types of parallelism used in implementations
are and-parallelism, or-parallelism, and their combination: see [12, 23] for analysis.
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Or-parallelism arises when more than one clause unifies with the goal: the corresponding
bodies can be executed in or-parallel fashion. Or-parallelism is thus a way of efficiently
searching for solutions to a goal, by exploring alternative solutions in parallel. It has been
exploited in Aurora and Muse, both of which have shown good speed-up results over a
considerable range of applications.

And-parallelism arises when more than one atom is present in the goal. That is, given a
goalG =← B1, . . . Bn, an and-parallel algorithm for SLD resolution looks for SLD derivations
for each Bi simultaneously, subject to the condition that the atoms must not share variables.
Such cases are known as independent and-parallelism. Independent and-parallelism has been
successfully exploited in &-PROLOG.

The coalgebraic models we discuss in this paper exhibit a synthetic form of parallelism:
and-or parallelism. The most common way to express and-or parallelism in logic programs is
via and-or trees [12], which consist of both or-nodes and and-nodes. And-or parallel PROLOG
works best for variable-free logic programs or DATALOG, and was first implemented in
Andorra [7], see also [12]. But many first-order algorithms are P-complete and hence inherently
sequential [8, 14]. This especially concerns first-order unification and variable substitution in
the presence of variable dependencies. So extensions of and-or parallel derivations to the
general case require complicated algorithms that coordinate variable substitution in different
branches of and-or parallel derivation trees [12]. If such synchronisation is omitted, parallel
SLD-derivations may lead to unsound results, see also Section 5.

In Section 5, we propose an alternative derivation algorithm inspired by our coalgebraic
semantics [18]. It inherently models substitutions in a uniform way, so that additional
techniques for synchronisation of substitutions are not required. We support the algorithm
with soundness, completeness, correctness and full abstraction results with respect to the
coalgebraic semantics. That is the second major contribution of the paper.

The underlying category theory of this paper was developed in [18], but the relationship
with ordinary logic programming syntax was not systematically developed there, in particular
with none of the syntax/semantics results given there.

2 First-order logic programming

We recall some basic definitions from [19].
A signature Σ consists of a set of function symbols f, g, . . . each equipped with a fixed arity.

The arity of a function symbol is a natural number indicating the number of its arguments.
Nullary (0-ary) function symbols are allowed: these are called constants. Given a countably
infinite set V ar of variables, the set Ter(Σ) of terms over Σ is defined inductively: x ∈ Ter(Σ)
for every x ∈ V ar. If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ),
then f(t1, . . . , tn) ∈ Ter(Σ). Variables will be denoted x, y, z, sometimes with indices
x1, x2, x3, . . .. A substitution is a map θ : Ter(Σ)→ Ter(Σ) which satisfies θ(f(t1, . . . , tn)) ≡
f(θ(t1), . . . , θ(tn)) for every n-ary function symbol f .

We define an alphabet to consist of a signature Σ, the set V ar, and a set of predicate
symbols P, P1, P2, . . ., each assigned an arity. Let P be a predicate symbol of arity n and
t1, . . . , tn be terms. Then P (t1, . . . , tn) is a formula (also called an atomic formula or an
atom). The first-order language L given by an alphabet consists of the set of all formulae
constructed from the symbols of the alphabet.

Given a substitution θ and an atom A, we write Aθ for the atom given by applying the
substitution θ to the variables appearing in A. Moreover, given a substitution θ and a list of
atoms (A1, ..., Ak), we write (A1, ..., Ak)θ for the simultaneous substitution of θ in each Am.
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Given a first-order language L, a logic program consists of a finite set of clauses of the
form A ← A1, . . . , An, where A,A1, . . . , An( n ≥ 0) are atoms. The atom A is called the
head of a clause, and A1, . . . , An is called its body. Clauses with empty bodies are called unit
clauses. A goal is given by ← B1, . . . Bn, where B1, . . . Bn( n ≥ 0) are atoms.

Traditionally, logic programming has been modelled by least fixed point semantics [19].
Given a logic program P , one lets BP (also called a Herbrand base) denote the set of
atomic ground formulae generated by the syntax of P , and one defines TP (I) on 2BP by
sending I to the set {A ∈ BP : A ← A1, ..., An is a ground instance of a clause in P with
{A1, ..., An} ⊆ I}. The least fixed point of TP is called the least Herbrand model of P and
duly satisfies model-theoretic properties that justify that expression [19]. A non-ground
alternative to this semantics was further developed in terms of categorical logic in [1, 5].

The fact that logic programs can be represented naturally by least fixed point semantics led
to the development of logic programs as inductive definitions [22, 13]. Operational semantics
for logic programs is given by SLD-resolution, a goal-oriented proof-search procedure.

Let S be a finite set of atoms. A substitution θ is called a unifier for S if, for any pair of
atoms A1 and A2 in S, applying the substitution θ yields A1θ = A2θ. A unifier θ for S is
called a most general unifier (mgu) for S if, for each unifier σ of S, there exists a substitution
γ such that σ = θγ.

I Definition 2.1. Let a goal G be← A1, . . . , Am, . . . , Ak and a clause C be A← B1, . . . , Bq.
Then G′ is derived from G and C using mgu θ if the following conditions hold:
• θ is an mgu of the selected atom Am in G and A;
• G′ is the goal ← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ.

A clause C∗i is a variant of the clause Ci if C∗i = Ciθ, with θ being a variable renaming
substitution such that variables in C∗i do not appear in the derivation up to Gi−1 (see the
notation below). This process of renaming variables is called standardising the variables
apart; we assume it throughout the paper without explicit mention.

IDefinition 2.2. An SLD-derivation of P∪{G} consists of a sequence of goalsG = G0, G1, . . .

called resolvents, a sequence C1, C2, . . . of variants of program clauses of P , and a sequence
θ1, θ2, . . . of mgus such that each Gi+1 is derived from Gi and Ci+1 using θi+1. An SLD-
refutation of P ∪ {G} is a finite SLD-derivation of P ∪ {G} that has the empty clause 2 as
its last goal. If Gn = 2, we say that the refutation has length n. The composition θ1, θ2, . . .

is called computed answer.

SLD-resolution is P-complete, and hence inherently sequential [8]. Operationally, SLD-
derivations can be characterised by SLD-trees.

I Definition 2.3. Let P be a logic program and G be a goal. An SLD-tree for P ∪ {G} is a
tree T satisfying the following:
1. each node of the tree is a (possibly empty) goal
2. the root node is G
3. if ← A1, . . . , Am, m > 0 is a node in T , and it has n children, then there exists

Ak ∈ A1, . . . , Am such that Ak is unifiable with exactly n distinct clauses C1 = A1 ←
B1

1 , . . . , B
1
q , ..., Cn = An ← Bn1 , . . . , B

n
r in P via mgus θ1, . . . θn, and, for every i ∈

{1, . . . n}, the ith child node is given by the goal

← (A1, . . . , Ak−1, B
i
1, . . . , B

i
q, Ak+1, . . . , Am)θi

4. nodes which are the empty clause have no children.
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list(x)

2
θ4

nat(y), list(z)

list(z)

2
θ2

list(z1)

2 ...

θ1
nat(y1), list(z)

list(z)

2 list(z1)

2 ...

nat(y2), list(z)

list(z1)

2 ...

nat(y3), list(z)

...

θ0

Figure 2 An SLD-tree for ListNat with the goal ← list(x). A possible computed answer is given by
the composition of θ0 = x/cons(y, z), θ1 = y/0, θ2 = z/nil; Another computed answer is θ4 = x/nil.

I Example 2.4. Figure 2 shows an SLD-tree for ListNat (Example 1.1). Note that a similar
goal stream(x) in the logic program Stream from Example 1.2 will produce a very different
SLD-tree in that it will not have leaf nodes. The nodes will infinitely alternate between
stream(x) and bit(y),stream(z), modulo variable renaming.

SLD-resolution is sound and complete with respect to least fixed point semantics. The
classical theorems of soundness and completeness of this operational semantics [19] show that
every atom in the set computed by the least fixed point of TP has a finite SLD-refutation,
and vice versa.

3 Coalgebraic Semantics for SLD-derivations

Logic programs resemble, and indeed induce, transition systems or rewrite systems, hence
coalgebras. That fact has been used to study their operational semantics, e.g., in [4, 6].
In [16], we developed the idea for variable-free logic programs, extending it to first-order
programs in [18]. In this section, we recall the relevant details.

Given a set At of atoms, there is a bijection between the set of variable-free logic programs
over At and the set of PfPf -coalgebra structures on At, i.e., functions p : At −→ PfPf (At),
where Pf is the finite powerset functor: each atom of a logic program P is the head of finitely
many clauses, and the body of each of those clauses contains finitely many atoms.

The endofunctor PfPf necessarily has a cofree comonad C(PfPf ) on it as follows.
I Proposition 3.1. Let C(PfPf ) denote the cofree comonad on PfPf . For any set At,
C(PfPf )(At) is the limit of a diagram of the form

. . . −→ At× PfPf (At× PfPf (At)) −→ At× PfPf (At) −→ At.

Given p : At −→ PfPf (At), put At0 = At and Atn+1 = At× PfPf (Atn), and consider the
cone defined inductively as follows:

p0 = id : At −→ At (= At0)
pn+1 = 〈id, PfPf (pn) ◦ p〉 : At −→ At× PfPf (Atn) (= Atn+1)

The limiting property determines the coalgebra p : At −→ C(PfPf )(At).
The main result of [16] asserted that if C(PfPf ) is the cofree comonad on PfPf , then,

given a logic program P , the induced C(PfPf )-coalgebra structure characterises the parallel
and-or derivation trees (cf. [12]) of P .
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I Example 3.2. Consider the variable-free logic program: q(b,a)←; s(a,b)←; p(a)←
q(b,a), s(a,b); q(b,a)← s(a,b).

The program has three atoms, namely q(b,a), s(a,b) and p(a).
So At = {q(b,a), s(a,b), p(a)}. The program can be identified with the PfPf -coalgebra
structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

Consider the C(PfPf )-coalgebra corresponding to p. It sends p(a) to the parallel
refutation of p(a) depicted on the left side of Figure 3. Note that the nodes of the tree
alternate between those labeled by atoms and those labeled by bullets (•). The set of children
of each bullet represents a goal, made up of the conjunction of the atoms in the labels. An
atom with multiple children is the head of multiple clauses in the program: its children
represent these clauses. We use the traditional notation 2 to denote {}.

Where an atom has a single •-child, we can elide that node without losing any information;
the result of applying this transformation to our example is shown on the right in Figure 3.
The resulting tree is precisely the parallel and-or derivation tree [12] for the atomic goal
← p(a).

← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

Figure 3 The action of p : At −→ C(PfPf )(At) on p(a), and the corresponding parallel and-or
derivation tree [12].

In [18], we extend this to first-order logic programs using Lawvere theories, cf, [1, 4, 5, 15],
modelling most general unifiers (mgu’s) by equalisers. cf, [3]: given a signature Σ, the
Lawvere theory LΣ generated by Σ has objects given by natural numbers and maps from n

to m given by equivalence classes of substitutions θ of m variables by terms generated by the
function symbols in Σ applied to n variables. We shall shortly give an example; for formal
definitions and theorem see [18].

Given a logic program P with function symbols in Σ, we extend the set At of atoms in a
variable-free logic program to the functor from LopΣ to Set sending a natural number n to the
set At(n) of atomic formulae with at most n variables generated by the predicate symbols
in P . One can extend any endofunctor H on Set to the endofunctor [LopΣ , H] on [LopΣ , Set]
that sends F : LopΣ → Set to the composite HF . We would like to model P by the putative
[LopΣ , PfPf ]-coalgebra p : At −→ PfPfAt that, at n, takes an atomic formula A(x1, . . . , xn)
with at most n variables, considers all substitutions of clauses in P whose head agrees with
A(x1, . . . , xn), and gives the set of sets of atomic formulae in antecedents, mimicking the
construction for variable-free logic programs.
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list(c(x, cons(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(s(z), c(s(z), s(z))))

nat(s(z))

nat(z)

list(c(s(z), s(z))

nat(s(z))

nat(z)

list(s(z))

→
list(c(s(0), c(s(0), s(0))))

nat(s(0))

nat(0)

2

list(c(s(0), s(0))

nat(s(0))

nat(0)

2

list(s(0))

Figure 4 The left hand tree represents p̄(list(cons(x, cons(y, x)))) and the second tree represents
p̄At((s, s))(list(cons(x, cons(y, x)))), i.e., p̄(list(cons(s(z), cons(s(z), s(z))))), and the tree on the
right depicts p̄At(0)At((s, s))(list(cons(x, cons(y, x)))) ; cons is abbreviated by c.

In fact, to make the theory work, we need to extend Set to Poset, natural transformations
to lax natural transformations, and replace the outer instance of Pf by Pc - the countable
powerset functor (as recursion generates countability). Subject to those replacements,
p : At −→ PcPfAt behaves as above, giving a Lax(LopΣ , PcPf )-coalgebra structure on
At. Extending Proposition 3.1, p determines a Lax(LopΣ , C(PcPf ))-coalgebra structure
p̄ : At −→ C(PcPf )(At).

I Example 3.3. Consider ListNat as in Example 1.1. Suppose we start with A(x, y) ∈ At(2)
given by the atomic formula list(cons(x, cons(y, x))). Then p̄(A(x, y)) is the element of
C(PcPf )At(2) expressible by the tree on the left hand side of Figure 4.

The coalgebraic structure means any substitution, whether determined by an mgu or not,
applies to the whole tree. The lax naturality means a substitution potentially yields two
different trees: one given by substitution into the tree, then pruning to remove redundant
branches, the other given by substitution into the root, then applying p̄.

For example, we can substitute s(z) for both x and y in list(cons(x, cons(y, x))). This
substitution is given by applying At to the map (s, s) : 1 −→ 2 in LΣ. So At((s, s))(A(x, y))
is an element of At(1). Its image under p̄(1) : At(1) −→ C(PcPf )At(1) is the element of
C(PcPf )At(1) expressible by the tree on the right hand side of Figure 4. The laxness of
the naturality of p̄ is indicated by the increased length, in two places, of the second tree.
Observe that, before those two places, the two trees have the same structure: that need not
always be exactly the case, as substitution in a tree could involve pruning if substitution
instances of two different atoms yield the same atom.

Now suppose we make the further substitution of 0 for z. This substitution is given by
applying At to the map 0 : 0→ 1 in LΣ. In Figure 4, we depict p̄(0)At(0)At((s, s))(A(x, y))
on the right. Two of the leaves of the latter tree are labeled by 2, but one leaf, namely
list(s(0)) is not, so the tree does not yield a proof. Again, observe the laxness.

The trees shown in Example 3.3 differ from the corresponding SLD-tree determined by
Definition 2.3. The main reason for this is that the derivations modelled by the coalgebraic
semantics have strong relation to parallel logic programming, [26, 14], while SLD-trees describe
sequential derivation strategies.

In following sections, we shall show how our coalgebraic semantics relates to sequential
derivations, and how it can be used to introduce a new concurrent derivation algorithm.
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4 Coalgebraic Semantics and Infinite Derivations

In this section, we state formally the theorems that relate the coalgebraic semantics of the
previous section to first-order (possibly infinite) derivations in logic programming. We start
by introducing a special kind of derivation tree that is suitable for representing derivations
described by the coalgebraic semantics.

I Definition 4.1. Let P be a logic program and G =← A be an atomic goal. The coinductive
derivation tree for A is a possibly infinite tree T satisfying the following properties.

A is the root of T .
Each node in T is either an and-node or an or-node.
Each or-node is given by •.
Each and-node is an atom.
For every and-node A′ occurring in T , there exist exactly m > 0 distinct clauses
C1, . . . , Cm in P (a clause Ci has the form Bi ← Bi1, . . . , B

i
ni
, for some ni), such that

A′ = B1θ1 = ... = Bmθm, for some substitutions θ1, . . . , θm, then A′ has exactly m

children given by or-nodes, such that, for every i ∈ m, the ith or-node has n children
given by and-nodes Bi1θi, . . . , Bini

θi.

I Example 4.2. Examples of coinductive derivation trees are given in Figures 3 and 4.

Note that, comparing this with the SLD-resolution algorithm and the corresponding
SLD-trees, the definition of coinductive derivation tree restricts unification to the case of
term matching, i.e., the substitution θ unifying atoms A1 and A2 is applied only to one atom,
e.g. A1 = A2θ, whereas traditionally mgus satisfy A1θ = A2θ. The term-matching algorithm
is parallelisable, in contrast to the unification algorithm, which is inherently sequential [8].

We define the depth of a coinductive tree inductively as follows. The root of a coinductive
tree has depth 0. For an and-node x, if its immediate parent and-node has depth d, then x
has depth d+ 1. The depth of a tree is defined to be the depth of its deepest branch.

For all the running examples we use in this paper, there will be only one coinductive tree
for every goal. However, this will not be the case for programs containing clauses in which
not all the variables appearing in the body appear in the head.

I Example 4.3. In [16] we analyse the program determining whether two nodes in a graph
are connected. It contains the clause connected(x, y)← edge(x, z), connected(z, y), note
the appearance of z.

According to Deginition 4.1 such clauses may induce a family of coinductive trees - as
there can be a countable number of substitutions θ′i, . . . , θ′′i that match a given goal with the
clause Ci, each of these substitutions differing only with respect to assignment to z.

I Definition 4.4. Let P be a logic program and G =← A be an atomic goal. The coinductive
forest F for A is a set of all coinductive derivation trees for A. We say that the forest has
depth n if the deepest tree in F has length n. A coinductive forest F has breadth k if at most
k distinct variables appear in all and-nodes of all of its trees together.

I Theorem 4.5 (Adequacy). For any logic program P and for any atom A generated by
the predicate symbols of P and k distinct variables x1, . . . , xk, p̄(k)(A) expresses precisely
the same information as that given by a coinductive forest F for the goal A. That is, the
following holds:

pn(k)(A) is isomorphic to the coinductive forest of depth n and breadth k.
F has the finite depth n if and only if p̄(k)(A) = pn(k)(A).
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F has infinite depth if and only if p̄(k)(A) is given by the element of the limit of the
infinite chain given by (the extension of) Proposition 3.1.

Proof. By (the extension of) Proposition 3.1, for every atomic formula A:
p0(k)(A) = A

p1(k)(A) = (A, {{B1θ, . . . , Bmθ}, such that B ← B1, . . . , Bm is a clause in P with
Bθ = A and B1θ, . . . , Bmθ have variables among x1, . . . , xk.})
p2(k)(A) = (A, {{(B1θ, {{C1

1θ1θ, . . . , C
m1
1 θ1θ} such that C ← C1

1 , . . . , C
m1
1 is a clause in

P with Cθ1 = B1}), . . . and C1
1θ1θ, . . . , C

m1
1 θ1θ have variables among x1, . . . , xk.}})

etc.
The limit of the sequence is precisely (the extension of) the structure described by Proposition
3.1. For each atomic formula A, p0(k)(A) corresponds to the root of a coinductive derivation
tree, and, more generally, each pn(k)(A) corresponds to the coinductive forest of breadth k,
as far as depth n. J

I Example 4.6. Infinite coinductive trees arise in programs similar to that in Example 1.3.
The infinite tree arising from this program contains a chain of alternating •’s and atoms R(x),
R(f(x)), R(f(f(x))), etcetera. Note that infinite terms are not nodes of the tree. Programs
like Stream and ListNat in Examples 1.1 and 1.2, do not give rise to infinite coinductive
derivation trees, see Figures 4 and 6. But they do give rise to infinite SLD-trees, see Figure
2. This is because substitution, determined by term-matching, is applied only to clauses,
and not to goals, when a coinductive derivation tree is built. Infinite derivations in these
programs may be modelled by infinite chains of derivation trees.

We can express Theorem 4.5 in terms of a traditional-style soundness and completeness
result that relates the semantics to SLD-refutations. For this purpose, we define success
subtrees of coinductive derivation trees, as follows.

I Definition 4.7. Let P be a logic program, A be a goal, and T be the coinductive derivation
tree determined by P and A. A subtree T ′ of T is called a success subtree of T if it satisfies
the following conditions:

the root of T ′ is the root of T ;
if an and-node belongs to T ′, and the node has k children in T given by or-nodes, only
one of these or-nodes belongs to T ′.
if an or-node belongs to T ′, then all its children given by and-nodes in T belong to T ′.
all the leaves of T ′ are and-nodes represented by 2.

I Theorem 4.8 (Soundness and Completeness of SLD-resolution relative to coinductive derivation
trees.). Let P be a logic program, and G be a goal.
1. Soundness. If there is an SLD-refutation for G in P with computed answer θ, then there

exists a coinductive derivation tree for Gθ that contains a success subtree.
2. Completeness. If a coinductive derivation tree for Gθ contains a success subtree, then

there exists an SLD-refutation for G in P , with computed answer λ such that there exists
substitution σ such that λ = σθ.

Proof. The proof is given by induction on the length of the SLD-refutations and the depth
of the coinductive trees. Part 2 also requires some analysis of computed answers. If a
program does not contain clauses similar to Example 4.3, then σ is an identity substitution
or a variable renaming, otherwise σ is determined by all the substitutions computed by the
SLD-derivations that involved assigning terms to the variables appearing in the body but
not the head of clauses in P . J
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I Corollary 4.9 (Soundness and Completeness of SLD-resolution relative to coalgebraic se-
mantics). Given a logic program P , SLD-refutations in P are sound and complete with respect
to the Lax(LopΣ , PcPf )-coalgebra determined by P .

Proof. Follows from Theorems 4.5 and 4.8. J

Our coalgebraic analysis relates to the Theory of Observables for logic programming
developed in [6]. In that theory, the traditional characterisation of logic programs in terms of
input/output behavior and successful derivations is not sufficient for the purposes of program
analysis and optimisation. One requires more complete information about SLD-derivations,
e.g., the sequences of goals, most general unifiers, and variants of clauses. Moreover, infinite
derivations can be meaningful. The following four observables are the most important for
the theory [9, 6].

I Definition 4.10. 1. Partial answers are the substitutions associated to a resolvent in any
SLD-derivation; correct partial answers are substitutions associated to a resolvent in any
SLD-refutation.

2. Call patterns are atoms selected in any SLD-derivation; correct call patterns are atoms
selected in any SLD-refutation.

3. Computed answers are the substitutions associated to an SLD-refutation.
4. A successful derivation is the observation of successful termination.

As argued in [9, 6], a key goal of semantics to logic programs is to observe equal behavior
of logic programs and to distinguish logic programs with different computational behavior.
The choice of observables and semantic models is closely related to the choice of equivalence
relation defined over logic programs [9].

I Definition 4.11. Let P1 and P2 be logic programs. Put P1 ≈ P2 if and only if, for a goal
G, the following four conditions hold:
1. G has a refutation in P1 if and only if G has a refutation in P2
2. G has the same set of computed answers in P1 as in P2
3. G has the same set of (correct) partial answers in P1 as in P2
4. G has the same set of call patterns in P1 as in P2.

Using the terminology of [9, 6], we can state the following correctness result that relates
the traditional sequential SLD-derivations of Section 2 to our coalgebraic semantics. In the
next theorem, we assume that there is a common algorithm that assigns terms to variables
appearing only in the bodies of clauses as explained in Example 4.3.

I Theorem 4.12 (Correctness). For logic programs P1 and P2, if for every atomic goal ← A,
the coinductive forest for P1 and A is equal to the coinductive forest for P2 and A, then
P1 ≈ P2.

The converse of Theorem 4.12, the full abstraction result, does not hold. That is, there
can be observationally equivalent programs that have different coinductive derivation trees.

I Example 4.13. Consider the logic programs P1 and P2, whose clauses are the same, with
the exception of one clause: P1 contains A ← B1, . . . , Bi, false, . . . , Bn; and P2 contains
the clause A← B1, . . . Bi, false instead. The atoms in the clauses are such that B1, . . . , Bi
have refutations in P1 and P2, and false is an atom that has no refutation in the programs.
In this case, assuming a left-to-right sequential evaluation strategy, all derivations that
involve the two clauses in P1 and P2 will always fail on false, and P1 will be observationally
equivalent to P2. However, their coinductive derivation trees give account to all atoms in the
clause.
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The results of this section show that parallel trees arising from the coalgebraic semantics
of Section 3 naturally model finite and infinite derivations. The nature of the failure of the
full abstraction result suggests that the coalgebraic semantics of Section 3 more naturally
supports concurrent computation, rather than sequential SLD-derivations. For this reason,
we introduce a novel algorithm for concurrent derivations in the next section.

5 Applications in Concurrent Logic Programming

In this section, we exploit the concurrent nature of our coalgebraic semantics, equivalently
coinductive derivation trees. Operationally, the major difference between coinductive trees
and SLD-trees lies in the concurrent versus sequential modes of execution, which are crucial
for the computation of call patterns, (correct) partial answers and soundness of computations.

We first consider a concurrent computational model already in the literature: and-or-
parallel trees [12].

I Definition 5.1. [12] Let P be a logic program and let ← A be an atomic goal (possibly
with variables). The and-or parallel derivation tree for A is the possibly infinite tree T
satisfying the following properties.

A is the root of T .
Each node in T is either an and-node or an or-node.
Each or-node is given by •.
Each and-node is an atom.
For every node A′ occurring in T , if A′ is unifiable with only one clause B ← B1, . . . , Bn
in P with mgu θ, then A′ has n children given by and-nodes B1θ, . . . Bnθ.
For every node A′ occurring in T , if A′ is unifiable with exactly m > 1 distinct clauses
C1, . . . , Cm in P via mgu’s θ1, . . . , θm, then A′ has exactly m children given by or-nodes,
such that, for every i ∈ m, if Ci = Bi ← Bi1, . . . , B

i
n, then the ith or-node has n children

given by and-nodes Bi1θi, . . . , Binθi.

An example of an and-or tree is given in Figure 3. Example 3.2 demonstrates and [16]
formally proves that coinductive trees and and-or trees produce the same results in the
variable-free case. However, a naive extension of Definition 5.1 to the first-order case yields
inconsistent derivations.

I Example 5.2. Figure 5 shows the and-or parallel tree that finds a refutation θ =
{x/0, y/0, x/nil} for the goal list(cons(x,cons(y,x))), although this answer is not sound.

A solution proposed in [12] was given by composition (and-or parallel) trees. Construction
of composition trees involves additional algorithms that synchronise substitutions in the
branches of and-or trees. Composition trees contain a special kind of composition nodes used
whenever both and- and or-parallel computations are possible for one goal. A composition
node is a list of atoms in the goal. If, in a goal G = ← B1, . . . Bn, an atom Bi is unifiable
with k > 1 clauses, then the algorithm adds k children (k composition nodes) to the node
G; similarly for every atom in G that is unifiable with more than one clause. Every such
composition node has the form B1, . . . Bn, and n and-parallel edges. Thus, all possible
combinations of all possible or-choices at every and-parallel step are given.

Here, we propose coinductive trees of Definition 4.1 as an alternative to composition
trees. Comparing coinductive derivation trees with and-or trees, coinductive trees are more
intrinsic: and-or parallel trees have most general unifiers built into a single tree, whereas,
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list(cons(x, cons(y, x)))

nat(x)

2 nat(x1)

...

list(cons(y, x))

nat(y)

2 nat(x1)

...

list(x)

2 nat(z1)

...

list(z2)

...

Figure 5 Unsound refutation by and-or parallel tree, with θ = {x/0, y/0, x/nil} .

mgus determine only tree transformations for coinductive trees. Taking unification issues
from the level of individual leaves to the level of trees affects computations at least in two
ways. Parallel proof-search in branches of a coinductive tree does not require synchronisation
of variables in different branches. Moreover, for programs that are guarded by constructors -
such as ListNat and Stream, we avoid having infinite branches or infinite number of variables
in a single tree. We shall illustrate with our leading example.

I Example 5.3. The coinductive trees from Figure 4 agree with the first part of the and-or
parallel tree for list(cons(x, cons(y, x))) in Figure 5. But the coinduction tree has leaves
nat(x), nat(y) and list(x), whereas the and-or tree follows those nodes, using substitutions
determined by mgu’s. Moreover, those substitutions need not be consistent with each other:
not only are there two ways to unify each of nat(x), nat(y) and list(x), but also there is
no consistent substitution for x at all. In contrast, the coinduction trees capture such cases.

We can go further and introduce a new derivation algorithm that allows proof search
using coinduction trees. We modify the definition of a goal by taking it to be a pair < A, T >,
where A is an atom, and T is the coinduction tree determined by A, as in Definition 4.1, in
which we restrict the choice of substitutions θ1, . . . θm to the most general unifiers only, in
which case T is uniquely determined by A.

I Definition 5.4. Let G be a goal given by an atom← A and the coinductive tree T induced
by A, and let C be a clause H ← B1, . . . , Bn. Then goal G′ is coinductively derived from G

and C using mgu θ if the following conditions hold:
• A′ is a leaf atom, called the selected atom, in T .
• θ is an mgu of A′ and H.
• G′ is given by the atom ← Aθ and the coinduction tree T ′ determined by Aθ.

I Definition 5.5. A coinductive derivation of P ∪ {G} consists of a sequence of goals
G = G0, G1, . . . called coinductive resolvents and a sequence θ1, θ2, . . . of mgus such that
each Gi+1 is derived from Gi using θi+1. A coinductive refutation of P ∪ {G} is a finite
coinductive derivation of P ∪ {G} such that its last goal contains a success subtree. If Gn
contains a success subtree, we say that the refutation has length n.

Coinductive derivations resemble tree rewriting. In applying SLD-derivation, one’s primary
interest lies in derivations of atomic goals. But in order to make the induction work, one
must generalise goals from being atoms to being lists of atoms, see Definition 2.1. In
coinductive tree, this information would be represented by a list of nodes in a truncation of
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stream(x)
θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

2

stream(scons(y1, z1))

bit(y1) stream(z1)

Figure 6 Coinductive derivation of length 3 for the goal G = stream(x) and the program Stream,
with θ1 = x/cons(z, y) and θ2 = z/0, θ3 = y/cons(y1, z1).

the coinductive tree. To analyse coinductive derivations, we generalise the definition of a
goal a little further, extending it from being an atom A to being the coinductive derivation
tree for A, see Definition 4.1. For every goal G =< A, T >, there can be several transitions
to a new goal, and these transitions can be made concurrently.

I Example 5.6. Figure 6 shows a coinductive derivation of length 3 for the goal G =
stream(x) and the program Stream from Example 1.2.

I Theorem 5.7 (Soundness and Completeness of coinductive resolution relative to coalgebraic
semantics.). Let P be a program built over the signature Σ, and G =< A(t), T > be a goal.
1. Soundness. If there is a coinductive derivation of length n of P ∪ {G} with an answer

θ = θ1 ◦ . . . ◦ θn, and if Gn =< An(tn), Tn >, tn having k distinct variables, then tn = tθ

and p̄(k)(At(θ))(A(t)) is isomorphic to the coinductive forest F of breadth k determined
by An.

2. Completeness. Given the Lax(LopΣ , PcPf )-coalgebra structure p̄ generated by P , let θ
be a map in LopΣ , and let C be the structure determined by evaluating p̄ : At(θ) −→
C(PcPf )(At) at a natural number k and applying it to an atomic formula A(x1, . . . , xk).
Then there exists a derivation from G =< A(x1, . . . , xk), T > to Gn =< An, Tn >, with
An = A(x1, . . . xk)σ, such that there exists a substitution ρ such that θ = σρ and the
coinductive forest for Anρ is isomorphic to C.

Proof. The proof proceeds by induction on the length of derivations, using the constructions
of Theorem 4.5. J

Theorem 5.7 characterises all derivations, not only finite ones, although it can be restricted
to coinductive refutations. In general, there are two levels of computation at which both
infinity and concurrency can be implemented in coinductive derivations. One level is that
of the coinduction trees given by the goals; and the second level is the transitions between
the goals. Depending on the applications and resources for parallelisation, the coinductive
derivation algorithm above offers several choices as follows.

Every coinductive tree in a goal is necessarily concurrent, but transitions between
coinduction trees can be done in a sequential or a concurrent manner. That is, if there
are several non-empty leaves in a tree, any such leaf can be unified with some clause
in P . Such leaves can provide substitutions for sequential or concurrent tree transitions.
In Figure 6, the substitution θ′ = θ2θ3 is derived by considering mgus for two leaves in
G1 =< stream(scons(z,y)), T1 >; but, although two separate and-leaves were used to
compute θ′, θ′ was computed by composing the two substitutions sequentially, and only one
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tree, T3, was produced. However, we could concurrently derive two trees from T2 instead,
G′2 =< stream(scons(O,y)), T2 > and G′′2 =< stream(scons(z,scons(y1,z1))), T ′2 >.

There are choices concerning how to treat infinite coinductive trees arising in derivations.
As Example 4.6 shows, some definitions of infinite objects do not give rise to infinite
coinduction trees, e.g., Stream gives rise to an infinite sequence of finite coinduction trees, cf.
Figure 6. This applies equally to any (potentially) infinite data defined using constructors,
such as scons in Stream or cons and nil in ListNat. So one may view infinite coinduction
trees as “bad" cases, in which (co)recursion is not guarded by constructors. In this case, one
might decide to halt any derivation of this kind, and amend the program before proceeding.
Alternatively, one may decide to prune infinite branches, and continue to look for derivations
in other or-branches for the same unchanged logic program.

Finally, as Figure 6 shows, coinductive programs such as Stream may give rise to infinite
derivations of coinduction trees, in which case implementation may prune the chain of
derivations as [11, 25] suggest, or, if infinite production of new streams is desirable, let the
coinductive derivations run.

We can now remedy the full abstraction result that we have proven to fail for the SLD-
derivations, see Section 5. We once again characterise coinductive derivations from the point
of view of the Theory of Observables. In particular, we can routinely adapt Definitions
4.10 and 4.11 to coinductive derivations using substitutions and call patterns determined by
coinductive derivations rather than by SLD-derivations. Then the following correctness and
full abstraction results hold.

I Theorem 5.8. P1 ≈ P2 if and only if the Lax(LopΣ , PcPf )-coalgebra structure generated by
P1 is equivalent to the Lax(LopΣ , PcPf )-coalgebra structure generated by P2.

Proof. (Sketch.) Proof proceeds by induction on constructions described in Theorems 4.5
and 5.7. J

6 Conclusions and Further Work

The analysis of this paper can be extended to more expressive logic programming languages,
such as [10, 24, 21], also to functional programming languages in the style of [22, 2]. We de-
liberately chose our running examples to correspond to definitions of inductive or coinductive
types in such languages.

The key fact driving our analysis has been the observation that the implication ← acts
at a meta-level, like a sequent rather than a logical connective. That observation extends to
first-order fragments of linear logic and the Logic of Bunched Implications [10, 24]. So we
plan to extend the work in the paper to logic programming languages based on such logics.

The situation regarding higher-order logic programming languages such as λ-PROLOG
[21] is more subtle. Despite their higher-order nature, such logic programming languages
typically make fundamental use of sequents. So it may well be fruitful to consider modelling
them in terms of coalgebra too, albeit probably on a sophisticated base category such as a
category of Heyting algebras.
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about a tree consistent? ∗

Eryk Kopczyński

Institute of Informatics, University of Warsaw
erykk@mimuw.edu.pl

Abstract
We are interested in the following problem: given a tree automaton A and an incomplete tree
description P , does a tree T exist such that T is accepted by A and consistent with P? A tree
description is a tree-like structure which provides incomplete information about the shape of T .
We show that this problem can be solved in polynomial time as long as A and the set of possible
arrangements that can be forced by P are fixed. We show how our result is related to an open
problem in the theory of incomplete XML information.
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1 Introduction

In [2] and [9], the authors study the problem of incomplete data in relational databases, and
classify the complexity of various computational problems associated with incompleteness,
like consistency. These results have become very influential, and are now used for many
practical applications with integration and exchange in relational databases [1, 8, 12].

But what about databases with more structure than a relational database, for example,
XML documents [14]? Unlike a relational database, which is just a collection of tables,
an XML document is ordered in a tree-like fashion. There has been some early work on
incomplete information in XML [3, 10]. The paper [4] aims to provide a classification of
problems associated with incompleteness for XML documents, like [2] and [9] did for relational
databases.

Elements that can appear in XML documents are defined with DTDs [14]. A DTD
(document type definition) is a set of declarations (a kind of a grammar) that define which
elements may appear in an XML document, and how they are related. For example, consider
a DTD for a database which describes the structure of employment in a company. Such a
company might form a group; the description of each group might start with a name or not,
followed by a description of a leader or not, followed by descriptions of persons employed
in this group and smaller groups which are parts of the given group. The description of a
leader consists of a description of a person. The description of a person consist of a name.
The XML document below would be consistent with that DTD.
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<!DOCTYPE company [...]>
<company>

<group>
<name>Example Co.</name>
<leader>

<person><name>Smith</name></person>
</leader>

<group>
<name>sales</name>
<leader>

<person><name>Baker</name></person>
</leader>

<person><name>Jones</name></person>
</group>

<group>
<name>research</name>
<person><name>Black</name></person>
<person><name>White</name></person>
</group>

</group>
</company>

An incomplete description of such a document might, for example, state that our document
X contains four distinct nodes N1, N2, N3, N4 such that N1 is the root, N2 is a child of
N1, N3 is a descendant of N2, N4 is a descendant of N1, and N3 is a group and N4 is a
person. The document above is consistent with this incomplete description (take N1 to be
the description of the company, N2 to be the main group, N3 to be the research group, and
N4 to be Black).

N1

(root)

N2

N3

group

N4

person

child

desc

desc

Note that this information is incomplete on several levels. It is possible that there are
nodes about which we have no information at all (open world assumption). We don’t know
how many levels are between N2 and N3. In the assignment above, N4 (Black) was a child of
N3 (research), although it was not explicitly stated in the description. In general, it would
be also possible that N2 could be a descendant of N4—although our DTD forbids this, since
a person cannot contain a group as a descendant.

[4] considers several types of such incomplete tree descriptions; we are interested in
incomplete DOM-trees which enforce the mapping from the incomplete tree description to
the tree to be injective, i.e., N4 we know that is not equal to N2 or N3. Four axes are allowed
to appear in the incomplete description: next sibling, sibling, child, descendant.

One of the problems investigated by [4] is the following:
I Problem 1.1. Let D be a fixed DTD. Given an incomplete tree description t, is there an
XML document X which is consistent with both D and t?
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Theorem 5.28 from [4] shows that this consistency problem is in PTIME for incomplete
tree descriptions which do not use the descendant axis (only child, sibling, and next sibling).
The case whether we can extend the result to also allow tree descriptions using this relation
has been left open. Even the case where the tree description allows the descendant relation
only on the topmost level and the shape of the descendant trees was completely fixed was an
open question.

In this paper, we show how to solve this special case, and then show a polynomial
algorithm for almost solving Problem 1.1. We say “almost”, because there is a subtle
difference between our and [4] understanding of when a tree is consistent with an incomplete
description. However, we believe that our definition is also well motivated: although there
are trees matching a given description according to [4] and not matching according to us,
they are quite unnatural.

However, we prefer to work with theoretically more pure notions, rather than XML
documents. Thus, instead of XML, we deal with binary trees with vertices labelled by
elements of alphabet Σ, and instead of DTDs we deal with finite automata. The second
change makes our results more general (each DTD corresponds to a finite automaton, but
automata are more general than DTDs); another generalization is that we don’t use the
specific four axes listed above, but rather allow them to be defined using a regular expression.
Still, we need to choose the axes from a fixed language L to obtain good algorithmic results.
Our generalization from XML to generic trees also allows us to use our results for hierarchical
data other than XML documents; for example, we could want to know whether a correct
program in some programming language (or, more generally, a word in a context free language)
exists that includes given keywords and symbols in given structural relationships; or whether
there is an evolution of a branching process which exhibits given behaviors.

The paper is structured as follows. In Section 2 we provide the definitions required
to understand the problem. In Section 3 we show how to solve the special case above in
polynomial time (Theorem 3.2). This is used to explain techniques which are then used in
Section 4 to solve the general problem for any tree descriptions (Theorem 4.3). In section 5
we show how to translate [4]’s problem from the XML world to the world of automata over
binary trees, and point out the subtle difference that could not be solved with our methods.

For completeness, in Section 6 we show that the assumptions about the fixed size of
automaton and the fixed set of languages cannot be lifted from Theorems 3.2 and 4.3. The
problems become NP complete without these assumptions.

2 Preliminaries

An unlabeled tree is a finite τ ⊂ {0, 1}∗ such that whenever uw ∈ τ , also u ∈ τ . The empty
word ε is the root of the tree, w0 and w1 are the children of w, and w ∈ τ is a leaf iff
w0, w1 /∈ τ .

For a tree τ , by port(τ) we denote the set of x ∈ {0, 1}∗ such that x /∈ τ and all proper
prefixes of x are in τ . In other words, port(τ) is the set of x such that τ ∪ {x} is also a tree.
The elements of port(τ) are called ports; this name emphasizes our open world assumption –
we don’t treat these locations as places where the tree ends, but rather as variables: the tree
can be extended (“grown”) in arbitrary way from each port. In other words, our trees are
similar to contexts used in the algebraic theory of trees ([5]), except that ports appear in
every applicable location, not in a single one.

A tree over Σ is a function T : τ → Σ, where τ is an unlabeled tree. By port(T ) we
denote port(dom(T )).
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Let T and U be two trees over Σ. We say that T is an extension of U (T ⊆ U) iff for
each u ∈ dom(U) we have u ∈ dom(T ) and T (u) = U(u). We say that U is a full subtree of
T at offset w iff for each u we have that u ∈ dom(U) iff wu ∈ dom(T ), and U(u) = T (wu).
We say that U is an inner subtree of T at offset w iff an extension of U is a full subtree of T
at offset w. If U1, U2, . . . , Un are inner subtrees of T at offsets w1, w2, . . . , wN respectively,
we say that they are disjoint inner subtrees of T iff they share no common node, i.e., the
sets widom(Ui) are disjoint.

A (nondeterministic tree) automaton is a tuple A = (Σ, Q, qI , δ), where q0 ∈ Q and
δ ⊆ Σ×Q×Q×Q.

Let T be a tree over Σ, and A = (Σ, Q, qI , δ) be an automaton. A run of A over T is a
tree ρ over Q such that:

dom(ρ) = dom(T ) ∪ port(T ),
For each w ∈ dom(T ) we have (T (w), ρ(w), ρ(w0), ρ(w1)) ∈ δ.

A run is accepting iff ρ(ε) = qI . We say that a tree T is accepted by A iff there is an
accepting run of A on T . Sets of all trees accepted by some automaton A are called regular
languages of trees, and can be equivalently defined using different kinds of automata, logic,
algebra, etc.

This definition is a bit different from the usual one (e.g. [6]): in the usual definition, we
would have a set of final states F , and force ρ(x) ∈ F for each x ∈ port(T ). As mentioned
above, in our intentions (open world assumption) ports are places where the tree can extended
in any way. If we want to make sure that our “incomplete” trees can be extended to trees
which are accepted according to the usual definition, it is enough to assume that each state
of A is productive, i.e., there is an accepting run on some tree which uses this state. Also,
if we want to block some port x so that the tree cannot be extended there and the run ρ
ends in a final state in this port, it is enough to add one extra character EOT to Σ and one
extra state qEOT to Q, and a transition (EOT, q, qEOT, qEOT) for each q ∈ F . By putting
T (x) = EOT we ensure that ρ(x) ∈ F and ρ(x0) = ρ(x1) = qEOT, and since there is no
transition with qEOT on top, we can no longer extend the tree at x0 or x1 without losing
acceptance. This allows us to simulate the usual definition with ours.

We will also use trees in their graph theoretical meaning. A rooted tree is a structure
(V,E, vR), where E ⊆ V × V and vR ∈ V , such that for each v ∈ V there is exactly one path
from vR to v in the graph (V,E). (This path is trivial for v = vR.) By vE we denote the set
of vertices w ∈ V such that (v, w) ∈ E.

3 Special case

Let A = (Σ, Q, qI , δ) be a fixed automaton on binary trees over alphabet Σ.
I Problem 3.1. given trees U1, . . . , UN . Decide whether there is a tree T accepted by A
which includes U1, . . . , UN as disjoint inner subtrees, and one of the trees appears at offset ε.

The assumption that one of the trees appears at offset ε is to simplify the presentation
by eliminating some of the special cases connected with the root. If we don’t want such an
assumption, it is enough to add an empty tree to our sequence.

Note that although the trees are disjoint, it is possible that e.g. U2 will be connected to
a port of U3. It is also possible that U2 is not directly connected to a port of U3, but there is
a path of vertices in between which do not belong to any Ui.

I Theorem 3.2. Assuming that |Q| is fixed, the problem 3.1 above can be solved in time
polynomial in |Σ| and the size of trees U1, . . . , UN .
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Proposition 6.1 in Section 6 below shows that the problem becomes NP complete without
the assumption that |Q| is fixed.

We will present the proof of the theorem above in the following way. We will show a
sequence of simpler algorithms; for each of them, we will identify the major problem with
it and show how to fix it. This sequence will converge to a correct algorithm running in
deterministic polynomial time.

We will start with some additional definitions.

3.1 Multiplicity vectors
We call functions f : Q → Z multiplicity vectors. For x ∈ Z, we say f ≥ x iff f(q) ≥ x for
all q ∈ Q; f ≤ x is defined similarly. By [q] we denote the multiplicity vector such that
[q](q) = 1, [q](r) = 0 for r 6= q. For a set of multiplicity vectors S, by S[q > 0] we denote
{f ∈ S : f(q) > 0}. If S1 and S2 are sets of multiplicity vectors, S1 + S2 = {f1 + f2 : f1 ∈
S1, f2 ∈ S2}, and S1 − S2 = {f1 − f2 : f1 ∈ S1, f2 ∈ S2}.

We say that a tree T realizes a multiplicity vector f from q ∈ Q iff f ≥ 0 and there is a
valid run ρ of A over T such that for each state r, r appears in the ports of T at least f(r)
times (i.e., the cardinality of ρ−1(r) ∩ port(T ) is at least f(r)), and ρ(ε) = q.

We denote by A(U, q, n) the set of multiplicity vectors f such that f ≤ n and there is a
tree T ⊇ U which realizes f from q.

I Lemma 3.3. Sets A(U, q, n) can be calculated in time polynomial in |U |, S, and n.

Proof. We start with calculating A(∅, q, n) for each q.
Define the sequence of sets of multiplicity vectors Ai(q, n) as follows:

A0(q, n) = {f : 0 ≤ f ≤ n, f ≤ [q]}
Ai+1(q, n) is a set of f such that 0 ≤ f ≤ n and there exist f1 ∈ Ai(q1, n) and f2 ∈
Ai(q2, n) such that (x, q, q1, q2) ∈ δ and f ≤ f1 + f2.

I Proposition 3.4. If Ai(q, n) = Ai+1(q, n) for each q ∈ Q, then A(∅, q, n) = Ai(q, n).
The proof is straightforward. This proposition allows us to calculate A(∅, q, n) for each q

and n inductively.
I Proposition 3.5. Let U be a tree such that U1 and U2 are full subtrees of U at offsets 0
and 1, respectively. Then A(U, q, n) is the set of f such that there exist fi ∈ A(Ui, qi, n) for
i = 1, 2 such that (U(ε), q, q1, q2) ∈ δ and f ≤ f1 + f2.

Again, the proof is straightforward. This proposition allows us to calculate A(U, q, n) by
induction over subtrees of U . J

3.2 Algorithm I
We start with a strongly non-deterministic algorithm.

1. We guess a permutation of our set of trees: Ud1 , Ud2 , Ud3 , . . . , UdN
. This specifies the

order of subtrees in our goal tree T . If Ui appears at offset wi in the goal tree T , and wi
is a prefix of wj , then the tree Ui will appear before Uj in this permutation. If wi and
wj are incomparable, they can be ordered arbitrarily.

2. f := [qI ]. At each stage of our algorithm, f is the multiplicity vector which says how
many occurrences of each state we have in our ports.

3. for i := 1 to N :
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4. We guess q ∈ Q.
5. If f(q) = 0, then we fail.
6. f := f − [q]
7. f := f + a, where a is one of the elements of A(Udi , q,N).
8. We accept.

In our loop, we fill one of our ports in some state q with the tree Udi . This means we
used one of the ports specified by f(q), but Udi

gives us new ports according to A(Udi
, q,N).

It is enough to use multiplicity vectors f such that f ≤ N because we will only have to use
N states.

3.3 Algorithm II

Except for Step 1, all the steps of Algorithm I are easy to determinize in polynomial time.
Instead of analyzing one choice, we construct the sets of all possible choices.

1. We guess a permutation of our set of trees, just like in Algorithm I.
2. S := {[qI ]}
3. for i := 1 to N :
4. P := ∅;
5. for q ∈ Q do
6. R := S;
7. R := R[q > 0]; // use only vectors which had a port with state q
8. R := R− [q]; // fill this port
9. R := R+A(Udi , q); // we get new states in ports below Udi

10. P := P ∪R;
11. S := P;
12. We accept.

If in the end we have obtained a non-empty set S, we have won (constructed a tree
which contains our required subtrees). If not, it probably means that we have guessed the
permutation incorrectly.

Now, our goal is to avoid guessing the permutation.

3.4 Algorithm III

In Algorithm III we do not guess the permutation. Instead, we do not care if we have used
up a state which we have not obtained yet — i.e., we remove Step 7 from Algorithm II, and
allow our multiplicity vectors to go negative.

At the end of our algorithm we check whether S has an element f ≥ 0. If no, it means
that we had no chance – whatever permutation we would pick in Algorithm II or Algorithm
I, we would get an empty set at the end. What if S contains a non-negative element? This
does not yet mean that the tree exists, because it is still possible that it was impossible to
do a good ordering. For example, suppose we have two states q and r which are unreachable
from qI , U1 is an empty tree, and the tree U2 realizes [q] from r and U3 realizes [r] from q.
Algorithm III will accept, even if the trees U2 and U3 can only be used in states which are
not reachable from qI .
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3.5 Algorithm IV

Thus, we need to make sure that a correct permutation exists. For this, we use the following
lemma:

I Lemma 3.6. For i = 1 . . . N , let fi ∈ A(Ui, qi, N). Then a permutation of trees for the
Algorithm I which generates a positive answer, such that in step 3 for each i we choose to
use state qdi

as q and multiplicity vector fdi
as a, exists iff the following two conditions are

satisfied:

Euler condition: [qI ] +
∑

(fi − [qi]) ≥ 0
Connectedness: Let G = (V,E) be the graph such that V = {qi : i ∈ {1 . . . n}}, and
(p, q) ∈ E iff there exists an i such that p = qi and fi(q) > 0. Then there must be a path
from qI to each state in V . edge p→ q. Then there must be a path from qI to each state
in V .

This lemma is a generalization of the classic Euler theorem about a condition for existence
of an Euler path in a graph. Also the proof generalizes the proof of Euler’s result. This
technique is essentially equivalent to Theorem 3.1 from [7] and Proposition 3 from [11].

Proof. We try to build the tree in an arbitrary way, filling up ports with our trees whenever
the state matches. If we end up with all trees used, we are done. Otherwise, there is some
tree U from r0 which cannot be inserted because all ports of type r0 have been already used.
We can assume that r0 was already used as a connecting state in our construction; otherwise,
there would be no connection between the used and unused trees, which means that the
connectedness condition is not satisfied. We construct a sequence of states r0, r1, r2, . . . , rm
and of unused trees Ui0 , Ui1 , . . ., such that qik = rk+1 and fik (rk) > 0, until we no longer can
find an unused tree Uim with fim(rm) > 0. This construction must end in the state rm = r0;
if it ended in any other state, it would violate the Euler condition (the state rm would be
used in the root more times that it would be produced in a port). We find the place in our
construction where r0 is used for connection, and insert the trees Uim−1 , . . . , Ui0 there. We
continue this operation until all trees are used. J

Algorithm III checked for the Euler condition, but we have to modify it to also check
for connectedness. This can be done by choosing the (connected) graph G, or even better,
guessing the spanning tree of G. Since V ⊆ Q and |Q| is fixed, we have a fixed number of
possible spanning trees. Thus, we modify Algorithm III in the following way:

1. We start by guessing a rooted tree τ = (V,E, qI). (A fixed number of possible guesses.)
2. Now, for each edge e ∈ E we guess ie, the index of the tree which is forced to realize

this edge. (Thus, we have N |V |−1 possible guesses, which again is polynomial.)
3. We execute Algorithm III, except that in step 5, if i = i(q1,q2) for some e ∈ E, then we

use only q1 as q, and in general we can only use states from V ; and in step 9 we restrict
A(tdi

, q, n) to multiplicity vectors f such that f(q2) > 0.

Algorithm IV is correct and works in deterministic polynomial time (when guesses are
replaced by looping over the whole subset).
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4 Incomplete tree descriptions

In this section we generalize the results from the section below to a case where we can force
the trees Ui to appear in the result tree in a specific pattern.

As in the previous section, let A = (Σ, Q, qI , δ) be a fixed tree automaton over Σ. Also
let let L be a finite set of regular (word) languages over {0, 1}.

An incomplete tree description, or a pattern for short, is a P = (V P , EP , p0, C, L),
where:

(V P , EP , p0) is a rooted tree,
C : V P → P (Σ) assigns a set of possible elements of alphabet to each subpattern,
L : EP → L assigns one of the languages in L to each edge of our tree.

For p ∈ V P , P [p] is the subpattern obtained from P by moving the root p0 to p and
restricting V P to vertices accessible from p.

I Definition 4.1. A tree T matches an incomplete tree description P iff T (ε) ∈ c(P ), and
for each p ∈ p0E

P , a tree Up matching P [p] is an inner subtree of T at offset wp 6= ε, and
they are disjoint inner subtrees.

I Problem 4.2. Given an incomplete tree description P , is there a tree T accepted by A
which matches P?

Note that the set of trees which matches a given incomplete description P is a regular
language of trees; and an intersection of two regular languages is also a regular language.
However, an automaton recognizing trees consistent with P would be of size exponential in
|P |, so such a view is not practical for us.

I Theorem 4.3. Let A and L be fixed. Problem 4.2 is solvable in time polynomial in the
size of P .

Propositions 6.1 and 6.2 in Section 6 below show that the problem becomes NP complete
without the assumption that A and L are fixed, respectively.

Note that the Problem 3.1 is the special case of Problem 4.2 where L = {0, 1, (0 + 1)∗}
and (0 + 1)∗ is only allowed to appear at edges starting in p0 (not counting some minor
differences regarding the root of the result tree).

Proof. For words u, v ∈ {0, 1}∗, we say that u ≡ v iff for each two words t, w ∈ {0, 1}∗ and
each L ∈ L we have tuw ∈ L iff tvw ∈ L. It is well known that the relation ≡ has a finite
index. Let M be the set of equivalence classes of ≡; let [w] ∈M be the equivalence class of a
word w ∈ {0, 1}∗. M is equipped with a concatenation operation given by [w1][w2] = [w1w2].
For a L ∈ L, let [L] = {[w] : w ∈ L}; note that for each m ∈M either m ⊆ L or m is disjoint
with L. The set M is called the syntactic monoid of L (see e.g. [13]; although syntactic
monoids are more commonly known for single languages, our extension of this notion to a
finite family of languages is quite obvious).

Let P be an incomplete tree description, and N = |P |.
We will need to extend our definition of multiplicity vectors to take the elements of

M into account together with states. An extended multiplicity vector (EMV) is a
function f : Q × M → Z. We say that a tree T realizes an EMV f from q ∈ Q iff
there is a valid run ρ of A over T such that ρ(ε) = q, and for each r ∈ Q and m ∈ M ,∣∣ρ−1(r) ∩ port(T ) ∩m

∣∣ ≥ f(r,m). We define all operations on EMVs and sets of EMVs in
the same way as for multiplicity vectors.
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If f is an EMV and m ∈ M we denote by mf the EMV such that mf(q,m1) =∑
m2:mm2=m1

f(q,m2).
For p ∈ VP and a state q ∈ Q, we denote by A(p, q, n) the set of EMVs f such that

0 ≤ f ≤ n, and there is a tree U which matches P [p] and realizes f from q.
Now, it is enough to show that A(p0, q, n) 6= ∅. Thus, all we need is the following lemma:

I Lemma 4.4. The set A(p, q, n), where n ≤ N , can be calculated in polynomial time for
each p ∈ VP .

Thus, to check whether a tree accepted by A and matching P exists, it is enough to check
whether A(p0, qI , 0) 6= ∅. J

To prove 4.4 we will need one more technical lemma:

I Lemma 4.5. Let q ∈ Q and x ∈ Σ. Let set A0(x, q, n) be the set of EMVs f which are
realized from q by a tree which has x in its root, and 0 ≤ f ≤ n. The set A0(x, q, n) (where
n ≤ N) can then be calculated in polynomial time.

Proof. Let A0
0(x, q, n) be the set of EMVs which can be realized by a tree which has x in its

root and ports in both of its children.
Let A0

k+1(x, q, n) be the set of EMVs f such that either f ∈ A0
0(x, q, n), or the following

conditions are satisfied for some EMVs f0 and f1, states q0, q1 ∈ Q, and letters x0, x1 ∈ Σ:

f ≤ f0 + f1
f0 ∈ [0]A0

k(x0, q0, n)
f1 ∈ [1]A1

k(x1, q1, n)
0 ≤ f ≤ n

It is straightforward to check that the sequence A0
k(x, q, n) is increasing for each x, q, n,

and its limit is A0(x, q, n). J

Proof of Lemma 4.4. We prove the lemma by induction over subpatterns. Let n′ = n+|pEP |.
From inductive hypothesis we can calculate the A(p′, r, n) for each p′ ∈ pEP and each r ∈ Q.

1. A := ∅
2. for each rooted tree τ = (V τ , Eτ , vτ ) such that V τ ⊆ Q×M and vτ = (q, [ε]):
3. for each assignment α : Eτ → pEP ∪ {p}:
4. B :=

⋃
x∈C(P ) A

0(x, q, n′)
5. Restrictα(B, (q, [ε]), p)
6. For each p′ ∈ pEP :
7. For each (r,m) ∈ Q× [L(p, p′)] ∩ V τ :
8. A := mA(p′, r, n′)
9. Restrictα(A, (r,m), p′)

10. let B := B − [(r,m)] +A

11. Let A := A ∪ {f ∈ B : 0 ≤ f ≤ n}
12. return A

Restrictα(B, (q,m), p) is defined as follows:

1. For each ((q1,m1), (q2,m2)) ∈ α−1(p):
2. if (q1,m1) 6= (q,m) then B := ∅
3. B := B[(q2,m2) > 0
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This algorithm is based on a idea which is very similar to that of Algorithm IV. The
differences is that it takes the syntactic monoid M into account, and calculates the EMV
instead of non-emptiness. J

5 Application to XML

In this section, we compare the problem solved in Theorem 4.3 to the open question from
[4]: is it possible to remove the condition of ↓∗-freeness from Theorem 5.28? In other words,
for a fixed DTD D, and an incomplete DOM-tree t, is it possible to find out whether there
exists an XML document X which satisfies D and is consistent with t, in time polynomial in
size of t?

It is beyond scope of this paper to include the full definition of XML documents, DTDs,
and incomplete DOM trees, thus we just give examples and list the important differences:

XML documents are trees, but they are unranked trees (with a sibling ordering), not
binary ones. However, we can use the standard encoding of unranked trees in binary
trees: if a vertex v of the unranked tree is assigned w in our binary tree, then the first
child of v (if any) is assigned w0, and the next sibling of v (if any) is assigned w1. This
allows us to convert any unranked tree (or, more accurately, an unranked forest) to a
binary tree, and vice versa. The following picture shows the XML document from the
introduction, represented as a binary tree.

company

group

name

Example Co.

leader

person

name

Smith

group

groupname

sales

name

research
...

...

In [4], the question is whether a tree consistent with a given DTD exists. Essentially, for
each type of a node, a DTD (document type definition) gives a regular expression which
describes which sequences of node types can be allowed as children of a node of given
type. For example, we can use the following DTD to define valid company descriptions:

<!ELEMENT company (group)>
<!ELEMENT group (name? leader? (group|person)*)>
<!ELEMENT leader (person)>
<!ELEMENT person (name)>
<!ELEMENT name (#PCDATA)>
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In our results, we use tree automata instead of DTDs. Our result is more general, since
tree automata can verify whether a tree is consistent with a DTD, but not the other way
around – tree automata are more powerful. Properties such as if a group has a leader and
only one subgroup, then this subgroup cannot have a leader cannot be easily described
with a DTD, but can be described with an automaton.
Incomplete DOM-trees allow using markings: in terms of patterns, each subpattern can
have marking which forces it to appear in a specific location, which is one of the following:
root, leaf, first child, last child. These markings can be easily checked by extending the
automaton A and the alphabet Σ, or by enforcing EOT on the applicable child, so our
result covers this.
Subpatterns are allowed to have only one of the following relations to their bigger nodes:
next sibling, younger sibling, child, descendant. This corresponds to picking a language 1,
1∗, 01∗, 0(0 + 1)∗, respectively, as L(p, p′). Thus, our result again generalizes the XML
case.
The last difference cannot be easily solved with our means. In case of [4], a tree T is
considered to match pattern P if there is an injective mapping φ from VP to vertices
of T such that for each edge (p1, p2) ∈ EP we have φ(p2) = φ(p1)v where v ∈ L(p1, p2).
There is a subtle difference with our definition. Consider again the pattern from the
introduction (on the left), and the following tree (on the right):

N1

(root)

N2

N3

group

N4

person

child

desc

desc

N1

company

N2

group

N4

person

N3

group

Is the tree to the right consistent with the pattern on the left? According to the definition
from [4], yes (φ(v) is the node of the tree which is labelled with the same Ni as v).
According to our definition, no: the inner subtree which matches the subpattern rooted
at N2 would have to include N4, which means that it would not be disjoint with the
inner subtree which matches the subpattern N4. This is the only case where there is a
difference: if N4 is below N3, above N2, between N2 and N3, or below N2 but not above
N3, then the tree matches the description according to both definitions.

In general the situation can be more complicated (there could be long sequences of
descendants which the definition from [4] would allow to interleave in arbitrary ways). We
don’t see how to use inductive reasoning to exactly solve the case from [4]. However, we
think that it is not natural to interleave vertices which correspond to different subpatterns,
and for this reason both definitions are motivated equally well.
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6 Hardness results

In this section we show that the assumptions about the fixed size of Q and L cannot be
removed from Theorems 3.2 and 4.3.

I Proposition 6.1. Without assumption that |Q| is fixed, Problem 1 is NP complete, even in
the word case, and when all tress Ui contain only one letter.

This has been essentially proven in [4]; we provide a short proof for completeness.

Proof. The problem is in NP because the witness must be polynomial. We reduce the
problem of CNF-SAT satisfiability to Problem 1. Let φ = C1 ∧ C2 ∧ . . . ∧ Cn be a CNF
formula, with variables x1, . . . , xm. Our language will be Σ = {?, C1, . . . , Cn}. For each xi
our automaton contains two paths, one for xi and one for ¬xi; on each path we accept a letter
corresponding to all clauses that are satisfied by choosing given literal. Tree Ui asks whether
Ci appears anywhere in the resulting word. The following picture shows the automaton
used to decide whether a formula φ = C1 ∧ C2 ∧ C3 is satisfiable, where C1 = x1 ∨ x2,
C2 = ¬x1 ∨ ¬x2, and C3 = x1 ∨ ¬x2.

x1?

x1

¬x1

x2?

x2

¬x2

⋆

C1

C3

⋆ C2

⋆ C1

⋆

C2

C3

J

Note that we could get a more straightforward reduction from the Hamiltonian circuit
problem if we could say that the result tree T is covered by Uis completely. After a small
modification, our technique allows to solve Problems 3.1 and 4.2 even in this case (or in the
case where we have a subset ∆ ⊆ Σ and labels from ∆ are only allowed to appear when
explicitly requested by the description).

Also note that we could encode the reduction from the proof of Proposition 6.1 in a two
letter alphabet, but then the trees (or word) Ui need to be longer. Restricting to both an
alphabet of fixed size and trees Ui of size 1 again yields a polynomial algorithm (which is
similar to one given in Lemma 3.3, but we count the number of occurrences of each label,
not each state; a similar problem has been solved in [11]).

I Proposition 6.2. Without assumption that L is fixed, Problem 2 is NP complete, even for
a very simple (fixed) automaton (|σ| = 1, |Q| = 2, |δ| = 2), and incomplete tree descriptions
of depth 2 (i.e., consisting just of a root and its direct subpatterns).

Proof. Our automaton says that the tree consists of a single path. Thus, we have Σ =
{a}, Q = {qI , qN}, δ = {(a, qI , qI , qN ), (a, qI , qN , qI)}.

Again, the problem is in NP because the witness must be polynomial, and we prove
hardness by reducing CNF satisfiability. Let φ = C1 ∧C2 ∧ . . .∧Cn be a CNF formula, with
variables x1, . . . , xm. Let Di be the set of sequences of m bits S such that Ci is satisfied
when xj is satisfied iff Sj = 1. The subpattern Pi says there is a vertex labeled with a at
position Di{0 + 1}∗; this regular language can be defined in polynomial size (if defined as a
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regular expression or a DFA; the syntactic monoid is of exponential size, though). Since the
tree must have only one path, all Di parts much correspond to the same word, which means
that all Ci are satisfiable simultaneously. J

We don’t know whether the problem is already NP complete for a trivial automaton.
However, if we use the injective definition of consistence with an incomplete description
from [4], and a trivial automaton, then the problem is again NP complete in the word case.
Indeed, we can reduce the 3-CNF satisfiability problem: for each of the m variables we have
a subpattern pi, and L(p0, pi) = 1im + 1im+i; putting the tree matching the subpattern at
offset 1im means that xi is false, and offset 1im+i means that xi is true. Then, for each clause
we add additional subpatterns to respective pi’s, so that if the three variables have been
given the only assignment which does not satisfy the clause, we have to fit three different
offsets into two slots (choosing any other assignment gives us more space). Note that the
syntactic monoid M – even the one which recognizes all languages L at once – is still of
polynomial size in this case.

7 Conclusion

We have shown how to determine in polynomial time whether there exists a tree which is
accepted by the given automaton A and is consistent with given incomplete description P ,
assuming that both the automaton A and the set of possible axes in P are fixed. This brings
us closer to a complete understanding of the consistence problem for XML documents [4]
and other hierarchical data. Although our goal was to improve the results of [4], we had to
use another definition of when a tree matches a incomplete description in order to make
our method work. Our definition differs in just one subtle detail — while the original one
allowed several branches of the incomplete description to be mixed together and appear as a
single branch in the result tree, our does not allow that — they can become a single branch,
but the tree matching one of the subpatterns must completely precede the tree matching
other subpatterns, no mixing is allowed. We believe that such mixing is not natural, so our
result is also interesting. Still, the original consistency problem, for the original definition,
remains open.

One of techniques we have been using is Lemma 3.6, which is essentially the classical Euler
theorem about existence of Euler path, generalized to the case where an “edge” can have
many endpoints. This technique has been also used recently in [11] (and also less recently in
[7]). We believe that it is worth investigating whether this method has more applications for
various kinds of branching structures in automata theory and computer science in general.
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A Formal Theory for the Complexity Class
Associated with the Stable Marriage Problem
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Abstract
Subramanian defined the complexity class CC as the set of problems log-space reducible to the
comparator circuit value problem. He proved that several other problems are complete for CC,
including the stable marriage problem, and finding the lexicographical first maximal matching in
a bipartite graph. We suggest alternative definitions of CC based on different reducibilities and in-
troduce a two-sorted theory VCC∗ based on one of them. We sharpen and simplify Subramanian’s
completeness proofs for the above two problems and formalize them in VCC∗.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems; F.4.1 Mathe-
matical logic

Keywords and phrases Bounded arithmetic, complexity theory, comparator circuits
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1 Introduction

Comparator networks were originally introduced as a method of sorting numbers (as in
Batcher’s even-odd merge sort [2]), but they are still interesting when the numbers are
restricted to the Boolean values {0, 1}. A comparator gate has two inputs p, q and two
outputs p′, q′, where p′ = min{p, q} and q′ = max{p, q}. In the Boolean case (which is the
one we consider) p′ = p ∧ q and q′ = p ∨ q. A comparator circuit (i.e. network) is presented
as a set of m horizontal lines in which the m inputs are presented at the left ends of the
lines and the m outputs are presented at the right ends of the lines, and in between there
is a sequence of comparator gates, each represented as a vertical arrow connecting some
wire wi with some wire wj as shown in Fig. 1. These arrows divide each wire into segments,
each of which gets a Boolean value. The values of wires wi and wj after the arrow are the
comparator outputs of the values of wires wi and wj right before the arrow, with the tip of
the arrow representing the maximum.

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0

Figure 1

The comparator circuit value problem (Ccv)
is: given a comparator circuit with specified
Boolean inputs, determine the output value of a
designated wire. To turn this into a complexity
class it seems natural to use a reducibility notion
that is weak but fairly robust. Thus we define
CC to consist of those problems (uniform) AC0

many-one-reducible to Ccv. However Subramanian [9] studied the complexity of Ccv using
a stronger notion of reducibility. Thus his class, which we denote CCSubr, consists of those
problems log-space (many-one)-reducible to Ccv. It turns out that a generalization of
AC0 many-one reducibility which we will call AC0 oracle reducibility (called simply AC0

reducibility in [3]), is also useful. Standard complexity classes such as AC0, L (log space), NL
(nondeterministic log space), NC, and P are all closed under this AC0 oracle reducibility. We
denote the closure of Ccv under this reducibility by CC∗.
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We will show that

NL ⊆ CC ⊆ CCSubr ⊆ CC∗ ⊆ P (1.1)

The last inclusion is obvious because Ccv is a special case of the monotone circuit value
problem, which is clearly in P. The inclusion CC ⊆ CCSubr follows because AC0 functions are
also log-space functions. The inclusion CCSubr ⊆ CC∗ follows from the first inclusion, which
in turn is a strengthening of a result in [6] (attributed to Feder) showing that NL ⊆ CCSubr.
Of course all three comparator classes coincide if it turns out that CC is closed under AC0

oracle reductions, but we do not know how to show this.
Note that comparator circuits are more restricted than monotone Boolean circuits because

each comparator output has fan-out one. This leads to the open question of whether CC∗ ( P.
A second open question is whether CC∗ and NC are incomparable. (Here NC is the class of
problems computed by uniform circuit families of polynomial size and polylog depth, and
satisfies NL ⊆ NC ⊆ P.) The answers could be different if we replaced CC∗ by CCSubr or CC,
although CC ⊆ NC iff CC∗ ⊆ NC because NC is closed under AC0 oracle reductions.

The above classes associated with Ccv are also interesting because they have several
disparate complete problems. As shown in [6, 9] both the lexicographical first maximal
matching problem (Lfmm) and the stable marriage problem (Sm) are complete for CCSubr

under log-space reductions1. The Sm problem is especially interesting: Introduced by Gale
and Shapley in 1962 [4], it has since been used to pair medical interns with hospital residencies
jobs in the USA. Sm can be stated as follows: Given n men and n women, each with a
complete ranking according to preference of all n members of the opposite sex, find a complete
matching of the men and women such that there are no two people of opposite sex who
would both rather have each other than their current partners. Gale and Shapley proved
that such a ‘stable’ matching always exists, although it may not be unique. Subramanian [9]
showed that Sm treated as a search problem (i.e. find any stable marriage) is complete for
CC under log-space reducibility.

Strangely the CC classes have received very little attention since Subramanian’s papers
[8, 9]. The present paper contributes to their complexity theory by sharpening these early
results and simplifying their proofs. For example we prove that the three problems Ccv,
Lfmm, and Sm are inter-reducible under AC0 many-one reductions as opposed to log-space
reductions. Also we introduce a three-valued logic version of Ccv to facilitate its reduction to
Sm. Our paper contributes to the proof complexity of the classes by introducing a two-sorted
formal theory VCC∗ which captures the class CC∗ and which can formalize the proofs of the
above results.

Our theory VCC∗ is a two-sorted theory developed in the way described in [3, Chapter
9]. In general this method associates a theory VC with a suitable complexity class C in
such a way that a function is in FC, the function class associated with C, if and only if it is
provably total in VC. (A string-valued function is in FC iff it is polynomially bounded and
its bit-graph is in C.) This poses a problem for us because the provably-total functions in
a theory are always closed under composition, but it is quite possible that neither of the
function classes FCC and FCCSubr is closed under composition. That is why we define the
class CC∗ to consist of the problems AC0-oracle-reducible (see Definition 3 below) to Ccv,
rather than the problems AC0 many-one reducible to Ccv, which comprise CC. It is easy to

1 The second author outlined a proof that Lfmm is complete under NC1 reductions in unpublished notes
from 1983.
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see that the functions in FCC∗ are closed under composition, and these are the functions
that are provably total in our theory VCC∗.

The above paragraph illustrates one way that studying proof complexity can contribute
to main-stream complexity theory, namely by mandating the introduction of the more robust
version CC∗ of CC and CCSubr. Another way is by using the simple two-sorted syntax of
our theories to demonstrate AC0 reductions. Thus Theorem 1 below states that a simple
syntactic class of formulas represents precisely the AC0 relations. In general it is much easier
to write down an appropriate such formula than to describe a uniform circuit family or
alternating Turing machine program.

Once we describe our theory VCC∗ in Sections 2.1 and 2.2, the technical part of our proofs
involve high-level descriptions of comparator circuits and algorithms. We do not say much
about formalizing the proofs in VCC∗ since this part is relatively straightforward.

2 Preliminaries

2.1 Two-sorted vocabularies
We use two-sorted vocabularies for our theories as described by Cook and Nguyen [3]. Two-
sorted languages have variables x, y, z, . . . ranging over N and variables X,Y, Z, . . . ranging
over finite subsets of N, interpreted as bit strings. Two sorted vocabulary L2

A includes the
usual symbols 0, 1,+, ·,=,≤ for arithmetic over N, the length function |X| for strings (|X|
is zero if X is empty, otherwise 1 + max(X)), the set membership relation ∈, and string
equality =2 (subscript 2 is usually omitted). We will use the notation X(t) for t ∈ X, and
think of X(t) as the tth bit in the string X.

The number terms in the base language L2
A are built from the constants 0, 1, variables

x, y, z, . . . and length terms |X| using + and ·. The only string terms are string variables,
but when we extend L2

A by adding string-valued functions, other string terms will be built as
usual. The atomic formulas are t = u, X = Y , t ≤ u, t ∈ X for any number terms x, y and
string variables X,Y . Formulas are built from atomic formulas using ∧,∨,¬ and ∃x, ∃X,
∀x, ∀X. Bounded number quantifiers are defined as usual, and bounded string quantifier
∃X ≤ t, ϕ stands for ∃X(|X| ≤ t ∧ ϕ) and ∀X ≤ t, ϕ stands for ∀X(|X| ≤ t→ ϕ), where X
does not appear in term t.

The class ΣB
0 consists of all L2

A-formulas with no string quantifiers and only bounded
number quantifiers. The class ΣB

1 consists of formulas of the form ∃ ~X < ~tϕ, where ϕ ∈ ΣB
0

and the prefix of the bounded quantifiers might be empty. These classes are extended to ΣB
i

(and ΠB
i ) for all i ≥ 0, in the usual way. More generally we write ΣB

i (L) to denote the class
of ΣB

i -formulas which may have function and predicate symbols from L ∪ L2
A.

Two-sorted complexity classes contain relations R(~x, ~X), where ~x are number arguments
and ~X are string arguments. In defining complexity classes using machines or circuits,
the number arguments are represented in unary notation and the string arguments are
represented in binary. The string arguments are the main inputs, and the number arguments
are auxiliary inputs that can be used to index the bits of strings.

In the two-sorted setting, we can define AC0 to be the class of relations R(~x, ~X) such
that some alternating Turing machine accepts R in time O(logn) with a constant number
of alternations. Then the descriptive complexity characterization of AC0 gives rise to the
following theorem [3, Chapter 4].

I Theorem 1. A relation R(~x, ~X) is in AC0 iff it is represented by some ΣB
0 -formula ϕ(~x, ~X).
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Given a class of relations C, we associate a class FC of string-valued functions F (~x, ~X)
and number functions f(~x, ~X) with C as follows. We require these functions to be p-bounded,
i.e., |F (~x, ~X)| and f(~x, ~X) are bounded by a polynomial in ~x and | ~X|. Then we define FC to
consist of all p-bounded number functions whose graphs are in C and all p-bounded string
functions whose bit graphs are in C.

I Definition 2. Let C be a complexity class. A relation R1(~x, ~X) is C-many-one-reducible
to a relation R2(~y, ~Y ) (written R1 ≤C

m R2) if there are functions ~f, ~F in FC such that

R1(~x, ~X)↔ R2(~f(~x, ~X), ~F (~x, ~X)).

A function H1(~x, ~X) is C-many-one-reducible to a function H2(~y, ~Y ) if there are functions
G, ~f, ~F in FC such that

H1(~x, ~X) = G(H2(~f(~x, ~X), ~F (~x, ~X))).

Here we are mainly interested in the cases that C is either AC0 or L (log space). We
also need a generalization of AC0 many-one reducibility called simply AC0 reducibility in [3,
Definition IX.1.1], which we will call AC0 oracle reducibility. Roughly speaking a function
or relation is AC0-oracle-reducible to a collection L of functions and relations if it can
be computed by a uniform polynomial size constant depth family of circuits which have
unbounded fan-in gates computing functions and relations from L (i.e. ‘oracle gates’), in
addition to Boolean gates. Formally:

I Definition 3. A string function F is AC0-oracle-reducible to a collection L of relations and
functions (written F ≤AC0

o L) if there is a sequence of string functions F1, . . . , Fn = F such
that each Fi is p-bounded and its bit graph is represented by a ΣB

0 (L, F1, . . . , Fi−1)-formula.
A number function f is AC0-oracle-reducible to L if f = |F | for some string function F

which is AC0-reducible to L. A relation R is AC0-oracle-reducible to L if its characteristic
function is AC0-oracle-reducible to L.

We note that standard small complexity classes including AC0, TC0, NC1, NL and P (as
well as their corresponding function classes) are closed under AC0 oracle reductions.

2.2 Two-sorted theories
The theory V0 for AC0 is the basis for developing theories for small complexity classes within
P in [3]. V0 has the vocabulary L2

A and is axiomatized by the set of 2-BASIC axioms, which
express basic properties of symbols in L2

A, together with the comprehension axiom schema

ΣB
0 -COMP : ∃X ≤ y ∀z < y

(
X(z)↔ ϕ(z)

)
,

where ϕ ∈ ΣB
0 (L2

A) and X does not occur free in ϕ. Although V0 has no explicit induction
axiom, nevertheless, using ΣB

0 -COMP and the fact that |X| produces the maximum element
of the finite set X, the following schemes are provable in V0 for every formula ϕ ∈ ΣB

0 (L2
A)

ΣB
0 -IND :

[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x+ 1)

)]
→ ∀xϕ(x),

ΣB
0 -MIN : ϕ(y)→ ∃x

(
ϕ(x) ∧ ¬∃z < xϕ(z)

)
.

In general, we say that a string function F (~x, ~X) is ΣB
1 -definable (or provably total) in a

two-sorted theory T if there is a ΣB
1 formula ϕ(~x, ~X, Y ) representing the graph Y = F (~x, ~X)

of F such that T ` ∀~x ∀ ~X∃!Y ϕ(~x, ~X, Y ). Similarly for a number function f(~x, ~X).
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It was shown in [3, Chapter 5] that V0 is finitely axiomatizable, and a function is provably
total in V0 if and only if it is in FAC0.

In [3, Chapter 9], Cook and Nguyen develop a general method for associating a theory
VC with certain complexity classes C ⊆ P, where VC extends V0 with an additional axiom
asserting the existence of a solution to a complete problem for C. In order for this method to
work, the class C must be closed under AC0-oracle-reducibility (Definition 3). The method
shows how to define a universal conservative extension VC of VC, where VC has string
function symbols for precisely the string functions of FC, and terms for precisely the number
functions of FC. Further, VC proves the ΣB

0 (L)-IND and ΣB
0 (L)-MIN schemes, where L

is the vocabulary of V C. It follows from the Herbrand Theorem that the provably total
functions of both VC and VC are precisely those in FC.

Using this framework Cook and Nguyen define specific theories for several complexity
classes and give examples of theorems formalizable in each theory. The theories of interest
to us in this paper are VTC0, VNC1, VNL and VP for the complexity classes TC0, NC1, NL
and P respectively. All of these theories have vocabulary L2

A. Let 〈x, y〉 denote the pairing
function, which is the L2

A term (x+ y)(x+ y + 1) + 2y. The theory VTC0 is axiomatized by
the axioms of V0 and the axiom:

NUMONES : ∃Z ≤ 1 + 〈n, n〉, δNUM(n,X,Z), (2.1)

where the formula δNUM(n,X,Z) asserts that Z is a matrix consisting of n rows such that
for every y ≤ n, the yth row of Z encodes the number of ones in the prefix of length y of
the binary string X. Thus, the nth row of Z essentially “counts” the number of ones in X.
Because of this counting ability, VTC0 can prove the pigeonhole principle PHP(n, F ) saying
that if F maps a set of n+ 1 elements to a set of n elements, then F is not an injection.

The theory VNC1 is axiomatized by the axioms of V0 and the axiom:

MFV : ∃Y ≤ 2n+ 1, δMFV(n, F, I, Y ), (2.2)

where F and I encode a monotone Boolean formula with n literals and its input respectively,
and the formula δMFV(n,G, I, Y ) holds iff Y correctly encodes the evaluation of the formula
encoded in F on input I. Recall that the monotone Boolean formula value problem is
complete for NC1.

The theory VP is axiomatized by the axioms of V0 and the axiom MCV, which is defined
very similarly to MFV, but the monotone circuit value problem is used instead.

The theory VNL is axiomatized by the axioms of V0 and the axiom:

CONN : ∃U ≤ 〈n, n〉+ 1, δCONN(n,E,U), (2.3)

where E encodes the edge relation of a directed graph G with n vertices v0, . . . , vn−1, and
the formula δCONN(n,E,U) holds iff U is a matrix of n rows, where the dth row encodes the
set of all vertices in G that are reachable from v0 using a path of length at most d.

Similar to what is currently known about complexity classes, it was shown in [3, Chapter
9] that V0 ( VTC0 ⊆ VNC1 ⊆ VNL ⊆ VP.

2.3 The Ccv problem and its complexity classes
A comparator gate is a function C : {0, 1}2 → {0, 1}2, that takes an input pair (p, q) and
outputs a pair (p ∧ q, p ∨ q). Intuitively, the first output in the pair is the smaller bit among
the two input bits p, q, and the second output is the larger bit.
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p x • p ∧ q
q y H p ∨ q

Figure 2

We will use the graphical notation in Fig. 2 to denote a
comparator gate, where x and y denote the names of the wires,
and the direction of the arrow denotes the direction to which
we move the larger bit as shown in the picture.

A comparator circuit is a directed acyclic graph consisting of: input nodes with in-degree
zero and out-degree one, output nodes with in-degree one and out-degree zero, and internal
nodes with in-degree two and out-degree two, where each internal node is labelled with a
comparator gate. We also require each output computed by a comparator gate has fan-out
exactly one. Under this definition, each comparator circuit can be seen as consisting of
the wires that carry the bit values and are arranged in parallel, and each comparator gate
connects exactly two wires as previously shown in Fig. 1.

The comparator circuit value problem (Ccv) is the task of deciding, on a given input
assignment, if a designated wire of a comparator circuit outputs one.

I Definition 4. The complexity class CC (resp. CCSubr, CC∗) is the class of decision
problems (i.e. relations) that are AC0 many-one-reducible (resp. log space-reducible, AC0

oracle-reducible) to Ccv. A decision problem R is CC-complete (resp. CCSubr-complete,
CC∗-complete) if the respective class is the closure of R under the corresponding reducibility.
We say that R is CCall-complete if it is complete in all three senses.

The next result is a straightforward consequence of (1.1) and the definitions involved.

I Lemma 5. If a decision problem is CC-complete then is is CCall-complete.

In the above definition of comparator circuit, each comparator gate can point in either
direction, upward or downward (see Fig. 1). However, it is not hard to show the following.

I Proposition 1. The Ccv problem with the restriction that all comparator gates point in
the same direction is CC-complete.

2.4 The stable marriage problem
An instance of the stable marriage problem (Sm) is given by a number n (specifying the
number of men and the number of women), together with a preference list for each man and
each woman specifying a total ordering on all people of the opposite sex. The goal of Sm
is to produce a perfect matching between men and women, i.e., a bijection from the set of
men to the set of women, such that the following stability condition is satisfied: there are no
two people of the opposite sex who like each other more than their current partners. Such
a stable solution always exists, but it may not be unique. Under this formulation Sm is a
search problem, rather than a function problem.

However there is always a unique man-optimal and a unique woman-optimal solution. In
the man-optimal solution each man is matched with a woman whom he likes at least as well
as any woman that he is matched with in any stable solution. Dually for the woman-optimal
solution. Thus both the man-optimal and the woman-optimal versions are function problems
(and hence equivalent to decision problems.)

We show here that the search version and the decision versions are computationally
equivalent, and each is complete for CC. Section 6.1 shows how to reduce the lexicographical
first maximal matching problem (a decision problem complete for CC) to the search version
of Sm, and Section 6.2 shows how to reduce both the man-optimal and the woman-optimal
function problems of Sm to Ccv.
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2.5 Notation
We write the notation “(T `)” in front of the statement of a theorem to indicate that the
statement is formulated and proved within the theory T .

3 The new theory VCC∗

We encode a comparator circuit as a sequence of pairs 〈i, j〉, where each pair 〈i, j〉 encodes a
comparator gate that swaps the values of the wires i and j if and only if the value on wire i
is greater than the value of wire j. We also allow “dummy” gates of the form 〈i, i〉, which do
nothing. We want to define a formula δCCV(m,n,X, Y, Z), where

X encodes a comparator circuit with m wires and n gates as a sequence of n pairs 〈i, j〉
with i, j < m, and we write (X)i to denote the ith comparator gate of the circuit.
Y (i) encodes the input value for the ith wire as a truth value, and
Z is an (n+ 1)×m matrix, where Z(i, j) is the value of wire j at layer i, where each layer
is simply a sequence of the values carried by all the wires right after a comparator gate.

Although X encodes a circuit with only n gates, Z actually encodes n+ 1 layers since we use
the first layer to encode the input values of the circuit. The formula δCCV(m,n,X, Y, Z) holds
iff Z encodes the correct values of the layers computed by the comparator circuit encoded by
X with input Y , and thus is defined as the following ΣB

0 -formula:

∀i < m
(
Y (i)↔ Z(0, i)

)
∧ ∀i < n∀x < m∀y < m,

(X)i = 〈x, y〉 →

 Z(i+ 1, x)↔
(
Z(i, x) ∧ Z(i, y)

)
∧ Z(i+ 1, y)↔

(
Z(i, x) ∨ Z(i, y)

)
∧ ∀j < m

[
(j 6= x ∧ j 6= y)→

(
Z(i+ 1, j)↔ Z(i, j)

)]
 (3.1)

Note that in this paper we index the entries of matrices starting from 0 instead of 1.

I Definition 6. The theory VCC∗ has vocabulary L2
A and is axiomatized by the axioms of

V0 and the following axiom (the formula δCCV(m,n,X, Y, Z) is defined as in (3.1)):

CCV : ∃Z ≤ 〈m,n+ 1〉+ 1, δCCV(m,n,X, Y, Z) (3.2)

There is a technical lemma required to show that VCC∗ fits the framework described in
[3, Chapter 9]. Define FCCV(m,n,X, Y ) to be the Z satisfying δCCV(m,n.X, Y, Z) (with each
Z(i) set false when it is not determined). We need to show that the aggregate F ∗CCV of FCCV
is ΣB

1 -definable in VCC∗, where (roughly speaking) F ∗CCV is the string function that gathers
the values of FCCV for a polynomially long sequence of arguments. The nature of CC circuits
makes this easy: The sequence of outputs for a sequence of circuits can be obtained from a
single circuit which computes them all in parallel: the lines of the composite circuit comprise
the union of the lines of each component circuit. Thus the framework of [3, Chapter 9] does
apply to VCC∗, and in particular the theory VCC∗ is a universal conservative extension of
VCC∗ whose function symbols are precisely those in the function class FCC.

It is hard to work with VCC∗ up to this point since we have not shown whether VCC∗

can prove the definability of basic counting functions (as in VTC0). However, we have the
following theorem.

I Theorem 7 (VNC1 ⊆ VCC∗). The theory VCC∗ proves the axiom MFV defined in (2.2).

Proof. Observe that each comparator gate can produce simultaneously an AND gate and an
OR gate with the only restriction that each of these gates must have fan-out one. However,
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since all AND and OR gates of a monotone Boolean formula also have fan-out one, each
instance of the Boolean formula value problem is a special case of Ccv. J

A corollary of this theorem is that VTC0 ⊆ VCC∗, and thus we can use the counting
ability of VTC0 freely in VCC∗ proofs.

I Theorem 8 (VCC∗ ⊆ VP). The theory VP proves the axiom CCV defined in (3.2).

Proof. This follows since Ccv is a special case of the monotone circuit value problem. J

4 Lexicographical first maximal matching problem is CC-complete

Let G = (V,W,E) be a bipartite graph, where V = {vi}m−1
i=0 , W = {wi}n−1

i=0 and E ⊆ V ×W .
The lexicographical first maximal matching (lfm-matching) is the matching produced by
successively matching each vertex v0, . . . , vm−1 to the least vertex available in W . The
lexicographical first maximal matching problem (Lfmm) is to decide if a designated edge
belongs to the lfm-matching of G, and 3Lfmm is the restriction of Lfmm to graphs of
degree at most three. In this section we give simplified constructions showing that Ccv is
AC0-many-one-reducible to 3Lfmm and Lfmm is AC0-many-one-reducible to Ccv.

Formally, let Em×n be a matrix encoding the edge relation of a bipartite graph with
m bottom nodes and n top nodes, where E(i, j) = 1 iff the bottom node vi is adjacent
to the top node wj . Let L be a matrix of the same size as E with the following intended
interpretation: L(i, j) = 1 iff the edge (vi, wj) is in the lfm-matching. We can define a
ΣB

0 -formula δLFMM(m,n,X,L), which holds iff L properly encodes the lfm-matching of the
bipartite graph represented by X as follows:

∀i < m∀j < n, L(i, j)↔
[
E(i, j) ∧ ∀k < j ∀` < i

(
¬L(i, k) ∧ ¬L(`, j)

)
∧ ∀k < j

(
¬E(i, k) ∨ ∃i′ < iL(i′, k)

) ] . (4.1)

4.1 Ccv ≤AC0

m 3Lfmm
By Proposition 1, it suffices to consider only instance of Ccv, where all comparator gates
point upward. We will show that these instances of Ccv are AC0-many-one-reducible to
instances of 3Lfmm, which consist of bipartite graphs with degree at most three.

The key observation is that a comparator gate on the left below closely relates to an
instance of 3Lfmm on the right. We use the top nodes p0 and q0 to represent the values p0
and q0 carried by the wires x and y respectively before the comparator gate, and the nodes
p1 and q1 to represent the values of x and y after the comparator gate, where a top node is
matched iff its respective value is one.

p0 x N p1 = p0 ∨ q0

q0 y • q1 = p0 ∧ q0

p0 q0 p1 q1

x y

If nodes p0 and q0 are not previously matched, i.e. p0 = q0 = 0 in the comparator circuit,
then edges 〈x, p0〉 and 〈y, q0〉 are added to the lfm-matching. So the nodes p1 and q1 are not
matched. If p0 is previously matched, but q0 is not, then edges 〈x, p1〉 and 〈y, q0〉 are added
to the lfm-matching. So the node p1 will be matched but q1 will remain unmatched. The
other two cases are similar.

Thus, we can reduce a comparator circuit to the bipartite graph of an 3Lfmm instance
by converting each comparator gate into a “gadget” described above. We will describe our
method through an example, where we are given the comparator circuit in Fig. 3.
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0 a N 1
1 b • N 1
1 c • 0

0 1 2

Figure 3

We divide the comparator circuit into vertical layers 0, 1,
and 2 as shown in Fig. 3. Since the circuit has three wires a,
b and c, for each layer i, we use six nodes, including three top
nodes ai, bi and ci representing the values of the wires a, b
and c respectively, and three bottom nodes a′i, b′i, c′i, which are
auxiliary nodes used to simulate the effect of the comparator
gate at layer i.
Layer 0: This is the input layer, so we add an edge {xi, x

′
i} iff the wire x takes input 1. In

this example, since b and c are wires taking input 1, we add the edges {b0, b
′
0} and {c0, c

′
0}.

a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Layer 1: We then add the gadget simulating the comparator gate from wire b to wire a.
a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Since the value of wire c does not change when going from layer 0 to layer 1, we can simply
propagate the value of c0 to c1 using the pair of dotted edges in the picture.
Layer 2: We proceed very similarly to layer 1 to get the following bipartite graph.

a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Finally, we can get the output values of the comparator circuit by looking at the “output”
nodes a2, b2, c2 of this bipartite graph. We can easily check that a2 is the only node that
remains unmatched, which corresponds exactly to the only zero produced by wire a of the
comparator circuit above.

The construction above is an AC0 many-one reduction since each gate in the comparator
circuit can be reduced to exactly one gadget in the bipartite graph that simulates the effect
of the comparator gate. Note that since it can be tedious and unintuitive to work with
AC0-circuits, it might seem hard to justify that our reduction is an AC0-function. However,
thanks to Theorem 1, we do not have to work with AC0-circuits directly; instead, it is not
hard to construct a ΣB

0 -formula that defines the above reduction. The correctness of our
construction can be proved in VCC∗ by using ΣB

0 induction on the layers of the circuits and
arguing that the matching information of the nodes in the bipartite graph can be correctly
translated to the values carried by the wires at each layer.

4.2 Lfmm ≤AC0

m Ccv
Consider an instance of Lfmm consisting of a bipartite graph on the left of Fig. 4. Recall
that we find the lfm-matching by matching the bottom nodes x, y, . . . successively to the first
available node on the top. Hence we can simulate the matching of the bottom nodes to the
top nodes using comparator circuit on the right of Fig. 4, where we can think of the moving
of a one, say from wire x to wire a, as the matching of node x to node a in the original
bipartite graph. Note that we draw bullets without any arrows going out from them in the
circuit to denote dummy gates, which do nothing. These dummy gates are introduced for
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a b c d

x y z

1 x • • • • 0
1 y • • • • 0
1 z • • • • 0
0 a H H 1
0 b H H 1
0 c H H 1
0 d H 0

Figure 4

the following technical reason. Since the bottom nodes might not have the same degree, the
position of a comparator gate really depends on the number of edges that do not appear
in the bipartite graph, which makes it harder to give a direct AC0-reduction. By using
dummy gates, we can treat the graph as if it is a complete bipartite graph, where the missing
edges are represented by dummy gates. This can easily be shown to be an AC0-reduction
from Lfmm to Ccv, and its correctness can be carried out in VCC∗. This together with the
reduction from Section 4.1 gives us the following theorem.

I Theorem 9. (VCC∗ `) The Lfmm problem is CC-complete.

Since the reduction from Ccv to Lfmm in Section 4.1 only produces bipartite graphs
with degree at most three, we have the following corollary.

I Corollary 10. (VCC∗ `) The 3Lfmm problem is CC-complete.

5 The theory VCC∗ contains VNL

Each instance of the Reachability problem consists of a directed acyclic graph G = (V,E),
where V = {v0, . . . , vn−1}, and we want to decide if there is a path from v0 to vn−1. It is
well-known that Reachability is NL-complete. It is also well-known that the Reachability
problem still remains NL-complete under the following restriction:

The graph G only has directed edges of the from (vi, vj), where i < j. (5.1)

We will show how to use comparator circuits to solve the above restricted instances of
Reachability. We believe that our new construction is more intuitive than the one in
[8, 6]. Moreover, we reduce Reachability to Ccv directly without going through some
intermediate complete problem, and this was stated as an open problem in [8, Chapter 7.8.1].

We will demonstrate our construction through a simple example, where we have the
directed graph in Fig. 5 satisfying the assumption (5.1). We will build a comparator circuit
as in Fig. 6, where the wires ν0, . . . , ν4 represent the vertices v0, . . . , v4 of the preceding
graph and the wires ι0, . . . , ι4 are used to feed 1-bits into the wire v0, and from there to
the other wires vi reachable from v0. We let every wire ιi take input one and every wire
νi take input zero. We next show how to construct the gadget in the boxes. For a graph
with n vertices (n = 5 in our example), the gadget in the `th box is constructed as follows:

v0

v1

v2

v3

v4

Figure 5

1: Add a comparator gate from wire ι` to wire ν0

2: for i = 0, . . . , n− 1 do
3: for j = i+ 1, . . . , n− 1 do
4: Add a comparator gate from νi to νj if (vi, vj) ∈ E,

or a dummy gate on νi otherwise.
5: end for
6: end for

Note that we only use the loop structure to clarify the order the gates are added. The
construction can easily be done in AC0 since the position of each gate can be calculated
exactly, and thus all gates can be added independently from one another. Note that for a
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graph with n vertices, we have at most n vertices reachable from a single vertex, and thus we
need n gadgets described above. In our example, there are at most 5 wires reachable from
wire ν0, and thus we utilize the gadget 5 times.

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

Figure 6 A comparator circuit that solves Reachability. (The dummy gates are omitted.)

Intuitively, the construction works since each gadget from a box looks for the lexicographical
first maximal path starting from v0 (with respect to the natural lexicographical ordering
induced by the vertex ordering v0, . . . , vn), and then the vertex at the end of the path will be
marked (i.e. its wire will now carry one) and thus excluded from the search of the gadgets
that follow. For example, the gadget from the left-most dashed box in Fig. 6 will move a
one from wire ι0 to wire ν0 and from wire ν0 to wire ν1. This essentially “marks” the wire
ν1 since we cannot move the one away from ν1, and thus ν1 can no longer receive any new
incoming ones. Hence, the gadget from the second box in Fig. 6 will repeat the process of
finding the lex-first maximal path from v0 to the remaining (unmarked) vertices. These
searches end when all vertices reachable from v0 are marked. Note that this has the same
effect as applying the depth-first search algorithm to find all the vertices reachable from v0.
Thus, we can prove the following theorem.

I Theorem 11 (VNL ⊆ VCC∗). The theory VCC∗ proves the axiom CONN defined in (2.3).

As a of consequence of Theorem 11, we have the following result.

I Theorem 12. CC∗ is closed under many-one NL-reductions, and hence CCSubr ⊆ CC∗.

Proof. This follows from the following three facts: The function class FCC∗ is closed under
composition, FNL ⊆ FCC, and a decision problem is in CC∗ if and only if its characteristic
function is in FCC∗. J

6 The Sm problem is CC-complete

6.1 3Lfmm ≤AC0

m Sm
Let G = (V,W,E) be a bipartite graph from an instance of 3Lfmm, where V is the set of
bottom nodes, W is the set of top nodes, and E is the edge relation such that the degree
of each node is at most three (see the example in the figure on the left below). Without
loss of generality, we can assume that |V | = |W | = n. To reduce it to an instance of Sm, we
double the number of nodes in each partition, where the new nodes are enumerated after
the original nodes and the original nodes are enumerated using the ordering of the original
bipartite graph, as shown in the diagram on the right below. We also let the bottom nodes
and top nodes represent the men and women respectively.

w0

m0

w1

m1

w2

m2

w3

m3

w4

m4

w5

m5
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It remains to define a preference list for each person in this Sm instance. The preference
list of each man mi, who represents a bottom node in the original graph, starts with all
the woman wj (at most three of them) adjacent to mi in the order that these women are
enumerated, followed by all the women wn, . . . , w2n−1; the list ends with all women wj not
adjacent to mi also in the order that they are enumerated. For example, the preference list
of m2 in our example is w2, w3, w4, w5, w0, w1. The preference list of each newly introduced
man mn+i simply consists of w0, . . . , wn−1, wn, . . . , w2n−1, i.e., in the order that the top
nodes are listed. Preference lists for the women are defined dually.

Intuitively, the preference lists are constructed so that any stable marriage (not necessarily
man-optimal) of the new Sm instance must contain the lfm-matching of G. Furthermore, if a
bottom node u from the original graph is not matched to any top node in the lfm-matching
of G, then the man mi representing u will marry some top node wn+j , which is a dummy
node that does not correspond to any node of G. Thus we have the following theorem.

I Theorem 13. (VCC∗ `) The 3Lfmm problem is AC0-many-one-reducible to Sm.

6.2 Sm ≤AC0

m Ccv
In this section, we formalize a reduction from Sm to Ccv due to Subramanian [8, 9].
Subramanian did not reduce Sm to Ccv directly, but to the network stability problem
built from the less standard X gate, which takes two inputs p and q and produces two
outputs p′ = p ∧ ¬q and q′ = ¬p ∧ q. It is important to note that the “network” notion
in Subramanian’s work denotes the generalization of circuits by allowing connection from
output of a gate to input of any gate including itself, and thus a network in his definition
might contain cycles. An X-network is a network consisting only of X gates under the
important restriction that each X gate has fan-out exactly one for each output it computes.
The network stability problem for X gate (Xns) is then to decide if an X-network has a
stable configuration, i.e., a way to assign Boolean values to the wires of the network so that
the values are compatible with all the X gates of the network. Subramanian showed in his
dissertation [8] that Sm, Xns and Ccv are all equivalent under log space reduction.

We do not work with Xns in this paper since networks are less intuitive and do not have
a nice graphical representation as do comparator circuits. By utilizing Subramanian’s idea,
we give a more direct AC0-reduction from Sm to Ccv. For this goal, it turns out to be
conceptually simpler to go through a new variant of Ccv, where the comparator gates are
three-valued instead of Boolean.

6.2.1 Three-valued Ccv is CC-complete
We define the Three-valued Ccv problem similarly to Ccv, except each wire can now
take any of the values 0, 1 or ∗. A wire takes value ∗ when its value is not known to be 0 or
1. The two outputs of a three-valued comparator gate on inputs p and q is defined as follows.

p ∧ q =


0 if p = 0 or q = 0
1 if p = q = 1
∗ otherwise.

p ∨ q =


0 if p = q = 0
1 if p = 1 or q = 1
∗ otherwise.

Every instance of Ccv is also an instance of Three-valued Ccv. It is also not hard to show
that every instance of Three-valued Ccv is AC0-reducible to an instance of Ccv by using
a pair of Boolean wires to represent each three-valued wire and adding comparator gates
appropriately to simulate three-valued comparator gates. Thus, the Three-valued Ccv
problem is CC-complete.
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6.2.2 A fixed-point method for Sm

We formalize a reduction from Sm to Three-valued Ccv based on [8, 9]. Consider an
instance of Sm, where preference matrices for men a, b and women x, y are given in Fig. 7.
From this instance of Sm, we construct a three-valued comparator circuit in Fig. 7 as follows.

Men: a x y

b y x

Women: x a b

y a b

1 ai
0 • •

0 xi
0 H •

∗ ai
1 •

0 yi
0 H •

∗ bi
1 •

∗ xi
1 H

1 bi
0 • •

∗ yi
1 H

I0 1 ao
0

0 xo
0

0 ao
1 H

0 yo
0

0 bo
1 H

0 xo
1 H

1 bo
0

0 yo
1 H

Figure 7

First, since we have two men a, b and two women x, y, we start with four pairs of wires
(ai

0, x
i
0), (ai

1, y
i
0), (bi

0, y
i
1), and (bi

1, x
i
1), connected by four gates 〈ai

0, x
i
0〉, 〈ai

1, y
i
0〉, 〈bi

0, y
i
1〉 and

〈bi
1, x

i
1〉 respectively, which represent four possible ways of pairing men a, b to women x, y.

The subscripts are important in our construction since the subscript of a person p within a
pair indicates the preference of a person about his or her partner in the pair; the superscripts
i are less important, and used to indicate that all of these wires are the ‘input wires’ of
this construction. For example, the subscript of b in the pair (bi

0, y
i
1) indicates that y is a’s

first choice, and the subscript of y in this pair indicates that b is y’s second choice. For
convenience, let Pair be a binary predicate such that Pair(mi

j , w
i
k) holds iff m is a man and w

is a woman and wires mi
j and wi

k are paired up, i.e., w is at the jth position of m’s preference
list and m is at the kth position of w’s preference list.

Second, we will introduce four more pairs of ‘output wires’ (ao
0, x

o
0), (ao

1, y
o
0), (bo

0, y
o
1), and

(bo
1, x

o
1), which are arranged in exactly the same order as input wires, where the subscripts

follow the same preference rules as with the input wires. We also define Pair(mo
j , w

o
k) to hold

iff m is man and w is woman and mo
j and wo

k are paired up. Since all subscripts of the wires
encode the preference information, they can be used in our construction as follows. Assume
that preference lists are of size n, then for every person p, we add a gate from wire pi

j to
po

j+1 for every j < n− 1. In our example, we add four gates 〈ai
0, a

o
1〉, 〈bi

0, b
o
1〉, 〈xi

0, x
o
1〉, and

〈yi
0, y

o
1〉 as shown in Fig. 7. Note that these gates can be added in any order. It remains to

show how to feed inputs to the ‘output wires’. We let output wire mo
0 take input one for

every man m, and let the rest of output wires have zero inputs.
Given an instance of Sm with n men and n women, defineM : {0, 1, ∗}2n2 → {0, 1, ∗}2n2

to be the function computed by the preceding circuit construction, where the inputs ofM
are those fed into the input wires, and the outputs ofM are those produced by the output
wires. We will use the following notation. Any sequence I ∈ {0, 1, ∗}2n2 can be seen as an
input of function M, and thus we write I(pi

j) to denote the input value of wire pi
j with

respect to I. Similarly, if a sequence J ∈ {0, 1, ∗}2n2 is an output ofM, then we write J(po
j)
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to denote the output value of wire po
j .

Let sequence I0 ∈ {0, 1, ∗}2n2 be an input ofM defined as follows: I0(mi
0) = 1 for every

man m, and I0(wi
0) = 0 for every woman w, and I0(pi

j) = ∗ for every person p and every j,
1 ≤ j < n. Note that the number of ∗’s in the sequence I0 is

c(n) = 2n2 − 2n. (6.1)

Our version of Subramanian’s method [8, 9] consists of computing

Ic(n) =Mc(n)(I0),

whereMd simply denotes the dth power ofM, i.e. the function we get by composingM
with itself d times. It turns out that Ic(n) is a fixed point ofM, i.e. Ic(n) =M(Ic(n)). To
show this, we define a sequence I ′ to be an extension of a sequence I if I(p) = I ′(p) for every
person p such that I(p) ∈ {0, 1}. We can show thatM(I) is an extension of I for every I
which extends I0, and henceMd(I0) extends I0 for all d. It follows thatMc(n)(I0) is a fixed
point because there are at most c(n) ∗’s to convert to 0 or 1.

Now we can extract a stable marriage from the fixed point Ic(n) by letting B be the
sequence obtained by substituting zeros for all remaining ∗-values in Ic(n). Then B is also
a fixed point of M. A stable marriage can then be extracted from B by announcing the
marriage of a man m and a woman w if and only if Pair(mo

j , w
o
k) and B(mo

j) = 1 and
B(wo

k) = 0. Our goal is to formalize the correctness of this method.
In the example in Fig. 7, we can check that the fixed point I4 = M4(I0) in this case

simply consists of Boolean values, where (I4(ao
0), I4(xo

0)) = (1, 0) and (I4(bo
0), I4(yo

1)) = (1, 0).
Thus, women x, y are married to men a, b respectively, which is a stable marriage.

More formally, given a three-valued sequence I, let I[∗ → v] denote the sequence we get
by substituting v for all the ∗-values in I. Define G to be an AC0-function, which takes as
input a Boolean fixed point B ofM, and returns a marriage M in the way explained above.
(Note that since B =M(B), we have B(pi

k) = B(po
k) for every person p and every k < n;

however, the superscripts o and i are useful for distinguishing between input and output
values of the comparator circuit computingM.) We can prove the following theorem.

I Theorem 14. (VCC∗ `) Let M be a stable marriage of the Sm instance I. We let
M0 = G(Ic(n)[∗ → 0]) and M1 = G(Ic(n)[∗ → 1]). Then M0 and M1 are stable marriages,
and every man gets a partner in M0 no worse than the one he gets in M , and every woman
gets a partner in M1 no worse than the one she gets in M . In other words, M0 and M1 are
the man-optimal and woman-optimal solutions respectively.

Corollary 10 and Theorems 13 and 14 give us the following corollary.

I Corollary 15. (VCC∗ `) The Sm problem is CC-complete.

Proof. Following the above construction, we can write a ΣB
0 -formula defining an AC0 function

that takes as input an instance of Sm with preference lists for all the men and women, and
produces a three-valued comparator circuit that computes the three-valued fixed point
Ic(n) = Mc(n)(I0), and then extracts the man-optimal stable marriage from Ic(n)[∗ → 0].
Thus the man-optimal (and similarly the woman-optimal) decision versions of Sm are AC0-
many-one-reducible to Three-valued Ccv, and hence also to Ccv. Corollary 10 shows
that 3Lfmm is CC-complete, and Theorem 13 shows that 3Lfmm is AC0-many-one-reducible
to Sm. Hence, Sm is CC-complete under AC0 many-one reductions. J
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7 Conclusion and future work

Our correctness proof of the reduction from Sm to Ccv is a nice example showing the utility
of three-valued logic for reasoning about uncertainty. Since an instance of Sm might not have
a unique solution, the fact that the fixed point Ic(n) =Mc(n)(I0) is three-valued indicates
that the construction cannot fully determine how all the men and women can be matched.
Thus, different Boolean fixed-point extensions of Ic(n) give us different stable marriages.

It is worth noting that Subramanian’s method is not the “textbook” method for solving
Sm. The most well-known is the Gale-Shapley algorithm [4]. In fact, our original motivation
was to formalize the correctness of the Gale-Shapley algorithm, but we do not know how to
talk about the computation of the Gale-Shapley algorithm in VCC∗. Thus, we leave open
the question whether VCC∗ proves the correctness of the Gale-Shapley algorithm.

We believe that CC deserves more attention, since on the one hand it contains interesting
complete problems, but on the other hand we have no real evidence (for example based
on relativized inclusions) concerning whether Ccv is complete for P, and if not, whether
it is comparable to NC. The perfect matching problem (for bipartite graphs or general
undirected graphs) shares these same open questions with Ccv. However several randomized
NC2 algorithms are known for perfect matching [5, 7], but no randomized NC algorithm is
known for any CC-complete problem.

Another open question is whether the three Ccv complexity classes mentioned in (1.1)
coincide, which is equivalent to asking whether CC (the closure of Ccv under AC0 many-one
reductions) is closed under AC0 oracle reductions, or equivalently whether the function class
FCC is closed under composition. A possible way to show this would be to show the existence
of universal comparator circuits, but we do not know whether such circuits exist.

The analogous question for standard complexity classes such as TC0, L, NL, NC, P has
an affirmative answer. That is, each class can be defined as the AC0 many-one closure of a
complete problem, and the result turns out to be also closed under AC0 oracle reducibilities.
(A possible exception is the function class #L, whose AC0 oracle closure is the #L hierarchy
[1]. This contains the integer determinant as a complete problem.)
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Relating Two Semantics of Locally Scoped Names
Steffen Lösch and Andrew M. Pitts
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Abstract
The operational semantics of programming constructs involving locally scoped names typically
makes use of stateful dynamic allocation: a set of currently-used names forms part of the state and
upon entering a scope the set is augmented by a new name bound to the scoped identifier. More
abstractly, one can see this as a transformation of local scopes by expanding them outward to an
implicit top-level. By contrast, in a neglected paper from 1994, Odersky gave a stateless lambda
calculus with locally scoped names whose dynamics contracts scopes inward. The properties of
‘Odersky-style’ local names are quite different from dynamically allocated ones and it has not
been clear, until now, what is the expressive power of Odersky’s notion. We show that in fact
it provides a direct semantics of locally scoped names from which the more familiar dynamic
allocation semantics can be obtained by continuation-passing style (CPS) translation. More
precisely, we show that there is a CPS translation of typed lambda calculus with dynamically
allocated names (the Pitts-Stark ν-calculus) into Odersky’s λν-calculus which is computationally
adequate with respect to observational equivalence in the two calculi.
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F.4.1 Lambda calculus and related systems

Keywords and phrases Local names, continuations, typed λ-calculus, observational equivalence
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1 Introduction

Locally scoped names are a ubiquitous feature of programming languages. Here we will be
concerned with properties of this notion that are independent of the nature of the entities
being named, be they mutable storage cells, objects, exceptions, communication channels,
cryptographic keys, or whatever. The only assumption that we make about names is that
the ambient programming language has the ability to test them for equality. The opera-
tional semantics of such locally scoped names is commonly specified in terms of dynamically
allocated fresh names, also known as generative names. This is a state-based explanation
of the meaning of the scoping construct: to execute a program with a locally scoped name,
the current state is augmented with a fresh name and the body of the scope is executed
with the scoped name bound to the fresh one. The combination of this simple mechan-
ism with other features, especially higher-order functions as occurs in the ML family of
languages, can result in programs with very complicated behaviour. The Pitts-Stark ν-
calculus [15, 20] was intended to make this point, taking the measure of behaviour to be
observational equivalence (also known as contextual equivalence), the relation between two
programs of having the same observable behaviour when placed in any program context.
Syntactically, the ν-calculus is simply-typed λ-calculus over ground types Name and Bool
(for names and booleans respectively), augmented with a construct νa. t for restricting the
scope of a name a to a term t. The ν-calculus is given an operational semantics that makes it
a fragment of Standard ML [10] by interpreting Name as ML’s type unit ref of references to

© S. Lösch and A. M. Pitts;
licensed under Creative Commons License NC-ND

Computer Science Logic 2011 (CSL’11).
Editor: Marc Bezem; pp. 396–411

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2011.396
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Steffen Lösch and Andrew M. Pitts 397

the unit value and taking νa. t to be let a = ref() in t. The properties of observational
equivalence for the ν-calculus turn out to be remarkably complex, despite the simplicity of
the language. See [2, Sect. 1] for a survey of the literature on the ν-calculus.

The ν-calculus combines dynamically allocated local names with higher-order functions.
But is dynamic allocation the only way to interpret the meaning of locally scoped names? In
fact there is another, but much less well known semantics for them. At about the same time
that the ν-calculus was introduced, Odersky developed what he called the λν-calculus [12].
Syntactically this is essentially identical to the ν-calculus; it has pairs as well as functions,
but the ν-calculus could have had those too (we add them here). However, the local scoping
construct νa. t is given a very different semantics, which we recall in Sect. 4. On the one hand,
its most important feature is that it is stateless, or ‘referentially transparent’; and Odersky
shows that λν-calculus is a conservative extension of λ-calculus with respect to observational
equivalence. On the other hand, it has some properties that seem very strange compared
with the more familiar, generative interpretation. For instance, dynamic allocation of locally
scoped names generally does not commute with function abstraction; whereas in Odersky’s
calculus, νa. λx � t is observationally equivalent to (indeed, reduces to) λx � νa. t. (For
example, in the ν-calculus νa. λx � a and λx � νa. a are not observationally equivalent
terms of type Name � Name—see the discussion after Remark 3.2 below; however, they are
observationally equivalent in the λν-calculus.) Even more radically, in Odersky’s calculus
there is no sharing of local names between the components of a tuple, since νa. (t1 , t2) is
observationally equivalent to (νa1. t1[a1/a] , νa2. t2[a2/a]).

Contribution of this paper. We shed new light on Odersky’s version of locally scoped
names by showing that it stands in a surprising relation to the more familiar, dynamic al-
location interpretation. We prove that Odersky’s version of νa. t provides a ‘direct’ meaning
for locally scoped names from which the behaviour determined by dynamic allocation can be
recovered via continuations. More precisely, we show that a standard continuation passing
style (CPS) transformation on typed λ-calculus can be extended to locally scoped names
so as to provide a computationally adequate translation of ν-calculus into λν-calculus. Dy-
namically allocated names at a particular type are translated to Odersky-style local names
at the corresponding function type of continuations. Quite surprisingly, even though Oder-
sky’s version of νa. (−) behaves quite differently with respect to functions compared to the
dynamic allocation semantics of νa. (−), we show that the CPS translation is sound and
complete for evaluating boolean terms (Theorem 5.1). Since the translation is composi-
tional, it follows that two ν-calculus terms of any type are observationally equivalent if their
CPS-translations are observationally equivalent in the λν-calculus

Our proof of these results is via a new formulation of λν-calculus ‘big step’ operational
semantics and via a by-now standard use of Felleisen-style evaluation contexts for ν-calculus.
At the heart of the proof we construct (in Sect. 5.2) a logical relation between λν-calculus and
ν-calculus tailored to the CPS transformation. Although we use the methods of operational
semantics, as we explain in Sect. 6 our results have their origin in a denotational semantics
of dynamic allocation using nominal sets [18] and, more recently, a simple nominal sets
model for Odersky-style local names [14]. Our results suggest re-evaluating the usefulness of
Odersky’s semantics of locally scoped names and the concluding section gives some avenues
for doing that.
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T ∈ Type ::=
Name names
Bool booleans
T × T pairs
T � T functions

t ∈ Term ::=
x variable, x ∈ V
a atomic name, a ∈ A
νa. t locally scoped name
t = t name equality test
true truth
false falsity
if t then t else t conditional
(t , t) pair
let (x , x) = t in t unpairing
λx� t function abstraction
t t application

Figure 1 Syntax

2 Simply Typed λ-Calculus with Local Names

We use the same syntax and typing rules for the Pitts-Stark ν-calculus as for the Odersky
λν-calculus. This unification is just a slight deviation from the original syntax [15, 12], but
the expressiveness remains the same. To the usual simply typed λ-calculus with pairs and
booleans we add names that can be tested for equality and locally scoped. The types and
terms of the resulting language are given in Fig. 1.

It is convenient to use two different sorts of identifier in terms, drawn from disjoint
infinite sets V and A. Elements x, y, z . . . of V are called variables and elements a, b, c, . . . of
A are called atomic names. We make this syntactic distinction to emphasise the fact that the
two different sorts of identifier have different substitution properties. Validity of judgements
in the calculi we consider here is preserved under substituting terms for variables; but in
general it is only preserved under permutations of atomic names, rather than more general
forms of substitution for names.

As a matter of notation we write t[t1/x1, . . . , tn/xn] for the (capture-avoiding, simultan-
eous) substitution of terms t1, . . . , tn for free occurrences of the distinct variables x1, . . . , xn
in the term t. We identify terms up to α-equivalence of bound variables and bound atomic
names. The binding forms are as follows: free occurrences of a in t become bound in νa. t;
free occurrences of x1 and x2 in t′ become bound in let (x1 , x2) = t int′; and free occurrences
of x in t become bound in λx� t. We write fv(t) and fn(t) respectively for the finite sets of
free variables and free atomic names of t. We say that a term t is variable-closed if fv(t) = ∅
(even if fn(t) is non-empty).

The grammar in Fig. 1 specifies ‘raw’ terms, but we are only interested in well-typed
terms. We specify those via an inductively defined typing relation Γ ` t : T , where the
typing context Γ = {x1 : T1, . . . , xn : Tn} is a finite map from variables xi to types Ti whose
domain dom(Γ) = {x1, . . . , xn} contains the set fv(t) of free variables of t. Rather than also
recording the free atomic names of t in the typing context, we have chosen to leave them
implicit, because it simplifies notation later. Thus the typing rules involving names are as
follows.

Γ ` a : Name
Γ ` t : T

Γ ` νa. t : T
Γ ` t : Name Γ ` t′ : Name

Γ ` t = t′ : Bool

The typing rules for the other syntactic constructs are entirely conventional, so we omit
them here.
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a ∪ {a} , t ⇓ν a′ , v
a , νa. t ⇓ν a′ , v

(a /∈ a)
a , v ⇓ν a , v

(v = a, true, false, λx� t)

a , t1 ⇓ν a′ , a1 a′ , t2 ⇓ν a′′ , a2

a , t1 = t2 ⇓ν a′′ , δa1 a2

where δa1 a2 ,

{
true if a1 = a2

false if a1 6= a2

a , t1 ⇓ν a′ , true a′ , t2 ⇓ν a′′ , v
a , if t1 then t2 else t3 ⇓ν a′′ , v

a , t1 ⇓ν a′ , false a′ , t3 ⇓ν a′′ , v
a , if t1 then t2 else t3 ⇓ν a′′ , v

a , t1 ⇓ν a′ , v1 a′ , t2 ⇓ν a′′ , v2

a , (t1 , t2) ⇓ν a′′ , (v1 , v2)

a , t ⇓ν a′ , (v1 , v2) a′ , t′[v1/x1, v2/x2] ⇓ν a′′ , v
a , let (x1 , x2) = t in t′ ⇓ν a′′ , v

a , t1 ⇓ν a′ , λx� t a′ , t2 ⇓ν a′′ , v a′′ , t[v/x] ⇓ν a′′′ , v′

a , t1 t2 ⇓ν a′′′ , v′

where v ∈ Val ::= x | a | true | false | (v , v) | λx� t

Figure 2 ν-Calculus evaluation relation

We will be concerned with various congruence relations between well-typed terms. Here
is the general definition of such a relation (cf. [13, Definition 7.5.1]).

I Definition 2.1. A type-respecting binary relation is specified by a set R of quadruples
(Γ, t1, t2, T ), where Γ ` t1 : T and Γ ` t2 : T . We write Γ ` t1 R t2 : T instead of
(Γ, t1, t2, T ) ∈ R. Such a relation is a congruence if it is reflexive, symmetric, transitive and
compatible with the term-forming operations. The latter means

Γ ` a R a : Name
Γ ` t1 R t2 : T ⇒ Γ ` νa. t1 R νa. t2 : T
Γ ` t1 R t2 : Name ∧ Γ ` t : Name ⇒ Γ ` (t1 = t) R (t2 = t) : Bool ∧

Γ ` (t = t1) R (t = t2) : Bool

and similar conditions for the other term-forming operations.

3 ν-Calculus

The language of the previous section becomes the ν-calculus [15, 20] if we evaluate locally
scoped names νa. t using the mechanism of dynamic allocation (and use call-by-value evalu-
ation for pairs and functions). Figure 2 gives rules in the style of the Definition of Standard
ML [10] for inductively defining a relation a , t ⇓ν a′ , v, where

a and a′ are finite subsets of A with a ⊆ a′;
t and v are variable-closed terms with fn(t) ⊆ a and fn(v) ⊆ a′;
v ∈ Val ⊆ Term is a value, as specified by the grammar in Fig. 2.

We use this relation to define observational equivalence for the ν-calculus, Γ ` t1 ≈ν t2 : T .
To do so, we believe it is helpful to take the abstract, relational point of view first advocated
by Gordon and Lassen [8]. We wish ≈ν to be a congruence in the sense of Definition 2.1
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and to be ν-adequate for observing evaluation of boolean terms in the sense that

∅ ` t1 ≈ν t2 : Bool ∧ fn(t1, t2) ⊆ a ⇒ (a , t1 ⇓ν _ , true⇔ a , t2 ⇓ν _ , true) (1)
where a , t ⇓ν _ , true , (∃a′) a , t ⇓ν a′ , true. (2)

I Definition 3.1 (ν-Calculus observational equivalence). Arguing as in the proof of [13, The-
orem 7.5.3], we have that the union of all type-respecting binary relations that are both
compatible (Definition 2.1) and have the ν-adequacy property (1) is an equivalence relation;
and hence it is the largest ν-adequate congruence relation. We denote it by ≈ν and call it
ν-calculus observational equivalence.

The fact that in (1) we observe convergence just to true is not significant; also observing
convergence to false, or to a particular atomic name, does not change ≈ν . On the other hand,
just observing convergence per se would result in a trivial equivalence, since ν-calculus lacks
any non-terminating features such as fixpoint recursion (as a matter of choice rather than
necessity).

I Remark 3.2 (contextual equivalence). The terms ‘observational equivalence’ and ‘contex-
tual equivalence’ are used more or less interchangeably in the literature on ν-calculus. (One
might say that they are contextually equivalent terms.) We have chosen the first, because we
favour the more abstract, ‘context-free’ characterization that we have used as the definition.
However, it is possible to give a more concrete characterization of ≈ν in terms of substitution
of terms into term contexts, that is, syntax-trees with a hole; see [15, Definition 4]. Both free
variables and free atomic names in terms may get captured by this form of substitution. So
term contexts are not identified up to α-equivalence and one has to give separate and more
elaborate typing rules for them. These complications are avoided by using the relational
definition we have given.

However one defines it, the properties of ≈ν are known to be very complicated; see [2]
for a recent discussion of this fact. In particular, terms of function or product type do not
behave extensionally up to observational equivalence. For example

∅ ` νa. λx� a 6≈ν λx� νa. a : Name � Name (3)

(since applying λf � νa. (f a = f a) to each term gives terms that evaluate to true and false
respectively); and yet applying these two terms to any name yields observationally equivalent
results. Similarly

∅ ` νa. νb. (a , b) 6≈ν νa. (a , a) : Name× Name (4)

(since applying λx � let (x1 , x2) = x in (x1 = x2) to each term gives terms that evaluate to
false and true respectively); and yet applying first and second projection functions to them
yields observationally equivalent results in each case.

4 λν-Calculus

Figure 3 inductively defines a state-free evaluation relation t ⇓λν c, where t and c are
variable-closed terms (possibly with free atomic names) and c is a canonical form, that is,
in the subset Cf ⊆ Term of terms specified by the grammar at the bottom of the figure.
The rules for evaluating booleans, pairs and functions are just those of the pure call-by-
name typed λ-calculus. It is the first rule in the figure, for evaluating νa. t, that embodies
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t ⇓λν c
νa. t ⇓λν arc

where arc ,


νa. a if c = a

c if c ∈ (A− {a}) ∪ {νa. a, true, false}
(νa. t1 , νa. t2) if c = (t1 , t2)

λx� νa. t if c = λx� t

c ⇓λν c
t1 ⇓λν c1 t2 ⇓λν c2

t1 = t2 ⇓λν δc1 c2

where δc1 c2 ,

{
true if c1 = c2

false if c1 6= c2

t1 ⇓λν true t2 ⇓λν c
if t1 then t2 else t3 ⇓λν c

t1 ⇓λν false t3 ⇓λν c
if t1 then t2 else t3 ⇓λν c

t ⇓λν (t1 , t2) t′[t1/x1, t2/x2] ⇓λν c
let (x1 , x2) = t in t′ ⇓λν c

t1 ⇓λν λx� t t[t2/x] ⇓λν c
t1 t2 ⇓λν c

where c ∈ Cf ::= a | νa. a | true | false | (t , t) | λx� t

Figure 3 λν-Calculus evaluation relation

Odersky’s semantics of locally scoped names from [12]. Compared with the corresponding
rule in Fig. 2, whose effect is to extrude local scopes outward to the top level, here scoping
intrudes through pairing and function abstraction until it reaches canonical booleans and
names.

I Remark 4.1 (the ‘anonymous name’ anon , νa. a). What we here call the λν-calculus
is essentially the typed calculus described in [12, Sect. 6] equipped with the deterministic
evaluation relation sketched in Sect. 4 of that paper (although our description of evaluation in
Fig. 3 is more direct). However, there are two related respects in which our calculus differs.
Firstly, we choose to regard the term anon , νa. a as a canonical form of type Name
and secondly, we take the boolean term anon = anon to evaluate to true. Whereas Odersky
takes both terms to be stuck with respect to evaluation (and to be bottom, denotationally).
Other choices are possible; for example one might take anon to be canonical, but have
anon = anon evaluate to false, or be stuck. Such choices clearly affect the properties of λν-
calculus contextual equivalence and hence potentially affect the adequacy of translations of
ν-calculus into λν-calculus that we develop in the next section.

Our motivation for taking anon to be a canonical form comes from the nominal sets
model of Odersky-style local names described in [14], where anon is a non-bottom value.
Having stuck terms, Odersky’s original typed system fails to satisfy the usual ‘progress’ part
of type soundness, whereas here we have the following result.

I Theorem 4.2 (λν-calculus type soundness and totality). In the λν-calculus, well-typed
variable-closed terms possess unique canonical forms: for all ∅ ` t : T , there is a unique c
satisfying ∅ ` c : T and t ⇓λν c.

Proof. The proof that evaluation preserves typing is routine. That evaluation is single-
valued follows from the fact that it does not create free atomic names (t ⇓λν c ⇒ fn(c) ⊆
fn(t)); this follows in turn from the fact that in the derived operation arc on canonical
forms used to evaluate νa. t, free occurrences of a in c become bound in arc. Finally one
has to prove that evaluation of well-typed terms is total. This can be done by adapting the

CSL’11



402 Relating Two Semantics of Locally Scoped Names

usual argument for simply typed λ-calculus using Tait-style computability predicates; we
omit the details here. J

As for the ν-calculus, we can give a simple, ‘relational’ definition of observational equi-
valence.

I Definition 4.3 (λν-Calculus observational equivalence). We define ≈λν , to be the largest
congruence relation satisfying the following λν-adequacy property:

∅ ` t1 ≈λν t2 : Bool ⇒ (t1 ⇓λν true ⇔ t2 ⇓λν true). (5)

It can be constructed by observing that the union of all λν-adequate and compatible type-
respecting relations is an equivalence relation (as well as being λν-adequate and compatible).

Modulo the changes mentioned in Remark 4.1, ≈λν is essentially the same notion that
Odersky defines more concretely with term contexts [12, Sect. 5]. He shows that it has many
pleasant properties in common with the pure typed λ-calculus, such as extensionality for
functions and products. One can show that

∅ ` t : T ∧ t ⇓λν c ⇒ ∅ ` t ≈λν c : T (6)
Γ ` t : T ∧ a /∈ fn(t) ⇒ Γ ` νa. t ≈λν t : T (7)
Γ ` t : T ⇒ Γ ` νa. νa′. t ≈λν νa′. νa. t : T. (8)

Hence in particular the pairs of terms in (3) and (4) are observationally equivalent in the
λν-calculus. So ≈ν and ≈λν are not at all the same. Indeed in view of property (6), the
evaluation rules in Fig. 3 imply the characteristic ‘scope intrusion’ laws

Γ ` νa. λx� t ≈λν λx� νa. t : T1 � T2 (9)
Γ ` νa. (t1 , t2) ≈λν (νa. t1 , νa. t2) : T1 × T2 (10)

that distinguish Odersky-style local names from dynamically allocated ones.

5 Translating ν to λν

Figure 4 gives a continuation-passing style (CPS) transformation of the types and terms of
the typed λ-calculus from Sect. 2. The transformations for values (v 7→ v•) and for terms
(t 7→ t◦) are defined by mutual recursion on the structure of these expressions.

The part of the transformation that does not concern local names is very standard:
we have combined Moggi’s call-by-value translation of λ-calculus into his computational
metalanguage [11] with an interpretation of that metalanguage that uses the continuation
monad C(−) , (− � Bool) � Bool. The part of the transformation that does concern local
names is pleasingly simple; dynamically allocated local names at a type T are transformed
into Odersky-style local names at type CT : (νa. t)◦ = νa. t◦.

Recalling the definitions of ⇓ν and ≈ν for the ν-calculus from Sect. 3 and ⇓λν and ≈λν
for the λν-calculus from Sect. 4, we can now state the main result of the paper.

I Theorem 5.1 (computational adequacy).(i) For all ∅ ` t : Bool, with fn(t) ⊆ a say,

a , t ⇓ν _ , true ⇔ t◦(λx� x) ⇓λν true. (11)

(ii) For all Γ ` ti : T (i = 1, 2), if Γ ` t◦1 ≈λν t◦2 : CT , then Γ ` t1 ≈ν t2 : T .
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Types 7→ types T



Name = Name
Bool = Bool

T1 × T2 = T1 × T2
T1 � T2 = T1 � CT2

where CT , (T � Bool) � Bool.

Typing contexts Γ 7→ typing contexts Γ
{

∅ = ∅
Γ, x : T = Γ, x : T .

Values Γ ` v : T 7→ canonical forms Γ ` v• : T

v• = v for v = x, a, true, false
(v1 , v2)• = (v•1 , v•2)

(λx1 � t1)• = λx1 � t◦1.

Terms Γ ` t : T 7→ terms Γ ` t◦ : CT

v◦ = λk � k v•

(νa. t)◦ = νa. t◦

(t1 = t2)◦ = λk � t◦1(λx� t◦2(λx′ � if x = x′ then k true else k false))
(if t1 then t2 else t3)◦ = λk � t◦1(λx� if x then t◦2 k else t◦3 k)

(t1 , t2)◦ = λk � t◦1(λx� t◦2(λx′ � k(x , x′))) when (t1 , t2) /∈ Val
(let (x1 , x2) = t1 in t2)◦ = λk � t◦1(λx� let (x1 , x2) = x in t◦2 k)

(t1 t2)◦ = λk � t◦1(λx� t◦2(λx′ � xx′ k))
(where k, x, x′ /∈ fv(v, t1, t2, t3)).

Figure 4 CPS transformation

Part (ii) of the theorem follows from part (i), because the CPS transformation is com-
positional. More precisely, referring to Definition 2.1, the type-respecting binary relation

R , {(Γ, t1, t2, T ) | Γ ` t1 : T ∧ Γ ` t2 : T ∧ Γ ` t◦1 ≈λν t◦2 : CT}

is easily seen to be a congruence; additionally it has the ν-adequacy property (1) by virtue
of (i) and because ≈λν is a λν-adequate congruence. So since ≈ν is by definition the largest
ν-adequate congruence, it contains R—as required for property (ii).

The rest of this section sketches the proof of part (i) of the theorem. We first re-formulate
the operational semantics of the ν-calculus in terms of an abstract machine with frame
stacks. As a result, property (11) becomes a statement about machine configurations with
an empty stack that can be deduced from a more general bi-implication involving arbitrary
frame stacks (Corollary 5.8). The left-to-right part of this bi-implication is straightforward;
the right-to-left part is harder and we prove it by constructing a suitable logical relation
between the λν-calculus and the ν-calculus.

5.1 Abstract machine
Although the ‘big step’ operational semantics of Sect. 3 gives a clear specification of the
ν-calculus, experience has shown that a small-step semantics formulated in the style of
Felleisen with evaluation contexts [5] is better suited for developing the properties of the
associated observational equivalence, ≈ν ; and to make proofs about evaluation contexts
easier to formalize, it pays to write them ‘inside out’ as a list of basic contexts (evaluation
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〈F , νa. t〉 →ν 〈F , t〉 if a /∈ fn(F )
〈F , t1 = t2〉 →ν 〈F ◦ (· = t2) , t1〉

〈F , if t1 then t2 else t3〉 →ν 〈F ◦ (if · then t2 else t3) , t1〉
〈F , (t1 , t2)〉 →ν 〈F ◦ (· , t2) , t1〉 when (t1 , t2) /∈ Val

〈F , let (x1 , x2) = t in t′〉 →ν 〈F ◦ (let (x1 , x2) = · in t′) , t〉
〈F , t1 t2〉 →ν 〈F ◦ (· t2) , t1〉

〈F ◦ (· = t) , a〉 →ν 〈F ◦ (a = ·) , t〉
〈F ◦ (a1 = ·) , a2〉 →ν 〈F , δa1 a2〉

〈F ◦ (if · then t else t′) , true〉 →ν 〈F , t〉
〈F ◦ (if · then t else t′) , false〉 →ν 〈F , t′〉

〈F ◦ (· , t) , v〉 →ν 〈F ◦ (v , ·) , t〉
〈F ◦ (v1 , ·) , v2〉 →ν 〈F , (v1 , v2)〉

〈F ◦ (let (x1 , x2) = · in t) , (v1 , v2)〉 →ν 〈F , t[v1/x1.v2/x2]〉
〈F ◦ (· t) , v〉 →ν 〈F ◦ (v ·) , t〉

〈F ◦ (λx� t) · , v〉 →ν 〈F , t[v/x]〉

where F ∈ Stack ::= Id | F ◦ E and
E ∈ Frame ::= · = t | v = · | if · then t else t | (· , t) | (v , ·) | let (x , x) = · in t | · t | v ·

Figure 5 ν-Calculus abstract machine

frames). Figure 5 formulates the operational semantics of the ν-calculus in this style. It
defines a binary relation →ν between configurations of the form 〈F , t〉, where

F is a frame stack (a list of evaluation frames E, defined by the grammar in the figure);
t is a term;
both F and t are variable-closed.

Note the first transition in Fig. 5, for dynamically allocated local names. The use of sets of
atomic names a as states in the definition of ⇓ν is not necessary for →ν ; the implicit state
of a configuration 〈F , t〉 is its finite set fn(F )∪ fn(t) of free atomic names. The termination
relation (2) used in the definition of ≈ν can be characterized in terms of termination of the
abstract machine, as follows.

I Lemma 5.2. Let t be a variable-closed term, with fn(t) ⊆ a say. Then a , t ⇓ν _ , true
holds iff 〈Id , t〉 →∗ν 〈Id , true〉, where →∗ν denotes the reflexive-transitive closure of →ν .

Proof. For the left-to-right implication, one can show (by induction on the derivation from
the rules in Fig. 2) that a , t ⇓ν a′ , v implies (∀F ) fn(F )∩ a′ = ∅ ⇒ 〈F , t〉 →∗ν 〈F , v〉. The
right-to-left implication can be deduced from

〈F , t〉 →ν 〈F ′ , t′〉 ∧ fn(F, t, F ′, t′) ⊆ a ∧ a , F ′[t′] ⇓ν _ , v ⇒ a , F [t] ⇓ν _ , v (12)

where the term F [t] is defined by recursion on the length of the frame stack F

Id[t] = t and (F ◦ E)[t] = F [E[t/·]] (13)

and where E[t/·] is the term obtained from an evaluation frame E by replacing its hole · by
the term t. Property (12) is proved by case analysis on the definition of →ν in Fig. 5, using

a , F [t] ⇓ν a′ , v ⇔ (∃a′′, v′) a , t ⇓ν a′′ , v′ ∧ a′′ , F [v′] ⇓ν a′ , v



Steffen Lösch and Andrew M. Pitts 405

Frame stacks Γ ` F : T � Bool 7→ canonical forms Γ ` F ∗ : T � Bool

Id∗ = λx� x

(F ◦ (· = t2))∗ = λx� t◦2(λx′ � if x = x′ then F ∗true else F ∗false)
(F ◦ (v1 = ·))∗ = λx� if v•1 = x then F ∗true else F ∗false

(F ◦ (if · then t1 else t2))∗ = λx� if x then t◦1F ∗ else t◦2F ∗
(F ◦ (· , t2))∗ = λx� t◦2(λx′ � F ∗(x , x′))
(F ◦ (v1 , ·))∗ = λx� F ∗(v•1 , x)

(F ◦ (let (x1 , x2) = · in t))∗ = λx� let (x1 , x2) = x in t◦F ∗
(F ◦ (· t2))∗ = λx� t◦2(λx′ � xx′ F ∗)
(F ◦ (v1 ·))∗ = λx� v•1 xF

∗

(where x, x′ /∈ fv(v1, t1, t2, t, F ) and x1, x2 /∈ fv(F ))

Figure 6 CPS transformation for frame stacks

which in turn is proved by induction on the length of F . J

I Definition 5.3 (typed frame stacks). We use the typing relation for terms from Sect. 2
to type ν-calculus frame stacks by substituting a fresh variable for the hole. Thus we write
Γ ` F : T ′ � T to mean that Γ, x : T ′ ` F [x] : T holds for some/any x /∈ dom(Γ). (An
equivalent, syntax-directed inductive definition of Γ ` F : T ′ � T is of course possible.)

I Notation 5.4. For each type T ∈ Type, we write Term(T ) for the variable-closed terms of
type t, that is, those t ∈ Term satisfying ∅ ` t : T . (Note that such a t may have free atomic
names.) Similarly Val(T ) and Stack(T ′ � T ) denote the sets of variable-closed ν-calculus
values and frame stacks of types T and T ′�T respectively. We define Config(T ) , {〈F , t〉 |
(∃T ′ ∈ Type) F ∈ Stack(T ′ � T ) ∧ t ∈ Term(T ′)}.

The CPS transformation for terms can be extended to frame stacks. This is done in
Fig. 6 and the next lemma proves the soundness of the transformation.

I Lemma 5.5 (soundness of the CPS transformation). For each 〈F , t〉 ∈ Config(Bool), if
〈F , t〉 →∗ν 〈Id , true〉 then t◦ F ∗ ⇓λν true.

Proof. Note that true◦ Id∗ = (λk � k true) (λx � x) ⇓λν true. So it suffices to show that
if 〈F , t〉 →ν 〈F ′ , t′〉 and t′◦ F ′∗ ⇓λν true, then t◦ F ∗ ⇓λν true. This can be proved by
case analysis on the definition of →ν in Fig. 5. For the two cases in that figure involving
substitution of values for variables one first needs to show (t[v/x])◦ = t◦[v•/x], which can
be done by induction on the structure of t. J

5.2 Logical relation

To prove the converse of Lemma 5.5 we use the following logical relation between the λν-
calculus and the ν-calculus.

I Definition 5.6. The relation t′ J v : T , where T ∈ Type, v ∈ Val(T ) and t′ ∈ Term(T ),
is defined by recursion on the structure of types T , making use of auxiliary relations / and
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/∗ for terms and frame stacks that are defined in terms of J:

t′ J a : Name ⇔ t′ ⇓λν a
t′ J b : Bool ⇔ t′ ⇓λν b (b ∈ {true, false})

t′ J (v1 , v2) : T1 × T2 ⇔ (∀t1, t2) t′ ⇓λν (t1 , t2) ⇒ t1 J v1 : T1 ∧ t2 J v2 : T2

t′ J v : T1 � T2 ⇔ (∀t1, v1) t1 J v1 : T1 ⇒ t′ t1 / v v1 : T2

where for T ∈ Type, t ∈ Term(T ), t′ ∈ Term(CT ), F ∈ Stack(T � Bool) and t′′ ∈ Term(T �
Bool) we define

t′ / t : T , (∀t1, F ) t1 /∗ F : T � Bool ⇒ t′ t1 ⇓λν true ⇒ 〈F , t〉 →∗ν 〈Id , true〉
t′′ /∗ F : T � Bool , (∀t1, v) t1 J v : T ⇒ t′′ t1 ⇓λν true ⇒ 〈F , v〉 →∗ν 〈Id , true〉.

The relation J is extended to substitutions:

Γ ` ρ J σ , (∀x ∈ dom(Γ)) ρ(x) J σ(x) : Γ(x)

where ρ (respectively σ) ranges over finite functions from variables to variable-closed terms
(respectively variable-closed values). Finally we extend the relations to open values, terms
and frame stacks:

Γ ` t′ J v : T , Γ ` t′ : T ∧ Γ ` v : T ∧ (∀ρ, σ) Γ ` ρ J σ ⇒ t′[ρ] J v[σ] : T
Γ ` t′ / t : T , Γ ` t′ : T ∧ Γ ` t : T ∧ (∀ρ, σ) Γ ` ρ J σ ⇒ t′[ρ] / t[σ] : T

Γ ` t′ /∗ F : T � Bool , Γ ` t′ : T � Bool ∧ Γ ` F : T � Bool ∧
(∀ρ, σ) Γ ` ρ J σ ⇒ t′[ρ] /∗ F [σ] : T � Bool

I Theorem 5.7 (fundamental property of the logical relation).

Γ ` v : T ⇒ Γ ` v• J v : T (14)
Γ ` t : T ⇒ Γ ` t◦ / t : T (15)

Γ ` F : T � Bool ⇒ Γ ` F ∗ /∗ F : T � Bool. (16)

Proof (sketch). Properties (14) and (15) are proved simultaneously by induction on the
structure of v and t; and then (16) follows by induction on the structure of F . Here we give
just the induction step for the case of locally scoped names; and for this it suffices to show
that t′ / t : T implies νa. t′ / νa. t : T So suppose

t′ / t : T. (17)

Referring to the definition of / in terms of /∗ in Definition 5.6, we have to show that if

t1 /
∗ F : T � Bool (18)

(νa. t′)t1 ⇓λν true (19)

then 〈F , νa. t〉 →∗ν 〈Id , true〉. Since we identify terms up to α-equivalence of bound atomic
names, we may assume a /∈ fn(t1, F ). It follows from the definition of ⇓λν in Fig. 3 that
(19) implies t′t1 ⇓λν true, since a /∈ fn(t1). From this, (17) and (18), the definition of / gives
us 〈F , t〉 →∗ν 〈Id , true〉. Then since a /∈ fn(F ), from the definition of →ν in Fig. 5 we get
〈F , νa. t〉 →∗ν 〈Id , true〉, as required. J
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I Corollary 5.8. If 〈F , t〉 ∈ Config(Bool), then

〈F , t〉 →∗ν 〈Id , true〉 ⇔ t◦F ∗ ⇓λν true. (20)

Proof. The left-to-right implication in (20) is the soundness Lemma 5.5. For the converse,
since 〈F , t〉 ∈ Config(Bool), we have t ∈ Term(T ) and F ∈ Stack(T � Bool) for some
T ∈ Type. Note that by the fundamental property of the logical relation (Theorem 5.7)
we have t◦ / t : T and F ∗ /∗ F : T � Bool. Then the right-to-left implication follows
immediately from the definition of / in terms of /∗ in Definition 5.6. J

We can now complete the proof of the main theorem.

Proof of Theorem 5.1. We have already noted how part (ii) of the theorem follows from
part (i). For the latter, combine Lemma 5.2 with the special case of Corollary 5.8 when
F = Id, for which F ∗ = Id∗ = λx� x. J

6 A Denotational Perspective

The results in this paper have two sources of inspiration.
The FreshML language [19], which adds to an ML-like language facilities for declaring and
computing with data involving name-binding operations. The ‘fresh’ in FreshML refers
to the fact that the language’s mechanism for computing with bound names involves
dynamic allocation of fresh names. FreshML’s type system ensures that even though
programmers have access to the names of bound entities, α-renamed variants of data
are indistinguishable up to observational equivalence in the language. This is proved in
[18] via a denotational semantics of FreshML (and hence of dynamically allocated local
names) using nominal sets [7].
A nominal sets semantics for Odersky-style locally scoped names given by Pitts in con-
nection with his work on structural recursion modulo α-equivalence [14].

In retrospect, one can see that the denotational semantics in [18] uses a continuation monad
in order for the denotation of types to be valued in the ‘nominal restriction sets’ of [14,
Sect. 2.3], rather than just in nominal sets; the restriction operation is then used to interpret
locally scoped names. Thus the following picture emerges.

ν-calculus

���
�
�

� � // FreshML
J K [18]

��
λν-calculus

J K [14]
// nominal sets

The dotted arrow is the syntactic translation of ν-calculus into λν-calculus that we have
developed in this paper. It composes with the denotational semantics in [14] to recover that
in [18] when restricted to the sub-language of FreshML consisting of the ν-calculus.

This suggests an alternative approach to the main result, Theorem 5.1. Instead of the
direct, operationally-based proof we have given, one could define a denotational semantics of
λν-calculus using nominal sets, as in [14]. Composing with the CPS transformation gives a
denotational semantics for ν-calculus which can be proved adequate for ⇓ν by constructing
a logical relation between semantics and syntax along the lines of that in [18, Sect. 3].
The right-to-left implication in (20) follows from this adequacy result and hence we get an
alternative, albeit less direct, proof of the main theorem.
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7 Failure of Full Abstraction

Theorem 5.1(ii) says that the CPS translation of ν-calculus into λν-calculus reflects ob-
servational equivalence. If a language translation not only reflects observational equival-
ence but also preserves it, then one says that the translation is fully abstract (by analogy
with the use of that terminology for a denotational semantics). For this property to hold,
roughly speaking the target language must not be able to observe more about a translated
term than is possible in the source language. This is certainly not the case for the CPS
translation we have used in this paper. For example, it follows from the theory in [15]
that in the ν-calculus the values v1 , λf � (λx � true)(f true) and v2 , λf � true satisfy
∅ ` v1 ≈ν v2 : (Bool � Bool) � Bool. However, in the λν-calculus one has

∅ ` v◦1 6≈λν v◦2 : C(Bool � Bool) � Bool

because one can calculate from the definition in Fig. 3 that v◦1(λf � f F T ) ⇓λν false and
v◦2(λf�f F T ) ⇓λν true, where F , λx�λk�false ∈ Term(Bool � Bool) and T , λx�true ∈
Term(Bool�Bool). (For simplicity we have used a pair of values whose equivalence depends
upon the absence of non-terminating features in the ν-calculus; more complicated counter-
examples exist if one adds recursion to the calculi.)

Note that these evaluations do not involve the novel parts of Fig. 3 to do with loc-
ally scoped names. Thus this failure of full abstraction has more to do with the nature of
continuation-passing transformations than with locally scoped names. Can the CPS trans-
formation we have studied here be modified to give a translation of dynamic allocation into
a calculus with Odersky-style local names that is fully abstract? One possibility is to change
to a version of λν with linear function types (() and make use of linearly used continu-
ations, ((−) � R) ( R. In particular, it would be interesting to consider the relationship
between dynamic allocation and Odersky-style locally scoped names within the enriched
effect calculus of Egger et al, for which the linearly-used CPS translation has a very strong
self-duality property [4]. Another possibility is to add locally scoped names to the poly-
morphic λ-calculus and use continuations with polymorphic result type, ∀R. ((−) � R) � R,
for which the work of Ahmed and Blume [1] suggests there may be a full abstraction result.

Should one care about the full abstraction property? The ν-calculus and the λν-calculus
are not ends in themselves; they are merely vehicles for studying the semantics of higher-
order functions with locally scoped names in as simple a setting as possible. One should
certainly consider extending the results of this paper to richer languages, beginning by
making them Turing-powerful. This could be done by adding fixpoint recursion for functions.
It is reasonable to expect the CPS transformation to extend to a computationally adequate
translation of such extended languages; whereas any full abstraction result for a modification
of the translation probably would not survive such additions.

8 Translating λν to ν

Having given a computationally adequate translation of ν-calculus into λν-calculus, it is
natural to consider such a translation in the reverse direction as well. We sketch one in this
section, leaving the details for future work.

The main idea is to translate an Odersky-style locally scoped name (at type T say) into
the ν-calculus by dynamically generating a fresh name a and then applying to the translated
body a function arT ∈ Val(T � T ) that implements the operation c 7→ arc in Fig. 3. This
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is defined by recursion on the structure of the type T :

arName = λx� if x = a then νa. a else x
arBool = λx� x

arT1×T2 = λx� let (x1 , x2) = x in (arT1x1 , arT2x2)

arT1�T2 = λf � λx� arT2(f x).

We would like any computationally adequate translation of λν-calculus into ν-calculus to
be robust with respect to adding extra features such as fixpoint recursion, where the differ-
ence between call-by-name and call-by-value becomes visible up to observational equivalence.
For a translation to adequately reflect the call-by-name evaluation relation in Fig. 3, one
could combine the above idea for implementing Odersky-style νa. (−) with a standard trans-
lation of call-by-name into call-by-value based on using a lifting monad L(−) = Unit � (−)
to delay evaluation at appropriate points. We did not include a one-element type Unit in
the λ-calculus of Sect. 2, but could easily have done so; one could instead use Bool � (−) for
L. A simpler alternative would be to switch to a call-by-value version of the λν-calculus.

9 Conclusion

We have shown that Odersky’s semantics for νa. t provides a direct meaning for locally scoped
names in higher-order functions (and pairs) from which the more common semantics in terms
of dynamic allocation can be recovered via a continuation-passing transformation. This
does not help much with understanding the subtle properties of observational equivalence
in the Pitts-Stark ν-calculus, because of the complicated nature of the CPS translation.
However, the result does shed new light upon the expressive power of the relatively unfamiliar
semantics of local names given by Odersky. We have seen that dynamically allocated local
names can be encoded with Odersky-style local names. That suggests re-evaluating the
usefulness of Odersky’s notion. We conclude by mentioning some avenues for doing that.

Figures 2 and 3 can easily be augmented with evaluation rules for expressions of recurs-
ively defined and polymorphic types. We believe our main result (Theorem 5.1) will
scale to this extension, using the technique of step-indexing to overcome the difficulty of
defining a suitable logical relation in the presence of recursive types (see [3], for example).
So extended, the λν-calculus gives a core non-strict functional programming language
with Odersky-style local names. For reasons of efficiency one would prefer call-by-need
rather than the call-by-name operational semantics in Figure 3. Can one of the stand-
ard operational descriptions of call-by-need [9, 17] be combined with this form of locally
scoped name? The difficulty is to reconcile its characteristic property of ‘scope intrusion’,
that is, moving νa. (−) inward to evaluation sites, with local (recursively defined) heaps,
let{x1 = e1, . . . , xn = en} in (−).
Odersky’s νa. (−) gives a version of locally scoped names whose evaluation is free of
side-effects. Therefore it makes sense to add it to meta-languages for describing the
denotational semantics of effects, such as Moggi’s computational λ-calculus [11] or the
enriched effect calculus of Egger et al [4]. Is this a useful extension of such languages?
Following [14], it should be possible to produce a version of FreshML [19] in which
the use of dynamically allocated names is replaced by Odersky-style local names and
yet the language still respects α-renaming of bound names in data, up to observational
equivalence. The convenient expressive power of FreshML would not be affected and one
would regain programming laws for observational equivalence (such as extensionality of
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function expressions) that are disrupted by dynamic allocation. (This purer version of
FreshML would not pass all of Pottier’s criteria for purity [16], since it would admit the
anonymous name νa. a as a value.)
Fernández and Gabbay [6] consider rewriting for nominal terms extended with ‘name
generation’, a non-binding scoping construct. The formal relationship between this no-
tion and dynamically allocated, or Odersky-style, local names needs clarifying. In any
case, the combination of Odersky-style local names with term-rewriting seems worth
investigating.
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Abstract
Synthesis is the automatic construction of a system from its specification. In classical synthesis
algorithms, it is always assumed that the system is “constructed from scratch” rather than com-
posed from reusable components. This, of course, rarely happens in real life, where almost every
non-trivial commercial software system relies heavily on using libraries of reusable components.
Furthermore, other contexts, such as web-service orchestration, can be modeled as synthesis of
a system from a library of components. Recently, Lustig and Vardi introduced dataflow and
control-flow synthesis from libraries of reusable components. They proved that dataflow syn-
thesis is undecidable, while control-flow synthesis is decidable. In this work, we consider the
problem of control-flow synthesis from libraries of probabilistic components. We show that this
more general problem is also decidable.
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1 Introduction

Hardware and software systems are rarely built from scratch. Almost every non-trivial system
is based on existing components. A typical component might be used in the design of multiple
systems. Examples of such components include function libraries, web APIs, and ASICs.
Consider the mapping application in a typical smartphone. Such an application might call
the location service provided by the phone’s operating system to get the user’s co-ordinates,
then call a web API to obtain the correct map image tiles, and finally call a graphics library
to display the user’s location on the screen. None of these components are exclusive to the
mapping application and all of them are commonly used by other applications.

The construction of systems from reusable components is an area of active research. Some
examples of important work on the subject can be found in Sifakis’ work on component-
based construction [15], and de Alfaro and Henzinger’s work on “interface-based design” [7].
Furthermore, other situations, such as web-service orchestration [2], can be viewed as the
construction of systems from libraries of reusable components.

Synthesis is the automated construction of a system from its specification. In contrast
to model checking, which involves verifying that a system satisfies the given specification,
synthesis aims to automatically construct the required system from its formal specification.
The modern approach to temporal synthesis was initiated by Pnueli and Rosner who
introduced linear temporal logic (LTL) synthesis [13]. In LTL synthesis, the specification
is given in LTL and the system constructed is a finite-state transducer modeling a reactive
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system. In this setting it is always assumed that the system is “constructed from scratch”
rather than “composed” from existing components. Recently, Lustig and Vardi [11] introduced
the study of synthesis from reusable components. The use of components abstracts much of
the detailed behavior of a sub-system, and allows one to write specifications that mention
only the aspects of sub-systems relevant for the synthesis of the system at large.

A major concern in the study of synthesis from reusable components is the choice of a
mathematical model for the components and their composition. The exact nature of the
reusable components in a software library may differ. One finds in the literature many
different types of components; for example, function libraries (for procedural programming
languages) or object libraries (for object-oriented programming languages). Indeed, there
is no single “right” model encompassing all possible facets of the problem. The problem of
synthesis from reusable components is a general problem to which there are as many facets
as there are models for components and types of composition [15].

As a basic model for a component, following [11], we abstract away the precise details
of the component and model a component as a transducer, i.e., a finite-state machine with
outputs. Transducers constitute a canonical model for reactive components, abstracting
away internal architecture and focusing on modeling input/output behavior. In [11], two
models of composition were studied. In dataflow composition, the output of one component
is fed as input to another component. The synthesis problem for dataflow composition was
shown to be undecidable. In control-flow composition control is held by a single component
at every point in time. The synthesis problem can then be viewed as constructing a
supervisory transducer that switches control between the component transducers. Control-
flow composition is motivated by software (and web services) in which a single function is in
control at every point during the execution. LTL synthesis in this setting was shown in [11]
to be 2EXPTIME-complete, just like classical LTL synthesis [13].

In this paper, we extend the control-flow synthesis model of [11] to probabilistic com-
ponents, which are transducers with a probabilistic transition function. This is a well
known approach to modeling systems where there is probabilistic uncertainty about the
results of input actions. Intuitively, we aim at constructing a reliable system from unreliable
components. There is a rich literature about verification and analysis of such systems,
cf. [16, 5, 6, 17], as well about synthesis in the face of probabilistic uncertainty [1]. The
introduction of probability requires us to use a probabilistic notion of correctness; here we
choose the qualitative criterion that the specification be satisfied with probability 1, leaving
the study of quantitative criteria to future work.

Here, our focus is on proving decidability, rather than on establishing precise complexity
bounds, leaving the study of precise bounds to future work. Consequently, we abstract
away from the details of the specification formalism and assume that the specification is
given in terms of deterministic parity word automata (DPW). This allows us to consider all
ω-regular properties. We define and study the DPW probabilistic realizability and synthesis
problems, where the input is a library L of probabilistic components and a DPW A, and the
question is whether one can construct a finite system S from the components in L, such that,
regardless of the external environment, the traces generated by the system S are accepted
by A with probability 1. Each component in the library can be used an arbitrary number of
times in the construction and there is no apriori bound on the size of the system obtained.
The technical challenge here is dealing with the finiteness of the system under construction.
In [11], as well as in [13], one need not deal with finiteness from the start. In fact, one
can test realizability without being concerned with finiteness of the constructed system, as
finiteness is a consequence of the construction. This is not the case here, where we need to
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deal with finiteness from the start. Nevertheless, we are able to show that the problem is in
2EXPTIME.

Before tackling the full problem, we first consider a restricted version of the problem,
where the specification is given in the form of a parity index on the states of the components,
and the composed system must satisfy the parity condition. We call this the embedded
parity realizability problem. We solve this problem and then show how solving the embedded
parity realizability problem directly allows us to solve the more general DPW probabilistic
realizability problem as well. The key idea here is that by taking the product of the
specification DPW with each of the components, we can obtain larger components each of
whose states has a parity associated with it. The challenge in completing the reduction
is the need to generate a static composition, which does not depend on the history of the
computation. Here we use ideas about synthesis with incomplete information from [10].

The paper is self-contained, except for certain technical proofs that have been omitted to
save space; a longer version is posted on the authors’ home pages.

2 Preliminaries

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗
and c ∈ D, then also x ∈ T . For every x ∈ T , the words x · c, for c ∈ D, are the successors of
x. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf
or there exists a unique c ∈ D such that x · c ∈ π. The full D-tree is D∗. Given an alphabet
Σ, a Σ-labeled D-tree is a pair 〈T, τ〉, where T is a tree and τ : T → Σ maps each node of T
to a letter in Σ. A subtree of 〈D∗, τ〉, is a Σ-labeled D-tree 〈T, τ ′〉, where τ ′(x) = τ(x), for
all x ∈ T . For a node x ∈ D∗, the full subtree at x is the subtree whose set of nodes is x ·D∗.

A deterministic transducer is a tuple B = 〈ΣI ,ΣO, Q, q0, δ, L〉, where: ΣI is a finite input
alphabet, ΣO is a finite output alphabet, Q is a finite set of states, q0 ∈ Q is an initial state,
L : Q→ ΣO is an output function labeling states with output letters, and δ : Q× ΣI → Q

is a transition function. We define δ∗ : Σ∗I → Q as follows: δ∗(ε) = q0 and for x ∈ Σ∗I and
a ∈ ΣI , δ∗(x · a) = δ(δ∗(x), a). We denote by tree(B), the ΣO-labeled ΣI -tree 〈Σ∗I , τ〉, where
for all x ∈ Σ∗I , we have τ(x) = L(δ∗(x)). We say tree(B) is the unwinding of B. A Σ-labeled
D-tree T is called regular, if there exists a deterministic transducer C such that T = tree(C).

Given a directed graph G = (V,E), a strongly connected component of G is a subset U of
V , such that for all u, v ∈ U , u is reachable from v. We can define a natural partial order on
the set of maximal strongly connected components of G as follows: U1 ≤ U2 if there exists
u1 ∈ U1 and u2 ∈ U2 such that u1 is reachable from u2. Then U ⊆ V is an ergodic set of G
if it is a minimal element of the partial order.

A probability distribution on a finite set X is a function f : X → [0, 1] such that∑
x∈X f(x) = 1. We use Dist(X) to denote the set of all probability distributions on set

X. A probabilistic transducer, is a tuple T = 〈ΣI ,ΣO, Q, q0, δ, F, L〉, where: ΣI is a finite
input alphabet, ΣO is a finite output alphabet, Q is a finite set of states, q0 ∈ Q is an initial
state, δ : (Q− F )× ΣI → Dist(Q) is a probabilistic transition function, F ⊆ Q is a set of
exit states, and L : Q→ ΣO is an output function labeling states with output letters. Note
that there are no transitions out of an exit state. If F is empty, we say T is a probabilistic
transducer without exits.

Given a probabilistic transducerM = (ΣI ,Σo, Q, q0, δ, F, L), a strategy forM is a function
f : Q∗ → Dist(ΣI) that probabilistically chooses an input for each sequence of states. A
strategy is memoryless if the choice depends only on the last state in the sequence. A
memoryless strategy can be written as a function g : Q→ Dist(ΣI). A strategy is pure if
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the choice is deterministic. A pure strategy is a function h : Q∗ → ΣI , and a memoryless
and pure strategy is a function h : Q→ ΣI .

A strategy f along with a probabilistic transducer M , with set of states Q, induces a
probability distribution on Qω, denoted µf . By standard measure theoretic arguments, it
suffices to define µf for the cylinders of Qω, which are sets of the form β ·Qω, where β ∈ Q∗.
First we extend δ to exit states as follows: for a ∈ ΣI , q ∈ F , q′ ∈ Q, δ(q, a)(q) = 1 and
δ(q, a)(q′) = 0 when q′ 6= q. Then we define µf (q0 · Qω) = 1, and for β ∈ Q∗, q, q′ ∈ Q,
µf (βqq′ ·Qω) = µf (βq)(

∑
a∈ΣI

f(βq)(a)× δ(q, a)(q′)). These conditions say that there is a
unique start state, and the probability of visiting a state q′, after visiting βq, is the same as
the probability of the strategy picking a particular letter multiplied by the probability that
the transducer transitions from q to q′ on that input letter, summed over all input letters.

Let M be a probabilistic transducer, Q be its set of states, and f be a memoryless
strategy for M . We define the graph induced by f on Q, denoted by GM,f , as the directed
graph (Q,E), where (q1, q2) ∈ E if

∑
a∈ΣI

f(q1)(a) δ(q1, a)(q2) > 0. That is, there is an edge
from q1 to q2 if the transducer can transition from the state q1 to the state q2 on an input
letter that the strategy chooses with positive probability. Given q1, q2 ∈ Q, we say that q2 is
reachable from q1 if there is a path from q1 to q2 in GM,f . We say a state is ergodic if it
belongs to some ergodic set of GM,f . An ergodic set is reachable if there is a path from the
start state to some state in the ergodic set. A state q of M is reachable under f , if there is a
path in GM,f from q0 to q.

A library is a set of probabilistic transducers that share the same input and output
alphabets. Each transducer in the library is called a component. Given a finite set of
directions D, we say a library L has width D, if each component in the library has exactly
|D| exit states. Since we can always add dummy unreachable exit states to any component,
we assume, w.l.o.g., that all libraries have an associated width, usually denoted D. In the
context of a particular component, we often refer to elements of D as exits, and subsets of D
as sets of exits. Given a component M from library L, and a strategy f for M , we say that
the exit i ∈ D is selected by f , if the ith exit state of M is reachable under f .

An index function for a transducer is a function that assigns a natural number, called a
priority index, to each state of the transducer. An index function for a library is a function
that assigns a priority to every state of every component in the library. Given an index
function α for a library L, we define max(α) to be the highest priority assigned by α. We
can assume, w.l.o.g., that max(α) is not larger than twice the maximal number of states in
the components of the library. Given a transducer M , index function α, and a strategy f
for M , we say f visits priority p if there exists a state q of M such that α(q) = p and q is
reachable under f .

3 Control-flow Composition from Libraries

We first informally describe our notion of control-flow composition of components from a
library. The components in the composition take turns interacting with the environment,
and at each point in time, exactly one component is active. When the active component
reaches an exit state, control is transferred to some other component. Thus, to define a
control flow composition, it suffices to name the components used and describe how control
should be transferred between them. We use a deterministic transducer to define the transfer
of control. Each library component can be used multiple times in a composition, and we
treat these occurrences as distinct component instances. We emphasize that the composition
can contain potentially arbitrarily many repetitions of each component inside it. Thus, the
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size of the composition, a priori, is not bounded. Note that our notion of composition is
static, where the components called are determined before run time, rather than dynamic,
where the components called are determined during run time.

Let L be a library with width D. A composer over L is a deterministic tranducer
C = (D,L,M,M0,∆, λ). Here M is an arbitrary finite set of states. There is no bound
on the size of M. Each Mi ∈ M is the name of an instance of a component from L and
λ(Mi) ∈ L is the type of Mi. We use the following notational convention for component
instances and names: the upright letter M always denotes component names (i.e. states
of a composer) and the italicized letter M always denotes the corresponding component
instances (i.e. elements of L). Further, for notational convenience we often write Mi directly
instead of λ(Mi). Note that while each Mi is distinct, the corresponding components Mi

need not be distinct. Each composer defines a unique composition over components from
L. The current state of the composer corresponds to the component that is in control. The
transition function ∆ describes how to transfer control between components: ∆(M, i) = M′
denotes that when the composition is in the ith final state of component M it moves to the
start state of component M ′. A composer can be viewed as an implicit representation of a
composition. We give an explicit definition of composition below.

I Definition 1 (Control-flow Composition). Let C = (D,L,M,M0,∆, λ) be a composer over
library L with width D, such that M = {M0, . . .,Mn}, λ(Mi) = (ΣI ,ΣO, Qi, q

i
0, δi, Fi, Li)

and Fi = {qix : x ∈ D}. The composition defined by C, denoted TC , is a probabilistic
transducer 〈ΣI ,ΣO, Q, q0, δ, ∅, L〉, where Q =

⋃n
i=0(Qi × {i}), q0 = 〈q0

0 , 0〉, L(〈q, i〉) = Li(q),
and the transition function δ is defined as follows: For σ ∈ ΣI , 〈q, i〉 ∈ Q and 〈q′, j〉 ∈ Q,

1. If q ∈ Qi \ Fi, then

δ(〈q, i〉, σ)(〈q′, j〉) =
{
δi(q, σ)(q′) if i = j

0 otherwise

2. If q = qix ∈ Fi, where ∆(Mi, x) = Mk, then

δ(〈q, i〉, σ)(〈q′, j〉) =
{

1 if j = k and q′ = qk0

0 otherwise

Note that the composition is a probabilistic transducer without exits. When the composi-
tion is in a state 〈q, i〉 corresponding to a non-exit state q of component Mi, it behaves like
Mi. When the composition is in a state 〈qf , i〉 corresponding to an exit state qf of component
Mi, the control is transferred to the start state of another component as determined by the
transition function of the composer. Thus, at each point in time, only one component is
active and interacting with the environment.

4 Synthesis for Embedded Parity

In this section we consider a simplified version of the general synthesis problem, where each
state of a component in the library has a priority associated with it and the specification to
be satisfied is that the highest priority visited i.o. must be even with probability 1.

Let M be a probabilistic tranducer and α be an index function. A strategy f for M is
winning for the environment if with positive probability the highest priority visited infinitely
often (i.o.) is odd. We say that M satisfies α if there exists no winning strategy for the
environment. Given a composer C over library L, we say that C satisfies α if TC satisfies α.
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Given a library L with width D, an exit control relation is a set R ⊆ D×L. We say that
a composer C = (D,L,M,M0,∆, λ) over L is compatible with R, if the following holds: for
all M,M′ ∈M and i ∈ D, if ∆(M, i) = M′ then (i,M ′) ∈ R. Thus, each element of R can be
viewed as a constraint on how the composer is allowed to connect components.

I Definition 2. The embedded parity realizability problem is: Given a library L with width
D, an exit control relation R for L, and an index function α for L, decide whether there
exists a composer C over L, such that C satisfies α and C is compatible with R. If such a
composer exists, we say that L realizes α under R. The embedded parity synthesis problem is
to find such a composer C if it exists.

The following theorem allows us to restrict attention to memoryless strategies. It states
that if a winning strategy exists, then a memoryless winning strategy must also exist. Here
we give a direct combinatorial proof, but we note that the result can also be obtained by
adapting the methods in [4], where a similar result was proved for 2–1/2 player stochastic
parity games by Chatterjee et al.

I Theorem 3. Given a probabilistic transducer M , and index function α, if there exists
a winning strategy for the environment then there exists a pure and memoryless winning
strategy.

Memoryless strategies are important because they induce an ergodic structure on the set
of states. Ergodic sets are useful because they enable us to replace probabilistic reasoning
with combinatorial reasoning. In particular, they have the following crucial properties: (a) the
suffix of a path is contained in some ergodic set with probability 1, and (b) the suffix of a
path is contained in a proper subset of an ergodic set with probability zero [9]. This allows
us to define the winning strategy condition in terms of graph reachability.

I Lemma 4. Let M be a probabilistic transducer and f be a memoryless strategy for M .
Then f is winning for the environment iff GM,f has a reachable ergodic set whose highest
priority is odd.

When the underlying probabilistic transducer is a composition, ergodic sets acquire
additional structure. Given a composer C and a memoryless strategy f for TC , if a reachable
ergodic set X of GTC ,f contains some state from a component M of TC , then either X is
contained in M or all the reachable states of M are contained in X. Formally:

I Lemma 5. Let C = (D,L,M,M0,∆, λ) be a composer over L and f be a memoryless
strategy for TC . Let Mi ∈M and Qi be the state space of Mi. Let X be a reachable ergodic
set of GTC ,f such that X ∩ (Qi×{i}) 6= ∅. Then either X ⊆ Qi×{i} or (Qi×{i})∩Y ⊆ X,
where Y is the set of states of TC that are reachable under f .

Proof. Assume that X ∩ (Qi × {i}) 6= ∅ and X is not contained in Qi × {i}. Let (q, i) ∈
X ∩ (Qi×{i}) and (q′, j) ∈ X− (Qi×{i}), for some j 6= i. Since X is ergodic, there is a path
π in GTC ,f from (q′, j) to (q, i). Let s be the first state along π such that s = (q′′, i) ∈ Qi×{i}.
We claim that q′′ = qi0, where qi0 is the start state of Mi. Let s′ = (q′′′, k), where k 6= i, be
the predecessor of s in π. By the definition of GTC ,f , there is an edge from s′ to s only if TC
can transition from s′ to s on some input with positive probability. By Definition 1, TC can
transition from (q′′′, k) to (q′′, i) only if q′′′ is a final state of Mk and q′′ is the initial state of
Mi. Thus (qi0, i) is in X.

Since X is an ergodic set, if it contains a state s of TC , then it also contains all states
reachable under f from s. By definition, every state in (Qi × {i}) ∩ Y is reachable under f
from (qi0, i). Since X contains (qi0, i), it also contains all states in (Qi × {i}) ∩ Y . J
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Given a graph G, each of whose vertices is assigned a priority, we say that G has the odd
ergodic property if it has a reachable ergodic set whose highest priority is odd. Consider a
composer C and a memoryless strategy f for TC . Then, by Lemma 4, f is winning for the
environment iff GTC ,f has the odd ergodic property. So the probabilistic notion of winning
strategy is reduced to a combinatorial one. However, the graph GTC ,f is very large as it
contains all the internal states of each component explicitly. Further, to show that C satisfies
α, we have to consider every possible memoryless strategy for C. We tackle this complexity
by simplifying the description of a strategy f and graph GTC ,f so as to abstract away the
inner states of components and the choices that f makes on those inner states. LetM be
the state space of C. We aim to replace GTC ,f by a simpler graph G′, whose set of vertices
isM, such that the odd ergodic property is preserved. We first discuss this transformation
informally, and then give formal definitions and proofs.

Let M be a component of TC . If some reachable ergodic set of GTC ,f lies entirely within
M , we say M is a sink. When the highest priority in the ergodic set is odd (resp. even)
we say M is an odd (resp. even) sink for f . Note that a component can be both an odd
and an even sink for a given strategy. Intuitively, we aim to replace the subgraph of GTC ,f

that corresponds to states of M by a single new vertex xM to obtain a new graph G′ and
assign a suitable priority to xM such that the odd ergodic property is preserved by the
transformation. Now if M is not a sink, then, by Lemma 5, xM lies in a reachable ergodic
set of G′ iff all reachable states of M lie in a reachable ergodic set of GTC ,f . In this case, we
can simply assign the highest reachable priority in M to xM and the odd ergodic property is
preserved. If, however, M is a sink, then the collapse of M to a single vertex might introduce
new ergodic sets in the graph. That is, xM might lie in an ergodic set of G′ which has no
analogue in GTC ,f . We then have to choose the priority of xM such that the odd ergodic
property is still preserved. There are two cases to consider:

M is an odd sink for f . Then, by Lemma 4, f is winning for the environment. Let fM
denote f restricted to the states in M . Then fM is a memoryless strategy for M that is
winning for the environment, and in every composition involving M , the environment
can simply play fM on the states in M to win. So a component that is an odd sink is
not useful for synthesizing compositions. We note that it is easy to check for and remove
any odd sinks from L in a preprocessing step before attempting synthesis. Checking
whether a particular component is a sink is equivalent to model checking Markov decision
processes and can be done in polynomial time [16]. In the rest of the paper, we assume
that the given library L does not contain components that are odd sinks.

M is an even sink for f but not an odd sink for f . Then, by Lemma 5, every reachable
state in M either lies in an even sink or does not lie in an ergodic set. So no reachable
state in M is part of an ergodic set with odd highest priority. Thus collapsing M to xM
does not remove any ergodic sets with odd highest priority. It only remains to consider
the possibility that the transformation can introduce a new ergodic set whose highest
priority is odd. We can avoid this by assigning a priority of 2 max(α) to xM , where
max(α) is the highest parity assigned by the index function α. Then if xM is part of
a reachable ergodic set X ′ in G′, then X ′ has highest priority 2 max(α), which is even.
Thus the odd ergodic property is preserved.

In formalizing the approach given above, instead of explicitly transforming GTC ,f into a
more abstract graph, it is simpler to directly define a suitable graph on the state spaceM of
the composer C such that the odd ergodic property is preserved. Just as a memoryless strategy
f applied to the composition TC gives rise to the graph GTC ,f , we define a combinatorial
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object, called a choice function, such that choice function g together with composer C gives
rise to a graph GC,g.

I Definition 6 (Choice Function). Given a library L with width D and index function
α, we define the set LABELS(L) ⊆ 2D × {1, . . ., 2 max (α)} × L as follows: (X, j,M) ∈
LABELS(L) iff there exists a memoryless strategy f for M such that

X ⊆ D is the set of exits of selected by f in M .
If M is an even sink for f , then j = 2 max(α).
Otherwise j is the highest priority visited by f in M .

Given a composer C = (D,L,M,M0,∆, λ) over L, a choice function for C, is a function
g : M → 2D × {1, . . ., 2 max (α)}, such that, for all Mi ∈ M, (g(Mi),Mi) ∈ LABELS(L).
The graph induced by g on C, denoted GC,g, is the directed graph (M, E), where (M1,M2) ∈ E
if ∆(M1, i) = M2 for some i ∈ D such that i ∈ X where g(M1) = (X, j). The priority of a
vertex M ∈ M of GC,g is j where g(M) = (X, j). We say that g has rank r, if GC,g has a
reachable ergodic set whose highest priority is r.

The size of the set LABELS(L) is at most max(α)|L|2|D|. For an arbitrary triple
(X, j,M), we can check whether (X, j,M) ∈ LABELS(L) in time polynomial in |M | using
standard techniques for solving Markov decision processes [16]. Thus LABELS(L) can be
computed in time exponential in the size of L.

I Theorem 7. Let C be a composer over L. Then there exists a strategy for TC that is
winning for the environment iff there exists a choice function for C that has an odd rank.

Proof. Let C = (D,L,M,M0,∆, λ). Let Qi be the state space of Mi = λ(Mi), for Mi ∈M,
and let Q =

⋃
(Qi × {i}) be the state space of TC .

Only If: Assume there exists a strategy for TC that is winning for the environment.
Then, by Theorem 3, there exists a memoryless winning strategy f . We construct a choice
function g for C as follows: for all Mi ∈ M, g(Mi) = (X, p), where X is the set of exits of
Mi selected by f , and p = 2 max(α) if Mi is an even sink for f and otherwise p is the highest
priority in Mi visited by f . Since f is winning, GTC ,f has a reachable ergodic set H with
odd highest priority r. Consider the set H ⊆M defined as follows: for all Mi ∈M, Mi ∈ H
if (Qi × {i}) ∩ H 6= ∅. Thus, H contains a state of the composer C if the corresponding
component of TC overlaps with the ergodic set H. Since L contains no components that are
odd sinks, and even sinks can not be a part of an ergodic set whose highest priority is odd,
H must contain all the reachable states in each component named in H.

We claim that H is an ergodic set of GC,g. We first show that H is strongly connected.
Let Mi and Mk be in H. Since all the reachable states of Mi and Mk are contained in H,
in particular their start states are also contained in H. Let these be qi and qk respectively.
Then there is a path in GTC ,f from (qi, i) to (qk, k) because H is an ergodic set of GTC ,f .
Consider the path π from (qi, i) to (qk, k) that contains the least number of exit states. Let
the length of π be n and let (q′i, i) be the first exit state along π. Suppose ∆(Mi, x) = Mj ,
where q′i is the exit state of Mi in direction x, and let qj be the start state of Mj . Then,
if g(Mi) = (X, p), we have x ∈ X, so there is an edge from Mi to Mj in GC,g, and the
immediate next state after (q′i, i) in π is (qj , j). The suffix of π starting from (qj , j) is a
path π′ from (qj , j) to (qk, k) of length less than n. Further, by construction, among all such
paths it has the least number of exit states. Assume, by the induction hypothesis, there is a
path from Mj to Mk in GC,g. Since (Mi,Mj) is also an edge in GC,g, therefore, by induction,
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there is a path from Mi to Mk in GC,g. Mi and Mk were chosen arbitrarily in H. So H is
strongly connected.

Next, we show that there are no edges that leave H. Assume there is some edge in GC,g
from a vertex Mi ∈ H to a vertex Mj ∈ M−H. Let g(Mi) = (X, p′). Then there exists
x ∈ X such that ∆(Mi, x) = Mj . Let (q′, i) be the exit state of Mi in direction x. Then
(q′, i) is reachable under f and so is (qj , j), where qj is the start state of Mj . Therefore, there
is an edge in GTC ,f from (q′, i) ∈ H to (qj , j) 6∈ H, which contradicts that H is an ergodic
set. Thus no edges leave H in GC,g and H is ergodic.

Finally, we show that the highest priority in H is r. By construction of g, since H does
not contain any even sinks, the priority of a vertex Mi in H is the highest priority visited in
Mi by f . Thus, the highest priority in H is at most the highest priority in H, which is r.
Let (q, j) ∈ H be such that q has priority r. Then the highest priority visited by f in Mj is
r, so g(Mj) = (X, r) for some X ⊆ D. Since Mj ∈ H, the highest priority in H is r, and g
has rank r.

If: Now assume that g is a choice function for C with rank p, for some odd p ≤ max(α).
Then, by the definition of choice function, for all Mi ∈M, there exists a memoryless strategy
fi for Mi, such that g(Mi) = (Xi, pi) where Xi is the set of exit directions of Mi under fi,
and pi = 2 max(α) if Mi is an even sink for fi and otherwise pi is the highest priority visited
by fi.

We define a memoryless strategy f for TC as follows: for all q ∈ Qi, f(q, i) = fi(q). Since
g has rank p, there exists a reachable ergodic set H ⊆ M of GC,g with highest priority p.
Consider the set H = {(q, i) : q ∈ Qi,Mi ∈ H}, which consists of all states in all components
corresponding to the set H. Let Hf be the subset of H that is reachable under f from the
start state of TC . We first show that Hf is strongly connected. Let (qi, i) and (qk, k) be two
arbitrary states in Hf . Then qi is a state of Mi and qk is a state of Mk. Further, Mi and Mk

are both in H. We have the following two cases:

1. qi is the start state of Mi. Consider the shortest path in GC,g from Mi to Mk. Such a
path exists because H is an ergodic set of GC,g. Let the length of the path be n and let
Mj be the successor of Mi in this path. So there is path of length n− 1 in GC,g from Mj

to Mk. Now, by the definition of GC,g, there exists x ∈ D such that ∆(Mi, x) = Mj and
the exit state in direction x is reachable from the start state of Mi under fi. Thus there
is a path in GTC ,f from (qi, i) to (qj , j) where qj is the start state of Mj . By induction,
there is a path in GTC ,f from (qi, i) to (qk, k).

2. qi is not the start state of Mi. Let g(Mi) = (X, p′), where X ⊆ D. Since p is the highest
priority in H and Mi ∈ H, we have p′ ≤ p ≤ max(α). Thus p′ 6= 2 max(α) and so Mi is
not an even sink for f . Also, the library L is assumed to have no components that are
odd sinks. Thus, some exit of Mi must be reachable from qi under fi. Let this exit be in
direction x ∈ D, and let ∆(Mi, x) = Mj . Then there is a path in GTC ,f from (qi, i) to
(qj , j) where qj is the start state of Mj . Now, since qj is a start state, by the previous
case, there is a path from (qj , j) to (qk, k) in GTC ,f . So there is a path from (qi, i) to
(qk, k) and therefore Hf is strongly connected.

Assume that some edge in GTC ,f leaves Hf . Let there be an edge between (q, i) ∈ Hf

and (q′, j) ∈ Q −Hf . Now Mj can not belong to H because otherwise (q′, j) would be in
Hf . So we have i 6= j and (q, i) must be an exit state of Mi. Therefore there is an edge in
GC,g from Mi ∈ H to Mj ∈M−H, which contradicts that H is ergodic. Thus Hf is also an
ergodic set.
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By Lemma 4, it suffices to show that the highest priority in Hf is odd. Now p is the
highest priority in H, and p is odd, which means p 6= 2 max(α). So there must exist Mi ∈ H
such that some state q in Mi has priority p and is reachable under fi. Then (q, i) is in Hf

and so Hf has highest priority at least p. Assume some state (q′, j) in Hf has priority p′ > p.
Since q′ is reachable under fj , therefore, we have g(Mj) = (X, p′′), for some X ⊆ D and
p′′ ≥ p′ > p. This contradicts the fact that Mj ∈ H. Thus the highest priority in the ergodic
set Hf is p, which is odd. J

Let Γ = LABELS(L). A composer and choice function pair has a natural representation
as a regular Γ-labeled D-tree. Given a composer C = (D,L,M,M0,∆, λ) over L, and a
choice function g for C, we denote by tree(C, g), the regular Γ-labeled full D-tree 〈D∗, τ〉,
where for all x ∈ D∗, we have that τ(x) = (g(∆∗(x)), λ(∆∗(x))). Thus tree(C, g) is the
tree obtained as a result of adding labels to tree(C) such that a node x corresponding to
Mi ∈M that is labeled with Mi in tree(C) is labeled with (X, j,Mi) where (X, j) = g(Mi).
As we show in the next lemma, the mapping is reversible, in the sense that given a regular
Γ-labeled D-tree, we can obtain a composer and choice function in a natural way.

I Lemma 8. Let T be a regular Γ-labeled full D-tree. Then there exist a composer C over L
and a choice function g for C such that tree(C, g) = T .

In light of Lemma 8, we can represent an arbitrary regular Γ-labeled full D-tree as
tree(C, g) for some composer C over L and some choice function g for C. Similarly, we can
represent an arbitrary regular L-labeled full D-tree as tree(C) for some composer C over L.

Since the question of whether a given composition satisfies α boils down to whether its
composer has a choice function that has an odd rank, we find it useful to characterize regular
trees that correspond to choice functions having a particular rank (see [14] for related results).
First, we inductively define the set of marked nodes of a Γ-labeled D-tree as follows: the
root is always marked, and a node y · i, where i ∈ D and y ∈ D∗, is marked if y is marked
and i ∈ X, where (X, j,M) is the label on y · i.

I Lemma 9. Let C = (D,L,M,M0,∆, λ) be a composer over library L with width D, α be
an index function for L, g be a choice function for C, and p ≤ max (α). Then g has rank p
iff tree(C, g) has a full subtree T such that:
1. The root of T is marked.
2. Every node in T that is marked has priority label at most p.
3. From each marked node in T there is a path in T to a marked node with priority label p.

The conditions given by Lemma 9 can be checked by a suitable tree automaton as follows:

I Lemma 10. Let L be a library with width D and let p ≤ k. Then there exists an
nondeterministic Büchi tree automaton (NBT) Ap such that Ap accepts a Γ-labeled regular
D-tree T iff T = tree(C, g) for some composer C over L and choice function g with rank p.

Proof. By Lemma 8 and 9, it suffices to construct an NBT Ap such that Ap accepts a tree
T ′ iff T ′ has a full subtree T that satisfies the three conditions in Lemma 9. For simplicity,
the automaton is defined over binary trees, where D = {0, 1}, but the definition can be easily
extended to n-ary trees.

Let Ap = (Γ, Q, q0, δ, β). We define Q = {search, cut,wait, reach, visit, err}, q0 = search
and β = {visit,wait, cut}. The states of the automaton can then be described as follows:

search: In this state the automaton is searching for the root of the special subtree.
cut: This represents a branch not taken.
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wait and reach: In these states the automaton has entered the subtree and is looking for
nodes labeled with p.
visit: In this state the automaton has just visited a node with label p in the subtree.
err: This is an error state that is entered if there is a label higher than p in the subtree.
The transition function δ is defined as follows: For all ρ = (X, j,Mi) ∈ Γ,

1. For q ∈ {cut, err}, δ(q, ρ) = {(q, q)}.
2. For q = search

δ(q, ρ) =


{(search, cut), (wait, cut)} if X = {0}
{(cut, search), (cut,wait)} if X = {1}
{(search, cut), (cut, search), (wait,wait)} if X = {0, 1}

3. For q ∈ {wait, reach, visit}, if j > p then δ(q, ρ) = {(err, err)}, if j = p then

δ(q, ρ) =


{(visit, cut)} if X = {0}
{(cut, visit)} if X = {1}
{(visit, visit)} if X = {0, 1}

and if j < p then

δ(q, ρ) =


{(reach, cut)} if X = {0}
{(cut, reach)} if X = {1}
{(reach,wait), (wait, reach)} if X = {0, 1}

In the first stage, Ap guesses the location of the root of the special subtree T . While
searching for this root, Ap remains in the state search. When it encounters the root, it enters
the state wait for the first time. This starts the second stage, where Ap considers only marked
nodes in T . In directions that correspond to a non-marked node, Ap moves to the state cut
and remains there perpetually. From every marked node in T , Ap guesses a path to another
marked node with label p, using the states wait and reach. It starts this search in state wait,
moves to state reach immediately, remains there until it encounters a marked node with label
p, and then moves to state visit. If there is no path from some node to another node with
label p, all runs corresponding to the choice of T as subtree will eventually get stuck in reach.
Thus, some run corresponding to T as the required subtree is accepting iff T satisfies the
required conditions. J

I Theorem 11. Let L be a library with width D, R be an exit control relation for L, and α
be an index function for L. There exists a non-deterministic parity tree automaton (NPT) B
such that, for all composers C over L, B accepts tree(C) iff C satisfies α and C is compatible
with R. Consequently, B is non-empty iff L realizes α under R.

Proof. We define B = BR ∩ Bα, where BR is a safety tree automaton that accepts tree(C)
iff C is compatible with R, and Bα is an NPT that accepts tree(C) iff C satisfies α. Since
the intersection of a safety automaton and an NPT is again an NPT, B is also an NPT.

Construction of BR: For simplicity, we define the automaton for the case D = {0, 1}, and
note that the definition can be easily extended for arbitraryD. BR = {L, {start}∪D, start, δR},
where δR is defined as follows: For all M ∈ L,

δR(start,M) = {(0, 1)}
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For q ∈ D, if (q,M) ∈ R then δR(q,M) = {(0, 1)}
Note that BR has no transitions out of the states 0 and 1 iff the exit control relation R is
violated. Thus BR accepts tree(C) iff C is compatible with R.

Construction of Bα: Let Γ = LABELS(L) and let Ap = (Γ, Q, q0, δ, β) be the NBT
defined in Lemma 10. We define A′p = (L, Q, q0, δ

′, β), where

δ′(q,Mi) =
∨

(X,j,Mi)∈LABELS(L)

δ(q, (X, j,Mi))

While Ap accepts Γ-labeled D-trees, A′p accepts L-labeled D-trees. A′p simply simulates
Ap by using its larger transition function to guess the missing portion of the labels. We
can characterize the regular trees accepted by A′p as follows: for a composer C over L, A′p
accepts tree(C) iff there exists a choice function for C which has rank p.

Consider the automaton A′α whose language is the union of the language of each A′p, for
all odd p ≤ max(α). Let C be a composer over L. Then A′α accepts tree(C) iff there exists
a choice function for C that has an odd rank. Thus, by Theorem 7, A′α accepts tree(C) iff
C does not satisfy α. Finally, consider the automaton Bα = A′α, which is the complement of
A′α. Then Bα accepts tree(C) iff C satisfies α.

Since an NPT is nonempty iff it accepts a regular tree, and L realizes α under R iff some
composer C over L satisfies α and C is compatible with R, therefore B is non-empty iff L
realizes α under R. J

The NBT A′p accepts |D|-ary trees and has O(1) states, with an alphabet of size |L|, so
A′α is an NBT with O(k) states, where k = max(α). It follows that Bα is a nondeterministic
parity tree automaton (NPT) with kO(k) states and parity index O(k) [12]. Also, BR is a safety
automaton with O(|D|) states. Thus, their intersection B is an NPT with |D|kO(k) states
and parity index O(k), whose nonemptiness can be tested in time |L||D|O(k+|D|)kO(k2+k|D|)

[12]. We thus obtain the following:

I Theorem 12. The embedded parity realizability problem is in EXPTIME.

If an alternating tree automaton is nonempty, then it must accept some regular tree [12].
Given a regular tree accepted by B, we can obtain a finite transducer that generates that
tree. This transducer is a composer that realizes α under R. Thus, we also obtain a solution
to the embedded parity synthesis problem.

I Theorem 13. The embedded parity synthesis problem is in EXPTIME.

The complexity of our solution is exponential in both k2, where k is the highest parity
index, as well as |D|, which is the number of exit states in each component. The exponential
dependence on k is expected, as typical algorithms for solving parity games are exponential in
the parity index, cf. [8]. Improving k2 to k is an open challenge. It is also an open question
whether the exponential dependence on |D| can be avoided.

We remark that the embedded parity synthesis problem can be viewed as a 2-player partial
information stochastic parity game. Informally, the game can be described as follows: The
two players are the composer C and the environment E. The C player chooses components
and the E player chooses paths through the components chosen by C. C cannot see the
moves E makes inside a component. At the start C chooses a component M from the library
L. The turn passes to E, who chooses a sequence of inputs, inducing a path in M from
its start state to some exit x in D. The turn then passes to C, which must choose some
component M ′ in L and pass the turn to E and so on. As C cannot see the moves made by
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E inside M , C cannot base its choice on the run of E in M , but only on the exit induced by
the inputs selected by E and previous moves made by C. So C must choose the same next
component M ′ for different runs that reach exit x of M . In general, different runs will visit
different priorities inside M . This is a two-player stochastic parity game where one of the
players does not have full information. If C has a winning strategy that requires a finite
amount of memory, then we can use such a strategy to obtain a suitable finite composer
that satisfies the index function α, thus solving the embedded parity synthesis problem. If C
has no winning strategy or if every winning strategy requires infinite memory, then α is not
realizable from the library L.

We also note that, when viewed in the framework of games, our result is a rare positive
result for partial-information stochastic games. In general, 2-player partial information
stochastic games are known to be undecidable even for co-Buchi objectives (and thus for
parity objectives) [3].

5 Synthesis for DPW Specifications

Let A be a deterministic parity automaton (DPW), M be a probabilistic transducer and L
be a library of components. We say A is a monitor for M (resp. L) if the input alphabet of
A is the same as the output alphabet of M (resp. L). Let A be a monitor for M and let LA
be the language accepted by A. We say a strategy f for M is winning for the environment
iff µf (LA) < 1, i.e., the output of M is rejected by A with positive probability. We say that
M satisfies A if there exists no winning strategy for the environment.

I Definition 14. The DPW probabilistic realizability problem is: Given a library L and a
DPW A that is a monitor for L, decide whether there exists a composer C over L, such that
TC satisfies A. If such a composer exists, we say that L realizes A. The DPW probabilistic
synthesis problem is to find such a composer C if it exists.

We transform this problem into a version of the embedded parity problem solved in the pre-
vious section. Let A = (ΣO, QA, s0, δA, αA) be a DPW and M = (ΣI ,ΣO, QM , q0, δM , F, L)
be a probabilistic transducer. For s ∈ QA, we denote by M × As, the probabilistic trans-
ducer (ΣI ,ΣO, QM × QA, (q0, s), δ, F × QA, L′), where δ((q, s′), a)(q′, s′′) = δM (q, a)(q′) if
s′′ = δA(s′, L(q)) and 0 otherwise. Given a library L with width D, we define the augmented
library LA = {M × As : M ∈ L, s ∈ QA}. The width of LA is D × QA. We define the
exit control relation RA ⊆ D ×QA × LA for LA as follows: for all i ∈ D, s ∈ QA, M ∈ L,
we have (i, s,M × As) ∈ RA. We also extend αA to LA as follows: for (q, s′) ∈ QM ×QA,
αA(q, s′) = αA(s′). Thus αA is an index function for LA.

Our first step is to treat this augmented library as a new library and solve the embedded
parity synthesis problem for LA with αA as the index function and RA as the exit control
relation. This gives us a tree automaton that accepts LA-labeled (D ×QA)-trees and that is
empty iff LA does not realize αA under RA. Later, we show how to transform this automaton
into another that accepts L-labeled D-trees and is empty iff L does not realize A. Since,
by definition, LA bijectively maps to L × QA, we find it convenient to use labels from
L ×QA in place of LA. We now define a composer for the augmented library. The states
of the composer are pairs of the form (M, s), where s is a monitor state and M represents
an instance of a component from L. A composer for LA, is a deterministic transducer
C = (D × QA,L × QA,M× QA, (M, s),∆, λ). The following lemma follows directly from
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Theorem 111.

I Lemma 15. Let L be a library and A be a DPW that is a monitor for L. There exists
an NPT B that accepts a regular tree T iff T = tree(C) for some composer C over LA such
that TC satisfies αA and C is compatible with RA.

Given a composer C over a library L and a monitor A for L, we can extend C to a
composer over the augmented library LA.

I Definition 16 (Augmented Composer). Let L be a library and A be a monitor for L. Let
C = (D,L,M,M0,∆, λ) be a composer over L. The augmentation of C by A, denoted CA,
is a composer over LA such that CA = (D ×QA,L ×QA,M×QA, (M0, s0),∆′, λ′), where
1. For all s ∈ QA, M ∈M, λ′(M, s) = (λ(M), s).
2. For all i ∈ D, M ∈M and s, s′ ∈ QA, ∆((M, s), (i, s′)) = (∆(M, i), s′).

We say CA is an augmented composer. While a composer only keeps track of the transfer
of control between components, the augmented composer also keeps track of the state of
the monitor before and after the control is transferred. To go from augmented composers
to composers, we use techniques from synthesis with incomplete information [10]. We start
by describing a relation between tree(C) and tree(CA). First we need to introduce some
convenient notation.

Let X, Y and Z be finite sets. For a Z-labeled (X × Y )-tree 〈T, V 〉, we denote by
xray(Y, 〈T, V 〉), the (Z × Y )-labeled (X × Y )-tree 〈T, V ′〉 in which each node is labeled by
both its direction in Y and its labeling in 〈T, V 〉. We define operators hideY and wideY .
The operator hideY : (X × Y )∗ → X∗ replaces each letter x · y, where x ∈ X and y ∈ Y ,
by the letter x. The operator wideY maps Z-labeled X-trees to Z-labeled (X × Y )-trees
as follows: wideY (〈X∗, V 〉) = 〈(X × Y )∗, V ′〉, where for each node w ∈ (X × Y )∗, we have
V ′(w) = V (hideY (w)).

I Lemma 17. Let L be a library and A be a monitor for L. Let C be a composer over L
and CA be the augmentation of C by A. Then tree(CA) = xray(QA, wideQA

(tree(C))).

I Theorem 18. Let L be a library and A be a monitor for L. Let C be a composer over L
and CA be the augmentation of C by A. Then C satisfies A iff CA satisfies αA.

Given a library L and monitor A, we can solve the embedded realizability problem for
the augmented library LA to obtain a regular tree T , where T = tree(C) for some composer
C over LA such that C satisfies αA. Then the tree T ′ = xray(QA, wideQA

(tree(C))) is also
regular, so T ′ = tree(C ′) for some composer C ′ over L. Now we would like to use C ′ to
solve the DPW realizability problem, but C ′ is only guaranteed to satisfy A if C is the
augmentation of C ′ by A. Therefore, to solve the DPW realizability problem, we have to
obtain an automaton that accepts a tree T ′ = tree(C ′) if the augmentation of C ′ by A

satisfies αA.

I Theorem 19. Let X, Y and Z be finite sets. Given an alternating automaton B over
(Z × Y )-labeled (X × Y )-trees, we can construct an alternating automaton B′ over Z-labeled
X-trees such that B′ accepts a labeled tree 〈X∗, V 〉 iff B accepts xray(Y,wideY (〈X∗, V 〉)).
Further, B and B′ have the same acceptance condition and |B′| = O(|B|).

1 Note that even with the slightly modified definition of composer, the results of the previous section still
apply because a pair (M, s) ∈ L ×QA still uniquely identifies an element of LA.
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Given an alternating automaton B, let narrowY (B) denote the corresponding automaton
constructed in Theorem 19.

I Theorem 20. Let L be a library and A be a monitor for L. Then there exists an alternating
parity tree automaton (APT) B such that, for all composers C over L, B accepts tree(C) iff
C satisfies A. Consequently, B is non-empty iff L realizes A.

Proof. Let A = (ΣO, QA, s0, δA, αA). Let B′ be the NPT that accepts tree(C ′) iff C ′ satisfies
αA and C ′ is compatible with RA, for all composers C ′ over LA. Such a B′ exists by Lemma
15. Let B = narrowQA

(B′). We show that B, which is an APT, is the required automaton.
Let C be a composer over L. By Theorem 18, C satisfies A iff CA satisfies αA. Therefore,

B′ accepts tree(CA) iff C satisfies A. By Lemma 17, tree(CA) = xray(QA, wideQA
(tree(C))),

and by Theorem 19, B accepts a tree T iff B′ accepts xray(QA, wideQA
(T )). Thus, B accepts

tree(C) iff C satisfies A. Since an APT is nonempty iff it accepts a regular tree, and L
realizes A iff some composer C over L satisfies A, hence B is non-empty iff L realizes A. J

Each transducer in the augmented library LA has a set of final states of size |D||QA|.
Thus the automaton B′ has size exponential in both |D| and |QA|. The translation from B′ to
B adds no blowup, but B is an APT, while B′ is an NPT. Since emptiness for an alternating
parity tree automaton can be checked in time exponential in the size of the automaton [12],
therefore B can be be checked for emptiness in time doubly exponential in |D| and |QA|.

I Theorem 21. The DPW probabilistic realizability problem is in 2EXPTIME.

Again, if an alternating tree automaton is nonempty, then it must accept some regular
tree [12], and given a regular tree accepted by B, we can obtain a finite transducer that
generates that tree. This transducer is a composer that realizes A. Thus, we also obtain a
solution to the DPW probabilistic synthesis problem.

I Theorem 22. The DPW probabilistic synthesis problem is in 2EXPTIME.

The doubly exponential upper bound for our solution can be viewed as follows: we inherit
one exponential from the embedded parity solution and the second exponential is introduced
by the use of an APT to deal with incomplete information. It is an open question whether
the second exponential can be avoided.

6 Discussion and Future Work

Component-based synthesis seeks to build systems that satisfy a given specification using
pre-existing components. This contrasts with classical synthesis, where the aim is to build a
system from scratch. The component-based approach is closer in spirit to how systems are
built in the real world. In this paper, we generalize the component-based synthesis problem
to a probabilistic setting. Our components are modeled as probabilistic transducers and
the specification is given as a deterministic parity automaton. The composition itself is
described by a deterministic transducer, called a composer, which governs the transitions
between components.

We break the problem down in two stages. First we solve a simpler version, which we
call the embedded parity synthesis problem, where the specification is embedded as parities in
the components themselves. Our solution combines techniques from Markov chain analysis
and automata theoretic verification. Then we show how to solve the more general case of a
separate specification, which we call the DPW probabilistic synthesis problem, by reducing it
to the simpler case using techniques from synthesis with incomplete information.
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We show that the embedded parity synthesis problem is in EXPTIME and the DPW
probabilistic synthesis problem is in 2EXPTIME. The question of tighter lower and upper
bounds we leave for future work. In particular, it is an open question whether the DPW
probabilistic synthesis problem is in EXPTIME. Another line of work is suggested by the
possibility of probabilistic composers. While we do not know how to synthesize probabilistic
composers, we do know that a direct reduction to the deterministic case will not work as
probabilistic composers are more expressive.
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Abstract
Current theoretical solutions to the classical Church’s synthesis problem are focused on synthesiz-
ing transition systems and not programs. Programs are compact and often the true aim in many
synthesis problems, while the transition systems that correspond to them are often large and not
very useful as synthesized artefacts. Consequently, current practical techniques first synthesize
a transition system, and then extract a more compact representation from it. We reformulate
the synthesis of reactive systems directly in terms of program synthesis, and develop a theory to
show that the problem of synthesizing programs over a fixed set of Boolean variables in a sim-
ple imperative programming language is decidable for regular ω-specifications. We also present
results for synthesizing programs with recursion against both regular specifications as well as
visibly-pushdown language specifications. Finally, we show applications to program repair, and
conclude with open problems in synthesizing distributed programs.
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1 Introduction
The synthesis problem for reactive systems is a classical problem in computer science, and
stems from a problem posed by Church in 1957 on synthesizing digital circuits from specifi-
cations written in a restricted logic of arithmetic [6]. This problem was solved first by Büchi
and Landweber in 1969 [5] (see [25] for an account of the history of this problem). The 70s
saw the emergence of the elegant theory of automata on infinite trees by Rabin [19], which
has now been well-studied and honed into a beautiful theory that underlies many of the
decidability results in logic and automata theory [24, 8]. Coupled with the temporal-logic
to automata connection on words [16, 27, 20], tree-automata theory gives the most elegant
solution to Church’s problem: compile the specification into a deterministic parity automa-
ton on infinite words [20], using this build a parity tree-automaton that accepts the trees
that correspond to strategies for the system to generate outputs for inputs so that all paths
in the tree are accepted by the specification automaton, and, finally, check the emptiness
of the tree automaton and build a finite-state transition system from a regular tree that’s
accepted by this automaton [17].

The synthesis problem has received a lot of attention in recent years, both in theory as
well as in practice. Theoretical approaches include extensions to branching time specifica-
tions [11, 13], the very non-trivial problem of synthesizing distributed systems [18, 14, 13],
and synthesis with incomplete information where the environment and system may not have
perfect information about the state of each other [10].
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Most of the current theoretical techniques in synthesis are geared towards designing
transition systems. In other words, the algorithms for synthesis in the end output transition
systems that meet the specification. While transition systems are appropriate for defining
semantics of systems, systems are seldom designed by explicitly describing their transition
systems. Systems are instead designed using high-level and succinct representations such as
programs.

The extensive literature on synthesizing transition systems does not help in building di-
rectly the compact programs we seek. Current practical techniques build a transition system
(or an automaton that depicts several different strategies for winning), and implement it in
a symbolic manner such as a program. Several such approaches currently exist; for instance,
the approach in [15] builds automata from which a symbolic algorithm using memory vari-
ables is extracted and the work by Bloem et al [4] reports on practical ways of synthesizing
PSL circuit code from symbolic BDD representations of the solution.

Consider, for instance, the problem of synthesizing a data-structure to maintain subsets
of a fixed set of n elements, where the environment is allowed to maintain the set by adding
or removing elements from it, and querying the set for membership. It is easy to see
that a program for implementing it can be written that uses n Boolean variables, one for
each element, that tracks whether that element belongs to the set or not. Furthermore,
a short while-program (of length about O(n log n)) can be written. On the other hand,
a transition system realizing the specification will necessarily be exponential in n. For
n = 50, a transition system with 250 states is not very useful as a synthesized artefact,
while a program that’s about 150 lines of code is. One can, of course, construct a particular
transition system and then try to synthesize a program from it (as in the works cited above),
but these are not guaranteed to yield small programs.

Another drawback (and a subtle one) in current synthesis techniques is that the systems
that are synthesized depend on how specifications are written, rather than only its semantics.
For instance, assume ϕ1 and ϕ2 are two specifications that are syntactically different but
semantically equivalent. Then the current synthesis algorithms based on tree automata will
produce different sets of (finite) transition systems for these specifications. The reason is
that for a given specification, current synthesis algorithms build an automaton that accepts
unfoldings of transitions systems that satisfy the specification. Though these automata for
ϕ1 and ϕ2 accept precisely the same set of trees, the automata themselves are different, as
they depend on the syntax of the specifications (i.e., on ϕ1 and ϕ2). Consequently, the non-
emptiness algorithm for these automata can synthesize different transition systems for the
two semantically-equivalent specifications. Intuitively, the synthesized finite-state transition
system not only encodes a correct algorithm, but also an elaborate proof as to why it meets
the specification, and this proof grows with the way the specification is formulated. In
particular, the more complex the same specification is written, the more complex will be
the synthesized transition system!

There is some work in the literature (see [21]) that addresses the above problem and can
synthesize transition systems (but not programs) that are within a bound, independent of
the specification. However, we do not know of any work on specification-syntax agnostic
synthesis that works in the unbounded setting.

The main contribution of this paper is a theory of synthesis where imperative programs
(written in a particular syntax, and over a fixed set of Boolean variables) are first-class
objects and where the synthesis algorithms directly synthesize programs that meet reac-
tive regular ω-specifications. We lay out this theory of synthesizing imperative programs,
showing two main results: (a) that imperative program synthesis is decidable against regu-

CSL’11



430 Synthesizing Reactive Programs

lar specifications, and (b) that synthesis of imperative programs with recursive functions is
decidable against both regular specifications as well as visibly-pushdown specifications.

The technical results are automata-theoretic, are geared towards synthesizing programs
directly, and use two-way alternating ω-automata working on finite trees that represent
programs. In particular, the synthesis algorithms in this paper build tree automata on finite
trees that accept all programs satisfying a specification, and hence do not depend on the
way the specification is written. We can therefore pull out a program that accords to our
needs (for example, we can pull out the smallest program satisfying the specification, for
some notion of length of a program).

There is a flurry of research in the programming languages community in the last few
years on program synthesis [9, 23, 22]. In general, these algorithms are aimed at practi-
cal synthesis approaches towards solving standard algorithmic problems (such as sorting,
Strassen’s multiplication algorithm, Excel scripts, etc.). In these papers, the prevailing
theme is to fix a template for the program, and use SAT and SMT solvers to find a program
matching the template and simultaneously a proof (which also comes with a template) that
proves the program correct. In these algorithms, the search space of programs for synthesis
is finite, and the focus is on efficiency, programmability, and usability. Hence a theory of
synthesizing programs, albeit finite-state programs, seems worthy of study. In this context,
this paper provides a sound and complete procedure for synthesizing Boolean programs of
arbitrary length that satisfy a specification.

The paper is structured as follows: Section 2 defines imperative programs without recur-
sion and regular specifications, while Section 3 introduces the automata theory on trees that
we will use. Section 4 lays down the results for synthesizing non-recursive programs, and
Section 5 shows how to extend this to synthesize recursive programs against regular as well
as visibly pushdown specifications. Section 6 concludes with a discussion of applications of
our results to program repair, and open problems in distributed program synthesis.

2 Programs and regular specifications
We define in this section the class of imperative programs that we work with, and also define
the class of regular specifications against which we synthesize programs.

Let us fix two numbers NI , NO ∈ N. We will design programs that in every round take
NI bits as input and output NO bits.

Programs are parameterized over a finite set of Boolean variables B that it uses (nat-
urally, we assume |B| ≥ max{NI , NO}). The class of programs over B is given as follows
(where b, bi range over variables in B, and ~b stands for a vector of variables in B):

〈stmt 〉 ::= 〈stmt 〉; 〈stmt〉 | skip | b := 〈expr 〉 | input ~b | output ~b

if (〈expr〉) then 〈stmt〉 else 〈stmt〉 | while (〈expr〉) {〈stmt 〉}
〈expr 〉 ::= b | tt | ff | 〈expr〉 ∨ 〈expr〉 | ¬〈expr〉

We assume that all input and output statements have tuples of width NI and NO,
respectively.

The semantics of a reactive program is the natural one. The “input ~b” statement takes
(reactively) an input in {0, 1}NI from the environment and stores it in the variables ~b, while
“output ~b” outputs the values of the variables in ~b. The program can execute any number
of internal steps between an input and an output statement (though synthesized programs
will have the property that the program eventually does produce an output). During this
internal computation, the program can manipulate its variables using assignments, condi-
tionals, and iteration. Note that programs are, of course, finite in length, though they can
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(and typically will) interact with their environment reactively and infinitely often.

Representing programs using finite trees: We will represent programs as finite trees.
Intuitively, the bracketing of blocks of code (as defined by the statements under conditionals
and while-loops) can be nested arbitrarily, and hence we need trees to capture roughly the
parse-trees of programs according to the grammar given above.

For brevity, we will use binary trees (with every node having zero, one, or two children)
and represent them using terms. A term f(t1, t2) corresponds to a tree with f as the label
of the root, and with the trees corresponding to t1 and t2 as the left and right subtrees of
the root; a unary term g(t) corresponds to a tree with g as the label of the root, and where
the root has only one child (say the left child), and the subtree at this child is isomorphic
to the tree associated with t.

The tree associated with a program P is (root, tree(p)), where tree is inductively defined
as follows:

tree(b) = b tree(s; s′) = ; (tree(s), tree(s′))
tree(tt) = tt tree(skip) = skip
tree(ff) = ff tree(input ~b) = input ~b

tree(ϕ1 ∨ ϕ2) = ∨ (tree(ϕ1), tree(ϕ2)) tree(output ~b) = output ~b

tree(¬ϕ) = ¬ (tree(ϕ1)) tree(b := e) = assign-b (tree(e))
tree(if (e) then s1 else s2) = if (tree(e),

then(tree(s1), tree(s2)))
tree(while (e){s}) = while (tree(e), tree(s))

A program over a set of Boolean variables B is hence encoded as a binary tree over the
alphabet:

Σ = {root,¬,∨, ; , if, then,while} ∪B ∪ {assign-b | b ∈ B}
∪{input ~b | ~b ∈ BNI} ∪ {output ~b | ~b ∈ BNO}

The tree automata we build will accept such trees that represent programs that satisfy
the given specification. Of course, the set of trees corresponding to all programs over a
particular finite set of Boolean variables B is regular; we skip this proof, as it follows pretty
much from the fact that the set of parse trees of any context-free grammar is regular.

I Lemma 1. Let B be a finite set of variables. Then the set of trees corresponding to
programs over variables B is regular. J

Regular specifications:

A (linear-time) specification over (NI , NO) is a subset of ω-sequences L ⊆ ({0, 1}NI +NO )ω
that depicts the correct infinite sequences of input-output behavior allowed by the specifica-
tion. A specification L is said to be regular if there is a non-deterministic Büchi automaton
over the alphabet {0, 1}NI +NO that precisely accepts L (we don’t define word automata in
this paper; we refer the reader to [24]).

We will assume that regular specifications L are given by a non-deterministic automaton
that accepts the set of sequences not in L, i.e., by a non-deterministic Büchi automaton
accepting L = ({0, 1}NI +NO )ω \ L. This is without loss of generality as regular languages
are effectively closed under complement.

For any linear-time temporal logic (LTL) specification ϕ over a set of NI + NO propo-
sitions can be seen as defining a regular specification Lϕ = {α ∈ ({0, 1}NI +NO )ω | α |= ϕ}.
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Furthermore, given an LTL specification ϕ, we can construct a Büchi automaton A accepting
L in time exponential in |ϕ| and whose size is exponential in |ϕ|, by building the automaton
accepting the models of ¬ϕ, using the now-classic temporal-logic–automata connection [27].

We will work with regular ω-specifications given by automata accepting L in the sequel,
derive the complexity results for synthesis in terms of the size of this automaton, and, as a
corollary, derive the complexity of synthesis for LTL specifications.

3 Trees and Alternating automata
We use labeled binary finite trees throughout this paper. Given a finite set of labels Σ, an
Σ-labeled tree is a pair T = (V, λ), where V ⊆ {L,R}∗ that is finite and prefix closed, and
λ : V → Σ. The edges of the tree are implicit: for every v ∈ V , if v.L ∈ V , then v.L is the
left-child of v, and if v.R ∈ V , then v.R is the right-child of v; the node ε is the root of the
tree. The function λ assigns a label in Σ to each node of the tree.

For convenience, let us overload the concatenation operator so that for any v ∈ {L,R}∗,
v.U = v′ if v′.L = v or v′.R = v; i.e., v.U refers to the parent of v in the tree, obtained by
going up from v.

Non-deterministic finite automata on trees are the classic top-down tree-automata, with
different transition functions defined for nodes that have a left-child only, a right-child only,
or has both children. We refer the reader to a textbook on tree automata for details [7]; we
fix here only a brief definition and notation.

A non-deterministic finite tree automaton on Σ-labeled trees is a structure A =
(Q, q0, δL, δR, δLR, F ), where Q is a finite set of states, q0 ∈ Q, δL, δR : Q × Σ → 2Q,
δLR : Q× Σ→ 2Q×Q, and F ⊆ Q.

A run of such a tree automaton on a finite tree (V, λ) is a Q-labeled tree (V, ρ) where:
ρ(ε) = q0, and for every v ∈ V , (i) if v has a left-child but no right-child, then ρ(v.L) ∈
δL(q, λ(v)); (ii) if v has a right-child but no left-child, then ρ(v.R) ∈ δR(q, λ(v)); and (iii) if
v has both children, then (ρ(v.L), ρ(v.R)) ∈ δLR(q, λ(v))

A run (V, ρ) is accepting if for every leaf v of V , ρ(v) ∈ F . A tree is accepted by the
automaton if there is an accepting run on it. The language of the tree automaton is the set
of all Σ-labeled trees accepted by it.

Two-way alternating ω-automata on finite trees:
We now define two-way alternating ω-automata on finite trees. This is a bit unusual; ω-
automata are usually defined on infinite trees, not on finite ones. However, we will deal with
only accepting finite-trees in this paper, which will be used to encode programs (which have
a finite description, of course). However, in order to simulate these programs on ω-length
sequences of inputs, we would need tree automata working on finite trees for infinitely many
steps, going up and down the tree.

For any set S, let B+(S) denote the set of all positive Boolean formulas over S; i.e., the
set defined by the grammar:

ϕ ::= true | false | s | ϕ ∨ ϕ | ϕ ∧ ϕ

where s ∈ S.
A two-way alternating Büchi tree automaton over Σ-labeled trees, is a tuple A =

(Q, q0, δL, δR, δLR, δ∅, F ), where Q is a finite set of states, q0 ∈ Q, F ⊆ Q, and where:

δL : Q× Σ× {L,D} → B+(Q× {L,U})
δR : Q× Σ× {R,D} → B+(Q× {R,U})
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δLR : Q× Σ× {L,R,D} → B+(Q× {L,R,U})
δ∅ : Q× Σ× {D} → B+(Q× {U})

Intuitively, δLR(q, a, dir) = ϕ denotes the actions the automaton can take when in state
q, reading a node n whose label is a, and when the last move it did is given by dir, where
dir=L (dir=R) means that in the last move the tree automaton came up from the left child
(respectively, right child) of n, and dir=D means that in the last move the tree automaton
came down from the parent of n. The tree automaton, at such a point, is allowed to choose
any Boolean valuation of the set (Q× {L,R,U}) that satisfies the formula ϕ, and for every
(q′, g) that it sets to true, it must pass a copy of itself in state q′ along the direction g,
where g = L,R,U is interpreted as left-child, right-child, and up to the parent, respectively.
The transitions δL and δR (for nodes with only a left-child or only a right-child) and δ∅
(for leaves of the tree) are similarly interpreted. By convention, we assume that at the
beginning, the tree automaton starts at the root with the last move set to dir=D. The tree
automaton accepts the tree if all its branches formed by the implicit infinite tree it defines
by propagating states meet the set F infinitely often.

Two-way alternating co-Büchi automata are similarly defined; here the tree automaton
accepts if all its branches meet F only finitely often.

Semantics of two-way alternating automata:
Formally, let us define the acceptance of a tree by an automaton A =
(Q, q0, δL, δR, δLR, δ∅, F ) using a game, played between two players, the automaton-player
(player 0) and the path-finder player (player 1) (we can also equivalently define acceptance
using infinite trees).

A finite-state two-player Büchi arena is a tuple G = (P0, P1, E, p0, F ) where P0 and
P1 are two finite disjoint sets representing the positions from where players 0 and 1 play,
respectively, E ⊆ (P0 × P1) ∪ (P1 × P0) is a set of edges that defines a bipartite graph over
P0 and P1, p0 ∈ P0 is the initial position, and F ⊆ P0 ∪ P1 is a set of Büchi positions.

A strategy for player 0 is a function f0 : (P0P1)∗ → P1, such that for any σ ∈ (P0P1)∗
and p ∈ P1, (p, f0(σ.p)) ∈ E. In other words, f0 encodes a strategy for player 0 to choose a
successor vertex after any finite sequence of moves that is a partial play in the game.

A play is a finite or infinite path in the graph defined by the arena, and denoted by a
sequence in {p0}.(P1P0)∗(ε + P1) ∪ {p0}.(P1P0)ω. A maximal play is a play that cannot
be extended (an ω-length play is maximal; a finite-length play is maximal only if the final
vertex has no out-going edges). A play σ conforms to a strategy f0 for player 0 if for every
proper prefix σ′ ∈ (P0P1)∗P0 of σ, σ′f(σ′) is also a prefix of σ. A strategy for player 0, f0,
is said to be winning if for all maximal plays σ that conform to f0, σ is not finite and some
position in F occurs infinitely often in σ. We say that player 0 wins the game on the arena
if it has a winning strategy.

Intuitively, a strategy for player 0 is winning if along any play conforming to the strategy
player 1 gets “stuck” (cannot make a move) or the play is infinite and meets the Büchi final
state set infinitely often.

We can now define when a two-way alternating automaton A = (Q, q0, δL, δR, δLR, δ∅, F )
accepts a tree (V, λ). Let us define the arena corresponding to A and the tree as
(P0, P1, E, p0, F

′) where:

P0 = (V ×Q× {L,R,D})
P1 = (V × 2Q×{L,R,U})
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E contains the following edges:
An edge from (v, q, dir) to (v, S) iff setting S to true and the other elements in Q ×
{L,R,U} to false satisfies δh(q, λ(v), dir), where h=L if v has only a left-child, h=R
if v has only a right-child, and h=LR if v has two children, and h = ∅ if v is a leaf.
An edge from (v, S) to (v′, q′, dir) iff (q′, g) ∈ S and v′ = v.g and either g ∈ {L,R}
and dir = D, or g = U and v′.dir = v

The initial position is p0 = {(ε, q0, D)}. The set of Büchi states is F ′ = V × F × {L,R,D}.
Then the automaton A accepts the tree (V, λ) if player 0 has a winning strategy on the

corresponding arena. The language of the automaton A is the set of trees accepted by it.
We can similarly define co-Büchi automata; here player 0 wins iff if the set F is met only

finitely often.
The size of a two-way alternating automaton is the length of its description encoded as

a string.
Two-way alternating automata to one-way non-deterministic automata:
It is well-known that two-way alternating tree automata can be converted to non-
deterministic tree automata with an exponential blow-up in the state-space (see [26] for
example, where such a construction is shown for automata on infinite trees). We can do
a similar construction to convert alternating Büchi or co-Büchi tree automata over finite
trees to an equivalent non-deterministic automaton over finite trees, with an exponential
blow-up. We omit the proof here; a gist of the proof can be found in [12]. Consequently
two-way Büchi and co-Büchi alternating tree automata on finite trees capture only regular
tree languages, and their emptiness problem can be decided in exponential time.

As an auxiliary notation, in the sequel, we sometimes write transitions of the form
δ(q, a, dir) = (q′, LR), where we mean by (q′, LR) that the automaton passes the state q′ to
the right-child of the left-child of the current node. We do this for brevity; such transitions
can easily be converted to standard transitions using intermediate states.

4 Synthesizing Reactive Programs
In this section, we prove our first main result: for any regular specification and a set of
Boolean variables B, we can build a tree automaton that precisely accepts the class of all
tree-encodings of programs over B that satisfy the specification. By checking emptiness
of this tree automaton, we can synthesize programs that satisfy the specification, and in
particular, synthesize the smallest programs satisfying the specification.

Let us fix input and output arities NI , NO ∈ N for the rest of this section. Let Aspec be
a non-deterministic Büchi automaton that accepts the set of sequences in ({0, 1}NI +NO )ω
that do not satisfy the specification. Let us also fix a set of Boolean variables B.

Consider the set of all trees corresponding to programs over the variables B with input
and output arities NI and NO. By Lemma 1, this is a regular set of trees, and let’s assume
that Apgm is a tree automaton that accepts precisely these trees.

We now build a two-way alternating Büchi tree automaton that accepts a tree encoding
a program iff the program does not respect the specification. Intuitively, this automaton A
will guess a particular run of the program by non-deterministically choosing a sequence of
inputs, simulating the program on these inputs, and checking whether there is a run of the
specification automaton Aspec that accepts this execution; if so, it will accept the tree.

The two-way alternating tree automaton will have as states two kinds of tuples. The
first kind are tuples of the form 〈s, q, i,m, t〉 where s is the current state of the program’s
simulation (i.e., the valuation of the variables B), q is the current state of the specification
automaton Aspec that is simultaneously simulated on the input-output sequence observed, i
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is the last input received by the program, and m is a mode m ∈ {inp, out} that remembers
whether the next I/O operation the program must do is an input or an output. The final
bit t ∈ {0, 1} is a toggle that switches to 1 each time the specification state is updated, and
then gets set back to 0.

The second kind of state is of the form 〈s, v〉 where s is the current state of the program’s
simulation and v is a Boolean value; these states are used on subtrees that encode Boolean
expressions (right-hand sides of assignments and conditionals in if- and while-statements),
and are meant to check whether the expression evaluates to the value v in the current state
of the program s.

Intuitively, the automaton walks over the program tree, interpreting every statement, and
computing the current state of the variables in s. In this process, it may have to move up
and down the tree as while-loops require traversing the same blocks of statements multiple
times. When it meets an output-statement, it updates the specification automaton’s state
on the last input i and the output valuation. When it meets an input statement, it stores
it in the appropriate variables in s, and updates the component i.

We now define the automaton formally. Let Bool = {0, 1}. For such a valuation s of B,
we denote by s[b/v], where b ∈ B and v ∈ Bool, the valuation that s′ such that s′(b) = v

and for every b′ ∈ B, b′ 6= b, s′(b′) = s(b). We extend this to tuples of replacements: s[~b/val]
where val is a valuation of ~b is defined as the valuation s modified so that ~b evaluates to val.

Let S denote the set of all valuations of the variables B. Let I = {0, 1}NI denote the set
of all inputs. Let Aspec = (Q, q0, δspec, Fspec).

The two-way alternating automaton is A = (P, p0, δL, δR, δLR, δ∅, F ) is defined as follows.
The set of states is:

P = (S × Bool) ∪ (S ×Q× I × {inp, out} × Bool)
The transitions are defined as follows, where s ∈ S, v ∈ Bool, q ∈ Q, i ∈ I, m ∈

{inp, out}, and t ∈ {0, 1}.
Transitions from root:
δL(p0, root, D) = (p0, L); δL((s, q, i,m, t), root, U) = true;
Transitions to evaluate Boolean expressions:
δ∅((s, 1), tt, D) = true; δ∅((s, 0), tt, D) = false
δ∅((s, 1),ff, D) = false; δ∅((s, 0),ff, D) = true
δ∅((s, v), b,D) = true if s[b] = 1

= false otherwise.
δLR((s, 1),∨, D) = ((s, 1), L) ∨ ((s, 1), R)
δLR((s, 0),∨, D) = ((s, 0), L) ∧ ((s, 0), R)
δL((s, v),¬, D) = ((s, 1−v), L)

Transitions to evaluate non I/O statements:
δ∅((s, q, i,m, t), skip, D) = ((s, q, i,m, 0), U)
δL((s, q, i,m, t), assignb, D) =
( (s[b/0], q, i,m, 0), U) ∧ ((s, 0), L) ) ∨ ( (s[b/1], q, i,m, 0), U) ∧ ((s, 1), L) )
δLR((s, q, i,m, t), if, D) =
( ((s, 1), L) ∧ ((s, q, i,m, 0), RL) ) ∨ ( ((s, 0), L) ∧ ((s, q, i,m, 0), RR) )
δLR((s, q, i,m, t),while, D)
= δLR((s, q, i,m, t),while, R)
= ( ((s, 1), L) ∧ ((s, q, i,m, 0), R) ) ∨ ( ((s, 0), L) ∧ ((s, q, i,m, 0), U) )

Transitions to evaluate input and output:
δ∅((s, q, i, inp, t), input ~b ) =

∨
valuations val over ~b((s[~b/val], q, val, out, 0), U)

δ∅((s, q, i, out, t),output ~b) =
∨
q′∈δAspec (q,~i,s[~b])((s, q

′, i, inp, 1), U)
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Transitions to move to next statement in program:
δLR((s, q, i,m, t), ;, D) = ((s, q, i,m, t), L)
δLR((s, q, i,m, t), ;, L) = ((s, q, i,m, t), R)
δLR((s, q, i,m, t), ;, R) = ((s, q, i,m, t), U)
δLR((s, q, i,m, t), then, L)
= δLR((s, q, i,m, t), then, R)
= ((s, q, i,m, t), U)
δLR((s, q, i,m, t), if, R) = ((s, q, i,m, t), U)

All other transitions evaluate to false.

The initial state is p0 = (s0, q0, i0, inp, 0) where s0 is the function that maps every
variable in b to F (to reflect the initial state of the variables), q0 is the initial state of
the specification automaton Aspec, i0 = 0NI and where the mode is set to receive an input
(which will overwrite i0). This state is passed on from the root to the first statement of the
program.

The set of Büchi final states is F = {(s, q, i,m, 1) | s ∈ S, q ∈ Fspec, i ∈ I,m ∈M}. Since
the toggle t is 1 in all these states, the automaton is forced to truly hit a Büchi final state
of Aspec infinitely often (as long as it runs forever), which in turn forces it to infinitely-often
react with its environment.

A state of the form (s, v) is meant to check whether the state s satisfies the expression
encoded at the subtree of the node the tree is reading. The transitions reflect this check:
the expression b checks if it matches the value of v, and disjunctive and negated expressions
are checked by sending appropriate copies to check sub-expressions. Note that these copies
always go down the tree, and terminate at the leaves.

The processing of non-I/O statements requires walking up and down the tree. A skip-
statement at a leaf is handled simply by going up. An assignment to a variable b is handled
by guessing a Boolean value v, sending a copy down the tree to check that the expression
evaluates to v, and sending another copy up with the value of b updated to v in the state.
Conditionals are handled by again guessing whether the value of the expression is true or
not, sending a copy to the left-child to check if this is correct, and sending a copy to the
appropriate child of the right-tree to execute the if-branch or the else-branch. Recursive
while-loops are handled similarly; the value of the condition is guessed, a copy is sent down
the left-branch to check it, and another copy is either sent down to the right-branch to
execute the body of the loop, or sent up to exit the loop.

The input-statement is handled only when in input mode (inp), and the automaton
evaluates the input variables to an arbitrary valuation, stores this both in the state s and
the input component i, and switches the mode to output (out). An output-statement does
not change the state of the system, but changes the state of the specification, which is
updated by simulating the specification automaton Aspec non-deterministically on the last
input and the current output.

Notice that the last toggle bit t always gets set to 0, except when processing an output
statement, where it gets set to 1. This ensures that specification states seen at intermediate
points while simulating the program do not count towards meeting the Büchi specification
in Aspec. Also note that if the program halts after a finite input sequence, the automaton
will reach the root, and accept the tree; hence the automaton accepts also all programs that
have a terminating computation.

There are also several other transitions that help move between statements. When a “;”
is met going down a tree, the control goes to the left-child to process the first statement,
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when it comes up from left-child, it goes to the right-child to process the second statement,
and when that comes up, the control passes to the parent. When control comes up to an if-
or then- node, the control moves up the tree.

We build a second two-way Büchi alternating automaton Anon-reactive that accepts all
programs that do not infinitely interact with the environment (i.e., those programs that
never produce an output after a finite sequence of interactions with the environment). We
skip this construction, as it is very similar and simpler than the construction of A above.

Finally, we take the union of the two two-way Büchi alternating tree-automata A and
Anon-reactive, complement it (by dualizing the transition relation and making the accep-
tance condition co-Büchi), and intersect it with the automaton Apgm. This gives a two-way
alternating co-Büchi automaton that accepts precisely those programs that continually in-
teract with the environment on all possible input sequences and satisfy the specification.
This is then transformed to an equivalent non-deterministic tree-automaton, incurring an
exponential blow-up.

The following theorem captures the correctness and complexity of the construction (note
that |B| dominates NI and NO); a gist of its proof can be found in [12].

I Theorem 2. Let B be a finite set of Boolean variables, and let NI , NO ∈ N. Let Aspec be a
non-deterministic Büchi automaton over the alphabet {0, 1}NI +NO . Then we can construct a
non-deterministic tree automaton B that precisely accepts the trees corresponding to reactive
programs over B and with input/output type (NI , NO) that on all executions generate I/O
sequences that are not in L(A). Furthermore, this tree-automaton can be constructed to be
of size O(exp (|Aspec|, exp(B))). J

Note that the final automaton is doubly-exponential in B and singly exponential in the
size of the specification automaton. For a fixed B, NI , NO, this gives an ExpTime decision
procedure. As a corollary, it follows that for specifications given in Ltl, the synthesis pro-
cedure is in 2ExpTime. Recall that the transition-system synthesis problem for LTL (with
no parametrization like the variables B in program synthesis) is 2ExpTime-complete [17].

5 Synthesizing Recursive Reactive Programs

We extend the results of the previous section to synthesizing Boolean reactive programs
with function-calls and recursion, provided the number of functions and their signatures are
fixed. The proof strategy is similar but more complex: we encode programs with recursion
also as trees, where functions are encoded as subtrees of the program tree, and show that
the class of recursive programs that meet a regular specification is regular.

The idea of synthesizing recursive programs for regular specifications is motivated by
three reasons. First, we are interested in synthesizing the smallest programs that satisfy a
specification, and the smallest programs may involve recursion. Second, there may be no
programs that satisfy a regular specification R over a set of Boolean variables B, while there
exist recursive programs over B that satisfy R. This issue does not apply in the classical
case of synthesizing transition systems as if there is a transition-system at all that satisfies
a regular specification, there is always a finite-state transition system that satisfies it. In
the program synthesis setting, the additional parametrization of B causes a smaller search
space of programs. Finally, in applications to program repair (see Section 7 for a discussion),
where we want to repair an existing recursive program against a regular specification, the
natural problem that is required is one that synthesizes all recursive programs that satisfy
a specification.

CSL’11
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Our proof procedure also extends smoothly to synthesizing recursive programs against
visibly pushdown automata [3] specifications, which are a class of specifications larger than
that of regular specifications. This includes the class of temporal logics for recursive pro-
grams that can be compiled into visibly pushdown Büchi automata, such as CaRet [2] and
and NWTL [1]. We note that we are unaware of any natural analog in the transition-system
world corresponding to the results on synthesizing recursive programs against non-regular
specifications in this section.

Recursive programs: Boolean programs with recursion are defined as sequential pro-
grams, except that we have functions that can call each other (with call-by-value semantics),
functions have local variables that they can manipulate and can return a tuple of Boolean
values, and can have side-effects by changing the valuation of globally declared variables.

Let us fix B = (BG, Bl), where BG is a finite set of global Boolean variables and BL and
a finite set of local Boolean variables. Let us also fix a finite number of function-names F
with a special function main in F . Let Inp : F → N and Ret : F → N be two functions that
give the number of input parameters and the number of return values for each function, and
let us fix NI , NO ∈ N.

Then the set of recursive Boolean programs over 〈B,F, In,Out, NI , NO〉 is given by:
〈pgm 〉 ::= f(~b) { 〈stmt 〉 } | 〈pgm 〉 〈pgm 〉
〈stmt 〉 ::= 〈stmt 〉; 〈stmt〉 | skip | b := 〈expr〉 | input ~b | output ~b |

if (〈expr〉) then {〈stmt〉} else {〈stmt〉} | while (〈expr〉) {〈stmt 〉} |
〈b1, . . . , bk〉 = f(b′

1, . . . , b′
i) | return (b1, . . . , br)

〈expr 〉 ::= b | tt | ff | (〈expr〉 ∨ 〈expr〉) | (¬〈expr〉)

Programs consist of a series of definitions of the functions, where each function, in addi-
tion to the usual statements, is allowed to call other functions and assign the returned values
to variables, as well as return a tuple of Boolean values. We assume natural restrictions on
programs: each function is defined precisely once, and the arities of its input parameters
and returns match the In and Ret functions.

The semantics is once again the natural one. When a function f1 calls f2, its local vari-
ables are pushed onto an (unbounded) stack along with the program counter at which the
call occurred, and the control switches to the beginning of f2, with its local variables reset
to default initial values. When the function f2 executes a return-statement, the stack is
popped to retrieve the state of the caller function, the control switches to the caller at the
appropriate program counter, and the returned values get stored in the appropriate variables
mentioned in the statement that called f2. The valuations of global variables can change
across a call.

Representing recursive programs as finite trees: We can represent recursive programs
using finite trees by essentially encoding each function as a sub-tree. Intuitively, we build a
tree whose right-most path is labeled with a special symbol $, and the sub-trees that hang
from these nodes as left-children encode the various functions in the program.

Formally, we extend the function tree defined in the previous section with the following
definitions, where p, p′ ∈ 〈pgm〉.

tree(p p′) = $(tree(p), tree(p′)) tree(~b := f(~b′)) = call-f -~b-~b′

tree(f(~b){〈stmt〉} = f−~b(tree(〈stmt〉)) tree(return ~b) = ret-~b
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Synthesizing recursive programs: The synthesis procedure is similar to that of
non-recursive programs. We show that the class of all recursive programs over
〈〈BG, BL〉, F, In,Out, NI , NO〉 that satisfy a specification (given by an automaton Aspec that
accepts the sequences that do not confirm to the specification) is regular. The construction
of the tree-automaton accepting the set of correct programs is considerably more complex.
We give a gist of it below, highlighting the main parts of the construction.

Intuitively, when simulating the program, when we are at a state s, and the specification
automaton state is q, and we process a call to a function f (i.e., a statement of the form
~b = f(~b′)), the tree automaton guesses the precise state s′ and precise state q′ the program
and specification automaton would be in after returning from f , and sends two copies,
one to continue computation in the current function from s′ and q′, and another to check
whether the call to f does indeed transform the state from (s, q) to (s′, q′). Note that the
tree automaton is also guessing the input to the program on-the-fly as it simulates it; since
the tree automaton is guessing only one input sequence on which the program responds, the
methodology above to handle function calls works.

Recall the construction of the automaton in Section 4. The states there are of the form
(s, q, i,m, t). In the new construction, the states will be of the form (s, q, i,m, t, s′, q′, i′,m′, h)
where s, s′ ∈ S, q, q′ ∈ Q, m,m′ ∈ {inp, out}, and t, h ∈ {0, 1}. Intuitively, this state means
that the program is in state (s, q, i,m, t) (as before) and is supposed to return from the
current function at the state (s′, q′,m′, t′) (for some t′ ∈ {0, 1}), and, if h = 1, it must see
in the interim a Büchi final state.

The details of the construction are much more tedious, and we skip the construction here;
a detailed construction can be found in [12]. The intent is however fairly straightforward:
in a state (s, q, i,m, t, ŝ, q̂, î, m̂, h), reading a call to a function f (i.e., a statement of the
form ~b := f(~b′), the automaton will non-deterministically pick a quadruple (s′, q′, i′,m′) and
t′, h′, h′′ ∈ {0, 1}, and will (a) send a copy (s′′, q, i,m, s′, q′, i′,m′) up the tree to the first
statement in the definition of the function f , where s′′ is the appropriate state with formal
parameters updated according to ~b′, and will send another copy to the next statement in the
current function in the state (s′′′, q′, i′,m′, 0, ŝ, q̂, î, m̂, h′′), where h′′ = h+ h′, and s′′′ is the
state obtained from s by replacing ~b with the values returned at state s′. The latter copy
will also have to pass through a transient intermediate Büchi final state if h′′ = 1 (i.e., if
f promises to meet a Büchi final state). Furthermore, we also need to provide a possibility
for the function call f to never return; this will involve sending the current state to f with
the proviso that if it meets a return-statement, then the tree would be rejected. We skip
further details, and conclude with the main theorem for this section:

I Theorem 3. Let B = 〈BG, BL〉 be a finite set of global and local Boolean variables, let F be
a finite set of function-names, with arity functions In and Ret as above, and let NI , NO ∈ N.
Let Aspec be a non-deterministic Büchi automaton over the alphabet {0, 1}NI +NO . Then we
can construct a non-deterministic automaton that accepts precisely the trees corresponding
to recursive reactive programs over 〈B,F, In,Ret, NI , NO〉 that on all executions generate
I/O sequences that are not in L(A). Furthermore, this tree-automaton can be constructed to
be of size O(exp (|Aspec|, |F |, exp(B))). J

Handling visibly pushdown automata specifications:
The results in the above section smoothly extend to specification given as non-deterministic
visibly pushdown Büchi automata on ω-words. [3].

Given a set of function-names F , a visibly pushdown automaton is over a triple alphabet
〈Σc,Σr,Σi〉 of calls, returns, and internal actions, respectively. A program’s behavior is
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redefined to be such that its function-calls and returns are made visible. More precisely, let
us assume that Σc = F , Σr = {f | f ∈ F}, and let Σi = {0, 1}NI ∪ {0, 1}NO . Given a run
of a program, we note down not just the input-output sequences it does (which have now
been split), but also record the calls and returns the program makes. A visibly pushdown
automaton is a pushdown automaton (a finite automaton with a stack) that is restricted so
that it can only push on calls, only pop on returns, and cannot touch the stack on internal
actions. Visibly pushdown automata can specify properties of the runs of a program: for
example, given a pre- and post-condition for a function f , the visibly pushdown automaton
can specify that f computes a function that conforms to it; such a specification is not regular
but is a visibly pushdown language. Again, we assume that specifications are given by a
visibly pushdown automaton that accepts the set of sequences that do not conform to the
specification (visibly pushdown languages are closed under complement [3]).

Since the visibly pushdown automaton’s stack is synchronous with the program’s stack,
the above synthesis procedure for recursive programs can be extended; at a call, the tree
automaton will send an updated state of the specification (on the corresponding call) and
update the automaton state on the corresponding return. We skip the construction, as it is
almost identical to the the previous one save for the update of the specification automaton’s
state. The complexity of the construction also remains the same.

6 Discussion and Future Directions
While we have focused on imperative programs in this paper, the synthesized artefacts can
be other compact representations in other domains as well: for example, synthesis problems
can be targeted towards functional programs, towards non-reactive programs that compute
one output from one input, or even hardware designs in a high-level hardware description
language, like Verilog, RTL, or SystemC. We hope that the work presented here will inspire
extending existing transition-system synthesis algorithms to artefact-oriented synthesis.

Program Repair: The results we have presented in this paper are extremely well-suited
for repairing programs. Given a program P (with or without recursion) that does not satisfy
a specification ϕ, the program-repair problem is to change P (in certain minimally allowed
ways) so that it satisfies the specification ϕ.

Given a program P , let us assume that the set of repaired versions of the program that
we want to search over is S. Repaired versions of programs may be defined as versions of the
program obtained in certain ways, for example, changing only the conditionals in particular
parts of the program, redefining only a particular function f , or having a hole in a program
that needs to be filled by arbitrary code. Let us further assume that the trees corresponding
to the programs in S defines a regular class of trees (this is a reasonable assumption; many
repair conditions for programs are regular).

We can now synthesize a repair by constructing the class of all programs over the ap-
propriate set of variables and functions (as defined by P and S), and construct a tree
automaton T that accepts the trees of all these programs. The emptiness of the intersection
of the languages of S and T gives the repaired versions of P that meet the specification.

A future direction we see is to apply Boolean program repair (facilitated by this paper)
along with abstraction to repair programs over unbounded data domains.

Designing programs from automata accepting transition systems: One point worth
making is that we can build programs from automata that accept transition systems. More
precisely, assume that a transition-system synthesis procedure builds a tree-automaton A
that accepts precisely the set of all trees that satisfy a particular specification. Then, we
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can build a tree automaton B that accepts precisely the set of all trees that correspond
to (non-recursive or recursive) programs whose transition-system unfolding is accepted by
A (we skip the details here). Hence any synthesis procedure that builds a tree-automaton
accepting unfoldings of transition systems can be turned into a synthesis procedure that
constructs programs. However, the procedures laid out in the previous sections directly syn-
thesize programs, and avoid the extra exponential blow-up that would be incurred by first
building a tree automaton for transition systems followed by one for synthesizing programs.

Distributed synthesis: The above remark on synthesizing programs using a synthesizer
of transition systems tempts us to think that any tree-automata based decision procedure
for the synthesis problem for transition systems can be transformed to a synthesizer for
programs. However, this is not clear for distributed synthesis, where we are required to
synthesize programs at different sites of a distributed architecture with synchronous com-
munication between sites [18].

First, the distributed transition-system synthesis problem is undecidable even in the
simple architecture where there are two disconnected sites P1 and P2, each receiving inputs
from the environment. It is not hard to adapt the undecidability proofs given in [18] to show
that program synthesis for this architecture (as well as all other undecidable architectures
for transition-system synthesis [18]) remain undecidable for program synthesis.

The classic decidable architecture for transition-system synthesis is that of a pipeline ar-
chitecture, where the architecture consists of n processes, P1, . . . , Pn, where only P1 receives
input from its environment, where all processes have outputs, and where there are channels
from Pi to Pi+1, for every 1 ≤ i < n. Pnueli and Rosner showed that this architecture
has a decidable transition-system synthesis problem [18]. Their procedure (slightly modi-
fied) works by first taking the process P1 and generating a tree-automaton accepting the
set of all communication trees over the first channel from P1 to P2 such that there is some
strategy for P1 to generate this tree and there is a strategy for the rest of the system (i.e.,
P2, . . . Pn) to generate outputs by reading this tree so as to satisfy the specification. The
procedure then walks down the pipeline, producing at each point an automaton that accepts
communication trees for the channels that admit a feasible synthesis. When we reach the
last process, the procedure creates a transition system for Pn, and then walks back creating
transition systems for the processes Pn−1 all the way up to P1.

The above decision procedure, however, does not seem adaptable for program synthesis.
We can, of course, synthesize the program for Pn. But fixing a particular program for Pn
restricts the choices we have for other sites. Consequently, when walking back, we may find
that there is no program that satisfies the communication tree that we need for synthesis.

The distributed program-synthesis problem for pipelines is hence an open problem. Other
decidable distributed synthesis problems, such as transition system synthesis for doubly-
flanked pipelines against local specifications [14, 13]), also do not readily adapt to program
synthesis, and remain open questions.
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Abstract
Independence between two sets of random variables is a well-known relation in probability theory.
Its origins trace back to Abraham de Moivre’s work in the 18th century. The propositional theory
of this relation was axiomatized by Geiger, Paz, and Pearl.

Sutherland introduced a relation in information flow theory that later became known as “non-
deducibility.” Subsequently, the first two authors generalized this relation from a relation between
two arguments to a relation between two sets of arguments and proved that it is completely de-
scribed by essentially the same axioms as independence in probability theory.

This paper considers a non-interference relation between two groups of concurrent processes
sharing common resources. Two such groups are called non-interfering if, when executed concur-
rently, the only way for them to reach deadlock is for one of the groups to deadlock internally. The
paper shows that a complete axiomatization of this relation is given by the same Geiger-Paz-Pearl
axioms.
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1 Introduction

In this paper, we show that the same logical principles describe independence in three very
different domains: probability, information flow, and concurrency.

1.1 Independence in Probability Theory
In probability theory, two events are called independent if the probability of their intersection
is equal to the product of their probabilities. It is believed [6] that this notion was first
introduced by de Moivre [2, 3]. If A = {a1, . . . , an} and B = {b1, . . . , bm} are two disjoint
sets of random variables with finite ranges of values, then these two sets of variables are called
independent if for any values v1, . . . , vn and any values w1, . . . , wm, events

∧
i≤n(ai = vi) and∧

i≤m(bi = wi) are independent. We denote this relation by A ‖ B. This definition can be
generalized to independence of sets of variables with infinite ranges through the independence
of appropriate σ-algebras.

A complete axiomatization of propositional properties of the independence relation
between two sets of random variables was given by Geiger, Paz, and Pearl1 [8]:

1 The axiom names shown here are ours.
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1. Empty Set: A ‖ ∅,
2. Symmetry: A ‖ B → B ‖ A,
3. Monotonicity: A ‖ B,C → A ‖ B,
4. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C),
where here and everywhere below A,B means the union of sets A and B. Furthermore,
Studený [14] showed that conditional probabilistic independence does not have a complete
finite axiomatization.

1.2 Independence in Information Flow
Sutherland [15] introduced a relation between two pieces of information, which we will
call “secrets”, that later became known as the “nondeducibility” relation. Two secrets
are in this relation if any possible value of the first secret is consistent with any possible
value of the second secret. More and Naumov [13] generalized this relation to a relation
A ‖ B between two sets of secrets and called it independence: sets of secrets A and B are
independent if each possible combination of the values of secrets in A is consistent with each
possible combination of the values of secrets in B. This relation also satisfies the Empty Set,
Symmetry, Monotonicity, and Exchange axioms given above.

Describing the probabilistic semantics of relation A ‖ B, Geiger, Paz, and Pearl [8]
assumed that sets A and B are disjoint since independence of a variable from itself is not
a very intuitive idea. Under More and Naumov’s semantics of secrets [13], however, A ‖ A
means that all secrets in set A have constant values which are known to everyone. More and
Naumov called such secrets “public knowledge” and considered the relation A ‖ B on sets of
secrets where sets A and B are not necessary disjoint. They introduced a logical system that
consists of the above Empty Set, Symmetry, Monotonicity, and Exchange axioms, as well as
the following additional axiom:
5. Public Knowledge: A ‖ A→ (B ‖ C → A,B ‖ C).
They proved the completeness of this system with respect to a semantics of secrets. By
analyzing their completeness proof, one can easily observe that if sets A and B are assumed
to be disjoint, then the original four-axiom system of Geiger, Paz, and Pearl is complete with
respect to the same semantics of secrets.

Cohen [1] presented a related notion called strong dependence. More recently, Halpern
and O’Neill [9] introduced f -secrecy to reason about multiparty protocols. In our notation, f -
secrecy is a version of the nondeducibility predicate whose left or right side contains a certain
function of the secret rather than the secret itself. More and Naumov also axiomatized a
variation of the independence relation between secrets over graphs [11, 5] and hypergraphs [12].

1.3 Independence in Concurrency Theory

rα: 

rβ: 

Figure 1 Two interfer-
ing processes.

In this paper, we propose a third semantics for the Geiger-Paz-Pearl
axioms of independence. Under this semantics, independence is
interpreted as “non-interference” between two sets of concurrent
processes. Suppose that α and β are two such processes. We say
that these processes interfere if they can deadlock when executed
together. That is, there is a reachable state in which neither process
can make a transition to another state, but at least one of the two
processes can make a transition if the other process is not present.

One of the simplest examples of two such processes α and β is shown in Figure 1. Processes
α and β both have initial states that require no resources and a second state in which the
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process requires a resource r.
Suppose that process α makes a transition from the initial state to the second state.

Then the whole system reaches deadlock although process β still would be able to make a
transition in the absence of process α.

r

s

r,sα:

s

t

s,tβ:

t

r

t,rγ:

Figure 2 Three dining philosophers.

In this paper we will study the relation A ‖ B
between two sets of processes A and B. We will
say that a set of processes A interferes with a
set of processes B if these two sets can reach a
deadlocked state where either set A or set B is
not internally deadlocked.

For example, consider a variation of Dijkstra’s
dining philosopher problem depicted in Figure 2.
It consists of three processes α, β, and γ, rep-
resenting three dining philosophers. Each philo-
sopher has access to two out of three resources
r, s, and t, representing three forks in the din-
ing philosophers problem. Each philosopher can
acquire its two resources in any order, but needs
both of them in order to “eat”. Once a philo-
sopher becomes full, he leaves the table and the
process terminates.2

Let us first consider the concurrent execution
of just two of these processes: α and β. Of course, if process α, for example, acquires resource
s, then process β will need to wait until this resource is released before it will be able to
finish. However, note that in any state of the composition of these two processes, at least one
of the processes can make a transition, until both processes arrive at their respective final
states. Thus, processes α and β do not interfere. We denote this non-interference by α ‖ β.

The situation changes when all three processes are executed concurrently. If process α
acquires resource r, process β acquires resource s, and process γ acquires resource t, then the
system enters a deadlocked state in which none of the processes can make a transition. Yet,
note that each process running alone can make a transition. In fact, any pair of processes
running concurrently can make a transition in the absence of the third process. This means,
for example, that the single process α interferes with the set of processes {β, γ}. In our
notation, this can be expressed as ¬(α ‖ β, γ).

The main technical results of this paper are the soundness and completeness of the
Geiger-Paz-Pearl logical system with respect to the non-interference semantics of concurrent
processes sketched above. The significant implication of these results is that the same non-
trivial set of axioms captures the properties of independence in three very different settings:
probability, information flow, and concurrency.

2 Semantics

In order to prove formal results about process interference, we need to specify a mathematical
model of concurrency. A number of models and formalisms for concurrent systems have been

2 This is the form in which, with five philosophers rather than three, the problem was described by
Hoare [10]. In Dijkstra’s original version, “the life of a philosopher consists of an alternation of thinking
and eating” ([4], p. 131), and, thus, graphs representing philosophers are cyclic.
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developed. Among them are Petri nets, I/O automata, bigraphs, µ-calculus, and process
calculi such as CCS, LOTOS, CADP, and Concurrency Workbench. (See, for example,
Garavel [7], for a more recent review). Most of these were designed to be expressive enough
to capture, at least potentially, reasoning about real-world systems. Since our ultimate goal is
the completeness theorem, the less expressive our definition of concurrency, the stronger our
result. Thus, instead of choosing one of the existing formalisms, we identified the minimal
formalism sufficient for our proof of completeness. Specifically, we have chosen to define a
process as a finite directed acyclic graph in which vertices are labeled by sets of resources.
Figures 1 and 2 above depict examples of such processes. The concurrent execution of several
such processes is captured in Definition 3 on page 447. We assume that concurrent processes
defined using this formalism can also be captured, if needed, in other, richer, languages such
as those mentioned above.

I Definition 1. A process is π = (V,E, q,R, r), where
1. (V,E) is a finite directed acyclic graph (DAG). Vertices (elements of set V ) will also be

called “states” of the process.
2. q ∈ V is a designated “initial” state of the process.
3. R is an arbitrary finite set of “resources” available to the process. Some of these resources

may not actually be used by the process.
4. r is a “resource requirement” function from V to 2R that specifies the resources used in

each state. This function will be assumed to satisfy the following two conditions:
a. r(q) = ∅,
b. if (v, w) ∈ E, then |r(w) \ r(v)| < 2.

There are several aspects of our formalism that we would like to comment on.

r,sα:

r r,sβ:

s r,sγ:

r

s

r,sδ:

Figure 3 DAG α is not specific
enough to be viewed as a process.

Acquiring one resource at a time. Part 4 (b) of
Definition 1 requires each process to acquire no more than
one resource per transition. This is not a real restriction
on the type of processes that we consider, but rather a
restriction on how specific the description of a process
should be. One always can introduce intermediate states
in order to satisfy this requirement. For example, in
Figure 3, instead of DAG α, one should specify DAG
β, DAG γ, or DAG δ. This technical requirement is
used in the proof of soundness of the Monotonicity axiom.
Furthermore, in the conclusion, we will give an explicit
example demonstrating that the Monotonicity axiom is
false without this requirement.
Initial state. We assume that each process has a unique
initial state. Additionally, we disallow processes which re-
quire resources in initial states so that each set of processes
can be started concurrently. These are very technical lim-
itations. If either condition is not satisfied, an artificial
new initial state can always be added in order to satisfy
it.
Resources at sink state. One might argue that, since all of our processes are finite DAGs,
it is natural to assume that all processes must release all resources once they reach a sink
state. We agree that this is a reasonable assumption to consider. However, our more general
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approach will allow us to treat the concurrent execution of any set of several processes as a
single process.3

Acyclic graphs. By representing a process as a finite DAG, we exclude from consideration
any process that can run forever or that terminates after a number of steps which was
unknown a priori. Considering such processes would create a whole new set of questions
about fairness, livelock, etc. that would shift focus away from the deadlock interference that
we consider in this paper. This certainly could be a direction for future work.
Resource multiplicity. Although our formalism does not allow for multiple copies of the
same resource, one may still capture such processes by introducing distinct copies of these
resources and additional states of the process for different combinations of them, as is done
in the example in Figure 6 in the conclusion.
Resource production. Some models of concurrency, such as Petri nets, assume that
processes not only “acquire” resources, but also “produce” new resources or additional copies
of a resource not previously available in the system. Such processes are outside of the scope
of this work, because the Monotonicity axiom does not hold for them.

I Definition 2. For any process π = (V,E, q,R, r) and any state v ∈ V , we say that π is
“alive” in v if there is w ∈ V such that (v, w) ∈ E.

In other words, π is alive in v if v is not a sink of the directed acyclic graph (V,E). If π is
alive in v, we will write Alivev(π).

For any π = (V,E, q,R, r), by State(π) we mean the set of all vertices V . By StateR(π)
we mean the set of all vertices of directed graph (V,E) reachable from the process’ initial
state q. By Trans(π) we mean the set of transitions E. By Res(π) we mean the set of
resources R. By a family of processes {πi}i∈I we mean any multiset of processes. That is,
we allow some of the processes in the family to be equal.

The following is a key definition of this paper that formally captures the notion of
concurrent execution of a family of processes.

I Definition 3. For any family of processes {πi}i∈I , such that πi = (Vi, Ei, qi, Ri, ri), the
product of these processes

∏
i∈I πi is a tuple π = (V,E, q,R, r), such that

1. V is a set of all tuples 〈vi〉i∈I ∈
∏

i∈I Vi, where ri(vi) ∩ rj(vj) = ∅ for all i, j ∈ I such
that i 6= j,

2. E is the set of all pairs (〈vi〉i∈I , 〈wi〉i∈I) ∈ V × V such that there is i0 ∈ I for which
(vi0 , wi0) ∈ Ei0 and vi = wi for each i 6= i0,

3. q = 〈qi〉i∈I ,
4. R =

⋃
i∈I Ri,

5. r(〈vi〉i∈I) =
⋃

i∈I r(vi).
Note the similarity between this definition and the Cartesian product of finite automata. A
technical difference is in the fact that we disallow the simultaneous transitions of multiple
processes. However, such simultaneous transitions can always be represented by a series of
single transitions executed consecutively.

If set I is empty, then, as follows from the above definition, V consists of a single element
– the 0-length tuple. We will denote this tuple by ?. The process which is the product of an
empty family of processes will be denoted by ε. Thus, ? ∈ State(ε). If I = {i1, . . . , in}, then

3 Even if the original processes release all resources in sink states, the concurrent execution of such
processes may have sinks (deadlock states) in which some resources are not released.
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we may informally denote
∏

i∈I πi by πi1 × · · · × πin . However, since formally an element of∏
i∈I πi is a function on I, the product is a commutative and associative operation.

I Theorem 4. For any family of processes {πi}i∈I , the tuple
∏

i∈I πi is a process. J

I Definition 5. A family of processes {πi}i∈I is called “non-interfering” if for any 〈vi〉i∈I ∈
StateR(

∏
i∈I πi),

(∃i ∈ I Alivevi
(πi))→ Alive〈vi〉i∈I

(∏
i∈I

πi

)
.

I Definition 6. For any set I, the set of formulas Φ(I) is defined recursively: (i) ⊥ ∈ Φ(I),
(ii) (A ‖ B) ∈ Φ(I), where A and B are two disjoint subsets of I, (iii) φ→ ψ ∈ Φ(I), where
φ, ψ ∈ Φ(I).

I Definition 7. For any family of processes P = {πi}i∈I and any formula φ ∈ Φ(I), we
define the binary relation P � φ as follows:
1. P 2 ⊥,
2. P � φ→ ψ if and only if P 2 φ or P � ψ,
3. P � A ‖ B if and only if the two-element family of processes {

∏
a∈A πa,

∏
b∈B πb} is

non-interfering.

See Section 6.3 for a discussion of an n-ary version of the predicate A ‖ B.

3 Axioms

I Definition 8. The logic of concurrency, in addition to propositional tautologies and the
Modus Ponens inference rule, consists of the following axioms:
1. Empty Set: A ‖ ∅,
2. Symmetry: A ‖ B → B ‖ A,
3. Monotonicity: A ‖ B,C → A ‖ B,
4. Exchange: A,B ‖ C → (A ‖ B → A ‖ B,C).
We use notation X ` φ to denote that formula φ is provable in our logical system using the
set of additional axioms X.

4 Soundness

The proof of soundness of the Geiger-Paz-Pearl axioms with respect to the non-interference
semantics is not trivial. We state the soundness of each axiom as a separate theorem.

I Theorem 9 (Empty Set). No process α interferes with process ε.

Proof. Consider any state 〈a, ?〉 ∈ StateR (α× ε) such that Alivea(α) or Alive?(ε). Note
that ? is the only state of process ε and, thus, Alive?(ε) is false. Hence, Alivea(α). Thus,
there is a′ ∈ StateR(α) such that (a, a′) ∈ Trans(α). Hence, (〈a, ?〉, 〈a′, ?〉) ∈ Trans(α× ε).
Therefore, Alive〈a,?〉(α× ε). J

I Theorem 10 (Symmetry). If process α does not interfere with process β, then process β
does not interfere with process α.

Proof. Consider any 〈b, a〉 ∈ StateR(β × α) such that Aliveb(β) or Alivea(α). By the
assumption of the theorem, Alive〈a,b〉(α× β). Since the product is a commutative operation,
Alive〈b,a〉(β × α). J
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Next, we will prove the soundness of the Monotonicity axiom. It will be more convenient
to prove the soundness of a slightly more general statement: A,B ‖ C,D → A ‖ C.

I Theorem 11 (Monotonicity). For all processes α, β, γ, δ, if process α×β does not interfere
with process γ × δ, then process α does not interfere with process γ.

Proof. Assume that process α× β does not interfere with process γ × δ and consider any
state

〈a, c〉 ∈ StateR(α× γ) (1)

such that Alivea(α) or Alivec(γ). Without loss of generality, we will assume Alivea(α).
Thus, there is a′ ∈ State(α) such that (a, a′) ∈ Trans(α).

We need to show that Alive〈a,c〉 (α× γ). Indeed, assume that process α× γ is deadlocked
in state 〈a, c〉. Since (a, a′) ∈ Trans(α), we must conclude that there is some resource
ρ0 ∈ r(a) \ r(a′) such that ρ0 ∈ r(c). By Definition 1, |r(a′) \ r(a)| < 2 and, hence,
r(a′) \ r(a) = {ρ0}.

Let b0 and d0 be the initial states of processes β and δ, respectively. Assumption (1)
implies that 〈a, b0, c, d0〉 ∈ StateR(α× β × γ × δ). Let process α× β × γ × δ transition from
state 〈a, b0, c, d0〉 until it reaches a deadlock state u ∈ StateR(α×β× γ× δ). Since processes
α and γ are themselves deadlocked in state 〈a, c〉, all transitions from 〈a, b0, c, d0〉 to u must
have been made by processes β and δ. Thus, u = 〈a, b, c, d〉 for some b ∈ StateR(β) and
d ∈ StateR(δ). In other words,

〈a, b, c, d〉 ∈ StateR(α× β × γ × δ)

and

¬Alive〈a,b,c,d〉(α× β × γ × δ). (2)

The first of the above statements, by Definition 3, implies that (r(a) ∪ r(c)) ∩ r(b) = ∅.
Recall that r(a′) \ r(a) = {ρ0} ⊆ r(c). Thus,

r(a′) ∩ r(b) = ((r(a′) \ r(a)) ∪ (r(a′) ∩ r(a))) ∩ r(b) ⊆ (r(c) ∪ r(a)) ∩ r(b) = ∅.

Hence 〈a′, b〉 ∈ State(α × β). Recall that (a, a′) ∈ Trans(α). Thus, Alive〈a,b〉(α × β).
By the assumption of the theorem, process α × β does not interfere with process γ × δ.
Hence, Alive〈〈a,b〉,〈c,d〉〉((α× β)× (γ × δ)). Due to the associativity of the product operation,
Alive〈a,b,c,d〉(α× β × γ × δ), which contradicts (2). J

I Theorem 12 (Exchange). For all processes α, β, γ, if process α× β does not interfere with
process γ and process α does not interfere with process β, then process α does not interfere
with process β × γ.

Proof. Assume that process α× β does not interfere with process γ and process α does not
interfere with process β. Consider any 〈a, 〈b, c〉〉 ∈ StateR(α× (β × γ)). We need to prove
that Alive〈a,〈b,c〉〉(α× (β × γ)) if either Alivea(α) or Alive〈b,c〉(β × γ). Let us consider these
two cases separately.
Case I. If Alivea(α), then Alive〈a,b〉(α× β), since process α does not interfere with process
β. Thus, Alive〈〈a,b〉,c〉((α× β)× γ)), because process α× β does not interfere with process
γ. Therefore, since the product operation is associative, Alive〈a,〈b,c〉〉(α× (β × γ)).
Case II. If Alive〈b,c〉(β × γ), then there is 〈b′, c′〉 ∈ State(β × γ) such that (〈b, c〉, 〈b′, c′〉) ∈
Trans(β × γ) and either b′ = b or c′ = c. Again, we need to consider two separate cases.
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First, assume that b′ = b. Hence, Alivec(γ). Thus, Alive〈〈a,b〉,c〉((α× β)× γ)), because
process α× β does not interfere with process γ. Therefore, since product is an associative
operation, Alive〈a,〈b,c〉〉(α× (β × γ)).

Finally, suppose that c′ = c. Hence, Aliveb(β). Thus, Alive〈a,b〉(α× β), because process
α does not interfere with process β. Hence, Alive〈〈a,b〉,c〉((α × β) × γ)), because process
α× β does not interfere with process γ. Therefore, since product is an associative operation,
Alive〈a,〈b,c〉〉(α× (β × γ)). J

5 Completeness

In this section we will prove the completeness of the Geiger-Paz-Pearl axioms with respect
to non-interference semantics. This result is stated in Theorem 25. We start, however, with
a sequence of lemmas in which we assume a fixed finite index set I and a fixed maximal
consistent set of formulas X ⊆ Φ(I).

5.1 Critical Sets
I Definition 13. A set C ⊆ I is called critical if there is a disjoint partition C1 t C2 of C,
called a “critical partition”, such that
1. X 0 C1 ‖ C2,
2. X ` C1 ∩D ‖ C2 ∩D, for any D ( C.

I Lemma 14. Any critical partition is a non-trivial partition.

Proof. It will be sufficient to prove that for any set A, we have X ` A ‖ ∅ and X ` ∅ ‖ A.
The first statement is an instance of Empty Set axiom, the second statement follows from
Empty Set and Symmetry axioms. J

I Lemma 15. X 0 A ‖ B, for any non-trivial (but not necessarily critical) partition A tB
of a critical set C.

Proof. Suppose X ` A ‖ B and let C1 tC2 be a critical partition of C. By the Monotonicity
and Symmetry axioms, X ` A ∩ C ‖ B ∩ C. Thus,

X ` A ∩ C1, A ∩ C2 ‖ B ∩ C1, B ∩ C2. (3)

Since A t B is a non-trivial partition of C, sets A and B are both non-empty. Thus,
A ( C and B ( C. Hence, by the definition of a critical set, X ` A ∩ C1 ‖ A ∩ C2 and
X ` B ∩ C1 ‖ B ∩ C2.

Note that A ∩ C is not empty since A tB is a non-trivial partition of C. Thus, either
A ∩ C1 or A ∩ C2 is not empty. Without loss of generality, assume that A ∩ C1 6= ∅. From
(3) and our earlier observation that X ` A ∩ C1 ‖ A ∩ C2, the Exchange axiom yields

X ` A ∩ C1 ‖ A ∩ C2, B ∩ C1, B ∩ C2.

By the Symmetry axiom,

X ` A ∩ C2, B ∩ C1, B ∩ C2 ‖ A ∩ C1. (4)

The assumption A ∩ C1 6= ∅ implies that (A ∩ C2) ∪ (B ∩ C1) ∪ (B ∩ C2) ( C. Hence,
by the definition of a critical set, X ` B ∩ C1 ‖ A ∩ C2, B ∩ C2. By Symmetry axiom,
X ` A∩C2, B ∩C2 ‖ B ∩C1. From (4) and the above statement, using the Exchange axiom,
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X ` A ∩C2, B ∩C2 ‖ A ∩C1, B ∩C1. Since A tB is a partition of C, we can conclude that
X ` C2 ‖ C1. By the Symmetry axiom, X ` C1 ‖ C2, which contradicts the assumption that
C1 t C2 is a critical partition.

J

I Lemma 16. For any two disjoint subsets A,B ⊆ I, if X 0 A ‖ B, then there is a critical
partition C1 t C2, such that C1 ⊆ A and C2 ⊆ B.

Proof. Consider the partial order � on set 2A × 2B such that (E1, E2) � (F1, F2) if and
only if E1 ⊆ F1 and E2 ⊆ F2. Define E = {(E1, E2) ∈ 2A × 2B | X 0 E1 ‖ E2}. Note that
(A,B) ∈ E , because X 0 A ‖ B. Thus, E is a non-empty finite set. Take (C1, C2) to be a
minimal element of set E with respect to partial order �. J

5.2 Critical Set at a Dinner Table

< C,[i] >

< C,[i+1] >

< C,[i] >, < C,[i+1] >φd:

talk

left

right

eat rest

C

Figure 4 Critical set process φC
d .

For each critical set C = {c1, . . . , cn}, we formally define the family of “dining philosophers”
processes PC = {φC

d }d∈C = {(V,E, q,RC , rC
d )}d∈C , shown in Figure 4, as follows

1. V = {talk, left, right, eat, rest},
2. set E consists of edges (talk, left), (talk, right), (left, eat), (right, eat), (eat, rest),
3. q = talk,
4. RC = {C} × Zn, or the set of all congruence classes in Zn labeled with the critical set

C. We will need this label later to distinguish resources of processes corresponding to
different critical sets.

5. If d = ci, then rC
d (talk) = rC

d (rest) = ∅, rC
d (left) = {(C, [i])}, rC

d (right) = {(C, [i+ 1])},
and rC

d (eat) = {(C, [i]), (C, [i+ 1])}.

I Lemma 17. For any D ⊆ C,

〈left〉d∈D ∈ StateR

(∏
d∈D

φC
d

)
.

Proof. Starting from the initial state 〈talk〉d∈D, each of the processes {φC
d }d∈D can make a

transition into state left. J

I Lemma 18. For any D ⊆ C,

Alive〈left〉d∈D

(∏
d∈D

φC
d

)
iff D 6= C.
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Proof. (⇒): Suppose D = C and consider 〈left〉c∈C , a state of process
∏

c∈C φ
C
c . In this

state no process can make a transition because all resources are already held.
(⇐): Let D 6= C. Thus, there are more resources than processes. By the Pigeonhole Principle,
if not all processes are in rest states, than at least one process has both of its resources
available and, thus, can make a transition. J

I Lemma 19. For any critical set C and any two disjoint subsets A,B ⊆ C, process
∏

a∈A φ
C
a

and process
∏

b∈B φ
C
b interfere if and only if A tB is a non-trivial partition of C.

Proof. (⇒): Suppose that AtB is not a non-trivial partition of C. Thus, either A∪B ( C

or one of sets A and B is empty. In both of these cases, we need to prove that processes∏
a∈A φ

C
a and

∏
b∈B φ

C
b do not interfere.

Case I. Suppose that A ∪B ( C. Consider any state

〈sa, sb〉 ∈ StateR

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
,

such that Alivesa
(
∏

a∈A φ
C
a ) or Alivesb

(
∏

b∈B φ
C
b ). Thus, 〈sa, sb〉 is not the state in which

all φ-processes are already in state rest.
Since A ∪B ( C, there are more resources than φ-processes in the product

∏
a∈A φ

C
a ×∏

b∈B φ
C
b . Thus, by the Pigeonhole Principle and since not all φ-processes are in rest states,

at least one process has both of its resources available and, thus, can make a transition.
Therefore,

Alive〈sa,sb〉

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
.

Case II. If one of sets A and B is empty, then the desired property follows from Theorem 9.
(⇐): Consider state 〈〈left〉a∈A, 〈left〉b∈B〉. By Lemma 17,

〈〈left〉a∈A, 〈left〉b∈B〉 ∈ StateR

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
.

By Lemma 18, however,

Alive〈left〉a∈A

(∏
a∈A

φC
a

)
, Alive〈left〉b∈B

(∏
b∈B

φC
b

)

and

¬Alive〈〈left〉a∈A,〈left〉b∈B〉

(∏
a∈A

φC
a ×

∏
b∈B

φC
b

)
.

Therefore, processes
∏

a∈A φ
C
a and

∏
b∈B φ

C
b interfere. J

I Lemma 20. For any two disjoint subsets A,B ⊆ C, if X ` A ‖ B, then processes
∏

a∈A φ
C
a

and
∏

b∈B φ
C
b do not interfere.

Proof. Suppose that processes
∏

a∈A φ
C
a and

∏
b∈B π

C
b interfere. Thus, by Lemma 19, sets

A and B form a non-trivial disjoint partition of set C. Hence, by Lemma 15, X 0 A ‖ B. J

I Lemma 21. For any two families of processes {αj}j∈J and {βj}j∈J such that sets Res(αj1×
βj1) and Res(αj2 × βj2) are disjoint for any j1 6= j2, processes

∏
j∈J αj and

∏
j∈J βj are

non-interfering if and only if processes αj and βj are non-interfering for each j ∈ J .
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Proof. (⇒): Suppose that there is some j0 such that processes αj0 and βj0 interfere. Thus,
there is a state 〈a, b〉 ∈ StateR(αj0 × βj0) such that ¬Alive〈a,b〉(αj0 × βj0) and either
Alivea(αj0) or Aliveb(βj0). Without loss of generality, we will assume that Alivea(αj0).

Let 〈qj〉j∈J be the initial state of process
∏

j∈J(αj × βj). Define

q′j =
{
〈a, b〉 if j = j0,
qj otherwise.

Since 〈a, b〉 ∈ StateR(αj0 × βj0), we can conclude that 〈q′j〉j∈J ∈ StateR(
∏

j∈J(αj × βj)).
Let process

∏
j∈J(αj × βj) start at state 〈q′j〉j∈J and run until it reaches a state 〈q′′j 〉j∈J ∈

StateR(
∏

j∈J (αj ×βj)) such that ¬Alive〈q′′
j
〉j∈J

(
∏

j∈J (αj ×βj)). Let q′′j = 〈a′′j , b′′j 〉. Because
the product is a commutative and associative operation,

¬Alive〈〈a′′
j
〉j∈J ,〈b′′

j
〉j∈J 〉

∏
j∈J

αj

×
∏

j∈J

βj

 (5)

Since ¬Alive〈a,b〉(αj0 × βj0), we can claim that 〈a′′j0
, b′′j0
〉 = q′′j0

= q′j0
= 〈a, b〉. Recall

now our assumption that Alivea(αj0). Thus, Alivea′′
j0

(αj0). Since, by the assumption of the
lemma, any process αj , where j 6= j0, does not share resources with with process αj0 , we
can conclude Alive〈a′′

j
〉j∈J

(
∏

j∈J αj). This, in conjunction with (5), implies that processes∏
j∈J αj and

∏
j∈J βj interfere.

(⇐): Suppose that processes
∏

j∈J αj and
∏

j∈J βj interfere. Thus, there is a state

〈〈aj〉j∈J , 〈bi〉j∈J〉 ∈ StateR

∏
j∈J

αj

×
∏

j∈J

βj


such that

¬Alive〈〈aj〉j∈J ,〈bj〉j∈J 〉

∏
j∈J

αj

×
∏

j∈J

βj

 (6)

but either Alive〈aj〉j∈J
(
∏

j∈J αj) or Alive〈bj〉j∈J
(
∏

j∈J βj). Without loss of generality, assume
that Alive〈aj〉j∈J

(
∏

j∈J αj). Thus, there is an j0 ∈ J such that Aliveaj0
(αj0). Hence,

Alive〈aj0 ,bj0 〉(αj0 × βj0), because, by the assumption of the lemma, processes αj0 and βj0 do
not interfere. Thus, there is a state 〈a′, b′〉 such that (〈aj0 , bj0〉, 〈a′, b′〉) ∈ Trans(αj0 × βj0).
Since, by the assumption of the lemma, process αj0 × βj0 does not share resources with any
process αj × βj such that j 6= j0, the same transition is available to process

∏
j∈J(αj × βj).

Thus, Alive〈〈aj ,bj〉〉j∈J
(
∏

j∈J(αj × βj)). Due to the commutativity and associativity of the
product, Alive〈〈aj〉j∈J ,〈bj〉j∈J 〉

(
(
∏

j∈J αj)× (
∏

j∈J βj)
)
, which contradicts (6). J

I Definition 22. P =
{∏

C3i φ
C
i

}
i∈I

, where the product is computed over all critical subsets
C of I that contain i.

I Lemma 23. For any disjoint subsets A ⊆ I and B ⊆ I, X ` A ‖ B if and only if
P � A ‖ B.

Proof. (⇒): Let P 2 A ‖ B. Thus, processes
∏

a∈A

∏
C3a φ

C
a and

∏
b∈B

∏
C3b φ

C
b in-

terfere. Hence, since the product operation is commutative and associative, processes∏
C∈C

∏
a∈A∩C φ

C
a and

∏
C∈C

∏
b∈B∩C φ

C
b interfere, where C is the set of all critical subsets

of set I.
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For any two different critical sets C1 and C2, the set of resources available to pro-
cess

∏
a∈A∩C1

φC1
a is ∪aR

C1 = {C1} × Z|C1| and the set of resources available to process∏
b∈B∩C2

φC2
b is ∪bR

C2 = {C2}×Z|C2|. These two sets of resources are disjoint since C1 6= C2.
By Lemma 21, there must be a critical set C0 ∈ C such that processes

∏
a∈A∩C0

φC0
a and∏

b∈B∩C0
φC0

b interfere. Hence, by Lemma 20, X 0 A ∩ C0 ‖ B ∩ C0. By the Monotonicity
axiom, X 0 A∩C0 ‖ B. By the Symmetry axiom, X 0 B ‖ A∩C0. Again by the Monotonicity
axiom, X 0 B ‖ A. By the Symmetry axiom, X 0 A ‖ B, which is a contradiction.
(⇐): Let X 0 A ‖ B. By Lemma 16, there is a critical set C such that (A∩C)t (B ∩C) is a
critical partition of C. By Lemma 14, partition (A∩C)t (B ∩C) is a non-trivial partition of
the critical set C. Thus, by Lemma 19, processes

∏
a∈A∩C φ

C
a and

∏
b∈B∩C φ

C
b interfere. By

Lemma 21, processes
∏

C∈C
∏

a∈A∩C φ
C
a and

∏
C∈C

∏
b∈B∩C φ

C
b interfere. Since the product

is a commutative and associative operation, processes
∏

a∈A

∏
C3a φ

C
a and

∏
b∈B

∏
C3b φ

C
b

interfere. Therefore, P 2 A ‖ B. J

I Lemma 24. For any ψ ∈ Φ(I), X ` ψ if and only if P � ψ.

Proof. We use induction on structural complexity of formula ψ. The base case follows from
Lemma 23, and the inductive case, after taking into account Definition 7, is straightforward.

J

I Theorem 25 (completeness). For any φ, if 0 φ, then there is a family of processes
P = {πi}i∈I such that P 2 φ.

Proof. Assume that 0 φ. Let I be the (finite) set of all indices used in formula φ and X be
a maximal consistent subset of Φ(I) that contains formula ¬φ. By Lemma 24, P 2 φ. J

6 Conclusions

6.1 The Monotonicity Axiom, Revisited
We will show that the Monotonicity axiom is not sound if the acquire one resource at a time
condition is removed from Definition 1. Indeed, consider three “processes” specified by the
DAGs in Figure 5. It will be sufficient to show that processes α and β × γ do not interfere,
but processes α and β do interfere.

I Theorem 26. Processes α and β × γ do not interfere.

Proof. Consider any state 〈a, 〈b, c〉〉 ∈ StateR(α×(β×γ)) and assume that ¬Alive〈a,〈b,c〉〉(α×
(β × γ)). We need to show that ¬Alivea(α) and ¬Alive〈b,c〉(β × γ). Indeed, notice that the
graph of process α× (β×γ) has only two sinks, thus the tuple 〈a, 〈b, c〉〉 has only two possible
values.
Case I: 〈a, 〈b, c〉〉 = 〈2, 〈3, 2〉〉. Note that ¬Alive2(α) and ¬Alive〈3,2〉(β × γ).
Case 2: 〈a, 〈b, c〉〉 = 〈2, 〈1, 2〉〉. Note again that ¬Alive2(α) and ¬Alive〈1,2〉(β × γ). J

I Theorem 27. Processes α and β interfere.

Proof. Consider state 〈2, 1〉 ∈ StateR(α × β) and notice that ¬Alive〈2,1〉(α × β), but
Alive1(β). J
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6.2 The Public Knowledge Axiom

rα:

r,sβ:

sγ:

1 2

1 2 3

1 2

Figure 5Monotonicity “counter-
example.”

In Definition 6, we assumed that for A ‖ B to be a valid
formula, sets A and B must be disjoint. In the case of
independence of secrets, More and Naumov [13] did not
make this assumption. They noticed that A ‖ A implies
that each secret in set A has a constant and, thus, “publicly
known” value. This led to an additional Public Knowledge
axiom for independence:

A ‖ A→ (B ‖ C → A,B ‖ C). (7)

This Public Knowledge axiom, together with the Empty
Set, Symmetry, Monotonicity, and Exchange axioms, forms
a sound and complete system for the independence of
secrets in information flow.

Although Geiger, Paz, and Pearl [8] assumed that sets
A and B were disjoint, this assumption is not important
in their work. Indeed, it is easy to see that A ‖ A, under probability semantics, means that
each variable in set A is constant almost everywhere. This means that the Public Knowledge
axiom is also valid under the probability semantics. Finally, a review of the Geiger-Paz-Pearl
completeness proof shows that a similar argument can be made in this more general setting
if the Public Knowledge axiom is added to the system.

The case of concurrency semantics, however, is less straightforward. It depends on exactly
what it means when the same process appears on both sides of A ‖ B. If v ∈ A ∩B, then
one option is to assume that different occurrences of v refer to the same instance of a process.
The other option is to assume that they refer to two different instances of the process. The
former option requires them to have the same DAG and to be in the same states at any given
time. The latter means that they have the same DAG, but could be in different states at
any given time.

Under the first interpretation, A ‖ A implies that each of processes in A cannot require
any resources in reachable states, since otherwise both copies of the process would need to
acquire the same resource. If the set of processes A does not require any resources in any of
its reachable states, then it cannot affect interference between the other processes. Thus,
the Public Knowledge axiom is sound. Moreover, the proof in this paper can be modified to
show that the logical system formed by Empty Set, Symmetry, Monotonicity, Exchange, and
Public Knowledge is complete under this interpretation.

Under the second interpretation, however, the Public Knowledge axiom is not sound.
Indeed, consider the three processes α, β, and γ that have access to three resources r, s,
and t. Each of the processes needs any two out of the three resources in order to terminate.
Formally, all three of these processes have the same cube-shaped DAG, which is depicted
in Figure 6. In some sense, this is a modified version of the Dining Philosopher’s problem,
where each of the philosophers α, β, and γ can use any two out of the three forks on the
table.

Note that formula β ‖ γ is true, because there are more resources than processes, thus, by
the Pigeonhole Principle, at any state of β × γ, either all processes have already terminated
or one of the them has enough resources available to make a transition. For the same reason,
formula α ‖ α is also true as long as α on the left-hand-side and α on the right-hand-side
refer to to two different instances of α.

CSL’11
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Finally, formula α, β ‖ γ is false, because if processes α, β, and γ, respectively, acquire
resources r, s, and t, then the system deadlocks. Therefore, the Public Knowledge axiom (7)
is not sound if A, B, and C represent processes α, β, and γ.

6.3 An n-ary Non-interference Relation

r

s

r,s

t

r,t

s,t

Figure 6 Cube DAG.

In this paper, we considered the non-interference
relation A ‖ B between two sets of process. This
binary relation can be generalized naturally to the
n-ary relation A1 ‖ A2 ‖ · · · ‖ An between n sets
of processes by changing part 4 of Definition 7 to
4. P � A1 ‖ A2 ‖ · · · ‖ An if and only if the

n-element family of processes {
∏

a∈Ai
πa}i≤n

is non-interfering.
It turns out, however, that the n-ary non-
interference relation can be expressed through
the binary non-interference relation studied in this paper. For example, in the case where
n = 3, the following result holds:

I Theorem 28. For any family of processes P = {πi}i∈I and any subsets A, B, and C of
set I,

P � (A ‖ B ‖ C)⇐⇒ (A ‖ B,C) ∧ (B ‖ C).

Proof. In the following proof, we let α denote
∏

i∈A πi, β denote
∏

i∈B πi, and γ denote∏
i∈C πi.

(⇒) : First, assume that P 2 A ‖ B,C. Thus, there is a state 〈a, b, c〉 ∈ StateR(α× β × γ)
such that ¬Alive〈a,b,c〉(α × β × γ), but either Alivea(α) or Alive〈b,c〉(β × γ). The latter
implies that either Aliveb(β) or Alivec(γ). Hence, we can conclude that at least one of the
following three statements is true: Alivea(α), Aliveb(β), or Alivec(γ). By the assumption
P � A ‖ B ‖ C, we can conclude that Alive〈a,b,c〉(α× β × γ), which is a contradiction.

Second, suppose that P 2 B ‖ C. Thus, there is a state 〈b, c〉 ∈ StateR(β × γ) such that
¬Alive〈b,c〉(β× γ), but either Aliveb(β) or Alivec(γ). Let a0 be the initial state of process α.
Thus, 〈a0, b, c〉 ∈ StateR(α×β×γ). Let process α×β×γ make as many transitions as possible
from state 〈a0, b, c〉 until it reaches a state 〈a′, b′, c′〉 such that ¬Alive〈a′,b′,c′〉(α × β × γ).
Note that ¬Alive〈b,c〉(β × γ) implies that b′ = b and c′ = c. Thus, ¬Alive〈a′,b,c〉(α× β × γ).
However, we proved earlier that Aliveb(β) or Alivec(γ). This contradicts our assumption
that P � A ‖ B ‖ C.
(⇐) : Let P 2 A ‖ B ‖ C. Thus, there is a state 〈a, b, c〉 ∈ StateR(α × β × γ) such that
¬Alive〈a,b,c〉(α× β × γ), but Alivea(α), Aliveb(β), or Alivec(γ).

If Alivea(α), then, by the assumption P � A ‖ B,C, we can conclude that Alive〈a,b,c〉(α×
β × γ), which is a contradiction.

If Aliveb(β) or Alivec(γ), then Alive〈b,c〉(β × γ), by the assumption that P � B ‖ C.
Thus, because P � A ‖ B,C, we have Alive〈a,b,c〉(α× β × γ), which is a contradiction. J
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Axiomatizing the Quote
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Abstract
We study reflection in the Lambda Calculus from an axiomatic point of view. Specifically, we
consider various properties that the quote p·q must satisfy as a function from Λ to Λ. The most
important of these is the existence of a definable left inverse: a term E, called the evaluator for
p·q, that satisfies EpMq = M for all M ∈ Λ. Usually the quote pMq encodes the syntax of
a given term, and the evaluator proceeds by analyzing the syntax and reifying all constructors
by their actual meaning in the calculus. Working in Combinatory Logic, Raymond Smullyan
[12] investigated which elements of the syntax must be accessible via the quote in order for an
evaluator to exist. He asked three specific questions, to which we provide negative answers. On
the positive side, we give a characterization of quotes which possess all of the desired properties,
equivalently defined as being equitranslatable with a standard quote. As an application, we show
that Scott’s coding is not complete in this sense, but can be slightly modified to be such. This
results in a minimal definition of a complete quoting for Combinatory Logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Lambda calculus, combinatory logic, quote operator, enumerator

Digital Object Identifier 10.4230/LIPIcs.CSL.2011.458

1 Introduction

1.1 Coding in mathematical logic
Reflection is a powerful phenomenon in mathematical logic. Its most dramatic applica-
tion was given by Gödel, who used it in the proof of his famous Incompleteness Theorems,
destroying Hilbert’s formalist program in its original incarnation (one could call the lat-
ter Naïve Formalism.) Soon after, it was at the heart of the proofs of equivalence between
various models of computation that ultimately provided evidence for Church’s thesis. Arith-
metization of syntax is also the core component of the enumeration theorem, a result used
implicitly in virtually every proof of Recursion Theory.

The ability of a computing system to interpret its own syntax also played a significant
role in the evolution of functional programming languages. In one of the early reports
on the development of Lisp, John McCarthy [8] introduced the so-called Meta-Circular
Evaluator: a Lisp form which can execute an arbitrary list as a Lisp form — a “universal
Lisp form.” Since then, many languages (including Lisp, Prolog, Smalltalk, and others)
have been built ground-up using meta-circular implementation. In the reverse direction,
some languages have the “quote” command, which represents expressions of the language
within some standard datatype. This operation is not referentially transparent, so the
presence of an explicit quote operator in a language (e.g. Lisp) means that the language
is not purely functional. Nevertheless, computational reflection provides the language with
other powerful capabilities, which were extensively investigated by Brian Cantwell Smith in
his PhD thesis [11].
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The peculiar use of self-reference made Gödel’s argument a favorite among philosophers,
and inspired a number of publications in popular science, some of which even attribute a
certain mystical element to the work of Gödel. For example, in his introduction to Gödel,
Escher, Bach: an Eternal Golden Braid, Hofstadter writes: “GEB is in essence a long pro-
posal of strange loops as a metaphor for how selfhood originates.”[6] Although Hofstadter’s
allegorical picture cannot be framed as a scientific thesis, it did stimulate popular interest
in computational logic.

The questions of Smullyan were brought to our attention by Henk Barendregt. Of course,
they are only a sliver in the more global puzzle of understanding reflection as a distinct
phenomenon. There is still lacking a general concept, an all-inclusive definition through
which the common features of the constructions in Gödel’s theorem, computability, number
theory (systems of arithmetic), and set theory could be related. Finding such a concept
remains a fascinating open problem.

1.2 Coding of lambda terms
Classically, an enumerator is a term E such that every closed lambda term is convertible1
to Ecn for some natural number n, where cn denotes the nth Church numeral. The first
enumerator for the lambda calculus was constructed by Kleene [7] in the proof that ev-
ery lambda-definable function is computable — among the first pieces of evidence for the
Church–Turing thesis. Together with the proof that every computable function is lambda-
definable, this gave an interpretation of lambda-calculus within itself. Kleene’s approach
used Gödel’s arithmetization of syntax, which codes grammar trees of terms as natural
numbers. This has the drawback that an evaluator exists only for terms whose free variables
come from a finite set which is fixed in advance.

Mogensen [9] found an elegant self-interpreter which, instead of coding variables by
numerals, coded them by themselves. The coding therefore allows an evaluator which is
uniform on the set of all (open) lambda terms. Mogensen’s construction has a different
drawback: it lacks a discriminator — a term which can test whether or not two quotes code
the same term. However, Barendregt [2] did find a discriminator for Mogensen coding which
works for all closed terms.

A more significant distinction between Kleene’s enumerator and Mogensen’s is that
Kleene actually emulates variable binding within the quotes. This requires a number of
auxiliary functions to deal with alpha-conversion, making definitions rather complicated.
In contrast, Mogensen encodes binders by actual “meta-level” lambdas. This technique is
known as Higher Order Abstract Syntax [10], and Mogensen’s coding is arguably the most
canonical application of it.

In 1992, Berarducci and Böhm gave an improvement on Mogensen’s coding such that the
evaluator E is a normal form and EpMq is strongly normalizing whenever M is. They also
listed other properties that a coding might satisfy, and reiterated the problem of axiomatizing
the quote as an operator. [5] Our proposed solution appears in Corollary 14.

To keep matters simple, we will restrict attention to the coding of closed terms, and
work in the combinatory version of the lambda calculus with basis {K, S}. This results in
no loss of generality, as all closed lambda terms can always be written in this basis. Indeed,

1 In fact, in the lambda caluclus all enumerators are actually reducing: if E is an enumerator, then
∀M ∈ Λ0 ∃n ∈ N s.t. Ecn �M . Richard Statman gave the first proof of this result using computability
theory, and Henk Barendregt provided a constructive adaptation, which can be found in the festschrift
of Dirk van Dalen [3].
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our constructions can be translated into Mogensen coding rather explicitly. Furthermore,
as will be evident from the definitions, the choice of basis has no effect on our results.

2 Setup

2.1 Basic concepts
In what follows, we will need the following concepts. For a thorough introduction, see [1].

I Definition 1. Let V = {v0, v1, . . . } be an infinite set of variables.
1. The lambda terms are given by the grammar

Λ ::= V | ΛΛ | λV Λ

2. A subterm occurrence of a variable x in the term M is bound if it is inside a subterm of
the form (λxN). Otherwise, the occurrence is free. FV(M) denotes the set of variables
that have a free occurrence inM . If FV(M) = ∅, thenM is closed, and we writeM ∈ Λ0.

3. M [x := N ] is the lambda term obtained by renaming bound variables ofM to be distinct
from the free variables of N , and then plugging in the term N for every free occurrence
of x in the resulting M .

4. Lambda terms are considered for their relation of beta-convertibility — a congruence
generated by the axiom

(λxM)N =β M [x := N ]

5. As a matter of notation, we write
M1M2 . . .Mn as a shorthand for (. . . (M1M2)M3) . . . )Mn,
λ~x.M as a shorthand for λx0(λx1 . . . (λxlM) . . . ).

6. The combinators are given by the grammar

C ::= K | S | CC

The combinator SKK is abbreviated by the symbol I.
7. The combinators are considered with the congruence generated by equations

Kxy = x

Sxyz = (xz)(yz)
8. Lambda terms are translated into combinators via the map (·)CL : Λ→ C:

(x)CL = x

(MN)CL = (M)CL(N)CL
(λx.M)CL = λ∗x[(M)CL],

where λ∗x[·] is given by
λ∗x[x] = I
λ∗x[M ] = KM , if x /∈ FV(M)
λ∗x[MN ] = S(λ∗x[M ])(λ∗x[N ])

Note that when M is closed, (M)CL has no variables (i.e., (M)CL ∈ C).
9. The basic combinators are represented in Λ by the terms

I = λx.x, K = λxy.x, S = λxyz.xz(yz)

In addition, we’ll employ the following standard abbreviations:
Uni = λx0 . . . xn.xi
K = U1

1 = λxy.y
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Y = λf.(λx.f(xx))(λx.f(xx))
Ω = (λx.xx)(λx.xx)
[M,N ] = λx.xMN , x /∈ FV(MN)
〈M1, . . . ,Mn〉 = λx.xM1 . . .Mn, x /∈ FV(M1) ∪ · · · ∪ FV(Mn)

I Remark 2. We will often mix together lambda terms and combinators, leaving the trans-
lation above implicit in notation. Since we work in combinatory logic, this means that all
occurrences of λ are to be eliminated via part 8 of the definition above.

In what follows, we will need to have a standard, reference coding with which others can
be compared. Any of those mentioned previously would work; our variant uses pairing to
represent the syntax trees.

I Definition 3. The standard quote of M is defined inductively as follows. Let P ≡
(λxyz.zxy)CL be the pairing combinator. Put

M ≡ SI(KM) = 〈M〉 if M ∈ {K, S},
MN ≡ PM N = [M,N ] for all M,N .

2.2 Axioms for the quote operator
A coding p·q is a map from C into itself. A term pMq is then called the quote of M .2
Since the primary use of coding consists of manipulating the syntax of terms, most of the
properties that we investigate will concern existence of combinators relating the structure
of a term to that of its quote. Among these, most attention is given to the Constructor and
Destructor axioms. Roughly, the former allows one to obtain the quote of a term from the
quotes of its subterms. The latter is dual: it breaks up the term into its subterms (with
respect to the quote).

I Definition 4. (Coding Axioms) Let p·q : C → C.We say p·q satisfies axiom X from among
those below if there exists a combinator X with the stated property.

CON (constructor) :
{
A: ApMqpNq = pMNq

B: BpMq = ppMqq

DES (destructor) :


P: PipM0M1q = pMiq, i ∈ {0, 1}

Z: ZbpMq =
{

K M ≡ b
K otherwise

b ∈ {K, S}

CMP (complete) :
{
U: UpMq = M (uncoding)

U−1: U−1M = pMq (encoding)

E (evaluator) : EpMq = M

∆ (discriminator) : ∆pMqpNq =
{

K M ≡ N
K otherwise

MON (monic) : ∀M,N ∈ C pMq = pNq =⇒M ≡ N

SOL (solvable) : ∀M ∈ C pMq is solvable

2 Some authors would call pMq a quasiquote, but we will not make this distinction here.
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I Remark 5. Smullyan called a coding satisfying CON admissible, and a coding satisfying
DES preadmissible [12, p.367]. He asked whether either implies the other, and whether an
evaluator can be constructed from CON. All three questions have negative answers.

I Remark 6. Axiom B appears to be too strong: if we want to requote M , why should we
care about the particular =β-representative of pMq? It may be more reasonable to require

B−: B−pMq = pNq, where N = pMq

Nevertheless, we will proceed with Smullyan’s original formulation.

The axioms above are the primary focus of our attention. In studying them, the following
auxiliary properties are useful.

I Definition 7. We introduce two additional axioms

Z? (leaf test): Z?pMq =
{

K M ∈ {K, S}
K M ≡M0M1

RD (range test): ∃ c.e. D ⊆ C, Range(p·q) ⊆ D, ∃RD ∈ C, ∀N ∈ D :

RDN =
{

K ∃M. N = pMq
K otherwise

3 Results

3.1 Elementary properties
I Proposition 8. Let p·q be a coding. Then the following implications hold:
1. p·q ≡ · =⇒ CON ∧ DES ∧ E ∧ ∆
2. Z =⇒ SOL, DES =⇒ MON, ∆ =⇒ MON ∧ Z
3. CMP =⇒ CON ∧ DES ∧ ∆
4. DES =⇒ U, U =⇒ E ∧ ∆

Proof. 1. We verify that the standard coding has all of the properties of interest.
Let Pi = 〈U1

i 〉CL = SI(KU1
i ). Then

Pi[M0,M1] = I[M0,M1](KU1
i [M0,M1])

= (λx0x1.xi)M0M1 = Mi

In particular, PiM0M1 = Mi.
Let Z? = (λx.xU3

2I)CL. (From now on, (−)CL will be left implicit as per Remark 2.)
Then

Z?〈x〉 = K

Z?[x, y] = K

In particular, Z?MN = Z?[M,N ] = K, and Z?K = Z?S = K.
With Z? satisfied, it is trivial to get full Z. Since K, S are normal forms, by Böhm’s
theorem [1], there exist closed terms −→Q such that K

−→
Q = K and S

−→
Q = K. Take

ZKx = if Z?x then x
−→
Q else K

ZSx = if Z?x then x
−→
QKK else K
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So far we have proved that · satisfies DES. To satisfy axiom A, simply take A = P.
Furthermore, this is the representative of the β-equivalence class of MN that was
chosen by Definition 3: MN ≡ (PM)N .
Using a fixed-point combinator, put

Bx = if Z?x then (ZKx)K S else P(PP(B(P0x)))(B(P1x))

Evaluator is easy for the standard coding:

Ex = if Z?x then xI else x(λxy.Ex(Ey))

So is the discriminator:

∆xy =if Z?x

then if ZKx then ZKy else ZSy

else if Z?y then K else (∆(P0x)(P0y))(∆(P1x)(P1y))K

2. That Z =⇒ SOL is an immediate consequence of the Genericity Lemma [1, 14.3.24]: if
ZM = K for unsolvable M , then Zm = K for all M , contradicting condition Z.
That ∆ =⇒ MON ∧ Z is also immediate.
To see that DES =⇒ MON we proceed by induction on the height of M . The base step
is assured by Z. If M ≡M0M1, and N ≡ N0N1, then (M 6≡ N) =⇒ (Mi 6≡ Ni) for some
i. If pMq = pNq, then applying the i’th projection contradicts the inductive hypothesis.

3. Use translation to · and back.
4. Take

Ux = if Z?x then (ZKx)K S else As(U(P0x))(U(P1x))

where As is a combinator witnessing axiom A for the standard coding.
Then take

E = Es ◦ U, ∆ = ∆s ◦ U

where Es and ∆s are the evaluator and the discriminator for the the standard coding
which were constructed in part 1. J

3.2 Negative results
Notice that when the coding p·q is a constant map, then it satisfies CON but neither Z nor
E. Thus, as pointed out by an anonymous referee, two of Smullyan’s questions have trivial
answers.

A slight modification to the standard coding gives a counterexample that is also monic
and solvable.

I Theorem 9. There exists a map p·q which satisfies CON, MON, SOL, and P, yet neither
Z nor E. In particular, CON =/⇒ DES.

Proof. Define p·q by
pMq ≡ [ΩM ] if M ∈ {K, S}
pMNq ≡ PpMqpNq = [pMq, pNq]
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Note that p·q is monic, solvable, and satisfies A, P, and Z? via the same combinators as the
standard coding. The combinator witnessing B must be modified ever so slightly:

Bx = if Z?x then (ZKx)ppKqq ppSqq else P(PpPq(B(P0x)))(B(P1x))

To finish the proof, note that if Z(λx.x(ΩM)) = K, then by Genericity Lemma [1, 14.3.24]
we have Z(λx.x(ΩM)) = Z(λx.x(ΩN)). Therefore, no term can satisfy axiom Z. By the
same token, no evaluator can exist, for its value on pKq would necessarily agree with that
on pSq. J

I Theorem 10. There exists a map p·q satisfying Z and P which does not satisfy A. Thus
DES =/⇒ CON. Furthermore, p·q is monic and solvable.

Proof. For M ∈ C, let s(M) denote the size of the syntax tree of M , defined inductively by
s(K) = s(S) = 1, s(MN) = 1 + s(M) + s(N). Certainly, s(M) can be easily computed from
M :

s̃x = if Z?x then c1 else c+c1(c+(s̃(P0x))(s̃(P1x)))

where cn is the n’th Church numeral, and c+ denotes addition.
For n ∈ N, let Hn be a lambda term encoding the first n values of the characteristic

function of the halting problem. Specifically, we put Hn = 〈h0, h1, . . . , hn−1〉 = λz.z~h, where

hi =
{

K ϕi(i)↓
K otherwise

For 0 ≤ k ≤ n, let Πn
k be such that Πn

k 〈M1, . . . ,Mn〉 = 〈M1, . . . ,Mk〉. For example, Πn
k

could be obtained by taking Πn
k = Πcnck, where

Πnk = λx.Bx(kB(λs.k〈I〉(nKs)))

(Here B is the composition combinator λxyz.x(yz).)
Finally, put

pMq = [M,Hs(M)] (1)

Trivially, MON and SOL are satisfied. To see that this coding satisfies axiom Z, we
simply compose the combinator Zb for the standard coding with the first pair-projection:

(λx.Zb(xK))pMq =
{

K M ≡ b
K otherwise

b ∈ {K, S}

For the ith projection, we use the standard combinator Pi with the auxiliary combinators
we defined above:

(λx.(λy.[y,Π(s̃(xK))(s̃y)(xK)])(Pi(xK)))pM0M1q

=(λy.[y,Π(s̃(pM0M1qK))(s̃y)(pM0M1qK)])(Pi(pM0M1qK))
=(λy.[y,Π(s̃(pM0M1qK))(s̃y)(pM0M1qK)])(Pi([M0M1, Hs(M0M1)]K))
=(λy.[y,Π(s̃(pM0M1qK))(s̃y)(pM0M1qK)])(PiM0M1)
=(λy.[y,Π(s̃M0M1)(s̃y)(Hs(M0M1))])Mi

=[Mi,Π(s̃M0M1)(s̃Mi)〈h0, . . . , hs(M0M1)−1〉]
=[Mi, 〈h0, . . . , hs(Mi)−1〉]
=pMiq
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Hence (1) satisfies DES. But notice that

ϕe(e)↓ ⇐⇒ pKeIqKUee = K

Therefore, if there was a combinator for axiom A, we could decide the halting problem by
checking whether ce(ApKq)pIqKUee equals K or K. Such an A cannot exist. Thus p·q does not
satisfy CON. J

Notice that non-computability of the coding p·q was essential in the proof above. Indeed,
if the coding was computable, then axiom U−1 would be satisfied. By Proposition 8, part
4, the destructor axiom would make the coding complete. Then by part 3, it would satisfy
CON.

3.3 Positive results
The next natural question is what additional property could be sufficient for the equivalence
CON ⇐⇒ DES to hold. It turns out that existence of a discriminator goes quite far in this
direction.

I Theorem 11. ∆ ∧U−1 =⇒ U.

Proof. To construct U , we need to uniformly enumerate all combinators built up from K
and S. Recall that [Mn] is a uniform enumeration of {Mn} if for each k, there is some Xk

such that

[Mn] = [M0, [M1, [M2, . . . [Mk, Xk] . . . ]

That is, [Mn] is an infinite stream whose elements form the sequence {Mn}. The following
functions operate on streams:

Mapfm = [f(mK), Mapf(mK)]
Foldfm = f(mK)(Foldf(mK))

Mergemn = [mK, [nK, Merge(mK)(nK)]]

(These definitions implicitly make use of fixed-point combinators.)
Now we define the standard enumeration of CL terms to be

C = [K, [S, Fold Merge (Map (λs.Map s C) C)]]

It is straightforward to verify that for each M ∈ C there is a unique n such that M ≡ Cn,
where C = [C0, [C1, . . . ]]. But here we need the combinators to be quoted, hence we define

C = [K, [S, Fold Merge (Map (λs.Map (Ps) C) C)]]

where P is the pairing combinator from Definition 3. (Note that this notation is overloaded;
we don’t mean that C is the standard quote of C.)

Define

U0sx = if ∆x(U−1(sK)) then sK else U0(sK)x

U = U0C

Note that U0CpMq = Mn, where n = (µk)(M ≡Mk ∈ C). Thus

UpMq ≡M.

This completes the proof of the theorem. J
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I Theorem 12. Suppose p·q is a coding which satisfies ∆. Then U−1 ⇐⇒ A. In particular,
CON ∧ ∆ =⇒ DES.

Proof. (⇒) By the theorem above and Proposition 8.3,
∆ ∧U−1 =⇒ CMP =⇒ CON ∧DES =⇒ A.

(⇐) Suppose ∆ and A are satisfied. Put

U−1x = if Z?x

then if ZKx then pKq else pSq
else A(U−1(P0x))(U−1(P1x))

By induction, U−1M = pMq, hence U−1 is satisfied. J

It remains to consider the question of reconstructing the quote from the Destructor
axioms. The problem with using the approach of Theorem 11, where we try to “guess” the
quote of a term by comparing every possibility to the input, is that we have no information
on the space of these possibilities. This is where the range test comes in. Recall that the
statement of this axiom is

∃ c.e. D ⊆ C, Range(p·q) ⊆ D, ∃RD ∈ C, ∀N ∈ D :

RDN =
{

K ∃M. N = pMq
K otherwise

With the axiom above, we state the final theorem.

I Theorem 13. DES ∧ RD =⇒ U−1.

Proof. As in the proof of Theorem 11, we construct U−1x by looking at all possibilities until
we find one that matches x, according to the standard discriminator. Let D enumerate a
superset of Range(p·q). We receive this fact as a uniform enumeration D = [Mn], such that
for each n one has RDMn = K if Mn = pNq and RDMn = K otherwise. Furthermore, every
quote pNq appears in the list D: ∀N∃n pNq = Mn.

As per Proposition 8.4, let U witness axiom U for p·q. Now put

U−1x = Fold (λht. if (RDh)(∆x(Uh))K then h else t) D

It is routine to verify that U−1M = pMq for each M . J

I Corollary 14. For a complete coding, one of the following suffices:

A ∧∆
U−1 ∧∆
U−1 ∧DES
RD ∧DES

Proof. By the theorems 8 through 13. J
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4 An application: minimal codings

We conclude by applying the above results to a practical problem concerning minimal cod-
ings.

Below we define what is probably the simplest non-trivial coding in Combinatory Logic.
According to Barendregt, it was first suggested by Dana Scott in a letter to Troelstra. [4]

I Definition 15. (Scott’s coding) Let
pbq = Kb, b ∈ {K, S}
pMNq = SpMqpNq

However, it turns out that Scott’s coding is not preadmissible, i.e., does not satisfy DES.

I Proposition 16. Scott’s coding is not complete.

Proof. Observe that

pΩq = pSII(SII)q
= SpSIIqpSIIq

= λz.(pSIIqz)(pSIIqz)
= λz.(SpSIqpIqz)(SpSIqpIqz)
= λz.(pSIqz(pIqz))(pSIqz(pIqz))
= λz.(SpSqpIqz(KIz))(SpSqpIqz(KIz))
= λz.(pSqz(pIqz)I)(pSqz(pIqz)I)
= λz.(KSz(KIz)I)(KSz(KIz)I)
= λz.SII(SII)

is unsolvable. By Proposition 8.2, p·q does not satisfy Z. Then it also fails to satisfy DES,
and is therefore not complete. J

Scott’s coding is very elegant and minimalistic: the size of pMq is exactly double the
size of M , and the number of strong (combinatory) reductions required to bring pMqI to
M is exactly the size of M . It is a shame that this coding is not complete. Could there be
a substitute?

I Definition 17. Let the minimal coding be defined by
pbq = SI(Kb) = b, b ∈ {K, S}.
pMNq = SpMqpNq

Note that pMq = λz.Mz, where Mz is obtained from M by replacing every occurrence
of a basic combinator b with zb.

I Proposition 18. The minimal coding is complete.

Proof. The recursive definition makes it straightforward to construct pMq once the standard
code of M is given:

U−1(M) = if Z?M then M else S(U−1(P0M))(U−1(P1M))

(with Pi referring to the standard projections.)
For the opposite direction, we use the characterization result to infer the existence of a

combinator satisfying U. By Corollary 14, having already defined U−1, all that remains is
to satisfy DES.
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Let W and Z be the following terms:

W = λwnm.[w, [mS, nS]]

Z = λx.[W, K〈x〉]

By induction we will show that

pMqZ = [W,M ′], with M ′S = pMq (2)

Base case: If b ∈ {K, S}, then pbqZ = Zb = [W, K〈b〉]. Furthermore,

K〈b〉S = 〈b〉 = pbq

Induction: We compute

pMNqZ = SpMqpNqZ

= pMqZ(pNqZ)
=IH [W,M ′][W,N ′]
= [W,N ′]WM ′

= WWN ′M ′

= [W, [M ′S, N ′S]]
=IH [W, [pMq, pNq]]

Furthermore,

[pMq, pNq]S = SpMqpNq = pMNq

Note that, with (2) verified, the proof of the induction step also gives us that pMNqZ =
[W, [pMq, pNq]]. Hence we can satisfy P by taking the terms Pi = λc.cZU1

1U1
i .

We can also separate application nodes from the leaves by the term

Z?c = cZU1
1(λmno.K)(KK)

Finally, Z? can be used to satisfy Z exactly as in the case of standard coding, by appealing
to Böhm’s theorem. (Using the fact that pKq and pSq are distinct, closed βη-normal forms.)

J

I Remark 19. The reader might wonder whether the minimal coding could be trimmed
even further by putting pbq = SIb for the basic combinators. It turns out that this
coding is complete as well, and for the uncoding map one can take Ux = xZU1

1, where
Zx = [W,x(K4I)(K3S)(K2K)] and Wwnm = [w, [m,n]]. However, since the evaluator is sig-
nificantly more complex, we propose to regard the previous definition as the minimal quote
for combinators.
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Abstract
We prove a relative completeness result for a logic of functional programs extending D. Scott’s
LCF. For such a logic, contrary to results for Hoare logic, it does not make sense to ask whether
it is complete relative to the full theory of its first-order part, since the first order part does
not determine uniquely the model at higher-order types. Therefore, one has to fix a model and
choose an appropriate data theory w.r.t. which the logic is relatively complete. We establish
relative completeness for two models: for the Scott model we use the theory of Baire Space as
data theory, and for the effective Scott model we take first-order arithmetic. In both cases we
need to extend traditional LCF in order to capture a sufficient amount of domain theory.
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1 Introduction

Program logics play an important role in Computer Science to complement testing. A
program logic allows one to prove that a program satisfies a given specification. Seminal
work has been done in the late sixties by Hoare on axiomatic semantics for stateful programs
[8]. Since then many calculi have been developed for all kinds of programming languages
and meanwhile mechanizations of these logics in numerous verification tools exist.

Two properties of a program logic are of particular interest. Soundness states that any
property one can prove of a program in the calculus is actually valid. Completeness states
the converse, namely that any valid property can also be derived. In an ideal world, a
formal calculus for a program logic would be both, sound and complete, thus faithfully
and completely reflecting the semantics of programs and correctness assertions, also called
specifications.

Due to Gödel’s Incompleteness Theorem it is hopeless to look for absolutely complete
program logics since for any (sufficiently expressive) formal system S one can find a correctness
assertion GS which is true but cannot be derived in S. Nevertheless one might ask whether
the axioms of some program logic L are sufficient for proving all true correctness assertions
relative to some complete data theory T , i.e. whether L is complete relative to T .

In [6] this problem was considered for the case where L is the Hoare logic for a basic
imperative language which can store and manipulate objects of a data structure and T is the
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complete first order theory of this data structure. Obviously, the logic L is complete relative
to T provided that for every program P and postcondition B

(a) the weakest liberal precondition wlp(P )(B) is expressible in T and
(b) {wlp(P )(B)}P{B} is provable in L

because by definition {A}P{B} is equivalent to A⇒ wlp(P )(B) and L can derive {A}P{B}
from A⇒ wlp(P )(B) and {wlp(P )(B)}P{B} via the consequence rule. In [6] it was shown
that (b) holds under the assumption of (a), i.e. that T is expressive w.r.t L. In practice,
expressivity is ensured by the first order definability of [[P ]], the semantics of P : if R is a first
order relation expressing [[P ]] then wlp(P )(B)(s) can be expressed as ∀s′. R(s, s′)⇒ B(s′).
A typical example is obtained by taking for T the set of all true first order sentences of
arithmetic since for all programs P its input/output relation [[P ]] is recursively enumerable
and thus expressible by a formula of first order arithmetic.

To the best of our knowledge, the question of relative completeness for logics of functional
programming languages has not been investigated so far1 though it has been suggested in
[13].

Historically, the first logic for a functional programming language was Dana Scott’s LCF
introduced in [26]. This is a (many-sorted) predicate logic whose terms are PCF programs
as studied in [20] and many subsequent publications. There is some pragmatic evidence that
most correctness assertions about PCF programs can be proved within LCF. But there are
quite easy correctness assertions which can neither be proved nor disproved in LCF. Let,
for example, E(f) be the purely equational specification of the “parallel or” function then
LCF proves neither ∃f.E(f) nor its negation. The reason simply is that the former holds in
the Scott model but its negation holds in the fully abstract model (cf. [17]) where “parallel
or” does not exist (see [20]). Notice, however, that these two models are not different w.r.t.
the data type nat of natural numbers (and the type nat→nat of unary functions on nat)
but they do differ at higher types and, actually, already at type nat→nat→nat, the type of
“parallel or”. Accordingly, it does not make sense to ask whether LCF is relatively complete
w.r.t. the full theory of its first order part since the latter – unlike for the basic imperative
language considered in [6] – does not fully determine the (higher type part of the) model.

Thus, the right question is whether “natural” models for PCF can have nice axiomatiza-
tions L which are complete relative to a full data theory T . Though “natural” is somewhat
subjective one may want to consider the following three kinds of models:

(1) the Scott model and its effective variant (for an introduction see e.g. [27])
(2) the observably sequential algorithms model and its effective variant (see the original

paper [4] or more modern adaptations like [10, 14, 15])
(3) fully abstract models like Milner’s model (see [17, 27]) or its sequentially realised

submodel F (see [18]).

The models in (1) allow one to interpret PCF++, i.e. PCF extended with a parallel or and a
continuous existential quantifier as in [20]. The models in (2) allow one to interpret SPCF,
an extension of PCF with error elements and a catch-construct which allows one to observe
sequentiality (see [4, 15]). In both cases all types σ appear as definable retracts of type
nat→nat. Thus, it seems plausible that one can axiomatize these models by adding some
“obvious” axioms to LCF (of course, depending on the kind of model) and show completeness

1 A notable exception is [9] where a different form of completeness for a functional language with state is
proven that is weaker (see Conclusions).
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of the ensuing logics, relative to the complete theory T of the total strict elements of nat→nat.
In case of effective variants of these models it is, however, possible to instantiate T by the
set of all arithmetic truths because it suffices to consider the computable elements of every
type which can be encoded by natural numbers (see e.g. [20]).

In this paper we will perform the task for (1) in Sections 2 and 3, respectively. In the
final section we will discuss the cases (2) and (3) and extensions to models with higher order
references.

2 The Scott Model

Let D be the Scott model of PCF as introduced in [26]. In loc.cit. one finds a program logic
LCF suitable for reasoning about elementary properties of PCF programs (see also Sect. 3.3
of [27] for a quick recap of LCF). However, the axioms of LCF are so general that they hold
in all cpo-enriched order extensional models of PCF. The aim of this paper is to extend
LCF to a logic L for which D is a model and which is complete relative to the complete
theory T of Baire space NN (considered as a subset of the interpretation of nat→nat in the
Scott model). This theory T will be modeled after the theory EL (short for Elementary
Analysis) of [28] which is “an extension of Heyting arithmetic with variables and quantifiers
for number-theoretic functions”. Our theory T differs from EL in two respects: it is based
on classical logic and formulated in a sublanguage of L which refers only to the strict total
elements of nat and nat→nat. In order to stay within the realm of NN, general recursion
is not available in the language of T though primitive recursion is. But this is not a real
restriction since all inhabited r.e. sets can be enumerated by a primitive recursive function.
This fact will be used subsequently without further mention.

As shown in Plotkin’s paper [21] every coherently complete countably algebraic domain
appears as retract of [N⊥→N⊥], the interpretation of nat→nat in D. By inspection of
the proof in [21] one sees that nat→nat contains all PCF types as computable retracts
of nat→nat. Thus, from results in [20] it follows that for every PCF type σ there exist
PCF++ programs eσ : σ → nat → nat and pσ : (nat → nat) → σ such that pσ ◦ eσ is the
identity on Dσ (the interpretation of type σ in D). By PCF++ we denote the extension
of PCF with the “parallel or” operation por : nat → nat → nat and Plotkin’s continuous
existential quantifier ∃ : (nat→ nat)→ nat. As shown in [20] (see also final chapter of [27])
all computable elements of the Scott model arise as denotations of PCF++-terms. Recall that
an element d ∈ Dσ is computable if, and only if, the set of codes of compact approximations
to d is recursively enumerable by some (prim. rec.) function αd. In the language T we can
refer to elements of Dσ in terms of sequences α ∈ NN which enumerate codes of compact
approximations to d. See [3, 2] for further information on representations of domains and
more general spaces via Baire space and its connection to function realizability.

We will define a program logic L which axiomatizes the Scott model sufficiently well. Our
aim is to show that L is complete relative to T . For this purpose it suffices that for every
L-predicate P on objects of type σ

(A) there is a T -predicate P̃ such that P (M) is equivalent to P̃ (αM ) for all closed PCF
terms M of type σ and

(B) L proves that P (M)↔ P̃ (αM )

where αM enumerates the codes of compact approximations to (the interpretation of) M .
Condition (A) is analogous to the expressivity condition (a) in Cook’s original proof since
(A) requires that every specification P formulated in the program logic L can be expressed
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equivalently by a predicate P̃ in the “data theory” T . Condition (B) is analogous to condition
(b) in Cook’s original proof since (B) requires that the program logic is strong enough to
prove this equivalence.

2.1 The program logic L
The logic L is similar to the language of LCF as introduced in [26] in the respect that its base
types are the types of PCF. However, terms of type σ will be all PCF++-terms. The only
base predicates are the inequality relations vσ on type σ. Equality on σ can be expressed as
x vσ y ∧ y vσ x. In contrast to the original LCF, our L will not be based on classical first
order but rather on classical higher order predicate logic.

The usual axioms of LCF are sufficient for performing most simple verification exercises
but do not capture the deeper domain theoretic structure of the Scott model. From our
axiomatization one can derive all the axioms of traditional LCF but we also will axiomatize
a reasonable part of domain theory à la Scott. This was done also in [22] and was machine
checked within HOL (a “synthetic” intuitionistic version has been developed and verified in
[23] using LEGO). Unlike those formalizations, however, we will also have to speak about
compact elements. In order to do that we do not need to extend the term language but we
need to state continuity and similar properties in terms of compact elements.

First of all we postulate that all relations vσ are partial orders. Furthermore, using
higher order logic we can state that all types σ are complete partial orders w.r.t. vσ.

(1) every type σ is a directed complete partial order (dcpo)

Furthermore, we require that

(2) all f of type σ→τ are Scott continuous

The next two axioms characterize the order and suprema in function spaces

(3) for all f, g of type σ→τ we have f vσ→τ g iff ∀x:σ. f(x) vτ g(x)
(4) for all directed subsets F of σ→τ we have ∀x:σ.

(⊔
F
)
(x) =

⊔
f∈F

f(x)

where
⊔
F is the supremum of F in σ→τ whose existence follows from axiom (1). The

following axioms (5–9) are standard:

(5) λx:σ.M1 vσ→τ λx:σ.M2 ⇔ ∀x:σ.M1 vτ M2
(6) (λx:σ.M)(N) =τ M [N/x]
(7) λx:σ.M(x) =σ→τ M provided x is not free in M
(8) fixσ(M) =σ M(fixσ(M))
(9) ∀x:σ. M(x) vσ x⇒ fixσ(M) vσ x provided x is not free in M

Thus, for Ωσ ≡ fixσ(λx:σ.x) we can show that ∀x:σ.Ωσ vσ x. Further, we postulate axiom

(10) forall f of type σ→σ we have fixσ(f) =
⊔
n∈ω

fn(Ωσ).

from which one can derive fixpoint induction and computational induction as usual.
Using the defined predicate N(x) ≡ x 6= Ωnat we can state the following axioms about

nat.

(11) ¬ succ(x) = 0
(12) ∀x, y:nat. N(x) ∧N(y) ∧ succ(x) = succ(y)⇒ x = y
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(13) P (0) ∧
(
∀x:nat. N(x)∧P (x)⇒P (succ(x))

)
⇒ ∀x:nat. N(x)⇒P (x)

(14) N(0)
(15) ∀x:nat. N(x)⇔ N(succ(x))
(16) pred(0) = 0
(17) ∀x:nat. pred(succ(x)) = x

(18) ifz(Ωnat, x, y) = Ωnat

(19) ifz(0, x, y) = x

(20) ∀z:nat. N(z)⇒ ifz(succ(z), x, y) = y.

We have to add axioms for the extra PCF++ constants por and ∃.

(21) ∀x, y:nat. por(x, y) = Ωnat ∨ por(x, y) = 0 ∨ por(x, y) = 1
(22) ∀x, y:nat. por(x, y) = 0↔ (x = 0 ∨ y = 0)
(23) ∀x, y:nat. por(x, y) = 1↔ (x = 1 ∧ y = 1)
(24) ∀f :nat→nat. ∃(f) = Ωnat ∨ ∃(f) = 0 ∨ ∃(f) = 1
(25) ∀f :nat→nat. ∃(f) = 0↔ ∃x : nat.N(x) ∧ f(x) = 0
(26) ∀f :nat→nat. ∃(f) = 1↔ f(Ω) = 1

Though L is sufficient for expressing “ordinary” correctness proofs it is not clear how to
formalize basic domain theory in this language. For this purpose one has to speak about
compact elements. For every type σ one can define in PCF++ a strict function εσ : nat→ σ

enumerating the compact elements of Dσ in such a way that (Dσ, ε
σ) is an effectively given

domain, see [20, 27]. We often write x ∈ εσn instead of εσn v x. The εσ are chosen in such a
way that

(27) x ∈ εnat
0 and ∀x:nat. x ∈ εnat

n+1 ⇔ x = n

(28) f ∈ εσ→τ
[〈n1,m1〉,...,〈nk,mk〉] ⇔

k∧
i=1

f(εσni
) ∈ ετmi

where 〈−,−〉 refers to some primitive recursive coding of pairs and [n1, . . . , nk] is a code for
the finite set {n1, . . . , nk}. In order to relate εσ to vσ we postulate the axiom

(29) x vσ y ⇔ ∀n:N. x ∈ εσn ⇒ y ∈ εσn
Continuity of all functions in σ→τ is expressed by the axiom

(30) ∀f :σ→τ.∀x:σ.∀n:N. f(x) ∈ ετn ⇒ ∃m:N. x ∈ εσm ∧ ∀x:σ. x ∈ εσm ⇒ f(x) ∈ ετn
In presence of higher order logic it is clear that the above axioms are sufficient for deriving
the usual theorems of domain theory à la Scott (see e.g. other axiomatizations of domain
theory like Holcf [22]). However, these axioms are not irredundant2 but sufficient for their
purpose.

2.2 T as a sublanguage of L
There is an obvious translation from the language of EL into the language of L whose image
we denote by T . The type of natural numbers in EL will be interpreted in L as the subset
of nat as given by the predicate N . The type of sequences in EL will be interpreted in L as
the subset B of strict and total elements of nat→nat. We write ∀n:N. · · · as an abbreviation
for ∀n:nat.N(n)⇒ · · · and ∀α:NN. · · · as an abbreviation for ∀α:nat→nat.B(α)⇒ · · · .

The basic operations of EL are interpreted by their corresponding basic operations in L.
The primitive recursor of EL is implemented in terms of the fixpoint operator of L.

2 For instance, axioms (8) and (9) follow from(10).
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2.3 Reducing L to T
From [21] it follows that there are PCF++ terms

p→ : (nat→nat)→ (nat→nat)→ nat→nat and
e→ : ((nat→nat)→ nat→nat)→ nat→ nat

such that p→ ◦ e→ is the identity on nat→nat and this is provable in L. We may exhibit
nat as a retract of nat→nat by putting pnat(f) = f(0) and enat(x)(y) = x. For function
types σ→τ we define

eσ→τ (g) = e→(eτ ◦ g ◦ pσ) pσ→τ (f) = pτ ◦ p→(f) ◦ eσ

exhibiting σ→τ as a retract of nat→nat provably in L.3
However, in general for a computable f of type nat→nat there will not exist a total

recursive α with pσ(f) = pσ(α). Thus, it seems appropriate to consider in addition a
PCF definable map r : (nat→nat) → (nat→nat) which turns a sequence of codes of
compact elements of nat→nat into the supremum of the coded elements in nat→nat, i.e.
r(α) =

⊔
n
εnat→nat
α(n) , provided this supremum exists. Obviously, the restriction of r to NN is still

surjective on nat→nat and, moreover, the corresponding statement ∀f :nat→nat.∃α:NN. f =
r(α) is provable in L. Thus, for every type σ one can prove in L that ∀x:σ.∃α:NN. x = p̃σ(α)
where p̃σ = pσ ◦ r. Moreover, one can show that p̃σ restricted to NN is an admissible
representation of Dσ in the sense of [2]. This means that for every (computable) continuous
map f from a subset R of NN to Dσ there exists a (computable) continuous map φ : R→ NN

realizing f , i.e. f = p̃σ ◦ φ.
Based on these facts one may replace quantifications of the form Qx:σ.A(x) (where Q

stands for ∀ or ∃) by Qα:NN.A(p̃σ(α)). Formulas of the latter form are not yet in the fragment
T since p̃σ is not a term of T . Thus, we have to replace atomic formulas p̃σ(α) vσ p̃σ(β)
by L-provably equivalent formulas in the language of T . For this purpose we first replace
p̃σ(α) vσ p̃σ(β) by ∀n:N.p̃σ(α) ∈ εσn ⇒ p̃σ(β) ∈ εσn. Thus, it suffices to replace formulas of
the form p̃σ(α) ∈ εσn by L-provably equivalent formulas Rσ(α, n) in the language of T . This
is achieved by the following lemma.

I Lemma 1. For every PCF type σ there is a T -predicate Rσ(α, n) such that

(†) Rσ(α, n)⇔ p̃σ(α) ∈ εσn

is provable in L.

Proof. For base type nat, we get by definition of εnat and r that

p̃nat(α) ∈ εnat
n ⇐⇒ n = 0 ∨ pnat(

⊔
k

εnat→nat
α(k) ) = n−1

⇐⇒ n = 0 ∨ (
⊔
k

εnat→nat
α(k) )(0) = n−1

⇐⇒ n = 0 ∨ ∃k:nat. (εnat→nat
α(k) )(0) = n−1

⇐⇒ n = 0 ∨ ∃k:nat. 〈1, n〉 ∈ α(k)

which is a T -predicate. Therefore, we can set Rnat(α, n) ≡ n = 0 ∨ ∃k:nat. 〈1, n〉 ∈ α(k).
Suppose as induction hypothesis that we have achieved our goal for σ and τ already. Now

3 In [21] Plotkin shows that all coherently complete countably algebraic cpo’s arise as retracts of nat→nat.
But all PCF types get interpreted as coherently complete countably algebraic cpo’s in the Scott model.

CSL’11



476 Relative Completeness for Logics of Functional Programs

we can prove in L that

p̃σ→τ (α) ∈ εσ→τ
[〈n1,m1〉,...,〈nk,mk〉] ⇐⇒

k∧
i=1

p̃σ→τ (α)(εσni
) ∈ ετmi

⇐⇒
k∧
i=1

pτ (p→(r(α))(eσ(εσni
))) ∈ ετmi

⇐⇒
k∧
i=1

p̃τ (Φσ,τ (α, ni)) ∈ ετmi

⇐⇒
k∧
i=1

Rτ (Φσ,τ (α, ni),mi)

where Φσ,τ (α, n) is a term in T of type NN such that L proves pτ (p→(r(α))(eσ(εσn))) =
p̃τ (Φσ,τ (α, n)). The term Φσ,τ exists because p̃τ is an admissible representation of Dτ and
every code of an r.e. set can effectively be transformed into a code of a primitive recursive
function enumerating it.

According to the equivalence established above, we may now define Rσ→τ inductively as

Rσ→τ (α, [〈n1,m1〉, . . . , 〈nk,mk〉]) ≡
k∧
i=1

Rτ (Φσ,τ (α, ni),mi)

which can be expressed in the language of T (see [28]). J

Now we may associate with the base predicate vσ of L the T -predicate ṽσ defined as

α ṽσ β ≡ ∀n:N. Rσ(α, n)⇒ Rσ(β, n)

and, accordingly, we have

α=̃σβ ≡ ∀n:N. Rσ(α, n)⇔ Rσ(β, n) .

For L-predicates P we define their translation to a T -predicate P̃ by replacing v by ṽ, leaving
propositional connectives unchanged and replacing quantification over σ by quantification
over NN.

It remains to explain how one translates L-terms to T . For this purpose notice that Scott
domains form a full subcategory of Mod(K2), the modest sets in the (function) realizability
topos over the second Kleene algebra K2 as shown e.g. in [2]. As already mentioned
above for the domain Dσ an admissible representation is provided by the restriction of p̃σ
to NN, the underlying set of K2. Thus, for every PCF++ term x1:σ1, . . . , xk:σk ` t : τ
one can find a primitive recursive neighbourhood function αt in NN such that L proves
∀β1, . . . , βk:NN. p̃τ (αt(β1| . . . |βk)) = t[p̃σ1(β1), . . . , p̃σk

(βk)/x1, . . . , xk]. Accordingly, we may
translate the term t to the T -term αt(β1| . . . |βk) (where juxtaposition denotes application in
K2 and (β1| . . . |βk) is a code for the respective k-tuple in NN).

Thus, in summary, we have shown our first main result:

I Theorem 2. For every sentence A of L there is a sentence Ã in the fragment T such that
L proves A⇔ Ã. Thus L is complete relative to T , the set of all true sentences of EL.

3 The Effective Scott Model

For the effective Scott model [20] it should be possible to find an axiomatization Le which is
complete relative to the set Te of all true arithmetic sentences. However, in this model the
interpretation of types will not be cpo’s anymore because not all directed suprema exist. For
this reason we replace axioms (1-4) of subsection 2.1 by the following ones where the terms
εσ are the same as in the respective subsection.
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(1) ∀f, g:σ→τ.f vσ→τ g ⇐⇒
(
∀x, y : σ.f(x) v g(y)

)
(2) for all x in σ the set {n : nat | N(n) ∧ n ∈ εσx} is r.e.
(3) for every r.e. set A if the subset {εσn | n ∈ A} is directed then it has a supremum in σ
(4) the suprema of (3) are pointwise in case of function types.

The logic Le of the effective Scott model is given by these four axioms and the axiom
(5-30) of subsection 2.1.

The system Te is the set of all true arithmetic sentences formulated in the obvious
sublanguage of Le. We assume that Te contains constants for all primitive recursive functions
on natural numbers.

For reducing Le to Te we proceed essentially as in subsection 2.3. The main difference
is that instead of the map r : (nat→nat) → nat→nat used there we consider a map
r : nat→ (nat→nat) which sends a code of a recursive enumeration of compact elements
in type nat→nat to its supremum provided the elements given in the enumeration are
consistent. As in subsection 2.3 we define p̃σ as pσ ◦ r : nat→ σ which is easily seen to be
an admissible numbering of the computable elements of the effectively given domain (Dσ, ε

σ)
(see last chapter of [27]).

In analogy to Lemma 1 we have

I Lemma 3. For every PCF type σ there is a Te-predicate Rσ(`, n) such that

(†) Rσ(`, n)⇔ p̃σ(`) ∈ εσn

is provable in Le.

Proof. The claim is evident for base type nat. Suppose as induction hypothesis that we
have achieved our goal for σ and τ already.

Now, completely analogously to the proof of Lemma 1 we can prove in Le that

p̃σ→τ (`) ∈ εσ→τ
[〈n1,m1〉,...,〈nk,mk〉] ⇐⇒

k∧
i=1

Rτ (Φσ,τ (`, ni),mi)

where Φσ,τ (`, n) is a term in Te such that Le proves pτ (p→(r(`))(eσ(εσn))) = p̃τ (Φσ,τ (`, n)).
The term Φσ,τ exists because p̃τ is an admissible numbering of the the computable elements
of the effectively given domain Dτ .

According to the above, we may define Rσ→τ inductively as

Rσ→τ (`, [〈n1,m1〉, . . . , 〈nk,mk〉]) ≡
k∧
i=1

Rτ (Φσ,τ (`, ni),mi)

which can be expressed in the language of Te (see [28]). J

Now in analogy with subsection 2.3 we may associate with the base predicate vσ of Le
the Te-predicate ṽσ defined as

n ṽσm ≡ ∀k:N. Rσ(n, k)⇒ Rτ (m, k)

and, accordingly, we have

n=̃σm ≡ ∀k:N. Rσ(n, k)⇔ Rτ (m, k)

For Le-predicates P we define their translation to a Te-predicate P̃ by replacing v by
ṽ, leaving propositional connectives unchanged and replacing quantification over σ by
quantification over N.
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As before, it remains to say how one translates Le-terms to Te. For this purpose
notice that effective Scott domains form a full subcategory of Mod(K1), the modest sets
in the (number) realizability topos (aka effective topos) over the first Kleene algebra K1
as shown e.g. in [16]. Actually, for the effective domain Dσ an admissible numbering is
provided by the restriction of p̃σ to N, the underlying set of K1. For every PCF++ term
x1:σ1, . . . , xk:σk ` t : τ one can find a primitive recursive function ft such that Le proves
∀m1, . . . ,mk:N. p̃τ (ft(m1, . . . ,mk)) = t[p̃σ1(m1), . . . , p̃σk

(mk)/x1, . . . , xk]. Accordingly, we
may translate the term t to the Te-term ft(m1, . . . ,mk).

Thus, in summary, we have our second main result

I Theorem 4. For every sentence A of Le there is a sentence Ã in the fragment Te such
that Le proves A⇔ Ã. Thus Le is complete relative to Te, the set of all true sentences of
arithmetic.

4 Conclusions and Directions for Future Work

We have proved relative completeness of an extension of LCF axiomatising the Scott model
with respect to the full theory of Baire space NN. Similarly, an extension of the effective
Scott model has been shown to be relative complete w.r.t. all true sentences of first order
arithmetic. To the best of our knowledge these are original results.

As mentioned in the Introduction, one could now go on and attempt similar relative
completeness proofs for axiomatisations of other models of PCF. For the observably sequential
algorithms model [4] one can exploit the fact that it admits a universal type nat→nat as
shown in [13] and its axiomatization could follow the ideas on Locally Boolean Domains
presented in [10].

For fully abstract models of PCF, unfortunately, the methods of our paper cannot be
applied. From Prop. 7.6 of [11] it follows that the fully abstract games model for PCF
does not admit a universal type. This, however, does not entail that there does not exist
a universal type in the model F which is obtained from the games model by taking the
quotient modulo observational equivalence. The reason is that the quotient may create new
retractions in F . But even if there existed a universal PCF type in F there would still
remain the problem that by Loader’s result [12] the decisive predicates on compact elements
are not effective and thus it would not be obvious how to axiomatise them.

In any case, the model F is particularly ill-behaved as shown in [18]. Firstly, not all
functionals in the model preserve suprema of ω-chains. Secondly, many “finitary” objects are
not compact in the sense of domain theory. However, the situation is much more satisfactory
when looking at F from the point of view of “operationally based domain theory” as in
[7, 25] where instead of order-theoretic suprema of ascending chains one considers limits of
so-called “ω-chains” (cf. [19, 24]). Thus, it may be worthwhile to axiomatize F despite the
problems discussed above. For instance, one could try to formulate the games model of PCF
within the fragment EL (which allows one to speak about arenas and strategies which can
be represented by functions on N) and to consider the logical relation between the games
model and F itself specifying which elements are realized by which strategies. This way one
obtains representations of PCF types which, though different from the ones considered in
this paper, can still be used for reformulating correctness assertions in terms of EL.

Another open problem is to find relatively complete logics for languages with higher order
store as in [1]. In [11] a language λco has been exhibited that is universal for a games model
G! where G is the category of affine sequential algorithms on Curien-Lamarche games and ! is
the repetetive exponential on G. The reason for this universality is that there is a simple
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universal type natnat→natnat whose computable elements can all be denoted by λco terms.
Alas, the model G! is more restrictive than the games model considered in [1] and thus we do
not know whether the latter contains a universal type. At first sight the paper [9] seems to
address this problem but the assertion language used there is too strong in the sense that
it refers to higher order objects and thus contains already all correctness assertions. The
main achievement of loc.cit. is rather that the program logic characterises programs up to
observational equivalence.

Moreover, program specifications in loc.cit. have to be formulated as Hoare triples which
cannot be combined by logical connectives and quantifiers. This, however, would be desirable
since it allows one to avoid the problems with verification of higher-order local procedures as
described in [5].
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Abstract
For any class C of computable total functions satisfying some mild conditions, we prove that the
following decision problems are complete for level Σ0

2 of the arithmetical hierarchy: (A) Deciding
whether a term rewriting system (TRS for short) has runtime complexity bounded by a function
in C. (B) Deciding whether a TRS has derivational complexity bounded by a function in C.

In particular, the problems of deciding whether a TRS has polynomially (exponentially)
bounded runtime complexity (respectively derivational complexity) are Σ0

2-complete. This places
deciding polynomial derivational or runtime complexity of TRSs at the same level in the arith-
metical hierarchy as deciding nontermination or nonconfluence of TRSs. We proceed to show that
the related problem of deciding for a single computable function f whether a TRS has runtime
complexity bounded from above by f is Π0

1-complete. We further prove that analysing the impli-
cit complexity of TRSs is even more difficult: The problem of deciding whether a TRS accepts a
language of terms accepted by some TRS with runtime complexity bounded by a function in C
is Σ0

3-complete.
All of our results are easily extended to the notion of minimal complexity (where the length

of shortest reductions to normal form is considered) and remain valid under any computable
reduction strategy. Finally, all results hold both for unrestricted TRSs and for the class of
orthogonal TRSs.
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1 Introduction

Term rewriting is a simple model of non-deterministic computation that underlies much of
declarative and functional programming. Term rewriting systems (TRSs for short) are finite
sets of oriented equations (rewriting rules) on first-order terms–e.g. c(c(x, y), z)→ c(x, c(y, z))
for the associative law from algebra. The application of such a rule somewhere in a term–
e.g. c(2, c(c(3, 3), 1)) →R c(2, c(3, c(3, 1)))–is the elementary step of computation in term
rewriting.

In the last few years, complexity analysis has emerged as an important research field
within the term rewriting community. Several measures of complexity have been considered
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for term rewriting. The conceptually simplest one was suggested by Hofbauer and Lautemann
in [18]: The derivational complexity function with respect to a terminating TRS R relates
the worst-case number of rewriting steps in a computation to the size of the initial term.
Other such measures include runtime complexity [16], which is a restriction of derivational
complexity only considering initial terms corresponding to function calls, and the complexity
of the function computed by a TRS [8], its implicit complexity. While all of these measures
consider a kind of worst case complexity, some average case analysis has been done, as well
[7]. The focus has been on measures that take the worst case number of rewriting steps in a
reduction as their metric. The most common way to establish upper bounds on these has
been to infer them from a termination proof of the given TRS, see [17, 22, 30, 29] for some
examples of this approach. A possible modification of this approach is to restrict existing
termination proof techniques in order to obtain smaller complexity bounds; instances of this
idea can be found in [19, 2, 16].

The problem of deciding, for some TRS R, whether its derivational or runtime complexity
is bounded by a single function, or a family of functions, is–unsurprisingly–undecidable.
In the work reported in this paper, we follow recent investigations into the exact level of
undecidability (in the arithmetical hierarchy) of questions in rewriting [24, 9], according to
which many of the standard properties of rewriting (termination, normalisation, confluence)
are known to be Π0

2-complete. We also follow a much older set of investigations into the
exact level of undecidability of intensional properties of programs [12, 23, 20, 1]. Compared
to other models of computation such as Turing Machines, term rewriting operates in a quite
nonstandard way, and it is a priori not clear that the classic results can be transferred to term
rewriting. For instance, for nonlinear rewriting rules (where a variable may occur more than
once in either the left- or the right-hand side) such as f(x, x, y)→ g(x, y, y), it is assumed
that both the equality check implicit in determining whether the rule can be applied (e.g. the
first two arguments of f must be identical terms), and the copying of arbitrarily large terms
(e.g. the term substituted for y can be large) can be done within a single computation step.
Even more pertinent, the set of allowed “starting configurations” in derivational and runtime
complexity analysis is defined much more liberally than in other models of computation. For
Turing machines, only (a certain subset of all) well-formed configurations are considered, and
in pure functional programs, the arguments of a function are always well-formed elements
of a data type, e.g. f(s(s(0))) — “f applied to 2”. In contrast, derivational complexity, for
example, must also consider “junk” terms that do not correspond to well-formed starting
configurations such as f(s(f(f(s(0))))). We verify that despite these obstacles, the classical
results hold for TRSs.

Our results show that the decision problems for complexity functions such as the above
are either Π0

1-complete (for a specific function as an upper bound) or Σ0
2-complete (for

existence of an upper bound in a family of functions satisfying some mild conditions). This
is in line with classical results on the degrees of undecidability of intensional complexity of
programs. Our results run counter to the intuition given by the traditional approach to
complexity analysis of rewriting: Upper bounds on the derivational complexity of a TRS are
established by extraction from a proof of termination of the TRS. However, the exact degree
of undecidability for deciding whether the derivational complexity of a TRS is (for instance)
polynomially bounded is the same as for deciding whether it is non-terminating.

All results easily carry over to a different flavour of complexity from formal language
theory, confusingly also called derivational complexity, but which is starkly different from the
homonymous notion in term rewriting. In formal language theory, the derivational complexity
relates an integer n to the maximum length of shortest derivations of sentences of length at
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most n [6, 27].
For implicit complexity of TRSs, where the computational complexity of the mathematical

function computed by a given TRS R is considered [5, 19, 21], the pertinent decision problems
are even harder: Deciding whether the implicit complexity of R is, for instance, polynomial
or exponential is even harder than the previously mentioned problems: Σ0

3-complete. Again,
this is in line with the classical results [12, 23]. However, in practice, the additional existential
quantifier (quantifying over the possibly more efficient TRS) might make it easier to establish
upper bounds on the implicit complexity of a TRS than to establish upper bounds on its
derivational or runtime complexity as there is an additional degree of freedom in constructing
the proof of the upper bound.

Finally, when using TRSs to reason about functional programs, the notion of strategy is
usually employed to make evaluation deterministic and express for instance call-by-value and
call-by-name. We show that all of our results remain valid for any computable strategy.

2 Preliminaries

We presuppose basic familiarity with computability theory [25, 10] and term rewriting [4, 28],
but recall central definitions and notions of rewriting and computability below. Let V be a
countably infinite set of variables, and F a finite signature of function symbols with fixed
arities containing at least one symbol of arity 0. The set of terms over F and V is denoted
as T (F ,V). The set of ground terms over F is denoted as T (F). The root symbol (denoted
as rt(t)) of a term t is either t itself, if t ∈ V, or the symbol f , if t = f(t1, . . . , tn). The
size (denoted as |t|) of a term t is the total number of occurrences of variables and function
symbols in t. A substitution is a mapping σ : V → T (F ,V), where the number of variables x
such that σ(x) 6= x is finite. We usually write tσ instead of σ(t) to denote the application of
σ to a term t. We introduce a fresh constant • (the hole) and define a context C as a term
(over F ∪ {•} and V) containing exactly one occurrence of •. For a term t and a context C,
C[t] denotes the replacement of • by t in C.

Let R be a finite TRS over F and V, i.e. a finite set of rewriting rules l → r with
l, r ∈ T (F ,V) such that l is not a variable, and each variable in r also occurs in l. We
only consider finite TRSs in this paper. A TRS R induces a rewrite relation →R as follows:
s→R t if there exist a rule l→ r in R, a context C, and a substitution σ such that s = C[lσ]
and t = C[rσ]. A term s is a normal form of →R if there exists no term t such that s→R t.
A rule l→ r is left-linear if l does not contain multiple occurrences of the same variable. A
TRS is orthogonal if it contains no critical pairs, and all of its rules are left-linear.

The n-fold composition of →R is denoted as →n
R, and we write →∗R for the reflexive

and transitive closure of →R. We write s →!
R t if s →∗R t and t is a normal form of

→R. We write s →n,!
R t if s →n

R t and t is a normal form. A TRS R is confluent if for
all terms s, t, u such that u →∗R s and u →∗R t, there exists a term v such that s →∗R v

and t →∗R v. It is well-known that orthogonality of a TRS implies its confluence. The
derivation tree of a term s wrt. R is the following directed graph: the nodes are all terms
t such that s →∗R t, and there exists an edge from t to t′ iff t →R t′. We say that a
derivation tree is non-circular if no path starting from the root in the tree contains the
same term more than once. Observe that if s is R-terminating, then the derivation tree of
s wrt. R is finite and non-circular, and s is its single source node. The derivation height
of a term s with respect to a finitely branching, terminating binary relation → is given by
dh(s,→) = max{n : ∃t.s →n t}, and the derivational complexity function of a TRS R is
defined as dcR(n) = max{dh(s,→R) : |s| ≤ n}.
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A function symbol f is a defined symbol of R if there exists a rewrite rule l → r such
that rt(l) = f ; otherwise, it is a constructor of R. We denote the set of defined symbols of
R as D, while the constructors of R are collected in C. A TRS R is a constructor TRS if
every rule in R has the shape f(l1, . . . , ln)→ r for f ∈ D and l1, . . . , ln ∈ T (C,V). The set
of basic terms is B = {f(v1, . . . , vn) : f ∈ D ∧ v1, . . . , vn ∈ T (C)}. The runtime complexity
function of a TRS R is rcR(n) = max{dh(s,→R) : |s| ≤ n ∧ s ∈ B}.

We briefly recapitulate the arithmetical hierarchy. Let n ∈ N. A set A ⊆ N is in Σ0
n (re-

spectively in Π0
n) if there is an (n+1)-ary decidable predicate1 P (x1, . . . , xn, xn+1) such that A

is exactly the subset of N for which the unary predicate ∃x1.∀x2. · · ·Qxn.P (x1, . . . , xn, xn+1)
(respectively ∀x1.∃x2. · · ·Qxn.P (x1, . . . , xn, xn+1)) obtains, where Q is either ∃ or ∀ depend-
ing on whether n is odd or even (respectively even or odd). We say that a set A ⊆ N is
Σ0

n-hard (respectively Π0
n-hard) if for every set B in Σ0

n (respectively, for every set B in Π0
n),

there exists a computable function f such that x ∈ B iff f(x) ∈ A for all x ∈ N. A set A ⊆ N
is Σ0

n-complete (Π0
n-complete) if it is both contained in Σ0

n (in Π0
n) and Σ0

n-hard (Π0
n-hard).

For a function f and a set G of functions N → N, we say that f is globally bounded
by a function in G (f ≤ G) if there exists a function g ∈ G such that for all n ∈ N, we
have f(n) ≤ g(n). The set G is closed under polynomial slowdown if, for any g ∈ G and
any polynomial P over N, we have f ≤ G for f(x) = P (g(x)). In particular, the set of all
polynomials over N is closed under polynomial slowdown. We define the set of functions
Ξ(G) as

⋃
g∈G,a∈N,b∈N g(a · n+ b).

Observe that if G is the set of polynomials with non-negative integer coefficients, then
G = Ξ(G), Ξ(G) is closed under polynomial slowdown, and f ≤ Ξ(G) iff f is bounded by a
polynomial. On the other hand, if G =

⋃
a∈N ga with ga(x) = ax, then Ξ(G) is again closed

under polynomial slowdown, and f ≤ Ξ(G) iff f is bounded by an exponential function; in
order to see that Ξ(G) is closed under polynomial slowdown, let gc ∈ G, and let P be a
polynomial of degree d with coefficients at most a; then P (gc(n)) ≤ gc+2(d · n+ (d+ 1) · a).

3 Turing Machines as Rewriting Systems

We assume that the reader is familiar with the standard definitions of Turing Machines [25].
The following is the specific formalisation of Turing Machines used throughout this paper.

I Definition 1. A (deterministic single-tape) Turing Machine is a triple (Q,Σ, δ), where
Q is a finite set of states containing at least three distinct states qs (the starting state),
qa (the accept state), and qr (the reject state).
Σ is a finite set of tape symbols containing at least two distinct symbols � (the blank
symbol) and ` (the left end marker).
δ is a function from Q\{qa, qr}×Σ to Q×Σ×{L,R} and is called the transition function.
It must be defined such that for all q ∈ Q \ {qa, qr}, we have δ(q,`) = (q′,`, R) for some
q′ ∈ Q. L represents a move to the left, and R a move to the right.

A (deterministic dual-tape) Turing Machine is a triple (Q,Σ, δ), identical to a single-tape
Turing Machine, except that δ is a function from Q\{qa, qr}×Σ×Σ to Q×Σ×{L,R}×Σ×
{L,R}. We assume that for all q ∈ Q\{qa, qr} and b ∈ Σ, we have δ(q,`, b) = (q′,`, R, b′, x′)
and δ(q, b,`) = (q′′, b′′, x′′,`, R) for some q′, q′′ ∈ Q, b′, b′′ ∈ Σ, and x′, x′′ ∈ {L,R}.

I Definition 2. A configuration of a single-tape Turing Machine is a triple (q, w, i), where
q ∈ Q denotes the current state.

1 The predicate may be chosen to be primitive recursive without changing the notions defined.
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w = `w′ with w′ ∈ Σ∗ denotes the current content of the tape, apart from infinitely many
� symbols to the right of w.
i ∈ {1 . . . |w|} is the current position of the scanner.

A configuration of a dual-tape Turing Machine is a quintuple (q, w, i, v, j), where
q, w, and i have the same meaning as for single-tape Turing Machines.
v = `v′ with v′ ∈ Σ∗ denotes the current content of the second tape, except for infinitely
many � symbols to the right of v.
j ∈ {1 . . . |v|} is the current position of the scanner on the second tape.

A start configuration of a single-tape Turing Machine is a configuration (q, w, i) such that
q = qs, w = `w′ for some input word w′, and i = 1. A start configuration of a dual-tape
machine is a configuration (q, w, i, v, j) such that q = qs, `w′, i = 1, v = `, and j = 1. The
size of a configuration α = (q, w, i) of a single-tape machine, denoted as |α|, is |w| (here |w|
denotes the length of w). For dual tape machine configurations α = (q, w, i, v, j), we have
|α| = |w|+ |v|.

Given a (single-tape or dual-tape) Turing Machine M , the notions “M moves from
configuration α to configuration β in one step”, “M runs for n steps on input word x”, “M
halts on configuration α”, “M halts on input word x”, “M accepts/rejects input word x”,
and “M accepts (exactly) language L” are defined in the usual way. We leave it to the reader
to fill out the formal details.

Finally, given a (single-tape or dual-tape) Turing Machine M , we define the functions
TimeM and LifeTimeM : N→ N as follows; we chose the name LifeTimeM to reflect the
close relationship to the Turing Machine mortality problem, which asks whether a given
Turing Machine halts on all configurations:

TimeM (n) = max{m : M runs m steps on input word x ∧ |x| ≤ n}
LifeTimeM (n) = max{m : M runs m steps on configuration α ∧ |α| ≤ n}

If there exists any input word of length at most n (respectively, a configuration α with |α| ≤ n)
on which M does not halt, then TimeM (n) (respectively, LifeTimeM (n)) is undefined.

We now encode dual-tape Turing MachinesM as TRSs ∆(M), essentially using the encod-
ing of [28, Chapter 5], lifted to dual-tape machines. We build up the signature F of ∆(M) from
a set of defined symbolsD and constructor symbols C as follows. For each symbol b ∈ Σ, the set
C contains b as a unary function symbol, as well as a nullary symbol B. For each state q ∈ Q,
D contains q as a function symbol of arity 5. Additionally, D contains the unary symbols ok
and runM. Words over Σ are translated to terms by φ(ε) = B, and φ(bw) = b(φ(w)), where
b ∈ Σ and w ∈ Σ∗. A configuration (q, w, i, v, j) such that w = w1 . . . wn and v = v1 . . . vm is
encoded as the term q(ok(B), φ(wi−1 . . . w1), φ(wi . . . wn), φ(vj−1 . . . v1), φ(vj . . . vm)). This
way, it is easy to simulate Turing Machine computation steps by rewriting steps. For ease
of notation, we often identify w and φ(w) for w ∈ Σ∗ during the rest of this paper. The
purpose of demanding the subterm ok(B) to be present in the encoding of a configuration is
to ensure that configurations (in particular, unreachable configurations) can not be encoded
by basic terms. Therefore, in contrast to the construction in [28, Chapter 5], ∆(M) is not a
constructor TRS.

I Definition 3. Let M = (Q,Σ, δ) be a dual-tape Turing Machine. Then the orthogonal
TRS ∆(M) is defined by the rules shown in Figure 1.

Here, the rules for the transition function of the given Turing Machine are the natural
lifting of the rules given in [28, Chapter 5] to our encoding of configurations. The first of the
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transition function rewrite rule (for each q ∈ Q \ {qa, qr} and a, b, c, d ∈ Σ)

δ(q, b, d) = (q′, b′, R, d′, R) q(ok(B), x, by, z, dw) → q′(ok(B), b′x, y, d′z, w)
δ(q, b, d) = (q′, b′, R, d′, L) q(ok(B), x, by, cz, dw) → q′(ok(B), b′x, y, z, cd′w)
δ(q, b,�) = (q′, b′, R, d′, R) q(ok(B), x, by, z,B) → q′(ok(B), b′x, y, d′z,B)
δ(q, b, d) = (q′, b′, L, d′, R) q(ok(B), ax, by, z, dw) → q′(ok(B), x, ab′y, d′z, w)
δ(q, b, d) = (q′, b′, L, d′, L) q(ok(B), ax, by, cz, dw) → q′(ok(B), x, ab′y, z, cd′w)
δ(q, b,�) = (q′, b′, L, d′, R) q(ok(B), ax, by, z,B) → q′(ok(B), x, ab′y, d′z,B)
δ(q,�, d) = (q′, b′, R, d′, R) q(ok(B), x,B, z, dw) → q′(ok(B), b′x,B, d′z, w)
δ(q,�, d) = (q′, b′, R, d′, L) q(ok(B), x,B, cz, dw) → q′(ok(B), b′x,B, z, cd′w)
δ(q,�,�) = (q′, b′, R, d′, R) q(ok(B), x,B, z,B) → q′(ok(B), b′x,B, d′z,B)

additional rules

runM(x) → qs(ok(B),B,`(x),B,`(B))
qa(ok(B), x, y, z, w) → qa(B, x, y, z, w)
qr(ok(B), x, y, z, w) → qr(B, x, y, z, w)

ok(ok(B)) → B

Figure 1 The TRS ∆(M) defined by a dual-tape Turing Machine M

four additional rules is responsible for rewriting a basic term of the shape runM(w) into the
encoding of a start configuration. The other three additional rules ensure that qa, qr, and ok
are defined symbols without violating the orthogonality of the TRS. This also implies that
each term in T (F) is a word over Σ.

I Lemma 4. Let M be a Turing Machine. Then rc∆(M)(n) = 0 for all n < 2, and
rc∆(M)(n) = TimeM (n− 2) + 2 for all n ≥ 2.

Proof. First, observe that the only basic terms t which are not normal forms with respect
to →∆(M) have runM as their root symbol. Hence, we assume rt(t) = runM. Moreover, the
single argument of runM must be a word over Σ. Then the only one-step reduct of t is the
encoding of a starting configuration of M . Moreover, clearly |t| ≥ 2. A straightforward
argument (compare [28, Exercise 5.3.3]) reveals the following:

Whenever s is the encoding of a configuration α of M whose current state is not qa or qr,
and s→∆(M) s

′, then s′ is the encoding of a configuration β of M such that M moves
from α to β in a single step.
Whenever s is the encoding of a configuration α of M whose current state is qa or qr,
then dh(s,→∆(M)) = 1.
Whenever α and β are configurations of M such that M moves from α to β in a single
step, then for each term encoding s of α, there exists a term encoding s′ of β such that
s→∆(M) s

′.
From these three observations, the lemma follows immediately. J

4 Hardness of Runtime Complexity Analysis

We now consider the hardness of establishing upper bounds on the runtime complexity of
TRSs. Thanks to Lemma 4, it is possible to use existing results about the time complexity of
Turing Machines [12] directly. Note that it is necessary to use dual-tape machines in order to
obtain the following results exactly as formulated. If we used single-tape machines instead,
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there would be an additional quadratic slowdown in the proofs for both of the results from
[12] we use. Allowing multi-tape Turing Machines instead of dual-tape machines would yield
an additional speedup in the order of n logn [14]; however, this additional speedup is not
needed for obtaining the results below.

I Lemma 5. Let G = {g1, g2, . . .} be a recursively enumerable set of computable, strictly
increasing, and total functions N→ N. Then there is a computable, strictly increasing, and
total function f : N→ N such that f � Ξ(G).

Proof. Let f(n) = 1 + max{g1(n2 + n), . . . , gn(n2 + n)}. Then f is obviously computable,
strictly increasing, and total, and for all c, d, k ∈ N, we have f(n) > gk(c · n + d) for all
n > max{c, d, k}. J

I Proposition 6. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions N→ N. Then the following decision problem is Σ0

2-hard:
Instance: A dual-tape Turing Machine M .
Question: Is TimeM ≤ Ξ(G)?

Proof. By [12, Theorem 2], the proposition holds for the special case that G is the set
of polynomials. Inspection of the proof of [12, Theorem 2] yields that only the following
two properties of G are used: Ξ(G) must contain the function n+ 1, and there must exist
a computable total function f such that f � Ξ(G). The first property follows from the
assumption that G must consist of strictly increasing total functions, and the second property
follows from Lemma 5. J

I Theorem 7. Let G be a recursively enumerable set of computable, strictly increasing, and
total functions N→ N. Then the following decision problem is Σ0

2-complete:
Instance: A TRS R.
Question: Is rcR ≤ Ξ(G)?
If the problem instances are restricted to orthogonal TRSs, Σ0

2-completeness holds, as well.

Proof. To see that the problem is contained in Σ0
2, let P (x1, x2, x3) be the ternary predicate

on N that obtains exactly if the ith function gi in G and the TRS R encoded by x3 satisfy
rcR(x2) ≤ gi(j ·x2 + k), where (i, j, k) is the triple encoded by x1. Observe that P (x1, x2, x3)
is a decidable predicate: as G is recursively enumerable and consists of computable functions,
we may compute gi(j · x2 + k); as the signature and set of rules of R are both finite, we
may compute the finite set of basic terms of size at most x2, and for each of these compute
their derivation trees up to depth gi(j · x2 + k) and subsequently check whether the leaves of
each tree consist only of normal forms, and whether all trees are non-circular. Thus, the
answer to the question to be decided is “yes” for the TRS encoded by x3 iff the predicate
∃x1.∀x2.P (x1, x2, x3) obtains, proving containment in Σ0

2.
We now show Σ0

2-hardness of the problem. By Proposition 6, it is Σ0
2-hard to decide

whether TimeM ≤ Ξ(G), given a dual-tape Turing Machine M . From Lemma 4, it follows
that rc∆(M) ≤ Ξ(G) iff TimeM ≤ Ξ(G). The transformation ∆ is obviously computable, and
∆(M) is orthogonal. Therefore, it is Σ0

2-hard to decide whether rcR ≤ Ξ(G), given a TRS R
(independent of whether R is restricted to be orthogonal). J

I Proposition 8. Let f be a computable and total function N→ N such that f(n) > n for
all n ∈ N. Then the following decision problem is Π0

1-hard:
Instance: A dual-tape Turing Machine M .
Question: Is TimeM (n) ≤ f(n) for all n ∈ N?
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Proof. Straightforward generalisation of [12, Theorem 1]. J

I Theorem 9. Let f be a computable and total function N→ N such that f(n) > n for all
n ∈ N. Then the following decision problem is Π0

1-complete:
Instance: A TRS R.
Question: Is rcR(n) ≤ f(n) for all n ∈ N?
If the problem instances are restricted to orthogonal TRSs, Π0

1-completeness holds, as well.

Proof. To see that the problem is contained in Π0
1, consider the binary predicate P (x1, x2)

on N that obtains iff rcR(x1) ≤ f(x1) where R is the TRS encoded by the integer x2. As f is
computable and total, and as the derivation tree of each of the finite number of terms of size
at most x1 can be computed up to depth f(x1), the predicate is obviously decidable. Hence,
the answer to the question to be decided is “yes” iff the predicate ∀x1.P (x1, x2) obtains, and
containment in Π0

1 is shown.
We now show Π0

1-hardness of the problem. Let f ′(n) = f(n + 2) − 2, and note that
f ′(n) > n. By Proposition 8, it is Π0

1-hard to decide whether TimeM (n) ≤ f ′(n) for all
n ∈ N, given a dual-tape Turing Machine M . By Lemma 4, we have rc∆(M)(n) ≤ f(n) for all
n ∈ N iff TimeM (n) ≤ f ′(n) for all n ∈ N. The transformation ∆ is obviously computable,
and ∆(M) is orthogonal. Therefore, it is Π0

1-hard to decide whether rcR(n) ≤ f(n) for all
n ∈ N, given a TRS R (independent of whether R is restricted to be orthogonal). J

5 Implicit Computational Complexity Analysis for Rewriting

In this section we establish Σ0
3-completeness of deciding implicit complexity bounds on TRSs:

Deciding whether the computation carried out by a TRS can be done within a certain time
bound, possibly by another, more efficient TRS. In the literature, there exist similar results
about Turing Machines [12, 23]. In order to be able to apply them, we need to establish a
link between computations carried out by TRSs and Turing Machines. For one direction of
this link, Lemma 4 suffices. The existence of the other direction of the link has recently been
shown by Avanzini and Moser [3]. In the following, we define a simple notion of computation
by a TRS, and glue the above components together.

I Definition 10. Let R be a TRS with signature F = D ] C, let f be a specific n-ary
function symbol in D (we call f the main function of R), and a another specific symbol in
the signature of F (we call a the accepting symbol of R). Then for t1, . . . , tn ∈ T (C) we say
that R accepts (t1, . . . , tn) if f(t1, . . . , tn)→!

R t such that rt(t) = a. The language accepted
by R is the set L(R) = {(t1, . . . , tn) : t1, . . . , tn ∈ T (C) ∧R accepts (t1, . . . , tn)} .

I Definition 11. Let R be a TRS with main function f of arity n, accepting symbol a, and
signature F = D ] C, let L ⊆ T (C)n, and let G be a set of computable, strictly increasing,
and total functions. We say that R (deterministically) accepts L in time Ξ(G) if L(R) = L,
R is confluent, and rcR ≤ Ξ(G).

As shown by the next lemma, ∆ indeed relates the notions of acceptance for Turing
Machines and TRSs in the natural way. It follows by the same arguments as Lemma 4.

I Lemma 12. Let M be a dual-tape Turing Machine with tape alphabet Σ and accepting state
qa. For each word x ∈ Σ∗, M accepts x iff ∆(M) with main function runM and accepting
symbol qa accepts φ(x). Moreover, L(∆(M)) is exactly the language accepted by M .

I Proposition 13. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions. Then the following decision problem is Σ0

3-hard:
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Instance: A dual-tape Turing Machine M .
Question: Does there exist a dual-tape Turing Machine M ′ accepting the same language as

M such that TimeM ′ ≤ Ξ(G)?

Proof. By [23, Corollary 3], for each set C of decidable languages containing an infinite
language A and all languages B such that A \B is finite, the following problem is Σ0

3-hard:
Instance: A (dual-tape) Turing Machine M .
Question: Is the language accepted by M contained in C?
Fix C to be the set of all languages L decided by any (dual-tape) Turing Machine M ′ with
TimeM ′ ≤ Ξ(G). As G contains a strictly increasing function, C contains an infinite language
A and all languages B such that A \ B is finite. For instance, Σ∗, where Σ is the tape
alphabet of M , is a suitable instance of A here. Thus C satisfies the assumptions of [23,
Corollary 3], and the proposition follows. J

Now we have all necessary ingredients to show the main theorem of this section. Proposi-
tion 13 yields the corresponding result for Turing Machines, while Lemma 12 and [3] form
the bridge to term rewriting.

I Theorem 14. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions such that Ξ(G) is closed under polynomial slowdown. Then the following
decision problem is Σ0

3-complete:
Instance: A TRS R.
Question: Does there exist a TRS which accepts L(R) in time Ξ(G)?
If the problem instances are restricted to orthogonal TRSs, Σ0

3-completeness holds, as well.

Proof. First we show that the problem is contained in Σ0
3. Let P (x1, x2, x3, x4) be the

predicate on N that obtains exactly if the ith function gi in G, the TRS S encoded by l, and
the TRS R encoded by x4 satisfy the following properties:

x1 encodes the 4-tuple (i, j, k, l).
rcR(x2) ≤ x3 and rcS(x2) ≤ gi(j · x2 + k)
R and S have the same main function f , accepting symbol a, and constructors C in their
signatures FR and FS .
For all t1, . . . , tn ∈ T (C) with |f(t1, . . . , tn)| ≤ x2, there exists u1 ∈ T (FR) with rt(u1) = a

and f(t1, . . . , tn)→!
R u1 iff there exists u2 ∈ T (FS) with rt(u2) = a and f(t1, . . . , tn)→!

S
u2.

Observe that P (x1, x2, x3, x4) is a decidable predicate: As G is recursively enumerable and
consists of computable functions, we may compute gi(j · x2 + k); as the signature and set
of rules of R (respectively S) are both finite, we may compute the finite set of basic terms
over FR (respectively FS) of size at most x2, and for each of these compute their derivation
trees up to depth x3 (respectively gi(j · x2 + k)) and subsequently check whether the leaves
of each tree consist only of normal forms, and whether all trees are non-circular. If that
is the case, then the set of normal forms of the considered terms is finite, as well, and
hence it is computable whether f(t1, . . . , tn)→!

R u1 and f(t1, . . . , tn)→!
S u2 for all relevant

t1, . . . , tn, u1, u2. As the answer to the question to be decided is “yes” for the TRS encoded
by x4 iff the predicate ∃x1.∀x2.∃x3.P (x1, x2, x3, x4) obtains, containment in Σ0

3 is proved.
We now show Σ0

3-hardness of the problem. By Proposition 13, it is Σ0
3-hard to decide

whether there exists a dual-tape Turing Machine M ′ accepting the same language as M
such that TimeM ′ ≤ Ξ(G), given a dual-tape Turing Machine M . Let qa be the accepting
state of M . We set runM to be the main function, and qa the accepting symbol of ∆(M).
Note that ∆(M) is orthogonal, so the reduction described here works regardless of whether
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the problem instance is restricted to be orthogonal. By Lemma 12, L = L(∆(M)) is the
language accepted by M . It remains to show that there exists a dual-tape Turing machine
M ′ accepting L with TimeM ′ ≤ Ξ(G) iff there exists a TRS R′ accepting L in time Ξ(G).

In order to show the direction from left to right, suppose that there exists a dual-tape
Turing machine M ′ accepting L with TimeM ′ ≤ Ξ(G). Then by employing Lemma 12 again,
we also have L(∆(M ′)) = L if we set the main function to runM again, and the accepting
symbol of ∆(M ′) to the accepting state of M ′. Thus, ∆(M ′) (deterministically) accepts L
in time Ξ(G).

For the direction from right to left, suppose that there exists a confluent TRS R′ with
main function f , accepting symbol a, and rcR′ ≤ Ξ(G). Then by [3, Theorem 6.2] there exists
a deterministic (dual-tape) Turing Machine M ′ such that TimeM ′(n) ∈ O(log(rcR′(n))3 ·
rcR′(n)7). Since rcR′ ≤ Ξ(G), and Ξ(G) is by assumption closed under polynomial slowdown,
we have TimeM ′ ≤ Ξ(G), as well. J

6 Hardness of Derivational Complexity Analysis

We proceed to give the completeness result for establishing upper bounds on the derivational
complexity of TRSs. Unfortunately, we cannot lift the results of Section 4 directly from
runtime complexity to derivational complexity. The definition of the derivational complexity
of a TRS places no restrictions on the considered starting term; in particular, we have to
consider encodings of unreachable configurations in the underlying Turing Machine. The
crucial ingredient of the main theorem in this section is an investigation by Herman [15] of
the mortality problem for Turing Machines. Herman’s proof gives a concrete reduction of
the mortality problem from the halting problem that involves only a polynomial overhead
in time complexity. In order to use this reduction, we switch from dual-tape to single-tape
Turing Machines for this section.

I Proposition 15 ([13, Theorem 6]). Let M be a dual-tape Turing Machine. Then there
exists a single-tape Turing Machine M ′ such that M ′ accepts and rejects exactly the same
input words as M , and TimeM ′(n) ∈ O(max{TimeM (n)2, n2}).

I Lemma 16. Let M be a single-tape Turing Machine with tape alphabet Σ. Then there
exists a single-tape Turing Machine M ′ such that M ′ accepts and rejects exactly the same
input words from Σ∗ as M , M ′ halts on all configurations iff M halts on all input words,
and LifeTimeM ′(n) ∈ O(max{TimeM (n)3, n3}).

Proof. By [15, Theorem 1], there exists a single-tape Turing Machine M ′ which accepts
the same input words from Σ∗ as M , and halts on all configurations iff M halts on all
input words. The proof that LifeTimeM ′(n) ∈ O(max{TimeM (n)3, n3}) is deferred to the
extended version of this paper [26]. J

We now encode single-tape Turing Machines M as TRSs ∆1(M). As in Section 3, we use
the encoding of [28, Chapter 5]: a configuration (q, w, i) such that w = w1 . . . wn is encoded
as the term q(φ(wi−1 . . . w1), φ(wi . . . wn)). However, we slightly change the rules of ∆1 to
reflect that we consider machines with only one-way infinite tapes for simplification purposes.
Note that ∆1 does not contain any mechanism to enforce any restriction on the starting
term of a derivation; this is because we are considering derivational complexity (rather than
runtime complexity) in this section.

I Definition 17. Let M = (Q,Σ, δ) be a single-tape Turing Machine. Then the orthogonal
constructor TRS ∆1(M) is defined by the rules shown in Figure 2.
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transition function rewrite rule (for each q ∈ Q \ {qa, qr} and a, b ∈ Σ)

δ(q, b) = (q′, b′, R) q(x, by) → q′(b′x, y)
δ(q, b) = (q′, b′, L) q(ax, by) → q′(x, ab′y)
δ(q,�) = (q′, b′, R) q(x,B) → q′(b′x,B)

Figure 2 The TRS ∆1(M) defined by a single-tape Turing Machine M

We call a ground term of the shape q(s, t) over the signature of ∆1(M) a restricted term
if q ∈ Q, and s, t ∈ Σ∗, and the first symbol of s−1t is ` (here (·)−1 denotes string reversal).

I Lemma 18. Let M be a single-tape Turing Machine. Then we have dc∆1(M)(n) ∈
LifeTimeM (Ω(n)) and dc∆1(M)(n) ∈ n · LifeTimeM (O(n)).

Proof. The following holds by straightforward arguments (compare [28, Exercise 5.3.3]):
For each restricted term s encoding a configuration α of M such that s→∆1(M) s

′, the
term s′ is also restricted, and encodes a configuration β of M . Moreover, M moves from
α to β in a single step.
Whenever α and β are configurations of M such that M moves from α to β in a single
step, then for each (restricted) term encoding s of α, there exists a (restricted) term
encoding s′ of β such that s→∆1(M) s

′.

The above implies that for each configuration α ofM , the derivation height dh(s,→∆1(M))
is exactly the number of moves that can be done from α untilM halts, where s is a (restricted)
term which encodes α. Therefore, dc∆1(M)(n) ∈ LifeTimeM (Ω(n)).

It remains to show that dc∆1(M)(n) ∈ n · LifeTimeM (O(n)). It easily follows from the
above observations that rc∆1(M)(n) ∈ LifeTimeM (O(n)). We use the construction of [11,
Appendix B.2], which allows us to lift this upper bound to starting terms of arbitrary shape.
We define two functions f and g. The function f maps ground terms over the signature F of
∆1(M) to pairs containing a string over the tape alphabet, and a multiset of restricted terms
over F . The purpose of f (compare [11, Lemma B.5]) is to extract a number of restricted
terms from a term. The helper function g ensures that the leftmost symbol on the tape of
each configuration encoded by a restricted term is indeed a `.

f(B) = (B, ∅)
f(a(x)) = (a(w),M) if a ∈ Σ, f(x) = (w,M)

f(q(x, y)) = (B, {q(g(w, v))} ∪M1 ∪M2) if q ∈ Q, f(x) = (w,M1), f(y) = (v,M2)
g(B,`(v)) = (B,`v)

g(B, v) = (`(B), v)
g(`(B), v) = (`(B), v)
g(a(B), v) = (a(`(B)), v) if a ∈ Σ \ {`}
g(a(x), v) = (a(y), z) otherwise, if a ∈ Σ, (y, z) = g(x, v)

By [11, Lemma B.8], we get that for every term t over F with f(t) = (w,M), the inequality
dh(t,→∆1(M)) ≤

∑
s∈M dh(s,→∆1(M)) obtains. Moreover, |M| ≤ |t|. Hence, dc∆1(M)(n) ≤

n · rc∆1(M)(n). Thus, the above observations about restricted terms suffice in order to
conclude dc∆1(M)(n) ∈ n · LifeTimeM (O(n)). J
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We are now able to transfer Proposition 6 to derivational complexity of term rewriting.
Proposition 15 and Lemma 16 take care of the the unrestrictedness of the considered starting
terms, and Lemma 18 performs the actual transfer from Turing Machines to TRSs.

I Theorem 19. Let G be a recursively enumerable set of computable, strictly increasing,
and total functions N→ N such that Ξ(G) is closed under polynomial slowdown. Then the
following decision problem is Σ0

2-complete:
Instance: A TRS R.
Question: Is dcR ≤ Ξ(G)?
If the instances are restricted to orthogonal or constructor TRSs, Σ0

2-completeness also holds.

Proof. The proof of containment of the problem in Σ0
2 is identical to Theorem 7 mutatis

mutandis, whence we only show its Σ0
2-hardness. By Proposition 6, it is Σ0

2-hard to decide,
given a dual-tape Turing Machine M , whether TimeM ≤ Ξ(G). By Proposition 15 and
Lemma 16, there exists a single-tape Turing machine M ′ such that LifeTimeM ′(n) ∈
O(max{TimeM (n)6, n6}), andM ′ accepts the same language asM . As Ξ(G) is by assumption
closed under polynomial slowdown, and contains a strictly increasing function (and hence
also a function dominating i′(n) = n6), we have LifeTimeM ′ ≤ Ξ(G) iff TimeM ≤ Ξ(G).
Moreover, by Lemma 18, we have dc∆1(M ′) ∈ n · LifeTimeM ′(O(n)). As Ξ(G) is closed
under polynomial slowdown, it follows that dc∆1(M ′) ≤ Ξ(G) iff LifeTimeM ′ ≤ Ξ(G). The
transformations used in Proposition 15 and Lemmas 16 and 18 are obviously computable,
and ∆1(M ′) is orthogonal. Therefore, it is Σ0

2-hard to decide whether dcR ≤ Ξ(G), given
a TRS R (independent of whether R is restricted to be orthogonal or a constructor TRS).
Note that dc∆1(M ′) ≤ Ξ(G) iff rc∆1(M ′) ≤ Ξ(G), hence this is also an alternative proof
of the Σ0

2-completeness of determining whether rcR ≤ Ξ(G), which places slightly stricter
assumptions on G, but allows R to be restricted to constructor TRSs. J

7 Hardness of Minimal Complexity

The proofs in this section and Section 8 are based on the observation that the simulation
of a Turing machine M by the TRS ∆(M) has exactly one redex in each term encoding a
configuration of M—that is, each restricted term. Every ilk of problem we consider concerns
sets of reductions to some normal form; if there is only one possible reduction starting from
every restricted term, the proofs of hardness of the various kinds of problems we consider
remain virtually identical, regardless of whether we consider minimal or maximal reductions,
and regardless of reduction strategy. This crucial observation is stated in Lemma 21 below.

I Definition 20. We define the minimal height of a term s wrt. a finitely branching,
terminating relation → by mh(s,→) = min{n : ∃t.s→n,!

R t}. The twin notions of minimal
derivational complexity and minimal runtime complexity of a TRS R are then defined by:

mdcR(n) = max{mh(s,→R) : |s| ≤ n} mrcR(n) = max{mh(s,→R) : |s| ≤ n∧ s ∈ B} .

I Lemma 21. Let M be a dual-tape Turing machine and let s be a term in the signature of
∆(M) containing exactly one redex. If s→∆(M) t, then t contains at most one redex.

Proof. By assumption, the only redex of s is the one contracted by the step s →∆(M) t.
Hence, t only contains redexes created by that step. As ∆(M) is left-linear, redexes can
only be created if the right-hand side of the rule l→ r employed in s→∆(M) t overlaps with
a left-hand side of some other rule. Write s→∆(M) t as C[lσ]→∆(M) C[rσ] for a suitable
context C and substitution σ. Split on cases as follows:
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(a) If l is on one of the forms q(· · · ) or runM(x), inspection of the rules of ∆(M) yields
that r is on the form q′(ok(B), · · · ). Clearly, r can only overlap with the left-hand side of a
rule l′ → r′ if the overlap occurs at the root of l′ and r. As ∆(M) is orthogonal, at most one
such rule l′ → r′ can exist, and hence there is at most one redex in t.

(b) If l = ok(ok(B)), then r = B. Obviously, B is a normal form on its own. By
assumption, C contains no redex on its own, and ∆(M) is orthogonal. Therefore, C[B]
contains at most one redex. J

I Theorem 22. Theorems 7, 9, and 14 all hold with the notion of rcR replaced by mrcR
mutatis mutandis.

Proof. Every basic term s in an orthogonal TRS (such as ∆(M) for a dual-tape Turing
Machine M) contains at most one redex. For each TRS on the form ∆(M), it is therefore
immediate by Lemma 21 that the minimum and maximum lengths of reduction to normal
form from s are the same. Therefore, all arguments in the hardness proofs of Theorems 7, 9,
and 14 remain sound if we replace rcR by mrcR, so the hardness results follow.

For containment in the respective complexity classes, observe that in the proofs of
Theorems 7, 9, and 14 (each of the three distinct variations of) the predicate P considers
longest maximal paths in the derivation tree of terms; this can obviously be replaced by the
shortest maximal paths, as required by mrcR, without affecting computability of P . J

I Theorem 23. Theorem 19 holds with the notion of dcR replaced by mdcR mutatis mutandis.

Proof. Containment in Σ0
2 follows in the same way as in the proof of Theorem 22.

We now show Σ0
2-hardness. Observe that for any (single-tape) Turing Machine M , the

TRS ∆1(M) is orthogonal, right-linear, and nonerasing. Therefore, ∆1(M) has the diamond
property, and for any term t, we have dh(t,→∆1(M)) = mh(t,→∆1(M)). With this, the
hardness result follows by arguments identical to those in the proof of Theorem 19. J

8 Hardness under Strategies

The results so far concern TRSs with unconstrained rewrite relation. In the modelling of
programming languages, it is common to consider TRSs with strategies dictating the redex
to be contracted in each term. Using the same ideas as in the last section, the previous
results in the paper carry over to the setting of TRSs with strategies2. Thus, the results of
the previous sections of the paper remain valid under, for example, any innermost strategy,
and under deterministic strategies such as the leftmost-outermost strategy.

I Definition 24. Let R be a TRS. A strategy S for R is defined by a relation →S ⊆ →R
such that any term t is a normal form of→R iff it is a normal form of→S. We call a strategy
for R computable if, given a term t, the (finite) set {t′ : t→S t

′} is computable.

The notions of runtime and derivational complexity of TRSs with strategies are defined
mutatis mutandis. For the next theorem, Lemma 21 is again the crucial proof ingredient.

I Theorem 25. Let f be a computable mapping returning a computable strategy f(R) for
each TRS R. Theorems 7, 9, and 14, 19, 22 and 23 all hold for the rewrite relation of R
with strategy S = f(R) (where the instance in each decision problem is R).

2 Here we use the notion “strategy” according to [28, Definition 9.1.1]. Note that this does not cover
everything that is commonly called a “strategy” in term rewriting. For instance, the proofs of this
section can not be directly carried over to context-sensitive rewriting.
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Proof. Observe that if term s contains exactly one redex, then for any term t and strategy
S for R, we have s→R t iff s→S t. For every TRS on the form ∆(M), each basic term of
∆(M) has at most one redex. By Lemma 21, it is immediate that the lengths of all reductions
to normal form from s are the same. Therefore, all arguments in the hardness proofs of
Theorems 7, 9, 14, and 22, remain sound under S.

For Σ0
2-hardness of the remaining two properties, observe that for any (single-tape) Turing

Machine M , the TRS ∆1(M) is orthogonal, right-linear, and nonerasing. Therefore, ∆1(M)
has the diamond property, and for any term t, all reductions from t to its (unique) normal
form have the same length. In particular, we have dh(t,→∆1(M)) = dh(t,→S). Hence, the
hardness proofs for Theorems 19 and 23 remain sound when restricted to S.

To prove containment in the respective classes of the arithmetical hierarchy, observe
that each containment proof in Theorems 7, 9, 14, 19, 22, and 23 is done by computing the
derivation tree starting from a term s to a certain depth. The derivation tree with respect
to a strategy can be obtained by pruning the full derivation tree: A branch t → t′′ (and
thus, the entire subtree starting from t′′) is cut off if t′′ /∈ {t′ : t→S t

′}. As the strategy is
computable, the pruning operation is clearly computable, hence also the pruned derivation
trees, and we may thus replace the trees in the proofs of the above theorems by their pruned
versions, concluding the proof. J

9 Conclusion and Suggestions for Future Work

We have proved that a number of problems related to bounding the derivational and runtime
complexity of rewrite systems are complete for classes in the arithmetical hierarchy. We
hope that our results may be used to prove the exact hardness other problems in applied
logic—this would avoid the tedium of pure reduction from Turing machines.

A related open problem is Problem #107 of RTALooP3, a list of open problems collected
by term rewriters: what are complete characterisations of polynomial derivational complexity?

Furthermore, recent efforts have been made to devise automated methods for showing
whether the derivational or runtime complexity of a given TRS is polynomial, see for instance
[2, 16, 30, 29]. All of this recent work was focused on proving termination of a TRS by
some restricted means, and then extracting a complexity bound from that termination proof.
However, the position of this problem in the arithmetical hierarchy (which is the same as the
position of nontermination analysis) suggests that it would be promising to try to certify
polynomial complexity bounds for rewrite systems in a completely novel way.
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Abstract
Deterministic recursive program schemes (RPS’s) have a clear category theoretic semantics pre-
sented by Ghani et al. and by Milius and Moss. Here we extend it to nondeterministic RPS’s.
We provide a category theoretic notion of guardedness and of solutions. Our main result is a
description of the canonical greatest solution for every guarded nondeterministic RPS, thereby
giving a category theoretic semantics for nondeterministic RPS’s. We show how our notions and
results are connected to classical work.
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1 Introduction

Deterministic and nondeterministic recursive program schemes (RPS’s) were investigated
in the 1970’s and 80’s by several authors (see related work below). Different semantics
for RPS’s were proposed and relationships between them were proved. More recently, a
category theoretic semantics for deterministic RPS’s has been developed by Ghani et al. [9]
and by Milius and Moss [16]. There are clear advantages of this semantics: it applies to
a considerably generalized notion of RPS and it requires less assumptions than classical
semantics, which need order or metric structures.

However, no category theoretic semantics for nondeterministic RPS’s has been presented
so far. The present paper bridges this gap: it provides a category theoretic notion of
nondeterministic RPS, of guardedness and of solutions. As our main result, a semantics of
the guarded nondeterministic RPS’s is given by proving them to have a canonical greatest
solution.

Technically this turns out to be a challenging task: parts of the techniques known from
[9, 16] are not available in the nondeterministic case. Thus large technical parts of our work
reflect the effort it takes to adjust the category theoretic methods to the nondeterministic
case. Nevertheless, this pays off in the end: besides obtaining a semantics for a generalized
notion of a nondeterministic RPS, our approach has a clear structure and is easily related to
classical semantics of nondeterministic RPS’s as well as to the deterministic category theoretic
semantics of [9, 16]. Moreover, several generalizations and extensions can be considered (see
future work in Section 6).
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We illustrate the topic of this paper on the nondeterministic RPS

φ(x) = f(x, x) or f(x, φ(x)) . (1)

Here φ is a new function symbol of arity one, f a given function symbol of arity two and x a
variable.

A semantics of a nondeterministic RPS attaches to every new function symbol a set
of possibly infinite trees with nodes labeled by given function symbols or variables which
“solves” the system of equations. In our example this is the following infinite set

{ f

x x

,

f

x f

x x

,

f

x f

x f

x x

, . . . ,

f

x f

x f

x ...

}
(2)

of trees where the right-hand tree is infinite. Substituting every element on the right-hand
side of (1) and interpreting the operation or as nondeterministic choice we get back this
set. But removing the infinite tree from this set also gives such a “solution”—unlike for
deterministic RPS we must make a decision when giving a semantics to nondeterministic
RPS’s. In our main result we prove that there always is a greatest solution that can be
chosen canonically.

Structure of the Paper

Section 2 provides several notions and results needed in this paper. In Section 3 we show
how to obtain a canonical distributive law of the free completely iterative monad TH on
a Set-functor H over the nonempty powerset monad P+. It is used in Section 4 to prove
that P+TH is a weakly completely iterative monad; moreover, in this section we consider
a functor H̄ on a certain Kleisli category derived from H, and show an H̄-coalgebra to be
weakly final. In Section 5 we give a category theoretic notion of a nondeterministic RPS
and prove our main result, namely that every guarded nondeterministic RPS has a canonical
greatest solution, using the technical results from the previous section. We compare our work
with an existing category theoretic notion of a deterministic RPS and with classical work on
nondeterministic RPS’s. Finally we give a brief summary and discuss several directions for
future work in Section 6.

Nearly all proofs are omitted; they can be found in the full version on the author’s web
page1.

Related Work

Different semantics of RPS’s have been investigated in the 1970’s and 80’s: for deterministic
RPS’s see for example Courcelle [8], Guessarian [10] and Nivat [19]; for nondeterministic
RPS’s we mention Boudol [7], Arnold and Nivat [4] and Poigné [20]. In Section 5 we compare
our work in particular with [4] to see how we cover the classical definitions and results. A

1 http://www.tu-braunschweig.de/iti/mitarbeiter/ehemalige/schwencke
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category theoretic approach to deterministic RPS’s is given by Ghani, Lüth and de Marchi
[9] and by Milius and Moss [16]. We make use of several techniques from [16]. This paper is
also loosely related to our previous work [17] where we used distributive laws of the same
kind to bring recursion (but on the level of equations for variables) together with effects like
non-determinism.

2 Preliminaries

We assume that the reader is familiar with the basic notions of category theory such as
category, functor, natural transformation and commutative diagram; we shall also need
coproducts. Moreover we assume basic knowledge about algebras and coalgebras for a
functor; in particular we use free algebras as well as (weakly) final coalgebras.

Monads and Distributive Laws

I Definition 2.1. A monad (M,η, µ) on a category A is an endofunctorM : A → A together
with natural transformations η : Id→M (called the unit of the monad) and µ : MM →M

(called the multiplication of the monad) such that the unit laws µ · ηM = µ ·Mη = id and
the multiplication law µ ·Mµ = µ · µM hold.
A monad morphism between monads (M,ηM , µM ) and (N, ηN , µN ) on A is a natural
transformation θ : M → N such that θ · ηM = ηN and θ · µM = µN ·Nθ · θM .

I Example 2.2. The most important example of a monad in this paper is the nonempty
powerset monad (P+, η+, µ+) on the category Set of sets and functions:

the functor P+ : Set→ Set assigns to a set X the set of all nonempty subsets of X; on
maps f : X → Y it is defined by (P+f)(X ′) = f [X ′] where X ′ ∈ P+X;
the X-component of the unit η+ : Id→ P+ assigns to an element x ∈ X the singleton
set {x} ∈ P+X;
the X-component of the multiplication µ+ : P+P+ → P+ performs the union of subsets
of X.

I Definition 2.3. A free monad on an endofunctor H on a category A is a monad
(FH , ηH , µH) together with a natural transformation κH : H → FH such that for ev-
ery monad (M,ηM , µM ) on A together with a natural transformation α : H → M there
exists a unique monad morphism α# : FH →M such that α# · κH = α.

I Theorem 2.4 ([5]). If for every object X of A the free H-algebras φHX : HFHX → FHX on
X exist, the free monad on H is given objectwise by these algebras, and the free algebra maps
form a natural transformation φH such that µH · φHFH = φH ·HµH and φH = µH · κHFH .

I Definition 2.5. The Kleisli category AM of a monad (M,η, µ) on a category A is given as
follows:

the objects of AM are the same objects as the ones of A;
the morphisms of AM between X and Y are all morphisms X →MY from A;
the identity morphism on X is ηX : X →MX;
composition of f : X →MY and g : Y →MZ is given by

X
f //MY

Mg //MMZ
µZ //MZ .

Furthermore, there is a canonical inclusion functor J : A → AM given as the identity on
objects and by Jf = ηY · f : X →MY on morphisms f : X → Y .
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I Definition 2.6. A distributive law of a functor H over a monad (M,ηM , µM ) is a natural
transformation λ : HM →MH such that λ ·HηM = ηMH and λ ·HµM = µMH ·Mλ · λM .
A distributive law of monads N and M is a natural transformation λ : NM → MN such
that in addition to the two laws for a distributive law of a functor over a monad (with H
replaced by N) the laws λ · ηNM = MηN and λ · µNM = MµN · λN ·Nλ hold.

Throughout the paper, we denote parallel composition Gα′ ·αF ′ = αG′ ·Fα′ : FF ′ → GG′

of natural transformations α : F → G and α′ : F ′ → G′ by α ∗ α′.

I Lemma 2.7 ([6]). Given a distributive law λ : NM → MN of monads, (MN, ηMN ·
ηN , (µM ∗ µN ) ·MλN) is again a (composite) monad.

Completely Iterative Algebras and Complete Elgot Algebras

Now (and for the rest of the paper) assume the category A to have binary coproducts,
and let H : A → A be a functor. We denote coproduct injections by inl : X → X + Y

and inr : Y → X + Y and use the notation can for the canonical morphism [H inl, H inr] :
HX +HY → H(X + Y ).

I Definition 2.8. A flat equation morphism in an object A (of parameters) is a morphism
e : X → HX +A.
A solution of e in an H-algebra a : HA → A is a morphism e† : X → A such that the
diagram

X
e† //

e

��

A

HX +A
He†+A

// HA+A

[a,A]

OO

commutes.
A completely iterative H-algebra is an H-algebra a : HA→ A in which every flat equation
morphism has a unique solution.
A complete Elgot algebra for H is an H-algebra a : HA→ A together with a function (−)†
assigning to each flat equation morphism e a solution e† in a such that (−)† is functorial
and compositional (see Definition 2.10 below).

I Notation 2.9. Let e : X → HX + Y and g : Y → HY + A be flat equation morphisms
and let f : Y → Z be any morphism. We denote by f • e the flat equation morphism
(HX + f) · e : X → HX + Z, and we denote by g e the flat equation morphism (can +A) ·
(HX + g) · [e, inr] : X + Y → H(X + Y ) +A.

I Definition 2.10. A function (−)† assigning to each flat equation morphism e a solution e†
in an algebra a : HA→ A is called functorial if for every homomorphism h : X → Y between
flat equation morphisms e : X → HX +A and g : Y → HY +A (i. e. (Hh+A) · e = g · h)
we have e† = g† · h. This is, (−)† is a functor between the category of all flat equation
morphisms in A and their homomorphisms and the comma category of A. (−)† is called
compositional if for any equation morphisms e : X → HX + Y and g : Y → HY + A we
have (g e)† · inl = (g† • e)†.
A morphism h : A→ B between complete Elgot algebras (a : HA→ A, (−)†) and (b : HB →
B, (−)‡) is called solution preserving if for all flat equation morphisms e : X → HX +A the
equation h · e† = (h • e)‡ holds.
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All complete Elgot algebras for H and solution preserving H-algebra homomorphisms
between them form a category. It follows from [15, 2] that all completely iterative H-algebras
and H-algebra homomorphisms between them form a full subcategory.

I Theorem 2.11 ([15, 2]). The following are equivalent:
1. τX : HTHX → THX is the free completely iterative H-algebra on X with universal arrow

ηX : X → THX;
2. τX : HTHX → THX is the free complete Elgot algebra for H on X with universal arrow

ηX : X → THX;
3. [τX , ηX ]−1 : THX → HTHX +X is the final H(−) +X-coalgebra.

Completely Iterative Monads

I Definition 2.12. Let (T, η, µ) be a monad on A. A T -module (F, ν) is an endofunctor
F : A → A together with a natural transformation ν : FT → F such that the following
diagrams commute:

F
Fη //

CC
CC

CC
CC

CC
CC

CC
CC

FT

ν

��
F

FTT
Fµ //

νT

��

FT

ν

��
FT ν

// F

A module homomorphism between T -modules (F, νF ) and (G, νG) is a natural transformation
ϑ : F → G such that ϑ · νF = νG · ϑT .

I Remark 2.13. For every monad (T, η, µ), (T, µ) is a T -module.

I Definition 2.14. An idealized monad (T, η, µ, T̄ , µ̄, ϑ) on A is a monad (T, η, µ) on A
together with a T -module (T̄ , µ̄) and a module homomorphism ϑ : (T̄ , µ̄)→ (T, µ).
An ideal natural transformation is a natural transformation α : F → T into an idealized
monad which factors

α ≡ (F ᾱ // T̄
ϑ //T ) .

An idealized monad morphism (θ, θ̄) between idealized monads (T, ηT , µT , T̄ , µ̄T , ϑT ) and
(S, ηS , µS , S̄, µ̄S , ϑS) is a monad morphism θ : T → S together with a natural transformation
θ̄ : T̄ → S̄ such that the following diagrams commute:

T̄ T
θ̄∗θ //

µ̄T

��

S̄S

µ̄S

��
T̄

θ̄

// S̄

T̄
θ̄ //

ϑT

��

S̄

ϑS

��
T

θ
// S

I Remark 2.15. Every monad (T, η, µ) can be canonically completed to an idealized monad
(T, η, µ, T, µ, id). In general, there are other ways to complete T to an idealized monad as we
shall see in Theorem 2.17 below.

I Definition 2.16. Let (T, η, µ, T̄ , µ̄, ϑ) be an idealized monad. An equation morphism is a
morphism e : X → T (X + Y ). It is called guarded if it factors

e ≡ (X e′ // T̄ (X + Y ) + Y
[ϑX+Y ,ηX+Y ·inr] //T (X + Y ))
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for some e′. A solution of e is a morphism e† : X → TY such that the diagram

X
e† //

e

��

TY

T (X + Y )
T [e†,ηY ]

// TTY

µY

OO

commutes. An idealized monad is called completely iterative if every guarded equation
morphism has a unique solution. It is called weakly completely iterative if every guarded
equation morphism has a solution.

All idealized monads on A together with the idealized monad morphisms form a category.
In particular, we are interested in the free completely iterative monads on functorsH : A → A,
albeit not in their freeness property.

I Theorem 2.17 ([15]). Let H : A → A be a functor such that for every object X of A
the final H(−) + X-coalgebra exists. The free completely iterative monad on H is given
by (TH , ηH , µH , HTH , HµH , τH) with universal ideal natural transformation κH : H → TH

where
TH is defined on objects X as the free completely iterative H-algebra THX on X and on
morphisms f : X → Y as the unique homomorphism between the free completely iterative
H-algebras on X and Y extending ηY · f : X → THY ;
ηHX is given by the universal arrow of the free completely iterative H-algebra on X;
µHX is given as the unique homomorphism between the free completely iterative H-algebras
on THX and on X extending idTHX ;
τHX is given by the structure of the free completely iterative H-algebra on X; and
κHX is given by τHX ·HηHX .

I Remark 2.18. By the definition of µ in Theorem 2.17 we have µHX · τHTHX = τHX ·HµHX for
every X, and from the same theorem we know that µH and τH are natural transformations.
Consequently it holds µH · τHTH = τH ·HµH .

I Lemma 2.19. It holds τH = µH · κHTH .

Proof. Consider the diagram

HTH
κHTH //

HηHTH

%%KKKKKKKKKK THTH
µH // TH

HTHTH

τHTH

OO

HµH // HTH .

τH

OO

The triangle is the definition of κ, the lower part is one of the monad unit laws, and for the
right-hand square see Remark 2.18. Thus the desired outer square commutes. J

3 Canonical Distributive Laws over P+

In this section we provide canonical distributive laws of polynomial Set-functors H and the
corresponding free completely iterative monads TH on H over the nonempty powerset monad
P+ and prove some properties of them. These distributive laws are an integral part of our
category theoretic approach to nondeterministic computations since they formalize the idea
of non-determinism that all possible choices are considered.

CSL’11
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I Definition 3.1. A polynomial Set-functor H is a Set-functor of the form HX =
∐
σ∈ΣX

nσ ,
where Σ is a signature of (possibly infinitely many) operation symbols σ with (finite) arities
nσ. We write HΣ for the polynomial Set-functor associated with the signature Σ; elements
from HΣX are denoted by σ(x1, . . . , xn) where σ ∈ Σ and x1, . . . , xn ∈ X.

I Lemma 3.2 ([11]). There exist canonical distributive laws λ : HM → MH of every
polynomial Set-functor H over every commutative monad M on Set.

I Remarks 3.3. 1. We do not state the definition of a commutative monad here, but only
mention that P+ is commutative which is sufficient for our purposes. For more details,
see Kock’s papers [13, 14].

2. Our work in [17] extends Lemma 3.2 to the wider class of analytic functors; for P+

there even exist canonical distributive laws λ : HP+ → P+H for every weak pullback
preserving functor H, see e. g. [12].

I Example 3.4. For every polynomial functorHΣ, the canonical distributive law λ : HΣP+ →
P+HΣ is given by λX(σ(X1, . . . , Xn)) = {σ(x1, . . . , xn) | xi ∈ Xi, 1 ≤ i ≤ n} for every n-ary
operation symbol σ ∈ Σ and X1, . . . , Xn ∈ P+X.

If H is a polynomial Set-functor, so is H(−) +X for every set X. The final coalgebra of
H(−) +X is carried by the set THX of all finite and infinite trees with nodes labeled by
operation symbols from the signature corresponding to H or by constant elements from X,
where the number of children is given by the arity of the operation symbols labeling a node
(see [1], Example 2.7). Whenever trees are mentioned in this paper, such trees are meant.
We shall also refer to the elements of THX as finite and infinite terms built from operation
symbols from the signature corresponding to H over variables from X.

Since for a polynomial Set-functor H final coalgebras H(−) +X exist for every set X,
the free completely iterative monad (TH , ηH , µH , HTH , HµH , τH) on H together with the
universal natural transformation κH exists and is given as in Theorem 2.17. Explicitly, for a
polynomial Set-functor H the natural transformations involved act as follows:

ηHX : X → THX considers a variable as a singleton tree;
µHX : THTHX → THX considers a tree with leaves labeled by trees with leaves labeled
by variables from X as a tree with leaves labeled by variables from X by using the leaf
labels as subtrees;
τHX : HTHX → THX acts similar as µHX but for a flat tree (i. e. one of depth one) with
leaves labeled by trees (of arbitrary depth); and
κHX : HX → THX considers a flat tree as a tree.

We shall leave out the superscript H when the functor H is clear from the context.
For the following proposition recall Definition 2.8 of a complete Elgot algebra.

I Proposition 3.5. For the canonical distributive law λ of a polynomial Set-functor H over
the monad P+, P+τY · λTHY : HP+THY → P+THY is a complete Elgot algebra for H for
every set Y .

Proof (sketch). For every set Y we define a function (−)† which assigns to each flat equation
morphism e : X → HX + P+THY a morphism e† : X → P+THY . For example, let e be
given by the system

x0 = σ(x0, x1)
x1 = {t0, t1}
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of equations where σ is an operation symbol from the signature associated with the polynomial
functor H, x0, x1 ∈ X and t0, t1 ∈ THY . Then we let e†(x0) consist of the unique solutions in
the free completely iterative H-algebra τY on Y of all variables of all flat equation morphisms
ē : X̄ → HX̄ + THY which are “over” x0: for example x̄0 and x̄1 in the system

x̄0 = σ(x̄1, x̄2)
x̄1 = σ(x̄0, x̄3)
x̄2 = t0

x̄3 = t1

are “over” x0 since there is a function X̄ → X mapping x̄0 and x̄1 to x0 (and x̄2 and x̄3
to x1) which is homomorphic for equations with right-hand sides from HX and otherwise
relates variables whose right-hand sides are in the containment relation ∈. Similarly we
define e†(x1) which is easily seen to be {t0, t1}. Then e† can be shown to be a greatest
solution of e w. r. t. to subset inclusion on P+THY . Equivalently, e† can be obtained as a
greatest fixed point of an operator corresponding to the solution diagram in Definition 2.8
with (A, a) = (P+THY,P+τY · λTHY ). This enables us to use the dual of the proof of
Proposition 3.5 from [2] in order to show that (−)† is functorial and compositional which
concludes the current proof. J

I Definition 3.6. Given the canonical distributive law λ of a polynomial Set-functor H
over the monad P+, we define for every set Y the map λ′Y : THP+Y → P+THY to be
the unique homomorphism between the free complete Elgot algebra τP+Y on P+Y and
the complete Elgot algebra P+τY · λTHY (see Proposition 3.5) extending P+ηHY , i. e. λ′Y is
uniquely determined by the following commutative diagrams:

HTHP+Y

τP+Y

��

Hλ′Y // HP+THY

λTHY
��

P+HTHY

P+τY
��

THP+Y
λ′Y // P+THY

P+Y

ηHP+Y

ffLLLLLLLLLL P+ηHY

88rrrrrrrrrr

(3)

I Lemma 3.7. The maps λ′Y : THP+Y → P+THY from Definition 3.6 act as follows:
given a tree t ∈ THP+Y where leaves may be labeled with nonempty subsets of Y , λ′Y (t) is
the set of all trees obtained by choosing in each of these leaves one element from the labeling
set.

I Proposition 3.8. The canonical distributive law λ : HP+ → P+H of a polynomial
Set-functor H over the monad P+ extends to a distributive law λ′ : THP+ → P+TH of
monads.

Proof (sketch). We prove that, given the canonical distributive law λ of a polynomial Set-
functor H over the monad P+, the maps λ′Y from Definition 3.6 form a distributive law of
monads. Since one of the axioms for a distributive law of monads is already given by the
lower triangle in diagram (3), we need to prove naturality of λ′ and the three remaining
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axioms. The proof uses freeness of the complete Elgot algebras τY : HTHY → THY (see
Theorem 2.11) for naturality and one of the remaining axioms, and the concrete description
of λ′ from Lemma 3.7 for the remaining two axioms. J

I Lemma 3.9. For a distributive law λ′ obtained from λ according to Proposition 3.8 we
have λ′ · κP+ = P+κ · λ.

Proof. The lemma is an easy consequence of the definitions of κ (Theorem 2.17) and λ′

(diagram (3)) and therefore left to the reader. J

4 A Weakly Final Coalgebra

Milius and Moss ([16], Theorem 6.5) proved guarded deterministic RPS’s to have unique
solutions by exploiting the finality of the coalgebra [τH , ηH ]−1 for some functor H. As we
have seen in the introduction, in the nondeterministic case solutions need not be unique.
However, as our main result we shall provide in Section 5 canonical greatest solutions of
nondeterministic RPS’s. There we exploit weak finality of the coalgebra J [τH , ηH ]−1 for a
lifting H̄ of H to a suitable Kleisli category with inclusion functor J , which is proved in the
present section.

I Definition 4.1. Given a distributive law δ : NM →MN of monads, a δ-distributive law
of an N -module (N̄ , µ̄N ) over the monad M is a natural transformation δ̄ : N̄M → MN̄

such that the first two laws from Definition 2.6 (with H replaced by N̄ and λ replaced by δ̄)
and the law δ̄ · µ̄NM = Mµ̄N · δ̄N · N̄δ hold.

I Lemma 4.2. Let δ : NM → MN be a distributive law of the idealized monad
(N, ηN , µN , N̄ , µ̄N , ϑ) over the monad (M,ηM , µM ), and let δ̄ : N̄M → MN̄ be a δ-
distributive law such that Mϑ · δ̄ = δ · ϑM . Then the composite monad induced by δ

is an idealized monad (MN, ηMN · ηN , (µM ∗ µN ) ·MδN,MN̄, (µM ∗ µ̄N ) ·Mδ̄N,Mϑ).

Specializing to M = P+ and N = TH , we can now prove the following

I Theorem 4.3. Let H be a polynomial Set-functor. For the extension λ′ : THP+ → P+TH

of the canonical distributive law λ : HP+ → P+H (cf. Proposition 3.8),

(P+TH , η+TH ·ηH , (µ+∗µH)·P+λ′TH ,P+HTH , (µ+∗HµH)·P+λTHTH ·P+Hλ′TH ,P+τ)

is a weakly completely iterative monad (see Definition 2.16).

Proof (sketch). We know from Theorem 2.17 that (TH , ηH , µH , HTH , HµH , τ) is the free
completely iterative monad on H, i. e. in particular, it is an idealized monad. Moreover,
λTH · Hλ′ : HTHP+ → P+HTH is easily seen to be a λ′-distributive law such that
P+τ · λTH ·Hλ′ = λ′ · τP+. Thus we can apply Lemma 4.2 to see that the six-tuple in the
statement of the theorem is an idealized monad. We still have to check that every guarded
equation morphism has a solution. This is done by deriving deterministic guarded equation
morphisms from the given nondeterministic one (similar to the proof of Proposition 3.5) and
showing that the (unique) solutions of the former constitute a solution of the latter. J

I Remark 4.4. The part of the proof of Theorem 4.3 showing that all guarded equation
morphisms have a solution even works for (non-guarded) equation morphisms e : X →
P+TH(X + Y ) that factor

e = (X e′ //P+(HX + Y )
P+(κHX+ηHY )//P+(THX + THY ) P+can //P+TH(X + Y )) .

The reason is that although the equation morphism e is not necessarily guarded, the derived
deterministic equation morphisms always are; the rest of the proof remains the same.
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Observe that for every set Y , P+Y carries the partial order ⊆ given by subset inclusion.
This extends elementwise to a partial order ≤ on all sets Set(X,P+Y ) of functions from
some set X into P+Y , i. e. f ≤ g ⇔ ∀x ∈ X : f(x) ⊆ g(x) for functions f, g ∈ Set(X,P+Y ).
In this sense we use the term “greatest solution/homomorphism” in the following lemma, in
Lemma 4.11 below and in Section 5.

I Lemma 4.5. The canonical solutions e† of (guarded) equation morphisms e from the proof
of Theorem 4.3 and Remark 4.4 are greatest solutions; moreover, for all solutions s of a
(guarded) equation morphism e the sets of all finite cuttings of the trees from e†(x) and s(x)
are the same for every x ∈ X.

Let us denote by [A,A] the category of all A-endofunctors and natural transformations
between them. Any functor H : A → A gives rise to a functor H : [A,A]→ [A,A] defined
on objects (i. e. functors F ) and morphisms (i. e. natural transformations α : F → G) by
HF = HF + Id and Hα = Hα+ id.
And any monad (M,ηM , µM ) on A gives rise to a monad (M, ηM, µM) on [A,A] as follows:
the functorM is defined byMF = MF andMα = Mα, and the F -components of unit and
multiplication are given by ηMF = ηMF and µMF = µMF . The monad laws follow straight
from the ones for (M,ηM , µM ).

I Lemma 4.6. Any distributive law λ of a functor H over a monad M on A induces a
distributive law Λ of the functor H over the monadM on [A,A].

Proof. For every object from [A,A] (i. e. every functor F : A → A) we define ΛF =
can · (λF + ηM ). Naturality of Λ is proved by the commutative diagram

HMF = HMF + Id
λF+ηM//

HMα=HMα+id
��

MHF +M
can //

MHα+M id
��

M(HF + Id) =MHF

M(Hα+id)=MHα
��

ED ��GF
ΛF

HMG = HMG+ Id
λG+ηM

// MHG+M can
// M(HG+ Id) =MHGBC OO@A

ΛG

for every morphism from [A,A] (i. e. every natural transformation α : F → G from A): the
left-hand part commutes by naturality of λ, and the right-hand part by naturality of can.
The two axioms for Λ are easily checked componentwise for every object from [A,A] (i. e. for
every functor F ) in

ΛF · HηMF = can · (λF + ηM ) · (HηMF + Id) = can · (ηMHF + ηM ) = ηM (HF + Id) = ηMHF

and

ΛF · HµMF = can · (λF + ηM ) · (HµMF + Id)
= can · (µMHF + µM ) · (MλF +MηM ) · (λMF + ηM )
= µM (HF + Id) ·Mcan · can · (MλF +MηM ) · (λMF + ηM )
= µM (HF + Id) ·Mcan ·M(λF + ηM ) · can · (λMF + ηM )
= µMHF · MΛF · ΛMF .

J

Now recall Definition 2.5 (Kleisli category).
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I Proposition 4.7 ([18]). For any functor H : A → A and monad M on A the following
are equivalent:
1. there is a distributive law λ : HM →MH of the functor over the monad;
2. H lifts to a functor H̄ on AM .

I Remark 4.8. We do not state the definition of a lifting of a functor here; let us only
remark that in the proof of Proposition 4.7 for a given distributive law λ : HM → MH

the corresponding functor H̄ on AM is given by H̄X = HX on objects X of AM and by
H̄f = λY ·Hf : HX →MHY on morphisms f : X →MY of AM .

I Corollary 4.9. H lifts to a functor H̄ on [A,A]M.

Explicitly H̄ is given on objects (i. e. functors F ) and morphisms (i. e. natural transfor-
mations α : F →MG) by

H̄F = HF + Id and H̄α = can · (λG+ ηM ) · (Hα+ id) .

Let us come back to the setting where H : Set → Set is polynomial, M = P+ and
λ : HP+ → P+H is canonical.

I Theorem 4.10. J [τ, η]−1 : TH → P+(HTH + Id) is a weakly final H̄-coalgebra.

Proof (sketch). The components of every H̄-coalgebra give rise to equation morphisms whose
canonical solutions from the proof of Theorem 4.3 can be shown to form a homomorphism h

into the H̄-coalgebra J [τ, η]−1. J

I Lemma 4.11. The H̄-coalgebra homomorphisms h : F → P+TH into the weakly final
H̄-coalgebra from the proof of Theorem 4.10 are (componentwise) the greatest such homomor-
phisms; moreover, for every H̄-coalgebra homomorphism α : F → P+TH the sets of all finite
cuttings of trees from αX(z) and hX(z) are the same for every set X and every z ∈ FX.

Proof. This follows from Lemma 4.5 and the proof of Theorem 4.10. J

5 Nondeterministic Recursive Program Schemes

In this section, we present our category theoretic notion of a nondeterministic RPS. We
compare this notion with the one of a deterministic RPS from Milius and Moss [16] and with
the classical notion of a nondeterministic RPS as given by Arnold and Nivat [4]. Using the
technical results from the previous section, we prove our main theorem giving a semantics to
nondeterministic RPS’s.

I Definition 5.1. Let H and V be polynomial Set-functors. A nondeterministic recursive
program scheme (or NDRPS, for short) is a natural transformation e : V → P+FH+V . It is
called guarded if it factors

e ≡ (V e′ //P+HFH+V P
+inlFH+V

//P+(H + V )FH+V P+φH+V
//P+FH+V ) .

An uninterpreted solution of e is a natural transformation e† : V → P+TH such that the
diagram

V
e† //

e

��

P+TH

P+FH+V
P+[η+TH ·κH ,e†]#

// P+P+TH

µ+TH

OO

(4)

commutes.
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I Remark 5.2. Notice that [η+TH · κH , e†]# in Definition 5.1 is the unique monad morphism
such that [η+TH ·κH , e†]# ·κH+V = [η+TH ·κH , e†]. It exists since FH+V is the free monad
on H + V with universal natural transformation κH+V : H + V → FH+V (cf. Definition 2.3)
and P+TH is a monad by Theorem 4.3. Explicitly, for polynomial functors H and V and any
set X, FH+VX is the set of all finite trees or terms built from the operation symbols from
the signatures associated with H and V and the variables from X (similar to our description
of THX above Proposition 3.5). [η+TH · κH , e†]#X performs a nondeterministic variant of
second-order substitution in trees (cf. [16], Section 4.1).
I Remark 5.3. In Definition 6.1 of [16] deterministic RPS’s are defined as natural transfor-
mations e : V → TH+V where H and V are endofunctors on any category A with binary
coproducts such that TH and TH+V exist. They are called guarded if they factor through
a natural transformation e′ : V → HTH+V . Uninterpreted solutions are ideal natural
transformations e† : V → TH such that e† = [κH , e†]$ · e where [κH , e†]$ : TH+V → TH is
the unique idealized monad morphism extending [κH , e†] induced by the freeness property of
the completely iterative monad TH+V . We compare these definitions with our Definition 5.1
of NDRPS’s:
1. If we “eliminate” the non-determinism from Definition 5.1 by using the identity monad

(Id, id, id) instead of (P+, η+, µ+), we obtain a special case of deterministic RPS’s as
defined in [16] where we restrict to A = Set and to finite terms on the right-hand sides of
NDRPS’s. More precisely, we obtain natural transformations e : V → FH+V which can
be viewed as RPS’s in · e : V → TH+V where in = (κH+V )# : FH+V → TH+V . If e is
guarded in the sense of Definition 5.1 (using Id instead of P+), then in · e is guarded in
the sense of [16].

2. To “eliminate” the non-determinism from our definition of an uninterpreted solution,
observe that the identity monad is commutative. By Lemma 3.2 we obtain a canonical
distributive law of every polynomial Set-functor H over Id which simply is id : H =
HId → IdH = H, and analogously to Proposition 3.8 this extends to a distributive
law of the monads TH and Id which simply is id : TH = THId → IdTH = TH . The
“composite monad” IdTH becomes the completely iterative monad TH , thus the notion of
an uninterpreted solution also becomes a special case of the one from [16] (as far as ideal
natural transformations e† are concerned) since [κH , e†]$ · in = [κH , e†]# : FH+V → TH

by the uniqueness of such monad morphisms extending κH+V : H + V → FH+V .
3. The assumption on uninterpreted solutions of deterministic RPS’s to be ideal is necessary

to ensure the existence of [κH , e†]$. Working with finite terms in Definition 5.1 has the
advantage that we can drop this assumption. In case of a guarded RPS e : V → FH+V

(using Id instead of P+) uninterpreted solutions automatically are ideal.
4. Technically, the restriction to finite terms on the right-hand sides of NDRPS’s is due to

the fact that the monad P+TH is not a completely iterative monad and we thus cannot
exploit freeness of the completely iterative monad TH+V . However, since by Theorem 4.3
(and Lemma 4.5) P+TH is an idealized monad together with a solution operation (−)†
giving canonical (greatest) solutions for guarded equation morphisms, it comes close to a
completely iterative monad. In order to capture infinite terms, it would be interesting to
see whether P+TH is something like a “complete Elgot monad” and whether the free
completely iterative monad TH+V also is the “free complete Elgot monad”. But whereas
the concept of Elgot monads has recently been investigated [3], there exist no results for
complete Elgot monads.

I Example 5.4. Consider the NDRPS (1) from the introduction. It is formulated in the
classical way using the special binary function symbol or, see e. g. [4], Section II. It can be
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viewed as a natural transformation e : V → P+TH+V as follows: according to the signatures
of new and given function symbols, we choose the polynomial Set-functors V X = X and
HX = X ×X. We translate the right-hand term from (1) which is headed by the symbol
or into the set containing the two subterms and abstract away from a concrete variable set,
obtaining the natural transformation e given by eX(φ(x)) = {f(x, x), f(x, φ(x))} for every
set X. The naturality states that it is invariant under renaming the variable x.
In classical terms, the NDRPS (1) is a Greibach scheme since every new function symbol is
part of a term headed by a given function symbol, see e. g. [4], Section IV. Correspondingly,
the natural transformation e is guarded since every element of the right-hand set is a term
headed by a given operation symbol.
Let us denote the infinite set (2) from the introduction by S. We obtain the natural
transformation e† given by e†X(φ(x)) = S for every set X. Using Remark 5.2, we see that
diagram (4) commutes; thus e† is an uninterpreted solution of e. Similarly, the natural
transformation s given by sX(φ(x)) = S \ {t} for every set X is an uninterpreted solution of
e, where t is the only infinite tree from S (the rightmost one in (2)).

I Remark 5.5. More generally, every classical NDRPS in the sense of Arnold and Nivat [4]
can be translated into a NDRPS in the sense of Definition 5.1, using the following ideas:

the polynomial Set-functors V and H are chosen according to the signatures of new and
given function symbols;
every term headed by the function symbol or is translated to the set of its two subterms;
given function symbols are distributed over sets using the canonical distributive law
λ : HP+ → P+H;
nested sets are flattened using µ+ : P+P+ → P+;
for every set S occurring in a term headed by a new function symbol an additional new
function symbol φS(x1, . . . , xn) with arity according to the number n of variables in S
is introduced, S is replaced by φS(x1, . . . , xn) and the equation φS(x1, . . . , xn) = S is
added to the NDRPS;
occurrences of single variables xi in sets are replaced by πi(x1, . . . , xn) where πi is an
additional given function symbol and the x1, . . . , xn are all variables occurring in the
elements of the set (the idea is of course that πi denotes the i-th projection);
the natural transformation e : V → P+FH+V constituting the NDRPS is given for
every set X and every element from V X by the right-hand side of the equation for the
corresponding new function symbol.

In order to obtain a guarded NDRPS from a classical Greibach scheme, it might be necessary
to substitute some new function symbols by the right-hand sides of their equations. In
conclusion, our notion of a NDRPS covers the classical one, and classical Greibach schemes
translate to guarded NDRPS’s. Moreover, our notion generalizes the classical one: whereas
in [4] NDRPS’s define finitely many new operations, and, more important, only allow for
finite (nonempty) sets of finite terms on the right-hand sides of NDRPS’s, our approach also
captures infinitely many newly defined operations and arbitrary (nonempty) sets. It might
even be possible to generalize our approach to infinite terms on the right-hand sides, see
Remark 5.3(4).

We now state our main result:

I Theorem 5.6. Every guarded NDRPS has a canonical greatest uninterpreted solution.

Before we give the proof of Theorem 5.6, we need to establish an important lemma first.
Whenever we write λ or λ′ in the rest of the paper, we mean the canonical distributive laws
of a polynomial Set-functor H over the monad P+ from Lemma 3.2 or of TH over P+ from
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Proposition 3.8. To simplify notation, we denote the free monad FH+V by F for the rest of
the paper.

I Definition 5.7. Given a natural transformation e′ : V → P+HF , we define the H̄-coalgebra
p by

p = (F
[φH+V ,ηH+V ]−1

// (H + V )F + Id
[η+HF ·HηH+V ,e′]F+η+

��
P+HFF + P+P

+HµH+V +P+
// P+HF + P+ can // P+(HF + Id) ) .

(5)

By Theorem 4.10 (and Lemma 4.11) there is a (componentwise greatest) natural transforma-
tion h such that the diagram

F
h //

p

��

TH

J[τH ,ηH ]−1

��
HF + Id

H̄h
// HTH + Id

(6)

commutes (in [Set,Set]M for M = P+). Observe that diagram (6) translates to

h = P+[τH , ηH ] · µ+(HTH + Id) · P+can · P+(λTH + η+) · P+(Hh+ id) · p (7)

in [Set,Set].

I Lemma 5.8. The natural transformation h : F → P+TH from Definition 5.7 is a monad
morphism.

We remark that in the proof of Lemma 5.8, Theorem 4.10 is used to prove the second
monad morphism law for h.

Proof of Theorem 5.6 (sketch). The given guarded NDRPS e : V → P+F factors through
a natural transformation e′ : V → P+HF , thus we obtain a natural transformation h : F →
P+TH as in Definition 5.7. We define

e† ≡ ( V inr // H + V
κH+V

// F
h // P+TH )

and prove that this is the componentwise greatest solution of e.
In a first step, one proves that e† solves e using Lemma 5.8. An important part of this

step is to prove that h is the unique monad morphism [η+TH · κH , e†]#.
In a second step, e† is proved to be the greatest solution. Here one considers any solution

s : V → P+TH of e. It suffices to show that x = [η+TH ·κH , s]# : F → P+TH is a coalgebra
homomorphism between p and the weakly final H̄-coalgebra over [Set,Set]M from Theorem
4.10: since h is known to be the componentwise greatest such homomorphism, it follows
hX ≥ xX for every set X and we conclude

e†X = µ+
THX

· P+[η+TH · κH , e†]#X · eX = µ+
THX

· P+hX · e ≥ µ+
THX

· P+xX · eX = sX

for every set X using Definition 5.1 and monotonicity of composition in SetP+ . J

I Corollary 5.9. For every uninterpreted solution s : V → P+TH of a NDRPS the sets of
all finite cuttings of trees from sX(z) and e†X(z) are the same for every set X and every
z ∈ V X.
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Proof. In the second part of the proof of Theorem 5.6 we prove that every solution s of every
guarded NDRPS e the monad morphism [η+TH · κH , s]# is an H̄-coalgebra homomorphism.
According to Lemma 4.11, we have the desired property for this H̄-coalgebra homomorphism
and the H̄-coalgebra homomorphism h; this implies that this property also holds for their
respective restrictions s = [η+TH · κH , s]# · κH+V · inr and e† = h · κH+V · inr. J

I Remark 5.10. The main result of Arnold and Nivat [4] is that greatest solutions of Greibach
schemes give the “right” semantics of NDRPS’s and can be computed as greatest fixed points.
We confirmed the former in Theorem 5.6 and generalized it to a wider class of NDRPS’s (cf.
Remark 5.5). From our results we also easily recover the latter: restricting to finite sets on
the right-hand sides of NDRPS’s, the operator h 7→ P+[τH , ηH ] · µ+(HTH + Id) · P+can ·
P+(λTH + η+) · P+(Hh+ id) · p on Set(F,P+TH) given by equation (7) or equivalently by
diagram (6) is componentwise continuous; since we know from Theorem 4.10 and Lemma 4.11
that the greatest fixed point of this operator exists, the second part of Arnold’s and Nivat’s
result follows from (the dual of) Kleene’s fixed point theorem. However, the operator is no
longer continuous if we allow for infinite sets on the right-hand sides of NDRPS’s.

6 Conclusion

We have given a category theoretic definition and semantics of (uninterpreted) NDRPS’s.
This was achieved by reusing the technical core of Milius and Moss’ work on a category
theoretic semantics for (ordinary) RPS’s [16] and by adding category theoretic concepts that
capture the nondeterminism as the nonempty powerset monad and canonical distributive
laws over this monad. We showed how our work is related to loc. cit. and that it extends the
classical work on NDRPS’s by Arnold and Nivat [4].

Although our approach is inspired by [16] and its precursor [9], the non-determinism
causes various differences: it is not only more complicated to work with the additional
nonempty powerset monad and the canonical distributive laws for it, but many proofs have
to be carried out in a more basic setting. For example, the coalgebra functor H can only
be considered on a more basic category, or we even need to use techniques inherent to
non-determinism like “determinization” (see the proofs of Proposition 3.5 and Theorem 4.3).

Still, due to the abstract category theoretic framework there are several directions for
future generalizations: instead of polynomial functors H it might be possible to use analytic
or even weak pullback preserving functors; a starting point is given in Remark 3.3(2). We
also suspect that our work can be applied to the environment monad (−)E instead of P+

giving an even stronger result (unique solutions) for E-composite RPS’s. Technically, our
work might be improved by the development of a theory of “complete Elgot monads” as
pointed out in Remark 5.3(4). And clearly this paper leaves the question of a category
theoretic semantics of interpreted NDRPS’s open for future research.

Finally we mention that it is of course possible to admit the empty set in solutions of
NDRPS’s, i. e. to use the powerset functor P instead of its nonempty variant P+. However,
this causes a shift in the results since additional least solutions are added: for example it is
not difficult to see that every NDRPS where we have recursion in every element of every
right-hand set, has a solution where every new function symbol is assigned the empty set.
We shall consider this notion of a NDRPS elsewhere.

Acknowledgments The author thanks Stefan Milius and Jiří Adámek for their comments.
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Abstract
Programming languages with countable nondeterministic choice are computationally interesting
since countable nondeterminism arises when modeling fairness for concurrent systems. Because
countable choice introduces non-continuous behaviour, it is well-known that developing semantic
models for programming languages with countable nondeterminism is challenging. We present
a step-indexed logical relations model of a higher-order functional programming language with
countable nondeterminism and demonstrate how it can be used to reason about contextually
defined may- and must-equivalence. In earlier step-indexed models, the indices have been drawn
from ω. Here the step-indexed relations for must-equivalence are indexed over an ordinal greater
than ω.
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1 Introduction

Programming languages with countable nondeterministic choice are computationally inter-
esting since countable nondeterminism arises when modeling fairness for concurrent systems.
In this paper we show how to construct simple semantic models for reasoning about may-
and must-equivalence in a call-by-value higher-order functional programming language with
countable nondeterminism, recursive types and impredicative polymorphism.

Models for languages with nondeterminism have originally been studied using denota-
tional techniques. In the case of countably branching nondeterminism it is not enough
to consider standard ω-continuous complete partial orders and the denotational models
become quite involved [3, 6]. This has sparked research in operationally-based theories of
equivalence for nondeterministic higher-order languages [1, 10, 11, 12, 13, 18]. In particular,
Lassen investigated operationally-based relational methods for countable nondeterminism
and suggested that it would be interesting to consider also methods based on logical relations,
i.e., where the types of the programming languages are given a relational interpretation [10,
page 47]. Such an interpretation would allow one to relate terms of different types, as needed
for reasoning about parametricity properties of polymorphic types.

For languages with recursive types, however, logical relations cannot be defined by
induction on types. In the case of deterministic languages, this problem has been addressed
by the technique of syntactic minimal invariance [4] (inspired by domain theory [15]). The
idea here is that one proves that a syntactically definable fixed point on a recursive type is
contextually equivalent to the identity function, and then uses a so-called unwinding theorem
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for syntactically definable fixed points when showing the existence of the logical relations.
However, in the presence of countable nondeterminism it is not clear how to define the
unwindings of the syntactic fixed point in the programming language. Indeed, Lassen proved
an unwinding theorem for his language with countable nondeterminism, but he did so by
extending the language with new terms needed for representing the unwindings and left open
the question of whether this is a conservative extension of the language.

Here we give a logical relations model of our language where we do not rely on syntactic
minimal invariance for constructing the logical relations. Instead, we use the idea of step-
indexed logical relations [2]. In particular, we show how to use step-indexing over ordinals
larger than ω to reason about must-equivalence in the presence of countable nondeterminism.

This approach turns out to be both simple and also useful for reasoning about concrete
may- and must-equivalences. We show that our logical relations are sound and complete
with respect to the contextually defined notions of may- and must-equivalence. Moreover, we
show how to use our logical relations to establish some concrete equivalences. In particular,
we prove the recursion-induction rule from Lassen [10] and establish the syntactic minimal
invariance property (without extending the language with new unwinding terms). We also
include an example to show that the model can be used to prove parametricity properties
(free theorems) of polymorphic types.

Overview of the technical development

One way to understand the failure of ω-continuity in an operational setting is to consider the
must-convergence predicate e ⇓, which by Tarski’s fixed point theorem can be defined as the
least fixed point of the monotone functional Φ(R) = {e | ∀e′. e 7−→ e′ ⇒ e′ ∈ R} on sets of
terms. Here e 7−→ e′ means that e reduces to e′ in one step. However, due to the countable
branching the fixed point is not reached by ω-many iterations

⋃
n∈ω Φn(∅). The reason is

that even when a program has no infinite reduction sequences, we cannot in general bound
the length of reduction sequences by any n < ω.

The idea of step-indexed semantics is a stratified construction of relations which facilitates
the interpretation of recursive types, and in previous applications this stratification has
typically been realized by indexing over ω. However, as we pointed out, the closure ordinal of
the inductively defined must-convergence predicate is strictly larger than ω: the least fixed
point ⇓ is reached after ω1-many iterations, for ω1 the least uncountable ordinal. (In fact, the
least non-recursive ordinal would suffice [3].) Thus, one of the key steps in our development
is the definition of α-indexed uniform relations, for arbitrary ordinals α, in Section 3.

In Section 4 we define a logical ω-indexed uniform relation, and use this relation to prove
a CIU theorem for may-contextual equivalence. The logical relation combines step-indexing
and biorthogonality, and we can prove that it coincides with may-contextual equivalence; the
proofs are similar to those in [17]. Section 5 considers the case of must-contextual equivalence.
The only modifications that this requires, compared to Section 4, are the use of ω1-indexed
uniform relations and of a suitably adapted notion of biorthogonality.

In summary, the contribution of this paper is a simple, operationally-based model of
countable nondeterminism in a higher-order language, and the use of this model for proving
several non-trivial applications in Section 6. In particular, we derive a least-fixed point
property for recursive functions in our language, answering a question raised by Lassen [10].

Laird [9] has developed a fully abstract denotational model based on bidomains for
a calculus similar to the one studied here but without recursive and polymorphic types;
our model appears to be the first model of countable nondeterminism for a language with
impredicative polymorphism.
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τ ::= α | 1 | τ1 × τ2 | τ1 → τ2 | µα.τ1 + . . .+ τn | ∀α.τ
v ::= x | 〈〉 | 〈v1, v2〉 | λx.e | ini v | Λα.e
e ::= v | ? | proji v | v e | case v of in1 x1. e1| . . . |inn xn. en | v τ
E ::= [] | v E

Figure 1 Types, terms and evaluation contexts

proji 〈v1, v2〉 7−→ vi case (inj v) of (. . . |inj xj . ej| . . .) 7−→ ej [v/xj ]
(λx.e) v 7−→ e[v/x] ? 7−→ n (n ∈ N)
(Λα.e) τ 7−→ e[τ/α] v e 7−→ v e′ if e 7−→ e′

Figure 2 Operational semantics

2 A lambda calculus with countable choice

Syntax and operational semantics

Figure 1 gives the syntax of a higher-order functional language with recursive and polymorphic
types, and a (countably branching) choice construct. We assume disjoint, countably infinite
sets of type variables, ranged over by α, and term variables, ranged over by x. The free type
variables of types and terms, ftv(τ) and ftv(e), and free term variables fv(e), are defined in the
usual way. The notation (·)[~τ/~α] denotes the simultaneous capture-avoiding substitution of
types ~τ for the free type variables ~α in types and terms; similarly, e[~v/~x] denotes simultaneous
capture-avoiding substitution of values ~v for the free term variables ~x in e.

The syntax is kept minimal, and in examples we may use additional syntactic sugar, for
instance writing let x = e in e′ for (λx.e′) e and e τ for let f = e in f τ for some fresh f .
We define the unary natural numbers datatype as nat = µα.1 +α and write 0 = in1 〈〉 and
n+1 = in2(n). The ‘erratic’ (finitely branching) choice construct e1 or e2 can be defined from
? as let x = ? in case x of in1 y. e1 | in2 y. e2 for fresh x, y.

The operational semantics of the language is given in Figure 2 by a reduction relation
e 7−→ e′. In particular, the choice operator ? evaluates nondeterministically to any numeral
n (n ∈ N). We also consider evaluation contexts E, and write E[e] for the term obtained by
plugging e into E. It is easy to see that e 7−→ e′ holds if and only if E[e] 7−→ E[e′].

Typing judgements take the form ∆; Γ ` e : τ where Γ is a typing context x1:τ1, . . . , xn:τn
and where ∆ is a finite set of type variables that contains the free type variables of τ1, . . . , τn
and τ . The rules defining this judgement are summarized in Figure 3. The typing judgement
for evaluation contexts, ` E : τ( τ ′, means that ∅;∅ ` E[e] : τ ′ holds whenever ∅;∅ ` e : τ .

We write Type for the set of closed types τ , i.e., where ftv(τ) = ∅. We write Val(τ)
and Tm(τ) for the sets of closed values and terms of type τ , resp., and Stk(τ) for the
set of τ -accepting evaluation contexts. For a typing context Γ = x1:τ1, . . . , xn:τn with
τ1, . . . , τn ∈ Type, let Subst(Γ) = {γ ∈ Val~x | ∀1 ≤ i ≤ n. γ(xi) ∈ Val(τi)} denote the set of
type-respecting value substitutions. In particular, if ∆; Γ ` e : τ then ∅;∅ ` eδγ : τδ for
any δ ∈ Type∆ and γ ∈ Subst(Γδ), and the type system satisfies the standard progress and
preservation theorems.

We let fix : ∀α, β.((α→β)→ (α→β))→ (α→β) denote a variant of the (call-by-value)
fixed point combinator from untyped lambda calculus, fix = Λα, β.λf.δf (in δf ) where δf
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x:τ ∈ Γ ∆ ` Γ
∆; Γ ` x : τ

∆ ` Γ
∆; Γ ` 〈〉 : 1

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2
∆; Γ ` 〈v1, v2〉 : τ1× τ2

∆; Γ, x:τ1 ` e : τ2
∆; Γ ` λx.e : τ1→ τ2

∆; Γ ` v : τj [µα.τ1 + . . .+ τn/α]
∆; Γ ` inj v : µα.τ1 + . . .+ τn

1 ≤ j ≤ n

∆, α; Γ ` e : τ
∆; Γ ` Λα.e : ∀α.τ

∆; Γ ` v : τ1 × τ2
∆; Γ ` proji v : τi

∆; Γ ` v : τ ′ → τ ∆; Γ ` e : τ ′

∆; Γ ` v e : τ

∆; Γ ` v : µα.τ1 + . . .+ τn . . . ∆; Γ, xj :τj [µα.τ1 + . . .+ τn/α] ` ej : τ . . .

∆; Γ ` case v of (. . . | inj xj . ej | . . .) : τ

∆; Γ ` v : ∀α.τ ∆ ` τ ′

∆; Γ ` v τ ′ : τ [τ ′/α]
∆ ` Γ

∆; Γ ` ? : nat

∅ ` τ
` [] : τ( τ

∅;∅ ` v : τ → τ2 ` E : τ1 ( τ

` v E : τ1 ( τ2

Figure 3 Typing of terms and evaluation contexts, where Γ ::= ∅ | Γ, x:τ and ∆ ::= ∅ | ∆, α.
The notation ∆ ` τ means that ftv(τ) ⊆ ∆, and ∆ ` Γ means that ∆ ` τ holds for all x:τ ∈ Γ.

is the term λy.case y of in y′. f(λx.let r= y′ y in r x), and we write Ω : ∀α.α for the term
Λα.fix 1α (λf.f) 〈〉. Note that reduction from Ω is deterministic and non-terminating.

Contextual approximation

We follow Lassen’s approach [10] and define contextual approximation as the largest relation
that satisfies certain compatibility and adequacy properties (also see, e.g. [16, 17]). The
technical advantage of this approach, compared to the more traditional one of universally
quantifying over program contexts, is that in proofs there will be no need to explicitly take
care of contexts and of term occurrences within contexts. In our terminology, we keep close to
Pitts [16], except for suitably adapting the definitions to take the nondeterministic outcomes
of evaluation into account.

The observables on which contextual approximation is based are given by may- and
must-convergence. A closed term e may-converges, written e ↓, if e 7−→∗ v for some v ∈ Val,
and e may-diverges, written e ↑, if there is an infinite reduction sequence starting from e.
The must-convergence predicate e ⇓ is the complement of may-divergence, and it can be
defined inductively by e ⇓ if and only if for all e′, if e 7−→ e′ then e′ ⇓.

I Definition 1 (Type-indexed relation). A type-indexed relation is a set of tuples (∆,Γ, e, e′, τ)
such that ∆; Γ ` e : τ and ∆; Γ ` e′ : τ holds. We write ∆; Γ ` e R e′ : τ if (∆,Γ, e, e′, τ) ∈ R.

I Definition 2 (Precongruence). A type-indexed relation R is reflexive if ∆; Γ ` e : τ implies
∆; Γ ` e R e : τ . It is transitive if ∆; Γ ` e R e′ : τ and ∆; Γ ` e′ R e′′ : τ implies
∆; Γ ` e R e′′ : τ . A precongruence is a reflexive and transitive type-indexed relation R that
is closed under the inference rules in Figure 4.

I Definition 3 (May- and must-adequate relations). A type-indexed relationR is may-adequate
if, whenever ∅;∅ ` e R e′ : τ holds, then e ↓ implies e′ ↓. It is must-adequate if, whenever
∅;∅ ` e R e′ : τ holds, then e ⇓ implies e′ ⇓.
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∆; Γ ` x R x : τ
x:τ ∈ Γ

∆; Γ ` 〈〉 R 〈〉 : 1

∆; Γ ` v1 R v′1 : τ1 ∆; Γ ` v2 R v′2 : τ2
∆; Γ ` 〈v1, v2〉 R 〈v′1, v′2〉 : τ1 × τ2

∆; Γ, x:τ1 ` e R e′ : τ2
∆; Γ ` λx.e R λx.e′ : τ1 → τ2

∆; Γ ` v R v′ : τj [µα.τ1 + . . .+ τn/α]
∆; Γ ` inj v R inj v′ : µα.τ1 + . . .+ τn

1 ≤ j ≤ n
∆, α; Γ ` e R e′ : τ

∆; Γ ` Λα.e R Λα.e′ : ∀α.τ

∆; Γ ` v R v′ : τ1 × τ2
∆; Γ ` proji v R proji v′ : τi

∆; Γ ` v R v′ : τ ′ → τ ∆; Γ ` e R e′ : τ ′

∆; Γ ` v e R v′ e′ : τ

∆; Γ ` v R v′ : τ ... ∆; Γ, xj :τj [τ/α] ` ej R e′j : τ ′ ...

∆; Γ ` case v of (...| inj xj . ej |...) R case v′ of (...| inj xj . ej |...) : τ ′
τ = µα.τ1+...+τn

∆; Γ ` v R v′ : ∀α.τ
∆; Γ ` v τ ′ R v′ τ ′ : τ [τ ′/α]

ftv(τ ′) ⊆ ∆
∆; Γ ` ? R ? : nat

Figure 4 Compatibility properties of type-indexed relations

I Definition 4 (Contextual approximations and equivalences). May-contextual approximation,
written .ctx

↓ , is the largest may-adequate precongruence. May-contextual equivalence, ∼=ctx
↓ ,

is the symmetrization of .ctx
↓ . Analogously, must-contextual approximation, written .ctx

⇓ ,
is the largest must-adequate precongruence, and must-contextual equivalence, ∼=ctx

⇓ , is its
symmetrization. Contextual approximation, .ctx, and contextual equivalence, ∼=ctx, are
given as intersections of the respective may- and must-relations, and thus ∼=ctx is also the
symmetrization of .ctx.

That this largest (may-, must-) adequate precongruence exists can be shown as in [16],
by proving that the relation S =

⋃
{R | R compatible and (may-, must-) adequate} is an

adequate precongruence.
In principle, to establish an equivalence ∆; Γ ` e ∼=ctx e′ : τ it suffices to find some may-

and must-adequate congruence R that contains the tuple (∆,Γ, e, e′, τ) since ∼=ctx is the
largest such relation. However, in practice it is difficult to verify that a relation R has
the necessary compatibility properties in Figure 4. An alternative characterization of the
contextual approximation and equivalence relations can be given in terms of CIU preorders
[14], which we define next.

I Definition 5 (CIU preorders). May- and must-CIU preorder, written .ciu
↓ and .ciu

⇓ resp., are
the type-indexed relations defined as follows: for all e, e′ with ∆; Γ ` e : τ and ∆; Γ ` e′ : τ ,

∆; Γ ` e .ciu
↓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ↓ ⇒ E[e′δγ] ↓

∆; Γ ` e .ciu
⇓ e′ : τ ⇔ ∀δ ∈Type∆, γ ∈Subst(Γδ), E ∈Stk(τδ). E[eδγ] ⇓ ⇒ E[e′δγ] ⇓

The CIU preorder is defined as the intersection of .ciu
↓ and .ciu

⇓ .

I Theorem 6 (CIU theorem). The (may-, must-) CIU preorder coincides with (may-, must-)
contextual approximation.

Using the CIU theorem, it is easy to verify that all the deterministic reductions are
also valid equivalences, and that the various call-by-value eta laws hold. Moreover, we can
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let x= ? in e ∼=ctx e (x /∈ fv(e)) let x= v in e ∼=ctx e[v/x] let x= e in x ∼=ctx e

e or e ∼=ctx e Ω .ctx
↓ e Ω .ctx

⇓ e

e1 or e2 ∼=ctx e2 or e1 e1 .ctx
↓ e1 or e2 e1 or e2 .ctx

⇓ e1

(e1 or e2) or e3 ∼=ctx e1 or (e2 or e3) e or Ω ∼=ctx
↓ e e or Ω ∼=ctx

⇓ Ω

Figure 5 Basic may- and must-theory, for e1 or e2 ≡ let x = ? in case x of in1 y. e1 | in2 y. e2

establish the laws of Moggi’s computational lambda calculus and the basic (inequational)
theory of erratic choice (Figure 5). We will prove the CIU theorem in Section 4 (for the
may-CIU preorder) and Section 5 (for the must-CIU preorder).

3 Uniform relations

For an ordinal number α and a set X we define an α-indexed uniform relation on X to be a
family (Rβ)β<α of relations Rβ ⊆ X such that

R0 = X,
Rβ+1 ⊆ Rβ for all β < α, and
Rλ =

⋂
β<λRβ for every limit ordinal λ < α.

Let Relα(X) denote the α-indexed uniform relations on X.

Recursive definitions

The notions of n-equivalence, non-expansiveness and contractiveness (e.g., [5]) all generalize
from the case of ω-indexed uniform relations: Given α-indexed uniform relations R,S ∈
Relα(X) and ν < α we say that R and S are ν-equivalent, written R ν= S, if Rβ = Sβ for all
β ≤ ν. In particular, R = S if and only if R ν= S for all ν < α.

A function F : Relα(X1)× · · ·×Relα(Xn)→ Relα(X) is non-expansive if ~R ν= ~S implies
F (~R) ν= F (~S), and F is contractive if ~R ν= ~S implies F (~R) ν+ 1= F (~S). If R ∈ Relα(X) then
.R ∈ Relα(X) is the uniform relation determined by .Rβ+ 1 = Rβ ; this operation gives rise
to a contractive function on Relα(X).

I Proposition 7 (Unique fixed points). If F : Relα(X)→ Relα(X) is contractive, then F has
a unique fixed point fix r.F (r).

Proof. First note that F has at most one fixed point: if R,S are fixed points of F then, by
the contractiveness of F , we can establish that R = F (R) ν= F (S) = S holds for all ν < α by
induction and thus R = S.

Because of the uniformity conditions it is sufficient to give the components of the fixed
point fix r.F (r) that are indexed by successor ordinals. We set fix r.F (r)ν+ 1 = F (R)ν+ 1
where R ∈ Relα(X) is defined by Rβ = fix r.F (r)β for β ≤ ν and Rβ = ∅ for β > ν. By
induction, it is easy to see that fix r.F (r) ∈ Relα(X) and that F (fix r.F (r))ν = fix r.F (r)ν
holds for all ν < α, and thus F (fix r.F (r)) = fix r.F (r). J

Proposition 7 is an instance of Di Gianantonio and Miculan’s sheaf-theoretic fixed point
theorem [7]. Indeed, an α-indexed uniform relation on X corresponds to a subobject of the
constant sheaf on X in the sheaf topos on α.
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518 Step-indexed relational reasoning for countable nondeterminism

Uniform relations on syntax

For τ, τ ′ ∈ Type we consider the collections of α-indexed uniform relations between values,
terms and evaluation contexts: we write VRelα(τ, τ ′) for Relα(Val(τ)×Val(τ ′)), SRelα(τ, τ ′)
for Relα(Stk(τ)×Stk(τ ′)), and TRelα(τ, τ ′) for Relα(Tm(τ)×Tm(τ ′)).

The description of the logical relations in the sections below makes use of the following
(non-expansive) constructions on uniform relations:

R1×R2 ∈ VRelα(τ1× τ2, τ ′1× τ ′2), for R1 ∈ VRelα(τ1, τ ′1) and R2 ∈ VRelα(τ2, τ ′2), is
defined by (R1×R2)β = {(〈v1, v2〉, 〈v′1, v′2〉) | (v1, v

′
1) ∈ (R1)β ∧ (v2, v

′
2) ∈ (R2)β}.

R1→R2 ∈ VRelα(τ1→ τ2, τ
′
1→ τ ′2), for R1 ∈ VRelα(τ1, τ ′1) and R2 ∈ TRelα(τ2, τ ′2), is

given by (R1→R2)β = {(λx.e, λx.e′) | ∀ν≤β.∀(v, v′)∈ (R1)ν . (e[v/x], e′[v′/x])∈ (R2)ν}.

∀r.F (r)∈VRelα(∀α.τ1,∀α.τ ′1), for Fτ,τ ′ : VRelα(τ, τ ′)→ TRelα(τ1[τ/α], τ ′1[τ ′/α]) a fam-
ily of non-expansive maps, is the uniform relation that is defined by ∀r.F (r)β =
{(Λα.e,Λα.e′) | ∀τ, τ ′ ∈Type, R∈VRelα(τ, τ ′). (e[τ/α], e′[τ ′/α] ∈ Fτ,τ ′(R)β}.

injR ∈ VRelα(τ, τ ′), for τ = µα.τ1 + . . .+ τm and τ ′ = µα.τ ′1 + . . .+ τ ′n and R ∈
VRelα(τj [τ/α], τ ′j [τ ′/α]), is given by (injR)β = {(inj v, inj v′) | (v, v′) ∈ Rβ}.

4 May equational theory

In this section, we will define a logical uniform relation that is used to prove that may-
CIU preorder and may-contextual approximation coincide. The key idea of the definition
is the usual one of step-indexing [2], i.e., that the observables can be stratified based on
step-counting in the operational semantics. We write e ↓n if e 7−→ . . . 7−→ v for some v ∈ Val
in at most n reduction steps, thus e ↓ holds if and only if e ↓n for some n.

Logical ω-indexed uniform relation for may-approximation

In the case of may-approximation, it suffices to consider ω-indexed uniform relations. Using
the constructions on relations given above, we define a relational interpretation JτK (~r) ∈
VRelω(τ [~τ/~α], τ [~τ ′/~α]) by induction on the type ~α ` τ , given closed types τ1, τ ′1, . . . , τk, τ ′k ∈
Type and relations r1 ∈ VRelω(τ1, τ ′1), . . . , rk ∈ VRelω(τk, τ ′k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)n<ω Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
j inj(. JτjK (~r, s))

Here, value relations r ∈ VRelω(τ, τ ′) are lifted to relations r⊥ ∈ SRelω(τ, τ ′) on evaluation
contexts and to relations r⊥⊥ ∈ TRelω(τ, τ ′) on terms by biorthogonality, much as in [8]:

r⊥n = {(E,E′) | ∀j ≤ n. ∀(v, v′) ∈ rj . E[v] ↓j ⇒ E′[v′] ↓ }
r⊥⊥n = {(e, e′) | ∀j ≤ n. ∀(E,E′) ∈ r⊥j . E[e] ↓j ⇒ E′[e′] ↓ }

The fixed point in the interpretation of recursive types is well-defined by Proposition 7 since
each JτK denotes a family of non-expansive functions, and thus composition with . yields a
contractive function.

The following observation is useful for calculations:

I Lemma 8 (Context composition). If (v, v′) ∈ Jτ1→ τ2K~rn and (E,E′) ∈ Jτ2K~r
⊥
n then

(E[v []], E′[v′ []]) ∈ Jτ1K~r
⊥
n+1.
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Proof. Let j ≤ n+ 1, (v1, v
′
1) ∈ Jτ1K~rj . Assume E[v v1] ↓j . We have v = λx.e and v′ = λx.e′

and (λx.e, λx.e′) ∈ Jτ1→ τ2K~rn for some x, e, e′ and necessarily E[v v1] 7−→ E[e[v1/x]] ↓j−1.
By definition, (e[v1/x], e′[v′1/x]) ∈ Jτ2K~r

⊥⊥
j−1. From (E,E′) ∈ Jτ2K~r

⊥
n we obtain E′[e′[v′1/x]] ↓.

Thus, E′[v′ v′1] ↓. J

The relational interpretation extends pointwise to value substitutions: (γ, γ′) ∈ JΓK~rn if
(γ(x), γ(x′)) ∈ JτK~rn for all x:τ ∈ Γ. Based on this interpretation we consider the following
type-indexed relation:

∆; Γ ` e .log
↓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′.∀~r ∈VRelω(~τ , ~τ ′).∀n<ω. ∀(γ, γ′) ∈ JΓK~rn. (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥n

The definition of .log
↓ builds in enough closure properties to prove its compatibility.

I Proposition 9 (Fundamental property). The relation .log
↓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
↓ e : τ .

Proof. We consider the inference rules from Figure 4 in turn.
For the introduction of recursive types, we assume ∆; Γ ` v .log

↓ v′ : τj [µα.τ1 + . . .+ τm/α]
and 1 ≤ j ≤ m, and then prove that ∆; Γ ` inj v .log

↓ inj v′ : µα.τ1 + . . .+ τm.
For notational convenience we only consider the case of closed terms. Let τ abbreviate the
type µα.τ1 + . . .+ τm. Note that JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj

(
. Jτj [τ/α]K (~r)

)
by definition and a substitution lemma, and that Jτj [τ/α]K (~r) ⊆ . Jτj [τ/α]K (~r). Thus, as-
suming (E,E′) ∈ JτK~r⊥n it follows from Lemma 8 that (E[(λx.inj x) []], E′[(λx.inj x) []]) ∈
Jτj [τ/α]K~r⊥n+1. Thus, if E[inj v] ↓i for some i ≤ n then E′[(λx.inj x) v′]) ↓ follows from
(v, v′) ∈ Jτj [τ/α]K~r⊥⊥n+1. Therefore we can conclude E′[inj v′] ↓, and we have shown
(inj v, inj v′) ∈ JτK~r⊥⊥n . Since n was chosen arbitrarily, we have ∆; Γ ` inj v .log

↓ inj v′ : τ .
For the elimination of recursive types, we assume that τ is of the form µα.τ1 + . . .+ τm,
∆; Γ, xj :τj [τ/α] ` ej .log

↓ e′j : τ ′ for all 1 ≤ j ≤ m and ∆; Γ ` v .log
↓ v′ : τ . We prove

∆; Γ ` case v of(. . . |inj xj . ej | . . .) .log
↓ case v′ of(. . . |inj xj . e′j | . . .) : τ ′.

For simplicity we only consider the case of closed terms. By definition and by a substi-
tution lemma we have JτK~r =

⋃
j inj

(
. JτjK (~r, JτK~r)

)
=
⋃
j inj(. Jτj [τ/α]K~r). Moreover,

(λx.case x of(. . . |inj xj . ej| . . .), λx.case x of(. . . |inj xj . e′j| . . .)) ∈ Jτ → τ ′K~rn for any
n. To see this, assume k ≤ n, let (a, a′) ∈ JτK~rn and (E,E′) ∈ Jτ ′K~r⊥n such that
E[case a of(. . . |inj xj . ej| . . .)] ↓k. By the above observation we have a = injaj and
a′ = inja′j for some (aj , a′j) ∈ Jτj [τ/α]K~rk−1. From E[case a of(. . . |inj xj . ej| . . .)] ↓k we
obtain E[ej [aj/xj ]] ↓k−1, and thus the assumption on ej , e′j gives E′[e′j [a′j/xj ]] ↓ from
which we can conclude E′[case a′ of(. . . |inj xj . e′j| . . .)] ↓.
To prove the case, assume next that (E,E′) ∈ Jτ ′K~r⊥n . From Lemma 8 we obtain
(E[(λx.case x of(. . . |inj xj . ej| . . .)) []], E′[(λx.case x of(. . . |inj xj . e′j| . . .)) []]) ∈ JτK~r⊥n+1.
Since (v, v′) ∈ JτK~r⊥⊥n+1 by assumption, we obtain that E[case v of(. . . |inj xj . ej | . . .)] ↓n
implies E[case v′ of(. . . |inj xj . e′j | . . .)] ↓ as required.
For choice, we assume ∆ ` Γ and show ∆; Γ ` ? .log

↓ ? : nat. Suppose (E,E′) ∈ JnatK~r⊥n
and E[?] ↓j for some j ≤ n. Then E[?] 7−→ E[k] and E[k] ↓j−1 for some k ∈ N. By
induction on k, and using the compatibility for the introduction of recursive types, we
obtain that (k, k) ∈ JnatK~r⊥⊥n , and thus E′[k] ↓. Hence E′[?] ↓.

The proofs for the remaining rules are similar. J

I Theorem 10 (Coincidence). ∆; Γ ` e .log
↓ e′ : τ if and only if ∆; Γ ` e .ciu

↓ e′ : τ .
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∆; Γ ` v R v′ : τ ∆; Γ, x:τ ` e R e′ : τ ′

∆; Γ ` e[v/x] R e′[v′/x] : τ ′
∆, α; Γ ` e R e′ : τ ′

∆; Γ[τ/α] ` e R e′ : τ ′[τ/α]
∆ ` τ

Figure 6 Substitutivity properties of type-indexed relations

Proof. For the direction from left to right, let δ ∈ Type∆, γ ∈ Subst(Γδ) and E ∈ Stk(τδ),
and assume E[eδγ] ↓, i.e., E[eδγ] ↓n for some n. We must show E[e′δγ] ↓. As a consequence
of Proposition 9, (γ, γ) ∈ JΓδKn and (E,E) ∈ JτδK⊥n . By definition of ∆; Γ ` e .log

↓ e′ : τ and
a substitution lemma we have (eδγ, e′δγ) ∈ JτδK⊥⊥n , and thus E[eδγ] ↓n gives E[e′δγ] ↓.

For the direction from right to left, first note that the logical relation is closed under
may-CIU approximation; more precisely, if ∆; Γ ` e .log

↓ e′ : τ and ∆; Γ ` e′ .ciu
↓ e′′ : τ then

∆; Γ ` e .log
↓ e′′ : τ . This observation follows from the definition of (·)⊥⊥ used in ∆; Γ `

e .log
↓ e′ : τ and the definition of CIU approximation. Now assume that ∆; Γ ` e .ciu

↓ e′ : τ .
By Proposition 9, ∆; Γ ` e .log

↓ e : τ , and thus ∆; Γ ` e .log
↓ e′ : τ . J

Proof of CIU Theorem 6(1). We first show that .ciu
↓ is contained in .ctx

↓ . By definition,
.ctx
↓ is the largest may-adequate precongruence, thus it is sufficient to establish that .ciu

↓ is a
may-adequate precongruence. From the definition it is immediate that .ciu

↓ is may-adequate,
reflexive and transitive. By Theorem 10, .ciu

↓ coincides with .log
↓ which is compatible by

Proposition 9.
For the other direction, following Pitts [17], we first consider the special case where

∅;∅ ` e .ctx
↓ e′ : τ . To prove ∅;∅ ` e .ciu

↓ e′ : τ , note that ∅;∅ ` E[e] .ctx
↓ E[e′] : τ ′ holds

for all evaluation contexts E such that ` E : τ( τ ′ since .ctx
↓ is reflexive and compatible.

Hence, that E[e] ↓ implies E[e′] ↓ follows since .ctx
↓ is may-adequate.

The general case reduces to this special case since may-contextual approximation has the
substitutivity properties given in Figure 6. For the first of these, assume ∆; Γ ` v .ctx

↓ v′ : τ
and ∆; Γ, x:τ ` e .ctx

↓ e′ : τ ′. From the definition of may-CIU approximation it is easy to see

∆; Γ ` e[v/x] .ciu
↓ (λx.e) v : τ ′ and ∆; Γ ` (λx.e′) v′ .ciu

↓ e′[v′/x] : τ ′ .

Since we have already shown that .ciu
↓ is contained in .ctx

↓ , and since ∆; Γ ` (λx.e) v .ctx
↓

(λx.e′) v′ : τ ′ by compatibility, we can conclude ∆; Γ ` e[v/x] .ctx
↓ e′[v′/x] : τ ′ by transitivity.

The second substitutivity property is proved similarly, using a weakening property of may-
contextual approximation. J

5 Must equational theory

To define the logical relation for must-approximation, we need to stratify the observables
again. For terms e and ordinals β we define e ⇓β inductively, as the least relation such that
e ⇓β if for all e′ such that e 7−→ e′ there exists ν < β and e′ ⇓ν . The essential observation is
that ⇓β indeed captures must-convergent behaviour.

I Proposition 11 (Stratified must-convergence). e ⇓ if and only if e ⇓β for some β < ω1 (for
ω1 the least uncountable ordinal).

Proof. The proof from left to right is by induction on e ⇓. By induction hypothesis there
exists ordinals ν(e′) < ω1 for each term e′ such that e 7−→ e′. Let β =

⋃
ν(e′), then
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β+ 1 < ω1 (since there are only countably many such e′ and each ν(e′) is countable) and
e ⇓β+ 1. The direction from right to left is by induction on β. J

Logical ω1-indexed uniform relation for must-approximation

Proposition 11 indicates that logical relations for must-approximation need to be indexed
over ω1. The lifting of value relations r ∈ VRelω1(τ, τ ′) to relations r⊥ ∈ SRelω1(τ, τ ′) on
evaluation contexts and to relations r⊥⊥ ∈ TRelω1(τ, τ ′) on terms is defined with respect to
must termination.

r⊥β = {(E,E′) | ∀ν ≤ β. ∀(v, v′) ∈ rν . E[v] ⇓ν ⇒ E′[v′] ⇓ }
r⊥⊥β = {(e, e′) | ∀ν ≤ β. ∀(E,E′) ∈ r⊥ν . E[e] ⇓ν ⇒ E′[e′] ⇓ }

Except for this difference, the relational interpretation JτK (~r) ∈ VRelω1(τ [~τ/~α], τ [~τ ′/~α]) is
literally the same as in Section 4 and defined by induction on the type ~α ` τ , given closed
types τ1, τ ′1, . . . , τk, τ ′k ∈ Type and relations r1 ∈ VRelω1(τ1, τ ′1), . . . , rk ∈ VRelω1(τk, τ ′k):

JαiK (~r) = ri Jτ1 × τ2K (~r) = Jτ1K (~r)× Jτ2K (~r)

J1K (~r) = (Id1)β<ω1 Jτ1 → τ2K (~r) = Jτ1K (~r)→ Jτ2K (~r)⊥⊥

J∀α.τK (~r) = ∀r.JτK (~r, r)⊥⊥ Jµα.τ1 + . . .+ τmK (~r) = fix s.
⋃
j inj(. JτjK (~r, s))

Logical must-approximation is defined as follows:

∆; Γ ` e .log
⇓ e′ : τ where ∆ = ~α

⇔ ∀~τ , ~τ ′.∀~r ∈VRelω1(~τ , ~τ ′).∀β <ω1.∀(γ, γ′) ∈ JΓK~rβ . (e[~τ/~α]γ, e′[~τ ′/~α]γ′) ∈ JτK~r⊥⊥β

I Proposition 12 (Fundamental property). The relation .log
⇓ has the compatibility properties

given in Figure 4. In particular, it is reflexive: if ∆; Γ ` e : τ then ∆; Γ ` e .log
⇓ e : τ .

Proof. The proof is similar to the one for Proposition 9. We give only the case for choice,
where we assume ∆ ` Γ and prove ∆; Γ ` ? .log

⇓ ? : nat. Suppose (E,E′) ∈ JnatK~r⊥β and
E[?] ⇓β . Then E[?] 7−→ e implies that e is of the form E[k] and E[k] ⇓νk

for some k ∈ N and
νk < β. Using the compatibility for the introduction form of recursive types, an induction
on k shows that (k, k) ∈ JnatK~r⊥⊥νk

, and thus E′[k] ⇓ for all k ∈ N. Hence E′[?] ⇓. J

I Theorem 13 (Coincidence). ∆; Γ ` e .log
⇓ e′ : τ if and only if ∆; Γ ` e .ciu

⇓ e′ : τ .

Proof. The proof is completely analogous to that of Theorem 10. For the direction from left
to right one uses the characterization of ⇓ in terms of ⇓β (Proposition 11) and then appeals
to Proposition 12. The direction from right to left uses the fact that .log

⇓ is closed under
must-CIU approximation. J

Proof of CIU Theorem 6(2). The proof is analogous to that of Theorem 6(1). From the
definition, .ciu

⇓ is a must-adequate reflexive and transitive relation, by Proposition 12 and
Theorem 13 it is also compatible, and thus contained in .ctx

⇓ . From this containment and the
closure of .ciu

⇓ under beta conversion it follows that .ctx
⇓ has the substitutivity properties in

Figure 6. Thus it suffices to prove the containment of .ctx
⇓ in .ciu

⇓ for closed terms, which is
clear by the compatibility and must-adequacy of .ctx

⇓ . J
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∆; Γ ` v v′ .ctx
↓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .ctx
↓ v′ : τ1→ τ2

∆; Γ ` v v′ .ctx
⇓ v′ : τ1→ τ2

∆; Γ ` fix τ1τ2 v .ctx
⇓ v′ : τ1→ τ2

Figure 7 Recursion induction: least fixed point property of fix

6 Applications

This section illustrates how the logical relation characterization of contextual approximation
can be used to derive interesting examples and further proof principles. We consider three
such applications: a recursion-induction principle for recursively defined functions, syntactic
minimal invariance of a recursive type, and a “free theorem” about a polymorphic type.

Proving recursion-induction for a similar language (without polymorphic types) has been
an open problem [10]. Here, the proof is essentially a straightforward induction, using the
indexing of the logical relations.

Recursion-induction
Recall from the introduction that fix : ∀α, β.((α→β)→ (α→β))→ (α→β) is given by the
term Λα, β.λf.δf (in δf ) where δf is the term λy.case y of in y′. f(λx.(λr.r x)(y′ y)). We now
prove that fix is a least fixed point combinator, i.e., we prove the soundness of the recursion-
induction rules in Figure 7. We only include the proof for .ctx

⇓ and for notational simplicity
we assume that the contexts ∆ and Γ are empty. We assume the premise of the rule, and to
show the conclusion we first prove that (h, v′) ∈ Jτ1 → τ2Kβ where h is λx.(λr.r x) (δv (in δv)),
for all β < ω1. The result then follows from the agreement of the logical relation with
contextual approximation and transitivity, since fix τ1τ2 v ∼=ctx v h .ctx

⇓ v v′ .ctx
⇓ v′.

To prove (h, v′) ∈ Jτ1 → τ2Kβ we proceed by induction on β and assume that (h, v′) ∈
Jτ1 → τ2Kν1

, for all ν < β; we are then to show that (h, v′) ∈ Jτ1 → τ2Kβ . From the typing
rules, v′ must be of the form λx.e′ for some e′. So let β1 ≤ β and (u, u′) ∈ Jτ1Kβ1

, then it
remains to show ((λr.r u)(δv (in δv)), e′[u′/x]) ∈ Jτ2K

⊥⊥
β1

.
Suppose β2 ≤ β1, (E,E′) ∈ Jτ2K

⊥
β2

and E[(λr.r u)(δv (in δv))] ⇓β2 ; we are to show
E′[e′[u′/x]] ⇓. By (the must-analogue of) Lemma 8 and the fundamental property of
the logical relation applied to v we obtain (E[(λr.r u) ((λx.v x) [])], E′[(λr.r u′) ((λx.v x) [])]) ∈
Jτ1 → τ2K

⊥
β2
. Then, since δv (in δv) 7−→2 v h and (λx.v x)h 7−→ v h, we have E[(λr.r u)(v h)] ⇓β3

for β3 < β2 ≤ β, and hence also E′[(λr.r u′) (v v′)] ⇓ by induction hypothesis.
By the premise and Theorem 13 we have that v v′ CIU-approximates v′, and thus we get

E′[(λr.r u′) v′] ⇓. Finally, since (λr.r u′) v′ 7−→∗ e′[u′/x] we obtain the required E′[e′[u′/x]] ⇓.

Syntactic minimal invariance
Consider the type τ = µα.nat + α→ α. Let id = λx.x and consider the term

f ≡ λh, x.case x of in1 y. in1 y | in2 g. in2 λy.h(g(h y)) .

We shall show that fix ττ f ∼=ctx id : τ → τ . This equivalence corresponds to the characteriz-
ation of solutions to recursive domain equations as minimal invariants in domain-theoretic
work [15], from which Pitts derives several (co-) induction principles.

By the soundness of the call-by-value beta- and eta-laws for contextual equivalence
(Figure 5) and the transitivity of .ctx, it is easy to see that f id ∼=ctx id : τ → τ . The
recursion-induction principle therefore yields fix ττ f .ctx id : τ → τ .

For the reverse approximation we first show id .log
⇓ h : τ → τ where h is again the term

λx.(λr.r x)(δf (in δf )). We show this by proving (id, h) ∈ Jτ → τKβ for all β < ω1 by induction
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on β. (The case for may-approximation is similar.) By definition, we need to show that for
all ν ≤ β and all (v, v′) ∈ JτKν , (id v, h v′) ∈ JτK⊥⊥ν . Since JτK = in1(. JnatK) ∪ in2(. Jτ → τK)
there are two cases to consider:

Case (v, v′) ∈ in1(. JnatK)ν . Then there exist u, u′ ∈ Val(nat) such that v = in1 u, v′ =
in1 u

′ and (u, u′) ∈ JnatKν′ for all ν′ < ν ≤ β. Note that (λx.(λr.r x)(δf (in δf ))) v′ ∼=ctx

v′ : τ in this case. Thus, given (E,E′) ∈ JτK⊥ν such that E[id v] ⇓ν , it suffices to show
E′[v′] ⇓ which easily follows from (v, v′) ∈ JτKν .
Case (v, v′) ∈ in2(. Jτ → τK)ν . Then there exist g, g′ ∈ Val(τ→ τ) such that v = in2 g,
v′ = in2 g

′ and (g, g′) ∈ Jτ→ τKν′ for all ν′ < ν ≤ β. In this case, we have the equi-
valence (λx.(λr.r x)(δf (in δf ))) v′ ∼=ctx in2(λy.h(g′(h y))) : τ . Thus, it suffices to show
(g, λy.h(g′(h y))) ∈ Jτ → τKν′ for all ν′ < ν, or equivalently, (g u, h(g′(hu′))) ∈ JτK⊥⊥ν′ for
all ν′ < ν and all (u, u′) ∈ JτKν′ . Let (E,E′) ∈ JτK⊥ν′ and suppose E[g u] ⇓ν′ ; we have to
show E′[h(g′(hu′))] ⇓. From the induction hypothesis we obtain (E[id []], E′[h []]) ∈
JτK⊥ν′+1, and thus (E,E′[h []]) ∈ JτK⊥ν′ . Since (g, g′) ∈ Jτ→ τKν′ the latter entails
(E[g []], E′[h(g′ []])) ∈ JτK⊥ν′ . Now, applying the induction hypothesis again this shows
(E[g(id [])], E′[h(g′(h []]))) ∈ JτK⊥ν′+1, and thus the assumptions E[g u] ⇓ν′ and (u, u′) ∈
JτKν′ imply E′[h(g′(hu))] ⇓.

By Theorem 13 and the CIU theorem, id .log
⇓ h : τ → τ implies id .ctx

⇓ h : τ → τ . Since
id ∼=ctx f id : τ → τ and f h ∼=ctx fix ττ f : τ → τ we obtain id .ctx

⇓ fix ττ f : τ → τ by
compatibility and transitivity of must-contextual equivalence.

Parametricity
Let τ1, τ2 ∈ Type be closed types. Then the contextual approximation

∅;h:∀α.α×α→ α, f :τ1→ τ2, x:τ1, y:τ1 ` h τ2 〈f x, f y〉 .ctx f(h τ1 〈x, y〉) : τ2 . (1)

holds. For the proof of (1), we will consider the case of must-approximation only (may-
approximation is completely analogous) and show

∅;h:∀α.α×α→ α, f :τ1→ τ2, x:τ, y:τ ` h τ2 〈f x, f y〉 .log
⇓ f(h τ1 〈x, y〉) : τ2 .

Fix β < ω1, h ∈ Val(∀α.α×α→α), f ∈ Val(τ1→ τ2) and x, y ∈ Val(τ1). We need to show

(h τ2 〈f x, f y〉, f(h τ1 〈x, y〉) ∈ Jτ2K
⊥⊥
β . (2)

We have (h, h) ∈ J∀α.α×α→αK⊥⊥β by Proposition 12, and we will instantiate α by (the
opposite of) the graph of f . More precisely, consider the relation r ∈ VRel(τ2, τ1) given by
rν = {(v, v′) | (v, f v′) ∈ Jτ2K

⊥⊥
ν+1}. Note that we have (id, f) ∈ Jα→ τ2K rβ . Hence, to prove

(2) it suffices to show (h τ2 〈f x, f y〉, h τ1 〈x, y〉) ∈ r⊥⊥β .
By definition of the logical relation we have (h τ2, h τ1) ∈ Jα×α→αK r⊥⊥β , and by the

compatibility properties it remains to show (f x, x) ∈ r⊥⊥β and (f y, y) ∈ r⊥⊥β . We consider
the former: Let (E,E′) ∈ r⊥ν for ν ≤ β such that E[f x] ⇓ν ; we must prove E′[x] ⇓. We have
(f, id) ∈ Jτ1→αK rν from which (E[f []], E′[]) ∈ Jτ1K

⊥
ν follows. By Proposition 12 we have

(x, x) ∈ Jτ1K
⊥⊥
ν , and thus E[f x] ⇓ν implies E′[x] ⇓.

Let us now consider the reverse approximation of (1), which holds under the condition
that f is total and deterministic, i.e., that for all v ∈ Val(τ1) there exists u ∈ Val(τ2) such
that f v ∼=ctx u : τ2.

We proceed as above and show only for the case of must-approximation. For β < ω1,
h ∈ Val(∀α.α×α→α), f ∈ Val(τ1→ τ2) and x, y ∈ Val(τ1) we will prove

(f(h τ1 〈x, y〉), h τ2 〈f x, f y〉) ∈ Jτ2K
⊥⊥
β . (3)
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We use (h, h) ∈ J∀α.α×α→αK⊥⊥β where we instantiate α by the relation s ∈ VRel(τ1, τ2),
given by sν = {(v, v′) | (f v, v′) ∈ Jτ2K

⊥⊥
ν+1}. First note that (f, id) ∈ Jα→ τ2K sβ , and thus

the proof of (3) reduces to showing (h τ1 〈x, y〉, h τ2 〈f x, f y〉) ∈ s⊥⊥β .
Since we have (h τ1, h τ2) ∈ Jα×α→ αK s⊥⊥β it suffices to show (x, f x) ∈ s⊥⊥β and (y, f y) ∈

s⊥⊥β , and we consider the former. Let (E,E′) ∈ s⊥ν for ν ≤ β such that E[x] ⇓ν ; we must
prove E′[f x] ⇓. By the assumption that f is total there exists u ∈ Val(τ2) such that
f x ∼=ctx u : τ2, and so it suffices to prove E′[u] ⇓. But this follows from (x, u) ∈ sν , and the
latter is immediate from the definition of s.
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Abstract
We give an algebraic characterization of the quantifier alternation hierarchy in first-order two-
variable logic on finite words. As a result, we obtain a new proof that this hierarchy is strict.
We also show that the first two levels of the hierarchy have decidable membership problems, and
conjecture an algebraic decision procedure for the other levels.
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1 Introduction

We study first-order sentences interpreted in finite words over a finite alphabet Σ, with
the single relation < on positions in the word. It is well known (Kamp [6], Immerman
and Kozen [5]) that every such sentence is equivalent to one in which only three variables
are used. There has been extensive study, from the standpoint of first-order and temporal
logic, automata theory, and algebra, of the fragment FO2[<] of sentences that use only
two variables. (See, for example, Ettesami, Vardi and Wilke [4]; Schwentick, Thérien and
Vollmer [13]; Straubing and Thérien [16]. Tesson and Thérien [17] give a broad-ranging
survey of the many places in which the class of languages definable in this logic arises.)

Weis and Immerman [20] examined the hierarchy within FO2[<] based on alternation
of quantifiers. Using model-theoretic methods, they showed that this hierarchy is strict.
Kufleitner and Weil [9] show that each level of the hierarchy defines a variety of languages.
This implies, among other things, that whether a regular language L ⊆ Σ∗ can be defined
by a sentence of a given level k in the hierarchy is completely determined by the syntactic
monoid M(L) of L. While they do not provide an explicit algebraic description of the levels,
Kufleitner and Weil do show that one can effectively compute the alternation depth of a
given language in FO2[<] with an error no more than 1.

Here we give an exact algebraic characterization of each level of the alternation hierarchy;
that is, we give an algebraic description of sequence Vn of families of finite monoids with
the property that L is defined by a sentence with k quantifier alternations if and only if
M(L) ∈ Vk. Our characterization is in terms of the two-sided semidirect product of finite
monoids and of pseudovarieties of finite monoids. More precisely, we show that the kth level
of the hierarchy corresponds to the weakly iterated two-sided semidirect product of k copies
of the pseudovariety J of J -trivial monoids. While many algebraic decompositions of the
pseudovariety DA corresponding to FO2[<] have been studied, and while it has always been
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clear that DA is equal to the closure of J under two-sided semidirect product, the fact that
the levels of this hierarchy have such a simple logical significance appears to be new.

This still leaves the question of whether the membership problem for each of the levels
is decidable. This is precisely the kind of question that algebraic methods are best suited
to answer, since it is often possible to reduce the problem to one of verifying identities in
the syntactic monoid. We produce a sequence of identities, based on work of Almeida and
Weil [2], that we conjecture characterizes membership in each of the levels of the hierarchy.
We show that these identities are necessary conditions, and use this fact to give a new proof
of the strictness of the alternation hierarchy. The identities are known to be sufficient for
the first two levels, which gives algebraic decision procedures for determining whether a
give regular language is definable by a two-variable sentence with one or two quantifier
alternations.

We present general preliminaries in Section 2 and particulars about two-sided semidirect
products in Section 3. We prove our characterization theorem in Section 4; the argument
is an adaptation of one given in [16]. We apply the result to questions of strictness and
decidability in Section 5.

2 Logical And Algebraic Preliminaries

We review these preliminaries briefly and somewhat informally. The books by Pin [10] and
Straubing [15] are references for all the matters discussed here.

2.1 First-order logic
Let Σ be a finite alphabeuntitled foldert. We build first-order formulas from atomic formulas
x < y and Qσx, where σ ∈ Σ. These formulas are interpreted in finite words over Σ: variables
are interpreted as positions, with x < y indicating that position x is strictly to the left of
position y, and Qσx indicating that the letter in position x is σ. A sentence (a formula
without free variables) accordingly defines the language L ⊆ Σ∗ of all words w that satisfy
the sentence. For example, if Σ = {σ, τ}, then the set of words in which both σ and τ occur,
and in which there are at least two occurrences of σ to the left of the first occurrence of τ is
defined by the sentence

∃x(Qτx ∧ ∀y(y < x→ Qσy) ∧ ∃z1∃z2(z1 < z2 ∧ z2 < x)).

As mentioned in the introduction, every first-order sentence of this kind is equivalent
to one in which there are only three variables, provided we are allowed to reuse variable
symbols. Here we are concerned with the languages definable by sentences of the logic we
denote by FO2[<], consisting of formulas in which only two variables are used. This logic
is known to have strictly weaker expressive power than full first-order logic. Note however,
that the language in the example above is definable in this restricted logic, by the sentence

∃x(Qτx ∧ ∀y(y < x→ Qσy) ∧ ∃y(y < x ∧ ∃x(x < y))).

We cannot use standard constructions to write such sentences in prefix form without
increasing the number of variables. Nonetheless, it is still possible to describe a different sort
of normal form that will allow us to define the depth of quantifier alternation in a formula.
We allow atomic formulas with ≤ as well as <, replace every occurrence of ¬Qσx by∨

τ∈Σ\{σ}

Qτx,
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and apply DeMorgan’s Laws to move negations past conjunctions, disjunctions and quantifiers.
We obtain as a result an equivalent formula that contains only existential and universal
quantifiers, and the connectives ∧ and ∨, with no occurrences of negation. This does not
change the number of disuntitled foldertinct variable symbols. Consider the parse tree of a
formula in this form. Every interior node is labeled by either ∧, ∨, or a quantifier. Consider
just the sequence of quantifiers on a path from the root to a leaf: this sequence contains
alternating blocks of existential and universal quantifiers. The maximum number of such
blocks over all paths in the tree is the alternation depth of the formula. For example, the
sentence displayed above has alternation depth 2. We write FO2

n[<] for the fragment of
FO2[<] consisting of formulas with alternation depth no more than n.

2.2 Finite monoids
A monoid is a set M together with an associative operation for which there is an identity
element 1 ∈M. If Σ is an alphabet, then Σ∗ is a monoid with concatenation of words as the
multiplication. Σ∗ is the free monoid on Σ: this means that every map α : Σ→M, where
M is a monoid, extends in a unique fashion to a homomorphism from Σ∗ into M.

Apart from free monoids, all the monoids we consider in this paper are finite. If M is a
finite monoid, and m ∈M, then there is a unique e ∈ {mk : k > 1} that is idempotent, i.e.,
e2 = e. We denote this element mω.

If M,N are monoids then we say M divides N, and write M ≺ N, if M is a homomorphic
image of a submonoid of N.

We are interested in monoids because of their connection with automata and regular
languages: A congruence on Σ∗ is an equivalence relation ∼ on Σ∗ such that u1 ∼ u2,

v1 ∼ v2, implies u1v1 ∼ u2v2. The classes of ∼ then form a monoid M = Σ∗/ ∼, and the
map u 7→ [u]σ sending each word to its congruence class is a homomorphism from Σ∗ onto
M. If L ⊆ Σ∗, then ≡L, the syntactic congruence of L, is the coarsest congruence for which L
is a union of congruence classes. The quotient monoid Σ∗/ ≡L is called the syntactic monoid
of L and is denoted M(L).

We say that a monoid M recognizes a language L ⊆ Σ∗ if there is a homomorphism
α : Σ∗ →M and a subset X of M such that α−1(X) = L. The following proposition gives
the fundamental properties linking automata to finite monoids.

I Proposition 1.
Let L ⊆ Σ∗.
A monoid M recognizes L if and only if M(L) ≺M.

L is a regular language if and only if M(L) is finite.

2.3 Varieties and identities
A collection V of finite monoids closed under finite direct products and division is called a
pseudovariety of finite monoids. (The prefix ‘pseudo’ is because of the restriction to finite
direct products, as the standard use of ‘variety’ in universal algebra does not include this
requirement.)

Let Ξ be the countable alphabet X = {x1, x2, . . .}. A term over Ξ is built from the letters
by concatenation and application of a unary operation v 7→ vω. For example, (x1x2)ωx1 is a
term. We will interpret these terms in finite monoids in the obvious way, by considering a
valuation ψ : Ξ→M and giving concatenation and the ω operator their usual meaning in
M. For this reason, we do not distinguish between (uv)w and u(vw), where u, v and w are
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themselves terms, nor between terms uω and (uω)ω, as these will be equivalent under every
valuation.

An identity is a formal equation u = v, where u and v are terms. We say that a monoid
M satisfies the identity, and write M |= (u = v), if u and v are equal under every valuation
into M. The family of all finite monoids satisfying a given set of identities is a pseudovariety,
and we say that the pseudovariety is defined by the set of identities. (We hasten to add that
the identities we consider here are merely special instances of a much more general class of
pseudoidentities. Under this broader definition, every pseudovariety is defined by a set of
pseudoidentities. See, for instance, Almeida [1].)

We consider three particular pseudovarieties that will be of importance in this paper.
First, the pseudovariety Ap consists of the aperiodic finite monoids, those that contain no
nontrivial groups. Ap is defined by the identity xω1 = x1x

ω
1 . If Σ is a finite alphabet and

L ⊆ Σ∗ is a regular language, then M(L) ∈ Ap if and only if L is definable by a first-order
sentence over < .

The pseudovariety DA is defined by the pair of identities

(x1x2x3)ωx2(x1x2x3)ω = (x1x2x3)ω, xω1 = x1x
ω
1 .

There are many equivalent characterizations of this pseudovariety in terms of other identities,
the ideal structure of the monoids, and logic. For us the most important one is this: If
L ⊆ Σ∗, then M(L) ∈ DA if and only if L is definable in FO2[<].

The pseudovariety J consists of finite monoids that satisfy the pair of identities

(x1x2)ω = (x2x1)ω, xω1 = x1x
ω
1 .

This is equivalent to the identities

(x1x2)ωx1 = x2(x1x2)ω = (x1x2)ω, xω1 = x1x
ω
1 .

Alternatively, J consists of finite monoids M such that for all s, t ∈ M, MsM = MtM

implies s = t. Such monoids are said to be J -trivial.
A theorem due to I. Simon [14] describes the regular languages whose syntactic monoids

are in J. Let w ∈ Σ∗. We denote by c(w) the content of w; that is, the set of letters of Σ
that appear in w. We say that v = σ1 · · ·σk, where each σi ∈ Σ, is a subword of w if

w = w0σ1w1 · · ·σkwk

for some wi ∈ Σ. We denote by Lv the set of all words in Σ∗ of which v is a subword. Let
k ≥ 1. We define an equivalence relation ∼k on Σ∗ that identifies two words if and only if
they contain the same subwords of length no more than k. (In particular, w1 ∼1 w2 if and
only if c(w1) = c(w2).) Simon’s theorem is:

I Theorem 2. Let L ⊂ Σ∗ be a regular language. The following are equivalent:
M(L) ∈ J.
L is a boolean combination of languages of the form Lu, with u ∈ Σ∗.
L is a union of ∼k-classes for some k ≥ 1.

The equivalence of the last two items is obvious. It is rather easy to show that Σ∗/ ∼k∈ J,
and as a result the last two items imply that L is recognized by a monoid in J, and thus by
Proposition 1, M(L) ∈ J. The deep content of the theorem is that the first condition implies
the others. The theorem can also be formulated in first-order logic: M(L) ∈ J if and only if
L is defined by a boolean combination of Σ1-sentences over < .
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3 Two-sided Semidirect Products

In this section we describe an operation on both finite monoids and pseudovarieties, the
two-sided semidirect product. This was given its formal description by Rhodes and Tilson [11],
but it has precursors in automata theory in the work of Schützenberger on sequential
bimachines [12], Krohn, Mateosian and Rhodes [8], and Eilenberg on triple products [3].

Let M and N be finite monoids. We will follow the standard practice of writing the
product in N additively, and thus write its identity element as 0. This is not intended to
suggest that N is commutative, but is simply a device for making the notation more readable.
A left action of M on N is a mapping

(m,n) 7→ mn ∈ N

from M ×N into N that satisfies the axioms

m(n1 + n2) = mn1 +mn2

m1(m2n) = (m1m2)n
m0 = 0
1n = n

for all m,m1,m2 ∈M, n, n1, n2 ∈ N.
A right action (m,n) 7→ nm of M on N is defined analogously. A compatible pair of

actions consists of a left action and a right action of M on N that satisfy the additional
axiom

m1(nm2) = (m1n)m2,

for all m1,m2 ∈M, n ∈ N. This justifies the notation m1nm2 that we will henceforth use.
Given such a compatible pair, we define a monoid called the two-sided semidirect product

N ∗ ∗M. The underlying set is just the cartesian product N ×M, and the multiplication is
given by

(n,m)(n′,m′) = (nm′ +mn′,mm′).

It is straightforward to verify that this product is associative, and that (0, 1) is the identity
element.

Observe that the notation N ∗ ∗M suppresses mention of the action pair, so in fact there
may be several non-isomorphic two-sided semidirect products of N and M. There is always
at least one compatible action pair: these are the actions given by mn = nm = n for all
m,n. In this case, the resulting two-sided semidirect product reduces to the direct product.
Moreover, there is always a compatible pair of actions of M on a direct product of |M |2
copies of N. If we view the latter as the set of maps F : M ×M → N with componentwise
multiplication, then the actions are given by

(mF )(m1,m2) = F (m1,mm2)

(Fm)(m1,m2) = F (m1m,m2).

The resulting two-sided semidirect product is called the block product of N and M. This
monoid has every two-sided semidirect product N ∗ ∗M as a divisor.

If V and W are pseudovarieties of finite monoids then we define W ∗ ∗V to be the
collection of finite monoids that divide some two-sided semidirect product N ∗ ∗M with
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M ∈ V, N ∈ W. W ∗ ∗V is itself a pseudovariety. We stress that this operation on
pseudovarieties is not associative.

Throughout the proof of the main theorem we will use the following description of the
regular languages recognized by members of W ∗ ∗V. This is adapted from Thérien [18], and
is a relatively straightforward translation from the definition of the product. Let α : Σ∗ →M

be a homomorphism into a finite monoid, and let Γ = M × Σ×M. We view Γ as another
alphabet. We define a length-preserving map τα (not a homomorphism) from Σ∗ to Γ∗ by

τα(σ1 · · ·σk) = γ1 · · · γk,

where
γi = (α(σ1 · · ·σi−1), σi, α(σi+1 · · ·σk) ∈ Γ.

(If i = 1, we interpret the right-hand side as (1, σ1, α(σ2 · · ·σk)), and similarly if i = k.)

I Proposition 3. Let L ⊆ Σ∗ be a regular language. M(L) ∈W ∗ ∗V if and only if there
exist M ∈ V, and a homomorphism α : Σ∗ → M, such that L is a boolean combination of
sets of the form

τ−1
α (K) ∩ α−1(m),

where m ∈M and K ⊆ Γ∗ is recognized by a monoid in W.

4 The Main Theorem

We define a sequence Vn of pseudovarieties of finite monoids as follows: V1 = J, and, for
n ≥ 1, Vn+1 = Vn ∗ ∗J.

I Theorem 4. Let Σ be a finite alphabet, and let L ⊆ Σ∗. Let n ≥ 1. L ∈ FO2
n[<] if and

only if M(L) ∈ Vn.

The remainder of this section is devoted to the proof of Theorem 4.
We first prove that if L is recognized by a monoid in Vn, then L is defined by a sentence

of FO2
n[<]. We show this by induction on n. For the case n = 1, Theorem 2 says that L is a

finite boolean combination of languages of the form Lu, where u ∈ Σ∗. Each Lu is defined by
a two-variable sentence with alternation depth 1 in an obvious way: For example, Lσττ is
defined by the sentence

∃x(Qσx ∧ ∃y(x < y ∧Qτy ∧ ∃x(y < x ∧Qτx))).

Now suppose n > 1. Then L is recognized by a monoid in Vn−1 ∗ ∗J. There are accordingly
monoids M ∈ J, N ∈ Vn−1, and a morphism α : Σ∗ → M as in Proposition 3 above. We
need to show that there is a formula of alternation depth no more than n defining each
language of the form

α−1(m) ∩ τ−1
α (K),

where m ∈M and K ⊆ Γ∗ = (M × Σ×M)∗ is recognized by N.
By Theorem 2, α−1(m) is a boolean combination of languages of the form Lu, and so, as

we saw above, is definable in alternation depth 1. So we turn to τ−1
α (K). By the inductive

hypothesis, K is defined by a sentence ψ of alternation depth no more than n−1. The trick is
to rewrite ψ to obtain a defining sentence for τ−1

α (K) while increasing the alternation depth
by at most 1. This is accomplished simply by taking each of the atomic formulas Q(m,σ,m′)x

occurring in ψ and replacing it by a formula with x free and with quantifier depth 1. What
should this formula say? It must assert that the letter in position x is σ, that the prefix
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v ∈ Σ∗ of letters preceding this position satisfies α(v) = m, and, similarly, that the suffix
v′ following this position satisfies α(v′) = m′. The first of these conditions is given by Qσx.
The second, is, by Theorem 2, equivalent to a boolean combination of formulas asserting
that v contains σ1, . . . , σr as a subword, which is expressed by

∃y(y < x ∧Qσr
y ∧ ∃x(x < y ∧Qσr−1x ∧ · · · )),

and the third by a boolean combination of analogous formulas. We accordingly replace
Q(m,σ,m′)x by a boolean combination of formulas with alternation depth no more than 1 to
obtain the defining sentence for τ−1

α (K).
We now prove the converse: if L is defined by a sentence of FO2

n[<], then it is recognized
by a monoid in Vn.

Suppose n > 0, and let φ be a two-variable defining sentence for L. We write this in our
standard form described earlier. Let us look at a quantified subformula ψ of φ that has
quantifier alternation 1 and that is maximal for this property. We call ψ an innermost block
of φ. In terms of the parse tree of φ, we are looking for nodes of minimal depth that are
labeled by a quantifier, and such that every quantifier in the subtree rooted at this node is
of the same type. The innermost blocks of φ are the formulas given by these subtrees.

If φ itself has quantifier alternation 1, then each innermost block ψ is a sentence, and
φ is obtained from these blocks by disjunction and conjunction. Otherwise ψ has one free
variable. Let’s say this free variable is x. Suppose the quantifier in ψ is ∃. (If the quantifier
in ψ is ∀ then its negation is a formula in which the only quantifier is ∃ ; we apply the
transformations described below to this existential formula.) Since there are no negations in
ψ we can, in the standard way (but introducing new variables in the process) rewrite ψ in
prefix form as an ordinary Σ1 formula

∃y1∃y2 · · · ∃yrθ(x, y1, . . . , yr).

where θ is quantifier-free.
If n = 1 then the free variable x does not appear. Thus we can further rewrite ψ as a

disjunction of sentences of the form

∃y1∃y2 · · · ∃yr
( r∧
i=1

Qσi
yi ∧ ρ(y1, . . . , yr)

)
,

where ρ uniquely specifies the ordering among the yi. (For example, with r = 3, ρ might have
the form y1 = y3 < y2.) Seen this way, ψ simply asserts the presence of certain subwords
(and, had we begun with a universal quantifier, the absence of certain subwords.) In this
case φ defines a boolean combination of languages of the form Lu, which by Theorem 2, is
recognized by a monoid in J. This is the base of our induction.

If n > 1, then we rewrite ψ as a disjunction of formulas of the form

∃z1 · · · ∃zt∃z′1 · · · ∃z′tθ,

where θ is
t∧
i=1

(Qσi
zi ∧ (zi < x)) ∧ ρ1(z1, · · · , zt) ∧

t′∧
j=1

(Qσ′
j
z′j ∧ (z′j > x)) ∧ ρ2(z′1, · · · , z′t).

Let’s denote this formula, which has x free, by

ζ[x, u, v, ρ1, ρ2],
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where u = (σ1, . . . , σt) v = (σ′1, . . . , σ′t′). If we started with an innermost block beginning
with a universal quantifer, then this procedure produces the negation of a disjunction of
these formulas. So we suppose φ has been transformed so that all its innermost blocks have
been replaced by boolean combinations of such ζ.

Let s be the maximum of all the t, t′ that occur in these formulas. Let M = Σ∗/ ∼s, as
defined in Section 2. Let α : Σ∗ → M be the homomorphism that maps each word to its
∼s-class. Recall that M ∈ J.

We now rewrite φ and replace it by a new sentence φ′ over the alphabet Γ = M ×Σ×M.

The idea is simply to express properties of a word w ∈ Σ∗ in terms of properties of τα(w) ∈ Γ∗
This is easy to do, because the two words have the same set of positions, and because the letters
of τα(w) encode additional information about each position. The subformula ζ[x, u, v, ρ1, ρ2]
states that the prefix of w consisting of positions to the left of the position x contains a
certain subword w1 of length no more than s, and that the suffix consisting of positions
to the right of x contains another such subword w2. Equivalently, the letter of τα(w) in
position x is (m,σ,m′), where the ∼s-class m contains w1 as a subword, and the ∼s-class m′
contains w′2. We thus replace each ζ by a disjunction of the atomic formulas Q(m,σ,m′)x over
all such m,m′. The result is that all the innermost blocks have now been eliminated and
replaced by a boolean combination of these atomic formulas, which can in turn be written as
a disjunction of such formulas.

We also replace each Qσx that occurs outside an innermost block by the disjunction of
the Q(m,σ,m′)x over all m,m′ ∈ M. The resulting sentence φ′ is a two-variable sentence of
quantifier depth n− 1. Thus, by the induction hypothesis, the language K ⊆ Γ∗ defined by
φ′ is recognized by a monoid N in Vn−1. We have constructed φ′ so that w |= φ if and only
if τα(w) |= φ′. Thus, by Proposition 3, L is recognized by a monoid in Vn−1 ∗ ∗J = Vk.

5 Strictness and Decidability

Here we use our main theorem to give a new proof that the alternation hierarchy is strict.
This was first shown in [20]. We also discuss the question of decidability of the levels of the
hierarchy.

We define two sequences of terms {un}n≥1, {vn}n≥1 as follows.

u1 = (x1x2)ω, v1 = (x2x1)ω.

If n ≥ 1, we set

un+1 = (x1 · · ·x2nx2n+1)ωun(x2n+2x1 · · ·x2n)ω

vn+1 = (x1 · · ·x2nx2n+1)ωvn(x2n+2x1 · · ·x2n)ω

I Proposition 5. Let n ≥ 1. If M ∈ Vn, then M |= (un = vn), and M |= (xω1 = x1x
ω
1 ).

Proof. For n = 1, the Proposition follows from the identities defining J that were given in
Section 2. For the inductive step we will make repeated use of the following identities that
also hold in J, and that are direct consequences of the ones we gave earlier:

(x1x2x3)ωx2 = (x1x2x3)ω = x2(x1x2x3)ω (1)

Suppose then that n ≥ 1, and that the Proposition holds for n. It is well known—and
in any case follows easily from the kind of argument we give below—that the two-sided
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semidirect product preserves aperiodicity. So we will only show M |= (un+1 = vn+1) for
M ∈ Vn+1. Since satisfaction of identities is preserved under division, we only need to show
this in the case where M is a two-sided semidirect product T ∗ ∗K, with T ∈ Vn and K ∈ J.
Consider a map φ from the set {x1, x2, . . .} into M with

φ(xi) = mi = (ti, ki) ∈ T ∗ ∗K

for all i ≥ 1. Now suppose xi1 · · ·xip is a term formed just by concatenating variables (i.e.,
without using ω). Then

φ(xi1 · · ·xip) =
( p∑
j=1

ki1 · · · kij−1tijkij+1 · · · kip , ki1 · · · kip
)
. (2)

There is an integer q such that mω = mq for all m ∈ T,K or M. Thus

φ(un+1) = φ((x1x2 · · ·x2n+1)qun(x2n+2x1 · · ·x2n)q)
= (t, γ(un)),

where t is a sum of the form displayed in Equation 2, and γ(xi) = ki for all i. Let us analyze
the summands of t. Let s = q · (2n+ 1). If j ≤ s, then the jth summand is

kij = ki1 · · · kij−1tijkR,

where
kR = (k2n+2k1 · · · k2n)q.

This follows from the absorbing property given in Equation 1 of the J -trivial monoid K.
Similarly, if s ≥ p− j, the jth summand is

kLtijkij+1 · · · kip ,

where
kL = (k1 · · · k2nk2n+1)q.

If s < j < n− s, then the jth summand is kLtijkR, so that the sum of these middle terms is

n−s∑
j=s+1

kLtijkR = kL

( n−s∑
j=s+1

tij

)
kR = kLψ(un)kR,

where ψ(xi) = ti for all i. We thus can write φ(un+1) in the form

φ(un+1) = (tL + kLψ(un)kR + tR, γ(un+1)).

When we compute φ(vn+1), the values of tL and tR are unchanged, and we have

φ(vn+1) = (tL + kLψ(vn)kR + tR, γ(vn+1)).

From the identities for J in Equation 1 we have K |= (un+1 = vn+1), and thus γ(un+1) =
γ(vn+1). From the inductive hypothesis we have T |= (un = vn), so ψ(un) = ψ(vn), and thus
φ(un+1) = φ(vn+1), as required.

J
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We will use these identities to show that the alternation hierarchy is strict. We begin by
defining, for each finite alphabet Σ, an equivalence relation ≡Σ on Σ∗. (In fact, ≡Σ will be a
congruence on Σ∗ whose quotient is the free idempotent monoid on Σ. This construction is
very well known; see, for, example, Eilenberg [3].)

If |Σ| = 1, then ≡Σ identifies two distinct words over Σ if and only if they are both
nonempty (so that there are two equivalence classes, one containing the empty word, and
the other containing all the nonempty words). Now suppose |Σ| > 1, and that ≡Γ has been
defined for all proper subalphabets Γ of Σ. Let w1, w2 ∈ Σ∗. If the set of distinct letters
Γ = c(w1) appearing in w1 is a proper subset Γ of Σ, then we set w1 ≡Σ w2 if and only if
c(w2) = Γ, and w1 ≡Γ w2. Otherwise, c(w1) = c(w2) = Σ. Let ui denote the maximal prefix
of wi such that c(ui) 6= Σ, and similarly let vi denote the maximal suffix of wi such that
c(vi) 6= Σ. We can then write

wi = uiσiyi = ziτivi,

where σi, τi ∈ Σ. We define w1 ≡Σ w2 if and only if σ1 = σ2, τ1 = τ2, u1 ≡c(u1) u2, and
v1 ≡c(v1) v2.

Easily, ≡Σ is a congruence of finite index on Σ∗. We denote the ≡Σ-class of w ∈ Σ∗ by
[w]≡. The language [w]≡ is regular; moreover, for every word u ∈ Σ∗, u ≡Σ u2, which implies
that m2 = m, or, equivalently mω = m, for every m ∈M([w]Σ).

I Lemma 6. Let |Σ| = n. Every class of ≡Σ is definable by a sentence of FO2
n[<].

Proof. We prove this by induction on n. For n = 1, we have Σ = {σ}, and the two classes
are defined by the sentences

∃xQσx

and
∀x(x < x).

(Note that we allow our formulas to be interpreted in the empty word, which satisfies every
universally quantified sentence.)

Assume now that n > 1, and that the claim is true for all subalphabets of Σ. Let w ∈ Σ∗.
If c(w) 6= Σ, then [w]Σ = [w]Γ for some proper subalphabet Γ of Σ. The inductive hypothesis
implies that this class is defined by a sentence of FO2

n−1[<]. So we assume c(w) = Σ, and
write w = uσx = yτv, where u, v are, respectively, the maximal prefix and suffix of w that
do not contain all the letters of Σ. To express the property that every letter except σ occurs
in the prefix w we use the sentence

∃x(Qσx ∧
∧
σ′ 6=σ

∃y(y < x ∧Qσ′y) ∧ ∀y(y ≥ x ∨
∨
σ′ 6=σ

Qσ′y))).

Note that this sentence has alternation depth 2 ≤ n.
To express the property that the prefix preceding the first position containing σ belongs

to a particular ≡Γ-class, where Γ = c(u), we apply the inductive hypothesis: There is a
sentence ψ of alternation depth less than n defining [u]Γ. We modify ψ by replacing each
existentially quantified subformula ∃xζ by

∃x(ζ ∧ ∀y(y ≥ x ∨
∨
σ′ 6=σ

Qσ′y)),

and each universally quantified subformula ∀xζ by

∀x(ζ ∨ ∃y(y ≤ x ∧Qσy)).
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The resulting sentence has alternation depth no more than n and defines the set of strings
such that the maximal prefix that does not contain σ is in [u]Γ. The conjunction of these
two sentences, along with the analogues for the suffix, defines [w]Σ.

J

I Lemma 7. Let n ≥ 1, and let |Σ| = 2n. There is a word w ∈ Σ∗ such that M([w]Σ) does
not satisfy (un = vn).

Proof. Let u′n and v′n be the terms that result from removing all occurrences of the operator
ω from un and vn, respectively. Let Σ = {σ1, · · · , σ2n}, and let w(n)

1 , w
(n)
2 ∈ Σ∗ be the

respective words that result when each occurrence of a variable xi in un or vn is replaced by
σi. It is enough to show that w(n)

1 6≡Σ w
(n)
2 . The reason is this: We can takeM = M([w(n)

1 ]Σ).
Since M |= (xω = x), if we had M |= (un = vn) then M |= (u′n = v′n). But that case we
would obtain w(n)

1 ≡Σ w
(n)
2 .

We prove that w(n)
1 6≡Σ w

(n)
2 by induction on n. For n = 1 we have

w
(1)
1 = σ1σ2 6≡Σ σ2σ1 = w

(1)
2 .

For n > 1 we have
w

(n)
j = σ1 · · ·σ2n−1w

(n−1)
j σ2nσ1 · · ·σ2n−2,

for j = 1, 2. The maximal prefix of w(n)
j that does not contain all the letters of Σ is

zj = σ1 · · ·σ2n−1w
(n−1)
j , and the maximal suffix of zj not containing all the letters of c(zj)

is w(n−1)
j . By the inductive hypothesis, w(n−1)

1 6≡Γ w
(n−1)
2 , where Γ = {σ1, . . . , σ2n−2}, so

we cannot have w(n)
1 ≡Σ w

(n)
2 .

J

We get the strictness of the hierarchy as a consequence of these two lemmas:

I Theorem 8. For every n > 1 there is a language definable in FO2
n[<] that is not definable

in FO2
n−1[<].

Proof. For every n > 1, we must have Vn−1 ( Vn, since equality at one level would imply
equality at all higher levels, and we would have, in particular, Vn = V2n for some n ≥ 1.
But the two Lemmas, coupled with Theorem 4 and Proposition 5, provide an example of a
language whose syntactic monoid is in V2n\Vn. Thus Vn−1 ( Vn. Since every pseudovariety
is generated by the syntactic monoids it contains, Theorem 4 gives the result. J

We now discuss the problem of decidabilty: Suppose we are given a regular language
L ⊆ Σ∗, either by an automaton that recognizes L, or in terms of some other representation,
such as a regular expression, from which we can effectively construct an automaton. Is there
an algorithm for determining whether L can be defined by a sentence of FO2

n[<] for a fixed
n? Of course, this begs the question of whether L can be defined by a sentence of FO2[<]
at all, but this problem is solved by earlier work: Compute the syntactic monoid of M(L)
and determine whether M(L) is in DA, by verifying the identities for DA. (Note that in
verifying the identities in a particular monoid M, the symbol ω in these identities can be
replaced by |M |.)

Algebraic methods provide a powerful tool for answering such decision questions (and,
more generally, for proving that a given language cannot be defined in a logic, as we did in
Lemma 7 above), since the multiplication table of the syntactic monoid of L can be effectively
computed from any reasonable representation of L. However, in order to apply this method
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here, we need an algorithm for determining whether a given finite monoid belongs to Vn, for
any given n. Identities defining these pseudovarieties would provide us with precisely such an
algorithm, but the identities (un = vn, x

ω
1 = x1x

ω
1 ) that we have exhibited have only been

proved to be necessary conditions for membership in Vn.

In fact, these identities are from a paper by by Almeida and Weil [2], where they appear
as part of a general scheme for obtaining identities for pseudovarieties of the form V ∗ ∗J
when V ⊆ DA and identities for V are known. The result stated there would imply that
satisfaction of (un = vn, x

ω
1 = x1x

ω
1 ) is also a sufficient condition for membership in Vn, and

thus resolve the decidability question. However, this paper is known to contain an error. A
second paper, by Weil [19], explains the nature of the problem: The proof that the identities
are sufficient requires a particular finite rank property for categories that are globally covered
by members of Vn−1. (Even defining these terms would take us too far afield; the interested
reader is referred to [2] and [19] and the many references given there.)

As we have already mentioned, for n = 1 the identities (un = vn, x
ω
1 = x1x

ω
1 ) are known

to define J. The finite rank property, thanks to a theorem of Knast [7], is known to hold for
J, and therefore the identities for n = 2 do indeed define J ∗ ∗J. As a consequence, we have:

I Theorem 9. It is decidable whether a given regular language is definable in FO2
1[<], or in

FO2
2[<].

. For level 1, the answer is again membership of the syntactic monoid in J; for the second
level the answer is unknown. We suspect that the problem of alternation depth in FO2[<],
while still challenging, will turn out to be easier.

The finite rank property is not known to hold for Vn−1, if n > 2. Thus the decidability
problem remains open for higher levels of the hierarchy. This does not rule out the possibility
that the identities might be proved sufficient even without the assumption of finite rank.

I Conjecture 10. Let n ≥ 1. M ∈ Vn if and only if M |= (un = vn), and M |= (xω1 = x1x
ω
1 ).

In particular, it is decidable whether a given regular language is definable in FO2
n[<].

. For level 1, the answer is again membership of the syntactic monoid in J; for the second
level the answer is unknown. We suspect that the problem of alternation depth in FO2[<],
while still challenging, will turn out to be easier.

Kufleitner and Weil [9] also study the alternation hierarchy algebraically, and introduce a
very different-looking sequence of pseudovarieties Wn with the property that the syntactic
monoid of every language with alternation depth exactly n is between Wn and Wn+1. These
pseudovarieties are known to have decidable membership problems. Kufleitner and Weil
conjecture that in fact this sequence of pseudovarieties exactly captures the alternation
hierarchy. This conjecture would settle the decision problem for alternation depth (and
would also, coupled with our results, imply Wn = Vn for all n.) It would be interesting to
try to establish containments between Wn and Vn.

Finally, we mention the similar-looking problem of dot-depth. Full first-order logic over
< interpreted in finite words defines all the languages with syntactic monoids in Ap. The
problem of determining the exact alternation depth of a language in this setting–the problem
of calculating the so-called dot-depth of a language–has been open for nearly forty years. For
level 1, the answer is again membership of the syntactic monoid in J; for the second level
the answer is unknown. We suspect that the problem of alternation depth in FO2[<], while
still challenging, will turn out to be easier.

Acknowledgements. Many thanks to Phillip Weis, Neil Immerman, Jorge Almeida and
Pascal Weil for sharing and discussing their work with me.
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Abstract
Does there exist any sequent calculus such that it is a subclassical logic and it becomes classical
logic when the exchange rules are added? The first contribution of this paper is answering
this question for infinitary Peano arithmetic. This paper defines infinitary Peano arithmetic
with non-commutative sequents, called non-commutative infinitary Peano arithmetic, so that
the system becomes equivalent to Peano arithmetic with the omega-rule if the the exchange rule
is added to this system. This system is unique among other non-commutative systems, since all
the logical connectives have standard meaning and specifically the commutativity for conjunction
and disjunction is derivable. This paper shows that the provability in non-commutative infinitary
Peano arithmetic is equivalent to Heyting arithmetic with the recursive omega rule and the law of
excluded middle for Sigma-0-1 formulas. Thus, non-commutative infinitary Peano arithmetic is
shown to be a subclassical logic. The cut elimination theorem in this system is also proved. The
second contribution of this paper is introducing infinitary Peano arithmetic having antecedent-
grouping and no right exchange rules. The first contribution of this paper is achieved through
this system. This system is obtained from the positive fragment of infinitary Peano arithmetic
without the exchange rules by extending it from a positive fragment to a full system, preserving
its 1-backtracking game semantics. This paper shows that this system is equivalent to both non-
commutative infinitary Peano arithmetic, and Heyting arithmetic with the recursive omega rule
and the Sigma-0-1 excluded middle.
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1 Introduction

Substructural logics, which are logical systems without some of the contraction rule, the
weakening rule, and the exchange rule, have been actively studied in both mathematical
logic and computer science. For example, linear logic, which is a logical system without the
contraction rule or the weakening rule is successful [9].

Does there exist any sequent calculus such that it is a subclassical logic and it becomes
classical logic when the exchange rules are added? The first contribution of this paper
is answering this question for infinitary Peano arithmetic. This paper defines infinitary
Peano arithmetic with non-commutative sequents, called non-commutative infinitary Peano
arithmetic, so that the system becomes equivalent to Peano arithmetic with the omega-
rules if the exchange rules are added to this system. This paper shows that the provability
in non-commutative infinitary Peano arithmetic is equivalent to Heyting arithmetic with
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the recursive omega rules and the law of excluded middle for Σ0
1 formulas. Thus, non-

commutative infinitary Peano arithmetic is shown to be a subclassical logic.
Arithmetic without the exchange rule has not been studied yet. For infinitary arithmetic

without the exchange rules, only its positive fragment was investigated in [4, 6, 2]. For a full
system without the exchange rules, only the classical sequent calculus without the exchange
rules is studied [13].

The second contribution of this paper is introducing infinitary Peano arithmetic having
antecedent-grouping and no right exchange rules. The first contribution is achieved through
this system. This system is obtained from the positive fragment of infinitary Peano arith-
metic without the exchange rules by extending it from a positive fragment to a full system,
preserving its 1-backtracking game semantics. This paper shows that this system is equiva-
lent to both non-commutative infinitary Peano arithmetic, and Heyting arithmetic with the
recursive omega rules and the Σ0

1 excluded middle.
This paper will define non-commutative infinitary Peano arithmetic NCIPA as well as

the arithmetic IPA− having antecedent-grouping and no right exchange rules, and prove (1)
NCIPA becomes equivalent to Peano arithmetic IPA with the ω-rules when the exchange
rules are added to the system, (2) NCIPA is equivalent to Heyting arithmetic with the
recursive ω-rules, called IHA, and the law EM1 of excluded middle for Σ0

1 formulas, (3)
the cut elimination theorem in NCIPA, (4) the cut elimination theorem in IPA−, and (5)
translations between NCIPA and IPA−.

IPA− was inspired by 1-backtracking game semantics [5, 8]. [4] proved correspondence
between its positive fragment and 1-backtracking game, by which a winning strategy corre-
sponds to a proof. [2] also defined a sound and complete semantics for the fragment using
interactive realizers.

IPA− in this paper is a full system obtained from the positive fragment by adding
implication. IPA− is described by using a sequent Γ ` ∆ with antecedent-grouping where
formulas in the antecedent Γ are grouped and structural rules can be used only inside a
group. We can also use the weakening rule and the contraction rule in the succedent ∆, but
cannot use the exchange rule.

EM1 is the principle ∀x1 . . . xn(A ∨ ¬A) for a Σ0
1 formula A. This principle gives logical

systems between intuitionistic logic and classical logic, which have been studied actively,
in particular, for hidden algorithms in their proofs [1, 3, 11] and for their relation with
continuation-passing style programs [7].

We design NCIPA from IPA− so that it is based on ordinary sequents without antecedent-
grouping, and the grouping information is represented by the length of a sequence of formu-
las. The translations between NCIPA and IPA− will be defined so that they map the length
of a sequence of formulas and the grouping information into each other. The equivalence
between NCIPA and IHA+EM1 is proved from the translations between NCIPA and IPA−,
and the equivalence between IPA− and IHA + EM1.

The implication from provability in IHA+EM1 to provability in IPA− is proved by using
the cut elimination theorem in IPA−.

The implication from provability in IPA− to provability in IHA+EM1 is proved by using
flag formulas. A flag formula is a Π0

1 formula and is defined for each formula in the succedent
when its proof is given. Given a proof of Γ ` A1, . . . , An, if the flag formula Fi of Ai is true,
then every succedent in the proof is of length more than or equal to i. Flag formulas enable
us to find the minimum length of the succedents in a proof even if the proof is infinite. The
key idea is case analysis by a flag formula, which we can use since EM1 proves Fi ∨ ¬Fi.

The cut elimination theorem in NCIPA is proved by the translations between NCIPA
and IPA− and the cut elimination theorem in IPA−.

A potential application of the equivalence results is program extraction with the halting
problem oracle. Since NCIPA and IPA− are equivalent to IHA+EM1 and EM1 corresponds
to the halting problem oracle, we can extract a program with the halting problem oracle
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from a proof in NCIPA or IPA−. This program can be interpreted as a learning algorithm,
using 1-backtracking and learning in the limit [7].

Section 2 defines infinitary arithmetic IPA and IHA. Section 3 presents IPA−, and its cut
elimination theorem is proved in Section 4. Section 5 proves the implication from IHA+EM1
to IPA−, and Section 6 proves the other implication from IPA− to IHA + EM1. Section
7 defines NCIPA, and shows the equivalence between NCIPA with the exchange rules and
IPA. Section 8 gives the translations between NCIPA and IPA−, and shows the equivalence
between NCIPA and IHA + EM1. The cut elimination theorem in NCIPA is proved in
Section 9.

2 Infinitary Arithmetic

We define the system IPA. It is Peano arithmetic based on infinitary logic where the inference
rules (∀R) and (∃L) are replaced by the ω-rules with countably many assumptions, and it
does not have induction rules. The induction principles are derivable.
I Definition 2.1 (language). The language of IPA is a first-order language generated from the
following symbols: We have variables x, y, z, . . .. Constants are numerals 0, 1, 2, . . ., denoted
by n,m, i, j, . . ..

Function symbols are denoted by f, g, . . .. We assume that the set of function symbols
is recursive, and the set of functions represented by function symbols is the same as the set
of primitive recursive functions.

Terms are denoted by s, t, . . ..
Predicate symbols are denoted by P,Q, . . .. We assume that the set of predicate symbols

is recursive, and the set of predicates represented by predicate symbols is the same as the set
of primitive recursive predicates. We have 0-ary predicate symbols > and ⊥, which mean
the truth and the falsity respectively.

Formulas are defined by A,B,C, . . . ::= P (t1, . . . , tn)|A∧B|A∨B|A→B|∀xA|∃xA, where
P is a predicate symbol of arity n. We will write ¬A for A→⊥.

A sentence is a closed formula. A sequence A1, . . . , An (n ≥ 0) of sentences is denoted by
Γ,∆,Π,Σ, . . .. |Γ| denotes its length. An denotes A, . . . , A (n times). A[t/x] is the formula
obtained from A by replacing x by t.

Sequents are of the form A1, . . . , An ` B1, . . . , Bm (n,m ≥ 0) where Ai, Bi sentences.
We respect order of sentences in a sequence and a sequent.

IPA is based on infinitary logic where assumptions can be countably many. A proof in
this system is defined as a well-founded recursive tree by inference rules.

We have the following inference rules given in Figure 1. In the rules (Ax R) and (Ax L),
true and false refer to the truth value in the standard model. The rules (∀R) and (∃L)
denote an inference of its conclusion from some recursive function f such that f(m) is the
code of a proof of the m-th assumption, for example, Γ ` ∆, A[m/x] for (∀R).

We give an accurate definition of a proof inductively as follows: d·e is a standard coding
function and dee is a code of a syntactical object e. (1) For an inference rule except (∀R)
or (∃L), (dLe, dSe, P1, . . . , Pn) is a proof of the sequent S if its name is L, its instance is
the inference of S from S1 . . . Sn, and Pi is a proof of Si for 1 ≤ i ≤ n. (2) For an inference
rule among (∀R) and (∃L), (dLe, dSe, f) is a proof of the sequent S if its name is L and its
instance is the inference of S from S1[n/x] (for all n) and f is a recursive function such
that f(n) is the code of a proof of S1[n/x].

We will write Γ `IPA ∆ to denote that the sequent Γ ` ∆ is provable in IPA. We will
also use `T for some other systems T we will introduce later.

We define the system IHA. It is Heyting arithmetic based on infinitary logic where the
inference rules (∀R) and (∃L) are replaced by the recursive ω-rules.

The language is the same as that of IPA except that its sequents are intuitionistic sequents
A1, . . . , An ` B or A1, . . . , An `.
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Γ, A ` ∆ (Ax L) (A a false atomic formula)

Γ ` ∆, A (Ax R) (A a true atomic formula)

Γ ` ∆, A Γ ` ∆, B
Γ ` ∆, A ∧B (∧R) Γ, A ` ∆

Γ, A ∧B ` ∆ (∧L1) Γ, B ` ∆
Γ, A ∧B ` ∆ (∧L2)

Γ ` ∆, A
Γ ` ∆, A ∨B (∨R1) Γ ` ∆, B

Γ ` ∆, A ∨B (∨R2) Γ, A ` ∆ Γ, B ` ∆
Γ, A ∨B ` ∆ (∨L)

Γ, A ` ∆, B
Γ ` ∆, A→B

(→R) Γ ` ∆, A Γ, B ` Σ
Γ, A→B ` ∆,Σ (→L)

Γ ` ∆, A[m/x] (for all m)
Γ ` ∆,∀xA (∀R)

Γ, A[m/x] ` ∆
Γ,∀xA ` ∆ (∀L)

Γ ` ∆, A[m/x]
Γ ` ∆,∃xA (∃R)

Γ, A[m/x] ` ∆ (for all m)
Γ,∃xA ` ∆ (∃L) Γ ` ∆

Γ ` ∆, A (weak R) Γ ` ∆
Γ, A ` ∆ (weak L)

Γ ` ∆, A,A
Γ ` ∆, A (cont R) Γ, A,A ` ∆

Γ, A ` ∆ (cont L)

Γ ` ∆1, B,A,∆2
Γ ` ∆1, A,B,∆2

(exch R) Γ1, B,A,Γ2 ` ∆
Γ1, A,B,Γ2 ` ∆ (exch L)

Figure 1 Inference Rules of IPA

The inference rules are the same as those of IPA except that their sequents are restricted
to intuitionistic sequents.

The law EM1 of excluded middle for Σ0
1 formulas is defined as the axiom schema

∀x1 . . . xn(A ∨ ¬A) for a Σ0
1 formula A. This is a weaker version of the law of excluded

middle. The system IHA + EM1 strictly includes IHA and is strictly included in IPA.
Note that the identity rule Γ, A ` A is provable. It is shown by induction on A.

3 The system IPA−

We define the logical system IPA− of Peano arithmetic having the recursive ω-rules,
antecedent-grouping, and no right exchange rules.

The language of IPA− is the same as that of IPA except that its sequents are different.
A sequent in IPA− is of the form Γ ` A1, . . . , An where Γ is a sequence of sentences and
n symbols of the symbol −. An example of the sequent is A1,−, A2, A3,−, A4,−, A5, A6 `
B1, B2, B3.

In the sequent Γ0,−,Γ1,−,Γ2, . . . ,−,Γn ` A1, . . . , An where Γi is a sequence of sentences
and does not contain the symbol −, the group Γ0 means an initial group, and the group Γi

corresponds to Ai.
Γ,∆, . . . denote a sequence of both sentences and symbols −. We will write −n for

−, . . . ,− (n times).
We have the following inference rules given in Figure 2
A proof in this system is defined as a well-founded recursive tree in a similar way to IPA.

A proof of a formula A means a proof of the sequent − ` A.
Intuitive meaning of provable sequents is given by using the familiar interpretation of
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Γ, A ` ∆ (Ax L) (A a false atomic formula)

Γ ` ∆, A (Ax R) (A a true atomic formula)

Γ,− ` ∆, A ∧B,A Γ,− ` ∆, A ∧B,B
Γ ` ∆, A ∧B (∧R)

Γ1, A ∧B,Γ2, A ` ∆
Γ1, A ∧B,Γ2 ` ∆ (∧L1) Γ1, A ∧B,Γ2, B ` ∆

Γ1, A ∧B,Γ2 ` ∆ (∧L2)

Γ,− ` ∆, A ∨B,A
Γ ` ∆, A ∨B (∨R1) Γ,− ` ∆, A ∨B,B

Γ ` ∆, A ∨B (∨R2)

Γ1, A ∨B,Γ2, A ` ∆ Γ1, A ∨B,Γ2, B ` ∆
Γ1, A ∨B,Γ2 ` ∆ (∨L)

Γ, A ` ∆, A→B

Γ ` ∆, A→B
(→R1) Γ,− ` ∆, A→B,B

Γ ` ∆, A→B
(→R2)

Γ1, A→B,Γ2,− ` ∆, A Γ1, A→B,Γ2, B ` ∆
Γ1, A→B,Γ2 ` ∆ (→L)

Γ,− ` ∆,∀xA,A[m/x] (for all m)
Γ ` ∆,∀xA (∀R)

Γ1,∀xA,Γ2, A[m/x] ` ∆
Γ1,∀xA,Γ2 ` ∆ (∀L)

Γ,− ` ∆,∃xA,A[m/x]
Γ ` ∆,∃xA (∃R)

Γ1,∃xA,Γ2, A[m/x] ` ∆ (for all m)
Γ1,∃xA,Γ2 ` ∆ (∃L)

Γ ` ∆
Γ,− ` ∆, A (weak R) Γ ` ∆

Γ, A ` ∆ (weak L)

Figure 2 Inference Rules of IPA−

a sequent in the sequent calculus LK in the standard model of numbers as follows: If
Γ0,−,Γ1, . . . ,−,Γn ` A1, . . . , An is provable, then (1) Γ0 ` is true, or (2) Γ0,Γ1, . . . ,Γi ` Ai

is true for some i. Each inference rule is sound by this interpretation. Theorem 6.1 will
provide more information.

If Γ1,−,Π,−,Γ2 ` ∆ is provable, then Γ1,−,Π′,−,Γ2 ` ∆ is provable where Π does
not contain − symbols and Π′ is obtained from Π by exchange, weakening, and contraction.
This will be shown in Proposition 3.5. On the other hand, we cannot use right exchange,
nor left exchange over formulas in different groups.

We explain this system with some examples. In the examples, we assume the identity
lemma Γ1, A,Γ2 ` ∆, A, which will be shown in Lemma 3.4 after the examples.

I Example 3.1. The first example is given in Figure 3, which shows the conjunction of IPA−
is commutative.

I Example 3.2. The next example shows how this system respects the order of formulas.
We have three provable sequents

−, A,−, B ` A,⊥,
−, A,−, B ` ⊥, A,
−, A,−, B ` ⊥, B.
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−, A ∧B,−, B ` B ∧A,B (Id)

−, A ∧B,− ` B ∧A,B (∧L2) −, A ∧B,−, A ` B ∧A,A (Id)

−, A ∧B,− ` B ∧A,A (∧L1)

−, A ∧B ` B ∧A (∧R)

Figure 3 Example 3.1

On the other hand the sequent

−, A,−, B ` B,⊥

is not provable. The first sequent is provable since the initial and the first groups give the
assumption A, which proves the first formula A. The second sequent is provable since the
initial, the first, and the second groups give the assumptions A,B, which prove the second
formula A. The third sequent is provable similarly to the second sequent, since the initial,
the first, and the second groups give the assumptions A,B, which prove the second formula
B. Formally the first sequent is proved by

−, A ` A (Id)

−, A,− ` A,⊥ (weak R)

−, A,−, B ` A,⊥ (weak L)

and the second and the third sequents are proved by (Id).
On the other hand, the fourth sequent is not provable, since we have neither of the

following cases: (1) the initial group is empty, which proves the contradiction, nor (2) the
initial and the first groups give the assumption A, which proves the first formula B, nor
(3) the initial, the first, and the second groups give the assumptions A,B, which prove the
second formula ⊥.
I Example 3.3. Suppose P be a predicate symbol. Let A(x) = ∃yP (x, y). The following is
a proof of an instance ∀x(A(x) ∨ ¬A(x)) of EM1.

.... πm

−,−, P (n,m) ` A(n) ∨ ¬A(n),¬A(n) (for all m)
−,−, A(n) ` A(n) ∨ ¬A(n),¬A(n)
−,− ` A(n) ∨ ¬A(n),¬A(n)

− ` A(n) ∨ ¬A(n) (for all n)
− ` ∀x(A(x) ∨ ¬A(x))

If P (n,m) is false, the proof πm is the axiom (Ax L). If P (n,m) is true, the proof πm

is:

−,−,− ` A(n) ∨ ¬A(n), A(n), P (n,m)
(Ax R)

−,− ` A(n) ∨ ¬A(n), A(n)
− ` A(n) ∨ ¬A(n)

−,− ` A(n) ∨ ¬A(n),¬A(n)
(weak R)

−,−, P (n,m) ` A(n) ∨ ¬A(n),¬A(n)
(weak L)

Remark that A∨¬A is not provable for a Π0
2 formula because this system does not have

exchange rules.
We will explain game theoretic semantics in a general way first. Backtracking is a feature

we may add to any formal game G between two players, E (Eloise) and A (Abelard), defining
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Γ1, B→ C, Γ2, B,− ` ∆, B→ C, B
(Id)

Γ1, B→ C, Γ2, B, C,− ` ∆, B→ C, C
(Id)

Γ1, B→ C, Γ2, B, C ` ∆, B→ C
(→R2)

Γ1, B→ C, Γ2, B ` ∆, B→ C
(→L)

Γ1, B→ C, Γ2 ` ∆, B→ C
(→R1)

Figure 4 Proof of Lemma 3.4

a new game bck(G). Informally, for a while a play on bck(G) runs like a play in G. However,
in addition to the moves of G, Player E (Eloise) can make a new kind of move, called
backtracking. We imagine that each new position of the play p is added to some stack.
Using backtracking, E can move back to some previous position p of the play, provided p
is recorded in the stack, erase all positions of the stack coming after p in the stack, and
eventually perform an ordinary move from p (this new move is added to the stack).

In some cases, E has no recursive winning strategies over G, but some recursive winning
strategies if we allow her to backtrack (i.e. E has some recursive winning strategy over
bck(G)). “Backtracking” allows E to win more games using recursive winning strategies.
The intuitive reason is that, in bck(G), E is not forced to provide a winning move at once,
but she can find this winning move after several attempts, by trial-and-error.

Backtracking defines a new method for unwinding proofs. Assume that A is any
implication-free arithmetical formula, and call TA the Tarski game for A. Then E has
a recursive winning strategy over TA if and only if A is intuitionistically provable. In con-
trast, E has recursive winning strategy over bck(TA) if and only if A has a classical proof
using only EM1.

Assume the players play Ai at i-the stage. Then the stack of the plays is represented
by A1, A2, . . . , An. This stack can be simulated by the sequent A1, A2, . . . , An, if the se-
quent calculus does not have the exchange rules and it respects the order of formulas. The
weakening rules give backtracking, since it changes A1, A2, . . . , An, B to A1, A2, . . . , An. Fol-
lowing this idea, for the positive fragment of IPA−, [4] showed that it has 1-backtracking
game semantics, and a proof in the system corresponds to a winning strategy in the game.
Kobayashi [10] and the authors of this paper are preparing to show that IPA− has a nice
game theoretic semantics with 1-backtracking.

We will present several properties of IPA−.

I Lemma 3.4. The following is derivable.

Γ1, A,Γ2 ` ∆, A (Id)

This lemma is shown by induction on A in a standard way. We explain only the impli-
cation case A = B→ C, which is proved in Figure 4.

]−Γ denotes the number of the symbol − in Γ. (Γ)0 is defined to be Γ if Γ does not
contain −. (Γ,−,Π)0 is defined to be Γ if Γ does not contain −.

We will show some structural rules are admissible in this system. In the antecedent, we
can use weakening by (weak L2), and contraction by (cont L). In the same group in the
antecedent, we can also use exchange by (exch L).

I Proposition 3.5. (1) The following are derivable.

Γ1, A,Γ2 ` ∆ (Ax L2) (A a false atomic formula)

Γ ` ∆1, A,∆2
(Ax R2) (A a true atomic formula)
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(2) The following are admissible.

Γ1,>,Γ2 ` ∆
Γ1,Γ2 ` ∆ (>E) Γ1,−,Γ2,−,Γ3 ` ∆1, A,A,∆2

Γ1,−,Γ2,Γ3 ` ∆1, A,∆2
(cont R) (]−Γ3 = |∆2|, ]−Γ2 = 0)

Γ1,−,Γ2 ` ∆1,⊥,∆2
Γ1,Γ2 ` ∆1,∆2

(⊥E) (]−Γ2 = |∆2|)
Γ1,Γ2 ` ∆

Γ1, A,Γ2 ` ∆ (weak L2)

Γ1,Γ2 ` ∆1,∆2
Γ1,−,Γ2 ` ∆1, A,∆2

(weak R2) (]−Γ2 = |∆2|, (Γ2)0 = φ)

Γ ` ∆
Π,Γ ` Σ,∆ (weak R3) (]−Π = |Σ|)

Γ1,−, A,Γ2 ` ∆
Γ1, A,−,Γ2 ` ∆ (move) Γ1, A,Γ2, A,Γ3 ` ∆

Γ1, A,Γ2,Γ3 ` ∆ (cont L) Γ1, A,B,Γ2 ` ∆
Γ1, B,A,Γ2 ` ∆ (exch L)

4 Cut Elimination in IPA−

We will show the cut elimination theorem for IPA−.
I Definition 4.1. We define the cut rule:

Γ1,− ` Γ2, A ∆1, A,Σ1 ` ∆2,Σ2
Γ1,∆1,Σ1 ` Γ2,∆2,Σ2

(cut)

where ]−Σ1 = |Σ2|.
We have the cut elimination theorem in IPA−.

I Theorem 4.2 (Cut Elimination). If Γ ` ∆ is provable in IPA− with the cut rule, then it is
provable in IPA−.

In order to prove this theorem, we use the following rule:

Γ1,− ` Γ2, A Γ1, A,∆1 ` Γ2,∆2
Γ1,∆1 ` Γ2,∆2

(cut2)

In the next lemma we will prove the rule (cut2) can be eliminated.
I Lemma 4.3. (1) If we have a proof

.... π1
Γ1,−,Π1 ` Γ2, A,Π2

in IPA− where ]−Γ1 = |Γ2|, and the proof π2

....
Γ1, A,∆i

1 ` Γ2,∆i
2 (i ∈ I)

Γ1, A,∆1 ` Γ2,∆2
(Rule)

in IPA− where (Rule) is a logical rule which introduces the formula A, and we have proofs
.... π

i
3

Γ1,∆i
1 ` Γ2,∆i

2

for i ∈ I in IPA−, then Γ1,∆1,Π1 ` Γ2,∆2,Π2 is provable in IPA−.
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(2) If we have a proof
.... π1

Γ1,− ` Γ2, A

.... π2
Γ1, A,∆1 ` Γ2,∆2

Γ1,∆1 ` Γ2,∆2
(cut2)

in IPA− with the rule (cut2) and the subproofs π1 and π2 do not contain the rule (cut2),
then the conclusion Γ1,∆1 ` Γ2,∆2 is provable in IPA−.
|π| denotes the height of the proof π. We can prove (1) and (2) simultaneously by

induction on (A, |π1|+ |π2|). For each step, we will first show (1) and use (1) to show (2).

5 From IHA + EM1 to IPA−

This section proves the implication from IHA+EM1 to IPA−. We will use the cut elimination
theorem for the proof.
I Proposition 5.1. (1) If Γ ` ∆ is provable in IHA, then −|Π|+|∆|,Γ ` Π,∆ is provable in
IPA− for any Π.

(2) If Γ ` A is provable in IHA, then −,Γ ` A is provable in IPA−.
The proof idea is simulating each inference rule of IHA by inference rules of IPA−. One

difference is that a logical rule in IPA− has a redundant principal formula. For example,
the right conjunction rule in IPA− is

Γ,− ` ∆, A ∧B,A Γ,− ` ∆, A ∧B,B
Γ ` ∆, A ∧B (∧R)

and on the other hand the right conjunction rule in IHA is

Γ ` A Γ ` B
Γ ` A ∧B (∧R)

This difference is covered by putting A ∧ B by (weak R2) in Proposition 3.5. The other
difference is the existence of −, which is handled by moving − by (move) in Proposition 3.5.
I Theorem 5.2. If Γ,EM1 ` A is provable in IHA, then −,Γ ` A is provable in IPA−.

Proof. By Proposition 5.1 (2), −,Γ,EM1 ` A is provable in IPA−.
We can show − ` EM1 in IPA− in a similar way to Example 3.3. By (cut) we have

−,Γ ` A in IPA− with (cut). By Theorem 4.2, we have −,Γ ` A in IPA−. 2

6 From IPA− to IHA + EM1

This section proves the direction from IPA− to IHA + EM1.
In order to discuss proofs in infinitary logic, we will have to formalize proofs in codes

and discuss some recursive functions from proofs to proofs. However, for space limitation,
we will not describe those codes in details.

Since it is well known that the cut elimination theorem holds for IHA [12], we will use
the following cut rule in IHA:

Γ ` A Π, A ` Σ
Γ,Π ` Σ (cut)

In our proof, we will use the idea of flag formulas. A flag formula Fi is a Π0
1 formula and

is assigned to each formula Ai in a sequent Γ ` A1, . . . , An when its proof is given. Given a
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proof of Γ ` A1, . . . , An, if Fi is true, then the proof does not include any sequent with its
succedent of length less than i.

In order to prove the theorem, we need the minimum length of the succedents in the
sequents in a given proof. Even if a proof is given, we cannot effectively find the minimum
length since a proof may be infinite. The idea is using a set of Π0

1 formulas to describe
the minimum length. When F1, . . . , Fm are true and Fm+1, . . . , Fn are false, we know the
minimum length is m. The point is that we can effectively assign these Π0

1 formulas even
for an infinite proof.

For example, for the proof

−, A ` A (Ax R)

−, A,− ` A,⊥ (weak R)

−, A,−, B ` A,⊥ (weak L)

where A and B are true atomic formulas. Let F1 and F2 be the flag formulas for A and ⊥
respectively. We will define F1 to be true and F2 to be false, which means the minimum
length is 1.

We will explain how to define flag formulas by example. The first example is a proof
ending with the rule (∧R):

.... π1
Γ,− ` ∆, A ∧B,A

.... π2
Γ,− ` ∆, A ∧B,B

Γ ` ∆, A ∧B (∧R)

Let the minimum length be m and the minimum length for πi be mi for i = 1, 2. Let the flag
formulas for the proof be F1, . . . , Fn, and the flag formulas for πi be F i

1, . . . , F
i
n for i = 1, 2.

We can calculate m by m = min(m1,m2), but we do it by using flag formulas instead. We
define Fj = F 1

j ∧ F 2
j for j = 1, . . . , n.

The second example is a proof ending with the rule (∀R):
.... πk

Γ,− ` ∆,∀xA,A[k/x] (for all k)
Γ ` ∆,∀xA (∀R)

Let the minimum length be m and the minimum length for πk be mk. Let the flag formulas
for the proof be F1, . . . , Fn, and the flag formulas for πk be F k

1 , . . . , F
k
n . We cannot effectively

calculate m = mink(mk), but we can do it by flag formulas. We define Fj = ∀xF x
j for

j = 1, . . . , n, which informally means the infinite conjunction F 1
j ∧F 2

j ∧ . . .. Note that Fj is
also a Π0

1 formula when F k
j (k = 0, 1, 2, . . .) are Π0

1.

I Theorem 6.1. There exists a recursive function such that if IPA− proves the sequent
Γ0,−,Γ1,−,Γ2, . . . ,−,Γn ` A1, A2, . . . , An where n ≥ 1 and Γi does not contain any −
symbol, then the function computes the codes of Π0

1 formulas F1, . . . , Fn and the codes
of proofs of the following in IHA + EM1 from the code of the proof of the sequent
Γ0,−,Γ1,−,Γ2, . . . ,−,Γn ` A1, A2, . . . , An:

(1) ¬F1,Γ0 `,
(2) Fi,¬Fi+1,Γ0, . . . ,Γi ` Ai (1 ≤ i < n),
(3) Fn,Γ0, . . . ,Γn ` An.

I Theorem 6.2. If IPA− proves Γ0,−,Γ1 ` A, then IHA + EM1 proves Γ0,Γ1 ` A.
Proof. By Theorem 6.1 with n = 1, there exists the Π0

1 formula F1 such that IHA+EM1
proves (1) ¬F1,Γ0 `, and (2) F1,Γ0,Γ1 ` A. By weakening and (∨L), we get ¬F1 ∨
F1,Γ0,Γ1 ` A. We have EM1 ` ¬F1 ∨ F1. Hence, by the cut rule, we have the claim. 2
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Γ1, A,Γ2 ` ∆ (Ax L) (A a false atomic formula)

Γ ` ∆1, A,∆2
(Ax R) (A a true atomic formula)

Γ,> ` ∆, A ∧B,A Γ,> ` ∆, A ∧B,B
Γ ` ∆, A ∧B (∧R)

Γ1, A ∧B,Γ2, A ` ∆, D,D
Γ1, A ∧B,Γ2 ` ∆, D (∧L1) Γ1, A ∧B,Γ2, B ` ∆, D,D

Γ1, A ∧B,Γ2 ` ∆, D (∧L2)

Γ,> ` ∆, A ∨B,A
Γ ` ∆, A ∨B (∨R1) Γ,> ` ∆, A ∨B,B

Γ ` ∆, A ∨B (∨R2)

Γ1, A ∨B,Γ2, A ` ∆, D,D Γ1, A ∨B,Γ2, B ` ∆, D,D
Γ1, A ∨B,Γ2 ` ∆, D (∨L)

Γ, A ` ∆, A→B,A→B

Γ ` ∆, A→B
(→R1) Γ,> ` ∆, A→B,B

Γ ` ∆, A→B
(→R2)

Γ1, A→B,Γ2,> ` ∆, D,A Γ1, A→B,Γ2, B ` ∆, D,D
Γ1, A→B,Γ2 ` ∆, D (→L)

Γ,> ` ∆,∀xA,A[m/x] (∀m)
Γ ` ∆,∀xA (∀R)

Γ1,∀xA,Γ2, A[m/x] ` ∆, D,D
Γ1,∀xA,Γ2 ` ∆, D (∀L)

Γ,> ` ∆,∃xA,A[m/x]
Γ ` ∆,∃xA (∃R)

Γ1,∃xA,Γ2, A[m/x] ` ∆, D,D (∀m)
Γ1,∃xA,Γ2 ` ∆, D (∃L)

Γ ` ∆
Γ, A ` ∆, B (sweak) >,Γ ` ∆

Γ ` ∆ (>E) Γ ` ⊥,∆
Γ ` ∆ (⊥E)

Figure 5 Inference Rules of NCIPA

7 Non-Commutative Infinitary Peano Arithmetic

We define non-commutative infinitary Peano arithmetic NCIPA. In the next section we will
prove that NCIPA is a subsystem of IPA essentially equivalent to IPA−.

The language is defined to be the same as that of IPA. The inference rules are given by
Figure 5. The rule (sweak) means symmetric weakening. A proof in this system is defined
as a well-founded recursive tree in a similar way to IPA.

Intuitive meaning of provable sequents is given by using the familiar interpretation of
a sequent in the sequent calculus LK in the standard model of numbers as follows: If
Π, A1, . . . , An ` B1, . . . , Bn is provable, then (1) Π ` is true, or (2) Π, A1, . . . , Ai ` Bi is
true for some i. If A1, . . . , An ` C1, . . . , Cm, B1, . . . , Bn is provable, then (1) ` Ci is true for
some i, or (2) A1, . . . , Ai ` Bi is true for some i.

This system is obtained from IPA− by coding grouping information by the length of a
sequence of formulas. We explain it by example.

I Example 7.1. The sequent

A1,−, A2, A3,−, A4,−, A5, A6 ` B1, B2, B3
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A ∧B,>, B ` B ∧A,B,B (Id)

A ∧B,> ` B ∧A,B (∧L2) A ∧B,>, A ` B ∧A,A,A (Id)

A ∧B,> ` B ∧A,A (∧L1)

A ∧B ` B ∧A (∧R)

Figure 6 Example 7.2

in IPA− is coded by the sequent

A1,>, A2, A3,>, A4,>, A5, A6 ` B1, B1, B1, B2, B2, B3, B3, B3

in NCIPA. The atomic formula > is used for separating groups. The group >, A5, A6
corresponds to B3, B3, B3. The group >, A4 corresponds to B2, B2. The group >, A2, A3
corresponds to B1, B1, B1. We can decode this information by counting formulas from the
right to the left on both sides. This decoding may not be unique, but it is unique up to the
provability in IPA−. This translation is formally defined in Definition 8.4.

We explain this system by the same examples as those in Section 3. In the examples, we
assume the identity lemma Γ1, A,Γ2 ` ∆, A, which will be shown as Lemma 7.4 after the
examples.
I Example 7.2. The first example in Figure 6 shows the conjunction of NCIPA is commu-
tative.
I Example 7.3. The next example shows how this system respects the order of formulas.
We have three provable sequents

A,B ` A,⊥,
A,B ` ⊥, A,
A,B ` ⊥, B.

On the other hand the sequent

A,B ` B,⊥

is not provable. The first sequent is provable since A ` A is true. The second sequent
is provable since A,B ` A is true. The third sequent is provable since A,B ` B is true.
Formally the first sequent is proved by

A ` A (Id)

A,B ` A,⊥ (sweak)

and the second and the third sequents are proved by (Id). On the other hand, the fourth
sequent is not provable, since A ` B is not true and A,B ` ⊥ is not true.
I Lemma 7.4. The following is derivable.

Γ1, A,Γ2 ` ∆, A (Id)

This lemma is shown by induction on A in a similar way to Lemma 3.4.
Remark. (1) (⊥E) is necessary for making a binary left logical rule for the empty

succedent admissible. It is used in the proof of Proposition 8.6. For example, the following
is admissible.

Γ1, A ∨B,Γ2, A ` Γ1, A ∨B,Γ2, B `
Γ1, A ∨B,Γ2 `

(∨L)
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(2) (>E) is necessary since ` > ∨ ⊥,⊥ would not be provable otherwise, though it is
indeed provable by

> ` > ∨ ⊥,> (Ax R)

` > ∨ ⊥ (∨R1)

> ` > ∨ ⊥,⊥ (sweak)

` > ∨ ⊥,⊥ (>E)

I Proposition 7.5. The following are admissible.

Γ1,Γ2 ` ∆1,∆2
Γ1, A,Γ2 ` ∆1, B,∆2

(sweak2) (|Γ2| = |∆2|)

Γ1, A,A,Γ2 ` ∆1, B,B,∆2
Γ1, A,Γ2 ` ∆1, B,∆2

(scont) (|Γ2| = |∆2|)

Γ1,Γ2 ` ∆
Γ1, A,Γ2 ` ∆ (weak L) Γ ` ∆

Γ ` ⊥,∆ (⊥I) Γ1,>,Γ2 ` ∆
Γ1, A,Γ2 ` ∆ (replace L)

Γ ` ∆1, A,A,∆2
Γ ` ∆1, A,∆2

(cont R) Γ1,>, A,Γ2 ` ∆1, B,B,∆2
Γ1, A,Γ2 ` ∆1, B,∆2

(>E2) (|Γ2| = |∆2|)

We define the system NCIPA+EX as the system NCIPA with the following inference
rules (exch L) and (exch R).

Γ ` ∆1, A,B,∆2
Γ ` ∆1, B,A,∆2

(exch R) Γ1, A,B,Γ2 ` ∆
Γ1, B,A,Γ2 ` ∆ (exch L)

When the exchange rules are added to NCIPA, the coding information is lost and it
becomes equivalent to IPA.
I Theorem 7.6. Γ ` ∆ is provable in NCIPA+EX if and only if Γ ` ∆ is provable in IPA.

The system NCIPA is a subclassical logic.
I Theorem 7.7. Γ ` A is provable in NCIPA if and only if Γ,EM1 ` A is provable in IHA.

We will complete the proof of this theorem in Section 8.

8 Translations between NCIPA and IPA−

This section gives translations between NCIPA and IPA− in both directions and proves that
they preserve provability. By using these translations, we will prove the equivalence theorem
between NCIPA and IHA + EM1.

First, we give a translation from NCIPA to IPA−. To translate Γ ` ∆, we insert the same
number of − symbols as |∆| into Γ by adding a single − symbol in front of each formula
from the right. For example, the sequent A1, A2, A3, A4 ` B1, B2 in NCIPA is translated
into the sequent A1, A2,−, A3,−, A4 ` B1, B2 in IPA−.
I Definition 8.1 (Translation from NCIPA to IPA−). We translate a sequent Γ ` ∆
in NCIPA into the sequent Γ−|∆| ` ∆ in IPA−, where (Γ0, A1, A2, . . . , An)−n is de-
fined as Γ0,−, A1,−, A2, . . . ,−, An and (A1, A2, . . . , Am)−n (m < n) is defined as
−n−m,−, A1,−, A2, . . . ,−, Am.
I Example 8.2. The NCIPA-proof of A ∧ B ` B ∧ A in Example 7.2 is translated into the
IPA−-proof given in Figure 7.
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−, A ∧B,−,>,−, B ` B ∧A, B, B
(Id)

−, A ∧B,−,>, B ` B ∧A, B
(cont R)

−, A ∧B,−,> ` B ∧A, B
(∧L2)

−, A ∧B,− ` B ∧A, B
(>E)

−, A ∧B,−,>,−, A ` B ∧A, A, A
(Id)

−, A ∧B,−,>, A ` B ∧A, A
(cont R)

−, A ∧B,−,> ` B ∧A, A
(∧L1)

−, A ∧B,− ` B ∧A, A
(>E)

−, A ∧B ` B ∧A
(∧R)

Figure 7 Example for NCIPA to IPA−

>, A ∧B,>, B ` B ∧A,B ∧A,B,B (Id)

>, A ∧B,> ` B ∧A,B ∧A,B (∧L2) >, A ∧B,>, A ` B ∧A,B ∧A,A,A (Id)

>, A ∧B,> ` B ∧A,B ∧A,A (∧L1)

>, A ∧B ` B ∧A,B ∧A (∧R)

Figure 8 Example for IPA− to NCIPA

I Proposition 8.3. Γ `NCIPA ∆ implies Γ−|∆| `IPA− ∆.
This is proved by induction on the proof.
Next, we define a translation from IPA− to NCIPA. To translate Γ ` ∆, we replace −

by > in Γ, and the succedent is produced from ∆ by multiplying the i-th formula by ni + 1
when the i-th group in Γ has ni formulas. An example is given in Example 7.1. An denotes
A, . . . , A (n times).
I Definition 8.4 (Translation from IPA− to NCIPA). We translate a sequent Γ ` ∆ in IPA−
into the sequent Γ> ` ∆Γ in NCIPA, where Γ> is defined as Γ0,>,Γ1,>,Γ2, . . . ,>,Γn and
(A1, . . . , An)Γ is defined as A|Γ1|+1

1 , A
|Γ2|+1
2 , . . . , A

|Γn|+1
n if Γ is Γ0,−,Γ1,−,Γ2, . . . ,−,Γn and

Γi does not contain −.
I Example 8.5. The IPA−-proof of −, A ∧B ` B ∧ A in Example 3.1 is translated into the
NCIPA-proof given in Figure 8.
I Proposition 8.6. Γ `IPA− ∆ implies Γ> `NCIPA ∆Γ.

This is proved by induction on the proof.
Proof of Theorem 7.7. From the left-hand side to the right-hand side.
By Proposition 8.3, we have Γ−1 `IPA− A. By Theorem 6.2, we have Γ,EM1 `IHA A.
From the right-hand side to the left-hand side.
By Theorem 5.2, we have −,Γ `IPA− A. By Proposition 8.6, we get >,Γ `NCIPA

A|Γ|+1. By (>E) and (cont R) in Proposition 7.5, Γ `NCIPA A. 2

9 Cut Elimination for NCIPA

In this section, we will prove the cut elimination theorem for NCIPA.
I Definition 9.1. We give the cut rule in the system NCIPA.

Γ1,> ` Γ2, A ∆1, A,Σ1 ` ∆2,⊥,Σ2
Γ1,∆1,Σ1 ` Γ2,∆2,Σ2

(cut)

where |Π1| = |Π2|, |∆1| = |∆2|, |Σ1| = |Σ2|.
We can eliminate the cut rule in NCIPA.

I Theorem 9.2 (Cut Elimination). If Γ ` ∆ is provable in NCIPA with the rule (cut), then
Γ ` ∆ is provable in NCIPA.
This theorem is proved by using the cut elimination theorem for IPA− and the next propo-
sition.
I Proposition 9.3 (NCIPA to IPA− to NCIPA). (Γ−|∆|)> `NCIPA ∆Γ−|∆| iff Γ `NCIPA ∆.
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10 Concluding Remarks

We showed that by removing the exchange rules, Peano arithmetic with the ω-rules becomes
Heyting arithmetic with the recursive ω-rules and the Σ0

1 excluded middle. The equivalence
is an open question when the system is Peano arithmetic without the ω-rules.

Future work would be to investigate the computational content of the subclassical sys-
tems IPA− and NCIPA.
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Forty Years Ago

It was exactly forty years ago, that I got my ETH-Diploma in Mathematics and Physics,
followed two years later by my PhD (Dr.sc.math.). Since then I have held appointments
in Zurich, Warsaw, Stanford, Vancouver, Florence, Berlin and Haifa. Scientifically, I have
travelled from Model Theory proper to applications thereof in Computer Science, and finally
in Combinatorics, visiting the lands of Database Theory, Specification, Verification, Artificial
Intelligence, Complexity and Algorithms. I was a founding member of EACSL, its vice-
president, and finally its president till 2010. But at heart I remained a mathematician with
a strong interest in computer science and its foundations.

In this retiring president’s address I would like to sketch some of the recurrent ideas of
my research, and some of the lessons I have learned in managing a scientific career, and
managing science as an enterprise. I concentrate here on scientific details and leave more
personal remarks for the lecture. Some other personal recollections can be found in [62].

Model Theory: Categoricity and Finite Axiomatizability

My first attempt to tackle open problems was a consequence of reading M. Morley’s funda-
mental paper on categoricity in power, [72] in the undergraduate seminar in mathematical
logic at ETH Zurich, held by E. Specker and H. Läuchli, and regularly attended by the still
very lucid octogenarian P. Bernays.

A first-order theory T is categorical in some infinite cardinal κ if T has no finite models and
all its models of size κ are isomorphic. Morley asks, whether there is a finitely axiomatizable
first-order theory T which is κ-categorical for all κ, or for all uncountable κ. Attacking these
questions required understanding of the structure theory of κ-categorical theories (stable
theories, rank, degree, etc.) and some idea on how to prove or disprove finite axiomatizability.
I made a thorough manual literature search in the library (no scholar.google.com was
available then) about finite axiomatizability, from which I learned about Ehrenfeucht-Fraïssé
games and ultraproducts, and other methods, but only the Ehrenfeucht-Fraïssé games seemed
promising to me. With some ideas on how to approach Morley’s question, I attended my first
logic conference in 1970, where I received encouragement and a still unpublished preprint of
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[3] from A. Lachlan. Upon my return I asked my supervisor, H. Läuchli, whether I could
write my M.Sc. thesis about Morley’s question, and he agreed. I managed to prove

I Theorem 1 ([53]).
(i) A first-order theory T which is ℵ0-categorical and strongly minimal (hence categorical in
all infinite kappa) cannot be finitely axiomatizable.
(ii) There is a finitely axiomatizable complete first-order theory T which is superstable.

The second edition of [10] credits me1 with partially solving two of Morley’s problems.
However, most of the problems listed in [72] were solved by S. Shelah, just the finite
axiomatizability questions withstood his attacks. I soon realized that this was all I could
prove using the available tools. Besides Ehrenfeucht-Fraïssé games I used non-periodic tilings
of the plane, an idea which was suggested to me by my supervisor H. Läuchli.

The finite axiomatizability questions were finally solved by by M. Peretyatkin [76] (there
is a finitely axiomatizable ω1-categorical theory), and by G. Cherlin, L. Harrington and A.
Lachlan and by B. Zilber (there is no finitely axiomatizable theory categorical in all infinite
powers), cf. [11], and [83]. G. Cherlin, L. Harrington and A. Lachlan use the classification
theory of finite groups, and B. Zilber uses results on diophantine equations to overcome the
difficulties I had not been able to overcome. Neither of these tools were available when I left
the problem.

I presented my results on finite axiomatizability at the Logic Colloquium in Cambridge
in 1971. There I met for the first time with S. Shelah, with whom I had corresponded before,
and with W. Marek, who told me about student exchange programs between Switzerland
and Poland. Both encounters had a major impact on my further scientific development.

I Lesson 1. Search and read the literature, even if it goes far back.

I Lesson 2. Go to conferences already as a student, but be properly prepared.

Generalized Quantifiers

It was Wiktor Marek, who introduced me in 1971 to Lindström’s Theorem. It had been
rediscovered by Harvey Friedman, who gave it much publicity. What a great Theorem:
Predicate Logic can be characterized, among all the logics as the only one which satisfies
the Löwenheim-Skolem Property and one of the following: compactness or axiomatizability.
Well, that’s the way you might promote it, but then there are plenty of details, which make
it less spectacular. And still, a new paradigm was found, which consisted in characterizing
logics. I immediately studied Lindström’s papers and all that was known about extensions of
first-order logic and prepared a seminar talk about it. Later P. Lindström told me that his
original motivation for the theorem had been to find a new application of Ehrenfeucht-Fraïssé
games. I spent 1972 partially in Warsaw as an exchange student, cf. [62] working under the
late A. Mostowski on generalized quantifiers.

There were two lines of studying extensions of first-order logic: (i) via generalized
quantifiers, and (ii) via fragments of infinitary logics. What I tried to do was to find
characterizations of logics using other properties than the Löwenheim-Skolem-Tarski Theorem
and the Compactness Theorem. J. Barwise showed that the admissible fragments of Lω1,ω

satisfy the Craig Interpolation Theorem. D. Scott and, independently before, E. Engeler,

1 At the time joint papers were not common practice, and H. Läuchli let me publish the results under my
name alone. In [10] credit is not extended to H. Läuchli, although I clearly stated his rôle in the results.
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[21, 22, 78] had shown that all countable structures over a countable vocabulary can be
characterized up to isomorphism by a sentence in Lω1,ω. G. Kreisel suggested his own
criteria of choosing logics, [44]. In Fall 1972, E. Engeler and P. Bernays introduced me to G.
Kreisel. I told him about my ideas, and he got very interested and encouraging. An intensive
correspondence followed which lasted until he invited me in Fall 1973 to come to Stanford.
He also provided me with a preprint of L. Tharp, published later as [81], without telling me
that he was refereeing it. I naively used the material in my PhD thesis, trusting that it was
given to me in good faith for use. I generalized Tharp’s definitions and proved innocently
theorems which may have been also on Tharp’s mind.

I Lesson 3. Do not circulate papers you are supposed to treat confidentially.

Having worked on categorical first-order theories, I formulated and finally proved the
following:

I Theorem 2 ([52]). Let L be a logic such that Craig’s Interpolation Theorem holds for L
and such that all countable structures over a countable vocabulary can be characterized up to
isomorphism by a sentence in L. Then Lω1,ω is a sublogic of L.

For this theorem I was inspiried by three papers by S. Feferman, [23, 24, 25], which among
other things discuss abstract versions of the Feferman-Vaught Theorem, [26] which entered
my toolbox already then.

In [52] I also announced characterization of the minimal fragments of Lω1,ω which satisfy
the Sousline-Kleene version of the interpolation theorem and characterize one countable
structure up to isomorphism. The same characterization was also announced by H. Friedman
in the Notices of AMS. My proof used tools I had not yet properly mastered by then. However,
H. Friedman’s announcement brushed away my gut feelings, and made me believe that I had
used the tools correctly. Only when I lectured in the Stanford Logic Seminar in fall 1973,
J. Stavi showed me a counterexample to the theorem as stated in [52], and in Friedman’s
abstract. Together we fixed the theorem, which led to [67] and my prolonged collaboration
with S. Shelah in abstract model theory.

I Lesson 4. Do not trust your own handwaving. Do trust your gut feelings when something
is wrong with your proof.

Until 1984 much of my published work remained in abstract model theory. Abstract model
theory had generated quite a bit of excitement in the logic community. This is witnessed in
[5], where I contributed two chapters and co-authored one more, [57, 64, 56]. But after the
publication of [5] the philosophically minded, including P. Lindström himself, lost interest,
because, among other reasons, my theorems with S. Shelah had introduced large cardinals
into the field, spoiling the hope for neat theorems.

S. Shelah taught me:

I Lesson 5. Never let aesthetics or ideology prevent you from proving a theorem!

But the reality of the mathematical community knows a law of diminishing return:

I Lesson 6. Not everybody who asks a mathematical question is willing to hear the answer
if it requires too much time, energy or skill to understand it.

J. Stavi and S. Shelah invited me to Israel to work with them. Later romantic involvement
strengthened the Israeli connection. Finally, I founded a family and stayed. But to find a
job in Israel, I had to move to applications of logic in computer science.

CSL’11
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The Promised Land: Computer Science Logic

I was well aware that mathematical logic, especially model theory, had something to offer to
theoretical computer science. I had attended the Specker-Strassen Seminar in Zurich in the
early 70s, cf. [80], where we studied evolving complexity theory. It was finally E. Shamir
in Jerusalem who gave me the crucial impulse to approach computer science successfully.
In 1978 he arranged for a “blind date” with C. Beeri, who was struggling to find the right
definition of database dependencies. He also told me to attend the ACM-STOC conference
in 1979 in Atlanta, where I got acquainted with V. Pratt and his dynamic logic.

I Lesson 7. When you change fields, do not leave your old toolbox behind!

I tried to identify problems in theoretical computer science which could be tackled using
model theoretic methods. I was looking for model theoretic characterizations of certain
classes of syntactically defined formulas and for analogues of Lindström’s Theorems. At
the Logic Colloquium 1982 in Florence I was an invited speaker and I gave a talk on Model
theoretic issues in theoretical computer science: Relational Data Bases and Abstract Data
Types, [55]. Y. Gurevich discussed this paper with me at great length in the years 1982-84,
and it inspired him to write his [34]. But I had written my paper for the wrong audience:
The Logicians were not interested in Computer Science, and the first LiCS conference was
held only in 1986. The first CSL conference was held in 1987, and EACSL was founded in
1992.

I Lesson 8. One can be too early and in the wrong place at the same time.

The Fundamental Problem of Databases

My first published paper in theoretical computer science was an application of abstract
model theory to dynamic logic, [48]. But my truly first result was in databases. In 1978
C. Beeri spent many hours trying to explain to me what J. Ullman had declared to be the
Fundamental Problem of Databases. Imprecisely stated, it was the decision problem for
database dependencies which at the time were meant to be generalizations of Functional
Dependencies. Finally, C. Beeri accepted my suggestion, that database dependencies are to
be identified with a certain subclass of universal-existential Horn formulas in purely relational
first-order logic where satisfiability is restricted to finite relational structures. Actually, we
defined the four classes of dependencies which later became known as FID (full implicational)
and EID (embedded implicational) with the subclasses of equality generating and tuple
generating dependencies. I showed C. Beeri, that in the case of EID’s, the decision problem
was undecidable, and suspected it to be well known. A quick consultation with M. Rabin
confirmed my suspicion, although, as it turned out, M. Rabin was not quite right. My
reduction used the word problem of finite semigroups. Rabin thought that this was known
to be undecidable, and undecidable it was, but not well known. It had been proven by
Y. Gurevich in 1966 and published only in Russian as [33]. Rabin did not know of it and
confused it with some other well known decision problem. As a result of Rabin’s remarks I
turned my back to databases and looked for other topics. I did not realize then that, even if I
could solve the technical problem, I still did not understand why solving it was important for
databases. C. Beeri continued to work on this with his PhD student M. Vardi, and much of
what we discussed together was further elaborated in Vardi’s thesis. I tried my luck, without
success, in improving Galil’s lower bound for the worst case run time of the Davis-Putnam
procedure, [27]. I also tried my luck, again without success, in understanding the complexity
of computing the permanent. I returned to both of these topics much later.
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In spring 1980 I was guest of V. Pratt at MIT. Visiting Princeton, I attended a colloquium
lecture where Ullman’s Fundamental Problem of Databases was mentioned again as the most
important open problem in database theory. I told the speaker that I had solved it a year
before, and he mentioned rumors that A. Chandra and H. Lewis also just solved it. Back at
MIT, I showed C. Papadimitriou my proof and asked him about the rumor that A. Chandra
and H. Lewis had obtained the same result. He confirmed and was kind enough to arrange
that this coincidence would result in two joint papers, [9, 8].

I Theorem 3 (A. Chandra, H. Lewis and JAM, [9, 8]).
(i) The decision problem for embedded implicational dependencies is undecidable.
(ii) The decision problem for full implicational dependencies decidable and complete in

exponential time, even for the typed case.
The distinction between typed and untyped dependencies seemed to me cosmetic but was
considered important to the database community. Typed here means that we look at many-
sorted finite structures where sorts correspond to attributes. The undecidability of typed
EID remained in our paper open. After that I tried to learn the true problems of database
theory. However, J. Ullman changed his mind and declared that Dependency Theory and
Design Theory had run their course. As a result, papers dealing with these topics were
almost banned from the relevant conferences.

I Lesson 9. Do not get discouraged when you are told without proper references that your
result is well known.

I Lesson 10. Not every problem which looks easy from where you stand is easy for others
approaching the problem from a different angle.

I Lesson 11. The fact that you can solve technical problems in other people’s domain, does
not make you an expert in this domain.

Program Correctness and Termination

I have three papers dealing somehow with logic and program termination. One is an
application of abstract model theory to dynamic logic, [48], one is a completeness theorem for
a proof rule for fair termination, [32], and one contains weak second-order characterizations
of various program verification systems, [51]. [32] is a good example of the previous lesson: I
was able to provide a proof of a theorem formulated by N. Francez and O. Grumberg on fair
termination, see [32], without grasping the essence of the problem. I really understood the
problem only after reading the paper by D. Lehmann, A. Pnueli and J. Stavi, [45], which
presented a different approach to fair termination.

More significantly, there was also a cultural problem: Discussing the problem with J.
Stavi, he suggested that all this was a trivial application of J. Shoenfield’s Tree Lemma, [79].
We went through this idea together and indeed came to the conclusion, that technically there
was not much new, and that unwinding trees in special cases would be a good topic for PhD,
or rather MSc students. We both grossly underestimated the gap between a logician who
had studied all of Shoenfield’s book [79], and a computer scientist who was interested in a
particular application. The gap is not only technical, but also on the levels of abstraction. I
tried to find graduate students to explore uses of the Tree Lemma, I tried also to collaborate
with my colleagues, but I failed to bridge this gap. They could not believe that such a
general lemma would help them, and they were not willing to spend the time to learn what
appeared to them exotically abstract. One day, in 1981, I told D. Harel about my failure in
recruiting partners for this project. I told him about my discussions with J. Stavi, and I
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sketched to him to use of the Tree Lemma. But David was busy with other research projects.
Nevertheless, somehow our discussion made him think about all this, which led to [35]. He
finally published a beautiful journal paper, [36] in which he acknowledges our suggestion.

I Lesson 12. Do not underestimate the amount of work and ingenuity sometimes needed in
applying a clean abstract theorem to a concrete problem.

I Lesson 13. It turns out that it is sometimes easier to reinvent the wheel for special
applications.

More recently, while applying logic to graph polynomials, the Tree Lemma appeared
again: first in my work with B. Godlin and E. Katz, [28], and then, while trying to turn the
abstract result of [28] into a concrete result, in my work with I. Averbouch and B. Godlin
to [2].

The Fundamental Problem of Database Design

The big problem of database design is the choice of the basic relations and the development
of a restructuring technology. It does not matter whether we are in the Entity-Relationship
model or the Relational Model of Database. There are many attempts to formulate criteria
for a good choice of basic relations, some of them heuristical, some of them with a solid body
of techniques, theorems and algorithms. Normal form theory is widely taught and popular
because it lends itself readily to exam problems. But the last word in the design of databases
has not been said. Many databases were designed fifty years ago, have become old-fashioned
and have to be converted into new designs without loss of information while preserving the
underlying constraints. I had three excellent students in Databases, V. Markowitz (PhD),
U. Rotics (MSc), and E. Ravve (PhD). My most quoted paper in databases, [70], needed
six years to get published, because the then editor of the IEEE Transactions of Software
Engineering lost the paper. Only when he was replaced, the new editor hastened to publish
it without sending us a referee report. I had never attended a database conference until I was
an invited speaker at the ER-conference in 1996. V. Markowitz was better known than me,
and at this conference many greeted me with “Ah, you were the supervisor of V. Markowitz”.
I naively thought that the impact of one’s work was a function solely of one’s results. This
may still be true in the very long run, and the way my work is quoted in monographs may
attest to this, but it is definitely wrong in the short run.

I Lesson 14. Unfortunately, you have to promote yourself by personally reporting about
your work. People only read results of which they have heard before.

Horn Formulas

Horn formulas are well-known in Model Theory because they are preserved under various
product constructions, cf. [10]. Product constructions are important for the algebraists
(universal and other) but rarely occur in Computer Science. I encountered Horn formulas in
Computer Science (not under this name) first in my discussions with C. Beeri about database
dependencies. I also encountered them in the algebraic specification of data types, [47], a
then very promising field of research which did not bring the results its proponents hoped for,
[29, 30, 20]. And then Horn formulas started to play a central rôle in Logic Programming
and rule-based reasoning. Trained as a model theorist, I started to ask myself why Horn
formulas matter in Computer Science. In Spring 1982 I taught a course where we discussed
the satisfiability problem for Horn clauses. I showed to my students that it was solvable in
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polynomial (cubic) time and asked the students to come up with an algorithm which runs in
less than cubic time. Oded Goldreich, then a graduate student, gave an O(n lgn)-algorithm.
This inspired Alon Itai and me to design a linear time algorithm. We did not think then
that it this was such an important or particularly difficult result, so we did not rush into
publication. A preprint was circulated in May 1982, [38], containing the result, but the
main thrust of the paper was in proposing and analyzing a complexity measure for logic
programming based on unit resolution and unification steps.

I Theorem 4 (A. Itai and JAM, [38]).
Propositional HornSat is solvable in linear time.

The paper was finally published only in 1987, [39], because the referees disagreed and gave
contradictory recommendations: one wanted more details in the motivation and background
material, while the other recommended cutting it. As a result, the paper was reworked, and
most of the credit for the linear time algorithm went to W. Dowling and J. Gallier, [19].
I Lesson 15. What may look as an exercise to you may still be an important result for
others.

My answer to why Horn formulas matter in Computer Science may be found in [49], and
my early advocating of the use of model theoretic methods in Computer Science in [55] and
in [58].

Finite Model Theory

It took me a while to really grasp why the restriction to finite models in databases was
such an important issue. In [54, 68] I tried to characterize database dependencies using
preservation theorems. I knew from my previous work that the interpolation theorems of
first-order logic fail when we look at finite models only. But I did not realize then, and had
to learn it from Y. Gurevich that the classical preservation theorems also fail. A notable
exception of these failures is B. Rossman’s Homomorphism Preservation Theorem, [77]. It
remains open, whether K. Compton’s Preservation Theorem for classes of structures closed
under disjoint union and taking of components, [12], has an analogue for finite structures.

I was aware of Fagin’s characterization of NP using existential second-orderlogic, but
only when M. Vardi and N. Immermann proved their characterization of P, I realized that
they had actually proved some kind of Lindström Theorem in terms of Complexity Theory.

It took me a while to understand in depth that two ideas of early Model Theory, mostly
neglected in logic monographs before 1985 with the exception of D. Monk’s [71], would
be pervasive in applications of Model Theory to Computer Science and Combinatorics:
Ehrenfeucht-Fraïssé games and Feferman-Vaught-type Theorems, cf. [60].

My own dabblings in Finite Model Theory were first concerned, with moderate success,
in explaining generalized quantifiers in terms of oracle computations and in trying to
capture relativized complexity classes by using suitably chosen generalized quantifiers, cf. [66].
However, the use of oracles in low complexity classes depends subtly on the exact way oracles
are accessed, cf. [7], and my treatment of the subject remained sketchy.

Monadic Second-Order Logic

Monadic Second-Order Logic over arbitrary structures is much stronger than First-Order
Logic, and its semantics inherits problems of set theory. In contrast to this, over finite
structures, Monadic Second-Order Logic seems natural and manageable. In 1995 Bruno
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Courcelle visited the Technion and his visit was the beginning of an intense collaboration. B.
Courcelle’s book with J. Engelfriet, [13], gives a full account of the use of Monadic Second-
Order Logic via a language theoretic approach. My own work in this direction started with
Y. Pnueli, A. Pnueli’s nephew, with whom I proved a hierarchy theorem for Second-Order
Logic over finite structures: Let AAm,n be the class of properties of structures definable in
Second-Order Logic with m alternations of second-order quantifiers using relation variables
of arity at most n.

I Theorem 5 (JAM and Y. Pnueli, [65]). The hierarchy formed by AAm,n is strict.

In this period I had three PhD students: U. Rotics, E. Ravve and G. Kogan, working
with me in three different directions: With E. Ravve I tried to find applications of Feferman-
Vaught-like theorems to system verification, a project which gave limited success due to
complexity limitations, and the fact that we did not work out a real life example. U. Rotics,
my former student in Databases, approached me, after working for several years in industry,
with ideas on how to generalize tree-width of graphs. Finally, G. Kogan , a new immigrant
from the former Soviet Union, came to my colleague M. Kaminski and me with ideas on
how to compute permanents of special classes of matrices, see [41]. Unfortunately, he was
not able to complete the necessary non-mathematical requirements and failed to turn his
excellent work into an orderly PhD. With U. Rotics we discovered independently the notion
of clique-width introduced by B. Courcelle, J. Engelfriet and G. Rozenberg in [14] and further
developed in [18], which led to [15, 16, 17].

I Theorem 6 (B. Courcelle, JAM and U. Rotics). Let CW (k) be the class of graphs G of
clique-width at most k, and Φ denote a decision problem, optimization problem or counting
problem, or even a graph polynomial, which is definable in Monadic Second-Order Logic.
Then Φ can be solved on graphs in CK(k) is polynomial time.

When we proved this, we had to assume that the graph G was given together with its
parse-tree witnessing its clique-width. However, this assumtion can be eliminated using
results of R. Seymour and S. Oung [75, 74].

Graph Polynomials and Knot Theory

G. Kogan inspired me to apply the techniques developed in [17] to the computation of
permanents. Let M be an (n × n)-matrix over some field F. M is orthogonal over F if
MM t = I. M has rank at most k over F if it has at most k rows (columns) which are linearily
independent. M has tree-width at most k if the graph GM = ([n], EM ) has tree-width at
most k, where (i, j) ∈ EM iff mij 6= 0.

I Theorem 7. Let F be any field.
A. Barvinok [4] If M has rank at most k, per(M) can be computed in polynomial time,

where the constants depend on k.
JAM, 1997, cf. [17] If M has tree-width at most k, per(M) can be computed in polynomial

time, where the constants depend on k.
G. Kogan, [41] If F has characteristic 3, and M is orthogonal over F, per(M) can be

computed in polynomial time.

I clearly felt that my result on permanents had little to do with permanents and I was
looking for other applications of the techniques developed in [17]. While on sabbatical in
Zurich, I met V. Turaev and told him about my result. He suggested I should try to apply
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these techniques to the Jones polynomial in Knot Theory. I spent a year learning Knot
Theory, especially knot polynomials and the Tutte polynomial which led to [59, 46, 61, 6].

A knot diagram is a planar signed graph. Its size is the number of crossings. If the knot
diagram is alternating, it can be represented by an unsigned graph. The tree-width of signed
graph is the same as the tree-width of the underlying unsigned graph. F. Jaeger, [40], showed
that the Jones polynomial of an alternating knot diagram is essentially the Tutte polynomial.

I Theorem 8. Let G be a graph and D be a knot diagram.
A. Andrzejak [1], S. Noble [73] If G is of tree-width at most k the Tutte polynomial can

be computed in polynomial time and is FPT (fixed parameter tractable). The same holds
for the Jones polynomial of alternating knots.

JAM, [59, 61] If D is a (not necessarily alternating) knot diagram of tree-width at most k
the Jones polynomial can be computed in polynomial time and is FPT (fixed parameter
tractable).

This led me to study more graph polynomials with the ambitious goal of developing a
general framework in which graph polynomials can be compared, cf. [63].
I Lesson 16. Do not restrict your supervising of PhD students to your own predefined topics.

Back to categoricity

In 2005 the CSL conference was held in Oxford. It was the first CSL conference after I was
elected president of EACSL. B. Zilber, an old friend from the times I worked in Model Theory
on the finite axiomatizability of categorical theories, was now professor of Mathematical
Logic in Oxford. Using the occasion, I went to see B. Zilber. While I was explaining to him
my work on graph polynomials, he noticed that my examples of graph polynomials occurred
as size functions of finite approximations in totally categorical theories. I could not believe
what he told me! Instead of attending the CSL lectures we started to explore this further,
and indeed, it worked. We began to work out a general theory of graph polynomials using
model theoretic methods which resulted in the papers [69, 42, 43].

My scientific trip which started in Model Theory went far afield, to Databases, Logic
Programming, Algorithmics and Complexity, only to return me to my origins. Now I work in
applications of Model Theory to Finite Combinatorics. In January 2009 M. Grohe and I have
organized a special session, Model Theoretic Methods in Finite Combinatorics, at the Joint
AMS-ASL meeting in Washington, D.C. The book [31] is the result of this special session.

Giving Credit

My narrative mentions several time the issue of giving credit to others. Clearly, it is not
possible to remember precisely and all the time who or what inspired us to get our research
results. Our memory is not reliable and conversations with colleagues which do not affect our
work immediately tend to be forgotten. I have sinned on these accounts, and so have most of
us. A bit of concerted introspection, however, helps a lot in avoiding careless omissions.
I Lesson 17. One cannot be careful enough in giving credit.

Logicians and Computer Scientists

Anthropologists study humans and their cultural systems consisting of people sharing a
purpose and certain tools and values. Cultural systems are well defined objects of study
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which were adapted by R.L. Wilder in [82] to the study of the evolution of mathematical
concepts. Professional organisations, both of the logicians and the emerging community of
computer scientists, had difficulties in acknowledging the relevance of Logic to Computer
Science from the point of view of their respective disciplines.

On a personal level, when I was hired in 1980 by the Technion in Haifa, I was met with
great suspicion, in spite of or because of the rôle logic played in Israel. The three founding
fathers of Computer Science in Israel, M. Rabin, E. Shamir and S. Even, all understood
the relevance of logic to Computer Science, but those coming from the culture of Electrical
Engineering did not. The establishment of LiCS as an IEEE conference came as a complete
surprise for them.

On a more global scale, in these early years neither the Association of Symbolic Logic,
nor its German (rather German language) counterpart the DVMLG, showed genuine interest
in the new partnership of Logic and Computer Science. Both the LiCS and CSL conferences
were founded in 1986 and 1987 respectively because they had to create their own research
community based on this partnership. In the last twenty or so years this partnership has
thrived and spawned many new subcommunities, some of them concerned with foundational
questions, but many using logical tools for genuine computer engineering disciplines much
like calculus and differential equations are used in traditional engineering disciplines.

My own involvement in scientific organizations was within EACSL, LiCS and the German
Logic Association (DVMLG). I served as vice-president and president of EACSL from 2002
until 2010. I also served on the board of DVMLG in the same period. I had myself several
goals set to be realized during my terms:

To strengthen the cooperation between LiCS and EACSL;
To increase the visibility of EACSL;
To increase the control of the scientists over their publication media;
To further acceptance of Logic for Computer Science also as part of traditional Logic;
To strengthen European activities of DVMLG.

I am happy to say that a good part of this agenda was realized. During my time
the Ackermann Award was created;
Cooperation between LiCS and EACSL was firmly established;
The CSL proceedings moved finally from Springer to LIPIcs;
The journal Mathematical Logic Quarterly became formally affiliated with DVMLG;
Logic in Computer Science is now well represented on the board of DVMLG;
Cooperation between EACSL and CiE (Computing in Europe) and KGS (Kurt Gödel
Society) are well established;
DVMLG held its first joint meeting with the Polish Logic Society in 2010.

Today the importance of logic for computer science seems to be well recognized and
the Turing Awards of M. Rabin and D. Scott (Automata Theory), A. Pnueli (Temporal
Logic) and E. Clark, A. Emerson and J. Sifakis (Model Checking) for the development of
verification tools testify this. I said, “seems to be well recognized”. The truth is that today
many Computer Science Departments in which logic-based courses were a compulsory part
of the curriculum tend to abandon teaching these courses. My suspicion is that this is partly
due to the fact that we have not adapted the syllabi of our courses to the true needs of
Computer Science. We tend to teach logic still in the tradition of the book by D. Hilbert and
W. Ackermann [37] telling the same old stories about Hilbert’s program, the paradoxes, and
how K. Gödel put an end to the misguided hopes to use logic as the ultimate foundation of
mathematics. I have detailed my thoughts about this in [50].
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The standard course Linear Algebra evolved in the 1950s as an answer to physicists’
needs providing them with the mathematical tools for quantum mechanics. We have yet to
design a convincing logic course as an answer to the true needs of computer scientists and
engineers. But we have to do this fast and in a concerted effort before it is too late and all
our achievements are turned into well-used but ill-understood tools of the trade. I personally
hope that the Turing Centenary will serve on an international scale as a reminder to the
scientific public at large that we logicians still have something to offer to advance Computer
(Computing) Science still further.
I Lesson 18. In your basic courses, show what one can do, and show its limitations, but do
not speak mostly about the dashed hopes of the past.

Future Challenges

The scientific community at large, and we logicians in particular, face several challenges.
Technological and economic changes lead to radical changes in research and teaching. Both
are threatened by short-range commercial interests and the effects of mass production in
education and research. Our traditional models of producing young scientists and engineers,
and of producing and evaluating research do not scale. What proved itself over the centuries
in small elitist communities fails to function at the current scale of scientific and technological
activities. Knowledge used to be the source of enlightenment and emancipation. Therefore it
was meant to be shared by large parts of mankind. Knowledge is the basis for being largely
autonomous individuals. Today knowledge tends to be delegated to the CLOUD, and access
to the CLOUD will be controlled by few. Education increasingly emphasizes the ability to
merely use techniques rather than to understand them thoroughly. The slow disappearence
of logic-based courses is only a symptom. Delegating knowledge to the CLOUD endangers
our freedom and maturity.

Enlightenment is man’s emergence from his self-imposed immaturity. Immaturity
is the inability to use one’s understanding without guidance from another. This
immaturity is self-imposed when its cause lies not in lack of understanding, but in
lack of resolve and courage to use it without guidance from another. Sapere Aude!
[dare to know] "Have courage to use your own understanding!"–that is the motto of
enlightenment.

E. Kant, "An Answer to the Question: What is Enlightenment?" (1784)

I do not know whether we will ever reach mature adulthood. Many things in our
experience convince us that the historical event of the Enlightenment did not make
us mature adults, and we have not reached that stage yet. However, it seems to me
that a meaning can be attributed to that critical interrogation on the present and
on ourselves which Kant formulated by reflecting on the Enlightenment. It seems to
me that Kant’s reflection is even a way of philosophizing that has not been without
its importance or effectiveness during the last two centuries. The critical ontology
of ourselves has to be considered not, certainly, as a theory, a doctrine, nor even as
a permanent body of knowledge that is accumulating; it has to be conceived as an
attitude, an ethos, a philosophical life in which the critique of what we are is at one
and the same time the historical analysis of the limits that are imposed on us and an
experiment with the possibility of going beyond them.

M. Foucault "What is Enlightenment ?" ("Qu’est-ce que les Lumières?"),
in Rabinow (P.), ed., The Foucault Reader, Pantheon Books, 1984, pp. 32-50.
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Being an “autonomous individual” an utopia, but striving to approximate being one is still a
noble task.

Even in teaching mathematics we can at least attempt to teach students the flavour
of freedom and critical thought, and to get them used to the idea of being treated as
humans empowered with the ability to understand.

Roger Godement, Cours d’Algèbre, Hermann, Paris 1966 (my translation)
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