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Preface

The papers in this volume were presented at the 10th Innovations in Theoretical Computer
Science (ITCS 2019) conference. The conference was held at UC San Diego in San Diego,
CA, USA, January 10-12, 2019, and co-located with SODA 2019. ITCS seeks to promote
research that carries a strong conceptual message, for instance, introducing a new concept
or model, opening a new line of inquiry within traditional or cross-interdisciplinary areas,
introducing new techniques, or making novel connections between existing areas and ideas.
The conference format is single-session and aims to promote the exchange of ideas between
different areas of theoretical computer science and with other disciplines. The call for papers
welcomed all submissions, whether aligned with current theory of computation research
directions or deviating from them. A record 202 submissions were received. Of these, the
program committee selected 66 papers. I would like to thank the authors of all submissions,
whether accepted or not, for their interest in ITCS.

The program committee consisted of 39 members (plus the chair): Scott Aaronson, UT
Austin; Eric Blais, Waterloo; Jeremiah Blocki, Purdue; Simina Branzei, Purdue; Bernard
Chazelle, Princeton University; Amit Daniely, Hebrew University; Sanjoy Dasgupta, UC San
Diego; Zeev Dvir, Princeton University; Uriel Feige, Weizmann; Michal Feldman, Tel-Aviv
University; Rong Ge, Duke; Venkatesan Guruswami, CMU; Moritz Hardt, UC Berkeley;
Russell Impagliazzo, UC San Diego; Brendan Juba, Washington University St Louis; Varun
Kanade, University of Oxford; Eyal Kushilevitz, Technion; Yingyu Liang, University of
Wisconsin - Madison; Shachar Lovett, UC San Diego; Sepideh Mahabadi, TTIC; Yishay
Mansour, Tel-Aviv University; Rafael Pass, Cornell University; Sofya Raskhodnikova, Boston
University; Dana Ron, Tel-Aviv University; Ron Rothblum, Technion; Aviad Rubinstein,
Stanford University; Aaron Sidford, Stanford University; Yaron Singer, Harvard University;
Mohit Singh, Georgia Tech; Adam Smith, Boston University; Jacob Steinhardt, UC Berkeley;
Madhur Tulsiani, TTIC; Vinod Vaikuntanathan, MIT; Thomas Vidick, Caltech; Matt
Weinberg, Princeton University; Ryan Williams, MIT; Mary Wootters, Stanford University;
Mihalis Yannakakis, Columbia University; Shengyu Zhang, CUHK and Tencent. I wish
to express my heartfelt thanks to them for agreeing to join the committee as well as for
investing a great deal of time and effort to evaluate the submissions. I am also grateful to
the many subreviewers who assisted with the reviewing process. The local organizer was
Shachar Lovett from UC San Diego. I would like to thank him very much for his service.
I’m also grateful to Umesh Vazirani, chair of the ITCS Steering Committee, and to Thomas
Vidick, who helped with the website among other things. Finally, I would like to thank all
the presenters and the audience at ITCS for making ITCS a wonderful experience.

Avrim Blum
ITCS 2019 Program Chair
Toyota Technological Institute at Chicago (TTIC)
Chicago, IL USA
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Abstract
In submodular k-secretary problem, the goal is to select k items in a randomly ordered input so
as to maximize the expected value of a given monotone submodular function on the set of selected
items. In this paper, we introduce a relaxation of this problem, which we refer to as submodular
k-secretary problem with shortlists. In the proposed problem setting, the algorithm is allowed to
choose more than k items as part of a shortlist. Then, after seeing the entire input, the algorithm
can choose a subset of size k from the bigger set of items in the shortlist. We are interested in
understanding to what extent this relaxation can improve the achievable competitive ratio for
the submodular k-secretary problem. In particular, using an O(k) sized shortlist, can an online
algorithm achieve a competitive ratio close to the best achievable offline approximation factor for
this problem? We answer this question affirmatively by giving a polynomial time algorithm that
achieves a 1− 1/e− ε−O(k−1) competitive ratio for any constant ε > 0, using a shortlist of size
ηε(k) = O(k). This is especially surprising considering that the best known competitive ratio (in
polynomial time) for the submodular k-secretary problem is (1/e−O(k−1/2))(1− 1/e) [20].

The proposed algorithm also has significant implications for another important problem of
submodular function maximization under random order streaming model and k-cardinality con-
straint. We show that our algorithm can be implemented in the streaming setting using a memory
buffer of size ηε(k) = O(k) to achieve a 1 − 1/e − ε − O(k−1) approximation. This result sub-
stantially improves upon [28], which achieved the previously best known approximation factor of
1/2 + 8 × 10−14 using O(k log k) memory; and closely matches the known upper bound for this
problem [24].
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1:2 Submodular Secretary Problem with Shortlists

1 Introduction

In the classic secretary problem, n items appear in random order. We know n, but don’t
know the value of an item until it appears. Once an item arrives, we have to irrevocably
and immediately decide whether or not to select it. Only one item is allowed to be selected,
and the objective is to select the most valuable item, or perhaps to maximize the expected
value of the selected item [11, 15, 23]. It is well known that the optimal policy is to observe
the first n/e items without making any selection and then select the first item whose value
is larger than the value of the best item in the first n/e items [11]. This algorithm, given
by [11], is asymptotically optimal, and hires the best secretary with probability at least 1/e.
Hence it is also 1/e-competitive for the expected value of the chosen item, and it can be
shown that no algorithm can beat 1/e-competitive ratio in expectation.

Many variants and generalizations of the secretary problem have been studied in the
literature, see e.g., [3, 32, 30, 33, 21, 4]. [21, 4] introduced a multiple choice secretary problem,
where the goal is to select k items in a randomly ordered input so as to maximize the sum of
their values; and [21] gave an algorithm with an asymptotic competitive ratio of 1−O(1/

√
k).

Thus as k → ∞, the competitive ratio approaches 1. Recent literature studied several
generalizations of this setting to multidimensional knapsacks [26], and proposed algorithms
for which the expected online solution approaches the best offline solution as the knapsack
sizes become large (e.g., [13, 10, 2]).

In another variant of multiple-choice secretary problem, [6] and [16] introduce the submod-
ular k-secretary problem. In this secretary problem, the algorithm again selects k items, but
the value of the selected items is given by a monotone submodular function f . The algorithm
has value oracle access to the function, i.e., for any given set T , an algorithm can query
an oracle to find its value f(T ) [31]. The algorithm can select at most k items, a1 · · · , ak,
from a randomly ordered sequence of n items. The goal is to maximize f({a1, · · · , ak}).
Currently, the best result for this setting is due to [20], who achieve a 1/e-competitive ratio in
exponential time, or 1

e (1− 1
e ) in polynomial time. In this case, the offline problem is NP-hard

and hard-to approximate beyond the factor of 1− 1/e achieved by the greedy algorithm [27].
However, it is unclear if a competitive ratio of 1− 1/e can be achieved by an online algorithm
for the submodular k-secretary problem even when k is large.

Our model: secretary problem with shortlists

In this paper, we consider a relaxation of the secretary problem where the algorithm is allowed
to select a shortlist of items that is larger than the number of items that ultimately need
to be selected. That is, in a multiple-choice secretary problem with cardinality constraint
k, the algorithm is allowed to choose more than k items as part of a shortlist. Then, after
seeing the entire input, the algorithm can choose a subset of size k from the bigger set of
items in the shortlist.

This new model is motivated by some practical applications of secretary problems, such
as hiring (or assignment problems), where in some cases it may be possible to tentatively
accept a larger number of candidates (or requests), while deferring the choice of the final
k-selections to after all the candidates have been seen. Since there may be a penalty for
declining candidates who were part of the shortlist, one would prefer that the shortlist is not
much larger than k.

Another important motivation is theoretical: we wish to understand to what extent
this relaxation of the secretary problem can improve the achievable competitive ratio. This
question is in the spirit of several other methods of analysis that allow an online algorithm
to have additional power, such as resource augmentation [18, 29].
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The potential of this relaxation is illustrated by the basic secretary problem, where the
aim is to select the item of maximum value among randomly ordered inputs. There, it is
not difficult to show that if an algorithm picks every item that is better than the items seen
so far, the true maximum will be found, while the expected number of items picked under
randomly ordered inputs will be O(logn). Further, we show that this approach can be easily
modified to get the maximum with 1− ε probability while picking at most O(ln(1/ε)) items
for any constant ε > 0. Thus, with just a constant sized shortlist, we can break the 1/e
barrier for the secretary problem and achieve a competitive ratio that is arbitrarily close to 1.

Motivated by this observation, we ask if a similar improvement can be achieved by relaxing
the submodular k-secretary problem to allow a shortlist. That is, instead of choosing k items,
the algorithm is allowed to chose η(k) items as part of a shortlist, for some function η; and
at the end of all inputs, the algorithm chooses k items from the η(k) selected items. Then,
what is the relationship between η(·) and the competitive ratio for this problem? Can we
achieve a solution close to the best offline solution when η(k) is not much bigger than k, for
example when η(k) = θ(k)?

In this paper, we answer this question affirmatively by giving a polynomial time algorithm
that achieves 1− 1/e− ε−O(k−1) competitive ratio for the submodular k-secretary prob-
lem using a shortlist of size η(k) = O(k). This is surprising since 1−1/e is the best achievable
approximation (in polynomial time) for the offline problem. Further, for some special cases
of submodular functions, we demonstrate that an O(1) shortlist allows us to achieve a 1− ε
competitive ratio. These results demonstrate the power of (small) shortlists for closing the
gap between online and offline (polynomial time) algorithms.

We also discuss connections of secretary problem with shortlists to the related streaming
settings. While a streaming algorithm does not qualify as an online algorithm (even when a
shortlist is allowed), we show that our algorithm can in fact be implemented in a streaming
setting to use η(k) = O(k) memory buffer; and our results significantly improve the available
results for the submodular random order streaming problem.

1.1 Problem Definition
We now give a more formal definition. Items from a set U = {a1, a2, . . . , an} (pool of items)
arrive in a uniformly random order over n sequential rounds. The set U is apriori fixed but
unknown to the algorithm, and the total number of items n is known to the algorithm. In
each round, the algorithm irrevocably decides whether to add the arriving item to a shortlist
A or not. The algorithm’s value at the end of n rounds is given by

ALG = E[ max
S⊆A,|S|≤k

f(S)]

where f(·) is a monotone submodular function. The algorithm has value oracle access to this
function. The optimal offline utility is given by

OPT := f(S∗), where S∗ = arg max
S⊆[n],|S|≤k

f(S).

We say that an algorithm for this problem achieves a competitive ratio c using shortlist of
size η(k), if at the end of n rounds, |A| ≤ η(k) and ALG

OPT ≥ c.
Given the shortlist A, since the problem of computing the solution arg maxS⊆A,|S|≤k f(S)

can itself be computationally intensive, our algorithm will also track and output a subset
A∗ ⊆ A, |A∗| ≤ k. We will lower bound the competitive ratio by bounding f(A∗)

f(S∗) .

ITCS 2019
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The above problem definition has connections to some existing problems studied in the
literature. The well-studied online submodular k-secretary problem described earlier is
obtained from the above definition by setting η(k) = k, i.e., it is same as the case when no
extra items can be selected as part of a shortlist. Another related problem is submodular
random order streaming problem studied in [28]. In that problem, items from a set U arrive
online in random order and the algorithm aims to select a subset S ⊆ U , |S| ≤ k in order to
maximize f(S). The streaming algorithm is allowed to maintain a buffer of size η(k) ≥ k.
However, the streaming problem is distinct from the submodular k-secretary problem with
shortlists in several important ways. On one hand, since an item previously selected in
the memory buffer can be discarded and replaced by a new items, a memory buffer of size
η(k) does not imply a shortlist of size at most η(k). On the other hand, in the secretary
setting, we are allowed to memorize/store more than η(k) items without adding them to the
shortlist. Thus an algorithm for submodular k-secretary problem with shortlist of size η(k)
may potentially use a buffer of size larger than η(k). Our algorithms, as described in the
paper, do use a large buffer. But we will show those algorithms can in fact be implemented
to use only η(k) = O(k) buffer, thus obtaining matching results for the streaming problem.

1.2 Our Results
Our main contributation is an online algorithm for the submodular k-secretary problem with
shortlists that, for any constant ε > 0, achieves a competitive ratio of 1− 1

e − ε−O( 1
k ) with

η(k) = O(k). Note that for submodular k-secretary problem there is an upper bound of
1 − 1/e on the achievable aproximation factor, even in the offline setting, and this upper
bound applies to our problem for arbitrary size η(·) of shortlists. On the other hand for
online monotone submodular k-secretary problem, i.e., when η(k) = k, the best competitive
ratio achieved in the literature is 1/e−O(k−1/2) [20]. Remarkably, with only an O(k) size
shortlist, our online algorithm is able to achieve a competitive ratio that is arbitrarily close
to the offline upper bound of 1− 1/e.

In the theorem statements below, big-Oh notation O(·) is used to represent asymptotic
behavior with respect to k and n. We assume the standard value oracle model: the only
access to the submodular function is through a black box returning f(S) for a given set S,
and each such query can be done in O(1) time.

I Theorem 1. For any constant ε > 0, there exists an online algorithm (Algorithm 2)
for the submodular k-secretary problem with shortlists that achieves a competitive ratio of
1− 1

e − ε−O( 1
k ), with shortlist of size ηε(k) = O(k). Here, ηε(k) = O(2poly(1/ε)k).

Specifically, we have ηε(k) =c log(1/ε)
ε2

( 1
ε6 log(1/ε)
1
ε4 log(1/ε)

)
k for some constant c.

Further, we give an efficient implementation of Algorithm 2 that uses a memory buffer of
size at most ηε(k) to get the following result for the problem of submodular random order
streaming problem described in the previous section.

I Theorem 2. For any constant ε ∈ (0, 1), there exists an algorithm for the submodular
random order streaming problem that achieves 1− 1

e − ε−O( 1
k ) approximation to OPT while

using a memory buffer of size at most ηε(k) = O(k). Also, the number of objective function
evaluations for each item, amortized over n items, is O(1 + k2

n ).

The above result significantly improves over the state-of-the-art results in random order
streaming model [28], which are an approximation ratio of 1

2 + 8× 10−14 using a memory of
size O(k log k). In addition it closely matches the known upper bound for this problem [24].
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In [24], the authors demonstrate the existence of a monotone sumbodular function f such
that any constant-pass algorithm that finds a (1+ε)(1−1/k)k approximation with probability
at least 0.99 requires Ω(n/k2) space in random order streaming model.

Also note from Theorem 2 that our algorithm can be implemented with running time
linear in n, the size of the input (O(n+ k2) time to be precise). This is significant as, until
recently, it was not known if there exists a linear time algorithm achieving a 1 − 1/e − ε
approximation even for the offline monotone submodular maximization problem under
cardinality constraint[25]. Another interesting aspect of our algorithm is that it is highly
parallel. Even though the decision for each arriving item may take time that is exponential
in 1/ε (roughly ηε(k)/k), it can be readily parallelized among multiple (as many as ηε(k)/k)
processors.

It is natural to ask whether these shortlists are, in fact, too powerful. Maybe they could
actually allow us to always match the best offline algorithm. We give a negative result in
this direction and show that even if we have unlimited computation power, for any function
η(k) = o(n), we can get no better than 7/8-competitive algorithm using a shortlist of size
η(k). Note that with unlimited computational power, the offline problem can be solved
exactly. This result demonstrates that having a shortlist does not make the online problem
too easy - even with a shortlist (of size o(n)) there is an information theoretic gap between
the online and offline problem.

I Theorem 3. No online algorithm (even with unlimited computational power) can achieve a
competitive ratio better than 7/8 + o(1) for the submodular k-secretary problem with shortlists,
while using a shortlist of size η(k) = o(n).

Finally, for some special cases of monotone submodular functions, we can asymptotically
approach the optimal solution. The first one is the family of functions we call m-submdular.
A function f is m-submodular if it is submodular and there exists a submodular function F
such that for all S:

f(S) = max
T⊆S,|T |≤m

F (T ) .

I Theorem 4. If f is an m-submodular function, there exists an online algorithm for the
submodular k-secretary problem with shortlists that achieves a competitive ratio of 1− ε with
shortlist of size ηε,m(k) = O(1). Here, ηε,m(k) = (2m+ 3) ln(2/ε).

A proof of Theorem 4 along with the relevant algorithm appear in the full version [1].
Another special case is monotone submodular functions f satisfying the following property:

f({a1, · · · , ai + α, · · · , ak}) ≥ f({a1, · · · , ai, · · · , ak}), for any α > 0 and 1 ≤ i ≤ k. We
can show that the algorithm by [21] asymptotically approaches optimal solution for such
functions, but we omit the details.

1.3 Comparison to related work
We compare our results (Theorem 1 and Theorem 2) to the best known results for submodular
k-secretary problem and submodular random order streaming problem, respectively.

The best known algorithm so far for submodular k-secretary problem is by [20], with
asymptotic competitive ratio of 1/e − O(k−1/2). In their algorithm, after observing each
element, they use an oracle to compute optimal offline solution on the elements seen so far.
Therefore it requires exponential time in n. The best competitive ratio that they can get in
polynomial time is 1

e (1− 1
e )−O(k−1/2). In comparison, by using a shortlist of size O(k) our

ITCS 2019



1:6 Submodular Secretary Problem with Shortlists

Table 1 submodular k-secretary problem settings.

#selections Comp ratio Running time Comp ratio in poly(n)
[20] k 1/e−O(k−1/2) exp(n) 1

e
(1− 1/e)

this Oε(k) 1− 1/e− ε−O(1/k) Oε(n) 1− 1/e− ε−O(1/k)

Table 2 submodular random order streaming problem.

Memory size Approximation ratio Running time update time
[17] O(k) 0.19 O(n) O(1)
[28] O(k log k) 1/2 + 8× 10−14 O(n log k) O(log k)
[5] O( 1

ε
k log k) 1/2− ε poly(n, k, 1/ε) O( 1

ε
log k)

this Oε(k) 1− 1/e− ε−O(1/k) Oε(n+ k2) amortized Oε(1 + k2

n
)

(polynomial time) algorithm achieves a competitive ratio of 1− 1
e − ε−O(k−1). In addition to

substantially improving the above-mentioned result for submodular k-secretary problem, this
closely matches the best possible offline approximation ratio of 1− 1/e in polynomial time.
Further, our algorithm is linear time. Table 1 summarizes this comparison. Here, Oε(·) hides
the dependence on the constant ε. The hidden constant in Oε(.) is c log(1/ε)

ε2

( 1
ε6 log(1/ε)
1
ε4 log(1/ε)

)
for

some absolute constant c.
In the streaming setting, [9] provided a single pass streaming algorithm for monotone

submodular function maximization under k-cardinality constraint, that achieves a 0.25
approximation under adversarial ordering of input. Their algorithm requires O(1) function
evaluations per arriving item and O(k) memory. The currently best known approximation
under adversarial order streaming model is by [5], who achieve a 1/2− ε approximation with
a memory of size O( 1

εk log k). There is an 1/2 + o(1) upper bound on the competitive ratio
achievable by any streaming algorithm for submodular maximization that only queries the
value of the submodular function on feasible sets (i.e., sets of cardinality at most k) while
using o(n) memory [28].

[17] initiated the study of submodular random order streaming problem. Their algorithm
uses O(k) memory and a total of n function evaluations to achieve 0.19 approximation.
The state of the art result in the random order input model is due to [28] who achieve a
1/2 + 8× 10−14 approximation, while using a memory buffer of size O(k log k).

Table 2 provides a detailed comparison of our result in Theorem 2 to the above-mentioned
results for submodular random order streaming problem, showing that our algorithm sub-
stantially improves the existing results for most aspects of the problem.

There is also a line of work studying the online variant of the submodular welfare
maximization problem (e.g., [22, 7, 19]). In this problem, the items arrive online, and each
arriving item should be allocated to one of m agents with a submodular valuation functions
wi(Si) where Si is the subset of items allocated to i-th agent). The goal is to partition
the arriving items into m sets to be allocated to m agents, so that the sum of valuations
over all agents is maximized. This setting is incomparable with the submodular k-secretary
problem setting considered here.

1.4 Organization
The rest of the paper is organized as follows. Section 2 describes our main algorithm
(Algorithm 2) for the submodular k-secretary problem with shortlists, and demonstrates that
its shortlist size is bounded by ηε(k) = O(k). In Section 3, we analyze the competitive ratio
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Algorithm 1 Algorithm for secretary with shortlist. (finding max online)
1: Inputs: number of items N , items in I = {a1, . . . , aN} arriving sequentially, δ ∈ (0, 1].
2: Initialize: A← ∅, u = nδ/2, M = −∞
3: L← 4 ln(2/δ)
4: for i = 1 to N do
5: if ai > M then
6: M ← ai
7: if i ≥ u and |A| < L then
8: A← A ∪ {ai}
9: end if
10: end if
11: end for
12: return A, and A∗ := maxi∈A ai

of this algorithm to prove Theorem 1. In Section 4, we provide an alternate implementation
of Algorithm 2 that uses a memory buffer of size at most ηε(k), in order to prove Theorem 2.
Finally, in Section 5, we provide a proof of our impossibility result stated in Theorem 3. The
proof of Theorem 4 along with the relevant algorithm can be found in the full version [1].

2 Algorithm description

Before giving our algorithm for submodular k-secretary problem with shortlists, we describe
a simple technique for (classic) secretary problem with shortlists that achieves a 1 − δ
competitive ratio using shortlists of size logarithmic in 1/δ. Recall that in the secretary
problem, the aim is to select an item with expected value close to the maximum among a pool
of items I = (a1, . . . , aN ) arriving sequentially in a uniformly random order. We will consider
the variant with shortlists, where we now want to pick a shortlist which contains an item with
expected value close to the maximum. We propose the following simple algorithm. For the
first nδ/2 rounds, don’t add any items to the shortlist, but just keep track of the maximum
value seen so far. For all subsequent rounds, for any arriving item i that has a value ai
greater than or equal to the maximum value seen so far, add it to the shortlist if number
of items added so far is less than or equal to L = 4 ln(2/δ). This algorithm is summarized
as Algorithm 1. Clearly, for constant δ, this algorithm uses a shortlist of size L = O(1).
Further, under a uniform random ordering of input, we can show that the maximum value
item will be part of the shortlist with probability 1− δ. (See Proposition 25 in Section 3.)

There are two main difficulties in extending this idea to the submodular k-secretary
problem with shortlists. First, instead of one item, here we aim to select a set S of k items
using an O(k) length shortlist. Second, the contribution of each new item i to the objective
value, as given by the submodular function f , depends on the set of items selected so far.

The first main concept we introduce to handle these difficulties is that of dividing the input
into sequential blocks that we refer to as (α, β) windows. Below is the precise construction
of (α, β) windows, for any postivie integers α and β, such that k/α is an integer.

We use a set of random variables X1, . . . , Xm defined in the following way. Throw n balls
into m bins uniformly at random. Then set Xj to be the number of balls in the jth bin. We
call the resulting Xj ’s a (n,m)-ball-bin random set.

ITCS 2019



1:8 Submodular Secretary Problem with Shortlists

Algorithm 2 Algorithm for submodular k-secretary with shortlist.
1: Inputs: set Ī = {ā1, . . . , ān} of n items arriving sequentially, submodular function f ,

parameter ε ∈ (0, 1].
2: Initialize: S0 ← ∅, R0 ← ∅, A← ∅, A∗ ← ∅, constants α ≥ 1, β ≥ 1 which depend on the

constant ε.
3: Divide indices {1, . . . , n} into (α, β) windows as prescribed by Definition 5.
4: for window w = 1, . . . , k/α do
5: for every slot sj in window w, j = 1, . . . , αβ do
6: Concurrently for all subsequences of previous slots τ ⊆ {s1, . . . , sj−1} of length
|τ | < α in window w, call the online algorithm in Algorithm 1 with the following inputs:

number of items N = |sj |+ 1, δ = ε
2 , and

item values I = (a0, a1, . . . , aN−1), with
a0 := max

x∈R1,...,w−1
∆(x|S1,...,w−1 ∪ γ(τ))

a` := ∆(sj(`)|S1,...,w−1 ∪ γ(τ)),∀` = 1, . . . , N − 1
where sj(`) denotes the `th item in the slot sj .

7: Let Aj(τ) be the shortlist returned by Algorithm 1 for slot j and subsequence τ .
Add all items except the dummy item 0 to the shortlist A. Let’s A(j) =

⋃
τ Aj(τ).

That is,

A← A ∪ (A(j) ∩ sj)

8: end for
9: After seeing all items in window w, compute Rw, Sw as defined in (3) and (4)

respectively.
10: A∗ ← A∗ ∪ (Sw ∩A)
11: end for
12: return A, A∗.

I Definition 5 ((α, β) windows). Let X1, . . . , Xkβ be a (n, kβ)-ball-bin random set. Divide
the indices {1, . . . , n} into kβ slots, where the j-th slot, sj , consists of Xj consecutive indices
in the natural way, that is, slot 1 contains the first X1 indices, slot 2 contains the next X2
indices, etc. Next, we define k/α windows, where window w consists of αβ consecutive slots,
in the same manner as we assigned slots.

Thus, the qth slot is composed of indices {`, . . . , r}, where ` = X1 + ... + Xq−1 + 1 and
r = X1 + ...+Xq. Further, if the ordered the input is ā1, . . . , ān, then we say that the items
inside the slot sq are ā`, ā`+1, . . . , ār. To reduce notation, when clear from context, we will
use sq and w to also indicate the set of items in the slot sq and window w respectively.

When α and β are large enough constants, some useful properties can be obtained from
the construction of these windows and slots. First, roughly α items from the optimal set S∗
are likely to lie in each of these windows; and further, it is unlikely that two items from S∗

will appear in the same slot. (These statements will be made more precise in the analysis
where precise setting of α, β in terms of ε will be provided.) Consequently, our algorithm
can focus on identifying a constant number (roughly α) of optimal items from each of these
windows, with at most one item coming from each of the αβ slots in a window. The core
of our algorithm is a subroutine that accomplishes this task in an online manner using a
shortlist of constant size in each window.
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To implement this task, we use a greedy selection method that considers all possible
α sized subsequences of the αβ slots in a window, and aims to identify the subsequence
that maximizes the increment over the ‘best’ items identified so far. More precisely, for any
subsequence τ = (s1, . . . , s`) of the αβ slots in window w, we define a ‘greedy’ subsequence
γ(τ) of items as:

γ(τ) := {i1, . . . , i`} (1)

where

ij := arg max
i∈sj∪R1,...,w−1

f(S1,...,w−1∪{i1, . . . , ij−1}∪{i})−f(S1,...,w−1∪{i1 . . . , ij−1}). (2)

In (2) and in the rest of the paper, we use shorthand S1,...,w to denote S1 ∪ · · · ∪ Sw, and
R1,...,w to denote R1 ∪ · · · ∪ Rw, etc. We also will take unions of subsequences, which we
interpret as the union of the elements in the subsequences. Here Rw is defined to be the
union of all greedy subsequences of length α, and Sw to be the best subsequence among
those. That is,

Rw = ∪τ :|τ |=αγ(τ) (3)

and

Sw = γ(τ∗), (4)

where

τ∗ := arg max
τ :|τ |=α

f(S1,...,w−1 ∪ γ(τ))− f(S1,...,w−1). (5)

Note that ij (refer to (2)) can be set as either an item in slot sj or an item from a previous
greedy subsequence in R1 ∪ · · · ∪Rw−1. The significance of the latter relaxation will become
clear in the analysis.

As such, identifying the sets Rw and Sw involves looking forward in a slot sj to find the
best item (according to the given criterion in (2)) among all the items in the slot. To obtain
an online implementation of this procedure, we use an online subroutine that employs the
algorithm (Algorithm 1) for the basic secretary problem with shortlists described earlier.
This online procedure will result in selection of a set Hw potentially larger than Rw, while
ensuring that each element from Rw is part of Hw with a high probability 1− δ at the cost of
adding extra log(1/δ) items to the shortlist. Note that Rw and Sw can be computed exactly
at the end of window w.

Algorithm 2 summarizes the overall structure of our algorithm. In the algorithm, for any
item i and set V , we define ∆f (i|V ) := f(V ∪ {i})− f(V ).

The algorithm returns both the shortlist A which we show to be of size O(k) in the
following proposition, as well as a set A∗ = ∪w(Sw ∩A) of size at most k to compete with
S∗. In the next section, we will show that E[f(A∗)] ≥ (1− 1

e − ε−O( 1
k ))f(S∗) to provide a

bound on the competitive ratio of this algorithm.

I Proposition 6. Given k, n, and any constant α, β and ε, the size of shortlist A selected by
Algorithm 2 is of size at most 4kβ

(
αβ
α

)
log(2/ε) = O(k).

Proof. For each window w = 1, . . . , k/α, and for each of the αβ slots in this window, lines 6
through 7 in Algorithm 2 runs Algorithm 1 for

(
αβ
α

)
times (for all α length subsequences).

By construction of Algorithm 1, for each run it will add at most L ≤ 4 log(2/ε) items to the
shortlist. Therefore, over all windows, Algorithm 2 adds at most k

α × αβ
(
αβ
α

)
L = O(k) items

to the shortlist. J
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3 Bounding the competitive ratio (Proof of Theorem 1)

In this section we show that for any ε ∈ (0, 1), Algorithm 2 with an appropriate choice of
constants α, β, achieves the competitive ratio claimed in Theorem 1 for the submodular
k-secretary problem with shortlists.

Recall the following notation defined in the previous section. For any collection of sets
V1, . . . , V`, we use V1,...,` to denote V1 ∪ · · · ∪ V`. Also, recall that for any item i and set V ,
we denote ∆f (i|V ) := f(V ∪ {i})− f(V ).

Proof overview

The proof is divided into two parts. We first show a lower bound on the ratio E[f(∪wSw)]/OPT
in Proposition 24, where Sw is the subset of items as defined in (4) for every window w. Later
in Proposition 27, we use the said bound to derive a lower bound on the ratio E[f(A∗)]/OPT,
where A∗ = A ∩ (∪wSw) is the subset of the shortlist returned by Algorithm 2.

Specifically, in Proposition 24, we provide settings of parameters α, β such that
E[f(∪wSw)] ≥

(
1− 1

e −
ε
2 −O( 1

k )
)
OPT. A central idea in the proof of this result is to

show that for every window w, given R1,...,w−1, the items tracked from the previous windows,
any of the k items from the optimal set S∗ has at least α

k probability to appear either in
window w, or among the tracked items R1,...,w−1. Further, the items from S∗ that appear
in window w, appear independently, and in a uniformly random slot in this window. (See
Lemma 15.) These observations allow us to show that, in each window w, there exists a
subsequence τ̃w of close to α slots, such that the greedy sequence of items γ(τ̃w) will be
almost “as good as” a randomly chosen sequence of α items from S∗. More precisely, denoting
γ(τ̃w) = (i1, . . . , it), in Lemma 19, for all j = 1, . . . , t, we lower bound the increment in
function value f(· · · ) on adding ij over the items in S1,...,w−1 ∪ i1,...,j−1 as:

E[∆f (ij |S1,...,w−1 ∪ {i1, . . . , ij−1})|T1,...,w−1, i1, . . . , ij−1]

≥ 1
k

(
(1− α

k
)f(S∗)− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
.

We then deduce (using standard techniques for the analysis of greedy algorithm for submodular
functions) that

E[
(

1− α

k

)
f(S∗)− f(S1,...,w−1 ∪ γ(τ̃w))|S1,...,w−1]

≤ e−t/k
((

1− α

k

)
f(S∗)− f(S1,...,w−1)

)
.

Now, since the length t of τ̃w is close to α (as we show in Lemma 21) and since Sw = γ(τ∗)
with τ∗ defined as the “best” subsequence of length α (refer to definition of τ∗ in (5)), we
can show that a similar inequality holds for Sw = γ(τ∗), i.e.,(

1− α

k

)
f(S∗)− E[f(S1,...,w−1 ∪ Sw)|S1,...,w−1]

≤ e−α/k
(
1− δ′

)((
1− α

k

)
f(S∗)− f(S1,...,w−1)

)
,

where δ′ ∈ (0, 1) depends on the setting of α, β. (See Lemma 23.) Then repeatedly applying
this inequality for w = 1, . . . , k/α, and setting δ, α, β appropriately in terms of ε, we can obtain
E[f(S1,...,W )] ≥

(
1− 1

e
− ε

2 −
1
k

)
f(S∗), completing the proof of Proposition 24.

However, a remaining difficulty is that while the algorithm keeps a track of the set Sw for every
window w, it may not have been able to add all the items in Sw to the shortlist A during the online
processing of the inputs in that window. In the proof of Proposition 27, we show that in fact the
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algorithm will add most of the items in ∪wSw to the shortlist. More precisely, we show that given
that an item i is in Sw, it will be in shortlist A with probability 1 − δ, where δ is the parameter
used while calling Algorithm 1 in Algorithm 2. Therefore, using properties of submodular functions
it follows that with δ = ε/2, E[f(A∗)] = E[f(∪wSw ∩A)] ≥ (1− ε

2 )E[f(∪wSw)] (see Proposition 27).
Combining this with the lower bound E[f(∪wSw)]

OPT ≥ (1− 1
e
− ε

2 −O( 1
k

)) proven in Proposition 24, we
complete the proof of competitive ratio bound stated in Theorem 1.

3.1 Preliminaries
The following properties of submodular functions are well known (e.g., see [8, 12, 14]).

I Lemma 7. Given a monotone submodular function f , and subsets A,B in the domain of f , we
use ∆f (A|B) to denote f(A ∪B)− f(B). For any set A and B, ∆f (A|B) ≤

∑
a∈A\B ∆f (a|B).

I Lemma 8. Denote by A(p) a random subset of A where each element has a probability at least p
to appear in A (not necessarily independently). Then E[f(A(p))] ≥ (1− p)f(∅) + (p)f(A).

We will use the following well known deviation inequality for martingales (or supermartin-
gales/submartingales).

I Lemma 9 (Azuma-Hoeffding inequality). Suppose {Xk : k = 0, 1, 2, 3, ...} is a martingale (or
super-martingale) and |Xk −Xk−1| < ck, almost surely. Then for all positive integers N and all
positive reals r,

P (XN −X0 ≥ r) ≤ exp

(
−r2

2
∑N

k=1 c
2
k

)
.

And symmetrically (when Xk is a sub-martingale):

P (XN −X0 ≤ −r) ≤ exp

(
−r2

2
∑N

k=1 c
2
k

)
.

I Lemma 10 (Chernoff bound for Bernoulli r.v.). Let X =
∑N

i=1 Xi, where Xi = 1 with probability
pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E(X) =

∑N

i=1 pi. Then,

P (X ≥ (1 + δ)µ) ≤ e−δ
2µ/(2+δ)

for all δ > 0, and

P (X ≤ (1− δ)µ) ≤ e−δ
2µ/2

for all δ ∈ (0, 1).

3.2 Some useful properties of (α, β) windows
All the proofs in this section are omitted and are provided in the full version [1].

We first prove some useful properties of (α, β) windows defined in Definition 5 and used in
Algorithm 2. The first observation is that every item will appear uniformly at random in one of the
kβ slots in (α, β) windows.

I Definition 11. For each item e ∈ Ī, define Ye ∈ [kβ] as the random variable indicating the slot in
which e appears. We call vector Y ∈ [kβ]n a configuration.

I Lemma 12. Random variables {Ye}e∈I are i.i.d. with uniform distribution on all kβ slots.

This follows from the uniform random order of arrivals, and the use of the balls in bins process
to determine the number of items in a slot during the construction of (α, β) windows.

Next, we make some observations about the probability of assignment of items in S∗ to the slots
in a window w, given the sets R1,...,w−1, S1,...,w−1 (refer to (3), (4) for definition of these sets). To
aid analysis, we define the following new random variable Tw that will track all the useful information
from a window w.
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1:12 Submodular Secretary Problem with Shortlists

I Definition 13. Define Tw := {(τ, γ(τ))}τ , for all α-length subsequences τ = (s1, . . . , sα) of
the αβ slots in window w. Here, γ(τ) is a sequence of items as defined in (1). Also define
Supp(T1,··· ,w) := {e|e ∈ γ(τ) for some (τ, γ(τ)) ∈ T1,··· ,w} (Note that Supp(T1,··· ,w) = R1,...,w).

I Lemma 14. For any window w ∈ [W ], T1,...,w and S1,...,w are independent of the ordering of
elements within any slot, and are determined by the configuration Y .

Following the above lemma, given a configuration Y , we will some times use the notation T1,...,w(Y )
and S1,...,w(Y ) to make this mapping explicit.

I Lemma 15. For any item i ∈ S∗, window w ∈ {1, . . . ,W}, and slot s in window w, define

pis := Pr(i ∈ s ∪ Supp(T )|T1,...,w−1 = T ). (6)

Then, for any pair of slots s′, s′′ in windows w,w + 1, . . . ,W ,

pis′ = pis′′ ≥
1
kβ

. (7)

I Lemma 16. For any window w, i, j ∈ S∗, i 6= j and s, s′ ∈ w, the random variables 1(Yi =
s|T1,··· ,w−1 = T ) and 1(Yj = s′|T1,··· ,w−1 = T ) are independent. That is, given T1,··· ,w−1 = T , items
i, j ∈ S∗, i 6= j appear in any slot s in w independently.

3.3 Bounding E[f(∪wSw)]/OPT
In this section, we use the observations from the previous sections to show the existence of a random
subsequence of slots τ̃w of window w such that we can lower bound f(S1,...,w−1∪γ(τ̃w))−f(S1,...,w−1)
in terms of OPT− f(S1,...,w−1). This will be used to lower bound increment ∆f (Sw|S1,...,w−1) =
f(S1,...,w−1 ∪ γ(τ∗))− f(S1,...,w−1) in every window.

I Definition 17 (Zs and γ̃w). Create sets of items Zs, ∀s ∈ w as follows: for every slot s, add
every item from i ∈ S∗ ∩ s independently with probability 1

kβpis
to Zs. Then, for every item

i ∈ S∗ ∩ Supp(T ), with probability α/k, add i to Zs for a randomly chosen slot s in w. Define
subsequence τ̃w as the sequence of slots with Zs 6= ∅.

I Lemma 18. Given any T1,...,w−1 = T , for any slot s in window w, all i, i′ ∈ S∗, i 6= i′ will appear
in Zs independently with probability 1

kβ
. Also, given T , for every i ∈ S∗, the probability to appear in

Zs is equal for all slots s in window w. Further, each i ∈ S∗ occurs in Zs for at most one slot s.

Proof. First consider i ∈ S∗ ∩ Supp(T ). Then, Pr(i ∈ Zs|T ) = α
k
× 1

αβ
= 1

kβ
by construction. Also,

the event i ∈ Zs|T is independent from i′ ∈ Zs|T for any i′ ∈ S∗ as i and i′ are independently
assigned to a Zs in construction. Further, items in S∗ ∩Supp(T ) are assigned with equal probability
to slots in window w.

Now, consider i ∈ S∗, i /∈ Supp(T ). Then, for all slots s in window w,

Pr(i ∈ Zs|T ) = Pr(Yi = s|T ) 1
piskβ

= pis ×
1

piskβ
= 1
kβ
,

where pis is defined in (6). We used that pis = Pr(Yi = s|T ) for i /∈ Supp(T ). Independence of
events i ∈ Zs|T for items in S∗\Supp(T ) follows from Lemma 16, which ensures Yi = s|T and
Yj = s|T are independent for i 6= j; and from independent selection among items with Yi = s into
Zs.

The fact that every i ∈ S∗ occurs in at most one Zs follows from construction: i is assigned to
Zs of only one slot if i ∈ Supp(T ); and for i /∈ Supp(T ), it can only appear in Zs if i appears in slot
s. J

I Lemma 19. Given the sequence τ̃w = (s1, . . . , st) defined in Definition 17, let γ(τ̃s) = (i1, . . . , it),
with γ(·) as defined in (1). Then, for all j = 1, . . . , t,

E[∆f (ij |S1,...,w−1 ∪ {i1, . . . , ij−1})|T1,...,w−1, i1, . . . , ij−1]

≥ 1
k

(
(1− α

k
)f(S∗)− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
.
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Proof. For any slot s′ in window w, let {s : s �w s′} denote all the slots that appear after s′ in the
sequence of slots in window w.

Now, using Lemma 18, for any slot s such that s �w sj−1, we have that the random variables
1(i ∈ Zs|Zs1 ∪ . . . ∪ Zsj−1) are i.i.d. for all i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}. Next, we show that the
probabilities Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 ) are identical for all i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}:

Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 )

=
∑

s:s�wsj−1

Pr(i ∈ Zs, s = sj |Zs1 ∪ . . . ∪ Zsj−1 )

=
∑

s:s�wsj−1

Pr(i ∈ Zs|s = sj , Zs1 ∪ . . . ∪ Zsj−1 ) Pr(s = sj |Zs1 ∪ . . . ∪ Zsj−1 ) .

Now, from Lemma 18, the probability Pr(i ∈ Zs|s = sj , Zs1 ∪ . . . ∪ Zsj−1 ) must be identical for all
i /∈ Zs1 ∪ . . . ∪ Zsj−1 . Therefore, from above we have that for all i, i′ ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1},

Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 ) = Pr(i′ ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1 ) ≥ 1
k
. (8)

The lower bound of 1/k followed from the fact that at least one of the items from S∗\{Zs1∪. . .∪Zsj−1}
must appear in Zsj for sj to be included in τ̃w. Thus, each of these probabilities is at least 1/k. In
other words, if an item is randomly picked from Zsj , it will be i with probability at least 1/k, for all
i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}.

Now, by definition of γ(·) (refer to (1)), ij is chosen greedily to maximize the increment
∆f (i|S1,...,w−1 ∪ i1,...,s−1) over all i ∈ sj ∪ Supp(T1,...,w−1) ⊇ Zsj . Therefore, we can lower bound
the increment provided by ij by that provided by a randomly picked item from Zsj . By using
monotonicity of f ,

E[∆f (ij |S1,...,w−1 ∪ {i1, . . . , ij−1}|T1,...,w−1 = T, i1, . . . , ij−1]

(by (8)) ≥ 1
k
E[

∑
i∈S∗\{Z1,...Zsj−1}

E[∆f (i|S1,...,w−1 ∪ {i1, . . . , ij−1}|T, i1, . . . , ij−1]]

(by Lemma 7) ≥ 1
k
E[
(
f(S∗\{Z1, . . . Zsj−1})− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
|T ]

≥ 1
k
E[(f(S∗\ ∪s′∈w Zs′)− f(S1,...,w−1 ∪ {i1, . . . , ij−1}) |T ]

(by Lemma 18 and 8) ≥ 1
k

((
1− α

k

)
f(S∗)− f(S1,...,w−1 ∪ {i1, . . . , ij−1})

)
The last inequality uses the observation from Lemma 18 that given T , every i ∈ S∗ appears
in ∪s′∈wZs′ independently with probability α/k, so that every i ∈ S∗ appears in S∗\ ∪s′∈w Zs′
independently with probability 1− α

k
; along with Lemma 8 for submodular function f . J

Using standard techniques for the analysis of greedy algorithm, the following corollary of the previous
lemma can be derived: given any T1,...,w−1 = T :

I Lemma 20.

E
[(

1− α

k

)
f(S∗)− f(S1,...,w−1 ∪ γ(τ̃w))|T

]
≤ E

[
e−
|τ̃w|
k | T

]((
1− α

k

)
f(S∗)− f(S1,...,w−1)

)
.

Proof. Let π0 = (1− α
k

)f(S∗)− E[f(S1,...,w−1)|T1,...,w−1 = T ], and for j ≥ 1,

πj := (1− α

k
)f(S∗)− E[f(S1,...,w−1 ∪ {i1, . . . , ij})|T1,...,w−1 = T, i1, . . . , ij−1],

Then, subtracting and adding (1 − α
k

)f(S∗) from the left hand side of the previous lemma, and
taking expectation conditional on T1,...,w−1 = T, i1, . . . , ij−2, we get

−E[πj |T, i1, . . . , ij−2] + πj−1 ≥
1
k
πj−1
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which implies

E[πj |T, i1, . . . , ij−2] ≤
(

1− 1
k

)
πj−1 ≤

(
1− 1

k

)j
π0 .

By the martingale stopping theorem, this implies:

E[πt|T ] ≤ E
[(

1− 1
k

)t
|T
]
π0 ≤ E

[
e−t/k|T

]
π0

where stopping time t = |τ̃w|. (t = |τ̃w| ≤ αβ is bounded, therefore, the martingale stopping theorem
can be applied). J

Next, we compare γ(τ̃w) to Sw = γ(τ∗) . Here, τ∗ was defined has the ‘best’ greedy subsequence
of length α (refer to (4) and (5)). To compare it with τ̃w, we need a bound on size of τ̃w.

I Lemma 21. For any real δ ∈ (0, 1), and if k ≥ αβ, α ≥ 8 log(β) and β ≥ 8, then given any
T1,...,w−1 = T ,

(1− δ)
(

1− 4
β

)
α ≤ |τ̃w| ≤ (1 + δ)α,

with probability at least 1− exp(− δ
2α
8β ).

Proof. Appears in the full version. J

I Lemma 22 (Corollary of Lemma 21). For any real δ′ ∈ (0, 1), if parameters k, α, β satisfy k ≥ αβ,
β ≥ 8

(δ′)2 , α ≥ 8β2 log(1/δ′), then given any T1,...,w−1 = T , with probability at least 1− δ′e−α/k,

|τ̃w| ≥ (1− δ′)α .

I Lemma 23. For any real δ′ ∈ (0, 1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2 , α ≥

8β2 log(1/δ′), then

E
[
k − α
k

OPT− f(S1,...,w)|T1,...,w−1

]
≤ (1− δ′)e−α/k

(
k − α
k

OPT− f(S1,...,w−1)
)
.

Proof. The lemma follows from substituting Lemma 22 in Lemma 20. J

Now, we can deduce the following proposition.

I Proposition 24. For any real δ′ ∈ (0, 1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2 , α ≥

8β2 log(1/δ′), then the set S1,...,W tracked by Algorithm 2 satisfies

E[f(S1,...,W )] ≥ (1− δ′)2(1− 1/e)OPT.

Proof. By multiplying the inequality Lemma 23 from w = 1, . . . ,W , where W = k/α, we get

E[f(S1,...,W )] ≥ (1− δ′)(1− 1/e)(1− α

k
)OPT.

Then, using 1− α
k
≥ 1− δ′ because k ≥ αβ ≥ α

δ′ , we obtain the desired statement. J

3.4 Bounding E[f(A∗)]/OPT
Here, we compare f(S1...,W ) to f(A∗), where A∗ = S1...,W ∩A, with A being the shortlist returned
by Algorithm 2. The main difference between the two sets is that in construction of shortlist A,
Algorithm 1 is being used to compute the argmax in the definition of γ(τ), in an online manner.
This argmax may not be computed exactly, so that some items from S1...,W may not be part of the
shortlist A. We use the following guarantee for Algorithm 1 to bound the probability of this event.

I Proposition 25. For any δ ∈ (0, 1), and input I = (a1, . . . , aN ), Algorithm 1 returns A∗ =
max(a1, . . . , aN ) with probability (1− δ).
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The proof of the above proposition appears in the full version. Intuitively, it follows from the
observation that if we select every item that improves the maximum of items seen so far, we would
have selected log(N) items in expectation. The exact proof involves showing that on waiting nδ/2
steps and then selecting maximum of every item that improves the maximum of items seen so far,
we miss the maximum item with at most δ probability, and select at most O(log(1/δ)) items with
probability 1− δ.

I Lemma 26. Let A be the shortlist returned by Algorithm 2, and δ is the parameter used to call
Algorithm 1 in Algorithm 2. Then, for given configuration Y , for any item a and window w, we have

Pr(a ∈ A|Y, a ∈ S1,··· ,w) ≥ 1− δ .

Proof. From Lemma 14 by conditioning on Y , the set S1,··· ,W is determined. Now if a ∈ S1,...,w,
then for some slot sj in an α length subsequence τ of some window w, we must have

a = arg max
i∈sj∪R1,...,w−1

f(S1,...,w−1 ∪ γ(τ) ∪ {i})− f(S1,...,w−1 ∪ γ(τ)).

Let w′ be the first such window, τ ′, sj′ be the corresponding subsequence and slot. Then, it must
be true that

a = arg max
i∈sj′

f(S1,...,w′−1 ∪ γ(τ ′) ∪ {i})− f(S1,...,w′−1 ∪ γ(τ ′)).

(Note that the argmax in above is not defined on R1,··· ,w′−1). The configuration Y only determines
the set of items in the items in slot sj′ , the items in sj′ are still randomly ordered (refer to Lemma
14). Therefore, from Proposition 25, with probability 1− δ, a will be added to the shortlist Aj′(τ ′)
by Algorithm 1. Thus a ∈ A ⊇ Aj′(τ ′) with probability at least 1− δ. J

I Proposition 27.

E[f(A∗)] := E[f(S1,··· ,W ∩A)] ≥ (1− ε

2)E[f(S1,··· ,W )]

where A∗ := S1,··· ,W ∩A is the size k subset of shortlist A returned by Algorithm 2.

Proof. From the previous lemma, given any configuration Y , we have that each item of S1,··· ,W is
in A with probability at least 1− δ, where δ = ε/2 in Algorithm 2. Therefore using Lemma 8, the
expected value of f(S1,··· ,W ∩A) is at least (1− δ)E[F (S1,··· ,W )]. J

Proof of Theorem 1
Now, we can show that Algorithm 2 provides the results claimed in Theorem 1 for appropriate
settings of α, β in terms of ε. Specifically for δ′ = ε/4, set α, β as smallest integers satisfying
β ≥ 8

(δ′)2 , α ≥ 8β2 log(1/δ′). Then, using Proposition 24 and Proposition 27, for k ≥ αβ we obtain:

E[f(A∗)] ≥ (1− ε

2)(1− δ′)2(1− 1/e)OPT ≥ (1− ε)(1− 1/e)OPT.

This implies a lower bound of 1− ε− 1/e− αβ/k = 1− ε− 1/e−O(1/k) on the competitive ratio.
The O(k) bound on the size of the shortlist was demonstrated in Proposition 6.

4 Streaming (Proof of Theorem 2)
In this section, we show that Algorithm 2 can be implemented in a way that it uses a memory buffer
of size at most η(k) = O(k); and the number of objective function evaluations for each arriving item
is O(1 + k2

n
). This will allow us to obtain Theorem 2 as a corollary of Theorem 1.

In the current description of Algorithm 2, there are several steps in which the algorithm potentially
needs to store O(n) previously seen items in order to compute the relevant quantities. First, in Step
6, in order to be able to compute γ(τ) for all less than α length subsequences τ of slots s1, . . . , sj−1,
the algorithm should have stored all the items that arrived in the slots s1, . . . , sj−1. However, this
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memory requirement can be reduced by a small modification of the algorithm, so that at the end of
iteration j − 1, the algorithm has already computed γ(τ) for all such τ , and stored them to be used
in iteration j. In fact, this can be implemented in a memory efficient manner, in the following way.
For every subsequence τ of slots s1, . . . , sj−1 of length < α, consider prefix τ ′ = τ\sj−1. Assume
γ(τ ′) is available from iteration j − 2. If τ ′ = τ , then γ(τ) = γ(τ ′). Otherwise, in Step 6 of iteration
j − 1, the algorithm must have considered the subsequence τ ′ while going through all subsequences
of length less than α of slots s1, . . . , sj−2. Now, modify the implementation of Step 6 so that the
algorithm also tracks the (true) maximum Mj−1(τ ′) of a0, a1, . . . , aN for each τ ′. Then, γ(τ) can
be obtained by extending γ(τ ′) by Mj−1(τ ′), i.e., γ(τ) = {γ(τ ′),Mj−1(τ ′)}. Thus, at the end of
iteration j − 1, γ(τ) would have been computed for all subsequences τ relevant for iteration j, and
so on. In order to store these γ(τ) for every subsequence τ (of at most α slots from αβ slots), we
require a memory buffer of size at most α2(αβ

α

)
= O(1).

Secondly, across windows and slots, the algorithm keeps track of Rw, Sw, w = 1, . . . , k/α where
W = k/α. In the current description of Algorithm 2, these sets are computed after seeing all
the items in window w in Step 9. Thus, all the items arriving in that window would be needed
to be stored in order to compute them, requiring O(n) memory buffer. However, the alternate
implementation discussed in the previous paragraph reduces this memory requirement to O(k) as
well. Using the above implementation, at the end of iteration αβ for the last slot sαβ in window w,
we would have computed and stored γ(τ) for all the subsequences τ of length α of slots s1, . . . , sαβ .
Rw is simply defined as union of all items in γ(τ) over all such τ (refer to (3)). And, Sw = γ(τ∗)
for the best subsequence τ∗ among these subsequences (refer to (4)). Thus, computing Rw and Sw
does not require any additional memory buffer. Storing Rw and Sw for all windows requires a buffer
of size at most

∑
w
|Rw| + |Sw| = k

α
× α
(
αβ
α

)
+ k = O(k). Therefore, the total buffer required to

implement Algorithm 2 is of size O(k).
Finally, let’s bound the number of objective function evaluations for each arriving item. Each

arriving item is processed in Step 6, where objective function is evaluated twice for each subsequence
to compute the corresponding ai. Since there are atmost

(
αβ
α

)
subsequences τ for which this

quantity is computed, the total number of times this computation is performed is bounded by
2
(
αβ
α

)
= O(1). For each τ , we also compute a0 in the beginning of the slot. Computing a0 for each τ

involves taking max over all items in R1,...,w−1, and requires 2|R1,...,w−1| ≤ 2k
(
αβ
α

)
evaluations of the

objective function. Due to this computation, in the worst-case, the update time for an item can be
2k
(
αβ
α

)2 + 2
(
αβ
α

)
= O(k). However, since a0 is computed once in the beginning of the slot for each τ ,

the total update time over all items is bounded by 2k
(
αβ
α

)2 × kβ +
(
αβ
α

)
× n = O(k2 + n). Therefore

the amortized update time for each item is O(1 + k2

n
). This concludes the proof of Theorem 2.

5 Impossibility Result (Proof of Theorem 3)
In this section we provide an upper bound showing the following:

I Theorem 3. No online algorithm (even with unlimited computational power) can achieve a
competitive ratio better than 7/8 + o(1) for the submodular k-secretary problem with shortlists, while
using a shortlist of size η(k) = o(n).

In the following proof, for simplicity of notation, we prove the desired bound for submodular
(k + 1)-secretary problem. For any given n, k, we construct a set of instances of the submodular
(k + 1)-secretary problem with shortlists such that any online algorithm that uses a shortlist of size
η(k+ 1) will have competitive ratio of at most 7

8 + η(k+1)
2n on a randomly selected instance from this

set.
First, we define a monotone submodular function f as follows. The ground set consists of

n
2k + n − 1 items. There are two types of items, C and D, with L := n/2k items of type C and
n− 1 items of type D. We define f(φ) := 0, f({c}) := k for c ∈ C, and f({d}) := 1 for all d ∈ D.
Also there is a collection of L disjoint sets T` = {c`, d`1, · · · , d`k}, ` = 1, 2, . . . L, such that c` ∈ C and
d`j ∈ D. We define f(T`) := 2k for all ` = 1, . . . , L. Now, let

g(t) := k + k

2 + · · ·+ k

2i−1 + (t− ik)
2i ,
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where i = bt/kc. It is easy to see that g is a monotone submodular function.
Now, define f on the remaining subsets of the ground set as follows. For all S with |S| ≥ 1,
|S ∩ C| ≥ 2 =⇒ f(S) := 2k + 1

|S ∩ C| = 0 =⇒ f(S) := 1 + g(|S| − 1)

|S ∩ C| = 1 =⇒ S ∩ C = {c`} for some ` ∈ [L] =⇒

f(S) := min{2k + 1, k + 1
2g(|S| − 1) + k′

2i+1 },

where k′ = |S ∩ {d`1, · · · , d`k}|, i = b(|S| − 1)/kc.

Observe that since g(k) = k, for any such subset S of size at most k + 1, we have f(S) ≤
k + k

2 + k
2 = 2k.

I Lemma 28. f is a monotone submodular function.

Now, denote D` := T `∩D = {d`1, · · · , d`k} for ` = 1, 2, . . . , L. Also, let D′ = D \ (
⋃L

`=1 D
`). Now

define L input instances {I`}`=1,...,L, each of size n, as follows. For any arbitrary subset D̃ ⊆ D′ of
size n− Lk − 1, define I` =

⋃
i=1,...,LD

i ∪ D̃ ∪ {c`}, for ` = 1, . . . , L. Thus, for instance I`, the the
optimal k + 1 subset is T ` with value f(T `) = 2k.

Now consider any algorithm for the submodular secretary problem with shortlists and cardinality
constraint k+ 1. We denote by Alg the set of η(k+ 1) items selected by the algorithm as part of the
shortlist. Let Ī denote an instance chosen uniformly at random from I`, ` = 1, . . . , L. Let π denote a
random ordering of n items in Ī. We denote by random variable (Ī , π) the randomly ordered input
instance to the algorithm. Also we denote by T̄ , D̄ and c̄, the corresponding T `, D` and c`.

Now we claim

I Lemma 29. E(Ī,π)[|Alg ∩ D̄|] ≤ k/2 + η(k + 1)/L.

Proof. Appears in the full version [1]. J

Now on input Ī, if the algorithm doesn’t select c̄ as part of shortlist Alg, then by definition of f for
sets that do not contain any item of type C, we have

f(A∗) := max
S⊆Alg:|S|≤k+1

f(S) ≤ 1 + g(k) < k + 2.

Otherwise, if algorithm selects c̄, then by definition of f ,

f(A∗) := max
S⊆Alg:|S|≤k+1

f(S) ≤ max
S⊆Alg\(D̄∪{c̄}):|S|≤k−|Alg∩D̄|

f(S ∪ D̄ ∪ {c̄}) = k+ k

2 + 1
2 |Alg ∩ D̄|,

and therefore by lemma 29

E[f(A∗)] ≤ k + k

2 + k

4 + η(k + 1)
2L = 7k

4 + kη(k + 1)
n

.

Since the optimal is equal to E[f(T̄ )] = 2k, the competitive ratio is upper bounded by

7
8 + η(k + 1)

2n .

This proves a competitive ratio upper bound of 7
8 + o(1) when η(k + 1) = o(n), to complete the

proof of Theorem 3.
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Abstract
Analog quantum simulation – simulation of one Hamiltonian by another – is one of the major goals
in the noisy intermediate-scale quantum computation (NISQ) era, and has many applications
in quantum complexity. We initiate the rigorous study of the physical resources required for
such simulations, where we focus on the task of Hamiltonian sparsification. The goal is to find
a simulating Hamiltonian H̃ whose underlying interaction graph has bounded degree (this is
called degree-reduction) or much fewer edges than that of the original Hamiltonian H (this is
called dilution). We set this study in a relaxed framework for analog simulations that we call
gap-simulation, where H̃ is only required to simulate the groundstate(s) and spectral gap of H
instead of its full spectrum, and we believe it is of independent interest.

Our main result is a proof that in stark contrast to the classical setting, general degree-
reduction is impossible in the quantum world, even under our relaxed notion of gap-simulation.
The impossibility proof relies on devising counterexample Hamiltonians and applying a strength-
ened variant of Hastings-Koma decay of correlations theorem. We also show a complementary
result where degree-reduction is possible when the strength of interactions is allowed to grow poly-
nomially. Furthermore, we prove the impossibility of the related sparsification task of generic
Hamiltonian dilution, under a computational hardness assumption. We also clarify the (cur-
rently weak) implications of our results to the question of quantum PCP. Our work provides
basic answers to many of the “first questions” one would ask about Hamiltonian sparsification
and gap-simulation; we hope this serves as a good starting point for future research of these
topics.
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1 Introduction

A major theme in quantum computation is the idea of analog quantum simulation. This
is the task of simulating one Hamiltonian H by another Hamiltonian H̃, which might be
more readily or easily implemented. In fact, this goal was identified as a main motivation
for realizing quantum computers as early as 1981 by Feynman[37], with the idea that such
analog quantum simulations can shed light on properties of physical quantum systems that
are hard to simulate efficiently on classical computers. Cirac and Zoller [26] further developed
this idea, and explained that such simulators are likely to be achievable well before fully
fault-tolerant quantum computation [4, 48, 46] becomes practical, which might take a long
time. While fault-tolerant quantum computers when realized can be used to apply digital
quantum simulations [52] (where a quantum circuit simulates the time-evolution e−iHt under
a local Hamiltonian H), analog quantum simulations are more accessible for near-term
experiments because they do not require full-fledged quantum computer. Many groups are
designing implementations in a variety of experimental platforms[59, 19, 18, 12, 42, 38],
and we have recently witnessed some experiments in intermediate-sized quantum systems
in regimes where classical simulations are difficult [17, 64, 44]. It has been argued that
analog quantum simulation constitutes one of the more interesting challenges in the noisy
intermediate-scale quantum computing (NISQ) era [55].

Beyond their natural physical applications, analog simulations of Hamiltonians are also
very important for quantum complexity theory. For example, in the theory of quantum
NP, one is often interested in reducing problems defined by one class of Hamiltonians to
another (e.g. [47, 8, 22, 27, 45]). These reductions are often derived using perturbative gadgets
(e.g. [45, 54, 21, 43, 24, 25]). Moreover, analog Hamiltonian simulators might also be useful
for the design of Hamiltonian-based quantum algorithms, such as adiabatic algorithm [35]
and QAOA [36]. In those settings, it is often desirable to tailor the Hamiltonians being used,
while maintaining the properties essential for the algorithm.

In this paper, we initiate the rigorous study of the minimal resources required to simulate
a given target Hamiltonian, and ask: When can we simulate a Hamiltonian H by another
H̃ that is simpler, easier, or more economic to implement? Of course, this vaguely stated
question can take several forms if made more rigorous; here we focus on a natural goal which
we loosely call Hamiltonian sparsification, which aims to simplify the interaction graph of
the Hamiltonian. For a 2-local n-qubit Hamiltonian H, the interaction graph has n vertices,
with edges connecting any pairs of qubits that participate in a local term in H. For a
k-local Hamiltonian, we consider an interaction hypergraph, where each term acting on k
qubits is represented by a hyperedge. A generic k-local Hamiltonian has Θ(nk) edges, and
Θ(nk−1) degree per vertex. Roughly speaking, Hamiltonian sparsification aims to simulate a
Hamiltonian using another whose interaction graph is more “economic”, e.g., it has less edges
(we refer to this as dilution) or its degree is bounded (we refer to this as degree-reduction).

Hamiltonian sparsification has several important motivations. First, it can help physicists
tackle the immense hurdles they face when trying to realize Hamiltonians in the lab. In
addition, in many settings in quantum complexity, such as in the study of quantum PCP [3]
and recent approaches to the area law question [7], simulating a Hamiltonian by one with
constant degree or fewer edges is a potentially important primitive. Indeed, sparsification is
used ubiquitously in classical computer science, in a variety of applications; we mention two
important ones. The first, graph sparsification (and more generally, matrix sparsification)
is a central tool in matrix algorithms [61, 62, 60, 15]. Famously, Ref. [14] proved that any
graph can be replaced by another which is sparse (namely, has small degree on average),
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such that their Laplacian matrices are spectrally similar. Another common application of
sparsification in classical computer science is degree-reduction (DR), used in the study of
local Constraint Satisfaction Problems (CSPs) and PCPs [32]. We believe that this natural
and basic notion deserves to be studied in the quantum context as well, and might have
interesting applications beyond those we can foresee today.

1.1 Gap-Simulations: Simulating only the low-lying part of the
spectrum

Before embarking on the study of Hamiltonian sparsification, we first need an appropriate
definition of analog simulation. The study of analog Hamiltonian simulation was set on
rigorous footing in a recent work by Cubitt, Montanaro, and Piddock [27]; their definition
refines that of Bravyi and Hastings [22], and it roughly goes as follows: A given Hamiltonian
H is simulated by “encoding” its full spectrum into the low-lying part of the spectrum of
H̃ acting on a larger Hilbert space. When H̃ is implemented, then the low-lying part of its
spectrum can be used to derive properties and information about the original Hamiltonian
H. For obvious reasons, we will refer to this definition as full-spectrum simulation. In
Ref. [27], the notion of universal Hamiltonians was defined and studied: these are families
of Hamiltonians which are capable of performing full-spectrum simulations of any given
Hamiltonian, albeit generally with exponential overhead in energy.

While this strong notion of full-spectrum simulation is necessary for simulating all
dynamical properties of a system, it is common in physics that one is only interested in
the properties of the low-energy states and, particularly, the groundstates. In addition, the
spectral gap separating the groundstates from the rest of the spectrum is an intimately related
quantity that is usually physically important. For example, the groundstates encode exotic
quantum behaviors such as topological order, and the spectral gap protects them [63, 50].
Also, they are used together to define quantum phases of matter and characterize phase
transitions [56, 28]. Moreover, both are the main objects of interest in quantum computational
complexity: In quantum adiabatic algorithms [35], the goal is to prepare a groundstate of a
problem Hamiltonian, and the spectral gap governs the efficiency of the process. In quantum
NP theory [8], only the groundstate(s) of the Hamiltonian matters as it is the witness for
the problem. The spectral gap also determines the temperature of a thermal equilibrium
(Gibbs) state that can be used to approximate the groundstate. Hence, we believe that a
natural and minimal notion of analog Hamiltonian simulation, which is still meaningful for
many physical contexts, should require that both the space of groundstates and the spectral
gap above it be preserved.

Therefore, we suggest to consider sparsification, or more generally Hamiltonian simulation,
using this minimal notion, which we formally define as gap-simulation. To the best of our
knowledge, despite its naturalness, this relaxed notion of Hamiltonian simulation was not
formally defined and rigorously studied previously in the quantum complexity literature.

A Hamiltonian H̃ is said to gap-simulate H if it mimics the groundstate(s) and the
spectral gap of H; no constraints are imposed on the excited part of the spectrum. To
provide a sensible definition requires some care, since in the quantum world we can allow
inaccuracies and entanglement to an ancilla. We provide two versions of the definition: In
the weaker one (Definition 3), the groundspace is mimicked faithfully, i.e. the support of any
groundstate of H̃, when reduced to the original Hilbert space, is close to the groundspace
of H. However, this definition does not require quantum coherence within the groundspace
be maintained. Such coherence is guaranteed by our stronger definition (Definition 2), in
which all superpositions within the groundspace are simulated. The extent to which the
gap-simulation is incoherent (or unfaithful) is quantified via a small constant ε (or δ). It
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seems that the coherent notion is the “correct” one for most quantum applications, though
the weaker one might also be useful in certain contexts (see Sec. 5). We mention that here,
like in Ref. [22, 27], we allow encoding of the qubits. Typically, we consider “localized”
encodings, though this is not explicitly required in the definition.

To set the stage, some basic results about the framework are provided: We show in Lemma
4 that for Hamiltonians with unique groundstates, our two definitions of gap-simulations
coincide. Moreover, both coherent and incoherent gap-simulation definitions are shown to be
stable under compositions (Lemma 6).

How does the gap-simulation framework compare with the stricter definitions of full-
spectrum simulations developed in Ref. [22, 27]? In Sec. 2.1.1, this connection is discussed
formally; roughly, our definition is indeed a relaxed version of full-spectrum simulations whose
spectral error is smaller than the spectral gap, up to varying restrictions about encoding
(Lemma 8). We choose to work here with the more relaxed definition of gap-simulation, since
impossibility results for a weaker definition are of course stronger. More generally, it seems
that this framework is an important and relevant one to consider in physics and quantum
complexity contexts. Being less demanding, gap-simulation is likely achievable in certain
cases where full-spectrum simulation is difficult or even impossible.

1.2 Main Results
Equipped with this framework of Hamiltonian sparsification via gap-simulations, we ask:
When are sparsifications possible in the quantum world? It is conceivable that, like in the
analogous classical settings mentioned above [32, 15], they ought to be always possible. The
main result of in this paper (Theorem 11) shows that in stark contrast to the classical setting,
both coherent and incoherent degree-reductions are not generally possible in the quantum
world, even if one uses the relaxed notion of gap-simulation. This impossibility phenomenon
is due to the existence of many-body entanglement in some quantum groundstates; we
show, using a strengthened version of Hastings-Koma decay of correlation theorem [41], that
there exist local Hamiltonians whose groundstates cannot be coherently mapped into the
groundspace of a gapped Hamiltonian with constant degree and bounded interaction strength.
Though one might suspect this is a consequence of degeneracy in the groundspace, we show
that it holds even in the case of a unique groundstate. We believe this is a surprising and
curious phenomenon, which demonstrates the richness in the subject, and highlights the
difference in the resources required for classical versus quantum Hamiltonian simulation.

This impossibility result on degree-reduction is essentially tight, as we provide a com-
plementary result (Theorem 13) based on a somewhat sophisticated application of the
circuit-to-Hamiltonian construction, stating that degree-reduction becomes possible for any
local Hamiltonian with non-negligible spectral gap, when polynomially large overhead in
interaction strength is allowed.

We also study a related important sparsification task: dilution. While our main result
of Theorem 11 is an information-theoretic result that rules out existence of degree-reducers
regardless of computational power, we are unable to provide such a strong result in the case
of dilution. Information-theoretically, we can only rule out dilution with perfect (or inverse-
polynomially close to perfect) coherence (Theorem 15). Nevertheless, we are able to prove
impossibility of any efficient classical algorithm to find diluters with constant unfaithfulness,
for generic (even classical) Hamiltonians (Theorem 16). The proof of this theorem (relying on
Ref. [29]) works under the assumption that coNP 6⊆ NP/poly (alternatively, the polynomial
hierarchy does not collapse to its third level). Although generic constructive dilution is ruled
out by our Theorem 16, the question of existence of diluters for general Hamiltonian, with
bounded or large interaction strengths, remains open.
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The paper provides quite a few further results complementing the above-mentioned main
contributions. These build on ideas in classical PCP reductions and perturbative gadgets. In
addition, the ideas studied here are strongly reminiscent of questions arising in the context
of the major open problem of quantum PCP [3]. We clarify this connection and provide
some preliminary results along those lines.

We believe that the study of the resources required for Hamiltonian simulations in
various contexts, as well as the framework of gap-simulation, are of potential deep interest
for physics as well as quantum complexity. The questions raised touch upon a variety of
important challenges, from quantum simulations, to algorithm design, to quantum PCP and
NP reductions, to physical implementations on near-term quantum processors, and more.
Their study might also shed light on questions in many-body physics, by developing tools
to construct “equivalent” Hamiltonians, from the point of view of the study of groundstate
physics. The discussion in Sec. 5 includes a more detailed list of some of the open questions
and implications.

1.3 Overview
In Sec. 2, we set the stage by providing definitions of gap-simulation and sparsification,
and proving basic facts about this new framework. In Sec. 3, we state our results formally.
Subsequently, Sec. 4 provides elaborated and intuitive proof sketches, and Sec. 5 provides
further discussion. All technical proofs are deferred to the extended version [1].

2 Definition of the Framework: Setting the Stage

2.1 Gap-Simulations of Hamiltonians
We restrict our attention to k-local Hamiltonians H =

∑M
i=1Hi acting on n qudits (with

internal states {|0〉 , . . . , |d− 1〉}), where each term Hi acts nontrivially on a (distinct) subset
of at most k qudits. We denote λj(X) as the j-th lowest eigenvalue of X, and ‖X‖ as the
spectral norm of X. In addition, for any Hermitian projector P , we denote P⊥ ≡ 1−P , and
|ψ〉 ∈ P ⇐⇒ P |ψ〉 = |ψ〉.

I Definition 1 (groundspace, energy spread and gap). Consider a family of n-qudit Hamilto-
nians {H(n)}∞n=1. Let Egn = λ1(H(n)), and suppose P(n) is a Hermitian projector onto the
subspace of eigenstates of H(n) with energy ≤ Egn + wnγn, for some γn > 0, 0 ≤ wn < 1,
such that

[H(n), P(n)] = 0, ‖P(n)(H(n) − Egn)P(n)‖ ≤ wnγn,
and λj(P⊥(n)(H(n) − Egn)P⊥(n) + γnP(n)) ≥ γn ∀j. (1)

We call the subspace onto which P(n) projects a quasi-groundspace, wn its energy spread, and
γn its quasi-spectral gap. When we choose wn = 0 and γn = minj{λj(H(n))−Egn : λj(H(n)) 6=
Egn}, we call the quasi-groundspace that P(n) projects onto simply the groundspace of H(n),
and γn the spectral gap of H(n). Let w∞ = supn wn and γ∞ = infn γn. If γ∞ > 0 and
w∞ < 1, we say {H(n)}∞n=1 is spectrally gapped.

Below, we omit the subscript n in H(n), referring to a single H, with the usual implicit
understanding that we consider families of Hamiltonians, where n → ∞. All explicit
Hamiltonians we gap-simulate here have wn = 0, but Definition 1 is more general and
allows wn > 0, so that it can capture situations with slightly perturbed groundstates (or
when simulating a larger low-energy part of the spectrum). We now define Hamiltonian
gap-simulation, visualized in Fig. 1:
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Energy
Eigenvalues

gap-simulation
of                  by

Figure 1 Visualizing gap-simulation of Hamiltonian H with quasi-groundspace projector P by
H̃. If ‖P̃ − V (P ⊗ Panc)V †‖ ≤ ε, for some isometry V , then this is a coherent gap-simulation with
ε-incoherence. If ‖P̃ − V (P ⊗ 1anc)V †P̃‖ ≤ δ, then this is an incoherent but faithful gap-simulation
with δ-unfaithfulness.

I Definition 2 (gap-simulation of Hamiltonian). Let H and H̃ be two Hamiltonians, defined
on Hilbert spaces H and H̃ respectively, where H̃. Let V : H⊗Hanc → H̃ be an isometry
(V †V = 1), where Hanc is some ancilla Hilbert space. Denote Ẽg ≡ λ1(H̃). Per Definition 1,
let P be a quasi-groundspace projector of H, γ its quasi-spectral gap. We say that H̃
gap-simulates (H,P ) with encoding V , incoherence ε ≥ 0 and energy spread 0 ≤ w̃ < 1 if the
following conditions are both satisfied:
1. There exists a Hermitian projector P̃ onto a subspace of eigenstates of H̃ such that

[H̃, P̃ ] = 0, ‖P̃ (H̃ − Ẽg)P̃‖ ≤ w̃γ, and λj(P̃⊥(H̃ − Ẽg)P̃⊥ + γP̃ ) ≥ γ ∀j. (2)

I.e., P̃ projects onto a quasi-groundspace of H̃ with quasi-spectral gap not smaller than
that of P in H, and energy spread w̃.

2. There exists a Hermitian projector Panc acting on Hanc, so that

[bounded incoherence] ‖P̃ − V (P ⊗ Panc)V †‖ ≤ ε. (3)

When P projects onto the groundspace of H, rather than a quasi-groundspace, we usually
do not mention P explicitly, and simply say that H̃ gap-simulates H.

Requiring ε from Eq. (3) be small ensures that coherence in the groundspace is maintained
by the gap-simulation. This is illustrated by considering a Hamiltonian H with two orthogonal
groundstates |g1〉 and |g2〉. The condition of Eq. (3) essentially says that for any coherent
superposition |g〉 = c1 |g1〉 + c2 |g2〉, and a state |a〉 ∈ Panc on the ancilla, there exists a
groundstate of H̃ that looks like |g̃〉 = V (|g〉 ⊗ |a〉) + O(ε). Moreover, any groundstate
of H̃ could be written in this form. This would preserve the expectation value of any
observable in the groundspace, i.e. 〈g|σ̂|g〉 ≈ 〈g̃|V σ̂V †|g̃〉 + O(ε). In contrast, one can
consider an alternative situation where the groundspace of a simulator H̃ is spanned by
states of the form |g̃′i〉 ≈ V (|gi〉⊗ |ai〉), where 〈ai|aj〉 � 1. This situation remains interesting,
as finding a groundstate |g̃′i〉 of H̃ reveals information about a groundstate of H by decoding:
|gi〉〈gi| ≈ Tranc(V †|g̃′i〉〈g̃′i|V ). However, the coherence among groundstates is destroyed, since
|g〉 = |g1〉 + |g2〉 is mapped to |g̃′〉 ≈ V (|g1〉 ⊗ |a1〉 + |g2〉 ⊗ |a2〉), and observables such as
σ̂ = |g1〉〈g2| are not preserved: 〈g|σ̂|g〉 6≈ 〈g̃′|V σ̂V †|g̃′〉.

Although coherence seems important to maintain in most quantum settings, we also
define incoherent gap-simulation, which may be relevant in some situations (see discussion in
Sec. 5).
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I Definition 3 (incoherent gap-simulation). Consider two Hamiltonians H and H̃, P a quasi-
groundspace projector of H, and V some isometry in the same setting as in Definition 2.
We say that H̃ incoherently gap-simulates (H,P ) with encoding V , unfaithfulness δ ≥ 0 and
energy spread 0 ≤ w̃ < 1 if it satisfies the first condition of Definition 2 and, instead of the
second condition of Eq. (3),

[bounded unfaithfulness] ‖P̃ − V (P ⊗ 1anc)V †P̃‖ ≤ δ. (4)

Again, when P projects onto the groundspace of H, we simply say H̃ incoherently gap-
simulates H.

Small unfaithfulness essentially means that the support of the vectors in the groundspace
of H̃ is roughly contained in a subspace spanned by encoding the groundspace of H with
some ancilla.

It is easy to see that small incoherence implies small unfaithfulness, namely δ ≤ 2ε [1].
However, small unfaithfulness is a strictly weaker condition than small incoherence; we will
see an example in Prop. 17. Importantly, when H has a unique groundstate, the two notions
are equivalent up to a constant (the proof of this fact is surprisingly not trivial; see Sec. 4.2):

I Lemma 4 (incoherent gap-simulation is coherent when groundstate is unique). Suppose H has
a unique groundstate, with groundspace projector P = |g〉〈g|. If H̃ incoherently gap-simulates
H with unfaithfulness δ < 1, then it also gap-simulates H with incoherence ε ≤

√
2δ/
√

1− δ2.

While we do not explicitly restrict the form of encoding V in the above definitions, we
need to specify them for the impossibility proofs, where we will consider localized encoding:

I Definition 5 (localized encoding). Consider a (possibly incoherent) gap-simulation of H
by H̃ encoded by an isometry V : H⊗Hanc → H̃. Let H⊗Hanc = [

⊗n
i=1(Hi ⊗Ai)]⊗AE ,

where Hi is the i-th qudit in H, Ai is its associated ancilla subsystem, and AE contains the
remaining ancillas; also let H̃ =

⊗m
i=1 H̃i, m ≥ n. We say V is a localized encoding if either

of the following is true:
1. V = [

⊗n
i=1 Vi] ⊗ VE , where Vi : Hi ⊗ Ai → H̃i is an isometry, and H̃i consists of O(1)

qudits in H̃ for i = 1, . . . , n. Also, VE : AE →
⊗m

i=n+1 H̃i is an isometry.
2. V is a constant-depth quantum circuit: V =

∏D
a=1 Ua, where D = O(1), Ua =

⊗
µ Ua,µ,

and Ua,µ is a unitary operator acting on O(1) number of qudits.
We say V is an η-localized encoding if there is a localized encoding VL such that ‖V −VL‖ ≤ η.

In addition to constant-depth quantum circuits, any quantum error-correcting code where
each logical qudit is encoded as O(1) qudits is also a localized encoding. Note it is easy to
see that if a gap-simulation has η-localized encoding V and incoherence ε (or unfaithfulness
δ), it is also a gap-simulation with localized encoding VL and incoherence ε′ ≤ ε + 2η (or
unfaithfulness δ′ ≤ δ+2η). Hence, we usually restrict our attention to fully localized encoding
in the remainder of the paper.

It is also fairly straightforward to show that compositions of gap-simulation behave
intuitively:

I Lemma 6 (Composition). Suppose H1 (incoherently) gap-simulates (H0, P0) with en-
coding V1, incoherence ε1 (or unfaithfulness δ1), energy spread w̃1, and a corresponding
quasi-groundspace projector P1. Also suppose H2 (incoherently) gap-simulates (H1, P1) with
encoding V2, incoherence ε2 (or unfaithfulness δ2), and energy spread w̃2. Then H2 (inco-
herently) gap-simulates (H0, P0) with encoding V2(V1 ⊗ 1anc,1), incoherence ≤ ε2 + ε1 (or
unfaithfulness ≤ 2δ2 + δ1), and energy spread w̃2.
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2:8 Hamiltonian Sparsification and Gap-Simulation

2.1.1 Comparison of gap-simulation to full-spectrum simulation
To formally compare gap-simulations to full-spectrum simulations of Hamiltonians, we use
the following well-motivated definition of full-spectrum simulation developed by Ref. [27]:

I Definition 7 (Full-spectrum simulation, adapted from Definition 1 of [27]). A Hamiltonian
H̃ full-spectrum-simulates a Hamiltonian H to precision (η, ξ) below an energy cut-off ∆ if
there exists an encoding E(H) = V (H ⊗ P + H̄ ⊗Q)V †, where V is an isometry, P and Q
are mutually orthogonal projectors, such that
1. There exists an encoding Ẽ(H) = Ṽ (H ⊗ P + H̄ ⊗ Q)Ṽ † such that ‖Ṽ − V ‖ ≤ η and
Ẽ(1) = P≤∆(H̃);

2. ‖H̃≤∆ − Ẽ(H)‖ ≤ ξ.
Here, P≤∆(H̃) projects onto eigenstates of H̃ with eigenvalues ≤ ∆, and H̃≤∆ = H̃P≤∆(H̃).

The appearance of H̄, the complex-conjugate of H, is necessary to allow for encoding of
complex Hamiltonians into real ones. Note that for any real-valued Hamiltonian H, we can
simply write E(H) = V (H ⊗ Panc)V †, where Panc = P +Q is a projector since P are Q are
orthogonal.

In the main definition used by Ref. [27], they have also motivated a natural restriction
that the encoding should be local. Specifically, their restriction to “local encoding” requires
that V =

⊗
i Vi for some isometries Vi each acting on at most one qudit from H; moreover, P

and Q are locally orthogonal projectors, in the sense that there are projectors Pi ⊥ Qi acting
on the same qudits as Vi where PiP = P and QiQ = Q. We note that our localized encodings
per Definition 5 is somewhat different than this notion of “local encoding”. For example,
constant-depth circuit qualifies as a localized encoding but not a “local encoding”, due to the
possibility of overlaps between supports of encoded qubits (and hence V cannot be written
in tensor-product form). On the other hand, Ref. [27] does not place any explicit restriction
on the size of the support of each encoded qubit in their definition. Nevertheless, the specific
encodings utilized for simulating general spin-Hamiltonians by universal Hamiltonians in [27]
all have O(1)-sized supports, and thus also qualify as localized encodings.

It is not difficult to show that full-spectrum simulation by Definition 7 with sufficiently
small precision (ξ � (1− w)γ) implies a coherent gap-simulation by our Definition 2, if we
restrict to encodings of the form E(H) = V (H ⊗ Panc)V †. This restriction of the encoding
format simplifies the comparison, and has no loss of generality when considering real-valued
Hamiltonians.

I Lemma 8 (Full-spectrum simulation implies coherent gap-simulation). Let H be a Hamiltonian
that has a quasi-groundspace projector P with quasi-spectral gap γ and energy spread w ≤ 1/2.
Suppose H̃ full-spectrum-simulates H to precision (η, ξ) according to Definition 7 with
encoding E(H) = V (H ⊗ Panc)V †, such that ξ ≤ (1− w)γ/8. Then H̃ ′ = 4

3H̃ gap-simulates
(H,P ) with encoding V , incoherence ε ≤ 32ξ/γ+ 2η, and energy spread w̃ ≤ (w+ 2ξ/γ)/(1−
2ξ/γ), per Definition 2.

2.2 Hamiltonian Sparsification: Degree-Reduction and Dilution
We define here the set of parameters of interest when considering minimizing resources in
gap-simulations:
1. k – locality of individual Hamiltonian term; typically O(1) in physical systems, but we

parametrize it to allow minimization, as well as to allow O(loga n)-local Hamiltonians,
for some constant a.
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2. r – maximum degree of Hamiltonian, the main objective in degree-reduction.
3. M – number of terms in the Hamiltonian, the main objective in dilution.
4. J – the interaction strength of individual Hamiltonian terms. This is typically restricted

to O(1) in physical systems, but allowing it to grow with n leads to more possibilities of
gap-simulators. Equivalently, a gap-simulator with J growing with n can be converted
to one that simulates the original Hamiltonian but has a vanishing gap if we restrict to
bounded-strength Hamiltonian terms.

5. ε and δ – incoherence ε and unfaithfulness δ that capture how well the Hamiltonian
gap-simulates the original Hamiltonian in terms of groundspace projectors.

6. w̃ – energy spread in the gap-simulator Hamiltonian; allowing it to be different from the
original Hamiltonian gives more freedom in gap-simulations.

We will use the notation of [r,M, J ]-gap-simulator to indicate that the maximum degree
is r, the number of local terms is M , and for each term H̃i we have ‖H̃i‖ ≤ J . We define:

IDefinition 9 (Degree-reduction (DR) and dilution). Let H̃ be a k-local [r,M, J ]-gap-simulator
of H with ε-incoherence (or δ-unfaithfulness) and energy spread w̃. Additionally suppose
H =

∑M0
i=1Hi is a sum of M0 = M0(n) terms, each of which is O(1)-local. Then

We call H̃ an [r,M, J ]-degree-reducer of H if r = O(1).
We call H̃ an [r,M, J ]-diluter of H if M = o(M0(n)).

We also call any degree-reducer or diluter of H a sparsifier of H.

3 Results

Our impossibility results are based on two families of 2-local n qubits Hamiltonians, which can
both be expressed in terms of the collective angular momentum operator Jα =

∑n
i=1 σ

(i)
α /2

for α ∈ {x, y, z}, where σiα are the standard Pauli matrices.

I Example A (degenerate groundstates).

HA =
(
Jz + n

2

)(
Jz + n

2 − 1
)

= 1
4

n∑
i<j

(1−σ(i)
z )⊗ (1−σ(j)

z ) =
n∑
i<j

|1〉〈1|(i)⊗|1〉〈1|(j). (5)

There are M0(n) = 1
2n(n− 1) terms in HA, and each qubit has degree n− 1. The terms in

HA mutually commute, and its groundspace is spanned by the following n+ 1 zero-energy
orthonormal states that have Jz = −n/2 or Jz = −n/2 + 1:

GS(HA) = span{|00 · · · 00〉 , |00 · · · 01〉 , |00 · · · 10〉 , . . . , |10 · · · 00〉}. (6)

If we consider a qubit in |1〉 to be an “excitation,” the groundstates are states with one or
zero “excitations.” Observe that wn = 0 and γn = 1, independent of n; the system is thus
spectrally gapped.

I Example B (unique groundstate). In this example we require that n is even, n = 2s:

HB = J 2
z −

1
2
~J 2 + bn = 1

2(J 2
z − J 2

x − J 2
y ) + bn

= 1
4

n∑
i<j

(σ(i)
z σ(j)

z − σ(i)
x σ(j)

x − σ(i)
y σ(j)

y )− n

8 + bn (7)
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where bn ≡ 1
8n(n + 2) is a constant chosen so that λ1(HB) = 0. Similarly to HA, this

Hamiltonian has M0(n) = 1
2n(n− 1) 2-local terms, and each qubit has degree n− 1. Since

[ ~J 2,Jz] = 0, the eigenstates of HB can be written in eigenbasis of both ~J 2 and Jz. As Jα
are spin-s angular momentum operators, J 2

z has eigenvalues {0, 1, 22, . . . , s2} and ~J 2 has
eigenvalues {s(s+ 1), (s− 1)s, . . . , 6, 2, 0}. The groundstate of HB is thus a state that has
minimal J 2

z = 0 and maximal total angular momentum J = s = n
2 . This is a unique state,

which is known as a Dicke state [30]:

|gB〉 = |J = n

2 ;Jz = 0〉 =
(
n

n/2

)−1/2 ∑
|{i : xi=1}|=n/2

|x1 · · ·xn〉 . (8)

where the state can be explicitly written as a symmetric superposition of all strings x
with Hamming weight h(x) = |{i : xi = 1}| = n/2. This groundstate |gB〉 has energy 0.
Meanwhile, all other eigenstates must have energy at least 1. Thus, the system is spectrally
gapped with energy spread wn = 0 and γn = 1.

It turns out that these deceptively simple examples form a challenge for Hamiltonian
sparsification.

3.1 Limitations on Degree-Reduction
For didactic reasons, we start by ruling out generic perfectly coherent DR. This is done by
showing that such DR is impossible for HA.

I Lemma 10 (Impossibility of generic 0-incoherence DR). There does not exist any k-local
Hamiltonian H̃A that is an [o(n/k),M, J ]-degree-reducer of the n-qubit Hamiltonian HA with
localized encoding, 0-incoherence, and energy spread w̃ < 1/2, regardless of number of terms
M or interaction strength J .

A closer inspection of the proof implies a trade-off between ε and J , from which it follows
that if J = O(1) then generic DR is impossible even if we allow ε which is inverse polynomially
small (see exact statement in extended version [1]). We note that this result in fact rules out
any improvement of the degree for HA, to some sub-linear degree.

However, perfect (or even inverse-polynomially close to perfect) coherence is a rather
strong requirement. Indeed, by improving our proof techniques, we manage to improve our
results for HA to show impossibility even for constant coherence. Moreover, by devising
another Hamiltonian with a unique groundstate, HB , and proving such an impossibility result
also for this Hamiltonian, we arrive at the following theorem. Our main result is a strong
impossibility result, ruling out generic DR with constant unfaithfulness (and consequently,
also constant incoherence).

I Theorem 11 (Main: Impossibility of constant coherence (faithfulness) DR for HA (HB)). For
sufficiently small constants ε ≥ 0 (δ ≥ 0) and w̃ ≥ 0, there exists system size n0 where for
any n ≥ n0, there is no O(1)-local [O(1),M,O(1)]-degree-reducer of the n-qubit Hamiltonian
HA (HB) with localized encoding, ε-incoherence (δ-unfaithfulness), and energy spread w̃, for
any number of Hamiltonian terms M .

We deduce that generic quantum DR, with even constant unfaithfulness, is impossible.
This stands in striking contrast to the classical setting. It is well known that classical DR is
possible for all CSPs in the context of PCP reductions[32]. This construction easily translates
to a 0-unfaithfulness degree-reducer for any classical local Hamiltonian:
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I Proposition 12 (Incoherent DR of classical Hamiltonians). Consider an n-qudit k-local
classical Hamiltonian H =

∑
S⊂{1,...,n} CS, where each CS : {zi : i ∈ S} → [0, 1] is a

function of d-ary strings of length |S| ≤ k representing states of qudits in S. Let the number
of terms in H be M0 = |{S}| = O(nk). Then there is a k-local [3, O(kM0), O(1)]-degree-
reducer of H with 0-unfaithfulness, energy spread w̃ = 0, and trivial encoding V = 1.

This demonstrates a large difference between the quantum and classical settings in the
context of Hamiltonian sparsification. Characterizing which quantum Hamiltonians can
be degree-reduced (with bounded interaction strength), either coherently or just faithfully,
remains open.

The impossibility of DR by Theorem 11, which heavily relies on the interaction strength
J being a constant, is essentially tight. We prove this in a complementary result showing that
degree-reduction is possible when J is allowed to grow polynomially for any local Hamiltonian
whose spectral gap closes slower than some polynomial (which is the case of interest for
gap-simulation):

I Theorem 13 (Coherent DR with polynomial interaction strength). Suppose H is an O(1)-
local Hamiltonian with a quasi-groundspace projector P , which has quasi-spectral gap γ =
Ω(1/ poly(n)) and energy spread w. Also assume ‖H‖ = O(poly(n)). Then for any ε > 0,
one can construct an O(1)-local [O(1), O(poly(n)/ε2), O(poly(n, ε−1))]-degree-reducer of H
with incoherence ε, energy spread w +O(1/ poly(n)), and trivial encoding.

The proof is constructive: we map any given Hamiltonian to the quantum phase-estimation
circuit, make the circuit sparse with new ancilla qudits and swap gates, and transform it back
to a Hamiltonian using Kitaev’s circuit-to-Hamiltonian construction [47]. Some innovations
are required to ensure coherence within the groundspace isn’t destroyed. For the most general
local Hamiltonian whose spectral gap may close exponentially (or possibly even faster, see
e.g. [2]), we can show that coherent DR is possible with interaction strength that scales
exponentially with inverse gap and incoherence:

I Theorem 14 (Coherent DR with exponential interaction strength). Let H be an n-qubit
O(1)-local Hamiltonian with M0 terms, each with bounded norm. Suppose H has quasi-
spectral gap γ and energy spread w. For any ε > 0, one can construct a 2-local [O(1), O(M0),
O((γε)− poly(n))]-degree-reducer of H with incoherence ε, energy spread w +O(ε), and trivial
encoding.

The proof uses a construction from perturbative gadgets, and is similar to other results in
the Hamiltonian simulation literature [54, 27]. Due to significantly more resource required
compared to Theorem 13, this construction is only useful in situations where we want to
preserve some extremely small spectral gap.

3.2 Limitations on Dilution
For perfect or near-perfect dilution, we can prove a similar impossibility result to Lemma 10:

I Theorem 15 (Impossibility of generic 0-incoherence dilution). There does not exist any
k-local Hamiltonian H̃A that is an [r, o(n2/k2), J ]-diluter of the n-qubit Hamiltonian HA

with localized encoding, 0-incoherence, and energy spread w̃ < 1/2, regardless of degree r or
interaction strength J .

Similar to Lemma 10, this in fact holds even if we allow inverse polynomial incoherence [1];
and like above, this seems to be a rather weak impossibility result since requiring inverse
polynomial incoherence may be too strong in many situations. Can we strengthen this to rule
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out dilution with constant incoherence? The proof technique in Theorem 11 does not apply
for dilution, since it relies on the decay of correlation between distant nodes in the interaction
graph of H̃ (see Sec. 4.1). On the other hand, a diluter H̃ can have unbounded degree, and
hence constant diameter, e.g. the star graph. Nevertheless, under a computational hardness
assumption, no efficient classical algorithm for generic constant-unfaithfulness dilution exists,
even for all k-local classical Hamiltonians:

I Theorem 16 (Impossibility of dilution algorithm for classical Hamiltonians). If coNP 6⊆
NP/poly, then for any ξ > 0, δ < 1/

√
2, w̃ ≤ 1/2, there is no classical algorithm that given a

k-local n-qubit classical Hamiltonian H, runs in O(poly(n)) time to find an [r,O(nk−ξ), J ]-
diluter of H with δ-unfaithfulness, energy spread w̃, and any encoding V that has an O(nk−ξ)-
bit description. This holds for any r and J .

The above result rules out general (constructive) dilution even when the Hamiltonians
are classical. For specific cases, however, dilution is possible. Our HA (which is also a
classical Hamiltonian) provides such an example, for which we can achieve dilution even with
0-unfaithfulness, in the incoherent setting:

I Proposition 17 (0-unfaithfulness incoherent dilution and DR for HA). There is a 3-local
incoherent [2, n− 1, 1]-diluter of HA with 0-unfaithfulness, energy spread w̃ = 0, and trivial
encoding. This is also an incoherent [2, n− 1, 1]-degree-reducer of HA.

Furthermore, combining ideas from the construction in Proposition 17 and Theorem 13,
we can show that coherent dilution of HA with polynomial interaction strength is also
possible:

I Proposition 18 (Coherent dilution and DR for HA with polynomial interaction strength).
There is a 6-local [6, O(n/ε2), O(poly(n, ε−1))]-diluter of HA with ε-incoherence, energy spread
w̃ = 0, and trivial encoding. This is also a [6, O(n/ε2), O(poly(n, ε−1))]-degree-reducer of
HA.

Note since Theorem 16 rules out constructive dilution regardless of interaction strength
J , we cannot hope to prove an analogue of Theorem 13 or 14 to build coherent diluters for
generic Hamiltonians, even allowing arbitrarily large interaction strength. Nevertheless, it
remains an interesting open question to characterize Hamiltonians for which diluters exist,
whether coherent or incoherent, with constant or large interaction strengths.

3.3 Connection to Quantum PCP
It might appear that our results rule out quantum degree-reduction (DR) in the context of
quantum PCP (which would add to existing results [23, 5, 11, 20, 40, 6] ruling out quantum
generalizations of other parts of Dinur’s PCP proof [32]). However, our results in this context
(detailed in extended version[1]) currently have rather weak implications towards such a
statement. The catch is that despite the apparent similarity, our gap-simulating DR is a very
different notion from DR transformations used in the context of classical and quantum PCP.
Gap-simulation seeks the existence of a Hamiltonian H̃ that reproduces the properties of the
groundstate(s) and spectral gap of an input Hamiltonian H. On the other hand, a qPCP
reduction is an algorithm that given H, it is merely required to output some H̃, such that if
the groundstate energy of H is small (or large), then so is the groundstate energy of H̃; in
other words, qPCP preserves the promise gap. Notice that such a H̃ always exists, and the
difficulty in qPCP reductions is to generate H̃ efficiently, without knowing the groundstate
energy of H. Thus, we cannot hope for an information-theoretical impossibility result (as in
Theorem 11 and 15) in the qPCP setting without further restriction on the output.
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To circumvent this issue, we generalize to the quantum world a natural requirement,
which seems to hold in the classical world for all known PCP reductions, namely that the
reduction is constructive: roughly, it implies a mapping on not only the CSPs (Hamiltonians)
but also individual assignments (states) [16, 33]. Specifically, we require that the reduction
from H to H̃ preserves groundstate properties in the similar sense as gap-simulation does,
and maps excited states of H (above the promise gap) to high-energy states H̃. Under this
restriction, we prove that degree-reduction and dilution for quantum PCP with near-perfect
coherence is impossible:

I Theorem 19 (Limitation on qPCP-DR and qPCP-dilution (rough)). There is no “constructive”
qPCP reduction that works to degree-reduce or dilute the Hamiltonian HA with localized
encoding, if we require small incoherence ε relative to the energy of the output Hamiltonian
H̃A, namely, ε ≤ o(‖H̃A‖−1/2).

The proof of Theorem 19 approximately follows that of impossibility results of Lemma 10
and Theorem 15 for sparsification with close-to-perfect coherence. Unfortunately, as we
explain in Sec. 4.1, strengthening these results to prove impossibility for constant error (the
regime of interest for qPCP), as is done in Theorem 11, seems to require another new idea.

4 Proofs Overview

4.1 Proof Sketch for Main Theorem 11 (and related results:
Theorem 15, 19 and Lemma 10)

We start with the idea underlying the impossibility of degree-reduction and dilution with
(close to) perfect coherence (Lemma 10 and Theorem 15), which we refer to as “contradiction-
by-energy”. For simplicity, let’s first examine the case of gap-simulation without encoding.
Consider all pairs of original qubits (i, j). The groundstates of HA include basis states
with zero or one excitations (namely, 1’s), but not 2-excitation states. Importantly, the
groundstates can be obtained from the 2-excitation state by local operations σ(i)

x and σ(j)
x .

Assuming the gap-simulator H̃A of HA does not interact the qubits (i, j), we can express the
energy of the 2-excitation state as a linear combination of the energy of 0- and 1-excitation
states, up to an error of O(w̃) and O(ε‖H̃A‖), using the fact that we can commute σ(i)

x

and σ(j)
x through independent parts of H̃A. If we assume w̃ is small and ε = 0, the energy

of the 2-excitation state cannot be distinguished from these groundstates. Thus any gap-
simulator H̃A must directly interact all pairs of qubits, which easily proves the impossibility
without encoding. We can also see that if ε > 0, then DR and dilution remain impossible
if ‖H̃A‖ ≤ O(ε−1), e.g. when ε is polynomially small. This impossibility easily extends to
localized encoding, where each original qubit is encoded into O(1) qudits in the gap-simulator
Hamiltonian either independently or via some constant-depth circuit. In both cases, the
required Ω(n) degree and Ω(n2) interaction terms implied for the non-encoded version
translate to the same requirements for the encoded version up to a constant factor, proving
Lemma 10 and Theorem 15.

We now explain the proof of Theorem 11 that rules out degree-reduction even with
constant incoherence. Let us first consider the statement for HA with constant ε incoherence.
The challenge is that the contradiction-by-energy trick used in the proof of Lemma 10 and
Theorem 15 does not work for ε = Θ(1) incoherence. The problem is that the error in energy is
of the order of O(ε‖H̃A‖); this is too large for constant ε, and does not allow one to distinguish
the energy of ground and excited states. Instead of contradiction-by-energy, we derive a
contradiction using the groundspace correlations between qubits (i, j), where ε-incoherence
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only induces an error of O(ε). Since HA is gapped, then any degree-reducer Hamiltonian
H̃A of HA must be gapped (while allowing some small energy spread w̃) by Definition 2. We
can therefore apply a result (strengthened to accommodate non-vanishing energy spread[1])
of Hastings-Koma [41] stating that groundspace correlation decays exponentially with the
distance on the graph where H̃A is embedded. Since we assume bounded degree, we can
find a pair (i, j) among the original n qubits such that their supports (Si, Sj) after a
localized encoding are Ω(logn) distance apart, with respect to the graph metric. Hence, their
correlation 〈V σ(i)

x σ
(j)
x V †〉 in the groundspace of H̃A must decay as e−Ω(logn) = O(1/ poly(n)).

Contradiction is achieved by the fact that for any pair of original qubits (i, j), the groundspace
of H̃A contains a state of the form V (|0i1j〉+ |1i0j〉) |0n−2, rest〉+O(ε), which has correlation
at least 〈V σ(i)

x σ
(j)
x V †〉 = 1−O(ε). For sufficiently small ε and w̃, this constant correlation from

the latter lower bound contradicts the O(1/poly(n)) upper bound from the Hastings-Koma
result.

The second part of Theorem 11 proves impossibility of incoherent DR for HB with
δ-unfaithfulness. Since HB has a unique groundstate that can be shown to have constant
correlation between any pair of original qubits (i, j), we can apply the same argument
above for HA and show a contradiction with the Hastings-Koma’s vanishing upper bound of
O(1/ poly(n)) for small δ and w̃.

We now remark how these impossibility proofs can be extended to the context of quan-
tum PCP. The contradiction-by-energy idea in Lemma 10 and Theorem 15 can indeed be
generalized in this context. Under a reasonable restriction on the reduction – namely that
the energy of non-satisfying assignments (frustrated or excited states) after the mapping is
lower bounded by the promise gap – degree-reduction or dilution for quantum PCP is not
generally possible with close-to-perfect (namely inverse polynomial) coherence (Theorem
19). However, this impossibility proof would not work when constant incoherence is allowed.
To move to contradiction-by-correlation as in Theorem 11, we need to use some form of
Hastings-Koma, which requires a spectral gap in H̃. Thus, more innovation is needed as it
may be an unnecessarily strong requirement for quantum PCP to preserve the spectral gap.

4.2 Overview of Remaining Proofs

Proof sketch: Equivalence between coherent and incoherent gap-simulations for unique
groundstates (Lemma 4). We want to show that incoherent gap-simulation implies coherent
gap-simulation, in the case of unique groundstate of the original Hamiltonian H. A naïve
approach using the small error per groundstate of the gap-simulator will not work due
to possible degeneracy in the groundspace of the simulator H̃; this (possibly exponential)
degeneracy could add an unwanted exponential factor. Hence, we explicitly construct the
subspace on which the ancilla qubits should be projected by Panc. The main observation is
that since faithful gap-simulation implies that any state in the groundspace of H̃ must be
close to the space spanned by this Panc, the dimensions of Panc and the groundspace of H̃
must be the same. A sequence of simple arguments then allows us to derive a bound on the
incoherence of any state (i.e., its norm after the incoherence operator in Eq. (3) is applied).

Proof sketch: DR of any classical Hamiltonian (Proposition 12). Here we follow the
standard classical DR (as in [32]) in which each variable (of degree d) is replaced by d

variables, and a ring of equality constraints on these variables is added to ensure they are
the same. The proof that this satisfies our gap-simulation definition is straightforward.
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Proof sketch: Coherent DR of any Hamiltonian with Ω(1/ poly(n)) spectral gap using
polynomial interaction strength (Theorem 13). The construction is based on mapping
the quantum phase estimation (PE) circuit[53] to a Hamiltonian, using a modified version of
Kitaev’s circuit-to-Hamiltonian construction[47]. The PE circuit can write the energy of any
eigenstate of a given H in an ancilla register, up to polynomial precision using polynomial
overhead. The degree of the Hamiltonian is reduced by “sparsifying” the circuit before
converting to the Hamiltonian. To repair the incoherence due to different histories, we run
the circuit backwards, removing entanglement between the ancilla and the original register.
To achieve ε-incoherence, we add O(poly(n)/ε2) identity gates to the end of the circuit. The
eigenvalue structure of the original Hamiltonian H is restored by imposing energy penalties
on the energy bit-string written on the ancilla by the PE circuit. This yields a full-spectrum
simulation of H, which also implies a gap-simulation of H.

Proof sketch: Impossibility of generic dilution algorithm (Theorem 16). Ref. [29] shows
that under the assumption coNP 6⊆ NP/poly, there is no poly-time algorithm to “compress”
vertex-cover problems on n-vertex k-uniform hypergraphs and decide the problem by commu-
nicating O(nk−ξ) bits for any ξ > 0 to a computationally unbounded oracle. Suppose towards
a contradiction that A is a poly-time algorithm to dilute any k-local classical Hamiltonian;
we use it to derive a compression algorithm for vertex cover. To this end, A is given a
classical k-local Hamiltonian H encoding a vertex cover problem; A produces the diluter
H̃ with O(nk−2ξ) terms and some encoding V described by O(nk−2ξ) bits. Using Green’s
function perturbation theory, we show that H̃ can be written using only log(n)-bit precision
as H̃ ′ with O(1) error in the quasi-groundspace (even accounting for degeneracy). We then
communicate (H̃ ′, V ) to the oracle by sending O(nk−2ξ logn) = O(nk−ξ) bits. The oracle
then uses any groundstate of H̃ ′, which has large overlap with groundstates of H for small δ
and high precision, to decide the vertex cover problem and transmit back the answer.

Proof sketch: Incoherent dilution and DR of HA (Proposition 17). We use here the
usual translation of a classical circuit to a CSP: n − 1 qubits in a tree structure are used
to simulate counting of the number of 1s among the original qubits, and the CSP checks
the correctness of this (local) computation. The “history” of the computation is written on
the ancilla qubits. Since different strings have different such histories, the construction is
incoherent.

Proof sketch: Coherent dilution and DR of HA with polynomial interaction strength
(Proposition 18). We improve upon the construction in Prop. 17 and Theorem 13 to obtain
a coherent diluter of HA with polynomial interaction strength. The key is an O(n)-length
circuit similar to that of Prop. 17 with a circuit that counts the number of 1s in the same
tree geometry. Using the same tricks in Theorem 13 to uncompute computational histories
and add identity gates at the end, we show that this leads to a coherent gap-simulator of
HA with ε-incoherence and O(n/ε2) terms.

Proof sketch: Coherent DR for any Hamiltonian using exponential or larger interaction
strength (Theorem 14). In order to provide generic coherent degree-reduction for any
local Hamiltonian without restriction on the spectral gap γ, we first show that perturbative
gadgets[45, 54] can be used for gap-simulation. The proofs make use of Green’s function
machinery to bound incoherence ε, which can be made small after every application of the
gadgets using interactions of strength O(poly(n)/(γε)O(1)). This allows us to construct a
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degree-reducer for any k-local Hamiltonian by a sequence of perturbative gadget applications.
In the first part of the sequence, we reduce the locality of individual Hamiltonian terms to
3-local via O(log k) serial applications of subdivision gadgets [54], and each 3-local term is
further reduced to 2-local via “3-to-2-local” gadgets [54]. Then, each original qubit is isolated
from each other by subdivision gadgets so that they only interact with O(nk−1) ancilla
qubits that mediate interactions. Finally, applying fork gadgets [54] in O(logn) iterations
allows us to reduce maximum degree of these original qubits to 6, generating our desired
degree-reducer. It is this last part that causes the exponential blow-up in the interaction
strength relative to γε, so as to maintain the gap-simulation.

Proof sketch: Generalized Hastings-Koma. In Ref. [41], Hastings and Koma proved the
exponential decay of correlations in the quasi-groundspace of a Hamiltonian H consisting
of finite-range (or exponentially decaying) interactions between particles embedded on a
graph. They assume that the system is spectrally gapped, and has vanishing energy spread
as the system size n→∞. Their proof is based on the relationship between the correlation
〈σ(i)σ(j)〉 they want to upper bound, and the commutator 〈[e−iHtσ(i)eiHt, σ(j)]〉. By applying
the Lieb-Robinson bound[51] on the latter, and integrating out the time t, they show that
under the above conditions, the correlations between operators acting on particles i and j
decay exponentially with the graph-theoretic distance between the particles. For application
to the gap-simulation framework, we need to generalize their result to cases where the energy
spread is not assumed to vanish with the system size. This is done by a careful modification
of their proofs where we optimize the bounds and integration parameters so that errors due
to the non-zero energy spread are suppressed.

5 Discussion and outlook

We have initiated the rigorous research of resources required for analog simulations of
Hamiltonians, and proved unexpected impossibility results for Hamiltonian sparsification.
Instead of working with full-spectrum simulations [22, 27], we use a new, relaxed definition
of gap-simulation that is motivated by minimal requirements in physics. We note that
impossibility results proven in a relaxed framework are of course stronger.

It would be very interesting to improve our understanding of the new framework of
gap-simulations presented here, and clarify its applicability. As a start, it will be illumi-
nating to find applications of gap-simulations in cases where full-spectrum simulations as
in Ref. [22, 27] are unknown or difficult to achieve. For example, our Prop. 18 achieves
dilution of HA with gap-simulation, but we do not know how to do so with full-spectrum
simulation. Such simulations can enable experimental studies of these physical systems,
by reducing resources required for analog simulations. Moreover, in many-body quantum
physics, tools to construct “equivalent” Hamiltonians that preserve groundstate properties
are of great utility. In this context, the study of gap-simulations can potentially lead to better
understanding of universal behaviors in quantum phases of matter, which are characterized
only by groundstate physics [56]. Another possible application of gap-simulators may be
in the design of Hamiltonian-based quantum algorithms. In adiabatic algorithms [35], it
is well known that the higher parts of the spectrum of the final and initial Hamiltonians
can significantly affect the adiabatic gap [34, 31, 13]; gap-simulating these final and initial
Hamiltonians by others will not affect the final groundstate, and can sometimes dramatically
improve on the gap along the adiabatic path. Gap-simulations may also be a useful tool for
tailoring the Hamiltonians used in other Hamiltonian-based algorithms such as QAOA [36].
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We note that incoherent but faithful gap-simulations can be very interesting despite the
apparent violation of the quantum requirement for coherence. For example, in adiabatic
algorithms [35], we only want to arrive at one of the solutions (groundstates) to a quantum
constraint satisfaction problem. In addition, in quantum NP [8], one is interested only in
whether a certain eigenvalue exists, and not in the preservation of the entire groundspace.
However, in the context of quantum simulation and many-body physics, maintaining coherence
seems to be crucial for transporting all the physical properties of the groundspace. One
would also expect maintaining coherence to be important when gap-simulating a subsystem
(perhaps in an unknown state) of a larger system.

We remark that our framework deliberately avoids requiring that the eigenvalue structure
of the spectrum be maintained even in its low-lying part, so as to provide a minimal but
still interesting definition. Indeed, when simulating the groundspace, or a quasi-groundspace
with small energy spread, this structure is not important. Nevertheless, one can imagine an
intermediate definition, in which full-spectrum simulation is too strong, but the structure of
a significant portion of the lower part of the spectrum matters. It might be interesting to
extend the framework of gap-simulations to allow for such intermediate cases in which, for
example, Gibbs states at low (but not extremely low) temperatures are faithfully simulated.

A plethora of open questions arise in the context of sparsification. First, it will be very
interesting to find more examples where degree-reduction and/or dilution are possible, or are
helpful from the perspective of physical implementations. Assuming bounded interaction
strength, which is generally a limitation of physical systems, can we rigorously characterize
which Hamiltonians can be coherently (or incoherently) degree-reduced? Of course, similar
questions can be asked about dilution. It will also be interesting to consider saving other
resources such as the dimensionality of the particles, which would be a generalization of
alphabet-reductions from the context of PCP to Hamiltonian sparsification.

Our results on the impossibility of dilution are weaker than those for DR. Can we
strengthen these to stronger information-theoretical results, by finding a quantum Hamiltonian
for whom a diluter does not exist with constant incoherence, or even constant unfaithfulness?

We mention here that the classical graph sparsification results of Ref. [14, 15] can be
viewed as dilution of a graph while approximately maintaining its spectrum. These results
have been generalized to the matrix setting in Ref. [58]; however, this generalization does not
seem to be useful in the context of diluting the interaction graph of a local Hamiltonian. The
result of Ref. [58] shows that for sums of d× d positive Hermitian matrices, O(d) matrices
are sufficient to reproduce the spectral properties to good approximation, improving over
Chernoff-like bounds [10]. While this in principle allows one to approximate a sum of terms
by a sum of fewer terms, the required number of terms grows as d = 2Ω(n) for quantum
Hamiltonians on n qubits, and is thus irrelevant in our context.

Improving the geometry of the simulators is another important task that is relevant for
applications of Hamiltonian sparsification to physical implementations. Ref. [49] has devised
a method of converting the NP-complete Ising model Hamiltonian (H =

∑
ij Jijσ

(i)
z σ

(j)
z +∑

i hiσ
(i)
z ) on n qubits to a new Hamiltonian on O(n2) qubits with interactions embedded

on a 2D lattice, and sharing the same low-energy spectrum. Their construction encodes each
edge σ(i)

z σ
(j)
z as a new qubit, and corresponds to an incoherent degree-reducer, where the

new groundstates are non-locally encoded version of the original states. Our Prop. 12 also
provides incoherent DR of these Hamiltonians, and without encoding, but the geometry is not
in 2D; it will be interesting to improve our Prop. 12 as well as our other positive Theorems 13
and 14 to hold using a spatially local H̃. We note that if we allow the overhead of polynomial
interaction strength, then it should be straightforward to extend the circuit-to-Hamiltonian

ITCS 2019



2:18 Hamiltonian Sparsification and Gap-Simulation

construction in Theorem 13 for analog simulations of local Hamiltonians on a 2D lattice, by
ordering the gates in a snake-like fashion on the lattice similar to Ref. [54, 9]. Identifying
situations where DR in 2D with bounded interaction strength is possible remains an open
question.

A different take on the geometry question is to seek gap-simulators which use a single (or
few) ancilla qubits that strongly interact with the rest. This may be relevant for physical
systems such as neutral atoms with Rydberg blockade [57], where an atom in a highly excited
level may have a much larger interaction radius, while no two atoms can be excited in each
other’s vicinity.

Can we improve our results about quantum PCP, and show impossibility of qPCP-DR
with constant incoherence? This would make our impossibility results interesting also in the
qPCP context, as they would imply impossibility of DR in the qPCP regime of constant error,
under a rather natural restriction on the qPCP reduction. This would complement existing
impossibility results on various avenues towards qPCP [23, 5, 11, 20, 40, 6, 3]. Nevertheless,
it seems that proving such a result might require a significantly further extension of Hastings-
Koma, which may be of interest on its own.

Finally, we mention a possibly interesting variant of gap-simulation, which we call weak
gap-simulation (see details in extended version[1]). Here, the groundspace is simulated in an
excited eigenspace of the simulating Hamiltonian, spectrally gapped from above and below,
rather than in its groundspace. This can be useful in the context of Floquet Hamiltonian
engineering in periodically driven quantum systems, where eigenvalues are meaningful only
up to a period, and thus a spectral gap in the middle of the spectrum is analogous to a
spectral gap above the groundspace [39]. We are able to show how to weakly gap-simulate
HA to provide dilution with constant incoherence and bounded interaction strength – a task
which we currently do not know how to do using “standard” gap-simulation. It remains open
whether one can show stronger possibility results under weak gap-simulation. If not, can the
impossibility results presented here be extended to the weak-gap-simulation setting? This
might require an even stronger extension of Hastings-Koma’s theorem.

Overall, we hope that the framework, tools, and results presented here will lead to
progress in understanding the possibilities and limitations in simulating Hamiltonians by
other Hamiltonians – an idea that brings the notion of reduction from classical computer
science into the quantum realm, and constitutes one of the most important contributions of
the field of quantum computational complexity to physics.
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Abstract
We study sublinear algorithms that solve linear systems locally. In the classical version of this
problem the input is a matrix S ∈ Rn×n and a vector b ∈ Rn in the range of S, and the goal is
to output x ∈ Rn satisfying Sx = b. For the case when the matrix S is symmetric diagonally
dominant (SDD), the breakthrough algorithm of Spielman and Teng [STOC 2004] approximately
solves this problem in near-linear time (in the input size which is the number of non-zeros in S),
and subsequent papers have further simplified, improved, and generalized the algorithms for this
setting.

Here we focus on computing one (or a few) coordinates of x, which potentially allows for
sublinear algorithms. Formally, given an index u ∈ [n] together with S and b as above, the goal
is to output an approximation x̂u for x∗u, where x∗ is a fixed solution to Sx = b.

Our results show that there is a qualitative gap between SDD matrices and the more general
class of positive semidefinite (PSD) matrices. For SDD matrices, we develop an algorithm that
approximates a single coordinate xu in time that is polylogarithmic in n, provided that S is sparse
and has a small condition number (e.g., Laplacian of an expander graph). The approximation
guarantee is additive |x̂u − x∗u| ≤ ε‖x∗‖∞ for accuracy parameter ε > 0. We further prove that
the condition-number assumption is necessary and tight.

In contrast to the SDD matrices, we prove that for certain PSD matrices S, the running time
must be at least polynomial in n (for the same additive approximation), even if S has bounded
sparsity and condition number.
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3:2 On Solving Linear Systems in Sublinear Time

1 Introduction

Solving linear systems is a fundamental problem in many areas. A basic version of the
problem has as input a matrix A ∈ Rn×n and a vector b ∈ Rn, and the goal is to find x ∈ Rn
such that Ax = b. The fastest known algorithm for general A is by a reduction to matrix
multiplication, and takes O(nω) time, where ω < 2.373 [19] is the matrix multiplication
exponent. When A is sparse, one can do better (by applying the conjugate gradient method
to the equivalent positive semidefinite (PSD) system ATAx = ATb, see for example [32]),
namely, O(mn) time where m = nnz(A) is the number of non-zeros in A. This O(mn) bound
for exact solvers assumes exact arithmetic, and in practice, one seeks fast approximate solvers.

One interesting subclass of PSD matrices is that of symmetric diagonally dominant
(SDD) matrices.3 Many applications require solving linear systems in SDD matrices, and
most notably their subclass of graph-Laplacian matrices, see e.g. [32, 36, 14]. Solving SDD
linear systems received a lot of attention in the past decade after the breakthrough result
by Spielman and Teng in 2004 [31], showing that a linear system in SDD matrix S can be
solved approximately in near-linear time O(mlogO(1)n log 1

ε ), where m = nnz(S) and ε > 0
is an accuracy parameter. A series of improvements led to the state-of-the-art SDD solver
of Cohen et al. [14] that runs in near-linear time O(m

√
logn(log logn)O(1) log 1

ε ). Recent
improvements extend to connection Laplacians [24]. Obtaining similar results for all PSD
matrices remains a major open question.

Motivated by fast linear-system solvers in alternative models, here we study which linear
systems can be solved in sublinear time. We can hope for such sublinear times if only one (or
a few) coordinates of the solution x ∈ Rn are sought. Formally, given a matrix S ∈ Rn×n, a
vector b ∈ Rn, and an index u ∈ [n], we want to approximate the coordinate xu of a solution
x ∈ Rn to the linear system Sx = b (assume for now the solution is unique), and we want
the running time to be sublinear in n.

Our main contribution is a qualitative separation between the class of SDD matrices and
the larger class of PSD matrices, as follows. For well-conditioned SDD matrices S, we develop
a (randomized) algorithm that approximates a single coordinate xu fast – in polylog(n) time.
In contrast, for some well-conditioned PSD (but not SDD) matrices S, we show that the same
task requires nΩ(1) time. In addition, we justify the dependence on the condition number.

Our study is partly motivated by the advent of quantum algorithms that solve linear
systems in sublinear time, which were introduced in [20], and subsequently improved in
[2, 11], and meanwhile used for a number of (quantum) machine learning algorithms (see,
e.g., the survey [15]). In particular, the model in [20] considers a system Ax = b given: (1)
oracle access to entries of A (including fast access to the j-th non-zero entry in the i-th
row), and (2) a fast black-box procedure to prepare a quantum state |b〉 =

∑
i

bi|i〉
‖
∑

i
bi|i〉‖

.
Then, if the matrix A has condition number κ, at most d non-zeros per row/column, and
‖A‖ = 1, their quantum algorithm runs in time poly(κ, d, 1/ε), and outputs a quantum state
|x̂〉 within `2-distance ε from |x〉 =

∑
i
xi|i〉

‖
∑

i
xi|i〉‖

. The runtime was later improved in [11] to
depend logarithmically on 1/ε. (The original goal of [20] was different – to output a “classical”
value, a linear combination of |x〉 – and for this goal the improved dependence on 1/ε is not
possible unless BQP = PP .) These quantum sublinear-time algorithms raise the question
whether there are analogous classical algorithms for the same problems; for example, a very
recent success story is a classical algorithm [35] for a certain variant of recommendation

3 A symmetric matrix S ∈ Rn×n is called SDD if Sii ≥
∑

j 6=i |Sij | for all i ∈ [n].
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systems, inspired by an earlier quantum algorithm [22]. Our lower bound precludes a classical
analogue to the aforementioned linear-system solver, which works for all matrices A and in
particular for PSD ones.

Problem Formulation. To formalize the problem, we need to address a common issue for
linear systems – they may be underdetermined and thus have many solutions x, which is a
nuissance when solving for a single coordinate. We require that the algorithm approximates
a single solution x∗, in the sense that invoking the algorithm with different indices u ∈ [n]
will output coordinates that are all consistent with one “global” solution. This formulation
follows the concept of Local Computation Algorithms, see Section 1.3.

Our formal requirement is thus as follows. Given a matrix S ∈ Rn×n, a vector b ∈ Rn
in the range (column space) of S, and an accuracy parameter ε > 0, there exists x∗ ∈ Rn
satisfying Sx∗ = b, such that upon query u ∈ [n] the (randomized) algorithm outputs x̂u
that satisfies

∀u ∈ [n], Pr
[
|x̂u − x∗u| ≤ ε||x∗||∞

]
≥ 3

4 . (1)

This guarantee corresponds (modulo amplification of the success probability) to reporting
a solution x̂ ∈ Rn with ‖x̂− x∗‖∞ ≤ ε||x∗||∞. We remark that the guarantee in [31] is
different, that ||x̂− x∗||S ≤ ε||x∗||S where ||y||S

def=
√
yTSy, see also Section 1.4.

Basic Notation. Given a (possibly edge-weighted) undirected graph G = (V,E), we assume
for convenience V = [n]. Its Laplacian is the matrix LG

def= D −A ∈ Rn×n, where A is the
(weighted) adjacency matrix of G, and D is the diagonal matrix of (weighted) degrees in G.
It is well-known that all Laplacians are SDD matrices, which in turn are always PSD.

The sparsity of a matrix is the maximum number of non-zero entries in a single row/column.
The condition number of a PSD matrix S, denoted κ(S), is the ratio between its largest
and smallest non-zero eigenvalues.4 For example, for the Laplacian LG of a connected
d-regular graph G, let µ1 ≤ . . . ≤ µn denote its eigenvalues, then the condition number
is κ(LG) = Θ( d

µ2
). This follows from two well-known facts, that µn ∈ [d, 2d], and that

µ2 > µ1 = 0 if G is connected (µ2 is called the spectral gap). Throughout, ||A|| denotes the
spectral norm of a matrix A, and A+ denotes the Moore-Penrose pseudo-inverse of A.5

1.1 Our Results
Below we describe our results, which include both algorithms and lower bounds. First, we
present a polylogarithmic-time algorithm for the simpler case of Laplacian matrices, and
then we generalize it to all SDD matrices. We further prove two lower bounds, which show
that our algorithms cannot be substantially improved to handle more general inputs or to
run faster. The first lower bound shows that general PSD matrices require polynomial time,
thereby showing a strong separation from the SDD case. The second one shows that our
SDD algorithm’s dependence on the condition number is necessary and in fact near-tight.

4 Our definition is in line with the standard one, for a general matrix A, which uses singular values instead
of eigenvalues. If A is singular, one could alternatively define κ(A) =∞, which would only make the
problem easier (say to bound performance in terms of κ), see e.g. [32].

5 For a PSD matrix A ∈ Rn×n, let its eigen-decomposition be A =
∑n

i=1 λiuiu
T
i , then the Moore-Penrose

pseudo-inverse of A is A+ =
∑

i:λi>0
1
λi
uiu

T
i .
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Algorithm for Laplacian matrices. We first present our simpler algorithm for linear systems
in Laplacians with a bounded condition number.

I Theorem 1.1 (Laplacian Solver, see Section 2). There exists a randomized algorithm, that
given input 〈G, b, u, ε, κ̄〉, where

G = (V,E) is a connected d-regular graph given as an adjacency list,
b ∈ Rn is in the range of LG (equivalently, orthogonal to the all-ones vector),
u ∈ [n], ε > 0, and
κ̄ ≥ 1 is an upper bound on the condition number κ(LG),

the algorithm outputs x̂u ∈ R with the following guarantee. Letting x∗ = L+
Gb, we have

∀u ∈ [n], Pr
[
|x̂u − x∗u| ≤ ε · ‖x∗‖∞

]
≥ 1− 1

s ,

and the algorithm runs in time O(dε−2s3 log s), for suitable s = Θ(κ̄ log(ε−1 κ̄ n)).

A few extensions of the theorem follow easily from our proof. First, if the algorithm is
given also an upper bound Bup on ||b||0, then the expression for s can be refined by replacing
n with Bup ≤ n. Second, we can improve the running time to O(ε−2s3 log s) whenever the
representation of G allows to sample a uniformly random neighbor of a vertex in constant
time. Third, the algorithm has an (essentially) cubic dependence on the condition number
κ(LG), which can be improved to quadratic if we allow a preprocessing of G (or, equivalently
if we only count the number of probes into b). Later we show that this quadratic dependence
is near-optimal.

Algorithm for SDD matrices. We further design an algorithm for SDD matrices with
bounded condition number. The formal statement, which appears in Theorem 3.1, is a
natural generalization of Theorem 1.1 with two differences. One difference is that a natural
solution to the system Sx = b is x = S+b, but our method requires S to have normalized
diagonal entries, and thus we aim at another solution x∗, constructed as follows. Define

D
def= diag(S11, ..., Snn) and S̃

def= D−1/2SD−1/2, (2)

then our linear system can be written as S̃(D1/2x) = D−1/2b, which has a solution

x∗
def= D−1/2S̃+D−1/2b, (3)

which is expressed using the pseudo-inverse of S̃ rather than of S.
A second difference is that Theorem 3.1 makes no assumptions about the multiplicity of the

eigenvalue 0 of S̃, e.g., if S is a graph Laplacian, then the graph need not be connected. The
assumptions needed to achieve a polylogarithmic time, beyond S̃ having a bounded condition
number,6 are only that a random “neighbor” in the graph corresponding to S can be sampled
quickly, and that maxi∈[n] Dii

mini∈[n] Dii
≤ poly(n), which holds if S has polynomially-bounded entries.

Lower Bound for PSD matrices. Our first lower bound shows that the above guarantees
cannot be obtained for a general PSD matrix, even if we are allowed to preprocess the matrix
S, and only count probes into b. The proof employs a PSD matrix S that is invertible (i.e.,
positive definite), in which case the linear system Sx = b has a unique solution x = S−1b.

6 We cannot phrase our requirements in terms of κ(S), because we are not aware of a non-trivial
relationship between it and κ(S̃).
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I Theorem 1.2 (Lower Bound for PSD Systems, see Section 4). For every large enough n,
there exists an invertible PSD matrix S ∈ Rn×n with uniformly bounded sparsity d = O(1)
and condition number κ(S) ≤ 3, and a distinguished index u ∈ [n], which satisfy the following.
Every randomized algorithm that, given as input b ∈ Rn, outputs x̂u satisfying

Pr
[
|x̂u − x∗u| ≤ 1

5‖x
∗‖∞

]
≥ 6

7 ,

where x∗ = S−1b, must probe nΩ(1/d2) coordinates of b (in the worst case).

Dependence on Condition Number. The second lower bound shows that our SDD algo-
rithm has a near-optimal dependence on the condition number of S, even if we are allowed
to preprocess the matrix S, and only count probes into b. The lower bound holds even for
Laplacian matrices. Here and throughout, we use Õ(f) to hide polylogarithmic factors in f
or in the input size, i.e., it stands for O(f logO(1)(f + n)), and similarly for Ω̃(f).

I Theorem 1.3 (Lower Bound for Laplacian Systems). For every large enough n and k ≤
O(n1/2/ logn), there exist an unweighted graph G = ([n], E) with maximum degree 4 and
whose Laplacian LG has condition number κ(LG) = O(k), and a distinguished edge (u, v) in
G, which satisfy the following. Every randomized algorithm that, given input b in the range
of LG, succeeds with probability 2/3 to approximate xu − xv within additive error ε‖x∗‖ for
ε = Θ(1/ logn) and any solution x∗ ∈ Rn for LGx = b, must probe Ω̃(k2) coordinates of b
(in the worst case).

The proof of this result is omitted here but appears in the full version.

Applications. An example application of our algorithmic results is computing the effective
resistance between a pair of vertices u, v in a graph G (given u,v and G as input). It is well
known that the effective resistance, denoted Reff(u, v), can be expressed as xu − xv, where x
solves LGx = eu − ev. The spectral-sparsification algorithm of Spielman and Srivastava [33]
relies on a near-linear time algorithm (that they devise) for approximating the effective
resistances of all edges in G. For unweighted graphs, there is also a faster algorithm [25] that
runs in time Õ(n), which is sublinear in the number of edges, and approximates effective
resistances within a larger factor polylog(n). In a d-regular expander G, it is the effective
resistance of every vertex pair is Θ(1/d), and in this case our algorithm from Theorem 1.1 can
quickly compute, for any single pair, an arbitrarily good approximation (factor 1 + ε). Indeed,
observe that we can use Bup = 2, hence the running time is O( 1

ε2 polylog 1
ε ), independently

of n. The additive accuracy is ε‖x‖∞, where x ∈ Rn represents the vertex potentials when
imposing a unit of current from u to v, or equivalently, imposing a potential difference
Reff(u, v) between u and v, which implies that every xi ∈ [xu, xv]. By considering a solution
with xu = 0 we get ‖x‖∞ = xu − xv = Reff(u, v), and thus with high probability, the output
actually achieves a multiplicative guarantee R̂eff(u, v) ∈ (1± ε) Reff(u, v).

1.2 Technical Outline
Algorithms. Our basic technique relies on a classic idea of von Neumann and Ulam [18, 38]
for estimating a matrix inverse by a power series; see Section 1.3 for a discussion of related
work. Our starting point is the identity

∀X ∈ Rn×n, ‖X‖ < 1, (I −X)−1 =
∞∑
t=0

Xt.
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3:6 On Solving Linear Systems in Sublinear Time

(Recall that ||X|| denotes the spectral norm of a matrix X.) Now given a Laplacian L = LG of
a d-regular graph G, observe that 1

dL = I− 1
dA, where A is the adjacency matrix of G. Assume

for a moment that || 1dA|| < 1; then by the above identity, ( 1
dL)−1 = (I− 1

dA)−1 =
∑∞
t=0( 1

dA)t,
and the solution of the linear system Lx = b would be x∗ = L−1b = 1

d

∑∞
t=0( 1

dA)tb. The point
is that the summands decay exponentially because ||( 1

dA)tb||2 ≤ ||( 1
dA)t|| · ||b||2 ≤ ||( 1

dA)||t ·
||b||2. Therefore, we can estimate x∗u using the first t0 terms, i.e., x̂u = eT

u
1
d

∑t0
t=0( 1

dA)tb,
where t0 is logarithmic (with base ‖ 1

dA‖
−1 > 1). In order to compute each term eT

u
1
d ( 1
dA)tb,

observe that eT
u( 1

dA)tew is exactly the probability that a random walk of length t starting at
u will end at vertex w. Thus, if we perform a random walk of length t starting at u, and let
z be its (random) end vertex, then

E
z
[bz] =

∑
w∈V

eT
u( 1

dA)tewbw = eT
u( 1

dA)tb.

If we perform several random walks (specifically, poly(t0, 1
ε ) walk suffice), average the resulting

bz’s, and then multiply by 1
d , then with high probability, we will obtain a good approximation

to eT
u

1
d ( 1
dA)tb.

As a matter of fact, we have a non-strict inequality || 1dA|| ≤ 1, because of the all-ones
vector ~1 ∈ Rn. Nevertheless, we can still get a meaningful result if all eigenvalues of A except
for the largest one are smaller than d (equivalently, the graph G is connected). First, we get
rid of any negative eigenvalues by the standard trick of considering (dI + A)/2 instead of
A, which is equivalent to adding d self-loops at every vertex. Second, we may assume b is
orthogonal to ~1 (otherwise the linear system has no solution), and while the linear system
Lx = b has infinitely many solutions, we estimate the specific solution x∗ def= L+b (recall L is
PSD) by 1

d

∑t0
t=0( 1

dA)tb. Indeed, the idealized analysis above still applies by restricting all
our calculations to the subspace orthogonal to ~1. This is carried out in Theorem 1.1.

To generalize the above approach to SDD matrices, we face three issues. First, due
to the irregularity of general SDD matrices, it is harder to properly define the equivalent
random walk matrix. We resolve this by normalizing the SDD matrix S into S̃ defined in (2),
and solving the equivalent (normalized) system S̃(D1/2x) = D−1/2b. Second, general SDD
matrices can have positive off-diagonal elements, in constrast to Laplacians. To address this,
we interpret such entries as negative-weight edges, and employ random walks that “remember”
the signs of the traversed edges. Third, diagonal elements may strictly dominate their row,
which we address by terminating the random walk early with some positive probability.

Lower Bound: Polynomial Time for PSD Matrices. We first discuss our lower bound for
PSD matrices, which is one of the main contributions of our work. It exhibits a family of
matrices S for which estimating a coordinate x∗u of the solution x∗ = S−1b requires nΩ(1)

probes into the input b.
Without the sparsity constraint on S, one can deduce such a lower bound via a reduction

from the communication complexity of the Vector in Subspace Problem (VSP), in which
Alice has an n/2-dimensional subspace H ⊂ Rn, Bob has a vector b ∈ Rn, and their goal is
to determine whether b ∈ H or b ∈ H⊥. The randomized communication complexity of this
promise problem is between Ω(n1/3) [23] and O(

√
n) [28] (while for quantum communication

it is O(logn)). To reduce this problem to linear-system solvers, let PH ∈ Rn×n be the
projection operator onto the subspace H, and set S = I + PH . Consider the system Sx = b,
and notice that Alice knows S and Bob knows b. It is easy to see that the unique solution x∗
is either b or 1

2b, depending on whether b ∈ H⊥ or b ∈ H. Alice and Bob could use a solver
that makes few probes to b, as follows. Bob would pick an index u ∈ [n] that maximizes
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|bu| (and thus also |xu|), and send it to Alice. She would then apply the solver, asking Bob
for only a few entries of b, to estimate xu within additive error 1

2‖x‖∞, which suffices to
distinguish the two cases. This matrix S is PSD with condition number κ(S) ≤ 2. However,
it is dense.

We thus revert to a different approach of proving it from basic principles. Our high-level
idea is to take a 2d-regular expander and assign to its edges random signs (±1) that are
balanced everywhere, namely, at every vertex the incident edges are split evenly between
positive and negative. The signed adjacency matrix A ∈ {−1, 0,+1}n×n should have spectral
norm µ

def= ‖A‖ = O(
√
d), and then instead of the (signed) Laplacian L = (2d)I − A, we

consider S = 2µI −A, which is PSD with condition number κ(S) ≤ 3, as well as invertible
and sparse. Now following arguments similar to our algorithm, we can write S−1 as a power
series of the matrix A, and express coordinate x∗u of the solution x∗ = S−1b via Ez[bz]
where z is the (random) end vertex of a random walk that starts at u and its length is
bounded by some t0 (performed in the “signed” graph corresponding to A). Now if the
graph around u looks like a tree (e.g., it has high girth), then not-too-long walks are highly
symmetric and easy to count. We now let bv be non-zero only at vertices v at distance
exactly t0 from u, and for these vertices set bv ∈ {+1,−1} at random but with a small bias
δ towards one of the values. Some calculations show that sgn(Ez[bz]), and consequently
sgn(x∗u), will be according to our bias (with high probability), however discovering this
sgn(x∗u) via probes to b is essentially the problem of learning a biased coin, which requires
Ω(δ−2) coin observations. An additional technical obstacle is to bound ‖x∗‖∞, so that we
can argue that an 1

5‖x
∗‖∞-additive error to x∗u will not change its sign. Overall, we show we

can set t0 = Ω(logd n) and δ ≈ ((2d − 1)t0)−1/2, thus concluding that the algorithm must
observe Ω(δ−2) = nΩ(1) entries of b.

It is instructive to ask where in the above argument is it crucial to have µ = O(
√
d),

because if it were valid also for µ = d, then it would hold also for the SDD matrix S = 2µI−A,
and contradict our own algorithm for SDD matrices. The answer is that µ� 2d is required
to bound ‖x∗‖∞ in Lemma 4.8.

Lower Bound: Quadratic Dependence on Condition Number. We now outline the ideas
to prove the Ω̃(κ2) lower bound even for Laplacian systems with condition number κ. First,
it is relatively straightforward to prove that a linear dependence on the condition number is
necessary. Indeed, consider a dumbbell graph, namely, two 3-regular expanders connected
by a bridge edge (u, v), and suppose one need to estimate x∗u − x∗v. For input b = ei − ej ,
the value of x∗u − x∗v is non-zero iff vertices i, j are on opposite sides of the bridge, and
determining the latter requires Ω(n) probes into b. Since this graph has condition number
O(n), we obtain an Ω(κ) lower bound.

The quadratic lower bound requires both a different graph and a different vector b. We
use the following graph G with condition number O(k): take two 3-regular expanders and
connect them with n/k “bridge edges”. The vector b ∈ {−1,+1}n is dense and in particular
it is either: 1) balanced, i.e.,

∑
bi on each expander is zero; or 2) unbalanced, i.e., each

bi ∈ {+1,−1} at random with a bias p ≈ 1/k towards +1 on the first expander, and towards
−1 on the second one. Now, as above, it is simple to prove that: 1) in the balanced case,
the average of x∗u − x∗v over all bridge edges (u, v) must be zero; and 2) in the unbalanced
case, the same average must be Ω(1). The main challenge is that the actual values might
differ from the average – e.g., even in the balanced case, each bridge edge (u, v) will likely
have non-zero value of x∗u − x∗v. Nonetheless, we manage to prove an upper bound on the
maximum value of |x∗u − x∗v| over all edges (u, v) (as in the previous lower bound, we need to
bound ‖x∗‖∞ as well). For the latter, we need to again analyze Ez[bz] where z is the end
vertex of a random walk of some fixed length i ≥ 1 starting from u in the graph G. Since
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3:8 On Solving Linear Systems in Sublinear Time

the vector b is not symmetric over the graph G, a direct analysis seems hard – instead we
estimate Ez[bz] via a coupling of such walks in G with random walks in an expander, which
is amenable to a direct analysis.

1.3 Related Work
The idea of approximating the inverse (I − X)−1 =

∑∞
t=0X

t (for ||X|| < 1) by random
walks dates back to von Neumann and Ulam [18, 38]. While we approximate each power Xt

by separate random walks of length t and truncate the tail (powers above some t0), their
method employs random walks whose length is random and whose expectation gives exactly
the infinite sum, achieved by assigning some probability to terminate the walk at each step,
and weighting the contributions of the walks accordingly (to correct the expectation).

The idea of approximating a generalized inverse L∗ of L = dI −A by the truncated series
1
d

∑t0
t=0( 1

dA)t on directions that are orthogonal to the all-ones vector was recently used by
Doron, Le Gall, and Ta-Shma [16] to show that L∗ can be approximated in probabilistic log-
space. However, since they wanted to output L∗ explicitly, they could not ignore the all-ones
direction and they needed to relate L∗ to 1

d

∑∞
t=0( 1

dA)t by “peeling off” the all-ones direction,
inverting using the infinite sum formula, and then adding back the all-ones direction.

The idea of estimating powers of a normalized adjacency matrix 1
dA (or more generally,

a stochastic matrix) by performing random walks is well known, and was used also in [16]
mentioned above, and in [17]. Chung and Simpson [12] used it in a context that is related
to ours, of solving a Laplacian system LGx = b, but with a boundary condition, namely,
a constraint that xi = bi for all i in the support of b. Their algorithm solves for a subset
of the coordinates W ⊆ V , i.e., it approximates x|W (the restriction of x to coordinates in
W ) where x solves Lx = b under the boundary condition. They relate the solution x to the
Dirichlet heat-kernel PageRank vector, which in turn is related to an infinite power series
of a transition matrix (specifically, to fTe−t(I−PW ) = e−tfT∑∞

k=0
tk

k!P
k
W where PW is the

transition matrix of the graph induced by W , t ∈ R, and f ∈ R|W |), and their algorithm
uses random walks to approximate the not-too-large powers of the transition matrix, proving
that the remainder of the infinite sum is small enough.

Recently, Shyamkumar, Banerjee and Lofgren [30] considered a related matrix-power
problem, where the input is a matrix A ∈ Rn×n, a power ` ∈ N, a vector z ∈ Rn, and an index
u ∈ [n], and the goal is to compute coordinate u of A`z. They devised for this problem a
sublinear (in nnz(A)) algorithm, under some bounded-norm conditions and assuming u ∈ [n]
is uniformly random. Their algorithm relies, in part, on von Neumann and Ulam’s technique
of computing matrix powers using random walks, but of prescribed length. It can be shown
that approximately solving positive definite systems for a particular coordinate is reducible
to the matrix-power problem.7 However, in contrast to our results, their expected running
time is polynomial in the input size, namely nnz(A)2/3, and holds only for a random u ∈ [n].

Comparison with PageRank. An example application of our results is computing quickly
the PageRank (defined in [8]) of a single node in an undirected d-regular graph. Recall that
the PageRank vector of an n-vertex graph with associated transition matrix P is the solution

7 Let Ax = b be a linear system where A is positive definite. Let λ be the largest eigenvalue of A. Let
A′

def= 1
2λA and b′ def= 1

2λ b. Consider the equivalent system (I − (I −A′))x = b′. As the eigenvalues of
A′ are in (0, 1/2], the eigenvalues of I − A′ are in [1/2, 1). Thus, the solution to the linear system is
given by x = (I − (I −A′))−1b′ =

∑∞
t=0(I −A′)tb. Therefore, we can approximate xu by truncating

the infinite sum at some t0 and approximating each power t < t0 by the algorithm for the matrix-power
problem.
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to the linear system x = 1−α
n
~1 +αPx, where 0 < α < 1 is a given parameter. In personalized

PageRank, one replaces 1
n
~1 (the uniform distribution) with some b ∈ Rn, e.g., a standard

basis vector. Equivalently, x solves the system Sx = 1−α
n
~1 where S = I − αP is an SDD

matrix with 1’s on the diagonal. As all eigenvalues of P are of magnitude at most 1 (recall
P is a transition matrix), all eigenvalues of I − S̃ = I − S = αP are of magnitude at most α,
and the running time guaranteed by Theorem 3.1 is logarithmic (with base 2

α+1 ).
Algorithms for the PageRank model were studied extensively, and usually consider

arbitrary (and even directed) graphs. In particular, the sublinear algorithms of [7] approximate
the PageRank of a vertex using Õ(n2/3) queries, or using Õ((n∆)1/2) queries when the
maximum degree is ∆. Another example is the heavy-hitters algorithm of [6], which reports
all vertices whose approximate PageRank exceeds a threshold T in sublinear time Õ(1/∆),
when PageRanks are viewed as probabilities and sum to 1. Other work explores connections
to other graph problems, including for instance using PageRank algorithms to approximate
effective resistances [13], the PageRank vector itself, and computing sparse cuts [4].

Local Algorithms. Our algorithms in Theorems 1.1 and 3.1 are local in the sense that
they query a small portion of their input, usually around the input vertex, when viewed as
graph algorithms. Local algorithms for graph problems were studied in several contexts, like
graph partitioning [31, 5], Web analysis [10, 3], and distributed computing [34]. Rubinfeld,
Tamir, Vardi, and Xie [29] introduced a formal concept of Local Computation Algorithms
that requires consistency between the local outputs of multiple executions (namely, these
local outputs must all agree with a single global solution). As explained earlier, our problem
formulation (1) follows this consistency requirement.

1.4 Future Work
One may study alternative ways of defining the problem of solving a linear system in sublinear
time, in particular if the algorithm can access b in a different way. For example, similarly
to assumptions and guarantees in [35], the goal may be to produce an `2-sample from the
solution x (i.e., report a random index in [n] such that the probability of each coordinate
i ∈ [n] is proportional to x2

i ) assuming oracle access to an `2-sampler from b ∈ Rn, i.e., use
an `2-sampler for b to construct an `2-sampler for x. Another version of the problem may
ask to produce heavy hitters in x, assuming, say,8 heavy hitters in b (which may be useful for
the PageRank application). We leave these extensions as interesting open questions, focusing
here on the classical access mode to b, via queries to its coordinates.

Another variation one may consider is to bound the error using a norm other than `∞,
like ‖y‖S

def=
√
yTSy used in [31]. For example, if S is the Laplacian of a d-regular expander

and y is orthogonal to the all-ones vector, then ‖y‖S = Θ(
√
d‖y‖2), which might exceed

‖y‖∞ significantly even for constant d. Nevertheless, our requirement ‖x̂− x∗‖∞ ≤ ε||x∗||∞
is generally incomparable to ‖x̂− x∗‖2 ≤ ε||x∗||2.

2 Laplacian Solver (for Regular Graphs)

In this section we shall prove Theorem 1.1. The ensuing description deals mostly with a
slightly simplified scenario, where the algorithm is given not one but two vertices u, v ∈ [n],
and returns an approximation δ̂u,v to xu − xv with a slightly different error bound, see

8 This kind of oracle seems necessary even when S = I.
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3:10 On Solving Linear Systems in Sublinear Time

Algorithm 1 Solve-Linear-Laplacian.
input : d-regular graph G; vector b; ||b||0; vertices u, v; accuracy parameter ε; and µ2
output : estimate δ̂u,v for xu − xv

1 set s =
log(2

√
2ε−1 d

µ2

√
||b||0)

log( d
d−µ2

) and ` = O(( ε4s )−2 log s)

2 for t = 0, 1, . . . , s− 1 do
3 Perform ` independent random walks of length t starting at u, and let u(t)

1 , . . . , u
(t)
` be

their end vertices. Independently, perform ` independent random walks of length t

starting at v, and let v(t)
1 , . . . , v

(t)
` be their end vertices.

4 set δ̂(t)
u,v = 1

`

∑
i∈[`](bu(t)

i

− b
v

(t)
i

)

5 return δ̂u,v = 1
d

∑s−1
t=0 δ̂

(t)
u,v

Theorem 2.5 for the precise statement. The advantage is that if G is connected, all solutions
x give rise to a unique value for xu − xv. We will then explain the modifications required to
prove Theorem 1.1 (which actually follows also from our more general Theorem 3.1).

Let G = (V = [n], E) be a connected d-regular graph with adjacency matrix A ∈ Rn×n.
Let the eigenvalues of A be d = λ1 > λ2 ≥ · · · ≥ λn, and let their associated orthonormal
eigenvectors be u1, . . . , un. Then u1 = 1√

n
· ~1 ∈ Rn, and we can write A = UΛUT where

U = [u1 u2 . . . un] is unitary and Λ = diag(λ1, ..., λn). For u, v ∈ [n], let χu,v
def= eu − ev

where ei is the i-th standard basis vector. Then the Laplacian of G is given by

L
def=

∑
uv∈E

χu,vχ
T
u,v = dI −A = U(dI − Λ)UT.

Observe that L does not depend on the orientation of each edge uv, and that µ2
def= d− λ2 is

the smallest non-zero eigenvalue of L. The Moore-Penrose pseudo-inverse of L is

L+ def= U · diag(0, (d− λ2)−1, . . . , (d− λn)−1) · UT.

We assume henceforth that all eigenvalues of A are non-negative. At the end of the proof,
we will remove this assumption (by adding self-loops).

The idea behind the next fact is that L = d(I − 1
dA), and 1

dA has norm strictly smaller
than one when operating on the subspace that is orthogonal to the all-ones vector, and hence,
the formula (I −X)−1 =

∑∞
t=0X

t for ||X|| < 1 is applicable for the span of {u2, ..., un}.

I Fact 2.1. For every x ∈ Rn that is orthogonal to the all-ones vector, L+x = 1
d

∑∞
t=0( 1

dA)tx.

Proof. It suffices to prove the claim for each of u2, . . . , un as the fact will then follow by
linearity. Fix i ∈ {2, . . . , n}. Then since |λid | < 1,

∞∑
t=0

(1
d
A
)t
ui =

∞∑
t=0

(λi
d

)t
ui = 1

1− λi
d

ui = d

d− λi
ui = dL+ui. J

We now describe an algorithm that on input b ∈ Rn that is orthogonal to the all-ones
vector, and two vertices u 6= v ∈ [n], returns an approximation δ̂u,v to xu − xv, where x
solves Lx = b. As G is connected, the null space of L is equal to span{~1} and hence xu − xv
is uniquely defined, and can be written as xu − xv = χT

u,vL
+b.
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I Claim 2.2. For b that is orthogonal to the all-ones vector and s =
log(2

√
2ε−1 d

µ2

√
||b||0)

log( d
d−µ2

) ,

|χT
u,vL

+b− χT
u,v

1
d

∑s−1
t=0 ( 1

dA)tb| ≤ ε
2d ||b||∞.

Proof. Using Fact 2.1,

χT
u,vL

+b− χT
u,v

1
d

s−1∑
t=0

(1
d
A)tb = χT

u,v

1
d

∞∑
t=s

(1
d
A)tb,

and thus

|χT
u,vL

+b− χT
u,v

1
d

s−1∑
t=0

(1
d
A)tb| ≤ ||χT

u,v||2 · ||
1
d

∞∑
t=s

(1
d
A)tb||2.

We know that ||χT
u,v||2 =

√
2, so it remains to bound || 1d

∑∞
t=s(

1
dA)tb||2. Decomposing

b =
∑n
i=2 ciui we get that

∑n
i=2 c

2
i = ||b||22 and

∞∑
t=s

(1
d
A)tb =

n∑
i=2

ciui

∞∑
t=s

(λi
d

)t =
n∑
i=2

(λid )s

1− λi
d

ciui = d

n∑
i=2

(λid )s

d− λi
ciui.

Hence,

||1
d

∞∑
t=s

(1
d
A)tb||22 =

n∑
i=2

(
(λid )s

d− λi

)2

c2i ||ui||22 ≤

(
(λ2
d )s

d− λ2

)2 n∑
i=2

c2i =
( (1− µ2

d )s

µ2

)2

||b||22,

where the first equality is because the ui’s are orthogonal. Altogether,

|χT
u,vL

+b−χT
u,v

1
d

s−1∑
t=0

(1
d
A)tb| ≤

√
2

(1− µ2
d )s

µ2
||b||2 ≤

√
2

(1− µ2
d )s

µ2

√
||b||0 ·||b||∞ = ε

2d ||b||∞,

as claimed. J

I Claim 2.3. Pr
[
|δ̂u,v − χT

u,v
1
d

∑s−1
t=0 ( 1

dA)tb| > ε
2d ||b||∞

]
≤ 1

s .

Proof. Observe that eT
u( 1

dA)t is a probability vector over V , and eT
u( 1

dA)tew is exactly the
probability that a random walk of length t starting at u will end at w. Thus, for every
t ∈ {0, 1, . . . , s− 1} and i ∈ [`], we have

E[b
u

(t)
i

] =
∑
w∈[n]

eT
u(1
d
A)tewbw = eT

u(1
d
A)tb,

and similarly E[b
v

(t)
i

] = eT
v ( 1

dA)tb. By a union bound over Hoeffding bounds, with probability
at least 1− 1

s , for every t ∈ {0, 1, . . . , s−1}, we have | 1`
∑
i∈[`] bu(t)

i

−eT
u( 1

dA)tb| ≤ ε
4s ||b||∞ and

| 1`
∑
i∈[`] bv(t)

i

− eT
v ( 1

dA)tb| ≤ ε
4s ||b||∞. Recalling that δ̂u,v = 1

d

∑s−1
t=0

1
`

∑
i∈[`](bu(t)

i

− b
v

(t)
i

),
with probability at least 1− 1

s we have |δ̂u,v−χT
u,v

1
d

∑s−1
t=0 ( 1

dA)tb| ≤ ε
2d ||b||∞, as claimed. J

Combining Claim 2.2 and Claim 2.3 we get that (with probability 1− 1
s ) |δ̂u,v−χ

T
u,vL

+b| ≤
ε
d ||b||∞. Now, as x solves Lx = b, for every i ∈ [n] we have

∑
j∈N(i)(xi − xj) = bi where

N(i) is the set of neighbors {j : ij ∈ E}, which implies that for some neighbor j of i, it
holds that |xi − xj | ≥ |bi|

d . Therefore, maxij∈E |xi − xj | ≥ 1
d ||b||∞. We conclude that

|δ̂u,v − χu,vL+b| ≤ ε ·maxij∈E |xi − xj |. We now turn to the running time of Algorithm 1,
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3:12 On Solving Linear Systems in Sublinear Time

which is dominated by the time it takes to perform the random walks. There are 2s ·` random
walks in total. The random walks do not need to be independent for different values of t (as
we applied a union bound over the different t), we can extend, at each iteration t, the 2`
respective random walks constructed at iteration t−1 by an extra step in time O(d) (recall we
assume G is given as an adjacency list), obtaining a total runtime O(s ·` ·d) = O(dε−2s3 log s).
To simplify the expression for s, we need the following bound.

I Fact 2.4. For all δ ∈ (0, 1), 1
ln(1−δ)−1 ≤ 1

δ .

Proof. We need to show that δ ≤ ln(1 − δ)−1, or equivalently, e−δ ≥ 1 − δ, which is
well known. J

Applying Fact 2.4 to δ = µ2
d , we have s ≤ d

µ2
log(2

√
2ε−1 d

µ2

√
||b||0), and conclude

the following.

I Theorem 2.5. Given an adjacency list of a connected d-regular n-vertex graph G, a vector
b ∈ Rn that is orthogonal to the all-ones vector, vertices u, v ∈ [n], and scalars ||b||0, ε > 0,
and µ2 = d− λ2 > 0, Algorithm 1 outputs δ̂u,v ∈ R satisfying

Pr
[
|δ̂u,v − χT

u,vL
+b| ≤ ε ·max

ij∈E
|xi − xj |

]
≥ 1− 1

s ,

in time O(dε−2s3 log s) for s = O( d
µ2

log(ε−1 d
µ2
||b||0)).

I Remark. If we allow preprocessing of G, the runtime of Algorithm 1 can be reduced
to O(ε−2s2), as follows. At the preprocessing phase, compute ( 1

dA)t for all powers t ≤ s.
Then, instead of approximating eT

u( 1
dA)tb for all powers t ≤ s, sample a uniform t ∈

{0, 1, ..., s}, and then, in O(1) time (because the probability vector is precomputed, see [37]),
sample z ∈ [n] based on the probability vector eT

u( 1
dA)t, and finally, output s+1

d bz. The
expectation of the output is 1

d

∑s
t=0( 1

dA)tb. As for concentration, since the output is in
[− s+1

d ·||b||∞,
s+1
d ·||b||∞], by the Hoeffding bound, O(ε−2s2) many repetitions suffice to obtain

(with constant probability) an approximation with additive error ε
2d ||b||∞ (as in Claim 2.3).

We still need to show how to remove the assumption that A has no negative eigenvalues.
Given an adjacency matrix A which might have negative eigenvalues, consider the PSD
matrix A′ = A+ dI, which is the adjacency matrix of the 2d-regular graph G′ obtained from
G by adding d self-loops to each vertex. Observe that A′ = U(Λ + dI)UT and we can write
L = dI −A = (2dI −A′), and thus, similarly to Fact 2.1, L+x = 1

2d
∑∞
t=0( 1

2dA
′)t, for x ∈ Rn

that is orthogonal to the all-ones vector. Therefore, if we use A′ (which is PSD) to guide
Algorithm 1’s random walks (i.e., at each step of a walk, with probability 1/2 the walk stays
put and with probability 1/2 it moves to a uniform neighbor in G) and apply Claims 2.2
and 2.3 (which apply even when A has self-loops), an estimate δ̂u,v satisfying with high
probability | 12 δ̂u,v − χ

T
u,vL

+b| ≤ εmaxij∈E |xi − xj | is obtained. When running Algorithm 1
on G′, the term s evaluates to O( 2d

2d−(λ2+d) log(ε−1 2d
2d−(λ2+d) ||b||0)) = O( d

µ2
log(ε−1 d

µ2
||b||0)),

thus, leaving the guarantee of Theorem 2.5 intact (up to constant factors).

Proof of Theorem 1.1. The theorem follows by a simple modifications to the analysis above.
Observe that the analysis in Claims 2.2 and 2.3 holds also when replacing µ2 by a lower
bound on µ2, which in turn is easy to derive from the upper bound κ̄ given in the input and
d given as part of input G. Similarly, ||b||0 can be replaced by an upper bound Bup ≥ ||b||0.

To handle one vertex u ∈ [n] instead of two vertices u, v ∈ [n], ignore the part dealing
with v in Algorithm 1, and modify the analysis in the two aforementioned claims to use
eu instead of χu,v. The error bound obtained from combining these lemmas is ε

d ||b||∞,
but since each |bi| = |

∑
j Lijxj | ≤

∑
j |Lij | · ‖x‖∞ = 2d‖x‖∞, we can bound the error by

ε
d ||b||∞ ≤ 2ε‖x‖∞. J
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3 An SDD Solver

In this section we prove the following theorem for solving linear systems in SDD matrices.
To generalize from Laplacianss of regular graphs to SDD matrices, we face several issues as
described in Section 1.2. We use the notation defined in (2)-(3).

I Theorem 3.1 (SDD Solver). There exists a randomized algorithm, that given input〈
S, b, u, ε, λ̃up

〉
, where

S ∈ Rn×n is an SDD matrix,
b ∈ Rn is in the range of S (equivalently, orthogonal to the kernel of S),
u ∈ [n], ε > 0, and
κ̄ ≥ 1 is an upper bound on the condition number κ(S̃),

this algorithm outputs x̂u ∈ R with the following guarantee. Suppose x∗ is the solution for
Sx = b given in (3), then

∀u ∈ [n], Pr
[
|x̂u − x∗u| ≤ ε||x∗||∞

]
≥ 1− 1

s

for suitable s = O(κ̄ log(ε−1 κ̄ ||b||0 ·
maxi∈[n] Dii
mini∈[n] Dii

)). The algorithm runs in time O(fε−2s3 log s),
where f is the time to make a step in a random walk in the weighted graph formed by the
non-zeros of S.

Due to space constraints, the proof is omitted from this version.

4 Lower Bound for PSD Matrices

In this section we prove Theorem 1.2. The entire proof relies on a d-regular n-vertex graph
G1, such that (i) its girth is Ω(logd n); and (ii) its adjacency matrix A1 has eigenvalues
λ1 ≥ . . . ≥ λn that satisfy max{|λ2|, |λn|} ≤ 1

4d
2/3 (this bound is somewhat arbitrary, chosen

to simplify the exposition). We actually need such a graph to exist for infinitely many n,
with d bounded uniformly (as n grows). Such graphs are indeed known, for example the
Ramanujan graphs constructed by Lubotzky, Philips and Sarnak [26] and by Margulis [27]
for the case where d− 1 is a prime, have eigenvalue upper bound 2

√
d− 1 and girth lower

bound (4/3− o(1)) logd−1 n (see e.g. [21]).
In what follows, let G2 be a certain isomorphic copy of G1 (i.e., obtained from G1 by

permuting the vertices, as explained below). It will be convenient to assume that G1 and G2
have the same vertex set, which we denote by V , as then we can consider the multi-graph
obtained by their edge union, denoted G1 ∪G2. Denoting the adjacency matrix of each Gi
by Ai, the adjacency matrix of their edge union G1 ∪G2 is simply A1 +A2. We can similarly
view A1 − A2 as the adjacency matrix of the same graph, except that now the edges are
signed – those from G1 are positive, and those from G2 are negative.

The proof of the theorem will follow easily from the three propositions below. Proposi-
tion 4.1 provides combinatorial, girth-like, information aboutG1∪G2. Proposition 4.2 provides
spectral information, like the condition number, about A1 −A2. These two propositions are
proved by straightforward arguments, and the heart of the argument is in Proposition 4.3.
This proposition constructs a PSD linear system based on A1 −A2, for which we can sow
show that recovering a specific coordinate of the solution x, even approximately, requires
many probes to b. Due to space constraints, the proof of the next proposition is omitted
from this version.
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3:14 On Solving Linear Systems in Sublinear Time

I Proposition 4.1. Let G1 be as above and fix a vertex ŵ ∈ V . Then there exists an
isomorphic copy G2 of G1 (on the same vertex set), such that in their edge-union G1 ∪G2,
the neighborhood of ŵ of radius rtree

def= 0.2 log4d n is a 2d-regular tree.

I Proposition 4.2. Let A1, A2 be the adjacency matrices described above, and let µ def=
2‖A1 −A2‖. Then µ ≤ 1

2d
2/3, and the matrix M def= µI + A1 − A2 ∈ Rn×n is PSD with

all its eigenvalues in the range [ 1
2µ,

3
2µ]. Thus, M is invertible and has condition number

κ(M) ≤ 3.

Proof. By the triangle inequality, µ/2 = ‖A1 −A2‖ ≤ ‖A1 − dI‖ + ‖−(A2 − dI)‖ ≤
2 max{|λ2|, |λn|} ≤ 1

2d
2/3. The eigenvalues of A1 − A2 are in the range [− 1

2µ,
1
2µ], and

thus those of M are in the range [ 1
2µ,

3
2µ]. J

I Proposition 4.3 (Proved in Section 4.1). Let the graphs G1, G2 be according to Propo-
sition 4.1, let M def= µI + A1 − A2 ∈ Rn×n as above, and fix r ≤ rtree/d

2. Then every
randomized algorithm that, given input b ∈ {−1, 0,+1}n, succeeds with probability at least
6/7 to approximate coordinate xŵ of x = M−1b within additive error at most 1

5‖x‖∞, must
probe dΩ(r) entries from b ∈ Rn, even when b is supported only on vertices at distance r from
ŵ (in G1 ∪G2).

We can now prove Theorem 1.2 using the above 3 propositions. Let G1,G2,A1,A2 and M
be as required for these propositions, and fix r = rtree/d

2. Let S def= M and observe that it has
the sparsity and condition number required for Theorem 1.2, and let the distinguished index
be u def= ŵ. Now consider a randomized algorithm that, given an input b ∈ Rn, estimates
coordinate x∗u of x∗ = S−1b, or in other words, coordinate xŵ of x = M−1b. We can then
apply Proposition 4.3 and deduce that this algorithm must probe b ∈ Rn in

dΩ(r) ≥ dΩ((log4d n)/d2) ≥ nΩ(1/d2)

entries, which proves Theorem 1.2.

4.1 Proof of Proposition 4.3
Let Vk ⊂ V be the set of vertices at distance exactly k from ŵ in the edge-union graph
G1 ∪G2. By Proposition 4.1, we can view the radius-rtree neighborhood of ŵ as a tree rooted
at ŵ. In particular, for all k ≤ rtree we have |Vk| = 2d(2d− 1)k−1. For each vertex v ∈ Vk,
let sv ∈ {±1} be the value of entry (ŵ, v) in (A2 −A1)k, i.e., the product of the signs along
the unique length-k walk from ŵ to v in A2 −A1 (i.e., the shortest path in G1 ∪G2).

Now generate a random b ∈ {−1, 0,+1}n as follows. First pick an arbitrary signal
σ ∈ {±1}; then use it to choose for each v ∈ Vr, a random bv ∈ {±1} with a small bias δ > 0
(determined below) towards σsv ∈ {±1}, i.e.,

E[bv|σ] = (1
2 + δ

2 )σsv + ( 1
2 −

δ
2 )(−σsv) = δσsv.

Observe that E[svbv|σ] = sv(δσsv) = δσ, which means that svbv has a small bias towards
the signal σ. Finally, let all other entries be 0, i.e., bv = 0 for v /∈ Vr. Observe that
‖b‖22 = |supp(b)| = |Vr| and E[σ

∑
v∈Vr svbv | σ] = δ|Vr|. We set the bias to be

δ
def= C(r2 log d) |Vr|−1/3 (4)

for a sufficiently large constant C > 0. Notice that {sv}v∈Vr have fixed values known to
the algorithm, hence observing bv (by probing this entry of b) is information-theoretically
equivalent to observing svbv.
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The next lemma is standard and follows easily from Yao’s minimax principle, together
with a bound on the total-variation distance between two Binomial distributions, with biases
1
2 + δ and 1

2 − δ), see e.g. [9, Fact D.1.3] or [1, Eqn. (2.15)].

I Lemma 4.4. Every randomized algorithm that, with probability at least 1/2 + γ for γ ∈
(0, 1/2), recovers an unknown signal σ ∈ {±1} from b1, b2, . . . ∈ {±1}, each set independently
to σ or −σ with bias δ > 0, must probe at least Ω(δ−2γ2) entries of b.

Thus, all probabilities from this point onward are computed over the randomness of b.
We proceed to analyze xŵ, aiming to show that it can be used to recover σ, namely, that
with high probability sgn(xŵ) = σ. Later we will bound ‖x‖∞ aiming to show a similar
conclusion for xŵ± 1

5‖x‖∞. For convenience, denote B def= A2−A1
µ , hence ‖B‖ = µ/2

µ = 1
2 and

M−1 = (µ(I − A2−A1
µ ))−1 = µ−1

∑
i≥0

Bi,

and since B is symmetric, for every vertex u ∈ V (including ŵ),

xu = 〈eu,M−1b〉 = µ−1
∑
i≥0
〈eu, Bib〉 = µ−1

∑
i≥0

bTBieu. (5)

Each summand bTBieu can be viewed as the summation, over all length-i walks from vertex
u, of the coordinate bv corresponding to the walk’s end-vertex v, multiplied by µ−i and by
the product of the signs of A2 −A1 along the walk. We can restrict the summation to walks
ending at vertices v ∈ Vr, as otherwise bv = 0.

I Lemma 4.5. For every vertex u ∈ V (including ŵ),∑
i≥2r logµ

∣∣∣bTBieu

∣∣∣ ≤ 1
4µ
−2r · δ|Vr|.

Proof of Lemma 4.5. For each i, we have by Cauchy-Schwartz |bTBieu| ≤ ‖b‖2 · ‖B‖i2 ≤
|Vr|1/2 · 2−i, and then by our choice of the bias δ in (4),∑

i≥2r logµ
|bTBieu| ≤ |Vr|1/2

∑
i≥2r logµ

2−i ≤ (|Vr| · δ/8) · 2µ−2r. J

Recall that by Proposition 4.1, the neighborhood of ŵ of radius rtree is a tree, and view
it as a tree rooted at ŵ. For a vertex u in this tree, let Su be the set of all vertices v ∈ Vr
that are descendants of u; for example, Sŵ = Vr, and if the distance of u from ŵ is greater
than r then Su = ∅. Define a random variable Zu

def=
∑
v∈Su svbv, whose expectation is

E[Zu] =
∑
v∈Su

E[svbv | σ] = |Su| · δσ.

I Lemma 4.6. With probability at least 6/7,

∀0 ≤ k ≤ r, ∀u ∈ Vk,
∣∣Zu − E[Zu]

∣∣ ≤ O (√|Su| · ln(3|Vk|)
)
. (6)

We remark that the constant 3 is somewhat arbitrary but needed to make sure the righthand-
side is positive even for k = 0 (as |V0| = 1). In addition, applying (6) to ŵ ∈ V0 yields, by
our choice of the bias δ in (4),∣∣Zŵ − E[Zŵ]

∣∣ ≤ O (√|Vr| · ln(3|Vr|)
)
≤ 1

4δ|Vr|. (7)
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Proof of Lemma 4.6. Fix 0 ≤ k ≤ r and u ∈ Vk. By Hoeffding’s inequality, for every c > 0,

Pr
[
|Zu − E[Zu]| ≥ c

√
|Su| ln(3|Vk|)

]
≤ e−2c2|Su| ln(3|Vk|)/(4|Su|)

≤ e−(c2/2) ln(3|Vk|) = (3|Vk|)−c
2/2.

By a union bound over all u ∈ V0 ∪ · · · ∪ Vr,

Pr
[
∃u, |Zu − E[Zu]| ≥ c

√
|Su| ln(3|Vk|)

]
≤

r∑
k=0
|Vk| · (3|Vk|)−c

2/2 = 1
3

r∑
k=0

(3|Vk|)1−c2/2.

For all c ≥ 2 this series is decreasing geometrically, because |Vk| grows at least by a factor
of 2d − 1 ≥ 5, and thus the sum is dominated by its first term. By choosing c to be an
appropriate constant, the first term (and the entire sum) can be made arbitrarily small. J

We assume henceforth that the event described in Lemma 4.6 occurs. Let Wi be the
set of all walks of length i that start at ŵ and end (at some vertex) in Vr, i.e., at distance
exactly r from ŵ. To simplify notation (later), define

Q
def=

5r logµ∑
i=r

µ−i|Wi|.

We make two remarks. First, we can equivalently start the summation from i = 0, because
Wi = ∅ for all i < r. Second, the range of i here complements the one in Lemma 4.5, except
that the constant 5 here is intentionally bigger than the 2 there, creating a slack needed at
the very end of the proof.

I Lemma 4.7. If the event in Lemma 4.6 occurs, then

xŵ ∈ (σ ± 1
2 )δ · µ−1Q,

and thus sgn(xŵ) = σ (i.e., recovers the signal).

Proof of Lemma 4.7. We would like to employ (5) and the interpretation of bTBieŵ via
walks of length i. To this end, fix 0 ≤ i ≤ 5r logµ. Observe that i ≤ rtree, hence a walk of
length i from ŵ is entirely contained in the 2d-regular tree formed by the neighborhood of ŵ
of radius rtree. Each such walk contributes to bTBieŵ the value bv at the walk’s end vertex
v, multiplied by all the signs seen along the walk. We make two observations. First, we can
restrict attention to end vertices v ∈ Vr (and in particular i ≥ r), because otherwise bv = 0
and the contribution is 0. Second, because it is a tree, every edge along the shortest path
between ŵ and v (the start and end vertices) is traversed by the walk an odd number of
times, and every other edge is traversed an even number of times. Hence, the product of the
signs along the walk equals the product along that shortest path, which is exactly sv. By
symmetry, the number of walks ending at each v ∈ Vr is the same, namely, |Wi|

|Vr| , and thus

bTBieŵ =
∑
v∈Vr

|Wi|
|Vr| µ

−isvbv = Zŵ
|Vr| · µ

−i|Wi|. (8)

Assuming the event in Lemma 4.6 occurs, we have Zŵ ∈ (δσ|Sŵ| ± 1
4δ|Vr|) = (1± 1

4 )σδ|Vr|,
and therefore (recall terms for i < r have zero contribution)

5r logµ∑
i=0

bTBieŵ ∈
5r logµ∑
i=r

(1± 1
4 )σδ · µ−i|Wi| = (1± 1

4 )σδ ·Q.
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For the range of i > 5r logµ, we can use Lemma 4.5 and the obvious |Wr| = |Vr| to derive∣∣∣ ∑
i>5r logµ

bTBieŵ

∣∣∣ ≤ ∑
i>5r logµ

∣∣∣bTBieŵ

∣∣∣ ≤ 1
4µ
−2r · δ|Vr| ≤ 1

4δQ.

Altogether, plugging into (5) we obtain

µ · xŵ =
∑
i≥0

bTBieŵ ∈
5r logµ∑
i=0

(1± 1
4 )σδ ·Q± 1

4δ ·Q = (1± 1
2 )σδ ·Q,

which proves the lemma because σ ∈ {±1}. J

I Lemma 4.8. If the event in Lemma 4.6 occurs, then

‖x‖∞ ≤ 2δ · µ−1Q.

The proof of this lemma is omitted here but appears in the full version.
We can now complete the proof of Proposition 4.3. By Lemma 4.6, with probability

at least 6/7 the event described therein occurs. Assume this is the case and consider an
estimate x̂ŵ for xŵ that has additive error at most ε‖x‖∞ for ε ≤ 1

5 . By Lemma 4.7 we have
xŵ ∈ (σ ± 1

2 )δ · µ−1Q, and by Lemma 4.8 we have ‖x‖∞ ≤ 2δ · µ−1Q. Altogether

x̂ŵ ∈ xŵ ± 1
5‖x‖∞ ⊆ (σ ± 1

2 ±
2
5 )δ · µ−1Q,

which implies that sgn(xŵ) = σ.
Now consider a randomized algorithm for estimating xŵ, and whose output x̂ŵ satisfies

the above additive bound with probability at least 6/7. We can use this estimation algorithm
to recover the signal σ, by simply reporting the sign of its estimate, namely sgn(xŵ). This
recovery does not require additional probes to b, and by a union bound, it succeeds (in
recovering σ) with probability at least 5/7. But by Lemma 4.4, such a recovery algorithm,
and in particular the algorithm for estimating xŵ, must probe b in at least

Ω(δ−2) ≥ Ω
(
|Vr|2/3/(r4 log2 d)

)
≥ Ω

(
(2d− 1)2r/3/(r4 log2 d)

)
≥ dΩ(r)

entries, which proves Proposition 4.3.
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Abstract
In the conditional disclosure of secrets (CDS) problem (Gertner et al., J. Comput. Syst. Sci.,
2000) Alice and Bob, who hold n-bit inputs x and y respectively, wish to release a common secret
z to Carol (who knows both x and y) if and only if the input (x, y) satisfies some predefined
predicate f . Alice and Bob are allowed to send a single message to Carol which may depend
on their inputs and some shared randomness, and the goal is to minimize the communication
complexity while providing information-theoretic security.

Despite the growing interest in this model, very few lower-bounds are known. In this paper,
we relate the CDS complexity of a predicate f to its communication complexity under various
communication games. For several basic predicates our results yield tight, or almost tight, lower-
bounds of Ω(n) or Ω(n1−ε), providing an exponential improvement over previous logarithmic
lower-bounds.

We also define new communication complexity classes that correspond to different variants of
the CDS model and study the relations between them and their complements. Notably, we show
that allowing for imperfect correctness can significantly reduce communication – a seemingly
new phenomenon in the context of information-theoretic cryptography. Finally, our results show
that proving explicit super-logarithmic lower-bounds for imperfect CDS protocols is a necessary
step towards proving explicit lower-bounds against the class AM, or even AM ∩ coAM – a well
known open problem in the theory of communication complexity. Thus imperfect CDS forms
a new minimal class which is placed just beyond the boundaries of the “civilized” part of the
communication complexity world for which explicit lower-bounds are known.
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1 Introduction

Understanding the communication complexity of information-theoretically secure protocols
is a fundamental research problem. Despite much effort, we have very little understanding
of the communication complexity of even simple cryptographic tasks, and for most models,
there are exponentially large gaps between the best known upper-bounds and the best known
lower-bounds. In an attempt to simplify the problem, one may try to focus on the most basic
settings with a minimal non-trivial number of players (say two or three) and the simplest
possible communication pattern (e.g., single message protocols). Different cryptographic
tasks have been studied in this minimal setting, including secure computation [17], and
non-interactive zero-knowledge proofs [23]. In this paper we will focus on what seems to be
the simplest task in this model: Conditional Disclosure of Secrets (CDS) [20].3

Conditional Disclosure of Secrets

Consider a pair of computationally unbounded parties, Alice and Bob, each holding an input,
x ∈ X and y ∈ Y respectively, to some public predicate f : X × Y → {0, 1}. Alice and Bob
also hold a joint secret z (say a single bit) and have access to a joint source of randomness
r

R← R. The parties wish to disclose the secret z to a third party, Carol, if and only if
the predicate f(x, y) evaluates to 1. To this end, Alice and Bob should each send a single
message a = a(x, z; r) and b = b(y, z; r) to Carol. Based on the transcript (a, b) and the
inputs (x, y), Carol should be able to recover the secret z if and only if f(x, y) = 1. (Note
that Carol is assumed to know x and y.) That is, we require two properties:

Correctness: There exists a deterministic decoder algorithm Dec that recovers z from
(x, y, a, b) with high probability whenever x, y is a 1-input (i.e., f(x, y) = 1);
Privacy: For every fixed 0-input (x, y) (for which the predicate evaluates to 0), regardless
of the value of the secret z, the joint distribution of the transcript (a, b), induced by a
choice of the shared randomness, is statistically close (up to some small deviation error)
to some canonical distribution Sim(x, y).

The main complexity measure of CDS protocols is their communication complexity which is
taken to be the total bit-length of the messages a and b. (See Figure 1 for a schematic view
and Section A for formal definitions.)

Apart from being a natural basic notion, CDS has turned out to be a useful primitive
with various applications in the context of private information retrieval (PIR) [20], secure
multiparty computation [1, 25], secret sharing schemes [14, 15, 36, 31, 11, 2, 29], and
attribute-based encryption [7, 37]. Correspondingly, the communication complexity of CDS
was extensively studied in the last few years.

3 While we do not wish to define the notions from [17] and [23], let us just mention that the complexity
of a function in these two models upper-bounds the complexity in the CDS model [20, 5]. In this sense,
CDS may be considered as being simpler.
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Alice(x, z; r) Bob(y, z; r)

Carol(x, y)

a b

Figure 1 Schematic of a CDS protocol.

Upper bounds

On the positive side, it is known that the CDS complexity of a predicate f is at most linear
in the formula complexity of f [20]. This result was extended to other (presumably stronger)
computational models such as (arithmetic) branching programs [26], and (arithmetic) span
programs [5]. The latter paper also shows that the CDS complexity of f is at most linear in the
complexity of any zero-information Arthur Merlin (ZAM) protocol for f . (The ZAM model,
introduced by [23], adds a zero-knowledge property to the standard AM communication
complexity model.)4 In a recent breakthrough, Liu, Vaikuntanathan and Wee [30] showed
that the CDS complexity of any predicate f : {0, 1}n×{0, 1}n → {0, 1} over n-bit inputs is at
most 2Õ(

√
n), improving over the exponential upper-bound of O(2n/2) from [10]. Applebaum

et al. [3] showed that when the secret is very long (exponential in the size of the domain
of the predicate) the overhead per each bit of z can be reduced to O(n); a constant-rate
solution (in which the total communication is O(|z|)) was recently given in [2].

The quest for lower bounds

On the lower-bound front much less is known. While we have tight lower bounds for restricted
forms of CDS (e.g., when the computations are restricted to linear functions [19, 9, 12]), only
few, relatively weak, lower-bounds are known for general CDS. It is important to note that
an insecure solution to the problem has a communication cost of 1 bit! (Let Alice send the
secret in the clear regardless of her input.) Hence, any super-constant lower-bound is, in
a sense, non-trivial. Indeed, unlike the case of standard communication games for which
communication lower-bounds are based on the correctness properties of the protocol, the
challenge here is to somehow capture the additional cost of privacy.

The first super-constant lower-bound was proved by Gay, Kerenidis, and Wee [19].

I Theorem 1 ([19]). For every predicate f : X × Y → {0, 1},

CDS(f) ≥ Ω(log(RA→B(f) + RB→A(f))),

where RA→B(f) denotes the one-way randomized communication complexity of f , and CDS(f)
denotes the minimal communication complexity of a CDS protocol for f with privacy and
correctness error of 0.1.5

4 The theorem of [5] actually relates the communication and randomness complexity of CDS for f to
the randomness and communication complexity of a ZAM protocol for the complement of f . However,
using our results in this paper one can conclude that the CDS communication of f is at most linear in
the ZAM communication of f .

5 The theorem was originally proved for perfect CDS, however, the proof generalizes to the imperfect
case (see [3]).
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For n-bits predicates, Theorem 1 leads, at best, to a logarithmic lower-bound of Ω(logn).
Applebaum et al.. [3] showed that this bound is essentially tight: There are (partial)
functions whose randomized communication complexity is exponentially larger than their
CDS complexity. They also proved a linear n-bit lower-bound for a random (non-explicit) n-bit
predicate f : {0, 1}n × {0, 1}n → {0, 1}. An explicit version of this result was proved by [4].

I Theorem 2 ([4]). For every non-degenerate predicate6 f : X × Y → {0, 1} whose largest
0-monochromatic rectangle is of size at most L,

pCDS(f) ≥ log |f
−1(0)|
L

− log |X × Y|
|f−1(0)| − 1 = 2 log |f−1(0)| − log |X | − log |Y| − logL− 1,

where pCDS(f) denotes the minimal communication complexity of a CDS protocol for f with
perfect privacy and perfect correctness.

The theorem is effective for predicates whose communication matrix is rich in zeroes, and at
the same time avoids large zero-monochromatic rectangles. In particular, for mod-2 inner
product over n-bit inputs, we get a tight lower-bound of n−O(1) and for Set-Intersection a
lower-bound of Ω(n). Unfortunately, the theorem is not robust to errors, leaving the imperfect
CDS complexity of these predicates wide open. Moreover, for many basic predicates the
theorem does not even give logarithmic bounds either due to the lack of many zeroes (e.g., the
Not-Equal predicate) or due to the existence of huge zero-rectangles (e.g., the Greater-Than
predicate).

This paper

Theorems 1 and 2 provide a very partial picture, and fall short of proving meaningful and
robust lower-bounds for many basic predicates, such as Not-equal, Greater-Than, Intersection,
and Index.7 We believe that a full understanding of these simple cases is necessary for the
more ambitious goal of proving stronger lower bounds. Our goal in this paper is to remedy the
situation by providing new lower-bound techniques. Specifically, we enrich our lower-bound
toolbox by relating the CDS complexity of a function to its communication complexity under
various communication games. Our results provide simple, yet effective, ways to leverage
privacy to construct communication protocols. They lead to new lower-bounds for perfect
and imperfect CDS protocols, and allow us to establish new results regarding the relations
between different variants of the CDS model.

2 Our Contribution

2.1 Perfectly-correct CDS and coNP Games
Our first theorem relates the complexity of any perfectly-correct CDS protocol for f to the
non-deterministic communication complexity of f ’s complement.

I Theorem 3. For every predicate f : X × Y → {0, 1},

pcCDS(f) ≥ Ω(coNP(f))−O(log(n)),

where n denotes the total input length of f , and pcCDS(f) denotes the minimal communication
complexity of a CDS protocol for f with perfect correctness and privacy error of 0.1.

6 A predicate is non-degenerate if for every fixing of x ∈ X the residual function f(x, ·) is not the constant
zero function.

7 Apart of being basic examples, these predicates are motivated by some of the applications of CDS.



B. Applebaum and P.N. Vasudevan 4:5

Proof idea

To prove the theorem, we first show that the coNP complexity is upper-bounded by the
randomness complexity of the CDS, and then prove that one can always assume that
the randomness complexity is comparable to the communication complexity via a new
sparsification lemma (similar to that of Newman [33]). The first part relies on the following
simple observation: In order to convince Alice and Bob that f(x, y) evaluates to zero it suffices
to prove that the joint distribution of the CDS messages for zero-secret, (a(x, z = 0; r), b(y, z =
0; r)), induced by a random choice of r, and the joint distribution of the messages for one-
secret (a(x, z = 1; r), b(y, z = 1; r)), are not disjoint. A prover can prove this statement by
sending to Alice and Bob a pair of strings r0 and r1 for which (a(x, z = 0; r0), b(y, z = 0; r0))
equals to (a(x, z = 1; r1), b(y, z = 1; r1)). (See full version [6] for details.)

Despite its simplicity, this theorem is quite powerful. In particular, ignoring the constants
in the Omega-notation and the logarithmic loss, the bound provided by Theorem 3 subsumes
the lower-bound of Theorem 2 from [4]. Indeed, the latter lower-bound is at most the
logarithm of the ratio between the zero-mass of f and its largest zero-monochromatic
rectangle – a quantity that cannot be larger than the non-deterministic communication
complexity of the complement of f (i.e., coNP(f)). Moreover, our new theorem can be applied
to predicates that have only few zero entries or to predicates with huge zero-rectangles,
for which Theorem 2 becomes meaningless. For example, by plugging-in classical coNP
lower-bounds, we settle the complexity of the not-equal predicate with respect to perfectly
correct CDS protocols.

I Corollary 4. Let NEQn : {0, 1}n × {0, 1}n → {0, 1} denote the not-equal predicate which
evaluates to 1 if and only if x 6= y. Then,

pcCDS(NEQn) ≥ Ω(n).

Similar tight linear lower-bounds can be obtained for the pcCDS complexity of the Greater-
Than predicate, the Set-Intersection predicate, and the Inner-Product predicate. Previously,
we had no super-logarithmic lower bounds that tolerate privacy error. (As already mentioned,
for Greater-Than and NEQn, we did not have such bounds even for perfect CDS protocols.)

pcCDS is not closed under complement

Interestingly, the equality function EQn has a very succinct perfect CDS protocol: Use the
shared randomness to sample a pair-wise independent hash function h : {0, 1}n → {0, 1}, and
let Alice output h(x) and Bob output h(y)⊕ z. The protocol has a minimal communication
complexity of 2 and randomness complexity of O(n). (The latter can be reduced to O(logn)
by using an almost pair-wise independent hash function and settling for a constant privacy
error.) This yields a strong separation between the complexity of a predicate and its
complement with respect to perfectly-correct perfectly-private CDS protocols (pCDS).

I Corollary 5. pCDS(EQn) = 2 whereas pCDS(NEQn) ≥ pcCDS(NEQn) ≥ Ω(n). In
particular, the classes pCDS and pcCDS are not closed under complement.8

Transformations from CDS protocols for f to its complement were studied in [3]. The
resulting protocols either introduce a privacy error or suffer from a communication overhead
that grows polynomially with the randomness complexity of the original protocol. The NEQn

example shows that at least one of these losses is inherent.

8 We follow the standard communication complexity terminology and write pCDS to denote the class
of predicates that admit a pCDS protocol whose complexity is polylogarithmic in the input length. A
similar convention will be used throughout the paper for all other variants of the CDS model.
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The benefit of decoding errors

The results of [3] (together with our randomness sparsification lemma) show that imperfect
CDS is closed under complement. This general result leads to a polylogarithmic CDS protocol
for NEQn with imperfect privacy and imperfect correctness, providing a surprising separation
between general imperfect CDS protocols and ones which have perfect correctness. In fact,
it is not hard to directly design a CDS protocol for NEQn with constant communication,
perfect privacy, and constant correctness error. (See the full version [6] for a more general
statement.) This leads to the following stronger separation.

I Corollary 6. There is an n-bit predicate f for which pcCDS(f) = Ω(n) and ppCDS(f) =
O(1), where ppCDS(f) denotes the minimal communication complexity of a CDS protocol
for f with perfect privacy and correctness error of 0.1. In particular,

ppCDS 6⊆ pcCDS.

As pointed to us by Hoteck Wee, Corollary 6 provides a rare example for an information-
theoretic secure protocol that can significantly benefit from a small correctness error. This
phenomena seems new in the context of information-theoretic secure cryptography, and is
worth further exploration.9

2.2 Perfectly-Private CDS and PP Games
Our next goal is to lower-bound the complexity of CDS protocols with correctness errors.
We begin with the case of perfectly private protocols.

I Theorem 7. For every predicate f : X × Y → {0, 1},

ppCDS(f) ≥ Ω(PP(f))−O(log(n)),

where n denotes the total input length of f , and ppCDS(f) denotes the minimal communica-
tion complexity of a CDS protocol for f with perfect privacy and correctness error of 0.1.

The complexity measure PP(f) essentially corresponds to the sum of the communication
complexity and number of private random bits used by a communication protocol that
computes f correctly with probability more than 1/2, where shared randomness is not
allowed. (See the full version [6] for a formal definition.) The discrepancy method implies
that the PP complexity of the mod-2 inner-product predicate IPn is Ω(n) (cf. [28]) and so
we get the following.

I Corollary 8. Let IPn : {0, 1}n × {0, 1}n → {0, 1} denote the inner-product predicate on
n-bit inputs. Then,

ppCDS(IPn) ≥ Ω(n).

This is the first linear lower-bound on CDS with imperfect correctness. (Previous
arguments fail to achieve such a result even for a non-explicit predicate.)

9 Compare this, for example, to Shannon’s classical lower-bound for perfectly-secure one-time symmetric
encryption [35] in which a constant decryption error has a minor effect on the key/ciphertext length [16].
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Proof idea

In order to prove Theorem 7, we turn a ppCDS protocol into a PP protocol. Loosely
speaking, the idea is to construct a randomized protocol that accepts the input (x, y) based
on collisions between random CDS transcripts that correspond to a zero-secret and random
CDS transcripts that correspond to a one-secret. This idea, which was employed in the query
setting by [13], leads to the desired result. (Details appear in the full version [6].)

2.3 Imperfect CDS, Interactive Proofs, and Zero Knowledge
We move on to the most general case of imperfect CDS protocols with both constant
privacy error and correctness error. We show that the complexity of such protocols is at least
polynomial in the AM communication complexity of f . (The latter class is the communication
complexity analogue of Arthur-Merlin proofs.)

I Theorem 9. There exists some universal constant c > 0, such that for any Boolean
function f it holds that

CDS(f) ≥ AM(f)c − polylog(n),

where n denotes the total input length of f , and CDS(f) denotes the minimal communication
complexity of a CDS protocol for f with correctness and privacy errors of 0.1.

Since (imperfect) CDS is closed under complement (by [3, Theorem 2] and [6, Lemma 1]),
it holds that CDS(f̄) ≤ poly(CDS(f)), and so we conclude the following.

I Corollary 10. There exists some universal constant c > 0, such that for any Boolean
function f it holds that

CDS(f) ≥ max(AM(f), coAM(f))c − polylog(n),

where n denotes the total input length of f .

Explicit CDS lower-bounds?

Corollary 10 can be used to show that the CDS complexity of most n-bit predicates must be
at least polynomial in n, even when the protocol is imperfect. Unfortunately, it falls short
of providing explicit lower-bounds; Finding an explicit function outside AM ∩ coAM is a
central open problem in the theory of communication complexity. In fact, AM∩ coAM forms
a minimal class for which no explicit lower-bounds are known [24]. Corollary 10 places CDS
as a weaker (and perhaps more accessible) target for explicit lower-bounds.

Proof idea

To prove Theorem 9 we show that a CDS protocol can be transformed into a constant-round
private-coins interactive-proof. Then, we note that, just like in the computational setting, such
interactive proofs can be converted to an AM protocol with polynomial overhead [8, 22].10 The
first step is obtained by imitating the standard interactive proof of Graph Nonisomorphism [21].
Indeed, the AM protocol constructed in Theorem 9 turns out to satisfy a statistical zero-
knowledge property; That is, the view of Alice and Bob can be simulated via a low complexity
2-party randomized protocol. (See the full version [6] for details.)

10This reduction has a polynomial dependency in the randomness. In order to avoid such an overhead in
the final statement, we prove a randomness sparsification lemma for constant-round interactive protocols.
This requires some care due to the use of private coins.
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CDS vs. SZK

Recall that, by definition, a CDS protocol yields a (distributed mapping) from the input (x, y)
and the secret z to a distribution Dz over the transcript (a, b) such that the distributions,
D0 and D1, are either statistically-close or statistically-far depending on the value of f(x, y).
This resembles the Statistical Difference problem [34], which is known to be complete
for the computational complexity class SZK (consisting of problems that have interactive
proofs that are statistically zero-knowledge). One may therefore hope to prove that in the
communication complexity setting CDS complexity is characterized by SZK complexity. As
already mentioned, Theorem 9 actually shows that CDS ⊆ SZK, however, we do not know
whether the reverse direction holds. Roughly speaking, such a result faces two obstacles.
Firstly, the completeness result from [34] has an overhead that depends on the randomness
complexity of the protocol, and we do not know how to get rid of this dependency. (In
particular, it is not clear how to prove a proper sparsification lemma for SZK without
sacrificing the zero-knowledge property.) Secondly, even if the randomness complexity is
small, we do not know how to obtain a CDS protocol without allowing some interaction
between Alice and Bob. Indeed, in the full version [6] we show that SZK′ ⊆ CDS′ where the
“prime” version of SZK charges randomness towards the total complexity and the “prime”
version of CDS allows short interaction between Alice and Bob. The problem of proving that
SZK ⊆ CDS (and therefore SZK = CDS) remains as an interesting open problem.

The results described so far are summarised in Figure 2, which shows the relationship
between perfect and imperfect CDS and various measures from communication complexity.
In Table 1, we list the current state of knowledge of the various CDS complexities of a
number of commonly studied predicates. (See Section 3.)

2.4 Asymmetry in CDS and One-Way Communication
We shift gears, and turn to study the communication tradeoffs between Alice’s and Bob’s
messages. Suppose that Alice’s message is restricted to a short string of length tA. Can we
prove that Bob’s message must be very long? We prove such tradeoffs based on the one-way
randomized communication complexity of f .

I Theorem 11. In any perfectly correct 0.1-private CDS protocol for f in which Alice and
Bob communicate tA and tB bits respectively and the total input length of the function is n,
it holds that:

2tA(tA + tB + logn) ≥ Ω(RB→A(f)).

(In fact, the result holds even if one considers one-way randomized protocols that err only over
zero inputs.) Recall that Theorem 1 (which is from [19]) shows that the total communication
complexity tA + tB is at least logarithmic in (RA→B(f) + RB→A(f)), which is tight for some
predicates [3]. Theorem 11 provides a more accurate picture. If the total communication
complexity is dominated by tA, then one gets a logarithmic bound, similar to Theorem 1;
however, when tA is small (e.g., constant), we get a strong linear lower-bound of

tB = Ω(RB→A(f))−O(logn).

In fact, when RB→A(f) = Ω(n), for any constant α < 1 if tA ≤ α logn then

tB = Ω(n1−α).
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Concretely, consider the Indexn predicate in which Bob holds an n-bit database x ∈ {0, 1}n

and Alice holds an index i ∈ [n] (encoded as a string of length logn) and the output is the
i-th bit of x. Since RB→A(Indexn) = Ω(n) [27] we get:

I Corollary 12. In any perfectly correct 0.1-private CDS protocol for Indexn in which Alice
communicates at most α logn+O(1) bits for some constant 0 ≤ α < 1, the database owner,
Bob, must communicate at least Ω(n1−α) bits.

Similar results can be obtained for predicates like Greater-Than, Set-Disjointness and
Set-Intersection, based on classical lower-bounds for randomized one-way communication
complexity (cf. [32, 27]).

The Indexn predicate plays an important role in CDS constructions and applications.
First, it is complete for CDS in the sense that any n-bit predicate can be reduced to IndexN
for N = 2n. Indeed, the best known general CDS protocols were obtained by improving the
pCDS complexity of Index [30]. In addition, a CDS for the index function can be viewed as
a one-time version of the well-studied notion of Broadcast Encryption, and the lower-bound
of Corollary 12 becomes especially appealing under this framework. Details follow.

Broadcast Encryption [18]

Suppose that we have a single sender and n receivers. The sender has a private encryption
key r and each receiver i ∈ [n] has its own private decryption key ki. All the keys were
collectively generated and distributed in an offline phase. In an online phase, the sender
gets a message z together with a public list of authorized users y ⊆ [n], represented by an
n-bit characteristic vector. The sender should broadcast a ciphertext b = b(y, z; r) to all
the receivers (who also know y) so that an authorized receiver will be able to decrypt the
ciphertext, and an unauthorized (computationally unbounded) receiver will learn nothing
about the message z. The goal is to minimize the length of the ciphertext b, and the length
of the keys ki.

Information-theoretic one-time secure Broadcast Encryption turns to be equivalent to
the CDS problem with respect to the Indexn predicate: Identify the ciphertext with Bob’s
message b = b(y, z; r) and the i-th key with Alice’s message a(i; r).11 The problem can
be solved with n-bit ciphertext and 1-bit keys, and with 1-bit ciphertext and n-bit keys.
In fact, [19] showed that one can smoothly get any tradeoff as long as the product of the
ciphertext length and the key length is n. Corollary 12 shows that when the key-length is
sub-logarithmic the ciphertext must be almost linear, confirming a conjecture of Wee [38].

Proof idea (of Theorem 11)

The idea is to let Bob send to Alice a pair of random strings r0 and r1 that are mapped to
the same Bob’s message b under the zero-secret and under the one-secret respectively. Alice
then uses the string rz and the secret z to compute a corresponding message az, and accepts
if the zero message a0 equals to the one message a1. Perfect correctness guarantees that
Alice will never err on 0-inputs. We further show that, when f(x, y) = 1, Alice accepts with
probability which is at least inverse-exponential in her message length (up to a loss that is
proportional to the privacy error of the protocol). See the full version [6] for details.

11Here we assume that we have a CDS in which only Bob holds the secret. However, any CDS can be
transformed into this form with an additional communication cost of O(|z|) = O(1).
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Table 1 The CDS complexity of some simple functions. By definition, an upper-bound in the
leftmost column (pCDS) implies an upper-bound in all other columns, and a lower-bound in the
rightmost column (CDS) implies a lower-bound in all other columns. All the linear upper-bounds
for pCDS follow from the fact that all of these predicates can be computed by a linear-size formula.
The logarithmic lower-bounds for CDS follow from Theorem 1 (and the fact that the corresponding
predicates have linear randomized one-way communication complexity.) The linear lower-bounds for
pcCDS and ppCDS follow from Theorems 3 and 7 respectively.

Predicate pCDS pcCDS ppCDS CDS

Equality Θ(1) Θ(1) Θ(1) Θ(1)
Non-Equality Θ(n) Θ(n) Θ(1) Θ(1)
Inner-Product Θ(n) Θ(n) Θ(n) O(n) & Ω(log n)
Greater-Than Θ(n) Θ(n) O(n) & Ω(log n) O(n) & Ω(log n)
Set-Intersection Θ(n) Θ(n) O(n) & Ω(log n) O(n) & Ω(log n)
Set-Disjointness O(n) & Ω(log n) O(n) & Ω(log n) O(n) & Ω(log n) O(n) & Ω(log n)

3 Conclusion and Open Questions

In this paper we studied the relations between CDS protocols and standard communication
complexity games. We established new connections between CDS communication complexity
(with perfect and imperfect privacy and correctness) to well-known communication complexity
measures for non-deterministic protocols, randomized unbounded-error protocols, and one-
way protocols. This leads to new CDS bounds for various simple functions. These results
are summarized in Figure 2 and Table 1.

We end by listing the immediate interesting questions left open following our work.

1. Prove an explicit polynomial lower-bound on (imperfect) CDS complexity. (A natural
candidate would be Inner-Product.)

2. Our current ppCDS lower-bounds are based on PP complexity, which corresponds to
discrepancy. Can we derive such bounds on weaker, easier-to-establish, properties? In
particular, can we prove non-trivial ppCDS lower-bounds for predicates that have low
randomized bounded-error communication complexity like Greater-Than?

3. Unlike all the other communication complexity measures considered here, CDS complexity
is not necessarily upper-bounded by the length of the inputs. But we have no super-linear
(or even linear with a large constant factor) lower-bounds for even perfect CDS protocols.
Can any of the existing lower-bound techniques from communication complexity be used
to obtain such bounds?

4. If not, can this difficulty be explained, perhaps by relating the problem of proving such
lower bounds for CDS to more well-studied problems that are still unsolved?

5. Following the paradigm of lifting query complexity lower bounds to the communication
setting, is there a natural query complexity measure that can be lifted to CDS complexity?

6. One simple predicate that has eluded all our bounds is Set-Disjointness, for which the
best (imperfect) CDS protocol we know has O(n) complexity, and the best lower bound
we can prove, even for perfect CDS, is Ω(log(n)). Are either of these tight?
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PPAMcoAM SZK

AM ∩ coAM

coNP CDS

pcCDS ppCDS

pCDSZAM

Figure 2 As is standard, we use the name of a complexity measure to also denote the class
of functions with polylog(n) complexity under the measure. For classes C1 and C2, a solid arrow
C1 → C2 indicates that C1 ⊆ C2, and a dashed arrow C1 99K C2 indicates that C1 6⊆ C2. Red
arrows indicate new results from this paper. Blue text indicates classes for which explicit bounds
are not known.
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A Formal Setup

For a finite set A we write a R← A to denote a random variable which is sampled uniformly
from A. The statistical distance between two discrete random variables, X and Y , denoted by
∆(X;Y ) is defined by ∆(X;Y ) := 1

2
∑
z |Pr[X = z]− Pr[Y = z]|. We will also use statistical

distance for probability distributions, where for a probability distribution D the value
Pr[D = z] is defined to be D(z).

I Definition 13 (CDS). Let f : X × Y → {0, 1} be a predicate. Let FA : X × Z ×R → TA
and FB : Y × Z × R → TB be deterministic encoding algorithms, where Z is the secret
domain. Then, the pair (FA,FB) is a CDS scheme for f with correctness error c and privacy
error s if the function F(x, y, z, r) = (FA(x, z, r),FB(y, z, r)) that corresponds to the joint
computation of FA and FB on a common z and r, satisfies the following properties:
1. (c-Correctness) There exists a deterministic algorithm Dec, called a decoder, such that

for every 1-input (x, y) of f and any secret z ∈ Z we have that:

Pr
r

R←R
[Dec(x, y,F(x, y, z, r)) 6= z] ≤ c

2. (s-Privacy) There exists a randomized simulator Sim such that for every 0-input (x, y) of
f , every secret z ∈ Z, and uniformly chosen randomness r R← R the following holds:

∆ (Sim(x, y) ; F(x, y, z, r)) ≤ s.

The communication complexity of the CDS protocol is (log |TA|+log |TB |) and its randomness
complexity is log |R|. If c and s are zeros, such a CDS scheme is called perfect.
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Abstract
Although Bitcoin was intended to be a decentralized digital currency, in practice, mining power
is quite concentrated. This fact is a persistent source of concern for the Bitcoin community.

We provide an explanation using a simple model to capture miners’ incentives to invest in
equipment. In our model, n miners compete for a prize of fixed size. Each miner chooses an
investment qi, incurring cost ciqi, and then receives reward qαi∑

j
qα
j

, for some α ≥ 1. When ci = cj

for all i, j, and α = 1, there is a unique equilibrium where all miners invest equally. However,
we prove that under seemingly mild deviations from this model, equilibrium outcomes become
drastically more centralized. In particular,

When costs are asymmetric, if miner i chooses to invest, then miner j has market share at
least 1 − cj

ci
. That is, if miner j has costs that are (e.g.) 20% lower than those of miner i,

then miner j must control at least 20% of the total mining power.
In the presence of economies of scale (α > 1), every market participant has a market share
of at least 1− 1

α , implying that the market features at most α
α−1 miners in total.

We discuss the implications of our results for the future design of cryptocurrencies. In par-
ticular, our work further motivates the study of protocols that minimize “orphaned” blocks,
proof-of-stake protocols, and incentive compatible protocols.
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Abstract
In the subgraph counting problem, we are given a (large) input graph G(V,E) and a (small)
target graph H (e.g., a triangle); the goal is to estimate the number of occurrences of H in G.
Our focus here is on designing sublinear-time algorithms for approximately computing number
of occurrences of H in G in the setting where the algorithm is given query access to G. This
problem has been studied in several recent papers which primarily focused on specific families of
graphs H such as triangles, cliques, and stars. However, not much is known about approximate
counting of arbitrary graphs H in the literature. This is in sharp contrast to the closely related
subgraph enumeration problem that has received significant attention in the database community
as the database join problem. The AGM bound shows that the maximum number of occurrences
of any arbitrary subgraph H in a graph G with m edges is O(mρ(H)), where ρ(H) is the fractional
edge-cover of H, and enumeration algorithms with matching runtime are known for any H.

We bridge this gap between subgraph counting and subgraph enumeration by designing a
simple sublinear-time algorithm that can estimate the number of occurrences of any arbitrary
graph H in G, denoted by #H, to within a (1 ± ε)-approximation with high probability in
O(m

ρ(H)

#H ) · poly(logn, 1/ε) time. Our algorithm is allowed the standard set of queries for general
graphs, namely degree queries, pair queries and neighbor queries, plus an additional edge-sample
query that returns an edge chosen uniformly at random. The performance of our algorithm
matches those of Eden et al. [FOCS 2015, STOC 2018] for counting triangles and cliques and
extend them to all choices of subgraph H under the additional assumption of edge-sample queries.
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6:2 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

1 Introduction

Counting (small) subgraphs in massive graphs is a fundamental algorithmic problem, with a
wide range of applications in bioinformatics, social network analysis, spam detection and
graph databases (see, e.g. [36, 8, 11]). In social network analysis, the ratio of the number of
triangles in a network to the number of length 2 paths (known as the clustering coefficient) as
well as subgraph counts for larger subgraphs H have been proposed as important metrics for
analyzing massive networks [42]. Similarly, motif counting are popular method for analyzing
protein-protein interaction networks in bioinformatics (e.g., [36]). In this paper we consider
designing efficient algorithms for this task.

Formally, we consider the following problem: Given a (large) graph G(V,E) with m edges
and a (small) subgraph H(VH , EH) (e.g., a triangle) and a precision parameter ε ∈ (0, 1),
output a (1±ε)-approximation to the number of occurrences of H in G. Our goal is to design
an algorithm that runs in time sublinear in the number m of edges of G, and in particular
makes a sublinear number of the following types of queries to the graph G:

Degree query v: the degree dv of any vertex v ∈ V ;
Neighbor query (v, i): what vertex is the i-th neighbor of the vertex v ∈ V for i ≤ dv;
Pair query (u, v): test for pair of vertices u, v ∈ V , whether or not (u, v) belongs to E.
Edge-sample query: sample an edge e uniformly at random from E.

The first three queries are the standard baseline queries (see Chapter 10 of Goldreich’s
book [23]) assumed by nearly all sublinear time algorithms for counting small subgraphs such
as triangles or cliques [16, 18] (see [25] for the necessity of using pair queries for counting
subgraphs beside stars). The last query is somewhat less standard but is also considered in
the literature prior to our work, for example in [2] for counting stars in sublinear time, and
in [19] in the context of lower bounds for subgraph counting problems.

1.1 Our Contributions
For the sake of clarity, we suppress any dependencies on the approximation parameter ε,
logn-terms, and the size of graph H, using the O∗(·) notation. Our results are parameterized
by the fractional edge-cover number of the subgraphH (see Section 3 for the formal definition).
Our goal in this paper is to approximately compute the number of occurrences #H of H in
G, formally defined as number of subgraphs H ′ of G such that H and H ′ are isomorphic.

I Theorem 1. There exists a randomized algorithm that given ε ∈ (0, 1), a subgraph H, and
a query access to the input graph G, with high probability outputs a (1± ε) approximation to
the number of occurrences of H in G, denoted by #H, using:

O∗
(

min
{
m,

mρ(H)

#H

})
queries and O∗

(mρ(H)

#H

)
time.

The algorithm uses degree, neighbor, pair, and edge-sample queries.

Since the fractional edge-cover number of any k-clique Kk is k/2, as a corollary of Theorem 1,
we obtain sublinear algorithms for counting triangles, and in general k-cliques using

O∗
(

min
{
m,

m
√
m

#K3

})
and O∗

(
min

{
m,

mk/2

#Kk

})
,

queries respectively. These bounds match the previous results of Eden et al. [16, 18] modulo
an additive term of O∗( n

(#K3)1/3 ) for triangles in [16] and O∗( n
(#Kk)1/k ) for arbitrary cliques
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in [18] which is needed in the absence of edge-sample queries that are not used by [16, 18].
Our bounds settle a conjecture of Eden and Rosenbaum [19] in the affirmative by showing
that one can avoid the aforementioned additive terms depending on n in query complexity
by allowing edge-sample queries. We now elaborate more on different aspects of Theorem 1.

AGM Bound and Database Joins. The problem of enumerating all occurrences of a graph
H in a graph G and, more generally, the database join problem, has been considered
extensively in the literature. A fundamental question here is that given a database with m
entries (e.g. a graph G with m edges) and a conjunctive query H (e.g. a small graph H),
what is the maximum possible size of the output of the query (e.g., number of occurrences of
H in G)? The AGM bound of Atserias, Grohe and Marx [5] provides a tight upper bound of
mρ(H) (up to constant factors), where ρ(H) is the fractional edge cover of H. The AGM
bound applies to databases with several relations, and the fractional edge cover in question
is weighted according to the sizes of the different relations. A similar bound on the number
of occurrences of a hypergraph H inside a hypergraph G with m hyperedges was proved
earlier by Friedgut and Kahn [22], and the bound for graphs is due to Alon [3]. Recent
work of Ngo et al. [37] gave algorithms for evaluating database joins in time bounded by
worst case output size for a database with the same number of entries. When instantied
for the subgraph enumeration problem, their result gives an algorithm for enumerating all
occurrences of H in a graph G with m edges in time O(mρ(H)).

Our Theorem 1 is directly motivated by the connection between subgraph counting and
subgraph enumeration problems and the AGM bound. In particular, Theorem 1 provides a
natural analogue of AGM bound for estimation algorithms by stating that if the number
of occurrences H is #H ≤ mρ(H), then a (1± ε)-approximation to #H can be obtained in
O∗(m

ρ(H)

#H ) time. Additionally, as we show in Section 4.3, Theorem 1 can be easily extended
to the more general problem of database join size estimation (for binary relations). This
problem corresponds to a subgraph counting problem in which the graphs G and H are both
edge-colored and our goal is to count the number of copies of H in G with the same colors on
edges. Our algorithm can solve this problem also in O∗(m

ρ(H)

#Hc ) time where #Hc denotes the
number of copies of H with the same colors in G.

Optimality of Our Bounds. Our algorithm in Theorem 1 is optimal from different points
of view. Firstly, by a lower bound of [19] (building on [16, 18]), the bounds achieved by our
algorithm when H is any k-clique is optimal among all algorithms with the same query access
(including the edge-sample query). In Theorem 15, we further prove a lower bound showing
that for odd cycles as well, the bounds achieved by Theorem 1 are optimal. These results
hence suggest that Theorem 1 is existentially optimal: there exists several natural choices
for H such that Theorem 1 achieves the optimal bounds. However, there also exist choices
of H for which the bounds in Theorem 1 are suboptimal. In particular, Aliakbarpour et
al. [2] presented an algorithm for estimating occurrences of any star S` for ` ≥ 1 using
O∗( m

(#S`)1/` ) queries in our query model (including edge-sample queries) which is always
at least as good as our bound in Theorem 1, but potentially can be better. On the other
hand, in the full version of the paper [4], we show that our current algorithm, with almost
no further modification, in fact achieves this stronger bound using a different analysis.

Additionally, as we pointed out before, our algorithm can solve the more general database
join size estimation for binary relations, or equivalently the subgraph counting problem with
colors on edges. In Theorem 16, we prove that for this more general problem, our algorithm
in Theorem 1 indeed achieves optimal bounds for all choices of the subgraph H.
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Edge-Sample Queries. The edge-sample query that we assume is not part of the standard
access model for sublinear algorithms, namely the “general graph” query model (see, e.g. [32]).
Nonetheless, we find allowing for this query “natural” owing to the following factors:

Theoretical implementation. Edge sampling queries can be implemented with an Õ(n/
√
m)

multiplicative overhead in query and time using the recent result of [20], or with an O(n)
additive preprocessing time (which is still sublinear in m) by querying degrees of all vertices.
Hence, we can focus on designing algorithms by allowing these queries and later replacing
them by either of the above implementations in a black-box way at a certain additional cost.

Practical implementation. Edge sampling is a common practice in analyzing social
networks [34, 33] or biological networks [1]. Another scenario when random edge sampling is
possible is when we can access a random location of the memory that is used to store the
graph. To quote [2]: “because edges normally take most of the space for storing graphs, an
access to a random memory location where the adjacency list is stored, would readily give
a random edge.” Hence, assuming edge sampling queries can be considered valid in many
scenarios.

Understanding the power of random edge queries. Edge sampling is a critical component
of various sublinear time algorithms for graph estimation [16, 17, 2, 18, 20]. However, except
for [2] that also assumed edge-sample queries, all these other algorithms employ different
workarounds to these queries. As we show in this paper, decoupling these workarounds from
the rest of the algorithm by allowing edge-sample queries results in considerably simpler
and more general algorithms for subgraph counting and is hence worth studying on its own.
We also mention that studying the power of edge-sample queries has been cast as an open
question in [19] as well.

Applications to Streaming Algorithms. Subgraph counting is also one of the most studied
problems in the graph streaming model (see, e.g. [6, 28, 10, 31, 9, 27, 41, 35, 13, 7] and
references therein). In this model, the edges of the input graph are presented one by one
in a stream; the algorithm makes a single or a small number of passes over the stream and
outputs the answer after the last pass. The goal here is to minimize the memory used by the
algorithm (similar-in-spirit to minimizing the query complexity in the query model).

Our algorithm in Theorem 1 can be directly adapted to the streaming model, resulting
in an algorithm for subgraph counting that makes O(1) passes over the stream and uses
a memory of size O∗

(
min

{
m, m

ρ(H)

#H

})
. For the case of counting triangles and cliques,

the space complexity of our algorithm matches the best known algorithms of McGregor et
al. [35] and Bera and Chakrabarti [7] which are known to be optimal [7]. To the best of
our knowledge, the only previous streaming algorithms for counting arbitrary subgraphs H
are those of Kane et al. [31] and Bera and Chakrabarti [7] that use, respectively, one pass
and O∗(m

2·|E(H)|

(#H)2 ) space, and two passes and O∗(m
β(H)

#H ) space, where β(H) is the integral
edge-cover number of H. As ρ(H) ≤ β(H) ≤ |E(H)| by definition and #H ≤ mρ(H) by
AGM bound, the space complexity of our algorithm is always at least as good as the ones
in [31, 7] but potentially can be much smaller.

1.2 Main Ideas in Our Algorithm
Our starting point is the AGM bound which implies that the number of “potential copies”
of H in G is at most mρ(H). Our goal of estimating #H then translates to counting how
many of these potential copies form an actual copy of H in G. A standard approach at this
point is the Monte Carlo method: sample a potential copy of H in G uniformly at random
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and check whether it forms an actual copy of H or not; a simple exercise in concentration
inequalities then implies that we only need O(m

ρ(H)

#H ) many independent samples to get a
good estimate of #H.

This approach however immediately runs into a technical difficulty. Given only a query
access to G, it is not at all clear how to sample a potential copy of H from the list of all
potential copies. Our first task is then to design a procedure for sampling potential copies of
H from G. In order to do so, we again consider the AGM bound and the optimal fractional
edge-cover that is used to derive this bound. We first prove a simple structural result that
states that an optimal fractional edge-cover of H can be supported only on edges that form a
disjoint union of odd cycles and stars (in H). This allows us to decompose H into a collection
of odd cycles and stars and treat any arbitrary subgraph H as a collection of these simpler
subgraphs that are suitably connected together.

The above decomposition reduces the task of sampling a potential copy of H to sampling
a collection of odd cycles and stars. Sampling an odd cycle C2k+1 on 2k + 1 edges is as
follows: sample k edges e1, . . . , ek uniformly at random from G; pick one of the endpoints of
e1 and sample a vertex v from the neighborhood of this endpoint uniformly at random. With
some additional care, one can show that the tuple (e1, . . . , ek, v) sampled here is enough to
identify an odd cycle of length 2k+ 1 uniquely. To sample a star C` with ` petals, we sample
a vertex v from G with probability proportional to its degree (by sampling a random edge
and picking one of the two endpoints uniformly), and then sample ` vertices w1, . . . , w` from
the neighborhood of v. Again, with some care, this allows us to sample a potential copy of a
star S`. We remark that these sampling procedures are related to sampling triangles in [16]
and stars in [2]. Finally, to sample a potential copy of H, we simply sample all its odd cycles
and stars in the decomposition using the method above. We should note right away that
this however does not result in a uniformly at random sample of potential copies of H as
various parameters of the graph G, in particular degrees of vertices, alter the probability of
sampling each potential copy.

The next and paramount step is then how to use the samples above to estimate the value
of #H. Obtaining an unbiased estimator of #H based on these samples is not hard as
we can identify the probability each potential copy is sampled with in this process (which
is a function of degrees of vertices of the potential copy in G) and reweigh each sample
accordingly. Nevertheless, the variance of a vanilla variant of this sampling and reweighing
approach is quite large for our purpose. To fix this, we use an idea similar to that of [16] for
counting triangles: sample a “partial” potential copy of H first and fix it; sample multiple
“extensions” of this partial potential copy to a complete potential copy and use the average of
estimates based on each extension to reduce the variance. More concretely, this translates to
sampling multiple copies of the first cycle for the decomposition and for each sampled cycle,
recursively sampling multiple copies of the remainder of H as specified by the decomposition.
A careful analysis of this recursive process – which is the main technical part of the paper
– allows us to bound the variance of the estimator by O(mρ(H)) · (#H). Repeating such
an estimator O(m

ρ(H)

#H ) times independently and taking the average value then gives us a
(1± ε)-approximation to #H by a simple application of Chebyshev’s inequality.

1.3 Further Related Work
In addition to the previous work in [16, 18, 2] that are already discussed above, sublinear-time
algorithms for estimating subgraph counts and related parameters such as average degree and
degree distribution moments have also been studied in [21, 24, 25, 17]. Similarly, sublinear-
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6:6 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

time algorithms are also studied for estimating other graph parameters such as weight of the
minimum spanning tree [15, 12, 14] or size of a maximum matching or a minimum vertex
cover [40, 38, 43, 26, 39] (this is by no means a comprehensive summary of previous results).

Subgraph counting has also been studied extensively in the graph streaming model (see,
e.g. [6, 28, 10, 31, 9, 27, 41, 35, 13, 7, 30, 29] and references therein). In this model, the
edges of the input graph are presented one by one in a stream; the algorithm makes a single
or a small number of passes over the stream and outputs the answer after the last pass.
The goal in this model is to minimize the memory used by the algorithm similar-in-spirit to
minimizing the query complexity in our query model. However, the streaming algorithms
typically require reading the entire graph in the stream which is different from our goal in
sublinear-time algorithms.

2 Preliminaries

Notation. For any integer t ≥ 1, we let [t] := {1, . . . , t}. For any event E , I(E) ∈ {0, 1} is an
indicator denoting whether E happened or not. For a graph G(V,E), V (G) := V denotes the
vertices and E(G) := E denotes the edges. For a vertex v ∈ V , N(v) denotes the neighbors
of v, and dv := |N(v)| denotes the degree of v.

To any edge e = {u, v} in G, we assign two directed edges ~e1 = (u, v) and ~e2 = (v, u)
called the directed copies of e and let ~E be the set of all these directed edges. We also fix
a total ordering ≺ on vertices whereby for any two vertices u, v ∈ V , u ≺ v iff du < dv, or
du = dv and u appears before v in the lexicographic order. To avoid confusion, we use letters
a, b and c to denote the vertices in the subgraph H, and letters u, v and w to denote the
vertices of G.

We use the following standard variant of Chebyshev’s inequality.

I Proposition 2. For any random variable X and integer t ≥ 1, Pr (|X − E [X]| ≥ t) ≤
Var[X]
t2 .

We also recall the law of total variance that states the for two random variables X and Y ,

Var [Y ] = E
x

(Var [Y | X = x]) + Var
x

[E [Y | X = x]] . (1)

Assumption on Size of Subgraph H. Throughout the paper, we assume that the size of
the subgraph H is a fixed constant independent of the size of the graph G and hence we
suppress the dependency on size of H in various bounds in our analysis using O-notation.

3 A Graph Decomposition Using Fractional Edge-Covers

In this section, we give a simple decomposition of the subgraph H using fractional edge-covers.
We start by defining fractional edge-covers formally (see also Figure 1).

I Definition 3 (Fractional Edge-Cover Number). A fractional edge-cover of H(VH , EH) is
a mapping ψ : EH → [0, 1] such that for each vertex a ∈ VH ,

∑
e∈EH ,a∈e ψ(e) ≥ 1. The

fractional edge-cover number ρ(H) of H is the minimum value of
∑
e∈EH ψ(e) among all

fractional edge-covers ψ.
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(a) The subgraph H.
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(b) An optimal edge-cover of H
with ρ(H) = 5.5.

(c) Decomposition of H.

Figure 1 Illustration of the our decomposition for H based on fractional edge-covers.

The fractional edge-cover number of a graph can be computed by the following LP:

ρ(H) = minimize
∑

e∈E(H)

xe

subject to
∑

e∈EH :a∈e
xe ≥ 1 for all vertices a ∈ V (H). (2)

The following lemma is the key to our decomposition. The proof is based on standard
ideas in linear programming and is postponed to the full version of the paper [4].

I Lemma 4. Any subgraph H admits an optimal fractional edge-cover x∗ such that the
support of x∗, denoted by supp(x∗), is a collection of vertex-disjoint odd cycles and star
graphs, and,
1. for every odd cycle C ∈ supp(x∗), x∗e = 1/2 for all e ∈ C;
2. for every edge e ∈ supp(x∗) that does not belong to any odd cycle, xe = 1.

3.1 The Decomposition

We now present the decomposition of H using Lemma 4. Let x∗ be an optimal fractional
edge-cover in Lemma 4 and let C1, . . . , Co be the odd-cycles in the support of x∗ and S1, . . . ,Ss
be the stars. We define D(H) := {C1, . . . , Co,S1, . . . ,Ss} as the decomposition of H (see
Figure 1 for an illustration).

For every i ∈ [o], let the length of the odd cycle Ci be 2ki + 1 (i.e., Ci = C2ki+1); we
define ρCi := ki + 1/2. Similarly, for every j ∈ [s], let the number of petals in Sj be `j (i.e.,
Sj = S`j ); we define ρSj := `j . By Lemma 4,

ρ(H) =
o∑
i=1

ρCi +
s∑
j=1

ρSj . (3)

Recall that by AGM bound, the total number of copies of H possible in G is mρ(H). We also
use the following simple lemma which is a direct corollary of the AGM bound.

I Lemma 5. Let I := {i1, . . . , io} and J := {j1, . . . , js} be subsets of [o] and [s], respectively.
Suppose H̃ is the subgraph of H on vertices of the odd cycles Ci1 , . . . , Cio and stars Sj1 , . . . ,Sjs .
Then the total number of copies of H̃ in G is at most mρ(H̃) for ρ(H̃) ≤

∑
i∈I ρ

C
i +

∑
j∈J ρ

S
j .

Proof. Let x∗ denote the optimal value of LP (2) in D(H). Define y∗ as the projection of
x∗ to edges present in H̃. It is easy to see that y∗ is a feasible solution for LP (2) of H̃ with
value

∑
i∈I ρ

C
i +

∑
j∈J ρ

S
j . The lemma now follows from AGM bound for H̃. J
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3.2 Profiles of Cycles, Stars, and Subgraphs
We conclude this section by specifying the representation of the potential occurrences of the
subgraph H in G based on the decomposition D(H).
Odd cycles: We represent a potential occurrence of an odd cycle C2k+1 in G as follows. Let
e = (~e1, . . . , ~ek) ∈ ~Ek be an ordered tuple of k directed copies of edges in G and suppose
~ei := (ui, vi) for all i ∈ [k]. Define u∗e = u1 and let w be any vertex in N(u∗e). We refer to any
such collection (e, w) as a profile of C2k+1 in G. We say that “the profile (e, w) forms a cycle
C2k+1 in G” iff (i) u1 is the smallest vertex on the cycle according to ≺, (ii) v1 ≺ w, and
(iii) the edges (u1, v1), (v1, u2), . . . , (uk, vk), (vk, w), (w, u1) all exist in G and hence there is a
copy of C2k+1 on vertices {u1, v1, u2, v2, . . . , uk, vk, w} in G. Note that under this definition
and our definition of #C2k+1, each copy of C2k+1 correspond to exactly one profile (e, w)
and vice versa. As such,

#C2k+1 =
∑

e∈~Ek

∑
w∈N(u∗e)

I
(

(e, w) forms a cycle C2k+1 in G
)
. (4)

Stars: We represent a potential occurrence of a star S` in G by (v,w) where v is the center
of the star and w = (w1, . . . , w`) are the ` petals. We refer to (v,w) as a profile of S` in G.
We say that “the profile (v,w) forms a star S` in G” iff (i) |w| > 1, or (ii) (` =) |w| = 1 and
v ≺ w1; in both cases there is a copy of S` on vertices v, w1, . . . , w`. Under this definition,
each copy of S` corresponds to exactly one profile (v,w). As such,

#S` =
∑
v∈V

∑
w∈N(v)`

I
(

(v,w) forms a star S` in G
)
. (5)

Arbitrary subgraphs: We represent a potential occurrence of H in G by an (o + s)-tuple
R := ((e1, w1), . . . , (eo, wo), (v1,w1), . . . , (vs,ws)) where (ei, wi) is a profile of the cycle Ci
in D(H) and (vj ,wj) is a profile of the star Sj . We refer to R as a profile of H and say
that “the profile R forms a copy of H in G” iff (i) each profile forms a corresponding copy
of Ci or Sj in D(H), and (ii) the remaining edges of H between vertices specified by R all
are present in G (note that by definition of the decomposition D(H), all vertices of H are
specified by R). As such,

#H =
∑
R

I
(

R forms a copy of H in G
)
· f(H), (6)

for a fixed constant f(H) depending only on H as defined below. Let π : VH → VH
be an automorphism of H. Let C1, . . . , Co, S1, . . . , Ss denote the cycles and stars in the
decomposition of H. We say that π is decomposition preserving if for every i = 1, . . . , o
cycle Ci is mapped to a cycle of the same length and for every i = 1, . . . , s star Si is mapped
to a star with the same number of petals. Let the number of decomposition preserving
automorphisms of H be denoted by Z, and define f(H) = 1/Z. Define the quantity
#̃H :=

∑
R I
(

R forms a copy of H in G
)
which is equal to #H modulo the scaling factor

of f(H). It is immediate that estimating #H and #̃H are equivalent to each other and hence
in the rest of the paper, with a slight abuse of notation, we use #H and #̃H interchangeably.

4 A Sublinear-Time Algorithm for Subgraph Counting

We now present our sublinear time algorithm for approximately counting number of any
given arbitrary subgraph H in an underlying graph G and prove Theorem 1. The main
component of our algorithm is an unbiased estimator random variable for #H with low
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variance. The algorithm in Theorem 1 is then obtained by simply repeating this unbiased
estimator in parallel enough number of times (based on the variance) and outputting the
average value of these estimators.

4.1 A Low-variance Unbiased Estimator for #H

We present a low-variance unbiased estimator for #H in this section. Our algorithm is a
sampling based algorithm. In the following, we first introduce two separate subroutines for
sampling odd cycles (odd-cycle-sampler) and stars (star-sampler), and then use these
components in conjunction with the decomposition we introduced in Section 3, to present our
full algorithm. We should right away clarify that odd-cycle-sampler and star-sampler
are not exactly sampling a cycle or a star, but rather sampling a set of vertices and edges (in
a non-uniform way) that can potentially form a cycle or star in G, i.e., they sample a profile
of these subgraphs defined in Section 3.2.

The odd-cycle-sampler Algorithm

We start with the following algorithm for sampling an odd cycle C2k+1 for some k ≥ 1. This
algorithm outputs a simple data structure, named the cycle-sampler tree, that provides a
convenient representation of the samples taken by our algorithm (see Definition 6 immediately
after the description of the algorithm). This data structure can be easily avoided when
designing a cycle counting algorithm, but will be quite useful for reasoning about the recursive
structure of our sampling algorithm for general graphs H.

Algorithm 1 odd-cycle-sampler(G,C2k+1).

1. Sample k directed edges e := (~e1, . . . , ~ek) uniformly at random (with replacement) from
G with the constraint that for ~e1 = (u1, v1), u1 ≺ v1.

2. Let u∗e := u1 and let d∗e := du∗e .
3. For i = 1 to te := dd∗e/

√
me: Sample a vertex wi uniformly at random from N(u∗e).

4. Let w := (w1, . . . , wte). Return the cycle-sampler tree T (e,w) (see Definition 6).

I Definition 6 (Cycle-Sampler Tree). The cycle-sampler tree T (e,w) for the tuple (e,w)
sampled by odd-cycle-sampler(G,C2k+1) is the following 2-level tree T :

Each node α of the tree contains two attributes: label[α] which consists of some of the
edges and vertices in (e,w), and an integer value[α].
For the root αr of T , label[αr] := e and value[αr] := (2m)k/2.
(value[αr] is equal to the inverse of the probability that e is sampled by odd-cycle-
sampler).
The root αr has te child-nodes in T for a parameter te = dd∗e/

√
me (consistent with

line 3 of odd-cycle-sampler(G,C2k+1) above).
For the i-th child-node αi of root, i ∈ [te], label[αi] := wi and value[αi] := d∗e
(value[αi] is equal to the inverse of the probability that wi is sampled by odd-cycle-
sampler, conditioned on e being sampled).

Moreover, for each root-to-leaf path Pi := (αr, αi) (for i ∈ [te]), define label[Pi] := label[αr]∪
label[αi] and value[Pi] := value[αr] · value[αi] ( label[Pi] is a profile of the cycle C2k+1 as
defined in Section 3.2).
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6:10 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

odd-cycle-sampler can be implemented in our query model by using k edge-sample
queries (and picking the correct direction for e1 based on ≺ and one of the two directions
uniformly at random for the other edges) in Line (1), two degree queries in Line (2), and
one neighbor query in Line (3). This results in O(k) queries in total for one iteration of the
for-loop in Line (3). As such, the total query complexity of odd-cycle-sampler is O(te)
(recall that k is a constant). It is also straightforward to verify that we can compute the
cycle-sampler tree T of an execution of odd-cycle-sampler with no further queries and in
O(te) time. We bound the query complexity of this algorithm by bounding the expected
number of iterations in the for-loop. The proof is postponed to the full version [4].

I Lemma 7. For the parameter te in Line (3) of odd-cycle-sampler, E [te] = O(1).

We now define a process for estimating the number of odd cycles in a graph using the
information stored in the cycle-sampler tree and the odd-cycle-sampler algorithm. While
we do not use this process in a black-box way in our main algorithm, abstracting it out
makes the analysis of our main algorithm simpler to follow and more transparent, and serves
as a warm-up for our main algorithm.

Warm-up: An Estimator for Odd Cycles. Let T := odd-cycle-sampler(G,C2k+1) be
the output of an invocation of odd-cycle-sampler. Note that the cycle-sampler tree T
is a random variable depending on the randomness of odd-cycle-sampler. We define the
random variable Xi such that Xi := label[Pi] for the i-th root-to-leaf path iff label[Pi] forms
a copy of C2k+1 in G and otherwise Xi := 0 (according to the definition of Section 3). We
further define Y := 1

te
·
∑te
i=1 Xi (note that te is also a random variable). Our estimator

algorithm can compute the value of these random variables using the information stored in
the tree T plus additional O(k) = O(1) queries for each of the te root-to-leaf path Pi to
detect whether (e, wi) forms a copy of H or not. Thus, the query complexity and runtime of
the estimator is still O(te) (which in expectation is O(1) by Lemma 7). The expectation and
variance of the estimator can be bounded as follows (the proof is in the full version [4]).

I Lemma 8. For the random variable Y associated with odd-cycle-sampler(G,C2k+1),

E [Y ] = (#C2k+1), Var [Y ] ≤ (2m)k
√
m · E [Y ] .

The star-sampler Algorithm
We now give an algorithm for sampling a star S` with ` petals. Similar to odd-cycle-sampler,
this algorithm also outputs a simple data structure, named the star-sampler tree, that
provides a convenient representation of the samples taken by our algorithm (see Definition 9,
immediately after the description of the algorithm). This data structure can be easily avoided
when designing a star counting algorithm, but will be quite useful for reasoning about the
recursive structure of our sampling algorithm for general graphs H.

I Definition 9 (Star-Sampler Tree). The star-sampler tree T (v,w) for the tuple (v,w)
sampled by star-sampler(G,S`) is the following 2-level tree T (with the same attributes as
in Definition 6) with only two nodes:

For the root αr of T , label[αr] := v and value[αr] := 2m/dv.
(value[αr] is equal to the inverse of the probability that v is sampled by star-sampler).
The root αr has exactly one child-node αl in T with label[αl] = w = (w1, . . . , w`) and
value[αl] =

(
dv
`

)
.

(value[αl] is equal to the inverse of the probability that w is sampled by star-sampler,
conditioned on v being sampled).
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Algorithm 2 star-sampler(G,S`).

1. Sample a vertex v ∈ V chosen with probability proportional to its degree in G (i.e., for
any vertex u ∈ V , Pr (u is chosen as the vertex v) = du/2m).

2. Sample ` vertices w := (w1, . . . , w`) from N(v) uniformly at random (without replace-
ment).

3. Return the star-sampler tree T (v,w) (see Definition 9).

Moreover, for the root-to-leaf path P := (αr, αl), we define label[P] := label[αr] ∪ label[αl]
and value[P ] := value[αr] · value[αl]. ( label[P ] is a representation of the star S` as defined in
Section 3.2).

star-sampler can be implemented in our query model by using one edge-sample query
in Line (1) and then picking one of the endpoints uniformly at random, a degree query to
determine the degree of v, and ` neighbor queries in Line (2), resulting in O(`) queries in
total. It is also straightforward to verify that we can compute the star-sampler tree T of an
execution of star-sampler with no further queries and in O(1) time.

We again define a process for estimating the number of stars in a graph using the
information stored in the star-sampler tree and the star-sampler algorithm, as a warm-up
to our main result in the next section.

Warm-up: An Estimator for Stars. The star-sampler tree T is a random variable depending
on the randomness of star-sampler. We define the random variable X such that X :=
value[P] for the root-to-leaf path of T iff label[P] forms a copy of S` in G and otherwise
X := 0. Our estimator algorithm can compute the value of this random variable using only
the information stored in the tree T with no further queries to the graph (by simply checking
if all wi’s in w are distinct). As such, the query complexity and runtime of the estimator
algorithm is still O(1). The proof of the following lemma is postponed to the full version [4].

I Lemma 10. For the random variable X associated with star-sampler(G,S`),

E [X] = (#S`), Var [X] ≤ 2m` · E [X] .

The Estimator Algorithm for Arbitrary Subgraphs
We now present our main estimator for the number of occurrences of an arbitrary subgraph
H in G, denoted by (#H). Recall the decomposition D(H) := {C1, . . . , Co,S1, . . . ,Ss} of H
introduced in Section 3. Our algorithm creates a subgraph-sampler tree T (a generalization
of cycle-sampler and star-sampler trees in Definitions 6 and 9) and use it to estimate (#H).
We define the subgraph-sampler tree T and the algorithm subgraph-sampler(G,H) that
creates it simultaneously:

Subgraph-Sampler Tree. The subgraph-sampler tree T is a z-level tree for z := (2o+ 2s)
returned by subgraph-sampler(G,H). The algorithm constructs T as follows.

Sampling Odd Cycles. In subgraph-sampler(G,H), we run odd-cycle-sampler(G, C1)
and initiate T to be its output cycle-sampler tree. For every (current) leaf-node α of T ,
we run odd-cycle-sampler(G, C2) independently to obtain a cycle-sampler tree Tα (we say
that α started the sampling of Tα). We then extend the tree T with two new layers by
connecting each leaf-node α to the root of Tα that started its sampling. This creates a
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6:12 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

4-level tree T . We continue like this for o steps, each time appending the tree obtained by
odd-cycle-sampler(G, Cj) for j ∈ [o], to the (previous) leaf-node that started this sampling.
This results in a (2o)-level tree. Note that the nodes in the tree T can have different degrees
as the number of leaf-nodes in the cycle-sampler tree is not necessarily the same always
(not even for two different trees associated with one single Cj through different calls to
odd-cycle-sampler(G, Cj)).

Sampling Stars. Once we iterated over all odd cycles of D(H), we switch to processing
stars S1, . . . ,Ss. The approach is identical to the previous part. Let α be a (current) leaf-node
of T . We run star-sampler(G,S1) to obtain a star-sampler tree Tα and connect α to Tα to
extend the levels of tree by 2 more. We continue like this for s steps, each time appending
the tree obtained by star-sampler(G,Sj) for j ∈ [s], to the (former) leaf-node that started
this sampling. This results in a z-level tree T . Note that all nodes added when sampling
stars have exactly one child-node (except for the leaf-nodes) as by Definition 9, star-sampler
trees always contain only two nodes.

Labels and Values. Each node α of T is again given two attributes, label[α] and value[α],
which are defined to be exactly the same attributes in the corresponding cycle-sampler or
star-sampler tree that was used to define these nodes (recall that each node of T is “copied”
from a node in either a cycle-sampler or a star-sampler tree). Finally, for each root-to-
leaf path P in T , we define label[P] :=

⋃
α∈P label[α] and value[P] :=

∏
α∈P value[α]. In

particular, label[P] := ((e1, w1), . . . , (eo, wo), (v1,w1), . . . , (vs,ws)) by definition of labels of
cycle-sampler and star-sampler trees. As such label[P ] is a representation of the subgraph H
as defined in Section 3.2. By making O(1) additional pair-queries to query all the remaining
edges of this representation of H we determine if label[P] forms a copy of H.

This concludes the description of subgraph-sampler(G,H) and its output subgraph-
sampler tree T . We bound the query complexity of the algorithm in the following lemma
(the proof is postponed to the full version [4]).

I Lemma 11. The expected query complexity/ running time of subgraph-sampler is O(1).

We are now ready to present our estimator algorithm using subgraph-sampler and the
subgraph-sampler tree T it outputs.

An Estimator for Arbitrary Subgraphs. Note that as before the subgraph-sampler tree
T itself is a random variable depending on the randomness of subgraph-sampler. For
any root-to-leaf path Pi := α1, . . . , αz of T , we define the random variable Xi such that
Xi := value[Pi] iff label[Pi] forms a copy of H in G and otherwise Xi := 0. We further
define Y := ( 1

t

∑t
i=1 Xi), where t is the number of leaf-nodes of T (which itself is a random

variable). These random variables can all be computed from T and subgraph-sampler with
at most O(1) further pair-queries per each root-to-leaf path P of the tree to determine if
indeed label[P ] forms a copy of H in G or not. As such, query complexity and runtime of this
algorithm is proportional to subgraph-sampler (which in expectation is O(1) by Lemma 11).
In the following two lemmas, we show that Y is a low-variance unbiased estimator of (#H).

Notation. For any node α in T , we use Tα to denote the sub-tree of T rooted at α. For a
leaf-node α, we define a random variable Yα which is value[α] iff for the root-to-leaf path P
ending in α, label[P ] forms a copy of H in G and otherwise Yα is 0. For an internal node α in
T with t child-nodes α1, . . . , αt, we define Yα = value[α] ·

(
1
t ·
∑t
i=1 Yi

)
. It is easy to verify

that Yαr for the root αr of T is the same as the estimator random variable Y defined earlier.
Furthermore, for a node α in level ` of T , we define Lα := (label[α1], label[α2], . . . , label[α`−1]),
where α1, . . . , α`−1 forms the path from the root of T to the parent of α.
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We analyze the expected value and the variance of the estimator.

I Lemma 12. For Y in subgraph-sampler(G,H), E [Y ] = (#H).

Proof. We prove this inductively by showing that for any node α in an odd layer of T ,
E [Yα | Lα] = (#H | Lα), where (#H | Lα) denotes the number of copies of H in G that
contain the vertices and edges specified by Lα (according to the decomposition D(H)).
E [Yα | Lα] measures the value of Yα after we fix the rest of the tree T and let the sub-tree
Tα be chosen randomly as in subgraph-sampler.

The base case of the induction, i.e., for vertices in the last odd layer of T follows exactly
as in the proofs of Lemmas 8 and 10 (as will also become evident shortly) and hence we do
not repeat it here. We now prove the induction hypothesis. Fix a vertex α in an odd layer `.
We consider two cases based on whether ` < 2o (hence α is root of a cycle-sampler tree) or
` > 2o (hence α is root of a star-sampler tree).
Case of ` < 2o. In this case, the sub-tree Tα in the next two levels is a cycle-sampler tree,

E [Yα | Lα] =
∑

e

Pr (label[α] = e) · value[α] ·
(

1
te

te∑
i=1

E [Yαi | Lα, e]
)

(here, αi’s are child-nodes of α)

=
∑

e

1
te

te∑
i=1

E [Yαi | Lα, e]

(as by definition, value[α] = Pr (label[α] = e)−1)

Note that each αi has exactly one child-node, denoted by βi. As such,

E [Yα | Lα] =
∑

e

1
te

te∑
i=1

E [Yαi | Lα, e]

=
∑

e

1
te

te∑
i=1

∑
w

Pr (label[αi] = w) · value[αi] · E [Yβi | Lα, e, w]

=
∑

e

1
te

te∑
i=1

∑
w

E [Yβi | Lβi ]

(by definition value[αi] = Pr (label[αi] = w)−1 and Lβi = Lα, (e, w))

=
∑

e

1
te

te∑
i=1

∑
w

(#H | Lβi) =
∑

e

1
te

te∑
i=1

∑
w

(#H | Lα, (e, w))

(by induction hypothesis for odd-layer nodes βi’s)

=
∑

e

∑
w

(#H | Lα, (e, w)) = (#H | Lα).

This concludes the proof of induction hypothesis in this case.
Case of ` > 2o. In this case, the sub-tree Tα in the next two levels is a star-sampler tree.

By the same analogy made in the proof of the previous part and Lemma 8, the proof of
this part also follows directly from the proof of Lemma 10 for star-sampler trees.

We can now finalize the proof of Lemma 12, by noting that for the root αr of T , Lαr is
the empty-set and hence, E [Y ] = E [Yαr | Lαr ], which by induction is equal to (#H). J
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6:14 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

I Lemma 13. For Y in subgraph-sampler(G,H), Var [Y ] = O(mρ(H)) · E [Y ].

Proof. We bound Var [Y ] using a similar inductive proof as in Lemma 12. Recall the
parameters ρC1 , . . . , ρCo and ρS1 , . . . , ρSs associated respectively with the cycles C1, . . . , Co and
stars S1, . . . ,Ss of the decomposition D(H). For simplicity of notation, for any i ∈ [o+ s],
we define ρi+ as follows:

for all i ≤ o, ρi+ :=
o∑
j=i

ρCj +
s∑
j=1

ρSj , for all o < i ≤ o+ s, ρi+ :=
s∑

j=i−o
ρSj .

We inductively show that, for any node α in an odd layer 2`− 1 of T ,

Var [Yα | Lα] ≤ 22z−2` ·mρ`+ · (#H | Lα),

where (#H | Lα) denotes the number of copies of H in G that contain the vertices and edges
specified by Lα (according to the decomposition D(H)).

The induction is from the leaf-nodes of the tree to the root. The base case of the induction,
i.e., for vertices in the last odd layer of T follows exactly as in the proofs of Lemmas 8 and 10
(as will also become evident shortly) and hence we do not repeat it here. We now prove the
induction hypothesis. Fix a vertex α in an odd layer 2`− 1. We consider two cases based
on whether ` ≤ o (hence α is root of a cycle-sampler tree) or ` > o (hence α is root of a
star-sampler tree).
Case of ` ≤ o. In this case, the sub-tree Tα in the next two levels is a cycle-sampler tree

corresponding to the odd cycle C` of D(H). Let the number of edges in C` be (2k + 1)
(i.e., C` = C2k+1) Let e denote the label of the α. By the law of total variance in Eq. (1)

Var [Yα | Lα] = E [Var [Yα | e] | Lα] + Var [E [Yα | e] | Lα] . (7)

We start by bounding the second term in Eq. (7) which is easier. By the inductive proof
of Lemma 12, we also have, E [Yα | Lα, e] = (#H | Lα, e). As such,

Var [E [Yα | e] | Lα] = Var [(#H | Lα, e) | Lα] ≤ E
[
(#H | Lα, e)2 | Lα

]
=
∑

e

Pr (label[α] = e) · (#H | Lα, e)2 = 1
mk

∑
e

(#H | Lα, e)2

(Pr (label[α] = e) = 1/mk by definition of odd-cycle-sampler)

≤ 1
mk

(∑
e

(#H | Lα, e)
)2

= 1
mk

(#H | Lα)2

≤ mρ`+ · (#H | Lα). (8)

The reason behind the last equality is that (#H | Lα) is at most equal to the number of
copies of the subgraph of H consisting of C`, . . . , Co,S1, . . . ,Ss, which by Lemma 5 is at
most mρ`+ by definition of ρ`+. We now bound the first and the main term in Eq. (7),

E [Var [Yα | e] | Lα] =
∑

e

Pr (label[α] = e) · Var [Yα | e,Lα]

=
∑

e

1
mk
·m2k · 1

t2e
·
te∑
i=1

Var [Yαi | e,Lα] ,

(here αi’s are child-nodes of α)
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where the final equality holds because Yαi ’s are independent conditioned on e,Lα and
since Yα is by definition mk times the average of Yαi ’s. Moreover, note that distribution
of all Yαi ’s are the same. Hence, by canceling the terms,

E [Var [Yα | e] | Lα] = mk ·
∑

e

1
te
· Var [Yα1 | e,Lα] , (9)

We thus only need to bound Var [Yα1 | e,Lα]. Recall that α1 corresponds to a leaf-node
in a cycle-sampler tree and hence its label is a vertex w from the neighborhood of u∗e
as defined in odd-cycle-sampler. We again use the law of total variance in Eq. (1) to
obtain,

Var [Yα1 | e,Lα] = E [Var [Yα1 | w] | e,Lα] + Var [E [Yα1 | w] | e,Lα] (10)

For the first term,

E [Var [Yα1 | w] | e,Lα] =
∑

w∈N(u∗e)

Pr (label[α1] = w) · Var [Yα1 | w, e,Lα]

=
∑
w

1
d∗e
· (d∗e)2 · Var [Yβ1 | w, e,Lα] ,

where β1 is the unique child-node of α1 and so Yα1 = value[α1] · Yβ1 , while conditioned
on e, value[α1] = d∗e. Moreover, as Lβ1 = (Lα, e, w), and by canceling the terms,

E [Var [Yα1 | w] | e,Lα] =
∑
w

d∗e · Var [Yβ1 | Lβ1 ]

≤
∑
w

d∗e · 22z−2`−2 ·mρ(`+1)+ · (#H | Lβ1), (11)

where the inequality is by induction hypothesis for the odd-level node β1. We now bound
the second term in Eq. (10) as follows,

Var [E [Yα1 | w] | e,Lα] ≤ E
[(

E [Yα1 | w]
)2
| e,Lα

]
=
∑
w

Pr (label[α1] = w) ·
(
E [Yα1 | w, e,Lα]

)2

=
∑
w

1
d∗e
· (d∗e)2 ·

(
E [Yβ1 | w, e,Lα]

)2

=
∑
w

d∗e ·
(
E [Yβ1 | Lβ1 ]

)2
=
∑
w

d∗e · (#H | Lβ1)2

≤
∑
w

d∗e ·mρ(`+1)+ · (#H | Lβ1). (12)

Here, the second to last equality holds by the inductive proof of Lemma 12, and the
last equality is because (#H | Lβ1) ≤ mρ(`+1)+ by Lemma 5, as (#H | Lβ1) is at most
equal to the total number of copies of a subgraph of H on C`+1, . . . , Co,S1, . . . ,Ss (and
by definition of ρ(`+1)+). We now plug in Eq. (11) and Eq. (12) in Eq. (10),

Var [Yα1 |e,Lα] ≤
∑
w

d∗e ·
(
22z−2`−2 ·mρ(`+1)+ · (#H | Lβ1) +mρ(`+1)+ · (#H | Lβ1)

)
.
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We now in turn plug this in Eq. (9),

E [Var [Yα | e] | Lα]

≤ mk
∑

e

1
te

∑
w

d∗e ·
(
22z−2`−2 ·mρ(`+1)+ · (#H | Lβ1) +mρ(`+1)+ · (#H | Lβ1)

)
≤ mk

√
m ·

∑
e

∑
w

22z−2`−1 ·mρ(`+1)+ · (#H | Lβ1) (as te ≥ d∗e/
√
m)

≤ 22z−2`−1 ·mρ`+ ·
∑

e

∑
w

(#H | Lβ1)

(as ρC` = k + 1/2 and ρ`+ = ρC` + ρ(`+1)+ by definition)
= 22z−2`−1 ·mρ`+ · (#H | Lα). (as Lβ1 = (Lα, e, w))

Finally, by plugging in this and Eq. (8) in Eq. (7),

Var [Yα | Lα] = 22z−2`−1 ·mρ`+ · (#H | Lα) +mρ`+ · (#H | Lα)
≤ 22z−2` ·mρ`+ · (#H | Lα),

finalizing the proof of induction step in this case. We again remark that this proof closely
followed the proof for the variance of the estimator for cycle-sampler tree in Lemma 8.

Case of ` > o. In this case, the sub-tree Tα in the next two levels is a star-sampler tree. By
the same analogy made in the proof of the previous case and Lemma 8, the proof of this
part also follows the proof of Lemma 10 for star-sampler trees. We hence omit the details.

To conclude, we have that Var [Y ] = Var [Yαr | Lαr ] = O(mρ(H))·(#H) = O(mρ(H))·E [Y ]
as Y = Yαr for the root αr of T , Lαr = ∅, (#H) = E [Y ] by Lemma 12, and z = O(1). J

4.2 An Algorithm for Estimating Occurrences of Arbitrary Subgraphs
We now use our estimator algorithm from the previous section to design our algorithm for
estimating the occurrences of an arbitrary subgraph H in G. In the following theorem, we
assume that the algorithm has knowledge of m and also a lower bound on the value of #H;
these assumptions can be lifted easily as we describe afterwards.

I Theorem 14. There exists a sublinear time algorithm that uses degree, neighbor, pair, and
edge sample queries and given a precision parameter ε ∈ (0, 1), an explicit access to a constant-
size graph H(VH , EH), a query access to the input graph G(V,E), the number of edges m in
G, and a lower bound h ≤ #H, with high probability outputs a (1± ε)-approximation to #H
using O

(
min

{
m, m

ρ(H)

h · logn
ε2

})
queries and O

(
mρ(H)

h · logn
ε2

)
time, in the worst-case.

Proof. Fix a sufficiently large constant c > 0. We run subgraph-sampler(G,H) for k :=
c·mρ(H)

ε2·h time independently in parallel to obtain estimates Y1, . . . , Yk and let Z := 1
k

∑k
i=1 Yi.

By Lemma 12, E [Z] = (#H). Since Yi’s are independent, we also have

Var [Z] = 1
k2

k∑
i=1

Var [Yi] ≤
1
k
·O(mρ(H)) · E [Z] ≤ ε2

10 · E [Z]2 ,

by Lemma 13, and by choosing the constant c sufficiently larger than the constant in the
O-notation of this lemma, together with the fact that h ≤ (#H) = E [Z]. By Chebyshev’s
inequality (Proposition 2), Pr (|Z − E [Z]| ≥ ε · E [Z]) ≤ Var[Z]

ε2·E[Z]2 ≤ 1
10 , by the bound above

on the variance. This means that with probability 0.9, this algorithm outputs a (1 ± ε)-
approximation of #H. Moreover, the expected query complexity and running time of this
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algorithm is O(k) by Lemma 11, which is O(m
ρ(H)

ε2 ) (if k ≥ m, we simply query all edges of
the graph and solve the problem using an offline enumeration algorithm). To extend this
result to a high probability bound and also making the guarantee of query complexity and
run-time in the worst-case, we simply run this algorithm O(logn) times in parallel and stop
each execution that uses more than 10 times queries than the expectation. J

The algorithm in Theorem 14 assumes the knowledge of h which is a lower bound on
(#H). However, this assumption can be easily removed by making a geometric search on
h starting from mρ(H)/2 which is (approximately) the largest value for (#H) all the way
down to 1 in factors of 2, and stopping the search once the estimates returned for a guess of
h became consistent with h itself. This only increases the query complexity and runtime of
the algorithm by polylog(n) factors. As this part is quite standard, we omit the details and
instead refer the interested reader to [16, 18]. This concludes the proof of our main result in
Theorem 1 from the introduction.

4.3 Extension to the Database Join Size Estimation Problem

The database join size estimation for binary relations can be modeled by the subgraph
estimation problem where the subgraph H and the underlying graph G are additionally
edge-colored and we are only interested in counting the copies of H in G with matching colors
on the edges. In this abstraction, the edges of the graph G correspond to the entries of the
database, and the color of edges determine the relation of the entry.

We formalize this variant of the subgraph counting problem in the following. In the
colorful subgraph estimation problem, we are given a subgraph H(VH , EH) with a coloring
function cH : EH → N and query access to a graph G(V,E) along with a coloring function
cG : E → N. The set of allowed queries to G contains the degree queries, pair queries,
neighbor queries, and edge-sample queries as before, with a simple change that whenever we
query an edge (through the last three types of queries), the color of the edge according to cG
is also revealed to the algorithm. Our goal is to estimate the number of copies of H in G
with matching colors, i.e., the colorful copies of H.

It is immediate to verify that our algorithm in this section can be directly applied to the
colorful subgraph estimation problem with the only difference that when testing whether a
subgraph forms a copy of H in G, we in fact check whether this subgraph forms a colorful
copy of H in G instead. The analysis of this new algorithm is exactly as in the case of
the original algorithm with the only difference that we switch the parameter #H to #Hc

that only counts the number of copies of H with the same colors in G. To summarize, we
obtain an algorithm with O∗(m

ρ(H)

#Hc ) query and time complexity for the colorful subgraph
counting problem, which can in turn solves the database join size estimation problem for
binary relations.

5 Lower Bounds

We present two lower bounds that demonstrate the optimality of Theorem 1 in different
scenarios. Our first lower bound establishes tight bounds for counting odd cycles.

I Theorem 15. For any k ≥ 1, any algorithm A that can output any multiplicative-
approximation to the number of copies of the odd cycle C2k+1 in a given graph G(V,E) with
probability at least 2/3 requires Ω( mk+ 1

2
#C2k+1

) queries to G.
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Theorem 15 implies that in addition to cliques (that were previously proved [19]; see
also [16, 18]), our algorithm in Theorem 1 also achieve optimal bounds for odd cycles.

Our next lower bound targets the more general problem of database join size estimation
for which we argued that our Theorem 1 continues to hold. We show that for this more
general problem, our algorithm in Theorem 1 is in fact optimal for all choices of subgraph H.

I Theorem 16. For any subgraph H(VH , EH) which contains at least one edge, suppose
A is an algorithm for the colorful subgraph estimation problem that given H, a coloring
cH : EH → N, and query access to G(V,E) with m edges and coloring function cG : E → N,
can output a multiplicative-approximation to the number of colorful copies of H in G with
probability at least 2/3. Then, A requires Ω(m

ρ(H)

#Hc ) queries, where #Hc is the number of
colorful copies of H in G. The lower bound continues to hold even if the number of colors
used by cH and cG is at most two.

The proofs of Theorems 15 and 16 are postponed to the full version of the paper [4].
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We study tensor networks as a model of arithmetic computation for evaluating multilinear maps.
These capture any algorithm based on low border rank tensor decompositions, such as O(nω+ε)
time matrix multiplication, and in addition many other algorithms such as O(n logn) time dis-
crete Fourier transform and O∗(2n) time for computing the permanent of a matrix. However
tensor networks sometimes yield faster algorithms than those that follow from low-rank decom-
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be implemented with tensor networks, even though the underlying tensor has border rank n3t

for all t ≥ 2. For counting homomorphisms of a general pattern graph P into a host graph on
n vertices we obtain an upper bound of O(n(ω+ε) bw(P )/2) where bw(P ) is the branchwidth of
P . This essentially matches the bound for counting cliques, and yields small improvements over
previous algorithms for many choices of P .

While powerful, the model still has limitations, and we are able to show a number of uncon-
ditional lower bounds for various multilinear maps, including:
(a) an Ω(nbw(P )) time lower bound for counting homomorphisms from P to an n-vertex graph,

matching the upper bound if ω = 2. In particular for P a v-clique this yields an Ω(nd2v/3e)
time lower bound for counting v-cliques, and for P a k-uniform v-hyperclique we obtain an
Ω(nv) time lower bound for k ≥ 3, ruling out tensor networks as an approach to obtaining
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7:2 Tensor Network Complexity of Multilinear Maps

1 Introduction

One of the cornerstones of the theory of computation is the study of efficient algorithms:

For a function f , how much time is required to evaluate f on given inputs?

Answering this question for almost any specific f is well beyond reach of contemporary tools.
For example, it is theoretically possible that canonical NP-complete problems, such as the
Circuit Satisfiability problem, can be solved in linear time whereas they are widely believed to
require super-polynomial (or somewhat less widely, exponential) time [34, 35, 36]. The main
reason for this barrier to quantitative understanding is that it is very hard to prove lower
bounds for explicit functions in general models of computation such as circuits or Turing
machines. This situation withstanding, a more modest program to advance our understanding
of computation is to study restricted models that for many f are simultaneously
(i) general enough to capture the fastest-known algorithms for f , and
(ii) restricted enough to admit proofs of strong unconditional time lower bounds for f .

There is a substantial body of work that fits under this program, ranging from the study of
low-depth or otherwise restricted circuits (see e.g. [7], Ch. 14) to models of algorithm-design
principles such as greedy algorithms, backtracking, or dynamic programming [3, 27], to linear
or semidefinite programming relaxations for hard optimization problems [51].

Multilinear maps. One class of functions f that are of substantial importance is the family
of `-linear maps (multilinear maps) from ` input vector spaces to an output vector space.1
Examples range from maps of known near-linear-time complexity in the input size, such as
the discrete Fourier transform [24, 72], to maps without known polynomial-time-complexity
algorithms, such as the permanent of a matrix [64, 70]. Beyond motivation in numerical
multilinear algebra and its applications, recent advances in the study of fine-grained algorithm
design and complexity have highlighted the fundamental role of algebraic methods in the
fastest-known algorithm designs across a broad range of tasks from graph problems, such as
all-pairs shortest paths and k-clique, to parsing and constraint satisfaction problems, such as
maximum satisfiability and graph coloring [2, 11, 13, 30, 37, 54, 75, 76].

In this paper, we study the arithmetic complexity of evaluating a multilinear map, that
is, the number of operations (scalar additions, subtractions, and multiplications) needed
to evaluate the map. To set up a baseline, a generic `-linear map from ` vector spaces of
dimension n to a scalar requires Ω(n`) scalars to represent the map directly using combinations
of basis vectors. Given this complexity of a direct explicit representation, it is a fundamental
problem to seek less costly representations, along with associated efficient algorithms that
work on the chosen representation.

We propose the systematic study of tensor networks on hypergraphs as a framework for
fast evaluation of multilinear maps, and show a number of upper and lower bounds on the
computational power of tensor networks in the spirit of (i) and (ii) above.

Tensor networks. Tensor networks have a long and rich history which can be traced as
far back as 19th-century studies in invariant theory due to Cayley [20, 21], Clebsch [22],
Clifford [23], Sylvester [69], and Kempe [40, 41]. Tensor networks are extensively deployed in
applications from pure mathematics and theoretical physics [39, 47, 48, 49, 57, 58, 61, 65] to
computational physics and chemistry [56, 59, 67]. In theoretical computer science, they appear
in various guises including, for example, in the Holant framework [71, 18, 17], in the study of

1 Multilinear maps with ` = 1 are called linear, ` = 2 bilinear, ` = 3 trilinear, and so forth.
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probabilistic graphical models [45, 62], in the study of parallel programming [66], in the study
of quantum computing [6], and in the study of arithmetic complexity [8, 19, 26]. Tensor
contraction is also emerging as a basic computational primitive in computer hardware [31, 53].
(We refer to the full version of this paper a more detailed discussion.) As the precise definitions
are somewhat technical, let us start with a few simple motivating examples and then state
our results, with the understanding that precise definitions appear in Section 3.

In our setting, a tensor network is a hypergraph in which the vertices are tensors and the
hyperedges are called modes. Each mode that is incident to a tensor defines a “dimension”
for indexing the entries of the tensor – for example, a matrix is a tensor that is incident to
two modes, one mode for the rows of the matrix, and the other mode for the columns of the
matrix. A network may be simplified by a sequence of contractions, where each contraction
takes a subset of tensors and replaces it with a single tensor whose entries are obtained as
generalized inner products of the entries of the tensors being contracted.

As a first example of these concepts, let us consider the task of multiplying two matrices,
A and B. More specifically, let A be a matrix with rows indexed by mode i and columns
indexed by mode k, and let B be a matrix with rows indexed by mode k and columns indexed
by mode j. We may represent the multiplication task as the tensor network depicted on
the left in (1). The result of contracting A and B is a new matrix with rows indexed by i
and columns indexed by j, where the entry at each position (i, j) is

∑
k AikBkj . If the three

index sets all have size n, then computing A ·B by contracting them in such a direct manner
uses Θ(n3) operations. To obtain faster matrix multiplication, we can rewrite the bare-bones
network on the left in (1) using a low-rank decomposition of the matrix multiplication tensor.
For example, Strassen’s decomposition [68] of 2× 2 matrix multiplication can be represented
using the second network in (1). Note that the index i used by A and the result has been
separated into two distinct indices i and i′, and similarly for j and k.

A

B

i

k

j

α β

γ

A B

i′ k k′ j′

i j

ℓ

α =
k

1 0 1 0 1 -1 0
0 0 0 0 1 0 1

k
0 1 0 0 0 1 0
1 1 0 1 0 0 -1

i′

ℓ

γ =
j1 0 0 1 -1 0 1

0 0 1 0 1 0 0

j0 1 0 1 0 0 0
1 -1 1 0 0 1 0

i

ℓ

β =
j′1 1 0 -1 0 1 0

0 0 1 0 0 1 0

j′0 0 0 1 0 0 1
1 0 -1 0 1 0 1

k′

ℓ

(1)

We can execute the network by succesively contracting groups of vertices. In (2) we see
the process of successively contracting pairs of tensors in a carefully chosen order, until only
a single tensor – the result of the computation – remains. Such an execution can be naturally
represented by a rooted binary tree, as shown on the right in (2), where the tensors of the
network form the leaves, and each internal node represents the result of contracting its two
children. To summarize, a tensor-network algorithm is specified by providing (a) a tensor
network that when contracted yields the desired result, and (b) an execution tree indicating
the order in which to contract tensors in the network.

α β

γ

A B

i′ k k′ j′

i j

ℓ

β

γ

B

k′ j′

i j

ℓ

γ

i j

ℓ

γ

i j

ℓ

A ·B
i j

(2)
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The cost of performing one of the contractions in an execution is the product of the
lengths of the modes used by any tensor involved in the contraction. This simply measures
(up to a constant factor) the number of arithmetic operations (additions/multiplications)
used to compute the result by a direct, naïve computation that does not depend on the
values of the tensors. For example, the contraction of α and A in the first step of (2) has
cost 28 because it involves the three modes i′ (length 2), k (length 2) and ` (length 7).

We observe that cost is data-oblivious – the tensor α is fixed with many zero-entries but
these entries still contribute to the cost. Indeed, in many cases there may be faster ways
of evaluating a contraction than to evaluate it naively, and just like we saw above, this can
often be dealt with by rewriting the network appropriately. For instance, consider now the
multiplication of two 2k × 2k matrices. Because the family of matrix multiplication tensors
is closed under Kronecker products, this operation may be computed by a tensor network
like the one shown in (3) (depicting the case k = 5), where α, β and γ are as in (2). The
rows/columns of the matrices are now indexed by k-tuples of bits. The execution of this
network contracts one α/β/γ tensor at a time, which lets us keep the cost low. For example,
the first contraction of A with the first α block has a cost of 2k · 2k · 7, and results in a tensor
of size 2k−1 × 2k−1 × 7, then the next contraction has a cost of 2k−1 · 2k−1 · 72 and produces
a result of size 2k−2 × 2k−2 × 7× 7, and so on, until the contraction with the last α block
which has a cost of 2 · 2 · 7k = O(7k), and all the contractions in the execution have cost
bounded by this, meaning that we get a total running time of O(k7k) = O(N log2 7 logN) for
N ×N matrices.2

α β

γ

α β

γ

α β

γ

α β

γ

α β

γ

A B

i′1 k1 k′
1 j′1

i1 j1

ℓ1

i′2 k2 k′
2 j′2

i2 j2

ℓ2

i′3 k3 k′
3 j′3

i3 j3

ℓ3

i′4 k4 k′
4 j′4

i4 j4

ℓ4

i′5 k5 k′
5 j′5

i5 j5

ℓ5

(3)

This type of argument can capture any algorithm based on a low-rank decomposition of
the underlying tensor of the multilinear map, and indeed, this enables O(nω)-time3 matrix
multiplication using tensor networks. Beyond simple low-rank decompositions, which always
give rise to “star-like” networks as in (3), there are many interesting algorithms that can
be captured using networks with a more complicated topology. For instance, many maps
of substantial importance have a layered structure that decomposes the map to a sequence
of elementary maps. A canonical example is the discrete Fourier transform (DFT), which
for a smooth composite order such as 2k, can be decomposed into a fast Fourier transform
(FFT) that consists of a sequence of k transforms of order 2 interleaved with diagonal-matrix
multiplications of twiddle factors [24, 72].

2 In fact, a more careful analysis gives running time O(N log2 7).
3 Throughout the paper, ω = ω(F) denotes the infimum over all e such that the arithmetic complexity

of multiplying two n× n matrices is O(ne). While the value of ω may depend on the underlying field
F, we tacitly ignore this, since the field is fixed throughout the paper. For all fields it is known that
2 ≤ ω < 2.3728639 [50, 73].
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1.1 Our results
Starting with motivation (i) and seeking to express existing fastest-known algorithms as
executions of tensor networks by a sequence of contractions, we show upper bounds for a
number of natural problems. Beyond standard linear settings such as the FFT, not only do
tensor networks realize classical bilinear settings such as Abelian group algebra products and
fast matrix multiplication algorithms based on low tensor rank, they are powerful enough to
capture a substantial number of higher-linearity applications, including Ryser’s algorithm
for matrix permanent [64], and the Kruskal operator [43, 46], which underlies realization of
rank-decompositions for tensor rank [44] and current fastest algorithms for detecting outlier
correlations [38].

One problem for which tensor networks turn out to be particularly useful is counting
homomorphisms from a fixed pattern graph P to a large host graph G on n vertices. The
most well-studied such problem is when P is a k-clique. For this problem, the currently fastest
algorithm runs in time roughly O(nωk/3) (with variations in the exponent depending on
k mod 3) [54, 30]. For general P , it is known that the problem can be solved in O(ntw(P )+1)
time [28], where tw(P ) is the treewidth of P . We show that tensor networks can solve the
problem in O(n(ω+ε) bw(P )/2) time, where bw(P ) is the branchwidth of P . For P a k-clique
we have bw(P ) = d2k/3e so this almost recovers the O(nωk/3) running time, and in this
case we can slightly improve the running time to recover the O(nωbk/3c+(k mod 3)) time of
Nešetřil and Poljak [54]. In the case of general P , this improves on the treewidth-based
bound for graphs with bw(P ) ≤ 2(tw(P ) + 1)/ω (and in particular if ω = 2 it is always
as fast as the treewidth-based bound, ignoring the ε). By recent results of Curticapean,
Dell, and Marx [25], fast algorithms for homomorphism-counting can be used to obtain
fast algorithms for counting subgraphs of G isomorphic to P , and in some cases our new
branchwidth-based bound leads to an improvement; for example, for counting paths of lengths
of length 7, 8 or 9, we get a running time of O(n3ω/2+ε) < O(n3.56) compared to O(n4) using
the treewidth-based bound, whereas for very long paths it is not clear whether we would
need ω = 2 in order for these bound to improve on the treewidth-based bound. Previous
work that combines branch decompositions and fast matrix multiplication includes Dorn [29]
and Bodlaender et al. [15].

Further applications captured by tensor networks are the set covering and set partitioning
frameworks via fast zeta and Möbius transforms that underlie the current fastest algorithms
for graph coloring [13] and its generalizations such as computing the Tutte polynomial [10, 11].
To summarize, we have the following compendium theorem of upper bound results.

I Theorem 1.1. We have the following upper bounds on arithmetic complexity via tensor
networks:
1. O(nω+ε) for the matrix multiplication map of two n× n matrices.
2. O(n(ω+ε)bv/3c+(v mod 3)) for counting v-cliques in an n-vertex graph.
3. O(n(ω+ε) bw(P )/2) for counting homomorphisms of a fixed pattern (hyper)graph P into a

(hyper)graph on n vertices.
4. O(max(nd`/2e(ω+ε−1)r, n2d`/2erω+ε−2)) for the Kruskal operator of ` matrices of shape

n× r.
5. O(2kk) for the discrete Fourier transforms for the Abelian groups Z2k and Zk2 .
6. O(2kk) for group algebra products on F[Z2k ] and F[Zk2 ] when 2 is unit in F.
7. O(2kk) for the semigroup algebra product on F[({0, 1}k,⊆,∩,∪)].
8. O(2nn) for the permanent of an n× n matrix.
Above ε > 0 is an arbitrary constant.
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Perhaps the most interesting application above is the v-clique problem, which suggests
that one should seek to pursue generalizations to v-vertex hypercliques of

(
v
k

)
hyperedges

with v > k ≥ 3. Indeed, subgraph counting is a problem that has received substantial
interest over the years (e.g. [37, 54, 5, 4, 30, 12, 14, 77, 74, 33, 32, 55, 42, 25]), but progress
in the particular case of v-clique has been stuck to the extent that the problem has attracted
notoriety as a hardness assumption in fine-grained complexity [1, 2]. Beyond the study of
cliques, hypercliques, and subgraph counting, nontrivial algorithms for such forms would
have immediate applicability, for example, in the study of maximum constraint satisfaction
problems (Max-CSP) for constraints of width k ≥ 3; cf. Williams [75] for the case k = 2.
One of the main goals of our subsequent lower bounds is to rule out tensor networks as a
candidate to yield improved algorithms in this setting.

Turning from upper bounds to lower bounds and motivation (ii), tensor networks are
restricted enough to enable nontrivial lower bounds for many multilinear maps. To begin with,
an immediate limitation of tensor networks is that all the intermediate results during the
execution of a network are multilinear, and the execution of a network can be simulated by a
multilinear circuit. Raz [60] shows that multilinear formulas cannot compute the determinant
of an n× n matrix in a polynomial number of operations in n, even though polynomial-size
general circuits are known for the determinant (cf. [9, 16, 63]).

It turns out that considerably stronger lower bounds can be shown for tensor networks.
In particular, we establish essentially tight lower bounds (subject to the assumption ω = 2)
for arithmetic complexity via tensor networks of P -homomorphism counting and the Kruskal
operator. Furthermore, we rule out the possibility of any nontrivial algorithm designs via
tensor networks for counting cliques in hypergraphs. The following theorem collects our main
lower-bound results, and should be contrasted with the upper bounds in Theorem 1.1.

I Theorem 1.2. We have the following lower bounds on arithmetic complexity via tensor
networks:
1. Ω(nbw(P )) for the multilinear form corresponding to P -homomorphism counting. In

particular, this yields a lower bound of Ω(nd2v/3e) for counting cliques of size v, and a
lower bound of Ω(nv) for counting hypercliques of size v.

2. Ω(max(n`, ndl/2er)) for the Kruskal operator of ` matrices of shape n× r.
3. Ω(

(
n
n/3
)
) for the determinant or permanent of an n× n matrix.

We remark that [52] independently showed that the border rank of the v-hyperclique
tensor is Ω(nv); our Ω(nv) lower bound for tensor networks strengthens that. One may
wonder about the gap between the bounds of Ω(

(
n
n/3
)
) and O(2nn) for the permanent. As

we explain below, our lower bound methods are inherently rank-based and cannot go beyond(
n
n/3
)
. A curious point is that it is not immediately clear whether tensor networks can even

achieve O∗(2n) time for the determinant, and we do not know whether or not this is possible.

1.2 Overview of proof ideas
As a running example in this overview, we consider the 6-linear forms A : F[n]×[n]×F[n]×[n]×
. . .× F[n]×[n] → F taking as input 6 matrices of size n× n, defined by

A(X(1), X(2), X(3), X(4), X(5), X(6)) =
∑

i,j,k,`∈[n]

X
(1)
ij X

(2)
ik X

(3)
i` X

(4)
jk X

(5)
j` X

(6)
k` . (4)

If χ is the adjacency matrix of a loopless graph G, then A(χ, χ, χ, χ, χ, χ) counts the number
of 4-cliques in the graph. Associated with A is the 6-tensor T (A) of size n2 × n2 × · · · × n2,
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where each of the 6 modes is indexed by a pair (i, j) ∈ [n] × [n], and the value at a given
position is the coefficient of the corresponding term in A. Concretely,

T (A)i1j1,i2k2,i3`3,j4k4,j5`5,k6`6 =

{
1 if i1 = i2 = i3, j1 = j4 = j5, k2 = k4 = k6 ∧ `3 = `5 = `6,

0 otherwise.

Upper bounds. Most, but not all, of the families of multilinear maps we consider are closed
under taking Kronecker products. For instance, consider the 4-clique counting form (4) for
an n-vertex graph and its associated tensor T (A). Then for any k ≥ 1, the tensor associated
with the 4-clique counting form in nk-vertex graphs is T (A)⊗k, the k-fold Kronecker product
of T (A) with itself. We write A⊗k for the associated map. With this in mind, it is natural
to seek general constructions that, given an efficient evaluation of some map A, yields an
efficient evaluation of A⊗k.

We give such a construction, and show that the cost of the best tensor network execution
for A⊗k is essentially submultiplicative in a quantity that we call the amortized cost of an
execution. For tensors of order at most 3, the notion of amortized cost essentially captures
the rank of T (A), but for higher-order tensors, the amortized cost may be significantly smaller
than the rank. Roughly speaking, the amortized cost of a step in an execution of a map A
is: (i) equal to the normal cost if the operation involves the contraction of two tensors that
both depend on some input variables of A, but (ii) equal to the size of the result if only one
of the tensors involved in the contraction depends on the input variables of A. A precise
definition appears in Section 4. Our general upper bound for the cost of A⊗k can, somewhat
informally, be stated as follows.

I Theorem 1.3 (Submultiplicativity of cost, informal statement). If a multilinear map A has
a tensor network execution consisting of s steps, each with cost at most c and amortized cost
at most a, then A⊗k has a tensor network execution consisting of at most k · s steps, each
with cost at most ak−1 · c.

An immediate corollary of this is that we can capture any algorithm for A⊗k based on
a low-rank decomposition of T (A) (Corollary 4.2). For example, this implies that tensor
networks can multiply n× n matrices in O(nω+ε) time.

However, returning to our running example form (4), as we explain below the tensor
T (A) has rank n4, meaning that Corollary 4.2 only yields a trivial upper bound. This is
where the full generality of Theorem 1.3 comes in. Consider the form (4) for graphs on some
constant number n0 of vertices. As it turns out, we can design a network and an associated
execution for this form, depicted in (5) and explained in more detail in the full version of
this paper, with an execution of cost n2e+3

0 and amortized cost ne+1
0 , where ne0 is the rank of

the tensor associated with n0 × n0 matrix multiplication. Picking n0 to be a large enough
constant so that e is approximately ω, and letting k be such that n is approximately nk0 , we
obtain via Theorem 1.3 an O(nω+ε+1) time upper bound for (4).

X(1) X(3) X(2) X(6) X(4) X(5)

i1 j1 i3 ℓ3 i2 k2 k6 ℓ6 j4 k4 j5 ℓ5

(5)
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7:8 Tensor Network Complexity of Multilinear Maps

Lower bounds. Just like many other arithmetic complexity lower bounds, our lower bounds
boil down to establishing lower bounds on the rank of certain matrices.

To establish a lower bound on the rank of T (A), we flatten it to a matrix and analyze
the rank of that matrix. There are 25 possible bipartitions of the set of 6 modes of T (A),
and the lower bound on the rank of T (A) that we obtain is the maximum of the ranks of the
resulting matrices. Using this method it is easy to establish that for our example form (4),
the rank of T (A) = n4. That this is an upper bound follows from (4), and that it is a lower
bound follows by considering the bipartition taking variables X(1) and X(6) as row indices,
and the other 4 variables as column indices. The resulting n4 × n8 matrix has full rank.

Tensor networks are more versatile and can be more efficient than low-rank decompositions
of T (A). Nevertheless, we show limitations on this versatility. In particular we show that
every tensor network execution for A induces a tree in which the leaves are the inputs of
A and all internal vertices have degree 3. We call this a socket tree. Each edge in a socket
tree induces a bipartition of the variables and our key technical lemma is to show that for
each such bipartition, the rank of the corresponding flattening of T (A) is a lower bound on
the cost of the execution that gave rise to the tree. Thus, to obtain a lower bound for the
cost of a specific execution, we consider the maximum rank obtained over all edges of the
corresponding socket tree, and to lower bound the cost of every tensor network execution,
we minimize this quantity over all possible socket trees. We refer to the resulting quantity as
the socket width of A, denoted w(A) (formal definition appears in Section 5). Our general
lower bound can thus be phrased as follows, where c(A) denotes the minimum cost of a
tensor network for evaluating A (formal definition appears in Section 3).

I Theorem 1.4. For every multilinear map A, it holds that c(A) ≥ w(A).

Indeed, for our running example (4), there are low-width socket trees establishing that
w(A) ≤ n3, see (6). However, that bound is tight: our Ω(nd2·4/3e) = Ω(n3) lower bound for
the

(4
2
)
-linear form (Theorem 1.2) is obtained by proving that w(A) ≥ n3 and appealing to

Theorem 1.4.
i1, j1 i3, ℓ3 i2, k2 k6, ℓ6 j4, k4 j5, ℓ5

(6)

1.3 Organization of this paper

The present conference abstract contains only the key definitions and technical results
underlying our main theorems. All the upper and lower bounds for the arithmetic complexity
of specific multilinear maps together with their proofs can be found in the full version of this
paper. Section 2 recalls preliminaries on tensors and multilinear maps. In Section 3, tensor
networks, execution and cost of a tensor network, and cost of a multilinear map are defined.
Section 4 presents our main upper-bound result on submultiplicativity of cost. In Section 5,
a general lower bound on the cost of evaluating a multilinear map using tensor network is
obtained; this lower bound is expressed in terms of the socket-width of a multilinear map.
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2 Preliminaries on tensors and multilinear maps

This section sets up our notation for tensors and multilinear maps. Throughout the paper
[n] denotes {1, 2, . . . , n} and F denotes an arbitrary fixed field. We work with tensors and
multilinear maps relative to fixed bases for the respective vector spaces over F.

Modes, indexing, and positions. We will work with the following convention of positioning
individual entries inside a tensor. Let E be a finite set of modes. Associate with each mode
e ∈ E a finite nonempty index set J(e). In this case we say that E is a set of indexed
modes. The length of e is |J(e)|. A position is an element j ∈

∏
e∈E J(e). Let us write

J(E) =
∏
e∈E J(e) for the set of all positions with respect to the indexed modes E. In the

special case that the set of modes E is empty we define the set of positions J(E) to consist
of a single element.

Tensors, matrices, vectors, and scalars. Let E be a set of indexed modes. A tensor with
respect to E is a mapping T : J(E)→ F. Equivalently, we write T ∈ FJ(E) to indicate that
T is a tensor with respect to the indexed modes E. We view the set FJ(E) of all tensors
over E as a vector space over F with addition and scalar multiplication of tensors defined
entrywise. We say that |E| is the order of the tensor. A tensor of order zero is called a
scalar, a tensor of order one is called a vector, and a tensor of order two is called a matrix.
The volume of the tensor is |J(E)|. The tuple (|J(e)| : e ∈ E) is the shape of the tensor. It
is convenient to use the “×”-symbol to punctuate the shape of a tensor; that is, instead of
writing, say (2, 3, 4) for the shape, we write 2× 3× 4. For a position j ∈ J(E) and a tensor
T ∈ FJ(E), we say that Tj ∈ F is the entry of T at j.

A flattening of T induced by a bipartition E1 ∪E2 = E of the modes of T is a |J(E1)| ×
|J(E2)| matrix M where, for j1 ∈ J(E1) and j2 ∈ J(E2) we have Mj1,j2 = Tj1j2 . Given two
order ` tensors S ∈ F[n1]×[n2]×···×[n`] and T ∈ F[m1]×[m2]×···×[m`], their Kronecker product
S ⊗ T is a tensor in F[n1m1]×[n2m2]×···×[n`m`] defined by

(S ⊗ T )m1(i1−1)+j1,m2(i2−1)+j2,...,m`(i`−1)+j`
= Si1,i2,...,i`Tj1,j2,...,j`

.

Multilinear maps. Let E1, E2, . . . , E`, E
′ be pairwise disjoint sets of indexed modes such

that E1, E2, . . . , E` are nonempty. A map A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′) is an
`-linear map if A is linear with respect to each of its ` inputs individually. In particular, a
1-linear map is a linear map. A multilinear map that gives a scalar output is a multilinear
form. In particular, A is a form if and only if E′ is empty.

The tensors of a multilinear map. For an `-linear map A : FJ(E1)×FJ(E2)×· · ·×FJ(E`) →
FJ(E′) , we define two slightly different tensors T (A) and T̂ (A). Both are indexed by
J(E1 ∪ E2 ∪ . . . ∪ E` ∪ E′) and at position j1j2 . . . j`j

′ take the value

T (A)j1j2...j`j′ = T̂ (A)j1j2...j`j′ = A
(
e(j1), e(j2), . . . , e(j`))

j′
,

where e(ji) ∈ FJ(Ei) denotes the tensor with a 1 in position ji and 0s in all other position. The
difference between T (A) and T̂ (A) is their shape. The shape of T (A) is |J(E1)| × |J(E2)| ×
· · · × |J(E`)| × |J(E′)|, except if A is a form in which case the |J(E′)| part is omitted. Thus
T (A) is of order `+ 1 (or ` if A is a form). The shape of T̂ (A) is (|J(e)| : e ∈ Ei, i ∈ [`+ 1]),
thus its order is |E1|+ |E2|+ · · ·+ |E`|+ |E′|.
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7:10 Tensor Network Complexity of Multilinear Maps

In other words, each mode of T (A) corresponds to one of the inputs of A, or the output.
These inputs are in turn sets of indexed modes so may contain more “fine-grained” structure,
but this information is lost at the level of granularity of T (A). When working with tensor
networks for evaluating A, we need to keep track of the fine-grained mode structure because
this is in many cases what allows us to construct efficient algorithms, hence in most parts of
the paper we are more interested in the tensor T̂ (A) which contains this structure.

On the other hand, T̂ (A) does not contain information about which modes are grouped
together to form the inputs and output of A, and this information is also important. This
leads us to the notion of sockets, defined next.

Sockets. Let us study the tensor T̂ (A) with respect to the map A. We say that the modes
in E1 ∪E2 ∪ · · · ∪E` are the input modes of T̂ (A), and the modes in E′ are the output modes
of T̂ (A) with respect to A. Let us say that E1, . . . , E` are the input sockets of T̂ (A) with
respect to A. Similarly, E′ is the output socket in T̂ (A) with respect to A. In particular, the
output socket is empty if and only if A is a form. To describe a socketing of the modes of a
tensor, it is convenient to use parentheses to group a “×”-punctuated shape of a tensor into
sockets, see also Section 2.

Let T̂ be a tensor over a set of indexed modes E. Any tuple E = (E1, E2, . . . , E`, E
′)

of subsets of E that partitions E with E1, E2, . . . , E` nonempty defines an `-linear map
AE(T̂ ) : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′) with T̂ (AE(T̂ )) = T̂ . In this case the tuple
(E1, E2, . . . , E`) gives the input sockets of T and E′ is the output socket of T̂ with respect to
AE(T̂ ). We thus conclude that two multilinear maps A1, A2 may have the same base tensor
T̂ (A1) = T̂ (A2), and from a tensor T̂ one may obtain different multilinear maps by varying
how the modes of T̂ are assigned to input and output sockets.

The form of a multilinear map. Let A be a multilinear map with a nonempty output
socket. We can turn A into a multilinear form F (A) by turning its output socket into an
input socket. Let us say that F (A) is the multilinear form of A. We also set F (A) = A when
A is a multilinear form.

3 Tensor networks

This section defines tensor networks and the cost of a multilinear map.

Networks. A network (or diagram) consists of a finite set V of vertices, a finite set E
of hyperedges, an incidence relation I ⊆ V × E, and a boundary B ⊆ E. A network is
nondegenerate if every hyperedge is incident to at least one vertex. In what follows we assume
that all networks are nondegenerate. A hyperedge e ∈ E is a loop if e /∈ B and e is incident
to exactly one vertex.

For a vertex v ∈ V , let us write I(v) = {e ∈ E : (v, e) ∈ I} for the set of hyperedges
incident to v. Dually, for an hyperedge e ∈ E, let us write I(e) = {v ∈ V : (v, e) ∈ I} for the
set of vertices incident to e. For a network D, we write V (D), E(D), I(D), and B(D) to
refer to the vertices of D, the hyperedges of D, the incidence relation of D, and the boundary
of D, respectively.

Induced networks. For a network D and a nonempty subset W ⊆ V (D), the induced
network D[W ] consists of the vertices in W together with the hyperedges of D that are
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incident to at least one vertex in W ; the boundary of D[W ] consists of all hyperedges that
are at the boundary of D or incident to a vertex outside W . Formally,

V (D[W ]) = W ,

E(D[W ]) = {e ∈ E(D) : ∃w ∈W s.t. (w, e) ∈ I(D)} ,
I(D[W ]) = I(D) ∩ (V (D[W ])× E(D[W ])) ,
B(D[W ]) = (B(D) ∩ E(D[W ])) ∪ {e ∈ E(D[W ]) : ∃v ∈ V (D)\W s.t. (v, e) ∈ I(D)}.

(7)

For a vertex v ∈ V , we abbreviate D[v] = D[{v}]. Note that the boundary of D[v] consists
of all non-loop hyperedges incident to v in D.

Tensor networks. Let D be a network. We index D by associating with each hyperedge
e ∈ E an index set J(e) of size `(e). Induced networks inherit indexing by restriction. Next
we associate with each vertex v ∈ V a tensor T (v) ∈ FJ(I(v)). We say that D equipped with
the tensors (T (v))v∈V is a tensor network.

The value of a tensor network D, or the tensor represented by D, is a tensor T (D) ∈ FJ(B),
defined for all i ∈ J(B) by

T (D)i =
∑

j∈J(E(D)\B)

∏
v∈V

T (v)ij . (8)

Observe that in (8) the positions i and j together identify a unique entry of T (v) by projection
to J(I(v)). The value of a tensor network with an empty boundary is a scalar.

Contracting tensors. Let D be a tensor network and let W ⊆ V (D) be a nonempty set of
vertices. Let w be a new element not in V . We may contract W in D to obtain a tensor
network D/W by replacing the sub-network D[W ] in D with the single vertex w whose
associated tensor T (w) is the tensor represented by D[W ]. Formally,

V (D/W ) = (V (D) \W ) ∪ {w} ,
E(D/W ) = E(D) \ (E(D[W ]) \B(D[W ])) ,
I(D/W ) = (I(D) \ I(D[W ])) ∪ {(w, e) : e ∈ B(D[W ])} ,
B(D/W ) = B(D) ,

T (w) = T (D[W ]) .

(9)

The cost of contracting W in D is c(D,W ) =
∏
e∈E(D[W ]) |J(e)|. The value of a tensor

network is invariant under contraction, i.e., for all nonempty W ⊆ V (D) it holds that
T (D) = T (D/W ).

Execution and cost of a tensor network. To compute the tensor T (D) from a given tensor
network D, we may proceed by a sequence of contractions on D. Such a process is called
executing D, and the cost of D is the cost of a minimum-cost execution of D.

More precisely, letD = D0 be a tensor network with at least one tensor. For k = 1, 2, . . . , t,
select a nonempty subset Wk−1 ⊆ V (Dk−1) such that Wk−1 has at least two tensors or
consists of a single tensor with a loop. Set Dk = Dk−1/Wk−1 and observe that the number
of tensors and/or modes decreases by at least one in the contraction. Suppose that Dt is
loopless and consists of a single tensor. We say that such a sequence of contractions is an
execution of D in t steps. The cost of the execution is maxk=1,2,...,t c(Dk−1,Wk−1). The cost
of an execution in zero steps is defined to be 0.
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It is immediate that D has at least one execution and every execution consists of at most
2|V (D)| − 1 steps. By invariance under contractions, we have T (Dt) = T (D). The cost c(D)
of D is the cost of a minimum-cost execution of D.

An execution of D of cost c(D) immediately translates into an algorithm that computes
T (D) using O(c(D)|V (D)|) arithmetic operations in F, since the contraction step Dk =
Dk−1/Wk−1 takes O(c(Dk−1,Wk−1)) ≤ c(D) time to evaluate, and there are O(V (D)) steps.

I Lemma 3.1. Let D be a tensor network. There exists a minimum-cost execution of D
such that each contracted set has size at most two. Furthermore, if D is loopless, we can
assume that each contracted set has size exactly two.

In what follows we restrict to consider loopless D only. Thus while a general execution may
contract arbitrary vertex sets in D in each step, without loss of generality the minimum-cost
execution has the structure of a rooted binary tree, whose leaves are the vertices of the tensor
network, and each internal vertex is the tensor obtained by contracting its two children.

Cost of a multilinear map. We now define the cost of a multilinear map via the minimum-
cost tensor networks (and socketing) for evaluating the map. That is, the cost of a map is
defined in terms of the best tensor network that implements the map. More precisely, let

A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′)

be an `-linear map. Consider the tensor T̂ (A) of A and the associated input sockets
E1, E2, . . . , E` and the output socket E′. Let D∗ be an arbitrary tensor network such that
T (D∗) = T̂ (A) and the boundary satisfies B(D∗) = E1 ∪ E2 ∪ · · · ∪ E` ∪ E′. Modify the
network D∗ as follows. For each k = 1, 2, . . . , `, introduce a new vertex to D∗, make the
new vertex incident to each of the modes in the input socket Ek, and associate the new
vertex with a tensor X(k) ∈ FJ(Ek). Remove the modes E1 ∪E2 ∪ · · · ∪E` from the boundary
of D∗. Let us denote the resulting network by D and call the introduced ` new vertices
the socket vertices of D. We observe that B(D) = E′ and A(X(1), X(2), . . . , X(`)) = T (D).
Furthermore, the cost c(D) is independent of the value of X(k) ∈ FJ(Ek) for k = 1, 2, . . . , `.
We say that D is a realization of A if it can be obtained from A by this process, and write
D(A) for the set of all tensor network realizations D of A.

The cost of the map A is c(A) = minD∈D(A) c(D). This minimum exists since the cost of
a tensor network is a nonnegative integer and the family D(A) is nonempty.

4 An upper bound via submultiplicativity

This section presents our main tool for proving upper bounds on the cost of a multilinear
map that admits representation as a Kronecker power, namely submultiplicativity of an
amortized notion of cost under Kroneckering.

Kronecker power of a multilinear map. Let E1, E2, . . . , E`, E
′ be pairwise disjoint sets of

indexed modes such that E1, E2, . . . , E` are nonempty. Let

A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′)

be an `-linear map. For a positive integer k, we define the `-linear map A⊗k such that its
tensor satisfies T (A⊗k) = T (A)⊗k. Then

A⊗k : FJ(E1)k

× FJ(E2)k

× · · · × FJ(E`)k

→ FJ(E′)k

.
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Note that T (A⊗k) = T (A)⊗k is the k-fold Kronecker product of T (A) with itself – that is,
it has the same order, but the index sets are larger – whereas T̂ (A⊗k) is the k-fold outer
product of T̂ (A) with itself – that is, its index sets have the same sizes, but its order is k
times larger.

Amortized cost and submultiplicativity. Let D be a diagram that realizes A and let TD
be an execution tree for D. For each internal vertex x in TD (that is, a vertex obtained by
contraction), define the amortized cost of x by splitting into the following three cases:
(i) if neither of the two subtrees of x contains a socket vertex, the amortized cost of x is 1;
(ii) if exactly one of the subtrees of x, say, the subtree rooted at y (where x and y are

adjacent in TD), contains at least one socket vertex, the amortized cost of x is the
maximum of the volume of the tensor at x and the volume of the tensor at y;4

(iii) if both of the subtrees of x contain at least one socket vertex, the amortized cost of x
is the cost of the contraction to obtain x.

The amortized cost a(TD) of TD is the maximum of the amortized costs of the internal
vertices of TD. Since the amortized cost of each internal vertex of TD is at most its cost, we
have a(TD) ≤ c(TD). Furthermore, we observe that the amortized cost of x in case (ii) above
may be strictly less than the cost of the contraction to obtain x. In particular, in (ii) the
amortized cost is defined not by the cost of the contraction but rather by volume. This is
because in a kth Kronecker power we can amortize the cost of the aggregate transformation in
case (ii) not with a single contraction but with a sequence of k contractions. This observation
will form the heart of the proof of Theorem 1.3.

Before proceeding with the proof, let us illustrate the key ideas in visual terms. Let us
start with the three illustrations in (10).

(10)

Suppose the leftmost network in (10) is socketed so that the two modes at the top form the
output socket, and the four modes at the bottom form two input sockets so that modes in
the same socket are incident to the same vertex. In the middle in (10), we have adjoined
two socket vertices to the input sockets to obtain a realization D. On the right in (10), we
display an execution tree TD for D. Observe that the bottom-most internal vertices of TD,
and the top-most internal vertex of TD, have type (ii). The internal vertex in the center has
type (iii). (There are no internal vertices of type (i).) Supposing that all the modes have
length at least 2, we also observe that the vertices of type (ii) have amortized cost strictly
less than their contraction cost.

Let us now consider the kth power of (10) visually, for k = 4:

(11)

4 Here, it is crucial to note that the volume of the other subtree rooted at x, only containing non-socket
vertices, does not contribute directly to the amortized cost of x.
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The leftmost network in (11) depicts the k-fold outer product of the network on the left
in (10) with itself. Observe that we simply take k copies of the network, but that for the
purposes of the visualization we have taken care to draw the k copies of each mode together
for the socketing. In the middle in (11), we have adjoined two socket vertices to the input
sockets to obtain a realization D⊗k of A⊗k. On the right in (11), we display an execution
tree TD⊗k for D⊗k. Observe how each of the internal vertices of type (ii) in TD gets expanded
to a sequence of k internal vertices in TD⊗k . This transformation from TD to TD⊗k is the
gist of the following theorem.

I Theorem 4.1 (Formal statement of Theorem 1.3). Let D be an arbitrary realization of A
and let TD be an arbitrary execution tree for D. For all positive integers k, we have

c(A⊗k) ≤ a(TD)k−1c(TD) . (12)

Furthermore, this realization of A⊗k consists of at most k · |V (D)| vertices.

Proof. Let D∗ be the subnetwork of D with T (D∗) = T̂ (A). That is, D∗ is the network
induced by all the non-socket vertices of D. Taking k disjoint copies of D∗, we obtain a
network whose tensor is T̂ (A⊗k). Attaching the resulting network to tensors at sockets gives
a realization of A⊗k. Let us write D⊗k for this realization.

To establish (12), it suffices to construct an execution tree TD⊗k for D⊗k whose cost
satisfies c(TD⊗k ) ≤ a(TD)k−1c(TD). We construct TD⊗k by rewriting TD from leaves towards
the root to consider the k copies of each vertex in D∗. We start with leaf vertices which are
the vertices of D⊗k. We split the process into cases (i), (ii), and (iii) as in the definition of
amortized cost. Let x be the internal vertex of TD that we are currently considering.

In case (i), we perform the contraction indicated by x in each of the k copies of D∗ in
D⊗k individually. This creates k new internal vertices in TD⊗k that are all copies of x. We
set these k vertices as the vertices that correspond to x in the subsequent steps. Each of
these contractions in TD⊗k has the same cost as the contraction indicated by x in TD. This
cost is less or equal than c(TD).

In case (ii), let y be the child of x in TD such that the subtree rooted at y contains a
socket vertex, and let z be the other child of x in TD. There is a single vertex in TD⊗k

corresponding to y and k identical vertices in TD⊗k corresponding to z. We contract these k
vertices individually each with the vertex that corresponds to y. This creates k new internal
vertices in TD⊗k , where we set the topmost vertex as the vertex that corresponds to x in
the subsequent steps. After the ith step, the corresponding tensor has i copies of modes
of x and k − i copies of modes of y. The cost of the contraction in the ith step is the cost
of contracting y and z in TD multiplied by the the volume of y to the power k − i and the
volume of x to the power i− 1. Since the volumes of x and y are less than or equal to a(TD),
this cost is less than or equal to a(TD)k−1c(TD).

In case (iii), let y and z be the two child vertices of x in TD. By the structure of the
earlier steps, we have that a single vertex in D⊗k corresponds to y, and similarly for z. We
contract these two vertices. This creates one new internal vertex in TD⊗k , which we set as
the vertex that corresponds to x in the subsequent steps. This tensor has k copies of modes
of x. The cost of this contraction in TD⊗k is the cost of the corresponding contraction in
TD to the kth power, because both tensors have k copies of all modes compared to y and
z. By definition, in case (iii) the amortized cost of contracting y and z is the same as the
cost of contracting y and z. Hence the cost of this contraction in TD⊗k is less or equal than
a(TD)k ≤ a(TD)k−1c(TD). This rewriting process produces an execution tree TD⊗k for D⊗k
with c(TD⊗k ) ≤ a(TD)k−1c(TD). J



P. Austrin, P. Kaski, and K. Kubjas 7:15

An immediate corollary is that tensor networks can use low rank decompositions of T (A)
to efficiently evaluate A⊗k.

I Corollary 4.2 (Submultiplicativity of low-rank executions). Let A : FJ(E1) × FJ(E2) × · · · ×
FJ(E`) → FJ(E′) be a multilinear map. Definem=max{|J(E1)|, |J(E2)|, . . . , |J(E`)|, |J(E′)|}
and r = rk T (A). Then c(A⊗k) ≤ max(r,m)k min(r,m)

Proof. By taking a star-like network topology (as in (10)) we get an execution with a(TD) =
max(r,m) and cost c(TD) = m · r. J

5 A lower bound for the cost of a multilinear map

In this section, we prove a general lower bound on the cost of evaluating a multilinear map
using tensor networks, as defined in Section 3. The lower bound is expressed in terms of the
socket-width of a multilinear map, which we now proceed to define.

Let A : FJ(E1) × FJ(E2) × · · · × FJ(E`) → FJ(E′) be an `-linear map. A socket-tree of A is
a tree TS whose `+ 1 leaf vertices are the sockets E1, E2, . . . , E`, E

′ of A and whose internal
vertices all have degree exactly 3. Associate with each edge e = {xR, xC} of TS the two
subtrees TS(xR, e) and TS(xC , e) obtained by removing e, where TS(xR, e) is the subtree
containing xR and TS(xC , e) is the subtree containing xC . Let L(xR, e) be the set of leaves
in TS(xR, e) and let L(xC , e) be the set of leaves in TS(xC , e).

The sets L(xR, e) and L(xC , e) are both nonempty and together partition the set of
sockets. Consider the flattening M(TS , e) of the tensor T (A) such that the modes in L(xR, e)
index the rows and the modes in L(xC , e) index the columns of M(TS , e). The width of TS
at e is the rank of M(TS , e), and the width of TS is w(TS) = maxe∈E(TS) rk(M(TS , e)).

Let us write S (A) for the set of all socket-trees of the multilinear form A. We define the
socket-width of A to be w(A) = minTS∈S (A) w(TS).

The rest of this section is devoted to proving Theorem 1.4:

I Theorem 1.4. For every multilinear map A, it holds that c(A) ≥ w(A).

First, we prove that without loss of generality, we may restrict our attention to forms.

I Claim 5.1. For any multilinear map A, it holds that c(A) ≥ c(F (A)).

Proof. We observe that A and F (A) satisfy T̂ (A) = T̂ (F (A)). Any network D ∈ D(A) can
be modified to a network D′ ∈ D(F (A)) by attaching a tensor X ′ ∈ FJ(E′) to the boundary of
D. Let D ∈ D(A) be such that c(D) = c(A). The minimum-cost execution of D, followed by
contracting T (D) and X ′, is an execution of D′. Its cost is c(A), since the cost of contracting
of T (D) and X ′ is

∏
e∈B(D) |J(e)| and

∏
e∈B(D) |J(e)| ≤ c(A), because the last step of the

minimum-cost execution of D contracted a set W with all modes e ∈ B(D) incident to W .
Thus, c(A) ≥ c(F (A)). J

Furthermore, w(A) = w(F (A)) for every multilinear map A, since w(A) only depends on
the tensor T (A), but not on which of its coordinates (if any) is the output. Thus it suffices
to prove Theorem 1.4 for multilinear forms, which we now proceed to do.

I Lemma 5.2. For any multilinear form F , it holds that c(F ) ≥ w(F ).

Proof. Let D ∈ D(F ) be such that c(D) = c(F ). It is a tensor network with empty boundary
and a socket vertex Si ∈ V (D) for each input socket Ei, where i = 1, 2, . . . , `. Its tensor is
T (D) = F (X(1), X(2), . . . , X(`)) where X(i) = T (Si) for i = 1, 2, . . . , `.

ITCS 2019
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ẽ

A(1)

WR

X(1) X(2)SR X(3) X(4)

SC

WC

A(2)

(a) Example of a possible execution tree TD. Given the
choice of e in the corresponding socket tree TS shown
on the right there are four possible choices of ẽ.

e

X(1)

X(2)

xR xC

X(3)

X(4)

SR SC

(b) The corresponding socket tree TS . The
exact choice of ẽ in TD determines which
part of the cut is the xR part, and which
is the xC part.

Figure 1 Illustration of the notation used for the execution and socket trees.

By Lemma 3.1, a minimum-cost execution of D can be represented by a rooted binary
tree TD, where the set of leaves of TD are V (D) and each inner vertex represents the vertex
obtained by contracting its two children. Let TS be the unique socket-tree of F that is
obtained as a topological minor of TD. Slightly abusing the notation, we assume that the
leaves of TS are the socket vertices S1, S2, . . . , S` instead of the sockets E1, E2, . . . , E`. To
establish the lemma, it suffices to show that TD has cost at least w(TS), since w(TS) ≥ w(F ).

Let e = {xR, xC} ∈ E(TS) be an edge of the socket tree TS with rk(M(TS , e)) = w(TS),
and let ẽ be an edge of the execution tree TD in the subdivision of e appearing in TD. Without
loss of generality we may assume that ẽ is directed from the part of TD corresponding to xR
towards the part corresponding to xC (if not, simply switch names of xR and xC). Define
SR = L(xR, e) and SC = L(xC , e). Let WR ⊆ V (D) be the set of non-socket vertices of D
that appear on the same side of ẽ in TD with socket vertices SR and let WC be the set of
remaining non-socket vertices of D. See Figure 1 for an illustration of all these definitions.
Finally, let D′ = D/SR/SC/WR/WC be the result of contracting each of these four sets of
vertices of D. For notational convenience, we identify the four vertices of the new network
with the four subsets SR, SC ,WR,WC .

Now, the tensor P = T (D′[WR ∪ SR]) appears as an intermediate result in the execution
TD,5 hence the volume of P is a lower bound on the cost of TD.

We group the modes of D′ incident on SR or WR as shown in Figure 2: ESW are all
modes in D′ incident exactly upon SR and WR, EWC are all modes incident on WR but
not on SR, ESC are all modes incident on SR but not WR, and finally ESWC are all modes
incident upon SR, WR, and at least one of SC or WC . Write ES = ESW ∪ ESC ∪ ESWC for
the modes incident on SR, and similarly EC = EWC ∪ ESC ∪ ESWC for all modes incident
upon at least one of SR/WR and at least one of SC/WC . Note that |J(EC)| is precisely the
volume of P which we aim to lower bound.

Define a matrix A ∈ FJ(ES) × FJ(EC) as follows. We identify its row indices i ∈ J(ES) as
being triples i = (iSW , iSC , iSWC) ∈ J(ESW )×J(ESC)×J(ESWC) and similarly its column
indices j ∈ J(EC) are triples j = (jSC , jWC , jSWC) ∈ J(ESC)× J(EWC)× J(ESWC). Then

5 Note that the same is not true for the tensor T (D′[WC ∪ SC ]).
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SR

SC

WR
WC

ESC

ESW

EWC

ESWC

Figure 2 Illustration of D′. We group the modes of D′ based on how they connect SR, SC , and
the “C part” of D′.

the entries of A are

A(iSW ,iSC ,iSW C ),(jSC ,jW C ,jSW C ) =
{
T (D′[WR])iSW ,jW C ,jSW C

if iSC = jSC ∧ iSWC = jSWC ,

0 otherwise,

In the case when ES = ESW (i.e., all modes incident on SR connect only to WR), A is
simply a flattening of T (D′[WR]). Recall that T (D′[SR]) ∈

∏
e∈ES

FJ(e). Then for every
j = (jSC , jWC , jSWC) ∈ J(EC), we have∑

i∈J(ES)

Ai,jT (D′[SR])i =
∑

iSW∈J(ESW )

A(iSW ,jSC ,jSW C ),jT (D′[SR])iSW ,jSC ,jSW C

=
∑
iSW

T (D′[WR])iSW ,jW C ,jSW C
T (D′[SR])iSW ,jSC ,jSW C

= PjSC ,jW C ,jSW C
= Pj

(recall that P is the contraction of T (D′[WR]) and T (D′[SR])). Viewing T (D′[SR]) as a row
vector in FJ(ES) we see that P is the vector-matrix product P = T (D′[SR]) ·A ∈ FJ(EC ).

Symmetrically, for the other half of D′, we can write Q = T (D′[WC ∪ SC ]) as a matrix-
vector product Q = B ·T (D′[SC ]) ∈ FJ(EC ) where B is a matrix corresponding to T (D′[WS ])
analogously to how A corresponds to T (D′[WR]).

Thus we have T (D) = T (D′[SR]) ·A ·B · T (D′[SC ]). Recall that for each socket vertex
Si in the original network D, we have T (Si) = X(i). Denoting XR = T (D′[SR]) and
XC = T (D′[SC ]), we get XR =

⊗
Si∈SR

X(i) and XC =
⊗

Si∈SC
X(i).6 Hence

F (X(1), X(2), . . . , X(`)) = XR ·A ·B ·XC .

It follows that A ·B is the flattening of T (F ) to a matrix with rows indexed by the sockets
in SR and columns indexed by the sockets in SC . But this flattening is precisely the matrix
M(TS , e), implying that |J(EC)| ≥ rk(M(TS , e)) = w(TS), as desired. J
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Abstract
We show that there is a zero-error randomized algorithm that, when given a small constant-
depth Boolean circuit C made up of gates that compute constant-degree Polynomial Threshold
functions or PTFs (i.e., Boolean functions that compute signs of constant-degree polynomials),
counts the number of satisfying assignments to C in significantly better than brute-force time.

Formally, for any constants d, k, there is an ε > 0 such that the zero-error randomized
algorithm counts the number of satisfying assignments to a given depth-d circuit C made up of
k-PTF gates such that C has size at most n1+ε. The algorithm runs in time 2n−nΩ(ε)

.

Before our result, no algorithm for beating brute-force search was known for counting the
number of satisfying assignments even for a single degree-k PTF (which is a depth-1 circuit of
linear size).

The main new tool is the use of a learning algorithm for learning degree-1 PTFs (or Linear
Threshold Functions) using comparison queries due to Kane, Lovett, Moran and Zhang (FOCS
2017). We show that their ideas fit nicely into a memoization approach that yields the #SAT
algorithms.
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8:2 A #SAT Algorithm for Small Constant-Depth PTF Circuits

1 Introduction

This paper adds to the growing line of work on circuit-analysis algorithms, where we are
given as input a Boolean circuit C from a fixed class C computing a function f : {−1, 1}n →
{−1, 1},3 and we are required to compute some parameter of the function f . A typical
example of this is the question of satisfiability, i.e. whether f is the constant function 1
or not. In this paper, we are interested in computing #SAT(f), which is the number of
satisfying assignments of f (i.e. |{a ∈ {−1, 1}n | f(a) = −1}|).

Problems of this form can always be solved by “brute-force” in time poly(|C|) · 2n by
trying all assignments to C. The question is can this brute-force algorithm be significantly
improved, say to time 2n/nω(1) when C is small, say |C| ≤ nO(1).

Such algorithms, intuitively are able to distinguish a small circuit C ∈ C from a “black-box”
and hence find some structure in C. This structure, in turn, is useful in answering other
questions about C, such as proving lower bounds against the class C.4 There has been a large
body of work in this area, a small sample of which can be found in [21, 20, 26, 27]. A striking
result of this type was proved by Williams [26] who showed that for many circuit classes C,
even co-non-deterministic satisfiability algorithms running in better than brute-force time
yield lower bounds against C.

Recently, researchers have also uncovered tight connections between many combinatorial
problems and circuit-analysis algorithms, showing that even modest improvements over brute-
force search can be used to improve long-standing bounds for these combinatorial problems
(see, e.g., [30, 2, 3, 1]). This yields further impetus in improving known circuit-analysis
algorithms.

This paper is concerned with #SAT algorithms for constant depth threshold circuits,
denoted as TC0, which are Boolean circuits where each gate computes a linear threshold
function (LTF); an LTF computes a Boolean function which accepts or rejects based on the
sign of a (real-valued) linear polynomial evaluated on its input. Such circuits are surprisingly
powerful: for example, they can perform all integer arithmetic efficiently [4, 9], and are at
the frontier of our current lower bound techniques [16, 5].

It is natural, therefore, to try to come up with circuit-analysis algorithms for threshold
circuits. Indeed, there has a large body of work in the area (reviewed below), but some
extremely simple questions remain open.

An example of such a question is the existence of a better-than-brute-force algorithm for
satisfiability of degree-k PTFs where k is a constant greater than 1. Informally, the question
is the following: we are given a degree-k polynomial Q(x1, . . . , xn) in n Boolean variables
and we ask if there is any Boolean assignment a ∈ {−1, 1}n to x1, . . . , xn such that Q(a) < 0.
(Note that for a linear polynomial (i.e. k = 1), this problem is trivial.)

Surprisingly, no algorithm is known for this problem that is significantly better than
2n time.5 In this paper, we solve the stronger counting variant of this problem for any
constant-degree PTFs. We start with some definitions and then describe this result.

I Definition 1 (Polynomial Threshold Functions). A Polynomial Threshold Function (PTF)
on n variables of degree-k is a Boolean function f : {−1, 1}n → {−1, 1} such that there is

3 We work with the {−1, 1} basis for Boolean functions, which is by now standard in the literature. (See
for instance [18].) Here −1 stands for True and 1 stands for False.

4 This intuition was provided to us by Ryan Williams.
5 An algorithm was claimed for this problem in the work of Sakai, Seto, Tamaki and Teruyama [22].
Unfortunately, the proof of this claim only works when the weights are suitably small. See Footnote 1
on page 4 of [14].
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a degree-k multilinear polynomial P (x1, . . . , xn) ∈ R[x1, . . . , xn] that, for all a ∈ {−1, 1}n,
satisfies f(a) = sgn(P (a)). (We assume that P (a) 6= 0 for any a ∈ {−1, 1}n.)

In such a scenario, we call f a k-PTF. In the special case that k = 1, we call f a Linear
Threshold function (LTF). We also say that the polynomial P sign-represents f .

When P ∈ Z[x1, . . . , xn], we define the weight of P , denoted w(P ), to be the bit-complexity
of the sum of the absolute values of all the coefficients of P . In particular, the coefficients of
P are integers in the range [−2w(P ), 2w(P )].

We now formally define the #SAT problem for k-PTFs. Throughout, we assume that k
is a constant and not a part of the input.

I Definition 2 (#SAT problem for k-PTFs). The problem is defined as follows.
Input: A k-PTF f , specified by a degree-k polynomial P (x1, . . . , xn) with integer
coefficients.6
Output: The number of satisfying assignments to f . That is, the number of a ∈ {−1, 1}n
such that P (a) < 0.

We use #SAT(f) to denote this output. We say that the input instance has parameters
(n,M) if n is the number of input variables and w(P ) ≤M .

I Remark. An interesting setting of M is poly(n) since any k-PTF can be represented by
an integer polynomial with coefficients of bit-complexity at most Õ(nk) [17]. However, note
that our algorithms are even when M is exp(no(1)), i.e. when the weights are slightly short
of doubly exponential in n.

We give a better-than-brute-force algorithm for #SAT(k-PTF). Formally we prove the
following theorem.

I Theorem 3. Fix any constant k. There is a zero-error randomized algorithm that solves the
#SAT problem for k-PTFs in time poly(n,M) · 2n−S where S = Ω̃(n1/(k+1)) and (n,M) are
the parameters of the input k-PTF f. (The Ω̃(·) hides factors that are inverse polylogarithmic
in n.)

I Remark. An anonymous ITCS 2019 referee pointed out to us that from two results of
Williams [25, 28], it follows that satisfiability for 2-PTFs can be solved in 2n−Ω(

√
n) time.

Note that this is better than the runtime of our algorithm. However, the method does not
extend to k ≥ 3.

We then extend this result to a powerful model of circuits called k-PTF circuits, where
each gate computes a k-PTF. This model was first studied by Kane, Kabanets and Lu [13] who
proved strong average case lower bounds for slightly superlinear-size constant-depth k-PTF
circuits. Using these ideas, Kabanets and Lu [14] were able to give a #SAT algorithm for a
restricted class of k-PTF circuits, where each gate computes a PTF with a subquadratically
many, say n1.99, monomials (while the size remains the same, i.e. slightly superlinear).7 A
reason for this restriction on the PTFs was that they did not have an algorithm to handle
even a single degree-2 PTF (which can have Ω(n2) many monomials).

Building on our #SAT algorithm for k-PTFs and the ideas of [14], we are able to handle
general k-PTF circuits of slightly superlinear size. We state these results formally below.

We first define k-PTF circuits formally.

6 It is known [17] that such a representation always exists.
7 Their result also works for the slightly larger class of PTFs that are subquadratically sparse in the {0, 1}-

basis with no restriction on degree. Our result can also be stated for the larger class of polynomially
sparse PTFs, but for the sake of simplicity, we stick to constant-degree PTFs.

ITCS 2019
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I Definition 4 (k-PTF circuits). A k-PTF circuit on n variables is a Boolean circuit on n
variables where each gate g of fan-in m computes a fixed k-PTF of its m inputs. The size of
the circuit is the number of wires in the circuit, and the depth of the circuit is the longest
path from an input to the output gate.8

The problems we consider is the #SAT problem for k-PTF circuits, defined as follows.

I Definition 5 (#SAT problem for k-PTF circuits). The problem is defined as follows.
Input: A k-PTF circuit C, where each gate g is labelled by an integer polynomial that
sign-represents the function that is computed by g.
Output: The number of satisfying assignments to C.

We use #SAT(C) to denote this output. We say that the input instance has parameters
(n, s, d,M) where n is the number of input variables, s is the size of C, d is the depth of C
and M is the maximum over the weights of the degree-k polynomials specifying the k-PTFs
in C. We will say that M is the weight of C, denoted by w(C).

We now state our result on #SAT for k-PTF circuits. The following result implies
Theorem 3, but we prove them separately.

I Theorem 6. Fix any constants k, d. Then the following holds for some constant εk,d > 0
depending on k, d. There is a zero-error randomized algorithm that solves the #SAT problem
for k-PTF circuits of size at most s = n1+εk,d with probability at least 1/4 and outputs ?
otherwise. The algorithm runs in time poly(n,M) · 2n−S, where S = nεk,d and (n, s, d,M)
are the parameters of the input k-PTF circuit.

Previous work. Satisfiability algorithms for TC0 have been widely investigated. Impagliazzo,
Lovett, Paturi and Schneider [12, 10] give algorithms for checking satisfiability of depth-2
threshold circuits with O(n) gates. An incomparable result was proved by Williams [29] who
obtained algorithms for subexponential-sized circuits from the class ACC0 ◦ LTF, which is
a subclass of subexponential TC0.9 For the special case of k-PTFs (and generalizations to
sparse PTFs over the {0, 1} basis) with small weights, a #SAT algorithm was devised by
Sakai et al. [22].10 The high-level idea of our algorithm is the same as theirs.

For general constant-depth threshold circuits, the first satisfiability algorithm was given
by Chen, Santhanam and Srinivasan [7]. In their paper, Chen et al. gave the first average
case lower bound for TC0 circuits of slightly super linear size n1+εd , where εd depends on the
depth of the circuit. (These are roughly the strongest size lower bounds we know for general
TC0 circuits even in the worst case [11].) Using their ideas, they gave the first (zero-error
randomized) improvement to brute-force-search for satisfiability algorithms (and indeed even
#SAT algorithms) for constant depth TC0 circuits of size at most n1+εd .

The lower bound results of [7] were extended to the much more powerful class of k-PTF
circuits (of roughly the same size as [7]) by Kane, Kabanets and Lu [13]. In a follow-up
paper, Kabanets and Lu [14] considered the satisfiability question for k-PTF circuits, and

8 Note, crucially, that only the fan-in of a gate counts towards its size. So any gate computing a k-PTF
on m variables only adds m to the size of the circuit, though of course the polynomial representing this
PTF may have ≈ mk monomials.

9 ACC0 ◦ LTF is a subclass of TC0 where general threshold gates are allowed only just above the
variables. All computations above these gates are one of AND, OR or Modular gates (that count
the number of inputs modulo a constant). It is suspected (but not proved) that subexponential-sized
ACC0 circuits cannot simulate even a single general threshold gate. Hence, it is not clear if the class of
subexponential-sized ACC0 ◦ LTF circuits contains even depth-2 TC0 circuits of linear size.

10More specifically, the algorithm of Sakai et al. [22] works as long as the weight of the input polynomial
P ∈ Z[x1, . . . , xn] is bounded by exp(n1−Ω(1)) (or equivalently, M ≤ O(n1−Ω(1))).
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could resolve this question in the special case that each PTF is subquadratically sparse, i.e.
has n2−Ω(1) monomials. One of the reasons for this sparsity restriction is that their strategy
does not seem to yield a SAT algorithm for a single degree-2 PTF (which is a depth-1 2-PTF
circuit of linear size).

1.1 Proof outline
For simplicity we discuss SAT algorithms instead of #SAT algorithms.

Satisfiability algorithm for k-PTFs
At a high level, we follow the same strategy as Sakai et al. [22]. Their algorithm uses
memoization, which is a standard and very useful strategy for satisfiability algorithms (see,
e.g. [23]). Let C be a circuit class and Cn be the subclass of circuits from C that have n
variables. Memoization algorithms for C-SAT fit into the following two-step template.

Step 1: Solve by brute-force all instances of C-SAT where the input circuit C ′ ∈ Cm
for some suitable m� n. (Typically, m = nε for some constant ε.) Usually this takes
exp(mO(1))� 2n time.
Step 2: On the input C ∈ Cn, set all input variables xm+1, . . . , xn to Boolean values
and for each such setting, obtain C ′′ ∈ Cm on m variables. Typically C ′′ is a circuit for
which we have solved satisfiability in Step 1 and hence by a simple table lookup, we
should be able to check if C ′′ is satisfiable in poly(|C|) time. Overall, this takes time
O∗(2n−m)� 2n.

At first sight, this seems perfect for k-PTFs, since it is a standard result that the number
of k-PTFs on m variables is at most 2O(mk+1) [8]. Thus, Step 1 can be done in 2O(mk+1) � 2n
time.

For implementing Step 2, we need to ensure that the lookup (for satisfiability for k-PTFs
on m variables) can be done quickly. Unfortunately how to do this is unclear. The following
two ways suggest themselves.

Store all polynomials P ′ ∈ Z[x1, . . . , xm] with small coefficients. Since every k-PTF f

can be sign-represented by an integer polynomial with coefficients of size 2poly(m) [17],
this can be done with a table of size 2poly(m) and in time 2poly(m). When the coefficients
are small (say of bit-complexity ≤ no(1)), then this strategy already yields a #SAT
algorithm, as observed by Sakai et al. [22]. Unfortunately, in general, given a restriction
P ′′ ∈ Z[x1, . . . , xm] of a polynomial P ∈ Z[x1, . . . , xn], its coefficients can be much larger
(say 2poly(n)) and it is not clear how to efficiently find a polynomial with small coefficients
that sign-represents the same function.
It is also known that every k-PTF on m variables can be uniquely identified by poly(m)
numbers of bit-complexity O(m) each [8]: these are called the “Chow parameters” of
f . Again for this representation, it is unclear how to compute efficiently the Chow
parameters of the function represented by the restricted polynomial P ′′. (Even for an
LTF, computing the Chow parameters is as hard as Subset-sum [19].)

The way we solve this problem is by using a beautiful recent result of Kane, Lovett,
Moran and Zhang [15], who show that there is a simple decision tree that, when given as
input the coefficients of any degree-k polynomial P ′ ∈ Z[x1, . . . , xm], can determine the sign
of the polynomial P ′ at all points in {−1, 1}m using only poly(m) queries to the coefficients
of P . Here, each query is a linear inequality on the coefficients of P ; such a decision tree is
called a linear decision tree.

ITCS 2019
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Our strategy is to replace Step 1 with the construction of this linear decision tree (which
can be done in exp(mO(1)) time). At each leaf of the linear decision tree, we replace the
truth table of the input polynomial P ′ by a single bit that indicates whether f ′ = sgn(P ′) is
satisfiable or not.

In Step 2, we simply run this decision tree on our restricted polynomial P ′′ and obtain the
answer to the corresponding satisfiability query in poly(m,w(P ′′)) time. Note, crucially, that
the height of the linear decision tree implied by [15] construction is poly(m) and independent
of the bit-complexity of the coefficients of the polynomial P ′′ (which may be as big as poly(n)
in our algorithm). This concludes the description of the algorithm for k-PTF.

Satisfiability algorithm for k-PTF circuits

For k-PTF circuits, we follow a template set up by the result of Kabanets and Lu [14] on
sparse-PTF circuits. We start by describing this template and then describe what is new in
our algorithm.

The Kabanets-Lu algorithm is an induction on the depth d of the circuit (which is a fixed
constant). Given as input a depth d k-PTF circuit C on n variables, Kabanets and Lu do
the following:

Depth-reduction: In [14], it is shown that on a random restriction that sets all but n1−2β

variables (here, think of β as a small constant, say 0.01) to random Boolean values, the
bottom layer of C simplifies in the following sense.

All but t ≤ nβ gates at the bottom layer become exponentially biased, i.e. on all but
δ = exp(−nΩ(1)) fraction of inputs they are equal to a fixed b ∈ {−1, 1}. Now, for each
such biased gate g, there is a minority value bg ∈ {−1, 1} that it takes on very few inputs.
[14] show how to enumerate this small number of inputs in δ · 2n time and check if there
is a satisfying assignment among these inputs. Having ascertained that there is no such
assignment, we replace these gates by their majority value and there are only t gates at the
bottom layer. At this point, we “guess” the output of these t “unbiased” gates and for each
such guess σ ∈ {−1, 1}t, we check if there is an assignment that simultaneously satisfies:
(a) the depth d − 1 circuit C ′, obtained by setting the unbiased gates to the guess σ, is

satisfied.
(b) each unbiased gate gi evaluates to the corresponding value σi.

Base case: Continuing this way, we eventually get to a base case which is an AND of
sparse PTFs for which there is a satisfiability algorithm using the polynomial method.

In the above algorithm, there are two steps where subquadratic sparsity is crucially used.
The first is the minority assignment enumeration algorithm for PTFs, which uses ideas of
Chen and Santhanam [6] to reduce the problem to enumerating biased LTFs, which is easy [7].
The second is the base case, which uses a non-trivial polynomial approximation for LTFs [24].
Neither of these results hold for even degree-2 PTFs in general. To overcome this, we do the
following.

Enumerating minority assignments. Given a k-PTF onm variables that is δ = exp(−nΩ(1))
-close to b ∈ {−1, 1}, we enumerate its minority assignments as follows. First, we set up a
linear decision tree as in the k-PTF satisfiability algorithm. Then we set all but q ≈ log 1

δ

variables of the PTF. On most such settings, the resulting PTF becomes the constant function
and we can check this using the linear decision tree we created earlier. In this setting, there
is nothing to do. Otherwise, we brute-force over the remaining variables to find the minority
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assignments. Setting parameters suitably, this yields an O(
√
δ · 2m) time algorithm to find

the minority assignments of a δ-biased k-PTF on m variables.

Base case. Here, we make the additional observation (which [14] do not need) that the
AND of PTFs that is obtained further is small in that it only has slightly superlinear size.
Hence, we can apply another random restriction in the style of [14] and using the minority
assignment enumeration ideas, reduce it to an AND of a small (say n0.1) number of PTFs on
n0.01 (say) variables. At this point, we can again run the linear decision tree (in a slightly
more generalized form) to check satisfiability.

2 A result of Kane, Lovett, Moran, and Zhang [15]

I Definition 7 (Coefficient vectors.). Fix any k,m ≥ 1. There are exactly r =
∑k
i=0
(
m
i

)
many multilinear monomials of degree at most k. Any multilinear polynomial P (x1, . . . , xm)
can be identified with a list of the coefficients of its monomials in lexicographic order (say)
and hence with some vector w ∈ Rr. We call w the coefficient vector of P and use coeffm,k(P )
to denote this vector. When m, k are clear from context, we will simply use coeff(P ) instead
of coeffm,k(P ).

I Definition 8 (Linear Decision Trees). A Linear Decision Tree for a function f : Rr → S

(for some set S) is a decision tree where each internal node is labelled by a linear inequality
of the form

∑r
i=1 wizi ≥ θ (here z1, . . . , zn denote the input variables). Depending on the

answer to this linear inequality, computation proceeds to the left or right child of this node,
and this process continues until a leaf is reached, which is labelled with an element of S that
is the output of f on the given input.

The following construction of linear decision trees due to Kane, Lovett, Moran and
Zhang [15] will be crucial for us.

I Theorem 9. There is a randomized algorithm, which on input a positive integer r, a subset
H ⊆ {−1, 1}r, and an error parameter ε, produces a (random) linear decision tree T of depth
∆ = O(r log r · log(|H|/ε)) that computes a (random) function F : Rr → {−1, 1}|H| ∪ {?}
that has the following properties.
1. Each linear query has coefficients in {−2,−1, 0, 1, 2}.
2. Given as input any w ∈ Rr such that 〈w, a〉 6= 0 for all a ∈ {−1, 1}r, F (w) is either the

truth table of the LTF defined by w (with constant term 0) on inputs from H ⊆ {−1, 1}r,
or is equal to ?. Further, we have PrF [F (w) =?] ≤ ε.

The randomized algorithm runs in time 2O(∆).

I Remark. The last statement in the above theorem is not formally stated in [15] but can
easily be inferred from their proof and a remark [15, Page 363] on the “Computational
Complexity” of their procedure.11

We will need a generalization of this theorem for evaluating (tuples of) k-PTFs. However,
it is a simple corollary of this theorem.

I Corollary 10. Fix positive constants k and c. Let r =
∑k
i=0
(
m
i

)
= Θ(mk) denote the

number of coefficients in a degree-k multilinear polynomial in m variables. There is a
randomized algorithm which on input positive integers m and ` ≤ mc produces a (random)

11We also thank Daniel Kane (personal communication) for telling us about this.
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linear decision tree T of depth ∆ = O(` ·mk+1 logm) that computes a (random) function
F : Rr·` → N ∪ {?} that has the following properties.
1. Each linear query has coefficients in {−2,−1, 0, 1, 2}.
2. Given as input any `-tuple of coefficient vectors w = (coeffm,k(P1), . . . , coeffm,k(P`)) ∈

Rr·` such that Pi(a) 6= 0 for all a ∈ {−1, 1}m, F (w) is either the number of common
satisfying assignments to all the k-PTFs on {−1, 1}m sign-represented by P1, . . . , P`, or
is equal to ?. Further, we have PrF [F (w) =?] ≤ (1/2).

The randomized algorithm runs in time 2O(∆).

Proof. For each b ∈ {−1, 1}m, define evalb ∈ {−1, 1}r to be the vector of all evaluations of
multilinear monomials of degree at most k, taken in lexicographic order, on the input b. Define
H ⊆ {−1, 1}r to be the set {evalb | b ∈ {−1, 1}m}. Clearly, |H| ≤ 2m. Further, note that
given any polynomial P (x1, . . . , xm) of degree at most k, the truth table of the k-PTF sign-
represented by P is given by the evaluation of the LTF represented by coeff(P ) at the points
in H. Our aim, therefore, is to evaluate the LTFs corresponding to coeff(P1), . . . , coeff(P`)
at all the points in H.

For each i, we use the randomized algorithm from Theorem 9 to produce a decision
tree Ti that evaluates the Boolean function fi : {−1, 1}m → {−1, 1} sign-represented by
Pi (or equivalently, evaluating the LTF corresponding to coeff(Pi) at all points in H)
with error ε = 1/2`. Note that Ti has depth O(mk logm · log(2m/`)) = O(mk+1 logm) as
` ≤ mc. The final tree T is obtained by simply running T1, . . . , T` in order, which is of depth
O(`mk+1 logm). The tree T outputs the number of common satisfying assignments to all the
fi if all the Tis succeed and ? otherwise. Since each Ti outputs ? with probability at most
1/2`, the tree T outputs ? with probability at most (1/2`) · ` = 1/2.

The claim about the running time follows from the analogous claim in Theorem 9 and
the fact that the number of common satisfying assignments to all the fi can be computed
from the truth tables in 2O(m) time. This completes the proof. J

3 The PTF-SAT algorithm

We are now ready to prove Theorem 3. We first state the algorithm, which follows a standard
memoization idea (see, e.g. [23]). We assume that the input is a polynomial P ∈ Z[x1, . . . , xn]
of degree at most k that sign-represents a Boolean function f on n variables. The parameters
of the instance are assumed to be (n,M). Set m = n1/(k+1)/ logn.

Algorithm A.
1. Use n1 = 10n independent runs of the algorithm from Corollary 10 with ` = 1 to construct

independent random linear decision trees T1, . . . , Tn1 such that on any input polynomial
Q(x1, . . . , xm) (or more precisely coeffm,k(Q)) of degree at most k that sign-represents
an k-PTF g on m variables, each Ti computes the number of satisfying assignments to g
with error at most 1/2.

2. Set N = 0. (N will ultimately be the number of satisfying assignments to f .)
3. For each setting σ ∈ {−1, 1}n−m to the variables xm+1, . . . , xn, do the following:

a. Compute the polynomial Pσ obtained by substituting the variables xm+1,...,xn accord-
ingly in P .
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b. Run the decision trees T1, . . . , Tn1 on coeff(Pσ) and compute their outputs. If all the
outputs are ?, output ?. Otherwise, some Ti outputs Nσ, the number of satisfying
assignments to Pσ. Add this to the current estimate to N .

4. Output N .

Correctness. It is clear from Corollary 10 and step 3b that algorithm A outputs either ? or
the correct number of satisfying assignments to f . Further, we claim that with probability
at least 1 − 1/2Ω(n), the output is indeed the number of satisfying assignments to f . To
see this, observe that it follows from Corollary 10 that for each setting σ ∈ {−1, 1}n−m to
the variables xm+1, . . . , xn, each linear decision tree Ti produced in step 1 errs on coeff(Pσ)
(i.e. outputs ?) with probability at most 1/2. The probability of each Ti doing so is thus at
most 1/2n1 , as they are constructed independently. So the probability that the algorithm
fails to determine Nσ is at most 1/2n1 . Finally, taking a union bound over all σ, which are
2n−m in number, we conclude that the probability of algorithm A outputting ? is at most
2n−m/2n1 ≤ 1/2Ω(n).

Running time. We show that the running time of algorithm A is poly(n,M) · 2n−m. First
note that by Corollary 10, the construction of a single linear decision tree Ti takes 2O(Γ)

time, where Γ = mk+1 logm, and hence, step 1 takes n1 · 2O(Γ) time. Next, for a setting
σ ∈ {−1, 1}n−m to the variables xm+1, . . . , xn, computing Pσ and constructing the vector
coeff(Pσ) takes only poly(n,M) time. Recall that the depth of each linear decision tree
Ti is O(Γ) and thus, on input vector coeff(Pσ), each of whose entries has bit complexity
at most M , it takes time O(Γ) · poly(M,n) to run all Ti and obtain the output Nσ or ?.
Therefore, step 3 takes poly(n,M) · 2n−m time. Finally, the claim about the total running
time of algorithm A follows at once when we observe that for the setting m = n1/(k+1)/ logn,
Γ = o(n/(logn)k) = o(n).

4 Constant-depth circuits with PTF gates

In this section we give an algorithm for counting the number of satisfying assignment for a
k-PTF circuit of constant depth and slightly superlinear size. We begin with some definitions.

I Definition 11. Let δ ≤ 1 be any parameter. Two Boolean functions f, g are said to be
δ-close if Prx[f(x) 6= g(x)] ≤ δ.

A k-PTF f specified by a polynomial P is said to be δ-close to an explicit constant if
it is δ-close to a constant and such a constant can be computed efficiently, i.e. poly(n,M),
where n is the number of variables in P and w(P ) is at most M .

I Definition 12. For a Boolean function f : {−1, 1}n → {−1, 1}, the majority value of f is
the bit value b ∈ {−1, 1} which maximizes Prx[f(x) = b] and the bit value −b is said to be
its minority value.

For a Boolean function f with majority value b, an assignment x ∈ {−1, 1}n is said to be
a majority assignment if f(x) = b and minority assignment otherwise.

I Definition 13. Given a k-PTF f on n variables specified by a polynomial P , a parameter
m ≤ n and a partial assignment σ ∈ {−1, 1}n−m on n−m variables, let Pσ be the polynomial
obtained by substituting the variables in P according to σ. If P has parameters (n,M)
then Pσ has parameters (m,M). For a k-PTF circuit C, Cσ is defined similarly. If C has
parameters (n, s, d,M) then Cσ has parameters (m, s, d,M).
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Outline of the #SAT procedure. For designing a #SAT algorithm for k-PTF circuits, we
use the generic framework developed by Kabanets and Lu [14] with some crucial modifications.

Given a k-PTF circuit C on n variables of depth d we want to count the number of
satisfying assignments a ∈ {−1, 1}n such that C(a) = −1. We in fact solve a slightly more
general problem. Given (C,P), where C is a small k-PTF circuit of depth d and P is a set
of k-PTF functions, such that

∑
f∈P fan-in(f) is small, we count the number of assignments

that simultaneously satisfy C and all the function in P.
At the core of the algorithm that solves this problem, Algorithm B, is a recursive procedure

A5, which works as follows: on inputs (C,P) it first applies a simplification step that outputs
� 2n instances of the form (C ′,P ′) such that

Both C ′ and functions in P ′ are on m� n variables.
The sets of satisfying assignments of these instances “almost” partition the set of satisfying
assignments of (C,P).
With all but very small probability the bottom layer of C ′ has the following nice structure.

At most n gates are δ-biased. We denote this set of gates by B (as we will simplify
them by setting them to the values they are biased towards).
At most nβd gates are not δ-biased. We denote these gates by G (as we will simplify
them by “guessing” their values).

There is a small set of satisfying assignments that are not covered by the satisfying
assignments of (C ′,P ′) but we can count these assignments with a brute-force algorithm
that does not take too much time.

For each C ′ with this nice structure, then we try to use this structure to create C ′′ which
has depth d− 1. Suppose we reduce the depth as follows:

Set all the gates in B to the values that they are biased towards.
Try all the settings of the values that the gates in G can take, thereby from C ′ creating
possibly 2nβd instances (C ′′,P ′).

(C ′′,P ′) now is an instance where C ′′ has depth d−1. Unfortunately, by simply setting biased
gates to the values they are biased towards, we may miss out on the minority assignments to
these gates which could eventually satisfy C ′. We design a subroutine A3 to precisely handle
this issue, i.e. to keep track of the number of minority assignments, say NC′ . This part of
our algorithm is completely different from that of [14], which only works for subquadratically
sparse PTFs.

Once A3 has computed NC′ , i.e. the number of satisfying assignments among the minority
assignments, we now need to only count the number of satisfying assignments among the
rest of the assignments.

To achieve this we use an idea similar to that in [7, 14], which involves appending P ′
with a few more k-PTFs (this forces the biased gates to their majority values). This gives
say a set P̃ ′. Similarly, while setting gates in G to their guessed values, we again use the
same idea to ensure that we are counting satisfying assignments consistent with the guessed
values, once again updating P̃ ′ to a new set P ′′. This creates instances of the form (C ′′,P ′′),
where the depth of C ′′ is d− 1.

This way, we iteratively decrease the depth of the circuit by 1. Finally, we have instances
(C ′′,P ′′) such that the depth of C ′′ is 1, i.e. it is a single k-PTF, say h. At this stage we
solve #SAT(C̃), where C̃ = h ∧

∧
f∈P′′ f . This is handled in a subroutine A4. Here too our

algorithm differs significantly from [14].

In what follows we will prove Theorem 6. In order to do so, we will set up various
subroutines A1,A2,A3,A4,A5 designed to accomplish certain tasks and combine them
together at the end to finally design algorithm B for the #SAT problem for k-PTF circuits.
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A1 will be an oracle, used in other routines, which will compute number of common
satisfying assignments for small AND of PTFs on few variables (using the same idea as in
the algorithm for #SAT for k-PTFs). A2 will be a simplification step, which will allow us to
argue to argue about some structure in the circuit (this algorithm is from [14]). It will make
many gates at the bottom of the circuit δ-close to a constant, thus simplifying it. A3 will be
used to count minority satisfying assignments for a bunch of δ-biased PTFs, i.e. assignments
which cause at least one of the PTFs to evaluate to its minority value. A4 will be a general
base of case of our algorithm, which will count satisfying assignments for AND of superlinear
many PTFs, by first using A2 to simplify the circuit, then reducing it to the case of small
AND of PTFs and then using A1. A5 will be a recursive procedure, which will use A2 to
first simplify the circuit, and then convert it into a circuit of lower depth, finally making a
recursive call on the simplified circuit.

Parameter setting. Let d be a constant. Let A,B be two fixed absolute large constants.
Let ζ = min(1, A/2Bk2). For each 2 ≤ i ≤ d, let βi = A · εi and εi = ( ζ

10A(k+1) )i. Choose
β1 = 1/10 and ε1 = 1/10A.

Oracle access to a subroutine. Let A1(n′, s, f1, . . . , fs) denote a subroutine with the
following specification. Here, n is the number of variables in the original input circuit.

Input: AND of k-PTFs, say f1, . . . , fs specified by polynomials P1, . . . , Ps respectively,
such that s ≤ n0.1 and for each i ∈ [s], fi is defined over n′ ≤ n1/(2(k+1)) variables and
w(Pi) ≤M .
Output: #{a ∈ {−1, 1}n′ | ∀i ∈ [s], Pi(a) = −1}.

In what follows, we will assume that we have access to the above subroutine A1. We will set
up such an oracle and show that it answers any call to it in time poly(n,M) in Section 4.5.

4.1 Simplification of a k-PTF circuit
For any 1 > ε� (logn)−1, let β = Aε and δ = exp(−nβ/B·k2), where A and B are constants.
Note that it is these constants A,B we use in the parameter settings paragraph above. Let
A2(C, d, n,M) be the following subroutine.

Input: k-PTF circuit C of depth d on n variables with size n1+ε and weight M .
Output: A decision tree TDT of depth n− n1−2β such that for a uniformly random leaf
σ ∈ {−1, 1}n−n1−2β it outputs a good circuit Cσ with probability 1 − exp(−nε), where
Cσ is called good if its bottom layer has the following structure:

there are at most n gates which are δ-close to an explicit constant. Let Bσ denote this
set of gates.
there are at most nβ gates that are not δ-close to an explicit constant. Let us denote
this set of gates by Gσ.

In [14], such a subroutine A2(C, d, n,M) was designed. Specifically, they proved the
following theorem.

I Theorem 14 (Kabanets and Lu [14]). There is a zero-error randomized algorithm A2(C, d, n,
M) that runs in time poly(n,M) ·O(2n−n1−2β ) and outputs a decision tree as described above
with probability at least 1− 1/210n (and outputs ? otherwise). Moreover, given a good Cσ,
there is a deterministic algorithm that runs in time poly(n,M) which computes Bσ and Gσ.
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I Remark. In [14], it is easy to see that the probability of outputting ? is at most 1/2. To
bring down this probability to 1/210n, we run their procedure in parallel 10n times, and
output the first tree that is output by the algorithm. The probability that no such tree is
output is 1/210n.

I Remark. In designing the above subroutine in [14], they consider a more general class
of polynomially sparse-PTF circuits (i.e. each gate computes a PTF with polynomially
many monomials) as opposed to the k-PTF circuits we consider here. Under this weaker
assumption, they get that δ = exp(−nΩ(β3)). However, by redoing their analysis for degree
k-PTFs, it is easy to see that δ could be set to exp(−nβ/B·k2) for some constant B. Under
this setting of δ, we get exactly the same guarantees. In this sense, the above theorem
statement is a slight restatement of [14, Theorem 3.11].

4.2 Enumerating the minority assignments
We now design an algorithm A3(m, `, δ, g1, . . . , g`), which has the following behaviour.

Input: parameters m ≤ n, `, δ such that δ ∈
[
exp(−m1/10(k+1)), 1

]
, ` ≤ m2, k-PTFs

g1, g2, . . . , g` specified by polynomials P1, . . . , P` on m variables (x1, . . . , xm) each of
weight at most M and which are δ-close to −1.
Oracle access to: A1.
Output: a ∈ {−1, 1}m such that ∃i ∈ [`] for which Pi(a) > 0.

I Lemma 15. There is a deterministic algorithm A3(m, `, δ, g1, . . . , g`) as specified above
that runs in time poly(m,M) ·

√
δ · 2m.

Proof. We start with the description of the algorithm.
A3(m, `, δ, g1, . . . , g`).

1. Set q = 1
2 log 1

δ ≤
m
2 and let N = ∅. (N will eventually be the collection of minority

assignments i.e. all a ∈ {−1, 1}m such that ∃i ∈ [`] for which Pi(a) > 0.)
2. For each setting ρ ∈ {−1, 1}m−q to the variables xq+1, . . . , xm, do the following:

a. Construct the restricted polynomials P1,ρ, . . . , P`,ρ. Let gi,ρ = sgn(Pi,ρ) for i ∈ [`].
b. Using oracle A1(q, 1,−gi,ρ), check for each i ∈ [`] if gi,ρ is the constant function −1

by checking if the output of the oracle on the input −gi,ρ is zero.
c. If there is an i ∈ [`] such that gi,ρ is not the constant function −1, try all possible

assignments χ to the remaining q variables x1, . . . , xq. This way, enumerate all
assignments b = (χ, ρ) to x1, . . . , xm for which there is an i ∈ [`] such that Pi(b) > 0.
Add such an assignment to the collection N .

3. Output N .
Correctness. If a ∈ {−1, 1}m is a minority assignment (i.e. ∃i0 ∈ [`] so that Pi0(a) < 0) and

if a = (χ, ρ) where ρ is an assignment to the last m− q variables, and χ to the first q, a
will get added to N in the loop of step 2 corresponding to ρ and that of χ in step 2c,
because of i0 being a witness. Conversely, observe that we only add to the collection N
when we encounter a minority assignment.

Running time. For each setting ρ ∈ {−1, 1}m−q to the variables xq+1, . . . , xm, step 2a takes
poly(m,M) time and step 2b takes O(`) = O(m2) time and so combined, they take only
poly(m,M) time. Let T be the set consisting of all assignments ρ to the last m − q
variables such that the algorithm enters the loop described in step 2c i.e.

T = {ρ ∈ {−1, 1}m−q|∃i ∈ [`] : gi,ρ is not the constant function− 1}
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and let T c denote its complement. Also note that for a ρ ∈ T , enumeration of minority
assignments in step 2c takes 2q · ` · poly(m,M) time. Therefore, we can bound the total
running time by

poly(m,M)(2q · |T |+ |T c|).

Next, we claim that the size of T is small:

I Lemma 16. |T | ≤ ` ·
√
δ · 2m−q.

Proof. We define for i ∈ [`], Ti = {ρ ∈ {−1, 1}m−q|gi,ρ is not the constant function − 1}.
By the union bound, it is sufficient to show that |Ti| ≤

√
δ · 2m−q for a fixed i ∈ [`]. Let Dm

denote the uniform distribution on {−1, 1}m i.e. on all possible assignments to the variables
x1, . . . , xm. Then from the definition of δ-closeness, we know

Pr
a∼Dm

[gi(a) = 1] ≤ δ.

Writing LHS in the following way, we have

E
ρ∼Dm−q

[
Pr

χ∼Dq
[gi,ρ(χ) = 1]

]
≤ δ

where Dm−q and Dq denote uniform distributions on assignments to the last m− q variables
and the first q variables respectively. By Markov’s inequality,

Pr
ρ∼Dm−q

[ Pr
χ∼Dq

[gi,ρ(χ) = 1] ≥
√
δ] ≤

√
δ

Consider a ρ for which this event does not occur i.e. for which Prχ∼Dq [gi,ρ(χ) = 1] <
√
δ.

For such a ρ, gi,ρ has only 2q = 1/
√
δ many inputs and therefore, gi,ρ must be the constant

function −1. Thus, we conclude that

Pr
ρ∼Dm−q

[gi,ρ is not the constant function− 1] ≤
√
δ

or in other words, |Ti| ≤
√
δ · 2m−q. J

Finally, by using the trivial bound |T c| ≤ 2m−q and the above claim, we obtain a total
running time of poly(m,M) ·

√
δ · 2m and this concludes the proof of the lemma. J

4.3 #SAT for AND of k-PTFs

We design an algorithm A4(n,M, g1, . . . , gτ ) with the following functionality.

Input: A set of k-PTFs g1, . . . , gτ specified by polynomials P1, . . . , Pτ on n variables
such that w(pi) ≤M for each i ∈ [τ ] and

∑
i∈[τ ] fan-in(gi) ≤ n1+ε1 .

Output: #{a ∈ {−1, 1}n | ∀i ∈ [τ ], Pi(a) < 0}.
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4.3.1 The details of the algorithm
A4(n,M,g1, . . . ,gτ ).
1. Let m = nα for α = ζε1

2(k+1) . Let C denote the AND of g1, . . . , gτ .
2. Run A2(C, 2, n,M) to obtain the decision tree TDT. Initialize N to 0.
3. For each leaf σ of TDT, do the following:

(A) If Cσ is not good, count the number of satisfying assignments for Cσ by brute-force
and add to N .

(B) If Cσ is good, do the following:
(i) Cσ is now an AND of PTFs in Bσ and Gσ, over n′ = n1−2β1 variables, where

all PTFs in Bσ are δ-close to an explicit constant, where δ = exp(−nβ1/B·k2).
Moreover, |Bσ| ≤ n, |Gσ| ≤ nβ1 .
Let Bσ = {h1, . . . , h`} be specified by Q1, . . . , Q`.
Suppose for i ∈ [`], hi is close to ai ∈ {−1, 1}. Then let Q′i = −ai · Qi and
h′i = sgn(Q′i). Let B′σ = {Q′1, . . . , Q′`}.

(ii) For each restriction ρ : {xm+1, . . . , xn′} → {−1, 1}, do the following:
(a) Check if there exists h′ ∈ B′σ such that h′ρ is not the constant function −1

using A1(m, 1, h′ρ).
(b) If such an h′ ∈ B′σ exists, then count the number of satisfying assignments

for Cσρ by brute-force and add to N .
(c) If the above does not hold, we have established that for each hi ∈ Bσ, hi,ρ

is the constant function ai. If ∃i ∈ [`] such that ai = 1, it means Cσρ is
also a constant 1 . Then simply halt. Else set each hi to ai.
Thus, Cσρ has been reduced to an AND of nβ1 many PTFs over m variables.
Call this set G′σρ, use A1(m,nβ1 , G′σρ) to calculate the number of satisfying
assignments and add the output to N .

4. Finally, output N .

4.3.2 The correctness argument and running time analysis
I Lemma 17. A4 is a zero-error randomized algorithm that counts the number of satisfying
assignments correctly. Further, A4 runs in time poly(n,M) · 2n−nα and outputs the right
answer with probability at least 1/2 (and outputs ? otherwise).

Proof.
Correctness. For a leaf σ of TDT, when Cσ is not good, we simply use brute-force, which is

guaranteed to be correct. Otherwise,
If h′ρ not the constant function −1 for some h′ ∈ B′σ, then we again use brute-force,
which is guaranteed to work correctly.
Otherwise, for each h′ ∈ B′σ, h′ρ is the constant function −1. Here we only need to
consider the satisfying assignments for the gates in Gσρ. For this we use A1, that
works correctly by assumption.

Further, we need to ensure that the parameters that we call A1 on, are valid. To see
this, observe that m = nα ≤ n1/(2(k+1)) because of the setting of α and further, we have
nβ1 ≤ n0.1.
Finally, the claim about the error probability follows from the error probability of A2
(Theorem 14).

Running Time. The time taken for constructing TDT is O∗(2n−n1−2β1 ), by Theorem 14. For
a leaf σ of TDT, we know that step 3A is executed with probability at most 2−nε1 . The
total time for running step 3A is thus O∗(2n−nε1 ). We know that the oracle A1 answers
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calls in poly(n,M) time. Hence, the total time for running step 3(B)iia is O∗(2n−nα).
Next, note that if step 3(B)iib is executed, then all PTFs in Bσ are δ-close to −1. So,
the number of times it runs is at most δ · 2n′ . Therefore, the total time for running
step 3(B)iib is O∗(2n+nα−nβ1/Bk2

). Similar to the analysis of step 3(B)iia, the total time
for running step 3(B)iic is also O∗(2n−nα).
Summing them up, we conclude that total running time is O∗(2n−nα), as due to our
choice of various parameters, n− nα is the dominating power of 2. This completes the
proof. J

4.4 #SAT for larger depth k-PTF circuits
Let C be a k-PTF circuit of depth d ≥ 1 on n variables and let P be a set of k-PTFs
g1, . . . , gτ , which are specified by n-variate polynomials P1, . . . , Pτ . Let #SAT(C,P) denote
#{a ∈ {−1, 1}n | C(a) < 0 and ∀i ∈ [τ ], Pi(a) < 0}. We now specify our depth-reduction
algorithm A5(n, d,M, n1+εd , C,P).

Input: (C,P) as follows:
k-PTF circuit C with parameters (n, n1+εd , d,M).
a set P of k-PTFs g1, . . . , gτ on n variables, which are specified by polynomials
P1, . . . , Pτ such that

∑τ
i=1 fan-in(gi) ≤ n1+εd and for each i ∈ [τ ], w(Pi) ≤M .

Oracle access to: A1,A4.
Output: #SAT(C,P).

We start by describing the algorithm.

4.4.1 The details of the algorithm
Let count be a global counter initialized to 0 before the execution of the algorithm.

A5(n, d,M, n1+εd ,C,P).
1. If d = 1, output A4(n,M, {C} ∪ P) and halt.
2. Run A2(C, d, n,M), which gives us a TDT.
3. For each leaf σ ∈ {−1, 1}n−n1−2βd of TDT. (If not, output ?.)

a. For each i ∈ [τ ] compute Pi,σ, the polynomial obtained by substituting σ in its variables.
Let Pσ = {P1,σ, . . . , Pτ,σ}.

b. Obtain Cσ. If Cσ is not a good circuit, then brute-force to find the number of satisfying
assignments of (Cσ,Pσ), say Nσ, and set count = count +Nσ.

c. If Cσ is good then obtain Bσ and Gσ.
d. Let Bσ = {h1, . . . , h`} be specified by Q1, . . . , Q`. We know that each h ∈ Bσ is δ-close

to an explicit constant, for δ = exp(−nβd/Bk2).
Suppose for i ∈ [`], hi is close to ai ∈ {−1, 1}. Then let Q′i = −ai ·Qi and h′i = sgn(Q′i).
Let B′σ = {Q′1, . . . , Q′`}.

e. Run A3(n1−2βd , `, δ, h′1, . . . , h
′
`) to obtain the set Nσ of all the minority assignments

of Bσ. (Note that this uses oracle access to A1.)
for each a ∈ Nσ, if ((C(a) < 0) AND (∀i ∈ [`], Pi(a) < 0)), then count = count + 1.

f. Let Gσ = {f1, . . . , ft} be specified by polynomials R1, . . . , Rt. We know that t ≤ nβd .
For each b ∈ {−1, 1}t,
i. Let R′i = −bi ·Ri for i ∈ [t]. Let G′σ,b = {R′1, . . . , R′t}.
ii. Let Cσ,b be the circuit obtained from Cσ by replacing each hi by ai 1 ≤ i ≤ ` and

each fj by bj for 1 ≤ j ≤ t.

ITCS 2019
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iii. Pσ,b = Pσ ∪B′σ ∪G′σ,b.
iv. If d > 2 then run A5(n1−2βd , d− 1,M, n1+εd , Cσ,b,Pσ,b) n1 = 10n times and let Nσ

be the output of the first run that does not output ?. Set count = count +Nσ. (If
all runs of A5 output ?, then output ?.)

v. If d = 2 then run A4(n1−2βd ,M,Cσ,b ∪ Pσ,b) n1 = 10n times and let Nσ be the
output of the first run that does not output ?. Set count = count +Nσ. (If all runs
of A5 output ?, then output ?.)

4. Output count.

4.4.2 The correctness argument and running time analysis
I Lemma 18. The algorithm A5 described above is a zero-error randomized algorithm which
on input (C,P) as described above, correctly #SAT(C,P). Moreover, the algorithm outputs
the correct answer (and not ?) with probability at least 1/2. Finally, A5(n, d,M, n1+εd , C, ∅)
runs in time poly(n,M) ·2n−nζεd/2(k+1) , where parameters εd, ζ are as defined at the beginning
of Section 4.

Proof. We argue correctness by induction on the depth d of the circuit C.
Clearly, if d = 1, correctness follows from the correctness of algorithm A4. This takes

care of the base case.
If d ≥ 2, we argue first that if the algorithm does not output ?, then it does output

#SAT(C,P) correctly. Assume that the algorithm A2 outputs a decision tree TDT as required
(otherwise, the algorithm outputs ? and we are done). Now, it is sufficient to argue that
for each σ, the number of satisfying assignments to (Cσ,Pσ) is computed correctly (if the
algorithm does not output ?).

Fix any σ. If Cσ is not a good circuit, then the algorithm uses brute-force to compute
#SAT(Cσ,Pσ) which yields the right answer. So we may assume that Cσ is indeed good.

Now, the satisfying assignments to (Cσ,Pσ) break into two kinds: those that are minority
assignments to the set Bσ and those that are majority assignments to Bσ. The former set
is enumerated in Step 3e (correctly by our analysis of A3) and hence we count all these
assignments in this step.

Finally, we claim that the satisfying assignments to (Cσ,Pσ) that are majority assignments
of all gates in Bσ are counted in Step 3f. To see this, note that each such assignment
a ∈ {−1, 1}n1−2βd forces the gates in Gσ to some values b1, . . . , bt ∈ {−1, 1}. Note that for
each such b ∈ {−1, 1}t, these assignments are exactly the satisfying assignments of the pair
(Cσ,b,Pσ,b) as defined in the algorithm. In particular, the number satisfying assignments to
(Cσ,Pσ) that are majority assignments of all gates in Bσ can be written as∑

b∈{−1,1}t
#SAT(Cσ,b,Pσ,b).

We now want to apply the induction hypothesis to argue that all the terms in the sum are
computed correctly. To do this, we need to argue that the size of Cσ,b and the total fan-in of
the gates in Pσ,b are bounded as required (note that the total size of C remains the same,
while the total fan-in of P increases by the total fan-in of the gates in B′σ ∪G′σ,b which is at
most n1+εd). It can be checked that this boils down to the following two inequalities

n(1−2βd)(1+εd−1) ≥ n1+εd and n(1−2βd)(1+εd−1) ≤ 2n1+εd

both of which are easily verified for our choice of parameters (for large enough n). Thus, by
the induction hypothesis, all the terms in the sum are computed correctly (unless we get ?).
Hence, the output of the algorithm is correct by induction.
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Now, we analyze the probability of error. If d = 1, the probability of error is at most 1/2
by the analysis of A4. If d > 2, we get an error if either A2 outputs ? or there is some σ
such that the corresponding runs of A5 or A4 output ?. The probability of each is at most
1/210n. Taking a union bound over at most 2n many σ, we see that the probability of error
is at most 1/2Ω(n) ≤ 1/2.

Finally, we analyze the running time. Define T (n, d,M) to be the running time of the
algorithm on a pair (C,P) as specified in the input description above. We need the following
claim.

I Lemma 19. T (n, d,M) ≤ poly(n,M) · 2n−nζεd/2(k+1)
.

To see the above, we argue by induction. The case d = 1 follows from the running time of
A4. Further from the description of the algorithm, we get the following inequality for d ≥ 2.

T (n, d, M) ≤ poly(n, M) · (2n−n1−2βd + 2n−nεd + 2n− 1
2 ·n−βd/(Bk

2)
+ 2n−n

(1−2βd)ζεd−1/2(k+1)
) (1)

The first term above accounts for the running time of A2 and all steps other Steps 3b,3e and
3f. The second term accounts for the brute force search in Step 3b since there are only a 2−nεd

fraction of σ where it is performed. The third term accounts for the minority enumeration
algorithm in Step 3e (running time follows from the running time of that algorithm). The
last term is the running time of Step 3f and follows from the induction hypothesis.

It suffices to argue that each term in the RHS of (1) can be bounded by 2n−nζεd/2(k+1)
.

This is an easy verification from our choice of parameters and left to the reader. This
concludes the proof. J

4.5 Putting it together
In this subsection, we complete the proof of Theorem 6 using the aforementioned subroutines.
We also need to describe the subroutine A1, which is critical for all the other subroutines.
We shall do so inside our final algorithm for the #SAT problem for k-PTF circuits, algorithm
B. Recall that A1 has the following specifications:

Input: AND of k-PTFs, say f1, . . . , fs specified by polynomials P1, . . . , Ps respectively,
such that s ≤ n0.1 and for each i ∈ [s], fi is defined over n′ ≤ n1/(2(k+1)) variables and
w(Pi) ≤M .
Output: #{a ∈ {−1, 1}n′ | ∀i ∈ [s], fi(a) = −1}.

We are now ready to complete the proof of Theorem 6. Suppose C is the input k-PTF
circuit with parameters (n, n1+εd , d,M). On these input parameters (C, n, n1+εd , d, k,M),
we finally have the following algorithm for the #SAT problem for k-PTF circuits:

B(C, n, n1+εd , d, k,M).
1. (Oracle Construction Step) Construct the oracle A1 as follows. Use n1 = 10n independent

runs of the algorithm from Corollary 10, with ` chosen to be n0.1 and m to be n1/2(k+1),
to construct independent random linear decision trees T1, . . . , Tn1 such that on any input
w = (coeffm,k(Q1), . . . , coeffm,k(Q`)) ∈ Rr·` (where Qis are polynomials of degree at
most k that sign-represent k-PTFs gi, each on m variables), each Ti computes the number
of common satisfying assignments to g1, . . . , g` with error at most 1/2.

2. RunA5(n, d,M, n1+εd , C, ∅). For an internal call toA1, say on parameters (n′, s, f1, . . . , fs)
where n′ ≤ m and s ≤ `, do the following:
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a. Run each Ti on the input w = (coeffn′,k(P1), . . . , coeffn′,k(Ps)) ∈ Rr·s. (We expand
out the coefficient vectors with dummy variables so that they depend on exactly m
variables. Similarly, using some dummy polynomials, we can assume that there are
exactly ` polynomials.)

b. If some Ti outputs the number of common satisfying assignments to f1, . . . , fs, then
output that. Otherwise, if all Ti output ?, then output ?.

I Lemma 20. The construction of the zero-error randomized oracle A1 in the above algorithm
takes 2O(n0.6) time. Once constructed, the oracle A1 answers any call (with the correct
parameters) in poly(n,M) time with error at most 1/210n.

Proof.
Correctness. It is clear from Corollary 10 that algorithm A1 outputs either ? or the correct

number of common satisfying assignments to f1, . . . , fs. Further, as the Tis in step 1
are constructed independently, it follows that with probability at least 1− 1/210n, the
algorithm indeed outputs the number of common satisfying assignments to f1, . . . , fs.

Running Time. Substituting the parameters ` = n0.1 and m = n1/(2(k+1)) in Corollary 10,
we see that the construction of A1 (step 1) takes n1 ·2n

0.6 time. Also, the claimed running
time of answering a call follows upon observing that steps 2a and 2b combined take only
poly(n,M) time to execute. J

With the correctness of A1 now firmly established, we finally argue the correctness and
running time of algorithm B.

Correctness. The correctness of B follows from that of A1,A2,A3,A4, and A5 (see Lemma
20, Theorem 14, Lemmas 15, 17, and 18 respectively). Furthermore, if the algorithm A1 is
assumed to have no error at all, then from the analysis of A5, we see that the probability
of error in B is at most 1/2. However, as algorithm A1 is itself randomized, we still need
to bound the probability that any of the calls made to A1 produce an undesirable output
(i.e. an output of ?). To this end, first note that as the running time of A5 is bounded by
2n, the number of calls to A1 is also bounded by 2n. But by Theorem 14 and Lemma 20,
the probability of A1 outputting ? is bounded by 1/210n. Therefore, by the union bound,
algorithm B correctly outputs the number of satisfying assignments to the input circuit C
with probability at least 1/2− 1/2Ω(n) ≥ 1/4.

Running Time. By Lemma 18 and 20, the running time of B will be 2O(n0.6) + poly(n,M) ·
2n−nζεd/2(k+1) . Thus, the final running time is poly(n,M) · 2n−S where S = nζεd/2(k+1) and
where εd > 0 is a constant depending only on k and d. Setting εk,d = ζεd/2(k + 1) gives the
statement of Theorem 6.
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the “d-to-d games conjecture” roughly says that for every ε > 0, there is some finite alphabet
Σ such that it is NP-hard to distinguish, given a constraint satisfaction problem with d-to-d
constraints, whether it is possible to satisfy at least 1−ε fraction of the constraints, or if every
assignment satisfies at most ε fraction of the constraints.3 The case of d = 1 corresponds to
the more famous Unique Games Conjecture, but until recently there was no constant d for
which the corresponding d-to-d conjecture was known to be true.

Dinur, Khot, Kindler, Minzer, and Safra [3], building on ideas of Khot, Minzer and Safra
[6], recently initiated an approach towards proving the 2-to-2 conjecture, based on a certain
combinatorial hypothesis positing the soundness of the “Grassmann Agreement Test”. In this
work we show that their hypothesis follows from a certain natural hypothesis characterizing
the structure of non-expanding sets in the degree two Short code graph [2]. Following our
work, Khot, Minzer and Safra [7] proved the latter hypothesis thus completing the proof of
the 2-to-2 games conjecture. This has several implications to hardness of approximation
including improving on the NP-hardness of approximation for Vertex Cover along with a
host of other improved NP-hardness results. Perhaps more importantly, this also gives a
strong evidence for the truth of the Unique Games Conjecture itself. We defer to [3, 4, 7]
for a detailed discussion on the importance of the 2-to-2 games conjecture, as well as the
reduction of this conjecture to showing the soundness of the Grassmann agreement tester.

1.1 Our Results
Our main result reduces the task of proving the “Grassmann Agreement Hypothesis” of
Dinur, Khot, Kindler, Minzer and Safra [3, Hypothesis 3.6] to characterizing the structure of
non-expanding sets in the associated Grassmann graph.

We show that the Grassmann Agreement Hypothesis [3, Hypothesis 3.6] follows from the
Grasmann Expansion Hypothesis [4, Hypothesis 1.7].
We describe the related Shortcode test and the associated agreement and expansion
hypothesis and relate them to the Grassmann versions above.

The above, combined with the work of [3, 7], suffices to prove the 2-to-2 conjecture.
However we note that it is possible to directly obtain a proof of the 2-to-2 conjecture (see
the recent exposition at [1]) using the “Shortcode Expansion Hypothesis” without going
through the Grassmann graph at all. We think the Short code view provides a natural way
to understand the reduction and suggests potential extensions, see Section 1.6.

1.2 Grassmann Graph and DKKMS Consistency Test
To state our results formally, we need to define the Grassman and Short code graphs, which
we now do. The Grassmann graph G(`, n) with parameters `, n has vertices given by all
`-dimensional subspaces (denoted by V`) of Fn2 . Two subspaces V, V ′ of Fn2 have an edge
between them if dim(V ∩ V ′) = `− 1.

Let LIN(Fn2 ) be the set of all linear functions Fn2 → F2 . For every f ∈ LIN(Fn2 ), let Ff be
the map that assigns to every V ∈ V`, Ff (V ) = f|V the restriction of the linear function f
to the subspace V . Let LIN(`, n) = {Ff | f ∈ LIN(Fn2 )} be the set of all such maps.

The Grassmann Consistency test is a two-query test for LIN(`, n) described below:

3 For d > 1, the conjectures are often stated in their perfect completeness variant, where we replace 1 − ε
with 1 in the first case. In this work (as well as all the line of works following [6]), we refer to the
imperfect completeness version as stated above.
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Test 1: Grassmann Consistency Test

Given: a map F from V` → LIN(F `2 ) that maps any V ∈ V` to F (V ) a linear function
on V .

Operation:
1. Pick an edge (V, V ′) of G(`, n) uniformly at random.
2. Receive F (V ), F (V ′) ∈ LIN(`, n).
3. Accept if F (V )V ∩V ′ = F (V ′)V ∩V ′ otherwise reject.

It is easy to see the following completeness of the Grassmann graph test.

I Fact 1 (Completeness). Suppose F ∈ LIN(`, n). Then, F passes the Grassman Consistency
test with probability 1.

The DKKMS hypothesis conjectures a precise version of soundness of the Grassmann
Consistency Test.

I Hypothesis 2 (DKKMS Soundness Hypothesis). For every δ > 0, there exists ε > 0, and
an integer r > 0 such that following holds for sufficiently large n� `.

Let F : V` → LIN(F`2) such that Pr(V,V ′)∼G(`,n)[F (V )V ∩V ′ = F (V ′)V ∩V ′ ] ≥ δ. Then, there
exist subspaces Q,W ⊆ Fn2 of dimensions r and n− r respectively and an f ∈ LIN(Fn2 ) such
that

Pr
V∼V`,Q⊆V⊆W

[F (V ) = fV ] ≥ ε.

1.3 Shortcode Graph and Consistency Test
We now define the closely related Degree 2 Shortcode graph and an immediate analog of the
Grassmann consistency test on this graph. For parameters `, n as before, the vertices of
the degree 2 Short code graph S`,n are elements of Mat`,n, that is, all matrices on F2 with
dimensions `× n. Two vertices M1 and M2 have an edge between them if M1 −M2 is a rank
1 matrix over the field F2. The 2 query codeword test on this graph is entirely analogous to
the one above for the Grassmann graph:

Test 2: Degree 2 Shortcode Consistency Test

Given: a map F from Mat`,n → F`2.
Operation:

1. PickM1 ∼ Mat`,n and a rank 1 matrix ab> for vectors a ∈ F`2, b ∈ Fn2 all uniformly
at random from their respective domains. Let M2 = M1 + ab>.

2. Receive F (M1), F (M2) ∈ F`2.
3. Accept if F (M2) ∈ {F (M1), F (M1) + a}.

Just as the Grassmann consistency test, the above Short code consistency test is a “2-to-2”
constraint and the following completeness is easy to establish.

I Fact 3 (Completeness). Let f : Fn2 → F2 be any affine linear function. Let F = Ff :
Mat`,n → F`2 be the map that evaluates f on each row the input matrix. Then, F passes the
Short code consistency test with probability 1.

The analogous soundness hypothesis can now be stated as:
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9:4 Small-Set Expansion in Shortcode Graph and the 2-to-2 Conjecture

I Hypothesis 4 (Degree 2 Shortcode Soundness Hypothesis). For every δ > 0, there exists
ε > 0, and an integer r > 0 such that following holds for sufficiently large n� `.

Let F : Mat`,n → F`2 such that PrM∼Mat`,n,a∼F`
2,b∼Fn

2
[F (M+ab>) ∈ {F (M), F (M)+a}] ≥

δ. Then, there exists linear constraints (qi, ti) and (ri, si) for i ≤ r and a z ∈ Fn2 , u ∈ F`2 such
that

Pr
M∼Mat`,n

[F (M) = Mz + u |Mqi = ti, r
>
i M = si ∀i ≤ r] ≥ ε.

1.4 Soundness vs Small-Set Expansion in Grasmann/Shortcode Graphs
Recall that for a regular graph G, the expansion of a set S of vertices is the probability
that a random walk beginning at a uniformly random vertex in S steps out of S. That is,
ΦG(S) = Prv∼S,v′∼v[v′ 6∈ S].

The DKKMS Soundness Hypothesis implies a natural characterization small non-expan-
ding sets in G(`, n) noted below as Hypothesis 6. Similarly, the degree 2 Short code soundness
hypothesis implies a natural characterization of non-expanding sets in S`,n. We include a
brief overview of the argument here and refer the reader to the more extensive commentary
in Section 1.3 of [3] for further details.

Suppose A1, A2, . . . , Ar are “non-expanding” sets that cover a constant fraction of vertices
in G(`, n).We construct a labeling strategy F by choosing r uniformly random linear functions
fi : Fn2 → F2 and setting F (V ) = fi if V ∼ Ai and F (V ) is a random linear function otherwise.
Clearly, F doesn’t agree with a single linear function on significantly more than 1/r fraction
of the vertices in V`. On the other hand, if Ais are sufficiently non-expanding, then, a random
edge will lie inside one of the Ais with a non-trivially large probability and thus F will
satisfy the Grassmann consistency test. In this, case, we will hope that there are subspaces
Q,W of constant dimension and co-dimension, respectively such that restricting to subspaces
V ∈ V`(Q,W ) (where V`(Q,W ) is the subset V ∈ V` such that V ⊆ W ) implies that
F (V ) = fV for some fixed global linear function f . This can happen in the above example for
F only if there are Q,W as above such that one of the |Ai∩V`(Q,W )|

|V`(Q,W ) is Ω(1) (i.e. independent
of `, n). Thus, Hypothesis 2 forces that the non-expanding sets Ai to be “structured” (in the
sense of having a large density inside V`(Q,W ) for some Q,W of constant dimension and
co-dimension, respectively.) This can be interpreted as saying that the non-expansion of any
set of vertices in G(`, n) can be “explained” away by a more than typical density in one of
the canonical non-expanding sets (i.e., those that contain a subspace Q and are contained
inside a subspace W of constant dimension and co-dimension, respectively.)

To formally state the Grassmann Expansion Hypothesis, we define the special non-
expanding sets (referred to as “zoom-in” and “zoom-outs” in [4]):

I Definition 5 (Nice Sets in Grassmann Graph). A subset S ⊆ V` of vertices in G(`, n) is
said to be r-nice if there are subspace Q,W of Fn2 of dimension and co-dimension r1, r2
respectively such that r1 + r2 = r and S = {V ⊆ V` | Q ⊆ V ⊆W}.

I Hypothesis 6 (Grassmann Expansion Hypothesis). For every η > 0, there exists δ, r
depending only on η such that if S ⊆ V` satisfies ΦG(`,n)(S) < η, then, there are subspaces
Q,W over Fn2 of dimension and co-dimension r1, r2 satisfying r1 + r2 ≤ r respectively, such
that PrV :Q⊆V⊆W [V ∈ S] ≥ δ.

Analogously, we can define nice sets in the degree 2 Short code graph and state the
expansion hypothesis. We call Q, a right affine subspace of matrices in Mat`,n if there are
pairs (qi, ti) and every M ∈ Q satisfies Mqi = ti. We define a left affine subspace analogously.
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I Definition 7 (Nice Sets in Degree 2 Shortcode Graph). A subset S ⊆ S`,n is said to be
r-nice if it is an intersection of a left and right affine subspace in Mat`,n with sum of the
dimensions r.

I Hypothesis 8 ( Shortcode Expansion Hypothesis). For every η > 0, there exist δ, r depending
only on η such that for every subset S ⊆ Mat`,n, if PrM∼S,a∼F`

2,b∼Fn
2
[M + ab> ∈ S] ≥ η,

then, there exists an r-nice set T ⊆ S`,\ such that |S ∩ T | ≥ δ|T |.

While Hypotheses 2 and 4 posit soundness of a specific “code-word consistency” test
associated with the Grassmann/Shortcode graphs, Hypotheses 6 and 8 ask for a purely graph
theoretic property: a characterization of non-expanding sets in G(`, n) and S`,n. As such, it
appears easier to attack and [3] thus suggested understanding the structure of non-expanding
sets in G(`, n) as a natural first step. As we show in this note, proving Hypothesis 8 is in fact
enough to show Hypothesis 2. In a follow up work [7], this result was used in to complete
the proof of the DKKMS soundness hypothesis.

1.5 Our Results
We are now ready to state our main results formally.

First, we show that the soundness of the Short code consistency test follows from the
expansion hypothesis for the Short code graph.

I Theorem 9. The degree 2 Shortcode Expansion Hypothesis 8 implies the Degree 2 Shortcode
Soundness Hypothesis 4.

Second, we show that the soundness hypothesis for the Short code consistency test implies
the soundness hypothesis for the Grassmann consistency test. This reduces the DKKMS
soundness hypothesis to establishing the expansion hypothesis for the Shortcode graph.

I Theorem 10. The degree 2 Shortcode Soundness Hypothesis implies the Grassmann
Soundness Hypothesis 2.

Finally, we relate the expansion hypothesis of the Grassmann graph to the expansion
hypothesis for the degree 2 Short code graph.

I Theorem 11. The Grassmann Expansion Hypothesis (Hypothesis 6) is equivalent to the
Shortcode Expansion Hypothesis (Hypothesis 8).

1.6 Discussion
Working with the Short code consistency test (and consequently, the Short code expansion
hypothesis) makes an approach to proving Hypothesis 2 somewhat more tractable. This is
because unlike the Grassmann graph, Degree 2 Short code graph is a Cayley graph on Mat`,n
under the group operation of F2-addition with the set of all rank 1 matrices forming the set
of generators. Thus studying expansion of sets of vertices can be approached via powerful
methods from Fourier analysis. Indeed, this is the route taken by the recent breakthrough
[7] that proves the Short code expansion hypothesis and completes the proof of the 2-to-2
games conjecture (with imperfect completeness).

Perhaps equally importantly, the Short code consistency test suggests immediate exten-
sions (higher degree Short code graphs) that provide a natural path to proving the Unique
Games Conjecture. We discuss this approach here.

First, the Grassmann/Short code consistency tests as stated above are “2-to-2” tests.
That is, for any reply for the first query, there are two admissible replies for the other query.
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9:6 Small-Set Expansion in Shortcode Graph and the 2-to-2 Conjecture

However, it is simple to modify the tests and make them unique or “1-to-1” at the cost
of making the completeness 1/2 instead of 1. For concreteness, we describe this simple
modification below.

Test 3: Unique Degree 2 Shortcode Consistency Test

Given: a map F from Mat`,n → F`2.
Operation:

1. PickM1 ∼ Mat`,n and a rank 1 matrix ab> for vectors a ∈ F`2, b ∈ Fn2 all uniformly
at random from their respective domains. Let M2 = M1 + ab>.

2. Receive F (M1), F (M2) ∈ F`2.
3. Accept if F (M2) = F (M1).

Test 4: Unique Degree 3 Shortcode Consistency Test

Given: a map F from Ten`,m,n → F`2.
Operation:

1. Pick T1 ∼ Ten`,m,n and a rank 1 tensor a ⊗ b ⊗ c for vectors a ∈ F`2, b ∈ Fm2
and c ∈ Fn2 all uniformly at random from their respective domains. Let T2 =
T1 + a⊗ b⊗ c.

2. Receive F (T1), F (T2) ∈ F`2.
3. Accept if F (T2) = F (T1).

It is easy to check that the any strategy that passes the 2-to-2 test can be modified to
obtain a success probability of 1/2 in passing the “unique” test above (see proof of Lemma
14 below). This is one of the several ways that the NP hardness of “2-to-2” games implies
the NP hardness of (1/2, ε)-unique games - that is, distingushing between instances where at
least 1/2 the constraints are satisfiable from those where at most ε fraction of constraints
are satisfiable.

A natural strategy, thus, to try to show NP hardness of (1− ε, ε)-unique games is to use
some variant of the Short code consistency test above that has completeness 1− ε instead of
1/2. Indeed, the degree 2 Short code consistency test suggests natural analogs with higher
completeness - by moving to higher degree Short code graphs. For concreteness, consider the
following test on degree 3 Short code graphs, where it is easy to argue a completeness of 3/4.

Let Ten`,m,n be the set of all `×m× n tensors over F2. Recall that a rank 1 tensor is
defined by 3 vectors a ∈ F`2, b ∈ Fm2 and c ∈ Fn2 and can be written as a⊗ b⊗ c.

To see why there’s a natural analog of the strategy in case of the degree 2 Short code
consistency test that gives a completeness of 3/4, we show:

I Lemma 12 (Completeness). Let y ∈ Fm2 and z ∈ Fn2 . Let Ff : Ten`,m,n → F`2 be the map
that assigns to any tensor T , the value F (T )i =

∑
j,k T (i, j, k)yjzk. Then, Ff passes the test

with probability 3/4.

Proof. Let T, T ′ be such that T − T ′ is rank 1 tensor. Then, Ff passes the test only if
Ff (T − T ′) = 0. If T − T ′ = a ⊗ b ⊗ c, then Ff (T − T ′) = 〈b, y〉 · 〈c, z〉a. Since b, c are
independently chosen in the test, the probability that Ff (T − T ′) = 0 is 3/4. J
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Thus, the degree 3 Short code consistency test gives a natural analog of the degree 2
Short code consistency test with higher completeness. Indeed, degree r version gives a test
with completeness of 1− 2−r as expected. One can also frame expansion hypotheses similar
to the ones for the degree 2 case that posit a characterization of the non-expanding sets in
higher degree Short code graphs.

While our current efforts to compose this test with the “outer-PCP” in order to get a
reduction to Unique Games problem (with higher completeness) have not succeeded, it seems
a natural avenue for launching an attack on the UGC.4

2 Small-Set-Expansion vs Soundness

In this section, we establish that the inverse Short code hypothesis (Hypothesis 8) implies
the soundness of the degree 2 Short code consistency test 4.

From 2-to-2 to Unique Tests

For the sake of exposition, it will be easier to work with Test 1.6, the “unique” version of the
degree 2 Short code consistency test. Thus, we restate the soundness hypothesis for Test 1.6
and show that it is enough to establish Hypothesis 4.

I Hypothesis 13 (Soundness of Test 1.6). For every η > 0, there exists δ > 0, and an integer
r > 0 such that following holds for sufficiently large n� `.

Let F : Mat`,n → F`2 such that PrM∼Mat`,n,a∼F`
2,b∼Fn

2
[F (M + ab>) = F (M)] ≥ η. Then,

there exists linear constraints (qi, ti) and (ri, si) for i ≤ r and a z ∈ Fn2 , u ∈ F`2 such that

Pr
M∼Mat`,n

[F (M) = Mz + u |Mqi = ti, r
>
i M = si ∀i ≤ r] ≥ δ.

We first show that Hypothesis 13 implies Hypothesis 4.

I Lemma 14. Hypothesis 13 implies Hypothesis 4.

Proof. Let F be the labeling strategy for Test 1.3. We will first obtain a good labeling
strategy for Test 1.6 by modifying F slightly.

Choose h uniformly at random from Fn2 . For any M ∈ Mat`,n, let G(M) = F (M) +Mh.
We claim that if F passes the Test 1.3 with probability η, then G passes Test 1.6 with
probability at least η/2.

To see this, take any M,M ′ such that M ∼ M ′ in S`,n. That is, M −M ′ = ab> for
vectors a, b. We will argue that G(M) = G(M ′) with probability 1/2. This will imply that
in expectation over the choice of h, G satisfies at least 1/2 the constraints satisfied by F in
Test 1.3 completing the proof.

This is simple to see: since F passes the test, F (M) = F (M ′) or F (M) − F (M ′) =
a. WLOG, say the first happens. Observe that G passes the unique test on M,M ′ if
F (M)+Mh = F (M ′)+M ′h or F (M)−F (M ′) = (M−M ′)h = 〈b, h〉a. Since F (M) = F (M ′),
G thus passes if 〈b, h〉 = 0 which happens with probability 1/2. J

4 There are indeed very serious obstacles that must be overcome before carrying this out. Specifically, the
reduction of [3] uses a careful interplay between smoothness properties of the outer PCP and efficiency
or “blow up” properties of the test (i.e., the number of potential queries by the verifier as a function of
the number of honest strategies). The tensor based test has too much of a blowup to be able to be
simply “plugged in” in the outer PCP used by [3].
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9:8 Small-Set Expansion in Shortcode Graph and the 2-to-2 Conjecture

Expansion to Soundness

We will now show that Hypothesis 8 implies Hypothesis 13. This completes the proof of
Theorem 9. A similar argument can be used to directly establish that Hypothesis 6 implies
Hypothesis 2. We do not include it here explicitly. Instead, we relate the expansion and
soundness hypothesis for the degree 2 Short code test to the analogs for the Grassmann test
as we believe this could shed light on showing expansion hypotheses for higher degree Short
code tests discussed in the next section.

I Lemma 15. Hypothesis 8 implies Hypothesis 13.

Proof. Let F be the labeling function as in the assumption in Hypothesis 13. Then, we
know that PrM∼Mat`,n,a∼F`

2,b∼Fn
2
[F (M) = F (M + ab>)] ≥ η. For any z ∈ {0, 1}`, let Sz be

the set of all matrices M with F (M) = z. Then, by an averaging argument, there must be a
z ∈ {0, 1}` such that PrM∼Sz,a∼F`

2,b∼Fn
2
[M + ab> ∈ Sz] ≥ η.

Apply Hypothesis 8 to Sz to obtain r-nice subset Q of Mat`,n such that |Q ∩ Sz| ≥ δ|Q|.
Let Mq = t be a affine constraint satisfied by every M ∈ Q. Consider the affine linear
strategy H : Mat`,n → F`2 that maps any M to H(M) = Mq + t+ z. Observe that for every
M ∈ Q, H(M) = z by this choice. As a result, when M ∼ M ′ are such that M,M ′ ⊆ Q,
Pr[H(M) = H(M ′)] ≥ δ. Thus, H is the “decoded” strategy that satisfies the requirements
of Hypothesis 13 as required. This completes the proof. J

3 Relating Grassmann Graphs to Degree 2 Shortcode Graphs

In this section, we show a formal relationship between the Grassmann and the degree
Shortcode tests. In particular, we will prove Theorems 10 and 11.

3.1 A homomorphism from G(`, n) into S`,n

Key to the relationship between the two tests is an embedding of the degree 2 Short code
graph S`,n into Mat`,n−`. We describe this embedding first. As justified in the previous
section, it is without loss of generality to work with the “unique” versions of both the tests.

To describe the above embedding, we need the notion of projection of a subspace of Fn2
to a set of coordinates.

I Definition 16 (Projection of a Subspace). Given a subspace V ⊆ Fn2 , the projection of V
to a set of coordinates S ⊆ [n], written as ProjS(V ) is the subspace of F|S|2 defined by taking
the vectors obtained by keeping only the coordinates indexed by S for every vector v ∈ V.

Let B ⊆ Fn2 be the set n-tuples of linearly independent elements of Fn2 , i.e. each
B ∈ B forms a basis for the vector space Fn2 . We will use B0 to denote the standard basis
{e1, e2, . . . , en}.

We will now describe a class of graph homomorphisms from G(`, n) into S`,n−`. Each
element of this class can be described by a basis B of Fn2 .

For each basis B ∈ B, let V`(B) ⊆ V` be the set of all subspaces V ∈ V` such that the
projection of V to the first ` coordinates when written w.r.t. the basis B is full-dimensional.
Our embedding will map each element of V`(B) into a distinct element of Mat`,n such that
the edge structure within V`(B) in G(`, n) is preserved under this embedding.

I Definition 17 (Homomorphism from G(`, n) into S`,n ). Let φ = φB : V`(B)→Mat`,n−`
be defined as follows. Write every vector in the B-basis. For any V ∈ V`(B) and for 1 ≤ i ≤ `,
let vi be the unique vector in V such that Proj[`](vi) = ei ∈ F`2. We call v1, v2, . . . , v` to be
the canonical basis for V .
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Define φ(V ) to be the `× (n− `) matrix with the ith row given by the projection of vi on
the last (n− `) coordinates for each 1 ≤ i ≤ `. When the basis B is clear from the context,
we will omit the subscript and write φ.

It is easy to confirm that φ is a bijection from V`(B) into Mat`,n. This is because canonical
basis for a subspace V is unique.

Next, we prove some important properties of the homomorphism φ that will be useful in
the proof of Theorem 10.

First, we show that the map φ is indeed a homomorphism as promised and thus, preserves
edge structure.

I Lemma 18 (φ is a homomorphism). For φ = φB defined above and any V, V ′ ∈ V`(B),
V ∼ V ′ in G(`, n) iff φ(V ) ∼ φ(V ′) in S`,n.

Proof. Let u ∈ GF (2)`, v ∈ GF (2)n−` be arbitrary non-zero vectors that define a rank
1 matrix uv>. Consider the matrix M = MV + uv>. Then, M ∈ Mat`,n−` and thus
φ−1(M) = W ∈ V`(B). We claim that dim(W ∩V ) = `−1. Suppose b1, b2, . . . , b` are the rows
ofMV . Then, the rows ofM are given by bi+uiv. Thus, W is spanned by (ei, bi+uiv) where
ei is the ith standard basis element on the first ` coordinates and the notation (ei, bi + uiv)
indicates the concatenation of the vectors in the ordered pair to get a n dimensional vector.
In particular, every element of W can be written as

∑
i≤` λi(ei, bi) + (

∑
i≤` λiui)v and any

such vector is contained in V if (
∑
i≤` λiui) implying that dim(V ∩W ) = dim(V )−1 = `−1.

On the other hand, let V ′ be a subspace in V`(B) such that V ′ ∼ V and let MV and MV ′

be the matrices obtained via the map φ. Then, MV and MV ′ must differ in at least one row,
say, WLOG, the last row of MV and MV ′ are (e`, v) and (e`, v′) respectively. Notice that
since the vector with e` in the first ` coordinates is unique in V, V ′, neither of (e`, v), (e`, v′)
belong to the intersection V ∩ V ′. Further, for every vector z ∈ V , either z or z + (e`, v)
must be contained in the intersection V ∩ V ′ (as the extra linear equation that V ∩ V ′
satisfies over and above V is satisfied by exactly one of z and z + (e`, v). Thus, by letting
b′i = bi + (`, v) + (`, v′) to every one of the canonical basis elements bi of V that are not in
V ∩ V ′, we get a set of elements that are all 1) contained in V ′ 2) Proj[`]b

′
i = ei for every i.

This then has to be the canonical basis of MV ′ (by uniqueness of the canonical basis) and
further, the corresponding MV ′ can be written as 1S(w + w′)> where S is the set of i such
that bi is not in V ∩ V ′. J

Next, we want to argue that expansion of sets is preserved up to constant factors under
the map φ. Towards this, we first show that V`(B) contains a fraction of the vertices of
G(`, n) as we next show.

I Lemma 19 (Projections of Subspaces). Let V ∼ V` for ` ≤
√
n/2. Then, Pr[dim Proj[`](V ) =

`] ≥ 0.288 for large enough n and ` = ω(1).
Further, let V ∈ V`(B) for some B. Then, at least 1/2 fraction of the neighbors of V in

G(`, n) are contained in V`(B).

Proof. We can sample a random subspace of ` dimension as follows: Choose ` uniformly
random and independent points from GF (2)n. If they are linearly independent, let V be the
subspace spanned by them.

We can estimate the probability that the sampled points are linearly independent as:
Π`−1
i=0(1− 2−n+i) ≥ 1− 2−n2`2

.

Next, we estimate the probability that the projection to first ` coordinates of the sampled
vectors is linearly independent. By a similar reasoning as above, this probability is at least
Π`−1
i=0(1− 2−`+i) ≈ 0.289 (the limit of this product for large `.)
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By a union bound, thus, a random subspace has a full dimensional projection on S with
probability at least 0.289− 2−n/2 for any ` <

√
n/2.

For the remaining part, assume that B = B0 - the standard basis. Notice that a
random neighbor of V can be sampled as follows: choose a uniformly random basis for V ,
say v1, v2, . . . , v`. Replace v` by a uniformly random vector v′`outside of V in Fn2 . Since
V ∈ V`(B), the projection of V to the first ` coordinates is linearly independent. V ′ would
thus satisfy the same property whenever v`′ is such that the projection of v′` to the first `
coordinates is not in the span of the projection to the first ` coordinates of v1, v2, . . . , v`−1.
The chance of this happening is exactly 1/2. This completes the proof. J

As a consequence of above, we can now obtain that the preimages of non-expanding sets
under φ are non-expanding in G(`, n).

I Lemma 20. Let T ⊆ Mat`,n be a subset satisfying PrM∼T,M ′∼M [M ′ ∈ T ] = η. Then,
φ−1(T ) satisfies: PrV∼φ−1(T ),V ′∼V [V ′ ∈ φ−1(T )] ≥ η/2.

Proof. Let B the basis used to construct φ. Then, φ(T ) ⊆ V`(B). By Lemma 19, 1/2 the
neighbors of φ(T ) are contained in V`(B). By assumption, η fraction of these neighbors are
contained inside T . This finishes the proof. J

Via a similar application of Lemma 19, we can establish an appropriate converse.

I Lemma 21. Let S ⊆ V` be a subset satisfying PrV∼S,V ′∼V [V ′ ∈ S] ≥ η. Then, for a
uniformly random choice of basis B for Fn2 , EB |φ(S ∩ V`(B)| = Ω(|S|) and
PrM,M ′∼φ(S∩V`(B)),M ′∼M [M ′ ∈ φ(S ∩ V`(B)] ≥ Ω(η).

Finally, we show that r-nice sets in G`, n get mapped to r-nice sets in S(`, n) and vice
versa.

I Lemma 22. Let S ⊆ V` be an r-nice set in G(`, n). Then, φB(S ∩ V`(B)) is an r-nice set
in S`,n. Conversely, if T ⊆ Mat`,n is an r-nice set in S`,n then φ−1(T ) = Q ∩ V`(B) for
some r-nice set Q in G(`, n).

Proof. WLOG, assume that B = B0. We will assume that S ⊆ V` is the set of all subspaces in
V` contained in a subspace W of co-dimension r. The general case is analogous. Equivalently,
if w1, w2, . . . , wr form a basis forW , then, for every V ∈ S∩V`(B) and ever v ∈ V 〈v, wi〉 = 0
for every i.

Consider the canonical basis v1, v2, . . . , v` for V - recall that this means that the projection
of vi to the first ` coordinates equal ei. Thus, for every i, we can write vi = (ei, v′i) for some
vectors v′i of n− ` dimensions.

Then, φ(V ) is the matrix MV with rows v′i by our construction. In particular, this means
that the MV satisfies the constrain: MV · wi = ti where ti is the vector with jth coordinate
equal to 〈ej , wi〉. Thus, we have shown that for every V ∈ S, φ(V ) satisfies a set of r affine
linear equations.

Conversely, observe that if any M satisfies the affine linear equation MV wi = ti as above,
the set of all (ei, ui) for i ≤ ` where ui is the ith row of MV , must span a subspace in S.
This yields that φ(S ∩ V`(B)) is an r-nice set.

The converse follows from entirely similar ideas. Suppose T ⊆ Mat`,n is an r-nice set.
WLOG, we restrict to the case where T is the set of all matrices satisfying linear constraints
Mqi = ti for some choice of r linearly independent constraints (qi, ti). Letting u1, u2, . . . , u`
be the rows of M , this implies that every vector v in the span of (ei, ui) for i ≤ ` satisfies
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the linear equation 〈q, v〉 = 0 where q = (qi, ti(1), ti(2), . . . , ti(`)). This immediately yields
that φ−1(M) is contained in a subspace W of co-dimension r. Conversely, it is easy to check
that for every subspace V of dimension ` contained in W ∩ V`(B), φ(V ) satisfies the r affine
linear constraints above.

This completes the proof. J

3.2 Shortcode Test vs Grassmann Test
We now employ the homomorphism constructed in the previous subsection to relate the
soundness and expansion hypothesis in Short code and Grassmann tests.

First, we show that the soundness hypothesis for degree 2 Short code consistency test
implies the soundness hypothesis for the Grassmann consistency test and complete the proof
of Theorem 10.

I Lemma 23. The degree 2 Short code soundness hypothesis (Hypothesis 13) implies the
Grassmann soundness hypothesis (Hypothesis 2).

Proof. Let F be the assumed labeling strategy in Hypothesis 2. We will construct a labeling
strategy for S`,n from G so that we can apply the conclusion of 13. We will first choose an
embedding of the type we constructed before in order to construct G.

Let B ∼ B be chosen uniformly at random and let φ = φB as in the previous subsection.
For any V ∈ V`(B), let F (V ) = f , a linear function restricted to V . Let v1, v2, . . . , v` be the
canonical basis for V , i.e., the projection of vi to the first ` coordinates (when written in
basis B) equals ei for every i. Set G(φ(V )) = z where zi = f(vi). Since φ is a onto, this
defines a labeling strategy for all of Mat`,n.

Next, we claim that if F passes the Grassmann consistency test with probability η then
G passes the degree 2 Short code consistency test with probability Ω(η).

Before going on to the proof of this claim, observe that this completes the proof of the
lemma. To see this, we first apply Hypothesis 13 to conclude that there’s an r-nice set Q
in S`,n and an affine function defined by z ∈ Fn−`2 , u ∈ F`2 such that the labeling strategy
H(M) = Mz + u passes the degree 2 Short code consistency test with probability δ for
all M in Q. It it easy to construct the an analogous linear strategy for the Grassmann
consistency test: For any V ∈ V`(B) with the canonical basis v1, v2, . . . , v` defined above, set
f(vi) = ui + 〈vi, z〉. Extend f linearly to the span of all such vectors. Finally, extend f to
all vectors by taking any linear extension. From Lemma 19, 1/2 the neighbors of vertices in
φ−1(Q) are contained in V`(B). From Lemma 22, φ−1(Q) = F ∩ V`(B) for some r-nice set
F in G(`, n). Finally, by an argument similar to the one in Lemma 19, |F ∩ V`(B)| ≥ ⊗(|F|)
with high probability over the draw of B. Combining the above three observations yileds that
f passes the Grassmann consistency test when restricted to the nice set F with probability
Ω(δ).

We now complete the proof of the claim. This follows immediately if we show that for
any V ∼ V ′ chosen from V`(B), PrV∼V ′,V,V ′∈V`(B)[F (V )|V = F (V ′)|V ′ ] ≥ 0.07(η − 2−n+`).

Without loss of generality, we assume that B is the standard basis {e1, e2, . . . , en}. First,
notice that Span{V ∪ V ′} is of dimension `+ 1 for for all but 2−n+` fraction of pairs V ∼ V ′.
Thus, we can assume that PrV∼V ′|dim Span{V ∪V ′}=`+1[F (V )|V = F (V ′)|V ′ ] ≥ η − 2−n+`.

Let C = B−1, the basis change matrix corresponding to B and let Ci be the ith row of
C and let C[`] be the matrix formed by taking the first ` rows of C. Fix V ∼ V ′ for some
V, V ′ ∈ V`. Assume now that Span{V ∪ V ′} is of dimension `+ 1. Let v1, v2, . . . , v`−1 be a
basis for V ∩V ′. Let V = {V ∩V ′∪w1} and V ′ = {V ∩V ′∪w2} for some w1, w2 that linearly
independent of each other and of any vector in V ∩ V ′. We estimate the probability that
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V, V ′ ∈ V`(B). Then, this is the probability that v1, v2, . . . , v`−1, w1, w2 are mapped by C [`]

into a1, a2, . . . , a`−1, a`, a`+1 respectively, satisfying a`, a`+1 6∈ Span{ai | i ≤ `−1}. It is easy
to check that the probability of this over the random choice of B is at least 0.288∗1/4 > 0.07.
This proves the claim.

By taking n large enough (compared to `), this probability can be made larger than, say,
0.06η (say). This finishes the proof. J

Next, we show that the Grassmann Expansion Hypothesis (Hypothesis 6) is equivalent to
the Shortcode Expansion Hypothesis (Hypothesis 8) and complete the proof of Theorem 11.

I Lemma 24. The Grassmann Expansion Hypothesis (Hypothesis 6) is equivalent to the
Shortcode Expansion Hypothesis (Hypothesis 8).

Proof. First, we show that Hypothesis 6 implies Hypothesis 8.
Let S ⊆ Mat`,n be such that PrM∼S,a∈F`

2,b∈Fn
2
[M + ab> ∈ S] = η. Then, by Lemma 20,

φ−1
B (S) has an expansion of Ω(η) in G(`, n).
Applying the Grassmann expansion hypothesis (Hypothesis 6), we know that there exists

a r-nice set F in G(`, n) such that |F ∩ φ−∞B (S)| ≥ δ|F|. Further, since φ−1
B (S) ⊆ V`(B), we

must have: |(F ∩ V`(B)) ∩ φ−∞B (S)| ≥ δ|F ∩ φ−∞B (S)|. To finish, observe that by Lemma 22,
φ(F ∩ φ−∞B (S)) is an r-nice set, say Q in S`,n. This, show that |S ∩ Q| ≥ δ|Q| completing
the proof.

The proof of the other direction, that is, Hypothesis 8 implies Hypothesis 6, is analogous
and relies on the use of Lemma 21. J
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Abstract
Entangled games are a quantum analog of constraint satisfaction problems and have had impor-
tant applications to quantum complexity theory, quantum cryptography, and the foundations
of quantum mechanics. Given a game, the basic computational problem is to compute its en-
tangled value: the supremum success probability attainable by a quantum strategy. We study
the complexity of computing the (commuting-operator) entangled value ω∗ of entangled XOR
games with any number of players. Based on a duality theory for systems of operator equations,
we introduce necessary and sufficient criteria for an XOR game to have ω∗ = 1, and use these
criteria to derive the following results:
1. An algorithm for symmetric games that decides in polynomial time whether ω∗ = 1 or ω∗ < 1,

a task that was not previously known to be decidable, together with a simple tensor-product
strategy that achieves value 1 in the former case. The only previous candidate algorithm for
this problem was the Navascués-Pironio-Acín (also known as noncommutative Sum of Squares
or ncSoS) hierarchy, but no convergence bounds were known.

2. A family of games with three players and with ω∗ < 1, where it takes doubly exponential
time for the ncSoS algorithm to witness this. By contrast, our algorithm runs in polynomial
time.

3. Existence of an unsatisfiable phase for random (non-symmetric) XOR games. We show that
there exists a constant Cunsat

k depending only on the number k of players, such that a random
k-XOR game over an alphabet of size n has ω∗ < 1 with high probability when the number
of clauses is above Cunsat

k n.
4. A lower bound of Ω(n log(n)/ log log(n)) on the number of levels in the ncSoS hierarchy

required to detect unsatisfiability for most random 3-XOR games. This is in contrast with
the classical case where the (3n)th level of the sum-of-squares hierarchy is equivalent to brute-
force enumeration of all possible solutions.
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1 Introduction

Constraint satisfaction problems (CSPs) are a fundamental object of study in theoretical
computer science. In quantum information theory, there are two natural analogues of
CSPs, which both play important roles: local Hamiltonians and (our focus) non-local games.
Non-local games originate from Bell’s pioneering 1964 paper, which showed how to test for
quantum entanglement in a device with which we can interact only via classical inputs and
outputs. In modern language, the tests developed by Bell are games: a referee presents two
or more players with classical questions drawn from some distribution and demands answers
from them. Each combination of question and answers receives some score and the players
cooperate (but may not communicate) to maximize their expected score. These games are
interesting because often the players can win the game with a higher probability if they share
an entangled quantum state, so a high average score can certify the presence of quantum
entanglement. Such tests are not only of scientific interest, but have had wide application to
proof systems [8, 19], quantum key distribution [1, 13, 29], delegated computation [26], and
randomness generation [10], among others.

To be able to use a nonlocal game as a test for entanglement, it is essential to be able to
approximately compute two quantities: the best possible expected score when the players
share either classical correlations or entangled states, respectively called the “classical” and
“quantum” (or “entangled”) values of the game, and denoted ω and ω∗. Classically, our
understanding of the complexity of computing ω rests on the intimate connection between
games and CSPs. Indeed, there are several natural to ways to map a CSP into a game.
Perhaps the most commonly used is the “clause-variable game,” in which a CSP of any
arity k is mapped to a two-player game, where one player is asked for the assignment to a
clause of the CSP, and the other for the assignment to a single variable. However, there
is another natural yet perhaps less-studied reduction that maps a k-ary CSP to a k-player
nonlocal game, which moreover is symmetric under exchange of the players. In this reduction,
given a CSP with a k-ary predicate, the referee of the game chooses uniformly at random
a single clause, consisting of a k-tuple of variables and set of accepted assignments. The
referee will then ask each of the k players for the value of one of the k variables in the
clause, and accept if and only if the returned values constitute an accepted assignment to
the clause. Classically, a simple convexity argument shows that the players can always stick
to deterministic strategies, where each question is assigned a fixed answer, and for odd k,
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it is easy to show that there is a close relation between ω and the CSP value: if the CSP
has value 1 (i.e. all clauses are satisfiable), ω = 1, and if its value is at most 1 − δ, then
ω ≤ 1− δ/k. Hence, thanks to various dichotomy theorems, we have a good understanding of
the difficulty of computing ω for symmetric games5: in some cases, we know a P algorithm,
and for most others, we know it is NP-complete. In particular, thanks to [18], this is known
even for games where the referee’s acceptance depends only the XOR of single-bit answers
from the players. Such games are known as XOR games.

The hardness of computing quantum value ω∗ is not as well understood, both in terms of
upper and lower bounds. We know striking examples of quantum “advantage” (i.e. cases
where the quantum value of a game is higher than the classical value), such as a Magic Square
game, a game arising from an unsatisfiable CSP which nevertheless has an entangled strategy
that succeeds with certainty, and thus quantum value ω∗ = 1. This advantage is also the
main obstacle to our understanding, in that the set of entangled strategies is very rich: the
“assignment” to each variable is no longer a value from a discrete set, but a linear operator
over a Hilbert space of potentially unbounded dimension. Indeed, if infinite-dimensional
entanglement is allowed, then depending on how one implements the requirement of non-
communication between the players, one can obtain two different notions of entangled value –
the tensor product value ω∗TP and the commuting operator value ω∗CO – which are not known
to be equal.

As a result of the difficulties of unbounded-dimensional entanglement, we can say very
little in terms of upper bounds on the complexity of computing either version of ω∗, and in
fact, it is not known whether even a constant-factor (additive) approximation to either is
Turing-computable. For general games, the best we can say is they are recursively enumerable:
for ω∗TP , there is a straightforward brute-force search over all strategies that in the limit of
infinite time converges from below, and for ω∗CO, there is an algorithm, called the NPA or
ncSoS hierarchy [22, 11], that in the limit of infinite time converges from above, but with no
bound on the speed of convergence for either algorithm. On the hardness side, what we know
is based on exploiting the CSP-game connection outlined above, but technically this has
proved significantly more challenging than in the classical case. For instance, it was shown
by Vidick that in the worst case, computing a constant-factor approximation to ω∗TP for
3-player XOR games is NP-hard [30], matching the classical hardness of [18], but this required
redoing the soundness analysis of a PCP construction in the presence of entanglement. For
general (non-XOR) games and tighter approximations we have super-classical hardness
results [20, 21, 14]. Moreover, families of games with a “clause-variable” structure have been
found for which deciding whether ω∗ = 1 is uncomputable [27]. At the same time, we know
that for certain families of games, ω∗ is easy to compute. Perhaps the best understood case
is two-player XOR-games, for which Tsirelson showed that a simple semidefinite program
(the lowest level of the ncSoS) exactly computes ω∗CO = ω∗TP , in contrast to the classical
case where ω for such games is NP-hard to approximate. A second family of games where
results are known is XOR games with a maximum of two questions per player, but any
number of players. Here there is a classification of all correlations achievable by quantum
players, as well as a description of the measurement strategy players use to achieve these
correlations. Interestingly, we arrive at the same measurement strategy later in this work
through independent techniques.

5 Classically, there are simple reductions from the general case to the symmetric case, but as we discuss
below, these fail to preserve completeness in the presence of entanglement.
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From the preceding results, XOR games emerge as a natural class of games to understand
on the road to a full “dichotomy theorem” for quantum games. Classically, XOR games are
also convenient to analyze because of their linear structure: a k-player XOR game represents
a CSP whose clauses are linear equations over the finite field F2, each containing k variables.
As a result, classically XOR games are always easy in the “perfect completeness” regime:
we can determine whether an XOR game is perfectly satisfiable in polynomial time using
Gaussian elimination over F2, even though distinguishing ≥ 1− ε satisfiability from ≤ 1

2 + ε

satisfiability is NP-complete. This linear structure also makes it easy to reason about the
classical value of random instances of XOR games using linear algebra. However, this simple
linear structure does not capture entangled strategies and neither the Gaussian elimination
algorithm for the perfect completeness regime, nor the classical analysis of random instances
generalizes easily to the quantum case. Indeed, the undecidability result of [27] applies to the
perfect completeness regime for games based on systems of linear equations, though these
systems are not over F2 and the games are in the two-player “clause-variable” format. Is the
perfect completeness regime for quantum XOR games easy, as in the classical case, or hard,
as suggested by Slofstra’s results? And what can we say about random instances?

In this work, we make progress on these questions for the subclass of symmetric XOR
games: those for which the game remains invariant under any permutation of the players.
This class of games includes those arising from CSPs via the reduction described above, as
well as the hard instances of [30]. Our main results are captured by the following theorem.

I Theorem 1 (Theorems 14 and 15 in the body). A symmetric k-player XOR game has
entangled value ω∗CO = ω∗TP = 1 if and only if an associated system of linear Diophantine
equations has no solution. This condition can be checked in polynomial time, and whenever
it is satisfied, the perfect tensor-product strategy can be found in polynomial time. When it is
not satisfied, a succinct description of an ncSoS dual certificate that ω∗ < 1 can be found in
polynomial time (even though the certificate may be exponentially long).

We achieve these results by viewing an XOR game as a “non-commuting” generalization
of linear systems of equations, in which the expectation of differences between products
of operator-valued variables and plus or minus the identity operator are constrained to be
zero. We develop a “duality theory” for these systems of operator equations, where the
dual certificates of infeasibility correspond to a special class of ncSoS proofs which we call
“refutations.” For symmetric games, we show that a dual certificate exists if and only if a
certain system of linear Diophantine equations has a solution (which we call a “PREF”). An
important feature of our algorithm is that while it is inspired by ncSoS, its performance can
be significantly superior: it can detect in polynomial time the existence of an exponentially
long ncSoS dual certificate. Indeed, we show (in Theorem 23) a concrete family of games
where our algorithm can detect that ω∗ < 1 in time which scales polynomially in the game size
n, whereas ncSoS takes doubly exponential time. We believe this result may be interesting in
its own right to those who study the Sum of Squares algorithm, and hope that our techniques
inspire further efficient algorithms that “simulate” high levels of SoS. Additionally, by further
considering the dual of the system of Diophantine equations we construct, we are able
to extract a simple finite-dimensional (and hence tensor product) strategy (which we call
“MERP”) that achieves ω∗TP = ω∗CO = 1 whenever the system of equations has a solution. A
diagram illustrating the dualities we use is given in Figure 1.

Our notion of refutation is similar to the “substitution method” in the prior work of [9],
used there to analyze clause-variable style games (there called Binary Constraint System
Games) in the perfect-completeness regime. However, the connection we show between
refutations and linear Diophantine equations, which is the heart of our efficient algorithm for
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∃η̂ s.t. Aη̂ = ŝ over F2

Classical strategy

@y ∈ Fm2
s.t. AT y = 0 over F2
and ŝT y = 1 over F2

No classical refutations

∃ entangled strategy
s.t. ∀ i : Qi |Ψ〉 = si |Ψ〉

Entangled strategy (3.2)

∃x, z s.t. Ax = ŝ+ 2z,
with x ∈ Qkn, z ∈ Zm

MERP strategy (3.2)

@(i1, . . . , i`) ∈ [m]
s.t.

∏`
j=1 Qij ∼ I

and
∏`
j=1 sij = −1

No refutations (3)

@z ∈ Zm
s.t. AT z = 0 over Z
and ŝT z = 1 (mod 2)

No PREFs (4.1)

Classical games Entangled games

Rmk 9 Thm 5

Lem 16

Thm 22

Thm 21

Lem 18

Figure 1 We extend the well-understood duality relation for classical XOR games (left) to a
more complex set of dualities characterizing perfect strategies for entangled XOR games (right).
The arrows indicate implications, with the red, unfilled arrows holding for symmetric games only.
The dashed red arrows follow from the key lemma for symmetric games. Definitions and notation
are developed in the remaining sections.

searching over refutations, is new to this work and makes essential use of the properties of
symmetric XOR games. We consider it an interesting open question whether our techniques
could be adapted to the Binary Constraint System case.

The symmetry condition on the game is important to our analysis, and it is worth going
into some detail as it presents an interesting divergence from the classical case. Classically,
any game can be symmetrized as follows: for each clause consisting of questions (q(1), . . . , q(k))
asked to players 1, . . . , k, the referee chooses a random permutation π of {1, . . . , k}, and
sends player i the pair (π(i), q(π(i))). Each player i then follows the same strategy that
player π(i) would have used in the original, unsymmetrized game. In the quantum setting,
this transformation fails to preserve completeness: for instance, if an entangled strategy
for a three-player unsymmetrized game requires players 1 and 2 to share entanglement, in
the symmetrized version, a player receiving the index 1 does not know which other player
received index 2, and thus does not know who to be entangled with. This can be understood
as an instance of the phenomenon of monogamy, which distinguishes entanglement from
classical correlations. It is an interesting question for future work to extend our methods to
the nonsymmetric case.

Furthermore, as alluded to earlier, our algorithm yields an understanding of the typical
value of a random symmetric XOR game. Classically, research in this direction draws
significantly on insights from statistical mechanics and has proven that there exist sharp
satisfiable/unsatisfiable thresholds for random k-SAT and related games. But these techniques
do not carry over to the quantum case. For random classical games, a basic method is to look
at the expected number of winning strategies (the “first moment method”) or the variance (the
“second moment method”) as we randomize the referee’s payoff function within some family
such as random k-SAT or random k-XOR. This suffices, for example, to show that random
3-XOR games with n variables and Cn clauses are satisfiable with high probability if and only
if C / 0.92 [12]. Since quantum strategies do not form a discrete (or even finite-dimensional)
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set, these methods are not possible. Nor is it obvious how to use more refined tools such as
Shearer’s Lemma or the Lovász Local Lemma, which address the question of when sets of
overlapping constraints can be simultaneously satisfied. Our duality theory enables us to
avoid these obstacles by studying refutations, rather than strategies. Refutations are discrete
objects and thus are more amenable to combinatorial and probabilistic techniques. Using
our techniques we are able to prove that random quantum XOR games have an unsatisfiable
phase above a certain clause density.

I Theorem 2 (Theorem 26 in the body). For every k, there exists a constant Cunsat
k depending

only on k such that a random k-XOR game G with m ≥ Cunsat
k n clauses has value ω∗(G) < 1

with probability 1− o(1).

In our overall approach in this paper, we were inspired by the work of Grigoriev [17], who
studied the power of SoS refutations for random classical XOR games. We view Theorem 2,
together with the ncSoS lower bounds of Theorem 23, as a quantum generalization of
Grigoriev’s results.

2 XOR Games

We begin by defining a k-XOR game, along with its classical and quantum values.

I Definition 3. Define a clause c = (q, s) to be any (k + 1)-tuple consisting of a query
q ∈ [n]k and parity bit s ∈ {−1, 1}.

In a k-XOR game G associated with a set of clauses M , a verifier selects a clause
ci = (qi, si) uniformly at random from M . For all α ∈ [k], the question q

(α)
i is then sent to

the α-th player of the game. Without communicating, the players then each send back a
single output ∈ {−1, 1}, and win the game if their outputs multiply to si.

The GHZ game [16] is a canonical example of a 3-XOR game. It is defined by the clauses
(here we use the labels {x, y} for the questions instead of the typical {1, 2}):

GGHZ :=



x

x

x

+1

 ,

y

y

x

−1

 ,

y

x

y

−1

 ,

x

y

y

−1




← Player A
← Player B
← Player C

← Desired product

. (1)

There is a natural reduction from a k-CSP over F2 to a k-XOR game, based on the
isomorphism between the groups ({0, 1} ,+mod 2) and ({1,−1} ,×). The XOR game corre-
sponding to a CSP has clauses defined by picking a clause from the CSP at random, sending
each player a question corresponding to a random distinct variable from the CSP clause, then
choosing a parity bit by demanding that players’ answers satisfy the CSP. Games constructed
from CSPs in this manner are symmetric over permutation of the players, and are therefore
called symmetric games.

By excluding communication during the game, the classical game tests whether the
players have cooperatively solved the CSP before the questioning began. When the players
are given access to quantum resources, the game instead probes “quantum solutions” to the
CSP, described by measurements of a shared state in some Hilbert space.

The value of that game is defined to be the optimal win probability obtained by the
players. We distinguish various possible classes of resources that may be made available to
the players in executing a strategy, each of which defines a particular type of value.
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I Definition 4. We define three versions of the value of game G.
1. The classical value ω(G) is the value achievable by players using only classical shared

information.
2. The tensor-product value is the value obtainable by players sharing a quantum state

but restricted to making measurements on distinct factors of a tensor-product Hilbert
space. Intuitively, this is a no-communication condition described in Hilbert-space
language.

3. The commuting-operator value6 ω∗(G) is the value obtainable by players making
commuting measurements on a shared quantum state. Intuitively, this is a weaker form
of the no-communication constraint, permitting states living in non-separable Hilbert
spaces.

When a CSP is reduced to an XOR game G, the classical value roughly corresponds to
the fraction of satisfiable constraints, with ω(G) = 1 if and only if the CSP is satisfiable.
Sharing a quantum state may allow the players to provide a quantum solution (ω∗ = 1) even
when ω 6= 1. Famously, the GHZ game is a symmetric game that corresponds to a test of the
classically-unsatisfiable, yet quantumly-soluble CSP:

x+ x+ x = 0 (mod 2) and x+ y + y = 1 (mod 2). (2)

Games (such as the GHZ game) that satisfy ω < 1 and ω∗ = 1 are called pseudo-
telepathy games. Identifying other XOR pseudo-telepathy games is one of the motivating
goals of this work.

For a given game, the set of values achievable by tensor-product strategies may not
be closed [27]. Whether the closure of this set can differ from the commuting-operator
value of the game remains unanswered7. In this paper, we focus primarily on a description
of the commuting-operator value but in many cases can show that it coincides with the
tensor-product value.

3 Refutations

A main aim of this paper is to characterize the set of XOR games with commuting-operator
value ω∗ = 1. In the case of k = 2 players, Tsirelson gave an efficient semidefinite program
that computes the exact value of ω∗; however, this technique does not generalize easily to
k ≥ 3 [6, 28]. Furthermore, the potentially unbounded size of the players’ resource state
makes it impossible to upper bound the value of a game via brute force search over strategies.

To avoid these problems, this work introduces a dual characterization that certifies games
with value ω∗ < 1. This is a natural generalization of a well-understood dual system of
equations that certifies games with classical value ω < 1, and employs operator language
similar to the quantum satisfying assignments for Binary Constraint System games presented
in [9]. The dual pictures in both the classical and commuting-operator cases introduce the
notion of a “refutation”: intuitively, a sequence of game clauses that together contradict the
existence of a value-1 strategy. We show Theorem 5 that refutations are dual to ω∗ = 1; our
proof can be viewed as a quantum generalization of [17].

6 ω∗(G) is often also referred to as the field-theoretic value of G.
7 And hard! For general two-player games this question is known to be equivalent to Connes’ embedding

conjecture [15].
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I Theorem 5 (Strategy-Refutation Duality). An XOR game G has commuting-operator value
ω∗(G) = 1 if and only if it admits no refutations.

We first take a small detour into the classical duality picture to build intuition and
necessary notation (Section 3.1), then describe refutations and outline the proof of duality in
the quantum case (Section 3.2).

3.1 Classical Strategies and Refutations
Classically, refutations emerge naturally from the linear-algebraic dual to the equations
satisfied by a classical value-1 strategy.

For any game, the optimal classical strategy can be specified via a map [kn]→ {1,−1}
giving a deterministic answer to each possible question given to each player. In order to use
linear algebraic tools, we exploit the isomorphism ({1,−1} ,×) ∼ ({0, 1} ,+mod 2) and specify
a classical strategy via a vector η̂ ∈ Fkn2 . Explicitly: η̂(α−1)n+j = 0 if player α responds to
question j with a 1, and equals 1 if the player responds with a −1. To clearly specify the
player and question, we use the notation

η̂(α, j) := η̂(α−1)n+j .

From this point on, we will freely switch back and forth between an additive and a multi-
plicative representation of strategies, leaving the mapping implicit.

To complete the linear algebraic picture, we also define a vector of desired outputs ŝ
and a game matrix A. The game matrix is defined such that given a strategy vector η̂, the
parities of the outputs for each clause are given by the vector Aη̂.

I Definition 6. Given a k-XOR game with m queries and alphabet size n, the game matrix
A is an m× kn matrix describing query-player-question incidence, and the length-m parity
bit vector ŝ ∈ Fm2 the desired outputs:

Ai,(α−1)n+j :=
{

1 if q(α)
i = j

0 otherwise
and ŝi :=

{
0 if si = 1
1 if si = −1

. (3)

An XOR game G is completely specified by providing the game matrix A and parity bit
vector ŝ, i.e. G ∼ (A, ŝ). For example, we translate the GHZ queries into AGHZ and parity
bits into ŝGHZ by:

=⇒ AGHZ :=


(A) (B) (C)
1 0 1 0 1 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1

 and ŝGHZ :=


0
1
1
1

 . (4)

A linear-algebraic constraint for achieving classical value 1 can then be defined by asking
that a strategy exists that outputs the desired ŝ.

I Definition 7. The classical constraint equation for strategy η̂ on game G ∼ (A, ŝ) is

Aη̂ = ŝ (over F2). (5)

The solutions to (5) are exactly the classical strategies achieving value 1 on game
G ∼ (A, ŝ). In other words, a game G has classical value 1 iff (5) has a solution. Gaussian
elimination can be used to check for a solution to (5), so we can decide whether a game
has ω = 1 in P. Even so, transforming to the dual picture provides a useful analog to the
quantum case.
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I Definition 8. Define a classical refutation y ∈ Fm2 as any vector satisfying the equation
dual to (5),[

AT

ŝT

]
y =

[
0
1

]
(over F2). (6)

I Theorem 9. Either a classical refutation y satisfying (6) or a classical strategy η̂ satisfying
(5) must exist.

Proof. Immediate from the observation that equations (5) and (6) are dual. J

A refutation y has a direct interpretation as a certificate that ω < 1: collecting constraints
from clauses i corresponding to non-zero entries yi produces a contradiction to the value-1
hypothesis. To understand this, note that satisfying clause i requires that the ith row of (5)
is true under strategy η̂,

[Aη̂]i = ŝi

⇔
∑
α

η̂(α, q(α)
i ) = ŝi (mod 2).

Summing the value-1 constraints selected by y (left-multiplication by y) produces the desired
contradiction when y satisfies (6),∑

i:yi=1

∑
α

η̂(α, q(α)
i ) =

∑
i:yi=1

ŝi

⇔ yTAη̂ = yT ŝ (mod 2)
=⇒ 0 = 1 (mod 2).

This interpretation is key to generalizing refutations to the commuting-operator value of
XOR games.

3.2 Commuting-Operator Strategies and Refutations
Whereas classical strategies are specified by assigning deterministic output to every player-
question pair, commuting-operator strategies are specified by assigning a ±1 valued quantum
measurement to every player-question pair and fixing some entangled state shared by
the players. Each player then executes a commuting-operator strategy by selecting the
measurement corresponding to the question they receive, then returning the result of applying
it to the shared state.

Using the Naimark dilation theorem, we can restrict the measurements in the players’
strategies to be Projection-Valued Measures (PVMs). This is the quantum mechanical
analogue of the statement that the optimal classical strategy can be taken to be deterministic.
In the case of XOR games, this means the measurements can be chosen to be a pair of
projectors {O1, O−1} that partition the space into two subspaces, corresponding to outputs
1 and −1. We make this restriction for the remainder of the paper.

All that remains is to enforce the no communication requirement on the quantum players.
This is done in one of two possible ways. In tensor product strategies the Hilbert space in
which |Ψ〉 lives is taken to be separable, with different players’ measurements acting on disjoint
parts of the state. In commuting-operator strategies no restriction is placed on the Hilbert
space, but the Hermitian matrices corresponding to different players’ measurements are forced
to commute. (These two restrictions are distinct only in the case of an infinite dimensional
Hilbert space). In this paper we work exclusively with the commuting-operator definition,
though all the explicit strategies we construct are also valid tensor product strategies.
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Putting this all together, we can define for any strategy the observables corresponding to
the players’ measurements.

I Definition 10. Given a commuting-operator strategy consisting of measurements {Oα1 (j),
Oα−1(j)} for each possible question j and player α, define the Hermitian strategy observable
for player α upon receiving question j

Oα(j) := Oα1 (j)−Oα−1(j). (7)

Operators Oα(j) can equivalently be chosen without reference to particular PVMs by
taking any set of Hermitian operators that satisfy the constraints (for all players α 6= β and
questions j, j′)

[Oα(j), Oβ(j′)] = 0 (operators held by distinct players commute) (8a)

(Oα(j))2 = I (square identity, enforcing ±1 eigenvalues). (8b)

This abstract definition of strategy observables will be the one most frequently referenced in
the remainder of this paper.

Given Hermitian observables, the condition for commuting-operator strategies to achieve
value 1 is an eigenvalue condition, generalizing (5).

I Definition 11. For a k-XOR game G, define the commuting-operator constraint
equations:

∀ i ∈ [m] : Qi |Ψ〉 = si |Ψ〉 (9)

where the query observable Qi :=
∏
αO

α(q(α)
i ) is the product of all players’ observables

for the ith query.

A strategy achieving value ω∗ = 1 must be played on a state |Ψ〉 which is an eigenvector of
every query observable, with appropriate eigenvalue, to ensure zero probability of outputting
an incorrect response to some query. This eigenvalue criterion guarantees that the players
win all queries. A game G therefore has commuting operator value ω∗ = 1 iff there exists
some state and strategy observables that satisfy (8) and (9).

While there is an efficient algorithm to solve the classical constraint equations, no such
algorithm is known to exist for the commuting-operator constraint equations. Indeed, there
is no known upper bound on the dimension of the Hilbert space required to optimally play
an entangled game, meaning the search space of the commuting-operator equations is not
finite, and the equations themselves may be undecidable. To work around this we develop
refutations to characterize the commuting-operator value of XOR games. This technique
gives a search space which is still infinite, but is at least discrete, allowing for some progress
to be made via combinatorial analysis.

We would like to construct a dual to the commuting-operator constraint equations,
meaning a certificate for the unsatisfiability of (9). As there is no immediate analogue to
the linear algebraic methods used in the classical case, we instead generalize the view of a
refutation as a collection of clauses producing a contradiction (similar to (6)). At a high level,
refutations are obtained by multiplying together constraints of the form (9) and applying the
known operator identities of (8a) and (8b) to arrive at an equation of the form I |Ψ〉 = − |Ψ〉
which cannot be true for a normalized quantum state.8

8 Importantly, the order in which the constraint equations are multiplied matters, as two distinct
commuting-operator strategy observables with the same player label may not commute. Further,
the same constraint equation may need to be incorporated multiple times before one can arrive at a
contradiction.
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To formally define a refutation, we use an equivalence relation between possible strings of
strategy observables on the LHS of an equation of the form (9).

I Definition 12. Let Z1 and Z2 be two operators formed from products of strategy observ-
ables. We say Z1 is equivalent to Z2, written Z1 ∼ Z2, if Z1 = Z2 is an identity for all
strategy observables satisfying (8).

Definitions 11 and 12 then allow us to precisely define a (quantum) refutation, analogous
to Definition 8. From now on, a “refutation” will be a quantum refutation unless otherwise
specified.

I Definition 13. Let G be some k-XOR game with m clauses. A refutation for G is
defined to be a sequence of clause indices (i1, i2, . . . , i`) ∈ [m]` satisfying

Qi1Qi2 . . . Qi` ∼ I and si1si2 . . . si` = −1. (10)

Assuming the value-1 hypothesis and combining the ` constraint equations satisfying (10) then
gives the desired contradiction, I |Ψ〉 = − |Ψ〉. Whether a product of queries Qi1Qi2 . . . Qi`
is equivalent to I can be efficiently checked by collecting each player’s operators using (8a)
and repeatedly applying (8b) to greedily cancel operators.

Refutations certify that ω∗ < 1 analogously to the way that classical refutations certify
that ω < 1. We prove in the full paper that the converse is also true, completing the proof of
Theorem 5. The proof of this fact relies on a connection between refutations and the ncSoS
hierarchy analogous to a connection made by Grigoriev [17] between classical refutations and
the SoS hierarchy. In particular, we show the ncSoS algorithm takes time exponential in the
minimum length refutation to prove a game has value ω∗ < 1. Theorem 5 then follows from
completeness of ncSoS.

It is not obvious that one can find refutations more easily than one can find strategies.
The remaining results focus primarily on subclasses of XOR games for which we can apply
the refutations picture to exactly characterize the games with ω∗ = 1. In particular, we
identify an easily-computed stronger refutation condition that is complete for symmetric
games, i.e. those naturally corresponding to CSPs. Subsequently we analyze specific families
of games that give bounds on the behavior of ncSoS and insight into the structure of the
XOR game landscape.

4 Symmetric Games

The refutation technology developed above gives surprisingly powerful results when applied
to symmetric games. In particular, we show:

I Theorem 14. Membership in the set of symmetric games with ω∗ = 1 can be efficiently
decided via a system of linear Diophantine equations.

Previously the question of whether symmetric games took value 1 was not known to be
decidable. Theorem 14 affirms that it is decidable and in fact in P. We prove the theorem by
introducing a simple necessary condition for refutations to exist, then showing the structure
of symmetric games ensures this condition is also sufficient for a refutation.

Games that do not satisfy this necessary condition have value ω∗ = 1. By returning to
duality arguments, we further show that they can be played optimally by a simple family of
strategies.

I Theorem 15. Any value-1 symmetric game can be played optimally by a single qubit strategy
using a GHZ resource state. Furthermore, this strategy can be found in polynomial time.
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4.1 A Necessary Condition for Refutation (PREF)
Any valid refutation involves a product of query observables that cancel to I via the square
identity (8b). Focusing on the strategy observables corresponding to one player, we see
every operator at an even depth in the sequence must cancel with one at an odd depth.
Given any sequence of query observables we can count the number of copies of Oα(j) at
odd and even depths – if the sequence corresponds to a refutation the counts must be equal.
Then for any given game, it is necessary to be able to construct some sequence of queries
Qi1 . . . Qi` satisfying this counting equality (with appropriate parity si1 . . . si` = −1) in order
to construct a true refutation. We call such a sequence a parity-permuted refutation
(PREF).

To prove properties of such PREFs, we find it useful to introduce a freer equivalence
relation p∼ on strings of queries that allows reordering within the even positions and the
odd positions before cancellation (compare to Definition 12). A PREF is then a string of
clauses (i1, . . . , i`) satisfying Qi1 . . . Qi`

p∼ I and the same parity-bit requirement as a regular
refutation. In later sections, we carefully define and use a technical version of p∼, but here
simply state that p∼ is a more inclusive equivalence relation than ∼, which immediately gives
Lemma 16.

I Lemma 16 (Necessary condition for refutation). If a game G admits a refutation, it contains
a PREF.

We define noPREF games to be those games that do not admit a PREF. These games
admit no true refutations by the previous lemma, and so have ω∗ = 1. Whether or not a
game contains a PREF is efficiently decidable by checking for a solution to a linear system
of equations. We sketch the algorithm that decides membership, delegating a rigorous proof
to the full paper.

I Lemma 17 (Informal). Membership in the set of noPREF games can be efficiently decided
by a system of linear Diophantine equations.

Proof (sketch). We prove the result by showing that a game G ∼ (A, ŝ) contains a PREF if
and only if there is a solution to the set of equations

AT z = 0 (11)
ŝT z = 1 (mod 2) (12)

for some z ∈ Zm. To prove the forward direction we note that each row of (11) guarantees
that a particular player-question pair has equal positive and negative count and (12) ensures
the parity bit requirement is met, such that the game G contains a PREF built by interleaving
the multisets of clause indices

O = {i with multiplicity |zi| ∀ i : zi > 0} (13a)
E = {i with multiplicity |zi| ∀ i : zi < 0} (13b)

with their elements placed in odd and even positions, respectively. The reverse direction is
proved similarly, but requires a technical lemma relating the even and odd clauses of a PREF.
Then standard techniques for solving linear Diophantine equations complete the proof. J

Symmetric games have additional structure that allows us to prove a stronger statement.

I Lemma 18 (Informal). The noPREF characterization is complete for symmetric games.
That is, every value 1 symmetric game is in the noPREF set.
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Proof. The proof of Lemma 18 is both constructive and purely combinatorial. It involves
first showing that symmetric games have enough structure to construct “shuffle gadgets”
which let us approximately commute strategy observables past each other. Then, careful
application of these shuffle gadgets lets us transform a PREF into a true refutation. The
technical proof is presented in the full paper. J

Theorem 14 then follows directly from Lemmas 17 and 18 since symmetric games have
commuting-operator value 1 if and only if they admit no PREFs and this condition is
efficiently checkable.

4.2 A Single Qubit Strategy (MERP)
We arrived at the noPREF classification of XOR games by generalizing the classical dual
picture to the entangled games case, then finding a simple necessary condition for a dual
proof (refutation) to exist. In this section we take the dual of a dual, and give a simple
technique to construct a strategy that achieves value 1 for any noPREF game, thus sketching
the proof of Theorem 15.

We call the resulting family of strategies Maximal Entanglement, Relative Phase
(MERP) strategies. These strategies are exactly the class of strategies developed in [31] to
optimally solve all games with alphabet size two. They are played on a k qubit GHZ state
(one qubit per player), and achieve value one if and only if (Theorem 21) there is a solution
to the equation

Aθ̂ = ŝ (mod 2), θ̂ ∈ Qkn.

I Definition 19 (MERP). Given a k-XOR game G, a MERP strategy for G is a tensor-
product strategy in which:
1. The k players share the maximally entangled state

|Ψ〉 = 1√
2

[
|0〉⊗k + |1〉⊗k

]
(14)

with player α having access to the α-th qubit of the state.
2. Upon receiving question j from the verifier, player α rotates his qubit by an angle θ(α, j)

about the Z axis, then measures his qubit in the X basis and sends his observed outcome
to the verifier.
Equivalently, we define the states

|θ(α, j)±〉 := 1√
2

[
|0〉 ± eiθ(α,j) |1〉

]
(15)

and pick strategy observables

Oα(j) := |θ(α, j)+〉〈θ(α, j)+| − |θ(α, j)−〉〈θ(α, j)−| . (16)

Each Z rotation executed by the players introduces a relative phase between the |0〉⊗k and
|1〉⊗k components of the GHZ state, and these relative phases add. The measurement is
constructed such that a total relative phase that is an even multiple of π results in overall
output 1 while an odd multiple of π results in overall output −1. Collecting the rotation
angles into a strategy vector

θ̂(α−1)n+j := 1
π
θ(α, j) (17)

results in a useful parallel between MERP strategies and classical strategies:
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I Definition 20. Define the MERP constraint equations for game G by

Aθ̂ = ŝ (mod 2) (18)

I Theorem 21. The value obtained by a MERP strategy is given by

vMERP(G, θ̂) := 1
2 + 1

2m

(
m∑
i=1

cos
(
π
[
(Aθ̂)i − ŝi

]))
. (19)

Consequently, there exists a MERP strategy achieving vMERP = 1 on a game G iff its MERP
constraint equations have a solution over Q.

The proof of Theorem 21 is computational. For any game, Theorem 21 indicates that a
MERP strategy achieves value 1 if and only if the MERP constraint equation (18) is satisfied.
Similarly to the classical case, this can be efficiently checked by Gaussian elimination. Here,
however, the underlying field is Q as opposed to F2.

Both MERP strategies and PREF specifications are defined by linear systems of equations,
over Q and Z respectively. Remarkably, these systems of equations are dual to each other,
in much the same way as classical strategies and refutations. By showing this, we prove
Theorem 22.

I Theorem 22. Any game G admits either a PREF or a MERP strategy with value 1.

Proof. Technical proof in the style of a Theorem of Alternatives presented in the full
paper. J

Intuitively, this result (coupled with Lemma 18 and Theorem 21) indicates that the power
of quantum solutions to noPREF games is equivalent to promoting the underlying field
from F2 to Q. We expect further advantage to be gained from the non-commuting nature
of operator-valued solutions in cases where a game admits a PREF but no true refutation.
These classes of games are the main subject of future work.

Figure 1 (given in the Introduction) summarizes the new duality relations presented in
this paper. We repeat them here. The general quantum duality provides a complex but
complete description of games with ω∗ = 1. The PREF conditions are efficient to compute,
but are only necessary conditions for constructing commuting-operator refutations, and thus
the dual, MERP value 1, holds true for only a subset of all ω∗ = 1 games. We can make a
stronger statement about symmetric games: PREFs are both necessary and sufficient for a
symmetric game to have a refutation, so the duality ensures MERP achieves value 1 for all
symmetric games with ω∗ = 1.

5 ncSoS Bounds and the XOR Landscape

The refutations picture also allows us to give worst and average case bounds on the behavior
of ncSoS for XOR games, and construct new families of games with interesting properties.

First, we construct a family of games that have ω∗ < 1, but are built in such a way
that the ncSoS algorithm has a hard time recognizing this. Called Capped GHZ games,
games in this family are symmetric and contain PREFs that all are at least exponentially
long. The ncSoS algorithm9 then requires time doubly exponential to prove that these games

9 Our results imply that in the case of entangled XOR games the ncSoS has runtime within a polynomial
factor of a brute force search over refutations up to a certain length.
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have commuting-operator value < 1. This gives a rare example of a problem whose solution
requires a superlinear number of levels of ncSoS, and illustrates the distinction between
ncSoS and SoS, the latter always terminating after at most a linear number of levels. On the
other hand, Lemma 18 tells us the existence of a PREF for this symmetric game indicates
ω∗ < 1, which allows us to solve the same problem in polynomial time. This leads us to
prove:

I Theorem 23. There exists a family of 3-XOR games with ω∗ < 1 but for which the
minimum refutation length scales exponentially in the number of clauses m and alphabet size
n. For these games exponentially many levels of ncSoS are needed to witness that ω∗ < 1.

Proof. An explicit construction of Capped GHZ games presented in the full paper. These
are symmetric games designed such that the PREF condition for these games can only be
satisfied by sets containing exponentially many clauses. Since any refutation also gives a
PREF, this means all refutations have at least exponential length. Finally, as a symmetric
game, the existence of a PREF indicates the game has ω∗ < 1. By the connection between
ncSoS and refutations, this means the ncSoS algorithm requires at least exponentially many
levels to detect the game has value less than one. J

Returning to pseudo-telepathy, we construct a family of games that generalize the
GHZ game, termed the Asymptotically Perfect Difference (APD) family. Members are
parameterized by scale K, with the K-th member having k = 2K − 1 players. The APD
family is designed such that any desired parity bits si can be produced by some strategy
(the game is in the noPREF set regardless of the si, so ω∗ = 1 for all si). On the other
hand, a growing fraction of possible assignments of si correspond to low classical value, and
the family has perfect difference [4] in the asymptotic limit, limK→∞ 2(ω∗ − ω) = 1. In
comparison, there are randomized constructions of families of games whose bias ratio ω∗−1/2

ω−1/2
diverges for fixed k ≥ 3 as n→∞ [25, 4], but these constructions give no guarantee on the
difference. Specifically, we prove it is possible to force an upper bound on ω in terms of the
number of players k while preserving ω∗ = 1:

I Theorem 24. There exists a family of k-XOR games, parametrized by K, for which
ω∗(G(K)) = 1 and the classical value is bounded by

1
2 ≤ ω(G(K)) ≤ 1

2 +
√
K + 1
2K+1 ≤

1
2 +

√
log k
k

. (20)

Quicker asymptotic convergence to difference 2(ω∗−ω)→ 1 could be achieved in other ways,
for example by the generalized Mermin-GHZ game [2] or by XORing together the answers
(aka “XOR repetition”) of other pseudo-telepathy XOR games [5]. Although their bias scales
in a weaker way, the APD games have the property that perfect entangled strategies exist
for any choice of target bit strings s.

To investigate the incompleteness of the PREF condition, we define an XOR game that
contains a PREF, but provably has commuting-operator value 1. This game is solved by
a single-qubit strategy employing measurements in the X, Y , and Z bases. This may be
a starting point for stricter necessary criterion, building towards a complete algorithm for
deciding the value of entangled XOR games. The existence of this game proves the following
theorem.

I Theorem 25. The PREF characterization is incomplete. In particular, there exists an
XOR game with six players, alphabet size three, for which the entangled value is 1, but the
noPREF condition is unable to detect this.
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Finally, we investigate thresholds in ω∗ by considering the behavior of randomly generated
XOR games with a large number of clauses. We prove Theorem 26, which shows that (much
like the classical case) random XOR games become unsatisfiable with high probability whenm
is larger than some constant times n. Previous techniques could show that k-XOR instances
were unsatisfiable only in the “dense” regime, i.e. where m ≥ Ω(nk) [24].

I Theorem 26. For every k, there exists a constant Cunsat
k depending only on k such that

a random k-XOR game G with m ≥ Cunsat
k n clauses has value ω∗(G) < 1 with probability

1− o(1).

Proof. Explicit construction of a refutation presented in the full paper. J

We also investigate the average case performance of ncSoS. We show that random
games with a fixed ratio of m to n have a minimal length refutation that scales like
Ω(n log(n)/ log(log(n))), implying that it takes the ncSoS algorithm superexponential time
to show that these games have ω∗ < 1 (Theorem 27). These results should be thought of as
quantum analogues of Grigoriev’s [17] integrality gap instances for classical XOR games.

I Theorem 27. For any constant C, the minimum length refutation of a random 3-XOR
game with m = Cn queries on an alphabet of size n has length at least

en log(n)
8C2 log(log(n)) − o

(
n log(n)

log(log(n))

)
(21)

with probability 1− o(1) (as n→∞). Hence, either ω∗ = 1 or Ω(n log(n)/ log(log(n))) levels
of the ncSoS hierarchy are needed to witness that ω∗ < 1 for such games.

6 Future Work

We see four main directions in which our characterization of non-local XOR games could be
extended.

First, our linear algebraic characterization of ω∗ = 1 games is incomplete: there exist
games with ω∗ = 1 for which a MERP strategy cannot achieve value 1. We expect a
strengthening of the PREF condition may allow us to extend our decidability algorithm
to detect these games and develop dual strategies that solve them. Understanding the
structure of such games would give further intuition about the behavior of optimal XOR
commuting-operator strategies, in particular strategies which may require more entanglement
than the simple MERP strategies.

Second, determining whether ω∗ = 1 for nonsymmetric XOR games may be outside P or
even undecidable. In the realm of Binary Constraint System (BCS) games, [27] shows that
determining whether a general BCS game has perfect value is undecidable. The structural
similarity between BCS games and XOR games suggests that perhaps some of the group
theoretic techniques of that work could be applied to XOR games to arrive at a similar
conclusion. An interesting class of games which may serve as an intermediate class between
XOR and BCS games are “incomplete” XOR games in which there are k players but queries
can involve < k variables, effectively ignoring some players. Even for k = 2, Tsirelson’s
semidefinite programming characterization of ω∗ does not apply to incomplete XOR games,
although in this case it is still easy to decide whether ω∗ = 1.

Third, while in this work we have focused on computing the entangled game value ω∗, our
methods may also be useful from the perspective of Bell inequalities, in which the quantity
of interest is the maximal violation achievable by an entangled strategy. While this has
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conventionally been measured in terms of the bias ratio (ω∗ − 1/2)/(ω − 1/2), the difference
2(ω∗ − ω) is an equally natural measure, and we hope that our techniques will render
it more amenable to analysis. Indeed, in addition to the construction of Asymptotically
Perfect Difference games mentioned above, our results have the following simple consequence:
for symmetric games with ω∗ = 1, our characterization of the optimal strategies (MERP)
together with the Grothendieck-type inequality of [3] imply that the bias ratio and difference
are both bounded by constants depending only on k, and that for the difference, this constant
is strictly less than one.

Finally, our results are almost entirely concerned with the question of determining whether
ω∗ = 1 or ω∗ < 1. However, we note that the MERP family of strategies includes the optimal
strategy for the CHSH game [7] and more generally any multiplayer game with question
and answer alphabet size two [31], but not for all XOR games [23]. It is an interesting open
question to fully characterize when MERP strategies are optimal. In this setting there are
still many classical tools which we do not know how to extend to the quantum case. As an
example, consider overconstrained games in which there are many more constraints than
variables and the signs of those constraints are chosen randomly. In the classical case, second
moment methods can show that the value is close to 1/2 while in the quantum case we can
only conclude that it is < 1.
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Abstract
We study testing of local properties in one-dimensional and multi-dimensional arrays. A property
of d-dimensional arrays f : [n]d → Σ is k-local if it can be defined by a family of k × . . . × k
forbidden consecutive patterns. This definition captures numerous interesting properties. For
example, monotonicity, Lipschitz continuity and submodularity are 2-local; convexity is (usually)
3-local; and many typical problems in computational biology and computer vision involve o(n)-
local properties.

In this work, we present a generic approach to test all local properties of arrays over any
finite (and not necessarily bounded size) alphabet. We show that any k-local property of d-
dimensional arrays is testable by a simple canonical one-sided error non-adaptive ε-test, whose
query complexity is O(ε−1k log εn

k ) for d = 1 and O(cdε−1/dk · nd−1) for d > 1. The queries
made by the canonical test constitute sphere-like structures of varying sizes, and are completely
independent of the property and the alphabet Σ. The query complexity is optimal for a wide range
of parameters: For d = 1, this matches the query complexity of many previously investigated
local properties, while for d > 1 we design and analyze new constructions of k-local properties
whose one-sided non-adaptive query complexity matches our upper bounds. For some previously
studied properties, our method provides the first known sublinear upper bound on the query
complexity.
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1 Introduction

Property testing [22, 33] is devoted to understanding how much information one needs to
extract from an object in order to determine whether it satisfies a given property or is
far from satisfying the property. This active research area has seen many developments
through the last two decades; see the recent book of Goldreich [21] for a good introduction.
The property testing notation we use here is standard, see Subsection 1.7 for the relevant
definitions.

In this paper we focus on testing of local properties in structured data. The objects we
consider are d-dimensional arrays, where d is a positive integer, viewed as a constant. A
d-dimensional array of width n, or an [n]d-array in short, is a function A : [n]d → Σ from the
hypergrid [n]d to the alphabet Σ, where the alphabet Σ is allowed to be any (arbitrarily large)
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11:2 Testing Local Properties of Arrays

finite set; we stress that the size of Σ is usually not required to be bounded as a function
of the other parameters. For example, a string is an [n]1-array, and the commonly used
RGB representation of images is basically an [n]2-array over {0, 1, . . . , 255}3, where the three
values corresponding to each pixel represent the intensity of red, green and blue in it.

1.1 Local properties
Korman, Reichman, and the author [7] recently investigated testing of the property of
consecutive pattern freeness, i.e., not containing a copy of some (predefined) “forbidden”
consecutive subarray. Here, a [k]d-array S is a (consecutive) subarray of an [n]d-array A in
location (i1, . . . , id) ∈ [n − k + 1]d if A(i1 + j1 − 1, . . . , id + jd − 1) = S(j1, . . . , jd) for any
j1, . . . , jd ∈ [k].

Naturally, a more general follow-up question raised in [7] was the following: what can be
said about testing of properties defined by a family of forbidden consecutive patterns? As we
shall see soon, many interesting properties of arrays (including a large fraction of the array
properties that were previously investigated in the literature) can be characterized this way.

With this in mind, we call a property local if it can be characterized by a family of small
forbidden consecutive patterns. Formally, a property P of [n]d-arrays over an alphabet Σ is
k-local (for 2 ≤ k ≤ n) if there exists a family F of [k]d-arrays over Σ so that the following
holds for any [n]d-array A over Σ:

A satisfies P ⇐⇒ None of the (consecutive) subarrays of A is in F .

For P as above, we sometimes write P = P(F) to denote that P is defined by the forbidden
family F .

The main contribution of this work is a generic one-sided error non-adaptive framework
to test k-local properties. In some cases, our method either matches or beats the best known
upper bounds on the query complexity (although the running time might be far from optimal
in general). We show the optimality of our method by proving a matching lower bound for
non-adaptive one-sided tests, as well as a (weaker) lower bound for two-sided tests.

In order to demonstrate the wide range of properties captured by the above definition, we
now present various examples of properties that are k-local for small k, including some of the
most widely investigated properties in the property testing literature, as well as properties
from areas of computer science that were not systematically studied in the context of property
testing. In what follows, the sum of two tuples x = (x1, . . . , xd), y = (y1, . . . , yd) is defined as
the tuple (x1 + y1, . . . , xd + yd); additionally, ei denotes the i-th unit vector in d dimensions.

Monotonicity. Perhaps the most thoroughly investigated property in the testing literature:
see e.g. the entries related to monotonicity testing in the Encyclopedia of Algorithms
[14, 32] and the references within. An [n]d-array A over an ordered alphabet Σ is monotone
(non-decreasing) if A(x) ≤ A(y) for any x = (x1, . . . , xd) and y = (y1, . . . , yd) satisfying
xi ≤ yi for any i. Monotonicity is 2-local: an array A is monotone if and only if there is
no pair x, x+ ei ∈ [n]d so that A(x) > A(x+ ei).

Lipschitz continuity. Another well-investigated property with connections to differential
privacy [3, 10, 15, 24], an [n]d-array A is c-Lipschitz continuous if |A(x) − A(y)| ≤
c
∑d
i=1 |yi− xi| for any x, y ∈ [n]d. This condition holds iff |A(x)−A(x+ ei)| ≤ c for any

x, x+ ei ∈ [n]d, and thus Lipschitz continuity is also 2-local.
Convexity. Discrete convexity is an important geometric property with connections to

optimization and other areas [9, 8, 13, 18, 30, 31]. A one-dimensional array A is convex
if λA(x) + (1 − λ)A(y) ≥ A(λx + (1 − λ)y) for any x, y ∈ [n] and 0 < λ < 1 satisfying
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λx+(1−λ)y ∈ [n]. Convexity is 3-local for the case d = 1: an array A : [n]→ Σ is convex
if and only A[x] − 2A[x + 1] + A[x + 2] ≥ 0 for any x ∈ [n − 2]. In higher dimensions,
several different notions of discrete convexity have been used in the literature – see e.g.
the introductory sections of the book of Murota on discrete convex analysis [27]. Two of
the commonly used definitions, M ]-convexity and L]-convexity, are 3-local and 4-local,
respectively: see Theorems 4.1 and 4.2 in [26], where it is shown that both notions can be
defined locally using slight variants of the Hessian matrix consisting of the partial discrete
derivatives. Another common definition that is a natural variant of the continuous case
states that convexity is equivalent to the positive semi-definiteness of the Hessian matrix;
under this definition, convexity is 3-local. A strictly weaker notion of convexity, called
separate convexity [13], is defined as follows: an [n]d-array A is separately convex if it is
convex along each of the axes. Similarly to one-dimensional convexity, separate convexity
is 3-local for any d.

Properties of higher order derivatives. More generally, any property of arrays that can be
characterized by “forbidden pointwise behavior” of the first k discrete derivatives [13]
is (k + 1)-local. Monotonicity (for k = 1), Lipschitz continuity (k = 1) and convexity
(k = 2) are special cases of such properties.

Submodularity. An important property closely related to convexity [10, 11, 30, 34]. Given
x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ [n]d, define x∧ y = (min(x1, y1), . . . ,min(xd, yd)) and
x∨y = (max(x1, y1), . . . ,max(xd, yd)). An [n]d-array is submodular if A[x∧y]+A[x∨y] ≤
A[x] + A[y] for any x, y ∈ [n]d. Submodularity is 2-local: it is not hard to verify that
submodularity is equivalent to the condition that A(x)+A(x+ei+ej) ≤ A(x+ei)+A(x+ej)
for all x.

Pattern matching and computer vision. Tasks involving pattern matching under some lim-
itations – such as noise in the image, obstructed view, or rotation of elements in the
image – are at the core of computer vision and its applications. For example, the local
property of not containing a good enough `1-approximation of a given forbidden pattern
is of practical importance in computer vision. Sublinear approaches closely related to
property testing are known to be effective for problems of this type, see e.g. [25].

Computational biology. Many problems in computational biology are closely related to
one-dimensional pattern matching. As an example, a defensive mechanism of the human
body against RNA-based viruses involves “cutting” a suspicious RNA fragment, if it finds
one of a (small) family of short forbidden consecutive patterns in it, indicating that this
RNA might belong to a virus. Thus, in order to generate fragments of RNA that are not
destroyed by such defensive mechanisms (which is a basic task in computational biology),
understanding the process of “repairing” a fragment so that it will not contain any of the
forbidden patterns is an interesting problem related to property testing.

1.2 Previous results on local properties
One-dimensional arrays

A seminal result of Ergün et al. [19] shows that for constant ε, monotonicity is ε-testable over
the line (that is, for one-dimensional arrays) using O(logn) queries over general alphabets.
The non-adaptive one-sided error test proposed in [19] is based, roughly speaking, on imitating
a binary search non-adaptively. It was shown by Fischer [20] that the above is tight even for
two-sided error adaptive tests, proving a matching Ω(logn) lower bound. Later on, Parnas,
Ron and Rubinfeld [30] and Jha and Raskhodnikova [24] showed that the O(logn) upper
bound on the non-adaptive one-sided query complexity also holds for convexity and Lipschitz
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continuity, respectively. For general ε, the upper bound in [24] is of the type O(ε−1 logn); the
same work also presents a matching lower bound of Ω(logn) for the one-sided non-adaptive
case, while Ω(logn) lower bounds for two-sided non-adaptive tests of convexity, and more
generally, monotonicity of the `-th derivative, are proved by Blais, Raskhodnikova and
Yaroslavtsev [13] using a communication complexity based approach [12]. Finally, a recent
result of Belovs [4] refines the one-sided non-adaptive query complexity of monotonicity to
O(ε−1 log εn).

When the alphabet is binary (of size two), general positive results are known regarding
the testability of local properties in one dimension. It follows from the testability of
regular languages, established by Alon et al. [2], that any k-local property is testable in
O(c(F)ε−1(log3(ε−1))) queries, where c(F) depends only on the family F of forbidden
consecutive length-k patterns defining the property. However, c(F) can be exponential in k
in general.

Multi-dimensional arrays

Chakrabarty and Seshadhri [16] extended some of the above results to hypergrids, showing
that a general class of so-called “bounded derivative” properties (all of which are 2-local),
including monotonicity and Lipschitz continuity as special cases, are all testable over [n]d-
arrays with O(ε−1d logn) queries. Another work by the same authors [17] shows a matching
lower bound of Ω(ε−1d log εn) for monotonicity, that holds even for two-sided adaptive tests,
while the communication complexity approach of [13] gives a (non-adaptive, two-sided)
Ω(d logn) lower bound for convexity, separate convexity and Lipschitz.

Submodularity is testable for d = 2 with O(log2 n) queries [30]; However, no non-trivial
upper bound on the query complexity is known for submodularity in the case d > 2 and
convexity in the case d > 1 under the Hamming distance and over general alphabets (although
[9] proves constant-query testability for 2D convexity over a binary alphabet). Under L1-
distance and for any d, it was shown in [10] that convexity in [n]d-arrays is testable with
number of queries that depends only on d.

Pattern freeness

In [7], it was shown that the property of (consecutive) pattern freeness, for a single forbidden
pattern, is testable with O(cd/ε) queries for any d. The proof, however, requires multiple
sophisticated combinatorial observations and does not seem to translate to the case of a
family of forbidden patterns discussed here.

1.3 Our results

In this work, we present a generic approach to test all k-local properties of [n]d-arrays. Among
other consequences, a simple special case of our result in the one-dimensional regime shows
that the abundance of properties whose query complexity is Θ(logn) is not a coincidence:
in fact, any O(1)-local property of one-dimensional arrays is testable with O(logn) queries,
using a canonical binary search like querying scheme.

On the other hand, we prove a lower bound for testing local properties in d > 1 dimensions,
showing that the query complexity of our test is optimal (for fixed d) among non-adaptive
one-sided tests, even when restricted to alphabets of size that is polynomial in nd. We also
prove a lower bound for non-adaptive two-sided tests.
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1.3.1 Upper bounds
Our first main result is an upper bound on the number of queries required to test any k-local
property of [n]d-arrays non-adaptively with one-sided error. The test is canonical in a strong
sense: The queries it makes depend on n, d, k, and (relatively weakly) on ε; they do not
depend on P or the alphabet Σ. In other words, it makes the same type of queries for all
k-local properties of [n]d-arrays over any finite (and not necessarily bounded-size) alphabet.

I Theorem 1. Let 2 ≤ k ≤ n and d ≥ 1 be integers, and let ε > 0. Any k-local property P
of [n]d-arrays over any finite (and not necessarily bounded size) alphabet has a one-sided
error non-adaptive ε-test whose number of queries is

O(kε · log εn
k ) for d = 1.

O(cd k
ε1/d · nd−1) for d > 1.

Here, c > 0 is an absolute constant. The test chooses which queries to make based only on
the values of n, d, k, ε, and independently of the property P and the alphabet Σ.

Note that we are interested here in the domain where n is large and d is considered a constant.
Thus, we did not try to optimize the cd term in the second bullet, seeing that it is negligible
compared to nd−1 anyway.

Running time

The main drawback of our approach is the running time of the test, which is high in general.
After making all of its queries, our test runs an inference step, where it tries to evaluate (by
enumerating over all relevant possibilities) whether a violation of the property must occur in
view of the queries made, and reject if this is the case.

Without applying any property-specific considerations, the running time of the inference
step is of order |Σ|O(nd). However, for various specific properties of interest, such as
monotonicity and 1D-convexity, it is not hard to make the running time of the inference step
of the same order of magnitude as the query complexity. Moreover, in one dimension we can
use dynamic programming to achieve running time that is significantly better than the naive
one, but still much higher than the query complexity in general: O(|Σ|O(k)n). This works for
any k-local property in one dimension; see the last part of Subsection 1.4.1 for more details.

Proximity oblivious test

Interestingly, the behavior of the test depends quite minimally on ε, and it can be modified
very slightly to create a proximity oblivious test (POT) for any k-local property. The useful
notion of a POT, originally defined by Goldreich and Ron [23], refers to a test that does not
receive ε as an input, and whose success probability for an input not satisfying the property
is a function of the Hamming distance of the input from the property.

I Theorem 2. Fix d > 0. Any k-local property P of [n]d-arrays over any finite (but not
necessarily bounded size) alphabet has a one-sided error non-adaptive proximity oblivious test
whose number of queries is O(k log(n/k)) if d = 1 and O(knd−1) if d > 1. For any input A
not satisfying P, the rejection probability of A is linear (for fixed d) in the Hamming distance
of A from P.

One can run O(cd/ε) iterations of the POT to obtain a standard one-sided error non-
adaptive test. The query complexity is O(kε−1 log(n/k)) for d = 1 and O(cdkε−1nd−1) for
d > 1, where cd > 0 depends only on d. Thus, the POT-based test is sometimes as good as
the test of Theorem 1 (specifically, for d = 1 it matches the above bounds for almost the
whole range of ε and k). In any case, the multiplicative overhead of the POT-based test is
sublinear in 1/ε across the whole range.
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Type of queries

In one dimension, many of the previously discussed properties, including, for example,
monotonicity and Lipschitz continuity, are testable in O(logn) queries. Previously known
tests for monotonicity and Lipschitz continuity make queries that resemble a binary search:
these tests query pairs of entries of distance 2i for multiple choices of 0 ≤ i ≤ logn.

Our test continues the line of works using querying schemes roughly inspired by binary
search. The test queries structures that can be viewed, intuitively, as L∞-spheres of different
sizes in [n]d. For this purpose, an L∞-sphere with radius r and width ` in [n]d is a set
X1×X2× . . .×Xd ⊆ [n]d, where each Xi is a union of intervals of the form [ai, ai+1, . . . , ai+
`− 2, ai + `− 1] ∪ [bi − `+ 2, bi − `+ 3, . . . , bi − 1, bi], and bi − ai ∈ {r, r + 1} for any i ∈ [d].
More specifically, our test for k-local properties queries spheres with width k − 1 and radius
of order 2i for different values of i. In the simple special case where d = 1 and k = 2, this is
very similar to the querying scheme mentioned in the previous paragraph.

Implications

In one dimension, the query complexity of the test matches the best known upper bounds
(and, in some regimes, refines the dependence on ε) for several previously investigated
properties including monotonicity, Lipschitz continuity and convexity. For monotonicity of
k-th order derivatives, which is (k+ 1)-local, it proves the first sublinear upper bound on the
query complexity: O(k logn); in comparison, the best known lower bound [13] is Ω(logn).

For pattern matching type properties in 1D arrays (including applications in computational
biology and other areas), our approach gives a property- and alphabet-independent upper
bound of O(k logn) on the query complexity, with essentially optimal dependence on ε as well.
Previously known approaches for testing such properties, like the regular languages testing
approach [2], yield tests whose query complexity is dependent on the family of forbidden
patterns considered, whose size might be exponential in the locality parameter k. Our
approach, on the other hand, requires an O(logn) “overhead”, but its query complexity is
independent of the size of the forbidden family discussed. Instead, the dependence in k

is linear.
In multiple dimensions, our approach is far from tight for well-understood properties

such as monotonicity and Lipschitz continuity, whose query complexity is known to be
Θ(d logn) (in comparison, our approach yields an O(nd−1) type bound). However, for testing
of other properties like convexity (for d > 1) and submodularity (for d > 2) in [n]d-arrays, no
non-trivial upper bounds on the query complexity are known over general alphabets, so our
upper bound of O(nd−1) is the first such bound. While we do not believe this bound is tight
in general, this might be a first step towards the development of new tools for efficiently
testing such properties.

Sketching for testing

The fact that the queries made are completely independent of the property suggests the
following sketching technique allowing for “testing in retrospect”: Given ε and k in advance,
we make all queries of the generic ε-test for k-local properties in “real time”, and store them
for postprocessing. This is suitable, for example, in cases where we have limited access to a
large input for a limited amount of time (e.g. when reading the input requires specialized
expensive machinery), but the postprocessing time is not an issue. Note that for this approach
we do not need to know the property of interest in advance.



O. Ben-Eliezer 11:7

1.3.2 Lower bounds

Our next main result is a tight lower bound for non-adaptive one-sided error testing of local
properties, that applies for any d, and is tight for any fixed d satisfying d > 1.

I Theorem 3 (One-sided tests). Let d ≥ 1 and n ≥ k ≥ 2 be integers, and let d/n < ε < 1.
There exists a k-local property P of [n]d-arrays over an alphabet Σ of size nO(d), so that any
non-adaptive one-sided error ε-test for P requires Ω

(
min

{
k

dε1/d · nd−1, nd
})

queries.

Note that the size of the alphabet in Theorem 3 is only polynomial in the input size. We
also prove a lower bound for non-adaptive two-sided tests; here the dependence in |Σ|
is exponential.

I Theorem 4 (Two-sided tests). Let d ≥ 1 and n ≥ k ≥ 2 be integers, and let d/n < ε < 1.
There exists a k-local property P of [n]d-arrays over an alphabet Σ of size 2O(nd), so that any
non-adaptive two-sided error ε-test for P requires Ω

(
min

{ √
k

dε(d+1)/2d · n(d−1)/2, nd
})

queries.

For fixed d > 1, the lower bound for one-sided tests matches the upper bound from Theorem
1 across the whole range of ε and k. For d = 1 the bound obtained here is Ω(k/ε), which is
tight up to a logn factor. Note the threshold behavior occurring at k/ε1/d = Θ(n): When
k/ε1/d = o(n), the upper bound of Theorem 1 implies that any k-local property is ε-testable
with a sublinear number of queries, while for k/ε1/d = Ω(n), the property of Theorem 3
requires Ω(nd) non-adaptive one-sided queries to test.

From Theorem 4 we conclude that the improvement in query complexity obtained by
two-sided error non-adaptive tests is at most quadratic in the worst case; specifically, there
exists a 2-local property requiring nΩ(d−1) queries to test by two-sided non-adaptive tests.

1.4 Proof ideas and techniques

Here we present the main ideas of our proofs in an informal way, starting with the upper
bound. For simplicity, we stick to the one-dimensional case, and assume that ε is fixed
and k = o(n).

1.4.1 Upper bound for 1D

Suppose that P = P(F) is a k-local property of [n]1-arrays A over an alphabet Σ, defined by
the forbidden family F . Let S be a consecutive subarray of A of length at least 2k − 2. The
boundary of S consists of the first k − 1 elements and the last k − 1 elements of S, and all
other elements of S are its interior. We call S unrepairable if one cannot make the array S
satisfy the property P without changing the value of at least one element in its boundary.
Otherwise, S is repairable. Observe the following simple facts.

It suffices to only query the boundary elements of S in order to determine whether S is
unrepairable.
If S is unrepairable, then A does not satisfy P.
If S is repairable, then we can delete all forbidden patterns from S by modifying only
entries in its interior, without creating any new copies of forbidden patterns in A.

We call the process of understanding whether S is unrepairable using only its boundary
elements inference. Note that the inference step does not make any additional queries.
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A simple sublinear test

A first attempt at a generic test for local properties is the following: we query Θ(
√
n)

intervals in [n], each containing exactly k − 1 consecutive elements, including the intervals
{1, . . . , k − 1} and {n − k + 2, . . . , n}, where the distance between each two neighboring
intervals is Θ(

√
n). A block is a subarray consisting of all elements in a pair of neighboring

intervals and all elements between them. The crucial observation is that at least one of the
following must be true, for any array A that is ε-far from P (recall that ε is fixed).

At least one of the blocks is unrepairable.
At least Ω(

√
n) of the blocks do not satisfy P.

Indeed, if the first condition does not hold, then one can make A satisfy P by only changing
elements in the interiors of blocks that do not satisfy P. Seeing that A is ε-far from P and
that we do not need to modify elements in the interiors of blocks that satisfy P , this implies
that at least Ω(

√
n) of the blocks do not satisfy P.

Now we are ready to present the test: We query all O(k
√
n) elements of all intervals,

and additionally, all O(
√
n) elements of O(1) blocks. Querying all elements of all intervals

suffices to determine (with probability 1) whether one of the blocks is unrepairable. If A is
ε-far from P and does not contain unrepairable blocks, querying O(1) full blocks will catch
at least one block not satisfying P with constant probability, as desired.

For more details, see Section 3 and the preliminary Section 2 that prepares the required
infrastructure.

The optimal test

Improving the query complexity requires us to construct a system of grids – which are merely
subsets of [n] – inspired by the behavior of binary search. In comparison, the approach of
the previous test is essentially to work with a single grid.

The first (and coarsest) grid contains only the first k − 1 elements and the last k − 1
elements of [n]. In other words, it is equal to {1, . . . , k− 1, n− k+ 2, . . . , n}. The second grid
refines the first grid – that is, it contains all elements of the first grid – and additionally, it
contains k − 1 consecutive elements whose center is n/2 (whenever needed, rounding can be
done rather arbitrarily). We continue with the construction of grids recursively: To construct
grid number i+ 1, we take grid number i and add k− 1 elements in the middle of each block
of grid i (blocks are defined as before). Note that the length of blocks is roughly halved
with each iteration. We stop the recursive construction when the length of all of the blocks
becomes no bigger than ck, where c ≥ 2 is an absolute constant.

For each block B in grid number i > 1, we define its parent, denoted Par(B), as the
unique block in interval i− 1 containing it. A block B in the system of grid is maximally
unrepairable if it is unrepairable, and all blocks (of all grids in the system) strictly containing
it are repairable. It is not hard to see that different maximally unrepairable blocks have
disjoint interiors.

The main observation now is that in order to make A satisfy P , it suffices to only modify
entries in the interiors of parents of maximally unrepairable blocks. If A is ε-far from P , then
the total length of these parents must therefore be Ω(n) (for constant ε). However, since the
length of Par(B) is roughly twice the length of B, we conclude that the total length of all
maximally unrepairable blocks is Ω(n).

With this in hand, it can be verified that the following test has constant success probability.
For each grid in the system, we pick one block of the grid uniformly at random, and query
all entries of its boundary. Additionally, for the finest grid (whose block length is O(k)), we
also query all interior elements of the picked block.
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For more details, see Section 4 (which builds on the infrastructure of Section 2).

Running time in 1D

We now show that the running time of the inference step for a block of length m is m|Σ|O(k).
Summing over all block lengths, this would imply that the total running time of the test is
n|Σ|O(k).

The proof uses dynamic programming. Let S be an array of length m over Σ, and assume
that S(1), S(2), . . . , S(k − 1) and S(m − k + 2), . . . , S(m) are all known. For each “level”
from 1 to m− k + 1, we keep a boolean predicate for each of the |Σ|k possible patterns of
length k over Σ. These predicates are calculated as follows.

In the first level, the predicate of σ = (σ1, . . . , σk) evaluates to TRUE if S(1) =
σ1, . . . , S(k − 1) = σk−1, and additionally, σ /∈ F , that is, σ is not a forbidden pat-
tern. Otherwise, the predicate of σ is set to FALSE.
For i = 2 to m− k + 1, the predicate of σ = (σ1, . . . , σk) in level i evaluates to TRUE if
and only if
1. σ /∈ F .
2. there exists σ′ = (σ′0, σ1, . . . , σk−1) that evaluates to TRUE in level i− 1.
Finally, the predicates in level m− k + 1 are modified as follows: for all σ = (σ1, . . . , σk)
so that σj 6= S(m− k + j) for some j ≥ 2, we set the predicate of σ to FALSE.

It is not hard to see that S is unrepairable if and only if all predicates at level m− k + 1 are
FALSE. The running time is O(m|Σ|cd) for a suitable constant c > 0.

Generalization to higher dimensions

The generalization to higher dimensions is relatively straightforward; the main difference is
that the boundary of blocks now is much larger: blocks of size m× . . .×m have boundary of
size O(kdmd−1). Thus, essentially the same proof as above (with suitable adaptations of the
definitions) yields a test with query complexity O(kdnd−1) for constant ε. For the running
time, we can no longer use dynamic programming; using the naive approach of enumerating
over all possible interior elements of a block, we get that the inference time for a block of
size m× . . .×m is |Σ|O(md), making the total running time of the test |Σ|O(nd).

1.4.2 Lower bound
The property P underlying our lower bound construction consists of [n]d-arrays A over Σ
satisfying all of the following properties. Here we provide a construction over alphabet size
2O(nd), but in Section 6 of the full version of this paper [5] we show how a simple modification
of the property can be conducted in order to decrease the size of the required alphabet to
nO(d) for the proof of Theorem 3 (unfortunately, for the proof of Theorem 4 this modification
does not work).

The alphabet Σ is of the form [n]d × [n]d × 2[2nd−1], where 2X is the power set of a set X.
The value of A in entry x ∈ [n]d is represented as a tuple A1(x), A2(x), A3(x). We view
A1(x), A2(x) as pointers emanating from x.
For every x ∈ [n]d we require A1(x) = x. That is, A1 points to the location of the element
itself.
There exists a special location ` = (`1, . . . , `d) ∈ [n]d so that all x ∈ [n]d point to ` with
their second pointer, that is, A2(x) = `. We call this location the lower center of gravity.
We define an upper center of gravity as u = (`1 + 1, `2, . . . , `d).
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A floor entry x = (x1, . . . , xd) ∈ [n]d satisfies x1 = 1 and a ceiling entry satisfies x1 = n.
For each such floor or ceiling entry x, we pick A3(x) to be a singleton (i.e., a set with one
element).
For each floor element x, there exists a path Γx from x to the lower center of gravity
`. Similarly, for each ceiling element y, there is a path Γy directed towards the upper
center of gravity, u. In both cases, the path is of length O(nd). The structure of the path
depends only on its start and end points (so depends only on x and ` in the first case,
and y and u in the second case).
The A3-data “flows” to the center of gravity through paths. Formally, the A3-set of
each entry y that is not a floor or ceiling entry is required to be equal to the union⋃
x : y∈Γx

A3(x). In other words, the data in each location in [n]d is an “aggregation” of
the data flowing in all paths that intersect it.
Finally, we require that A3(u) = A3(`).

While P was defined above in global terms, we show that it is actually a 2-local property,
that is, all conditions specified here can be written in a 2-local way.

To prove the lower bound, we follow Yao’s minimax principle [35], defining a distribution
of arrays satisfying P, and a distribution of arrays which are Ω(1)-far from satisfying P, so
that a large number of queries is required to distinguish between the distributions.

As positive examples, we take a collection of arrays A satisfying the property, and require
that all the singletons in the floor are pairwise disjoint. For negative examples (that are
1/4-far from P), we consider a collection of arrays satisfying all of the above requirements
other than the last. Instead, all singletons in the floor and the ceiling are pairwise disjoint
(so in particular, A3(`) ∩A3(u) = ∅).

We show that for any given x ∈ [n]d, the expected size of A3(x) over each of the
distributions is O(d). For the one-sided error case, it is shown that one needs to know
the values of at least Ω(nd−1) singletons to be able to distinguish between positive and
negative examples with one sided error, implying that Ω(nd−1/d) queries are required to
reject negative examples with constant probability.

For the two sided error case, the argument is inspired by the birthday paradox. Very
loosely speaking, it follows from the fact that, given two unknown unordered sets A and B
of size n, one has to make Ω(

√
n) queries to distinguish between the case that A = B and

the case that A ∩B = ∅.
Due to space considerations, the full proofs of Theorems 3 and 4 are relegated to the full

version of this paper [5]; see Sections 5 and 6 there.

1.5 Other related work
This subsection complements Subsection 1.2, presenting other related previous works that
were not mentioned above.

General results in property testing

This paper adds to the growing list of general characterization results in property testing
of strings, images, and multi-dimensional arrays; see [1, 6] and the references within for
characterization-type results in these domains, mostly over a fixed size alphabet. In particular,
for strings, it was shown by Alon et al. [2] that any local property over a fixed size alphabet
is constant-query testable, and this paper shows that an overhead of at most O(logn) is
required when the alphabet size is unbounded.
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Hyperfiniteness

A graph is hyperfinite if, roughly speaking, it can be decomposed into constant size connected
components by deleting only a small constant fraction of the edges. Newman and Sohler
[28] investigated the problem of testing in hyperfinite graphs, showing that any property of
hyperfinite bounded degree graphs is testable with a constant number of queries. While the
graph with which we (implicitly) work – the hypergrid graph, whose vertices are in [n]d and
two vertices are neighbors if they differ by 1 in one coordinate – is a hyperfinite bounded
degree graph (for constant d), the results of [28] are incomparable to ours. Indeed, in our
case the vertices are inherently ordered, and it does not make sense to allow adding edges
between vertices that are not neighbors (as entries of [n]d), unlike the case in [28], where one
may add or remove edges arbitrarily between any two vertices. Still, the hyperfiniteness of
our graph seems to serve as a major reason that local properties have sublinear tests.

Block tests for image properties

The works of Berman, Murzabulatov and Raskhodnikova [9] and Korman, Reichman, and
the author [7] on testing of image properties (that is, on visual properties of 2D arrays) show
that tests based on querying large consecutive blocks are useful for image property testing.
In this work, the general queries we make are quite different: we query the boundaries of
blocks of different sizes, so the queries are spherical, in the sense that a block can be seen as
a ball in the L∞-metric on vectors in [n]d, while its boundary can be be seen as the (width-k)
sphere surrounding this ball. This introduces a new type of queries shown to be useful for
image property testing.

1.6 Discussion
Small alphabets

The results in this work are alphabet independent, and in particular, they work for alphabets
over any size. An intriguing direction of research is to understand whether one can obtain
more efficient general testability results for local properties of multi-dimensional arrays over
smaller alphabets; this line of research has been conducted for specific properties of interest,
like monotonicity and convexity [4, 29]. Note that the one-sided non-adaptive lower bound
we prove here can be adapted to yield a |Σ|Ω(1) lower bound for testing local properties over
alphabets Σ of size smaller than nd.

The most interesting special case is that of constant-sized (and in particular, binary)
alphabets. Here, no lower bounds that depend on n are known. For the case d = 1, it is
known that all O(1)-local properties are constant query testable; this follows from a result of
Alon et al. [2], who showed that any regular language is constant-query testable. However,
it is not known whether an analogous statement holds in higher dimensions. That is, for
any d > 1, the question whether all k-local properties of [n]d-arrays over {0, 1} are ε-testable
with query complexity that depends only on d, k, and ε, first raised in [7] (see also [1]),
remains an intriguing open question. We believe that positive results in this front might also
shed light on the question of obtaining more efficient inference for large classes of properties,
especially over small alphabets.

Does adaptivity help?

This work does not provide any lower bounds for adaptive tests, and it will be interesting to
do so; previously investigated properties likes monotonicity yield an Ω(d logn) lower bound
[13, 17], and we believe that “data flow” type properties, somewhat similar to our lower
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bound constructions, can provide instances of 2-local properties that require at least nc
queries, for some constant c ≤ 1, for the adaptive two-sided case.

However, it is not clear whether better lower bounds (even bounds of the type Ω(n1+c))
exist. It will be very interesting to prove better upper and lower bounds for testing local
properties. Our conjecture is that any 2-local property is testable in n1+o(1)g(d) queries
(where g(d) depends only on d), but proving a statement of this type might be very difficult.

Using the unrepairability framework in other contexts

In this work we show that the concept of unrepairability allows to unify and reprove many
property testing results on one-dimensional arrays. What about multi-dimensional arrays? for
example, can one generalize the currently known proofs for “bounded derivative” properties
(including monotonicity and Lipschitz continuity) in d dimensions to a larger class of local
properties?

Inference

As mentioned in Subsection 1.4.1, our test queries boundaries of block-like structures, and
later infers whether each block is unrepairable (recall the definition from Subsection 1.4.1).
The inference takes place without making any additional queries, and is based only on the
property P, the alphabet Σ, and the values of A in the boundary of the block.

The running time of the inference step is very large in general (although, as we have seen,
in the 1D case it can be significantly improved using dynamic programming). The naive
way to run the inference is by enumerating over all possible ways to fill the interior of the
block, and checking whether each such possibility is indeed F -free. The running time of this
method is of order |Σ|O(nd) in general for d > 1, and is exponential in n even if |Σ| = 2.

However, for many natural properties, inference can be done much more efficiently. For
example, in monotonicity testing, the inference amounts to checking that no pair of boundary
entries violates the monotonicity. Our lower bound constructions depict other properties
where inference is efficient: it is not hard to show that the running time of inference in both
cases is O(kε−1/dnd−1), which is sublinear in nd for a wide range of parameters.

Thus, we believe that understanding inference better – including tasks such as character-
izing properties in which inference can be done efficiently, and understanding the inference
time of specific properties of interest – would be an interesting direction for future research.

1.7 Property testing notation
The property testing notation we use along the paper is standard. Given a property P of
[n]d-arrays over Σ, a proximity parameter ε > 0, and query access to an unknown [n]d-array
A, a two-sided error ε-test must accept A with probability at least 2/3 if A satisfies P, and
reject with probability 2/3 if A is ε-far from P (meaning that the relative Hamming distance
of A from P is at least ε, that is, we need to modify at least εnd values in A to make it
satisfy P). A one-sided error test is defined similarly, but it must accept if A satisfies P. A
test is non-adaptive if it makes all of its queries in advance (prior to receiving any of the
queried values), and adaptive otherwise.

Organization

In Sections 2, 3 and 4 we prove the upper bounds: Section 2 is devoted to the infrastructure
needed for the proof, Section 3 presents a simple but non-optimal test, and finally, Section 4
presents the optimal test and proves Theorems 1 and 2.
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Due to space considerations, the proofs of the lower bounds are given in Sections 5 and 6
of the full version of this paper [5].

2 The grid structure

In this section we present the grid-like structure in [n]d that we utilize for our tests.

I Definition 5 (Interval partition). A subset I ⊆ [n] is an interval if its elements are
consecutive, that is, if I = {x, x+ 1, . . . , x+ y} for some x ∈ [n] and y ≥ 0. For any ` ≥ 0, we
denote the set of the smallest ` elements of I by I[ : `] and also define I[`+ 1: ] = I \ I[ : `].
In the degenerate case that |I| < `, we define I[ : `] to be equal to I.

For 1 ≤ w ≤ n, an (n,w)-interval partition is a partition of [n] into a collection of disjoint
intervals I = (I1, . . . , It) where the number of elements in each interval Ii is either w or
w + 1, and for any i < j, all elements of Ii are smaller than those in Ij .

I Lemma 6. For any positive integer n and 0 ≤ i ≤ logn, there exists an (n, bn/2ic)-interval
partition Ii containing exactly 2i intervals, so that the family {I}blognc

i=0 satisfies the following.
For any i > j and interval I ∈ Ii, there exists an interval I ′ ∈ Ij satisfying I ⊆ I ′.

Proof. For any i define ni = bn/2ic; observe that n0 = n and ni+1 = bni/2c for any i. We
prove the lemma by induction on i, starting by defining I0 = ([n]). Given Ii = (Ii1, . . . , Ii2i)
in which all intervals are of length ni or ni + 1, we define Ii+1 as follows. Each Iij ∈ Ii, is
decomposed into two intervals Ii+1

2j−1, I
i+1
2j where |Ii+1

2j−1|, |I
i+1
2j | ∈ {ni+1, ni+1 + 1}, and all

elements of Ii+1
2j−1 are smaller than all elements of Ii+1

2j ; observe that such a decomposition is
indeed always possible. Now define Ii+1 = (Ii+1

1 , . . . , Ii+1
2i+1). Clearly, the intervals of Ii+1

satisfy the last condition of the lemma. J

In particular, we conclude that for any positive integer w and any n ≥ w there exists an
integer w/2 ≤ w′ ≤ w for which an (n,w′)-interval partition exists.

I Definition 7 ((n, d, k, w)-grid). Let 2 ≤ w ≤ n be integers for which an (n,w)-interval
partition I = (I1, . . . , It) exists. For integers 2 ≤ k ≤ w and d ≥ 1, the (d-dimensional)
(n, d, k, w)-grid induced by I is the set

G =

(x1, . . . , xd) ∈ [n]d
∣∣∣∣ ∃i ∈ [d] such that xi ∈

t⋃
j=1

Ij [ : k − 1]

 .

We denote the family of all (n, d, k, w)-grids by G(n, d, k, w). As we have seen in Lemma 6,
the family G(n, d, k, w) is non-empty for any w = bn/2ic satisfying w ≥ k.

I Definition 8 (G-block, Boundary, Closure). Two tuples x = (x1, . . . , xd) and y = (y1, . . . , yd)
in [n]d are considered neighbors if

∑d
i=1 |xi− yi| = 1. Given a grid G ∈ G(n, d, k, w), consider

the neighborhood graph of non-grid entries, i.e., the graph whose set of vertices is V = [n]d\G
and two entries are connected if they are neighbors. A G-block B is a connected component
of this graph, and the closure of B is

B =
{

(x1, . . . , xd) ∈ [n]d
∣∣∣∣ ∃(y1, . . . , yd) ∈ B such that ∀i ∈ [d] |xi − yi| < k

}
.

Note that B ⊆ B. Define the boundary of the block B as ∂B = B \B.
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The above notions can naturally be defined with Cartesian products. Recall that the
Cartesian product of sets X1, . . . , Xd, denoted

∏d
j=1Xj or X1 × . . . ×Xj , is the set of all

tuples (x1, . . . , xd) with xj ∈ Xj for any j ∈ [d]. Let G ∈ G(n, d, k, w) be the grid induced
by the interval partition I = (I1, . . . , It). It is not difficult to verify that any G-block B can
be defined as a Cartesian product B =

∏d
j=1 Iij [k : ] for some intervals Ii1 , . . . , Iid ∈ I (not

necessarily different).
B and ∂B can also be defined accordingly, as we detail next. For k as above, define

Ii = Ii ∪ Ii+1[ : k − 1] for any 1 ≤ i ≤ t, where we take It+1 = ∅ for consistency. Also define
∂Ii = Ii \ Ii[k : ] = Ii[ : k − 1] ∪ Ii+1[ : k − 1]. With these in hand, we have

B =
d∏
j=1

Iij [k : ] ; B =
d∏
j=1

Iij ; ∂B =
d⋃
j=1

Ii1 × . . .× Iij−1 × ∂Iij × Iij+1 × . . .× Iid

(1)

Recall that |Iij | ∈ {w,w+ 1} for any j, implying that
∣∣Iij [k :]

∣∣ ≤ w+ 2− k and
∣∣Iij ∣∣ ≤ w+ k.

Also note that
∣∣∂Iij ∣∣ ≤ 2(k − 1). Thus,

|B| ≤ (w + 2− k)d ; |B| ≤ (w + k)d ; |∂B| ≤ 2d(k − 1) · (w + k)d−1 , (2)

where the inequality on |∂B| holds since each set in the union expression in (1) is of size at
most (2k − 2)(w + k)d−1.

The following observation is a direct consequence of (1).

I Observation 9. Let G ∈ G(n, d, k, w). The boundary of any G-block is contained in G.

I Lemma 10. For any G ∈ G(n, d, k, w), any width-k subarray of an [n]d-array intersects
exactly one G-block B. Moreover, the subarray is contained in B.

Proof. Let I = (I1, . . . , It) be the interval partition inducing G. Suppose that the subarray
S is in location (a1, . . . , ad) where aj ∈ Iij for some i1, . . . , id not necessarily distinct. In
other words, the set of entries in S is

∏d
j=1 Sj where Sj = {aj , aj + 1, . . . , aj + k − 1} for

any j ∈ [d]. We argue that S is contained in B, where B = Ii1 [k : ]× . . .× Iid [k : ]: The fact
that aj ∈ Iij implies that aj + 1, . . . , aj + k− 1 ∈ Iij ∪ Iij+1[ : k− 1]. It follows from (1) that
S ⊆ B. From Observation 9 we conclude that S does not intersect any block other than B,
and it remains to show that S intersects B. Indeed, for any 1 ≤ j ≤ d, the fact that aj ∈ Iij
implies that one of the elements aj , . . . , aj + k − 1 must be contained in Iij [k : ]. Denoting
this element by bj , we conclude that (b1, . . . , bj) ∈ S ∩B. J

3 Testing with grid queries

In this section we prove the following upper bound for all k-local properties; its proof serves
as a warm-up towards proving the main upper bound of Theorem 1.

I Theorem 11. Any k-local property of [n]d-arrays over any alphabet is ε-testable with
one-sided error using no more than 2(d+ 1)nd−

d
d+1 k

d
d+1 ε−

1
d+1 non-adaptive queries.

The upper bound of Theorem 11 is sublinear in the size of the array as long as k/ε1/d = o(n).
The rest of the section is dedicated to the proof of the theorem. We may assume that
k ≤ ε1/dn/4, as otherwise the expression in the statement of the theorem is larger than nd
and the proof follows trivially by querying all [n]d entries of the given input array. Under
this assumption, it holds that 2k ≤ nd/(d+1)k1/(d+1)ε1/(d+1).
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I Definition 12 (Unrepairable block). Let A be an [n]d-array over Σ, and let G ∈ G(n, d, k, w).
A G-block B is (P, A)-unrepairable (or simply unrepairable, if P and A are clear from context)
if any [n]d-array A′ over Σ that satisfies A′(x) = A(x) for any x ∈ ∂B, including the case
A′ = A, contains an F-copy in B. Otherwise, the block B is said to be (P, A)-repairable.

Note that the (un)repairability of a block B is determined solely by the values of A on ∂B,
and that an unrepairable block always contains an F-copy. These two facts inspire the
following lemma, which serves as the conceptual core behind the test of Theorem 11.

I Lemma 13. Suppose that A is an [n]d-array that is ε-far from satisfying a k-local property
P(F), and let G ∈ G(n, d, k, w) where w ≥ k. Then at least one of the following holds.

There exists a (P, A)-unrepairable G-block.
For at least an ε-fraction of the G-blocks B, there is an F-copy in B.

Proof. Suppose that the first condition does not hold, that is, all G-blocks are (P, A)-
repairable. By Lemma 10, every F-copy is contained in the closure of some G-block.

Let C denote the collection of all G-blocks B such that A contains an F-copy in B. By
the repairability, the values of A in each block B ∈ C can be modified so that after the
modification, A will not contain an F-copy in B. We stress that the modifications for each
block B appear only in B itself and do not modify entries on the grid, so by Lemma 10, they
cannot create new F-copies in the closure of other blocks.

After applying all of the above modifications to A, we get an F-free array, i.e., an
array that satisfies P. A was initially ε-far from P, and the number of entries in each
block is bounded by (w + 2− k)d ≤ wd, implying that at least an ε-fraction of the blocks
belong to C. J

Proof of Theorem 11. We may assume that kd/ε ≤ nd/2, otherwise our test may trivially
query all nd entries of A. Our (non-adaptive) test T picks W = bnd/(d+1)k1/(d+1)ε1/(d+1)c ≥
2k, and an integer w satisfying k ≤ W/2 ≤ w ≤ W , for which an (n,w)-interval partition
exists. T now makes the following queries.
1. T queries all entries of an arbitrarily chosen grid G ∈ G(n, d, k, w). The number of entries

in any grid is at most dnd(k − 1)/w ≤ 2dnd−
d

d+1 k
d

d+1 ε−
1

d+1 .
2. T chooses a collection B of 2/ε G-blocks uniformly at random and queries all entries in

these blocks. Since each block contains at most (w + 2 − k)d ≤ W d entries, the total
number of queries is bounded by 2W d/ε ≤ 2nd−

d
d+1 k

d
d+1 ε−

1
d+1 . Note that the boundaries

of all blocks are queried in the first step (since they are contained in the grid). Thus, for
any block B ∈ B, the test queries all entries of B.

The total number of queries in the above two steps is 2(d+ 1)nd−
d

d+1 k
d

d+1 ε−
1

d+1 .
After querying all entries of the grid (and in particular, the whole boundaries of all of

the blocks), T can determine for every G-block B whether it is (P, A)-unrepairable or not.
T rejects if at least one of the blocks is unrepairable or if it found an F-copy in B for some
B ∈ B, and accepts otherwise. The test has one-sided error, since an unrepairable block
must contain an F-copy. In view of Lemma 13, T rejects arrays A that are ε-far from P
with probability at least 2/3: If A satisfies the first condition of Lemma 13, then T always
rejects. If the second condition holds, the probability that none of the 2/ε closures B for
B ∈ B contains an F-copy is bounded by (1− ε)2/ε < e−2, so T rejects with probability at
least 1− e−2 > 2/3. J
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4 Systems of grids and testing with spherical queries

In this section we prove Theorems 1 and 2. We do so by considering a system of grids with
varying block sizes, defined as follows.

I Definition 14. Let d > 0 and 2 ≤ k ≤ w ≤ n be integers. An (n, d, k, w)-system of grids
is an (r + 1)-tuple (G0, G1, . . . , Gr) of grids, for r(n,w) = blog(n/w)c, so that

Gi ∈ G(n, d, k, bn/2r−ic) for any 0 ≤ i ≤ r.
G0 ⊇ G1 ⊇ . . . ⊇ Gr (as subsets of [n]d). In particular, for any i < j ≤ r, any Gi-block
B is contained in a Gj-block B′, and we say that B′ is an ancestor of B. Specifically, the
Gi+1-block containing B is called the parent of B and denoted by Par(B). For the only
Gr-block, Br, we define Par(Br) as the whole domain [n]d.

r(n,w) was chosen so that w ≤ n/2r < 2w, making G0 a G(n, d, k, w′)-grid for w ≤ w′ < 2w.
As we shall see, when working with such a system, unrepairability of blocks can be handled
in a query-efficient way. The following lemma asserts that such a system of grids exists for
any suitable choice of parameters.

I Lemma 15. An (n, d, k, w)-system of grids exists for all d > 0 and 2 ≤ k ≤ w ≤ n.

Proof. Consider the family of interval partitions I0, . . . , Iblognc obtained by Lemma 6. For
each 0 ≤ i ≤ r(n,w) define Gi as the (n, d, k, bn/2r−ic)-grid induced by Ir−i. It is not hard
to verify that (G0, . . . , Gr) satisfies all requirements of an (n, d, k, w)-system of grids. J

For the rest of the section, fix a k-local property P(F) of [n]d-arrays over Σ, as well as
an [n]d-array A over Σ. Consider an (n, d, k, w)-system of grids (G0, . . . , Gr) constructed as
described in the proof of Lemma 15, where w will be determined later. (For now it suffices
to require, as usual, that 2 ≤ k ≤ w ≤ n.)

We say that a Gi-block B is a (P, A)-witness if one of the following holds.
i = 0 and the array A contains an F-copy in the closure B.
i > 0 and B is (P, A)-unrepairable.

Recall that the closure of unrepairable blocks cannot be F -free, so the closure of any witness
block contains an F-copy. We say that a witness block B is maximal if all of its ancestors
are not witnesses, that is, they are repairable.

I Observation 16. Any (P, A)-witness is contained in a maximal (P, A)-witness.

We define the maximal witness family W as the set of all maximal (P, A)-witness blocks.
Obviously, the blocks in W might come from different Gi’s

I Observation 17. B1 ∩B2 = ∅ for any two blocks B1, B2 ∈ W.

I Lemma 18. All F-copies in A are fully contained in
⋃
B∈W B.

Proof. Let F be an F-copy in A. By Lemma 10, F is contained in the closure of a unique
G0-block BF ; hence, BF is a (P, A)-witness. From Observation 16 we have BF ⊆ B′ for
some maximal (P, A)-witness B′. We conclude that F ∈ BF ⊆ B′. J

I Lemma 19. One can make A satisfy P by only modifying entries of A in
⋃
B∈W Par(B).

Proof. Fix B ∈ W. B is a maximal (P, A)-witness, so Par(B) is repairable.1 Thus,
One can make Par(B) F-free by only modifying entries inside Par(B). By Lemma 10,

1 Note that when B = Br is the maximal witness considered, Par(B) is [n]d; the latter is repairable for
any non-empty property.
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width-k subarrays that are not fully contained in Par(B) are left unchanged. Therefore,
this modification does not create any new F-copies in A. Seeing that all F-copies in A

are originally contained in
⋃
B∈W B ⊆

⋃
B∈W Par(B), applying these modifications for all

B ∈ W deletes all F-copies in A without creating new ones, so in the end of the process A
satisfies P. J

We may assume that k ≤ ε1/dn/10, as otherwise the expression in the theorem is Ω(nd).
We choose w = 2k, working with an (n, d, k, 2k)-system of grids from now on. A very useful
consequence of this choice of w is that here the parent of a block B cannot be much larger
than B itself.

I Lemma 20. Let (G0, G1, . . . , Gr) be an (n, d, k, 2k)-system of grids. Then for any 0 ≤ i ≤ r
and any Gi-block B it holds that |Par(B)|/|B| < 3d.

Proof. For i = r this is trivial. Now fix i < r and let B be a Gi-block. Recall that, following
(1), one can write B =

∏d
j=1 Iij [k : ] where each interval Iij (for j ∈ [d]) is of size at least

2k ≥ 4. On the other hand, we can also write Par(B) =
∏d
j=1 I

′
i′

j
[k : ] where I ′i′

j
⊇ Iij for any

j ∈ [d]. It is not hard to verify that |I ′i′
j
| ≤ 2|Iij |+ 1 most hold, and so

|ParB|
|B|

=
d∏
j=1

|I ′i′
j
| − (k − 1)

|Iij | − (k − 1) ≤
d∏
j=1

2|Iij |+ 1− (k − 1)
|Iij | − (k − 1) ≤

(
2 · 2k − k + 2

2k − k + 1

)d
< 3d

where the second inequality holds since |Iij | ≥ 2k for any j. J

The next corollary follows immediately from Lemmas 19 and 20.

I Corollary 21. Suppose that A is ε-far from P. Then the total number of entries in the
blocks of W is at least ε(n/3)d.

We are now ready for the proof of the main upper bound of this paper, Theorem 1.

4.1 Proof of Theorem 1
As before, we may assume that k ≤ ε1/dn/10. For larger k, the expression in the theorem dom-
inates nd and thus becomes trivial. Consider the (n, d, k, 2k)-system of grids (G0, G1, . . . , Gr)
mentioned above. For any 0 ≤ i ≤ r, define δi = |Bi ∩W|/|Bi|, where Bi is the set of all
Gi-blocks. In other words, δi is the fraction of maximal witnesses among the Gi-blocks.
By Corollary 21, if A is ε-far from P then

∑r
i=0 δi ≥ ε/3d. Define r′ = blog(ε1/dn/k)c ≥ 1,

noting that Gr′ ∈ G(n, d, k, wr′) with wr′ ≥ 2k · 2r′ ≥ ε1/dn. Thus, the total number of
blocks in Br′ is bounded by (n/wr′)d ≤ 1/ε.

The test

We iterate the following basic step 2 · 3d/ε times.
1. Pick B ∈ B0 uniformly at random and query all entries of B.
2. For any 1 ≤ i ≤ r′, pick B ∈ Bi uniformly at random and query all entries of

⋃
B∈Q0

∂B.
Finally, the test rejects if and only if at least one of the blocks B picked during the process is
a (P, A)-witness. (Recall that querying all boundary entries of a Gi-block for i > 0 suffices
to determine whether it is unrepairable, and thus a witness.)

The test is clearly non-adaptive, and has one-sided error: It only rejects if it finds a
witness. As we have seen earlier, all witnesses contain an F-copy.
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The test is canonical in the following sense. The choice of queries in every basic step
depends only on n, d, k, and (weakly) on ε, and is independent of the property P or the
alphabet Σ. To determine which entries constitute a block, it suffices to know the parameters
of the block, that depend only on n, d, k; the dependence in ε is only taken into account in
the choice of r′. The test only considers P in order to determine whether each queried block
is a witness.

Analysis

Suppose that A is ε-far from P. If δi > 0 for some i > r′ then it must hold that δr′ > 0 as
well (since any unrepairable Gi-block most contain an unrepairable Gi′ -block for any i′ < i).
By the choice of r′, we must have δr′ ≥ 1/|Br′ | ≥ ε in this case. If the above doesn’t hold,
then δi = 0 for any i ≥ r′, implying that

∑r′−1
i=0 δi ≥ ε/3d. Therefore, in both cases, we have∑r′

i=0 δi ≥ ε/3d.
The probability that a random Bi-block is a witness is at least δi, and therefore the

probability that a single basic step leads to a rejection of A is at least
∑r′

i=0 δi ≥ ε/3d.
Running 2 · 3d/ε independent iterations of the basic step ensures that the test will accept A
with probability at most (1− ε/3d)2·3d/ε ≤ e−2 < 2/3, as desired.

Query complexity

For d = 1, the query complexity of each basic step is O(kr′): The test queries B for a single
block B ∈ B0, and the boundaries of r′ larger blocks. Considering the parameters of our
system of grids, we have |B| ≤ 4k and so |B| < 6k. On the other hand, the boundary of each
of the larger blocks is of size at most 2k − 2. Therefore, the total query complexity for the
1D test is O(kr′/ε) = O

(
k
ε log (εn/k)

)
as desired.

For d > 1, consider a single basic step, and for any 0 ≤ i ≤ r′ let Bi ∈ Bi be the
Gi-block picked in this step. From (2) we have |B0| ≤ (6k)d, while for any i > 0 we have
|∂Bi| ≤ 2d(k − 1)(4k · 2i + k)d−1 = O(d · (4k)d · 2(d−1)i). Note that the last expression
grows exponentially with (d − 1)i, so the total number of queries in a single basic step is
O((6k)d + d · (4k)d2(d−1)r′). Plugging in r′, we have 2(d−1)r′ = ε(d−1)/d

kd−1 nd−1. As the test runs
O(3d/ε) iterations of the basic step, we conclude that the total query complexity is bounded
by cdkε−1/dnd−1 for an absolute constant c > 0, completing the proof of Theorem 1.

4.2 Proximity oblivious test

The proof of Theorem 2 follows by a very simple modification of the proof of Theorem 1.
The desired proximity oblivious test (POT) is the so called “basic step” from the above test,
with r replacing r′ (since r′ depends on ε). The POT rejects if it infers that one of the blocks
queried is a witness, like the above test. Its query complexity is O(kr) = O(k logn/k) for
d = 1. In the case d > 1, the query complexity is dominated by the size of ∂Br, which is
bounded by O(dknd−1).

Clearly this POT has one-sided error, and its queries do not depend on the property P
and the alphabet Σ (on the other hand, they do depend on n, d, k). Using the notation of
the previous subsection and denoting by εA the Hamming distance of a given input A from
P, we get (exactly as in the beginning of Subsection 4.1) a rejection probability of at least∑r
i=0 δi ≥ εA/3d for A, which is linear in εA for fixed d. This concludes the proof.
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Abstract
This paper studies families of distributions T that are amenable to retentive learning, meaning
that an expert can retain users that seek to predict their future, assuming user attributes are
sampled from T and exposed gradually over time. Limited attention span is the main problem
experts face in our model. We make two contributions.

First, we formally define the notions of retentively learnable distributions and properties.
Along the way, we define a retention complexity measure of distributions and a natural class of
retentive scoring rules that model the way users evaluate experts they interact with. These rules
are shown to be tightly connected to truth-eliciting “proper scoring rules” studied in Decision
Theory since the 1950’s [McCarthy, PNAS 1956].

Second, we take a first step towards relating retention complexity to other measures of sig-
nificance in computational complexity. In particular, we show that linear properties (over the
binary field) are retentively learnable, whereas random Low Density Parity Check (LDPC) codes
have, with high probability, maximal retention complexity. Intriguingly, these results resemble
known results from the field of property testing and suggest that deeper connections between
retentive distributions and locally testable properties may exist.
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1 Introduction

Certain aspects of life – child development, love, psychological disorders, etc. – seem
comprehensible and somewhat predictable only when addressed jointly with an expert, via an
interactive process that unfolds over time. This work initiates the formal study of phenomena
that are amenable to an interactive collaborative discovery process between an expert and a
layperson. This collaboration unfolds over time, as more aspects of the phenomena become
apparent to the layperson. We model this by associating each layperson with a sequence
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x = (x1, . . . , xn) sampled from some underlying distribution T , and assume that attributes of
the phenomena (entries of x) are gradually exposed over time, in response to active querying
by the layperson. The interactive process has the expert predicting the value of xi before it
is revealed to the layperson. At the time of revelation, the layperson also re-evaluates his
assessment of the expert’s utility to him: outcomes that seem “obvious” and predictable to
the user are viewed as less helpful than “surprising” and unpredictable ones. At the end of
each step, the layperson must decide whether to terminate his relationship with the expert
or continue with it.

A major factor in our study is the limited attention span that characterizes users;
consequently, the expert’s goal is to retain the layperson by constantly supplying him with
meaningful and surprising insights about the phenomena. The terms guru (instead of expert)
and follower (as opposed to layperson) better capture this dynamic so we use these terms
henceforth. The main advantage the guru has over her followers is a greater ability to
understand the phenomena, which we model by assuming the guru has a greater memory
span than her followers. Using these terms, we define a class of distributions to be retentively
learnable if a fixed constant advantage in memory span suffices for a guru to retain her
followers throughout the entire collaborative discovery process. Our main complexity result
is that the property of linearity over the binary field is retentively learnable (Theorem 10),
whereas arbitrary linear spaces are maximally non-retentive (Theorem 13). To state these
results, we first have to define our model and study its intrinsic properties. These properties
turn out to be non-trivial to study, and lead to surprising results that are of independent
interest. In particular, our first main result (Theorem 4) is a non-intuitive characterization
of retentive scoring rules in terms of proper scoring rules studied in Decision Theory.

Roadmap

Subsection 1.1 further explains, informally, the kind of guru–follower dynamics that we
aim to formalize and understand. Subsection 1.2 gives a formal description of the model.
In Subsection 1.3, we discuss the concept of retentive scoring, which allows us to describe
the collaborative discovery process in an incentive-compatible way, taking agent rationality
into account. Subsection 1.4 adds the layer of limited memory span to characterize the
discrepancies between the guru and follower, and between fellow gurus. In Subsection 1.5,
we state our main complexity results for linear propreties. Subsection 1.6 reviews the latest
related work, and finally Subsection 1.7 summarizes the main contributions and questions to
be explored in the future.

1.1 The Guru’s Problem
In today’s information society, crowd-based automated gurus gather data from users on
a voluntary basis in order to produce meaningful insights. The quality of insights greatly
depends on the amount and quality of data provided by the users, but those users have limited
attention, giving rise to the study of attention economy [12, 16]. By asking “interesting
questions” and making “meaningful predictions”, an automated guru can retain users, but
only if it “knows” how to ask “interesting” questions and provide “meaningful” feedback.

The phenomenon that motivated this research is that of early child development; the
gurus are experts in this field and the followers are parents of newborn babies [3]. For the
sake of concreteness we shall continue using this particular setting to describe our model
but it may be conveniently replaced by the reader with physicians or psychologists playing
the gurus as they interact with patients (followers) regarding a complex medical or mental
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problem, or with financial advisors as gurus and their follower clientele. In these and similar
settings, gurus and followers discuss a complex phenomenon that evolves over time, which
the followers wish to understand, and about which the guru claims to have an advantage of
“wisdom” over them.

1.2 The Collaborative Discovery model

The phenomenon about which the guru and her followers interact is modeled by a distribution
T over XΓ, where Γ is the set of properties manifested by the phenomenon and X is an
arbitrary input space. The two input spaces mentioned in this paper are the binary space
X = {0, 1} and the finite categorical space X = {0, . . . , n}. In the context of childhood
development, Γ is the set of developmental milestones like “first smile”, and each follower
(associated, for simplicity, with a parent of a single child) is represented by a sample u ∈ XΓ

that describes the ages at which that child achieved each milestone. By time t, the follower
discloses to the guru u�Γt

, the restriction of her sample u to a subset Γt ⊆ Γ. Additional
attributes of u may be revealed later in time, others might be disclosed by the follower if
prompted to do so, while certain attributes will remain forever latent.

The follower seeks the guru’s assistance in predicting “meaningful information” that is
currently unknown to the follower. The guru and follower interact over a number of rounds
but the follower will terminate the interaction if the guru is judged to be unhelpful (in a
manner formalized below). During each round of interaction, the guru makes a prediction by
announcing a distribution Pγt

over X that she claims is the true one for a latent attribute
γt 6∈ Γt; the follower has a distribution Qγ that she believes corresponds to γt. (Modern
gurus and followers are comfortable discussing probabilities rather than predicting a single
event as is the case with pre-election polling results.) The way γt is selected from Γ \ Γt and
its effect on the process is left to future work. The follower now queries γt and reports the
true value, denoted uγt

, which is derived from Nature’s “true” distribution. After each round
the follower updates the strength of her retention by the guru. We assume this strength is
given by a retention parameter rt that starts with a fixed value r0 and varies with time; once
rt turns negative the follower will be said to have lost all faith in the guru and therefore
terminate the interaction. The main objective of the guru is to maintain rt ≥ 0 for all t ≥ 0;
jumping ahead, a distribution T for which there exists a guru that, in expectation, manages
to retain followers to eternity (or until t = |Γ| for finite Γ) will be said to be r0-retainable
and the retention complexity of T will be the minimal r0 such that T is r0-retainable (see
Definitions 7, 8).

When the user updates her retention parameter at the end of round t, she uses a function
S(·, ·, ·) that is real-valued and takes three inputs: (i) the guru’s predicted distribution Pγt

;
(ii) the follower’s assessment of that distribution Qγt

; and (iii) the value uγt
that materialized,

sampled by Nature. The retention parameter at time t is given by

rt = rt−1 + S(Pγt
, Qγt

, uγt
) (1)

I Remark (Simplifying assumptions). The formula (1) makes the following assumptions on the
follower’s update rule: that it is Markovian, uses rt−1 additively and does not depend on the
follower’s identity nor on the identity of the attribute γt being predicted. Such assumptions
are common when modeling human behavior and we leave the study of more general update
functions to future work.

ITCS 2019



12:4 The Complexity of User Retention

1.3 Retentive Scoring Rules
The definition of the function S above, and the surprising corollaries of this definition, are
what dominates the first part of our study. We assume S belongs to a class of functions that
elicit the true beliefs of both guru and follower regarding the distribution for the attribute
γt. Truth eliciting rules are ones that incentivize (rational) players to supply the rule with
what they believe to be the truth. A famous early example of a truth eliciting rule is that
of a one-party proper scoring rule, which will be tightly related to our two-party retentive
scoring rule S, so we start with the simpler, one-party, case.

Proper (one-party) Scoring Rules

One-party proper scoring rules are used to compensate a single forecaster of Nature in a truth-
eliciting manner; these rules are studied extensively in the Decision Theory literature [17,
23, 11] and have interesting connections to the fields of estimation, information theory, and
machine learning; see [8] for a recent survey. A scoring rule receives a single forecast, which
is a distribution P over X as an input (say, this could be the temperature at noon tomorrow
at a fixed location), and scores the forecaster based on the outcome selected by Nature (the
actual temperature). A scoring rule is called proper if it is maximized by forecasting the
true distribution. We recite the definition as it appears in [23, 11]:

I Definition 1 (Proper Scoring Rule). Let P be a convex set of distributions over an arbitrary
input space X . A (one-party) scoring rule is a function s : P × X → R. The scoring rule
s is proper with respect to P if, for all R ∈ P (viewed as Nature’s true distribution), the
expected score Ex∼R [s(P, x)] is maximized over P ∈ P at P = R:

∀P ∈ P Ex∼R [s(P, x)] ≤ Ex∼R [s(R, x)] (2)

Intuitively, when the agent forecasts a distribution P ∈ P and event x ∈ X materializes,
the reward for the expert is s(P, x). To increase clarity when one-party and two-party
(retentive) scoring rules are involved, we will use a lowercase s to denote a proper (one-party)
scoring rule, and a calligraphic S to denote a retentive (two-party) one.

Many proper scoring rules can be constructed using elementary functions, for example
the logarithmic scoring rule:

s(P, i) = log pi (3)

and Brier’s scoring rule [6]:

s(P, i) = 2pi −
∑
j

p2
j = 2pi − ‖P‖22 (4)

Retentive (Two-Party) Scoring Rules

In the spirit of proper scoring rules, we define a retentive scoring rule which involves two
parties: guru and follower. Using an axiomatic approach, we start by defining the desired
properties of such a rule:

I Definition 2 (Retentive Scoring Rule). Let P be a convex set of distributions over an
arbitrary input space X . A function S : P × P × X → R is called a retentive scoring rule if
it satisfies the following conditions:
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1. Cost of ignorance: For all distributions P ∈ P and outcomes x ∈ X ,

S(P, P, x) = −1 (5)

2. Proper scorings: for any distribution R ∈ P dictated by Nature:
a. Guru-side: For any fixed follower belief Q ∈ P, the best guru prediction P ∈ P is

Nature’s:

Ex∼R [S(P,Q, x)] ≤ Ex∼R [S(R,Q, x)] (6)

b. Follower-side: For any fixed guru prediction P ∈ P, the best follower belief Q ∈ P is
Nature’s:

Ex∼R [S(P,Q, x)] ≥ Ex∼R [S(P,R, x)] (7)

Intuitively, the cost of ignorance condition models the “attention economy” cost of
interaction, and captures the intuition that the follower will penalize gurus that are no
“smarter” than he is. For example, no guru/meteorologist will get followers by predicting
“100% chance of sun in the Sahara desert”. The predictions must be surprising to the followers.
In the formal definition, the penalty constant is normalized to −1 to simplify analysis.

The output of S is a quantity that the guru wishes to maximize, because doing so will
mean the follower is retained longer, as seen by Equation (1). Therefore, the guru-side
properness requirement (Equation (6)) implies that a rational guru will strive to report the
correct distribution used by Nature (R), if the guru knows that distribution. In other words,
we require the scoring rule to elicit truthful guru-side inputs.

Similarly, since the follower has a limited attention span, she is incentivized to judge
the guru’s quality “honestly”, and this is modeled by the follower-side properness condition
(Equation (7)); it means the follower too will supply the rule S with Nature’s distribution,
if known to her. Notice that the combination of the cost-of-ignorance and two properness
results mean that a rational guru will not offer “obvious advice” about which both guru and
follower “know the (same) truth”.

Retentive Rule Construction

One-party scoring rules give rise to two-party retentive scoring rules in a straightforward
way: Score the guru and follower separately based on Nature’s outcome using, perhaps, two
different functions, and define the retentive score as the difference between the one-party
scores minus a fixed constant (to account for the cost-of-ignorance (5)). A retentive scoring
rule of this form is said to be separable, and a special case is that of a symmetric rule, in
which both guru and follower are scored using the same (one-party) scoring rule, formally:

I Definition 3 (Symmetric Retentive Scoring Rule). A retentive scoring rule S : P×P×X → R
is called symmetric if there exists a proper one-party scoring rule s : P ×X → R such that:

S(P,Q, i) = s(P, i)− s(Q, i)− 1 (8)

Characterization

Restricting the discussion to categorical distributions, i.e., to cases where X is finite, and
assuming the retentive scoring rules are analytic, meaning that a uniformly convergent power
series expansion exists about any P ∈ P, our first main result is the following statement:
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I Theorem 4 (Retentive Scoring Rules are Symmetric). The function S : P × P × X → R
is an analytic retentive scoring rule for categorical distributions if and only if there exists a
proper and analytic scoring rule s : P × X → R such that:

S(P,Q, x) = s(P, x)− s(Q, x)− 1 (9)

We find the statement somewhat surprising because it is not intuitively clear that a
two-party retentive rule must be separable; symmetry follows rather directly from separability
and the cost-of-ignorance assumption. For the proof – given in Section 2 – we use a known
result which relates proper scoring rules to convex functions over the probability simplex.
We show that each retentive scoring rule corresponds to a solution of a system of partial
differential equations (PDEs). Solving the system and characterizing the family of solutions
yields the result (see Subsection 2.2).

1.4 Memory Span

To model the different prediction capacities of gurus and followers, the forecasting abilities of
both types of agents in the Collaborative Discovery model are characterized by a parameter
called memory span, defined below.

A variety of psychological studies could be summarized by saying that the human
short-term memory has a capacity of about “seven, plus-or-minus two” chunks, where each
chunk can be roughly defined as a collection of elementary information relating to a single
concept [18, 24]. What counts as a chunk depends on the knowledge of the person being
tested. For instance, a word is a single chunk for a speaker of the language but is many
chunks for someone who is totally unfamiliar with the language and sees the word as a
collection of phonetic segments.

In the world of child development, young parents (who usually don’t have significant
experience or formal child-development education) are likely to predict that their child will
start walking around the average time for the entire population. Child development experts,
on the other hand, usually have better ability to pick up subtle developmental signals from
observed child behavior, and provide a better prediction based on them.

In this spirit, we proceed with the formal definition. In what follows, let ∆
(
XΓ) denote

the simplex of probability distributions over XΓ and ∆(X ) is the simplex of distributions
over X .

I Definition 5 (Memory Span). Let T ∈ ∆
(
XΓ) be a distribution. An agent is said to have

memory span m ≥ 0 when its prediction Pγ ∈ ∆(X ) for coordinate γt ∈ Γ of an instance
u ∈ XΓ with disclosed parameters Γt ⊆ Γ (i.e. for which u�Γt

is known) is based on m

disclosed coordinates or less:

∀γ ∈ Γ,∃It ⊆ Γt : |It| ≤ m, Pγ = (Tγ | u�It
) (10)

where (Tγ | u�It
) is the marginal distribution of T on coordinate γ, conditioned on the event

that the coordinates It are set to u�It
.

Intuitively, this means that every prediction of an agent is based on its entire knowledge of
at most m coordinates. When m = 0, a prediction is only based on the marginal distribution
of the corresponding parameter in the entire population.
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1.4.1 Monotonicity
Our second result, stated next, says that if guru G is “smarter” than guru G′, meaning her
memory span (mg) is greater than his (m′g), the smarter guru G will also have higher success
in retaining followers, in expectation. (Whether this optimistic result holds in the real world
is highly debatable.) This result is not implied directly by the definition of the Collaborative
Discovery model, and shows that our model exhibits intuitive and desirable properties that
substantiate its theoretical appeal:

I Theorem 6 (Knowledgeable Gurus Retain Better). Let S : P × P × X → R be an analytic
retentive scoring rule, let G1, G2 be two gurus with memory spans m(1)

g ≥ m
(2)
g . Then for

any distribution T , any coordinate x, and follower with memory span mf ≤ m(2)
g :

ET [S(P1, Q, x)] ≥ ET [S(P2, Q, x)] (11)

where P1, P2 ∈ ∆(X ) are the distributional forecasts of gurus G1 and G2 respectively, and
Q ∈ ∆(X ) is the belief of the follower.

A technical discussion of the theorem and its proof are provided in Section 3.

1.4.2 Retainability as a Function of Memory Span Discrepancy
From here on we assume that the guru has memory span mg, and her follower has memory
span mf and moreoever, both parties provide to the retentive scoring rule a distribution
that is the correct marginal Tγt

| u�Jt
, conditioned on some subset of Jt ⊂ Γt of size mg

for the guru and mf for the follower, respectively. Under this assumption, notice that if
mg = mf then both parties supply the same distribution, so the cost-of-ignorance assumption
of Definition 2 means the follower will terminate the interaction within r0 steps; in other
words, ignorant gurus will not prevail. Henceforth assume mg > mf . Combining the concepts
of limited user attention, retentive scoring, and limited memory span, we can now ask: Is it
possible for the guru to retain her follower throughout the process? This leads to the concept
of retainablility:

I Definition 7 (Retentively Learnable Distribution). Let T ∈ ∆
(
XΓ), and assume |Γ| = n.

Given a retentive scoring rule S : P × P × X → R, guru memory span mg ≥ 0, follower
memory span mf ≥ 0, and an initial retention parameter r0 > 0, we say that T is retentively
learnable with respect to (S,mg,mf , r0) if there exists an ordering γ1, . . . , γn of Γ, and a
sequence of sets I1, . . . , In such for all t ∈ [n]:
1. It ⊆ {γ1, . . . , γt−1}
2. |It| ≤ mg

3. For every sequence of sets J1, . . . , Jn such that Jt ⊆ {γ1, . . . , γt−1}, |Jt| ≤ mf :

rt = r0 +
t∑

t′=1
S
((
Tγt′ | u�It′

)
,
(
Tγt′ | u�Jt′

)
, T
)
≥ 0 (12)

Intuitively, a probability distribution is retentively learnable when it is possible to
maintain a positive retention parameter throughout the process. From (12) we can see that
increasing r0 does not hurt retainability. In other words, for r′0 > r0, if a distribution is
retentively learnable with respect to (S,mg,mf , r0), then it is also retentively learnable for
(S,mg,mf , r

′
0). We know that attention is a very limited resource, so we cannot expect it

to be arbitrarily large. This leads to the following question: How large should the “initial
retention” be in order for the guru to sustain her follower throughout the collaborative
discovery process?
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I Definition 8 (Retention Complexity). The retention complexity of a distribution T ∈ ∆
(
XΓ)

with respect to (S,mg,mf ) is the minimal value of r0 such that T is retainable:

rS,mg,mf
(T ) = min {r0 | T is retainable with respect to (S,mg,mf , r0)} (13)

The discussion above leads to the following notion of retentively learnable families of
distributions and properties. Recall that a property P over alphabet X is a set of finite strings
over X . Let Pn = P∩Xn denote the set of strings in P of length n. Let NP = {n ∈ N|Pn 6= ∅}
be the set of lengths of strings that belong to P . The family of distributions induced by P is
the family of uniform distributions over Pn, defined for n ∈ NP .

I Definition 9 (Retentively Learnable Distributions and Properties). Let D = {Ti}i∈I be a
family of categorical distributions, where each Ti is supported on strings of length ni over
alphabet X (the set I may be infinite). Let S : P × P × X → R be a scoring rule as in
Definition 3. We say D is retentively learnable with respect to S if there exist constants r0
and mg > mf such that each Ti ∈ D is retainable with respect to (S,mg,mf , r0).

Similarly, a property P ⊂ X ∗ is said to be retentively learnable with respect to S if the
family of distributions induced by P is retentively learnable.

Our main complexity result is the following. Recall that the property of linear functions
over F2 is the set of functions f : Fk2 → F2 that satisfy f(x+y) = f(x)+f(y) for all x, y ∈ Fk2 .
For this property we have NP = {n = 2k|k ∈ N}.

I Theorem 10 (Linear functions are retentively learnable). The property of linear functions
over the two-element field F2 is retentively learnable.

We elaborate on this result, and related ones, next.

1.5 The Retention Complexity of Linear Spaces
To initiate the study of the retentive learning within the context of computational complexity,
a natural starting point is that of uniform distributions over linear spaces; linearity is the
first object of study in other notable fields of complexity, like property testing [5, 13] and
PAC learning [25].

Consider a realization of the model in which each attribute ranges over a binary space,
i.e., XΓ = {0, 1}n. The Binary Attributes model describes a universe where each attribute is
either present or not for a given user.

We start by redefining the problem using finite-field linear algebra, and then study the
retention complexity of several natural families of linear codes, including the Walsh-Hadamard
codes and the family of random Low Density Parity Check (LDPC) codes.

In particular, identify {0, 1} with the two-element finite field F2 and consider a uniform
distribution U over a linear space U ⊆ Fn2 . Let U⊥ denote the space dual to U . Let d(U)
denote the Hamming distance of U (and d(U⊥) is its dual distance), recalling that distance
is equal to the minimum Hamming weight of a non-zero word in U (or U⊥, respectively).
We assume the guru has infinite memory span and the follower has memory span 0. (The
study of the general case of 0 < mf < mg < ∞ is left for future work.) This means the
follower’s distribution for each i ∈ [n] is the uniform distribution on F2 (this assumes U is
not constant on any i ∈ [n]).

We shall use a retentive scoring rule denoted Sbin, that has expected value 1 when the
guru can predict the next coordinate exactly, i.e., when the value of that coordinate depends
linearly on the values of coordinates exposed thus far, and has expected value −1 otherwise,
when the distribution on that coordinate is linearly independent of all previously revealed
bits.
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The following result sets the bounds for our study of retention complexity in this setting,
establishing a connection between the retention complexity of U and its algebraic properties:

I Lemma 11 (Retention Complexity Bounds for Linear Spaces). For a uniform distribution U
over a linear space U ⊆ F2

n with unbounded guru memory span and zero follower memory
span, the retention complexity satisfies:

d
(
U⊥
)
− 1 ≤ r(Sbin,∞,0)(U) ≤ dim (U) (14)

Next, we show that the both bounds are tight. We begin by showing that a uniform
distribution over codewords of the Walsh-Hadamard (WH) code achieves the lower retention
complexity bound:

I Lemma 12 (Walsh-Hadamard Retention Complexity). For all k ∈ N, a k-dimensional
Walsh-Hadamard code satisfies:

r(Sbin,2,0)(WH) = 2 (15)

As the n-dimensional Walsh-Hadamard code represents the set of linear functions over
F2
n, proving this lemma will also imply Theorem 10.
Finally, we show that a random LDPC code achieves the upper bound (up to multiplicative

constants) with high probability, implying that collaborative discovery can be very hard on
arbitrary linear spaces:

I Theorem 13 (LDPC Retention Complexity). For a proper choice of constants c, d > 0 and
sufficiently large n, the retention complexity of a random (c, d)-regular LDPC code over Fn2
is linear with high probability:

r(Sbin,∞,0)(LDPC) =
w.h.p

Ω(dim (LDPC)) (16)

The proofs of these results are provided in Subsection 4.2. The most technically challenging
one is the third one and relies on the lower bounds for the testability of random LDPC
codes of [4].

1.6 Related work
The study of reputation systems is interested in ranking gurus in “meaningful” ways, and is
highly investigated empirically and theoretically; cf. [20, 21] and references therein. Closest
in rigour to our approach are the papers by (i) Ban and Linial [2] which uses the theory of
random processes to identify situations where gurus (called “experts” there) can be robustly
ranked, assuming user participation continues indefinitely, and (ii) Chan et al. [7] that
classifies interactive crowd-computation games using a small list of modeling parameters.

In the context of machine learning, the task of detecting users who are likely to stop
participating in a voluntary system is known as churn prediction. For this task, machine
learning algorithms are trained to recognize typical usage patterns and predict the likelihood
of a termination [26, 9]. Even though general machine learning models provide good “black-
box” churn predictors when trained correctly, gaining deep understanding of the underlying
phenomena might be challenging.

Comparing our model to prior work, there are two main differences. First, our aim is to
model the dynamics of long-term interaction between a follower and her guru about a single
complex phenomenon of interest, asking when do followers abandon their gurus. Second, we
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are interested in the mathematical properties of phenomena that are prone to collaborative
discovery, meaning that for these phenomena a “good” guru will successfully instruct her
followers from start to end without losing their attention and faith. This motivation is
somewhat similar to that taken in the field of Property Testing [13] which attempts to
understand which properties are amenable to “testing”.

1.7 Discussion of main contributions and future directions
The properties of retentive scoring rules, the effect of memory span discrepancy on the
retention of followers, and the study of retention complexity of specific distributions are the
main topics of this work.

We point out a few questions that emerge from the paper:
1. The gurus and followers studied here are assumed to have optimal knowledge of the

distribution, up to their memory span limit. In particular, a guru with infinite memory
span does not need to learn the distribution at all. However, in most realistic settings
the distribution is unknown, leading to the question of learning distributions in a way
that also maintains good retention properties. For instance, suppose the distribution is
an unknown linear space U with retention complexity r. What is the minimal number of
followers with initial retention parameter r0 > r (say, r0 = 2 · r) that will be “spent” or
“lost” by the guru before she learns enough about U to fully retain new followers? This
particular question is highly relevant to automated gurus that seek to attract users while
maintaining high reputation (e.g., high app-store ratings).

2. The gurus and followers used here are computationally unbounded (or, more precisely,
bounded only by attention span). Realistically, the computational complexity of com-
puting marginals and evaluating which new attribute γt to interact about will be highly
non-trivial.

3. Walsh-Hadamard codes are locally testable, correctable and decodable, while random
LDPC codes have none of these properties; moreover, the retention complexity for both
families of codes is approximately equal to their query complexity (for testability and
correctability). This leads to our first question: Are there tighter connections between
retention complexity and query complexity of locally testable/correctable codes? Do all
q-query locally testable (or correctable) codes have retention complexity f(q) for some
function that depends only on q and is independent of n (input size)? Likewise, it seems
interesting to ask whether retention complexity is related to basic machine learning
measures like VC dimension.

2 Retentive Scoring

In this section we study retentive scoring rules, and prove Theorem 4.

2.1 Preliminaries and Notations
Categorical Probability Distributions

Recall that a categorical distribution is a discrete probability distribution that describes the
possible results of a random event that can take one of K possible outcomes. In this section,
we assume P is a convex set of categorical distributions with K = (n+ 1) possible outcomes,
i.e. X = {0, . . . , n}. We define the number of possible outcomes as n + 1 instead of n to
simplify later calculations.



E. Ben-Sasson and E. Saig 12:11

In addition, recall that the space of categorical distributions with (n+ 1) possible outcomes
is equivalent to the n-dimensional simplex:

P ⊆ ∆n =
{

(p0, . . . , pn) ∈ Rn+1 |
∑
i

pi = 1;∀i : pi ≥ 0
}

(17)

where pi is the probability of categorical event i.

Expected Score Notation

Recall Definition 2. Following the conventions of the proper scoring literature, and given
probability distributions P,Q,R ∈ P, we denote the expected retentive score as:

S(P,Q,R) ≡ Ei∼R [S(P,Q, i)] (18)

To avoid difficulties in (18), we will assume S(P,Q,R) exists and is finite. Similarly, for
one-party scoring rules, the common notation of expected score is:

s(P,R) ≡ Ei∼R [s(P, i)] (19)

The analysis below will use both the single event notation S(P,Q, i) and the expected score
notation S(P,Q,R) (and similarly for one-party scoring rules). To avoid confusion, we will
always use upper-case letters to denote random variables and lower-case letters to denote
events.
I Remark (Scoring Rules on Infinite Sample Spaces). Similar to proper (one-party) scoring
rules, it is possible to define retentive scoring rules on infinite sample spaces using measure-
theoretic tools. Computers are finite, and therefore many applications can be modeled as
finite-dimensional categorical distributions. In this work we consider the finite sample space
for concreteness and simplicity, and leave the rigorous measure-theoretic analysis to future
work.

Characterization of Proper Scoring Rules

One of the fundamental results in the research of proper scoring rules is the characterization
theorem, first stated by [17], which defines a correspondence between proper scoring rules and
convex functions over the probability simplex. We start with some preliminary definitions,
and proceed with the characterization theorem itself:

I Definition 14 (Subgradient). A function ∇∗G : P → Rn+1 is a subgradient of G at the
point P if the following inequality holds for all Q ∈ P :

G(Q) ≥ G(P ) + 〈∇∗G(P ), (Q− P )〉 (20)

where 〈·, ·〉 denotes the euclidean inner product over Rn+1: 〈X,Y 〉 =
∑n
i=0 xiyi.

I Remark (Subgradients of Differentiable Functions). If G is differentiable at P ∈ P then G
has a unique subgradient at P and it equals the gradient ∇G =

(
∂G
∂p0

, . . . , ∂G∂pn

)
at P .

Recall that a real-valued function G : P → R is convex if: G((1− λ)P + λQ) ≤
(1− λ)G(P ) + λG(Q) for all P,Q ∈ P and λ ∈ [0, 1].

I Lemma 15 ([15], Theorem 2.1). G : P → R is convex if and only if it has a subgradient
∇∗G at each point P ∈ P.
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I Theorem 16 (McCarthy’s Theorem, [11]). A scoring rule s : P × Ω→ R is proper relative
to P if and only if there exists a convex, real-valued function G on P such that:

s(P, i) = G(P )− 〈∇∗G(P ), P 〉 − (∇∗G)i (21)

where (∇∗G)i is the ith component of (∇∗G).

We also define the Generalized Entropy as the convex function which is induced by the
proper scoring rule:

I Definition 17 (Generalized Entropy). The convex function G(P ) = s(P, P ) induced by a
proper scoring rule s is called the generalized entropy function of s.

Note that a convex general entropy function exists for every proper scoring rule by Theorem 16.
For the logarithmic scoring rule defined in (3), the associated general entropy function is
the additive inverse of the Shannon entropy: G(P ) =

∑n
i=0 pi log pi. Additional information-

theoretic quantities can be generalized using proper scoring rules. See [8] for a recent
review.

2.2 Separability of Retentive Scoring Rules
In this section, we prove that every proper retentive scoring rule can be written as the
difference between two proper scoring rules. Recall Theorem 4:

I Theorem 4 (Retentive Scoring Rules are Symmetric). The function S : P × P × X → R
is an analytic retentive scoring rule for categorical distributions if and only if there exists a
proper and analytic scoring rule s : P × X → R such that:

S(P,Q, x) = s(P, x)− s(Q, x)− 1 (9)

The proof has several steps:
1. We verify that symmetric retentive scoring rules are indeed proper (Lemma 18).
2. Conversely, we first define the notion of a separable scoring rule, which is a rule which can

be written as the difference between two one-party scoring rules. Given a retentive scoring
rule, we use the proper scoring characterization theorem (Theorem 16) to construct a
system of partial differential equations which describes the constraints that must be
satisfied by such a rule (Lemma 20). We then solve the characterizing system of partial
differential equations (Lemma 21), and show that every possible solution corresponds to
a separable retentive scoring rule (Lemma 22).

3. Finally, we show that every separable retentive scoring rule with constant cost of ignorance
is also symmetric, proving the theorem.

We proceed by stating and proving the lemmas, and conclude the section by proving the
theorem itself.

Preliminaries

The proofs of Lemma 18 and Lemma 20 rely on the formalism of proper scoring rules and
retentive scoring rules. The proof of Claim 21 relies on basic results from the theory of
quasi-linear partial differential equations (refer to [19] for a thorough introduction). For
D ⊆ Rn, we will refer to a function f : D → R as analytic if its Taylor expansion about
x ∈ D converges to f(x) for all x ∈ D. We use ei ∈ Rn to denote the ith vector of the
standard basis. The gradient of a differentiable function g(x,y) : Rn × Rn → R with respect

to x ∈ Rn is denoted by ∂g
∂x ≡

(
∂g
∂x1

, . . . , ∂g
∂xn

)T
.
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2.2.1 Symmetric Rules are Retentive
I Lemma 18. Let S : P × P × X → R be a scoring rule. If there is a proper scoring rule
s : P × X → R such that: S(P,Q, i) = s(P, i)− s(Q, i)− 1, then S(P,Q, i) is retentive.

Proof. Let P,Q,R ∈ P. Using (8), the expected score S(P,Q,R) is:

S(P,Q,R) = s(P,R)− s(Q,R)− 1 (22)

s is proper, and therefore s(P,R) ≤ s(R,R). Plugging into (22) we obtain:

S(P,Q,R) ≤ s1(R,R)− s2(Q,R) = S(R,Q,R) (23)

satisfying (6). Similarly, s2 is also proper, and therefore:

S(P,Q,R) ≥ s1(P,R)− s2(R,R) = S(P,R,R) (24)

satisfying (6). For Q = P we get S(P, P, i) = −1 for all i ∈ X , and therefore S is retentive
according to Definition 2. J

2.2.2 Retentive Rules are Separable
We start by formally defining the notion of a separable scoring rule:

I Definition 19 (Separable Retentive Scoring Rule). A proper retentive scoring rule S :
P ×P ×Ω→ R is called separable if there exists two proper scoring rules s1, s2 : P ×Ω→ R
such that:

S(P,Q, i) = s1(P, i)− s2(Q, i) (25)

We also say that a two-party scoring rule is proper if it satisfies (6), (7). In the following
lemma, we say that a bi-variate function G : P × P → R is convex with respect to its first
argument if G(P,Q) is a convex function of P for any constant Q ∈ P ; convexity with respect
to the second argument is similarly defined by switching the roles of P and Q.

I Lemma 20 (Characterization by subgradients). A two-party scoring rule S is proper with
respect to class P if and only if there exist two functions G,H : P × P → R such that:
1. G(P,Q) is convex with respect to P .
2. H(P,Q) is convex with respect to Q.
3. For all P,Q,R ∈ P:

G+ 〈∇∗PG, (R− P )〉 = −
(
H +

〈
∇∗QH, (R−Q)

〉)
(26)

where ∇∗PG is a subgradient of G(P,Q) with respect to its first argument, and ∇∗QH is a
subgradient of H(P,Q) with respect to its second argument.

Proof. For the first direction, let S(P,Q, i) be a proper retentive scoring rule, and define
sQ(P, i) ≡ S(P,Q, i). Using (6) we obtain that sQ(P,R) ≤ sQ(R,R). Therefore sQ is proper,
and according to Theorem 16 there exists a convex function GQ : P → R that depends on Q,
such that:

sQ(P, i) = GQ(P )− 〈∇∗GQ(P ), P 〉+ (∇∗GQ(P ))i (27)
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where (∇∗GQ(P ))i is ith entry of ∇∗GQ at point P . Similarly, define sP (Q, i) ≡ S(P,Q, i).
By the same reasoning and using (7) we obtain that −sP is proper, and therefore there exists
a convex function HP : P → R such that:

−sP (Q, i) = HP (Q)− 〈∇∗HP (Q), Q〉+ (∇∗HP (Q))i (28)

Define G(P,Q) ≡ GQ(P ) and H(P,Q) ≡ HP (Q). Note that G is convex with respect to
P and H is convex with respect to Q, satisfying conditions 1, 2. Let R ∈ P. Using the fact
that sP (P,R) = sQ(Q,R), we can combine (27), (28) to obtain:

G+ 〈∇∗PG, (R− P )〉 = −
(
H +

〈
∇∗QH, (R−Q)

〉)
(29)

satisfying condition 3.
Conversely, let G,H be the functions which satisfy the three conditions above. Define:

sQ(P, i) ≡ G− 〈∇∗PG,P 〉+ (∇∗PG)i (30)

sP (Q, i) ≡ −
(
H −

〈
∇∗QH,H

〉
+
(
∇∗QH

)
i

)
(31)

Note that sQ = −sP by equation (26), and that sP and −sQ are proper by Theorem 16.
Define S(P,Q, i) = sQ(P, i) = −sP (Q, i). sQ is proper, and therefore S(P,Q,R) ≤

S(R,Q,R), satisfying the properness condition in (6). Similarly, the properness of −sP
implies S(P,R,R) ≤ S(P,Q,R), satisfying (7), and therefore S is proper. J

The following lemma contains a solution of a partial differential equation that will assist
us in solving the characterizing equations of proper retentive scoring rules. We obtain the
solution using basic tools from the theory of partial differential equations, and the proof is
given in Appendix A for completeness:

I Claim 21. Let D ⊆ Rn such that x,y ∈ D. For every analytic function u : D ×D → R
satisfying the equation

u(x,y)−
n∑
i=1

(yi − xi)
∂u(x,y)
∂xi

= 0 (32)

there exist functions α1, . . . , αn : D → R such that:

u(x,y) =
n∑
i=1

αi(y)(yi − xi) (33)

The following lemma is the heart of this part of the proof of Theorem 4 .

I Lemma 22 (Proper Retentive Rules are Separable). Let S : P × P × X → R be a retentive
scoring rule. If S is a proper retentive scoring rule with analytic generalized entropy functions,
then there exist two functions s1, s2 : P × Ω→ R such that S(P,Q, i) = s1(P, i)− s2(Q, i).

Proof outline:
1. Given a proper retentive scoring rule, Lemma 20 implies the existence of two generalized

entropy functions G,H : P × P → R related by equation (26).
2. We choose a parametrization for points on the simplex ∆n, and use it to define (26) in

the convex domain D =
{

(x1, . . . , xn) ∈ Rn+ |
∑
i xi ≤ 1

}
.

3. We simplify the resulting equation, and solve it using Claim 21.
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4. Applying the correspondence established in Theorem 16 between convex functions on the
simplex and proper scoring rules, we show that the generalized entropy functions G,H
induce a separable scoring rule.

Following the conventions of multivariate calculus, in the proof we will use the · symbol
to denote the euclidean inner product over Rn: x · y =

∑n
i=1 xiyi. In addition, the proof

employs terms from the theory of multivariate convex analysis: Given a non-empty convex
subset S ⊆ Rn, its affine hull Aff(S) is the smallest affine set containing S. A relative
interior point is a member of the set {x ∈ S : ∃ε > 0, Nε(x) ∩Aff(S) ⊆ S}, where Nε(x) is
the ε-ball around point x. Refer to [22] for an introduction to convex analysis. In the proof,
we also use the gradient theorem for line integrals, which is a common generalization of the
fundamental theorem of calculus. We recall it here without proof. Refer to Wikipedia entry
[14] for discussion and proof:

I Claim 23 (Gradient Theorem). Let ϕ : U ⊆ Rn → R and γ is any curve from p to q.
Then:

ϕ (q)− ϕ (p) =
∫
γ[p,q]

∇ϕ(r) · dr (34)

Proof of Lemma 22. Let S be a proper retentive scoring rule. By Lemma 20, there exist two
functions G,H : P × P → R such that G(P,Q) is convex with respect to its first argument,
H(P,Q) is convex with respect to its second argument, and equation (26) is satisfied.

When P , Q and R are categorical random variables with n+1 possible outcomes, equation
(26) is defined over the n-dimensional simplex ∆n. Let D =

{
(x1, . . . , xn) ∈ Rn+ |

∑
i xi ≤ 1

}
.

Each point P on the simplex can be represented by a vector P = (p0, . . . , pn) ∈ Rn+1
+ such

that
∑n
i=0 pi = 1. To simplify the constraints, we define a bijection f : ∆n → D as follows:

f(P ) ≡ (p1, . . . , pn) ∈ Rn (35)

f−1(x) ≡
(

1−
n∑
i=1

xi, x1, . . . , xn

)
∈ ∆n (36)

using this bijection, we represent each point on the simplex using a n-dimensional vector in
the domain. Denote: P ≡ f−1(x), Q ≡ f−1(y), R ≡ f−1(z), f(P) ≡ {f(P ) | P ∈ P}.

Using this correspondence, we also define g(x,y) ≡ G(P,Q), h(x,y) ≡ H(P,Q). The
assumption that G,H are analytic implies that the gradients of each function coincide with
their corresponding subgradients (See Remark 2.1).

We will now write (26) using the new parametrization. Let x,y, z ∈ f(P). For the
left-hand side of (26) we obtain:

∂g

∂x · (z− x) =
n∑
i=1

∂g

∂xi
(zi − xi) (37)

[Calculate the derivative of g using the chain rule]

=
n∑
i=1

(
∂G

∂pi
− ∂G

∂p0

)
(zi − xi) (38)

[Rearrange the summations]

= ∂G

∂p0

n∑
i=1

(−zi + xi) +
n∑
i=1

∂G

∂pi
· (zi − xi) (39)
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= ∂G

∂p0

((
1−

n∑
i=1

zi

)
−

(
1−

n∑
i=1

xi

))
+

n∑
i=1

∂G

∂pi
· (zi − xi) (40)

[Use the definition of x, z]

=
n∑
i=0

∂G

∂pi
(ri − pi) (41)

= ∇G · (R− P ) (42)

A similar argument on the right-hand side of (26) shows that ∇H ·(R−Q) = h+ ∂h
∂y ·(z− y),

and therefore the system defined in (26) is equivalent to:

∀x,y, z ∈ f(P) : g + ∂g

∂x · (z− x) = −
(
h+ ∂h

∂y · (z− y)
)

(43)

We will now simplify (43) using its linear properties. Denote the affine hull of f(P) by
Aff(f(p)) ≡ v0 + V , and assume v0 is a relative interior point. Taking z = v0 in equation
(43) yields:

g + ∂g

∂x · (v0 − x) = −
(
h+ ∂h

∂y · (v0 − y)
)

(44)

Similarly, denote the ith basis vector of V by v̄i. For any i ∈ [dimV ], taking z = v0 + v̄i in
equation (43), with appropriate scaling of v̄i such that z ∈ f(P), yields:

∀i ∈ [dimV ] : g + ∂g

∂x · (v0 + v̄i − x) = −
(
h+ ∂h

∂y · (v0 + v̄i − y)
)

(45)

Subtracting (44) from (45) we obtain:

∀i ∈ [dimV ] : ∂g(x,y)
∂x · v̄i = −∂h(x,y)

∂y · v̄i (46)

thus ∂g(x,y)
∂x and −∂h(x,y)

∂y are equal component-wise, and therefore ∂g(x,y)
∂x + ∂h(x,y)

∂y is
orthogonal to the affine hull:

∀v ∈ V :
(
∂g(x,y)
∂x + ∂h(x,y)

∂y

)
· v = 0 (47)

Note that (z− x), (z− y), (y− x) ∈ V . Substitute (47) back into (43) to obtain:

g + ∂g

∂x · (y− x) = −h (48)

Apply ∂
∂y on both sides to get:

∂g

∂y + ∂

∂y

n∑
i=1

∂g

∂xi
(yi − xi) = −∂h

∂y (49)

And using (47) again we obtain:

∂

∂y

n∑
i=1

∂g

∂xi
(yi − xi) = 0 (50)
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Which is equivalent to:

∀k ∈ [n] : ∂g

∂yk
+

n∑
i=1

(yi − xi)
∂

∂xi

∂g

∂yk
= 0 (51)

This is a system of n independent first-order partial differential equations for each element
in ∂g

∂y . Using Claim 21, we obtain the general solution for each k:

∀k ∈ [n] ,∃αk,1, . . . , αk,n : ∂g

∂yk
=

n∑
i=1

αk,i(y)(yi − xi) (52)

Packing back the equations to vector form, we define a matrix operator A : D → Rn×n such
that Ai,j [y] = αk,i(y). The system in (52) in now be compactly represented using matrix
multiplication:

∂g

∂y = A [y] (y− x) (53)

We now use the correspondence established in Theorem 16 to show that the generalized
entropy functions G,H induce a separable scoring rule. Applying the gradient theorem (34)
along the curve γ(t) = 0 + ty for t ∈ [0, 1] yields:

g(x,y)− g(x,0) =
∫ 1

0

(
yT
(
∂g

∂y

∣∣∣∣
x,ty

))
dt (54)

=
∫ 1

0

(
yTA [ty] (ty− x)

)
dt (55)

Denote ψ(x) ≡ g(x,0) and ϕ(x,y) ≡
∫ 1

0
(
yTA [ty] (ty− x)

)
dt. Note that ϕ(x,y) is a linear

function of x. The scoring rule which corresponds to g is given by Theorem 16:

S(x,y, z) =g(x,y) + ∂g(x,y)
∂x · (z− x) (56)

=ψ(x) + ∂ψ(x)
∂x · (z− x)︸ ︷︷ ︸
≡s1

+ϕ(x,y) + ∂ϕ(x,y)
∂x · (z− x)︸ ︷︷ ︸
≡s2

(57)

The terms denoted by s1 only depend on x and z, and therefore s1 = s1(x, z). In addition,
ϕ(x,y) is a linear function of x and therefore both ∂ϕ(x,y)

∂x and
(
ϕ(x,y)− ∂ϕ(x,y)

∂x · x
)
do

not depend on x, thus s2 = s2(y, z). The scoring rule S(x,y, z) can therefore be written in
the following form:

S(x,y, z) = s1(x, z)− s2(y, z) (58)

and applying the reverse transformation from x,y, z ∈ D to P,Q,R ∈ P implies the
separability of the original scoring rule S. J

2.2.3 Concluding the Proof
We can now conclude the section by proving the characterization theorem for retentive
scoring rules. For the final proof, recall Definition 3 of symmetric retentive rules.
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Proof of Theorem 4. Given a proper scoring rule s : P × X → R such that S(P,Q, i) =
s(P, i)− s(Q, i)− 1, we can apply Lemma 18 to show that S(P,Q, i) is retentive. Conversely,
given an analytic retentive scoring rule, we can apply Lemma 22 and obtain s1, s2 such that
S(P,Q, i) = s1(P, i) − s2(Q, i). The rule S is retentive, and therefore satisfies (5). for all
P ∈ P and Q = P we obtain:

S(P, P, i) = s1(P, i)− s2(P, i) = −1 (59)

and therefore s1(P, i) = s2(P, i)− 1 for all P , proving that S is symmetric. J

3 Monotonicity

In this section we show that expected retention score in each round grows with the size of
memory span, proving Theorem 6:

I Theorem 6 (Knowledgeable Gurus Retain Better). Let S : P × P × X → R be an analytic
retentive scoring rule, let G1, G2 be two gurus with memory spans m(1)

g ≥ m
(2)
g . Then for

any distribution T , any coordinate x, and follower with memory span mf ≤ m(2)
g :

ET [S(P1, Q, x)] ≥ ET [S(P2, Q, x)] (11)

where P1, P2 ∈ ∆(X ) are the distributional forecasts of gurus G1 and G2 respectively, and
Q ∈ ∆(X ) is the belief of the follower.

The proof will require a definition and a lemma: We first define the notion of Localized
Expected Gain (Definition 24), which is a set function that quantifies the expected score
for different choices of prior data. We then show that this function is monotone by proving
Lemma 25, and use the result to prove the theorem itself.

Preliminaries

We denote the jointly distributed vector by (X1, . . . , Xn) ∼ T . The marginal distribution of
coordinate i is denoted by Xi. For t ∈ [n] and I ⊆ [n] such as t /∈ I, the marginal value of
coordinate t conditioned on the event X�I = x�I is denoted by (Xt | xI). When probability
calculations are involved, we will omit the harpoon notation for brevity, and xI and x�I will
be used interchangeably.

I Definition 24 (Localized Expected Gain). Let (X1, . . . , Xt) ∼ D ∈ ∆(X t) be a set of t
jointly-distributed random variables, let I ⊆ [t− 1], and let s : ∆(X )×X → R be a proper
(one-party) scoring rule. The localized expected gain is a set function f : 2[t−1] → R defined
as follows:

∀I ⊆ [t− 1] : f(I) ≡ E(x1,...,xt)∼D [s((Xt|xI), xt)] (60)

Intuitively, the localized expected gain function f(I) describes the expected score when
X�I is being used as a prior. For example, for the log scoring rule s(P, i) = log pi defined in
(3), the associated expected localized gain function is:

flog(I) =
∑
xI

Pr (xI)
∑
xt

Pr (xt | xI) log Pr (xt | xI) = −H(Xt | XI) (61)

which is the additive inverse of the conditional entropy of Xt given XI .
We now show that this function is also monotone for general proper scoring rules, which

means that expected scores don’t decrease when adding prior information, or “more knowledge
doesn’t hurt“ regardless of the proper scoring rule being used:
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I Lemma 25. f is a monotone set function:

∀I ⊆ J ⊆ [t− 1] : f(I) ≤ f(J) (62)

Proof. We start with the definition of f(I):

f(I) = E(x1,...,xt)∼D [s((Xt|xI), xt)] (63)

=
∑

x[t−1],xt

Pr
(
x[t−1], xt

)
s((Xt|xI), xt) (64)

[Decompose Pr
(
x[t−1], xt

)
using the law of total probability]

=
∑

x[t−1],xt

Pr (xJ) Pr (xt | xJ) Pr
(
x[t−1]\J | xt, xJ

)
s((Xt|xI), xt) (65)

[s does not depend on y[t]\J . Rearrange the summation]

=
∑
xJ

Pr (xJ)
∑
xt

Pr (xt | xJ)s((Xt|xI), xt)
∑

x[t−1]\J

Pr
(
x[t−1]\J | xt, xJ

)
(66)

[The rightmost factor is equal to 1]

=
∑
xJ

Pr (xJ)
∑
xt

Pr (xt | xJ)s((Xt|xI), xt) (67)

Using the definition of expected one-party score defined in (19), we obtain that the rightmost
factor in (67) is the expected score of P = (Xt | xI) when the reference distribution is
R = (Xt | xJ):

f(I) =
∑
xJ

Pr (xJ)s((Xt|xI), (Xt|xJ)) (68)

We can now use the properness of s (see Definition 1) to obtain:

f(I) ≤
∑
xJ

Pr (xJ)s((Xt|xJ), (Xt|xJ)) (69)

and apply steps (63),...,(67) in reverse order to obtain∑
xJ

Pr (xJ)s((Xt|xJ), (Xt|xJ)) = f(J) (70)

proving that f(I) ≤ f(J). J

Using Lemma 25 we can generalize the result to retentive scoring rules, and prove the
monotonicity theorem for retentive scoring rules:

Proof of Theorem 6. Guru 1 has memory span m1
g, and therefore P1 = (T | u�I1) such that

|I1| = m1
g. Similarly, for guru 2 we obtain P2 = (T | u�I2) such that |I2| = m2

g and for the
follower Q = (T | u�J) such that |J | = mf .
S is analytic, and therefore symmetric according to Theorem 4. Denote S(P,Q, i) =

s(P, i)− s(Q, i)− 1. Taking the expectation over T we obtain:

ET [S(P,Q, i)] = ET [s(P, i)]− ET [s(Q, i)]− 1 (71)

Using Definition 24 we obtain:

ET [S(P,Q, i)] = f(I)− f(J)− 1 (72)
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When m1
g ≥ m2

g and under the optimal choice of I1, there exists I ′1 such that I2 ⊆ I ′1 and
f(I ′1) ≤ f(I1). Applying Lemma 25 we obtain:

ET [S(P1, Q, i)] = f(I1)− f(J)− 1 (73)
≥ f(I ′1)− f(J)− 1 (74)
≥ f(I2)− f(J)− 1 (75)
= ET [S(P2, Q, i)] (76)

and therefore ET [S(P1, Q, i)] ≥ ET [S(P2, Q, i)]. J

4 The Binary Attributes Model

Under the Binary Attributes model, the universe of users is modeled using a k-dimensional
linear subspace of Fn2 .

U = span {ū1, . . . , ūk} (77)

where ū1, . . . , ūk ∈ Fn2 are a choice of basis vectors for the subspace. Under this realization
of the Collaborative Discovery model, each user is represented using an n-dimensional binary
vector, formally Xn = Fn2 .

Preliminaries

This section will assume familiarity with basic linear algebra over finite fields. A view
I ⊆ [n] of a vector u ∈ Fn2 , denoted by u�I , is a linear projection of u to the subspace
VI = span {ei | i ∈ I}. Similar to the previous section, we omit the harpoon notation when
complex conditional probability expressions are involved. Given a vector space U , its dual
space is defined as the set of linear constraints: U⊥ ≡ {v ∈ Fn2 | ∀u ∈ U : 〈u, v〉 = 0}. The
support of a vector u ∈ U is the of coordinates that contain non-zero elements: support(u) =
{i | ui 6= 0}. We denote the hamming distance of a vector u ∈ U by d(u) = |support(u)|.
The hamming distance of the space U is defined as d(U) = minu∈U\{0} d(u).

4.1 User Types as a Linear Subspace
We follow with a rigorous definition of the process under the Binary Attributes realization:

Initialization

At the start of the Collaborative Discovery process, the type of user u is picked uniformly
from U , all the coordinates are undisclosed, and the initial retention parameter is r0. We
will denote the uniform random variable over the linear space by U ∼ Uniform(U).

Prediction Rounds

During each round, the expert picks a coordinate i and provides a prediction distribution
P ∈ ∆({0, 1}) for its value. The retentive scoring function for this realization of the model
is:

Sbin(P,Q, x) = 2 log2 px − 2 log2 qx − 1 (78)
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where x ∈ {0, 1}. Sbin can be represented as Sbin(P,Q, x) = s(Q, x) − s(Q, x) − 1, where
s(P, x) = 2 log2 px is the logarithmic scoring rule defined in (3), and therefore Sbin is
symmetric according to Definition 3.

We’ll proceed to show that Sbin has very intuitive properties. To do that, we start with a
few basic claims about the structure of this probability space. The claims can be proved
using basic linear algebra and probability. Proofs are included in Appendix B:

I Claim 26. Let I ⊆ [n]. For every vector uI ∈ UI :

Pr (UI = uI) = 2− dim (UI) (79)

For the following claim, recall that a singleton distribution is a probability distribution in
which a single outcome has probability 1.

I Claim 27. Let I ⊆ [n] and m ∈ [n] \ I, and assume a vector u ∈ Fn2 has been picked
uniformly at random from a vector space U . Pr (um | uI) is a singleton distribution if and
only if em ∈ U⊥�[n]\I .

I Claim 28. Let U be a linear space over F2
n, and let I ⊆ [n],m ∈ [n] \ I. em ∈ U⊥�[n]\I if

and only if dim (U�I) = dim
(
U�I∪{m}

)
.

Using this framework, we now have enough tools to characterize the dynamics of scoring
rule we defined:

I Lemma 29 (Binary Attributes Scoring Rule Dynamics). For a uniform distribution U over a
linear space U without constant bits, the retention score for a collaborative discovery process
with infinite expert locality and zero layperson locality is given by:

Sbin((Xm | xI), Xm,U) =
{

1 em ∈ U⊥�[n]\I

−1 otherwise
(80)

=
{

1 dim
(
U�I∪{m}

)
= dim (U�I)

−1 dim
(
U�I∪{m}

)
= dim (U�I) + 1

(81)

Proof. When em /∈ U⊥�[n]\I , we get that dim
(
U�{m}

)
= 1, allowing us to apply Claim 26

and obtain Pr (um = 0 | uI) = 1
2 .

When em ∈ U⊥�[n]\I there exists v ∈ U⊥, I ′ ⊆ I such that support(v) = I ′ ∪ {m}.
Claim 27 implies that um is determined given uI .

Combining the results, we obtain for all I ⊆ [n],m /∈ I:

Pr (um = 0 | uI) ∈
{
{0, 1} em ∈ U⊥�[n]\I{ 1

2
}

otherwise
(82)

There are no constant bits in U , and therefore dimU�{m} = 1 for all m ∈ [n]. By Claim 26
we obtain that the marginal distribution for each coordinate is uniform, and therefore a
layperson with zero locality will always predict a uniform distribution.

Plugging (82) into the definition of Sbin in equation (78), the score for the first case is
log2

1
2·0.52 = 1, and the score for the second case is log2

0.52

2·0.52 = −1, leading to equation (80).
The transition from (80) to (81) is given by Claim 28. J
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4.2 Retention Complexity of Linear Codes
We will now apply the notion of retention complexity introduced in Definition 8 to the Binary
Attributes model. We will first show that there exist non-trivial upper and lower bounds for
retention complexity in this realization of the Collaborative Discovery model, and then show
that the bounds are tight. Recall Lemma 11:

I Lemma 30 (Retention Complexity Bounds for Linear Spaces). For a uniform distribution U
over a linear space U ⊆ F2

n with unbounded guru memory span and zero follower memory
span, the retention complexity satisfies:

d
(
U⊥
)
− 1 ≤ r(Sbin,∞,0)(U) ≤ dim (U) (14)

Proof of Lemma 11. The retention parameter at the end of each round t is defined according
to equation (1):

rt = r0 +
t∑
i=1
Sbin((Xσi | xIi), Xσi ,U) (83)

For the lower bound, observe that U⊥�[n]\It
does not contain any singleton element when

|It| ≤ d
(
U⊥
)
− 2. Since |It| ≤ t− 1 by definition, we can combine the inequalities and obtain

that no punctured-dual-space singleton exists when t ≤ d
(
U⊥
)
− 1. We can now apply

Lemma 29 and obtain that Sbin((Xσi | xIi), Xσi ,U) = −1 for all i ∈ {1, . . . , t}. Plugging
into the retention parameter at time t = d

(
U⊥
)
− 1:

rt = r0 +
d(U⊥)−1∑

i=1
(−1) = r0 −

(
d
(
U⊥
)
− 1
)

(84)

And the positivity constraint on rt implies that r0 ≥
(
d
(
U⊥
)
− 1
)
.

For the upper bound, assume without loss of generality that the first k = dim (U)
coordinates of U are linearly independent, and set σi = i, Ii = {1, . . . , (i− 1)} for all
i ∈ {1, . . . , k}. Observe that:

dim (U�Ii) =
{
i− 1 1 ≤ i ≤ k
k k < i

(85)

Applying Lemma 29 we get:

Sbin((Xσi
| xIi

), Xσi
,U) =

{
−1 1 ≤ i ≤ k
1 k < i

(86)

Hence for r0 = k we get rt ≥ 0 for all t ∈ {1, . . . , n}. J

In the asymptotic setting it is common to consider n, k →∞. In this case, d
(
U⊥
)
can

stay constant, forming a large gap between the bounds. We will proceed to show that the
upper and lower bounds are indeed tight in the asymptotic setting.

4.2.1 Linear Functions are Retentively Learnable
Let n = 2k−1. Given a binary message x ∈ {0, 1}k, the Walsh-Hadamard code (WH) encodes
the message into a codeword WH(x) using an encoding function WH : {0, 1}k → {0, 1}n,
such that for every y ∈

(
{0, 1}k \

{
0k
})

, the yth coordinate of WH(x) is equal to (x · y).
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Walsh-Hadamard is the space of linear functions over Fn2 . Note that we slightly deviate
from the common definition by omitting the 0th coordinate which is always equal to zero.
It is a

[
2k − 1, k, 2k−1]

2 locally-correctable code with q = 2 queries. See [1] for a thorough
discussion of Walsh-Hadamard codes and its applications in theoretical computer science.

We will show that a uniform distribution over the k-dimensional WH code achieves the
retention complexity lower bound for all k ∈ N. Recall Lemma 12:

I Lemma 31 (Walsh-Hadamard Retention Complexity). For all k ∈ N, a k-dimensional
Walsh-Hadamard code satisfies:

r(Sbin,2,0)(WH) = 2 (15)

In order to prove the lemma, we first characterize the constraints of the WH code
(Claim 32, Claim 33), and then use the results to construct an explicit formula for the
retention score when the Sbin retentive score rule is being used (Lemma 34), giving an upper
bound for r(Sbin,3,0)(WH) which is equal to the lower bound we established in Lemma 11.
Proofs for the claims can be found in Appendix B.

I Claim 32. Let y(1), . . . , y(m) ∈
(
{0, 1}k \

{
0k
})

.

(
m∑
i=1

ey(i)

)
∈WH⊥ ⇐⇒

m∑
i=1

y(i) = 0 (87)

I Claim 33.

d
(

WH⊥
)

= 3 (88)

I Lemma 34. Let k > 0, and let u be a uniformly-sampled vector from the k-dimensional
WH code. Set a natural ordering over the coordinates (γt = t for t ∈

{
1, . . . , 2k − 1

}
), and

set a sequence of subsets:

It =
{{

2blog2 tc, t− 2blog2 tc
}

t > 2, and t is not a power of 2
∅ otherwise

For collaborative discovery with respect to S = Sbin, mg = 2, mf = 0 and r0 = 2, the ordering
γt and sequence of sets It satisfies:

rt = t− 2blog2 tc (89)

for all 1 ≤ t < 2k.

Proof. By induction:
For the base case t ∈ {1, 2}. According to the definition, γ1 = 1, γ2 = 2, and I1 = I2 = ∅.

We use Claim 33 and an argument similar to the one in Lemma 11 to show that there’s no
singleton in the punctured dual-space in the first two rounds. The guess in the first two
rounds will therefore be a uniform one, and r1 = 1, r2 = 0. Indeed we can substitute 0, 1
into (89) see that 1− 2blog2 1c = 1 and 1− 2blog2 2c = 1.

For t > 2, assume the retention parameter formula holds for t− 1, and consider the two
following cases:
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When t is not a power of two, it can be represented as the XOR between two preceding
coordinates, for example t′ = 2blog2 tc and t′′ = t − 2blog2 tc. Note that It = {t′, t′′},
and that |It| = 2, satisfying the mg = 2 memory span constraint. Using Claim 32 we
obtain that et is a singleton in the punctured dual-space, and therefore rt = rt−1 + 1
by Lemma 29. Using the induction hypothesis and the fact that blog2 tc = blog2 (t− 1)c
when t is not a power of two, we obtain:

rt = rt−1 + 1
= (t− 1)− 2blog2 (t− 1)c+ 1
= t− 2blog2 tc

When t is a power of two, it cannot be represented as the XOR between preceding
coordinates, as for all of them the index of the most significant bit is strictly less
than log2 t. By Lemma 29 we obtain that rt = rt−1 − 1, and using the fact that
blog2 tc = blog2 (t− 1)c+ 1 when t is a power of two we indeed get:

rt = rt−1 − 1
= (t− 1)− 2blog2 (t− 1)c − 1
= t− 2blog2 tc J

I Remark (Non-punctured Walsh-Hadamard). In the non-punctured Walsh-Hadamard code,
the 0th coordinate is not omitted, and always equal to zero. Offsetting the sequences in
Lemma 34 can show that the same upper bound also holds for the non-punctured version of
the Walsh-Hadamard code.

Combining the results proves Lemma 12:

Proof of Lemma 12. Lemma 34 shows an upper bound of 2 for the retention complexity
of WH. Lemma 11, together Claim 33, tells us that this is also the lower bound for the
retention complexity in this case, and therefore r(Sbin,2,0)(WH) = 2. J

We can now conclude and prove Theorem 10. Recall the theorem statement:

I Theorem 10 (Linear functions are retentively learnable). The property of linear functions
over the two-element field F2 is retentively learnable.

Proof of Theorem 10. For linear functions over Fn2 , the corresponding family of categorical
distributions is D = {Un}n=2k , where Ui is the family of uniform distributions over the
non-punctured Walsh-Hadamard code. Lemma 34 shows that each Ui is retainable with
respect to (Sbin, 2, 0, 2). J

4.2.2 Random LDPC Codes are Asymptotically Hard to Retain
Let G = (L,R,E) be a bipartite multigraph with |L| = n, |R| = m. Associate a distinct
Boolean variable xi with any i ∈ L. For each j ∈ R, let N(j) ⊆ L be the set of neighbors of
j. The jth constraint is Aj(x1, . . . , xn) =

∑
i∈N(j) xi mod 2. The code defined by G is:

C(G) = {x ∈ {0, 1}n | ∀j ∈ [m] : Aj(x) = 0}

A random (c, d)-regular LDPC code of length n is obtained by taking C(G) for a random
(c, d)-regular G with n left vertices. Random LDPC codes were first described and analyzed
by [10]. We will show that a randomly chosen LDPC code asymptotically achieves the upper
bound for retention complexity with high probability. Recall Theorem 13:
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I Theorem 13 (LDPC Retention Complexity). For a proper choice of constants c, d > 0 and
sufficiently large n, the retention complexity of a random (c, d)-regular LDPC code over Fn2
is linear with high probability:

r(Sbin,∞,0)(LDPC) =
w.h.p

Ω(dim (LDPC)) (16)

I Definition 35 ((q, µ) code locality, [4]). A linear space V is (q, µ)-local if every v ∈ V that
is a sum of at least µm basis vectors has d(v) ≥ q.

The following lemma shows that a random LDPC code has (q, µ)-locality with high
probability for a proper choice of parameters:

I Lemma 36 ([4], Lemma 3.6). Fix odd integer c ≥ 7 and constants µ, δ, d > 0 satisfying:

µ ≤ c−2

100 ; δ < µc; d >
2µc2

(µc − δ)2 (90)

Then, for all sufficiently large n, with high probability for a random (c, d)-regular graph
G with n left vertices and m = c

dn right vertices, the corresponding LDPC code C(G) is
linearly-independent, and (δn, µ)-local.

I Remark 37 (A Proper Choice of Parameters). For our proof of Theorem 13, the constants in
(90) need be chosen such that δ − 2µc

d ≥ 0.
Such a choice of random code parameters is indeed possible: For example, by fixing c ≥ 7

and taking µ = c−2

100 , δ = (µc − ε0), d = 8µc2

(µc−δ)2 we get:

δ − 2µc
d

= µc − ε0 − 2 µc
8µc2

(µc−δ)2

= µc − ε0 −
ε2

0
4c

Which is strictly larger than zero for all 0 < ε0 < 2c
(√

1 + µc

c − 1
)
.

We now use this to prove Theorem 13:

Proof of Theorem 13. Fix odd integer c ≥ 7 and constants µ, ε, δ, d > 0 satisfying equation
(90) and δ ≥ µc

d . See Remark 37 for a specific choice of such constants. Let V be a random
LDPC code of dimension n corresponding to this choice of constants. Assume that n is large
enough to satisfy Lemma 36. Assume by contradiction that r0 ≤ n

(
δ − 2µc

d

)
− 1, and the

Collaborative Discovery process lasts until round n. Set t = bδnc − 1.
At the end of round t, the coordinates It ⊆ [n] are disclosed. Denote by n− the number

of times a uniform distribution was predicted by the expert. Using Lemma 29, the total
retention accumulated at the end of round t is equal to:

rt = r0 − n− + (t− n−) (91)

rt ≥ 0, and therefore n− ≤ t+r0
2 . Using Lemma 29 again, we obtain that n− = dim (V�It).

In addition, the dimensions of a vector space and its dual sum up to t, hence dim
(

(V�It)
⊥
)

=

(t− n−) ≥ t−r0
2 . This gives us a lower bound for dim

(
(V�It

)⊥
)
.

(V�It
)⊥ consists of vectors v ∈ V ⊥ such that support(v) ⊆ It. The conditions of Lemma 36

are satisfied by our choice of constants, and we can apply it to obtain that V ⊥ of the random
code we picked is (δn, µ)-local with high probability, and therefore every v ∈ V ⊥ that is a
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sum of at least c
dµn dual basis vectors has d(v) ≥ δn. For t < δn, all the vectors of (V�It)

⊥

are a sum of c
dµn basis vectors at most, hence dim

(
V ⊥I
)
≤ c

dµn, implying an upper bound
for dim

(
(V�It

)⊥
)
.

Combining the bounds we obtain:

t− r0

2 ≤ dim
(

(V�It
)⊥
)
<
c

d
µn (92)

For t = bδnc − 1 and r0 ≤ n
(
δ − 2µc

d

)
− 1 we have:

t− r0

2 ≥
(δn− 1)−

(
n
(
δ − 2µc

d

)
− 1
)

2 = c

d
µn (93)

Leading to a contradiction, since the lower bound in equation (92) must be greater than the
upper bound. From this we get r0 > n

(
δ − 2µc

d

)
, and therefore r0 = Ω(n) = Ω(dim (V )). J

References
1 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, 2009.
2 Amir Ban and Nati Linial. The dynamics of reputation systems. In Proceedings of the

13th Conference on Theoretical Aspects of Rationality and Knowledge, pages 91–100. ACM,
2011.

3 Ayelet Ben-Sasson, Eli Ben-Sasson, Kayla Jacobs, and Eden Saig. Baby CROINC: An
Online, Crowd-based, Expert-curated System for Monitoring Child Development. In Pro-
ceedings of the 11th EAI International Conference on Pervasive Computing Technologies
for Healthcare, PervasiveHealth ’17, pages 110–119, New York, NY, USA, 2017. ACM.
doi:10.1145/3154862.3154887.

4 Eli Ben-Sasson, Prahladh Harsha, and Sofya Raskhodnikova. Some 3CNF properties are
hard to test. SIAM Journal on Computing, 35(1):1–21, 2005.

5 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-Testing/Correcting with Applic-
ations to Numerical Problems. In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 73–83, 1990.
doi:10.1145/100216.100225.

6 Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1):1–3, 1950.

7 Kam Tong Chan, Irwin King, and Man-Ching Yuen. Mathematical modeling of social games.
In Computational Science and Engineering, 2009. CSE’09. International Conference on,
volume 4, pages 1205–1210. IEEE, 2009.

8 Alexander Philip Dawid and Monica Musio. Theory and applications of proper scoring
rules. Metron, 72(2):169–183, 2014.

9 Gideon Dror, Dan Pelleg, Oleg Rokhlenko, and Idan Szpektor. Churn prediction in new
users of Yahoo! answers. In Proceedings of the 21st International Conference on World
Wide Web, pages 829–834. ACM, 2012.

10 Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory,
8(1):21–28, 1962.

11 Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359–378, 2007.

12 Michael H. Goldhaber. The attention economy and the Net. First Monday, 2(4), 1997.
doi:10.5210/fm.v2i4.519.

13 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

http://dx.doi.org/10.1145/3154862.3154887
http://dx.doi.org/10.1145/100216.100225
http://dx.doi.org/10.5210/fm.v2i4.519


E. Ben-Sasson and E. Saig 12:27

14 Gradient Theorem. Gradient Theorem —Wikipedia, The Free Encyclopedia, 2017. [Online;
accessed 08-September-2017]. URL: https://en.wikipedia.org/w/index.php?title=
Gradient_theorem&oldid=781791224.

15 Arlo D Hendrickson and Robert J Buehler. Proper scores for probability forecasters. The
Annals of Mathematical Statistics, pages 1916–1921, 1971.

16 Richard A Lanham. The economics of attention: Style and substance in the age of inform-
ation. University of Chicago Press, 2006.

17 John McCarthy. Measures of the value of information. Proceedings of the National Academy
of Sciences, 42(9):654–655, 1956.

18 George A Miller. The magical number seven, plus or minus two: some limits on our capacity
for processing information. Psychological review, 63(2):81, 1956.

19 Yehuda Pinchover and Jacob Rubinstein. An introduction to partial differential equations.
Cambridge university press, 2005.

20 Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputation systems.
Communications of the ACM, 43(12):45–48, 2000.

21 Paul Resnick and Richard Zeckhauser. Trust among strangers in Internet transactions:
Empirical analysis of eBay’s reputation system. In The Economics of the Internet and
E-commerce, pages 127–157. Emerald Group Publishing Limited, 2002.

22 Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.
23 Leonard J Savage. Elicitation of personal probabilities and expectations. Journal of the

American Statistical Association, 66(336):783–801, 1971.
24 Endel Tulving and Fergus IM Craik. The Oxford handbook of memory. Oxford: Oxford

University Press, 2000.
25 Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,

1984.
26 Chih-Ping Wei and I-Tang Chiu. Turning telecommunications call details to churn predic-

tion: a data mining approach. Expert systems with applications, 23(2):103–112, 2002.

A Retentive Scoring Appendices

I Claim 21. Let D ⊆ Rn such that x,y ∈ D. For every analytic function u : D ×D → R
satisfying the equation

u(x,y)−
n∑
i=1

(yi − xi)
∂u(x,y)
∂xi

= 0 (32)

there exist functions α1, . . . , αn : D → R such that:

u(x,y) =
n∑
i=1

αi(y)(yi − xi) (33)

Proof of Claim 21. u(x,y) is analytic in D, and therefore it has a unique representation as
a convergent power series about (y,y):

u(x) =
∞∑

j1,...,j2n=0
cj1,...,j2n

n∏
k=1

(yk − xk)jk

2n∏
k′=n+1

y
jk′
k′ (94)

Note that (y − x)∂(y−x)a

∂x = −a(y − x)a for all a ∈ R, and therefore:

n∑
i=1

(yi − xi)
∂

∂xi

n∏
k=1

(yk − xk)jk = −
n∑
i=1

ji

n∏
k=1

(yk − xk)jk (95)
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Using the above, we obtain for (32):

0 = u+
n∑
i=1

(yi − xi)
∂u

∂xi
(96)

[Use (94) to represent the rightmost term as a power series]

= u+
n∑
i=1

(yi − xi)
∂

∂xi

 ∞∑
j1,...,j2n=0

cj1,...,j2n

n∏
k=1

(yk − xk)jk

2n∏
k′=n+1

y
jk′
k′

 (97)

[Derivative operator does not affect the factors that don’t depend on x]

= u+
∞∑

j1,...,j2n=0
cj1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(
n∑
i=1

(yi − xi)
∂

∂xi

n∏
k=1

(yk − xk)jk

)
(98)

[Apply the derivative using (95)]

= u+
∞∑

j1,...,j2n=0
cj1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(
−

n∑
i=1

ji

)
n∏
k=1

(yk − xk)jk (99)

[Use (94) to represent the leftmost term as a power series]

=
∞∑

j1,...,j2n=0
cj1,...,j2n

(
1−

n∑
i=1

ji

) 2n∏
k′=n+1

y
jk′
k′

n∏
k=1

(yk − xk)jk (100)

If a convergent power series is equal to zero, then all its coefficients must be equal to zero as
well. From (100) we obtain:

∀j1, . . . , jn ∈ N : cj1,...,jn

(
1−

n∑
i=1

ji

)
= 0 (101)

Therefore cj1,...,jn
= 0 when

∑n
i=1 ji 6= 1, and analytic solutions for (32) can only contain

linear coefficients of (yi − xi) in their series expansion. Let k ∈ [n]. when jk = 1 we denote
cj1,...,j2n

≡ ck,jn+1,...,j2n
. Plug back into the series representation (94) to obtain:

u(x) =
n∑
i=1

 ∞∑
jn+1,...,j2n=0

ci,jn+1,...,j2n

2n∏
k′=n+1

y
jk′
k′

(yi − xi) (102)

Denoting αi(y) ≡
(∑∞

jn+1,...,j2n=0 ci,jn+1,...,j2n

∏2n
k′=n+1 y

jk′
k′

)
leads to the linear represen-

tation of u in (33). J

B Binary Attributes Appendices

B.1 The Binary Attributes Model
I Claim 26. Let I ⊆ [n]. For every vector uI ∈ UI :

Pr (UI = uI) = 2− dim (UI) (79)

Proof of Claim 26. Without loss of generality assume that I = {1, . . . , |I|}, and choose a
basis U = span {ū1, . . . , ūk} which is diagonalized. Each vector in U can be represented as
linear combination of basis elements. By definition, only only the first dim (UI) diagonalized
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basis vectors have support in I, and therefore every vector in UI can be written as a linear
combination of the view of the first dimUI basis vectors of U :

∀uI ∈ UI ,∃α1, . . . , αdim (UI) : uI =
dim (UI)∑
i=1

αi(ūi)�I (103)

Picking u at random is equivalent to choosing each αi uniformly, or equivalently, picking(
α1, . . . , αdim (UI)

)
∼ Uniform

(
{0, 1}dim (UI)

)
. From this correspondence it follows that

Pr (uI) = Pr
(
α1, . . . , αdim (UI)

)
= 2− dim (UI). J

I Claim 27. Let I ⊆ [n] and m ∈ [n] \ I, and assume a vector u ∈ Fn2 has been picked
uniformly at random from a vector space U . Pr (um | uI) is a singleton distribution if and
only if em ∈ U⊥�[n]\I .

Proof of Claim 27. When em ∈ U⊥�[n]\I there exists a vector v ∈ U⊥ and I ′ ⊆ I such that
support(v) = {m} ∪ I ′. v is a dual-space vector, and therefore

∑
i∈I′ ui + um = 0. The value

um ∈ {0, 1} is completely determined by the values of uI′ , and therefore Pr (um | uI) is a
singleton distribution.

Conversely, observe that restricting a vector to a subset of coordinates I ⊆ [n] can be
viewed as a linear projection operation PI ≡

∑
i∈I eie

T
i . Let v ∈ U be a vector for which

vI = uI . The set of vectors u′ ∈ U for which u′I = uI is an affine subspace U ′ of U :

U ′ = v + V ′ = {v + v′ | v′ ∈ U,PIv′ = 0} (104)

Note that V ′ is a linear subspace of U , and therefore:

(V ′)⊥ = span
(
U⊥ ∪ {ei | i ∈ I}

)
(105)

Using the assumption that Pr (um | uI) is a singleton distribution, we get that the m-
th coordinate is constant in U ′, and therefore P{m}V ′ = 0, and em ∈ (V ′)⊥. denote
U⊥ = span

{
ū⊥1 , . . . , ū

⊥
n−k

}
. Using (105) we can write em as a linear combination of spanning

set elements:

em =
|I|∑
i=1

αiei +
n−k∑
j=1

βj ū
⊥
j (106)

Restricting the view to coordinates [n] \ I, the terms in the first sum vanish, yielding:

em = P[n]\Iem =
n−k∑
j=1

βjP[n]\I ū
⊥
j (107)

We have shown that it’s possible to write em as a linear combination of punctured dual space
elements, hence em ∈ U⊥�[n]\I . J

I Claim 28. Let U be a linear space over F2
n, and let I ⊆ [n],m ∈ [n] \ I. em ∈ U⊥�[n]\I if

and only if dim (U�I) = dim
(
U�I∪{m}

)
.

Proof of Claim 28. Assume a uniform distribution over U , then em ∈ U⊥�[n]\I , if and only
if Pr (um | uI) is a singleton distribution by Claim 27.

According to the law of total probability, Pr (um | uI) is a singleton distribution if and
only if the following marginal distributions are equal: Pr

(
uI∪{m}

)
= Pr (uI).

Using Claim 26 we obtain that the two probabilites are equal if and only if dim (U�I) =
dim

(
U�I∪{m}

)
. J

ITCS 2019



12:30 The Complexity of User Retention

B.2 Retention Complexity of the Walsh-Hadamard Code

I Claim 32. Let y(1), . . . , y(m) ∈
(
{0, 1}k \

{
0k
})

.(
m∑
i=1

ey(i)

)
∈WH⊥ ⇐⇒

m∑
i=1

y(i) = 0 (87)

Proof of Claim 32. By definition,
(∑m

i=1 ey(i)
)
∈ WH⊥ if and only if

(∑m
i=1 ey(i)

)
· u = 0

for all u ∈ WH. For an arbitrary u, let w ∈ {0, 1}k such that u = WH(w). Plug into the
definition of WH and obtain:(

m∑
i=1

ey(i)

)
· u =

m∑
i=1

uy(i)

=
m∑
i=1

w · y(i)

= w ·

(
m∑
i=1

y(i)

)

Observe that the inner product is equal to zero for all u ∈WH if and only if w ·
(∑m

i=1 y
(i))

for all w ∈ {0, 1}k. This happens if and only if
(∑m

i=1 y
(i)) = 0, proving our claim. J

I Claim 33.

d
(

WH⊥
)

= 3 (88)

Proof of Claim 33. By Claim 32, the vectors corresponding to the support of each constraint
in WH⊥ must have their XORs equal to zero.

0k /∈
(
{0, 1}k \

{
0k
})

, and therefore there are no constraints of size 1, and we have

d
(

WH⊥
)
> 1. Similarly, for all x, y ∈

(
{0, 1}k \

{
0k
})

such that x 6= y we get x+ y 6= 0,

and therefore there are no constraints of size 2, and d
(

WH⊥
)
> 2.

Taking x 6= y and z = x+ y gives 3 coordinates with corresponding vectors that sum up
to zero, and therefore d

(
WH⊥

)
≤ 3 according to Claim 32. Combining the conclusions we

obtain d
(

WH⊥
)

= 3. J
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The first approach is based on random restrictions. It applies to circuit classes in which
functions simplify when most inputs are fixed to random values. Classic examples are the
proofs by Håstad that AC0, i.e. polynomial size circuit families of constant depth consisting
of AND, OR, and NOT gates, cannot compute or approximate the PARITY function [6], and
the shrinkage of De Morgan formulas (Boolean circuits consisting of AND, OR, and NOT
gates whose underlying graph is a tree) under random restrictions [7]. However, random
restrictions don’t seem to be useful against more powerful circuit classes such as AC0[⊕] –
the class of AC0 circuits equipped with PARITY gates.

The second approach is based on approximation by low-degree polynomials. Razborov
[10] and Smolensky [12] used this approach to prove lower bounds for AC0[⊕] = AC0[2],
and more generally for AC0[p] for any prime p (This is the class of AC0 circuits that are
allowed to have MODp gates 2). This technique is based on showing that any function in
the circuit class can be approximated by a low-degree polynomial over the finite field Fp.
Then, functions that do not admit such an approximation are provably outside the circuit
class. A classic example here is that the MAJORITY function cannot be approximated by
a low-degree polynomial over Fp, and thus cannot be computed by AC0[p]. However, this
method also breaks down when considering more powerful circuit classes such as AC0[6], and
more generally ACC0, i.e. AC0 circuits with MODm gates where m is a composite that is
not a prime power.

The third method involves designing nontrivial satisfiability algorithms and then using
them along with classical tools from structural complexity theory (among other techniques
and results) to prove circuit lower bounds against ACC0 for functions in high complexity
classes such as NEXP. Williams [16] used this approach to prove that NEXP 6⊆ ACC0, and
very recently, Williams and Murray [8] have extended this to show that NQP 6⊆ ACC0.

The goal of this paper is to focus on the second approach, namely the use of algebraic
techniques, and to try and extend these techniques to prove lower bounds against ACC0.
We show that an extension of finite field polynomials, which we call torus polynomials, is a
concrete candidate to achieve this. In particular, using a slightly stronger version of a result
of Green et al. [5], we show that functions in ACC0 can be approximated3 by low-degree
torus polynomials. We remark that torus polynomials also generalize the class of nonclassical
polynomials which arose in number theory and in higher order Fourier analysis [14], and are
closely related to them.

This characterization of ACC0 using torus polynomials raises a host of questions on the
approximation of Boolean functions by torus polynomials, the most remarkable being the
problem of finding an explicit Boolean function that cannot be approximated by low-degree
torus polynomials; an answer to this question would imply ACC0 lower bounds. In this paper,
we take steps towards trying to resolve this question by initiating the study of approximation
of Boolean functions by torus polynomials and proving some interesting results along the
way. The motivation for our work is two-fold:
1. Given the slew of recent works exploring properties and applications of nonclassical

polynomials[13, 14, 2, 3, 4], and the fact that torus polynomials are closely related
to nonclassical polynomials, we believe that our characterization of ACC0 using torus
polynomials might pave a way for new ACC0 lower bounds.

2. While the works of Williams [16] and Williams and Murray [8] are groundbreaking
and prove highly nontrivial lower bounds against ACC0, their proofs are not purely

2 a MODp gate outputs 1 if and only if the sum of its inputs is congruent to a non-zero value modulo p.
3 The notion of approximation that we use will be made explicit in Section 1.1.
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combinatorial/algebraic, and it will be interesting to recover their results using purely
algebraic/combinatorial techniques. We hope that our work will renew interest in this
line of inquiry.

1.1 Torus polynomials
Let T = R/Z denote the one-dimensional torus. A torus polynomial is simply a real
polynomial restricted to the domain {0, 1}n and evaluated modulo one4. Namely, a degree-d
torus polynomial P : {0, 1}n → T is

P (x) =
∑

S⊆[n],|S|≤d

PS
∏
i∈S

xi (mod 1),

where PS ∈ R.
As it shall become evident later, torus polynomials extend finite field polynomials in that

they provide a uniform way to capture computation of Boolean functions by polynomials
over different finite fields – if a function can be computed by a low-degree polynomial over a
finite field then it can be approximated by a low-degree torus polynomial. We will discuss
this in detail in Section 2.

For z ∈ T, let ι(z) denote the unique representative of z in [−1/2, 1/2) (e.g., ι(0.4) = 0.4
and ι(0.7) = −0.3). Then we can define its norm, denoted by |z (mod 1)|, to be

|z (mod 1)| = |ι(z)|.

For F : {0, 1}n → T, define

‖F (mod 1)‖∞ := max
x∈{0,1}n

|F (x) (mod 1)|.

We embed Boolean functions as functions mapping into the torus by enforcing their output
to be in {0, 1/2} ⊂ T (This can be achieved by scaling the output of the function by 1/2).
The following is the main definition of approximation that we consider:

I Definition 1. Let f : {0, 1}n → {0, 1} be a Boolean function. For ε > 0, a torus polynomial
P : {0, 1}n → T is said to ε-approximate f if∥∥∥∥P − f

2 (mod 1)
∥∥∥∥
∞
≤ ε.

Intuitively, a torus polynomial that approximates f takes a value “close” to 0 in the torus T
whenever f takes the value 0, and takes a value “close” to 1/2 in the torus whenever f takes
the value 1.

We now introduce the notion of the toroidal approximation degree of a Boolean function.

I Definition 2 (Toroidal approximation degree of Boolean functions). Let f : {0, 1}n → {0, 1}
be a Boolean function. For ε > 0, the toroidal ε-approximation degree of f is the minimal
d ≥ 0, for which there exists a torus polynomial P : {0, 1}n → T of degree d, that satisfies∥∥∥∥P − f

2 (mod 1)
∥∥∥∥
∞
≤ ε.

We denote this by degε(f) = d.

4 For x ∈ R, x modulo one, denoted by x mod 1, is equal to the fractional part of x given by x − bxc,
where bxc is the floor function. For example, 2.6 mod 1 is 0.6, and −1.3 mod 1 is 0.7.

ITCS 2019
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We illustrate in Section 2, in increasing generality, the power of torus polynomials. The
most general result (Corollary 20) shows that if f can be computed by an ACC0 circuit then

degε(f) ≤ polylog(n/ε).

The proof of this result uses a slightly stronger version of a result of Green et al. [5].
The above characterization paves way for a new approach to proving lower bounds against

ACC0 for an explicit function, ideally in the class P. Concretely, we pose the following open
problem.

I Problem 3. Find an explicit function f : {0, 1}n → {0, 1} in P whose toroidal ε-
approximation degree is ω(polylog(n/ε)). By Corollary 20, it cannot be computed by ACC0

circuits.

Williams [16] proved that NEXP 6⊆ ACC0 via designing nontrivial satisfiability algorithms
for ACC0, and Williams and Murray [8] improved the approach to show that NQP 6⊆ ACC0.
Thus, an intermediate goal towards resolving Problem 3 is to prove toroidal approximation
lower bounds for functions f ∈ NEXP or f ∈ NQP.

A long-standing open problem in circuit complexity is to show that MAJORITY cannot
be computed in ACC0. Thus the following question is natural.

I Problem 4. What is the toroidal ε-approximation degree of MAJORITY?

How can one go about answering this question? We now turn to the setting of approximation
of Boolean functions by real polynomials – which prima facie shares some similarities with
our setting – for inspiration, highlighting the main differences between the two notions.

1.2 Comparison with real polynomials
Given a function f : {0, 1}n → {0, 1}, the real ε-approximation degree of f , denoted by
d̃egε(f), is the minimal d such that there is a real polynomial P of degree d such that
‖f − P‖∞ ≤ ε (this is the `∞-norm restricted to the domain {0, 1}n). It is clear that
degε(f) ≤ d̃egε(f).

A beautiful result of Nisan and Szegedy [9] shows that the real ε-approximation degree
of MAJORITY is Ω(

√
n) for ε < 1/2. Their proof proceeds in two stages: (i) showing that if

a symmetric real polynomial ε-approximates MAJORITY then it must have degree Ω(
√
n);

and (ii) that any polynomial that ε-approximates MAJORITY can be symmetrized and made
into a symmetric polynomial with the same degree and approximation guarantee.

Attempting to follow the same strategy in the case of torus polynomials, we show in
Corollary 23 in Section 3 that if one restricts attention to symmetric torus polynomials
(namely, symmetric real polynomials evaluated modulo one), then the toroidal (1/20n)-
approximation degree of MAJORITY is Ω(

√
n/ logn).

Unfortunately, the aforementioned idea of symmetrization cannot be used in the setting of
torus polynomials in a straightforward manner and so it’s unclear how powerful non-symmetric
torus polynomials are compared to their symmetric counterparts. We conjecture that they
are not any better at approximating MAJORITY than symmetric torus polynomials:

I Conjecture 5. The toroidal (1/20n)-approximation degree of MAJORITY is Ω(
√
n/ logn).

We remark that a positive answer to the above conjecture will give an algebraic proof that
MAJORITY is not in ACC0.
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Let ∆w : {0, 1}n → {0, 1} denote the delta function which takes the value 1 on inputs of
Hamming weight w and is 0 elsewhere. En route to proving the aforementioned lower bound
for MAJORITY we also prove lower bounds for the delta functions in Theorem 21, showing
that one needs symmetric torus polynomials of degree Ω(

√
n/ logn) in order to be able to

(1/20n)-approximate the delta functions.
Somewhat surprisingly, for relatively large values of ε, the delta functions can be nontrivially
ε-approximated by low-degree symmetric torus polynomials. In particular, we show in
Lemma 24 in Section 4 that for every delta function there is a symmetric torus polynomial
of degree polylog(n/ε)/ε that ε-approximates it, and thus

degε(∆w) ≤ polylog(n/ε)
ε

.

This kind of dependence of the toroidal approximation degree on ε is quite interesting, and is
unlike the case of real approximation – the real approximation degree of the delta functions
is Ω(

√
n) for both small and large values of ε. In fact, for constant ε, this also shows a

super-polynomial separation between real and toroidal approximation degree.
This also highlights other major differences between the real and the toroidal setting.

Nisan and Szegedy [9] show that for every Boolean function the real approximation degree is
polynomially related to the degree of exact representation by real polynomials. However,
in the case of torus polynomials, this is not true: the delta functions require the degree
to be Ω(n)5 for exact representation whereas their toroidal 1/3-approximation degree is
O(polylog(n)).

An interesting property of real approximation is its amenability to amplification, namely
the fact that, for any Boolean function f and ε < 1/3, given a polynomial p of degree d that
1/3-approximates f , it can be transformed into a polynomial p′ of degree d′ = O(d log(1/ε))
that ε-approximates f . In other words, d̃egε(f) ≤ O(d̃eg1/3(f) log(1/ε)). It is not clear
whether such a transformation is possible in the case of toroidal approximation. In the case
of real approximation, the transformation is symmetry preserving, but, given the results for
the delta functions discussed in the previous paragraphs, we should not expect this in the
toroidal case. This motivates the following problem.

I Problem 6. How is degε(f) related to deg1/3(f)?

1.3 Comparison with nonclassical polynomials
As mentioned before, torus polynomials generalize the class of nonclassical polynomials (this
will be evident from the definition of nonclassical polynomials stated below). We remark that
the results of this paper can be similarly phrased in terms of nonclassical polynomials instead
of torus polynomials. This is because for the purpose of approximation of Boolean functions
– which is the topic of this paper – torus polynomials and nonclassical polynomials are
equivalent, as we shall see below. However, torus polynomials are simpler to describe (they
are just real polynomials evaluated modulo 1) and more elegant (they are field independent),
and hence we believe are a better choice for an algebraic model and for stating our results.

We now give the definition of nonclassical polynomials; here we provide what is known as
the global definition of nonclassical polynomials over {0, 1}n. For simplicity, we restrict our
attention to nonclassical polynomials defined over Fn2 , but note that the results generalize to
nonclassical polynomials defined over Fnp for any constant prime p.

5 To see this, note that the delta function ∆n(x) has a unique representation as a torus polynomial given
by ∆n(x) = x1···xn

2 .

ITCS 2019
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I Definition 7 (Nonclassical polynomials). A function Q : {0, 1}n → T is a nonclassical
polynomial (over F2) of degree at most d if and only if it can be written as

Q(x) = α+
∑

∅⊂S⊆[n];k≥0;0<|S|+k≤d

cS,k
2k+1

∏
i∈S

xi (mod 1)

where cS,k ∈ {0, 1} and α ∈ T.

The following simple claim shows that torus polynomials can be approximated by nonclassical
polynomials.

I Claim 8. Let P : {0, 1}n → T be a torus polynomial of degree at most d and let ε ∈ (0, 1).
Then there exists a nonclassical polynomial Q of degree at most O(d logn+ log(1/ε)) such
that ‖P −Q (mod 1)‖∞ ≤ ε.

Proof. Suppose P (x) = α +
∑
∅⊂S⊆[n],|S|≤d PS

∏
i∈S xi (mod 1). We can assume without

loss of generality that PS ∈ [0, 1) for all S. We approximate each PS separately using dyadic
rationals. Let PS = 0.cS,0cS,1cS,2 . . ., where cS,i ∈ {0, 1}, be its binary expansion. Let t ≥ 1
be a parameter that we will fix later, and note that∣∣∣∣∣∣PS −

∑
0≤k≤t

cS,k
2k+1

∣∣∣∣∣∣ ≤ 2−t.

Define the nonclassical polynomial

Q(x) = α+
∑

∅⊂S⊆[n];k≥0;0<|S|+k≤t+d

c′S,k
2k+1

∏
i∈S

xi (mod 1),

where c′S,k = cS,k for |S| ≤ d, k ≤ t, and is 0 otherwise. Then deg(Q) ≤ t+ d, and

|P (x)−Q(x) (mod 1)| ≤
(
n

≤ d

)
2−t

for all x ∈ {0, 1}n. Choosing t = O(d logn+ log(1/ε)) completes the proof. J

Recall that our goal, motivated by proving ACC0 lower bounds, is to find a Boolean
function which cannot be 1/poly(n)-approximated by a torus polynomial of degree polylog(n).
Given Claim 8, this is equivalent to the problem of finding a Boolean function which cannot be
1/poly(n)-approximated by a nonclassical polynomial of degree polylog(n). As we mentioned
before, owing to the elegance and ease of description of torus polynomials relative to
nonclassical polynomials, torus polynomials make for a more convenient choice in our setting.

1.4 Comparison with other notions of approximation
It’s clear from our discussion in the previous section that torus polynomials are closely related
to nonclassical polynomials, and so it’s worthwhile to discuss two notions of approximation of
Boolean functions by nonclassical polynomials that have been studied in the literature. The
first deals with the exact computation of a Boolean function by a nonclassical polynomial on
a nontrivial fraction of the domain [3]. For example, the work of Bhrushundi et al.[4] shows
that any polynomial that computes MAJORITY correctly even on two-thirds of the points
must have degree Ω(

√
n). While many of these bounds for nonclassical polynomials should

also hold for torus polynomials, we remark that they are not relevant to our setting since
our notion of approximation (i.e., point-wise) is incomparable with the above notion.
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The second notion is that of correlation with polynomials, which was studied, for example,
by Bhowmick and Lovett[3]. Without getting into definitions here, we note that this notion of
approximation is weaker than that of point-wise approximation6, and thus for the purpose of
proving lower bounds for ACC0 it makes sense to work with only the latter. This also means
that the upper bound results proved in the work of Bhowmick and Lovett (i.e., showing how
certain Boolean functions can be approximated by low-degree nonclassical polynomials in
the correlation sense) don’t have any implications for our setting. Even their lower bound
results, unfortunately, are not useful for us given that they only work against polynomials of
degree � log(n), whereas we are dealing with polynomials of degree polylog(n).

1.5 Natural proofs

An interesting line of inquiry motivated by the natural proofs framework of Razborov and
Rudich [11] is whether the property of being inapproximable by low-degree torus polynomials
is natural. It is not hard to see that it satisfies the largeness condition though it’s unclear
whether it is constructive, and so it will be interesting to investigate whether one can
efficiently distinguish between Boolean functions which can be approximated by low-degree
torus polynomials and a random Boolean function.

I Problem 9. Given the truth table of a function f : {0, 1}n → {0, 1} and ε > 0, decide in
polynomial time (in 2n and 1/ε) whether degε(f) ≤ polylog(n/ε).

Paper organization

In Section 2, we prove toroidal approximation results for Boolean functions in bounded circuit
classes such as AC0[p] and ACC0. In Section 3, we prove lower bounds against symmetric
torus polynomials approximating the MAJORITY function and the delta functions. In
Section 4, we show that symmetric torus polynomials have surprising power in approximating
the delta functions when the error ε is not too small. We introduce definitions and notation
along the way, as and when needed.

2 Approximation of circuit classes

In this section, we illustrate how the framework of approximation by torus polynomials
captures computation of Boolean functions in various models of computation. We begin by
showing that functions that are computable by low-degree polynomials over finite fields can
be approximated by low-degree torus polynomials.
It might be instructive to keep in mind that, for the scope of the entire paper, whenever we
consider polynomials, we restrict ourselves to only multilinear polynomials, i.e. polynomials
in which the maximum degree of any variable is at most 1. Even if we encounter polynomials
that do not adhere to this form during intermediate steps in certain proofs, we can always
multilinearize the polynomials by making the degrees of all the variables equal to 1 wherever
they appear. It suffices to consider multilinear polynomials because we always restrict the
variables to the domain {0, 1}.

6 By this we mean that if a function is point-wise approximated by a low-degree torus polynomial then it
is also approximated by that polynomial in the correlation sense.
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2.1 Polynomials over finite fields
Let Fp be a prime finite field. We say a polynomial P (x) ∈ Fp[x1, . . . , xn] computes a Boolean
function f if

∀x ∈ {0, 1}n, f(x) = P (x).

Consider a function f which is computed by a low-degree polynomial over Fp. We will now
show that it can be approximated by a low-degree torus polynomial. We would require
the following theorem on modulus-amplifying polynomials of Beigel and Tarui [1], following
previous results of Toda [15] and Yao [17].

I Lemma 10 (Beigel and Tarui [1]). For every k ≥ 1, there exists a univariate polynomial
Ak : Z→ Z of degree 2k − 1 such that the following holds. For every m ≥ 2,

If x ∈ Z satisfies x ≡ 0 (mod m) then Ak(x) ≡ 0 (mod mk).
If x ∈ Z satisfies x ≡ 1 (mod m) then Ak(x) ≡ 1 (mod mk).

I Lemma 11. Let f : {0, 1}n → {0, 1}. Assume that f can be computed by a polynomial
over Fp of degree d. Then for every ε > 0,

degε(f) ≤ O(d log(1/ε)).

Proof. Since f is computable by degree-d polynomials over Fp, there must be an integer
polynomial F (x) (i.e., a polynomial with coefficients in Z) of degree d such that

F (x) ≡ f(x) (mod p) ∀x ∈ {0, 1}n.

Let k ≥ 1 be large enough so that 1/pk ≤ ε. Let 0 ≤ q ≤ pk − 1 be such that∣∣∣∣ qpk − 1
2 (mod 1)

∣∣∣∣ ≤ ε.
Define

G(x) = qAk(F (x))
pk

(mod 1).

We claim that∣∣∣∣G(x)− f(x)
2 (mod 1)

∣∣∣∣ ≤ ε (1)

for all x. To see this, fix x, and recall that F (x) ≡ f(x) (mod p), which means that
Ak(F (x)) ≡ f(x) (mod pk), and hence G(x) ≡ q

pk f(x) (mod 1). (1) now follows from our
choice of q.

Noting that the degree of G is (2k − 1)d ≤ O(d log(1/ε)) completes the proof. J

We will later need the following simple variant of Lemma 11. Its proof is identical.

I Lemma 12. Let f : {0, 1}n → {0, 1}. Assume that f can be computed by a polynomial
over Fp of degree d. Then for every α ∈ [0, 1] and every ε > 0, there exists a torus polynomial
P : {0, 1}n → T of degree O(d log(1/ε)) such that

‖P − αf (mod 1)‖∞ ≤ ε.
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2.2 Circuit class AC0[p]
Recall that, for a fixed prime p, AC0[p] is the class of functions computable by polynomial
size circuits of constant depth, consisting of AND, OR, NOT, and MODp gates. Here a
MODp gate is one that outputs 1 if and only if the sum of its inputs is congruent to a
non-zero value modulo p.

Let f : {0, 1}n → {0, 1} be a function in AC0[p]. We show that it can also be approximated
by low-degree torus polynomials. The starting point is the classic result of Razborov [10] and
Smolensky [12] which shows that AC0[p] circuits can be approximated by random low-degree
polynomials over Fp in the following sense.

I Theorem 13 (Razborov-Smolensky[10, 12]). Let f : {0, 1}n → {0, 1} be computed by an
AC0[p] circuit. Then for every ε > 0, there exists a distribution ν supported on polynomials
F : Fnp → {0, 1} of degree d = polylog(n/ε) such that

Pr
P∼ν

[P (x) = f(x)] ≥ 1− ε ∀x ∈ {0, 1}n.

We can assume without loss of generality that all the polynomials in the support of the
distribution ν have range {0, 1}. This is because given an arbitrary polynomial P (x) over Fp
we can convert it into the polynomial P ′(x) = (P (x))p−1 which has range {0, 1} by Fermat’s
little theorem. Note that the degree of P ′ is at most p times the degree of P which is not
really a problem since p = O(1) for us.

We now show why torus polynomials approximate AC0[p] functions.

I Lemma 14. Let f : {0, 1}n → {0, 1}. Assume that there exists a distribution ν supported
on polynomials F : Fnp → {0, 1} of degree d such that

Pr
P∼ν

[P (x) = f(x)] ≥ 1− ε ∀x ∈ {0, 1}n.

Then

deg3ε(f) ≤ O(d log(n/ε)).

Proof. By standard Chernoff bounds, if we sample F1, . . . , Fm ∼ ν independently for
m = O(n/ε2) then with high probability,

|{i ∈ [m] : Fi(x) 6= f(x)}| ≤ 2εm ∀x ∈ {0, 1}n.

Fix such a sample. Recall that Fi : Fnp → {0, 1} are computed by degree d polynomials over
Fp. Next, apply Lemma 12 with α = 1/2m and error ε/m. This gives us torus polynomials
Pi : {0, 1}n → T of degree O(d log(m/ε)) such that∣∣∣∣Pi(x)− 1

2mFi(x) (mod 1)
∣∣∣∣ ≤ ε

m
∀x ∈ {0, 1}n.

Finally, take

P (x) = P1(x) + . . .+ Pm(x) (mod 1).

We claim that P (x) is a torus polynomial which 3ε-approximates f(x). To see this, fix
x ∈ {0, 1}n, and observe that∣∣∣∣P (x)− F1(x) + . . .+ Fm(x)

2m (mod 1)
∣∣∣∣ ≤ ε
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and∣∣∣∣F1(x) + . . .+ Fm(x)
2m − f(x)

2 (mod 1)
∣∣∣∣ ≤ 2ε,

and so∣∣∣∣P (x)− f(x)
2 (mod 1)

∣∣∣∣ ≤ 3ε.

This means that

deg3ε(f) ≤ deg(P ) = max{deg(Pi) : i ∈ [m]} = O(d log(m/ε)) = O(d log(n/ε)). J

I Corollary 15. Let f : {0, 1}n → {0, 1} be a function in AC0[p]. Then for every ε > 0,

degε(f) ≤ polylog(n/ε).

An interesting question that is motivated by the above results is whether we can have a
mini-max type theorem for torus polynomials. Lemma 14 gives such a theorem in a very
limited regime. The following is an attempt to generalize this.

I Problem 16. Let f : {0, 1}n → {0, 1}. Assume that for any distribution ν over {0, 1}n,
there exists a low-degree torus polynomial Pν : {0, 1}n → T such that

Ex∼ν
[∣∣∣∣Pν(x)− f(x)

2 (mod 1)
∣∣∣∣] ≤ ε.

Does that imply that the toroidal approximation degree of f is small? That is, does there
exist a single low-degree torus polynomial which approximates f on all inputs?

It might also be useful to assume the stronger assumption that for any distribution ν
over {0, 1}n and any α ∈ [0, 1] there exists a torus polynomial Pν,α : {0, 1}n → T of degree d
such that

Ex∼ν [|Pν,α(x)− αf(x) (mod 1)|] ≤ ε.

This is also related to the following problem.

I Problem 17. Let f : {0, 1}n → {0, 1}. For any α ∈ [0, 1] and ε > 0 define d(α, ε) to be
the minimal degree of a torus polynomial P : {0, 1}n → T such that

‖P − αf (mod 1)‖∞ ≤ ε.

What is the behavior of d(α, ε) as a function of α and of ε? Specifically,
Can we bound maxα d(α, ε) in terms of d(1/2, ε)?
Can we bound maxα d(α, ε) in terms of maxα d(α, 0.1)?

2.3 Circuit class ACC0

We now turn our attention to ACC0 functions and show that they too can be approximated
by low-degree torus polynomials. Recall that a function is in ACC0 if it can be computed by
polynomial size circuits of constant depth with AND, OR, NOT, and MODm gates where m
may be composite.

Our starting point is the following result of Green et al. [5] which extends previous results
of [17, 1].
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I Theorem 18 (Green et al. [5]). Let f : {0, 1}n → {0, 1} be computable by ACC0 circuits
of depth ` and size poly(n). Then for any e ≥ 1 there exists an integer polynomial F (x) of
degree d = eO(`) logO(`2) n which satisfies the following: there is some k ≥ 1 such that

∀x ∈ {0, 1}n, F (x) = f(x)2k + E(x) (mod 2k+e)

for some error E(x) ≤ 2k−1.

Note that the above theorem states that the kth bit of F (x) in binary always equals
to f(x) and that it’s padded with e − 1 zeros to its left, i.e the (k + 1)th, (k + 2)th, . . . ,
(k+ e− 1)th bits are all guaranteed to be equal to 0. It turns out that, implicit in their work,
is the following slightly stronger version of the above result which lets us pad zeros on both
sides of the output bit (i.e., the kth bit).

I Theorem 19 (Implicit in Green et al. [5]). Let f : {0, 1}n → {0, 1} be computable by ACC0

circuits of depth ` and size poly(n). Then for any e ≥ 1 there exists an integer polynomial
F (x) of degree d = eO(`) logO(`2) n which satisfies the following: there is some k ≥ e such
that

∀x ∈ {0, 1}n, F (x) = f(x)2k + E(x) (mod 2k+e)

for some error E(x) ≤ 2k−e.

Note the difference between the statements of Theorem 18 and Theorem 19: while the former
upper-bounds the error E(x) by 2k−1 the latter bounds it by 2k−e, thus padding the output
bit with e− 1 zeros on both the sides.

Since the proof of Theorem 19 is essentially the same as that of Theorem 18 with some
very minor tweaks, we choose to omit it here. We now show how to use Theorem 19 to prove
that low-degree torus polynomials approximate functions in ACC0.

I Corollary 20. Let f : {0, 1}n → {0, 1} be a function in ACC0. Then for every ε > 0, there
is a torus polynomial of degree polylog(n/ε) that ε-approximates f . In other words,

degε(f) ≤ polylog(n/ε).

Proof. Let us assume that f is computable by ACC0 circuits of size poly(n) and depth
`. Recall that, by definition of ACC0, ` = O(1). Let F (x) be the polynomial obtained by
applying Theorem 19 to f with e = log(1/ε) such that for some k ≥ e

∀x ∈ {0, 1}n, F (x) = f(x)2k + E(x) (mod 2k+e).

The degree of F (x) is d = eO(`) logO(`2) n = polylog(n/ε). Define the following torus
polynomial

P (x) = F (x)
2k+1 (mod 1).

Clearly deg(P ) = d. For i ≥ 0, let Fi(x) denote the ith bit of F (x). Then, by the definition
of F ,

F (x)
2k+1 (mod 1) =

k∑
i=0

2i−k−1Fi(x) (mod 1) = f(x)
2 +

k−e∑
i=0

2i−k−1Fi(x) (mod 1).

As Fi(x) ∈ {0, 1} for all i, we can bound∣∣∣∣P (x)− f(x)
2 (mod 1)

∣∣∣∣ ≤ 2−e ≤ ε ∀x ∈ {0, 1}n. J
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3 Lower bound for symmetric torus polynomials

In this section we prove a lower bound on the degree of symmetric torus polynomials that
approximate MAJORITY. It will be instructive to think of symmetric torus polynomials as
symmetric real polynomials evaluated modulo one. We start by examining the question for
delta functions.

For x ∈ {0, 1}n, let |x| =
∑
xi denote its Hamming weight. The delta function

∆w : {0, 1}n → {0, 1},

for 0 ≤ w ≤ n, is defined as

∆w(x) =
{

1 |x| = w

0 otherwise
.

I Lemma 21. Let n, d be positive integers such that for every 0 ≤ w ≤ n there exists a
symmetric torus polynomial Qw : {0, 1}n → T of degree d that 1

20n -approximates ∆w(x).
Then d = Ω

(√
n

logn

)
.

Proof. Let Sym(n) denote the set of symmetric Boolean functions in n variables and let
SymPolyd,k(n) denote the set of symmetric torus polynomials in n variables of degree d
whose coefficients are of the form q/2k for q ∈ {−(2k − 1), . . . , 0, . . . , 2k − 1}.

Let f be an arbitrary function in Sym(n). Abusing notation, we let f−1(1) denote the
set of weights of the layers of the Hamming cube where f takes value 1. Now define the
torus polynomial Qf as

Qf (x) =
∑

i∈f−1(1)

Qi(x) (mod 1).

It follows that Qf is a symmetric torus polynomial of degree d that 1
20 -approximates f . Since

Qf is a symmetric torus polynomial, namely a symmetric real polynomial modulo one, it
may be written without loss of generality as

Qf (x) =
d∑
j=0

cj

(∑
xi

)j
(mod 1),

where cj ∈ [0, 1). Let k ≥ 0 be an integer whose value we will fix later. For 0 ≤ j ≤ d, let
qj ∈ {−(2k − 1), . . . , 0, . . . , 2k − 1} be such that∣∣∣ qj2k − cj

∣∣∣ ≤ 1
2k ,

and define Q′f to be the polynomial

Q′f (x) =
d∑
j=0

qj
2k ·

(∑
xi

)j
(mod 1).

Observe that for every x ∈ {0, 1}n,

∣∣Qf (x)−Q′f (x) (mod 1)
∣∣ ≤ d∑

j=0

∣∣∣ qj2k − cj
∣∣∣ · |x|j ≤ (d+ 1) · nd

2k .
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If k is such that (d+1)·nd

2k ≤ 1
20 then

∥∥Qf −Q′f (mod 1)
∥∥
∞ ≤

1
20 ,

and so∥∥∥∥f2 −Q′f (mod 1)
∥∥∥∥
∞
≤
∥∥∥∥f2 −Qf (mod 1)

∥∥∥∥
∞

+
∥∥Qf −Q′f (mod 1)

∥∥
∞ ≤

1
10 .

Note that we can choose k = O(d logn) while still satisfying the required condition on k.
So far we have shown that for every f ∈ Sym(n) there is a polynomial Qf ∈ SymPolyd,k(n)

that 1/10-approximates f where k = O(d logn). In the other direction, one can easily verify
that every polynomial in SymPolyd,k(n) can 1/10-approximate at most one function in
Sym(n). This implies that

|SymPolyd,k(n)| ≥ |Sym(n)|.

Plugging in |SymPolyd,k(n)| = 2(k+1)(d+1) and |Sym(n)| = 2n, and using k = O(d logn),
yields the bound d = Ω

(√
n

logn

)
. J

Before we proceed, we formally define MAJORITY on n bits, denoted by Majn(x), as

Majn(x) =
{

1 |x| ≥ n
2

0 otherwise
.

I Lemma 22. If there is a symmetric torus polynomial of degree o
(√

n
logn

)
that 1

20n -
approximates Majn(x), then for every 0 ≤ w ≤ n there is a symmetric torus polynomial of
degree o

(√
n

logn

)
that 1

20n -approximates ∆w(x).

Proof. Fix w. Let ∆≥w(x) denote the function that takes value 1 iff |x| ≥ w. Then we can
write

∆≥w(x1, . . . , xn) = Maj2n+1(x1, . . . , xn, c1, . . . cn+1), (2)

where c ∈ {0, 1}n+1 is the string whose first n−w+ 1 bits are set to 1 and the rest of the bits
are set to 0. Let Q(x1, . . . x2n+1) be the symmetric torus polynomial in 2n+ 1 variables that

1
20(2n+1) -approximates Maj2n+1(x). Let Q≥w(x1, . . . , xn) be the torus polynomial defined as

Q≥w(x1, . . . xn) = Q(x1, . . . , xn, c1, . . . , cn+1),

where c ∈ {0, 1}n+1 is as defined above. It follows from (2) that Q≥w(x1, . . . , xn) 1
40n -

approximates ∆w(x1, . . . , xn). Furthermore,

deg(Q≥w) = o

(√
n

logn

)
.

Similarly, we can obtain a symmetric torus polynomial Q≥w+1 that 1
40n -approximates

∆≥w+1(x1, . . . , xn) such that

deg(Q≥w+1) = o

(√
n

logn

)
.
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Note that
∆w(x)

2 (mod 1) =
(

∆≥w(x)
2 − ∆≥w+1(x)

2

)
(mod 1).

Defining Qw(x) = Q≥w(x)−Q≥w+1(x) (mod 1), it follows that∥∥∥∥∆w(x)
2 −Qw(x) (mod 1)

∥∥∥∥
∞
≤ 1

20n.

This completes the proof. J

The main result of this section now follows from Theorem 21 and Lemma 22:

I Corollary 23. Any symmetric torus polynomial of degree d that 1
20n -approximates Majn(x)

must satisfy d = Ω
(√

n
logn

)
.

4 Upper bound for delta functions

In this section, we prove the somewhat surprising result that if the approximation parameter
ε > 0 is not too small (say, ε is a small constant), then the delta function ∆w can be
nontrivially approximated by symmetric low-degree torus polynomials.

I Lemma 24. For every 0 ≤ w ≤ n and ε > 0, there is a symmetric torus polynomial of
degree polylog(n/ε)

ε that ε-approximates ∆w(x), and thus

degε(∆w) ≤ polylog(n/ε)
ε

.

Proof. For any prime p ≥ 2, let fp : {0, 1}n → {0, 1} denote the function

fp(x) =
{

1 |x| ≡ w (mod p)
0 otherwise

.

It is computed by the Fp-polynomial of degree p− 1

fp(x) = 1−
(∑

xi − w
)p−1

(mod p).

Let P = {p1, . . . , pt} be the first t primes, for t to be chosen later. Applying Lemma 12
with α = 1/2t and error ε/2t, for each p ∈ P we obtain a torus polynomial Qp : {0, 1} → T
of degree O(p log(t/ε)) such that∥∥∥∥Qp − 1

2tfp (mod 1)
∥∥∥∥
∞
≤ ε

2t .

Define

Q(x) =
∑
p∈P

Qp(x) (mod 1).

We claim that Q is a symmetric torus polynomial that ε-approximates ∆w.
Consider first x ∈ {0, 1}n with |x| = w. In this case, for each p ∈ P we have fp(x) = 1,

|Qp(x)− 1
2t (mod 1)| ≤ ε/2t and hence∣∣∣∣Q(x)− 1

2 (mod 1)
∣∣∣∣ ≤ ε/2.
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Next, assume that |x| 6= w. Then fp(x) = 1 only if p divides |x| − w. As there are at most
logn such primes, we have that

|Q(x) (mod 1)| ≤ ε

2 + logn
t

.

To conclude we choose t = O(log(n)/ε). The largest prime in P has size O(t log t) which
means that

degε(f) ≤ deg(Q) = max{deg(Qp) : p ∈ P} ≤ O(t log t · log(t/ε)) = polylog(n/ε)
ε

.

To see why Q is symmetric, observe that Lemma 12 preserves symmetry. J
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1 Introduction

A famous literature considers the problem of cake-cutting [10, 25, 24]. There, a divisible
heterogeneous resource (a cake, usually formalized as the interval [0, 1]) needs to be divided
among n agents. Each agent has a valuation function over subsets of the cake, usually
formalized as an atomless measure over [0, 1]. The aim is to partition the cake into n pieces,
and allocate each piece to one agent, in a “fair” way. By fair, we will mean that the allocation
is envy-free: no agent thinks that another agent’s piece is more valuable than her own.

When there are two agents, the classic procedure of cut-and-choose can produce an
envy-free division: a knife is moved from left to right, until an agent shouts to indicate
that she thinks the pieces to either side are equally valuable. The other agent then picks
one of the pieces, leaving the remainder for the shouter. As is easy to see, the result is an
envy-free allocation. For three or more agents, finding an envy-free division has turned out
to be much trickier. An early result by Dubins and Spanier [15] used Lyapunov’s Theorem
and measure-theoretic techniques to show, non-constructively, that an envy-free allocation
always exists. However, as Stromquist [28] memorably writes, “their result depends on a
liberal definition of a “piece” of cake, in which the possible pieces form an entire σ-algebra of
subsets. A player who only hopes for a modest interval of cake may be presented instead
with a countable union of crumbs.” In many applications of resource allocation (such as land
division, or the allocation of time slots), agents have little use for a severely disconnected
piece of cake.

Stromquist [28] himself offered a solution, and gave a new non-constructive argument
(using topology) which proved that there always exists an envy-free division of the cake
into intervals. Forest Simmons later observed that the proof could be simplified by using
Sperner’s lemma, and this technique was subsequently presented in a paper by Su [29]. For
the three-agent case, Stromquist [28] also presented an appealing moving-knife procedure
that more directly yields a connected envy-free allocation. For n > 4 agents, no explicit
procedures are known to produce a connected envy-free allocation (i.e., an allocation where
the cake is cut in exactly n− 1 places). However, for n = 4, several moving-knife procedures
exist that only need few cuts; for example, the Brams–Taylor–Zwicker [11] procedure requires
11 cuts, and a protocol of Barnabel and Brams [3] requires 5 cuts.

In many applications, the resources to be allocated are not infinitely divisible, and we
face the problem of allocating indivisible goods. Most of the literature on indivisible goods
has not assumed any kind of structure on the item space, in contrast to the rich structure
of the interval [0, 1] in cake-cutting. Thus, there has been little attention on minimizing
the number of “cuts” required in an allocation. However, when the items have a spatial or
temporal structure, this consideration is important.

In this paper, we study the allocation of items that are arranged on a path or other
structure, and impose the requirement that only connected subsets of items may be allocated
to the agents. Formally, we work in the model of [9], who assume that the items form the
vertex set of a graph G; a bundle is connected if it induces a connected subgraph of G. In

https://arxiv.org/abs/1808.09406
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their paper, it became apparent that techniques from cake-cutting can be usefully ported to
achieve good allocations in the indivisible case. For example, moving-knife procedures that
achieve proportionality in cake-cutting have analogues that produce allocations that satisfy
the maximin share guarantee [12].1

Do envy-free procedures for cake-cutting also translate to the indivisible case? Of course,
in general, it is impossible to achieve envy-freeness with indivisibilities (consider two agents
and a single desirable item), but we can look for approximations. A relaxation of envy-freeness
that has been very influential recently is envy-freeness up to one good (EF1), introduced by
Budish [12]. It requires that an agent’s envy towards another bundle vanishes if we remove
some item from the envied bundle. In the setting without connectivity constraints and with
additive valuations, the maximum Nash welfare solution satisfies EF1, as does a simple
round-robin procedure [13]. The well-known envy-graph algorithm [21] also guarantees EF1.
However, none of these procedures respects connectivity constraints.

When items are arranged on a path, we prove that connected EF1 allocations exist when
there are two, three, or four agents. As was necessary in cake-cutting, we use successively
more complicated tools to establish these existence results. For two agents, there is a discrete
analogue of cut-and-choose that satisfies EF1. In that procedure, a knife moves across the
path, and an agent shouts when the knife reaches what we call a lumpy tie, that is when
the bundles to either side of the knife have equal value up to one item. For three agents,
we design an algorithm mirroring Stromquist’s moving-knife procedure which guarantees
EF1. For four agents, we show that Sperner’s lemma can be used to prove that an EF1
allocation exists, via a technique inspired by the Simmons–Su approach, and an appropriately
triangulated simplex of connected partitions of the path. For five or more agents, we were
not able to establish the existence of EF1 allocations on a path, but we can show (again via
Sperner’s lemma) that EF2 allocations exist, strengthening a prior result of Suksompong [30].
We also show that if all agents have the same valuation function over bundles, then an
egalitarian-welfare-optimal allocation, after suitably reallocating some items, is EF1.

These existence results require only that agents’ valuations are monotonic (they need not
be additive), and in addition ensure that the constructed allocation satisfies the maximin
share guarantee (see [5]). Moreover, the fairness guarantee of our algorithms is slightly
stronger than the standard notion of EF1: in the returned allocations, envy can be avoided
by removing just an outer item – one whose removal leaves the envied bundle connected.
Computationally speaking, all our existence results are immediately useful, since an example
of an EF1 allocation can be found by iterating through all O(mn) connected allocation (this
stands in contrast to cake-cutting where we cannot iterate through all possibilities). While
we know of no faster algorithms to obtain an EF1 allocation in the cases where we appeal to
Sperner’s lemma, our other procedures can all be implemented efficiently.

In simultaneous and independent work, Oh et al. [23] designed protocols to find EF1
allocations in the setting without connectivity constraints, aiming for low query complexity.
They found that adapting cake-cutting protocols to the setting of indivisible items arranged
on a path is an especially potent way to achieve low query complexity. This led them to
also study a discrete version of the cut-and-choose protocol which achieves connected EF1
allocations for two agents, and they found an alternative proof that an EF1 allocation on a
path always exists with identical valuations. They also present a discrete analogue of the
Selfridge–Conway procedure which, for three agents with additive valuations, produces an

1 Another paper by Suksompong [30] works in the same model, and also found that procedures for
proportionality and other concepts can be applied to the indivisible setting.
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14:4 Almost Envy-Free Allocations with Connected Bundles

allocation of a path into bundles that have a constant number of connected components.
However, they do not study connected allocations on graphs that are not paths, and they do
not consider the case of (non-identical) general valuations with more than two agents.

A recurring theme in our algorithms is the specific way that the moving knives from
cake-cutting are rendered in the discrete setting. While one might expect knives to be placed
over the edges of the path, and “move” from edge to edge, we find that this movement is too
“fast” to ensure EF1 (see also footnote 4). Instead, our knives alternate between hovering
over edges and items. When a knife hovers over an item, we imagine the knife’s blade to be
“thick”: the knife covers the item, and agents then pretend that the covered item does not
exist. These intermediate steps are useful, since they can tell us that envy will vanish if we
hide an item from a bundle.

What about graphs G other than paths? Our positive results for paths immediately
generalize to traceable graphs (those that contain a Hamiltonian path), since we can run
the algorithms pretending that the graph only consists of the Hamiltonian path. For the
two-agent case, we completely characterize the class of graphs that guarantee the existence
of EF1 allocations: Our discrete cut-and-choose protocol can be shown to work on all graphs
G that admit a bipolar numbering, which exists if and only if the biconnected components
(blocks) of G can be arranged in a path. By constructing counterexamples, we prove that no
graph failing this condition (for example, a star) guarantees EF1, even for identical, additive,
binary valuations. For the case of three or more agents, it is a challenging open problem
to characterize the class of graphs guaranteeing EF1 (or even to find an infinite class of
non-traceable graphs that guarantees EF1).

2 Preliminaries

For each natural number s ∈ N, write [s] = {1, 2, . . . , s}.
Let N = [n] be a finite set of agents and G = (V,E) be an undirected finite graph. The

vertices in V as goods or items. A subset I of V is connected if it induces a connected
subgraph of G. We write C(V ) for the set of connected subsets of V . We call a set I ∈ C(V ) a
(connected) bundle. Each agent i ∈ N has a valuation function ui : C(V )→ R over connected
bundles, which we will always assume to be monotonic, that is, X ⊆ Y implies ui(X) 6 ui(Y ).
We also assume that ui(∅) = 0 for each i ∈ N . Monotonicity implies that items are goods;
we do not consider bads (or chores) in this paper. We say that an agent i ∈ N weakly prefers
bundle X to bundle Y if ui(X) > ui(Y ).2 A (connected) allocation A : N → C(V ) assigns
each agent i ∈ N a connected bundle A(i) ∈ C(V ) such that each item occurs in exactly one
bundle, i.e.,

⋃
i∈N A(i) = V and A(i) ∩A(j) = ∅ when i 6= j.

We say that the agents have identical valuations if for all i, j ∈ N and every bundle
I ∈ C(V ), we have ui(I) = uj(I). A valuation function ui is additive if ui(I) =

∑
v∈I ui({v})

for each bundle I ∈ C(V ). Many examples in this paper will use identical additive valuations,
and will take G to be a path. In this case, we use a shorthand to specify these examples;
the meaning of this notation should be clear. For example, we write “2–1–3–1” to denote
an instance with four items v1, v2, v3, v4 arranged on a path, and where ui({v1}) = 2, . . . ,
ui({v4}) = 1 for each i. For such an instance, an allocation will be written as a tuple, e.g.,
(2, 1–3–1) denoting an allocation allocating bundles {v1} and {v2, v3, v4}, noting that with
identical valuations it does not usually matter which agent receives which bundle.

2 Our arguments only operate based on agents’ ordinal preferences over bundles, and the (cardinal)
valuation functions are only used for notational convenience. One exception, perhaps, is in Algorithm 1
where we calculate a leximin allocation, but the algorithm can be applied after choosing an arbitrary
utility function consistent with the ordinal preferences.
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An allocation A is envy-free if ui(A(i)) > ui(A(j)) for every pair i, j ∈ N of agents,
that is, if every agent thinks that their bundle is a best bundle in the allocation. It is
well-known that an envy-free allocation may not exist (consider two agents and one good).
The main fairness notion that we study is a version of envy-freeness up to one good (EF1), a
relaxation of envy-freeness introduced by Budish [12], adapted to the model with connectivity
constraints. This property states that an agent i will not envy another agent j after we
remove some item from j’s bundle. Since we only allow connected bundles in our set-up, we
may only remove an item from A(j) if removal of this item leaves the bundle connected.

I Definition 1 (EF1: envy-freeness up to one outer good). An allocation A satisfies EF1 if for
any pair i, j ∈ N of agents, either A(j) = ∅ or there is a good v ∈ A(j) such that A(j) \ {v}
is connected and ui(A(i)) > ui(A(j) \ {v}).

In the instance 2–1–3–1 for two agents, the allocation (2–1, 3–1) is EF1, since the
left agent’s envy can be eliminated by removing the item of value 3 from the right-hand
bundle. However, the allocation (2, 1–3–1) fails to be EF1 according to our definition, since
eliminating either outer good of the right bundle does not prevent envy.3

I Definition 2. A graph G guarantees EF1 (for a specific n) if for all possible monotonic
valuations for n agents, there exists some connected allocation that is EF1.

For reasoning about EF1 allocations, let us introduce a few shorthands. Given an
allocation A we will say that i ∈ N does not envy j ∈ N up to v if ui(A(i)) > ui(A(j) \ {v}).
The up-to-one valuation u−i : C(V )→ R>0 of agent i ∈ N is defined, for every I ∈ C(V ), as

u−i (I) :=
{

0 if I = ∅,
min

{
ui(I \ {v}) : v ∈ I such that I \ {v} is connected

}
if I 6= ∅.

(1)

Thus, an allocation A satisfies EF1 iff ui(A(i)) > u−i (A(j)) for any pair i, j ∈ N of agents.
Given an ordered sequence of the vertices P = (v1, v2, . . . , vm), and j, k ∈ [m] with j 6 k,

we write P (vj , vk) for the subsequence from vj to vk, so P (vj , vk) = (vj , vj+1, . . . , vk−1, vk).
Let L(vj) = P (v1, vj−1) be the subsequence of vertices strictly left of vj and R(vj) =
P (vj+1, vm) be the subsequence of vertices strictly right of vj . A Hamiltonian path of a
graph G is a path that visits all the vertices of the graph exactly once. A graph is traceable
if it contains a Hamiltonian path.

3 EF1 existence for two agents

In cake-cutting for two agents, the standard way of obtaining an envy-free allocation is the
cut-and-choose protocol: Alice divides the cake into two equally-valued pieces, and Bob
selects the piece he prefers; the other piece goes to Alice. The same strategy almost works in
the indivisible case when items form a path; the problem is that Alice might not be able
to divide the items into two exactly-equal pieces. Instead, we ask Alice to divide the items
into pieces that are equally valued “up to one good”. The formal version is as follows. For a
sequence of vertices P = (v1, v2, . . . , vm) and an agent i, we say that vj is the lumpy tie over
P for agent i if j is the smallest index such that

ui(L(vj) ∪ {vj}) > ui(R(vj)) and ui(R(vj) ∪ {vj}) > ui(L(vj)). (2)

3 This example shows that our definition is strictly stronger than the standard definition of EF1 without
connectivity constraints. In the instance 2–1–3–1, considered without connectivity constraints, the
allocation (2, 1–3–1) does satisfy EF1 since in the standard setting we are allowed to remove the middle
item (with value 3) of the right bundle.
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14:6 Almost Envy-Free Allocations with Connected Bundles

For example, when i has additive valuations 1–3–2–1–3–1, then the third item (of value 2) is
the lumpy tie for i, since 1 + 3 + 2 > 1 + 3 + 1 and 2 + 1 + 3 + 1 > 1 + 3. The lumpy tie always
exists: taking j to be the smallest index such that ui(L(vj)∪{vj}) > ui(R(vj)) (which exists
as the inequality holds for j = m by monotonicity), the first part of (2) holds. If j = 1, the
second part of (2) is immediate by monotonicity. If j > 1, then since j is minimal, we have
ui(L(vj)) = ui(L(vj−1) ∪ {vj−1}) < ui(R(vj−1)) = ui(R(vj) ∪ {vj}) as required.

Using lumpy ties, our discrete version of the cut-and-choose protocol is specified as follows.

Discrete cut-and-choose protocol for n = 2 agents on a sequence
P = (v1, v2, . . . , vm):
Step 1. Alice selects her lumpy tie vj over (v1, v2, . . . , vm).
Step 2. Bob chooses a weakly preferred bundle among L(vj) and R(vj).
Step 3. Alice receives the bundle of all the remaining vertices, including vj .

Intuitively, the protocol allows Alice to select an item vj that she will receive for sure,
with the advice that the two pieces to either side of vj should have almost equal value to her.
Then, Bob is allowed to choose which side of vj he wishes to receive. In our example with
valuations 1–3–2–1–3–1, Alice selects the lumpy tie of value 2, then Bob choses the bundle
1–3–1 to the right and receives it, and Alice receives the bundle 1–3–2. The result is EF1.
This is true in general, and also if valuations are not identical.

I Proposition 3. When G is a path and there are n = 2 agents, the discrete cut-and-choose
protocol yields an EF1 allocation.

Proof. Clearly, the protocol returns a connected allocation. The returned allocation satisfies
EF1: Bob does not envy Alice up to item vj , since Bob receives his preferred bundle among
L(vj) and R(vj). Also, by (2), Alice does not envy Bob, since Alice either receives the bundle
L(vj) ∪ {vj} which she weakly prefers to Bob’s bundle R(vj), or she receives the bundle
R(vj) ∪ {vj}, which she weakly prefers to Bob’s bundle L(vj). J

Proposition 3 implies that an EF1 allocation always exists on a path. Hence, an EF1
allocation exists for every traceable graph G: simply use the discrete cut-and-choose protocol
on a Hamiltonian path of G. In fact, the discrete cut-and-choose protocol works on a broader
class of graphs: We only need to require that the vertices of the graph can be numbered in a
way that the allocation resulting from the discrete cut-and-choose protocol is guaranteed to
be connected. Since the protocol always partitions the items into an initial and a terminal
segment of the sequence, such a numbering needs to satisfy the following property.

I Definition 4. A bipolar numbering of a graph G is an ordering (v1, v2, . . . , vm) of its
vertices such that for all j ∈ [n], the sets L(vj) ∪ {vj} and R(vj) ∪ {vj} are connected in G.

An equivalent definition (which is the standard one) says that a numbering is bipolar if
for every j ∈ [n], the vertex vj has a neighbor that appears earlier in the sequence, and a
neighbor that appears later in the sequence. Bipolar numberings are used in algorithms for
testing planarity and for graph drawing. A Hamiltonian path induces a bipolar numbering,
but there are non-traceable graphs that admit a bipolar numbering, see Figure 1 for examples.

I Proposition 5. When there are n = 2 agents, then the discrete cut-and-choose protocol
run on a bipolar numbering of G yields an EF1 allocation.

Proof. The discrete cut-and-choose protocol returns an allocation whose bundles are either
initial or terminal segments of the ordered sequence (v1, v2, . . . , vm). By definition of a
bipolar numbering, such an allocation is connected, and it is EF1 by Proposition 3. J
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Figure 1 Non-traceable graphs with bipolar numberings.

It is clear that the discrete cut-and-choose protocol cannot be extended to graphs other
than those admitting a bipolar numbering. However, it could be that a different protocol is
able to produce EF1 allocations on other graphs. In the remainder of this section, we prove
that this is not the case: for n = 2 agents, a connected graph G guarantees the existence of
an EF1 allocation if and only if it admits a bipolar numbering. This completely characterizes
the class of graphs that guarantee EF1 existence in the two-agent case.

3.1 Characterization of graphs guaranteeing EF1 for two agents
Based on a known characterization of graphs admitting a bipolar numbering, we characterize
this class in terms of forbidden substructures. We then show that these forbidden structures
are also forbidden for EF1: if a graph contains such a structure, we can exhibit an additive
valuation profile for which no EF1 allocation exists.

As a simple example, consider the star with three leaves, which is the smallest connected
graph that does not have a bipolar numbering. Take two agents with identical additive
valuations that value each item at 1. Any connected allocation must allocate three items
to one agent, and a single item to the other agent. Then the latter agent envies the former
agent, even up to one good. This star is an example of what we call a trident, and forms a
forbidden substructure. Informally, the forbidden substructures take one of two forms. We
will prove that a graph G fails to admit a bipolar numbering, and fails to guarantee EF1 for
two agents, iff either
(a) there is a vertex s whose removal from G leaves three or more connected components, or
(b) there are subgraphs C,P1, P2, P3 of G such that (i) G is the union of these subgraphs,

(ii) the subgraphs P1, P2, P3 are vertex-disjoint, (iii) C has exactly one vertex is common
with Pi, i = 1, 2, 3, and (iv) no edge joins a vertex from one subgraph to a different one.

To reason about these structures, it is useful to consider the block decomposition of a graph,
which will show that graphs that admit a bipolar numbering have a path-like structure.

I Definition 6. A vertex is called a cut vertex of a graph G if removing it increases the
number of connected components of G. A graph G is biconnected if G does not have a cut
vertex. A block of G is a maximal biconnected subgraph of G.

Equivalently, a block of a graph G can be defined as a maximal subgraph of G where each
pair of vertices lie on a common cycle [8]. Given a connected graph G, we define a bipartite
graph B(G) with bipartition (B, S), where B is the set of blocks of G and S is the set of cut
vertices of a graph G; a block B and a cut vertex v are adjacent in B(G) if and only if B
includes v. Since every cycle of a graph is included in some block, the graph B(G) is a tree:

ITCS 2019
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I Lemma 7 (e.g., [8]). Let G be a connected graph. Then
any two blocks of G have at most one cut vertex in common;
the set of blocks forms a decomposition of G; and
the graph B(G) is a tree.

Thus, for a connected graph G, we call B(G) the block tree of G. It turns out that G
admits a bipolar numbering if and only if B(G) is a path. For example, the graphs shown in
Figure 1 all have their blocks arranged in a path (so that B(G) is a path).

I Lemma 8. A graph G admits a bipolar numbering if its block tree B(G) is a path.

Proof. Lempel et al. [20] show that G admits a bipolar numbering if there are s, t ∈ V such
that adding an edge {s, t} to G makes it biconnected. If B(G) is a path, let B1 and B2 be
the leaf blocks at the ends of the path B(G). Take any s ∈ B1 and t ∈ B2. If we add the
edge {s, t} to G, the graph becomes biconnected. Hence, G admits a bipolar numbering. J

There is a linear-time algorithm based on depth-first search to construct a bipolar
numbering for any biconnected graph [16, 31], and one can also calculate the block tree
B(G) of a given graph in linear time [17]. Thus, in linear time, we can compute a bipolar
numbering of a graph or report that none exists. Clearly, given a bipolar numbering, the
discrete cut-and-choose protocol can also be run in linear time.

Next, we show that if B(G) is not a path, then G cannot guarantee EF1. The proof
constructs explicit counter-examples, which have a very simple structure. We say that
additive valuations ui are binary if ui({v}) ∈ {0, 1} for every v ∈ V .

I Lemma 9. Let G be a connected graph whose block tree B(G) is not a path. Then there
exist identical, additive, binary valuations over G for two agents such that no connected
allocation is EF1.

Proof. If B(G) is not a path, then B(G) has a trident, i.e., a vertex with at least three
neighbors, and thus either
(a) there is a cut vertex s adjacent to three blocks B1, B2, and B3; or
(b) there is a block B adjacent to three different cut vertices s1, s2, and s3.
In either case, we construct identical additive valuations that do not admit an EF1 allocation.

In case (a), for each i = 1, 2, 3, choose a vertex vi from Bi \ {s}. Note that we can choose
such vi 6= s due to the maximality of Bi. The two agents have utility 1 for s, v1, v2, and
v3, and 0 for the remaining vertices. Now take any connected allocation (I1, I2). One of the
bundles, say I1, includes the cut vertex s. Then I2 can contain at most one of the vertices
v1, v2, v3, since I2 is connected and does not contain s yet any path between distinct vi and
vj goes trough s. Hence ui(I2) 6 1. Now, the bundle I1 contains s and at least two of v1, v2,
v3, so ui(I1) > 3. Thus, the allocation is not EF1.

Case (b) is handled similarly; see [5]. J

Combining these results, we obtain the promised characterization.

I Theorem 10. The following conditions are equivalent for every connected graph G:
1. G admits a bipolar numbering.
2. G guarantees EF1 for two agents.
3. G guarantees EF1 for two agents with identical, additive, binary valuations.
4. The block tree B(G) is a path.
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The equivalence (2) ⇔ (3) is noteworthy and perhaps surprising: It is often easier to
guarantee fairness when agents’ valuations are identical, yet in terms of the graphs that
guarantee EF1 for two agents, there is no difference between identical and non-identical
valuations. Intriguingly, even for more than two agents, we do not know of a graph which
guarantees EF1 for identical valuations, but fails it for non-identical valuations.

4 EF1 existence for three agents: A moving-knife protocol

→→ →→

L M R

We will now consider the case of three agents. Stromquist [28] designed a protocol that
results in an envy-free contiguous allocation of a divisible cake. In outline, the protocol works
as follows. A referee holds a sword over the cake. Each of the three agents holds their own
knife over the portion of the cake to the right of the sword, positioning it so that this portion
is divided into two pieces they judge to have the same value. Now, initially, the sword is at
the left end of the cake. It starts moving at constant speed from left to right, while the agents
continuously move their knives to keep dividing the right-hand portion into equally-valued
pieces. At some point (when the left-most piece becomes valuable enough), one of the agents
shouts “cut”, and the cake will be cut twice: once by the sword, and once by the middle
one of the three knives. Agents shout “cut” as soon as the left piece is a highest-valued
piece among the three. The agent who shouts receives the left piece. The remaining agents
each receive a piece containing their knife. The resulting allocation is envy-free, since the
agent receiving the left piece prefers it to the other pieces, and the other agents who are not
shouting receive at least half the value of the part of the cake to the right of the sword.

Let G be a path, P = (v1, v2, . . . , vm). There are several difficulties in translating
Stromquist’s continuous procedure to the discrete setting for G. First, agents need to divide
the piece to the right of the sword in half, and this might not be possible exactly given
indivisibilities; but this can be handled using our concept of lumpy ties from Section 3. Next,
when the sword moves one item to the right, the lumpy ties of the agents may need to jump
several items to the right, for example because the new member of the left-most bundle is
very valuable. To ensure EF1, we will need to smoothen these jumps, so that the middle
piece grows one item at a time. Also, it will be helpful to have the sword move in half-steps:
it alternates between being placed between items (so it cuts the edge between the items),
and being placed over an item, in which case the sword covers the item and agents ignore
that item. Finally, while the sword covers an item, we will only terminate if at least two
agents shout to indicate that they prefer the left-most piece; this will ensure that there is an
agent who is flexible about which of the bundles they are assigned. The algorithm moves in
steps, and alternates between moving the sword, and updating the lumpy ties.

In our formal description of the algorithm, we do not use swords and knives. Instead, we
maintain three bundles L,M , and R that can be seen as resulting from a certain configuration
of these cutting implements. We also need a few definitions. For a subsequence of vertices
P (vs, vr) = (vs, vs+1, . . . , vr) and an agent i, recall that vj (s 6 j 6 r) is the lumpy tie over
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P (vs, vr) for i if j is the smallest index such that

ui(L(vj) ∪ {vj}) > ui(R(vj)) and ui(R(vj) ∪ {vj}) > ui(L(vj)). (3)

Here, the definitions of L(vj) and R(vj) apply to the subsequence P (vs, vr). The lumpy tie
always exists by the discussion after equation (2). Each of the three agents has a lumpy tie
over P (vs, vr); a key concept for us is the median lumpy tie which is the median of the lumpy
ties of the three agents, where the median is taken with respect to the ordering of P (vs, vr).
We say that i ∈ N is a left agent (respectively, a middle agent or a right agent) over P (vs, vr)
if the lumpy tie for i appears strictly before (respectively, is equal to, or appears strictly
after) the median lumpy tie. Note that by definition of median, there is at most one left
agent, at most one right agent, and at least one middle agent.

Suppose that the median lumpy tie over the subsequence P (vs, vr) is vj , and let i be an
agent. Then using the definitions of lumpy tie and left/right agents, we find that

ui(L(vj)) > ui(R(vj) ∪ {vj}) if i is a left agent, and
ui(R(vj)) > ui(L(vj) ∪ {vj}) if i is a right agent. (4)

Given the median lumpy tie vj over P (vs, vr), and a two-agent set S = {i, k} ⊆ N , we
define Lumpy(S, vj , P (vs, vr)) to be the allocation of the items in P (vs, vr) to S such that

if i is a left agent and k is a right agent, then i receives L(vj) and k receives R(vj)∪{vj};
if i is a middle agent, then agent k receives k’s preferred bundle among L(vj) and R(vj),
and agent i receives the other bundle along with vj .

Using (3) and (4), we see that Lumpy(S, vj , P (vs, vr)) is an EF1 allocation:

I Lemma 11 (Median Lumpy Ties Lemma). Let S = {i, k} ⊆ N and let vj be the median
lumpy tie over P (vs, vr). Then Lumpy(S, vj , P (vs, vr)) is an EF1 allocation of the items in
P (vs, vr) to S. Further, each agent in S weakly prefers their bundle to L(vj) and R(vj).

The algorithm is specified in Figure 2. It alternately moves a left pointer ` (in Steps 2
and 3) and a right pointer r (in Step 4). See [5] for a proof of the following theorem.

I Theorem 12. The moving-knife protocol in Figure 2 finds an EF1 allocation for three
agents and runs in O(|V |) time, when G is traceable.

5 EF2 existence for any number of agents

For two or three agents, we have seen algorithms that are guaranteed to find an EF1 allocation
on a path (and on traceable graphs). Both algorithms were adaptations of procedures that
identify envy-free divisions in the cake-cutting problem. For the case of four or more agents,
we face a problem: there are no known procedures that find connected envy-free division in
cake-cutting if the number of agents is larger than three. However, in the divisible setting,
a non-constructive existence result is known: Su [29] proved, using Sperner’s lemma, that
for any number of agents, a connected envy-free division of a cake always exists. One might
try to use this result as a black box to obtain a fair allocation for the indivisible problem
on a path: Translate an indivisible instance with additive valuations into a divisible cake
(where each item corresponds to a region of the cake), obtain an envy-free division of the
cake, and round it to get an allocation of the items. Suksompong [30] followed this approach
and showed that the result is an allocation where any agent i’s envy ui(A(j))− ui(A(i)) is
at most 2umax, where umax is the maximum valuation for a single item.

In this section, rather than using Su’s [29] result as a black box, we directly apply
Sperner’s lemma to the indivisible problem. This allows us to obtain a stronger fairness
guarantee: We show that on paths (and on traceable graphs), there always exists an EF2
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Discrete moving-knife protocol for n = 3 agents on a sequence P = (v1, v2, . . . , vm):
An agent i ∈ N is a shouter if ui(L) > ui(M) and ui(L) > ui(R).

Step 1. Initialize ` = 0 and set r so that vr is the median lumpy tie over the
subsequence P (v2, vm). Initialize L = ∅, M = {v2, v3, . . . , vr−1}, and
R = {vr+1, vr+2, . . . , vm}.

Step 2. Add an additional item to L, i.e., set ` = `+ 1 and L = {v1, v2, . . . , v`}.
If no agent shouts, go to Step 3. If some agent sleft shouts, sleft receives
the left bundle L. Allocate the remaining items according to Lumpy(N \
{sleft}, vr, P (v`+1, vm)).

Step 3. Delete the left-most point of the middle bundle, i.e., set M =
{v`+2, v`+3, . . . , vr−1}.
If the number of shouters is smaller than two, go to Step 4. If at least two
agents shout, we show (next page) that there is a shouter s who is a middle
agent over P (v`+1, vm). Then, allocate L to a shouter sleft distinct from s.
Let the agent c distinct from s and sleft choose his preferred bundle among
{v`+1} ∪M and {vr} ∪R. Agent s receives the other bundle.

Step 4. If vr is the median lumpy tie over P (v`+2, vm), directly move to the following
cases (a)–(d). If vr is not the median lumpy tie over P (v`+2, vm), set
r = r + 1, M = {v`+2, v`+3, . . . , vr−1}, and R = {vr+1, vr+2, . . . , vm}; then,
go to cases (a)–(d).
a. If at least two agents shout, find a shouter s who did not shout at the

previous step. If there is a shouter sleft who shouted at the previous step,
sleft receives L; else, give L to an arbitrary shouter sleft distinct from s.
The agent c distinct from s and sleft choose his preferred bundle among
{v`+1} ∪M and {vr} ∪ R, breaking ties in favor of the former option.
Agent s receives the other bundle.

b. If vr is the median lumpy tie over P (v`+2, vm) and only one agent
sleft shouts, give L ∪ {v`+1} to sleft and allocate the rest according to
Lumpy(N \ {sleft}, vr, P (v`+2, vm)).

c. If vr is the median lumpy tie over P (v`+2, vm) but no agent shouts, go
to Step 2.

d. Otherwise vr is not the median lumpy tie over P (v`+2, vm): Repeat Step
4.

Figure 2 Algorithm producing EF1 allocations for three agents.

allocation.4 An allocation is EF2 if any agent’s envy can be avoided by removing up to two
items from the envied bundle. Again, we only allow removal of items if this operation leaves
a connected bundle. For example, on a path, if agent i envies the bundle of agent j, then i
does not envy that bundle once we remove its two endpoints.

I Definition 13 (EF2: envy-freeness up to two outer goods). An allocation A satisfies EF2 if
for any pair i, j ∈ N of agents, either |A(j)| 6 1, or there are two goods u, v ∈ A(j) such
that A(j) \ {u, v} is connected and ui(A(i)) > ui(A(j) \ {u, v}).

4 To see that EF2 is a stronger property than bounding envy up to 2umax, consider a path of four items
and two agents with additive valuations 1–10–2–2. The allocation (1, 10–2–2) is not EF2, but the first
agent has an envy of 13 < 20 = 2umax.
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∅, ∅, abcd ∅, a, bcd ∅, ab, cd ∅, abc, d ∅, abcd, ∅

a, ∅, bcd a, b, cd a, bc, d a, bcd, ∅

ab, ∅, cd ab, c, d ab, cd, ∅

abc, ∅, d abc, d, ∅

abcd, ∅, ∅

Let us first give a high-level illustration with three agents of how Sperner’s lemma can be
used to find low-envy allocations. Given a path, say P = (a, b, c, d), the family of connected
partitions of P can naturally be arranged as the vertices of a subdivided simplex, as in
the figure on the right. For each of these partitions, each agent i labels the corresponding
vertex by the index of a bundle from that partition that i most-prefers. For example, the
top vertex will be labelled as “index 1” by all agents, since they all most-prefer the left-most
bundle in (abcd, ∅, ∅). Now, Sperner’s lemma will imply that at least one of the simplices
(say the shaded one) is “fully-labeled”, which means that the first agent most-prefers the
left-most bundle at one vertex, the second agent most-prefers the middle bundle at another
vertex, and the third agent most-prefers the right-most bundle at the last vertex. Notice
that the partitions at the corner points of the shaded simplex are all “similar” to each other
(they can be obtained from each other by moving only 1 item). Hence, we can “round” the
corner-partitions into a common allocation A∗, say by picking one of the corner partitions
arbitrarily and then allocating bundles to agents according to the labels. The resulting
allocation has the property that any agents’ envy can be eliminated by moving at most one
good.5

The argument sketched above does not yield an EF1 nor even an EF2 allocation. Intu-
itively, the problem is that the connected partitions at the corners of the fully-labeled simplex
are “too far apart”, so that no matter how we round the corner partitions into a common
allocation A∗, some agents’ bundles will have changed too much, and so we cannot prevent
envy even up to one or two goods. In the following, we present a solution to this problem, by
considering a finer subdivision: we introduce n− 1 knives which move in half-steps (rather
than full steps), and which might “cover” an item so that it appears in none of the bundles.
The result is that the partial partitions in the corners of the fully-labeled simplex are closer
together, and can be successfully rounded into an EF2 allocation A∗.

5.1 Sperner’s lemma
We start by formally introducing Sperner’s lemma. Let conv(v1,v2, . . . ,vk) denote the
convex hull of k vectors v1,v2, . . . ,vk. An n-simplex is an n-dimensional polytope which is
the convex hull of its n+ 1 main vertices. A k-face of the n-simplex is the k-simplex formed
by the span of any subset of k + 1 main vertices. A triangulation T of a simplex S is a

5 One can generalize this argument to show that on paths, there exists an allocation A satisfying a weak
form of EF1: for any i, j ∈ [n], we have ui(Ii ∪ {gi}) > ui(Ij \ {gj}) for some items gi, gj such that
Ii ∪ {gi} and Ij \ {gj} are connected. For additive valuations, this implies that envy is bounded by
ui(gi) + ui(gj) 6 2umax, which is Suksompong’s [30] result.



V. Bilò et al. 14:13

collection of sub-n-simplices whose union is S with the property that the intersection of any
two of them is either the empty set, or a face common to both. Each of the sub-simplices
S∗ ∈ T is called an elementary simplex of the triangulation T . We denote by V (T ) the set
of vertices of the triangulation T , i.e., the union of vertices of the elementary simplices of T .

Let T be some fixed triangulation of an (n − 1)-simplex S = conv(v1,v2, . . . ,vn). A
labeling function is a function L : V (T )→ [n] that assigns a number in [n] (called a color) to
each vertex of the triangulation T . A labeling function L is called proper if

For each main vertex vi of the simplex, L assigns color i to vi: L(vi) = i; and
L(v) 6= i for any vertex v ∈ V (T ) belonging to the (n− 2)-face of S not containing vi.

Sperner’s lemma states that if L is a proper labeling function, then there exists an elementary
simplex of T whose vertices all have different labels.

We will consider a generalized version of Sperner’s lemma, proved, for example, in [2]. In
this version, there are n labeling functions L1, . . . , Ln, and we are looking for an elementary
simplex which is fully-labeled for some way of assigning labeling functions to vertices, where
we must use each labeling function exactly once. The formal definition is as follows.

I Definition 14 (Fully-labeled simplex). Let T be a triangulation of an (n− 1)-simplex, and
let L1, . . . , Ln, be labeling functions. An elementary simplex S∗ of T is fully-labeled if we
can write S∗ = conv(v∗1,v∗2, . . . ,v∗n) such that there exists a permutation φ : [n]→ [n] with

Li(v∗i ) = φ(i) for each i ∈ [n].

I Lemma 15 (Generalized Sperner’s Lemma). Let T be a triangulation of an (n−1)-simplex S,
and let L1, . . . , Ln be proper labeling functions. Then there is a fully-labeled simplex S∗ of T .

5.2 Existence of EF2 allocations
Suppose that our graph G is a path P = (1, 2, . . . ,m), where the items are named by integers.
We assume that m > n, so that there are at least as many items as agents (when m < n

it is easy to find EF1 allocations). Our aim is to cut the path P into n intervals (bundles)
I1
∗ , I

2
∗ , . . . , I

n
∗ . Throughout the argument, we use superscripts to denote indices of bundles;

index 1 refers to the left-most bundle and index n refers to the right-most bundle.

Construction of the triangulation. Consider the (n− 1)-simplex

Sm = {x ∈ Rn−1 : 1
2 6 x1 6 x2 6 . . . 6 xn−1 6 m+ 1

2 }. (5)

We construct a triangulation Thalf of Sm whose vertices V (Thalf) are the points x ∈ Sm such
that each xj is either integral or half-integral, namely,

V (Thalf) = {x ∈ Sm : xj ∈ { 1
2 , 1,

3
2 , 2,

5
2 . . . ,m,m+ 1

2} for all j ∈ [n]}.

For reasons that will become clear shortly, we call a vector x ∈ V (Thalf) a knife position.
Using Kuhn’s triangulation [19, 26, 14], we construct Thalf so we can write each elementary

simplex S′ ∈ Thalf as S′ = conv(x1,x2, . . .xn) and there is a permutation π : [n]→ [n] with

xi+1 = xi + 1
2 eπ(i) for each i ∈ [n− 1], (6)

where ej = (0, . . . , 1, . . . , 0) is the j-th unit vector. We give an interpretation of (6) shortly.
Each vertex x = (x1, x2, . . . , xn−1) ∈ V (Thalf) of the triangulation Thalf corresponds to a

partial partition A(x) = (I1(x), I2(x), . . . , In(x)) of P where Ij(x) := {y ∈ {1, 2, . . . ,m} :
xj−1 < y < xj}, writing x0 = 1

2 and xn = m+ 1
2 for convenience. Intuitively, x specifies the
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location of n− 1 knives that cut P into n pieces. If xj is integral, that is xj ∈ {1, . . . ,m},
then the j-th knife “covers” the item xj , which is then part of neither Ij(x) nor Ij+1(x).
This is why A(x) is a partial partition. Since there are only n− 1 knives but m > n items,
not all items are covered, so at least one bundle is non-empty.

Property (6) means that, if we visit the knife positions x1,x2, . . .xn at the corners of an
elementary simplex in the listed order, then at each step exactly one of the knives moves by
half a step, and each knife moves only at one of the steps.

Construction of the labeling functions. We now construct, for each agent i ∈ [n], a labeling
function Li : V (Thalf)→ [n]. The function Li takes as input a vertex x of the triangulation
Thalf (interpreted as the partial partition A(x)), and returns a color in [n]. The color will
specify the index of a bundle in A(x) that agent i likes most. Formally,

Li(x) ∈ {j ∈ [n] : ui(Ij(x)) > ui(Ik(x)) for all k ∈ [n]}.

If there are several most-preferred bundles in A(x), ties can be broken arbitrarily. However,
we insist that the index Li(x) always corresponds to a non-empty bundle (this can be ensured
since A(x) always contains a non-empty bundle, and ui is monotonic).

The labeling functions Li are proper. For each j ∈ [m], the main vertex vj of the simplex
Sm has the form vj = ( 1

2 , . . . ,
1
2 ,m+ 1

2 , . . . ,m+ 1
2 ), where the first j − 1 entries are 1

2 and
the rest are m+ 1

2 . In the partition A(vj), the bundle Ij(vj) contains all the items, so is
most-preferred (since ui is monotonic and by our tie-breaking), and so Li(vj) = j. Further,
any vertex x belonging to the (n− 2)-face of Sm not containing vj satisfies xj−1 = xj , and
thus in partition A(x), bundle Ij(x) is empty, hence is not selected, and so Li(x) 6= j.

By the generalized version of Sperner’s lemma (Lemma 15), there exists an elementary
simplex S∗ = conv(x1,x2, . . . ,xn) of the triangulation Thalf which is fully-labeled, so that,
for some permutation φ : [n]→ [n], we have Li(xi) = φ(i) for all i ∈ [n].

Translation into partial partitions. The fully-labeled elementary simplex S∗ corresponds
to a sequence (A1, A2, . . . , An) of partial partitions of P , which we call the Sperner sequence,
where Ai = (I1

i , . . . , I
n
i ) := A(xi) for each i ∈ [n]. An example of a Sperner sequence is

shown in Figure 3. From the labeling, for each agent i ∈ [n], since Li(xi) = φ(i), the bundle
with index φ(i) in the partition Ai is a best bundle for i:

ui(Iφ(i)
i ) > ui(Iji ) for each j ∈ [n]. (7)

Now, for each j ∈ [n], we define the basic bundle Bj := Ij1 ∩ · · · ∩ Ijn to be the bundle
of items that appear in the j-th bundle of every partition in the Sperner sequence. The
set of basic bundles is a partial partition. Let us analyze the items between basic bundles.
From (6), each of the n− 1 knives moves exactly once, by half a step, while passing through
the Sperner sequence (A1, A2, . . . , An). Thus, the numbers xj1, . . . , xjn take on two different
values, one of which is integral and the other half-integral. We write yj for the integral value
(so yj = xji for some i ∈ [n]), and call yj a boundary item. The j-th knife covers the item yj

in some, but not all, of the partial partitions in the Sperner sequence. Now, there are two
cases:
(a) xj1 = · · · = xji = yj − 1

2 and xji+1 = · · · = xjn = yj for some i ∈ [n], so that yj never
occurs in the j-th bundle in the Sperner sequence but sometimes occurs in the j + 1st
bundle, or
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1
2 1 3

2 2 5
2 · · · · · · m+ 1

2

A1 y1 y2 y3

A2 y1 y2 y3

A3 y1 y2 y3

A4 y1 y2 y3

B1 B2 B3 B4

A∗ y1 y2 y3

Figure 3 Example of the Sperner sequence A1, . . . , A4 for n = 4, as well as the derived partition
A∗. Vertical lines indicate the positions x1

i , x2
i , x3

i of the knives, i = 1, . . . , 4. Shaded in gray, for
i = 1, . . . , 4, is the bundle I

φ(i)
i selected by agent i as their favorite bundle in Ai.

(b) xj1 = · · · = xji = yj and xji+1 = · · · = xjn = yj + 1
2 for some i ∈ [n], so that yj sometimes

occurs in the j-th bundle in the Sperner sequence but never occurs in the j + 1st bundle.
Since yj is sometimes covered by a knife, it is not part of any basic bundle. Note that

Bj ⊆ Iji ⊆ {y
j−1} ∪Bj ∪ {yj} for every i, j ∈ [n]. (8)

Rounding into a complete partition. We now construct a complete partition of the path
P into the bundles (I1

∗ , I
2
∗ , . . . , I

n
∗ ) which are defined as follows:

Ij∗ := Ij1 ∪ · · · ∪ Ijn for each j ∈ [n].

Thus, the bundle Ij∗ contains the basic bundle Bj , plus all of the boundary items yj−1 or
yj that occur in the j-th bundle at some point of the Sperner sequence. Precisely, for each
boundary item yj , j ∈ [n− 1], the item yj is placed in bundle Ij+1

∗ in case (a) above, and it
is placed in bundle Ij∗ in case (b). Thus, every item is allocated to exactly one bundle.

An EF2 allocation. We first show that the partition (I1
∗ , I

2
∗ , . . . , I

n
∗ ) is such that agents’

expectations about the value of the bundles Ij∗ are approximately correct (up to two items):

ui(Ij∗) > ui(Iji ) > ui(Bj) for every agent i ∈ [n] and every j ∈ [n]. (9)

This follows by monotonicity of ui, since Ij∗ = Ij1 ∪ · · · ∪ Ijn ⊇ I
j
i ⊇ Bj by (8).

Now, based on the partition, we define an allocation A∗ by A∗(i) = I
φ(i)
∗ for each agent

i ∈ [n]. Then A∗ satisfies EF2: For any pair i, j ∈ [n] of agents, we have

ui(A∗(i)) = ui(Iφ(i)
∗ )

(9)
> ui(Iφ(i)

i )
(7)
> ui(Iφ(j)

i )
(9)
> ui(Bφ(j)) (8)= ui(A∗(j) \ {yj−1, yj}).

Hence, we have proved the main result of this section:

I Theorem 16. On a path, for any number of agents with monotone valuation functions, a
connected EF2 allocation exists.
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6 EF1 existence for four agents

We have seen that Sperner’s lemma can be used to show EF2 existence for any number
of agents. Why does our proof in the previous section only establish EF2, and not EF1?
The reason is that agents’ expectations about the contents of a bundle might differ by up
to two goods from what the bundle will actually contain. In the notation of the previous
section, an agent i may be presented with a partial partition Ii where the j-th bundle Iji
is the basic bundle, i.e., Iji = Bj . The agent then selects their favorite bundle from Ii,
implicitly assuming that the j-th bundle in the rounded partition I∗ will also equal Bj , i.e.,
that Ij∗ = Bj . However, it may happen that in fact Ij∗ = {yj−1} ∪ Bj ∪ {yj}, and then i
envies the agent who receives bundle j by a margin of two goods.

For four agents, we can adapt our argument to achieve EF1. To do this, we both change the
way we round the Sperner sequence into an allocation, and we define new labeling functions
that better anticipate how a partial partition will be rounded into the final allocation. In
this way, agents’ expectations about bundles will only ever be wrong up to one good. In
crude terms, agents will expect that each of the two interior bundles will be assigned at least
one of the boundary items, and the rounding method ensures that this will indeed happen.

Let n = 4. Formally, to define the labeling function, for each agent i ∈ [n] we construct a
virtual valuation function ûi(x, j) which assigns a value to each bundle j ∈ [n] of a partial
allocation as specified by a vertex x ∈ V (Thalf). The way these virtual valuations are defined
differs based on the index j; in particular, end bundles (j = 1, 4) are treated differently from
interior bundles (j = 2, 3). The virtual valuations are defined as follows, for each x ∈ V (Thalf)
and each i ∈ [n], where the middle row (11) applies to j = 2 and j = 3:

ûi(x, 1) =
{
ui({1, . . . , x1 − 1}) if x1 ∈ Z,
ui({1, . . . , x1 − 3

2}) if x1 6∈ Z.
(10)

ûi(x, j) =
{
u−i ({xj−1, . . . , xj}) if xj−1 ∈ Z and xj ∈ Z,
ui(Ij(x)) otherwise.

(11)

ûi(x, 4) =
{
ui({x3 + 1, . . . ,m}) if x3 ∈ Z,
ui({x3 + 3

2 , . . . ,m}) if x3 6∈ Z.
(12)

Thus, for an interior bundle j = 2, 3, if both the items xj−1 and xj to either side of the
bundle are covered by a knife, an agent expects that one of these items (the less-valuable
one) will be put into bundle Ij∗ of the final rounded allocation (recall the definition of u−i
in equation (1)). For exterior bundles, j = 1 (resp. j = 4), if the item x1 (resp. x3) is not
covered by a knife, the agent does not expect the interior item (next to the knife) to belong
to the final bundle Ij∗ , even though it belongs to the observed bundle Iji . Otherwise, the
virtual allocations are equal to ui(Ij(x)), so the agent expects that Ij∗ = Iji . Later, we show
that these expectations are correct up to one item.

Using these virtual valuations, we define labelling functions L̂i : V (Thalf)→ [n] so that

L̂i(x) ∈ {j ∈ [n] : ûi(x, j) > ûi(x, k) for all k ∈ [n]}.

One can check that these valuation functions are still proper.
Again, by Sperner’s lemma, there exists an elementary simplex S∗ = conv(x1,x2, . . . ,xn)

of the triangulation Thalf which is fully-labeled according to our new labeling function: there
is a permutation φ : [n] → [n], with L̂i(xi) = φ(i) for all i ∈ [n]. Again, this elementary
simplex induces a Sperner sequence (A1, . . . , An) of partial partitions.
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To shorten a case distinction, we assume that y2 ∈ I2
1 ∪I2

2 ∪I2
3 ∪I2

4 , i.e., that the boundary
item y2 appears in the second but not in the third bundle in the Sperner sequence. This
assumption is without loss of generality, since by the left-right symmetry of the definition of
virtual valuations, if necessary we can reverse the path P and consider the same elementary
simplex with vertices ordered in reverse (x4,x3,x2,x1); it will still be fully-labeled.

With this assumption made throughout the rest of the argument, we now round the
Sperner sequence into a complete partition (I1

∗ , I
2
∗ , I

3
∗ , I

4
∗ ) of P defined as follows:

I1
∗ := I1

1 ∪ · · · ∪ I1
4 , I2

∗ := I2
1 ∪ · · · ∪ I2

4 , I3
∗ := B3 ∪ {y3}, I4

∗ := B4.

Depending on the placement of the boundary item y1, we will either have I1
∗ = B1 or

I1
∗ = B1 ∪ {y1}; and either I2

∗ = {y1} ∪ B2 ∪ {y2} or I2
∗ = B2 ∪ {y2}. With these choices,

each interior bundle (j = 2, 3) receives at least one of the boundary items adjacent to it.
The main part of showing that the partition (I1

∗ , I
2
∗ , I

3
∗ , I

4
∗) can be made into an EF1

allocation is an analogue of (9), which shows that agents’ expectations about their bundle
are approximately correct. The following analogous proposition is proved by case analysis.

I Proposition 17. For each i ∈ [n] and each j ∈ [n], we have ui(Ij∗) > ûi(xi, j) > u−i (Ij∗).

Now again, based on the partition, we can define an allocation A∗ by A∗(i) = I
φ(i)
∗

for each agent i ∈ [n]. Thus, each agent i receives the bundle in the complete partition
corresponding to i’s most-preferred index φ(i). We prove that A∗ satisfies EF1: For any pair
i, j ∈ [n] of agents, we have

ui(A∗(i)) = ui(Iφ(i)
∗ ) > ûi(xi, φ(i)) by Proposition 17

> ûi(xi, φ(j)) since L̂i(xi) = φ(i)
> u−i (Iφ(j)

∗ ) = u−i (A∗(j)). by Proposition 17

Hence, we have proved the main result of this section:

I Theorem 18. On a path, for four agents with monotone valuation functions, a connected
EF1 allocation exists.

For five or more agents, we were not able to construct labeling functions and a rounding
scheme which ensure that agents’ expectations are correct up to one item. In the four-agent
case, each interior bundle is adjacent to an exterior bundle (which helps in the construction),
but for five agents, there is a middle bundle whose neighboring bundles are also interior.

7 EF1 existence for identical valuations

A special case of the fair division problem is the case of identical valuations, where all agents
have the same valuation for the goods: for all agents i, j ∈ N and every bundle I ∈ C(V ), we
have ui(I) = uj(I). We then write u(I) for the common valuation of bundle I. The case
of identical valuations often allows for more positive results and an easier analysis. Indeed,
we can prove that, for identical valuations and any number of agents, an EF1 allocation
connected on a path is guaranteed to exist and can be found in polynomial time.

Now, one might guess that in the restricted case of identical valuations, egalitarian
allocations are EF1. However, the leximin-optimal connected allocation may fail EF1:
Consider a path with five items and additive valuations 1–3–1–1–1 shared by three agents.
The unique leximin allocation is (1, 3, 1–1–1), which induces envy even up to one good. The
same allocation also uniquely maximizes Nash welfare, so the Nash optimum also does not
guarantee EF1. In contrast, when requiring bundles to satisfy matroid constraints (rather
than connectivity constraints), the Nash optimum is EF1 with identical valuations [6].
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Ii Ij−1 Ij

Figure 4 If i envies j even up to one good, Algorithm 1 takes an item out of bundle Ij and moves
it in i’s direction.

Algorithm 1 Find a connected EF1 allocation of a path P with identical valuations.
1: Let A = (I1, . . . , In) be a leximin allocation of P
2: Fix an agent i with minimum utility in A, i.e., u(Ii) 6 u(Ij) for all j ∈ [n]
3: for j = 1, . . . , i− 1 do
4: if i envies Ij even up to one good, i.e., u(Ii) < u−(Ij) then
5: repeatedly delete the right-most item of Ij and add it to Ij+1 until u(Ii) > u−(Ij)
6: for j = n, . . . , i+ 1 do
7: if i envies Ij even up to one good, i.e., u(Ii) < u−(Ij) then
8: repeatedly delete the left-most item of Ij and add it to Ij−1 until u(Ii) > u−(Ij)
9: return A

Maximizing an egalitarian objective seemed promising because it ensures that no-one
is too badly off, and therefore has not much reason to envy others. The problem is that
some bundles might be too desirable. To fix this, we could try to reallocate items so that no
bundle is too valuable. This is exactly the strategy of our algorithm: It starts with a leximin
allocation, and then moves items from high-value bundles to lower-value bundles, until the
result is EF1. In more detail, the algorithm identifies one agent i who is worst-off in the
leximin allocation, and then adjusts the allocation so that i does not envy any other bundle
up to one good. The algorithm does this by going through all bundles in the allocation,
outside-in, and if i envies a bundle Ij even up to one good, it moves one item from Ij inwards
(in i’s direction), see Figure 4. As we will show, a key invariant preserved by the algorithm
is that the value of Ii never increases, and i remains worst-off. Thus, since i does not envy
others up to one good, the allocation at the end is EF1.

Formally, a leximin allocation is an allocation which maximizes the lowest utility of an
agent; subject to that it maximizes the second-lowest utility, and so on. In particular, if
the highest achievable minimum utility is uL, then the leximin allocation is such that every
agent has utility at least uL, and the number of agents with utility exactly uL is minimum.

I Theorem 19. For identical valuations on a path, Algorithm 1 finds an EF1 allocation.

Proof. For an allocation A = (I1, . . . , In), write uL(A) := minj∈N u(Ij) for the minimum
utility obtained in A, and write L(A) := {j ∈ [n] : u(Ij) = uL(A)} for the set of agents
(losers) who obtain this utility. For the leximin allocation Aleximin obtained at the start of the
algorithm, write u∗L := uL(Aleximin) and L∗ := L(Aleximin). Note that by leximin-optimality,
for every allocation A we must have uL(A) 6 u∗L, and if uL(A) = u∗L then |L(A)| > |L∗|. Let
i ∈ L∗ be the agent fixed at the start of the algorithm.

Claim 1. Throughout the algorithm, uL(A) = u∗L and L(A) = L∗.
The claim is true before we start the for-loops. Suppose the claim holds up until some

iteration of the first for-loop, and we now move an item from Ij to Ij+1, obtaining the new
bundles Ijnew and Ij+1

new in the new allocation Anew. Then u(Ijnew) > u−(Ij) > u(Ii) = u∗L,
where the strict inequality holds by the if- and until-clauses. Since no agent other than
j has become worse-off in Anew, it follows that uL(Anew) > uL(A) = u∗L. As noted, by
optimality of u∗L, we have uL(Anew) 6 u∗L. Hence uL(Anew) = u∗L. Thus, by optimality of
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L∗, we have |L(Anew)| > |L∗|. Because agent j has not become a loser (since u(Ijnew) > u∗L
as shown before) and no other agent has become a loser, we have L(Anew) ⊆ L(A) = L∗.
Thus L(Anew) = L∗, as required. The second for-loop is handled similarly.

Claim 2. After both for-loops terminate, agent i does not envy any agent up to one good.
For any j 6= i, agent i does not envy j up to one good immediately after the relevant loop

has handled j, and at no later stage of the algorithm does Ij change.
It follows that the allocation A returned by the algorithm is EF1: By Claim 1, we have

i ∈ L(A), so that u(Ij) > u(Ii) for all j ∈ [n]. By Claim 2, agent i does not envy any other
agent up to one good, so that u(Ii) > u−(Ik) for all k ∈ [n]. Hence, for all j, k ∈ [n], we
have u(Ij) > u−(Ik), that is, no agent envies another agent up to one good. J

Algorithm 1 can be implemented to run in polynomial time, because with identical
valuations, one can use dynamic programming to find a leximin allocation in time O(m2n2),
and the remainder of Algorithm 1 takes time O(mn), as each item is moved at most n times.

The reallocation stage of our algorithm bears some similarity to Suksompong’s [30,
Thm. 2] proof that a umax-equitable allocation exists. In a very recent paper, Oh et al. [23,
Lem. C.2] proved independently, using an inductive argument, that EF1 allocations on a
path exist for identical valuations, and can be found in polynomial time.

8 Conclusion

We have studied the existence of EF1 allocations under connectivity constraints imposed by
an undirected graph. We have shown that for two, three, or four agents, an EF1 allocation
exists if the graph is traceable. For any number of agents, we also proved that traceable
graphs guarantee the existence of an EF2 allocation, and they guarantee the existence of an
EF1 allocation with identical valuations.

Several questions are open. We did not settle whether EF1 allocations on a path exist
for five or more agents. Our Sperner technique for four agents seems to not extend to five
agents. Extensive sampling did not find an example where no EF1 allocation exists.

Many of our procedures admit efficient implementations for finding fair allocations, but for
our Sperner results we do not know better algorithms than searching through all connected
allocations. For divisible cake-cutting, it is PPAD-complete to find an envy-free allocation [14].
What is the complexity of finding an EF1 or EF2 allocation on a path?

In the setting without connectivity constraints, it is possible to achieve efficiency and
fairness simultaneously: the maximum Nash welfare solution yields an allocation that is
both EF1 and Pareto-optimal [13, 4]. In our model, this is unfortunately impossible, since
on a path there are instances where there is no connected allocation which is EF1 and
Pareto-optimal [18], and it is NP-hard to decide whether such an allocation exists [18].

In this paper, we have only considered goods, with monotonic valuations. The setting
where some or all items are undesirable (so-called chores) is also of interest [7, 22, 27, 1].
On a path, a connected Prop1 allocation always exists [1], but the existence of EF1 or EF2
allocations in this domain is open. For cake-cutting, when agents consider some parts of the
cake undesirable, Sperner’s lemma does not directly produce a connected envy-free allocation
[27], but other methods can prove the existence of such allocations in most cases [27, 22].
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Abstract
A critical goal for the field of quantum computation is quantum supremacy – a demonstration of
any quantum computation that is prohibitively hard for classical computers. It is both a necessary
milestone on the path to useful quantum computers as well as a test of quantum theory in the
realm of high complexity. A leading near-term candidate, put forth by the Google/UCSB team, is
sampling from the probability distributions of randomly chosen quantum circuits, called Random
Circuit Sampling (RCS).

While RCS was defined with experimental realization in mind, we give strong complexity-
theoretic evidence for the classical hardness of RCS, placing it on par with the best theoretical
proposals for supremacy. Specifically, we show that RCS satisfies an average-case hardness condi-
tion – computing output probabilities of typical quantum circuits is as hard as computing them
in the worst-case, and therefore #P-hard. Our reduction exploits the polynomial structure in
the output amplitudes of random quantum circuits, enabled by the Feynman path integral. In
addition, it follows from known results that RCS also satisfies an anti-concentration property,
namely that errors in estimating output probabilities are small with respect to the probabilities
themselves. This makes RCS the first proposal for quantum supremacy with both of these proper-
ties. We also give a natural condition under which an existing statistical measure, cross-entropy,
verifies RCS, as well as describe a new verification measure which in some formal sense maximizes
the information gained from experimental samples.
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Abstract
Property-preserving hashing is a method of compressing a large input x into a short hash h(x)
in such a way that given h(x) and h(y), one can compute a property P (x,y) of the original
inputs. The idea of property-preserving hash functions underlies sketching, compressed sensing
and locality-sensitive hashing.

Property-preserving hash functions are usually probabilistic: they use the random choice
of a hash function from a family to achieve compression, and as a consequence, err on some
inputs. Traditionally, the notion of correctness for these hash functions requires that for every
two inputs x and y, the probability that h(x) and h(y) mislead us into a wrong prediction of
P (x,y) is negligible. As observed in many recent works (incl. Mironov, Naor and Segev, STOC
2008; Hardt and Woodruff, STOC 2013; Naor and Yogev, CRYPTO 2015), such a correctness
guarantee assumes that the adversary (who produces the offending inputs) has no information
about the hash function, and is too weak in many scenarios.

We initiate the study of adversarial robustness for property-preserving hash functions, provide
definitions, derive broad lower bounds due to a simple connection with communication complexity,
and show the necessity of computational assumptions to construct such functions. Our main
positive results are two candidate constructions of property-preserving hash functions (achieving
different parameters) for the (promise) gap-Hamming property which checks if x and y are “too
far” or “too close”. Our first construction relies on generic collision-resistant hash functions, and
our second on a variant of the syndrome decoding assumption on low-density parity check codes.
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1 Introduction

The problem of property-preserving hashing, namely how to compress a large input in a way
that preserves a class of its properties, is an important one in the modern age of massive data.
In particular, the idea of property-preserving hashing underlies sketching [23, 22, 1, 8, 6],
compressed sensing [7], locality-sensitive hashing [14], and in a broad sense, much of machine
learning.

As two concrete examples in theoretical computer science, consider universal hash func-
tions [5] which can be used to test the equality of data points, and locality-sensitive hash
functions [14, 13] which can be used to test the `p-distance between vectors. In both cases,
we trade off accuracy in exchange for compression. For example, in the use of universal
hash functions to test for equality of data points, one stores the hash h(x) of a point x
together with the description of the hash function h. Later, upon obtaining a point y, one
computes h(y) and checks if h(y) = h(x). The pigeonhole principle tells us that mistakes are
inevitable; all one can guarantee is that they happen with an acceptably small probability.
More precisely, universal hash functions tell us that

∀x 6= y ∈ D,Pr[h← H : h(x) 6= h(y)] ≥ 1− ε

for some small ε. A cryptographer’s way of looking at such a statement is that it asks the
adversary to pick x and y first; and evaluates her success w.r.t. a hash function chosen
randomly from the family H. In particular, the adversary has no information about the hash
function when she comes up with the (potentially) offending inputs x and y. Locality-sensitive
hash functions have a similar flavor of correctness guarantee.

The starting point of this work is that this definition of correctness is too weak in the face
of adversaries with access to the hash function (either the description of the function itself
or perhaps simply oracle access to its evaluation). Indeed, in the context of equality testing,
we have by now developed several notions of robustness against such adversaries, in the form
of pseudorandom functions (PRF) [11], universal one-way hash functions (UOWHF) [25]
and collision-resistant hash functions (CRHF). Our goal in this work is to expand the reach
of these notions beyond testing equality; that is, our aim is to do unto property-preserving
hashing what CRHFs did to universal hashing.

Several works have observed the deficiency of the universal hash-type definition in
adversarial settings, including a wide range of recent attacks within machine learning in
adversarial environments (e.g., [20, 17, 28, 26, 16]). Such findings motivate a rigorous approach
to combatting adversarial behavior in these settings, a direction in which significantly less
progress has been made. Mironov, Naor and Segev [21] showed interactive protocols for
sketching in such an adversarial environment; in contrast, we focus on non-interactive hash
functions. Hardt and Woodruff [12] showed negative results which say that linear functions
cannot be robust (even against computationally bounded adversaries) for certain natural
`p distance properties; our work will use non-linearity and computational assumptions to
overcome the [12] attack. Finally, Naor and Yogev [24] study adversarial Bloom filters
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which compress a set in a way that supports checking set membership; we were able to use
their lower bound techniques (in the full version of this paper), proving the necessity for
cryptographic assumptions for many predicates.

Motivating Robustness: Facial Recognition

In the context of facial recognition, authorities A and B store the captured images x of
suspects. At various points in time, say authority A wishes to look up B’s database for a
suspect with face x. A can do so by comparing h(x) with h(y) for all y in B’s database.

This application scenario motivated prior notions of fuzzy extractors and secure sketching.
As with secure sketches and fuzzy extractors, a locality-sensitive property-preserving hash
guarantees that close inputs (facial images) remain close when hashed [9]; this ensures that
small changes in ones appearance do not affect whether or not that person is authenticated.
However, neither fuzzy extractors nor secure sketching guarantees that far inputs remain far
when hashed. Consider an adversarial setting, not where a person wishes to evade detection,
but where she wishes to be mistaken for someone else. Her face x′ will undoubtably be
different (far) from her target x, but there is nothing preventing her from slightly altering
her face and passing as a completely different person when using a system with such a
one-sided guarantee. This is where our notion of robustness comes in (as well as the need for
cryptography): not only will adversarially chosen close x and x′ map to close h(x) and h(x′),
but if adversarially chosen x and x′ are far, they will be mapped to far outputs, unless the
adversary is able to break a cryptographic assumption.

Comparison to Secure Sketches and Fuzzy Extractors

It is worth explicitly comparing fuzzy extractors and secure sketching to this primitive [9],
as they aim to achieve similar goals. Both of these seek to preserve the privacy of their
inputs. Secure sketches generate random-looking sketches that hide information about the
original input so that the original input can be reconstructed when given something close to
it. Fuzzy extractors generate uniform-looking keys based off of fuzzy (biometric) data also
using entropy: as long as the input has enough entropy, so will the output. As stated above,
both guarantee that if inputs are close, they will ‘sketch’ or ‘extract’ to the same object.
Now, the entropy of the sketch or key guarantees that randomly generated far inputs will
not collide, but there are no guarantees about adversarially generated far inputs. To use the
example above, it could be that once an adversary sees a sketch or representation, she can
generate two far inputs that will reconstruct to the correct input.

Robust Property-Preserving Hash Functions

We put forth several notions of robustness for property-preserving hash (PPH) functions
which capture adversaries with increasing power and access to the hash function. We then
ask which properties admit robust property-preserving hash functions, and show positive
and negative results.

On the negative side, using a connection to communication complexity, we show that most
properties and even simple ones such as set disjointness, inner product and greater-than
do not admit non-trivial property-preserving hash functions.
On the positive side, we provide two constructions of robust property-preserving hash
functions (satisfying the strongest of our notions). The first is based on the standard
cryptographic assumption of collision-resistant hash functions, and the second achieves

ITCS 2019



16:4 Adversarially Robust Property-Preserving Hash Functions

more aggressive parameters under a new assumption related to the hardness of syndrome
decoding on low density parity-check (LDPC) codes. The first is expanded upon in this
version (section 4), while the second is in the full version.
Finally, in the full version, we show that for essentially any non-trivial predicate (which we
call collision-sensitive), achieving even a mild form of robustness requires cryptographic
assumptions.

We proceed to describe our contributions in more detail.

1.1 Our Results and Techniques
We explore two notions of properties. The first is that of property classes P = {P : D →
{0, 1}}, sets of single-input predicates. This notion is the most general, and is the one in which
we prove lower bounds. The second is that of two-input properties P : D×D → {0, 1}, which
compares two inputs. This second notion is more similar to standard notions of universal
hashing and collision-resistance, stronger than the first, and where we get our constructions.
We note that a two-input predicate has an analogous predicate-class P = {Px}x∈D, where
Px1(x2) = P (x1, x2).

The notion of a property can be generalized in many ways, allowing for promise properties
which output 0, 1 or ? (a don’t care symbol), and allowing for more than 2 inputs. The simplest
notion of correctness for property-preserving hash functions requires that, analogously to
universal hash functions,

∀x, y ∈ D, Pr[h← H : H.Eval(h, h(x), h(y)) 6= P (x, y)] = negl(λ)

or for single-input predicate-classes

∀x ∈ D and P ∈ P, Pr[h← H : H.Eval(h, h(x), P ) 6= P (x)] = negl(λ)

where λ is a security parameter. Notice in the single-input case, the “second” input can be
seen as the predicate chosen from the class.

For the sake of simplicity in our overview, we will focus on two-input predicates.

Defining Robust Property-Preserving Hashing

We define several notions of robustness for PPH, each one stronger than the last. Here, we
describe the strongest of all, called direct-access PPH.

In a direct-access PPH, the (polynomial-time) adversary is given the hash function and is
asked to find a pair of bad inputs, namely x, y ∈ D such that H.Eval(h, h(x), h(y)) 6= P (x, y).
That is, we require that

∀ p.p.t. A,Pr[h← H; (x, y)← A(h) : H.Eval(h, h(x), h(y)) 6= P (x, y)] = negl(λ),

where we use the notation Pr[A1; . . . ;Am : E] to denote the probability that event E
occurs following an experiment defined by executing the sequence A1, . . . , Am in order. The
direct-access definition is the analog of collision-resistant hashing for general properties.

Our other definitions vary by how much access the adversary is given to the hash function,
and are motivated by different application scenarios. From the strong to weak, these include
double-oracle PPH where the adversary is given access to a hash oracle and a hash evaluation
oracle, and evaluation-oracle PPH where the adversary is given only a combined oracle.
Definitions similar to double-oracle PPH have been proposed in the context of adversarial
bloom filters [24], and ones similar to evaluation-oracle PPH have been proposed in the
context of showing attacks against property-preserving hash functions [12]. For more details,
we refer the reader to Section 2.
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Connections to Communication Complexity and Negative Results

Property-preserving hash functions for a property P , even without robustness, imply
communication-efficient protocols for P in several models. For example, any PPH for
P implies a protocol for P in the simultaneous messages model of Babai, Gal, Kimmel and
Lokam [3] wherein Alice and Bob share a common random string h, and hold inputs x and y
respectively. Their goal is to send a single message to Charlie who should be able to compute
P (x, y) except with small error. Similarly, another formalization of PPH that we present,
called PPH for single-input predicate classes (see Section 2) implies efficient protocols in the
one-way communication model [31].

We use known lower bounds in these communication models to rule out PPHs for several
interesting predicates (even without robustness). There are two major differences between
the PPH setting and the communication setting, however: (a) in the PPH setting, we demand
an error that is negligible (in a security parameter); and (b) we are happy with protocols
that communicate n − 1 bits (or the equivalent bound in the case of promise properties)
whereas the communication lower bounds typically come in the form of Ω(n) bits. In other
words, the communication lower bounds as-is do not rule out PPH.

At first thought, one might be tempted to think that the negligible-error setting is the
same as the deterministic setting where there are typically lower bounds of n (and not
just Ω(n)); however, this is not the case. For example, the equality function which has a
negligible error public-coin simultaneous messages protocol (simply using universal hashing)
with communication complexity CC = O(λ) and deterministic protocols require CC ≥ n.
Thus, deterministic lower bounds do not (indeed, cannot) do the job, and we must better
analyze the randomized lower bounds. Our refined analysis shows the following lower bounds:

PPH for the Gap-Hamming (promise) predicate with a gap of
√
n/2 is impossible by

refining the analysis of a proof by Jayram, Kumar and Sivakumar [15]. The Gap-Hamming
predicate takes two vectors in {0, 1}n as input, outputs 1 if the vectors are very far, 0 if
they are very close, and we do not care what it outputs for inputs in the middle.
We provide a framework for proving PPHs are impossible for some total predicates,
characterizing these classes as reconstructing. A predicate-class is reconstructing if, when
only given oracle access to the predicates of a certain value x, we can efficiently determine
x with all but negligible probability.4 With this framework, we show that PPH for the
Greater-Than (GT) function is impossible. It was known that GT required Ω(n) bits (for
constant error) [27], but we show a lower bound of exactly n if we want negligible error.
Index and Exact-Hamming are also reconstructing predicates.
We also obtain a lower bound for a variant of GT: the (promise) Gap-k GT predicate
which on inputs x, y ∈ [N = 2n], outputs 1 if x− y > k, 0 if y − x > k, and we do not
care what it outputs for inputs in between. Here, exactly n− log(k)− 1 bits are required
for a perfect PPH. This is tight: we show that with fewer bits, one cannot even have a
non-robust PPH, whereas there is a perfect robust PPH that compresses to n− log(k)− 1
bits.

New Constructions

Our positive results are two constructions of a direct-access PPH for gap-Hamming for
n-length vectors for large gaps of the form ∼ O(n/ logn) (as opposed to an O(

√
n)-gap for

which we have a lower bound). Let us recall the setting: the gap Hamming predicate Pham,

4 In the single-predicate language of above, the predicate class corresponds to P = {P (x, ·)}.
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parameterized by n, d and ε, takes as input two n-bit vectors x and y, and outputs 1 if the
Hamming distance between x and y is greater than d(1 + ε), 0 if it is smaller than d(1− ε)
and a don’t care symbol ? otherwise. To construct a direct-access PPH for this (promise)
predicate, one has to construct a compressing family of functions H such that

∀ p.p.t. A,Pr[h← H; (x, y)← A(h) : Pham(x, y) 6= ?

∧H.Eval(h, h(x), h(y)) 6= Pham(x, y)] = negl(λ). (1)

Our two constructions offer different benefits. The first provides a clean general approach,
and relies on the standard cryptographic assumption of collision-resistant hash functions.
The second builds atop an existing one-way communication protocol, supports a smaller
gap and better efficiency, and ultimately relies on a (new) variant of the syndrome decoding
assumption on low-density parity check codes.

Construction 1. The core idea of the first construction is to reduce the goal of robust
Hamming PPH to the simpler one of robust equality testing; or, in a word, “subsampling.”
The intuition is to notice that if x1 ∈ {0, 1}n and x2 ∈ {0, 1}n are close, then most small
enough subsets of indices of x1 and x2 will match identically. On the other hand, if x1 and
x2 are far, then most large enough subsets of indices will differ.

The hash function construction will thus fix a collection of sets S = {S1, . . . , Sk}, where
each Si ⊆ [n] is a subset of appropriately chosen size s. The desired structure can be
achieved by defining the subsets Si as the neighbor sets of a bipartite expander. On input
x ∈ {0, 1}n, the hash function will consider the vector y = (x|S1 , . . . ,x|Sk) where x|S denotes
the substring of x indexed by the set S. The observation above tells us that if x1 and x2 are
close (resp. far), then so are y1 and y2.

Up to now, it is not clear that progress has been made: indeed, the vector y is not
compressing (in which case, why not stick with x1,x2 themselves?). However, y1,y2 satisfy
the desired Hamming distance properties with fewer symbols over a large alphabet, {0, 1}s.
As a final step, we can then leverage (standard) collision-resistant hash functions (CRHF) to
compress these symbols. Namely, the final output of our hash function h(x) will be the vector
(g(x|S1), . . . , g(x|Sk)), where each substring of x is individually compressed by a CRHF g.

The analysis of the combined hash construction then follows cleanly via two steps. The
(computational) collision-resistence property of g guarantees that any efficiently found pair
of inputs x1,x2 will satisfy that their hash outputs

h(x1) = (g(x1|S1), . . . , g(x1|Sk)) and h(x2) = (g(x2|S1), . . . , g(x2|Sk))

are close if and only if it holds that

(x1|S1 , . . . ,x1|Sk) and (x2|S1 , . . . ,x2|Sk)

are close as well; that is, x1|Si = x2|Si for most Si. (Anything to the contrary would imply
finding a collision in g.) Then, the combinatorial properties of the chosen index subsets
Si ensures (unconditionally) that any such inputs x1,x2 must themselves be close. The
remainder of the work is to specify appropriate parameter regimes for which the CRHF can
be used and the necessary bipartite expander graphs exist. Informally, we get the following
theorem statement:

I Theorem 1 (Collision-resistance-PPH informal). Let λ be a security parameter. Assuming
that CRHFs exist, for any polynomial n = n(λ), and any constants ε, η, c > 0, there is
an η-compressing robust property preserving hash family for GapHamming(n, d, ε) where
d = o(n/λc).
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Construction 2. The starting point for our second construction is a simple non-robust
hash function derived from a one-way communication protocol for gap-Hamming due to
Kushilevitz, Ostrovsky, and Rabani [19]. In a nutshell, the hash function is parameterized by
a random sparse m× n matrix A with 1’s in 1/d of its entries and 0’s elsewhere; multiplying
this matrix by a vector z “captures” information about the Hamming weight of z. However,
this can be seen to be trivially not robust when the hash function is given to the adversary.
The adversary simply performs Gaussian elimination, discovering a “random collision” (x, y)
in the function, where, with high probability x⊕ y will have large Hamming weight. This
already breaks equation (1).

The situation is somewhat worse. Even in a very weak, oracle sense, corresponding to
our evaluation-oracle-robustness definition, a result of Hardt and Woodruff [12] shows that
there are no linear functions h that are robust for the gap-`2 predicate. While their result
does not carry over as-is to the setting of `0 (Hamming), we conjecture it does, leaving us
with two options: (a) make the domain sparse: both the Gaussian elimination attack and
the Hardt-Woodruff attack use the fact that Gaussian elimination is easy on the domain of
the hash function; however making the domain sparse (say, the set of all strings of weight
at most βn for some constant β < 1) already rules it out; and (b) make the hash function
non-linear: again, both attacks crucially exploit linearity. We will pursue both options, and
as we will see, they are related.

But before we get there, let us ask whether we even need computational assumptions to
get such a PPH. Can there be information-theoretic constructions? The first observation is
that by a packing argument, if the output domain of the hash function has size less than
2n−n·H( d(1+ε)

n ) ≈ 2n−d logn(1+ε) (for small d), there are bound to be “collisions”, namely, two
far points (at distance more than d(1 + ε)) that hash to the same point. So, you really
cannot compress much information-theoretically, especially as d becomes smaller. A similar
bound holds when restricting the domain to strings of Hamming weight at most βn for
constant β < 1.

With that bit of information, let us proceed to describe in a very high level our con-
struction and the computational assumption. Our construction follows the line of thinking
of Applebaum, Haramaty, Ishai, Kushilevitz and Vaikuntanathan [2] where they used the
hardness of syndrome decoding problems to construct collision-resistant hash functions.
Indeed, in a single sentence, our observation is that their collision-resistant hash functions
are locality-sensitive by virtue of being input-local, and thus give us a robust gap-Hamming
PPH (albeit under a different assumption).

In slightly more detail, our first step is to simply take the construction of Kushilevitz,
Ostrovsky, and Rabani [19], and restrict the domain of the function. We show that finding
two close points that get mapped to far points under the hash function is simply impossible
(for our setting of parameters). On the other hand, there exist two far points that get mapped
to close points under the hash functions (in fact, they even collide). Thus, showing that it is
hard to find such points requires a computational assumption.

In a nutshell, our assumption says that given a random matrix A where each entry
is chosen from the Bernoulli distribution with Ber(1/d) with parameter 1/d, it is hard to
find a large Hamming weight vector x where Ax (mod 2) has small Hamming weight. Of
course, “large” and “small” here have to be parameterized correctly (see the full version for
more details), however we observe that this is a generalization of the syndrome decoding
assumption for low-density parity check (LDPC) codes, made by [2].

In our second step, we remove the sparsity requirement on the input domain of the
predicate. We show a sparsification transformation which takes arbitrary n-bit vectors and
outputs n′ > n-bit sparse vectors such that (a) the transformation is injective, and (b) the
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expansion introduced here does not cancel out the effect of compression achieved by the
linear transformation x→ Ax. This requires careful tuning of parameters for which we refer
the reader to the full version of this paper. Informally, our theorem statement is

I Theorem 2 (Shortest-Vector PPH informal). Let λ be a security parameter. Assuming the
shortest-vector assumption (discussed above) with reasonable parameter settings, for any
polynomial n = n(λ), and any constants ε, η > 0, there is an η-compressing robust property
preserving hash family for GapHamming(n, d, ε) where d ≤ n

2 logn ((1− ε) + (1 + ε)).

Notice that we get a better parameter d than from our first construction. This is, of course,
because we make a stronger assumption. For more details, we refer the reader to the full
version of this paper.

The Necessity of Cryptographic Assumptions

The goal of robust PPH is to compress beyond the information theoretic limits, to a regime
where incorrect hash outputs exist but are hard to find. If robustness is required even when
the hash function is given, this inherently necessitates cryptographic hardness assumptions.
A natural question is whether weaker forms of robustness (where the adversary sees only
oracle access to the hash function) similarly require cryptographic assumptions, and what
types of assumptions are required to build non-trivial PPHs of various kinds.

As a final contribution, we identify necessary assumptions for PPH for a kind of predicate
we call collision sensitive. In particular, PPH for any such predicate in the double-oracle
model implies the existence of one-way functions, and in the direct-access model implies
existence of collision-resistant hash functions. In a nutshell, collision-sensitive means that
finding a collision in the predicate breaks the property-preserving nature of any hash. The
proof uses and expands on techniques from the work of Naor and Yogev on adversarially
robust Bloom Filters [24]. The basic idea is the same: without OWFs, we can invert arbitrary
polynomially-computable functions with high probability in polynomial time, and using this
we get a representation of the hash function/set, which can be used to find offending inputs.

2 Defining Property-Preserving Hash Functions

Our definition of property-preserving hash functions (PPHs) comes in several flavors, de-
pending on whether we support total or partial predicates; whether the predicates take a
single input or multiple inputs; and depending on the information available to the adversary.
We discuss each of these choices in turn.

Total vs. Partial Predicates

We consider total predicates that assign a 0 or 1 output to each element in the domain, and
promise (or partial) predicates that assign a 0 or 1 to a subset of the domain and a wildcard
(don’t-care) symbol ? to the rest. More formally, a total predicate P on a domain X is a
function P : X → {0, 1}, well-defined as 0 or 1 for every input x ∈ X. A promise predicate P
on a domain X is a function P : X → {0, 1, ?}. Promise predicates can be used to describe
scenarios (such as gap problems) where we only care about providing an exact answer on a
subset of the domain.

Our definitions below will deal with the more general case of promise predicates, but we
will discuss the distinction between the two notions when warranted.
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Single-Input vs Multi-Input Predicates

In the case of single-input predicates, we consider a class of properties P and hash a single
input x into h(x) in a way that given h(x), one can compute P (x) for any P ∈ P . Here, h is
a compressing function. In the multi-input setting, we think of a single fixed property P that
acts on a tuple of inputs, and require that given h(x1), h(x2), . . . , h(xk), one can compute
P (x1, x2, . . . , xk). The second syntax is more expressive than the first, and so we use the
multi-input syntax for constructions and the single-input syntax for lower bounds5.

Before we proceed to discuss robustness, we provide a working definition for a property-
preserving hash function for the single-input syntax. For the multi-input predicate definition
and further discussion, see the full version.

I Definition 3. A (non-robust) η-compressing Property Preserving Hash (η-PPH) family
H = {h : X → Y } for a function η and a class of predicates P requires the following two
efficiently computable algorithms:
H.Samp(1λ)→ h is a randomized p.p.t. algorithm that samples a random hash function
from H with security parameter λ.
H.Eval(h, P, y) is a deterministic polynomial-time algorithm that on input the hash
function h, a predicate P ∈ P and y ∈ Y (presumably h(x) for some x ∈ X), outputs a
single bit.

Additionally, H must satisfy the following two properties:
η-compressing, namely, log |Y | ≤ η(log |X|), and
robust, according to one of four definitions that we describe below, leading to four notions
of PPH: definition 4 (non-robust PPH), 5 (evaluation-oracle-robust PPH or EO-PPH), 7
(double-oracle-robust PPH or DO-PPH), or 9 (direct-access robust PPH or DA-PPH).
We will refer to the strongest form, namely direct-access robust PPH as simply robust
PPH when the intent is clear from the context. See also Table 1 for a direct comparison
between these.

The Many Types of Robustness

We will next describe four definitions of robustness for PPHs, starting from the weakest to
the strongest. Each of these definitions, when plugged into the last bullet of Definition 3,
gives rise to a different type of property-preserving hash function. In each of these definitions,
we will describe an adversary whose goal is to produce an input and a predicate such that the
hashed predicate evaluation disagrees with the truth. The difference between the definitions
is in what an adversary has access to, summarized in Table 1.

2.1 Non-Robust PPH
We will start by defining the weakest notion of robustness which we call non-robust PPH. Here,
the adversary has no information at all on the hash function h, and is required to produce a
predicate P and a valid input x, namely where P (x) 6= ?, such that H.Eval(h, P, x) 6= P (x)
with non-negligible probability. When P is the family of point functions (or equality functions),
this coincides with the notion of 2-universal hash families [5]6.

5 There is yet a third possibility, namely where there is a fixed predicate P that acts on a single input
x, and we require that given h(x), one can compute P (x). This makes sense when the computational
complexity of h is considerably less than that of P , say when P is the parity function and h is an AC0

circuit, as in the work of Dubrov and Ishai [10]. We do not explore this third syntax further in this
work.

6 While 2-universal hashing corresponds with a two-input predicate testing equality, the single-input
version ({Px1} where Px1 (x2) = (x1 == x2)) is more general, and so it is what we focus on.
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Table 1 A table comparing the adversary’s access to the hash function within different robustness
levels of PPHs.

For security parameter λ, fixed predicate class P, and h sampled from H.Samp
Non-Robust PPH Adversary has no access to hash function or evaluation.

Evaluation-Oracle PPH Access to the evaluation oracle OEval
h (x, P ) = H.Eval(h, P, h(x)).

Double-Oracle PPH Access to both OEval
h (as above) and hash oracle OHash

h (x) = h(x).
Robust PPH Direct access to the hash function, description of h.

“Direct Access”

Here and in the following, we use the notation Pr[A1; . . . ;Am : E] to denote the
probability that event E occurs following an experiment defined by executing the sequence
A1, . . . , Am in order.

I Definition 4. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of non-robust PPH functions if for any P ∈ P and x ∈ X such that for P (x) 6= ?,

Pr[h← H.Samp(1λ) : H.Eval(h, P, h(x))) 6= P (x)] ≤ negl(λ).

2.2 Evaluation-Oracle Robust PPH

In this model, the adversary has slightly more power than in the non-robust setting. Namely,
she can adaptively query an oracle that has h← H.Samp(1λ) in its head, on inputs P ∈ P
and x ∈ X, and obtain as output the hashed evaluation result H.Eval(h, P, h(x)). Let
Oh(x, P ) = H.Eval(h, P, h(x)).

I Definition 5. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of evaluation-oracle robust (EO-robust) PPH functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P )← AOh(1λ) :
P (x) 6= ? ∧H.Eval(h, P, h(x)) 6= P (x)] ≤ negl(λ).

The reader might wonder if this definition is very weak, and may ask if it follows just
from the definition of a non-robust PPH family. In fact, for total predicates, we show that
the two definitions are the same. At a high level, simply querying the evaluation oracle on
(even adaptively chosen) inputs cannot reveal information about the hash function since with
all but negligible probability, the answer from the oracle will be correct and thus simulatable
without oracle access. The proof of the following lemma is in the full version.

I Lemma 6. Let P be a class of total predicates on X. A non-robust PPH H for P is also
an Evaluation-Oracle robust PPH for P for the same domain X and same codomain Y .

However, when dealing with promise predicates, an EO-robustness adversary has the
ability to make queries that do not satisfy the promise, and could get information about the
hash function, perhaps even reverse-engineering the entire hash function itself. Indeed, Hardt
and Woodruff [12] show that there are no EO-robust linear hash functions for a certain
promise-`p distance property; whereas, non-robust linear hash functions for these properties
follow from the work of Indyk [14, 13].
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2.3 Double-Oracle PPH
We continue our line of thought, giving the adversary more power. Namely, she has access
to two oracles, both have a hash function h← H.Samp(1λ) in their head. The hash oracle
OHash
h , parameterized by h ∈ H, outputs h(x) on input x ∈ X. The predicate evaluation

oracle OEval
h , also parameterized by h ∈ H, takes as input P ∈ P and y ∈ Y and outputs

H.Eval(h, P, y). When P is the family of point functions (or equality functions), this coincides
with the notion of psuedo-random functions.

I Definition 7. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of double-oracle-robust PPH (DO-PPH) functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P )← AO
Hash
h ,OEval

h (1λ) :
P (x) 6= ? ∧H.Eval(h, P, h(x)) 6= P (x)] ≤ negl(λ).

We show that any evaluation-oracle-robust PPH can be converted into a double-oracle-
robust PPH at the cost of a computational assumption, namely, one-way functions. In a
nutshell, the observation is that the output of the hash function can be encrypted using a
symmetric key that is stored as part of the hash description, and the evaluation proceeds by
first decrypting. The proof of the following lemma is in the full version.

I Lemma 8. Let P be a class of (total or partial) predicates on X. Assume that one-way
functions exist. Then, any EO-robust PPH for P can be converted into a DO-robust PPH
for P.

2.4 Direct-Access Robust PPH
Finally, we define the strongest notion of robustness where the adversary is given the
description of the hash function itself. When P is the family of point functions (or equality
functions), this coincides with the notion of collision-resistant hash families.

I Definition 9. A family of PPH functions H = {h : X → Y } for a class of predicates P is
a family of direct-access robust PPH functions if, for any PPT adversary A,

Pr[h← H.Samp(1λ); (x, P )← A(h) :
P (x) 6= ? ∧H.Eval(h, P, h(x))) 6= P (x)] ≤ negl(λ).

We will henceforth focus on direct-access-robust property-preserving hash functions and
refer to them simply as robust PPHs.

3 Property-Preserving Hashing and Communication Complexity

In this section, we identify and examine a relationship between property-preserving hash
families (in the single-input syntax) and protocols in the one-way communication (OWC)
model. A OWC protocol is a protocol between two players, Alice and Bob, with the goal of
evaluating a certain predicate on their inputs and with the restriction that only Alice can
send messages to Bob.

Our first observation is that non-robust property-preserving hash functions and OWC
protocols [31] are equivalent except for two changes. First, PPHs require the parties to be
computationally efficient, and second, PPHs also require protocols that incur error negligible
in a security parameter. It is also worth noting that while we can reference lower-bounds in
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the OWC setting, these lower bounds are typically of the form Ω(n) and are not exact. On
the other hand, in the PPH setting, we are happy with getting a single bit of compression,
and so an Ω(n) lower bound still does not tell us whether or not a PPH is possible. So, while
we can use previously known lower bounds for some well-studied OWC predicates, we need to
refine them to be exactly n in the presence of negligible error. We also propose a framework
(for total predicates) that yields exactly n lower bounds for Indexn, GreaterThan,and
ExactHamming.

3.1 PPH Lower Bounds from One-Way Communication Lower Bounds
In this section, we will review the definition of OWC, and show how OWC lower bounds
imply PPH impossibility results.

I Definition 10. [31, 18] A δ-error public-coin OWC protocol Π for a two-input predicate
P : {0, 1}n × {0, 1}n → {0, 1} consists of a space R of randomness, and two functions
ga : X1 ×R→ Y and gb : Y ×X2 ×R→ {0, 1} so that for all x1 ∈ X1 and x2 ∈ X2,

Pr[r ← R; y = ga(x1; r) : gb(y, x2; r) 6= P (x1, x2)] ≤ δ.

A δ-error public-coin OWC protocol Π for a class of predicates P = {P : {0, 1}n → {0, 1}},
is defined much the same as above, with a function ga : X ×R→ Y , and another function
gb : Y × P ×R→ {0, 1}, which instead of taking a second input, takes a predicate from the
predicate class. We say Π has δ-error if

Pr[r ← R; y = ga(x; r) : gb(y, P ; r) 6= P (x)] ≤ δ

Let Protocolsδ(P ) denote the set of OWC protocols with error at most δ for a predicate
P , and for every Π ∈ Protocolsδ(P ), let YΠ be the range of messages Alice sends to Bob (the
range of ga) for protocol Π.

I Definition 11. The randomized, public-coin OWC complexity of a predicate P with error
δ, denoted RA→Bδ (P ), is the minimum over all Π ∈ Protocolsδ(P ) of dlog |YΠ|e.

For a predicate class P, we define the randomized, public-coin OWC complexity with
error δ, denoted RA→Bδ (P), is the minimum over all Π ∈ Protocolsδ(P) of dlog |YΠ|e.

A PPH scheme for a two-input predicate7 P yields a OWC protocol for P with commu-
nication comparable to a single hash output size.

I Theorem 12. Let P be any two-input predicate P and P = {Px}x∈{0,1}n be the corres-
ponding predicate class where Px2(x1) = P (x1, x2). Now, let H be a PPH in any model for
P that compresses n bits to m = ηn. Then, there exists a OWC protocol Π such that the
communication of Π is m and with negligible error.

Conversely, the amount of possible compression of any (robust or not) PPH family
H : {h : X → Y } is lower bounded by RA→Bnegl(λ)(P ). Namely, log |Y | ≥ RA→Bnegl(λ)(P).

Essentially, the OWC protocol is obtained by using the public common randomness r to
sample a hash function h = H.Samp(1λ; r), and then Alice simply sends the hash h(x1) of
her input to Bob. (Proof in full version.)

7 Or rather, for the induced class of single-input predicates P = {Px2}x2∈{0,1}n , where Px2 (x1) =
P (x1, x2); we will use these terminologies interchangeably.
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3.2 OWC and PPH lower bounds for Reconstructing Predicates

We next leverage this connection together with OWC lower bounds to obtain impossibility
results for PPHs. First, we will discuss the total predicate case; we consider some partial
predicates in section 3.3.

As discussed, to demonstrate the impossibility of a PPH, one must give an explicit n-bit
communication complexity lower bound (not just Ω(n)) for negligible error. We give such
lower bounds for an assortment of predicate classes by a general approach framework we
refer to as reconstructing. Intuitively, a predicate class is reconstructing if, when given only
access to predicates evaluated on an input x, one can, in polynomial time, determine the
exact value of x with all but negligible probability.

I Definition 13. A class P of total predicates P : {0, 1}n → {0, 1}, is reconstructing if there
exists a PPT algorithm L (a ‘learner’) such that for all x ∈ {0, 1}n, given randomness r and
oracle access to predicates P on x, denoted Ox(P ) = P (x),

Pr
r

[LOx(r)→ x] ≥ 1− negl(n).

I Theorem 14. If P is a reconstructing class of predicates on input space {0, 1}n, then a
PPH does not exist for P.

The full proof appears in the full version. The main idea is to simulate the learner L on two
different inputs x1 and x2: at some query, L must get a different answer from the oracle,
differentiating x1 from x2. Since h is compressing, there are many x1 and x2 that collide
on the same output. We show that we can guess such an x1 that is paired with an x2, and
the query that they differ on with 1/poly(n) probability. Once we do that, the oracle must
answer incorrectly for one of x1 or x2, and there is a half chance that we chose the xi that
evaluated incorrectly.

Reconstructing using Indexn, GreaterThan, or ExactHamming

We turn to specific examples of predicate classes and sketch why they are reconstructing.
For formal proofs, we refer the reader to the full version of this paper.

The Indexn class of predicates {P1, . . . , Pn} is defined over x ∈ {0, 1}n where Pi(x) = xi,
the i’th bit of x. Indexn is reconstructing simply because the learner L can just query
the each of the n indices of the input and exactly reconstruct: xi = Pi(x).
The GreaterThan class of predicates {Px}x∈[2n] is defined over x ∈ [2n] = {0, 1}n
where Px2(x1) = 1 if x1 > x2 and 0 otherwise. GreaterThan is reconstructing because
we can run a binary search on the input space, determining the exact value of x in
n queries. GreaterThan is an excellent example for how an adaptive learner L can
reconstruct.
The ExactHamming(α) class of predicates {Px}x∈{0,1}n is defined over x ∈ {0, 1}n
where Px2(x1) = 1 if ||x1−x2||0 > α and 0 otherwise. To show that ExactHamming(n/2)
is reconstructing requires a little more work. The learner L resolves each index of x
independently. For each index, L makes polynomially many random-string queries r to
Ox; if the i’th bit of r equals xi, then r is more likely to be within n/2 hamming distance
of x, and if the bits are different, r is more likely to not be within n/2 hamming distance
of x. The proof uses techniques from [15], and is an example where the learner uses
randomness to reconstruct.
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We note that it was already known that Indexn and ExactHamming(n/2) had OWC
complexity of n-bits for any negligible error [18], though no precise lower bound for randomized
OWC protocols was known for GreaterThan. What is new here is our unified framework.

3.3 Lower bounds for some partial predicates

In the previous section, we showed how the ability to reconstruct an input using a class
of total predicates implied that PPHs for the class cannot exist. This general framework,
unfortunately, does not directly extend to the partial-predicate setting, since it is unclear
how to define the behavior of an oracle for the predicate. Nevertheless, we can still take
existing OWC lower bounds and their techniques to prove impossibility results in this case.
We will show that GapHamming(n, n/2, 1/

√
n) (the promise version of ExactHamming)

cannot admit a PPH, and that while Gap-k GreaterThan has a perfectly correct PPH
compressing to n− log(k)− 1 bits, compressing any further results in polynomial error (and
thus no PPH with more compression).

First, we define these partial predicates.

I Definition 15. The definitions for GapHamming(n, d, ε) and Gap-k GreaterThan are:
The GapHamming(n, d, ε) class of predicates {Px}x∈{0,1}n has Px2(x1) = 1 if ||x1 −
x2||0 ≥ d(1 + ε), 0 if ||x1 − x2||0 ≤ d(1− ε), and ? otherwise.
The Gap-k GreaterThan class of predicates {Px}x∈[2n] has Px2(x1) = 1 if x1 > x2 + k,
0 if x1 < x2 − k, and ? otherwise.

Now, we provide some intuition for why these lower bounds (and the upper bound) exist.

Gap-Hamming

Our lower bound will correspond to a refined OWC lower bound for the Gap-Hamming
problem in the relevant parameter regime. Because we want to prove that we cannot even
compress by a single bit, we need to be careful with our reduction: we want the specific
parameters for which we have a lower bound, and must keep close track of how the error
changes within our reduction.

I Theorem 16. There does not exist a PPH for GapHamming(n, n/2, 1/
√
n).

To prove, we show the OWC complexity RA→Bnegl(n) (GapHamming (n, n/2, 1/
√
n)) = n. A

Ω(n) OWC lower bound for Gap-Hamming in this regime has been proved in a few different
ways [29, 30, 15]. Our proof will be a refinement of [15] and is detailed in the full version.

The high-level structure of the proof is to reduce Indexn to GapHamming with the
correct parameters. Very roughly, the ith coordinate of an input x ∈ {0, 1}n can be inferred
from the bias it induces on the Hamming distance between x and random public vectors.
The reduction adds negligible error, but since we require n bits for negligible-error Indexn,
we also require n bits for a OWC protocol for GapHamming.

Notice that this style of proof looks morally as though we are “reconstructing” the
input x using Indexn. However, the notion of getting a reduction from Indexn to another
predicate-class in the OWC model is not the same as being able to query an oracle about
the predicate and reconstruct based off of oracle queries. Being able to make a similar
reconstructing characterization of partial-predicates as we have for total predicates would be
useful and interesting in proving further lower bounds.
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Gap-k GreaterThan

This predicate is a natural extension of GreaterThan: we only care about learning
that x1 < x2 if |x1 − x2| is larger than k (the gap). Intuitively, a hash function can
maintain this information by simply removing the log(k) least significant bits from inputs
and directly comparing: if h(x1) = h(x2), they can be at most k apart. We can further
remove one additional bit using the fact that we know x2 when given h(x1) (considering
Gap-k GreaterThan as the corresponding predicate class parameterized by x2).

For the lower bound, we prove a OWC lower bound, showing RA→Bnegl(n)(P) = n− log(k)−1.
This will be a proof by contradiction: if we compress to n− log(k)− 2 bits, we obtain many
collisions that are more than 3.5k apart. These far collisions imply the existence of inputs
that the OWC protocol must fail on, even given the gap. We are able to find these inputs
the OWC must fail on with polynomial probability, and this breaks the all-but-negligible
correctness of the protocol. Our formal theorem statement is below.

I Theorem 17. There exists a PPH with perfect correctness for Gap-k GreaterThan com-
pressing from n bits to n− log(k)− 1. This is tight: no PPH for Gap-k GreaterThan can
compress to fewer than n− log(k)− 1 bits.

For the proof, see the full version. To understand the construction of the PPH, first
consider a hash function that just chops off the least-significant log(k) bits from the inputs.
Clearly, comparing two hashed values for which is greater than the other gives the gap-k-
GreaterThan result correctly. In order to get the last bit off, we chop off the least-significant
log(k) bits and then round up or down depending on the log(k) + 1’th significant bit before
removing it. Evaluation is almost essentially comparing hashes, but we exploit the fact that
we know the entire second input (x2), which is why we are able to remove one extra bit.
Proving the lower bound is a bit trickier, but essentially involves simulating a binary search.

4 A Gap-Hamming PPH from Collision Resistance

In this section, we present one of our constructions for a PPH for the GapHamming problem.
Recall from section 3.3 that the gap-Hamming property P = GapHamming(n, d, ε) is
parameterized by the input domain {0, 1}n, an integer d ∈ [n] and a parameter ε ∈ R≥0,
so that P (x1,x2) = 1 if ||x1 ⊕ x2||0 ≥ d(1 + ε) and 0 if ||x1 ⊕ x2||0 ≤ d(1 − ε). Both
of our constructions will distinguish between d(1 − ε)-close and d(1 + ε)-far vectors for
d ≈ O(n/ logn). This means that the gap is quite large, approximately O(n/ logn).

This construction is a robust m/n-compressing GapHamming(n, d, ε) PPH for any
m = nΩ(1), d = o(n/ log λ) and any constant ε > 0. Security of the construction holds under
the (standard) assumption that collision-resistant hash function families (CRHFs) exist.

We now informally describe the idea of the construction which, in one word, is “sub-
sampling”. In slightly more detail, the intuition is to notice that if x1 ∈ {0, 1}n and
x2 ∈ {0, 1}n are close, then most small enough subsets of indices of x1 and x2 will match
identically. On the other hand, if x1 and x2 are far, then most large enough subsets of indices
will differ. This leads us to the first idea for the construction, namely, fix a collection of sets
S = {S1, . . . , Sk} where each Si ⊆ [n] is a subset of appropriately chosen size s. On input
x ∈ {0, 1}n, output y = (x|S1 , . . . ,x|Sk) where x|S denotes the substring of x indexed by the
set S. The observation above tells us that if x1 and x2 are close (resp. far), so are y1 and y2.

However, this does not compress the vector x. Since the union of all the sets
⋃
i∈[k] Si

has to be the universe [n] (or else, finding a collision is easy), it turns out that we are just
comparing the vectors index-by-index. Fortunately, it is not necessary to output x|Si by
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themselves; rather we can simply output the collision-resistant hashes. That is, we will let
the PPH hash of x, denoted y, be (g(x|S1), . . . , g(x|Sk)) where g is a collision resistant hash
function randomly drawn from a CRHF family.

This simple construction works as long as s, the size of the sets Si, is Θ(n/d), and the
collection S satisfies that any subset of disagreeing input indices T ⊆ [n] has nonempty
intersection with roughly the corresponding fraction of subsets Si. The latter can be achieved
by selecting the Si of size Θ(n/d) at random, or alternatively as defined by the neighbor sets
of a bipartite expander. We are additionally constrained by the fact that the CRHF must be
secure against adversaries running in time poly(λ). So, let t = t(λ) be the smallest output
size of the CRHF such that it is secure against poly(λ)-time adversaries. Since the input
size s to the CRHF must be ω(t) so that g actually compresses, this forces n/d = ω(t), and
thus d = o(n/t).

Before presenting our construction more formally, we define our tools.

We will use a family of CRHFs that take inputs of variable size and produce outputs of t
bits and denote it by Ht = {h : {0, 1}∗ → {0, 1}t}. We implicitly assume a procedure for
sampling a seed for the CRHF given a security parameter 1λ. One could set t = ω(log λ)
and assume the exponential hardness of the CRHF, or set t = λO(1) and assume polynomial
hardness. These choices will result in different parameters of the PPH hash function.
We will use an (n, k,D, γ, α)-bipartite expander G = (L ∪R,E) which is a D-left-regular
bipartite graph, with |L| = n and |R| = k such that for every S ⊂ L for which |S| ≤ γn,
we have |N(S)| ≥ α|S|, where N(S) is the set of neighbors of S. For technical reasons,
we will need the expander to be δ-balanced on the right, meaning that for every v ∈ R,
|N(v)| ≥ (1− δ)nD/k.
A simple probabilistic construction shows that for every n ∈ N, k = o(n) and constant
a ∈ (0, 1), and any γ = o( k

n log(n/k) ) and D = Θ(log(1/γ)) so that for every δ > 0, δ-
balanced (n, k,D, γ, α)-bipartite expanders exist. In fact, there are even explicit efficient
constructions that match these parameters [4].

The construction is in Table 2. We first discuss explicit parameter settings.

Setting the Parameters

The parameters required for this construction to be secure and constructible are as follows.
Let n ∈ N and constant ε > 0.
We require two building blocks: a CRHF and an expander. So, let Ht = {g : {0, 1}∗ →
{0, 1}t} be a family of CRHFs secure against poly(λ)-time adversaries. Let G be a δ-
balanced (n, k,D, γ, α)-expander for a constant δ bounding the degree of the right-nodes,
where n is the size of the left side of the graph, k is the size of the right, D is the
left-degree, γn is the upper bound for an expanding set on the right that expands to a
set of size α times the original size.
These building blocks yield the following parameters for the construction: compression is
η = kt/n and our center for the Gap-Hamming problem is bounded by γn

(1+ε) ≤ d <
k

D(1−ε) .

If we consider what parameter settings yield secure CRHFs with output size t and for
what parameters we have expanders, we have a PPH construction where given any n and
ε, there exists a d = o(n) and η = O(1) such that Construction 2 is a robust PPH for
gap-Hamming. We will see that the smaller t is, the stronger the CRHF security assumption,
but the better our compression.

Now, given these settings of parameters, we have the following theorem that Construction
2 is a robust Gap-Hamming PPH.
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Table 2 Construction 2 of a robust GapHamming(n, d, ε) PPH family from CRHFs. Resulting
parameters (n,m, d, ε) discussed in text.

Robust GapHamming(n, d, ε) PPH family H from any CRHF

Our (n,m, d, ε)-robust PPH family H = (H.Samp,H.Eval) is defined as follows.
H.Samp(1λ, n). Fix a δ-balanced (n, k,D, γ, α)-bipartite expander G = (L ∪R,E) (either
deterministically or probabilistically). Sample a CRHF g ← Ht. Output h = (G, g).
H.Hash(h = (G, g),x). For every i ∈ [k], compute the (ordered) set of neighbors of the i-th
right vertex in G, denoted N(i). Let x̂(i) := x|N(i) be x restricted to the set N(i). Output

h(x) :=
(
g(x̂(1)), . . . , g(x̂(k))

)
as the hash of x.
H.Eval(h = (G, g),y1,y2). Compute the threshold τ = D · d · (1 − ε). Parse y1 =
(ŷ(1)

1 , . . . , ŷ(k)
1 ) and y2 = (ŷ(1)

2 , . . . , ŷ(k)
2 ). Compute

∆′ =
k∑
i=1

Ind(ŷ(i)
1 6= ŷ(i)

2 ),

where Ind denotes the indicator predicate. If ∆′ ≤ τ , output CLOSE. Otherwise, output
FAR.

I Theorem 18. Let λ be a security parameter. Assuming that exponentially secure CRHFs
exist, then for any polynomial n = n(λ), and any constants ε, η > 0, Construction 2 is
an η-compressing robust property preserving hash family for GapHamming(n, d, ε) where
d = o(n/ log λ log log λ). Assuming only that polynomially secure CRHFs exist, for any
constant c > 0, we achieve d = o(n/λc).

Proof. Before getting into the proof, we more explicitly define the parameters, including
parameters associated with the expander in our construction:
1. Let n ∈ N be the input size and let ε > 0 be any constant.
2. Our CRHF is Ht = {g : {0, 1}∗ → {0, 1}t}.
3. Our expander will be a δ-balanced (n, k,D, γ, α)-expander, where k < n/t, γ =

o( k
n log(n/k) ), D = Θ(log(1/γ)), and α > D · d(1−ε)

γn .
4. Our center for the gap-hamming problem is d, and is constrained by γn

1+ε ≤ d <
k

D(1−ε) .

5. Constraint 4 implies that k = nΩ(1), since γn·D(1−ε)
1+ε < k.

Now, we prove our construction is well-defined and efficient. Fix any δ, a ∈ (0, 1). In the
full version, we explicitly prove that δ-balanced (n, k,D, γ, α = an)-bipartite expanders exist
and can be efficiently sampled for k = o(n/ logn), D = Θ(log logn), and γ = Θ̃(1/ logn).
Thus, sampling the graph G before running the construction is efficient. Once we have a
G, sampling and running a CRHF k = O(n) times is efficient. Comparing k outputs of the
hash function is also efficient. Therefore, each of H.Samp, H.hash, and H.Eval is efficient in
λ = poly(n).

Now, we prove that Construction 2 is compressing. Points 2 and 3 mean that m = k · t <
n/t · t = n, as required.
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Lastly, we will prove our construction is robust. Let A be a PPT adversary. We will
show that A (in fact, even an unbounded adversary) cannot find x1 and x2 such that
||x1 − x2|| ≤ d(1− ε) but H.Eval(h, h(x1), h(x2)) evaluates to FAR, and that A must break
the collision-resistance of Ht in order to find x1 and x2 where ||x1 − x2|| ≥ d(1 + ε) but
H.Eval(h, h(x1), h(x2)) evaluates to CLOSE.

First, consider any x1,x2 ∈ {0, 1}n where ||x1 − x2||0 ≤ d(1− ε). Let ∆ = ||x1 − x2||0.
So, consider the set S ⊂ L corresponding to the indices that are different between x1 and
x2, and T = N(S) ⊂ R. The maximum size of T is |S| ·D, the degree of the graph.
For every i ∈ T , we get that the intermediate computation has x̂(i)

1 6= x̂(i)
2 , but for

every j 6∈ T , we have x̂(j)
1 = x̂(j)

2 which implies ŷ(j)
1 = ŷ(j)

2 after applying g. Therefore∑k
i=1 Ind(ŷ(i)

1 6= ŷ(i)
2 ) ≤

∑
i∈S Ind(ŷ(i)

1 6= ŷ(i)
2 ) +

∑
j 6∈S Ind(ŷ(j)

1 6= ŷ(j)
2 ) ≤ ∆ ·D.

We set the threshold τ = D · d · (1− ε) in the evaluation. Point 4 guarantees that τ < k

(and implicitly implies k > D(1− ε)), so because D ·∆ ≤ D ·d(1− ε) = τ < k, H.Eval will
evaluate ∆′ ≤ τ . Thus, H.Eval will always evaluate to CLOSE in this case, regardless of
the choice of CRHF.
Now consider ||x1 − x2||0 ≥ d(1 + ε), and again, let ∆ = ||x1 − x2||0 and define S ⊂ L

and T ⊂ R as before.
By point 4 again (γn ≤ d(1 + ε)), we can restrict S to S′ where |S′| = γn, and by the
properties of expanders |N(S′)| ≥ γn ·α. Now, point 3 guarantees that τ = D ·d ·(1−ε) <
α · γn. So, for every i ∈ T ′, x̂(i)

1 6= x̂(i)
2 , and |T ′| ≥ α · γn > τ . Now we want to argue

that with all but negligible probability over our choice of g, g will preserve this equality
relation, and so ∆′ = |T ′|. Given that our expander is δ-balanced for some constant
δ > 0, we have that |x̂(i)

1 | = |x̂
(i)
2 | = |N(ri)| ≥ (1− δ)nD/k. Now, point 3 states that the

constraints have k < n/t, implying n/k > t. So, (1− δ)D · n/k > (1− δ)D · t.
This means that every input to g will be larger than the output ((1− δ) is a constant
and D = ω(1)), and so if g(x̂(i)

1 ) = g(x̂(i)
2 ) but x̂(i)

1 6= x̂(i)
2 for any i, then our adversary

has found a collision, which happens with all but negligible probability for adversaries
running in time poly(λ).
Therefore, with all but negligible probability over the choice of g and adversarially chosen
x1 and x2 in this case, ∆′ =

∑m′

i=1 Ind(ŷ(i)
1 6= ŷ(i)

2 ) ≥ α · γn = τ , and H.Eval outputs
FAR. J
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Abstract
Given a set of n points in Rd, the (monochromatic) Closest Pair problem asks to find a pair of
distinct points in the set that are closest in the `p-metric. Closest Pair is a fundamental problem in
Computational Geometry and understanding its fine-grained complexity in the Euclidean metric
when d = ω(logn) was raised as an open question in recent works (Abboud-Rubinstein-Williams
[FOCS’17], Williams [SODA’18], David-Karthik-Laekhanukit [SoCG’18]).

In this paper, we show that for every p ∈ R≥1 ∪ {0}, under the Strong Exponential Time
Hypothesis (SETH), for every ε > 0, the following holds:

No algorithm running in time O(n2−ε) can solve the Closest Pair problem in d = (logn)Ωε(1)

dimensions in the `p-metric.
There exists δ = δ(ε) > 0 and c = c(ε) ≥ 1 such that no algorithm running in time O(n1.5−ε)
can approximate Closest Pair problem to a factor of (1 + δ) in d ≥ c logn dimensions in the
`p-metric.

In particular, our first result is shown by establishing the computational equivalence of the
bichromatic Closest Pair problem and the (monochromatic) Closest Pair problem (up to nε factor
in the running time) for d = (logn)Ωε(1) dimensions.

Additionally, under SETH, we rule out nearly-polynomial factor approximation algorithms
running in subquadratic time for the (monochromatic) Maximum Inner Product problem where
we are given a set of n points in no(1)-dimensional Euclidean space and are required to find a
pair of distinct points in the set that maximize the inner product.

At the heart of all our proofs is the construction of a dense bipartite graph with low contact
dimension, i.e., we construct a balanced bipartite graph on n vertices with n2−ε edges whose
vertices can be realized as points in a (logn)Ωε(1)-dimensional Euclidean space such that every
pair of vertices which have an edge in the graph are at distance exactly 1 and every other pair of
vertices are at distance greater than 1. This graph construction is inspired by the construction
of locally dense codes introduced by Dumer-Miccancio-Sudan [IEEE Trans. Inf. Theory’03].
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1 Introduction

The Closest Pair of Points problem or Closest Pair problem (CP) is a fundamental problem
in computational geometry: given n points in a d-dimensional metric space, find a pair
of distinct points with the smallest distance between them. The Closest Pair problem for
points in the Euclidean plane [51, 11] stands at the origins of the systematic study of the
computational complexity of geometric problems [45, 40, 36, 20]. Since then, this problem
has found abundant applications in geographic information systems [28], clustering [58, 7],
and numerous matching problems (such as stable marriage [56]).

The trivial algorithm for CP examines every pair of points in the point-set and runs
in time O(n2d). Over the decades, there have been a series of developments on CP in low
dimensional space for the Euclidean metric [10, 29, 35, 51, 11], leading to a deterministic
O(2O(d)n logn)-time algorithm [11] and a randomized O(2O(d)n)-time algorithm [46, 35]. For
low (i.e., constant) dimensions, these algorithms are tight as a matching lower bound of
Ω(n logn) was shown by Ben-Or [9] and Yao [57] in the algebraic decision tree model, thus
settling the complexity of CP in low dimensions. On other hand, for very high dimensions (i.e.,
d = Ω(n)) there are subcubic algorithms [27, 31] in the `1, `2, and `∞-metrics using fast matrix
multiplication algorithms [25]. However, CP in medium dimensions, i.e., d = polylog(n),
and in various `p-metrics, have been a focus of study in machine learning and analysis of
Big Data [37], and it is surprising that, even with the tools and techniques that have been
developed over many decades, when d = ω(logn), there is no known subquadratic-time (i.e.,
O(2o(d)n2−ε)-time) algorithm, for CP in any standard distance measure [30, 4, 31] . The
absence of such algorithms was explicitly observed as early as the late nineties by Cohen and
Lewis [19] but there was not any explanation until recently.

David, Karthik, and Laekhanukit [21] showed that for all p > 2, assuming the Strong
Exponential Time Hypothesis (SETH), for every ε > 0, no algorithm running in n2−ε time
can solve CP in the `p-metric, even when d = ω(logn). Their conditional lower bound was
based on the conditional lower bound (again assuming SETH) of Alman and Williams [6]
for the Bichromatic Closest Pair problem3 (BCP) where we are given two sets of n points
in a d-dimensional metric space, and the goal is to find a pair of points, one from each
set, with the smallest distance between them. Alman and Williams showed that for all
p ∈ R≥1 ∪{0}, assuming SETH, for every ε > 0, no algorithm running in n2−ε time can solve
BCP in the ω(logn)-dimensional `p-metric space. Given that [6] show their lower bound on
BCP for all `p-metrics, the lower bound on CP of [21] feels unsatisfactory, since the `2-metric
is arguably the most interesting metric to study CP on. On the other hand, the answer to

3 We remark that BCP is of independent interest as it’s equivalent to finding the Minimum Spanning
Tree in `p-metric [3, 38]. Moreover, understanding the fine-grained complexity of BCP has lead to
better understanding of the query time needed for Approximate Nearest Neighbor search problem (see
Razenshteyn’s thesis [47] for a survey about the problem) with polynomial preprocessing time [50].

https://arxiv.org/abs/1812.00901
https://arxiv.org/abs/1812.00901
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the complexity of CP in the Euclidean metric might be on the positive side, i.e., there might
exist an algorithm that performs well in the `2-metric because there are more tools available,
e.g., Johnson-Lindenstrauss’ dimension reduction [33]. Thus we have the following question:

I Open Question 1 (Abboud-Rubinstein-Williams4 [2], Williams [55], David -Karthik-Laekha-
nukit [21]). Is there an algorithm running in time n2−ε for some ε > 0 which can solve CP
in the Euclidean metric when the points are in ω(logn) dimensions?

Even if the answer to the above question is negative, this does not rule out strong approx-
imation algorithms for CP in the Euclidean metric, which might suffice for all applications.
Indeed, we do know of subquadratic approximation algorithms for CP. For example, LSH
based techniques can solve (1 + δ)-CP (i.e., (1 + δ) factor approximate CP) in n2−Θ(δ) time
[32], but cannot do much better [42, 43]. In a recent breakthrough, Valiant [52] obtained an
approximation algorithm for (1 + δ)-CP with runtime of n2−Θ(√δ). The state of the art is
an n2−Θ̃(δ1/3)-time algorithm by Alman, Chan, and Williams [5]. Can the dependence on
δ be improved indefinitely? For the case of (1 + δ)-BCP, assuming SETH, Rubinstein [50]
answered the question in the negative. Does (1 + δ)-CP also admit the same negative answer?

I Open Question 2. Is there an algorithm running in time n2−ε for some ε > 0 which can
solve (1 + δ)-CP in the Euclidean metric when the points are in ω(logn) dimensions for every
δ > 0?

Another important geometric problem is the Maximum Inner Product problem (MIP):
given n points in the d-dimensional Euclidean space, find a pair of distinct points with
the largest inner product. This problem along with its bichromatic variant (Bichromatic
Maximum Inner Product problem, denoted BMIP) is extensively studied in literature (see
[2] and references therein). Abboud, Rubinstein, and Williams [2] showed that assuming
SETH, for every ε > 0, no 2(logn)1−o(1)-approximation algorithm running in n2−ε time can
solve BMIP when d = no(1). It is a natural question to ask if their inapproximability result
can be extended to MIP:

I Open Question 3. Is there an algorithm running in time n2−ε for some ε > 0 which can
solve γ-MIP in no(1) dimensions for even γ = 2(logn)1−o(1)?

1.1 Our Results
In this paper we address all three previously mentioned open questions. First, we almost
completely resolve Open Question 1. In particular, we show the following.

I Theorem 4 (Subquadratic Hardness of CP). Let p ∈ R≥1 ∪ {0}. Assuming SETH, for
every ε > 0, no algorithm running in n2−ε time can solve CP in the `p-metric, even when
d = (logn)Ωε(1).

In particular we would like to emphasize that the dimension for which we show the lower
bound on CP depends on ε. We would also like to remark that our lower bound holds even
when the input point-set of CP is a subset of {0, 1}d. Finally, we note that the centerpiece
of the proof of the above theorem (and also the proofs of the other results that will be
subsequently mentioned) is the construction of a dense bipartite graph with low contact
dimension, i.e., we construct a balanced bipartite graph on n vertices with n2−ε edges whose

4 Please see the erratum in [1].
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vertices can be realized as points in a (logn)Ωε(1)-dimensional `p-metric space such that
every pair of vertices which have an edge in the graph are at distance exactly 1 and every
other pair of vertices are at distance greater than 1. This graph construction is inspired by
the construction of locally dense codes introduced by Dumer, Miccancio, and Sudan [23] and
uses special density properties of Reed Solomon codes. A detailed proof overview is given in
Section 2.1.

Next, we improve our result in Theorem 4 in some aspects by showing 1 + o(1) factor
inapproximability of CP even in Oε(logn) dimensions, but can only rule out algorithms
running in n1.5−ε time (as opposed to Theorem 4 which rules out exact algorithms for CP
running in n2−ε time). More precisely, we show the following.

I Theorem 5 (Subquadratic Hardness of gap-CP). Let p ∈ R≥1 ∪ {0}. Assuming SETH, for
every ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε time
that can solve (1 + δ)-CP in the `p-metric, even when d = c logn.

We remark that the n1.5−ε lower bound on approximate CP is an artifact of our proof
strategy and that a different approach or an improvement in the state-of-the-art bound on
the number of minimum weight codewords in algebraic geometric codes (which are used in
our proof), will lead to the complete resolution of Open Question 2.

It should also be noted that the approximate version of CP and the dimension are closely
related. Namely, using standard dimensionality reduction techniques [33]5 for (1 + δ)-CP, one
can always assume that d = Oδ(logn). In other words, hardness of (1 + δ)-CP immediately
yields logarithmic dimensionality bound as a byproduct.

Finally, we completely answer Open Question 3 by showing the following inapproximability
result for MIP, matching the hardness for BMIP from [2].

I Theorem 6 (Subquadratic Hardness of gap-MIP). Assuming SETH, for every ε > 0,
no algorithm running in n2−ε time can solve γ-MIP for any γ ≤ 2(logn)1−o(1) , even when
d = no(1).

Recently, there have been a lot of results connecting BCP or (1 + o(1))-BCP to other
problems (see [50, 15, 16, 17]). Now such connections can be extended to CP as well. For
example, the following conditional lower bound follows from [50] for gap-CP in the edit
distance metric.

I Theorem 7 (Subquadratic Hardness of gap-CP in edit distance metric). Assuming SETH,
for every ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε

time can solve (1 + δ)-CP in the edit distance metric, even when d = c logn log logn.

2 Proof Overview

In this section, we provide an overview of our proofs and the formal proofs may be found
in the full version of the paper. For ease of presentation, we will sometimes be informal
here; all notions and proofs are formalized in subsequent sections. Our overview is organized
as follows. First, in Subsection 2.1, we outline our proof of running time lower bounds for
exact CP (Theorem 4). Then, in Subsection 2.2, we abstract part of our reduction using
error-correcting codes, and relate them back to the works on locally dense codes [23, 18, 41]
that inspire our constructions. Finally, in Subsection 2.3, we briefly discuss how to modify
the base construction (i.e. code properties) to give conditional lower bounds for approximate
CP and MIP (Theorems 5 and 6).

5 In fact, since our results applies to {0, 1}-vectors, simply subsampling coordinates would also work.
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2.1 Conditional Lower Bound on Exact Closest Pair
In this subsection, we provide a proof overview of a slightly weaker version of Theorem 4,
i.e., we show that assuming SETH, for every p ∈ R≥1 ∪ {0}, no subquadratic time algorithm
can solve CP in the `p-metric when d = (logn)ω(1). We prove such a result by reducing BCP
in dimension d to CP in dimension d + (logn)ω(1), and the subquadratic hardness for CP
follows from the subquadratic hardness of BCP established by [6]. Note that the results in
this paper remain interesting even if SETH is false, as our reduction shows that BCP and CP
are computationally equivalent6 (up to no(1) factor in the running time) when d = (logn)ω(1).
The conditional lower bound on CP is merely a consequence of this computational equivalence.
Finally, we note that a similar equivalence also holds between MIP and BMIP.

Understanding an obstacle of [21]. Our proof builds on the ideas of [21] who showed
that assuming SETH, for every p > 2, no subquadratic time algorithm can solve CP in the
`p-metric when d = ω(logn). They did so by connecting the complexity of CP and BCP via
the contact dimension of the balanced complete bipartite graph (biclique), denoted by Kn,n.
We elaborate on this below.

To motivate the idea behind [21], let us first consider the trivial reduction from BCP to
CP: given an instance A,B of BCP, we simply output A ∪ B as an instance of CP. This
reduction fails because there is no guarantee on the distances of a pair of points both in A
(or both in B). That is, there could be two points a,a′ ∈ A such that ‖a − a′‖p is much
smaller than the optimum of BCP on A,B. If we simply solve CP on A ∪B, we might find
such a,a′ as the optimal pair but this does not give the answer to the original BCP problem.
In order to circumvent this issue, one needs a gadget that “stretch” pairs of points both in
A or both in B further apart while keeping the pairs of points across A and B close (and
preserving the optimum of BCP on A,B). It turns out that this notion corresponds exactly
to the contact dimension of the biclique, which we define below.

I Definition 8 (Contact Dimension [44]). For any graph G = (V,E), a mapping τ : V → Rd
is said to realize G (in the `p-metric) if for some β > 0, the following holds for every distinct
vertices u, v:

‖τ(u)− τ(v)‖p = β if {u, v} ∈ E, and, (1)
‖τ(u)− τ(v)‖p > β otherwise. (2)

The contact dimension (in the `p-metric) of G, denoted by cdp(G), is the minimum d ∈ N
such that there exists τ : V → Rd realizing G in the `p-metric.

In this paper, we will be mainly interested in the contact dimension of bipartite graphs.
Specifically, [21] only consider the contact dimension of the biclique Kn,n. Notice that
a realization of biclique ensures that vertices on the same side are far from each other
while vertices on different sides are close to each other preserving the optimum of BCP;
these are exactly the desired properties of a gadget outlined above. Using this, [21] give a
reduction from BCP to CP which shows that the two are computationally equivalent whenever
d = Ω(cdp(Kn,n)), as follows.

6 We can reduce an instance of CP to an instance of BCP by randomly partitioning the input set of CP
instance into two, and the optimal closest pair of points will be in different sets with probability 1/2
(and this reduction can be made deterministic).
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Let A,B ⊆ Rd each of cardinality n be an instance of BCP and let τ : A∪̇B → Rcdp(Kn,n)

be a map realizing the biclique (A∪̇B,A×B) in the `p-metric; we may assume w.l.o.g. that
β = 1. Let δ be the distance between any point in A and any point in B (i.e., δ is an
upper bound on the optimum of BCP). Let ρ > 0 be such that ‖τ(a)− τ(b)‖p > 1 + ρ for
all a ∈ A,b ∈ B (and this is guaranteed to exist by (2)). Moreover, let k > δ/ρ be any
sufficiently large number. Consider the point-sets Ã, B̃ ⊆ Rd+cdp(Kn,n) of cardinality n each
defined as

Ã = {a ◦ (k · τ(a)) | a ∈ A}, B̃ = {b ◦ (k · τ(b)) | b ∈ B},

where ◦ denotes the concatenation between two vectors and k · x denotes the usual scalar-
vector multiplication (i.e. scaling x up by a factor of k). For brevity, we write ã and b̃ to
denote a ◦ (k · τ(a)) and b ◦ (k · τ(b)) respectively.

We now argue that, if we can find the closest pair of points in Ã ∪ B̃, then we also
immediately solve BCP for (A,B). More precisely, we claim that (a∗,b∗) ∈ A × B is a
bichromatic closest pair of (A,B) if and only if (ã∗, b̃∗) is a closest pair of Ã ∪ B̃.

To see that this is the case, observe that, for cross pairs (ã, b̃) ∈ Ã × B̃, (1) implies
that the distance ‖ã − b̃‖p is exactly (kp + ‖a − b‖pp)1/p; hence, among these pairs, (ã∗, b̃∗)
is a closest pair iff (a∗,b∗) is a bichromatic closest pair in A,B. Notice also that, since
the bichromatic closest pair in A,B is of distance at most δ, the closest pair in Ã ∪ B̃ is of
distance at most (kp + δp)1/p ≤ k + δ.

On the other hand, for pairs both from Ã or both from B̃, the distance must be at least
k(1 + ρ), which is more than k + δ from our choice of k. As a result, these pairs cannot be a
closest pair in Ã ∪ B̃, and this concludes the sketch of the proof.

There are a couple of details that we have glossed over here: one is that the gap ρ cannot
be too small (e.g., ρ cannot be as small as 1/2n) and the other is that we should be able to
construct τ efficiently. Nevertheless, these are typically not an issue.

[21] show that cdp(Kn,n) = Θ(logn) when p > 2 and that the realization can be
constructed efficiently and with sufficiently large ρ. This implies the subquadratic hardness
of CP (by reduction from BCP) in the `p-metric for all p > 2 and d = ω(logn). However,
it was known that cd2(Kn,n) = Θ(n) [24]. Thus, they could not extend their conditional
lower bound to CP in the Euclidean metric7 even when d = o(n). In fact, this is a serious
obstacle as it rules out many natural approaches to reduce BCP to CP in a black-box manner.
Elaborating, the lower bound on cd2(Kn,n) rules out local gadget reductions which would
replace each point with a composition of that point and a gadget with a small increase in the
number of dimensions, as such gadgets can be used to construct a realization of Kn,n in the
Euclidean metric in a low dimensional space, contradicting the lower bound on cd2(Kn,n).

Overcoming the Obstacle: Beyond Biclique. We overcome the above obstacle by consid-
ering dense bipartite graphs, instead of the biclique. More precisely, we show that there
exists a balanced bipartite graph G∗ = (A∗∪̇B∗, E∗) on 2n vertices such that |E∗| ≥ n2−o(1)

and cdp(G∗) is small (i.e. cdp(G∗) ≤ (logn)ω(1)). We give a construction of such a graph
below but before we do so, let us briefly argue why this suffices to show that BCP and CP
are computationally equivalent (up to no(1) multiplicative overhead in the running time) for
dimension d = Ω(cdp(G∗)).

7 Note that plugging in the bound on cd2(Kn,n) in the result of [21] yields that assuming SETH, no
subquadratic in n running time algorithm can solve CP when d = Ω(n). This is not a meaningful lower
bound as just the input size of CP when d = Ω(n) is Ω(n2).
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Let us consider the same reduction which produces Ã, B̃ as before, but instead of using
a realization of the biclique, we use a realization τ of G∗. This reduction is of course
incorrect: if (a∗,b∗) is not an edge in G∗, then ‖τ(a∗)− τ(b∗)‖p could be large and, thus the
corresponding pair of points (ã∗, b̃∗) ∈ Ã× B̃, may not be the closest pair. Nevertheless, we
are not totally hopeless: if (a∗,b∗) is an edge, then we are in good shape and the reduction
is correct.

With the above observation in mind, consider picking a random permutation π of A ∪B
such that π(A) = A and π(B) = B and then initiate the above reduction with the map (τ ◦π)
instead of τ . Note that τ ◦ π is simply a realization of an appropriate permutation G′ of G∗
(i.e., G′ is isomorphic to G∗). Due to this, the probability that we are “lucky” and (a∗,b∗)
is an edge in G′ is p := |E|/n2; when this is the case, solving CP on the resulting instance
would give the correct answer for the original BCP instance. If we repeat this logn/p = no(1)

times, we would find the optimum of the original BCP instance with high probability.
To recap, even when G∗ is not a biclique, we can still use it to give a reduction from

BCP to CP, except that the reduction produces multiple (i.e. Õ(n2/|E∗|)) instances of CP.
We remark here that the reduction can be derandomized: we can deterministically (and
efficiently) pick the permutations so that the permuted graphs covers Kn,n. As a minor
digression, we would like to draw a parallel here with a recent work of Abboud, Rubinstein,
and Williams [2]. The obstacle raised in [21] is about the impossibility of certain kinds of
many-one gadget reductions. We overcame it by designing a reduction from BCP to CP which
not only increased the number of dimensions but also the number of points (by creating
multiple instances of CP). This technique is also utilized in [2] where they showed the
impossibility of Deterministic Distributed PCPs (Theorem I.2 in [2]) but then overcame that
obstacle by using an advice (which is then enumerated over resulting in multiple instances)
to build Non-deterministic Distributed PCPs.

Constructing a dense bipartite graph with low contact dimension. We now proceed to
construct the desired graph G∗ = (A∗ ∪ B∗, E∗). Note that any construction of a dense
bipartite graph with contact dimension no(1) is non-trivial. This is because it is known that
a random graph has contact dimension Ω(n) in the Euclidean metric with high probability
[49, 13], and therefore our graph construction must be significantly better than a random
graph.

Our realization τ∗ of G∗ will map into a subset of {0, 1}(logn)ω(1) . As a result, we can
fix p = 0, since a realization of a graph with entries in {0, 1} in the Hamming-metric also
realizes the same graph in every `p-metric for any p 6=∞.

Fix g = ω(1). We associate [n] with Fhq where q = Θ ((logn)g) is a prime and
h = Θ

(
logn

g·log logn

)
. Let P be the set of all univariate polynomials (in x) over Fq of

degree at most h− 1. We have that |P| = qh = n and associate P with A∗. Let Q be the set
of all univariate monic polynomials (in x) over Fq of degree h, i.e.,

Q = {xh + p(x) | p(x) ∈ P}.

We associate the polynomials in Q with the vertices in B∗ (note that |Q| = n). In fact,
we view the vertices in A∗ and B∗ as being uniquely labeled by polynomials in P and Q
respectively. For notational clarity, we write pa (resp. pb) to denote the polynomial in P
(resp. Q) that is associated to a ∈ A∗ (resp. b ∈ B∗).

For every a ∈ A∗ and b ∈ B∗, we include (a, b) as an edge in E∗ if and only if the polynomial
pb − pa (which is of degree h) has h distinct roots. This completes the construction of G∗.
We have to now show the following two claims about G∗: (i) |E∗| = n2−O(1/g) = n2−o(1) and
(ii) there is τ : A∗∪̇B∗ → {0, 1}(logn)O(g) = {0, 1}(logn)ω(1) that realizes G∗.
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To show (i), let R be the set of all monic polynomials of degree h with h distinct roots.
We have that |R| =

(
q
h

)
. Fix a vertex a ∈ A∗. Its degree in G∗ is exactly |R| =

(
q
h

)
. This is

because, for every polynomial r ∈ R, r + a belongs to Q, and therefore (a, r + a) ∈ E∗. This
implies the following bound on |E∗|:

|E∗| = qh ·
(
q

h

)
≥ qh · q

h

hh
>

n2

(logn)Θ((logn)/(g·log logn))
= n2−O(1/g).

Next, to show (ii), we construct a realization τ∗ : A∗∪̇B∗ → Fqq of G∗. We note that, it
is simple to translate the entries to {0, 1} instead of Fq, by replacing i ∈ Fq with the i-th
standard basis ei ∈ {0, 1}q. This would result in a realization τ∗ : A∗∪̇B∗ → {0, 1}q2 of G∗;
notice that the dimension of τ∗ is q2 = Θ((logn)2g) as claimed.

We define τ∗ as follows.
For every a ∈ A∗, τ∗(a) is simply the vector of evaluation of pa on every element in Fq.
More precisely, for every j ∈ [q], the j-th coordinate of τ∗(a) is pa(j − 1).
Similarly, for every b ∈ B∗ and j ∈ [q], the j-th coordinate of τ∗(b) is pb(j − 1).

We now show that τ∗ is indeed a realization of G∗; specifically, we show that τ∗ satisfies (1)
and (2) with β = q − h.

Consider any edge (a, b) ∈ E∗. Notice that ‖τ∗(a)− τ∗(b)‖0 is the number of x ∈ Fq such
that pb(x)− pa(x) 6= 0. By definition of E∗, pb − pa is a polynomial with h distinct roots
over Fq. Thus, ‖τ∗(a)− τ∗(b)‖0 = q − h = β as desired.

Next, consider a non-edge (a, b) ∈ (A∗ ×B∗) \ E∗ . Then, we know that pb − pa has at
most h− 1 distinct roots over Fq. Therefore, the polynomial pb − pa is non-zero on at least
q − h+ 1 coordinates. This implies that ‖τ∗(a)− τ∗(b)‖0 ≥ q − h+ 1 > β.

Finally, for any distinct a, a′ ∈ A∗, we have ‖τ∗(a)− τ∗(a′)‖0 ≥ q−h+ 1 because pa−pa′
is a non-zero polynomial of degree at most h− 1 and thus can be zero over Fq in at most
h− 1 locations. Similarly, ‖τ∗(b)− τ∗(b′)‖0 ≥ q − h+ 1 for any distinct b, b′ ∈ B∗.

This completes the proof sketch for both the claims about G∗ and yields Theorem 4
for d = (logn)ω(1). Finally we remark that in the actual proof of Theorem 4, we will set
the parameters in the above construction more carefully and achieve the bound cdp(G∗) =
(logn)Oε(1).

2.2 Abstracting the Construction via Error-Correcting Codes

Before we move on to discuss the proofs of Theorems 6 and 5, let us give an abstraction
of the construction in the previous subsection. This will allow us to easily generalize the
construction for the aforemention theorems, and also to explain where our motivation behind
the construction comes from in the first place.

Dense Bipartite Graph with Low Contact Dimension from Codes. In order to construct
a balanced bipartite graph G∗ on 2n vertices with n2−o(1) edges such that cdp(G∗) ≤ d∗, it
suffices to have a code C∗ with the following properties:

C∗ ⊆ F`q of cardinality n is a linear code with block length ` over alphabet Fq, and
minimum distance ∆.
There exists a center s∗ ∈ F`q and r∗ < ∆ such that |C∗|1−o(1) codewords are at Hamming
distance exactly r∗ from s∗ and no codeword is at distance less than r∗ from s∗.
q · ` = d∗.
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We also require that C∗ and s∗ can be constructed in poly(n) time but we shall ignore this
requirement for the ease of exposition.

We describe below how to construct G∗ from C∗, but first note that the construction of
G∗ we saw in the previous subsubsection was just showing that Reed Solomon codes [48] of
block length q = Θ((logn)g) and message length h = Θ

(
logn

g·log logn

)
over alphabet Fq with

minimum distance q − h+ 1 has the above properties. The center s∗ in that construction
was the evaluation of the polynomial xh over Fq, and r∗ was q − h.

In general, to construct G∗ from C∗, we first define a subset S∗ ⊆ F`q of cardinality n as
follows:

S∗ = {s∗ + c | c ∈ C∗}.

We associate the vertices in A∗ with the codewords of C∗ and vertices in B∗ with the
strings in S∗. For any (a,b) ∈ A∗ ×B∗, let (a,b) ∈ E∗ if and only if ‖b− a‖0 = r∗. This
completes the construction of G∗. We have to now show the following claims about G∗: (i)
|E∗| = n2−o(1) and (ii) there is τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗.

Item (i) follows rather easily from the properties of C∗ and s∗. Let T ∗ be the subset of
C∗ of all codewords which are at distance exactly equal to r∗ from s∗. From the definition
of s∗, we have |T ∗| = |C∗|1−o(1). Fix a ∈ A∗. Its degree in G∗ is |T ∗| = |C∗|1−o(1). This is
because for every codeword t ∈ T ∗ we have that t−a is a codeword in C∗ (from the linearity
of C∗) and thus s∗ − t + a is in S∗, and therefore (a, s∗ − t + a) ∈ E∗.

For item (ii), consider the identity mapping τ∗ : A∗∪̇B∗ → F`q that maps each string to
itself. It is simple to check that τ∗ realizes G∗ in the Hamming metric (with β = r∗).

Recall from the previous subsection that given τ∗ : A∗∪̇B∗ → F`q that realizes G∗ in
the Hamming metric, it is easy to construct τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗ in the
Hamming metric with a q multiplicative factor blow-up in the dimension. This completes
the proof of both the claims about G∗ and gives a general way to prove Theorem 4 given the
construction of C∗ and s∗.

Finding Center from Another Code. One thing that might not be clear so far is: where
does the center s∗ come from? Here we provide a systematic way to produce such an s∗, by
looking at another code that contains C∗. More precisely, let C∗ ⊆ C̃∗ ⊆ F`q be two linear
codes with the same block length and alphabet. Suppose that the distance of C∗ is ∆, the
distance of C̃∗ is r∗ and that r∗ < ∆. It is easy to see that, by taking s∗ to be any element
of C̃∗ \ C∗, it holds that every codeword in C∗ is at distance at least r∗ from s∗, simply
because both s∗ and the codewords of C∗ are codewords of C̃∗.

Hence, we are only left to argue that there are many codewords of C∗ that is of distance
exactly r∗ from s∗. While this is not true in general, we can show by an averaging argument
that this is true (for some s∗ ∈ C̃∗) if a large fraction (e.g. |C∗|−o(1) fraction) of codewords
of C̃∗ has Hamming weight exactly r∗.

Indeed, viewing in this light, our previous choice of center for Reed-Solomon code (i.e.
evaluation of xh) is not coincidental: we simply take C̃∗ to be another Reed-Solomon code
with message length h+ 1 (whereas the base code C∗ is of message length h).

Comparison to Locally Dense Codes. We end this subsection by remarking that the
codes that we seek are very similar to locally dense codes [23, 18, 41], which is indeed our
inspiration. A locally dense code is a linear code of block length ` and large minimum distance
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∆, admitting a ball centered at s of radius8 r < ∆ and containing a large (i.e. exp(poly(`)))
number of codewords9. Such codes are non-trivial to construct and in particular all known
constructions of locally dense codes are using codes that beat the Gilbert-Varshamov (GV)
bound [26, 53]; in other words we need to do better than random codes to construct them.
This is because (as noted in [23]), for a random code C ⊆ F`q (or any code that does not
beat the GV bound), a random point in F`q acting as the center contains in expectation less
than one codeword in a ball of radius ∆. Of course, this is simply an intuition and not a
formal proof that a locally dense code needs to beat the GV bound, since there may be more
sophisticated ways to pick a center.

Although the codes we require are similar to locally dense codes, there are differences
between the two. Below we list four such differences: the first two makes it harder for us to
construct our codes whereas the latter two makes it easier for us.

We seek a center s∗ so that no codewords in C∗ lies at distance less than r∗, as opposed
to locally dense codes which allows codewords to be close to s∗. This is indeed where our
idea of using another code C̃∗ ⊇ C∗ comes in, as picking s∗ from C̃∗ \C∗ ensures us that
no codeword of C∗ is too close to s∗.
Another difference is that we need the number of codewords at distance r∗ from s∗ to be
very large, i.e., |C∗|1−o(1), whereas locally dense codes allow for much smaller number of
codewords. Indeed, the deterministic constructions from [18, 41] only yield the bound of
2O(
√

log |C∗|). Hence, these do not directly work for us.
Locally dense codes requires r to be at most (1− ε)∆ for some constant ε > 0, whereas
we are fine with any r∗ < ∆. In fact, our Reed-Solomon code based construction above
only yields r∗ = ∆− 1 which would not suffice for locally dense codes. Nevertheless, as
we will see later for inapproximability of CP, we will also need the ratio r∗/∆ to be a
constant bounded away from 1 as well and, since we need a code with these extraordinary
properties, they are very hard to find. Indeed, in this case we only manage to prove a
weaker lower bound on gap-CP.
Finally, we remark that locally dense codes are required to be efficiently constructed in
poly(log |C∗|) time, which is part of why it is hard to find. Specifically, while [23] shows
that an averaging argument works for a random center, derandomizing this is a big issue
and a few subsequent works are dedicated solely to this issue [18, 41]. (We also note that
it remains open whether a center can be deterministically found for a variant of locally
dense codes used in hardness of parameterized version of the minimum distance problem.
See [12] for more details.) On the other hand, brute force search (over all codewords in
C̃∗) suffices to find a center for us, as we are allowed construction time of poly(|C∗|).

2.3 Inapproximability of Closest Pair and Maximum Inner Product
In this subsection, we sketch our inapproximability results for MIP and CP. Both these results
use the same reduction that we had from BCP to CP, except that we now need stronger
properties from the gadget, i.e., the previously used notions of contact dimension does not
suffice anymore. Below we sketch the required strengthening of the gadget properties and
explain how to achieve them.

8 Clearly, for the ball to contain more than a single codeword, it must be r ≥ ∆/2. Here we are interested
in balls with radius not much bigger than that, say r < γ ·∆ for some constant 1/2 < γ < 1.

9 Strictly speaking, a locally dense code also requires an auxiliary matrix T used to index these codewords.
However, in previous works, finding T is typically not hard given the center s. Hence, we ignore T in
our discussion here for the ease of exposition.
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2.3.1 Approximate Maximum Inner Product
Observe that the gadget we construct for CP in Subsection 2.2 can also be written in terms
of inner product as follows: there exists a dense balanced bipartite graph G∗ = (A∗∪̇B∗, E∗),
a mapping τ : A∗∪̇B∗ → {0, 1}q·` such that the following holds.
(i) For all edges (a, b) ∈ E∗, 〈τ(a), τ(b)〉 = `− r∗.
(ii) For all edges (a, b) ∈ (A∗ ×B∗) \ E∗, 〈τ(a), τ(b)〉 < `− r∗.
(iii) For all distinct a, b both from A∗ or both from B∗, 〈τ(a), τ(b)〉 ≤ `−∆.
Notice that we wrote the conditions above in a slightly different way than in previous
subsections; previously in the contact dimension notation, (ii) and (iii) would be simply
written together as: for all non-edge (a, b), 〈τ(a), τ(b)〉 < `− r∗. This change is intentional,
since, to get gap in our reductions, we only need a gap between the bounds in (i) and (iii)
(but not in (ii)). In particular, to get hardness of approximating MIP, we require `−r∗

`−∆ to be
at least (1 + ε) for some ε > 0.

From our Reed-Solomon construction above, `−∆ and `− r∗ are exactly the message
length of C∗ minus one and the message length of C̃∗ minus one respectively. Previously, we
selected these two to be h and h + 1. Now to obtain the desired gap, we simply take the
larger code C̃∗ to be a Reed-Solomon code with larger (i.e. (1 + ε)h) message length10.

Finally, we note that even with the above gadget, the reduction only gives a small (i.e.
1 + o(1)) factor hardness of approximating MIP. To boost the gap to near polynomial, we
simply tensor the vectors with themselves.

2.3.2 Approximate Closest Pair
Once again, recall that we have the following gadget from Subsection 2.2: there exists a
dense balanced bipartite graph G∗ = (A∗∪̇B∗, E∗), a mapping τ : A∗∪̇B∗ → {0, 1}q·` such
that the following holds.
(i) For all edges (a, b) ∈ E∗, ‖τ(a)− τ(b)‖0 = r∗.
(ii) For all edges (a, b) ∈ (A∗ ×B∗) \ E∗, ‖τ(a)− τ(b)‖0 > r∗.
(iii) For all distinct a, b both from A∗ or both from B∗, ‖τ(a)− τ(b)‖0 ≥ ∆.
Once again, we need an (1+ε) gap between the bounds in (iii) and (i), i.e., ∆

r∗ . Unfortunately,
we cannot construct such codes using any of the Reed-Solomon code families. We turn to
another type of codes that beat the Gilbert-Varshamov bound: Algebraic- Geometric (AG)
codes. Similar to the Reed-Solomon code based construction, we take C∗ as an AG code and
C̃∗ to be a “higher degree” AG code; getting the desired gap simply means that the distance
of C∗ must be at least (1 + ε) times the distance of C̃∗.

Recall from Subsection 2.2 also that, to bound the density of G∗, we need a lower bound on
the number of minimum weight codewords of C̃∗. Such bounds for AG codes are non-trivial
and we turn to the bounds from [8, 54]. Unfortunately, this only gives G∗ with density
|C∗|−1/2−o(1), instead of |C∗|−o(1) as before. This is indeed the reason that our running time
lower bound for approximate CP is only n1.5−ε.

We are not aware of any result on the (asymptotic) tightness of the bounds from [8, 54]
that we use. However, improving upon such bounds would have other consequences, such as
a better bound on the kissing numbers of lattices constructed in [54]. As a result, it seems
likely that more understanding of AG codes (and perhaps even new constructions) are needed
in order to improve these bounds.

10This approach can in fact give not just (1 + ε) but arbitrarily large constant gap between the two cases.
In the actual reduction, we take this gap to be 3, which makes some computations simpler.
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3 Discussion and Open Questions

It remains open to completely resolve Open Questions 1 and 2. It is still possible that our
framework can be used to resolve these problems: we just need to construct gadgets with
better parameters! In particular, to resolve Question 2, it suffices to obtain codes which
have a much larger fraction of minimum weight codewords than the state-of-the-art algebraic
geometric codes while having the desirable properties of algebraic geometric codes (formalized
below). This motivates us to ask the following purely coding theoretic question:

I Open Question 9. For every 0 < δ < 1, are there linear codes C1 ⊆ C2 ⊆ FNq both of block
length N over alphabet Fq such that the following holds:

∆(C1) ≥ (1 + f(δ)) ·∆(C2), for some f : (0, 1)→ (0, 1).
|A∆(C2)(C2)|/|C2| ≥ |C1|−δ.

Apart from the aforementioned questions, Rubinstein [50] pointed out an interesting
obstacle, aptly dubbed the “triangle inequality barrier”, to obtain fine-grained lower bounds
against 3-approximation algorithms for BCP (see Open Question 3 in [50]). In the case of
CP, this barrier turns out to be against 2-approximation algorithms as noted in [21]. We
reiterate this below as an open problem to be resolved:

I Open Question 10. Can we show that assuming SETH, for some constant ε > 0, no
algorithm running in time n1+ε can solve 2-CP in any metric when the points are in ω(logn)
dimensions?

Another interesting direction is to extend the hardness of MIP to the k-vector generaliza-
tion of the problem, called k-MIP. In k-MIP, we are given a set of n points P ⊆ Rd and we
would like to select k distinct points a1, . . . ,ak ∈ P that maximizes

〈a1, . . . ,ak〉 :=
∑
j∈[d]

(a1)j · · · (ak)j .

It is known that the k-chromatic variant of k-MIP is hard to approximate (see Appendix
B of [34]) but this is not known to be true for k-MIP itself. Our approach seems quite
compatible to tackling this problem as well; in particular, if we can construct a certain
(natural) generalization of our gadget for MIP, then we would immediately arrive at the
inapproximability of k-MIP even for {0, 1}-entries vectors. The issue in constructing this
gadget is that we are now concerned about agreements of more than two vectors, which does
not correspond to error-correcting codes anymore and some additional tools are needed to
argue for this more general case.

It should be noted that the hardness of approximating k-MIP for {0, 1}-entry vectors
is equivalent to the one-sided k-biclique problem [39], in which a bipartite graph is given
and the goal is to select k vertices on the right that maximize the number of their common
neighbors. The equivalence can be easily seen by viewing the coordinates as the left-hand-side
vertices and the vectors as the right-hand-side vertices. The one-sided k-biclique is shown
to be W[1]-hard to approximate by Lin [39] who also showed a lower bound of nΩ(

√
k) for

the problem assuming ETH. If the generalization of our gadget for k-MIP works as intended,
then this lower bound can be improved to nΩ(k) under ETH and even nk−o(1) under SETH.

The one-sided k-biclique is closely related to the (two-sided) k-biclique problem, where
we are given a bipartite graph and we wish to decide whether it contains Kk,k as a subgraph.
The k-biclique problem was consider a major open problem in parameterized complexity (see
e.g., [22]) until it was shown by Lin to be W[1]-hard [39]. Nevertheless, the running time
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lower bound known is still not tight: currently, the best lower bound known for this problem
is nΩ(

√
k) both for the exact version (under ETH) [39] and its approximate variant (under

Gap-ETH) [14]. It remains an interesting open question to close the gap between the above
lower bounds and the trivial upper bound of nO(k). Progresses on the one-sided k-biclique
problem could lead to improved lower bounds for k-biclique problem too, although several
additional steps have to be taken care of.
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Abstract
We introduce new forms of attack on expander-based cryptography, and in particular on Goldreich’s
pseudorandom generator and one-way function. Our attacks exploit low circuit complexity of the
underlying expander’s neighbor function and/or of the local predicate. Our two key conceptual
contributions are:
1. We put forward the possibility that the choice of expander matters in expander-based crypto-

graphy. In particular, using expanders whose neighbour function has low circuit complexity
might compromise the security of Goldreich’s PRG and OWF in certain settings.

2. We show that the security of Goldreich’s PRG and OWF is closely related to two other long-
standing problems: Specifically, to the existence of unbalanced lossless expanders with low-
complexity neighbor function, and to limitations on circuit lower bounds (i.e., natural proofs).
In particular, our results further motivate the investigation of affine/local unbalanced lossless
expanders and of average-case lower bounds against DNF-XOR circuits.

We prove two types of technical results that support the above conceptual messages. First,
we unconditionally break Goldreich’s PRG when instantiated with a specific expander (whose
existence we prove), for a class of predicates that match the parameters of the currently-best
“hard” candidates, in the regime of quasi-polynomial stretch. Secondly, conditioned on the
existence of expanders whose neighbor functions have extremely low circuit complexity, we
present attacks on Goldreich’s generator in the regime of polynomial stretch. As one corollary,
conditioned on the existence of the foregoing expanders, we show that either the parameters of
natural properties for several constant-depth circuit classes cannot be improved, even mildly; or
Goldreich’s generator is insecure in the regime of a large polynomial stretch, regardless of the
predicate used.
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1 Introduction

Theoretical results provide strong evidence that if secure cryptography is possible, then many
fundamental primitives such as one-way functions (OWF) and pseudorandom generators
(PRG) can be implemented with a dramatic level of efficiency and parallelism. Specifically,
security against efficient adversaries can be achieved by functions where each output bit only
depends on a constant number of input bits (see, e.g., [6], and also [2] for a survey of recent
results).

A concrete type of such construction is a conjectured form of OWF that is based on any
expander graph and on a local predicate. Specifically, about two decades ago, Goldreich [16, 17]
suggested the following candidate owf : {0, 1}n → {0, 1}n. Fix any bipartite graph [n]× [n]
of right-degree ` ≤ O(log(n)) in which every set S ⊆ [n] of size up to k on the right-hand
side has at least (say) 1.01 · |S| neighbors, and also fix a predicate P : {0, 1}` → {0, 1}. Then,
given input x ∈ {0, 1}n, each output bit owf(x)i is computed by applying P to the bits of x
at the ` neighbors of i ∈ [n]. The expected running-time of a naive algorithm for inverting
owf is at least exp(k) (see, e.g., [17, Sec. 3.2] and [2, Sec. 3.1]), and Goldreich conjectured
that for an appropriate predicate P , no algorithm can perform significantly better.

In an extensive subsequent line of research (see, e.g., [1, 23, 4, 9, 5, 10, 14, 25, 15, 7, 8],
and also see [3] for a related survey), Goldreich’s construction was conjectured to yield not
only a one-way function, but also a pseudorandom generator prg : {0, 1}n → {0, 1}m. In
fact, in some settings the two conjectures are essentially equivalent (see [8, Sec. 3]).

The question of whether Goldreich’s constructions are secure is a long-standing open
problem. Much research has focused on necessary requirements from the predicate and from
the parameters in order for the construction to be secure. Let us, for simplicity of presentation,
focus on the PRG. In this case, the locality ` cannot be too small: If we want a PRG with
super-linear stretch, then we must use ` ≥ 5 [23];1 and if we want stretch m = nk then ` must
be at least (roughly) 3k (see [25, Thm. II.11]). Also, as shown in [7], the predicate must
have high resilience (i.e., all of the predicate’s Fourier coefficients corresponding to sets of
size at most Ω(`) are zero; see [26, Def. 3.4]) and high rational degree (this is a generalization
of the requirement that the degree of the predicate as a polynomial F`2 → F2 is Ω(`); see [26,
Def. 3.7]).

The foregoing properties capture most existing attacks in the PRG setting. Indeed,
as mentioned above, all these attacks exploit vulnerabilities of the predicate and of the
parameters, but not of the underlying expander. In fact, prior to our work, the PRG
was conjectured to be secure for any underlying expander with sufficiently good expansion
properties. For reference, let us state such a strong form of conjectured security of the
OWF, from a recent work by Applebaum and Raykov [8]. We say that a bipartite graph

1 This impossibility result holds for any construction of a pseudorandom generator in NC0.
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G = ([n], [m], E) with right-degree ` is a (k, 0.99)-expander if for every set S ⊆ [m] on the
right-hand side of size at most k, the number of neighbors of S in G is at least 0.99 · ` · |S|. 2
Then, the conjecture is the following:

I Assumption 1 (the strong EOWF assumption). For a family P = {P` : {0, 1}` → {0, 1}}`∈N
of predicates, the strong EOWF (P) assumption is the following. For any (n.99, .99)-expander
G = ([n], [m], E) of right-degree ` ≤ no(1) such that n ≤ m ≤ nα·`, where α > 0 is a
sufficiently small universal constant, Goldreich’s function instantiated with G and P` cannot
be inverted by circuits of size t ≤ exp(α · n.99) with success probability 1/t.

Applebaum and Raykov [8] suggested a suitable candidate predicate, which is the predicate
XOR-MAJ(x) =

(
⊕i=1,...,b`/2cxi

)
⊕

(
MAJ(xb`/2c+1, ..., x`)

)
; this predicate indeed has both

high resiliency and high rational degree.

1.1 A high-level digest of our contributions
Our main contribution is a new form of attack on Goldreich’s pseudorandom generator,
which exploits computational complexity properties (and, in particular, circuit complexity
properties) of the expander and/or of the predicate on which the generator is based. In
particular, our distinguishers are algorithms associated with natural properties, in the sense
of Razborov and Rudich [28]. (Recall that a natural property against a circuit class C is
an efficient algorithm that distinguishes a random string, interpreted as a truth table, from
truth tables of C-circuits.)3

We use our new form of attack to break the generator when it is instantiated with
predicates that are sufficiently “strong” to withstand known attacks, but with expanders
whose neighbor function has “low” circuit complexity. In high-level, the main conceptual
implications of these results are the following:
1. The conjecture that the PRG and OWF are secure with any expander, given an appropriate

predicate, might be too naive. In particular, the security of the constructions might
crucially hinge on a choice of expander whose neighbor function has sufficiently high
circuit complexity. Alternatively, if the latter is not true (i.e., if the PRG and OWF
can be secure given any expander), then the predicate must have sufficiently high circuit
complexity for the constructions to be secure in some settings (i.e., when the stretch is
quasi-polynomial).
Note that a random graph will (with high probability) not only be an expander, but also
have a neighbor function with high circuit complexity. Therefore, our results do not put
into question the security of the PRG and OWF when instantiated with a random graph.

2. There are significant interdependencies between the security of Goldreich’s PRG and OWF,
the existence of unbalanced lossless expanders with low-complexity neighbor function, and
limitations on circuit lower bounds (i.e., natural proofs). Moreover (as further explained
below), the questions motivated by our results are closely related both to existing results
and to long-standing open problems in each area.

2 We stress that lossless expansion (i.e., expansion to α · ` · |S| vertices for α > 1/2) is crucial in the
PRG setting. To see this, note that one can duplicate a right-vertex in a (k, 0.99)-expander: This will
produce a graph that, on the one hand, has good (but not lossless!) expansion properties, and on the
other hand yields a corresponding PRG that is clearly insecure, regardless of the predicate.

3 Natural properties are typically used to break pseudorandom functions, but the idea of using natural
properties to break pseudorandom generators goes back to [28, Thm. 4.2]. Nevertheless, implementing
this idea in our setting presents specific new challenges; for further discussion see Section 2.4.
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Being more specific, we unconditionally break Goldreich’s generator in the setting of
quasi-polynomial stretch when it is instantiated with predicates with high resilience and
rational degree, but with an expander whose neighbor function can be computed by AC0[⊕]
circuits of (small) subexponential size. In fact, our predicates are variations on the specific
XOR-MAJ predicate mentioned above. Using a known reduction of PRGs to OWFs (by [8]), it
follows that Assumption 1 does not hold for some predicates with high resilience and rational
degree. To prove this result we actually prove the existence of expanders with neighbor
function as above; the latter proof, which uses certain unconditional PRGs that can be
computed in a strongly explicit fashion, might be of independent interest. (See Section 1.2.)

In the regime of polynomial stretch, we put forward two assumptions about plausible
extensions of known expander constructions in which the neighbor functions have even lower
circuit complexity (compared to the expander mentioned above). Conditioned on any of the
two assumptions, we show that exactly one of two options holds: Either the parameters of
natural properties for certain restricted constant-depth circuit classes cannot be improved,
even mildly; or Goldreich’s generator is insecure in the regime of a large polynomial stretch,
regardless of the predicate used. (See Section 1.3.)

Some important cryptographic applications crucially rely on the security of expander-
based PRGs with polynomial, or even linear, stretch (see, e.g., [3, Sec. 4, “The Stretch”] and
the references therein). We stress that our results for the setting of polynomial stretch are
conditional on the existence of suitable expanders, and only break the PRG and OWF if there
are natural properties for constant-depth circuit classes beyond what is currently known.
Thus, further investigation is needed to determine whether our results have implications on
the security of the aforementioned applications.

1.2 Unconditional results for quasi-polynomial stretch
Our main result for the setting of quasi-polynomial stretch is an attack that unconditionally
breaks Goldreich’s PRG when it is instantiated with a specific expander that has optimal
expansion properties, and with a class of predicates that have both high resilience and high
rational degree. Specifically:

I Theorem 2 (unconditional attack on Goldreich’s PRG with quasi-polynomial stretch; informal).
For every d ∈ N and sufficiently large k, c ∈ N there exists a deterministic polynomial-time
algorithm A that satisfies the following. Let n ∈ N be sufficiently large, let m = nlogk(n), and
let ` = c · logk(n). Then, there exists an (n0.99, 0.99)-expander G = ([n], [m], E) of right-degree
` such that for any predicate P : {0, 1}` → {0, 1} that can be computed by an AC0[⊕] circuit of
depth d and sufficiently small sub-exponential size, when Goldreich’s generator is instantiated
with the expander G and the predicate P , the algorithm A distinguishes the m-bit output of
the generator from a uniform m-bit string (with gap > 1/2).

In fact, we actually prove a more general theorem, which exhibits a trade-off between
the locality ` and the size of the AC0[⊕] circuit for the predicate P (for a precise statement
see [26, Thm. 4.6]). That is, we are able to break the generator even with much larger
locality (e.g., ` = n.01), at the expense of using a more restricted predicate family, namely
that of AC0[⊕] circuits of smaller size (e.g., polynomial size). We stress that even the latter
predicate family is rich enough to contain predicates that have both high resilience and high
rational degree (see below).

Recall that the property of the expander [n]× [m] that we exploit in our attack is that its
neighbor functions (i.e., the functions Γi : [m]→ [n] for i ∈ [`]) have low circuit complexity.
The expander in Theorem 2 in particular has neighbor functions that can be computed by
AC0[⊕] circuits of small sub-exponential size, and we prove its existence in [26, Sec. 4.1] (see
Section 2.2 for a high-level description).
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Combining Theorem 2 with Applebaum and Raykov’s reduction of expander-based PRGs
to expander-based OWFs [8, Thm. 3.1] (i.e., they prove that if an arbitrary instance
of Goldreich’s OWF is secure, then a closely-related instance of Goldreich’s PRG is also
secure), our attack also breaks Goldreich’s OWF. Specifically, we say that a predicate
P : {0, 1}` → {0, 1} is sensitive if it is “fully sensitive” to one of its coordinates (i.e., if for all
x ∈ {0, 1}` it holds that P (x) = xi ⊕ P ′(x), for some i ∈ [`] and P ′ that does not depend on
xi). Then:

I Corollary 3 (unconditional attack on Goldreich’s OWF with quasi-polynomial stretch; informal).
There exists a probabilistic polynomial-time algorithm A′ that satisfies the following. Let
n ∈ N be sufficiently large, let m′ = nk

′=poly log(n), and let ` = O(k′). Then, there exists an
(n0.99, 0.99)-expander G = ([n], [m′], E) of right-degree ` such that for any sensitive predicate
P : {0, 1}` → {0, 1} that can be computed by an AC0[⊕] circuit of sufficiently small sub-
exponential size, when Goldreich’s one-way function is instantiated with the expander G and
the predicate P , the algorithm A inverts the function with success probability Ω(1/m′n).

As immediate corollaries of Theorem 2 and of Corollary 3, we deduce that Assumption 1
does not hold for any sensitive predicate family that can be computed by AC0[⊕] circuits of
sufficiently small sub-exponential size; and similarly, that the “PRG analogue” of Assumption 1,
denoted EPRG(P) in [8], does not hold for any predicate family that can be computed by
AC0[⊕] circuits of sufficiently small sub-exponential size.

Recall that Applebaum and Raykov suggested the candidate predicate XOR-MAJ; we
prove that when replacing majority by approximate majority (see [26, Def. 4.9]), the resulting
predicate XOR-APPROX-MAJ still has both high resilience and high rational degree, and
can also be computed by a polynomial-sized AC0[⊕] circuit (see [26, Sec. 4.3.2]). Thus,
the predicate families in Theorem 2 and Corollary 3 contain predicates with high resilience
and high rational degree, and even predicates that are variations on the “hard” candidate
XOR-MAJ. 4

Moreover, the predicate XOR-APPROX-MAJ does not even use the “full power” of the
predicate family for which Theorem 2 allows us to break Goldreich’s generator – the predicate
XOR-APPROX-MAJ is computable by a circuit of polynomial size, whereas we can break
the generator when the predicate can be computed by a circuit of sub-exponential size. We
use this to our advantage by relying on the more general version of Theorem 2 (i.e., [26,
Thm. 4.6]), which exhibits a trade-off between locality and the predicate class. Specifically,
we obtain the following theorem, which breaks the generator even when the locality ` is large
(e.g., ` = nΩ(1)) and the predicate has high resilience and rational degree:

I Theorem 4 (breaking Goldreich’s generator with XOR-APPROX-MAJ and high locality).
There exists s > 1 such that the following holds. Let n ∈ N, let m = nk=(log(n))s , and let
c · k ≤ ` ≤ n1/c, where c is a sufficiently large constant. Then, there exists an (n0.99, 0.99)-
expander G = ([n], [m], E) of right-degree ` and a predicate P : {0, 1}` → {0, 1} with resilience
Ω(`) and rational degree Ω(`) (i.e., the predicate XOR-APPROX-MAJ) such that the following
holds: When Goldreich’s generator is instantiated with the expander G and the predicate P ,
the output of the generator can be distinguished from a uniform string (with gap > 1/2) by a
deterministic poly(m)-time algorithm.

4 Indeed, the main difference between XOR-MAJ and XOR-APPROX-MAJ seems to be in their circuit
complexity, which corresponds to our main point that circuit complexity considerations are crucial for
the security of Goldreich’s PRG and OWF.
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1.3 Conditional results for large polynomial stretch
Recall that the conjectured “hardness” of Goldreich’s PRG (i.e., Assumption 1) refers
both to the regime of polynomial stretch and to the regime of quasi-polynomial stretch
(as long as the locality is sufficiently large to support the corresponding stretch). Could
it be that complexity-based attacks separate these two parameter regimes? That is, could
the reason that our attacks from Section 1.2 work be that the stretch of the generator is
super-polynomial?

As mentioned in Section 1.1 (and will be explained in Section 2), the underlying technical
components in our complexity-based attacks are unbalanced lossless expanders [n] × [m]
whose neighbor functions have low circuit complexity, and natural properties against weak
circuit classes. Our main results for the polynomial-stretch regime are of the following form:
If lossless expanders [n]× [nO(1)] with constant degree and (specific) “very simple” neighbor
functions exist, then exactly one of two cases holds:
1. Either the parameters of natural properties for certain well-studied weak circuit classes

cannot be improved, even mildly; or
2. For a sufficiently large polynomial stretch, Goldreich’s generator is insecure when

instantiated with a specific expander, regardless of the predicate used.

We now present two plausible assumptions on existence of suitable expanders, which are
essentially improvements or extensions of existing explicit constructions. Conditioned on
each assumption, we will contrast the security of Goldreich’s PRG with the possibility of
extending natural proofs for some well-studied circuit class.

1.3.1 Affine expanders and DNF-XOR circuits
As motivation for our first assumption, let us recall two well-known explicit constructions of
unbalanced lossless expanders, which were given by Ta-Shma, Umans, and Zuckerman [30],
and later on by Guruswami, Umans, and Vadhan [19]. We note that these two constructions
are inherently different (the relevant construction from [30] is combinatorial, whereas the
construction of [19] is algebraic), and yet in both constructions the neighbor function of
the expander can be computed by single layer of parity gates (see [26, Sec. 5.1] for further
details); we will call expanders with such a neighbor function affine expanders.

In the two foregoing affine expanders, the right-degree ` is polylogarithmic, and it is an
open problem to improve the degree to be constant, which matches the degree of a random
construction. However, a random construction is not necessarily affine. Our first assumption
is that there indeed exists an affine expander with constant degree:

I Assumption 5 (expanders with an affine neighbor function; informal, see [26, Ass. 5.4]).
There exists β > 3 such that for every constant k ∈ N and sufficiently large n ∈ N, there exists
an (n.99, 0.99)-expander G = ([n], [m = nk], E) with right-degree ` = β · k whose neighbor
function ΓG : [m]→ ([n])` can be computed by a single layer of parity gates.

An unconditional proof of Assumption 5 will contrast the security of Goldreich’s PRG
with the possibility of extending the known natural properties for DNF-XOR circuits of
exponential size. 5 Specifically, known lower bounds for DNF-XOR circuits yield natural

5 Recall that DNF-XOR circuits are depth-3 circuits that consist of a top OR gate, a middle layer of AND
gates, and a bottom layer of parities above the inputs.
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properties useful against such circuits of size up to 2(1−o(1))·n (see [26, Sec. 5.1.2]).6 Can
these natural properties be extended to functions that are approximated, in the average-case
sense, by DNF-XOR circuits of size 2ε·n, for some ε > 0? This is the natural property that
we contrast with the security of Goldreich’s PRG:

I Theorem 6 (is Goldreich’s generator insecure, or are natural properties for DNF-XOR circuits
“non-extendable”?; informal statement). Suppose that Assumption 5 holds. Then, exactly one
of the following two options holds:
1. For all ε > 0, there does not exist a natural property for the class of functions that can be

approximated with success 1/2 + o(1) by DNF-XOR circuits of size 2ε·n.
2. For a sufficiently large k ∈ N, Goldreich’s generator is insecure with stretch m = nk and

locality ` = β · k, for some expander and regardless of the local predicate used.

We stress that for any value of β > 3 such that Assumption 5 holds, Theorem 6 follows
with that value of β. Also note that Cohen and Shinkar [13] specifically conjectured that
strong average-case lower bounds for DNF-XOR circuits of size 2Ω(n) hold, and proved a
similar statement for the related-yet-weaker model of parity decision trees. (Their proof for
parity decision trees indeed yields a natural property; see [26, Prop. 5.13].)

1.3.2 N C0 expanders and weak AC0
4 circuits

To motivate our next assumption, recall the recent explicit construction of lossless expanders
by Viola and Wigderson [33, Thm. 4] (which builds on the well-known construction of
Capalbo et al. [11]). In this construction the neighbor function can be computed by an
NC0 circuit, but this construction is only for balanced expanders, rather than unbalanced
ones. The following assumption is that such a construction is possible also for unbalanced
expanders:

I Assumption 7 (expanders with NC0 neighbor functions; informal, see [26, Ass. 5.19]). There
exists β > 3 such that for every constant k ∈ N and sufficiently large n ∈ N, there exists an
(n.99, 0.99)-expander G = ([n], [m = nk], E) with right-degree ` = β · k such that the neighbor
function ΓG : [m]→ ([n])` can be computed by an NC0 circuit.

An unconditional proof of Assumption 7 will immediately break Goldreich’s PRG in the
polynomial-stretch regime by a complexity-based attack, when instantiated with a weak (but
non-trivial) predicate class; see [26, Prop. 5.25]. But more importantly, such a proof will
contrast the security of Goldreich’s PRG with the possibility of extending the known natural
properties for the class of exponential-sized AC0 circuits of depth four with constant bottom
fan-in and top fan-in.

Since the precise trade-off between the parameters is a bit subtle, let us present the
theorem in a simplified form (for a discussion of the more general setting, see [26, Sec. 5.2],
and in particular [26, Sec. 5.2.3]). To do so, consider the (optimistic) possibility that in
Assumption 7, there exists a single t such for any k ∈ N the arity of the NC0 circuit is t (i.e.,
each output bit of the circuit is a function of at most t input bits, where t does not depend
on k); as far as we are aware of, such a hypothesis is possible even with t = 1. Relying on
Håstad’s switching lemma [21], for any c = O(1) there exists a natural property against
depth-four circuits with top fan-in c, bottom fan-in t, and size 2ε·(n/ log(c)) for a tiny universal

6 Some of these natural properties actually run in slightly super-polynomial time, rather than in strictly
polynomial time, but this issue is not crucial for our purpose of breaking Goldreich’s PRG.
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ε > 0 (see [26, Cor. 5.24]). In the following theorem, the security of Goldreich’s PRG is
contrasted with the possibility of extending these natural properties to work against such
circuits of size 2β·(n/ log(c)) where β > 3.

I Theorem 8 (is Goldreich’s generator insecure, or are natural properties for very restricted AC0

circuits “non-extendable”?; informal statement). Suppose that Assumption 7 holds and that for
any k ∈ N, the arity of the NC0 circuit equals t = O(1). Then, exactly one of the following
two options holds:
1. For any c ∈ N, there does not exist a natural property for depth-four AC0 circuits with

top fan-in c and bottom fan-in t and size O
(
2β·(n/ log(c))).

2. For a sufficiently large k ∈ N, Goldreich’s generator is insecure with stretch m = nk and
predicate locality ` = β · k, for some expander and regardless of the predicate used.

Recall that Assumption 7 is parametrized by β and by the arity of the NC0 circuit; we
stress that for any values of β and t such that Assumption 7 holds, we get a corresponding
“win-win” theorem such as Theorem 8 (for further details see [26, Sec. 5.2]). We also stress
that both the natural properties that we can unconditionally prove and the natural properties
referred to in Theorem 8 are for circuits of exponential size 2Θ(n/ log(c)), and the difference is
in the universal constant hidden in the Θ-notation.

As mentioned in Section 1.1, the explicit construction of highly unbalanced lossless
expanders is a long-standing open problem, regardless of the circuit complexity of their
neighbor function (see, e.g., [11], [32, Prob. 5.36 & 6.35], and [34, Chap. 8.7]). Assumptions 5
and 7, however, do not concern explicit constructions of expanders, but only assume their
existence; in particular, the circuit family for the neighbor function of the graph may be non-
uniform. (This is indeed the case for our construction of expanders in the quasi-polynomial
stretch regime.)

2 Overviews of the proofs

2.1 The general form of attack
A natural property for a class F of functions is a deterministic polynomial-time algorithm
that rejects all truth-tables of functions from F , but accepts the truth-tables of almost all
functions.7 Indeed, a natural property for F exists only if almost all functions are not in F .
We will show how to use natural properties to break Goldreich’s pseudorandom generator.

The key step in our proofs is to show, for every fixed x ∈ {0, 1}n, that prg(x) is the truth-
table of a function from some class F of “simple” functions (e.g., prg(x) is the truth-table
of a small constant-depth circuit). When we are able to show this, it follows that a natural
property for F can distinguish the outputs of the PRG from uniformly-chosen random strings:
This is because the natural property rejects any string in the output-set of the PRG (which
is the truth-table of a function in F), but accepts a random string, with high probability.
(The general idea of using natural properties to break PRGs in this manner goes back to the
original work of [28].)

Recall that Goldreich’s PRG (i.e., the function prg) is always a very “simple” function,
since each output bit depends on a few (i.e., `� n) input bits. However, in order for our
idea to work, we need that a different function (i.e., not the function prg) will be simple:

7 Throughout the paper, we identify a natural property with the “constructive” algorithm that recognizes
the property (see [26, Def. 3.8].
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Specifically, for every fixed input x, we want that the function gx : {0, 1}log(m) → {0, 1} such
that gx(i) = prg(x)i will be “simple”. That is, for a fixed “seed” x for the PRG, the function
gx gets as input an index i of an output bit, and computes the ith output bit of prg(x) as
a function of i. Intuitively, given i ∈ [m], the function gx needs to compute three different
objects, successively:

The neighbors ΓG(i) of the vertex i ∈ [m] in G.
The projections of the (fixed) string x on locations ΓG(i).
The output of the predicate P on x�ΓG(i).

The proofs of our main theorems consist of showing instantiations of Goldreich’s generator
(i.e., choices for an expander and a predicate) such that gx is a function from a class against
which we can construct natural properties.

An alternative view of the construction of gx above is as giving rise to a collection of
pseudorandom functions (PRFs)

{
gx : {0, 1}log(m) → {0, 1}

}
x∈{0,1}n that are based on (an

instantiation of) Goldreich’s PRG. In fact, the construction of gx is technically reminiscent
of constructions of PRFs that are based on Goldreich’s PRG by Applebaum and Raykov [8].
However, the crucial point is that our transformation of Goldreich’s PRG to a PRF incurs
very little complexity overhead; in particular, the circuit complexity of gx is essentially
determined by the circuit complexity of the expander’s neighbor function and of the predicate.
For further discussion see Section 2.4.

2.2 The setting of quasi-polynomial stretch
The proof of Theorem 2 consists of showing that for a suitable expander G, and for any
predicate P computable by an AC0[⊕] circuit of sufficiently small sub-exponential size, the
function gx can be computed by an AC0[⊕] circuit of sufficiently small sub-exponential
size. Natural properties for such circuits, based on the lower bounds by Razborov and
Smolensky [27, 29], are well-known (see, e.g., [28, 12]).

To describe the instantiations and the construction of an AC0[⊕] circuit for gx, let n ∈ N,
and let m = 2(log(n))k , for a sufficiently large k. The first technical component that we need is
an expander graph G such that the function i 7→ ΓG(i) can be computed by a sub-exponential
sized AC0[⊕] circuit. We show that there exists such a graph, with essentially optimal
parameters:

I Theorem 9 (strongly-explicit lossless expander in AC0[p]; see [26], Thm. 4.5). There exists a
universal constant dG ∈ N such that the following holds. For any k ∈ N and sufficiently large
n and m = 2(log(n))k , there exists a (n0.99, 0.99)-expander G = ([n], [m], E) of right-degree
` = O(log(m)/ log(n)), and an AC0[⊕] circuit CG : {0, 1}log(m) → {0, 1}`·log(n) of depth dG
and size poly(n) such that for every i ∈ [m] it holds that CG(i) outputs the list of ` neighbors
of i in G.

We stress that the depth dG of the circuit in Theorem 9 does not depend on the relation
between m and n, which is what will allow us to have a natural property for the circuit CG.
Specifically, recall that we have natural properties against AC0[⊕] circuits of depth dG over
`m = log(m) input bits of sub-exponential size 2Ω(`1/2dG

m ). The size of CG is poly(n), and
thus if we take m = 2(log(n))k , for a sufficiently large k, then the size of CG is a sufficiently
small sub-exponent in its input length log(m).

In high-level, our construction of the expander in Theorem 9 is as follows. Our starting
point is the well-known fact that a random graph is, with high probability, a good lossless
bipartite expander (see, e.g., [26, Thm. 3.2]). The first step is to construct an efficient
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test that gets as input a string G ∈ {0, 1}m′ , where m′ = m · ` · log(n), considers G as the
incidence-list of a graph, and decides whether or not G is an (n.99, .99)-expander. We show
that such a test can be implemented by a CNF of size 2n (see [26, Clm. 4.2]). Hence, a
pseudorandom generator for CNFs of size 2n outputs, with high probability, a good expander.
Specifically, we will use the pseudorandom generator of Nisan [24], which has seed length
poly(n). Thus, for some fixed “good” seed s, the output NW (s) ∈ {0, 1}m′ of the generator
on s is an (n.99, .99)-expander.

Our next step is to show that the expander represented by NW (s) has neighbor functions
that can be computed by an AC0[⊕] circuit. In fact, we will show that there exists a circuit
that gets as input the index i ∈ {0, 1}log(m′) of a bit in NW (s) and outputs NW (s)i. To do
so we can rely, for instance, on the recent work of Carmosino et al. [12] , who showed that
Nisan’s generator can be made “strongly-explicit”: That is, there exists an AC0[⊕] circuit of
polynomial size that gets as input a seed z and an index i of an output bit, and computes the
ith output bit of the generator on seed z. 8 By “hard-wiring” a “good” seed s into the latter
circuit, we obtain an AC0[⊕] circuit of size poly(n) that computes the output bits of the
expander NW (s). Indeed, a crucial point is that we did not algorithmically look for a good
seed s, but rather non-uniformly fixed a “good” seed and “hard-wired” it into the circuit.

Given this expander construction, gx can compute i 7→ ΓG(i) in sub-exponential size, and
we now need gx to compute the projections of x on locations ΓG(i). To do so we simply
“hard-wire” the entire string x into gx. Specifically, after computing the function i 7→ ΓG(i),
the circuit now has the ` · log(n) bits of ΓG(i); it then uses ` depth-two formulas, each over
log(n) bits and of size n, to compute the mapping ΓG(i) 7→ x�ΓG(i) by brute-force. This
increases the size of the circuit for gx by ` · n < n2 gates, which is minor compared to the
size poly(n) of CG from Theorem 9.

Finally, the circuit gx has now computed the ` bits corresponding to x�ΓG(i), and needs
to compute the predicate P : {0, 1}` → {0, 1} on these bits. To get the circuit to be of
sufficiently small sub-exponential size, we require that the predicate can be computed by
a sufficiently small sub-exponential sized AC0[⊕] circuit. Specifically, we want that for
some dP , the predicate P can be computed by an AC0[⊕] circuit of depth dP and size 2`ε ,
for a sufficiently small ε < 1/2(dG + dP + 2). We thus obtain a circuit for gx of depth
d = dG + dP + 2 and of size O

(
2`ε

)
< 2log(m)1/2d , 9 which is sufficiently small such that we

have natural properties against it (for a formal statement of the parameters of this well-known
natural property, proved by [28, 12], see e.g. [26, Thm. 3.9]).

2.3 The setting of large polynomial stretch
Why are the results in Section 2.2 applicable only to the setting of quasi-polynomial stretch?
The main bottleneck is the expander construction in Theorem 9, which is an AC0[⊕] circuit.
Specifically, since we only know of natural properties against AC0[⊕] circuits of at most
sub-exponential size, and since the circuit that we obtain is of size at least n (because we
hard-wire x ∈ {0, 1}n to the circuit), we were forced to take m = npoly log(n) such that n will
be a small sub-exponential function of log(m).

In this section we circumvent this obstacle by using the hypothesized existence of expanders
whose neighbor functions have “extremely simple” circuits. For simplicity, in the current
high-level overview we present the attacks that are based on the existence of an expander

8 A similar observation has appeared in other works, such as in [28, Thm. 4.2].
9 For this calculation we assumed that 2`ε dominates the size of the circuit (since the size of CG is already
sufficiently small); and we used the fact that ` = O(log(m)/ log(n)) < log(m), and that ε < 1/2d is
sufficiently small).
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as in Assumption 5; that is, a lossless expander G = ([n], [m = nk], E) of right-degree
` = O(k) whose neighbor function is an affine function (i.e., each output bit is a parity of
input bits). The ideas that underlie the attacks that are based on expanders whose neighbor
function is an NC0 circuit (as in Assumption 7) are similar, yet require a slightly more subtle
parametrization (see [26, Sec. 5.2]).

Consider an instantiation of Goldreich’s predicate with expander G as above and with a
predicate P : {0, 1}` → {0, 1} that can be computed by a CNF of size 2δ·`, where δ can be
an arbitrarily large constant compared to k (or even δ = 1, which allows for any predicate).
In this case, for any x ∈ {0, 1}n, the output prg(x) of the generator on x is a truth-table
of a function gx over an input i ∈ {0, 1}log(m) that can be computed as follows. One layer
of parity gates maps i ∈ [m] to ΓG(i) ∈ {0, 1}`·log(n) (this uses our assumption about the
expander). Then, ` copies of a DNF over log(n) bits and of size n map the names of the `
vertices to x�ΓG(i) ∈ {0, 1}`, i.e., we project the bits of x that feed the predicate P (this DNF
is essentially a “hard-wiring” of x into gx). Finally, the CNF that computes P of size 2δ·`
maps x�ΓG(i) to the value P (x�ΓG(i)). After collapsing a layer that connects the top CNF
and the DNFs, we obtain an AND-OR-AND-XOR circuit gx over `m = log(m) input bits of
size O

(
` · log(n) + ` · n+ 2`·δ

)
= O

(
2`m/k

)
with top fan-in 2δ·` = 2O(δ·k).

When δ > 0 is sufficiently small, we are able to unconditionally construct a natural
property against circuits as above. However, the main point (i.e., Theorem 6) comes when
considering the case δ = 1; that is, any predicate P : {0, 1}` → {0, 1}. In this case, we first
use the discriminator lemma of [20] to deduce that gx can be (1/2 + 1/2O(k))-approximated
by a DNF-XOR circuit of size O

(
2`m/k

)
. Now (still under Assumption 5), exactly one of

two options holds. The first option is that there exists a natural property for functions on
`m input bits that can be (1/2 + o(1))-approximated by DNF-XOR circuits of size 2Ω(`m);
in this case, by taking k sufficiently large so that 2`m/k is sufficiently small, the natural
property breaks the generator. The other option is that no such natural property exists,
despite the fact that natural properties exist both for functions computed (in the worst-case)
by DNF-XOR circuits of size 2(1−o(1))·`m , and for functions approximated (even weakly) by
parity decision trees of such size. This completes the sketch of the proof of Theorem 6.

2.4 The connection to expander-based pseudorandom functions
As mentioned in Section 2.1, our construction of the function gx : {0, 1}log(m) → {0, 1} (i.e.,
gx(i) = P (x�ΓG(i))) can be viewed as a construction of a collection of pseudorandom functions
(PRFs)

{
gx : {0, 1}log(m) → {0, 1}

}
x∈{0,1}n based on (an instantiation of) Goldreich’s PRG.

The crucial point in our transformation of Goldreich’s PRG to a PRF is that the resulting
PRF can have very low circuit complexity, depending essentially only on the complexity
of the expander’s neighbor function and of the predicate. In contrast, previously-known
transformations of Goldreich’s PRG to a PRF incur a significant overhead. Specifically, the
transformation of Goldreich, Goldwasser, and Micali [18] yields a circuit with super-constant
depth; whereas the constructions of Applebaum and Raykov [8] either yield only a weak PRF
(which is not broken by natural properties, in general) or require complicated computations,
which they implement using majority gates (i.e., the resulting function is in the class T C0,
for which natural properties are neither known nor conjectured to exist).

Nevertheless, as pointed out by Applebaum,10 a transformation of Goldreich’s PRG to a
weak PRF from [8] can be used to break the PRG when it is intantiated with a random graph
and with a predicate with sufficiently low circuit complexity; this attack uses algorithms for

10Personal communication.
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learning from random examples (instead of natural properties). Specifically, assume that
Goldreich’s PRG is secure when instantiated with a random graph [n]× [m] of right-degree
` and a predicate P : {0, 1}` → {0, 1}. Using the argument that appears in [8, Sec. 1.2.1]
it follows that the function gx : {0, 1}`·log(n) → {0, 1} that considers its input as a set S
of ` vertices in [n], and outputs gx(S) = P (x�S), is a weak PRF against adversaries that
make m (uniformly-chosen) queries. The complexity of gx is essentially determined by the
complexity of the predicate P .11 Thus, if the latter is sufficiently small such that there
exists an algorithm for learning gx from m− 1 random examples, then gx cannot be a weak
PRF for adversaries that make m queries (since such an adversary can use the learning
algorithm to predict the mth evaluation of the function at a random point, using the first
m− 1 evaluations at random points). This contradicts the hypothesis that Goldreich’s PRG
is secure when instantiated with the predicate P and a random graph [n]× [m].

Loosely speaking, the argument above implies that Goldreich’s PRG is not secure when
the stretch is quasipolynomial (and the locality is polylogarithmic and sufficiently large),
the graph is random, and the predicate is computable by an AC0 circuit of sufficiently small
sub-exponential size; this relies on the learning algorithm of Linial, Mansour, and Nisan [22].12
However, the latter class of predicates is much weaker than the class of predicates to which
our main unconditional result applies (i.e., than the class of AC0[⊕] circuits of sufficiently
small sub-exponential size, from Theorem 2). For example, such predicates have “low”
resilience o(`), because the Fourier weight of depth-d AC0 circuits over ` bits of size 2`ε

is .01-concentrated on sets of size at most O(`ε·(d−1)) = o(`) (see [22, 31]); therefore, such
predicates do not withstand the attacks from [7]. Finally, recall that it is currently an open
problem to understand the learnability of AC0[⊕] circuits from random examples.
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Abstract
It is known since the work of [1] that for any permutation symmetric function f , the quantum
query complexity is at most polynomially smaller than the classical randomized query complexity,
more precisely that R(f) = Õ

(
Q7(f)

)
. In this paper, we improve this result and show that

R(f) = O
(
Q3(f)

)
for a more general class of symmetric functions. Our proof is constructive

and relies largely on the quantum hardness of distinguishing a random permutation from a
random function with small range from Zhandry [11].
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1 Introduction

The black box model has been a very fruitful model for understanding the possibilities
and limitations of quantum algorithms. In this model, we can prove some exponential
speedups for quantum algorithms, which is notoriously hard to do in standard complexity
theory. Famous examples are the Deutsch-Josza problem [7] and Simon’s problem [10]. There
has been a great line of work to understand quantum query complexity, which developed
some of the most advanced algorithms techniques. Even Shor’s algorithm [9] for factoring
fundamentally relies on a black box algorithm for period finding.

We describe here the query complexity model in a nutshell. The idea is that we have
to compute f(x1, . . . , xn) where each xi ∈ [M ] can be accessed via a query. We consider
decision problems meaning that f : S → {0, 1} with S ⊆ [M ]n. In this paper, we will consider
inputs x ∈ [M ]n equivalently as functions from [n] → [M ]. We are not interested in the
running time of our algorithm but only want to minimize the number of queries to x, which
in the quantum setting consists of applying the unitary Ox : |i〉|j〉 → |i〉|j + xi〉. D(f), R(f)
and Q(f) represent the minimal amount of queries to compute f with probability greater
than 2/3 (or = 1 for the case of D(f)) using respectively a deterministic algorithm with
classical queries, a randomized algorithm with classical queries and a quantum algorithm
with quantum queries.

As we said before, the query complexity is great for designing new quantum algortihms.
It is also very useful for providing black box limitations for quantum algorithms. There are
some cases in particular where we can prove that the quantum query complexity of f is at
most polynomially smaller than classical (deterministic or randomized) query complexity.
For example:
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for specific functions such as search [6] or element distinctness (ED) [2, 8, 4], we have
respectively Q(Search) = Θ(n1/2), D(Search) = Θ(n) and Q(ED) = Θ(n2/3), D(ED) =
Θ(n).
For any total function f i.e. when its domain S = [M ]n, Beals et al. [5] proved using the
polynomial method that D(f) ≤ O(Q6(f)).

Another case of interest where we can lower bound the quantum query complexity is the
case of permutation symmetric functions. There are several ways of defining such functions
and we will be interested in the following definitions for a function f : S → {0, 1} with
S ⊆ [M ]n.

I Definition 1.
f permutation symmetric of the first type iff. ∀π ∈ Sn, f(x) = f(x ◦ π).
f is permutation symmetric of the second type iff. ∀π ∈ Sn, ∀σ ∈ SM ,
f(x) = f(σ ◦ x ◦ π).

where Sn (resp. SM ) represents the set of permutations on [n] (resp. [M ]) and ◦ is the usual
function composition.

Here, recall that we consider strings x ∈ [M ]n as functions from [n] → [M ]. Notice also
that this definition implies that S is stable by permutation, meaning that x ∈ S ⇔ ∀π ∈
Sn, x ◦ π ∈ S. We already know from the work of Aaronson and Ambainis the following
result:

I Theorem 2 ([1]). For any permutation symmetric function f of the second type
(Definition 1), R(f) ≤ Õ(Q7(f)).

In a recent survey on quantum query complexity and quantum algorithms [3], Ambainis
writes:

“It has been conjectured since about 2000 that a similar result also holds for f with a
symmetry of the first type.”

Contribution

The contribution of this paper is to prove the above conjecture. We show the following:

I Theorem 3. For any permutation symmetric function f of the first type, R(f) ≤ O(Q3(f)).

This result not only generalizes the result for a more general class of permutation
symmetric function, but also improves the exponent from 7 to 3. In the case where M = 2,
this result was already known [1] with an exponent of 2, which is tight from Grover’s
algorithm.

The proof technique is arguably simple, constructive and relies primarily on the quantum
hardness of distinguishing a random permutation from a random function with small range
from Zhandry [11]. We start from a permutation symmetric function f . At high level, the
proof goes as follows:

We start from an algorithm A that outputs f(x) for all x with high (constant) probability.
Let q the number of quantum queries to Ox performed by A.
Instead of running A on input x, we choose a random function C : [n]→ [n] with a range
of small size r (from a distribution specified later in the paper) and apply the algorithm A

where we replace calls to Ox with calls to Ox◦C . We note that there is a simple procedure
to compute Ox◦C from Ox and OC .
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If we take r = Θ(q3), we can use Zhandry’s lower bound, we show that for each x, the
output will be close to the output of the algorithm A where we replace calls to Ox◦C
with calls to Ox◦π for a random permutation π. Using the fact that f is permutation
symmetric, the latter algorithm will output with high probability f(x ◦ π) = f(x). In
other words, if the algorithm A that calls Ox◦C wouldn’t output f(x) for a random C

and a fixed x then we would find a distinguisher between a random C and a random
permutation π, which is hard from Zhandry’s lower bound.
The above tells us that applying A where we replace calls to Ox with calls to Ox◦C gives
us output f(x) with high probability. Knowing C, we can construct the whole string
x ◦ C by querying x on inputs i ∈ Im(C) which can be done with Im(C) ≤ r classical
queries which allows us to construct the unitary Ox◦C . This means we can emulate A on
input x ◦ C with r classical queries to x and this gives us f(x) with high probability.

After presenting a few notations, we dive directly into the proof of our theorem.

2 Preliminaries

2.1 Notations

For any function f , let Im(f) be its range (or image).

Query algorithms

A query algorithm AO is described by a algorithm that calls another function O in a black
box fashion. We will never be interested in the running time or the size of A but only in the
number of calls, or queries, to O. We will consider both the cases where the algorithm AO is
classical and quantum. In the latter O will be a quantum unitary. In both cases, we only
consider algorithms that output a single bit.

Oracles

We use oracles to perform black box queries to a function. For any function g, OClassical
g is a

black box that on input i outputs g(i) while Og (without any superscript) is the quantum
unitary satisfying

Og : |i〉|j〉 → |i〉|j + g(i)〉.

Query complexity

Fix a function f : S → {0, 1} where S ⊆ [M ]n.

I Definition 4. The randomized query complexity R(f) of f is the smallest integer q such
that there exists a classical randomized algorithm AO performing q queries to O satisfying:

∀x ∈ S, Pr[AOClassical
x outputs f(x)] ≥ 2/3.

I Definition 5. The quantum query complexity Q(f) of f is the smallest integer q such that
there exists a quantum algorithm AO performing q queries to O satisfying:

∀x ∈ S, Pr[AOx outputs f(x)] ≥ 2/3.

ITCS 2019
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2.2 Hardness of distinguishing a random permutation from a random
function with small range

Our proof will use a quantum lower bound on distinguishing a random permutation from a
random function with small range proven in [11]. Following this paper, we define, for any
r ∈ [n], the following distribution Dr on functions from [n] to [n] from which can be sampled
as follows.

Draw a random function g from [n]→ [r].
Draw a random injective function h from [r]→ [n].
Output the composition h ◦ g.

Notice that any function f drawn from Dr is of small range and satisfies |Im(f)| ≤ r.
Let also Dperm be the uniform distribution on permutations on [n]. Zhandry’s lower bound
can be stated as follows:

I Proposition 6 ([11]). There exists an absolute constant Λ such that for any r ∈ [n] and
any quantum query algorithm BO performing at most dΛr1/3e queries to O:

∀b ∈ {0, 1},
∣∣Eπ←Dperm Pr[BOπ outputs b]− EC←Dr Pr[BOC outputs b]

∣∣ ≤ 2
27 .

This is obtained immediately by combining Theorem 8 and Lemma 1 of [11]1.

3 Proving our main theorem

The goal of this section is to prove Theorem 3. Fix a function f : S → {0, 1} where S ⊆ [M ]n
with Q(f) = q. This means there exists a quantum query algorithm AO performing q queries
to O such that

∀x ∈ S, Pr[AOx outputs f(x)] ≥ 2/3.

We first amplify the success probability to 20/27.

I Lemma 7. There exists a quantum query algorithm AO
3 that performs 3q queries to O such

that

∀x ∈ S, Pr[AOx
3 outputs f(x)] ≥ 20

27 .

Proof. AO
3 will consist of the following: run AO independently 3 times and take the output

that occurs the most. For each x, each run of AOx outputs f(x) with probability greater
than 2/3. The probability that the correct f(x) appears at least twice out of the 3 results is
therefore greater than 8

27 + 3 · 4
27 = 20

27 . J

Using the fact that f is permutation symmetric, we get the following corollary:

I Corollary 8.

∀x ∈ S, ∀π ∈ Sn, Pr[AOx◦π
3 outputs f(x)] = Pr[AOx◦π

3 outputs f(x ◦ π)] ≥ 20
27 .

1 Equivalently, this is obtained immediately by combining Lemma 3.2 and Lemma 3.4 from the arXiv
version quant-ph:1312.1027.
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3.1 Looking at a small number of indices of x
The main idea of the proof is to show that A3 will output f(x) with high probability when
replacing queries to Ox with queries to Ox◦C for C chosen uniformly from Dr for some
r = Θ(Q3(f)). First notice that for any x : [n]→ [M ] and any g : [n]→ [n], it is possible to
apply Ox◦g with 2 calls to Og and 1 call to Ox with the following procedure:

|i〉|j〉|0〉 → |i〉|j〉|g(i)〉 → |i〉|j + (x ◦ g)(i)〉|g(i)〉 → |i〉|j + (x ◦ g)(i)〉|0〉

where we respectively apply Og on registers (1, 3); Ox on registers (3, 2) and O†g on registers
(1, 3).

Therefore, for any fixed (and known) x, for any function g : [n] → [n], we can look at
A

Ox◦g
3 as a quantum query algorithm that queries Og. In other words, for each x ∈ S, there

is a quantum query algorithm BO
x such that B

Og
x = AOx◦g for any function g : [n] → [n].

Notice also that since a query to Ox◦g is done by doing 2 queries to Og, we have that BO

uses twice as many queries than AO
3 .

We can now prove our main proposition that shows that we can compute f(x) by looking
only at x ◦ C for a random C with |Im(C)| ≤ r.

I Proposition 9. Let f : [M ]n → {0, 1} with Q(f) = q and r = d216q3Λ−3e where Λ is the
absolute constant from Proposition 6.

∀x ∈ S, EC←Dr Pr[AOx◦C
3 outputs f(x)] ≥ 2/3.

Proof. For each x ∈ S, we consider the algorithm BO
x described above. Recall that for all

g : [n]→ [n], BOg
x = A

Ox◦g
3 . Since AO

3 uses 3q queries, BO
x uses 6q queries. We first consider

the case where g is a random permutation. Using Corollary 8:

∀x ∈ S, Eπ←Dperm Pr[BOπ
x outputs f(x)] = Eπ←Dperm Pr[AOx◦π

3 outputs f(x)] ≥ 20
27

Using the lower bound of Proposition 6 noticing that 6q ≤ Λr1/3, we have

∀x ∈ S,
∣∣Eπ←Dperm Pr[BOπ

x outputs f(x)]− EC←Dr Pr[BOC
x outputs f(x)]

∣∣ ≤ 2
27 .

which gives us

∀x ∈ S, EC←Dr Pr[BOC
x outputs f(x)] ≥ 20

27 −
2
27 = 2/3.

Since for each x ∈ S, BOC
x = Ax◦C3 , we can therefore conclude

∀x ∈ S, EC←Dr Pr[AOx◦C
3 outputs f(x)] ≥ 2/3. J

3.2 Constructing a classical query algorithm for f
We can now use the above proposition to prove our main theorem.

I Theorem 2 (Restated). For any permutation symmetric function f of the first type,
R(f) ≤ O(Q3(f)).

Proof. Fix a function f : S → {0, 1} where S ⊆ [M ]n with Q(f) = q. This means there
exists a quantum query algorithm AO performing q queries to O such that

∀x ∈ S, Pr[AOx outputs f(x)] ≥ 2/3.

We construct a randomized algorithm that performs r = d216q3Λ−3e classical queries to
OClassical
x as follows:

ITCS 2019
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1. Choose a random C according to distribution Dr.
2. Query OClassical

x to get all values xi for i ∈ Im(C). This requires |Im(C)| ≤ r queries to
OClassical
x . These queries fully characterize the function x ◦C, hence the quantum unitary

Ox◦C .
3. From AO, construct the quantum algorithm AO

3 as in Lemma 7. Recall that AO
3 just

consists of applying AO independently 3 times and output the majority outcome.
4. We consider AOx◦C

3 as a quantum unitary circuit acting on t qubits. At each step of the
algorithm, we store the 2t amplitudes. When Ox◦C is called, we use its representation
from step 2 to calculate its action on the 2t amplitudes. Other parts of AOx◦C

3 are treated
the same way. While this uses a lot of computing power, it does not require any queries
to OClassical

x or Ox other than those used at step 2.
Step 4 outputs the same output distribution than the quantum algorithm AOx◦C

3 . Using
Proposition 9, for all x ∈ S, this algorithm outputs f(x) with probability at least 2/3, which
implies

R(f) ≤ r = d216Q3(f)Λ−3e. J

Notice that after step 2, it is not possible to just compute f(x ◦C), and try to show that
it is equal to f(x) since we don’t even always have x ◦C ∈ S. This is yet another example in
query complexity where we use the behavior of a query algorithm on inputs not necessarily
in the domain of f .

4 Conclusion

This result extends the class of functions for which we can show a polynomial relationship
between the quantum and the randomized query complexity and improves the polynomial in
general for permutation symmetric functions.

The first obvious open question is to close the gap between the best known speed-up for
permutation symmetric function - which is quadratic - and the cubic lower bound obtained
in this paper. Another open question is to see if such techniques can be extended to the case
where the domain S is permutation symmetric, which implies the case of total functions.
While the techniques seem specific to permutation symmetric functions, using a more powerful
lower bound or considering inputs x in superposition (as in [12]) could give interesting results.

Also, we are currently extending those techniques to study the behavior of uniformly
random inputs x in particular in the context of the quantum random oracle model. Here, we
are interested in the power of quantum attacks on a cryptographic scheme while performing
quantum queries to a uniformly random function. This technique seems promising to show
that for many attacks, these quantum queries can be replaced with classical queries in the
same way as in our steps 2-4.
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Abstract
Testing monotonicity of a Boolean function f : {0, 1}n → {0, 1} is an important problem in
the field of property testing. It has led to connections with many interesting combinatorial
questions on the directed hypercube: routing, random walks, and new isoperimetric theorems.
Denoting the proximity parameter by ε, the best tester is the non-adaptive Õ(ε−2√n) tester
of Khot-Minzer-Safra (FOCS 2015). A series of recent results by Belovs-Blais (STOC 2016)
and Chen-Waingarten-Xie (STOC 2017) have led to Ω̃(n1/3) lower bounds for adaptive testers.
Reducing this gap is a significant question, that touches on the role of adaptivity in monotonicity
testing of Boolean functions.

We approach this question from the perspective of parametrized property testing, a concept re-
cently introduced by Pallavoor-Raskhodnikova-Varma (ACM TOCT 2017), where one seeks to un-
derstand performance of testers with respect to parameters other than just the size. Our result is
an adaptive monotonicity tester with one-sided error whose query complexity is O(ε−2I(f) log5 n),
where I(f) is the total influence of the function. Therefore, adaptivity provably helps monoton-
icity testing for low influence functions.
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1 Introduction

Monotonicity testing of Boolean functions f : {0, 1}n → {0, 1} is a classic problem in property
testing that has been extensively studied over the last two decades [11, 8, 6, 2, 4, 3, 9, 1, 5].
Consider the coordinate-wise partial order over {0, 1}n, denoted by ≺. A function f is
monotone if ∀x, y ∈ {0, 1}n where x ≺ y, f(x) ≤ f(y). The distance between two functions
f, g is Prx[f(x) 6= g(x)], where x is u.a.r in {0, 1}n. The distance of f to monotonicity is the
minimum distance of f to a monotone g. Typically, we say that f is ε-far if the distance to
monotonicity is at least ε.

The goal of monotonicity testing is to design efficient (poly(n)) randomized procedures
that distinguish monotone functions from those that are far from monotone. Formally, given
query access to f and a proximity parameter ε > 0, a monotonicity tester is a (randomized)
procedure that accepts if f is monotone, and rejects if f is ε-far from being monotone. Both

1 Supported by NSF CCF-1813165.
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the above guarantees should hold with probability at least 2/3. A tester has one-sided error
if it always accepts a monotone function, or equivalently, always provides a certificate of
rejection. A tester is called non-adaptive if all the queries can be made without seeing any
of the answers. On the other hand, if the tester’s queries depend on previous answers, the
tester is adaptive. As we explain below, the power of adaptivity is the central open question
in Boolean monotonicity testing.

Raskhodnikova [11], Goldreich et al. [8], and Dodis et al. [6] initiated the study of
monotonicity testing by describing aO(n/ε)-query non-adaptive, one-sided tester. Their “edge
tester” repeats this simple procedure O(n/ε) times: sample a random edge of the hypercube
and test for a monotonicity violation among its endpoints. Chakrabarty and Seshadhri [2]
described the first o(n)-query tester, by proving connections between monotonicity testing
and directed isoperimetry theorems. Their “path tester” performs random walks on the
directed hypercube. Chen-Servedio-Tan [4] gave a tighter analysis to get an Õ(n5/6ε−4)
bound. In a remarkable result, Khot, Minzer, and Safra [9] (henceforth KMS) prove that the
path tester works in Õ(

√
n/ε2) queries. This was achieved by a deep isoperimetric result, a

directed analog of Talagrand’s isoperimetry theorem [12].
Fischer et al. [7] had proven an Ω(

√
n) lower bound for non-adaptive, one-sided testers.

Using sophisticated techniques, Chen-De-Servedio-Tan [3] proved an Ω(n1/2−δ) (for any fixed
δ > 0) lower bound for non-adaptive, two-sided testers. All in all, this nearly resolves the
non-adaptive complexity of monotonicity testing.

In a major recent advance, Belovs-Blais [1] proved the first polynomial lower bound of
Ω̃(n1/4) for any adaptive tester. This was further improved by Chen-Waingarten-Xie [5]
to Ω̃(n1/3). These are highly non-trivial results. Belovs-Blais also gave a O(logn) query
adaptive monotonicity tester for the class of regular linear threshold functions (LTFs), the
hard functions of Chen et al. [3]. This underscores the challenge of proving adaptive lower
bounds and leaves a tantalizing open question. Can adaptivity always help in Boolean
monotonicity testing over the hypercube?

We approach this question from the perspective of parametrized property testing, a concept
recently introduced by Pallavoor-Raskhodnikova-Varma [10]. One seeks to understand the
performance of testers with respect to parameters other than just the size of the domain. If
one can beat existing lower bounds (for some settings of the parameters), this gives insight
into the hardest functions for monotonicity testing.

Our main result is the existence of adaptive monotonicity testers parametrized by the
total influence, I(f). Letting D be the uniform distribution over all pairs (x, y) at Hamming
distance 1, I(f) := n · Pr(x,y)∼D[f(x) 6= f(y)].

I Theorem 1. Consider the class of functions f : {0, 1}n → {0, 1} with total influence at
most I. There exists a one-sided, adaptive monotonicity tester for this class with query
complexity O(Iε−2 log5 n).

A claim of KMS (Theorem 9.1 in [9]) implies that if I(f) > 6
√
n, then the edge

tester is itself a O(n/I(f))) tester. Combined with Theorem1, one gets an adaptive
Õ(min(I(f), n/I(f))ε−2)-query tester. The trade-off point is basically

√
n, the maximum

possible influence of a monotone function.

1.1 Perspective on Theorem 1
When I(f)�

√
n, Theorem1 beats the lower bounds of [7, 3]. Indeed, the lower bound

of Fischer et al. [7] holds for constant influence functions, and so adaptivity is crucial
for a result like Theorem1. As mentioned earlier, it was known that adaptivity helps for
the structured class of regular LTFs [1]. What is intriguing about Theorem1 is that no
strong structural assumption is required to get o(

√
n) query testers.
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All adaptive lower bound constructions have functions with influence Θ(
√
n) [1, 5]. In

light of Theorem1, this is perhaps no accident. Theorem1 shows that this is the hard
regime for monotonicity testing.
The o(n) non-adaptive testers are obtained by directed random walks in the hypercube.
One starts at a random x and walks “up” (consistent with the partial order) the hypercube
to reach some y. Then, the tester compares f(x), f(y) to detect non-monotonicity. (The
intermediate vertices in the random walk are not queried, and this is crucial for getting
the o(n) bound.) The algorithm of Theorem1 is fundamentally different; it performs
standard, undirected random walks on the hypercube. The endpoints might not even be
comparable, so only querying these is of no use. This is exactly where adaptivity helps,
since we can perform binary search to find violations in this path. This leads to a better
monotonicity tester for functions with influence o(

√
n).

1.2 Proof Idea
The o(n) testers of [2, 4, 9] perform random walks on the directed hypercube with orientation
corresponding to the partial order, and query the function at the endpoints of this walk. Their
analysis shows that if the function is ε-far from being monotone, then there is a significant
probability of encountering a violation. At a high level, one of the main observations of
[2, 4, 9] is that “longer” walks lead to higher chances of catching a violation. However, the
vast majority of vertices in the hypercube have Hamming weight n/2 ± Θ(

√
n). For the

purposes of monotonicity testing, one can assume that vertices outside these middle layers
do not participate in any violations to monotonicity. Each step of a directed walk increments
the Hamming weight, and thus the walk length can be at most Θ(

√
n). This

√
n is precisely

what shows up in the final bound of KMS.
Our insight is that one can perform an analogous analysis as above for random walks on

the undirected hypercube Hn. These walks can have length ω(
√
n). Suppose we perform

an `-step random walk (on Hn) from x that ends at y. Note that with high probability,
x and y will not be comparable. Nonetheless, if f(x) 6= f(y), then the walk has passed
through an influential edge. The power of adaptivity is that we can find such an influential
edge through binary search. This idea of using binary search is indeed also present in a
O(logn)-query algorithm of Belovs and Blais [1] for adaptive monotonicity testers for regular
linear threshold functions.

However, we are not interested in finding an influential edge but rather a violated edge.
Fix a violated edge (u, v). Our insight is to lower bound the probability that (u, v) is the
unique influential edge in the undirected random walk. In this scenario, binary search is
guaranteed to find a violation. There are two opposing forces here. First, the probability that
(u, v) at all appears in the random walk grows as `/n. On the other hand, the probability
that this is the unique influential edge decreases with `; indeed, this probability depends
on the influence of f . A fairly simple calculation shows that for all but an `I(f)/n fraction
of “bad” vertices, an `-length from a vertex encounters no influential edge with constant
probability. Putting these together, we see that setting ` ∼ n/I(f) would lead to a good
probability of catching a violation; note that if I(f)�

√
n, the desired length of the walk

would indeed be �
√
n.

The only fly in the above ointment is if all the violated edges were concentrated on the
bad vertices. This is where we invoke the connection between distance to monotonicity and
isoperimetry; the directed Talagrand inequality of KMS essentially precludes this scenario
by showing that violated edges need to be “spread apart”. The actual math is more subtle.
KMS gives a trade-off between the concentration of the violated edges and the number of
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violated edges. If all violated edges are incident only on a few vertices, then there must be a
lot of violated edges. The latter is where the edge-tester, which is nothing but a length 1
random walk, works. This analysis is similar to what is done in KMS.

1.3 Preliminaries
We use Hn to denote the standard (undirected) hypercube graph on {0, 1}n, where all pairs
at Hamming distance 1 are connected. An edge (x, y) of Hn is influential, if f(x) 6= f(y). The
number of influential edges is precisely I(f) · 2n−1. An influential edge (x, y) is a violating
edge if x ≺ y, f(x) = 1, and f(y) = 0. Our tester will perform random walks of Hn. Note
that Hn is regular, so this is a symmetric Markov Chain.

We crucially use the central result of KMS, which is obtained as a consequence of the
directed analogue of Talagrand’s isoperimetric theorem.

I Lemma 2 (Lemma 7.1 in [9], paraphrased). Given any Boolean function f : {0, 1}n → {0, 1}
that is ε-far from being monotone, there exists a subgraph G = (A,B,E) of the hypercube
and parameters σ ∈ (0, 1), d ∈ N such that

Each edge (a, b) ∈ E with a ∈ A and b ∈ B is a violating edge.
The degree of each vertex in B is exactly d and the degree of each vertex in A is at most
2d.
|B| = σ · 2n.
σ2d = Ω(ε2/ log4 n).

2 Tester and Analysis

Let f : {0, 1}n → {0, 1} be a Boolean function over the hypercube with total influence I(f).

Algorithm 1 Adaptive Monotonicity Tester for Boolean Functions.
Input: A Boolean function f : {0, 1}n → {0, 1} and a parameter ε ∈ (0, 1)
1. Choose k ∈R {0, 1, 2, . . . , dlogne} uniformly at random. Set ` := 2k.
2. Choose x ∈ {0, 1}n uniformly at random.
3. Perform an `-length random walk p on Hn starting from x to reach y ∈ {0, 1}n.
4. If f(x) 6= f(y):

a. Perform binary search on p to find an influential edge (u, v) ∈ p.
b. REJECT if (u, v) is a monotonicity violation.

5. ACCEPT.

Theorem1 follows directly from the following theorem by repeating the above subroutine the
appropriate number of times. Note that the subroutine above does not need to know I(f).

I Theorem 3. If f is ε-far from being monotone, then the algorithm described in Algorithm 1
rejects with probability Ω

(
ε2

I(f) log5 n

)
.

I Definition 4. Given a positive integer `, a vertex x ∈ {0, 1}n is denoted `-sticky if an
`-length random walk from x on Hn contains no influential edges with probability ≥ 1/2. A
vertex is called non-`-sticky otherwise. An edge is `-sticky if both endpoints are `-sticky.

I Observation 5. If a vertex x is `-sticky and `′ < `, then x is `′-sticky as well.

I Lemma 6. The fraction of non-`-sticky vertices of a hypercube is at most 2`·I(f)
n .
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Proof. Given x ∈ {0, 1}n and a positive integer ` > 0, define the random variable Zx,` that
is the number of influential edges in a random walk of length ` starting from x. Therefore, x
is non-`-sticky iff Pr[Zx,` > 0] > 1/2. Let N denote the set of non-`-sticky vertices.

Since Zx,` is non-negative and integer valued we get Pr[Zx,` > 0] ≤ E[Zx,`].

|N |/2n < 2
2n
∑
x∈N

Pr[Zx,` > 0] < 2
2n

∑
x∈{0,1}n

Pr[Zx,` > 0] ≤ 2
2n

∑
x∈{0,1}n

E[Zx,`] (1)

The RHS above is precisely twice the expected number of influential edges encountered
in an `-length random walk starting from the uniform distribution on Hn. Let P` denote
the uniform distribution on `-length paths in Hn. For p ∼ P`, pt denotes the tth edge in
p, and let χ(e) be the indicator for edge e being influential. The RHS of (1) is equal to
2Ep∼P`

[
∑
t≤` χ(pt)] = 2

∑
t≤` Ep∼P`

[χ(pt)]. Since the uniform distribution is stationary for
random walks on Hn, the distribution induced on pt is the uniform distribution on edges in
Hn. Thus, Ep∼P`

[χ(pt)] = I(f)/n and the RHS of (1) is 2` · I(f)/n. J

For any integer ` > 0, let F` be the set of `-sticky violating edges. That is,

F` := {(x, y) ∈ Hn : (x, y) is violating and, x, y are `-sticky}

I Lemma 7. If ` is the length of the random walk chosen in Step 1, then Algorithm 1 rejects
with probability Ω

(
`
n ·
|F`|
2n

)
.

Proof. Fix an edge (u, v) ∈ F`. Let p = (e1, . . . , e`) be the edges of a random walk p. Each
edge et for 1 ≤ t ≤ ` is a uniformly sampled random edge of Hn. Therefore, for any fixed
edge (u, v), Pr[et = (u, v)] = 1

n·2n−1 .
Now, given 1 ≤ t ≤ `, define Etu,v to be the event that the tth edge of p is (u, v) and no

other edge of p is influential. Define Eu,v to be the disjoint union ∨`t=1Etu,v. Observe that for
two distinct edges (u, v) and (u′, v′) in F`, the events Eu,v and Eu′,v′ are disjoint. Therefore,

Pr[Algorithm 1 rejects for length `] ≥ Pr[
∨

(u,v)∈F`

Eu,v] =
∑

(u,v)∈F`

Pr[Eu,v] (2)

The inequality follows since if Eu,v occurs then the end points of p must have differing values
and binary search on p will return the violation (u, v). The equality follows since the events
are mutually exclusive.

Consider the event Etu,v. For this event to occur, et must be (u, v). Consider the conditional
probability Pr[Etu,v | et = (u, v)]. Let Fu be the event that a (t− 1)-length random walk from
u contains no influential edges, and let Fv be the event that an independent (`− t)-length
random walk from v contains no influential edges.

I Claim 8. Pr[Etu,v | et = (u, v)] = Pr[Fu ∧ Fv] = Pr[Fu] · Pr[Fv]

Proof. Conditioned on et = (u, v), the distribution of the first (t− 1) steps of the random
walk is the uniform distribution of (t − 1)-length paths that end at u. This is the same
distribution of the (t− 1)-length random walk starting from u. The distribution of the last
(`− t) steps, conditioned on et = (u, v), is the (`− t)-length random walk starting from v. J
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Since (u, v) is an `-sticky edge, by Obs 5 and Definition 4, Pr[Fu] ≥ 1/2 and Pr[Fv] ≥ 1/2.
The proof is completed by plugging the following bound into (2).

Pr[Eu,v] =
∑̀
t=1

Pr[Etu,v] =
∑̀
t=1

Pr[et = (u, v)] · Pr[Etu,v | et = (u, v)]

= 2
n · 2n

∑̀
t=1

Pr[Etu,v | et = (u, v)] ≥ `

4n · 2n J

We complete the proof of Theorem3.

Proof of Theorem 3. Let G = (A,B,E), σ, d be as in Lemma2.
Case 1: nσ

16I(f) ≤ 1.
In this case, we argue that the edge tester succeeds. More precisely, consider the setting of
the algorithm described in Algorithm 1 that sets ` = 1, that is, the tester checks whether
a random edge of Hn is a violation. This setting occurs with probability Ω(1/ logn).
The number of violated edges is at least σd2n, the number of edges in G = (A,B,E) (as
defined in Lemma2). Since σ2d = Ω(ε2/ log4 n), |E| = Ω( ε2

log4 n
· 2n

σ ). Since the number
of edges of the hypercube is Θ(n2n), we get that the probability Algorithm 1 obtains a
violation is Ω( ε2

log5 n
· 1
nσ ). By assumption, nσ

16I(f) ≤ 1, so this probability is Ω( ε2

I(f) log5 n
).

Case 2: nσ
16I(f) > 1.

In this case, there exists a non-negative power of 2 (call it `∗) such that σ
16 <

`∗·I(f)
n ≤ σ

8 .
Let A′ and B′ be the subset of A and B that are `∗-sticky. Let E′ ⊆ E be the edges with
end points in A′ and B′. Note that any edge of E′ ⊆ F`∗ . By Lemma 6, we get that the
fraction of non-`∗-sticky vertices is at most 2`∗ · I(f)/n ≤ σ/4. Since the degree of any
vertex in G in Lemma 2 is ≤ 2d,

|F`∗ | ≥ |E′| ≥ |E| − (2d) · σ · 2
n

4 = σd2n

2 .

The probability the algorithm chooses ` = `∗ is 1/logn. Lemma 7 gives us

Pr[Algorithm rejects] ≥ 1
logn · Pr[Algorithm rejects|` = `∗]

≥ 1
logn ·

(
`∗

n
· |F`

∗ |
2n

)
(by Lemma 7)

≥ 1
logn ·

`∗

n
· σd2

≥ 1
I(f) ·

(
σ2d

32 logn

)
(plugging `∗ ≥ σn/(16 · I(f)))

= Ω
(

ε2

I(f) log5 n

)
(by Lemma 2) J
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Abstract
For any constant d and parameter ε > 0, we show the existence of (roughly) 1/εd orderings on
the unit cube [0, 1)d, such that any two points p, q ∈ [0, 1)d that are close together under the
Euclidean metric are “close together” in one of these linear orderings in the following sense: the
only points that could lie between p and q in the ordering are points with Euclidean distance
at most ε‖p − q‖ from p or q. These orderings are extensions of the Z-order, and they can be
efficiently computed.

Functionally, the orderings can be thought of as a replacement to quadtrees and related
structures (like well-separated pair decompositions). We use such orderings to obtain surprisingly
simple algorithms for a number of basic problems in low-dimensional computational geometry,
including (i) dynamic approximate bichromatic closest pair, (ii) dynamic spanners, (iii) dynamic
approximate minimum spanning trees, (iv) static and dynamic fault-tolerant spanners, and (v)
approximate nearest neighbor search.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Approximation algorithms, Data structures, Computational geometry

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.21

Acknowledgements The authors thank the anonymous reviewers for their helpful suggestions.

1 Introduction

In this paper, we describe a technique that leads to new simple algorithms for a number of
fundamental proximity problems in low-dimensional Euclidean spaces.

Notation

The O notation hides constants that depends (usually exponentially) on d. Throughout, we
assume (without loss of generality) that ε is a power of 2; that is ε = 2−E for some positive
integer E.
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Z-order

Consider a point set P ⊆ [0, 1)2, its quadtree, and a DFS traversal of this quadtree.
One can order the points of P according to this traversal, resulting in an ordering ≺ of
the underlying set [0, 1)2. The relation ≺ is the ordering along a space filling mapping,
known as the Z-order. Specifically, there is a bijection z from the unit interval [0, 1) to
the unit square [0, 1)2 such that the ordering along the resulting “curve” is the Z-order.
The Z-order mapping z is not continuous. Nevertheless, the Z-order mapping has the
advantage of being easy to define. Indeed, given a real number α ∈ [0, 1), with the binary
expansion α = 0.x1x2x3 . . . (i.e., α =

∑∞
i=1 xi2−i), the Z-order mapping of α is the point

z(α) = (0.x2x4x6 . . . , 0.x1x3x5 . . .). Computing the Z-order or its inverse is quite easy, if
one is allowed bitwise-logical operations – in particular, the ability to compute compressed
quadtrees efficiently is possible only if such operations are available [19]. The approach
extends to higher constant dimensions. The idea of using the Z-order can be traced back
to the work of Gargantini [16], and it is widely used in databases and seems to improve
performance in practice [24]. Once comparison by Z-order is available, building a compressed
quadtree is no more than storing the points according to the Z-order, and this yields simple
data structures for various problems. For example, Laio et al. [27] and Chan [7, 8, 9] applied
the Z-order to obtain simple efficient algorithms for approximate nearest neighbor search
and related problems.

Shifting

The Z-order (and quadtrees) does not preserve distance. That is, two points that are far away
might be mapped to two close-together points, and vice versa. This problem is even apparent
when using a grid, where points that are close together get separated into different grid cells.
One way to get around this problem is to shift the grid (deterministically or randomly) [21].
The same approach works for quadtrees – one can shift the quadtree constructed for a point
set several times such that for any pair of points in the quadtree, there will be a shift where
the two points are in a cell of diameter that is O(1) times their distance. Improving an
earlier work by Bern [3], Chan [6] showed that 2dd/2e+ 1 deterministic shifts are enough in
d dimensions (a proof is reproduced in Appendix A.2). A somewhat similar shifting scheme
was also suggested by Feige and Krauthgamer [14]. Random shifting of quadtrees underlines,
for example, the approximation algorithm by Arora for Euclidean TSP [2].

By combining Z-order with shifting, both Chan [7] and Laio et al. [27] observed an
extremely simple data structure for O(1)-approximate nearest neighbor search in constant
dimensions: just store the points in Z-order for each of the 2dd/2e+ 1 shifts; given a query
point q, find the successor and predecessor of q in the Z-order by binary search for each of the
shifts, and return the closest point found. The data structure can be easily made dynamic to
support insertions and deletions of points, and can also be adapted to find O(1)-approximate
bichromatic closest pairs.
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For approximate nearest neighbor (ANN) search, the O(1) approximation factor can be
reduced to 1 + ε for any fixed ε > 0, though the query algorithm becomes more involved [7]
and unfortunately cannot be adapted to compute (1 + ε)-approximate bichromatic closest
pairs. (In the monochromatic case, however, the approach can be adapted to find exact
closest pairs, by considering O(1) successors and predecessors of each point [7].)

For other proximity-related problems such as spanners and approximate minimum span-
ning trees (MST), this approach does not seem to work as well: for example, the static
algorithms in [9], which use the Z-order, still require explicit constructions of compressed
quadtrees and are not easily dynamizable.

Main new technique: Locality Sensitive Orderings

For any given ε > 0, we show that there is a family of O((1/εd) log(1/ε)) orderings of
[0, 1)d with the following property: For any p, q ∈ [0, 1)d, there is an ordering in the family
such that all points lying between p and q in this ordering are within distance at most
ε ‖p− q‖ from p or q. The order between two points can be determined efficiently using
some bitwise-logical operations. See Theorem 10. We refer to these as locality-sensitive
orderings. They generalize the previous construction of 2dd/2e + 1 shifted copies of the
Z-order, which guarantees the stated property only for a large specific constant ε (dependent
on d). The property ensures, for example, that a (1 + ε)-approximate nearest neighbor
of a point q can be found among the immediate predecessors and successors of q in these
orderings.

Applications

Locality-sensitive orderings immediately lead to simple algorithms for a number of problems,
as listed below. Many of these results are significant simplification of previous work; some of
the results are new.

(a) Approximate bichromatic closest pair. Theorem 12 presents a data structure that maintains
a (1 + ε)-approximate closest bichromatic pair for two sets of points in Rd, with an
update time of O(logn), for any fixed ε > 0, ignoring factors that depend on ε (roughly
1/εd). Previously, a general technique of Eppstein [12] can be applied in conjunction
with a dynamic data structure for ANN, but the amortized update time increases by two
logn factors.

(b) Dynamic spanners. For a parameter t ≥ 1 and a set of points P in Rd, a graph G = (P,E)
is a t-spanner for P if for all p, q ∈ P , there is a p-q path in G of length at most
t ‖p− q‖. Static algorithms for spanners have been extensively studied in computational
geometry. The dynamic problem appears tougher, and has also received much attention
(see Table 1.1). We obtain a very simple data structure for maintaining a dynamic
(1 + ε)-spanners in Euclidean space with an update (insertion and deletion) time of
O(logn) and having O(n) edges in total, for any fixed ε > 0, ignoring factors that
depend on ε (roughly 1/εd). See Theorem 14. Although Gottlieb and Roditty [17] have
previously obtained the same update time (1/εO(d)) logn, their method requires much
more intricate details. (Note that Gottlieb and Roditty’s method more generally applies
to spaces with bounded doubling dimension, but no simpler methods have been reported
in the Euclidean setting.)
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Table 1.1 Previous work on dynamic (1 + ε)-spanners in Rd. Dependencies on ε (of the form
1/εO(d)) are omitted in the O bounds.

reference insertion time deletion time

Roditty [30] O(logn) O(n1/3 logO(1) n)
Gottlieb and Roditty [18] O(log2 n) O(log3 n)
Gottlieb and Roditty [17] O(logn) O(logn)

Table 1.2 Previous work on static k-vertex-fault-tolerant (1 + ε)-spanners in Rd. Dependencies
on ε (of the form 1/εO(d)) are omitted in the O bounds.

reference # edges degree running time

Levcopoulos et al. [26] 2O(k)n 2O(k) O(n logn+ 2O(k)n)
O(k2n) unbounded O(n logn+ k2n)
O(kn logn) unbounded O(kn logn)

Lukovszki [28, 29] O(kn) O(k2) O(n logd−1 n+ kn log logn)
Czumaj and Zhao [11] O(kn) O(k) O(kn logd n+ k2n log k)
H. Chan et al. [5] O(k2n) O(k2) O(n logn+ k2n)
Kapoor and Li [25]/Solomon [31] O(kn) O(k) O(n logn+ kn)

(c) Dynamic approximate minimum spanning trees. As is well-known [4, 19], a (1 + ε)-
approximate Euclidean MST of a point set P can be computed from the MST of a (1 +ε)-
spanner of P . In our dynamic spanner (and also Gottlieb and Roditty’s method [17]),
each insertion/deletion of a point causes O(1) edge updates to the graph. Immediately,
we thus obtain a dynamic data structure for maintaining a (1+ε)-approximate Euclidean
MST, with update time (ignoring dependencies on ε) equal to that for the dynamic graph
MST problem, which is currently O(log4 n/ log logn) with amortization [22].

(d) Static and dynamic vertex-fault-tolerant spanners. For parameters k, t ≥ 1 and a set of
points P in Rd, a k-vertex-fault-tolerant t-spanner is a graph G which is a t-spanner
and for any P ′ ⊆ P of size at most k, the graph G \ P ′ remains a t-spanner for P \ P ′.
Fault-tolerant spanners have been extensively studied (see Table 1.2). Locality-sensitive
orderings lead to a very simple construction for k-vertex-fault-tolerant (1 + ε)-spanners,
with O(kn) edges, maximum degree O(k), and O(n logn+ kn) running time (ignoring
dependencies on ε). See Theorem 16. Although this result was known before, all previous
constructions (including suboptimal ones), from Levcopoulos et al. [26] to Solomon’s
work [31], as listed in Table 1.2, require intricate details. It is remarkable how effortlessly
we achieve optimal O(k) degree, compared to the previous methods. (Note, however,
that some of the more recent previous constructions more generally apply to spaces with
bounded doubling dimension, and some also achieve good bounds on other parameters
such as the total weight and the hop-diameter.)
Our algorithm can be easily made dynamic, with O(logn+ k) update time. No previous
results on dynamic fault-tolerant spanners were known.

(e) Approximate nearest neighbors. Locality-sensitive orderings lead to a simple dynamic
data structure for (1 + ε)-approximate nearest neighbor search with O(logn) time per
update/query (ignoring dependencies on ε). While this result is not new [7], we emphasize
that the query algorithm is the simplest so far – it is just a binary search in the orderings
maintained.
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Computational models

The model of computation we have assumed is a unit-cost real RAM, supporting standard
arithmetic operations and comparisons (but no floor function), augmented with bitwise-
logical operations (bitwise-exclusive-or and bitwise-and), which are commonly available in
programming languages (and in reality are cheaper than some arithmetic operations like
multiplication).

If we assume that input coordinates are integers bounded by U and instead work in the
word RAM model with (logU)-bit words (U ≥ n), then our approach can actually yield
sublogarithmic query/update time. For example, we can achieve O(log logU) expected time
for dynamic approximate bichromatic closest pair, dynamic spanners, and dynamic ANN,
by replacing binary search with van Emde Boas trees [32]. Sublogarithmic algorithms were
known before for dynamic ANN [7], but ours is the first sublogarithmic result for dynamic
(1 + ε)-spanners. Our results also answer the open problem of dynamic (1 + ε)-approximate
bichromatic closest pair in sublogarithmic time, originally posed by Chan and Skrepetos [10].

2 Locality-sensitive orderings

2.1 Grids and orderings
I Definition. For a set X, consider a total order (or ordering) ≺ on the elements of X.
Two elements x, y ∈ X are adjacent if there is no element z ∈ X, such that x ≺ z ≺ y or
y ≺ z ≺ x.

Given two elements x, y ∈ X, such that x ≺ y, the interval [x, y) is the set [x, y) =
{x} ∪ {z ∈ X | x ≺ z ≺ y} .

The following is well known, and goes back to a work by Walecki in the 19th century [1].
We include a proof in Appendix A.1 for the sake of completeness.

I Lemma 1. For n elements {0, . . . , n− 1}, there is a set O of dn/2e orderings of the
elements, such that, for all i, j ∈ {0, . . . , n− 1}, there exist an ordering σ ∈ O in which i
and j are adjacent.

I Definition 2. Consider an axis-parallel cube C ⊆ Rd with side length `. Partitioning it
uniformly into a t × t × · · · × t grid G creates the t-grid of C. The grid G is a set of td
identically sized cubes with side length `/t.

For a cube � ⊆ Rd, its diameter is diam(�) = sidelength(�)
√
d.

By Lemma 1 we obtain the following result.

I Corollary 3. For a t-grid G of an axis-parallel cube C ⊆ Rd, there is a set O(t, d) of O(td)
orderings, such that for any �1,�2 ∈ G, there exists an order σ ∈ O(t, d) where �1 and �2
are adjacent in σ.

2.2 ε-Quadtrees
I Definition 4. An ε-quadtree Tε is a quadtree-like structure, built on a cube with side
length `, where each cell is being partitioned into a (1/ε)-grid. The construction then
continues recursively into each grid cell of interest. As such, a node in this tree has up to
1/εd children, and a node at level i ≥ 0 has an associated cube of side length `εi. We call a
1/2-quadtree a regular quadtree.

ITCS 2019



21:6 On Locality-Sensitive Orderings and Their Applications

2

4

6

7

8

10

11

12 13

1415

161

9

5

3

Figure 2.1 One ordering of a set of cells.

I Lemma 5. Let E > 0 be an integer number, ε = 2−E, and T be a regular quadtree over
[0, 2)d. Then there are ε-quadtrees T 1

ε , . . . , T Eε , such that the collection of cells at each level
in T is contained in exactly one of these ε-quadtrees.

Proof. For i = 0, . . . , E − 1, construct the ε-quadtree T iε using the cube
[
0, 2E−i

)d ⊇ [0, 2)d
as the root. Now for j ∈ {0, . . . , E − 1}, observe that the collection of cells at levels
j, j + E, j + 2E, . . . , of T will also be in the quadtree T jε . Indeed, any node at level j + `E

in T corresponds to a cell of side length 2−(j+`E). Now in the (`+ 1)th level of quadtree T jε ,
this same node will have side length ε`+12E−j = 2−(j+`E). J

Consider an ε-quadtree Tε. Every node has up to 1/εd children. Consider any ordering
σ of

{
1, . . . , 1/εd

}
, and consider a DFS of Tε that always visits the children of a node in

the order specified by σ. This induces an ordering on the points in the cube which is the
root of Tε. Indeed, for any two points, imagine storing them in an ε-quadtree – this implies
that the two points are each stored in their own leaf node, which contains no other point
of interest. Now, independently of what other points are stored in the quadtree, this DFS
traversal would visit these two points in the same order. This can be viewed as a space filling
curve (which is not continuous) which maps a cube to an interval. This is a generalization of
the Z-order. In particular, given a point set stored in Tε, and σ, one can order the points
according to this DFS traversal, resulting in 1-dimensional ordering of the points. We denote
the resulting ordering by (Tε, σ).

I Definition 6. Let Π be the set of all orderings of [0, 2)d, induced by picking one of the
lg(1/ε) trees of Lemma 5, together with an ordering σ ∈ O(1/ε, d), as defined by Lemma 1.
Each ordering in Π is called an ε-ordering.

Any two points that are lucky enough to lie in a cell of the quadtree that has diameter
close to their distance, are going to be adjacent in one of the ε-orderings. Indeed, consider
two points p, q ∈ [0, 1)d, a parameter ε > 0, such that p, q are both contained in a cell � of
the regular quadtree T with ‖p− q‖ > εdiam(�). Then, there is an ε-quadtree Tε that has �
as a node, and let �p and �q be the two children of � in Tε, containing p and q respectively.
Furthermore, there is an ordering σ ∈ O(1/ε, d), such that �p and �q are adjacent. As such,
the cube �p (resp., �q) corresponds to an interval [x, x′) (resp., [x′, x′′)) in the ordering
(Tε, σ), and these two intervals are adjacent.

Now consider the case when there are two points close together, but no appropriately
sized quadtree cell contains both p and q. In other words, two points that are close together
might get separated by nodes that are much bigger in the quadtree. This can be resolved
using shifting. We need the following result of Chan [6, Lemma 3.3] – a proof is provided in
Appendix A.2.
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I Lemma 7. Consider any two points p, q ∈ [0, 1)d, and let T be the infinite quadtree of
[0, 2)d. For D = 2 dd/2e and i = 0, . . . , D, let vi = (i/(D + 1), . . . , i/(D + 1)). Then there
exists an i ∈ {0, . . . , D}, such that p+ vi and q + vi are contained in a cell of T with side
length ≤ 2(D + 1) ‖p− q‖.

2.3 Comparing two points according to an ε-ordering

We now show how to efficiently compare two points in P according to a given ε-ordering σ
with a shift vi. The shift can be added to the two points directly, and as such only need to
worry about how to compare two points according to σ.

I Observation 8. Let ⊕ denote the bitwise-exclusive-or operator. Define msb(a) := −blg ac
to be the index of the most significant bit in the binary expansion of a ∈ (0, 2]. Given
a, b ∈ [0, 2), one can compare the msb of two numbers using the following:

(a) msb(a) > msb(b) if and only if a < b and a < a⊕ b.

(b) If a⊕ b ≤ a ∧ b then msb(a) = msb(b), where ∧ is the bitwise-and operator.

I Lemma 9. Let p = (p1, . . . , pd) and q = (q1, . . . , qd) be two distinct points in P ⊆ [0, 2)d
and σ ∈ Π be an ε-ordering over the cells of some ε-quadtree Tε storing P . Then one can
determine if p ≺σ q using O(d log(1/ε)) bitwise-logical operations.

Proof. Recall ε is a power of two and E = lg(1/ε). In order to compare p and q, for
i = 1, . . . , d, compute ai = pi ⊕ qi. Find the index i′ such that msb(ai′) ≤ msb(ai) for all i,
using O(d) comparisons. Given pi′ and qi′ , our first goal is to determine the place in which
pi′ and qi′ first differ in their binary representation. Note that because ε is a power of two,
each bit in the base 1/ε expansion of pi′ corresponds to a block of E bits in the binary
expansion of pi′ .

First we find the position within the block of size E where pi′ and qi′ differ in their
binary expansion. For j = 1, . . . , E, let bj = 2E−j/(2E − 1) ∈ (0, 1) be the number whose
binary expansion has a 1 in positions j, j + E, j + 2E, . . ., and 0 everywhere else. For
j = 1, . . . , E, compute bj ∧ ai′ and check if msb(bj) = msb(bj ∧ ai′). Once we find a j such
that msb(bj) = msb(bj ∧ ai′), stop. We know that that pi′ and qi′ first differ in the jth
position inside some block.

It remains to extract the E bits from each block in p1, . . . , pd. For i = 1, . . . , d, let
Bi ∈ {0, 1}E be the bits inside the block associated with pi. For k = 1, . . . , E, set Bi,k =
1
[
msb(2j−kai′) = msb((2j−kai′) ∧ pi)

]
(where 1[·] is the indicator function). By repeating

a similar process for all q1, . . . , qd, we obtain the coordinates of the cells in which p and q
differ. We can then consult σ to determine whether or not p ≺σ q.

This implies that p and q can be compared using O(d log(1/ε)) operations by Observation 8.
J

Remark

In the word RAM model for integer input, the extra log(1/ε) factor in the above time bound
can be eliminated: msb can be explicitly computed in O(1) time by a complicated algorithm
of Fredman and Willard [15]; this allows us to directly jump to the right block of each
coordinate and extract the relevant bits.

ITCS 2019



21:8 On Locality-Sensitive Orderings and Their Applications

2.4 The result
I Theorem 10. For a parameter ε ∈ (0, 1), there is a set Π+ of O((1/εd) log(1/ε)) orderings
of [0, 1)d, such that for any two points p, q ∈ [0, 1)d there is an ordering σ ∈ Π+ defined over
[0, 1)d, such that for any point u with p ≺σ u ≺σ q it holds that either ‖p− u‖ ≤ ε ‖p− q‖
or ‖q − u‖ ≤ ε ‖p− q‖.

Furthermore, given such a ordering σ, and two points p, q, one can compute their ordering,
according to σ, using O(d log(1/ε)) arithmetic and bitwise-logical operations.

Proof. Let Π+ be the set of all ordering defined by picking an ordering from Π, as defined
by Definition 6 using the parameter ε, together with a shift from Lemma 7.

Consider any two points p, q ∈ [0, 1)d. By Lemma 7 there is a shift for which the two
points fall into a quadtree cell � with side length at most 2(D+ 1) ‖p− q‖. Next, there is an
ε-quadtree Tε that contains �, and the two children that correspond to two cells �p and �q
with side length at most 2(D + 1)ε ‖p− q‖, which readily implies that the diameter of these
cells is at most 2(D + 1)

√
dε ‖p− q‖. Furthermore, there is an ε-ordering in Π such that all

the points of �p are adjacent to all the points �q in this ordering. This implies the desired
claim, after adjusting ε by a factor of 2(D + 1)

√
d (and rounding to a power of 2). J

From now on, we refer to the set of orderings Π+ in the above Theorem as locality-
sensitive orderings. We remark that by the readjustment of ε in the final step of the
proof, the number of locality-sensitive orderings when including the factors involving d is
O
(
d3d/2(1/εd) log(1/ε)

)
.

2.4.1 Discussion
Connection to locality-sensitive hashing

Let P be a set of n points in {0, 1}d. Consider the decision version of the (1 + ε)-approximate
nearest neighbor problem. Specifically, for a pre-specified radius r and any given query point
q, we would like to efficiently decide whether or not there exists a point p ∈ P such that
‖q − p‖1 ≤ (1 + ε)r or conclude that all points in P are at least distance r from q. The
locality-sensitive hashing (LSH) technique [23] can be used to to create a data structure
supporting these types of decision queries in time O(dn1/(1+ε) logn) time (which is correct
with high probability) and using total space O(dn1+1/(1+ε) logn). Similar results also hold
in Euclidean space.

At a high level, LSH works as follows. Start by choosing k := k(ε, r, n) indices in [d] at
random (with replacement). Let R denote the resulting multiset of coordinates. For each
point p ∈ P , let pR be the projection p onto these coordinates of R. We can group the points
of P into buckets, where each bucket contains points with the same projection. Given a
query point q, we check if any of the points in the same bucket as qR is at distance at most
(1 + ε)r from q. This construction can also be repeated a sufficient number of times in order
to guarantee success with high probability.

The idea of bucketing can also be viewed as an implicit ordering on the randomly projected
point set by ordering points lexicographically according to the k coordinates. In this sense,
the query algorithm can be viewed as locating q within each of the orderings, and comparing
q to similar points nearby in each ordering. From this perspective, every locality-sensitive
ordering can be viewed as a LSH scheme. Indeed, for a given query point q, the approximate
nearest neighbor to q can be found by inspecting the elements adjacent to q in each of the
locality-sensitive orderings and returning the closest point to q found (see Theorem 17).
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Of course, the main difference between the two schemes is that for every fixed ε, the
number of “orderings” in a LSH scheme is polynomial in both d and n. While for locality-
sensitive orderings, the number of orderings remain exponential in d. This trade-off is
required, as locality-sensitive orderings guarantee a much stronger property than that of a
LSH scheme.

Extension of locality-sensitive orderings to other norms in Euclidean space

The result of Theorem 10 also holds for any Lp norm. The key change that is needed is in
the proof of Lemma 7: For any two points s, t ∈ [0, 1)d, there exists a shift v such that s+ v

and t + v are contained in a quadtree cell of side length at most 2(D + 1) ‖s− t‖p. This
extension follows easily from the proof of the Lemma, see Appendix A.2. Theorem 10 then
follows by adjusting ε by a factor of 2(D + 1)d1/p in the last step, implying that the number
of orderings will be O

(
dd(1+1/p)(1/εd) log(1/ε)

)
.

Extension of locality-sensitive orderings for doubling metrics

An abstraction of low-dimensional Euclidean space, is a metric space with (low) doubling
dimension. Formally, a metric space (M, d) has doubling dimension λ if any ball ofM of
radius r can be covered by at most 2λ balls of half the radius (i.e., r/2). It is known that Rd
has doubling dimension O(d) [33]. We point out that locality-sensitive orderings still exist in
this case, but they are less constructive in nature, since one needs to be provided with all
the points of interest in advance.

For a point set P ⊆ M, the analogue of a quadtree for a metric space is a net tree
[20]. Being somewhat imprecise, a net tree can be constructed as follows: The root node
corresponds to the point set P ⊆M. Compute a randomized partition of P of diameter 1/2
(assume P has diameter one), and for each cluster in the partition, create an associated node
and hang it on the root. The tree is computed recursively in this manner, at each level i
computing a random partition of diameter 2−i. The leaves of the tree are points of P .

As with quadtrees, it is possible during this randomized construction for two nearby points
to be placed in different clusters and be separated further down the tree. If ` = d(p, q) for two
points p, q ∈ P , then the probability that p and q lie in different clusters of diameter r = 2−i
in the randomized partition is at most O((`/r) logn) [13]. In particular, for r ≈ 1/(` logn),
the probability p and q are separated is at most a constant. If we want even this property to
hold with high probability for all pairs of points, one needs to construct O(logn) (randomly
constructed) net trees of P . (This corresponds to randomly shifting a quadtree O(logn)
times in the Euclidean setting.)

Given such a net tree T , each node has I = 2O(λ) children. We can arbitrarily and
explicitly number the children of each node by a distinct label from JIK. One can define an
ordering of such a tree as we did in the Euclidean case, except that the gap (in diameter)
between a node and its children is O(ε/ logn) instead of ε. Repeating our scheme in the
Euclidean case, this implies that one would expect to require (ε−1 logn)O(λ) orderings of P .

This requires having all the points of P in advance, which is a strong assumption for a
dynamic data structure (like the applications we show next). For example, Gottlieb and
Roditty [17] show how to maintain dynamic spanners in a doubling metric, but only assuming
that after a point has been deleted from P , the distance between the deleted point and a
point currently in P can still be computed in constant time.

ITCS 2019



21:10 On Locality-Sensitive Orderings and Their Applications

3 Applications

3.1 Bichromatic closest pair
Given an ordering σ ∈ Π+, and two finite sets of points R,B in Rd, let Z = Z(σ,R,B) be
the set of all pairs of points in R×B that are adjacent in the ordering of R∪B according to
σ. Observe that inserting or deleting a single point from these two sets changes the content
of Z by a constant number of pairs. Furthermore, a point participates in at most two pairs.

I Lemma 11. Let R and B be two sets of points in [0, 1)d, and let ε ∈ (0, 1) be a parameter.
Let σ ∈ Π+ be a locality-sensitive ordering (see Theorem 10). Then, one can maintain the set
Z = Z(σ,R,B) under insertions and deletions to R and B. In addition, one can maintain
the closest pair in Z (under the Euclidean metric). Each update takes O(d log(n) log(1/ε))
time, where n is the total size of R and B during the update operation.

Proof. Maintain two balanced binary search trees TR and TB storing the points in R and B,
respectively, according to the order σ. Insertion, deletion, predecessor query and successor
query can be implemented in O(d log(1/ε) logn) time (since any query requires O(logn)
comparisons costing each O(d log(1/ε)) time by Lemma 9). We also maintain a min-heap
of the pairs in Z sorted according to the Euclidean distance. The minimum is the desired
closest pair. Notice that a single point can participate in at most two pairs in Z.

We now explain how to handle updates. Given a newly inserted point r (say a red point
that belongs to R), we compute its (potential) pairs it participates in, by computing it
successor r′ in R, and its successor b′ in B. If r ≺σ b′ ≺σ r′ then the new pair rb′ should
be added to Z. The pair before r in the ordering that might use r is computed in a similar
fashion. In addition, we recompute the predecessor and successor of r in R, and we recompute
the pairs they might participate in (deleting potentially old pairs that are no longer valid).

Deletion is handled in a similar fashion – all points included in pairs with the deleted
point recompute their pairs. In addition, the successor and predecessor (of the same color)
need to recompute their pairs. This all requires a constant number of queries in the two
trees, and thus takes the running time as stated. J

I Theorem 12. Let R and B be two sets of points in [0, 1)d, and let ε ∈ (0, 1) be a parameter.
Then one can maintain a (1+ε)-approximation to the bichromatic closest pair in R×B under
updates (i.e., insertions and deletions) in O(log(n) log2(1/ε)/εd) time per operation, where n
is the total number of points in the two sets. The data structure uses O(n log(1/ε)/εd) space,
and at all times maintains a pair of points r ∈ R, b ∈ B, such that ‖r − b‖ ≤ (1 + ε)d(R,B),
where d(R,B) = minr∈R,b∈B ‖r − b‖.

Proof. We maintain the data structure of Lemma 11 for all the locality-sensitive orderings of
Theorem 10. We might as well maintain all the good pairs for these data structures together
in one global min-heap. We claim that the minimum length pair in this heap is the desired
approximation.

To see that, consider the bichromatic closest pair r ∈ R and b ∈ B. By Theorem 10 there
is a locality-sensitive ordering σ, such that the interval I in the ordering between r and b
contains points that are in distance at most ` = ε ‖r − b‖ from either r or b. In particular,
let Pr (resp., Pb) be all the points in I in distance at most ` from r (resp., b). Observe
that Pr ⊆ R, as otherwise, there would be a bichromatic pair in PR, and since the diameter
of this set is at most `, this would imply that (r, b) is not the closest bichromatic pair – a
contradiction. Similarly, Pb ⊆ B. As such, there must be two points b′ ∈ B and r′ ∈ R, that
are consecutive in σ, and this is one of the pairs considered by the algorithm (as it is stored
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in the min-heap). In particular, by the triangle inequality, we have

‖r′ − b′‖ ≤ ‖r′ − r‖+ ‖r − b‖+ ‖b− b′‖ ≤ 2`+ ‖r − b‖ ≤ (1 + 2ε) ‖r − b‖ .

The theorem follows after adjusting ε by a factor of 2. J

Remark

In the word RAM model, for integer input in {1, . . . , U}d, the update time can be improved
to O((log logU) log2(1/ε)/εd) expected, by using van Emde Boas trees [32] in place of the
binary search trees (and the min-heaps as well). With standard word operations, we may
not be able to explicitly map each point to an integer in one dimension following each
locality-sensitive ordering, but we can still simulate van Emde Boas trees on the input as if
the mapping has been applied. Each recursive call in the van Emde Boas recursion focuses
on a specific block of bits of each input coordinate value (after shifting); we can extract these
blocks, and perform the needed hashing operations on the concatenation of these blocks over
the d coordinates of each point.

3.2 Dynamic spanners
I Definition 13. For a set of n points P in Rd and a parameter t ≥ 1, a t-spanner of P is
an undirected graph G = (P,E) such that for all p, q ∈ P ,

‖p− q‖ ≤ dG(p, q) ≤ t‖p− q‖,

where dG(p, q) is the length of the shortest path from p to q in G using the edge set E.

Using a small modification of the results in the previous section, we easily obtain a
dynamic (1 + ε)-spanner. Note that there is nothing special about how the data structure
in Theorem 12 deals with the bichromatic point set. If the point set is monochromatic,
modifying the data structure in Lemma 11 to account for the closest monochromatic pair of
points leads to a data structure with the same bounds and maintains the (1 + ε)-approximate
closest pair.

The construction of the spanner is very simple: Given P and ε ∈ (0, 1), maintain orderings
of the points specified by Π+ (see Theorem 10). For each σ ∈ Π+, let Eσ be the edge set
consisting of edges connecting two consecutive points according to σ, with weight equal to
their Euclidean distance. Thus |Eσ| = n− 1. Our spanner G = (P,E) then consists of the
edge set E =

⋃
σ∈Π+ Eσ.

I Theorem 14. Let P be a set of n points in [0, 1)d and ε ∈ (0, 1). One can compute a (1+ε)-
spanner G of P with O(n log(1/ε)/εd) edges, where every vertex has degree O(log(1/ε)/εd).
Furthermore, insertions and deletions can be performed in O(log(n) log2(1/ε)/εd) time, with
at most O(log(1/ε)/εd) edges being deleted or inserted into the spanner.

Proof. The construction is described above. The same analysis as in the proof of Theorem 12
implies the number of edges in G and the update time.

It remains to prove that G is a spanner. By Theorem 10, for any pair of points s, t ∈ P ,
there is an locality-sensitive ordering σ ∈ Π+, such that the σ-interval [s, t) contains only
points that are in distance at most ε ‖s− t‖ from either s or t. In particular, there must be
two points in s′, t′ ∈ P that are adjacent in σ, such that one of them, say s′ (resp., t′) is in
distance at most ε ‖s− t‖ from s (resp., t). As such, the edge s′t′ exists in the graph being
maintained.
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This property is already enough to imply that this graph is a (1 + cε)-spanner for a
sufficiently large constant c – this follows by an induction on the distances between the points
(specifically, in the above, we apply the induction hypothesis on the pairs s, s′ and t, t′). We
omit the easy but somewhat tedious argument – see [4] or [19, Theorem 3.12] for details.
The theorem follows after adjusting ε by a factor of c. J

3.2.1 Static and dynamic vertex-fault-tolerant spanners
I Definition 15. For a set of n points P in Rd and a parameter t ≥ 1, a k-vertex-fault-
tolerant t-spanner of P , denoted by (k, t)-VFTS, is a graph G = (P,E) such that
(i) G is a t-spanner (see Definition 13), and
(ii) For any P ′ ⊆ P of size at most k, the graph G \ P ′ is a t-spanner for P \ P ′.

A (k, 1 + ε)-VFTS can be obtained by modifying the construction of the (1 + ε)-spanner
in Section 3.2. Construct a set of locality-sensitive orderings Π+. For each σ ∈ Π+ and each
p ∈ P , connect p to its k + 1 successors and k + 1 predecessors according to σ with edge
weights equal to the Euclidean distances. Thus each ordering maintains O(nk) edges and
there are O(|Π+| kn) = O(kn log(1/ε)/εd) edges overall. We now prove that this graph G is
in fact a (k, 1 + ε)-VFTS.

I Theorem 16. Let P be a set of n points in [0, 1)d and ε ∈ (0, 1). One can compute a
k-vertex-fault-tolerant (1+ε)-spanner G for P in time O

(
(n logn log(1/ε) + kn) log(1/ε)/εd

)
.

The number of edges is O(kn log(1/ε)/εd) and the maximum degree is bounded by
O(k log(1/ε)/εd).

Furthermore, one can maintain the k-vertex-fault-tolerant (1 + ε)-spanner G under
insertions and deletions in O

(
(logn log(1/ε) + k) log(1/ε)/εd

)
time per operation.

Proof. The construction algorithm, number of edges, and maximum degree follows from the
discussion above. So, consider deleting a set P ′ ⊆ P of size at most k from G. Consider
an ordering σ ∈ Π+ with the points P ′ removed. By the construction of G, all the pairs of
points of P \ P ′ that are (now) adjacent in σ remain connected by an edge in G \ P ′. The
argument of Theorem 14 implies that the remaining graph is spanner. We conclude that
that G \ P ′ is a (1 + ε)-spanner for P \ P ′.

As for the time taken to handle insertions and deletions, one simply maintains the
orderings of the points using balanced search trees. After an insertion to one of the orderings
in O(logn log(1/ε)) time, O(k) edges have to be added and deleted. Therefore insertions
take O

(
(logn log(1/ε) + k) |Π+|

)
= O

(
(logn log(1/ε) + k) log(1/ε)/εd

)
time total. Deletions

are handled similarly.
The total construction time follows by inserting each of the points into the dynamic data

structure. J

3.3 Dynamic approximate nearest neighbors
Another application of the same data structure in Theorem 12 is supporting (1 + ε)-
approximate nearest neighbor queries. In this scenario, the data structure must support
insertions and deletions of points and the following queries: given a point q, return a point
t ∈ P such that ‖q − t‖ ≤ (1 + ε) minp∈P ‖q − p‖.

I Theorem 17. Let P be a set of n points in [0, 1)d. For a given ε > 0, one can build a
data structure using O(n log(1/ε)/εd) space, that supports insertion and deletion in time
O(log(n) log2(1/ε)/εd). Furthermore, given a query point q ∈ [0, 1)d, the data structure
returns a (1 + ε)-approximate nearest neighbor in P in O(ε−d log2(1/ε) log(n)) time.
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Proof. Maintain the data structure of Lemma 11 for all locality-sensitive orderings of
Theorem 10, with one difference: Since the input is monochromatic, the data structures
for each ordering store distances between all consecutive pairs. The space and update time
bounds easily follow by the same analysis.

Given a query point q ∈ [0, 1)d, for each of the orderings the algorithm inspects the
predecessor and successor to q. The algorithm returns the closest point to q encountered.
We claim that the returned point p is the desired approximate nearest neighbor.

Let p? ∈ P be the nearest neighbor to q and ` = ‖q − p?‖. By Theorem 10, there is a
locality-sensitive ordering σ ∈ Π+ such that the σ-interval I = [p?, q) contains points that
are of distance at most ε` from p? or q (and this interval contains at least one point of P ,
namely, p?). Note that no point of P can be at distance less than ε` to q. Thus, the point
p ∈ P adjacent to q in I is of distance at most ε` from p?. Therefore, for such a point p, we
have ‖p− q‖ ≤ ‖p− p?‖+ ‖p? − q‖ ≤ (1 + ε)`.

The final query time follows from the time taken for these predecessor and successor
queries, as in the proof of Lemma 11. J
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Figure A.1 For n even, a decomposition of Kn into n/2 Hamiltonian paths.

A.1 Proof of Lemma 1

I Lemma 1 (Restated). For n elements {0, . . . , n− 1}, there is a set O of dn/2e orderings
of the elements, such that, for all i, j ∈ {0, . . . , n− 1}, there exist an ordering σ ∈ O in
which i and j are adjacent.

Proof. As mentioned earlier this is well known, see [1]. Assume n is even, and consider the
clique Kn, with its vertices v0, . . . , vn−1. The edges of this clique can be covered by n/2
Hamiltonian paths that are edge disjoint. Tracing one of these path gives rise to one ordering,
and doing this for all paths results with orderings with the desired property, since edge vivj
is adjacent in one of these paths.

To get this cover, draw Kn by using the vertices of an n-regular polygon, and draw
all the edges of Kn as straight segments. For every edge vivi+1 of Kn there are exactly
n/2 parallel edges with this slope (which form a matching). Let Mi denote this matching.
Similarly, for the vertex vi, consider the segment vivi+n/2 (indices are here modulo n), and
the family of segments (i.e., edges) of Kn that are orthogonal to this segment. This family is
also a matching M ′i of size n/2− 1. Observe that σi = Mi ∪M ′i form a Hamiltonian path,
as shown in Figure A.1. Since the slopes of the segments in Mi and M ′i are unique, for
i = 0, . . . , n/2− 1, it follows that σ0, . . . , σn/2−1 are an edge disjoint cover of all the edges of
Kn by n/2 Hamiltonian paths.

If n is odd, use the above construction for n+ 1, and delete the redundant symbol from
the computed orderings. J
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A.2 Proof of 7 (shifting)
For two positive real numbers x and y, let

x% y = x− y bx/yc .

The basic idea behind shifting is that one can pick a set of values that look the “same” in all
resolutions.

I Lemma 18. Let n > 1 be a positive odd integer, and consider the set X = {i/n |
i = 0, . . . , n − 1}. Then, for any α = 2−`, where ` ≥ 0 is integer, we have that X %α =
{i/n%α | i = 0, . . . , n− 1} is equal to the set αX = {αi/n | i = 0, . . . , n− 1} .

Proof. The proof is by induction. For ` = 0 the claim clearly holds. Next, assume the claim
holds for some i ≥ 0, and consider ` = i+ 1. Setting m = (n− 1)/2 and ∆ = 2−i/n, we have
by induction (and rearrangement) that

X % 2−i = 2−iX = {0,∆, . . . , 2m∆}
= {0, (m+ 1)∆,∆, (m+ 2)∆, 2∆, . . . , (m+m)∆,m∆} .

Settings δ = ∆/2 = 2−i−1/n, and observing that (2m+ 1)δ = nδ = 2−i−1, we have

X % 2−i−1 =
(
X % 2−i

)
% 2−i−1

= {0, (m+ 1)∆,∆, (m+ 2)∆, 2∆, . . . , (m+ j)∆, j∆, . . . , (m+m)∆,m∆}% 2−i−1

= {0, 2(m+ 1)δ, 2δ, 2(m+ 2)δ, 4δ, . . . , 2(m+ j)δ, 2jδ, . . . , 2(m+m)δ, 2mδ}% 2−i−1

= {0, δ, 2δ, 3δ, 4δ, . . . , (2j − 1)δ, 2jδ, . . . , (2m− 1)δ, 2mδ} ,

since 2(m+ j)δ % 2−i−1 = (2m+ 1 + 2j − 1)δ % 2−i−1 = (2j − 1)δ, for j = 1, . . . ,m. J

I Lemma 7 (Restated). Consider any two points p, q ∈ [0, 1)d, and let T be the infinite
quadtree of [0, 2)d. For D = 2 dd/2e and i = 0, . . . , D, let vi = (i/(D + 1), . . . , i/(D + 1)).
Then there exists an i ∈ {0, . . . , D}, such that p+ vi and q + vi are contained in a cell of T
with side length ≤ 2(D + 1) ‖p− q‖.

Proof. Without loss of generality, suppose d is even (as such D = d). Let ` ∈ N, such that
for α = 2−`, we have

(d+ 1) ‖p− q‖ < α ≤ 2(d+ 1) ‖p− q‖ .

For τ ∈ [0, 1], let G + τ denote the (infinite) grid with sidelength α shifted by the point
(τ, . . . , τ).

Let X = {i/(d+ 1) | i = 0, . . . , d} be the set of shifts considered. Since we are shifting a
grid with sidelength α, the shifting is periodical with value α. It is thus sufficient to consider
the shifts modulo α.

Let p = (p1, . . . , pd) and q = (q1, . . . , qd). Assume that p1 ≤ q1. A shift τ is bad, for the
first coordinate, if there is an integer i, such that p1 ≤ τ + iα ≤ q1. The set of bad shifts in
the interval [0, α] is

B1 =
{

(p1, q1) + iα
∣∣ i ∈ Z

}
∩ [0, α].

The set B1 is either an interval of length |p1 − q1| ≤ ‖p− q‖ < α/(d+ 1), or two intervals
(of the same total length) adjacent to 0 and α. In either case, B1 can contain at most one
point of αX = X %α, since the distance between any two values of αX is at least α/(d+ 1),
by Lemma 18.
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Namely, the first coordinate rules out at most one candidate shift in X %α. Repeating
the above argument for all d coordinates, we conclude that there is at least one shift in αX
that is good for all coordinates. Let β = αi/(d+ 1) ∈ αX this be good shift. Namely, p and
q belongs the same cell of G + β. The final step is to observe that shifting the points by −β,
instead of the grid by distance β has the same effect (and −β %α ∈ αX), and as such, the
canonical cell containing both p and q is in the quadtree T as desired, and the sidelength of
this cell is α. J
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22:2 Pseduorandom Generators from Second Level Fourier Bounds

1 Introduction

Pseudorandom generators are widely studied in computational complexity theory. The main
focus of this paper is a new framework for the design of pseudorandom generators (abbrv.
PRGs) based on Fourier tails, introduced recently by Chattopadhyay et al. [2]. We refer to
the survey of Vadhan [14] for an introduction to pseudorandomness in complexity theory,
and assume basic knowledge with common concepts.

Let F be a family of n-variate Boolean functions, which is closed under restrictions.
Namely, for any f ∈ F , if we restrict some of the inputs of f to Boolean values, then
the restricted function is also in F . Nearly all classes of Boolean functions studied in the
literature satisfy this property.

Given an n-variate Boolean function f , its level-k Fourier tails for k = 1, . . . , n are
defined as

L1,k(f) =
∑

S⊂[n]:|S|=k

|f̂(S)|.

For a function class F of n-variate Boolean functions define

L1,k(F) = max
f∈F
L1,k(f).

Chattopadhyay et al. [2] proved a general theorem, which constructs an explicit PRG for
functions in F , assuming that F has bounded k-level Fourier tails for all k. This property is
known to hold for many classes of interest (read-once branching programs of bounded width,
low-depth circuits, low sensitivity functions, and more; see [2] for details).

I Theorem 1 ([2]). Let F be a family of n-variate Boolean functions that is closed under
restrictions. Assume that for some a, b ≥ 1 it holds that

L1,k(F) ≤ a · bk ∀k = 1, . . . , n.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
s = b2 · polylog(an/ε).

Note that for any n-variate Boolean function one can take a = 1, b =
√
n, and hence the

quadratic dependence on b in the seed length is optimal.
The main objective of this current work is to investigate whether PRGs can also be

obtained from weaker assumptions on the Fourier tail. Specifically, whether it suffices that
L1,k(F) is bounded for a few values of k, instead of for the full regime of k = 1, . . . , n as was
required by [2]. Our main result is that this is indeed the case: it suffices to obtain bounds
for the second level of the Fourier tail.

I Theorem 2 (Main result, informal version). Let F be a family of n-variate Boolean functions
closed under restrictions. Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
poly(t, logn, 1/ε).

For a more precise formula for the seed length see Theorem 6. We note that the dependence
on the error parameter ε in Theorem 2 is much worse compared to Theorem 1 – polynomial
instead of poly-logarithmic. We discuss this in Section 4.
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1.1 A potential PRG for F2-polynomials and AC0[⊕]
There are known deep relationships between the ability to construct explicit pseudorandom
generators, and the ability to prove correlation bounds, for many classes of Boolean functions.
One of the few classes where the latter is known but the former is not is AC0[⊕], which is the
classes of constant-depth polynomial-size Boolean circuits with AND, OR, NOT and PARITY
gates. Classical works of Razborov [10] and Smolensky [11] prove that this class cannot
approximate the MAJORITY function. On the other hand, the problem of constructing
explicit PRGs for AC0[⊕] is a well-known open problem in complexity theory. We refer to
the survey of Viola [15] for further discussion on this challenge.

We give a concrete (and plausible in our minds) conjecture which, combined with Theorem
2, would imply such a PRG. Let Polyn,d denote the class of n-variate Boolean functions
which are computed by F2-polynomials of degree at most d. This class is clearly closed under
restrictions.

I Conjecture 3. L1,2(Polyn,d) = O(d2). That is, if p : Fn2 → F2 is a polynomial of degree d,
and f(x) = (−1)p(x), then∑

i,j∈[n],i<j

|f̂({i, j})| = O(d2).

A corollary of Conjecture 3, when combined with Theorem 2, is the construction of
explicit PRGs for degree-d polynomials over F2 with seed length poly(logn, d, 1/ε). This
would be a major breakthrough in complexity theory, as currently no PRGs are known for
polynomials of degree d = Ω(logn). We note that a similar seed length would follow from a
weaker version of Conjecture 3 with the bound L1,2(Polyn,d) ≤ poly(logn, d). However, we
conjecture that O(d2) is the correct bound.

We further note that such PRGs would directly imply PRGs for AC0[⊕].

I Claim 4. Assume that Conjecture 3 holds. Then, for any ε > 0 there exists an explicit
PRG for the class of AC0[⊕]-circuits of size s and depth e on n inputs, with error ε and seed
length poly((log(s/ε))e, logn, 1/ε).

In particular, assuming the conjecture, for any constants e and c, AC0[⊕]-circuits of size at
most nc and depth at most e have a PRG with seed length poly(logn, 1/ε) and error ε.

Proof sketch. Let f : {0, 1}n → {0, 1} be computed by an AC0[⊕] circuit of size s and
depth e. Razborov [10] and Smolensky [12] proved that there exists a distribution over
polynomials p : Fn2 → F2 of degree d = O(log(s/ε))e such that for each x ∈ {0, 1}n,
Prp[p(x) 6= f(x)] ≤ ε/3. Theorem 2 gives a PRG for polynomials of degree d with error ε/3
and seed length poly(logn, d, 1/ε). By the Razborov-Smolensky result, this PRG is also a
PRG for f with error ε. J

Evidence Supporting The Conjecture

We present three results that supports the validity of Conjecture 3:
1. As a stepping stone towards resolving Conjecture 3, we prove a bound on the first level

of the Fourier tail of low degree polynomials over F2.

I Theorem 5. L1,1(Polyn,d) ≤ 4d.
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2. We note that as a special case of the main result in [3], any read-once F2-polynomial f
(i.e., a sum of monomials on disjoint sets of variables) has

L1,2(f) ≤ O(logn)8.

Getting a similar poly log(m) bound for general polynomials with m monomials, would
be sufficient for the application in Claim 4.

3. In [2] the following exponential bound was proved on the L1,2(Polyn,d):

L1,2(Polyn,d) ≤ 4 · 26d .

(as a special case of a bound on L1,k more generally.) We remark that this bound depends
only on d and not on n. Thus, if our conjecture is false, any counter-example to it must
have degree d = ω(1).

Organization

We prove Theorem 2 in Section 2. We prove Theorem 5 in Section 3. We discuss further
research in Section 4.

2 PRG from level two Fourier bounds

The main result of this section is an explicit pseudorandom generator for Boolean functions
that have bounded Fourier tails on the second level.

I Theorem 6. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit PRG for F with error ε and seed length
O
(
(t/ε)2+o(1) · polylog(n)

)
.

The framework to construct the PRG is similar to the one used in [2]. The first step is to
construct a fractional PRG for F that is p-noticeable. Now using the polarizing random walk
technique used in [2], we convert this fractional PRG into the required standard PRG. Our
fractional PRG is based on ideas developed in [9]. We first recall the basic framework of [2].

Pseudorandom generators

Let f : {−1, 1}n → {−1, 1} be a Boolean function. A PRG for f with error ε is a random
variable X ∈ {−1, 1}n such that

|E[f(X)]−E[f(Un)]| ≤ ε,

where Un is the uniform distribution in {−1, 1}n. It has seed length s if X can be sampled as

X = G(Us)

where G : {−1, 1}s → {−1, 1}n is an explicit function4.
X is a PRG for a class of functions F if it is a PRG for each function f ∈ F .

4 There are various notions of explicitness used in the complexity literature. For our purposes any notion
would do.
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Fractional pseudorandom generators

Let f : {−1, 1}n → {−1, 1} be a Boolean function. It has a unique multi-linear extension as
f : [−1, 1]n → [−1, 1]. A fractional PRG for f with error ε is a random variable X ∈ [−1, 1]n
such that

|E[f(X)]− f(~0)| ≤ ε.

Note that f(~0) = E[f(Un)]. It has seed length s if X can be sampled as

X = G(Us)

where G : {−1, 1}s → [−1, 1]n is an explicit function. The fractional PRG X is p-noticeable
if

E[X2
i ] ≥ p ∀i = 1, . . . , n.

From fractional PRGs to PRGs

The following is the main result of [2], which converts a fractional PRG into a standard PRG.

I Theorem 7 ([2]). Let F be a family of n-variate Boolean functions that is closed under
restrictions. Let X be a p-noticeable fractional pseudorandom generator for F with seed
length s and error ε. Then, there exists a pseudorandom generator for F with seed length
O(s · log(n/ε)/p) and error O(ε · log(n/ε)/p).

Given, the above theorem, the missing piece to get the desired PRG in Theorem 6 is to
construct an appropriate fractional PRG. The following lemma achieves exactly this.

I Lemma 8. Let F be a family of n-variate Boolean functions closed under restrictions.
Assume that for some t ≥ 1 it holds that

L1,2(F) ≤ t.

Then for any ε > 0, there exists an explicit p-noticeable fractional PRG for F with error ε
and seed length s where:

1/p = O(log(n/ε))

s = O((t/ε)2+o(1) · log(n) · log(n/ε)).

It is direct to obtain Theorem 6 from Theorem 7 and Lemma 8. We prove Lemma 8 in
the remainder of this section.

As mentioned before, the fractional PRG is constructed based on ideas developed in [9].
In particular, our fractional PRG can be seen as a derandomization of the main distribution
used in [9].

We first abstract and restate one of the main arguments in [9]. This abstraction appeared
in a blog post of Boaz Barak and Jarosław Błasiok [1]. Below, we abbreviate a Multi-Variate
Gaussian as MVG. Given a random variable Z ∈ Rn, we denote by trnc(Z) its truncation to
[−1, 1]n. That is, trnc(Z)i = min(1,max(−1, Zi)) for i ∈ [n].

I Theorem 9 ([9], restated). Let n, t ≥ 1, δ ∈ (0, 1). Let Z ∈ Rn be a zero-mean MVG
random variable with the following two properties:
(i) For i ∈ [n]: Var [Zi] ≤ 1

8 ln(n/δ) .
(ii) For i, j ∈ [n], i 6= j: |Cov[Zi, Zj ]| ≤ δ.

Let F be a class of n-variate Boolean functions which is closed under restrictions. Assume
that L1,2(F) ≤ t. Then for any f ∈ F it holds that |E[f(trnc(Z))]− f(~0)| ≤ O(δ · t).
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22:6 Pseduorandom Generators from Second Level Fourier Bounds

For completeness, we prove Theorem 9 in the appendix – the proof basically repeats
the argument in [9] but for a general multivariate Gaussian distribution, instead of the
Forrelation distribution considered there. We now show how to use Theorem 9 to construct
a p-noticeable fractional PRG for F with error ε and seed length s, where 1/p = O(log(n/ε))
and s = poly(t, log(n), 1/ε).

I. We show that a MVG distribution with the parameters needed in Theorem 9 can be
of rank ` = poly(log(n), t, 1/ε). That is, we sample ` independent N (0, 1) random
variables and apply an explicit linear transformation T : R` → Rn to get a random
variable in Rn that satisfies the two conditions of Theorem 9.

II. We discretized the above process.

Step I: Dimension Reduction

Let δ = ε/t and let ` be a parameter to be determined soon. Let C be a code on {0, 1}` with
at least n codewords, such that C is δ-balanced. Namely, every codeword in C has Hamming
weight between ( 1

2−δ)` and ( 1
2 +δ)`. Such a code can be obtained from explicit constructions

of small-biased spaces over {0, 1}`. The best known construction is by Ta-Shma [13] which
achieves ` = (logn)/δ2+o(1).

Set p = 1/(8 ln(n/δ)). Let c1, . . . , cn ∈ C be distinct codewords. Define an n× ` matrix
A given by

Ai,j =
√
p

`
· (−1)c

i
j ,

where ci = (ci1, . . . , ci`). Let Y be a random vector in R` where each Yi is an independent
N (0, 1) Gaussian. Define

Z = AY.

It is straightforward to verify from the construction that Z is a multivariate Gaussian
distribution over Rn with mean zero which satisfies that Var[Zi] = p for all i ∈ [n], and
|Cov[Zi, Zj ]| ≤ δ for all distinct i, j ∈ [n].

Step II: Discretizing the Randomness

We prove the following lemma, which allows to approximately sample a standard MVG
Y ∈ R` as needed above using a few random bits.

I Lemma 10. For any `, η > 0 there exists s = O(` · log(`/η)) and an explicit generator
G : {0, 1}s → R` such that the following holds.

Let f : [−1, 1]n → [−1, 1] be a multi-linear function, A ∈ [−1, 1]n×` and Y be a random
variable over R` where each Yi is an independent N (0, 1) Gaussian. Then

|E[f(trnc(AY ))]−E[f(trnc(AG(Us)))]| ≤ η(n+ 2).

We say that a random variable W ∈ R is a λ-approximate Gaussian if there is a correlated
standard Gaussian W ′ ∼ N (0, 1) such that Pr[|W −W ′| > λ] < λ. We will use the following
lemma of Kane [6] which shows how to approximate a Gaussian in a randomness efficient
way.

I Lemma 11 ([6]). There is an explicit construction of a λ-approximate Gaussian random
variable using O(log(1/λ)) bits of randomness.
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The generator G would simply be ` independent copies of a λ-approximate Gaussian
given by the above lemma, with λ = η

` . We denote by Y ′ = G(Us) and by Y the coupled
standard MVG in R`.

Let E denote the event that ‖Y − Y ′‖∞ ≤ λ. By a union bound, Pr(E) ≥ 1 − η.
Conditioned on E it is easy to check that ‖trnc(AY ) − trnc(AY ′)‖∞ ≤ η. Finally, we use
the multi-linearity and boundedness of f in the following lemma to finish the proof.

I Lemma 12. Let f : [−1, 1]n → [−1, 1] be a multi-linear function. Then for every x, y ∈
[−1, 1]n we have |f(x)− f(y)| ≤ n · ‖x− y‖∞.

Proof. For every i ∈ {0, 1, . . . , n} define z(i) := (x1, ..., xi, yi+1, ..., yn), note that z(n) = x

and z(0) = y. We have

f(x)− f(y) =
n∑
i=1

f(z(i))− f(z(i−1)).

Now note that since f is a multilinear function, for every i,

|f(z(i))− f(z(i−1))| = |hi(xi)− hi(yi)| ≤ |xi − yi|,

where hi(z) = f(x1, . . . , xi−1, z, yi+1, . . . , yn). The above inequality holds as hi is an affine
function mapping [−1, 1] to [−1, 1]. We thus obtain that

|f(x)− f(y)| ≤
n∑
i=1
|xi − yi| ≤ n · ‖x− y‖∞. J

Using Lemma 12 and condition on the event E we have

|f(trnc(AY ))− f(trnc(AY ′))| ≤ ηn.

As f is bounded in [−1, 1] we obtain the bound

|E[f(trnc(AY ))]−E[f(trnc(AY ′))]| ≤ ηn+ 2 Pr[¬E ] ≤ η(n+ 2).

Completing the proof

We put things together to finish the proof of Lemma 8. Recall that δ = ε/t and ` =
(logn)/δ2+o(1) = (t/ε)2+o(1) · log(n) from Step I. Set p = 1/(8 ln(n/δ)) = 1/(8 ln(nt/ε)). Let
A ∈ [−1, 1]n×` be the matrix constructed in step I. Set η = ε/(n+2) and let G : {0, 1}s → R`
be the generator constructed in step II. We take

X = AG(Us).

The arguments above show that X is a fractional PRG for F with error O(ε). In addition,
X is p-noticeable. To conclude we compute the seed length s:

s = O(` · log(`/η)) = O
(

(t/ε)2+o(1) · logn · log(n/ε)
)
.

ITCS 2019



22:8 Pseduorandom Generators from Second Level Fourier Bounds

3 Level one Fourier bounds for polynomials

In this section we bound the level one Fourier tail of low degree polynomials over F2.

I Theorem 13. Let p : Fn2 → F2 be a polynomial of degree d, and let f(x) = (−1)p(x). Then

L1,1(f) =
n∑
i=1
|f̂(i)| ≤ 4d.

Proof. We assume for simplicity that n is even; the proof is analogous for odd n. We have
n∑
i=1
|f̂(i)| =

n∑
i=1

si ·E
x

[f(x)(−1)xi ] ,

where si = sign(f̂(i)). We may assume without loss of generality that si = 1 for all i, by
replacing xi with 1− xi whenever si = −1. Thus, it suffices to upper bound

E := E
x

[
f(x)

n∑
i=1

(−1)xi

]
.

For t = 1, . . . , n/2 define the functions Tt : {0, 1}n → {−1, 0, 1} as follows:

Tt(x) :=


−1 if

∑
xi ≥ n/2 + t

1 if
∑
xi ≤ n/2− t

0 otherwise
.

Then

E = 2
n/2∑
t=1

E
x

[f(x)Tt(x)] .

We need a few more definitions. Let Ut := {x ∈ {0, 1}n : |
∑
xi − n/2| ≥ t}. Define

Mt : Ut → F2 as Mt(x) = 0 if
∑
xi ≥ n/2 + t, and Mt(x) = 1 if

∑
xi ≤ n/2− t. Note that

Tt(x) = (−1)Mt(x) for x ∈ Ut, and Tt(x) = 0 for x /∈ Ut. Let At := {x ∈ Ut : p(x) = Mt(x)}.
Then

et := E
x

[f(x)Tt(x)] = 2|At| − |Ut|
2n .

We next apply a dimension argument similar to that used by Razborov [10] and Smolensky
[11] (we adopt a Kopparty’s presentation of the argument [7, Lemma 6]). Consider the space
of functions g : At → F2. On the one hand, its dimension is |At|. On the other hand, any
function g : Ut → F2 can be decomposed as

g(x) = g1(x)Mt(x) + g2(x),

where g1, g2 are polynomials over F2 of degree ≤ n/2− t. Thus, any function g : At → F2
can be expressed as a polynomial g(x) = g1(x)p(x) + g2(x) which is of degree ≤ n/2− t+ d.
Thus, we can bound |At| by the dimension of this linear space of polynomials,

|At| ≤
n/2−t+d∑
i=0

(
n

i

)
.
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Using the fact that |Ut| = 2
∑n/2−t
i=0

(
n
i

)
we can upper bound et by

et ≤
2
∑d
i=1
(

n
n/2−t+i

)
2n .

We thus can bound E by

E = 2
n/2∑
t=1

et ≤ 4
n/2∑
t=1

d∑
i=1

(
n

n/2−t+i
)

2n = 4
d∑
i=1

n/2−1∑
j=0

(
n
j+i
)

2n ≤ 4d. J

3.1 Level two Fourier bounds from level one bounds
We present a simple argument showing that for any family F of n-variate Boolean functions
that is closed under restrictions, a bound of L1,1(F) ≤ t implies L1,2(F) ≤ O(t ·

√
n logn).

Using this connection, we get that polynomials of degree polylog(n) have L1,2(·) at most√
n · polylog(n). Recall that we conjecture that the right bound should be polylog(n) (i.e.,

exponentially smaller). Nevertheless, even improving this bound slightly to n1/2−o(1) would
imply a non-trivial PRG fooling polylog(n)-degree F2-polynomials and AC0[⊕] circuits with
seed-length n1−o(1). In comparison, the current state of the art PRG for AC0[⊕] circuits has
seed-length n− n/polylog(n) [4].

I Claim 14. Let F be a class of n-variate Boolean functions that is closed under restrictions.
Let t ≥ 1. Assume that L1,1(F) ≤ t. Then, L1,2(F) ≤ t ·O(

√
n logn).

Proof. Let f : {−1, 1}n → {−1, 1} be some Boolean function in F . We bound L1,2(f) =∑
i<j |f̂(i, j)|. We begin by partitioning the set of coordinates of f into two disjoint parts

[n] = X ∪ Y and summing only the cross-terms L1(X,Y ) =
∑
i∈X

∑
j∈Y |f̂(i, j)|. We note

that there exists a partition [n] = X ∪ Y such that L1(X,Y ) ≥ L1,2(f)/2. This holds since a
random partition has on expectation

E
X,Y

[L1(X,Y )] =
∑
i<j

|f̂(i, j)| · (Pr[i ∈ X, j ∈ Y ] + Pr[i ∈ Y, j ∈ X]) = L1,2(f) · 1
2 .

Fix a partition (X,Y ) for which L1(X,Y ) ≥ L1,2(f) · 1
2 . In the remainder, we bound

L1(X,Y ) =
∑

i∈X,j∈Y
|f̂({i, j})| =

∑
i∈X,j∈Y

si,j · f̂({i, j})

for some sign matrix s ∈ {−1, 1}X×Y . For any fixed x ∈ {−1, 1}X we denote by fx :
{−1, 1}Y → {−1, 1} the function defined by fx(y) = f(x, y). Note that fx is a restriction of
f thus by our assumption, its L1,1 is at most t. We get

L1(X,Y ) = E
x∈{−1,1}X ,

y∈{−1,1}Y

[ ∑
i∈X,j∈Y

si,j · f(x, y) · xi · yj

]

= E
x∈{−1,1}X

[ ∑
i∈X,j∈Y

si,j · xi · E
y∈{−1,1}Y

[f(x, y) · yj ]

]

= E
x∈{−1,1}X

[ ∑
i∈X,j∈Y

si,j · xi · f̂x({j})

]
= E

x∈{−1,1}X

[∑
j∈Y

(
f̂x({j}) ·

∑
i∈X

si,j · xi

)]

≤ E
x∈{−1,1}X

[∑
j∈Y

|f̂x({j})| ·
∣∣∣∑

i∈X

si,j · xi

∣∣∣] ≤ E
x∈{−1,1}X

[
t ·max

j∈Y

∣∣∣∑
i∈X

si,j · xi

∣∣∣]
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By Chernoff’s bounds, the expectation of maxj∈Y |
∑
i∈X si,j · xi| is at most O(

√
n logn).

Thus overall L1,2(f) ≤ 2 · L1(X,Y ) ≤ 2t ·O(
√
n · logn). J

4 Further research

A clear advantage of Theorem 2 over Theorem 1 is that only bounds on the second level of
the Fourier tails are needed, instead of bounds for all levels. However, we pay a price, as the
dependence on the error parameter ε is polynomial instead of poly-logarithmic. This raises a
natural problem: can a better dependency on ε be obtained if the Fourier tails are assumed
to be bounded for several levels k? In particular, information on how many levels is needed
in order to obtain poly-logarithmic dependency on the error ε? We leave these questions to
future work.
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A Proof of Theorem 9

Throughout this section we take G to be a multivariate Gaussian distribution with zero
mean, covariances at most δ and variances at most 1. That is, if G = (G1, . . . , Gn) then
E[Gi] = 0,E[G2

i ] ≤ 1 and |E[GiGj ]| ≤ δ for i 6= j.

A.1 Preliminaries
Let f : Rn → R be a multi-linear function, defined by

f(z) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

zi, (1)

where f̂(S) ∈ R. We bound the difference between Ez∼G[f(trnc(pz))] and Ez∼G[f(pz)] for a
small p ∈ (0, 1). Note that whenever z′ ∈ [−1, 1]n, there is no difference between f(z′) and
f(trnc(z′)), and we only need to bound the difference when z′ is outside [−1, 1]n. The next
claim bounds the value of |f(z′)| when z′ is outside [−1, 1]n.

I Claim 15 ([9, Claim 5.1]). Let f : Rn → R be a multi-linear function that maps {−1, 1}n
to [−1, 1]. Let z′ ∈ Rn. Then, |f(z′)| ≤

∏n
i=1 max(1, |z′i|).

For α ∈ (0, 1), z ∈ Rn, we get that the value of |f(αz)| is bounded by
∏
i max(1, |αzi|).

The following claim bounds the latter times the indicator that αz 6= trnc(αz).

I Claim 16. Let α ∈ (0, 1/
√

4n]. Then,

E
z∼G

[ n∏
i=1

max(1, |αzi|) · 1αz 6=trnc(αz)

]
≤
∞∑
k=1

e−k/(4α2n) · nk.

Proof. For i ∈ [n] and ai ∈ N, we consider the event

ai ≤ |α · zi| < ai + 1,

denoted by Ei,ai . Since each zi is a Gaussian with mean 0 and variance at most 1, we have
Pr[Ei,ai

] ≤ e−a2
i /(2α2). Using Claim 15 we have

(∗) = E
z∼G

[ n∏
i=1

max(1, |αzi|) · 1αz 6=trnc(αz)

]
≤

∑
~a∈Nn,~a6=0n

Pr[∧ni=1Ei,ai
] ·

n∏
i=1

(1 + ai)

≤
∑

~a∈Nn,~a6=0n

min
i∈[n]
{Pr[Ei,ai

]} ·
n∏
i=1

(1 + ai)

≤
∑

~a∈Nn,~a6=0n

n∏
i=1

Pr[Ei,ai ]1/n ·
n∏
i=1

(1 + ai) (2)

We bound

Pr[Ei,ai
]1/n · (1 + ai) ≤ e−a

2
i /(2α2n) · (1 + ai) ≤ e−a

2
i /(4α2n)
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since 1 + ai ≤ eai ≤ ea2
i /(4α2n) for α2 ≤ 1/4n. We plug this estimate in Equation (2):

(∗) ≤
∑

~a∈NN ,~a6=0n

e−
∑

i
a2

i /(4α2n)

≤
∞∑
k=1

e−k/(4α2n) ·
∣∣∣{~a ∈ Nn :

∑
i

ai = k
}∣∣∣

=
∞∑
k=1

e−k/(4α2n) ·
(
n+ k − 1

k

)
≤

∞∑
k=1

e−k/(4α2n) · nk. J

I Claim 17. Let p ≤ 1/4
√
n. Let f : Rn → R be a multi-linear function that maps {−1, 1}n

to [−1, 1]. Let v ∈ [−1/2, 1/2]n. Then,

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ 2 ·
∞∑
k=1

e−k/(16p2n) · nk.

Proof. Let E be the event that (trnc(v + p · z) 6= v + p · z). Note that E implies the event
2pz 6= trnc(2pz) since v ∈ [−1/2, 1/2]n. Using Claim 15, we get

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ E
z∼G

[(1 + |f(v + p · z)|) · 1E ]

≤ E
z∼G

[(1 + |f(v + p · z)|) · 12pz 6=trnc(2pz)]

≤ E
z∼G

[(
1 +

n∏
i=1

max(1, |vi + p · zi|)
)
· 12pz 6=trnc(2pz)

]
≤ E

z∼G

[
2 ·

n∏
i=1

max(1, |vi + p · zi|) · 12pz 6=trnc(2pz)

]
.

However,
∏n
i=1 max(1, |vi + p · zi|) ≤

∏n
i=1 max(1, 1/2 + p|zi|) ≤

∏n
i=1 max(1, 2p|zi|). Using

Claim 16 with α = 2p, we get

E
z∼G

[|f(trnc(v + p · z))− f(v + p · z)|] ≤ E
z∼G

[
2 ·

n∏
i=1

max(1, 2p|zi|) · 12pz 6=trnc(2pz)

]
≤ 2 · E

z∼G

[ n∏
i=1

max(1, α|zi|) · 1αz 6=trnc(αz)

]
≤ 2 ·

∞∑
k=1

e−k/(4α2n) · nk. J

I Claim 18 (Application of Isserlis’ Theorem). Let G be a MVG distribution over Rn with
zero-mean and covariances at most δ. For S ⊆ [n], let Ĝ(S) = EZ∼G[

∏
i∈S Zi]. Then,

1. Ĝ(S) = 0 if |S| is odd.
2. |Ĝ(S)| ≤ (k − 1)!! · δk/2 if |S| = k is even.

Proof. Both items rely on Isserlis’ Theorem [5] (See also http://en.wikipedia.org/wiki/
Isserlis’_theorem) that gives a formula for the moments of any zero-mean multi Gaussian
distribution. Isserlis’ Theorem [5] states that in a zero-mean multivariate Gaussian distribu-
tion Z1, . . . , Zn, for a sequence of indices (i1, . . . , ik) ∈ [n], we have E[Zi1 · · ·Zik ] = 0 if k is
odd and E[Zi1 · · ·Zik ] =

∑∏
E[ZirZi` ], where the notation

∑∏
means summing over all

distinct ways of partitioning Zi1 , . . . , Zik into pairs and each summand is the product of the
k/2 pairs. If |S| = k is even, since the covariance of each pair in G is at most δ in absolute
value and there are at most (k − 1)!! partitions to pairs, we get |Ĝ(S)| ≤ (k − 1)!! · δk/2. J

http://en.wikipedia.org/wiki/Isserlis'_theorem
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The next claim expresses the difference of a multi-linear function f on two vectors, v
and v + z, as the expected difference of random restrictions of f on 0 and 2z, provided that
v ∈ [−1/2, 1/2]n. Applying this lemma when the entries of z are infinitesimally small means
that bounded variation of random restrictions of f around 0 implies bounded variation of f
around any v ∈ [−1/2, 1/2]n.

I Claim 19 ([2, Claim 3.3], restated in [1]). Let f be a multi-linear function on Rn and
v ∈ [−1/2, 1/2]n. There exists a distribution over random restrictions ρ such that for any
z ∈ Rn,

f(v + z)− f(v) = E
ρ

[fρ(2 · z)− fρ(~0)].

Proof. Given v ∈ [−1/2, 1/2]n, we define a distribution Rv over restrictions ρ ∈ {−1, 1, ∗}n,
as follows. For each entry i ∈ [n] independently, we set ρi = 1 with probability 1/4 + vi/2,
ρi = −1 with probability 1/4 − vi/2, and ρi = ∗ with probability 1/2. Note that since
v ∈ [−1/2, 1/2]n all these probabilities are indeed non-negative.

Let ρ ∼ Rv. For any vector z ∈ Rn, we define a vector z̃ = z̃(z, ρ) ∈ Rn, as follows:

z̃i =
{
ρi if ρi ∈ {−1, 1}
2 · zi otherwise

Thus, for a fixed z ∈ Rn, the vector z̃ is a random variable that depends on ρ. We show
that for any fixed z ∈ Rn, the distribution of the random variable z̃ is a product distribution
(over inputs in Rn), and the expectation of z̃ is the vector v + z. Indeed, each coordinate z̃i
is independent of the other coordinates, and its expected value is

E
ρ∼Rv

[z̃i] = vi + zi.

Hence, since f is multi-linear and z̃ has a product distribution, by Equation (1), Eρ∼Rv
[f(z̃)]

= f(v + z). We get

f(v + z)− f(v) = E
ρ∼Rv

[f(z̃(z, ρ))]− E
ρ∼Rv

[f(z̃(~0, ρ))] = E
ρ∼Rv

[f(z̃(z, ρ))− f(z̃(~0, ρ))]

However, for any fixed ρ, we have f(z̃(z, ρ)) = fρ(2z), where fρ is attained from f by fixing
the coordinates that were fixed in ρ, according to ρ. Thus,

f(v + z)− f(v) = E
ρ∼Rv

[fρ(2 · z)− fρ(~0)]. J

A.2 The Proof
I Claim 20. Let f : {−1, 1}n → {−1, 1} be a Boolean function with L1,2(f) ≤ t. Let
p ≤ 1/2n. Then,∣∣∣ E

Z∼G
[f(pZ)]− f(~0)

∣∣∣ ≤ p2 · t · δ +O(p4 · n4 · δ2) .

Proof. By Equation (1) and since f(~0) = f̂(∅),∣∣∣∣ E
Z∼G

[f(pZ)]− f(~0)
∣∣∣∣ =

∣∣∣∣ E
Z∼G

[ ∑
∅6=S⊆[n]

f̂(S) ·
∏
i∈S

(p · Zi)
]∣∣∣∣

=
∣∣∣∣ ∑
∅6=S⊆[n]

f̂(S) · p|S| · E
Z∼G

[∏
i∈S

Zi

]∣∣∣∣
≤

n∑
k=1

pk ·
(

max
S:|S|=k

|Ĝ(S)|
)
·

∑
S⊆[n],|S|=k

|f̂(S)|
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For odd k, Claim 18 gives maxS:|S|=k |Ĝ(S)| = 0. For even k, we have maxS:|S|=k |Ĝ(S)| ≤
(k − 1)!! · δk/2 by Claim 18. Plugging these bounds in the above expression gives∣∣∣ E

Z∼G
[f(pZ)]− f(~0)

∣∣∣ ≤ p2 · δ ·
∑

S:|S|=2

|f̂(S)|+
∑

k≥4,k even
pk · δk/2 · (k − 1)!! ·

∑
S:|S|=k

|f̂(S)|

≤ p2 · δ · t+
∑

k≥4,k even
pk · δk/2 · (k − 1)!! ·

(
n

k

)
(L1,2(f) ≤ t and ∀S : |f̂(S)| ≤ 1)

≤ p2 · δ · t+
∑

k≥4,k even
pk · δk/2 · nk

≤ p2 · δ · t+O(p4 · n4 · δ2) (p ≤ 1/2n)

J

I Theorem 21 (Theorem 9, restated). Let n ∈ N, δ, σ ∈ (0, 1). Let G be a zero-mean
multivariate Gaussian distribution over Rn where Z ∼ G has the following two properties:
1. For i ∈ [n]: Var [Zi] ≤ σ2

2. For i, j ∈ [n], i 6= j: |Cov[Zi, Zj ]| ≤ δ.
Let F be a class of n-variate Boolean functions which is closed under restrictions. Assume that
L1,2(F) ≤ t. Then for any f ∈ F it holds that |E[f(trnc(Z))]− f(~0)| ≤ 4δ · t+ 4n · e−1/8σ2 .

Proof. Let m ∈ N be sufficiently large (in particular m ≥ (4n)4) and p = 1/
√
m. Let

Z(1), . . . , Z(m) ∼ G. We define m+ 1 hybrids H0, . . . ,Hm. Let H0 = ~0. For i = 1, . . . ,m, let
Hi = p · (Z(1) + . . .+Z(i)). We observe that Hm ∼ G. This is true since Hm is a multivariate
Gaussian with the same expectation and the same covariance matrix as Z ∼ G. We can
think of H0, H1, . . . ,Hm as a n-dimensional random walk. We bound∣∣E[f(trnc(Hm))]− f(~0)]

∣∣
by considering two cases depending on whether or not at some point in the random walk we
stepped outside of [−1/2, 1/2]n.

For i ∈ {0, . . . ,m}, let Ei be the event that Hi ∈ [−1/2, 1/2]n. We show that Ei happens
with high probability. In fact, we show that E = E1 ∧ E2 ∧ . . . ∧ Em happens with high
probability, with no dependency on the number of steps m. The claim follows from known
properties of Brownian motions. For j ∈ [n], let D(j) be the event that there exists an i ∈ [m]
with |(Hi)j | > 1/2. Clearly ¬E ≡ D(1) ∨ D(2) ∨ . . . ∨ D(n).

We show that for each j ∈ [n], Pr[D(j)] ≤ 4 · e−8/σ2 and then apply a union bound.
Each {(Hi)j}mi=0 is a random walk with m steps, which can be viewed as a discretization
of a one-dimensional Brownian motion. A standard one-dimensional Brownian motion (or
Wiener process) is a random process {B(t)}t≥0 with the properties: (1) B(0) = 0, (2)
for all t, s ≥ 0, B(t + s) − B(t) is independent of the past {B(t′)}t′≤t (3) for all t, s ≥ 0,
B(t + s) − B(t) ∼ N (0, s). Let σ2

j := Var[zj ]. We observe that if B is a standard one-
dimensional Brownian motion, then {B(σ2

j · i/m)}mi=0 is distributed exactly as {(Hi)j}mi=0.
Let M(t) = sup0≤s≤tB(s) and M ′(t) = inf0≤s≤tB(s). It suffices to show that M(σ2

j ) ≤ 1/2
and M ′(σ2

j ) ≥ −1/2 with high probability. Known results on Brownian motions state that
Pr[M ′(t) < −1/2] = Pr[M(t) > 1/2] = Pr[|B(t)| > 1/2] (cf. [8, Theorem 2.21]). The latter
is at most e−1/8t since B(t) ∼ N (0, t). Overall, we get

Pr[¬E ] ≤
n∑
j=1

Pr[D(j)] ≤
n∑
j=1

(
Pr[M ′(σ2

j ) < −1/2] + Pr[M(σ2
j ) > 1/2]

)
≤ 2n · e−1/8σ2
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Next, we bound |EZ(i+1) [f(trnc(Hi + p ·Z(i+1)))− f(trnc(Hi))]| conditioned on the event
Ei, for i = 0, 1, . . . ,m− 1. Let v = Hi. Condition on the event Ei, and in fact condition on
the entire history in the first i steps, which in particular fixes v. By Claim 19, we have∣∣∣∣ E

Z(i+1)
[f(v + p · Z(i+1))− f(v)]

∣∣∣∣ =
∣∣∣∣ E
Z(i+1)

E
ρ

[fρ(2p · Z(i+1))− fρ(~0)]
∣∣∣∣

≤ E
ρ

∣∣∣∣ E
Z(i+1)

[fρ(2p · Z(i+1))− fρ(~0)]
∣∣∣∣ .

By Claim 20 we have that the latter is at most (2p)2tδ + O(p4n4δ2) as long as 2p ≤
1/2n. We wish to show a similar bound on the truncated version of Hi + p · Z(i+1). Note
that conditioned on Ei, we have Hi = trnc(Hi), but this is not necessarily the case for
Hi+p ·Z(i+1). Using Claim 17 we get

∣∣EZ(i+1) [f(p · Z(i+1) + v)− f(trnc(p · Z(i+1) + v))]
∣∣ ≤

2 ·
∑∞
k=1 e

−k/(16p2n) · nk. By the triangle inequality we get∣∣∣ E
Z(i+1)

[f(trnc(v + p · Z(i+1)))− f(trnc(v))]
∣∣∣

≤
∣∣∣ E
Z(i+1)

[f(trnc(v + p · Z(i+1)))− f(v + p · Z(i+1))]
∣∣∣

+
∣∣∣ E
Z(i+1)

[f(v + p · Z(i+1))− f(trnc(v))]
∣∣∣

≤
(

2 ·
∞∑
k=1

e−k/(16p2n) · nk
)

+
(

4p2 · δ · t+O(p4n4δ2)
)
. (3)

To finish the proof, using triangle inequality we have∣∣E[f(trnc(Hm))− f(~0)]
∣∣ ≤ ∣∣E[f(trnc(Hm)) · 1E − f(~0)]

∣∣+ |E[f(trnc(Hm)) · 1¬E ]|

We bound the second summand by Pr[¬E ] since f is bounded in [−1, 1] on truncated vectors,
whereas the first summand is bounded using a telescopic sum of the m+ 1 hybrids:∣∣E[f(trnc(Hm)) · 1E)− f(~0)]

∣∣
≤

m−1∑
i=0

|E[f(trnc(Hi+1)) · 1E1∧...∧Ei+1 − f(trnc(Hi)) · 1E1∧...∧Ei ]|

≤
m−1∑
i=0

|E[f(trnc(Hi+1)) · 1E1∧...∧Ei − f(trnc(Hi)) · 1E1∧...∧Ei )]|

+ |E[f(trnc(Hi+1)) · (1E1∧...∧Ei+1 − 1E1∧...∧Ei )]|

≤
m−1∑
i=0

(
2 ·

∞∑
k=1

e−k/(16p2n) · nk
)

+
(

4p2 · δ · t+O(p4n4δ2)
)

+ E[|1E1∧...∧Ei+1 − 1E1∧...∧Ei |]

(Eq. (3), f is bounded)

≤ m ·
((

2 ·
∞∑

k=1

e−k/(16p2n) · nk
)

+ 4p2 · δ · t+O(p4n4δ2)
)

+ Pr[¬E ].

Overall,∣∣E[f(trnc(Hm))− f(~0)]
∣∣ ≤ m · ((2 · ∞∑

k=1

e−k/(16p2n) · nk
)

+ 4p2 · δ · t+O(p4n4δ2)
)

+ 2 Pr[¬E ]

= m ·
((

2 ·
∞∑

k=1

e−km/(16n) · nk
)

+ 4m−1 · δ · t+O(m−2n4δ2)
)

+ 2 Pr[¬E ]

Taking m→∞ gives the upper bound 4δ · t+2 Pr[¬E ] ≤ 4δ · t+4n ·e−1/8σ2 as promised. J
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Abstract
In recent years, the polynomial method from circuit complexity has been applied to several funda-
mental problems and obtains the state-of-the-art running times (e.g., R. Williams’s n3/2Ω(

√
logn)

time algorithm for APSP). As observed in [Alman and Williams, STOC 2017], almost all appli-
cations of the polynomial method in algorithm design ultimately rely on certain (probabilistic)
low-rank decompositions of the computation matrices corresponding to key subroutines. They
suggest that making use of low-rank decompositions directly could lead to more powerful algo-
rithms, as the polynomial method is just one way to derive such a decomposition.

Inspired by their observation, in this paper, we study another way of systematically construct-
ing low-rank decompositions of matrices which could be used by algorithms – communication pro-
tocols. Since their introduction, it is known that various types of communication protocols lead
to certain low-rank decompositions (e.g., P protocols/rank, BQP protocols/approximate rank).
These are usually interpreted as approaches for proving communication lower bounds, while in
this work we explore the other direction.

We have the following two generic algorithmic applications of communication protocols:
Quantum Communication Protocols and Deterministic Approximate Counting.
Our first connection is that a fast BQP communication protocol for a function f implies
a fast deterministic additive approximate counting algorithm for a related pair counting
problem. Applying known BQP communication protocols, we get fast deterministic additive
approximate counting algorithms for Count-OV (#OV), Sparse Count-OV and Formula of
SYM circuits. In particular, our approximate counting algorithm for #OV runs in near-linear
time for all dimensions d = o(log2 n). Previously, even no truly-subquadratic time algorithm
was known for d = ω(logn).
Arthur-Merlin Communication Protocols and Faster Satisfying-Pair Algorithms.
Our second connection is that a fast AMcc protocol for a function f implies a faster-than-
bruteforce algorithm for f -Satisfying-Pair. Using the classical Goldwasser-Sisper AM protocols
for approximating set size, we obtain a new algorithm for approximate Max-IPn,c logn in time
n2−1/O(log c), matching the state-of-the-art algorithms in [Chen, CCC 2018].

We also apply our second connection to shed some light on long-standing open problems in
communication complexity. We show that if the Longest Common Subsequence (LCS) problem
admits a fast (computationally efficient) AMcc protocol (polylog(n) complexity), then polynomial-
size Formula-SAT admits a 2n−n1−δ time algorithm for any constant δ > 0, which is conjectured
to be unlikely by a recent work [Abboud and Bringmann, ICALP 2018]. The same holds even
for a fast (computationally efficient) PHcc protocol.
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1 Introduction

Recent works have shown that the polynomial method, a classical technique for proving circuit
lower bounds [41, 45], can be useful in designing efficient algorithms [48, 50, 6, 10, 8, 36, 7].

At a very high level, these algorithms proceed as follows: (1) identify a key subroutine of
the core algorithm which has a certain low-degree polynomial representation; (2) replace that
subroutine by the corresponding polynomials, and reduce the whole problem to a certain
batched evaluation problem of sparse polynomials; (3) embed that polynomial evaluation prob-
lem to multiplication of two low-rank (rectangular) matrices, and apply the fast rectangular
matrix multiplication algorithm [26].

As [9] point out. In term of step (3), these algorithms are ultimately making use of the
fact that the corresponding matrices of some circuits or subroutines have low probabilistic
rank. [9] suggest that the probabilistic rank, or various low-rank decompositions of matrices
in general1, could be more powerful than the polynomial method, and lead to more efficient
algorithms, as the polynomial method is just one way to construct them.

It has been noted for a long time that communication protocols are closely related to
various notions of rank of matrices. To list a few: deterministic communication complexity
is lower bounded by the logarithm of the rank of the matrix [37]; quantum communication
complexity is lower bounded by the logarithm of the approximate rank of the matrix [16, 19];
UPP communication complexity is equivalent to the logarithm of the sign-rank of the
matrix [40].

These connections are introduced (and usually interpreted) as methods for proving
communication complexity lower bounds (see, e.g. the survey by Lee and Shraibman [35]),
but they can also be interpreted in the other direction, as a way to systematically construct
low-rank decompositions of matrices.

In this paper, we explore the connection between different types of communication
protocols and low-rank decompositions of matrices and establish several applications in
algorithm design. For all these connections, we start with an efficient communication
protocol for a problem F , which implies an efficiently constructible low-rank decomposition
of the corresponding communication matrix of F , from which we can obtain fast algorithms.

In fact, in our applications of quantum communication protocols, we also consider k-party
protocols, and our algorithms rely on the approximate low-rank decomposition of the tensor
of the corresponding communication problem. To the best of our knowledge, this is the first
time that approximate tensor rank is used in algorithm design (approximate rank has been
used before, see e.g. [11, 18, 13, 12] and the corresponding related works section).2

1 A low probabilistic rank implies a probabilistic low-rank decomposition of the matrix.
2 We remark that a concurrent work [52] makes algorithmic use of non-negative tensor approximate rank

to construct an optimal data structure for the succinct rank problem.
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1.1 Quantum Communication Protocols and Deterministic
Approximate Counting

Our first result is a generic connection between quantum communication protocols and
deterministic approximate counting algorithms.

I Theorem 1. (Informal) Let X ,Y be finite sets and f : X × Y → {0, 1} be a Boolean
function. Suppose f has a quantum communication protocol P3 with complexity C(P) and
error ε. Then there is a classical deterministic algorithm C that receives A ⊆ X , B ⊆ Y as
input, and outputs a number E such that∣∣∣∣∣∣

∑
(x,y)∈A×B

f(x, y)− E

∣∣∣∣∣∣ ≤ ε · |A| · |B|.
Furthermore, C runs in (|A|+ |B|) · 2O(C(P)) time.

We remark here that there is a simple randomized algorithm running in sub-linear time via
random-sampling. Thus the above algorithm is indeed a derandomization of that randomized
algorithm.

The above theorem can also be easily generalized to the (number-in-hand) k-party case.
See Section 2.5 for the definition of the multiparty quantum communication model.

I Theorem 2. (Informal) Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1}
be a Boolean function. Suppose f has a k-party quantum communication protocol P with
complexity C(P) and error ε. Then there is a classical deterministic algorithm C that receives
X1 ⊆ X1, X2 ⊆ X2, . . . , Xk ⊆ Xk as input, and outputs a number E such that∣∣∣∣∣∣

∑
x1∈X1,x2∈X2,...,xk∈Xk

f(x1, x2, . . . , xk)− E

∣∣∣∣∣∣ ≤ ε ·
k∏
i=1
|Xi|.

Furthermore, C runs in (|X1|+ |X2|+ . . .+ |Xk|) · 2O(C(P)) time.

Sketching Algorithms

In fact, Theorem 2 implies a stronger sketching algorithm. Given subsets X1, X2, . . . , Xk,
the algorithm first computes a w = 2O(C(P)) size sketch ski from each Xi in O(|Xi| ·w) time
deterministically, and the number E can be computed from these ski’s in O(k · w) time.

The sketch computed by the algorithm is in fact a vector in Rw, and it satisfies a
nice additive property. That is, the sketch of X1 t X2 (union as a multi-set) is simply
sk(X1) + sk(X2).

Applying existing quantum communication protocols, we obtain several applications of
Theorem 1 and Theorem 2.

1.1.1 Set-Disjointness and Approximate #OV and #k-OV
We first consider the famous Set-Disjointness problem (Alice and Bob get two vectors u
and v in {0, 1}d correspondingly, and want to determine whether 〈u, v〉 = 0), which has an
efficient quantum communication protocol [1] with communication complexity O(

√
d).

3 We need some technical condition on P, see Corollary 29 for details.
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The corresponding count problem for Set-Disjointness is the counting version of the
Orthogonal Vectors problem (OV), denoted as #OVn,d. In this problem, we are given two
sets of n vectors S, T ⊆ {0, 1}d, and the goal is to count the number of pairs u ∈ S, v ∈ T
such that 〈u, v〉 = 0.

Applying the quantum communication protocol for Set-Disjointness and Theorem 2,
we immediately get an algorithm for the approximate version of #OV.

I Theorem 3. For any d and any constant ε > 0, #OVn,d can be approximated determin-
istically with additive error ε · n2 in n · 2O(

√
d) time. In particular, it runs in n1+o(1) time

when d = o(log2 n).

Comparison with [22]

[22] gives a deterministic exact counting algorithm for #OVn,c logn, which runs in n2−O(1/ log c)

time. Note that their running time is n2−o(1) when d = ω(logn), while our algorithm only
achieves an additive approximation, but runs in near-linear time for all d = o(log2 n).

Another closely related problem, Counting Partial Match, is the problem that given
n query strings from {0, 1, ?}d (? is a “don’t care”) and n strings from {0, 1}d, and the goal
is to count the number of matching string and query pairs.

Using known reductions between Partial Match and OV (see, e.g., Section 2 in [6]),
together with the approximate counting algorithm for #OV, we can also solve Counting
Partial Match approximately in the same running time.

The approximate counting algorithm for #OV can be easily generalized to solve #k-OV,
which is the problem that given k sets of n vectors X1, X2, . . . , Xk ⊆ {0, 1}d, and count the
number of k-tuples u1 ∈ X1, u2 ∈ X2, . . . , uk ∈ Xk such that 〈u1, u2, . . . , uk〉 = 0.4

Applying Theorem 2 and observe that the 2-party Set-Disjointness protocol in [1] can be
easily generalized to solve the k-party case (in k-party Set-Disjointness, there are k players
getting u1, u2, . . . , uk respectively, and they want to determine whether 〈u1, u2, . . . , uk〉 = 0),
we obtain the following approximate counting algorithm for #k-OV.

I Theorem 4. For any integers k, d and any constant ε > 0, #k-OVn,d can be approximated
deterministically with additive error ε ·nk in n ·2O(k

√
d) time. In particular, it runs in n1+o(1)

time when k is a constant and d = o(log2 n).

I Remark. We remark that similar algorithms with slightly worse running time (n · dO(
√
d)

time for additive approximation to #OVn,d) can also be derived using the polynomial
method. However, we think our new algorithms via quantum communication protocols have
the following extra benefits: (1) our algorithm is slightly faster, with a running time of
n · 2O(

√
d); (2) our algorithm is derived via a general connection. Once the connection is set

up, the algorithm follows in an elegant and black-box way. We hope this general connection
could stimulate more applications of quantum communication protocols.

1.1.2 Sparse Set-Disjointness and Approximate Sparse #OV
Next we consider a sparse version of Set-Disjointness, in which Alice and Bob get two
sparse vectors u, v ∈ {0, 1}m≤d5, and want to decide whether 〈u, v〉 = 0.

4 the generalized inner product of k vectors, is defined as 〈u1, u2, . . . , uk〉 =
∑d

i=1

∏k

j=1(uj)i.
5 We use {0, 1}m

≤d to denote all Boolean vectors of length m with at most d ones.
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Using the famous quantum-walk algorithm for Element Distinctness [14], there is an
O(d2/3 logm) communication protocol for sparse Set-Disjointness, which is much better
than the O(

√
m) protocol for Set-Disjointness when m� d.

Applying this protocol and Theorem 1, we can give an algorithm for a sparse version of
#OV, denoted as #Sparse-OVn,m,d, in which we are given sets A,B ⊆ {0, 1}m≤d of n vectors,
and the goal is to count the number of distinct (a, b) ∈ A×B such that 〈a, b〉 = 0. Formally,
we have:

I Theorem 5. For integers n,m, d and any constant ε > 0, #Sparse-OVn,m,d can be approx-
imated deterministically with additive error ε · n2 in

n · 2O(d2/3 log(m))

time. In particular, when m = poly(d) and d = o

((
logn

log logn

)1.5
)
, it runs in n1+o(1) time.

We remark that it is possible to improve Theorem 5 via the polynomial method. Again,
we emphasize that our focus here is to provide direct applications of our general framework,
with the hope that it could stimulate more applications of quantum communication protocols
in the classical settings.

1.1.3 Approximate Counting for Formula ◦ SYM Circuits
Finally, we apply our algorithm to approximately count solutions (i.e., satisfying assignments)
to a class of circuits, for which no non-trivial algorithms were previously known.

A Formula ◦ SYM circuit of size m is a formula with {AND,OR,NOT} basis on m SYM
gates6 at the bottom. Using the quantum query algorithm for Formula Evaluation [15]
and the split-and-list technique, we obtain the following deterministic approximate counting
algorithm for Formula ◦ SYM circuits:

I Theorem 6. For any constant ε > 0, the number of solutions to a Formula ◦ SYM
circuit of size m can be approximated deterministically within ε · 2n additive error in
2O(n1/2m1/4+o(1)

√
logn+logm) time. In particular, when m = n2−δ for some δ > 0, the

running time is 2o(n).

Previously, even no non-trivial deterministic approximate counting algorithms for AND ◦
SYM circuits were known. A recent line of works [31, 32, 44], culminating in [39], construct a
PRG for ANDm ◦ THR circuits with seed length poly(logm, δ−1) · logn, using which one can
obtain a quasi-polynomial time deterministic approximate counting algorithm for polynomial
size AND ◦THR circuits. However, their PRG constructions rely on the fact that the solution
set of an ANDm ◦ THR circuit is a polytope, while the solution set of an AND ◦ SYM circuit
may not have such a nice geometric structure.

In fact, the only property we need for SYM gates is that they admit an efficient classical
k-party communication protocol when the inputs are divided to k players (each player sends
the contribution of her part). Our algorithm actually works for the following more general
problem.

I Problem 1. Given k sets of n vectors X1, X2, . . . , Xk ⊆ {0, . . . , r}d and d functions
f1, f2, . . . , fd where each fi is from [r]k to {0, 1}, and a Boolean formula F : {0, 1}d → {0, 1}
of O(1) fan-in. Count the number of k-tuples u1 ∈ X1, u2 ∈ X2, . . . , uk ∈ Xk such that

F(f1(u1,1, u2,1, . . . , uk,1), f2(u1,2, u2,2, . . . , uk,2), . . . , fd(u1,d, u2,d, . . . , uk,d)) = 1.

6 A SYM gate is a gate whose output only depends on the number of ones in the input.
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I Theorem 7. For any constant ε > 0, the above problem can be solved deterministically in
n · 2O(d1/2+o(1)·k(log d+log r)) time, within ε · nk additive error.

1.2 Arthur-Merlin Communication Protocols and a New Approximate
Max-IP Algorithm

Our second connection is an algorithmic application of AMcc protocols. We first define AMcc

protocols formally.

I Definition 8. An Arthur-Merlin communication protocol (AMcc) Π for a partial function
F : X × Y → {0, 1,⊥}7 proceeds as follows:

Alice holds input x ∈ X and Bob holds input y ∈ Y.
Alice and Bob toss some public coins jointly and send the random string r ∈ {0, 1}∗ to
Merlin (r is called the random challenge).
Based on x, y and the random challenge r, Merlin sends Alice and Bob a proof ψ, and
Alice and Bob decide to accept or not independently and deterministically. We require
the following conditions:

If F (x, y) = 1, with probability 1− ε over the random challenge r, there is a proof ψ
from Merlin such that Alice and Bob both accept.
If F (x, y) = 0, with probability 1− ε over the random challenge r, there is no proof ψ
from Merlin such that Alice and Bob both accept.

We call the parameter ε the error of the protocol Π. Moreover, we say the protocol is
computationally efficient if Alice and Bob’s behavior can be computed in polynomial-time
w.r.t. their input lengths.

We show that for any function F , a low-complexity and computationally efficient AMcc

protocol implies a faster algorithm for the corresponding F -Satisfying-Pair problem (defined
below).

For a partial function F : X × Y → {0, 1,⊥}, where X and Y are two sets, we define
F -Satisfying-Pairn as the problem that given two sets A ⊆ X and B ⊆ Y of size n, distinguish
between the following two cases: (1) There is an (x, y) ∈ A×B such that F (x, y) = 1. (2)
For all (x, y) ∈ A×B, F (x, y) = 0.

I Theorem 9 (Algorithms from AMcc protocols). Let F : X × Y → {0, 1,⊥} be a partial
function. Suppose there is a computationally efficient AMcc protocol for F with commu-
nication complexity T and error ε. Then for n such that 2T ≤ (

√
εn)0.1, there is an

O
(
εn2 · polylog(n) + n · 2T

)
time randomized algorithm for F -Satisfying-Pairn.

1.2.1 A New Algorithm for Approximate Max-IP
The first application of Theorem 9 is a new algorithm for approximate Maximum Inner
Product. We use Max-IPn,d to denote the problem that given sets A,B ⊆ {0, 1}d with size n,
compute Max(A,B) := max(a,b)∈A×B〈a · b〉.

To phrase this as an F -Satisfying-Pair problem, we first define the following gap inner
product problem.

7 F (x, y) = ⊥ means F (x, y) is undefined.
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I Definition 10 (Multiplicative-Gap Inner Product). Consider the following problem, denoted
as Gap-Inner-Productd, Alice and Bob hold strings x, y ∈ {0, 1}d respectively, and they are
given an integer τ . They want to distinguish between the following two cases: (Yes) x ·y ≥ 2τ ;
(No) x · y ≤ τ .

Adapting the classical Goldwasser-Sisper AM protocol for approximating set size [28], we
can derive an efficient AMcc protocol for Gap-Inner-Productd.

I Lemma 11 (AMcc protocol for Gap-Inner-Productd). There is an AMcc protocol which solves
Gap-Inner-Productd with error ε and communication complexity log

(
d

≤O(log ε−1)
)
.8

Applying Theorem 9, the following algorithm for approximating Max-IP follows directly,
matching the previous best algorithm in [23].

I Corollary 12. There is an algorithm for computing a 2-approximation to Max-IPn,c logn,
which runs in n2−1/O(log c) time.

I Remark. The constant 2 in Corollary 12 can be replaced by any other constant κ > 1.
We remark here that a direct application of the Goldwasser-Sisper protocol and parallel

repetition leads to a communication protocol with communication complexity O(log d log ε−1),
which is slightly worse than Lemma 11. In particular, such a protocol only gives an algorithm
with running time n2−1/O(log d), which is worse than n2−1/O(log c) when c� d = c logn. In
order to get the improved complexity in Lemma 11, we make use of a clever sampling scheme
using Poisson distributions, see Section 4.1 for details.

1.2.2 Evidences that Longest Common Subsequence and Edit Distance
do not Have Fast AMcc Protocols

It has been a long-standing open problem in communication complexity to prove an ω(logn)
AMcc lower bound for any explicit function [17, 29, 30]—it is consistent with our current
knowledge that all known natural communication problems have O(logn) AMcc protocols.

We consider two natural communication problems here, LCScc
d and Edit-Distcc

d , in which
Alice and Bob hold strings x, y ∈ {0, 1}d respectively, and are given an integer τ . Their goal
is to decide whether LCS(x, y) ≥ τ (Edit-Distance(x, y) ≥ τ).

Our Theorem 9 shows that if LCScc or Edit-Distcc admit low-complexity and computa-
tionally efficient AMcc protocols, it would imply non-trivial algorithms for the corresponding
F -Satisfying-Pair problem. By a known reduction in [3], that would, in turn, implies non-
trivial algorithms for Formula-SAT9—much faster than the current state-of-the-art [47]!
Therefore, at least for these two problems, constructing low-complexity AMcc protocol could
be hard, which may also be viewed as an evidence that they do not have efficient AMcc

protocols.

I Theorem 13. If LCScc
d admits computationally efficient AMcc protocols with complexity

polylog(d), then Formula-SAT of polynomial-size formulas admits an 2n−n1−δ time algorithm
for any constant δ > 0. The same holds for Edit-Distcc in place of LCScc.

The state-of-the-art algorithm for Formula-SAT runs in o(2n) time only when the formula
size is smaller than n3 [47]. It is even purposed as a hypothesis that no 2n/nω(1) time
algorithm exists for n3+Ω(1)-size Formula-SAT in [2]. Therefore, our results imply that if
LCScc or Edit-Distcc admits fast (computationally efficient) AMcc protocols, then that would
refute the hypothesis in [2]:

8
(

n
≤m

)
denotes

∑m

i=0

(
n
i

)
.

9 Formula-SAT is the problem that deciding whether a given formula is satisfiable.
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I Corollary 14. Under the following hypothesis10, LCScc
d and Edit-Distcc

d do not admit com-
putationally efficient AMcc protocols with complexity polylog(d):

There is a constant δ > 0 such that Formula-SAT of polynomial-size formulas requires
2n−n1−δ time.

In the full version of this paper, we show that the above corollary can be generalized to
hold for computationally efficient PHcc protocols (see the full version for a formal definition).
Formally, we have:

I Theorem 15. Under the same hypothesis as in Corollary 14, LCScc
d and Edit-Distcc

d do not
admit computationally efficient PHcc protocols with complexity polylog(d).

1.3 Related Works

1.3.1 Communication Protocols and Fine-Grained Complexity

Recently, since the breakthrough work of [5], communication protocols have been applied to
fine-grained complexity, and several tight conditional hardness results are proved for many
fundamental approximate problems in P [5, 33, 4, 23, 24, 25, 43].

Among these works, the most related one is [23], in which the author also makes use of the
BQPcc protocol for Set-Disjointness for a different purpose. In [23], the BQPcc protocol is
used to established a reduction from OV to approximate {−1, 1}-Max-IP11, thereby showing
the SETH-hardness of approximating {−1, 1}-Max-IP. On the other hand, in this work we
use BQPcc protocols directly for algorithmic purposes.

1.3.2 Other Algorithmic Applications of Approximate Rank

Alon studies the approximate rank of the identity matrix In in [11]. It is shown that it is
at least Ω

(
logn

ε2 log(1/ε)

)
and at most O

(
logn
ε2

)
. Built upon this result, several applications

in geometry, coding theory, extremal finite set theory and the study of sample spaces
supporting nearly independent random variables are derived. The lower bound also has
applications in combinatorial geometry and in the study of locally correctable codes over real
and complex numbers, as shown in [18]. In [13, 12], several bounds on approximate rank are
derived, together with applications of approximate rank in approximating Nash Equilibria,
approximating densest bipartite subgraph and covering convex bodies.

2 Preliminaries

2.1 Fast Rectangular Matrix Multiplication

Similar to previous algorithms using the polynomial method (see, e.g., [50, 10, 6]), our
algorithms also make use of algorithms for fast rectangular matrix multiplication.

I Theorem 16 ([26, 27]). There is an N2 · polylog(N) time algorithm for multiplying two
matrices A and B with size N ×Nα and Nα ×N , where α > 0.172.

10which is much weaker than the hypothesis in [2]
11 a variant of Max-IP with vectors in {−1, 1}d instead of {0, 1}d
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2.2 Random Variables and Poisson Distributions
Throughout the paper, we use X ' Y to mean that X and Y have the same distribution.
We use X � Y to denote stochastic dominance, i.e., X � Y iff for any t ∈ R, Pr[X ≥ t] ≥
Pr[Y ≥ t].

We use Pois(λ) to denote a Poisson distribution with parameter λ. We will need the
following two facts about Poisson distributions. The proof can be found in the full version.

I Lemma 17. Suppose {Xi}ni=1 is a set of independent random variables with Xi ∼ Pois(λi),
then

∑n
i=1Xi ∼ Pois (

∑n
i=1 λi) .

I Lemma 18. Pr [Pois(λ) ≥ 1.2λ] ≤ e−0.01λ and Pr [Pois(λ) ≤ 0.8λ] ≤ e−0.01λ.

2.3 Tensor Ranks
In this paper we are interested in the approximate tensor rank with respect to the `∞ norm.
For more on approximate tensor rank with respect to other norms and their applications,
see [46] and the references therein. Now we introduce some relevant definitions.

I Definition 19. We say a tensor T ∈ Rn1×n2×...×nk is simple if T = v1 ⊗ v2 ⊗ . . . ⊗ vk
where vi ∈ Rni .

I Definition 20. For a tensor T ∈ Rn1×n2×...×nk , its rank(T ) is defined to be the smallest
integer r such that T =

∑r
i=1Ar and Ai is simple for all i ∈ [r].

I Definition 21. For a tensor T ∈ Rn1×n2×...×nk , the approximate rank of T is defined as
follows: rankε(T ) = min{rank(S) | ‖T − S‖∞ ≤ ε}. Here ‖ · ‖∞ is the entry-wise `∞-norm
of a tensor.

2.4 Quantum Query Complexity
In this section we recall some previous results on quantum query complexity. Here we
emphasize the number of qubits used by the algorithms, which will be crucial when simulating
them using classical algorithms.

I Definition 22. In the Formula Evaluation problem, we are given a formula F with
{AND,OR,NOT} basis and O(1) fan-in on n variables x1, x2, . . . , xn. In each query, the
algorithm gets the value of xi, where i ∈ [n] is determined by the algorithm. The goal is to
evaluate the formula.

I Theorem 23 ([15]). The Formula Evaluation problem can be solved in O(n1/2+o(1))
queries using O(polylog(n)) qubits, with failure probability at most 1/3.

I Remark. There is an optimal O(n1/2) query algorithm for Formula Evaluation [42].
However, that query algorithm doesn’t fit in our applications here for two reasons: (1) the
algorithm needs O(n) qubits, which is too much for classical simulation; (2) the algorithm
is not computationally efficient and it takes too much time to compute the corresponding
unitary transformation.

I Definition 24. In the Element Distinctness problem, we are given n elements X =
(x1, x2, ..., xn) ∈ [m]n. In each query, the algorithm gets the value of xi, where i ∈ [n] is
determined by the algorithm. The goal is to decide whether there are two distinct indices
i 6= j such that xi = xj .

I Theorem 25 ([14]). The Element Distinctness problem can be solved in O(n2/3)
queries using O(n2/3 logm) qubits, with failure probability at most 1/3.
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2.5 Multiparty Quantum Communication Protocols
In this section, we give our definition of multiparty quantum communication protocols.

Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a function. In a
k-part quantum communication protocols, there are k players P1, P2, . . . , Pk, together with
a Hilbert space H = H1 ⊗H2 ⊗ . . .⊗Hk ⊗H. Here Hi serves as the inner working space
for player Pi, and H is the communication channel between all the players. Each player Pi
receives an input xi ∈ Xi and the goal is to determine f(x1, x2, . . . , xk).

Now we give the formal definition of a k-party quantum communication protocol.

I Definition 26. A k-part quantum communication protocol P = P(x1, x2, . . . , xk) is a
sequence of r unitary transforms P = (Up1

1 (xp1), Up2
2 (xp2), . . . , Uprr (xpr )), such that:

Upii (xpi) is a unitary transform acting on Hpi ⊗Hi where Hi is a subspace spanned by
some qubits of H12. That is, it is the action of pi-th player Ppi , who is in charge of the
i-th turn.
The sequence p1, p2, . . . , pr, and H1, H2, . . . ,Hr are fixed and do not depend on x1, . . . , xk.
In other words, Hi corresponds to the qubits in the channel H that player Ppi will modify
during its action in the i-th turn, and all players take actions in a fixed, predefined order.
The communication complexity of P is defined to be C(P) =

∑r
i=1 log(dim(Hi)). The

space complexity of Pi is defined to be Si(P) = log(dim(Hi ⊗H)).

For a protocol P = (Up1
1 (xp1), Up2

2 (xp2), . . . , Uprr (xpr )), we say P computes f with error
ε if we measure the first qubit in H on the state Uprr (xpr) · U

pr−1
r−1 (xpr−1) · . . . · Up2

2 (xp2) ·
Up1

1 (xp1) · |0〉, we get f(x1, x2, . . . , xk) with probability at least 1− ε, for all x1 ∈ X1, x2 ∈
X2, . . . , xk ∈ Xk.
I Remark. We remark that our definition here is more complicated than the usual definition
of quantum communication protocols in the literature (see, e.g., [34]), but nonetheless, it is
equivalent to them. We choose to formulate it in such a way because it is easier to describe
the classical simulation of quantum communication protocols for low approximate rank
decompositions, and the simulation of quantum query algorithms (see below).

2.5.1 Simulating Quantum Query Algorithm in Quantum
Communication Protocols

Quantum communication protocols can be built upon quantum query algorithms (see, e.g.,
[20]). Here we give an example to show how to simulate a quantum query algorithm for
Formula Evaluation to construct a quantum communication protocol for the communi-
cation problem corresponding to Problem 1, under our definition.

In the corresponding k-party communication problem, there are k players, and the i-th
player Pi is given a vector ui ∈ [r]d. There are d functions f1, f2, . . . , fd where each fi
is from [r]k to {0, 1}, and a Boolean formula F : {0, 1}d → {0, 1} of O(1) fan-in. Set
v(i) = fi(u1,i, u2,i, . . . , uk,i). Their goal is to compute F(v(1), v(2), . . . , v(d)).

Now we show how to construct a quantum communication protocol for the above problem.

I Example 27. Assume that the first player runs a quantum query algorithm for the
Formula Evaluation problem. For the simulation, we only need to implement the follow-
ing query gate Ov: |i〉 |b〉 → |i〉 |b⊕ v(i)〉, where i is the index of a variable written in binary
form and v(i) is the corresponding input bit to F .

12 i.e., Upi
i (xpi) does not alter qubits other than those in Hpi ⊗Hi.



L. Chen and R. Wang 23:11

We first specify the channel, H is defined as H index ⊗Houtput ⊗H1 ⊗ · · · ⊗Hk. H index
and Houtput together simulate the query gate, and Hi is the place for player Pi to write her
number.

In the beginning, all qubits in H are |0〉. When the first player wants to apply Ov on
some qubits in H1, it first swaps the qubits containing i and b in H1 with H index and Houtput
in H.

Each player Pj in turn reads i in H index and writes the value of uj,i to qubits in Hj . Note
that each player can write the value of uj,i to qubits in Hj using a unitary transformation
since all qubits in Hj are |0〉 at the beginning, by assumption.

Now, given the value of i and u1,i, u2,i, . . . , uk,i, the first player maps |i〉 |b〉 to |i〉 |b⊕ v(i)〉
via a unitary transformation. Now the gate Ov is implemented, but we still have to clean
up the garbages in Hj ’s, and set them back to |0〉’s. This can be done by applying reverse
transforms of all applied unitary transformation, in the reverse order.

The communication complexity of this protocol is O(Q · k(log d+ log r)), where Q is the
query complexity of the quantum query algorithm. Also, using the algorithm in Theorem 23,
the communication complexity of this protocol is O(n1/2+o(1) · k(log d+ log r)).

3 Approximate Counting Algorithms from Quantum Communication
Protocols

Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a function. Let
Mf ∈ {0, 1}|X1|×|X2|×...×|Xk| denote the Boolean tensor whose (x1, x2, . . . , xk) entry is
f(x1, x2, . . . , xk). The following connection between 2-party quantum communication com-
plexity and approximate rank is first observed in [21]. This result can be generalized to the
k-party case to get the following theorem. Full details can be found in the full version of this
paper.

I Theorem 28. Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a
Boolean function. Suppose there exists a k-party efficient quantum communication protocol
P, such that P gives the correct answer with probability at least 1− ε on every input, then
rankε(Mf ) ≤ 2O(C(P)), or equivalently, there exist simple tensors A1, A2, . . . , A2O(C(P)) such
that∥∥∥∥∥∥Mf −

2O(C(P))∑
i=1

Ai

∥∥∥∥∥∥
∞

≤ ε.

In the full version of this paper, we further show how to use classical deterministic
algorithms to simulate quantum communication protocols. Notice that here the time
complexity depends on the space complexity of the quantum communication protocol to use.

I Corollary 29. Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a Boolean
function. Suppose there exists a k-party efficient quantum communication protocol P, such
that P gives the correct answer with probability at least 1 − ε on every input, and all the
unitary transformation used in the P can be constructed in polynomial time (with respect to
their sizes) by a deterministic classical algorithm. Then there exists k deterministic classical
algorithms AX1 ,AX2 , . . . ,AXk such that AXiruns in 2O(C(P)+Si(P)) time, receives xi ∈ Xi as
input and outputs a vector AXi(xi) ∈ R2O(C(P)) , and for any x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk,

−ε ≤ 〈AX1(x1),AX2(x2), . . . ,AXk(xk)〉 − f(x1, x2, . . . , xk) ≤ ε.
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Based on Corollary 29, for any Boolean function f : X1,X2, . . . ,Xk → {0, 1} with an
efficient efficient quantum communication protocol, there also exists an efficient approximate
counting algorithm for f .

I Theorem 30. Let X1,X2, . . . ,Xk be finite sets and f : X1,X2, . . . ,Xk → {0, 1} be a Boolean
function. Suppose there exists a k-party efficient quantum communication protocol P, such
that P gives the correct answer with probability at least 1 − ε on every input, and all the
unitary transformation used in the P can be constructed in polynomial time (with respect to
their sizes) by a deterministic classical algorithm. Then there exists a classical deterministic
algorithm C that receives X1 ⊆ X1, X2 ⊆ X2, . . . , Xk ⊆ Xk as input, and outputs a number E
such that∣∣∣∣∣∣

∑
x1∈X1,x2∈X2,...,xk∈Xk

f(x1, x2, . . . , xk)− E

∣∣∣∣∣∣ ≤ ε ·
k∏
i=1
|Xi|.

Furthermore, C runs in
∑k
i=1 |Xi| · 2C(P)+Si(P) time.

Proof. For all xi ∈ Xi we first use AXi in Corollary 29 to calculate AXi(xi) ∈ R2O(C(P)) , in∑k
i=1 |Xi| · 2C(P)+Si(P) time. Then we directly output〈 ∑

x1∈X1

AX1(x1),
∑
x2∈X2

AX2(x2), . . . ,
∑

xk∈Xk

AXk(xk)
〉
.

The correctness simply follows from the fact that for all (x1, x2, . . . , xk) ∈
∏
i Xi,

−ε ≤ 〈AX1(x1),AX2(x2), . . . ,AXk(xk)〉 − f(x1, x2, . . . , xk) ≤ ε. J

I Remark. The algorithm described above is actually a sketching algorithm. We may define
the sketch for Xi as ski(Xi) =

∑
xi∈Xi AXi(xi) ∈ R2O(C(P)) and the number E can be

computed from these ski’s. This sketching algorithm satisfies a nice additive property, i.e.,
the sketch of A tB (union as a multi-set) is simply ski(A) + ski(B).
Now we give approximate counting algorithms for concrete problems, using Theorem 30.

3.1 Counting the k-Tuples of Orthogonal Vectors
The goal of this section is to prove the following theorem.

Reminder of Theorem 4. For any integers k, d and any constant ε > 0, #k-OVn,d can be
approximated deterministically with additive error ε · nk in n · 2O(k

√
d) time. In particular, it

runs in n1+o(1) time k is a constant and d = o(log2 n).
We first consider quantum communication protocols for the following function f .

I Definition 31. Let X1 = X2 = . . . = Xk = {0, 1}d and

f(x1, x2, . . . , xk) =
{

1 if 〈x1, x2, . . . , xk〉 = 0
0 otherwise

.

The corresponding communication problem can be solved using the quantum communication
protocol in [1] with communication complexity O(k

√
d) and space complexity O(polylog(d)),

with constant failure probability. If we use the algorithm in Theorem 30, together with the
efficient quantum communication protocol mentioned above, we can then deterministically
count the number of k-tuples of orthogonal vectors, in time n ·2O(k·

√
d) time, with an additive

ε · nk error.
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3.2 Counting the Pairs of Orthogonal Sparse Vectors
The goal of this section is to prove the following theorem.

Reminder of Theorem 5. For integers n,m, d and any constant ε > 0, #Sparse-OVn,m,d
can be approximated deterministically with additive error ε · n2 in

n · 2O(d2/3 log(m))

time. In particular, when m = poly(d) and d = o

((
logn

log logn

)1.5
)
, it runs in n1+o(1) time.

Again we consider quantum communication protocols for the following function f .

I Definition 32. Let X = Y = {0, 1}m≤d and

f(x, y) =
{

1 if 〈x, y〉 = 0
0 otherwise

.

The corresponding communication problem can be solved with communication complexity
O(d2/3 logm), by simulating the quantum query algorithm in Theorem 25 for Element
Distinctness. Too see the connection, let S = {i | xi = 1} and T = {i | yi = 1}. We will
have f(x, y) = 1 if and only if all elements in S t T (union as a multi-set) are distinct. Now,
using the algorithm in Theorem 30, together with the efficient quantum communication
protocol mentioned above, we can deterministically count the number of orthogonal pairs in
S and T , in n · 2O(d2/3 log(m)) time, with an additive ε · nk error.

3.3 Counting Solutions to Formula ◦ SYM Circuits
The goal of this section is to solve the following problem.

Reminder of Problem 1. Given k sets of n vectors S1, S2, . . . , Sk ⊆ {0, . . . , r}d and d

functions f1, f2, . . . , fd where each fi is from {0, . . . , r}k to {0, 1}, and a Boolean formula
F : {0, 1}d → {0, 1} of O(1) fan-in. Count the number of k-tuples u1 ∈ S1, u2 ∈ S2, . . . , uk ∈
Sk such that

F(f1(u1,1, u2,1, . . . , uk,1), f2(u1,2, u2,2, . . . , uk,2), . . . , fd(u1,d, u2,d, . . . , uk,d)) = 1.

Reminder of Theorem 7. For any constant ε > 0, the above problem can be solved
deterministically in n · 2O(d1/2+o(1)·k(log d+log r)) time, within ε · nk additive error.

The corresponding k-party communication problem can be solved by a quantum commu-
nication protocol with communication complexity O(d1/2+o(1) ·k(log d+log r)), by simulating
the quantum query algorithm for Formula-Evaluation in Theorem 23. For details see Example
27. By our framework, this implies an approximate counting algorithm to the problem
mentioned above in time n · 2O(d1/2+o(1)·k(log d+log r)), with an additive ε · nk error.

Here we mention one application to the approximate counting algorithm above.

Reminder of Theorem 6. For any constant ε > 0, the number of solutions to a Formula ◦
SYM circuit of size m can be approximated deterministically within ε · 2n additive error in
2O(n1/2m1/4+o(1)

√
logn+logm) time. In particular, when m = n2−δ for some δ > 0, the running

time is 2o(n).
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Proof of Theorem 6. Consider a Formula ◦ SYM circuit C : {0, 1}n → {0, 1} with m sym-
metric gates X1, X2, . . . , Xm and a Boolean formula F of O(1) fan-in. Here we slightly abuse
of notation by regarding Xi as a function that maps the number of inputs bits with value one
to an output in {0, 1}. We can approximately count the number of solutions to C as follows.

We split the n inputs bits into s groups, each with n/s input bits. Then for each group,
we enumerate all the 2n/s possible assignments to the n/s input bits. We create a vector
in {0, . . . , n/s}m for each possible assignment, where the i-th entry is simply the number
of ones in the assignment which is an input bit to the i-th symmetric gate Xi. Now, the
number of solutions to the circuit C, is simply the same as Problem 1, by setting

fi(u1,i, u2,i, . . . , uk,i) = Xi(u1,i + u2,i + . . .+ uk,i).

The total time complexity would be 2n/s ·2O(m1/2+o(1)·s(logm+log(n/s))), with an additive ε ·2n
error. Setting s = n1/2

m1/4+o(1)
√

logn+logm
, the final time complexity would be

2O(n1/2m1/4+o(1)
√

logn+logm). J

4 Algorithms from Arthur-Merlin Communication Protocols

In this section, we prove our algorithmic applications of AMcc protocols. We first show faster
AMcc protocols for F imply faster F -Satisfying-Pair algorithms.

Reminder of Theorem 9. Let F : X × Y → {0, 1,⊥} be a partial function. Suppose there
is a computationally efficient AMcc protocol for F with communication complexity T and
error ε. Then for n such that 2T ≤ (

√
εn)0.1, there is an O

(
εn2 · polylog(n) + n · 2T

)
time

randomized algorithm for F -Satisfying-Pairn.

Proof. We first assume n < 1
10
√
ε
. After drawing a random challenge, for each element x ∈ X

and y ∈ Y we construct a Boolean vector AX (x) and AY(y) of length 2T , where each the i-th
entry indicates whether Alice (Bob) accepts when receiving the proof i from Merlin. Here
we regard i as a Boolean string of length T via a natural bijection between [2T ] and {0, 1}T .

According to the guarantee of an AMcc protocol, for each x ∈ X and y ∈ Y , when F (x, y) =
1, with probability at least 1− ε over the random challenge, we have 〈AX (x),AY(y)〉 > 0,
and when F (a, b) = 0 we have 〈AX (x),AY(y)〉 > 0 with probability at most ε over the
random challenge.

By a union bound on all pairs of elements in A and B, we have with probability at least
0.99, for all a ∈ A and b ∈ B, 〈AA(a),AB(b)〉 > 0 if and only if F (a, b) = 1. Consequently,
with probability at least 0.99,〈∑

a∈A
AA(a),

∑
b∈B

AB(b)
〉
> 0

if and only if there exist a ∈ A and b ∈ B such that F (a, b) = 1.
For general n = |A| = |B|, we first split A and B into O(

√
εn) groups, each with at most

1
10
√
ε
elements. I.e., we assume A =

⋃g
i=1Ai and B =

⋃g
i=1Bi such that g = O(

√
εn) and

|Ai|, |Bi| ≤ 1
10
√
ε
. For each i, j ∈ [g], we use the algorithm mentioned above to calculate two

vectors
∑
a∈Ai AA(a) and

∑
b∈Bj AB(b). We writeMA ∈ R2T×g to denote the matrix∑

a∈A1

AA(a),
∑
a∈A2

AA(a), · · · ,
∑
a∈Ag

AA(a)
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andMB ∈ R2T×g to denote the matrix∑
b∈B1

AB(b),
∑
b∈B2

AB(b), · · · ,
∑
b∈Bg

AB(b)

 .
Since 2T ≤ (

√
εn)0.1 ≤ O(g0.1), we can use the rectangular matrix multiplication algorithm in

Theorem 16 to calculateMT
AMB in O(g2 · polylog(g)) = O(εn2 polylog(n)) time. We repeat

this procedure for O(logn) times. For any i, j ∈ [g], by standard concentration bounds, with
probability at least 1− poly(n), there exist a ∈ Ai and b ∈ Bj such that F (a, b) = 1 if and
only if the majority of the O(logn) repetitions satisfies (MT

AMB)i,j > 0. Applying union
bound again over all i, j ∈ [g], we can now solve F -Satisfying-Pairn by checking whether there
exist i and j such that the majority of the O(logn) repetitions satisfies (MT

AMB)i,j > 0.
The overall algorithm runs in O(εn2 · polylog(n)) time and succeeds with high probability,
as stated. J

4.1 A New Algorithm for Approximate Max-IP
The first application of Theorem 9 is to use the Goldwasser-Sisper AM protocol [28] for
approximating set size to obtain a new algorithm for approximating Max-IP.

We first need the following adaption of [28], which has a better dependence on ε.

Reminder of Lemma 11. There is an AMcc protocol for Gap-Inner-Productd with error ε
and communication complexity log

(
d

≤O(log ε−1)
)
.

Proof. Recall that x, y ∈ {0, 1}d are the inputs hold by Alice and Bob respectively.
Let X = {i | xi = 1} and Y = {i | yi = 1}. The problem is equivalent to determine

whether |X ∩ Y | ≥ 2τ or |X ∩ Y | ≤ τ . Here we give an AMcc communication protocol with
error ε and communication complexity log

(
d

≤O(log ε−1)
)
.

In the communication protocol, Alice and Bob first generate i.i.d. random variables
pi ∼ Pois(k/τ) for each i ∈ [d], for a parameter k = Θ(log(1/ε)) to be determined later. When
|X ∩Y | ≥ 2τ , Merlin finds an arbitrary set S ⊆ X ∩Y of size O(k) such that

∑
i∈S pi ≥ 1.6k,

and then sends it to Alice and Bob. Upon receiving S, Alice (Bob) decides to accept or reject
by checking whether S ⊆ X (S ⊆ Y ) and

∑
i∈S pi ≥ 1.6k. The communication complexity

of this protocol is upper bounded by log
(

d
≤O(log ε−1)

)
since |S| ≤ 1.6k = O(log(1/ε)).

Now we prove the correctness by considering the following two cases.
Case 1: |X ∩ Y | ≥ 2τ . For this case, we have

∑
i∈X∩Y pi ∼ Pois(|X∩Y |·k/τ) � Pois(2k).

Thus by Lemma 18, with probability at least 1 − eΩ(k),
∑
i∈X∩Y pi ≥ 1.6k. Since for

each pi > 0 we must have pi ≥ 1, with probability at least 1− eΩ(k), there exists a set
S ⊆ X ∩ Y of size O(k) such that

∑
i∈S pi ≥ 1.6k.

Case 2: |X ∩ Y | ≤ τ . For this case, we have
∑
i∈X∩Y pi ∼ Pois(|X ∩Y | · k/τ) � Pois(k).

Thus by Lemma 18, with probability at least 1− eΩ(k),
∑
i∈X∩Y pi ≤ 1.2k. When both

Alice and Bob accept, it must be the case that S ⊆ X ∩ Y and
∑
i∈S pi ≥ 1.6k. However

when |X ∩ Y | ≤ τ , with probability at least 1− eΩ(k),
∑
i∈X∩Y pi ≤ 1.2k. Thus there is

no S such that both Alice and Bob accept, with probability at least 1− e−Ω(k).
The lemma follows by setting k to be a large enough multiple of log(1/ε). J

By Theorem 9 and the above lemma, Corollary 12 follows from a binary search over τ .

Reminder of Corollary 12. There is an algorithm for computing a 2-approximation to
Max-IPn,c logn, which runs in n2−1/O(log c) time.
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4.2 Consequence of Fast AMcc Protocols for LCS and Edit-Distance
Next we discuss the consequences of LCS and Edit-Distance having efficient AMcc protocols.
We first introduce some classical notations about the communication complexity classes
(see [17, 30]). We say a function family F = {Fd : {0, 1}d×{0, 1}d → {0, 1,⊥}}d∈N is in AMcc

if AMcc(Fd) = polylog(d) (we use AMcc(Fd) to denote the AMcc communication complexity
for Fd with error 1/3).

We also say F is AMcc
eff if for all d ∈ N, Fd admits a computationally efficient AMcc

protocol with error 1/3 and complexity polylog(d).
Now we prove the consequence of a function family F ∈ AMcc

eff .

I Corollary 33 (Consequence of F ∈ AMcc
eff). Let F = {Fd : {0, 1}d×{0, 1}d → {0, 1,⊥}}d∈N

be a partial function family. If F ∈ AMcc
eff , then there is an n2/2log1−δ n time algorithm for

Fpolylog(n)-Satisfying-Pairn, for any constant δ > 0.

Proof. By standard repetition arguments, there exists an AMcc communication protocol
with communication complexity polylog(d) log(1/ε) and failure probability 1− ε. In order to
invoke Theorem 9 we need to make sure

2polylog(d) log(1/ε) = 2polyloglog(n) log(1/ε) < n0.1,

and thus we can set ε = 2− log1−δ/2 n. For this choice of ε we will then get an n2/2log1−δ/2 n ·
polylog(n) ≤ n2/2log1−δ n time algorithm for Fpolylog(n)-Satisfying-Pairn, which completes the
proof. J

Recall that in LCScc
d (Edit-Distcc

d ), Alice and Bob hold strings x, y ∈ {0, 1}d respec-
tively, and are given an integer τ . Their goal is to decide whether LCS(x, y) is at least τ
(Edit-Distance(x, y) is at least τ). Now we are ready to prove Theorem 13.

Reminder of Theorem 13. If LCScc
d admits computationally efficient AMcc protocols with

complexity polylog(d), then Formula-SAT of polynomial-size formulas admits an 2n−n1−δ

time algorithm for any constant δ > 0. The same holds for Edit-Distcc in place of LCScc.
We will only discuss LCScc here, the proof for Edit-Distcc follows exactly the same. We

first introduce the reduction from [3] (see also [2]).

I Theorem 34 (Implicit in [3]). For a given formula F with n input variables and size s, let
a ∈ {0, 1}n/2 be an assignment to first n/2 variables in F and b ∈ {0, 1}n/2 be an assignment
to last n/2 variables in F . There exists an algorithm A which outputs G(a) ∈ {0, 1}poly(s)

and G(b) ∈ {0, 1}poly(s) such that for a fixed integer Y (Y depends on F),
LCS(G(a), G(b)) = Y if a� b is a satisfying assignment to F ;
LCS(G(a), G(b)) ≤ Y − 1 if a� b is not a satisfying assignment to F .

Proof of Theorem 13. For a given formula F of size s = poly(n), we first enumerate all
2n/2 possible assignments to first n/2 variables in F and all possible assignments to last
n/2 variables in F . For each a ∈ {0, 1}n/2 corresponding to an assignment to first n/2
variables in F and b ∈ {0, 1}n/2 corresponding to an assignment to last n/2 variables in F ,
we calculate G(a) and G(b) using Theorem 34. Note that all G(a)’s and G(b)’s have length
poly(s) = poly(n).

Now suppose LCScc ∈ AMcc
eff for τ = Y . Applying Corollary 33 with all possible G(a)’s

and G(b)’s, we can solve Formula-SAT in 2n−n1−δ time for any constant δ > 0. J
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Open Problems and Future Directions

Here we list a few interesting open problems stemming from this work.
In this work, we applied BQPcc and AMcc protocols for the algorithmic purpose. Can we
find algorithmic applications of other communication protocols?
Or less ambitiously, can we find more interesting algorithmic applications with other
known BQPcc or AMcc protocols? (this could even be a motivation to find new BQPcc or
AMcc protocols!)
Our additive approximation algorithm for #OV runs in near-linear time when d =
o(log2 n). Is it possible to design a near-linear time algorithm for d = no(1) dimensions?
Note that by a simple Chernoff bound, there is a deterministic n1+o(1) time algorithm
with n1+o(1) advice for additive approximations to #OV. So there is a hope to construct
such an algorithm.
Our results show that under the hypothesis of [2], LCScc and Edit-Distcc do not admit
computationally efficient AMcc or PHcc protocols. Can one prove that unconditionally?
Is it possible to connect these algorithms from AMcc or PHcc protocols to R. Williams’
algorithmic approach to circuit lower bounds [49, 51, 38]? In particular, can one show
unconditionally that, there is a function f in NEXP (or even NTIME[2polylog(n)]), which
doesn’t admit polylog(n) complexity AMcc or PHcc protocols?
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Abstract
We introduce two new “degree of complementarity” measures: supermodular width and superad-
ditive width. Both are formulated based on natural witnesses of complementarity. We show that
both measures are robust by proving that they, respectively, characterize the gap of monotone
set functions from being submodular and subadditive. Thus, they define two new hierarchies
over monotone set functions, which we will refer to as Supermodular Width (SMW) hierarchy
and Superadditive Width (SAW) hierarchy, with foundations – i.e. level 0 of the hierarchies –
resting exactly on submodular and subadditive functions, respectively.

We present a comprehensive comparative analysis of the SMW hierarchy and the Supermod-
ular Degree (SD) hierarchy, defined by Feige and Izsak. We prove that the SMW hierarchy is
strictly more expressive than the SD hierarchy: Every monotone set function of supermodular
degree d has supermodular width at most d, and there exists a supermodular-width-1 function
over a ground set of m elements whose supermodular degree is m − 1. We show that previous
results regarding approximation guarantees for welfare and constrained maximization as well
as regarding the Price of Anarchy (PoA) of simple auctions can be extended without any loss
from the supermodular degree to the supermodular width. We also establish almost matching
information-theoretical lower bounds for these two well-studied fundamental maximization prob-
lems over set functions. The combination of these approximation and hardness results illustrate
that the SMW hierarchy provides not only a natural notion of complementarity, but also an ac-
curate characterization of “near submodularity” needed for maximization approximation. While
SD and SMW hierarchies support nontrivial bounds on the PoA of simple auctions, we show that
our SAW hierarchy seems to capture more intrinsic properties needed to realize the efficiency of
simple auctions. So far, the SAW hierarchy provides the best dependency for the PoA of Single-
bid Auction, and is nearly as competitive as the Maximum over Positive Hypergraphs (MPH)
hierarchy for Simultaneous Item First Price Auction (SIA). We also provide almost tight lower
bounds for the PoA of both auctions with respect to the SAW hierarchy.
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1 Introduction

For a ground set X = [m] = {1, 2, . . . ,m}, a set function f : 2X → R assigns each subset
S ⊆ X a real value.4 Function f is monotone if f(T ) ≥ f(S),∀S ⊆ T ⊆ X, and normalized
if f(∅) = 0. In this paper, we will focus on normalized monotone set functions, which by
definition are non-negative.

Like graphs to network analysis, set functions provide the mathematical language for
many applications, ranging from combinatorial auctions (economics) to coalition formation
(cooperative game theory; political science) [25, 26] to influence maximization (viral marketing)
[24, 17]. Because of its exponential dimensionality, set functions – which are as rich as weighted
hypergraphs – are far more expressive mathematically and challenging algorithmically than
graphs [28]. However, when monotone set functions are submodular [22, 29], or – more
generally – complement-free [8], algorithms with remarkable performance guarantees have
been developed for various optimization, social influence, economic, and learning tasks
[2, 17, 20, 3, 23].

In this paper, we study two new degree-of-complementarity measures of monotone set
functions, and demonstrate their usefulness for several optimization and economic tasks.
We prove that our complementarity measures – which are based on natural witnesses of
complementarity – introduce hierarchies (over monotone set functions) that smoothly move
beyond submodularity and subadditivity.

1.1 Witnesses to Complementarity: Supermodular Sets and
Superadditive Sets

For any sets S, T ⊆ X, let f(S|T ) := f(S ∪ T )− f(T ) be the margin of S given T . Recall
that f is subadditive if f(S ∪ T ) ≤ f(S) + f(T ), ∀S, T ⊆ X, and submodular if for all S, T
and v ∈ X \ T , f(v|S ∪ T ) ≤ f(v|S). It is well known that every submodular set function
is also subadditive. If there are sets S, T ⊆ V such that f(S ∪ T ) > f(S) + f(T ), then one
may say that (S, T ) is a witness to complementarity in f . Motivated by a line of recent work
[1, 14, 10, 9, 11, 6], we consider the following fundamental question about set functions:

Are there other natural, and preferably more general, forms of witnesses to comple-
mentarity that have algorithmic consequences?

The supermodular degree of Feige and Izsak [10] is among the first measures of complemen-
tarity that are connected with algorithmic solutions to monotone-set-function maximization
and combinatorial auctions. The supermodular degree is defined based on a notion of positive
dependency between elements: u ∈ X positively depends on v ∈ X \ {u} (denoted by
u→+ v), if there exists S ⊆ X such that f(u|S) > f(u|S \ {v}).

4 Throughout the paper we use m to denote the number of elements in the ground set.
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I Definition 1.1 (Supermodular Degree). The supermodular degree of a set function f : 2X →
R+, SD(f), is defined to be SD(f) = maxu∈X |Dep+

f (u)|, where Dep+
f (u) = {v|u→+ v}.

Although supermodular degree has been shown useful in a number of settings, it is not
clear whether it provides the tightest possible characterization of supermodularity. For
example, consider a customer who wants any two or more items out of m items, but not zero
or one item. That is, the customer has a valuation function, where any subset of [m] of size at
least 2 provides utility 1, and any subset of size at most 1 provides utility 0. For this function,
according to Feige and Izsak’s definition, any two items depend positively on each other. In
particular, any item depends positively on all other items, so the supermodular degree of
this valuation function is m− 1 – the largest degree possible. This seems to contradict the
intuition that there is only very limited complementarity.

Below, we will provide two perspectives, with the first highlighting supermodularity and
the second highlighting superadditivity. We will then study how these two complementarity
measures can be used to capture the performance of basic computational solutions in
optimization and auction settings where the utilities are modeled by monotone set functions.
In particular, our measure of supermodularity refines supermodular degree, and avoids the
kind of overestimation discussed above. Our first definition focuses on modularity:

I Definition 1.2 (Supermodular Set). Given a normalized monotone set function f over a
ground set X, a set T ⊆ X is supermodular w.r.t. f if:

∃S ⊆ X and v ∈ X \ T, such that: f(v|S ∪ T ) > max
T ′(T

f(v|S ∪ T ′). (1)

Note that if f is submodular, then f(v|S ∪ T ) ≤ f(v|S ∪ T ′),∀T ′ ( T , implying f has no
supermodular set. Thus, if a set function f has a supermodular set, then it is not submodular.
We say that such a set T (in Definition 1.2) complements item v given S, where S provides
the setting that demonstrates the complementarity between v and T . In the “customer
example” given after Definition 1.1, we can check that any singleton is a supermodular set,
but any set with size at least two is not a supermodular set, because any single item in the
set already provides all the complementarity for any other single item. A supermodular set
behaves similarly to the typical example of complements, namely complementary bundles,5
in the sense that the set as a whole provides more complement to a single item than any of
its strict subsets. However, supermodular sets have richer structures while preserving the
strong complementarity of such bundles, making them potentially more challenging to deal
with mathematically/algorithmically than complementary bundles of a similar size.

Our next definition focuses on additivity:

I Definition 1.3 (Superadditive Set). Given a normalized monotone set function f over a
ground set X, a set T ⊆ X is superadditive w.r.t. f if:

∃S ⊆ X \ T such that: f(S|T ) > max
T ′(T

f(S|T ′). (2)

In Definition 1.3, we say such a set T complements set S. Note that if f is subadditive, then for
T ′ = ∅, f(S|T ) = f(S∪T )−f(T ) ≤ (f(S) +f(T ))−f(T ) = f(S) = f(S)−f(T ′) = f(S|T ′),
implying f does not have a superadditive set. In other words, if f has any superadditive set,
then it is not subadditive.

Supermodular/superadditive sets correspond to witnesses that exhibit different kinds of
complementarity. Supermodular sets are sensitive to the presence of an environment, and
superadditive sets model complements to sets instead of items. The cardinality of the largest

5 S is a complementary bundle if f(S) > 0 and maxS′(S f(S′) = 0.
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supermodular sets or superadditive sets provides a measure of the “level of complementarity”,
similar to the supermodular degree ([10]), the size of the largest bundle, and the hyperedge
size ([9]) (also see Definition 1.16) in previous work.

I Definition 1.4 (Supermodular Width). The supermodular width of a set function f is:

SMW(f) := max{|T | | T is a supermodular set w.r.t. f}. (3)

I Definition 1.5 (Superadditive Width). The superadditive width of a set function f is:

SAW(f) := max{|T | | T is a superadditive set w.r.t. f}. (4)

Each measure classifies monotone set functions into a hierarchy of m levels:

I Definition 1.6 (Supermodular Width Hierarchy (SMW-d)). For any integer d ∈ {0, . . . ,m−
1}, a set function f : 2[m] → R belongs to the first d-levels of the supermodular width
hierarchy, denoted by f ∈ SMW-d, if and only if SMW(f) ≤ d.

I Definition 1.7 (Superadditive Width Hierarchy (SAW-d)). For any integer d ∈ {0, . . . ,m−1},
a set function f : 2[m] → R belongs to the first d levels of the superadditive width hierarchy,
denoted by f ∈ SAW-d, if and only if SAW(f) ≤ d.

We will show that functions at level 0 of the above two hierarchies, respectively, are pre-
cisely the families of submodular and subadditive functions. In both hierarchies, SMW-(m−1)
and SAW-(m− 1) contains all monotone set functions over m elements. Coming back again
to the customer example, we see that the utility of the customer has supermodular width of
1. Comparing to its supermodular degree of m− 1, our hierarchy characterizes this utility
function at a much lower level, which matches our intuition that the complementarity of this
customer’s utility function should be limited. We will further show below that this difference
also has significant algorithmic implications.

1.2 Our Results and Related Work
We now summarize the technical results of this paper. Structurally, we provide strong
evidence that our definitions of supermodular/superadditive sets are natural and robust. We
show that they – respectively – capture a set-theoretical gap of monotone set functions to
submodularity and subadditivity. Algorithmically, we prove that our characterization based
on supermodular width is strictly stronger than that of Feige-Izsak’s based on supermodular
degree, by establishing the following:
1. For every set function f : 2[m] → R, SD(f) ≤ SMW(f), and there exists a function whose

supermodular degree is much larger than its supermodular width.
2. The SMW hierarchy offers the same level of algorithmic guarantees in the maximization

and auction settings as the SD hierarchy.
We will also compare both hierarchies with the MPH hierarchy of [9].

1.2.1 Robustness: Capturing the Set-Theoretical Gap to
Submodularity/Subadditivity

We interpret the level of complementarity in our formulation of supermodular and superaddi-
tive sets from a dual perspective: We prove that they characterize the gaps from a monotone
set function to submodularity and subadditivity, respectively. Our characterization uses the
following definition.
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I Definition 1.8 (d-Scopic Submodularity). For integer d ≥ 0, a normalized monotone set
function f is d-scopic submodular if and only if:

f(v|T ) ≤ max
T ′:T ′⊆T,|T ′|≤d

f(v|S ∪ T ′), ∀S, T ⊆ X, v ∈ X satisfying S ⊆ T, v /∈ T (5)

In Condition (5), {S ∪ T ′|T ′ ⊆ T, |T ′| ≤ d} defines a set-theoretical neighborhood around
S. The d-scopic submodularity means that even if the submodular condition f(v|T ) ≤ f(v|S)
may not hold for some S ⊆ T , it holds for some set in S’s d-neighborhood inside T . Thus,
the parameter d provides a set-theoretical scope for examining submodularity. Similarly:

I Definition 1.9 (d-scopic Subadditivity). For integer d ≥ 0, a set function f is d-scopic
subadditive if and only if:

f(S|T ) ≤ max
T ′:T ′⊆T, |T ′|≤d

f(S|T ′), ∀S, T ⊆ X satisfying S ∩ T = ∅. (6)

In Section 2, we prove the following two theorems.

I Theorem 1.10 (Set-Theoretical Characterization of the SMW Hierarchy). For any integer
d ≥ 0 and set function f : 2X → R, f is d-scopic submodular if and only if SMW(f) ≤ d.

I Theorem 1.11 (Set-Theoretical Characterization of the SAW Hierarchy). For any integer
d ≥ 0 and set function f : 2X → R, f is d-scopic subadditive if and only if SAW(f) ≤ d.

With matching supermodularity/submodularity and superadditivity/subadditivity char-
acterization, Theorems 1.10 and 1.11 illustrate that our definitions of supermodular/super-
additive sets are both natural and robust. While monotone submodular functions are all
subadditive, some d-scopic submodular functions are not d-scopic subadditive. In fact, these
two hierarchies are not comparable (Propositions 2.6 and 2.7): They model different aspects
of complementarity that can be utilized in diverse algorithmic and economic settings.

1.2.2 Expressiveness: Strengthening Supermodular Degree
Supermodular sets extend positive dependency (as used in supermodular degree), which –
in essence – can be viewed as a graphical approximation of supermodular sets. Thus, our
characterization based on supermodular width strengthens Feige-Izsak’s the characterization
based on supermodular degree [10].

I Theorem 1.12. Every monotone set function f with supermodular degree d has supermod-
ular width at most d (i.e., it is d-scopic submodular). Moreover, there exists a monotone set
function f : 2[m] → R+ with SMW(f) = 1 and SD(f) = m− 1.

In other words, the SMW hierarchy strictly dominates the SD hierarchy. 6

1.2.3 Usefulness: Algorithmic and Economic Applications
We then show, algorithmically, the SMW hierarchy – while being more expressive than
the SD hierarchy – provides a complexity classification as effective as the latter (Theo-
rems 3.2, 3.5 and 4.15). We will illustrate the usefulness of our hierarchies in algorithm
and auction design with two archetypal classes of problems, set function maximization and

6 Formally, when comparing two set-function hierarchies, say with name {Yd}d∈[0,m−1] and {Zd}d∈[0,m−1],
we say Y dominates Z, if for all d ∈ [0, m− 1] and f , f ∈ Zd implies f ∈ Yd.

ITCS 2019
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combinatorial auctions, which traditionally involve measures of complementarity. Moti-
vated by previous work [10, 14, 11, 9], we will characterize the approximation guarantee
of polynomial-time set-function maximization algorithms and efficiency of simple auction
protocols in terms of the complementarity level in our hierarchies. In these settings, we will
compare our hierarchies with two most commonly cited complementarity hierarchies: the
supermodular degree (SD) hierarchy and the Maximum over Positive Hypergraphs (MPH)
hierarchy.

Set-Function Maximization: We will consider both constrained and welfare maximization.
The former aims to find a set of a given cardinality with maximum function value. The
latter aims to allocate a set of items to n agents, 7 with potentially different valuations,
such that the total value of all agents is maximized. As a set function has exponential
dimensions in m, in both maximization problems, we assume that the input set functions
are given by their value oracles.
Combinatorial Auctions and Simple Auction Protocols: We will consider two well-studied
simple combinatorial auction protocols: Single-bid Auction and Simultaneous Item First
Price Auction (SIA). In both settings, there are multiple agents, each of which has
a (potentially different) valuation function over subsets of items. The former auction
protocol proceeds by asking each bidder to bid a single price, and letting bidders, in
descending order of their bids, buy any available set of items paying their bid for each
item. The latter simply runs first-price auctions simultaneously for all items.

1.2.4 Approximation Guarantees According to Supermodular Widths

We will prove that the elegant approximability results for constrained maximization by
[14] and for welfare maximization by [10] can be extended from supermodular degree to
supermodular width. We obtain the same dependency (see Theorems 3.2 and 3.5) – that is,
1− e−1/(d+1) and 1

d+2 respectively – on the supermodular width d as what the supermodular
degree previously provides for these problems.

Because our SMW hierarchy is strictly more expressive, our upper bounds for SMW-d
cover strictly more monotone set functions than previous results for SD-d. We will also
complement our algorithmic results with nearly matching information theoretical lower
bounds (see Theorems 3.3 and 3.6), for these two well-studied fundamental maximization
problems. Our approximation and hardness results illustrate that the SMW hierarchy not only
captures a natural notion of complementarity, but also provides an accurate characterization
of the “nearly submodular property” needed by approximate maximization problems.

1.2.5 Efficiency of Simple Auctions According to
Superadditive/Supermodular Width

Next, we will analyze the efficiency of two well-known simple auction protocols in terms of
superadditive width. To state our results and compare them with previous work, we first
recall a notation from [9]:

7 Throughout the paper we use n to denote the number of agents (whenever applicable) unless otherwise
specified.



W. Chen, S.-H.Teng, and H. Zhang 24:7

I Definition 1.13 (Closure under Maximization). For any family of set functions F over X,
the closure of F under maximization, denoted by max(F), is the following family of set
functions: f ∈ max(F) if and only if:

∃k ∈ N, f1, . . . , fk ∈ F , s.t. f(S) = max
i∈[k]

fi(S),∀S ⊆ X. (7)

We will prove the following nearly tight upper and lower bounds:

I Theorem 1.14. Single-bid Auction and SIA are approximately efficient for valuation
functions in max(SAW(d)), with Price of Anarchy (PoA) O(d logm). In addition, for any
d > 0, there is an instance with SAW-d valuations, where the Price of Stability (PoS) of
Single-bid Auction is at least d+ 1− ε for any ε > 0, and the PoA of SIA is at least d.

Although supermodular width strictly strengthens supermodular degree, superadditive
width is not comparable with supermodular degree. Nevertheless, our PoA bound of
O(d logm) is a factor of d tighter than the O(d2 logm) supermodular-degree based bound of
[11] for Single-bid Auction. This improvement of dependency on d, together with the nearly
matching lower bound, suggests that the SAW hierarchy might be more capable in capturing
the smooth transition of efficiency of simple auctions. Furthermore, as a byproduct of our
efficiency results for the SAW hierarchy, we also obtain similar results, but with a worse
dependency on d, for the SMW hierarchy.

I Theorem 1.15. Single-bid auction and SIA are approximately efficient for valuations in
max(SMW-d ∩ SUPADD) – with PoA O(d2 logm) – where SUPADD denotes the class of
monotone superadditive set functions.

For Single-bid Auction, this result strengthens the central efficiency result of [11] by
replacing the supermodular degree with the more inclusive supermodular width. For the
PoA analysis of SIA, the the Maximum over Positive Hypergraphs (MPH) hierarchy of [9]
remains the gold standard, by providing asymptotically matching upper and lower bounds.
MPH is defined based on the following hypergraph characterization of set functions: Every
normalized monotone set function over ground set X can be uniquely expressed by another
set function h such that f(S) =

∑
T⊆S h(T ),∀S ⊆ X, where h(T ) for each T is called the

weight of hyperedge T .

I Definition 1.16 (Maximum over Positive Hypergraphs [9]). Let PH-d be the class of set
functions whose hypergraph representation h satisfies: (1) h(S) ≥ 0 for all S, and (2)
h(S) > 0 only if |S| ≤ d. The d-th level of the MPH hierarchy is: MPH-d = max(PH-d).

MPH provides the best characterization to the efficiency of SIA as well as ties with SD
and SMW regarding the approximation ratio of welfare maximization (although it requires
access to the much stronger demand oracles). However, it remains open whether it can be
used to analyze constrained set function maximization and Single-bid Auction. See Table 1
for a comparison. We will prove the following theorem which states that, in general, the
SAW hierarchy is not comparable with MPH.

I Theorem 1.17. There is a subadditive function that lives in an upper (i.e. ≥ m/2) MPH
level. On the other direction, there is a function on level 2 of MPH, whose superadditive and
supermodular widths are both m− 1.

It remains open whether MPH-(d + 1) – which subsumes SD-d as a subset – contains
SMW-d. In particular, the proof that SD-d ⊆ MPH-(d + 1) in [9] does not appear easily
applicable to SMW-d.

ITCS 2019
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Table 1 Comparison of hierarchies of complementarity. Note that the O(d) bound for PoA of
SIA with SD-d valuations follows from the fact that SD-d ⊆ MPH-(d + 1), which is not clearly
comparable with the PoA bound of SIA with SMW-d valuations. See corresponding references and
theorems for more accurate statements.

SD-d MPH-(d + 1) SMW-d SAW-d
constrained
maximization 1− e1/(d+1) [14] ? 1− e1/(d+1)

(Thm 3.2) ?

welfare
maximization 1/(d + 2) [10] 1/(d + 2) [9] 1/(d + 2)

(Thm 3.5) ?

PoA of Single-bid
Auction O(d2 log m) [11] ? O(d2 log m)

(Thm 4.14)
O(d log m)
(Thm 4.9)

PoA of SIA O(d) [9] O(d) [9] O(d2 log m)
(Thm 4.15)

O(d log m)
(Thm 4.10)

1.2.6 Other Related Work
Set Function Maximization. There is a rich body of research focusing on set function
maximization with complement-free functions, e.g. [22, 29, 8]. Various information/complexity
theoretical lower bounds have been established for both problems, e.g. [21, 7, 20, 18].

Efficiency of Simple Auctions. Single-bid Auction with subadditive valuations has a PoA
of O(logm) [5]. SIA with subadditive valuations has a constant PoA [12]. Posted price
auctions with XOS valuations give a constant factor approximate welfare guarantee [13].

Other Measures of Complementarity. Some other useful measures include Positive Hyper-
graph (PH) [1] and Positive Lower Envelop (PLE) [9]. Eden et al. recently introduce an
extensive measure which ranges from 1 to 2m to capture the smooth transition of revenue
approximation guarantee [6].

2 Expressiveness of the New Hierarchies

2.1 Characterization of Supermodular/Superadditive Widths
We first prove Theorems 1.10 and 1.11, which characterize supermodular/superadditive
widths with d-scopic submodular/subadditive functions.

Proof of Theorem 1.10. We now show SMW(f) ≤ d iff f is d-scopic submodular. First,
suppose SMW(f) ≤ d. Consider any triple (T, S, v) such that S ⊆ T ⊆ X and v 6∈ T . To
show f is d-scopic submodular, we prove by induction on the size of T , that

f(v|T ) ≤ max
T ′:T ′⊆T,|T ′|≤d

f(v|S ∪ T ′). (8)

As the base case, when |T | ≤ d, the inequality of (8) trivially holds because if T ′ = T \ S,
then |T ′| ≤ d and f(v|S∪T ′) = f(v|T ). Inductively, assume that the statement is true for all
{V ⊆ X : |V | ≤ k} for some k ≥ d. Now consider any set T with |T | = k+ 1 > d. Because T
is not supermodular, there is T ′′ ( T , such that f(v|T ) ≤ f(v|T ′′). Applying the inductive
hypothesis on (T ′′, S, v), we have:

f(v|T ′′) ≤ max
T ′:T ′⊆T ′′, |T ′|≤d

f(v|S ∪ T ′) ≤ max
T ′:T ′⊆T, |T ′|≤d

f(v|S ∪ T ′).
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Thus, f(v|T ) ≤ f(v|T ′′) ≤ maxT ′:T ′⊆T, |T ′|≤d f(v|S ∪ T ′), and we have demonstrated that f
is d-scopic submodular. For the other direction, we assume f is d-scopic submodular. There
is no supermodular set of size larger than d, because for any S, T , v /∈ T where |T | > d,
there is some T ′ ⊆ T where |T ′| ≤ d, such that f(v|S ∪ T ) ≤ f(v|S ∪ T ′), i.e. T is not
supermodular. Therefore SMW(f) ≤ d. J

I Corollary 2.1. f is submodular iff SMW(f) = 0 (i.e., f has no supermodular set).

Proof of Theorem 1.11. We prove SAW(f) ≤ d iff f is d-scopic subadditive. Suppose
SAW(f) ≤ d. Consider S and T where S ∩ T = ∅. We show d-scopic subadditivity by
induction on the size of T . When |T | ≤ d, the statement trivially holds. Suppose d-scopic
subadditivity holds for |T | ≤ k where k ≥ d. For |T | = k+1 > d, since T is not superadditive,
there is T ′′ ( T , such that f(S|T ) ≤ f(S|T ′′). Applying inductive hypothesis on S, T ′′ gives
f(S|T ) ≤ f(S|T ′′) ≤ maxT ′:T ′⊆T, |T ′|≤d f(S|T ′), i.e. f is d-scopic subadditive.

Now assume d-scopic subadditivity. There is no superadditive set with size larger than d,
because for any S and T where |T | > d and S ∩ T = ∅, there is some T ′ ⊆ T where |T ′| ≤ d,
such that f(S|T ) ≤ f(S|T ′), i.e. T is not superadditive. J

I Corollary 2.2. f is subadditive iff SAW(f) = 0 (i.e., f has no superadditive set).

2.2 Supermodular Width vs Supermodular Degree
The following two propositions establish Theorem 1.12, showing supermodular width strictly
dominates supermodular degree.

I Proposition 2.3. For any set function f , SD(f) ≤ SMW(f).

Proof. Fix f . Let T be a supermodular set of size SMW(f), and S, v be such that f(v|T ∪
S) > f(v|T ′∪S), ∀T ′ ( T . Clearly for any t ∈ T , f(v|{t}∪ (T \{t})∪S) > f(v|(T \{t})∪S).
In other words, v →+ t for all t ∈ T , so SD(f) ≥ deg+(v) ≥ |T | = SMW(f). J

I Proposition 2.4. There is a monotone set function f with SMW(f) = 1 and SD(f) = m−1.

Proof. Consider a symmetric8 f over a ground set X = [m], where f(S) = 0 if |S| ≤ 1,
and f(S) = 1 otherwise. Observe that for any u 6= v, 1 = f(u|{v}) > f(u|∅) = f(u) = 0,
so u →+ v, and SD(f) = |Dep+

f (u)| = m − 1. On the other hand, consider any T where
|T | ≥ 2. For any v, S, we have |S ∪ T | ≥ 2, so 0 = f(v|S ∪ T ) ≤ f(v|S). Thus, T is not
supermodular. Since there is no supermodular set with size larger than 1 and f is not
submodular, SMW(f) = 1. J

While the SAW hierarchy does not subsume the MPH hierarchy (see Proposition 2.8),
we show that there is a monotone set function in the lowest layer of the SAW hierarchy (i.e.
a subadditive function) and a notably high layer of the MPH hierarchy.

I Proposition 2.5. There is a monotone set function f with SAW(f) = 0 and MPH(f) =
m/2.

Proof. The proposition is a direct corollary of Proposition L.2 in [9]. J

8 f is symmetric if f(S) depends only on |S|.
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2.3 Further Comparisons between Hierarchies
I Proposition 2.6. There is a monotone set function f with SMW(f) = 1 and SAW(f) =
m/2.

Proof. Let hT (S) = I[T ⊆ S]. Consider f : 2X → R+ where X = [2t] and f(S) =∑
i∈[t] h{i,i+t}(S). Because the only complement set to any item i ∈ [t] is i+ t, SMW(f) = 1.

Note also T = {t+ 1, . . . , 2t} is a complement set to S = [t], so SAW(f) = t = m/2. J

I Proposition 2.7. There is a monotone set function f with SAW(f) = 0 and SMW(f) =
m− 1.

Proof. Consider a symmetric f : 2X → R+, where f(∅) = 0, f(X) = 2 and f(S) = 1
otherwise. f is subadditive so SAW(f) = 0. On the other hand, X \ {u} for any u is a
complement set to u, so SMW(f) = m− 1. J

I Proposition 2.8. There exists a monotone set function f with MPH(f) = 2 and SMW(f) =
SAW(f) = m− 1.

Proof. Let hT (S) = I[T ⊆ S]. Consider function f : 2X → R+ where f(S) =
∑
u 6=v h{u,v}(S).

Note that f is in MPH-2 since its hypergraph representation consists of only hyperedges of
size 2. Now consider any u and T = X \{u}. For any T ′ ( T , f(u|T ) = |T | > |T ′| = f(u|T ′).
Thus, T is both supermodular and superadditive, and SMW(f) = SAW(f) = m− 1. J

3 Expanding Approximation Guarantees for Classic Maximization

In this section, we focus on the connection between supermodular width and two classi-
cal optimization problems: the constrained and welfare set-function maximization. For
submodular functions, greedy algorithms provide tight approximation guarantees for both
problems [22, 29]. Here, simple modifications to these greedy algorithms can effectively
utilize the mathematical structure underlying the gap to submodularity in any set function
f . These extensions achieve approximation ratios parametrized by the supermodular width
with the same dependency as the supermodular degree provides [14, 10]. We complement
our approximation results by nearly tight information-theoretical lower bounds.

3.1 Constrained Maximization
We first focus on cardinality constrained maximization, a problem at the center of resource
allocation and network influence [24, 17, 22, 29]. Formally:

I Definition 3.1 (Cardinality Constrained Maximization). Given a monotone set function
f : 2X → R+ ∪ {0} and integer k > 0, compute a set S ⊆ X with |S| ≤ k that maximizes
f(S).

We will analyze an algorithm which performs batched greedy selection, – see Algorithm 1
below – where the batch size is a function of the supermodular width of f . In particular,
for an input set function, the batched greedy algorithm chooses a set of size not exceeding
SMW(f) + 1 which maximizes marginal gain, till all k elements are chosen.

Below, we show that this simple greedy algorithm provides strong approximation guaran-
tees in terms of the supermodular width of the input function.

I Theorem 3.2 (Extending [14]). For any monotone set function f over [m], Algorithm 1
achieves

(
1− e−1/(SMW(f)+1))-approximation for constrained maximization problem after

making O
(
mSMW(f)+1) value queries.
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ALGORITHM 1: Batched Greedy Selection for Constrained Maximization (f, k).
let S0 ← ∅; i = 0;
while |Si| < k do

Let i = i + 1; Ti ← argmaxT ′⊆[m],|T ′|≤s f(T ′|Si) where s = min{SMW(f) + 1, k − |Si−1|};
let Si ← Si−1 ∪ Ti; ;

end
return SBatchedGreedy := Si;

Proof. The proof uses similar ideas to those in [14], which are originally from [22]. Let
d = SMW(f) and (w.l.o.g.) let S∗ = [k] = {1, . . . , k} be an optimal solution.

f(S∗)− f(Si) ≤ f(S∗ ∪ Si)− f(Si) (9)

≤ f(S∗|Si) = f([k]|Si) =
∑
j∈[k]

f(j|[j − 1] ∪ Si) ≤ kmax
j
f(j|[j − 1] ∪ Si)

≤ kmax
j

max
Uj :Uj⊆[j−1], |Uj |≤d

f(j|Uj ∪ Si) (10)

≤ kmax
j

max
Uj :Uj⊆[j−1], |Uj |≤d

f({j} ∪ Uj |Si) (11)

≤ kf(Si+1|Si) (12)
= k(f(Si+1)− f(Si))

where (9) is by the monotonicity of f , (10) is by the equivalent d-scopic submodularity of
f , (11) is again by the monotonicity of f , and (12) is by the greedy property: f(Si+1|Si) =
maxS:|S|≤d+1 f(S|Si).

Now we have

f(S∗)− f(Si) ≤
k − 1
k

(f(S∗)− f(Si−1)) ≤
(
k − 1
k

)i
(f(S∗)− f(S0))

=
(
k − 1
k

)i
f(S∗) ≤ e−i/kf(S∗).

Because f is monotone, we have |Ti| = d+ 1, for all intermediate steps, i.e., i < d k
SMW(f)+1e.

Thus, Algorithm 1 takes exactly t := d k
SMW(f)+1e steps to terminate. The function value of

its output f(SBatchedGreedy) := f(St) ≥
(
1− e−1/(SMW(f)+1)) f(S∗). J

While in general, Theorem 3.2 establishes a tighter approximation guarantee for the SMW
hierarchy than that for the SD hierarchy, we note that in case of submodular degree, if the
positive dependency graph is given, the running times are often of the form poly(n) ·2O(SD(f)),
which can be significantly better than nO(SMW(f)) even if the submodular width SMW(f) is
much smaller than the submodular degree SD(f).

We now provide a nearly-matching information-theoretical lower bound, suggesting that
our approximation guarantee is essentially optimal. In the theorem below, the exponent
k0.99 can be replaced by any function of k in o(k).

I Theorem 3.3. For any d ∈ N, ε > 0, and a large enough integer k, there exists a set
function f : 2[m] → R+, with SMW(f) = d, such that any (possibly randomized) algorithm
that produces a (1/(d+ 1) + ε)-approximation (with a constant probability if randomized) for
the k-constrained maximization problem makes at least Ω

(
(m/2k)k0.99

)
value queries.
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Proof. The proof is based on similar high-level ideas to those in [20], but the detailed
construction and key properties used are different. Consider a ground set X of m elements,
which contains a subset R of r “special” elements. We will specify r below. We now construct
a “hard-to-distinguish” function fR such that for any S ⊆ X, fR(S) = gR(|S|, I[R ⊆ S]) for
a function gR : N × {0, 1} → R. In other words, fR depends on the cardinality of S and
whether or not S completely contains R. For discussion below, let D = d+ 1, and let c1 and
c2 be two integers to be determined later. We set |R| = r = c1 ·D + 1. We define fR as
follows:

fR(S) =



b|S|/Dc, |S| ≤ c1D

b(|S| − c1D)/Dc+ c1, c1D < |S| ≤ (c1 + c2)D, R 6⊆ S
|S| − c1(D − 1), c1D < |S| ≤ (c1 + c2)D, R ⊆ S
|S| − (c1 + c2)(D − 1), (c1 + c2)D < |S| ≤ (c1 + c2)D + c2(D − 1), R 6⊆ S
c1 + c2D, (c1 + c2)D < |S| ≤ (c1 + c2)D + c2(D − 1), R ⊆ S
c1 + c2D, (c1 + c2)D + c2(D − 1) < |S| ≤ m

.

We will use the following three properties of fR:
Whenever |S| mod D = D − 1, for any v /∈ S, fR(v|S) = 1. Consequently, SMW(fR) ≤
d, ∀R ⊆ X with |R| = r. In fact, this property ensures that fR(v|S ∪ T ′) ≥ fR(v|S ∪ T ),
for any v ∈ X, S, T ⊆ X with |T | ≥ D = d + 1, and any proper subset T ′ of T with
|S ∪ T ′| mod D = D − 1. Note that such a subset T ′ always exists.
max {fR(S) | |S| = (c1 + c2)D} = c1 + c2D. The maximum is achieved whenever R ⊆ S.
For any S ⊆ X satisfying |S| = c1 + c2D and R 6⊆ S, fR(S) = c1 + c2.

First, consider k = (c1 + c2)D. We have, for any S with |S| = k:

fR(S) =
{
c1 + c2D if R ⊆ S
c1 + c2 otherwise.

Suppose c1 = o(c2). To obtain an approximation ratio better than (c1 +c2)/(c1 +c2D)→ 1/D
for k-constrained maximization of fR, any algorithm must find a set with size k that contains
all special elements in R.

For our lower bound, we will analyze the following slightly relaxed variation of the
problem: Let K = (c1 + c2)D+ c2(D−1)−1 > k. Find a set of size K which contains R as a
subset. Note that K is the largest number where fR(S) – for |S| = K – depends on whether
or not S contains R. In this case, note that the algorithm has no incentive to make queries of
fR(S) for |S| < K or |S| > K, because the former reveals no more information than querying
any of its supersets of size K, and the latter simply does not give any information.

We first focus on the query complexity of any deterministic optimization algorithm.
Assume the algorithm makes T queries regarding S1, . . . , ST , where |Si| = K,∀i ∈ [T ], which
are deterministically chosen when the algorithm is fixed. We now establish a condition on T
such that there is a subset R such that R 6⊂ Si,∀i ∈ [T ]. Consider the distribution where the
r elements are selected uniformly at random. Let Ci be the event that Si contains R. Then,

Pr[C1 ∪ · · · ∪ CT ] ≤
∑
i

Pr[Ci] <
∑
i

(
|Si|
m

)r
= T

(
(c1 + c2)D + (D − 1)c2 − 1

m

)c1D+1
≤ T

(
2c2D

m

)c1D

.

So, if T ≤ [m/(2c2D)]c1D then Pr[C1 ∪ · · · ∪ CT ] < 1. In other words, for any selections
S1, . . . , ST ⊆ X with |Si| = K, there is a subset R, such that R 6⊂ Si,∀i ∈ [T ], implying
the deterministic algorithm with querying set S1, . . . , ST will not find a good approximation
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ALGORITHM 2: Batched Greedy for Welfare Maximization (f1, . . . , fn).
for j ∈ [n] do

let Xj,0 ← ∅;
end
Let d = maxj{SMW(fj)}; let i = 0;
while ∪jXj,i 6= X do

Let i = i + 1; let
(Ti, j∗i ) = argmax(T ′,j): |T ′|≤s,j∈[n] fj (T ′|Xj,i−1) where s = min

{
d + 1, n−

∑
j
|Xj,i−1|

}
;

Let Xj∗
i

,i ← Xj∗
i

,i−1 ∪ Ti;
for j ∈ [n] \ {j∗i } do

let Xj,i ← Xj,i−1;
end
return XBatchedGreedy

j := Xj,i for every agent j;
end

to fR. Let c2 = 1
2c

1.01
1 , so k0.99 = ((c1 + c2)D)0.99 ≤ (c1.01

1 D)0.99 ≤ c1D. We have
(m/2c2D)c1D ≥ (m/2k)k

0.99
. Thus, we conclude that any (1/(d + 1) + ε)-approximation

deterministic algorithm must make at least (m/2k)k0.99 value queries.
Now consider a randomized optimization algorithm. Conditioned on the random bits

of the algorithm, the above argument still works. Taking expectation of the probability
of success, we see that the overall probability of success is at most T (2k/m)k0.99 . Thus, a
constant probability of success requires T = Ω

(
(m/2k)k0.99

)
. J

3.2 Welfare Maximization
We now turn our attention to welfare maximization. Formally:

I Definition 3.4 (Welfare Maximization). Given n monotone set functions f1, . . . , fn over
2[m], compute n disjoint sets X1, . . . , Xn that maximizes

∑
i∈[n] fi(Xi).

Because f1, . . . , fn are monotone, the optimal solution to welfare maximization is a
partition of X = [m]. Thus, welfare maximization can also be viewed as a generalized
clustering or multiway partitioning problem.

We will analyze the following greedy algorithm – see Algorithm 2 below – which repeatedly
assigns groups of elements to agents. At each step, the algorithm picks a set of size not
exceeding maxi SMW(fi)+1 – as opposed to one – that provides the largest possible marginal
gain to some agent and assigns the set to that agent.

We now prove the following approximation guarantee in terms of supermodular width.

I Theorem 3.5 (Extending [10]). For any collection of monotone set functions f1, . . . , fn over
X = [m], Algorithm 2 achieves 1

2+maxi{SMW(fi)} -approximation for welfare maximization,
after making O

(
nmmaxi{SMW(fi)}+1) value queries.

The proof uses similar ideas to those in [10], which are originally from [16]. Due to space
limit, we relegate the proof to the full version of the paper [4].

To show that our algorithm is nearly optimal, we prove the following information-
theoretical lower bound: Similar to Theorem 3.3, the exponent (m/n)0.99 in the theorem
below, can be replaced by any function of m/n in o(m/n).
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I Theorem 3.6. For any d ∈ N, ε > 0, there is a family of function f1, . . . , fn : 2[m] → R+

with SMW(fi) = d,∀i ∈ [n], such that any (possibly randomized) algorithm that produces
a (1/(d + 1) + ε)-approximation (with constant probability if randomized) for the n-agent
welfare maximization problem makes at least Ω

(
(n/2D)(m/n)0.99

)
value queries.

The proof follows from a similar argument as the proof for Theorem 3.3. Due to space limit,
we relegate the proof to the full version of the paper.

4 Efficiency of Simple Auctions

In this section, we study the connection between the SAW hierarchy and efficiency of auctions.
We will draw extensively on previous work in this area, particularly on the characterization
based on the CH hierarchy – see definition below – which is arguably the most simple class
of set functions with complementarity.

I Definition 4.1 (d-Constraint Homogeneous Functions [11]). A set function f over ground
set X is d-constraint homogeneous (CH-d) if there exists a value f̂ , and disjoint sets
Q1, . . . , Qh ⊆ X with |Qi| ≤ d,∀i ∈ [h], such that (1) f(Qi) = f̂ · |Qi|,∀i ∈ [h], and
(2) the value of every set S ⊆ [m] is simply the sum of values of contained Qi’s, i.e.,
f(S) =

∑
Qi⊆S f(Qi) = f̂ ·

∑
Qi⊆S |Qi|.

We will show that previous characterization of auction efficiency [11] can be approximately
extended from the CH hierarchy to the SAW hierarchy.

4.1 Backgrounds: Related Definitions and Results
We first restate a useful definition and a lemma for analyzing the efficiency of auction
mechanisms.

I Definition 4.2 ([27]). An auction mechanismM is (λ, µ)-smooth for a class of valuations
F = ×iFi if for any valuation profile f ∈ F , there exists a (possibly randomized) action
profile a∗i (f) such that for every action profile a:∑

i

Ea′
i
∼a∗

i
(f)[ui(a′i, a−i; fi)] ≥ λ ·OPT(f)− µ

∑
i

Pi(a),

where ui(a′i; fi) is the utility of i given action profile (a′i, a−i), OPT(f) is the optimum social
welfare given valuation profile f , and Pi(a) is the payment of i given action profile a.

I Lemma 4.3 ([27]). If a mechanism is (λ, µ)-smooth then the price of anarchy w.r.t. coarse
correlated equilibria is at most max{1, µ}/λ.

For Single-bid Auction and Simultaneous Item First Price Auction (SIA), we will derive
our results from the following results for CH-d and MPH-d.

I Theorem 4.4 (Smoothness of Single-bid Auction with CH-d Valuations [11]). Single-bid
Auction is a ((1− e−d)/d, 1)-smooth mechanism when agents have CH-d valuations. Con-
sequently, Single-bid Auction has a PoA of (1− e−d)/d with CH-d valuations w.r.t. coarse
correlated equilibria.

I Theorem 4.5 (Smoothness of SIA with MPH-d Valuations [9]). For SIA, when bidders have
MPH-d valuations, both the correlated price of anarchy and the Bayes-Nash price of anarchy
are at most 2d. The bound follows from a smoothness argument.



W. Chen, S.-H.Teng, and H. Zhang 24:15

A key concept to extend these results to other valuation classes is the following notion of
pointwise approximation defined in [5].

I Definition 4.6 (Pointwise Approximation [5]). A class of set functions F over ground set X
is pointwise β-approximated by another class F ′ of set functions over X if ∀f ∈ F , S ⊆ X,
∃f ′S ∈ F ′ such that (1) βf ′S(S) ≥ f(S) and (2) ∀T ⊆ X, f ′S(T ) ≤ f(T ).

For example:

I Proposition 4.7 ([11]). The class max(F) is pointwise 1-approximated by the class F .

We say a function f ′ : 2X → R pointwise β-approximates f : 2X → R (at X), if (1)
βf ′(X) ≥ f(X), and (2) ∀T ⊆ X, f ′(T ) ≤ f(T ).

The following lemma of [5] provides a way to translate PoA bounds between classes via
pointwise approximation.

I Lemma 4.8 (Extension Lemma [5]). If a mechanism for a combinatorial auction setting
is (λ, µ)-smooth for the class of set functions F ′, and F is pointwise β-approximated by F ′,
then it is

(
λ
β , µ

)
-smooth for the class F . And as a result, if a mechanism for a combinatorial

auction setting has a PoA of α given by a smoothness argument for the class F ′, and F is
pointwise β-approximated by F ′, then it has a PoA of αβ for the class F .

4.2 Efficiency of Simple Auctions Parametrized by SAW
Applying Lemma 4.8, we are able to translate Theorems 4.4 and 4.5 to the SAW hierarchy.

I Theorem 4.9 (Efficiency of Single-bid Auction with SAW-d Valuations). When agents have
valuations f1, . . . , fn ∈ max(SAW-d), Single-bid Auction has a price of anarchy of at most

2d
1−e−2d ·Hm

2d
w.r.t. coarse correlated equilibria.

I Theorem 4.10 (Efficiency of SIA with SAW-d Valuations). When agents have valuations
f1, . . . , fn ∈ max(SAW-d), SIA has a price of anarchy of at most 8d · Hm

2d
w.r.t. coarse

correlated equilibria.

Formally, Theorems 4.9 and 4.10 follow from Theorems 4.4 and 4.5 respectively, with the
help of Lemma 4.8, Proposition 4.7, and the technical lemma (Lemma 4.11) that we will
establish below, showing that for any d ∈ N, functions in SAW-d can be approximated by
CH-2d functions. In particular, Lemma 4.11 establishes the approximation of SAW hierarchy
by CH hierarchy with a loss of factor O(logm).

I Lemma 4.11 (Pointwise Approximation of SAW Hierarchy by CH-Hierarchy). For any d ∈ N,
SAW-d is pointwise 2Hm

2d
-approximated by CH-2d, where Hi =

∑
k∈[i]

1
k is the i-th harmonic

number.

Proof. Our proof is inspired by the constructions of [5] and [11].
For any f ∈ SAW-d over X = [m], we first apply the following greedy construction to

obtain a partition Q = {Qi}i∈[q] of [m] into sets of size not exceeding 2d: At step i, we select
a new set Qi ⊆ [m] \ (Q1 ∪ · · · ∪Qi−1), with maximum f(Qi), among all sets of size at most
2d.

We first prove by contradiction that there exists a function g in CH-2d which 2Hm
2d
-

approximates f at [m]. That is, (1) 2Hm
2d
g([m]) ≥ f([m]) and (2) ∀T ⊆ [m], g(T ) ≤ f(T ).

Suppose this statement is not true. Let

hQ(T ) = f([m])
β · | ∪i Qi|

∑
Qi⊆T

|Qi|.
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Note that hQ ∈ CH-2d because |Qi| ≤ 2d,∀Qi ∈ Q. We now construct a series of functions
based on hQ, and prove that for any β > 0, if there is no g among these functions that is a
β-approximation of f at [m] – that is, there is no g such that (1) βg([m]) ≥ f([m]) and (2)
∀T ⊆ [m], g(T ) ≤ f(T ), (below we will refer to this condition as Assumption (*)) – then
β < 2Hm

2d
.

First consider hQ. Note that βhQ([m]) = β f([m])
β ≥ f([m]), because Q is a partition of

[m]. Assumption (*) then implies there is a T1 such that hQ(T1) > f(T1). W.l.o.g. assume
T1 is a union of sets from Q (such T1 exists because f is monotone).

Let S1 = [m]. We now iteratively define Si = Si−1 \ Ti−1, and construct its associated
Ti. The construction maintains the following invariant: Both Si and Ti are unions of sets
from Q. The former follows directly from the iterative property that Si−1 and Ti−1 are both
unions of sets from Q. Our construction below will ensure the latter.

Let QSi = {Q ∈ Q | Q ⊆ Si}. Let

hQSi
= f([m])
β · | ∪j:Qj∈QSi

Qj |
∑

j:Qj∈QSi

|Qj |.

Again, hQSi
∈ CH-2d, and hQSi

([m]) = f([m])
β . Assumption (*) then implies there is a Ti

such that hQSi
(Ti) > f(Ti). Again, w.l.o.g. assume Ti is a union of sets from Q (such Ti

exists because f is monotone). This iterative process terminates, producing a partition
{Ti}i∈[t] of [m], which satisfies:∑

i

f(Ti) <
∑
i

hQSi
(Ti) = f([m])

β

∑
i

|Ti|
|Si|
≤ f([m])

β

∑
i∈[t]

1
i
≤ f([m])

β
Hm

2d
.

We now show that
∑
i f(Ti) ≥ 1

2f([m]). Recall that each member in partition {Ti}i is
a unions of sets from Q. We renumber {Ti}i, in a way that for any i < j, there is some
Ti ⊇ Qk ∈ Q, such that for any Tj ⊇ Ql ∈ Q, k < l. That is, the smallest index k where
Qk ∈ Ti is smaller than the smallest index l where Ql ∈ Tj , as long as i < j.

Since (T1, . . . , Tt) is a partition of [m], we have:

f([m]) =
∑

i

f(Ti|Ti+1 ∪ · · · ∪ Tt)

≤
∑

i

max{f(Ti|Ui) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d} (13)

≤
∑

i

max{f(Ti ∪ Ui) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d} (14)

=
∑

i

max{(f(Ui|Ti) + f(Ti)) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d}

≤
∑

i

max{(f(Ui|Vi) + f(Ti)) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d, Vi ⊆ Ti, |Vi| ≤ d} (15)

≤
∑

i

max{(f(Ui ∪ Vi) + f(Ti)) | Ui ⊆ Ti+1 ∪ · · · ∪ Tt, |Ui| ≤ d, Vi ⊆ Ti, |Vi| ≤ d} (16)

≤
∑

i

(f(Qki ) + f(Ti)), where ki = min{k | Ti ⊇ Qk ∈ Q} (17)

≤
∑

i

2f(Ti), (18)

where (13) and (15) follow from d-scopic subadditivity of f , (14), (16) and (18) follow from
monotonicity of f , and (17) holds because, according to the construction of {Ql}l, Qki
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maximizes f among all sets of size 2d contained in Qki ∪ · · · ∪ Qq ⊇ Ti ∪ · · · ∪ Tt, and in
particular Ui ∪ Vi ⊆ Ti ∪ · · · ∪ Tt.

Consequently, it follows from
∑
i f(Ti) ≥ 1

2f([m]) that:

Hm
2d
f([m])
β

>
∑
i

f(Ti) ≥
1
2f([m])⇒ β < 2Hm

2d
.

Thus, Assumption (*) with β ≥ 2Hm
2d

leads to a contradiction. Therefore, we have established
that there exists a CH-2d function g such that (1) g([m]) ≥ 2Hm

2d
f([m]) and (2) ∀T ⊆ [m],

g(T ) ≤ f(T ).
As in [11], the above proof can be simply extended to prove for any S ⊆ X, there exists

a CH-2d function g such that (1) g(S) ≥ 2Hm
2d
f([m]) and (2) ∀T ⊆ [m], g(T ) ≤ f(T ).

Essentially, we restrict the function f to 2S , apply the argument above, and then span the
obtained function back to 2X .

Therefore, SAW-d is pointwise 2Hm
2d
-approximated by CH-2d. J

We further analyze previously known hard instances to both auctions, and show that
they provide almost matching lower bounds to the above two efficiency upper bounds.

I Theorem 4.12. There is an instance with SAW-d valuations for any d, where the PoS of
Single-bid Auction is at least d+ 1− ε/d for any ε > 0.

I Theorem 4.13. There is an instance with SAW-d valuations for any d, where the PoA of
SIA is at least d+ 1/(d+ 1).

We defer the proofs to the full version of the paper.

4.3 Efficiency of Simple Auctions Parametrized by SMW
As a byproduct of our efficiency results for the SAW hierarchy, we prove similar, but slightly
weaker, results for the SMW hierarchy. We note that these bounds extend a central result in
[11], which states that when agents have valuations in max(SD-d ∩ SUPADD), Single-bid
Auction has a PoA of O(d2 logm).

I Theorem 4.14 (Extending [11]). When agents have valuations f1, . . . , fn ∈ max(SMW-d∩
SUPADD), Single-bid Auction has a price of anarchy of at most (d+1)2

1−e−(d+1) ·H m
d+1

w.r.t. coarse
correlated equilibria.

I Theorem 4.15. When agents have valuations f1, . . . , fn ∈ max(SMW-d∩ SUPADD), SIA
has a price of anarchy of at most 2(d+ 1)2 ·H m

d+1
w.r.t. coarse correlated equilibria.

Due to space limit, we relegate the proofs to the full version of the paper.

5 Remarks

5.1 Further Comparative Analysis
As observed by Eden et al. [6], the right measure of complementarity often varies from
application to application. This seems to be true even with the supermodular vs superadditive
widths. We note that while the SD and SMW hierarchies give nontrivial bounds on the PoA
of simple auctions, SAW hierarchy seems to capture the intrinsic property needed by efficiency
guarantees for simple auctions. It provides tighter characterization of PoA with a gap of
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Figure 1 Relationship between hierarchies.

logm (instead of d logm) between upper and lower bounds. On the other hand, while SMW
hierarchy captures the intrinsic property needed by the constrained/welfare maximization, it
remains open whether a small superadditive width provides any approximation guarantee for
the two optimization problems.

The MPH hierarchy takes a different approach from ours – it relies on a syntactic
definition which provides elegant and intuitive structures. In contrast, both SMW and SAW
hierarchies – like the SD hierarchy before it – are built on concrete natural concepts of
witnesses and semantic intuition of complementarity. In the current definition, the MPH
hierarchy is not an extension to submodularity or subadditivity. Rather – as shown in
[9] – MPH can be considered as an extension to the fractionally subadditive (or XOS)
class proposed in [19]. We therefore consider SMW, MPH and SAW parallel measures of
complementarity, just like submodularity, fractional subadditivity and subadditivity in the
complement-free case. One key difference is that the three hierarchies seem to diverge at
higher levels of complementarity, as opposed to the fact that submodular functions are all
fractionally subadditive, and fractionally subadditive functions are all subadditive. This
phenomenon provides further evidence that the three hierarchies are likely to capture different
aspects of complementarity. See Figure 1 for a comparison.

We also note that all upper bounds supported by our hierarchies are accompanied by
almost matching lower bounds, which we consider as a justification of our definitions – they
manage to categorize set functions roughly according to their “hardness” in different settings
(i.e. optimization for SMW and efficiency for SAW). In contrast, while the less inclusive
supermodular degree hierarchy supports a number of upper bounds, to our knowledge, none
of those results are proven tight.

5.2 Final Remarks and Open Problems
Our SMW and SAW hierarchies may be applied to other problem settings. For example,
for the online secretary problem based on supermodular degree [15], we believe that with a
slight modification of the algorithms and the analysis, we could replace supermodular degree
with supermodular width as well for this problem; also, SMW-d functions are efficiently
PAC-learnable under product distributions [30]. It may be possible to look into other venues
where SMW and SAW hierarchies are applicable.
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There are also a few technical questions to be answered:
Does MPH-(d+ 1) – which subsumes SD-d – include all SMW-d functions?
Can we improve the SAW-based efficiency characterization of Single-bid Auction and SIA
to O(d)?
Can the MPH hierarchy be used to characterize constrained set function maximization?
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Abstract
Non-signaling strategies are a generalization of quantum strategies that have been studied in phys-
ics over the past three decades. Recently, they have found applications in theoretical computer
science, including to proving inapproximability results for linear programming and to construct-
ing protocols for delegating computation. A central tool for these applications is probabilistically
checkable proofs (PCPs) that are sound against non-signaling strategies.

In this paper we prove that the exponential-length constant-query PCP construction due to
Arora et al. (JACM 1998) is sound against non-signaling strategies.

Our result offers a new length-vs-query tradeoff when compared to the non-signaling PCP of
Kalai, Raz, and Rothblum (STOC 2013 and 2014) and, moreover, may serve as an intermediate
step to a proof of a non-signaling analogue of the PCP Theorem.
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1 Introduction

Probabilistically Checkable Proofs (PCPs) [3, 11, 2, 1] are proofs whose validity can be
checked by a probabilistic verifier that accesses only a few locations of the proof. PCPs have
numerous applications across the theory of computing, including to hardness of approximation
[11] and delegation of computation [19, 21].
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A seminal result, known as the PCP Theorem [2, 1], states that every language in
NTIME(T ) can be probabilistically checked by a verifier that uses O(log T ) random bits and
makes O(1) queries to a proof of length poly(T ).1

In this paper we study PCPs that are sound against non-signaling strategies (nsPCPs).
These have recently found applications that appear out of the reach of (standard) PCPs,
including 1-round delegation of computation from falsifiable assumptions [15, 17] and hardness
of approximation for linear programming [16]. The efficiency measures achieved in known
nsPCPs appear suboptimal, which affects the quality of the corresponding applications. We
thus ask whether a non-signaling analogue of the PCP Theorem holds.

Below we explain the aforementioned notions, and then present our results in this direction.

Non-signaling strategies. Non-signaling strategies are a class of “non-local” correlations
that strictly generalize quantum strategies, and capture the minimal condition that spatially-
isolated parties cannot communicate instantaneously. They have been studied in physics for
over three decades [24, 18, 23] in order to better understand quantum entanglement.

There are two definitions, corresponding to whether the strategy is meant to represent
a function or isolated parties; the former is the relevant one for nsPCPs [15, 17].2 Given
a locality parameter k ∈ N, a k-non-signaling function F extends the notion of a function
f : D → {0, 1} as follows: it is a collection {FS}S⊆D,|S|≤k where each FS is a distribution
over {0, 1}S and, for every two subsets S1 and S2 each of size at most k, the restrictions
of FS1 and FS2 to S1 ∩ S2 are equal as distributions.3 Note that if k = |D| then F is a
distribution over functions f : D → {0, 1}.

Note that k-non-signaling functions are solutions to the linear program arising from the
k-relaxation in the Sherali–Adams hierarchy [25]. The variables are of the form XS,~b (for all
S ⊆ D of size at most k and ~b ∈ {0, 1}S) and express the probability of ~b in the distribution
FS ; consistency across subsets S and T is expressed using the natural linear constraints.4

Non-signaling PCPs. Recall that a classical PCP verifier is given oracle access to a proof
represented as a function f : D → {0, 1}. The verifier uses random bits, makes a few queries
to f , and then accepts or rejects. Completeness requires that if the statement being checked
is true then there is a function f that makes the verifier always accept. Soundness requires
that if the statement being checked is false then every function f makes the verifier reject
with high probability.

In the non-signaling setting, “proofs” are non-signaling functions rather than (classical)
functions. Soundness is correspondingly stronger: given a locality parameter k ∈ N, soundness
requires that every k-non-signaling function F makes the nsPCP verifier reject with high
probability.

1 In particular, for every language in NEXP = ∪c∈NNTIME(2n
c

), the verifier uses poly(n) random bits
and makes O(1) queries to a proof of length 2poly(n).

2 The other definition underlies the notion of multi-prover interactive proofs that are sound against
non-signaling strategies (nsMIPs). Any nsPCP gives rise to an nsMIP with similar parameters. See
[15, 17] for details.

3 A common relaxation of this condition only requires that the marginals FS1 |S1∩S2 and FS2 |S1∩S2 are
statistically close, rather than equal; a further relaxation only requires these to be computationally
close. While we only consider the standard definition (the marginals must equal) we note that [9] shows
that this is almost without loss of generality, as every statistically or computationally non-signaling
strategy is close to an (exact) non-signaling strategy.

4 In fact it suffices to only have variables of the form XS,1S since all other probabilities can be computed
from these.
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Efficiency measures of a nsPCP include familiar notions such as proof length (defined as
|D|) and the verifier’s randomness and query complexity. In addition, the locality parameter k
controls how hard it is to attain soundness: the smaller k is, the larger the set of non-signaling
functions that the verifier could face. (Note that k-non-signaling implies (k−1)-non-signaling.)

There is a qualitative difference between the complexity classes captured by PCPs and
by nsPCPs; namely, while PCPs capture non-deterministic time languages, nsPCPs capture
deterministic ones. Indeed, the aforementioned PCP Theorem implies that it is NEXP-hard
to approximate the maximum acceptance probability of a PCP verifier (that uses polynomial
randomness). In contrast, computing the maximum acceptance probability of an nsPCP
verifier that uses r random bits reduces to a linear program with 2poly(rk) variables and
constraints, a problem solvable in EXP = ∪c∈NDTIME(2nc).

If k = 2, the linear program is solvable in PSPACE [13], which is a tight upper bound [14].
For k > 2 little is known, except for a seminal result of Kalai, Raz, and Rothblum [15, 17],
which shows that for k = poly(n) it is EXP-hard to approximate a nsPCP verifier’s max-
imum acceptance probability. In more detail, every language in DTIME(T ) has a verifier that
uses poly(log T ) random bits and makes poly(log T ) queries to a proof of length poly(T ); sound-
ness holds against poly(log T )-non-signaling functions; the verifier runs in time n · poly(log T )
and space poly(log T ).5

The nsPCP Conjecture. The nsPCP construction behind the above result is a whitebox
modification of early PCP constructions [4, 3], and achieves efficiency similar to those.
However, modern “PCP technology” goes well beyond these early constructions, via tools
such as proof composition [2] and proofs of proximity [10, 6], and enables better efficiency,
including the PCP Theorem. Yet, current “nsPCP technology” is limited to the above results,
and the question of whether a non-signaling analogue of the PCP Theorem holds remains
open.

I Question 1. Is it true that every language in DTIME(T ) has an nsPCP verifier that
uses O(log T ) random bits, makes O(1) queries, and is sound against O(1)-non-signaling
functions?
(As above, we also require that the verifier runs in time n · poly(log T ) and space poly(log T ).)

An affirmative answer to the above question would, e.g., improve the hardness result
for linear programming in [16], by yielding a reduction that outputs a linear program of
polynomial, rather than a quasipolynomial, size. While we do not know if an affirmative
answer exists (and we cannot prove that it does not exist), it is clear that the (very few)
tools that we have to construct and analyze nsPCPs are far from this goal. In this paper we
make headway towards this goal.

1.1 Towards a nsPCP Theorem
In [1] a key step towards the PCP Theorem is to prove a weaker result in which the proof has
exponential, rather than polynomial, size (and so the randomness complexity of the verifier is
polynomial rather than logarithmic). Namely, one proves that every language in NTIME(T )
has a PCP verifier that uses poly(T ) random bits and makes O(1) queries to a proof of length
2poly(T ).

5 Achieving time and space complexities that are o(T ) is important for applications. This is not surprising
as every language in DTIME(T ) has a trivial nsPCP verifier that runs in time T : the verifier that simply
decides the language, without asking any queries. This is unlike the case of PCPs for NTIME(T ), where
time complexity is less critical.
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In this paper we ask whether a non-signaling analogue of this result holds for the class
DTIME(T ).

I Question 2. Is it true that every language in DTIME(T ) has an nsPCP verifier that uses
poly(T ) random bits, makes O(1) queries, and is sound against O(1)-non-signaling functions?

We propose this question as a relaxation that, not only is interesting in its own right, but is
likely to shed light on Question 1. However, one must be careful with the precise formulation
of Question 2. If the verifier can use poly(T ) random bits then it can simply decide the
language by running in time T , without making any queries. To recover a nontrivial question,
we require that in order to decide whether an instance x is in a language L ∈ DTIME(T )
the nsPCP verifier first generates queries via a poly(T )-time sampler that is input oblivious
(knows the length of x but not x itself), and then rules according to a o(T )-time decision
predicate that knows x. We stress that all PCP/nsPCP verifiers discussed in this paper are
input oblivious.

In this paper we study Question 2 by analyzing a natural candidate construction, and
ask:

Is the exponential-length O(1)-query PCP of [1] sound against O(1)-non-signaling functions?

Hereafter, we consider the complexity class DSIZE(S) (languages decidable by uniform
circuits of size S(n)) instead of the class DTIME(T ) (languages decidable by machines in time
T (n)) because our results, like their classical counterparts, are most easily stated in terms of
uniform circuits. This change is only for simplicity, as DTIME(T ) ⊆ DSIZE(poly(T )).

1.2 Main theorem
In this paper we prove that the exponential-length constant-query PCP construction of [1]
(without modifications) is sound against non-signaling functions. We obtain the following
theorem.

I Theorem 3 (main theorem). Every language L ∈ DSIZE(S) has an input-oblivious nsPCP
verifier that uses O(S2) random bits, makes 11 queries, and is sound against O(log2 S)-non-
signaling functions. The query sampler runs in time O(S2), and the decision predicate runs
in time O(n).

The theorem is close to answering Question 2, which asks for soundness against O(1)-non-
signaling functions. (See Table 1 for a comparison with the classical result on nondeterministic
languages.) At the same time, some may consider Ito’s algorithm [13] as evidence that
soundness against O(1)-non-signaling functions is too much to hope for. Understanding this
gap needs further research.

Our result is incomparable to the nsPCP of [15, 17], where the nsPCP verifier uses
poly(logS) random bits to make poly(logS) queries. The fact that we prove soundness
only against O(log2 S)-non-signaling functions (rather than O(1)-non-signaling functions)
is somewhat undesirable, as this implies that the corresponding nsMIP requires O(log2 S)
provers. That said, the nsMIP of [15, 17] requires many more provers: poly(logS) with the
degree in the polynomial much larger than 2. Another feature of our result is that we have
“room” to achieve smaller soundness error without using additional provers; for example, by
asking more queries to the O(log2 S) provers, we can achieve a sub-constant soundness error
of 2−O(logS).

Finally, our result is the first to demonstrate that a classical PCP construction is secure
against non-signaling functions, without any modifications. This should be compared to the
construction considered in [15, 17] that, while modeled after the PCP in [4, 3], includes
several notable modifications that are needed in the soundness proof.
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Table 1 The (linear) ALMSS verifier in different PCP settings.

complexity type of soundness proof
construction reference class PCP error length randomness queries locality

ALMSS verifier [1] NSIZE(S) PCP 1− 1/36
2O(S2) O(S2) 11

n/a

+ linearity test Theorem 3 DSIZE(S) ns PCP 1− 1/107 O(log2 S)

ALMSS verifier
[1] NSIZE(S) LPCP 3/4

O(S2) O(S) 4
n/a

Theorem 4 DSIZE(S) ns LPCP 39/40 O(logS)

1.3 Main lemmas
We outline the ideas behind our theorem in Section 2. Concretely, we highlight several
statements, which we deem of independent interest, that we prove on the way to the theorem.

Recall that the exponential-length constant-query PCP in [1] is obtained in two steps.
First, construct a constant-query verifier where soundness holds as long as the proof string
is a linear function; this is known as a linear PCP. Second, use a linearity test [8] and
self-correction to compile this linear PCP into a (standard) PCP, where soundness holds
against arbitrary proofs.

Our approach follows the same two steps, but adapted to the non-signaling setting. This
also departs from the approach in [17], which does not make use of any property testing
results.

Note, however, that it is a priori not clear what is the non-signaling analogue of a linear
function. A natural attempt would be to say that a non-signaling function F is linear iff it
passes the BLR linearity test with probability 1 (where the probability is over the test and
F). But this attempt is awkward, because the definition depends on a local test, and avoids
discussing “global” structure.

A recent work [9] tells us that the right definition is to say that F is linear iff it corresponds
to a quasi-distribution over linear functions. A quasi-distribution is a probability distribution
where the weights can be any real number and are not restricted to be in [0, 1]. Quasi-
distributions over functions arise in this context because they are an equivalent description
of non-signaling functions.

In light of the above, the notion of a non-signaling linear PCP (nsLPCP) is immediate:
the definition requires soundness to hold against all linear non-signaling functions.

The first step in our proof is showing that the linear PCP verifier of [1] (the “ALMSS
verifier”), when used for deterministic computations, is sound against linear non-signaling
functions.

I Theorem 4. The (input oblivious) ALMSS verifier, for a given language L ∈ DSIZE(S),
uses O(S) random bits, makes 4 queries, and is sound against linear O(logS)-non-signaling
functions.

See Table 1 for a comparison with the classical result showing soundness against linear
functions.

In order to “lift” Theorem 4 to Theorem 3, we need a suitable linearity test.
The linearity test of [8] was recently analyzed in the non-signaling setting by [9], who

proved that any k-non-signaling function F that passes the linearity test with probability
1 − ε can be self-corrected to a bk/2c-non-signaling function F̂ that is 2O(k)ε-close to a
linear bk/2c-non-signaling function L. (Self-correction and closeness have precise meanings,
discussed later.) However, we cannot directly use [9]’s result, because in our theorem the
locality parameter k is required to be super-constant (k = O(logS) in Theorem 4), and thus
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the bound on the distance between F̂ and L is too large, even when considering only query
sets of small size. Specifically, we need the distance to be a sufficiently small constant on
query sets of size 4 (the number of queries in Theorem 4).

We solve this problem by extending the result in [9] in a black-box way and proving that
the distance between F̂ and L on a query set Q is only O(|Q|

√
ε), provided that the error ε

and L’s locality are sufficiently small. Crucially, if |Q| is constant, so is the distance between
F̂ and L. The proof of this statement involves analyzing the repeated linearity test, whose
behavior in the non-signaling setting is quite subtle when compared to the classical setting
(see Section 2.6).

I Theorem 5. Let k, k̄N and ε ∈ (0, 1/400] be such that k = Ω((k̄ + log 1
ε ) · k̄). If a k-non-

signaling function F : {0, 1}n → {0, 1} passes the linearity test with probability at least 1− ε
then there exists a linear k̄-non-signaling function L : {0, 1}n → {0, 1} such that for all query
sets Q ⊆ {0, 1}n with size |Q| ≤ k̄ and for all events E ⊆ {0, 1}Q it holds that∣∣∣Pr[F̂(Q) ∈ E]− Pr[L(Q) ∈ E]

∣∣∣ ≤ O(|Q|
√
ε) .

The above result on linearity testing enables us to transform our nsLPCP, and more
generally any nsLPCP, into a corresponding nsPCP with minimal changes in parameters
(the transformation is exactly the classical compiler). This is the last key statement in the
proof of our main theorem.

I Lemma 6. For every ε ∈ [0, 1], if a language L has an nsLPCP where the verifier uses r
random bits, makes q queries, and has soundness error 1− ε against linear k-non-signaling
functions L : {0, 1}` → {0, 1}, then L has an nsPCP where the verifier uses r+O(q`) random
bits, makes O(q) queries, and has soundness error 1−Oq(ε2) against Oε(k2)-non-signaling
functions F : {0, 1}` → {0, 1}. (Furthermore, if the former is input oblivious, so is the latter.)

1.4 Enriching the toolkit for non-signaling PCPs
Progress in our understanding of PCPs has typically moved hand in hand with progress in
our understanding of low-degree testing. In particular, many PCP constructions follow this
blueprint:
(1) a low-degree test that, via only a few queries, ensures that a given proof conforms to a

specified algebraic encoding;
(2) a probabilistic test that, assuming the proof is (essentially) given in this encoding, ensures

that the statement being checked is true with high probability.

In contrast, while the nsPCP in [17] is reminiscent of this blueprint, its analysis does
not follow it, despite the fact that the construction is modeled after the PCP in [4, 3], for
which the two-step analysis is possible (in the classical setting). The lack of such general
paradigms means that we lack general design principles to construct better nsPCPs.

This state of affairs raises the intriguing question of whether a theory of low-degree testing
(and, more generally, property testing) is feasible in the non-signaling setting and, moreover,
whether one can build on it to construct nsPCPs in order to make further progress towards
Question 1.

An additional contribution of our work is to enrich the current “non-signaling toolkit”, by
demonstrating an example where the aforementioned blueprint is both possible and useful.

Namely, building on the work of [9] on linearity testing, our results provide a modular
paradigm that not only simplifies the overall analysis, thereby enabling us to assert that the
construction of [1] with no modifications is sound against non-signaling strategies, but also
(as discussed later) clarifies the technical barriers that separate us from answering Question 2.
All this suggests that our techniques will be helpful for constructing more efficient nsPCPs.
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1.5 Concurrent work

In a concurrent work, Kiyoshima [20] studies the soundness of ALMSS-type PCPs against
non-signaling strategies. Kiyoshima proves that, for a sufficiently large security parameter
t (at least logarithmic in the circuit size), the t-repetition of a O(t)-query modification of
the ALMSS-verifier has soundness error negl(t) against O(t2)-non-signaling functions. In
comparison, we prove that the unmodified 11-query ALMSS PCP has soundness error O(1)
against O(log2 S)-non-signaling strategies (and also that a modification of its t-repetition has
soundness error exp(−t) for every t = Ω(logS)). While both our analysis and Kiyoshima’s
analysis avoid the use of an augmented circuit (necessarily so as it would have had exponential
size), our techniques differ. Kiyoshima conducts a direct analysis of the PCP verifier, while
we adopt a modular approach in which we first prove soundness against linear non-signaling
strategies (a simpler task), and then, building on a recent analysis of the linearity test [9],
we deduce soundness against all non-signaling strategies. We consider the modular and
simple analysis in our work to be of independent interest. Kiyoshima additionally proves
that soundness holds against computational non-signaling strategies, a relaxation where the
marginal distributions on intersections are only required to be computationally close. Our
results directly extend to computational non-signaling strategies as every computational
non-signaling strategy is close to an exact non-signaling strategy (as proved in [9]).

In another concurrent work, Holmgren and Rothblum [12] study the problem of construct-
ing PCPs/MIPs in which the prover is very efficient in time and space [7], in the non-signaling
setting. While they consider a construction that is more closely related to the PCP in [4, 3]
(honest proofs are encoded via low-degree polynomials rather than linear functions), their
soundness analysis also has the feature that it avoids the use of an augmented circuit.

1.6 Open problems

The question of whether the exponential-length constant-query PCP of [1] is sound against
O(1)-non-signaling functions remains open. A concrete approach to affirmatively answer
this question is to prove that the linear PCP verifier of [1] is sound against k-non-signaling
functions for k = O(1), rather than k = O(logS) as in Theorem 4. (Our generic compiler
from Theorem 6 would then take care of the rest.) Another intriguing possibility is that an
affirmative answer to Question 2 could come from a different exponential-size constant-query
PCP. However, the result due to [13] shows that the class of nsMIPs with 2 provers equals
PSPACE, which possibly suggests that soundness against O(1)-non-signaling functions is too
much to hope for.

Moreover, while our results can be interpreted as progress towards a non-signaling
analogue of the PCP Theorem (Question 1), it remains unclear whether such an analogue
holds, and more investigations in nsPCPs are needed. We believe that our work and our new
techniques can inform such investigations.

2 Techniques

We outline the techniques used to prove our results. First, in Section 2.1, we explain the
transformation from a nsLPCP to a corresponding nsPCP. Next, in Sections 2.2 to 2.5 we
discuss the nsLPCP on which we apply this transformation, namely, the ALMSS verifier
[1]. Finally, in Section 2.6, we discuss linearity testing with low error, which underlies the
transformation.
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2.1 From nsLPCP to nsPCP
We discuss the transformation from nsLPCP to nsPCP (Theorem 6). We first recall the
classical transformation from LPCP to PCP, and then explain how to achieve its non-signaling
analogue.

The classical case. The classical transformation from LPCP to PCP relies on the following
tools.

Testing linearity. Given a boolean function f : {0, 1}` → {0, 1}, the linearity test draws
random x, y ∈ {0, 1}` and checks that f(x) + f(y) = f(x+ y) [8]. If the test passes with
probability 1− ε, then f is ε-close to a linear function f∗ : {0, 1}` → {0, 1} [8, 5].
Self-correction. Given f that is ε-close to a linear function f∗, one can create a probabilistic
oracle O that, given any x ∈ {0, 1}`, returns f∗(x) with probability 1− 2ε. Namely, O
samples a random z ∈ {0, 1}`, queries f on z+x and z, and answers with f(z+x)− f(z).

The above tools imply a transformation from LPCP to PCP: given access to an arbitrary
function f : {0, 1}` → {0, 1}, the PCP verifier runs the linearity test and then runs the LPCP
verifier by self-correcting each of its queries. If the LPCP verifier makes q queries and has
soundness error γ, then the resulting PCP verifier makes 3 + 2q queries and has soundness
error max{1− ε, γ+ 2qε}, where ε is (a bound on) the distance of f to linear functions. This
soundness error is bounded by 1− 1−γ

2q+1 (the maximum is when the two terms equal), which
is bounded away from 1.

If desired, the soundness error can be made arbitrarily close to γ by repeating the linearity
test. Given a parameter t, the repeated linearity test samples xi, yi ∈ {0, 1}` for each i ∈ [t]
and checks that f(xi) + f(yi) = f(xi + yi) for all i ∈ [t]. Now, the PCP verifier makes 3t+ 2q
queries and has soundness error max{(1− ε)t, γ + 2qε}, which for suitable ε and t = Oγ,ε(q)
is arbitrarily close to γ.

The non-signaling case. We follow the structure of the classical transformation. However,
the non-signaling case not only calls for a different analysis but also raises a problem that we
must solve.

The linearity test in the non-signaling setting has the following guarantee [9]: if F is a
k-non-signaling function such that Prx,y,F [F(x) + F(y) = F(x+ y)] ≥ 1− ε then F can be
self-corrected (in the natural way) to a (k/2)-non-signaling function F̂ that is 2O(k)ε-close to
a linear non-signaling function L. Note that self-correction is already part of the conclusion.

The above result appears sufficient for compiling a nsLPCP verifier into a corresponding
nsPCP verifier. Namely, given a k-non-signaling function F : {0, 1}` → {0, 1}, the nsPCP
verifier checks that F(x) + F(y) = F(x+ y) for random x, y ∈ {0, 1}` and also checks that
the nsLPCP verifier accepts F̂ . Analogously to before, if the nsLPCP verifier makes q queries
and has soundness error γ against linear (k−3

2 )-non-signaling functions, then the resulting
PCP verifier makes 3 + 2q queries and has soundness error max{1− ε, γ + 2O(k)ε} against
arbitrary k-non-signaling functions.

However, our analysis of the ALMSS verifier (the nsLPCP that we use) will require
locality k = Ω(logN), which means that the additive term 2O(k)ε grows with N . This
precludes achieving a constant soundness error with constant query complexity.

The foregoing motivates the problem of testing linearity of non-signaling functions with
low error : how do we ensure that F̂ is sufficiently close to a linear non-signaling function L?
We stress that while in the classical case improving the “quality” of the self-correction has a
straightforward solution (repeat the linearity test, and do self-correction), in the non-signaling
case this problem is quite involved. Moreover, we do not wish to modify in any way the
classical compiler, and thus relying on additional queries (even if only a constant number
depending on q and ε) is not an option.
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We discuss our solution to this problem later on in Section 2.6, thereby providing the
missing ingredient of our compiler from nsLPCP to nsPCP. In the meantime, in Sections 2.2
to 2.5, we discuss how we prove that the ALMSS verifier is secure against linear non-signaling
functions.

2.2 The linear ALMSS verifier against linear non-signaling functions

Our goal is to establish that the linear PCP verifier of [1] (the “ALMSS verifier”) is sound
against linear non-signaling functions, and thus prove that every language L ∈ DSIZE(S)
has a constant-query nsLPCP verifier that is sound against linear O(logS)-non-signaling
functions. Note that we invoke the ALMSS verifier on deterministic (DSIZE) computations,
rather than on nondeterministic (NSIZE) computations as in the classical case. We now
recall the ALMSS verifier.

Let L ∈ DSIZE(S) be a language, and let {Cn}nN be a uniform boolean circuit family
of size N := S(n) that decides L (for all x ∈ {0, 1}n, x ∈ L iff Cn(x) = 1). Hereafter we
omit the subscript in Cn as it is clear from context. Given an input x, one can express the
condition “C(x) = 1” as a system of simple equations over C’s wires W ; the variables are
w = (w1, . . . , wN ), one per wire. We use the convention that the input wires are w1, . . . , wn
and the output wire is wN . To ensure input consistency we need that wj = xj for every
j ∈ {1, . . . , n}; to ensure correct gate computations we need that, for every j ∈ {n+1, . . . , N},
wj is the correct combination of the variables used to compute it (e.g., if wj is the output of
an AND gate with inputs wj1 and wj2 then the equation is wj = wj1 · wj2); to ensure that
the output is 1 we need that wN = 1. This can be summarized as a system of M := N + 1
equations {Pj(w) = cj}j∈[M ], where P1, . . . , PM are quadratic polynomials (each involving
at most three variables in w) and c1, . . . , cM are boolean constants.

The ALMSS verifier is given below. We overload notation and use Pj to also denote
the upper triangular matrix in {0, 1}N2 such that Pj(w) = 〈Pj ,w⊗w〉; that is, if Pj(w) =∑N
i=1 aiwi +

∑
1≤i<i′≤N ai,i′wiwi′ , then Pj has ai in the diagonal entry (i, i) and ai,i′ in the

entry (i, i′), for 1 ≤ i < i′ ≤ N . Also, for a ∈ {0, 1}N , Da is the diagonal matrix in {0, 1}N2

whose diagonal is a.

The ALMSS verifier, given input x ∈ {0, 1}n and oracle access to a linear non-signaling
function L : {0, 1}N2 → {0, 1}, works as follows:
1. Use the circuit C and input x to construct the matrices P1, . . . , PM ∈ {0, 1}N

2 and
constants c1, . . . , cM ∈ {0, 1}, which represent the computation of C on x.

2. Draw random s ∈ {0, 1}M , u, v,∈ {0, 1}N , and query L on the set
{
∑M
j=1 sjPj , Du, Dv, u⊗ v}.

3. Check that L(
∑M
j=1 sjPj) =

∑M
j=1 sjcj and that L(Du)L(Dv) = L(u⊗ v).

If C(x) = 1, the honest proof is the linear function π : {0, 1}N2 → {0, 1} where π(Z) :=
〈w⊗w, Z〉 =

∑
i,i′∈[N ] wiwi′ · Zi,i′ where wi is now the value of the i-th wire in the compu-

tation of C on x.
The challenge is to prove that the ALMSS verifier is sound against linear non-signaling

functions. Namely, we must show that if there is a linear non-signaling function L that is
accepted with good probability then x ∈ L, or equivalently that C(x) = 1. We discuss this
in the next sub-sections.
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2.3 A linear local assignment generator suffices
The first step in our soundness analysis shows that, to establish that C(x) = 1, it suffices to
construct a linear local assignment generator with sufficiently small error.

A linear k-local assignment generator for (C, x) with error ε is a linear k-non-signaling
function A : {0, 1}N → {0, 1} that individually satisfies each of the M constraints with
probability 1− ε (over the randomness of A). Namely,
(a) for each i ∈ {1, . . . , n}, Pr[A(ei) = xi] ≥ 1− ε;
(b) for each i ∈ {n + 1, . . . , N}, if wi is the output of a unary gate g with input wj then

Pr[A(ei) = g(A(ej))] ≥ 1 − ε, else if wi is the output of a binary gate g with inputs
wj1 , wj2 then Pr[A(ei) = g(A(ej1),A(ej2))] ≥ 1− ε;

(c) Pr[A(eN ) = 1] ≥ 1− ε.
(Here ei is the i-th vector in the standard basis.)

I Lemma 7 (informal). If there exists a k-local assignment generator for (C, x) with error ε
for k = Ω(logN) and ε = O( 1

N logN ), then C(x) = 1.

We sketch the proof of this lemma. The transcript of the computation of C on x is
the unique correct assignment to all the wires. We say that a wire wi ∈W of C is correct
whenever A(ei) equals the value contained in this transcript; more generally, we say that
a vector z ∈ {0, 1}N is correct if A(z) equals the value of z in the linear extension of the
transcript. Below, we partition C’s wires W into layers W1, . . . ,WH according to depth.
(We assume layered circuits.)

As a warmup, suppose for now that k ≥ N . The probability that all wires in W1 are
correct is at least 1 − |W1| ε, and the probability that all the gates are correct is at least
1−

∑H
h=2 |Wh| ε. Therefore by union bound, the probability that all wires in the circuit are

correct is at least 1−
∑H
h=1 |Wh| ε, because if all the input wires are correct and all the gates

are computed correctly, then all the wires in the circuit are correct. In particular, we deduce
that the output wire is correct with probability 1−

∑H
h=1 |Wh| ε = 1− |W | ε = 1−Nε. Since

the output wire is 1 with probability 1−ε, and ε = O( 1
N ), we conclude that Pr[C(x) = 1] > 0,

and thus C(x) = 1.
The above argument requires that k ≥ N , because we have to simultaneously “view”

assignments to all wires in the circuit. While the argument can be easily modified so that we
only require k to be at least twice the width of C, the latter may still be much larger than
O(logN).

Using the linearity of A, however, we can modify the argument to merely require
k = Ω(logN). For each layer h, we define an event Eh such that if Eh holds, then any wire
in layer h is correct with high probability. In the warmup above Eh is the event “all wires in
layer h− 1 are correct”; in our proof Eh is the event “t random linear combinations of wires
in layer h are correct”. Given a wire wi in layer h, we can bound the event “A(ei) is incorrect
and Eh holds” as follows. If A(ei) is incorrect, then all linear combinations of wires in layer h
can be split into pairs z and z+ ei, and exactly one of A(z) and A(z+ ei) is incorrect. Hence,
the probability that a random linear combination of wires in layer h is correct, given that
A(ei) is incorrect, is at most 1/2, and so Pr[Eh |A(ei) is incorrect] ≤ 2−t, since the t random
linear combinations are independent. Using Bayes’s rule (and an additional assumption
that Pr[Eh] ≥ 1/2), we deduce that Pr[A(ei) is incorrect | Eh] is small. We then proceed
inductively on the layers as before.

The argument above requires that ε = O( 1
N logN ). One may wonder whether a similar

result could be proved with, say, ε = O(1). We additionally prove that our analysis is almost
tight, in that an error of ε = O( logN

N ) is necessary, regardless of how large the locality k is.
See the full version of this paper for details.
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Local assignment generators in prior works. Local assignment generators appear in prior
works on nsPCPs [17, 22], but our notion is qualitatively different, as we now explain.

Prior works consider local assignment generators for an augmented circuit Caug rather
than for C itself. (See Section 1.5 for a discussion of concurrent work that avoids augmented
circuits.) Informally, Caug not only contains C as a sub-circuit but also low-degree extensions
of C’s layers as well as subcircuits computing all low-degree tests on these. The wires
contained in these additional subcircuits are what enables defining an event Eh on which to
condition for each layer.

The analogue of the augmented circuit Caug in our setting, however, has exponential
size, and thus we cannot use it. Namely, we would have to encode each layer of C via the
Hadamard code (all linear combinations of wires in the layer) and then compute all possible
linear tests on these.

Instead, our assumption that the local assignment generator is a linear non-signaling
function implies that we do not have to construct an augmented circuit. Namely, the linear
combinations that we use to define the event Eh are implicitly available due this linearity,
and so there is no need to augment C (nor, in particular, to introduce any gates that evaluate
linearity tests).

The assumption that the local assignment generator is linear is justified by the fact
that a different part of our construction (the linearity test in our generic compiler) ensures
the non-signaling function is (close to) linear. Overall, this separation not only avoids the
aforementioned issues of using augmented circuits, but also simplifies the analysis of the local
assignment generator.

2.4 Constructing the linear local assignment generator
Given a k-non-signaling function L : {0, 1}N2 → {0, 1} that is accepted by the ALMSS
verifier with probability at least 1− ε, we can obtain a linear k-local assignment generator
A : {0, 1}N → {0, 1} with error O(ε) by “restricting L to its diagonal”. Namely, in order to
query A at v ∈ {0, 1}N , we query L at Dv ∈ {0, 1}N

2 , where Dv is the diagonal matrix that
has v as its diagonal.

We show that, since L is accepted with probability at least 1 − ε, L must satisfy any
individual constraint Pj(w) = cj with probability at least 1−O(ε), and this directly implies
that the linear local assignment generator A has error O(ε). (See the full version of this
paper for details.)

The discussion so far already gives us a weak bound on the soundness error of the ALMSS
verifier, namely 1−O( 1

N logN ). Indeed, for k = O(logN) and ε = O( 1
N logN ), we can apply

the lemma above (in Section 2.3) to conclude that C(x) = 1.
However, our goal is to show that the ALMSS verifier (as is) has constant soundness

error, and doing so requires more technical work, which we discuss next.

I Remark. We stress that proving a soundness error of even 1−O( 1
N logN ) is a non-trivial

statement. This is in contrast to the classical setting, where if an assignment satisfies an
1− ε fraction of the M = N + 1 constraints for ε < 1/M , then, trivially, all constraints are
satisfied.

2.5 The ALMSS verifier has constant soundness error
Our goal is to prove that the ALMSS verifier has constant soundness error. In a first step
(Section 2.5.1), we use the soundness error proved above (Section 2.4) to show that the
t-repeated ALMSS verifier has soundness error γ when t = Ω(logN + log 1

γ ). In a second
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step (Section 2.5.2), we prove that the basic ALMSS verifier (no repetitions) has constant
soundness error. The second step is generic and of independent interest: we prove that if
a t-repeated verifier has soundness error exp(−t), then the corresponding basic verifier has
soundness error O(1).

2.5.1 The t-repeated ALMSS verifier has soundness error exp(−t)
While in the classical setting reducing soundness error via simple repetition is straightforward
(t-wise repetition reduces soundness error from δ to δt), in the non-signaling setting simple
repetition does not work.6 Indeed, consider the non-signaling function (in fact, distribution)
that, with probability 1− ε, answers the verifier’s queries in an accepting way, and otherwise
answers randomly. This non-signaling function is accepted by the t-repeated verifier with
probability ≈ 1− ε, which is about the same as the probability that it is accepted by a single
verifier.

However, this example provides intuition for how one circumvents this issue. Informally,
we would like to extract the “1− ε good part” that satisfies the verifier, and drop the “ε bad
part”. We follow a technique used in [17] and, instead of arguing about the probability that
L passes the t-repeated verifier, we argue that the non-signaling function L conditioned on
passing the t-repeated verifier passes the basic verifier with high probability. Indeed, in the
aforementioned example, conditioning on at least one test passing removes the “ε bad part”
injected by the distribution, and intuitively extracts the part of L that is passing the verifier.
An interesting feature of our analysis of the verifier is that our conclusion is about the basic
verifier, not the relaxed t-repeated verifier, which plays a major role in the analysis in [17].7
This is a qualitative difference in our analysis arising from our use of property testing (not
present in [17]), which also simplifies the analysis.

In more detail, let L′ denote the linear non-signaling function that equals L when
conditioned on passing the t-repeated verifier. Namely, if E is the (random) event that L
passes the t-repeated verifier, then for any S ⊆ {0, 1}n (of some maximal size) and ~b ∈ {0, 1}S ,
we define

Pr
[
L′(S) = ~b

]
:= Pr

[
L(S) = ~b | E

]
= Pr[L(S) = ~b ∧ E]

Pr[E] . (1)

We then prove that L′ passes the basic verifier with probability at least 1− 1/Pr[E]
exp(t) .

The proof uses a generic lemma stating that, if we run t+ d independent tests, then the
probability that at most r out of the first d tests pass and all of the last t tests pass is at
most ( d

t+d )r+1. A naive application of this lemma (with r = 0 and d = 1) shows that L′

passes the basic verifier with probability at least 1− 1/Pr[E]
(t+1) . This is not enough, because

(using Pr[E] ≥ γ) we would require t = Ω(N logN · 1
γ ) to prove soundness, which is again

far too many repetitions.
However, we leverage the linearity of L to deduce the stronger guarantee, as we now

explain. We want to bound the probability that L′ does not pass the basic verifier, which
means we need to bound the probability that L fails exactly the first test of t+ 1 independent
tests. We do this by arguing this individually for each of the two types of tests made by

6 Even if simple repetition were to reduce soundness error from δ to δt, then to get δt = γ when
δ = 1−O( 1

N logN ) we would need to repeat t = Ω(N logN + log 1
γ ) times, which requires too large of a

locality k for the analysis.
7 The relaxed t-repeated verifier runs t tests and accepts if a large fraction of them pass.
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the ALMSS verifier: the tensor test “L(Du)L(Dv) = L(u ⊗ v)” and the satisfiability test
“L(
∑M
j=1 sjPj) =

∑M
j=1 sjcj”. We will explain our techniques in the case of the satisfiability

test; the same techniques work for the tensor test, but the algebra is messier.
In the case of the satisfiability test, we split the “special” test (i.e., the first one) into d

pairs of tests, such that each individual test is random, but each pair is correlated so that if
both tests in some pair pass, then the original test passes. Specifically, we draw d random
vectors s(1), . . . , s(d) ∈ {0, 1}M , and then we split the test “L(

∑M
j=1 sjPj) =

∑M
j=1 sjcj” into

the d pairs of tests

“L

 M∑
j=1

(sj + s
(i)
j )Pj

 =
M∑
j=1

(sj + s
(i)
j )cj” and “L

 M∑
j=1

s
(i)
j Pj

 =
M∑
j=1

s
(i)
j cj” .

This allows us to apply the lemma with d = O(t), and r = O(t), which shows that L′ passes
the basic verifier with probability at least 1− 1/Pr[E]

exp(t) , an exponential decrease in t.
The above analysis shows soundness error of γ for the t-repeated verifier, for t =

O(logN + log 1
γ ). Indeed, by the above argument, the conditioned function L′ passes the

basic verifier with probability 1− 1
γ exp(−t) = 1−O( 1

N logN ), by choice of t. The analysis
in the previous section (Section 2.4) then implies that C(x) = 1, proving soundness of the
t-repeated verifier.

Setting γ = exp(−t), the discussion so far merely shows that the t-wise repetition of the
ALMSS verifier, which makes 4t queries, has soundness error exp(−t) when t = Ω(logN);
moreover, we get no conclusions for t = o(logN). But we still did not conclude anything
about the soundness of a single invocation of the 4-query ALMSS verifier. We next discuss
how to handle this case.

2.5.2 Back to the 4-query ALMSS verifier

We establish that the ALMSS verifier has constant soundness error by proving a generic
lemma. The lemma states that, for any PCP verifier V, if the t-repeated verifier Vt has
soundness error exp(−t), then V has soundness error O(1). Since we have already argued that
the t-repeated ALMSS verifier has soundness error exp(−t) for t = Ω(logN), we can conclude
that the basic ALMSS verifier has soundness error O(1), against O(logN)-non-signaling
linear functions.

In the classical case, the proof of this generic fact is trivial: a (classical) function passes
a PCP verifier V with probability δ if and only if it passes the t-repeated verifier Vt with
probability δt. However, in the non-signaling case, it is not clear what one can say because
a non-signaling function can provide correlated answers across repetitions. Nevertheless,
we are able to lower bound the probability that Vt accepts by a quantity that is almost δt
(which is, in particular, almost tight).

To our knowledge, we are the first to relate the soundness of V to the soundness of Vt.
Generic statements in prior works (starting with [15]) have related the soundness of Vt to
the soundness of the t-repeated relaxed verifier (which accepts if a vast majority of the t
tests pass), but did not provide conclusions about the basic verifier V.

2.6 Testing linearity with low error

Below we discuss linearity testing with low error (Theorem 5) in more detail.

ITCS 2019
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Warmup: distributions. We have discussed (in Section 2.1) how to test linearity with low
error in the classical setting. In order to illustrate some of the difficulties that arise in
the non-signaling setting, we first discuss a special case of it: testing linearity against a
distribution over functions.

First, suppose that D is a distribution over functions f : {0, 1}n → {0, 1} that passes the
linearity test with probability 1−ε. The self-correction D̂ that on input x ∈ {0, 1}n samples a
random z ∈ {0, 1}n and outputs D̂(x) = D(z+x)−D(z) is 2ε-close to a distribution over linear
functions D∗, namely, for every x ∈ {0, 1}n it holds that

∣∣∣Pr[D̂(x) = 1]− Pr[D∗(x) = 1]
∣∣∣ ≤ 2ε.

Indeed, consider the distribution D∗ that samples f ← D and outputs any linear function
f∗ closest to f .8 Then, for every function f and x ∈ {0, 1}n, the probability over a
random z ∈ {0, 1}n that f∗(z) = f(z) and f∗(z + x) = f(z + x) is at least 1− 2εf , where
εf := 1 − Prx,y[f(x) + f(y) = f(x + y)]. Denoting by df denotes the probability that D
samples the function f , we conclude that

∣∣∣Pr[D∗(x) = 1]− Pr[D̂(x) = 1]
∣∣∣ ≤∑f 2εf ·df = 2ε.

Next, suppose that we seek a self-correction of D that is δ-close to a distribution over
linear functions, for δ � 2ε. One idea is to follow the same strategy as in the case of a single
function: repeat the linearity test and then do self-correction. This idea, however, does not
work now.

Consider the distribution D = (1− ε) ·0 + ε ·1, i.e., the distribution that with probability
1− ε answers according to the all-zeros function (a linear function), and with probability ε
according to the all-ones function (a function maximally far from linear functions). While D
passes the linearity test with probability 1−ε, D also passes the t-repeated linearity test with
probability 1− ε. In other words, if D passes the t-repeated linearity test with probability
1− ε, we can still only conclude that D̂ is 2ε-close to linear, independent of t.

While repeating the test does not increase the rejection probability, it can still be used to
improve the quality of self-correction, by considering a different notion of self-correction that
penalizes functions in the support of D that are far from linear. Concretely, consider the
distribution Dt that equals D when conditioned on the event that the t-repeated linearity test
passes, and then define D̂t to be the self-correction of Dt. That is, D̂t samples f from Dt
and answers any query x ∈ {0, 1}n by sampling z ∈ {0, 1}n and returning f(z + x)− f(z).
We claim that D̂t is very close to linear.

Indeed, suppose that D passes the t-repeated test with probability γ > 0, and let c > 1
be a parameter. A function f sampled from Dt is ln c

t -close to linear with probability at least
γ−1/c
γ = 1− 1

γc .
9 Setting c := t/ log t, the probability that Dt outputs a function f that is

log t−log log t
t -far from linear is at most log t

γt . Therefore, by applying the argument from the
beginning of this subsection, we conclude that D̂t is Oγ( log t

t )-close to a distribution over
linear functions.

We can further reduce the distance to be exponentially small in t by performing self-
correction t times: D̂t(x) now samples z1, . . . , zt ∈ {0, 1}n, and outputs the majority of
{D(zi + x)−D(zi)}i∈[t] conditioned on the event that the t-repeated linearity test passes.
By setting c := 2t/10 in the discussion above, we conclude that if we sample f from Dt, then
f is 0.1-close to a linear function f∗ with probability 1 − 1

γ2t/10 . In particular, for every
x ∈ {0, 1}n it holds that Przi

[f∗(zi) = f(zi) ∧ f∗(zi + x) = f(zi + x)] ≥ 0.8, and so the
probability that the majority value of {D(zi + x)−D(zi)}i∈[t] is not equal to f∗(x) is 2−O(t).
In sum, the t-repeated self-correction conditioned on the event that the t-repeated linearity
test passes yields us a distribution that is 1

γ 2−O(t)-close to linear.

8 Recall that if f is 0.25-close to linear functions then f∗ is unique. We do not rely on uniqueness.
9 The t-repeated linearity test accepts a function f that is ln c

t -far from linear with probability at most
(1− ln c

t )t ≤ 1
c .
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The non-signaling case. The case of non-signaling strategies is similar to the case of
distributions in that the analysis of the self-correction involves conditioning over a certain
event. Yet, the conclusions and steps of the proof are quite different. Informally, this is
because non-signaling functions are quasi-distributions (probabilities can be negative), which
prevents us from doing a straightforward analysis such as the one above. We now discuss
how we address this.

Suppose that we have a k-non-signaling function F : {0, 1}n → {0, 1} that passes the
linearity test with probability 1−ε. The result of [9] proves that the self-correction F̂ defined
as F̂(x) := F(z+x)−F(z) (where z is chosen randomly from {0, 1}n) is 2O(k)ε-close to linear.
This is too large in our setting as we have k = O(logN), and we would like the distance to
be O(ε). Instead, we prove a slightly different guarantee from [9]. Namely, we show that
there is a linear non-signaling function L, such that on every set S, F̂ is O(|S|

√
ε)-close to L.

Unlike in the result of [9], our distance now decays with |S|, and is in particular independent
of k. This is sufficient for our purposes, since we set |S| = 4, the number of queries made by
the ALMSS verifier.

In our proof, we consider a different self-correction F t that, unlike F̂ , is only used in the
analysis and is not used by the compiler. First, we show that F t passes the linearity test
with probability 1− exp(−t), and so the result of [9] implies that F t is very close to a linear
non-signaling function. Then, we relate F t and F̂ to show that F̂ is O(

√
ε)-close to a linear

non-signaling function.
Informally, the self-correction F t equals F with the standard self-correction procedure

repeated t times, conditioned on F passing (1−
√
ε)t of t repetitions of the linearity test. In

more detail, given a subset S ⊆ {0, 1}n, F t(S) is the following distribution. For each x ∈ S,
sample uniform and independent z(1)

x , . . . , z
(t)
x ∈ {0, 1}n conditioned on satisfying the same

linear dependencies as in S; for instance, if S = {x, y, x+ y}, then z(i)
x + z

(i)
y = z

(i)
x+y holds for

all i. Then F t assigns to each x ∈ S the value MAJi∈[t]{F(z(i)
x + x)−F(z(i))} conditioned

on the event that F passes at least (1−
√
ε)t of t repetitions of the basic linearity test. We

note that if F is linear, then F t ≡ F̂ ≡ F .
The first part of the analysis uses a lemma that informally states that by conditioning

on F passing most of the t-repeated linearity tests, we force the conditioned F to behave
“close” to linear. Specifically, letting b(i)

x = F(zi + x)−F(zi), we get that with probability
1− exp(−t) there is a bit bx that equals b(i)

x for at least 3t
4 of the i’s (so the majority is a

vast majority), which implies that F t(x) = bx, and analogously for y and x+ y. Then, via a
similar argument, we show that with probability 1− exp(−t) for at least 3t

4 of the i’s it holds
that b(i)

x + b
(i)
y = b

(i)
x+y. By union bound, these events hold simultaneously, and so we conclude

that F t satisfies F t(x) + F t(y) = F t(x+ y) with probability 1− exp(−t). We then invoke
the result of [9] and conclude that F̂ is very close to some linear non-signaling function L.

In the second step, we relate F̂ to F t by claiming that if Pr[F(x)+F(y) = F(x+y)] ≥ 1−ε,
then F̂ and F t are close in some precise sense. We first observe that if we run the t-
repeated linearity test, i.e., choose x(1), y(1), . . . , x(t), y(t) and check that F(x(i)) +F(y(i)) =
F(x(i) + y(i)) for every i, then a simple Markov argument shows that with high probability,
most of the linearity tests are satisfied. For instance, with probability 1−

√
ε at least (1−

√
ε)t

of the i’s satisfy the linear constraint. This means that the event conditioned on in the
definition of F t is a large event. We also know from the first part of the analysis that, with high
probability, the conditioning causes most of the evaluations of F(z(i)

x +x)−F(z(i)
x ) to output

the same value. Intuitively, this implies that F̂ is close to F t, via the following reasoning.
Since F t conditions on a large event, it is close to the corresponding self-correction that does
not condition at all. Since the majority taken over the evaluations of F(z(i)

x + x)−F(z(i)
x )
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when computing F t is a vast majority, with high probability F̂ (which is a sample from one
of the elements the majority is over) will agree with the vast majority. This allows us to
conclude that for any set S, F̂ will be O(|S|

√
ε)-close to F t.

See the full version of this paper for details.
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Abstract
Spiking Neural Networks (SNN) are mathematical models in neuroscience to describe the dynam-
ics among a set of neurons that interact with each other by firing instantaneous signals, a.k.a.,
spikes. Interestingly, a recent advance in neuroscience [Barrett-Denève-Machens, NIPS 2013]
showed that the neurons’ firing rate, i.e., the average number of spikes fired per unit of time, can
be characterized by the optimal solution of a quadratic program defined by the parameters of the
dynamics. This indicated that SNN potentially has the computational power to solve non-trivial
quadratic programs. However, the results were justified empirically without rigorous analysis.

We put this into the context of natural algorithms and aim to investigate the algorithmic power
of SNN. Especially, we emphasize on giving rigorous asymptotic analysis on the performance of
SNN in solving optimization problems. To enforce a theoretical study, we first identify a simplified
SNN model that is tractable for analysis. Next, we confirm the empirical observation in the work
of Barrett et al. by giving an upper bound on the convergence rate of SNN in solving the
quadratic program. Further, we observe that in the case where there are infinitely many optimal
solutions, SNN tends to converge to the one with smaller `1 norm. We give an affirmative answer
to our finding by showing that SNN can solve the `1 minimization problem under some regular
conditions.

Our main technical insight is a dual view of the SNN dynamics, under which SNN can be
viewed as a new natural primal-dual algorithm for the `1 minimization problem. We believe that
the dual view is of independent interest and may potentially find interesting interpretation in
neuroscience.
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1 Introduction

The theory of natural algorithms is a framework that bridges the algorithmic thinking in
computer science and the mathematical models in biology. Under this framework, biological
systems are viewed as algorithms to efficiently solve specific computational problems. Seminal
works such as bird flocking [16, 17], slime systems [51, 65, 10], and evolution [38, 37]
successfully provide algorithmic explanations for different natural objects. These works
give rigorous theoretical results to confirm empirical observations, shed new light on the
biological systems through computational lens, and sometimes lead to new biologically
inspired algorithms.

In this work, we investigate Spiking Neural Networks (SNNs) as natural algorithms for
solving convex optimization problems. SNNs are mathematical models for biological neural
networks where a network of neurons transmit information by firing spikes through their
synaptic connections (i.e., edges between two neurons). Our starting point is a seminal work
of Barrett, Denève, and Machens [4], where they showed that the firing rate (i.e., the average
number of spikes fired by each neuron) of a certain class of integrate-and-fire SNNs can be
characterized by the optimal solutions of a quadratic program defined by the parameters of
SNN. Thus, the SNN can be viewed as a natural algorithm for the corresponding quadratic
program. However, no rigorous analysis was given in their work.

We bridge the gap by showing that the firing rate converges to an optimal solution of the
corresponding quadratic program with an explicit polynomial bound on the convergent rate.
Thus, the SNN indeed gives an efficient algorithm for solving the quadratic program. To
the best of our knowledge, this is the first result with an explicit bound on the convergent
rate. Previous works [58, 59, 63] on related SNN models for optimization problems are either
heuristic or only proving convergence results when the time goes to infinity (see Section 1.4
for full discussion on related works).

We take one step further to ask what other optimization problems can SNNs efficiently
solve. As our main result, we show that when configured properly, SNNs can solve the `1
minimization problem2 in polynomial time3. Our main technical insight is interpreting the
dynamics of SNNs in a dual space. In this way, SNNs can be viewed as a new primal-dual
algorithm for solving the `1 minimization problem.

In the rest of the introduction, we will first briefly introduce the background of spiking
neural networks (SNNs) and formally define the mathematical model we are working on.
Next, our results will be presented and compared with other related works. Finally, we wrap
up this section with potential future research directions and perspectives.

1.1 Spiking Neural Networks
Spiking neural networks (SNNs) are mathematical models for describing the dynamics of
biological neural networks. An SNN consists of neurons, and each of them is associated with
an intrinsic electrical charge called membrane potential. When the potential of a neuron
reaches a certain level, it will fire an instantaneous signal, i.e., spike, to other neurons and
increase or decrease their potentials.

2 The problem is defined as given A ∈ Rm×n, b ∈ Rm, and guaranteed that there is a solution to Ax = b.
The goal is finding a solution x with the smallest `1 norm. See Section 2 for formal definition.

3 The running time is polynomial in a parameter depending on the inputs. In some cases, this parameter
might cause the running to be quasi-polynomial or sub-exponential. See the full version of this paper
on arXiv for more details.
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Mathematically, the dynamic of neuron’s membrane potential in an SNN is typically
described by a differential equation, and there are many well-studied models such as the
integrate-and-fire model [35], the Hodgkin-Huxley model [27], and their variants [21, 61, 49,
26, 23, 33, 14, 22, 29, 64]. In this work, we focus on the integrate-and-fire model defined as
follows. Let n be the number of neurons and u(t) ∈ Rn be the vector of membrane potentials
where ui(t) is the potential of neuron i at time t for any i ∈ [n] and t ≥ 0. The dynamics of
u(t) can be described by the following differential equation: for each i ∈ [n] and t ≥ 0

d

dt
ui(t) =

∑
j∈[n]

−Cji(t)sj(t) + Ii(t) (1)

where the initial value of the potentials are set to 0, i.e., ui(0) = 0 for each i ∈ [n]. There
are two terms that determine the dynamics of membrane potentials as shown in (1). The
simpler term is the input charging4 I(t) ∈ Rn, which can be thought of as an external
effect on each neuron. The other term models the instantaneous spike effect among neurons.
Specifically, the −Cji(t)sj(t) term models the effect on the potential of neuron i when neuron
j fires a spike. Here C(t) ∈ Rn×n is the connectivity matrix that encodes the synapses
between neurons, where Cji(t) describes the connection strength from neuron j to neuron i.
s(t) ∈ Rn is the spike train which records the spikes of each neuron, and si(t) can be thought
of as indicating whether neuron i fires a spike at time t. To sum up, the −Cji(t)s(t) term
decreases5 the potential of neuron i by Cji(t∗) whenever neuron j fires a spike at time t∗.

The spike train s(t) is determined by the spike events, which are in turn determined by the
spiking rule. A typical spiking rule is the threshold rule. Specifically, let η > 0 be the spiking
threshold, the threshold rule simply says that neuron i fires a spike at time t if and only if
ui(t) > η. Next, record the timings when neuron i fires a spike as 0 ≤ t(i)1 < t

(i)
2 < . . . and

let ki(t) be the number of spikes within time [0, t]. An important statistics of the dynamics
is the firing rate defined as xi(t) := ki(t)/t for neuron i ∈ [n] at time t, namely, the average
number of spikes of neuron i up to time t. The last thing we need for specifying s(t) is the
spike shape, which can be modeled as a function δ : R≥0 → R. Intuitively, the spike shape
describes the effect of a spike, and standard choices of δ could be the Dirac delta function or
a pulse function with an exponential tail. Now we can define si(t) =

∑
1≤s≤ki(t) δ(t− t

(i)
s ) to

be the spike train of neuron i at time t.
We provide the following example to illustrate the SNN dynamics introduced above.

I Example 1. Let n = 2, η = 1, and δ be the Dirac delta function such that for any ε > 0,∫ ε
0 δ(t)dt = 1 and δ(t) ≥ 0 for any t ≥ 0. Let both external charging and connectivity matrix

be static, i.e., I(t) = I and C(t) = C for any t ≥ 0, and consider

C =
(

1 0
−0.1 1

)
, I =

(
0.1
0

)
, and u(0) =

(
0
0

)
.

In Figure 1, we simulate this SNN for 500 seconds. We can see that neuron 1 fires a
spike every ten seconds while neuron 2 fires a spike every one hundred seconds. As a result,
the firing rate of neuron 1 will gradually converge to 0.1 and that of neuron 2 will go to 0.01.

In general, both the input charging vector I(t) and the connectivity matrix C(t) can evolve
over time, in which the change of I(t) models the variation of the environment and the change
of Cji(t) captures the adaptive learning behavior of the neurons to the environmental change.

4 Also known as input signal or input current.
5 If Cji(t∗) < 0, then the potential of neuron i actually increases by |Cji(t∗)|.
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26:4 On the Algorithmic Power of Spiking Neural Networks

Figure 1 The example of SNN with two neurons. In (a), we describe the dynamic of this SNN.
Note that the effect of spikes is the negation of the synapse encoded in the connectivity matrix C.
In (b), we plot the membrane potential vectors u(t). In (c), we plot the timings when neurons fire a
spike. One can see that neuron 1 fires a spike every ten seconds while neuron 2 fires a spike every
one hundred seconds. In (d), we plot the firing rate vector x(t). One can see that the firing rate of
neuron 1 will gradually converge to 0.1 and that of neuron 2 will go to 0.01.

Understanding how synapses evolve over time (i.e., synapse plasticity) is a very important
subject in neuroscience. However, in this work, we follow the choice of Barrett et al. [4] and
consider static SNN dynamics, where both the input charging I(t) and the synapses C(t) are
constants. Although this is a special case compared to the general model in (1), we justify
the choice of static SNN by showing that SNN already exhibits non-trivial computational
power even in this restricted model.

As in Barrett et al. [4], we focus on static SNN and view it as a natural algorithm for
optimization problems. Specifically, given an instance to the optimization problem, the goal
is to configure a static SNN (by setting its parameters) so that the firing rate converge to an
optimal solution efficiently. In this sense, the result of Barrett et al. [4] can be interpreted as
a natural algorithm for certain quadratic programs. In our eyes, the solution being encoded
as the firing rate is an interesting and peculiar feature of the SNN dynamics. Also, the
dynamics of a static SNN can be viewed as a simple distributed algorithm with a simple
communication pattern. Specifically, once the dynamics is set up, each neuron only needs to
keep track of its potential and communicate with each other through spikes.

1.2 Our Results

Barrett et al. [4] gave a clean characterization of the firing rates by the network connectivity
and input signal. Concretely, they consider static SNN where both the connectivity matrix
C ∈ Rn×n and the external charging I ∈ Rn do not change with time. They argued that the
firing rate would converge to the solution of the following quadratic program.

minimize
x∈Rn

‖Cx− I‖2
2

subject to xi ≥ 0, ∀i ∈ [n].
(2)
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They supported this observation by giving simulations on the so called tightly balanced
networks and yielded pretty accurate predictions in practice. Also, they heuristically explained
the reason how they came up with the quadratic program. However, no rigorous theorem
had been proved on the convergence of firing rate to the solution of this quadratic program.

To give a theoretical explanation for the discovery of [4], we start with a simpler SNN
model to enable the analysis.

The simple SNN model. In the simple SNN model, we make two simplifications on the
general model in (1).

First, we pick the shape of spike to be the Dirac delta function. That is, let δ(t) = 1t=0
and thus si(t) = 1ui(t)>η. This simplification saves us from complicated calculation while
the Dirac delta function still captures the instantaneous behavior of a spike.

Second, we consider the connectivity matrix C in the form C = α · A>A where α > 0
is the spiking strength and A ∈ Rm×n is the Cholesky decomposition of C. The reason
for introducing α is to model the height of the Dirac delta function. Mathematically, it is
redundant to have both α and C since the model remains the same when combining α with
C. However, as we will see in the next subsection, separating α and C is meaningful as C
corresponds to the input of the computational problem and α is the parameter that one can
choose to configure an SNN to solve the problem.

In this work, we focus on the algorithmic power of SNN in the following sense. Given
a problem instance, one configures a SNN and sets the firing rate x(t) to be the output at
time t. We say this SNN solves the problem if x(t) converges to the solution of the problem.

Simple SNN solves the non-negative least squares. As mentioned, Barrett et al. [4]
identified a connection between the firing rate of SNN with integrate-and-fire neurons and a
quadratic programming problem (2). They gave empirical evidence for the correctness of this
connection, however, no theoretical guarantee had been provided. Our first result confirms
their observation by giving the first theoretical analysis. Specifically, when C = A>A and
I = A>b, the firing rate will converge to the solution of the following non-negative least
squares problem.

minimize
x∈Rn

‖Ax− b‖2
2

subject to xi ≥ 0, ∀i ∈ [n].
(3)

I Theorem 1 (informal). Given A ∈ Rm×n, b ∈ Rm, and ε > 0. Suppose A satisfies some
regular conditions6. Let x(t) be the firing rate of the simple SNN with 0 < α ≤ α(A) where
α(A) is a function depending on A. When t ≥ Ω(

√
n

ε·‖b‖2
),7 x(t) is an ε-approximate solution8

for the non-negative least squares problem of (A,b).

The formal statement and the proof for the theorem are provided in the Section 4 of the
full version of this paper. To the best of our knowledge, this is the first9 theoretical result on
the analysis of SNN with an explicit bound on the convergence rate and shows that SNN
can be implemented as an efficient algorithm for an optimization problem.

6 More details about the regular conditions will be discussed in Section 3.3 of the full version.
7 The Ω(·) and the O(·) later both hide the dependency on some parameters of A. See Section 3.3 of the

full version for more details.
8 See Definition 3 for the formal definition of ε-approximate solution.
9 See Section 1.4 for comparisons with related works.
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Simple SNN solves the `1 minimization problem. In addition to solving the non-negative
least squares problem, as our main result, we also show that the simple SNN is able to solve
the `1 minimization problem, which is defined as minimizing the `1 norm of the solutions of
Ax = b. `1 minimization problem is also known as the basis pursuit problem proposed by
Chen et al. [18]. The problem is widely used for recovering sparse solution in compressed
sensing, signal processing, face recognition etc.

Before the discussion on `1 minimization, let us start with a digression on the two-sided
simple SNN for the convenience of future analysis.

d

dt
u(t) = −α ·A>As(t) +A>b

where si(t) = 1ui(t)>η − 1ui(t)<−η. Note that the two-sided SNN is a special case of the
one-sided SNN in the sense that one can use the one-sided SNN to simulate the two-sided
SNN as follows. Given a two-sided SNN described above with connectivity matrix C = A>A

and external charging I = A>b. Let C ′ =
(
A>A −A>A

−A>A A>A

)
and I′ =

(
A>b
−A>b

)
. Intuitively, this

can be thought of as duplicating each neuron and flip its connectivities with other neurons.
To solve the `1 minimization problem, we simply configure a two-sided SNN as follows.

Given an input (A,b), let C = A>A and I = A>b. Now, we have the following theorem.

I Theorem 2 (informal). Given A ∈ Rm×n, b ∈ Rm, and ε > 0. Suppose A satisfies some
regular conditions. Let x(t) be the firing rate of the two-sided simple SNN with 0 < α ≤ α(A)
where α(A) is a function depending on A. When t ≥ Ω(n

3

ε2 ), x(t) is an ε-approximate
solution10 for the `1 minimization problem of (A,b).

See Theorem 7 for the formal statement of this theorem. As we will discuss in the next
subsection, under the dual view of the SNN dynamics, the simple two sided SNN can be
interpreted as a new natural primal-dual algorithm for the `1 minimization problem.

1.3 A Dual View of the SNN Dynamics
The main techniques in this work is the discovery of a dual view of SNN. Recall that the
dynamic of a static SNN can be described by the following differential equation.

d

dt
u(t) = −α · Cs(t) + I

where u(0) = 0 the parameters C and I can be represented as C = A>A and I = A>b for
some A ∈ Rm×n and b ∈ Rm. For simplicity, we pick the firing threshold η = 1 here. Let us
call the dynamics of u(t) the primal SNN. Now, the dual SNN, can be defined as follows.

d

dt
v(t) = −α ·As(t) + b

where v(0) = 0 and s(t) defined as the usual way. At first glance, this merely looks like a
simple linear transformation, Nevertheless, the dual SNN provides a nice geometric view for
the SNN dynamics as follows.

At each update in the dynamics, there are two terms affecting the dual SNN v(t): the
external charging b · dt and the spiking effect −α ·As(t). First, the external charging b · dt
can be thought of as a constant force that drags that dual SNN in the direction b.

10 See Definition 4 for the formal definition of ε-approximate solution.
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Figure 2 These are examples of the geometric interpretation of the dual SNN. In (a), we have
one neuron where A1 = [ 1

2 1]>. In this case, neuron i would not fire as long as the dual SNN v(t)
stays in the gray area. In (b), we consider a SNN with 3 neurons where A1 = [1 0]>, A2 = [0 1]>,
and A3 = [ 2

3
2
3 ]>. One can see that the effect of spikes on dual SNN is a jump in the direction of

the normal vector of the wall(s).

Table 1 Comparison of the geometric view of primal and dual SNNs.

Primal SNN u(t) Dual SNN v(t)

Spiking rule ui(t) > 1 A>i v(t) > 1

Spiking effect −α ·A>Ai −α ·Ai

To explain the effect of spikes in the dual view, let us start with an geometric view for the
spiking rule. Recall that neuron i fires a spike at time t if and only if ui(t) > 1. In the language
of dual SNN, this condition is equivalent to A>i v(t) > 1. Let Wi = {v ∈ Rm : A>i v = 1}
be the wall of neuron i, the above observation is saying that neuron i will fire a spike once
it penetrates the wall Wi from the half-space {v ∈ Rm : A>i v ≤ 1}. See Figure 2 for an
example. After neuron i fires a spike, the spiking effect on the dual SNN v(t) would be a
−α ·Ai term, which corresponds to a jump in the normal direction of Wi. See Figure 2 for
an example.

The geometric interpretation described above is the main advantage of using dual SNN.
Specifically, this gives us a clear picture of how spikes affect the SNN dynamics. Namely,
neuron i fires a spike if and only if the dual SNN v(t) penetrates the wall Wi and then v(t)
jumps back in the normal direction of Wi. Note that this connection would not hold in the
primal SNN. In primal SNN u(t), neuron i fires a spike if and only if ui(t) > 1 while the
effect on u(t) is moving in the direction −A>Ai. See Table 1 for a comparison.

Dual view of SNN as a primal-dual algorithm for `1 minimization problem. First, let us
write down the `1 minimization problem and its dual.

minimize
x∈Rn

‖x‖1

subject to Ax = b.

maximize
v∈Rm

b>v

subject to ‖A>v‖∞ ≤ 1.

ITCS 2019



26:8 On the Algorithmic Power of Spiking Neural Networks

Now we observe that the dual dynamics can be viewed as a variant of the projected
gradient descent algorithm to solve the dual program. Before the explanation, recall that for
the `1 minimization problem, we are considering the two-sided SNN for convenience. Indeed,
without the spiking term, v(t) simply moves towards the gradient direction b of the dual
objective function b>v. For the spike term −α · As(t), note that si(t) 6= 0 (i.e., neuron i
fires) if and only if |A>i v(t)| = |ui(t)| > 1, which means that v(t) is outside the feasible
polytope {v : ‖A>v‖∞ ≤ 1} of the dual program. Therefore, one can view the role of the
spike term as projecting v(t) back to the feasible polytope. That is, when the dual SNN
v(t) becomes infeasible, it triggers some spikes, which maintains the dual feasibility and
updates the primal solution (the firing rate). To sum up, we can interpret the simple SNN
as performing a non-standard projected gradient descent algorithm for the dual program of
`1 minimization in the dual view of SNN.

With this primal-dual view in mind, we analyze the SNN algorithm by combining tools
from convex geometry and perturbation theory as well as several non-trivial structural lemmas
on the geometry of the dual program of `1 minimization. One of the key ingredients here is
identifying a potential function that (i) upper bounds the error of solving `1 minimization
problem and (ii) monotonously converges to 0. More details will be provided in Section 3.

1.4 Related Work
We compare this research with other related works in the following four aspects.

Computational power of SNN. Recognized as the third generation of neural networks [45],
the theoretical foundation for the computability of SNN had been built in the pioneering
works of Maass et al. [43, 45, 46, 48] in which SNN was shown to be able to simulate
standard computational models such as Turing machines, random access machines (RAM),
and threshold circuits.

However, this line of works focused on the universality of the computational power
and did not consider the efficiency of SNN in solving specific computational problems. In
recent years, a line of exciting research have reported the efficiency of SNN in solving
specific computational problems such as sparse coding [68, 62, 63], dictionary learning [36],
pattern recognition [19, 32, 6], and quadratic programming [4]. These works indicated the
advantage of SNN in handling sparsity as well as being energy efficient and inspired real-world
applications [5]. However, to the best of our knowledge, no theoretical guarantee on the
efficiency of SNN had been provided. For instance, Tang et al. [62, 63] only proved the
convergence in the limit result for SNN solving sparse coding problem instead of giving an
explicit convergence rate analysis. The main contribution in this work is giving a rigorous
guarantee on the convergence rate of the computational power of SNN.

The number of spikes versus the timing of spikes. In this work, we mainly focus on the
firing rate of SNN. That is, we only study the computational power with respect to the
number of spikes. Another important property of SNN is the timing of spikes.

The power of the timing of spikes had been reported since the 90s from some experi-
mental evidences indicating that neural systems might use the timing of spikes to encode
information [1, 28, 54]. From then on, a bunch of works have been focused on the aspect
of time as a basis of information coding both from theoretical [52, 45, 48, 66] and experi-
mental [25, 7, 34] sides. It is generally believed that the timing of spikes is more powerful
then the firing rate [67, 56, 53]. Other than the capacity of encoding information, the timing
of spikes has also been studied in the context of computational power [67, 44, 45, 24] and
learning [12, 3, 60]. See the survey by Paugam et al. [53] for a thorough discussion.
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While the timing of spikes is conceived as an important source of the power of SNN, in
this work we simply focus on the firing rate and already yield some non-trivial findings in
terms of the computational power. We believe that our work is still in the very beginning
stage of the study of the computational power of SNN. Investigating how does the timing of
spikes play a role is an interesting and important future direction. Immediate open questions
here would be how could the timing of spikes fit into our study? What’s the dual view of the
timing of spikes? Can the timing of spikes solve the optimization problems more efficiently?
Can the timing of spikes solve more difficult problems?

SNN with randomness. While most of the literature focused on deterministic SNN, there
is also an active line of works studying the SNN model with randomness11 [2, 57, 20, 15, 30,
47, 31, 40, 41, 42, 39].

Buesing et al. [15] used noisy SNN to implement MCMC sampling and Jonke et al. [30,
47, 31] further instantiated the idea to attack NP-hard problems such as traveling salesman
problem (TSP) and constraint satisfaction problem (CSP). Concretely, their noisy SNN
has a randomized spiking rule and the firing pattern would form a distribution over the
solution space whereas the closer a solution is to the optimal solution, the higher the
probability it is sampled. They got nice experimental performance in terms of solving
empirical instance approximately. They also pointed out that their noisy SNN has the
potential to be implemented energy-efficiently in practice.

Lynch, Musco, and Parter [41] studied the stochastic SNNs with a focus on the Winner-
Take-All (WTA) problem. Their sequence of works [40, 41, 42, 39] gave the first asymptotic
analysis for stochastic SNN in solving WTA, similarity testing, and neural coding. They
view SNNs as distributed algorithms and derived computational tradeoff in running time
and network size.

In this work, we consider the SNN model without randomness and thus is incomparable
with the above SNN models with randomness. It is an interesting direction to apply the dual
view of deterministic SNN to SNN with randomness.

Locally competitive algorithms. Inspired by the dynamics of biological neural networks,
Ruzell et al. designed the locally competitive algorithms (LCA) [55] for solving the Lasso
(least absolute shrinkage and selection operator) optimization problem12, which is widely
used in statistical modeling. Roughly speaking, LCA is also a dynamics among a set of
artificial neurons which continuously signal their potential values (or a function of the values)
to their neighboring neurons. There are two main differences between SNN and LCA. First,
the neuron in SNN fires discrete spikes while the artificial neuron in LCA produces continuous
signal. Next, the neurons’ potentials in LCA will converge to a fixed value, which is the
output of the algorithm. In contrast, in SNN, only the neurons’ firing rates may converge
instead of their potentials.

Nevertheless, there is a spikified version of LCA introduced by Shapero et al. [58, 59] called
spike LCA (S-LCA) in which the continuous signals are replaced with discrete spikes. S-LCA
is almost the same as the SNN we are considering except a shrinkage term13. Recently,
Tang et al. [63] showed that the firing rate of S-LCA indeed converges to a variant of

11 SNN model with noise is also known as stochastic SNN or noisy SNN depending on how the randomness
involves in the model.

12Note that Lasso is equivalent to the Basis Pursuit De-Noising (BPDN) program under certain parameters
transformation.

13That is, the potential of each neuron will drop with rate proportional to the current potential value.
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Lasso problem14 in the limit. These works also experimentally demonstrated the efficient
convergence of S-LCA and its advantage of fast identifying sparse solutions with potentially
competitive practical performance to other Lasso algorithms (e.g., FISTA [5]). However,
there is no proof of convergence rate, and thus no explicit complexity bound of S-LCA.

1.5 Future Works and Perspectives
In this work, we give a theoretical study on the algorithmic power of SNN. Specifically, we
focus on the firing rate of SNN and confirm an empirical analysis by Barrett et al. [4] with
a convergence theorem (i.e., Theorem 1). Furthermore, we discover a dual view of SNN
and show that SNN is able to solve the `1 minimization problem (i.e., Theorem 2). In the
following, we give interpretations to our results and point out future research directions.

First, how to interpret the dual dynamics of SNN? In this work, we discover the dual
SNN based on mathematical convenience. Is there any biological interpretation?

Second, push further the analysis of simple SNN. We believe the parameters we get in
the main theorems are not optimal. Is it possible to further sharpen the upper bound? We
think this is both theoretically and practically interesting because both non-negative least
squares and `1 minimization are important problems that have been well-studied studied
in the literature. Comparing the running time complexity or parallel time complexity of
SNN algorithm with other algorithms could also be of theoretical interest and might inspire
new algorithm with better complexity. Also, for practical purpose, having better parameters
would give more confidence in implementing SNN as a natural algorithm.

Third, further investigate the potential of SNN dynamics as natural algorithms. The
question is two-folded: (i) What algorithms can SNN implement? (ii) What computational
problems can SNN solve? It seems that SNN is good at dealing with sparsity. Could it
be helpful in related computational tasks such as fast Fourier transform (FFT) or sparse
matrix-vector multiplication? It is interesting to identify optimization problems and class of
instances where SNN algorithm can outperform other algorithms.

Finally, explore the practical advantage of SNN dynamics as natural algorithms. The
potential practical time efficiency, energy efficiency, and simplicity for hardware implementa-
tion have been suggested in several works [50, 8, 9]. It would be exciting to see whether SNN
has nice performance on practical applications such as compressed sensing, Lasso, and etc.

Organization. The rest of the paper is organized as follows. Preliminaries are provided in
Section 2. In Section 3, we formally present the dual view of SNN and give a proof sketch
for the convergence theorem for `1 minimization problem. The full proofs for Theorem 1 and
Theorem 2 are provided in the full version of this paper available on arXiv.

2 Preliminaries

In Section 2.1, we build up some notations for the rest of the paper. In Section 2.2, we define
two optimization problems and the corresponding convergence guarantees.

2.1 Notations
For any n ∈ N, denote [n] = {1, 2, . . . , n} and [±n] = {±1,±2, . . . ,±n}. Let x,y ∈ Rn be
two vectors. |x| ∈ Rn denotes the entry-wise absolute value of x, i.e., |x|i = |xi| for any
i ∈ [n]. x � y refers to entry-wise comparison, i.e., xi ≤ yi ∀i ∈ [n].

14 In this variant, all the entries in matrix A is non-negative.
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Let A be an m× n real matrix. For any i ∈ [n], denote the ith column of A as Ai and its
negation to be A−i, i.e., A−i = −Ai. When A is positive semidefinite, we define the A-norm
of a vector x ∈ Rn to be ‖x‖A :=

√
x>Ax. Let A† to be the pseudo-inverse of A. Define

the maximum eigenvalue of A as λmax(A) := maxx∈Rn: ‖x‖2=1 ‖x‖A, the minimum non-zero
eigenvalue of A to be λmin(A) := 1/(maxx∈Rn: ‖x‖2=1 ‖x‖A†), and the condition number of
A to be κ(A) := λmax(A)/λmin(A). If we do not specified, the following λmax, λmin, and κ
are the eigenvalues and condition number of the connectivity matrix C = A>A. For any
b ∈ Rm, we denote bA to be the projection of b on the range space of A.

2.2 Optimization problems

In this subsection, we are going to introduce two optimization problems: non-negative least
squares and `1 minimization.

2.2.1 Non-negative least squares

I Problem 1 (non-negative least squares). Let m,n ∈ N. Given A ∈ Rm×n and vector
b ∈ Rm, find x ∈ Rn that minimizes ‖b−Ax‖2

2/2 subject to xi ≥ 0 for all i ∈ [n].

I Remark. Recall that the least squares problem is defined as finding x that minimize
‖b−Ax‖2. That is, the non-negative least squares is a restricted version of the least squares
problem. Nevertheless, one can use a non-negative least squares solver to solve the least
squares problem by setting A′ =

(
A>A −A>A

−A>A A>A

)
and b′ =

( b
−b
)
where (A,b) is the instance

of least squares and (A′,b′) is the instance of non-negative least squares.

The SNN algorithm might not solve the non-negative least squares problem exactly
and thus we define the following notion of solving the non-negative least squares problem
approximately.

I Definition 3 (ε-approximate solution to non-negative least squares). Let m,n ∈ N and ε > 0.
Given A ∈ Rm×n and b ∈ Rm. We say x is an ε-approximate solution to the non-negative
least squares problem of (A,b) if ‖Ax−Ax∗‖2 ≤ ε‖b‖2 where x∗ is an optimal solution.

2.2.2 `1 minimization

I Problem 2 (`1 minimization). Let m,n ∈ N. Given A ∈ Rm×n and b ∈ Rm such that
there exists a solution to Ax = b. The goal of `1 minimization is to solve the following
optimization problem.

minimize
x∈Rn

‖x‖1

subject to Ax = b.

Similarly, we do not expect SNN algorithm to solve the `1 minimization exactly. Thus,
we define the notion of solving the `1 minimization problem approximately as follows.

I Definition 4 (ε-approximate solution to `1 minimization). Let m,n ∈ N and ε > 0. Given
A ∈ Rm×n and b ∈ Rm. Let OPT`1 denote the optimal value of the `1 minimization problem
of (A,b). We say x ∈ Rn is an ε-approximate solution of the `1 minimization problem of
(A,b) if ‖b−Ax‖2 ≤ ε · ‖b‖2 and ‖x‖1 −OPT`1 ≤ ε ·OPT`1 .
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2.3 Karush-Kuhn-Tucker conditions

Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions for the
optimality of optimization problems under some regular assumptions. Consider the following
optimization program.

minimize
x∈Rn

f(x)

subject to gi(x) ≤ 0, ∀i = 1, 2, . . .m,
hj(x) = 0, ∀j = 1, 2, . . . , k,

(4)

where f, g1, . . . , gm, h1, . . . , hk are convex and differentiable. Let v ∈ Rm and µ ∈ Rk be the
dual variables. KKT conditions give necessary and sufficient conditions for (x,v,µ) be a
pair of primal and dual optimal solutions.

I Theorem 5 (KKT conditions, Chapter 5.5.3 in [13]). (x,v,µ) are a pair of primal and dual
optimal solutions for (4) if and only if the following conditions hold.

x is primal feasible, i.e., gi(x) ≤ and hj(x) = 0 for all i ∈ [m] and j ∈ [k].
(v,µ) is dual feasible, i.e., vi ≥ 0 for all i ∈ [m].
The Lagrange multiplier vanishes, i.e., ∇f(x) +

∑
i∈[m] vi∇gi(x) +

∑
j∈[k] µj∇hj(x) = 0.

(x,v,µ) satisfy complementary slackness, i.e., vifi(x) ≥ 0 for all i ∈ [m].

2.4 Perturbation theory

Perturbation theory, sometimes known as sensitivity analysis, for optimization problems
concerns the situation where the optimization program is perturbed and the goal is to give a
good estimation for the optimal solution. See a nice survey by Bonnans and Shapiro [11]. In
the following we state a special case for convex optimization program with strong duality.

I Theorem 6 (perturbation, Chapter 5.6 in [13]15). Given the following two optimization
programs where the strong duality holds and there exists feasible dual solution.

minimize
x

f(x)

subject to gi(x) ≤ 0, ∀i = 1, 2, . . . ,m,
hj(x) = 0, ∀j = 1, 2, . . . , k.

(5)

minimize
x

f(x)

subject to gi(x) ≤ ai, ∀i = 1, 2, . . . ,m,
hj(x) = bj , ∀j = 1, 2, . . . , k.

(6)

Let OPToriginal be the optimal value of the original program (5) and OPTperturbed be
the optimal value of the perturbed program (6). Let (v∗,µ∗) ∈ Rm × Rk be the optimal dual
solution of the perturbed program (6). We have

OPToriginal ≥ OPTperturbed + a>v∗ + b>µ∗.

15Note that we switch the original and perturbed programs in the statement in [13].
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3 A simple SNN algorithm for `1 minimization

In this section, we focus on the discovery of the dual view of simple SNN and how it can be
viewed as a primal-dual algorithm for solving the `1 minimization problem.

Recall that for the `1 minimization problem, we are working on the two-sided simple
SNN for the convenience of future analysis. That is,

d

dt
u(t) = −α ·A>As(t) +A>b,

where si(t) = 1ui(t)>η − 1ui(t)<−η. To solve the `1 minimization problem, we configure
a two-sided simple SNN as follows. Given an input (A,b), let C = A>A and I = A>b.
However, currently it is unclear how does the above simple SNN dynamics relate to the `1
minimization problem.

minimize
x∈Rn

‖x‖1

subject to Ax = b.
(7)

Interesting, the connection between simple SNN and the `1 minimization problem happens
in the dual program of the `1 minimization problem. Before we formally explain this
connection, let us write down the dual program of (7).

maximize
v∈Rm

b>v

subject to ‖A>v‖∞ ≤ 1.
(8)

Let us try to make some geometric observations on (8). First, the objective of the dual
program is to maximize the inner product with b, which is quite related to the external
charging of SNN since we take I = A>b. Next, the feasible region of the dual program is a
polytope (or a polyhedron) defined by the intersection of half-spaces {v ∈ Rm : A>i v ≤ 1}
and {v ∈ Rm : −A>i v ≤ 1} for each i ∈ [n] where Ai denotes the ith column of A.

It will be convenient to introduce the following notation before we move on. For i ∈ [n],
let A−i = −Ai. Let [±n] = {±1,±2, . . . ,±n}. Thus, the feasible polytope of the dual
program is defined by the intersection of half-spaces defined by A>j v ≤ 1 for all j ∈ [±n]. We
call this polytope the dual polytope16. Moreover, for each j ∈ [±n], we call the hyperplane
{v : A>j v = 1} the wall Wj of the dual polytope. See Figure 3 for examples.

Now, the key observation is that by a linear transformation, the dynamics of simple SNN
has a natural interpretation in the dual space. We call it the dual SNN defined as follows.

3.1 Dual SNN
We first recall the simple SNN dynamics which we call the primal SNN from now on. For
convenience, we set the threshold parameter η = 1. For any t ≥ 0,

u(t+ dt) = u(t)− α ·A>A · s(t) +A>b · dt. (9)

Now, we define the dual SNN v(t) ∈ Rm as follows. Let v(0) = 0 and for each t ≥ 0, define

v(t+ dt) = v(t)− α ·As(t) + b · dt. (10)

16 In the case where the feasible region of the dual program is not bounded, it is a dual polyhedron. For
the convenience of the presentation, we usually assume the feasible region is bounded.
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Figure 3 This is examples of the geometric interpretation of the dual program of `1 minimization
problem. In (a), we have n = 1 where A1 = [ 1

3 1]>. In this case, the gray area, i.e., the feasible
region of the dual program, is unbounded. In (b), we have n = 3 where A1 = [1 0]>, A2 = [0 1]>,
and A3 = [ 2

3
2
3 ]>. In this case, the gray area is bounded and thus called dual polytope.

Let us make some remarks about the connection between the primal and dual SNNs. First,
it can be immediately seen that u(t) = A>v(t) for each t ∈ N from (9) and (10). That is,
given v(t), it is easy to get u(t) by multiplying u(t) with A> on the left. It turns out that
the other direction also holds. For each t ∈ N, we have v(t) = (A>)†u(t), where (A>)† is the
pseudo-inverse of A>. The reason is because the primal SNN u(t) lies in the column space
of A. Thus, the two dynamics are in fact isomorphic to each other.

Now let us understand the dynamics of dual SNN in the dual space Rm. At each timestep,
there are two terms, i.e., the external charging b · dt and the spiking effect −αAs(t), that
affect the dual SNN v(t). The external charging can be thought of as a constant force that
drags that dual SNN in the direction b. See Figure 4. This coincides with the objective
function of the dual program (8) and thus the external charging can then be viewed as taking
a gradient step towards solving (8).

Nevertheless, to solve (8), one need to make sure the solution v is feasible, i.e., v should lie
in the dual polytope. Interestingly, this is exactly what the spike is doing! Recall that neuron
i fires a spike if |ui(t)| > 1 (recall that we set η = 1), which corresponds to |A>i v(t)| > 1 in
the dual space. Thus, the spike term has the following nice geometric interpretation: if v(t)
“exceeds” the wall Wj for some j ∈ [±n], then neuron |j| fires a spike and v(t) is “bounced
back” in the normal direction of the wall Wj in the sense that v(t) is subtracted by α ·Aj .
See Figure 4 for example.

Therefore, one can view the dual SNN as performing a variant of projected gradient
descent algorithm for the dual program of `1 minimization problem. Specifically, to maintain
the feasibility, the vector is not projected back to the feasible region as usual, but is “bounced
back” in the normal direction of the wallWj corresponding to the violated constraint A>j v ≤ 1.
An advantage of this variant is that the “bounced back” operation is simply subtraction
of α · Aj , which is significantly more efficient than the orthogonal projection back to the
feasible region. On the other hand, note that the dynamics might not exactly converge to the
optimal dual solution vOPT. Intuitively, the best we can hope for is that v(t) will converge
to a small neighboring region of vOPT(assuming the spiking strength α is sufficiently small).
The above intuition of viewing dual SNN as a projected gradient descent algorithm for the
dual program of the `1-minimization problem will be formally proved in the full version of
this paper.
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Figure 4 This is examples of the geometric interpretation of the dual We consider the same
matrix A as in Figure 3 and b = [0.1 0.4]>. In (a), one can see that the external charging b points
the direction that dual SNN is moving. In (b), one can see that the effect of spikes on dual SNN is a
jump in the direction of the normal vector of the wall.

The primal-dual connection. So far we have informally seen that the dual SNN can be
viewed as solving the dual program of the `1-minimization problem. However, this does not
immediately give us a reason why the firing rate would converge to the solution of the primal
program. It turns out that there is a beautiful connection between the dual SNN and firing
rate through the Karush-Kuhn-Tucker (KKT) conditions (see Section 2.3) and perturbation
theory (see Section 2.4).

We now discuss some intuitions about how the dual solution translates to the primal
solution. To jump into the core idea, let us consider an ideal scenario where the dual SNN
v(t) is already very close to the optimal dual solution vOPT for the dual program of the
`1 minimization problem. Since vOPT is the optimal solution and thus it must lie on the
boundary of the dual polytope. Let Γ ⊆ [±n] be the set of walls that vOPT touches. That
is, j ∈ Γ if and only if A>j vOPT = 1. Now, let xOPT denote the optimal primal solution of
the `1 minimization problem. Observe that by the complementary slackness in the KKT
conditions, for each i ∈ [n], we have xOPT

i > 0 (resp. xOPT
i < 0) if i ∈ Γ (resp. −i ∈ Γ) and

xOPT
i = 0 if i,−i 6∈ Γ. To summary, this is saying that Γ contains the coordinates that are

non-zero in the primal optimal solution xOPT. See Figure 5 for an example.
With this observation, once the dual SNN v(t) is very close to the optimal dual solution

vOPT and stays nearby, only those neurons correspond to Γ would fire spikes. In other words,
the firing rate of the non-zero coordinates in the primal optimal solution xOPT will remain
non-zero due to the spikes while the other coordinates will gradually go to zero.

At this point, we have seen that (i) the dual SNN can be viewed as a projected gradient
descent algorithm for the dual program of `1 minimization problem and (ii) the dual solution
(resp. dual SNN) and primal solution (resp. firing rate) have a natural connection through
the KKT conditions. Now, let us formally state the main theorem of this section about
simple SNN solving `1 minimization problem.

I Theorem 7. Given A ∈ Rm×n and b ∈ Rm where all the row of A has unit norm. Let
γ(A) be the niceness parameter17 of A. Suppose γ(A) > 0 and there exists a solution to
Ax = b. There exists a polynomial α(·) such that for any t ≥ 0, let x(t) be the firing rate

17The niceness parameter is formally defined in Definition 4 of the full version of this paper.
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Figure 5 This is an example based on Figure 3 and Figure 4. In this example, A1 = [1 0]>,
A2 = [0 1]>, A3 = [ 2

3
2
3 ]>, and b = [0.1 0.4]>. The optimal dual solution is vOPT = [ 1

2 1]> as
shown in the figure. Thus, by the above definition we have Γ = {2, 3}. By the KKT conditions, we
then know that only the 2nd and 3rd coordinate of the optimal primal solution are non-zero. Indeed,
the optimal primal solution is xOPT = [0 3

10
3

20 ]>.

of the simple SNN with C = A>A, I = A>b, η = 1, 0 < α ≤ α( γ(A)
n·λmax

). Let OPT`1 be the
optimal value of the `1 minimization problem. For any ε > 0, when t ≥ Ω( m2·n·‖b‖2

2
ε2·λmin·OPT`1 ),

then x(t) is an ε-approximate solution to the `1 minimization problem for (A,b).

Two remarks on the statement of Theorem 7. First, we consider the continuous SNN
instead of the discrete SNN, which is of interest for simulation on classical computer. In
discrete SNN, the step size is some non-negligible ∆t > 0 instead of dt. The main reason
for considering continuous SNN is that this significantly simplify the proof by avoiding a
huge amount of nasty calculations. We suspect that the proof idea would hold for discrete
SNN with discretization parameter ∆t ≤ ∆t( γ(A)

n·λmax
) for some polynomial ∆t(·). Second, the

parameters in Theorem 7 have not been optimized and we believe all the dependencies can
be improved. Since the parameters highly affect the efficiency of SNN as an algorithm for `1
minimization problem, we pose it as an interesting open problem to study what are the best
dependencies one can get.

3.2 Overview of the proof for Theorem 7
The proof for Theorem 7 consists of two main steps as mentioned in the previous subsection.
The first step argues that the dual SNN v(t) would converge to the neighborhood of the
optimal dual solution vOPT. The second step is connecting the dual solution (i.e., the dual
SNN) to the primal solution (i.e., the firing rate). In the subsection, we sketch the proof for
Theorem 7 while some lemmas and definitions might not appear in this conference version
and can found in the full version of this paper.

In the first step, we try to identify a potential function18 that captures how close is v(t)
to the optimal dual solution vOPT. It turns out that this is not an easy task since the effect
of spikes makes the behavior of dual SNN very non-monotone. We conquer the difficulty
via a technique that we call ideal coupling (see Definition 6 and Figure 7 in the full version).

18Potential function is widely used in the analysis of many gradient-descent based algorithm. The difficulty
lies in the search of a good potential function for the algorithm.
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Theorem 7
(SNN solves `1 minimization problem)

Lemma 3.11
(convergence of `2 error)

Lemma 3.12
(`2 error upper bounds `1 error)

KKT conditions PerturbationLemma 3.5
(unchaged after spikes)

Lemma 3.8
(strict improvement)

Definition 4
(niceness of input matrix)

Definition 6
(ideal coupling)

Definition 8
(auxiliary SNN)

Figure 6 Overview of the proof for Theorem 7. The missing lemmas and definitions can be found
in the full version of this paper.

The idea is associating the dual SNN v(t) with an ideal SNN videal(t) for every t ≥ 0 such
that the ideal SNN would have smoother behavior comparing to the spiking phenomenon
in the dual SNN. We will formally define the ideal SNN in Section 3.4 of the full version.
There are two advantages of using ideal SNN instead of handling dual SNN directly: (i)
Ideal SNN is smoother than dual SNN in the sense that it would not change after spikes (see
Lemma 3.5 in the full version). Further, by introducing some auxiliary processes (i.e., the
auxiliary SNNs defined in Definition 8 in the full version), we are able to identify a potential
function that is strictly improving at any moment and measures how well the dual SNN
has been solving the `1 minimization problem (see Lemma 3.8 in the full version). (ii) ideal
SNN is naturally associated with an ideal solution (defined in Definition 7 in the full version)
which is easier to analyze than the firing rate. Using these good properties of ideal SNN, we
can prove in Lemma 3.11 (in the full version) that the `2 residual error of the ideal solution
will converge to 0.

After we are able to show the convergence of the `2 residual error in Lemma 3.11 (in the
full version), we move to the second step where the goal is showing that the `1 norm of the
solution is also small. We look at the KKT conditions of the `1 minimization problem and
observe that the primal and dual solutions of SNN satisfy the KKT conditions of a perturbed
program of the `1 minimization problem. Finally, combine tools from perturbation theory,
we can upper bound the `1 error of the ideal solution by its `2 residual error in Lemma 3.12
(in the full version).

Theorem 7 then follows from Lemma 3.11 and Lemma 3.12 (in the full version) with
some special cares on how to transform everything for ideal solution to the firing rate. See
Figure 6 for an overall structure of the proof for Theorem 7.

The full proof for Theorem 7 and other technical details are all provided in the full version
of this paper.
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Abstract
Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks,
recent work of Daskalakis et al [Daskalakis et al., ICLR, 2018] and follow-up work of Liang
and Stokes [Liang and Stokes, 2018] have established that a variant of the widely used Gradi-
ent Descent/Ascent procedure, called “Optimistic Gradient Descent/Ascent (OGDA)”, exhibits
last-iterate convergence to saddle points in unconstrained convex-concave min-max optimization
problems. We show that the same holds true in the more general problem of constrained min-max
optimization under a variant of the no-regret Multiplicative-Weights-Update method called “Op-
timistic Multiplicative-Weights Update (OMWU)”. This answers an open question of Syrgkanis
et al [Syrgkanis et al., NIPS, 2015].

The proof of our result requires fundamentally different techniques from those that exist in no-
regret learning literature and the aforementioned papers. We show that OMWU monotonically
improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized)
min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we
show that OMWU becomes a contracting map converging to the exact solution. We believe that
our techniques will be useful in the analysis of the last iterate of other learning algorithms.
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1 Introduction

A central problem in Game Theory and Optimization is computing a pair of probability
vectors (x,y), solving

min
y∈∆m

max
x∈∆n

x>Ay, (1)
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where ∆n ⊂ Rn and ∆m ⊂ Rm are probability simplices, and A is a n ×m matrix. Von
Neumann’s celebrated minimax theorem informs us that

min
y∈∆m

max
x∈∆n

x>Ay = max
x∈∆n

min
y∈∆m

x>Ay, (2)

and that all solutions to the LHS are solutions to the RHS, and vice versa. This result was
a founding stone in the development of Game Theory. Indeed, interpreting x>Ay as the
payment of the “min player” to the “max player” when the former selects a distribution y
over columns and the latter selects a distribution x over rows of matrix A, a solution to (1)
constitutes an equilibrium of the game defined by matrix A, called a “minimax equilibrium”, a
pair of randomized strategies such that neither player can improve their payoff by unilaterally
changing their distribution.

Besides their fundamental value for Game Theory, it is known that (1) and (2) are
also intimately related to Linear Programming. It was shown by von Neumann that (2)
follows from strong linear programming duality. Moreover, it was suggested by Dantzig [7]
and recently proven by Adler [1] that any linear program can be solved by solving some
min-max problem of the form (1). In particular, min-max problems of form (1) are exactly
as expressive as min-max problems of the following form, which capture any linear program
(by Lagrangifying the constraints):

min
y≥0

max
x≥0

(
x>Ay + b>x + c>y

)
. (3)

Soon after the minimax theorem was proven and its connection to linear programming
was forged, researchers proposed dynamics for solving min-max optimization problems by
having the min and max players of (1) run a simple learning procedure in tandem. An early
method, proposed by Brown [4] and analyzed by Robinson [18], was fictitious play. Soon
after, Blackwell’s approachability theorem [3] propelled the field of online learning, which
lead to the discovery of several learning algorithms converging to minimax equilibrium at
faster rates, while also being robust to adversarial environments, situations where one of
the players of the game deviates from the prescribed dynamics; see e.g. [5]. These learning
methods, called “no-regret”, include the celebrated multiplicative-weights-update method,
follow-the-regularized-leader, and follow-the-perturbed-leader. Compared to centralized
linear programming procedures the advantage of these methods is the simplicity of executing
their steps, and their robustness to adversarial environments, as we just discussed.

Last vs Average Iterate Convergence

Despite the extensive literature on no-regret learning, an unsatisfactory feature of known
results is that min-max equilibrium is shown to be attained only in an average sense. To be
precise, if (xt,yt) is the trajectory of a no-regret learning method, it is usually shown that
the average 1

t

∑
τ≤t xτ>Ayτ converges to the optimal value of (1), as t → ∞. Moreover,

if the solution to (1) is unique, then 1
t

∑
τ≤t(xτ ,yτ ) converges to the optimal solution.

Unfortunately that does not mean that the last iterate (xt,yt) converges to an optimal
solution, and indeed it commonly diverges or enters a limit cycle. Furthermore, in the
optimization literature, Nesterov [15] provides a method that can give pointwise convergence
(i.e., convergence of the last iterate) to problem (1)3, however his algorithm is not a no-regret

3 Nesterov showed that by optimizing fµ(x) := µ ln( 1
m

∑m

j=1 e
− 1
µ

(Ax)j ), gν(x) := ν ln( 1
n

∑n

j=1 e
1
ν

(A>y)j )
for µ = Θ( ε

logm ), ν = Θ( ε
logn ) yields an O(ε) approximation to the problem problem (1).



C. Daskalakis and I. Panageas 27:3

learning algorithm. Recent work by Daskalakis et al [8] and Liang and Stokes [11] studies
whether last iterate convergence can be established for no-regret learning methods in the
simple unconstrained min-max problem of the form:

min
y∈Rm

max
x∈Rn

(
x>Ay + b>x + c>y

)
. (4)

For this problem, it is known that Gradient Descent/Ascent (GDA) is a no-regret learning
procedure, corresponding to follow-the-regularized leader (FTRL) with `22-regularization. As
such, the average trajectory traveled by GDA converges to a min-max solution, in the afore-
described sense. On the other hand, it is also known that GDA may diverge from the min-max
solution, even in trivial cases such as A = I, n = m = 1, b = c = 0. Interestingly, [8, 11] show
that a variant of GDA, called “Optimistic Gradient Descent/Ascent (OGDA),4 exhibits last
iterate convergence. Inspired by their theoretical result for the performance of OGDA in (4),
Daskalakis et al. [8] even propose the use of OGDA for training Generative Adversarial
Networks (GANs) [10]. Moreover, Syrgkanis et al. [19] provide numerical experiments which
indicate that the trajectories of Optimistic Hedge (variant of Hedge in the same way OGDA
is a variant of GDA) stabilize (i.e., converge pointwise) as opposed to (classic) Hedge and
they posed the question whether Optimistic Hedge actually converges pointwise.

Motivated by the afore-described lines of work, and the importance of last iterate conver-
gence for Game Theory and the modern applications of GDA-style methods in Optimization,
our goal in this work is to generalize the results of [8, 11] to the general min-max prob-
lem (3), or equivalently (1); indeed, we will focus on the latter, but our algorithms are
readily applicable to the former as the two problems are equivalent [1]. With the constraint
that (x,y) should remain in ∆n ×∆m, GDA and OGDA are not applicable. Indeed, the
natural GDA-style method for min-max problems in this case is the celebrated Multiplicative-
Weights-Update (MWU) method, which is tantamount to FTRL with entropy-regularization.
Unsurprisingly, in the same way that GDA suffers in the unconstrained problem (4), MWU
exhibits cycling in the constrained problem (1) (a recent work is [2] and was also shown
empirically in [19]). So it is natural for us to study instead its optimistic variant, “Optimistic
Multiplicative-Weights-Update (OMWU),” (called Optimistic Hedge in [19]) which corres-
ponds to Optimistic FTRL with entropy-regularization, the equations of which are given in
Section 2.2. Our main result is the following (restated as Theorem 5 after Section 2.2) and
answers an open question asked in [19] as applicable to two player zero sum games:

I Theorem 1 (Last-Iterate Convergence of OMWU). Whenever (1) has a unique optimal
solution (x∗,y∗), OMWU with a small enough learning rate and initialized at the pair of
uniform distributions ( 1

n1, 1
m1) exhibits last-iterate convergence to the optimal solution. That

is, if (xt,yt) are the vectors maintained by OMWU at step t, then limt→∞(xt,yt) = (x∗,y∗).

I Remark. We note that the assumption about uniqueness of the optimal solution for
problem (1) is generic in the following sense: Within the set of all zero-sum games, the set of
zero-sum games with non-unique equilibrium has Lebesgue measure zero [2, 6]. This implies
that if A’s entries are sampled independently from some continuous distribution, then with
probability one the min-max problem (1) will have a unique solution.

Our paper provides two important messages:

4 OGDA is tantamount to Optimistic FTRL with `2
2-regularization, in the same way that GDA is

tantamount to FTRL with `2
2-regularization; see e.g. [17]. OGDA essentially boils down to GDA with

negative momentum.
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27:4 Last-Iterate Convergence

It strengthens the intuition that optimism helps the trajectories of learning dynamics
stabilize (e.g., Optimistic MWU vs MWU or Optimistic GDA vs GDA; as the papers of
Syrgkanis et al [19] and Daskalakis et al [8] also do).
The techniques we use (typically appear in dynamical systems literature) to prove
convergence for the last iterate, are fundamentally different from those commonly used
to prove convergence of the time average of a learning algorithm.

Notation. Vectors in ∆n,∆m are denoted in boldface x,y. Time indices are denoted by
superscripts. Thus, a time indexed vector x at time t is denoted as xt. We use the letter J to
denote the Jacobian of a function (with appropriate subscript), I,0,1 to denote the identity,
zero matrix and all ones vector respectively with appropriate subscripts to indicate the size.
Moreover, (Ay)i captures

∑
j Aijyj . The support of x is denoted by Supp(x). Finally we

use (x∗,y∗) to denote the optimal solution for the min-max problem (1) and [n] to denote
{1, ..., n}.

2 Preliminaries

2.1 Definitions and facts
Dynamical Systems

A recurrence relation of the form xt+1 = w(xt) is a discrete time dynamical system, with
update rule w : S → S where S = ∆n ×∆m ×∆n ×∆m for our purposes. The point z is
called a fixed point or equilibrium of w if w(z) = z. We will be interested in the following
well known fact that will be used in our proofs.

I Proposition 2 (e.g. [9]). If the Jacobian of the update rule w5 at a fixed point z has spectral
radius less than one, then there exists a neighborhood U around z such that for all x ∈ U , the
dynamics converges to z, i.e., limn→∞ wn(x) = z. We call w a contraction mapping in U .

2.2 OMWU Method
Our main contribution is that the last iterate of OMWU converges to the optimal solution.
The OMWU dynamics is defined as follows (t ≥ 1):

xt+1
i = xti

e2η(Ayt)i−η(Ayt−1)i∑n

j=1
xt
j
e2η(Ayt)j−η(Ayt−1)j

for all i ∈ [n],

yt+1
i = yti

e−2η(A>xt)i+η(A>xt−1)i∑m

j=1
yt
j
e−2η(A>xt)j+η(A>xt−1)j

for all i ∈ [m].
(5)

Points (x1,y1), (x0,y0) are the initial conditions and are given as input. We call 0 < η < 1
the stepsize of the dynamics. It is more convenient to interpret OMWU dynamics as mapping
a quadruple to quadruple ((xt,yt,xt−1,yt−1)→ (xt+1,yt+1,xt,yt), see Section 3.2 for the
construction of the dynamical system).
I Remark. Let (x∗,y∗) be the optimal solution. We see that (x∗,y∗,x∗,y∗) is a fixed point
of the mapping. Furthermore, ∆n ×∆m ×∆n ×∆m is invariant under OMWU dynamics.
For t ≥ 1, if xti = 0 then xi remains zero for all times greater than t, and if it is positive, it
remains positive (both numerator and denominator are positive) 6. In words, at all times the

5 We assume w is a continuously differential function.
6 Same holds for vector y.
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OMWU satisfies the non-negativity constraints and the renormalization factor (denominator)
makes both x,y’s coordinates sum up to one. A last observation is that every fixed point of
OMWU dynamics (mapping a quadruple to quadruple) has the form (x,y,x,y) (two same
copies). Equation (8) shows how to express OMWU dynamics as a dynamical system.

2.3 Linear Variant of OMWU
We provide the linear variant of OMWU dynamics (5) because we use it in some intermediate
lemmas (appear in appendix).

xt+1
i = xti

1+2η(Ayt)i−η(Ayt−1)i∑n

j=1
xt
j
(1+2η(Ayt)j−η(Ayt−1)j)

for all i ∈ [n],

yt+1
i = yti

1−2η(A>xt)i+η(A>xt−1)i∑m

j=1
yt
j
(1−2η(A>xt)j+η(A>xt−1)j)

for all i ∈ [m].
(6)

This dynamics is derived by considering the first order approximation of the exponential
function. Stepsize η in this case should be chosen sufficiently small so that both numerator
and denominator are positive.

2.4 More definitions and statement of our result
I Definition 3 ([12]). Assume α > 0. We call a point (x,y) ∈ ∆n × ∆m α-close if for
each i we have that xi ≤ α or |x>Ay − (Ay)i| ≤ α and for each j it holds yj ≤ α or
|x>Ay− (A>x)j | ≤ α.

I Remark. Think of α-close points as α-approximate optimal solutions for min-max problems
that are induced by submatrices of A (α-approximate stationary points). Moreover, if (x,y)
is 0-close point does not necessarily imply (x,y) is the optimal solution of problem (1)!

I Definition 4 (Approximate solution). Assume ε > 0. We call a point (x,y) ∈ ∆n ×∆m

ε-approximate (or ε-approximate Nash equilibrium) if for all x̃ ∈ ∆n we get that x̃>Ay ≤
x>Ay + ε (max player deviates) and for all ỹ ∈ ∆m we get that x>Aỹ ≥ x>Ay − ε (min
player deviates).

I Remark. Think of ε-approximate points as approximate optimal solutions to the min-max
problem (1). Moreover, if (x,y) is 0-approximate then (x,y) is the optimal solution of
problem (1).

Statement of our results

We finish the preliminary section by stating formally the main result.

I Theorem 5 (OMWU converges). Let A be a n×m matrix and assume that

min
y∈∆m

max
x∈∆n

x>Ay

has a unique solution (x∗,y∗). It holds that for η sufficiently small (depends on n,m,A),
starting from the uniform distribution, i.e., (x1,y1) = (x0,y0) = ( 1

n1, 1
m1), it holds

lim
t→∞

(xt,yt) = (x∗,y∗),

under OMWU dynamics. The stepsize η is constant, i.e., does not scale with time7.

7 Our proof also works if the starting points (x1,y1), (x0,y0) are both in the interior of ∆n ×∆m and
not necessarily uniform, however the choice of η depends on the initial distributions as well and not
only on n,m,A.
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27:6 Last-Iterate Convergence

We need to note that it is not clear from our theorem how small η is and its dependence on
the size of A. Nevertheless, our convergence result holds for constant stepsizes as opposed to
the classic no-regret learning literature where η scales like 1√

T
after T iterations. Another

result we know of this flavor is about MWU algorithm on congestion games [16].

3 Last iterate convergence of OMWU

In this section we show our main result (Theorem 5), by breaking the proof into three key
theorems. The first theorem says that KL divergence from the t-th iterate (xt,yt) to the
optimal solution (x∗,y∗), i.e., (sum of KL divergences to be exact)∑

i

x∗i ln(x∗i /xti) +
∑
i

y∗i ln(y∗i /yti),

decreases with time t ≥ 2 by at least a factor of η3 per iteration, unless the iterate (xt,yt) is
O(η1/3)-close (see Definition 3). Moreover, provided that the stepsize η is small enough, we
can show the structural result that (xt,yt) lies in a neighborhood of (x∗,y∗) that becomes
smaller and smaller as η → 0. Finally, as long as OMWU dynamics has reached a small
neighborhood around (x∗,y∗), we show that the update rule of the dynamical system induced
by OMWU is contracting, and the last iterate convergence result follows. Formally we show:

I Theorem 6 (KL decreasing). Let (x∗,y∗) be the unique optimal solution of problem (1)
and η sufficiently small. Then

DKL((x∗,y∗)||(xt,yt))

is decreasing with time t by (at least) Ω(η3) unless (xt,yt) is O(η1/3)-close.

I Theorem 7 (η1/3-close implies close to optimum in `1). Assume that (x∗,y∗) is unique
optimal solution of the problem (1). Let T (depends on η) be the first time KL divergence does
not decrease by Ω(η3). It follows that as η → 0, the η1/3-close point (xT ,yT ) has distance
from (x∗,y∗) that goes to zero, i.e., limη→0

∥∥(x∗,y∗)− (xT ,yT )
∥∥

1 = 0.

I Theorem 8 (OMWU is a contraction). Let (x∗,y∗) be the unique optimal solution to the min-
max problem (1). There exists a neighborhood U ⊂ ∆n ×∆m ×∆n ×∆m of (x∗,y∗,x∗,y∗)8
so that for all (x1,y1,x0,y0) ∈ U we have that limt→∞(xt,yt,xt−1,yt−1) = (x∗,y∗,x∗,y∗)
under OMWU dynamics as defined in (5) and (8) (Section 3.2).

Assuming these three theorems, our main result is straightforward.

Proof of Theorem 5. Let η be sufficiently small. If (x1,y1) = ( 1
n1, 1

m1) (starting point is
uniform) then an easy upper bound (by removing negative terms) on KL divergence from
(x1,y1) to (x∗,y∗) is −

∑n
i=1 x

∗
i log x1

i +
∑m
i=1 y

∗
i log y1

i = log(nm). Therefore using Theorem
6 we have that after at most T that is O( log(nm)

η3 ) steps, OMWU reaches a O(η1/3)-close
point (T is the first time so that KL divergence from current iterate to optimal solution
(x∗,y∗) has not decreased by at least a factor of η3) or the KL divergence between the
optimal solution and (xT ,yT ) is O(η3) (KL divergence was decreasing by at least a factor
of η3 for all iterations until the iterate reached a `1 distance O(η3)). In the latter case it

8 Since (x∗,y∗,x∗,y∗) might be on the boundary of ∆n ×∆m ×∆n ×∆m, U is the intersection of an
open ball around (x∗,y∗,x∗,y∗) with ∆n ×∆m ×∆n ×∆m.
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follows
∥∥(x∗,y∗)− (xT ,yT )

∥∥2
1 is O(η3) and hence (xT ,yT ) is O(η3/2) in `1 distance from the

optimal solution, therefore for small η, (xT+1,yT+1,xT ,yT ) is in the neighborhood U that
is needed for contraction (Theorem 8). In the former case, by Theorem 7 (for η sufficiently
small) it follows that (xT+1,yT+1,xT ,yT ) is also in the neighborhood U that is needed for
contraction (Theorem 8)9. The proof follows by Theorem 8. J

In the next subsections we will provide the proofs to all three key theorems.

3.1 KL decreases and OMWU reaches neighborhood
In this subsection we argue about the proofs of Theorems 6 and 7. The inequality we
managed to prove (see in the appendix the proof of Theorem 6) is the following:

DKL((x∗,y∗)||(xt+1,yt+1))−DKL((x∗,y∗)||(xt,yt)) ≤
−
∑n

i=1 x
t
i

(
( 1

2 −O(η))η2 (2(Ayt)i − 2xt >Ayt − (Ayt−1)i + xt >Ayt−1)2
)

−
∑m

i=1 y
t
i

(
( 1

2 −O(η))η2 (2(A>xt)i − 2xt >Ayt − (A>xt−1)i + xt−1 >Ayt
)2
)

+O(η3).
(7)

The proof of the inequality is quite long, we choose to provide intuition and skip the details.
We refer to the appendix for a proof. The inequality says that OMWU dynamics has a
good progress (KL divergence decreases by at least a factor of η3) as long as the current
and previous iterate (xt,yt), (xt−1,yt−1) are not α-close for α chosen to be O(η1/3). This
situation appears a lot in gradient methods when the dynamics is close to a stationary point,
the gradient of f is small and the progress is small as opposed to the case where the gradient
of f is big and there is satisfying progress. The RHS of inequality (7) captures the “distance”
from stationarity. Thus, as long as we are not close to a stationary point (i.e., O(η1/3)-close)
in a time window between 1,2,...,k, KL divergence from current iterate (k-th) to the optimum
has decreased by (at least) Ω(kη3) compared to KL divergence from first iterate to the
optimum.

Moreover, suppose that at some point of OMWU dynamics, KL divergence from current
iterate to the optimum did not decrease by at least a factor of η3 and let T be the iteration
this happened. As we have already argued, (xT ,yT ) is a O(η1/3)-close point. We can show
that as long as η is sufficiently small, then for all i, j in the support of (x∗,y∗), xTi , yTj are
(at least) Ω(η1/3) i.e., coordinates in the support of the optimum will have non negligible
probability in (xT ,yT ). Formally:

I Lemma 9. Let i ∈ Supp(x∗) and j ∈ Supp(y∗). It holds that xTi ≥ 1
2η

1/3 and yTi ≥ 1
2η

1/3

as long as

η1/3 ≤ min
s∈Supp(x∗)

1
(nm)1/x∗s

, min
s∈Supp(y∗)

1
(nm)1/y∗s

.

Proof. By definition of T , the KL divergence is decreasing for 2 ≤ t ≤ T − 1, thus

DKL((x∗,y∗)||(xT−1,yT−1)) < DKL((x∗,y∗)||(x1,y1)).

Therefore x∗i log 1
xT−1
i

<
∑
i x
∗
i log 1

x1
i

+
∑
i y
∗
j log 1

y1
j

= log(mn). It follows that xTi >

1/(mn)
1
x∗
i ≥ η1/3 for x∗i > 0 (i ∈ Supp(x∗)). Since |xTi − xT−1

i | is O(η) (Lemma 11)
the result follows. Similarly, the argument works for yTj . J

9 In both cases we used that iterate (xT ,yT ) and (xT+1,yT+1) have `1 distance O(η), this is Lemma 11.
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Lemma 9 indicates that the stepsize η might have to be exponentially small in the
dimension (OMWU dynamics is slow when η is very small). We can now prove Theorem 7.

Proof of Theorem 7. From Lemma 9 and definition of T , we get that |(AyT )i − xT >AyT |
is O(η1/3) for all i in the support of x∗ and |(A>xT )j − xT >AyT | is O(η1/3) for all j in
the support of y∗. We consider (wT , zT ) to be the projection of the point (xT ,yT ) by
removing all the coordinates that have probability mass less than 1

2η
1/3 and rescale so that

the coordinates sum up to one.
We restrict ourselves to the corresponding subproblem (submatrix). It is clear that

(wT , zT ) is a O(η1/3)-approximate solution 10 for the subproblem. Let v = x∗Ay∗ be
the optimal value. By uniqueness of the optimal solution, we get that (Ay∗)i = v for
all i ∈ Supp(x∗) and (Ay∗)i < v otherwise (check Lemma C.3 in paper [13] for a proof,
where they use Farkas’ lemma to show it, we use this fact later in Section 3.2). Similarly
(A>x∗)j = v for the min player y if j lies in the support of y∗ and (A>x∗)j > v otherwise.
We choose η so small that every O(η1/3)-approximate solution (x,y) has the property that
(Ay)i ≤ v− η1/4, (A>x)j ≥ v+ η1/4 for all i /∈ Supp(x∗) and j /∈ Supp(y∗) respectively (this
is possible by continuity of the bilinear function and Claim 10 below). Hence we conclude
that if η is small enough, the coordinates in the vector (wT , zT ) that are not in the support
of the optimal solution (since η1/4 � η1/3), should have probability mass O(η1/3) at time T .

I Claim 10. Let (x∗,y∗) be the unique optimal solution to the problem (1). For every
ε > 0, there exists an δ(ε) > 0 so that for every δ-approximate solution (x,y) we get that
|xi − x∗i | < ε for all i ∈ [n]. Analogously holds for player y.

Proof. We will prove this by contradiction. Assume there is an ε that violates this statement.
We choose a sequence δk so that limk→∞ δk = 0 and also there is a sequence (xk,yk) of
δk-approximate Nash equilibrium with |xk,i − x∗i | ≥ ε for some strategy i. Since ∆n ×∆m

is compact and the sequence above is bounded, there is a convergent subsequence. The
limit of the convergent subsequence is a Nash equilibrium by definition of δ-approximate
(Definition 4). By uniqueness it follows that the i-th coordinate of the convergent sequence
must converge to x∗i , hence we reached a contradiction. J

Therefore, if we restrict to the subproblem induced by the strategies in the support of
(x∗,y∗), the projected vector (wT , zT ) is a O(η1/3)-approximate solution of the subgame.

From Claim 10, as η → 0 it follows that the `1 distance (any distance suffices) between
the projected (wT , zT ) and the optimal solution (Nash equilibrium) of the subgame goes
to zero. Since the optimal solution of the subgame is exactly the same as the optimal
solution of the original game we get that as η → 0, (xT ,yT ) reaches (x∗,y∗). In particular,
since

∥∥(xT+1,yT+1)− (xT ,yT )
∥∥

1 is O(η) (see Lemma 11) there exists a η small so that
(xT+1,yT+1,xT ,yT ) is inside the necessary neighborhood U of (x∗,y∗,x∗,y∗) that gives
contraction (Theorem 8). J

3.2 Proving contraction
The purpose of this section is to prove Theorem 8. To show contraction of OMWU dynamics
in a neighborhood of the optimal solution (x∗,y∗), we first construct a dynamical system that
captures OMWU. Moreover, we prove that the Jacobian of the update rule of that particular

10By ε-approximate optimal solution we mean the ε-approximate Nash equilibrium notion (additive), see
Definition 4.
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dynamical system computed at the optimal solution, has spectral radius less than one. This
suffices to prove contraction (see Proposition 2). As a result, as long as OMWU reaches
a small neighborhood of (x∗,y∗,x∗,y∗), it converges pointwise (last iterate convergence)
to it11. Below we provide the update rule g of the dynamical system, which consists of 4
components:

g(x,y, z,w) := (g1(x,y, z,w), g2(x,y, z,w), g3(x,y, z,w), g4(x,y, z,w)),
g1,i(x,y, z,w) := (g1(x,y, z,w))i := xi

e2η(Ay)i−η(Aw)i∑
t
xte2η(Ay)t−η(Aw)t

for all i ∈ [n],

g2,i(x,y, z,w) := (g2(x,y, z,w))i := yi
e−2η(A>x)i+η(A>z)i∑
t
yte−2η(A>x)t+η(A>z)t

for all i ∈ [m],

g3(x,y, z,w) := In×nx,
g4(x,y, z,w) := Im×my.

(8)

It is not hard to check that

(xt+1,yt+1,xt,yt) = g(xt,yt,xt−1,yt−1),

so g captures exactly the dynamics of OMWU (5). The equations of the Jacobian of g can
be found in the appendix (see Section A).

Spectral analysis the Jacobian of OMWU at the optimal solution

The rest of the section constitutes the proof of Theorem 8. Assume v = x∗ >Ay∗, i.e., v
is the value of the bilinear function x>Ay at the optimal solution. We will analyze the
Jacobian computed at (x∗,y∗,x∗,y∗)12.

Assume i /∈ Supp(x∗), then

∂g1,i

∂xi
= eη(Ay∗)i∑

x∗t e
η(Ay∗)t

= eη(Ay∗)i

eηv

and all other partial derivatives of g1,i are zero, thus eη(Ay∗)i

eηv is an eigenvalue of the Jacobian
computed at (x∗,y∗,x∗,y∗). Moreover because of uniqueness of the optimal solution, it holds
that e

η(Ay∗)i

eηv < 1 because (Ay∗)i−v < 0 (check Lemma C.3 in [13] for a proof, where they use
Farkas’ Lemma to show it). Similarly, it holds for j /∈ Supp(y∗) that ∂g2,j

∂yj
= e−η(A>x∗)j

e−ηv < 1
(again by C.3 in [13] it holds that (Ax∗)j − v > 0) and all other partial derivatives of g2,j are
zero, hence e−η(A>x∗)j

e−ηv is an eigenvalue of the Jacobian computed at the optimal solution.
Let Dx be the diagonal matrix of size |Supp(x∗)| × |Supp(x∗)| that has on the diagonal

the nonzero entries of x∗ and similarly we define Dy of size |Supp(y∗)| × |Supp(y∗)|. We
set k1 = |Supp(x∗)|, k2 = |Supp(y∗)| and k = k1 + k2. Let x′,y′ be the optimal solution to
the min-max problem with payoff matrix the corresponding submatrix of payoff matrix A
(denoted by B) after removing the rows/columns which correspond to the coordinates that
are not in the support of the unique optimal solution (x∗,y∗)13. We consider the submatrix
J̃ of the Jacobian matrix that is created by removing rows and columns of the corresponding
coordinates that are not in the support of optimum (for the variables x and y, these are
exactly n + m − k). It is clear from above, that the Jacobian of OMWU has eigenvalues

11 Since the dynamical system is from a quadruple to a quadruple, it is a neighborhood of (x∗,y∗,x∗,y∗).
12 See also Equations (14) of the Jacobian computed at (x∗,y∗,x∗,y∗).
13Note that (x′,y′) should be the unique optimal solution to the min-max problem with payoff matrix B.
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with absolute value less than one iff J̃ has as well. After also removing the rows (and the
corresponding columns) that have only zero entries (these are exactly n+m− k, result zero
eigenvalues and correspond to variables z and w) the resulting submatrix (denote it by J)
boils down to the following matrix J : Ik1×k1 −Dx1k1 1>k1

2ηDx(B − v1k1 1>k2
) 0k1×k1 −ηDx(B − v1k1 1>k2

)
2ηDy(v1k2 1>k1

− B>) Ik2×k2 −Dy1k2 1>k2
−ηDy(v1k2 1>k1

− B>) 0k2×k2
Ik1×k1 0k1×k2 0k1×k1 0k1×k2
0k2×k1 Ik2×k2 0k2×k1 0k2×k2

 . (9)

It is clear that (1k1 ,0k2 ,0k1 ,0k2), (0k1 ,1k2 ,0k1 ,0k2) are left eigenvectors with eigenvalues
zero and thus any right eigenvector (x̃, ỹ, z̃, w̃) with nonzero eigenvalue has the property
that x̃>1k1 = 0 and ỹ>1k2 = 0. Hence every nonzero eigenvalue of the matrix above is an
eigenvalue of the matrix below:

Jnew =


Ik1×k1 2ηDxB 0k1×k1 −ηDxB

−2ηDyB
> Ik2×k2 ηDyB

> 0k2×k2

Ik1×k1 0k1×k2 0k1×k1 0k1×k2

0k2×k1 Ik2×k2 0k2×k1 0k2×k2

 . (10)

Let p(λ) be the characteristic polynomial of the matrix (10). After row/column operations it
boils down to

(−1)kdet
(

λ(1− λ)Ik1×k1 (2λ− 1)ηDxB

−η(2λ− 1)DyB
> λ(1− λ)Ik2×k2

)
= (1− 2λ)kq

(
λ(λ− 1)
2λ− 1

)
, (11)

where q(λ) is the characteristic polynomial of

Jsmall =
(

0k1×k1 ηDxB

−ηDyB
> 0k2×k2

)
. (12)

Observe that

Jsmall ·
(

Dx 0k1×k2

0k2×k1 Dy

)
is real skew symmetric,

and hence by Lemma 16, Jsmall has eigenvalues of the form14 ±iητ with τ ∈ R (i.e., imaginary
eigenvalues; we include η in the expression to conclude that σ := ητ can be sufficiently small
in absolute value). We conclude that any nonzero eigenvalue λ of the matrix J should satisfy
the equation λ(λ−1)

2λ−1 = iσ for some small in absolute value σ ∈ R. Finally we get that

λ = 1 + 2iσ ±
√

1− 4σ2

2 .

We compute the square of the magnitude of λ and we get |λ|2 = 2−4σ2±2
√

1−4σ2+4σ2

4 =
1±
√

1−4σ2

2 < 1 unless σ = 0 (i.e., τ = 0). If σ = 0, it means that Jnew has an eigenvalue
which is equal to one. Assume that (x̃, ỹ, x̃, ỹ) is the corresponding right eigenvector, it
holds that Bỹ = 0 and B>x̃ = 0. Assume also that there exists an eigenvalue that is equal
to one in the original matrix J . It follows that 1>k2

ỹ = 0 and 1>k1
x̃ = 0. It holds that x̃ = 0k1

and ỹ = 0k2 otherwise (x′,y′) + t(x̃, ỹ) would be another optimal solution (for the min-max
problem with payoff matrix B; by padding zeros to the vector, we could create another
optimal solution for the original min-max problem with payoff matrix A) for small enough t.
We reached contradiction because we have assumed uniqueness. Hence all the eigenvalues of
J are less than 1, i.e., the mapping is a contraction mapping and the proof is complete.

14We denote i =
√
−1.
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Figure 1 In the x axis we have the number of rows of a square matrix A and on y axis the
number of iterations of OMWU. This figure captures how the number of iterations depends on the
dimensionality of the min-max problem.

4 Experiments

The purpose of our experiments is primarily to understand how the speed of convergence of
OMWU dynamics (5) scales with the size of matrix A. Moreover, for A of fixed size, we are
interested in how the speed of convergence scales with the error of the output of OMWU
dynamics. By error we mean the `1 distance between the last iterate of OMWU and the
optimal solution.

For the former case, we fix the error to be 0.1 and we run OMWU for n = 25, 50, ..., 250
where the input matrix A has size n× n with entries i.i.d random variables sampled from
uniform [−1, 1]. We output the number of iterations OMWU needs starting from uniform
( 1
n , ...,

1
n ) to reach a solution that is at most 0.1 away from optimal in `1 distance. We note

that we computed the optimal solutions using LP-solvers.
For the latter case, we fix n = 50 and we consider the error ε to be

{0.5, 0.25, 0.0625, 0.015625, 0.007812}. Starting from uniform distribution, we count the
number of iterations to reach error ε. The stepsize η is fixed at 0.01 at all times. The results
can be found in Figures 1 and 2. If we had to guess, it seems that the relation between
dimension and iterations is between linear and quadratic (i.e., OMWU dynamics has roughly
cubic-quartic running time in n if we count the cost of each iteration as quadratic) and the
dependence between error ε and iterations t seems like t is inverse polynomial in ε.

We note the importance of stepsize η. η must be sufficiently small for our proofs to
work. If η is chosen to be big, then OMWU might not converge (might cycle, we observed
such behavior in experiments). On the other hand, the smaller η is chosen, the smaller the
progress of OMWU dynamics (see the inequality claim for KL divergence) and hence the
slower the dynamics.

5 Conclusion

In this paper we showed that a no-regret algorithm called Optimistic Multiplicative Weights
Update (OMWU) converges pointwise to a Nash equilibrium in two player zero sum games
(See also a concurrent work to ours [14], in which the authors provide a pointwise result about
other dynamics, using different techniques). Our analysis is novel and does not follow the
standard approaches of the literature of no-regret learning. We believe that our techniques
can be useful in the analysis of other learning algorithms with no provable guarantees of
pointwise convergence.
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Figure 2 In the x axis we have the number of iterations of OMWU and on y axis the `1 distance
from the optimal solution. This figure captures how the number of iterations scales with the error.

One interesting open question is to show that OMWU algorithm converges in polynomial
time in n,m (for proper choice of stepsize η) and find exact rates of convergence. Another
possible future direction is to generalize our results about OMWU beyond the bilinear setting.
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A Equations of the Jacobian of OMWU dynamics

A.1 Equations computed at point (x, y, z, w)

Set Sx =
∑n
t=1 xte

2η(Ay)t−η(Aw)t , Sy =
∑m
t=1 yte

−2η(A>x)t+η(A>z)t and let i, j be arbitrary
indexes (g1,i captures the i-th coordinate of function g1 etc),

∂g1,i
∂xi

= e2η(Ay)i−η(Aw)i
Sx

− xi (
e2η(Ay)i−η(Aw)i)2

S2
x

for all i ∈ [n],
∂g1,i
∂xj

= −xie2η(Ay)j−η(Aw)j · e
2η(Ay)i−η(Aw)i

S2
x

for all i ∈ [n], j ∈ [n] and j 6= i,

∂g1,i
∂yj

= xie
2η(Ay)i−η(Aw)i ·

2ηAijSx−2η
∑

t
Atjxte

2η(Ay)t−η(Aw)t

S2
x

for all i ∈ [n], j ∈ [m],
∂g1,i
∂zj

= 0 for all i, j ∈ [n],
∂g1,i
∂wj

= xie
2η(Ay)i−η(Aw)i ·

−ηAijSx+η
∑

t
Atjxte

2η(Ay)t−η(Aw)t

S2
x

for all i ∈ [n], j ∈ [m],

∂g2,i
∂yi

= e−2η(A>x)i+η(A>z)i
Sy

− yi

(
e−2η(A>x)i+η(A>z)i

)2

S2
y

for all i ∈ [m],
∂g2,i
∂yj

= −yie−2η(A>x)j+η(A>z)j · e
−2η(A>x)i+η(A>z)i

S2
y

for all i ∈ [m], j ∈ [m] and j 6= i,

∂g2,i
∂xj

= yie
−2η(A>x)i+η(A>z)i ·

−2ηA>ijSy+2η
∑

t
A>tjyte

−2η(A>x)t+η(A>z)t

S2
y

for all i ∈ [m], j ∈ [n],

∂g2,i
∂zj

= yie
−2η(A>x)i+η(A>z)i ·

ηA>ijSy−η
∑

t
A>tjxte

−2η(A>x)t+η(A>z)t

S2
y

for all i ∈ [m], j ∈ [n],
∂g2,i
∂wj

= 0 for any i, j ∈ [m],
∂g3,i
∂xi

= 1 for all i ∈ [n] and zero all the other partial derivatives of g3,i,
∂g4,i
∂yi

= 1 for all i ∈ [m] and zero all the other partial derivatives of g4,i.

(13)

A.2 Equations computed at point (x∗, y∗, x∗, y∗)

Set Sx =
∑n
t=1 x

∗
t e
η(Ay∗)t , Sy =

∑m
t=1 y

∗
t e
−η(A>x∗)t and let i, j be arbitrary indexes (g1,i

captures the i-th coordinate of function g1 etc). Assume v = x∗>Ay∗, it is not hard to see
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that (A>x∗)i = (Ay∗)j = v for all i ∈ Supp(x∗), j ∈ Supp(y∗) and Sx = eηv, Sy = e−ηv. We
get that:

∂g1,i
∂xi

= 1− x∗i for all i ∈ Supp(x∗),
∂g1,i
∂xi

= eη(Ay∗)i

eηv for all i /∈ Supp(x∗),
∂g1,i
∂xj

= −x∗i for all i, j ∈ Supp(x∗) and j 6= i,
∂g1,i
∂xj

= 0 for all i /∈ Supp(x∗), j ∈ [n] and j 6= i,
∂g1,i
∂yj

= x∗i (2ηAij − 2ηv) for all i ∈ Supp(x∗), j ∈ Supp(y∗),
∂g1,i
∂yj

= 0 for all i /∈ Supp(x∗), j ∈ [m],
∂g1,i
∂zj

= 0 for all i, j ∈ [n],
∂g1,i
∂wj

= x∗i (−ηAij + ηv) for all i ∈ Supp(x∗), j ∈ Supp(y∗),
∂g1,i
∂wj

= 0 for all i /∈ Supp(x∗), j ∈ [m],
∂g2,i
∂yi

= 1− y∗i for all i ∈ Supp(y∗),
∂g2,i
∂yi

= e−η(Ax∗)i

e−ηv for all i /∈ Supp(y∗),
∂g2,i
∂yj

= −y∗i for all i, j ∈ Supp(y∗) and j 6= i,
∂g2,i
∂yj

= 0 for all i /∈ Supp(y∗), j ∈ [m] and j 6= i,
∂g2,i
∂xj

= y∗i (−2ηA>ij + 2ηv) for all i ∈ Supp(y∗), j ∈ Supp(x∗),
∂g2,i
∂xj

= 0 for all i /∈ Supp(y∗), j ∈ [n],
∂g2,i
∂zj

= y∗i (ηA>ij − ηv) for all i ∈ Supp(y∗), j ∈ Supp(x∗),
∂g2,i
∂zj

= 0 for all i /∈ Supp(y∗), j ∈ [n],
∂g2,i
∂wj

= 0 for any i, j ∈ [m],
∂g3,i
∂xi

= 1 for all i ∈ [n] and zero all the other partial derivatives of g3,i,
∂g4,i
∂yi

= 1 for all i ∈ [m] and zero all the other partial derivatives of g4,i.

(14)

B Missing claims and proofs

Lemma 11 shows that the change between next and current iterate in both OMWU algorithms
(classic and linear variant) is of order O(η) and that the difference between the next iterate
of both algorithms is O(η2).

I Lemma 11. Let x ∈ ∆n be the vector of the max player, w, z ∈ ∆m and suppose x′,x′′
are the next iterates of OMWU and its linear variant with current vector x and vectors w, z
of the min player. It holds that

‖x′ − x′′‖1 is O(η2), and ‖x′ − x‖1 , ‖x
′′ − x‖1 are O(η).

Analogously, it holds for vector y ∈ ∆m of the min player and its next iterates.

Proof. Let η be sufficiently small (smaller than maximum in absolute value entry of A).

|x′i − x′′i | = xi

∣∣∣∣∣ e2η(Aw)i−η(Az)i∑
j
xje2η(Aw)j−η(Az)j

− 1 + 2η(Aw)i − η(Az)i∑
j
xj(1 + 2η(Aw)j − η(Az)j)

∣∣∣∣∣
= xi

∣∣∣∣ 1 + 2η(Aw)i − η(Az)i ±O(η2)∑
j
xj(1 + 2η(Aw)j − η(Az)j)±O(η2)

− 1 + 2η(Aw)j − η(Az)j∑
j
xj(1 + 2η(Aw)j − η(Az)j)

∣∣∣∣
which is O(η2)xi
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and hence ‖x′ − x′′‖1 is O(η2). Moreover we have that

|xi − x′′i | = xi

∣∣∣∣∣1− 1 + 2η(Aw)i − η(Az)i∑
j xj(1 + 2η(Aw)i − η(Az)i)

∣∣∣∣∣
= xi

∣∣∣∣∣
∑
j xj(1 + 2η(Aw)j − η(Az)j)− (1 + 2η(Aw)i − η(Az)i)∑

j xj(1 + 2η(Aw)i − η(Az)i)

∣∣∣∣∣
= xi

∣∣∣∣∣
∑
j xj(2η(Aw)j − η(Az)j)− 2η(Aw)i + η(Az)i∑

j xj(1 + 2η(Aw)i − η(Az)i)

∣∣∣∣∣ which is O(η)xi.

By triangle inequality and the two above proofs we get the third part of the lemma. J

Lemmas 12, 13 and 15 will be used in the proof of Theorem 6.

I Lemma 12. Let x ∈ ∆n, w, z ∈ ∆m and suppose x′,x′′ are the next iterates of OMWU
and its linear variant with current vector x and inputs w, z, i.e., x′ has coordinates x′i =
xi

e2η(Aw)i−η(Az)i∑
j
xje

2η(Aw)j−η(Az)j
and x′′ has coordinates x′′i = xi

1+2η(Aw)i−η(Az)i∑
j
xj(1+2η(Aw)j−η(Az)j)

. It holds that

(for η sufficiently small)

ηx′>A(2w− z)− ηx>A(2w− z) =
=
(
ηx′′>A(2w− z)− ηx>A(2w− z)

)
−O(η3) =

= (1−O(η))η2
∑
i

xi(2x>Aw− x>Az− 2(Aw)i + (Az)i)2 −O(η3)

= (1−O(η))η2
∑
i

x′i(2x′>Aw− x′>Az− 2(Aw)i + (Az)i)2 −O(η3).

Proof. It suffices to prove the second equality. The rest follow from Lemma 11. Set
B = (1n1>m + ηA). We have that x′′i = xi

(B(2w−z))i
x>B(2w−z) (from definition of linear variant of

OMWU dynamics). It follows that

(x′′>B(2w− z)) · (x>B(2w− z)) =
∑
ij

Bijx
′′
i (2w− z)j ·

(
x>B(2w− z)

)
=
∑
ij

Bij

(
xi

(B(2w− z))i
x>B(2w− z)

)
(2w− z)j ·

(
x>B(2w− z)

)
=
∑
ij

Bij (xi(B(2w− z)i)) (2w− z)j

=
∑
i

xi(B(2w− z))2
i

= (x>B(2w− z))2 +
∑
i

xi(x>B(2w− z)− (B(2w− z))i)2.

where the last inequality comes from the fact that for a random variable ξ we have E[ξ2] =
E2[ξ] + V[ξ]. Therefore by diving LHS and RHS by x>B(2w− z) which is 1±O(η) we get

(x′′>B(2w− z)) = (x>B(2w− z)) + (1−O(η))
∑
i

xi(x>B(2w− z)− (B(2w− z))i)2

= (x>(1n1>m + ηA)(2w− z))+

+ (1−O(η))η2
∑
i

xi(x>A(2w− z)− (A(2w− z))i)2.

The proof is complete by Lemma 11. J
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Using same arguments as in proof of Lemma 12 we have the following lemma:

I Lemma 13. Let y ∈ ∆m , w, z ∈ ∆n and suppose y′ is the next iterate of OMWU with
current vector y and inputs w, z, i.e., y′ has coordinates y′i = yi

e−2η(A>w)i+η(A>z)i∑
j
yje
−2η(A>w)j+η(A>z)j

. It

holds that (for η sufficiently small)

ηy′>A>(z− 2w)− ηy>A>(z− 2w)

= (1−O(η))η2
∑
i

y′i(y′>A>z− 2y′>A>w− (A>z)i + 2(A>w)i)2 −O(η3).

I Lemma 14. Let (xt,yt) be the t-th iterate of OMWU dynamics (5). For each time step
t ≥ 2 it holds that

ηxt−1 >Ayt − ηxt >Ayt−1 ≤

≤ −(1−O(η))η2
∑
i

xti(2xt>Ayt − xt>Ayt−1 − 2(Ayt)i + (Ayt−1)i)2−

− (1−O(η))η2
∑
i

yti(yt>A>xt−1 − 2yt>A>xt − (A>xt−1)i + 2(A>xt)i)2 +O(η3).

Proof.

ηxt−1 >Ayt−ηxt >Ayt−1 =

=ηxt−1 >Ayt − 1
2ηxt−1 >Ayt−1 + 1

2ηxt−1 >Ayt−1 − ηxt >Ayt−1

=ηxt >Ayt − 1
2ηxt >Ayt−1 + 1

2ηxt−1 >Ayt − ηxt >Ayt−

− (1
2 −O(η))η2

∑
i

xti(2xt>Ayt − xt>Ayt−1 − 2(Ayt)i + (Ayt−1)i)2−

− (1
2 −O(η))η2

∑
i

yti(yt>A>xt−1 − 2yt>A>xt − (A>xt−1)i+

+ 2(A>xt)i)2 +O(η3).

The second equality comes from Lemmas 12 and 13. By canceling out the common terms
and bring to the LHS the appropriate remaining terms, the claim follows. J

I Lemma 15. Let (xt,yt) denote the t-th iterate of OMWU dynamics. It holds for t ≥ 2
that

x∗ >A(2yt − yt−1) ≥ x∗ >Ay∗ and (2xt > − xt−1 >)Ay∗ ≤ x∗ >Ay∗,

where (x∗,y∗) is the optimal solution of the min-max problem.

Proof. It is true that xti ≥ (1 − O(η))xt−1
i , hence xti ≥ 1

2x
t−1
i for η sufficiently small.

Therefore 2xt − xt−1 lies in the simplex ∆n. Hence since (x∗,y∗) is the optimum (Nash
equilibrium) we get that (2xt > − xt−1 >)Ay∗ ≤ x∗ >Ay∗ (x is the max player). Similarly
the second inequality can be proved. J

Proof of Theorem 6. We compute the difference between
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DKL((x∗,y∗)||(xt+1,yt+1)) and DKL((x∗,y∗)||(xt,yt))

DKL((x∗,y∗)||(xt+1,yt+1))−DKL((x∗,y∗)||(xt,yt))

=−
(∑

i

x∗i ln x
t+1
i

xti
+
∑
i

y∗i ln y
t+1
i

yti

)

=−
(∑

i

x∗i ln e2η(Ayt)i−η(Ayt−1)i +
∑
i

y∗i ln e−2η(A>xt)i+η(A>xt−1)i

)
+

+ ln
(∑

i

xtie
2η(Ayt)i−η(Ayt−1)i

)
+ ln

(∑
i

ytie
−2η(A>xt)i+η(A>xt−1)i

)
=−2ηx∗ >Ayt + ηx∗ >Ayt−1 + 2ηxt >Ay∗ − ηxt−1 >Ay∗+

+ ln
(∑

i

xtie
2η(Ayt)i−η(Ayt−1)i

)
+ ln

(∑
i

ytie
−2η(A>xt)i+η(A>xt−1)i

)
.

We use Lemma 15 and get that −2ηx∗ >Ayt + ηx∗ >Ayt−1 + 2ηxt >Ay∗ − ηxt−1 >Ay∗ ≤ 0,
therefore the LHS (difference in the KL divergence) is at most

≤

=0︷ ︸︸ ︷
−2ηxt >Ayt + ηxt >Ayt−1 + 2ηxt >Ayt − ηxt−1 >Ayt − ηxt >Ayt−1 + ηxt−1 >Ayt

+ ln
(∑

i

xtie
2η(Ayt)i−η(Ayt−1)i

)
+ ln

(∑
i

ytie
−2η(A>xt)i+η(A>xt−1)i

)

= ln
(∑

i

xtie
2η((Ayt)i−xt >Ayt)−η((Ayt−1)i−xt >Ayt−1)

)
+

ln
(∑

i

ytie
−2η((A>xt)i−xt >Ayt)+η((A>xt−1)i−xt−1 >Ayt)

)
− ηxt >Ayt−1 + ηxt−1 >Ayt

We furthermore use second order Taylor approximation (η is sufficiently small) to the function
ex and we get that previous expression is at most

≤ ln(
∑
i

xti
(
1 + 2η((Ayt)i − xt >Ayt)− η((Ayt−1)i − xt >Ayt−1)

)
+

+
∑
i

xti

(
(1
2 +O(η))η2 (2(Ayt)i − 2xt >Ayt − (Ayt−1)i + xt >Ayt−1)2))+

+ ln(
∑
i

yti
(
1− 2η((A>xt)i − xt >Ayt) + η((A>xt−1)i − xt−1 >Ayt)

)
+

+
∑
i

yti

(
(1
2 +O(η))η2 (2(A>xt)i − 2xt >Ayt − (A>xt−1)i + xt−1 >Ayt

)2))−

− ηxt >Ayt−1 + ηxt−1 >Ayt

Finally, using Taylor approximation on log(1 + x) and Lemma 14 (last equality) we get
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the following system:

≤ ηxt−1 >Ayt − ηxt >Ayt−1+

+
∑
i

xti

(
(1
2 +O(η))η2 (2(Ayt)i − 2xt >Ayt − (Ayt−1)i + xt >Ayt−1)2)+

+
∑
i

yti

(
(1
2 +O(η))η2 (2(A>xt)i − 2xt >Ayt − (A>xt−1)i + xt−1 >Ayt

)2)
= −

∑
i

xti

(
(1
2 −O(η))η2 (2(Ayt)i − 2xt >Ayt − (Ayt−1)i + xt >Ayt−1)2)

−
∑
i

yti

(
(1
2 −O(η))η2 (2(A>xt)i − 2xt >Ayt − (A>xt−1)i + xt−1 >Ayt

)2)+O(η3).

It is clear that as long as (xt,yt) (and thus (xt−1,yt−1) by Lemma 11) is not O(η1/3)-close,
from above inequalities/equalities we get

DKL((x∗,y∗)||(xt+1,yt+1))−DKL((x∗,y∗)||(xt,yt)) ≤ −Ω(η3),

meaning that KL divergence decreases by at least a factor of η3 and the claim follows. J

I Lemma 16. Let D be a real diagonal matrix with positive diagonal entries and S be a real
skew-symmetric matrix (S> = −S). It holds that SD has eigenvalues with real part zero
(i.e., it has only imaginary eigenvalues).

Proof. Let z∗ be the conjugate transpose of z and z∗ be a left eigenvector of SD with
complex eigenvalue λ. It holds that

λz∗D−1z = z∗SDD−1z
= z∗Sz
= −(z∗Sz)∗ (since S is skew symmetric)
= −(λz∗D−1z)∗ (using first and second equalities above)
= −λz∗D−1z.

Since D has positive diagonal entries, we conclude that z∗D−1z 6= 0 (since z 6= 0), thus
λ = −λ and the claim follows. J
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1 Introduction

In multidimensional density estimation, an algorithm has access to independent draws from
an unknown target probability distribution over Rd, which is typically assumed to belong
to or be close to some class of “nice” distributions. The goal is to output a hypothesis
distribution which with high probability is close to the target distribution. A number of
different distance measures can be used to capture the notion of closeness; in this work we
use the total variation distance (also known as the “statistical distance” and equivalent to
the L1 distance). This is a well studied framework which has been investigated in detail, see
e.g. the books [23, 24].

Multidimensional density estimation is typically attacked in one of two ways. In the first
general approach a parameterized hypothesis class is chosen, and a setting of parameters is
chosen based on the observed data points. This approach is justified given the belief that
the parameterized class contains a good approximation to the distribution generating the
data, or even that the parameterized class actually contains the target distribution. See
[14, 33, 39] for some well-known multidimensional distribution learning results in this line.

In the second general approach a hypothesis distribution is constructed by “smoothing”
the empirical distribution with a kernel function. This approach is justified by the belief that
the target distribution satisfies some smoothness assumptions, and is more appropriate when
studying distributions that do not have a parametric representation. The current paper falls
within this second strand.

The most popular smoothness assumption is that the distribution has a density that
belongs to a Sobolev space [42, 6, 30, 24]. The simplest Sobolev space used in this context
corresponds to having a bound on the average of the partial first “weak derivatives” of the
density; other Sobolev spaces correspond to bounding additional derivatives. A drawback
of this approach is that it does not apply to distributions whose densities have jump
discontinuities. Such jump discontinuities can arise in various applications, for example,
when objects under analysis must satisfy hard constraints.

To address this, some authors have used the weaker assumption that the density belongs
to a Besov space [7, 22, 38, 43, 3]. In the simplest case, this allows jump discontinuities as
long as the function does not change very fast on average. The precise definition, which
is quite technical (see [22]), makes reference to the effect on a distribution of shifting the
domain by a small amount.

The densities we consider. In this paper we analyze a clean and simple smoothness
assumption, which is a continuous analog of the notion of shift-invariance that has recently
been used for analyzing the learnability of various types of discrete distributions [5, 16, 21].
The assumption is based on the shift-invariance of f in direction v at scale κ, which, for a
density f over Rd, a unit vector v ∈ Rd, and a positive real value κ, we define to be

SI(f, v, κ) def= 1
κ
· sup
κ′∈[0,κ]

∫
Rd

|f(x+ κ′v)− f(x)| dx.

We define the quantity SI(f, κ) to be the worst case of SI(f, v, κ) over all directions v, i.e.
SI(f, κ) def= supv:‖v‖2=1 SI(f, v, κ). For any constant c, we define the class of densities CSI(c, d)
to consist of all d-dimensional densities f with the property that SI(f, κ) ≤ c for all κ > 0.

Our notion of shift-invariance provides a quantitative way of capturing the intuition
that the density f changes gradually on average in every direction. Several natural classes
fit nicely into this framework; for example, we note that d-dimensional standard normal
distributions are easily shown to belong to CSI(1, d). As another example, we will show later
that any d-dimensional isotropic log-concave distribution belongs to CSI(Od(1), d).
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Many distributions arising in practice have light tails, and distributions with light tails can
in general be learned more efficiently. To analyze learning shift-invariant distributions in a
manner that takes advantage of light tails when they are available, while accommodating heav-
ier tails when necessary, we define classes with different combinations of shift-invariant and tail
behavior. Given a nonincreasing function g : R+ → [0, 1] which satisfies limt→+∞ g(t) = 0,
we define the class of densities CSI(c, d, g) to consist of those f ∈ CSI(c, d) which have the
additional property that for all t > 0, it holds that Prx←f [||x− µ|| > t] ≤ g(t), where
µ ∈ Rd is the mean of the distribution f.

As motivation for its study, we feel that CSI(c, d, g) is a simple and easily understood class
that exhibits an attractive tradeoff between expressiveness and tractability. As we show, it is
broad enough to include distributions of central interest such as multidimensional isotropic
log-concave distributions, but it is also limited enough to admit efficient density estimation
algorithms.

Our density estimation framework. We recall the standard notion of density estimation
with respect to total variation distance. Given a class C of densities over Rd, a density
estimation algorithm for C is given access to i.i.d. draws from f , where f ∈ C is the unknown
target density to be learned. For any f ∈ C, given any parameter ε > 0, after making some
number of draws depending on d and ε the density estimation algorithm must output a
description of a hypothesis density h over Rd which, with high probability over the draws
from f , satisfies dTV(f, h) ≤ ε. It is of interest both to bound the sample complexity of such
an algorithm (the number of draws from f that it makes) and its running time. In the full
version of this paper [20], we show that our learning results can be extended to a challenging
model of noise-tolerant density estimation for a class C.

1.1 Results
Our main positive result is a general algorithm which efficiently learns any class CSI(c, d, g).
Given a constant c and a tail bound g, we show that any distribution in the class CSI(c, d, g)
can be learned to any error O(ε) with a sample complexity that depends on c, g, ε and d.
The running time of our algorithm is roughly quadratic in the sample complexity, and the
sample complexity is Oc,d,g(1) ·

( 1
ε

)d+2 (see Theorem 12 in Section 4 for a precise statement
of the exact bound). These bounds on the number of examples and running time do not
depend on which member of CSI(c, d, g) is being learned.

Application: Learning multivariate log-concave densities. A multivariate density function
f over Rd is said to be log-concave if there is an upper semi-continuous concave function
φ : Rd → [−∞,∞) such that f(x) = eφ(x) for all x. Log-concave distributions arise in a range
of contexts and have been well studied; see [11, 12, 3, 1, 9, 25] for work on density estimation
of univariate (discrete and continuous) log-concave distributions. In the multivariate case,
[35] gave a sample complexity lower bound (for squared Hellinger distance) which implies
that Ω(1/ε(d+1)/2) samples are needed to learn d-dimensional log-concave densities to error ε.
More recently, [29] established the first finite sample complexity upper bound for multivariate
log-concave densities, by giving an algorithm that learns any d-dimensional log-concave
density using Õd(1/ε(d+5)/2) samples. The algorithm of [29] is not computationally efficient,
and indeed, Diakonikolas et al. ask if there is an algorithm with running time polynomial
in the sample complexity, referring to this as “a challenging and important open question.”
A subsequent (and recent) work of Carpenter et al. [10] showed that the maximum likelihood
estimator (MLE) is statistically efficient (i.e., achieves near optimal sample complexity).

ITCS 2019
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We show that multivariate log-concave densities can be learned in polynomial time
as a special case of our main algorithmic result. We establish that any d-dimensional
near-isotropic log-concave density is Od(1)-shift-invariant. Together with well-known tail
bounds on d-dimensional log-concave densities, this easily yields that any d-dimensional
near-isotropic log-concave density belongs to CSI(c, d, g) where the tail bound function g is
inverse exponential. Theorem 12 then immediately gives a Õd(1/ε2d+2)-time algorithm for
learning near-isotropic log-concave densities. Adding a preprocessing step to reduce to the
near-isotropic case yields an algorithm that works for all log-concave densities.

While our sample complexity is quadratically larger than the optimal sample complexity
for learning log-concave distributions (from [29]), such computational-statistical tradeoffs are
in fact quite common (see, for example, the work of [8] which gives a faster algorithm for
learning Gaussian mixture models by using more samples).

A lower bound. We also prove a simple lower bound, showing that any algorithm that learns
shift-invariant d-dimensional densities with bounded support to error ε must use Ω

(
1/εd

)
examples. These densities may be thought of as satisfying the strongest possible rate of tail
decay as they have zero tail mass outside of a bounded region (corresponding to g(t) = 0 for
t larger than some absolute constant). This lower bound shows that a sample complexity of
at least 1/εd is necessary even for very structured special cases of our multivariate density
estimation problem.

1.2 Our approach
For simplicity, and because it is a key component of our general algorithm, we first describe
how our algorithm learns an ε-error hypothesis when the target distribution belongs to
CSI(c, d) and also has bounded support: all its mass is on points in the origin-centered ball of
radius 1/2.

In this special case, analyzed in Section 3, our algorithm has two conceptual stages.
First, we smooth the density that we are to learn through convolution – this is done in
a simple way by randomly perturbing each draw. This convolution uses a kernel that
damps the contributions to the density coming from high-frequency functions in its Fourier
decomposition; intuitively, the shift-invariance of the target density ensures that the convolved
density (which is an average over small shifts of the original density) is close to the original
density. In the second conceptual stage, the algorithm approximates relatively few Fourier
coefficients of the smoothed density. We show that an inverse Fourier transformation using
this approximation still provides an accurate approximation to the target density.3

Next, in Section 4, we consider the more general case in which the target distribution
belongs to the class CSI(c, d, g). Here the high-level idea of our approach is very straightfor-
ward: it is essentially to reduce to the simpler special case (of bounded support and good
shift-invariance in every direction) described above. (A crucial aspect of this transformation
algorithm is that it uses only a small number of draws from the original shift-invariant
distribution; we return to this point below.) We can then use the algorithm for the special
case to obtain a high-accuracy hypothesis, and perform the inverse transformation to obtain

3 We note that a simpler version of this approach, which only uses a smoothing kernel and does not
employ Fourier analysis, can be shown to give a similar, but quantitatively worse, results, such as a
sample complexity of essentially 1/ε2d when g(t) is zero outside of a bounded region. However, this is
worse than the lower bound of Ω(1/εd) by a quadratic factor, whereas our algorithm essentially achieves
this optimal sample complexity.
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a high-accuracy hypothesis for the original general distribution. We remark that while the
conceptual idea is thus very straightforward, there are a number of technical challenges that
must be met to implement this approach. One of these is that it is necessary to truncate
the tails of the original distribution so that an affine transformation of it will have bounded
support, and doing this changes the shift-invariance of the original distribution. Another is
that the transformation procedure only succeeds with non-negligible probability, so we must
run this overall approach multiple times and perform hypothesis selection to actually end up
with a single high-accuracy hypothesis.

In Section 5 we apply the above results to establish efficient learnability of log-concave
densities over Rd. To apply our results, we need to have (i) bounds on the rate of tail decay,
and (ii) shift-invariance bounds. As noted earlier, exponential tail bounds on d-dimensional
log-concave densities are well known, so it remains to establish shift-invariance. Using basic
properties of log-concave densities, in Section 5 we show that any d-dimensional isotropic
log-concave density is Od(1)-shift-invariant. Armed with this bound, by applying our learning
result (Theorem 12) we get that any d-dimensional isotropic log-concave density can be
learned in time Õd(1/ε2d+2), using Õd(1/εd+2) samples. Log-concave distributions are shift-
invariant even if they are only approximately isotropic. We show that general log-concave
distributions may be learned by bringing them into approximately isotropic position with a
preprocessing step, borrowing techniques from [37].

1.3 Related work

The most closely related work that we are aware of was mentioned above: Holmström and
Klemelä [30] obtained bounds similar to ours for using kernel methods to learn densities
that belong to various Sobolev spaces. As mentioned above, these results do not directly
apply for learning densities in CSI(c, d, g) because of the possibility of jump discontinuities.
Holmström and Klemelä also proved a lower bound on the sample complexity of algorithms
that compute kernel density estimates. In contrast our lower bound holds for any density
estimation algorithm, kernel-based or otherwise.

The assumption that the target density belongs to a Besov space (see [36]) makes reference
to the effect of shifts on the distribution, as does shift-invariance. We do not see any obvious
containments between classes of functions defined through shift-invariance and Besov spaces,
but this is a potential topic for further research.

Another difference with prior work is the ability of our approach to succeed in the
challenging noise-tolerant learning model. We are not aware of analyses for density estimation
of densities belonging to Sobolev or Besov spaces that extend to the noise-tolerant setting in
which the target density is only assumed to be close to some density in the relevant class.

As mentioned above, shift-invariance was used in the analysis of algorithms for learning
discrete probability distributions in [5, 16]. Likewise, both the discrete and continuous Fourier
transforms have been used in the past to learn discrete probability distributions [26, 27, 15].

2 Preliminaries

We write B(r) to denote the radius-r ball in Rd, i.e. B(r) = {x ∈ Rd : x2
1 + · · ·+ x2

d ≤ r2}.
If f is a probability density over Rd and S ⊂ Rd is a subset of its domain, we write fS to
denote the density of f conditioned on S.
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2.1 Shift-invariance

Roughly speaking, the shift-invariance of a distribution measures how much it changes
(in total variation distance) when it is subjected to a small translation. The notion of
shift-invariance has typically been used for discrete distributions (especially in the context of
proving discrete limit theorems, see e.g. [13] and many references therein). We give a natural
continuous analogue of this notion below.

I Definition 1. Given a probability density f over Rd, a unit vector v, and a positive real
value κ, we say that the shift-invariance of f in direction v at scale κ, denoted SI(f, v, κ), is

SI(f, v, κ) def= 1
κ
· sup
κ′∈[0,κ]

∫
Rd

|f(x+ κ′v)− f(x)| dx. (1)

Intuitively, if SI(f, v, κ) = β, then for any direction (unit vector) v the variation distance
between f and a shift of f by κ′ in direction v is at most κβ for all 0 ≤ κ′ ≤ κ. The factor
1
κ in the definition means that SI(f, v, κ) does not necessarily go to zero as κ gets small; the
effect of shifting by κ is measured relative to κ.

Let SI(f, κ) def= sup{SI(f, v, κ) : v ∈ Rd, ‖v‖2 = 1}. For any constant c we define the
class of densities CSI(c, d) to consist of all d-dimensional densities f with the property that
SI(f, κ) ≤ c for all κ > 0.

We could obtain an equivalent definition if we removed the factor 1
κ from the definition of

SI(f, v, κ), and required that SI(f, v, κ) ≤ cκ for all κ > 0. This could of course be generalized
to enforce bounds on the modified SI(f, v, κ) that are not linear in κ. We have chosen to
focus on linear bounds in this paper to have cleaner theorems and proofs.

We include “sup” in the definition due to the fact that smaller shifts can sometimes have
bigger effects. For example, a sinusoid with period ξ is unaffected by a shift of size ξ, but
profoundly affected by a shift of size ξ/2. Because of possibilities like this, to capture the
intuitive notion that “small shifts do not lead to large changes”, we seem to need to evaluate
the worst case over shifts of at most a certain size.

As described earlier, given a nonincreasing “tail bound” function g : R+ → (0, 1) which is
absolutely continuous and satisfies limt→+∞ g(t) = 0, we further define the class of densities
CSI(c, d, g) to consist of those f ∈ CSI(c, d) which have the additional property that f has
g-light tails, meaning that for all t > 0, it holds that Prx←f [||x− µ|| > t] ≤ g(t), where
µ ∈ Rd is the mean of f.

I Remark. It will be convenient in our analysis to consider only tail bound functions g that
satisfy min{r ∈ R : g(r) ≤ 1/2} ≥ 1/10 (the constants 1/2 and 1/10 are arbitrary here and
could be replaced by any other absolute positive constants). This is without loss of generality,
since any tail bound function g which does not meet this criterion can simply be replaced by
a weaker tail bound function g∗ which does meet this criterion, and clearly if f has g-light
tails then f also has g∗-light tails.

We will (ab)use the notation g−1(ε) to mean inf{t : g(t) ≤ ε}.
The complexity of learning with a tail bound g will be expressed in part using Ig

def=∫∞
0 g(

√
z) dz. We remark that the quantity Ig is the “right” quantity in the sense that the

integral Ig is finite as long as the density has “non-trivial decay”. More precisely, note that by
Chebyshev’s inequality, g(

√
z) = O(z−1). Since the integral

∫
O(z−1)dz diverges, this means

that if Ig is finite, then the density f has a decay sharper than the trivial decay implied by
Chebyshev’s inequality.
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2.2 Fourier transform of high-dimensional distributions
In this subsection we gather some helpful facts from multidimensional Fourier analysis.

While it is possible to do Fourier analysis over Rd, in this paper, we will only do Fourier
analysis for functions f ∈ L1([−1, 1]d).

I Definition 2. For any function f ∈ L1([−1, 1]d), we define f̂ : Rd → C by f̂(ξ) =∫
x∈Rd f(x) · eπi·〈ξ,x〉dx.

Next, we recall the following standard claims about Fourier transforms of functions, which
may be found, for example, in [41].

I Claim 3. For f, g ∈ L1([−1, 1]d) let h(x) =
∫
y∈Rd f(y) · g(x− y)dy denote the convolution

h = f ∗ g of f and g. Then for any ξ ∈ Rn, we have ĥ(ξ) = f̂(ξ) · ĝ(ξ).

Next, we recall Parseval’s identity on the cube.

I Claim 4 (Parseval’s identity). For f : [−1, 1]d → R such that f ∈ L2([−1, 1]d), it holds
that

∫
[−1,1]d f(x)2dx = 1

2d ·
∑
ξ∈Zd |f̂(ξ)|2.

The next claim says that the Fourier inversion formula can be applied to any sequence in
`2(Zd) to obtain a function whose Fourier series is identical to the given sequence.

I Claim 5 (Fourier inversion formula). For any g : Zd → C such that
∑
ξ∈Zd |g(ξ)2| < ∞,

the function h(x) =
∑
ξ∈Zd

1
2d · g(ξ) · eπi·〈ξ,x〉, is well defined and satisfies ĥ(ξ) = g(ξ) for all

ξ ∈ Zd.

We will also use Young’s inequality:

I Claim 6 (Young’s inequality). Let f ∈ Lp([−1, 1]d), g ∈ Lq([−1, 1]d), 1 ≤ p, q, r ≤ ∞, such
that 1 + 1/r = 1/p+ 1/q. Then ‖f ∗ g‖r ≤ ‖f‖p · ‖g‖q.

2.3 A useful mollifier
Our algorithm and its analysis require the existence of a compactly supported distribution
with fast decaying Fourier transform. Since the precise rate of decay is not very important,
we use the C∞ function b : [−1, 1]→ R+ as follows:

b(x) =

c0 · e−
x2

1−x2 if |x| < 1
0 if |x| = 1.

(2)

Here c0 ≈ 1.067 is chosen so that b is a pdf; by symmetry, its mean is 0. (This function has
previously been used as a mollifier [34, 28].) The following fact can be found in [32] (while it
is proved only for ξ ∈ Z, it is easy to see that the same proof holds if ξ ∈ R).

I Fact 7. For b : [−1, 1] → R+ defined in (2) and ξ ∈ Z \ {0}, we have that |̂b(ξ)| ≤
e−
√
|ξ| · |ξ|−3/4.

Let us now define the function bd,γ : Rd → R+ as bd,γ(x1, . . . , xd) = 1
γd ·

∏d
j=1 b(xj/γ).

Combining this definition and Fact 7, we have the following claim:

I Claim 8. For ξ ∈ Zd with ‖ξ‖∞ ≥ t, we have |b̂d,γ(ξ)| ≤ e−
√
γ·t · (γ · t)−3/4.

The next fact is immediate from (2) and the definition of bd,γ :

I Fact 9. ‖bd,γ‖∞ = (c0/γ)d and as a consequence, ‖bd,γ‖22 ≤ (c0/γ)2d.
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3 A restricted problem: learning shift-invariant distributions with
bounded support

As sketched in Section 1.2, we begin by presenting and analyzing a density estimation
algorithm for densities that, in addition to being shift-invariant, have support bounded in
B(1/2). Our analysis also captures the fact that, to achieve accuracy ε, an algorithm often
only needs the density to be learned to have shift invariance at a scale slightly finer than ε.

I Lemma 10. There is an algorithm learn-bounded with the following property: For all
constant d, for all ε, δ > 0, all 0 < κ < ε < 1/2, and all d-dimensional densities f with support
in B(1/2) such that κSI(f, κ) ≤ ε/2, given access to independent draws from f , the algorithm

runs in Od
(

1
ε2

( 1
κ

)2d log4d ( 1
κ

)
log
( 1
κδ

))
time uses Od

(
1
ε2

( 1
κ

)d log2d ( 1
κ

)
log
( 1
κδ

))
samples,

and with probability 1 − δ, outputs a hypothesis h : [−1, 1]d → R+ such that
∫
x∈Rd |f(x) −

h(x)| ≤ ε.
Further, given any point z ∈ [−1, 1]d, h(z) can be computed in time Od

(
log2d(1/κ)

κd

)
and

satisfies h(z) ≤ Od
(

log2d(1/κ)
κd

)
.

Proof. Let 0 < γ := κ√
d
, and let us define q = f ∗ bd,γ . (Here ∗ denotes convolution and

bd,γ is the mollifier defined in Section 2.3.) We make a few simple observations about q:
(i) Since γ ≤ 1/2, we have that q is a density supported on B(1).
(ii) Since d is a constant, a draw from bd,γ can be generated in constant time. Thus given

a draw from f , one can generate a draw from q in constant time, simply by generating
a draw from bd,γ and adding it to the draw from f .

(iii) By Young’s inequality (Claim 6), we have that ‖q‖2 ≤ ‖f‖1 · ‖bd,γ‖2. Noting that f is
a density and thus ‖f‖1 = 1 and applying Fact 9, we obtain that ‖q‖2 is finite. As a
consequence, the Fourier coefficients of q are well-defined.

Preliminary analysis. We first observe that because bd,γ is supported on [−γ, γ]d, the
distribution q may be viewed as an average of different shifts of f where each shift is by a
distance at most γ

√
d ≤ κ. Fix any direction v and consider a shift of f in direction v by

some distance at most γ
√
d ≤ κ. Since κSI(f, κ) ≤ ε/2, we have that the variation distance

between f and this shift in direction v is at most ε/2. Averaging over all such shifts, it
follows that dTV(q, f) ≤ ε/2.

Next, we observe that by Claim 3, for any ξ ∈ Zd, we have q̂(ξ) = f̂(ξ) · b̂d,γ(ξ). Since
f is a pdf, |f̂(ξ)| ≤ 1, and thus we have |q̂(ξ)| ≤ |b̂d,γ(ξ)|. Also, for any parameter k ∈ Z+,
define Ck = {ξ ∈ Zd : ‖ξ‖∞ = k}. Let us fix another parameter T (to be determined later).
Applying Claim 8, we obtain∑

ξ:‖ξ‖∞>T

|q̂(ξ)|2 ≤
∑

ξ:‖ξ‖∞>T

|b̂d,γ(ξ)|2 ≤
∑
k>T

∑
ξ:‖ξ‖∞=k

|b̂d,γ(ξ)|2

≤
∑
k>T

|Ck| · e−2·
√
γ·k · (γ · k)−3/2 ≤

∑
k>T

(2k + 1)d · e−2·
√
γ·k · (γ · k)−3/2.

An easy calculation shows that if T ≥ 4d2

γ · ln
2
(
d
γ

)
, then

∑
ξ:‖ξ‖∞>T |q̂(ξ)|

2 ≤ 2(2T +

1)d · e−2·
√
γ·T · (γ · T )−3/2. If we now set T to be 4d2

γ · ln2
(
d
γ

)
+ 1

γ · ln2
(

8
ε

)
, then∑

ξ:‖ξ‖∞>T |q̂(ξ)|
2 ≤ ε2

8 .
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The algorithm. We first observe that for any ξ ∈ Zd, the Fourier coefficient q̂(ξ) can be
estimated to good accuracy using relatively few draws from q (and hence from f , recalling
(ii) above). More precisely, as an easy consequence of the definition of the Fourier transform,
we have:

I Observation 11. For any ξ ∈ Zd, the Fourier coefficient q̂(ξ) can be estimated to within
additive error of magnitude at most η with confidence 1− β using O(1/η2 · log(1/β)) draws
from q.

Let us define the set Low of low-degree Fourier coefficients as Low = {ξ ∈ Zd : ‖ξ‖∞ ≤ T}.
Thus, |Low| ≤ (2T +1)d. Thus, using S = O(η−2 · log(T/δ)) draws from f , by Observation 11,
with probability 1− δ, we can compute a set of values {û(ξ)}ξ∈Low such that

For all ξ ∈ Low, |û(ξ)− q̂(ξ)| ≤ η. (3)

Recalling (ii), the sequence {û(ξ)}ξ∈Low can be computed in O(|S| · |Low|) time. Define
û(ξ) = 0 for ξ ∈ Zd \ Low. Combining (3) with this, we get∑

ξ∈Zd

|û(ξ)− q̂(ξ)|2 ≤
∑
ξ∈Low

|û(ξ)− q̂(ξ)|2 +
∑
ξ 6∈Low

|û(ξ)− q̂(ξ)|2

≤
∑
ξ∈Low

|û(ξ)− q̂(ξ)|2 + ε2

8 |Low| · η2 + ε2

8 ≤ (2T + 1)d · η2 + ε2

8 .

Thus, setting η as η2 = (2T + 1)−d · ε
2

8 , we get that
∑
ξ∈Zd |û(ξ)− q̂(ξ)|2 ≤ ε2

4 . Note that by
definition û : Zd → C satisfies

∑
ξ∈Zd |û(ξ)|2 <∞. Thus, we can apply the Fourier inversion

formula (Claim 5) to obtain a function u : [−1, 1]d → C such that∫
[−1,1]d

|u(x)− q(x)|2dx = 1
2d ·

( ∑
ξ∈Zd

|û(ξ)− q̂(ξ)|2
)
≤ ε2

4 · 2d , (4)

where the first equality follows by Parseval’s identity (Claim 4). By the Cauchy-Schwarz
inequality,

∫
[−1,1]d |u(x) − q(x)|dx ≤

√
2d ·

√∫
[−1,1]d |u(x)− q(x)|2dx. Plugging in (4), we

obtain
∫

[−1,1]d |u(x)−q(x)|dx ≤ ε
2 . Let us finally define h (our final hypothesis), h : [−1, 1]d →

R+, as follows: h(x) = max{0,Re(u(x))}. Note that since q(x) is a non-negative real value
for all x, we have∫

[−1,1]d
|h(x)− q(x)|dx ≤

∫
[−1,1]d

|u(x)− q(x)|dx ≤ ε

2 . (5)

Finally, recalling that we previously proved dTV(f, q) ≤ ε
2 , it follows that

∫
[−1,1]d |h(x) −

f(x)|dx ≤ ε.

Complexity analysis. We now analyze the time and sample complexity of this algorithm as
well as the complexity of computing h. First of all, observe that plugging in the value of γ and

recalling that d is a constant, we get that T = 4d2

γ · ln
2
(
d
γ

)
+ 1

γ · ln
2
(

8
ε

)
= O

(
log2(1/κ)

κ

)
.

Combining this with the choice of η we get that the algorithm uses

S = O

(
1
η2 · log

(
|Low|
δ

))
= O

(
1
η2 · log

(
T

δ

))
= O

 (2T + 1)d · log
(
T
δ

)
ε2


= Od

(
1
ε2

(
1
κ

)d
log2d

(
1
κ

)
log
(

1
κδ

))
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draws from p. Next, as we have noted before, computing the sequence {û(ξ)} takes time

O(S · |Low|) = Od

(
1
ε2

(
1
κ

)d
log2d

(
1
κ

)
log
(

1
κδ

)
T d
)

= Od

(
1
ε2

(
1
κ

)2d
log4d

(
1
κ

)
log
(

1
κδ

))
.

To compute the function u (and hence h) at any point x ∈ [−1, 1]d takes time O(|Low|) =
Od

(
log2d(1/κ)

κd

)
. This is because the Fourier inversion formula (Claim 5) has at most O(|Low|)

non-zero terms.
Finally, we prove the upper bound on h. If the training examples are x1, ..., xS , then for

any z ∈ [−1, 1]d, we have

h(z) ≤ |u(z)| =

∣∣∣∣∣∣
∑
ξ∈Low

1
2d · û(ξ) · eπi·〈ξ,z〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
ξ∈Low

1
2d ·

(
1
S

S∑
t=1

eπi〈ξ,xt〉

)
· eπi·〈ξ,z〉

∣∣∣∣∣∣
≤ |Low|

2d = Od

(
log2d(1/κ)

κd

)
,

completing the proof. J

4 Density estimation for densities in CSI(c, d, g)

Fix any nonincreasing tail bound function g : R+ → [0, 1] which satisfies limt→+∞ g(t) = 0
and min{r ∈ R : g(r) ≤ 1/2} ≥ 1/10 and any constant c ≥ 1. In this section we prove the
following theorem which gives a density estimation algorithm for the class of distributions
CSI(c, d, g):

I Theorem 12. For any c, g as above and any d ≥ 1, there is an algorithm with the following
property: Let f be any target density (unknown to the algorithm) which belongs to CSI(c, d, g).
Given any error parameter 0 < ε < 1/2 and confidence parameter δ > 0 and access to
independent draws from f , the algorithm with probability 1 − O(δ) outputs a hypothesis
h : [−1, 1]d → R≥0 such that

∫
x∈Rd |f(x)− h(x)| ≤ O(ε).

The algorithm runs in Oc,d
((

(g−1(ε))2d ( 1
ε

)2d+2 log4d
(
g−1(ε)
ε

)
log
(
g−1(ε)
εδ

)
+ Ig

)
log 1

δ

)
time and uses Oc,d

((
(g−1(ε))d

( 1
ε

)d+2 log2d
(
g−1(ε)
ε

)
log
(
g−1(ε)
εδ

)
+ Ig

)
log 1

δ

)
samples.

4.1 Outline of the proof
Theorem 12 is proved by a reduction to Lemma 10. The main ingredient in the proof of
Theorem 12 is a “transformation algorithm” with the following property: given as input
access to i.i.d. draws from any density f ∈ CSI(c, d, g), the algorithm constructs parameters
which enable draws from the density f to be transformed into draws from another density,
which we denote r. The density r is obtained by approximating f after conditioning on a
non-tail sample, and scaling the result so that it lies in a ball of radius 1/2.

Given such a transformation algorithm, the approach to learn f is clear: we first run
the transformation algorithm to get access to draws from the transformed distribution r.
We then use draws from r to run the algorithm of Lemma 10 to learn r to high accuracy.
(Intuitively, the error relative to f of the final hypothesis density is O(ε) because at most
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O(ε) comes from the conditioning and at most O(ε) from the algorithm of Lemma 10.)
We note that while this high-level approach is conceptually straightforward, a number of
technical complications arise; for example, our transformation algorithm only succeeds with
some non-negligible probability, so we must run the above-described combined procedure
multiple times and perform hypothesis testing to identify a successful final hypothesis from
the resulting pool of candidates.

The rest of this section is organized as follows: In Section 4.2 we give various necessary
technical ingredients for our transformation algorithm. We state and prove the key results
about the transformation algorithm in Section 4.3, and we use the transformation algorithm
to prove Theorem 12 in Section 4.4.

4.2 Technical ingredients for the transformation algorithm
As sketched earlier, our approach will work with a density obtained by conditioning f ∈ SI(c, d)
on lying in a certain ball that has mass close to 1 under f . While we know that the original
density f ∈ SI(c, d) has good shift-invariance, we will further need the conditioned distribution
to also have good shift-invariance in order for the learn-bounded algorithm of Section 3 to
work. Thus we require the following simple lemma, which shows that conditioning a density
f ∈ SI(c, d) on a region of large probability cannot hurt its shift invariance too much.

I Lemma 13. Let f ∈ SI(c, d) and let B be a ball such that Prx∼f [x ∈ B] ≥ 1− δ where
δ < 1/2. If fB is the density of f conditioned on B, then, for all κ > 0, SI(fB , κ) ≤ 4δ

κ + 2c.

Proof. Let v be any unit vector in Rd. Note that f can be expressed as (1− δ)fB + δ · ferr
where ferr is some other density. As a consequence, for any κ > 0, using the triangle
inequality we have that∫

x

|f(x)− f(x+ κv)|dx ≥ (1− δ)
∫
x

|fB(x)− fB(x+ κv)|dx

− δ
∫
x

|ferr(x)− ferr(x+ κv)|dx.

Since f ∈ CSI(c, d) the left hand side is at most cκ, whereas the subtrahend on the right hand
side is trivially at most 2δ. Thus, we get

∫
x
|fB(x)− fB(x+ κv)|dx ≤ 2δ

1−δ + cκ
1−δ , completing

the proof. J

If f is an unknown target density then of course its mean is also unknown, and thus we
will need to approximate it using draws from f . To do this, it will be helpful to convert our
condition on the tails of f to bound the variance of ||x− µ||, where x ∼ f.

I Lemma 14. For any f ∈ CSI(c, d, g), we have Ex∼f [||x− µ||2] ≤ Ig.

Proof. We have Ex∼f [||x− µ||2] =
∫∞

0 Prx∼f [||x− µ||2 ≥ z] dz ≤
∫∞

0 g(
√
z) dz = Ig. J

The following easy proposition gives a guarantee on the quality of the empirical mean:

I Lemma 15. For any f ∈ CSI(c, d, g), if µ ∈ Rd is the mean of f and µ̂ is its empirical
estimate based on M samples, then for any t > 0 we have Pr

[
||µ− µ̂||2 ≥ t

]
≤ Ig

Mt .

Proof. If x1, . . . ,xM are independent draws from f , then

E[||µ− µ̂||2] = E
[∣∣∣∣µ− x1 + . . .+ xM

M

∣∣∣∣2] =
M∑
i=1

1
M2 E

[∣∣∣∣µ− xi∣∣∣∣2] = Ig
M
,

where the last inequality is by Lemma 14. Applying Markov’s inequality on the left hand
side, we get the stated claim. J
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4.3 Transformation algorithm
I Lemma 16. There is an algorithm compute-transformation such that given access to
samples from f ∈ CSI(c, d, g) and an error parameter 0 < ε < 1/2, the algorithm takes
O(Ig) samples from f and with probability at least 9/10 produces a vector µ̃ ∈ Rd and a
real number t with the following properties: (1) For Bt = {x : ||x − µ̃|| ≤

√
t}, we have

Prx∼f [x ∈ Bt] ≥ 1 − ε; (2) t = O(g−1(ε)2); (3) For all κ > 0, the density fBt
satisfies

SI(fBt
, κ) ≤ 4ε

κ + 2c.

Proof. For M = 100Ig, the algorithm compute-transformation simply works as follows: set
µ̃ to be the empirical mean of the M samples, and t = 2((g−1(ε))2 + 1/10). (Note that
since min{r ∈ R : g(r) ≤ 1/2} ≥ 1/10 we have t = Θ(g−1(ε)2).). Let µ denote the true
mean of f . First, by Lemma 15, with probability at least 0.9, the empirical mean µ̂ will
satisfy ||µ− µ̂||2 ≤ 1

10 . Let us assume for the rest of the proof that this happens; fix any such
outcome and denote it µ̃.

We have ||x− µ̃||2 ≤ 2(||x− µ||2 + ||µ− µ̃||2) ≤ 2(||x− µ||2 + 1/10) and so

Pr
x∈f

[||x− µ̃||2 > t] ≤ Pr
x∈f

[2(||x− µ||2 + 1/10) > t] = Pr[‖x− µ‖2 ≥ g−1(ε)] ≤ ε.

Applying Lemma 13 completes the proof. J

The following proposition elaborates on the properties of the output of the transformation
algorithm.

I Lemma 17. Let f ∈ CSI(c, d, g), ε > 0, µ̃ ∈ Rd, and t ∈ R satisfy the properties stated
in Lemma 16. Consider the density fscond defined by fscaled(x) def= 2

√
t · f

(
2
√
t · (x+ µ̃)

)
and fscond(x) def= fscaled,B(1/2)(x) where fscaled,B(1/2) is the result of conditioning fscaled on
membership in B(1/2). Then the density fscond(x) satisfies the following properties: (1) The
density fscond is supported in the ball B(1/2); (2) For all ε < 1/2 and κ > 0, the density
fscond satisfies SI(fscond, κ) ≤ 4ε

κ + 4c
√
t.

Proof. First, it is easy to verify that function fscond defined above is indeed a density. Item
1 is enforced by fiat. Now, for any direction v, we have

SI(fscaled, v, κ) = 1
κ
· sup
κ′∈[0,κ]

∫
Rd

|fscaled(x+ κ′v)− fscaled(x)| dx

= 2
√
t

κ
· sup
κ′∈[0,κ]

∫
Rd

∣∣∣f(2
√
t(x+ κ′v))− f(2

√
tx)
∣∣∣ dx.

Using a change of variables, u = 2
√
tx, we get

SI(fscaled, v, κ) = 1
κ
· sup
κ′∈[0,κ]

∫
Rd

∣∣∣f(u+ κ′2
√
tv)− f(u)

∣∣∣ du
= 1
κ
· sup
κ′∈[0,2

√
tκ]

∫
Rd

|f(u+ κ′v)− f(u)| du

= 2
√
t · SI(f, v, 2

√
tκ) ≤ 2c

√
t. (6)

The last inequality uses that f ∈ CSI(c, d, g). Inequality (6) implies that fscaled ∈
CSI(2c

√
t, d, g). Now, Prx∼fscaled(x ∈ B(1/2)) = Prx∼f (x ∈ Bt) ≥ 1 − ε, so applying

Lemma 13 completes the proof. J
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4.4 Proof of Theorem 12
We are now ready to prove Theorem 12. Consider the following algorithm, which we call
construct-candidates:
1. Run the transformation algorithm compute-transformation D := O(ln(1/δ)) many times

(with parameter ε each time). Let (µ̃(i), t) be the output that it produces on the i-th run,
where t = O(g−1(ε)2).

2. For each i ∈ [D], let B(i)
t = {x : ||x− µ̃|| ≤

√
t} and f (i)

scond be the density defined from
(µ̃(i), t) as in Lemma 17.

Before describing the third step of the algorithm, we observe that given the pair (µ̃(i), t)
it is easy to check whether any given x ∈ Rd belongs to B(i)

t . If Prx∼f [x ∈ B(i)
t ] ≥ 1/2, then

with probability at least 1/2 a draw from f can be used as a draw from f
B

(i)
t
. In this case,

via rejection sampling, it is easy to very efficiently simulate draws from f
(i)
scond given access to

samples from f (the average slowdown is at most a factor of 2). Note that if (µ̃(i), t) satisfies
the properties of Lemma 16, then Prx∼f [x ∈ B(i)

t ] ≥ 1 − ε and we fall into this case. On
the other hand, if Prx∼f [x ∈ B(i)

t ] < 1/2, then it may be inefficient to simulate draws from
f

(i)
scond. But any such i will not satisfy the properties of Lemma 16, so if rejection sampling is
inefficient to simulate draws from f

(i)
scond then we can ignore such an i in what follows. With

this in mind, the third and fourth steps of the algorithm are as follows:
3. For each i ∈ [D],4 run the algorithm learn-bounded using m samples from f

(i)
scond, where

m = m(ε, δ, d) is the sample complexity of learn-bounded from Lemma 10. Let h(i)
scond be

the resulting hypothesis that learn-bounded outputs.
4. Finally, for each i ∈ [D] output the hypothesis obtained by inverting the mapping of

Lemma 17, i.e.

h(i)(x) def= 1
2
√
t
· h(i)

scond

(
1

2
√
t
· (x− µ̃(i))

)
. (7)

Thus the output of construct-candidate is a D-tuple of hypotheses (h(1), . . . , h(D)).

We now analyze the construct-candidate algorithm. Given Lemma 16 and Lemma 17, it is
not difficult to show that with high probability at least one of the hypotheses that it outputs
has error O(ε) with respect to f :

I Lemma 18. With probability at least 1−O(δ), at least one h(i) has
∫
x
|h(i)(x)− f(x)|dx ≤

O(ε).

Proof. It is immediate from Lemma 16 and the choice of D that with probability 1− δ at
least one triple (µ̃(i), t) satisfies the properties of Lemma 16. Fix i′ to be an i for which this
holds.

Given any i ∈ [D], it is easy to carry out the check for whether rejection sampling is
too inefficient in simulating f (i)

scond in such a way that algorithm learn-bounded will indeed
be run to completion (as opposed to being terminated) on f (i′)

scond with probability at least
1 − δ, so we henceforth suppose that indeed learn-bounded is actually run to completion
on f

(i′)
scond. Since (µ̃(i′), t) satisfies the properties of Lemma 16, by Lemma 17, taking

4 Actually, as described above, this and the fourth step are done only for those i for which rejection
sampling is not too inefficient in simulating draws from f

(i)
scond given draws from f ; for the other i’s, the

run of learn-bounded is terminated.
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κ = min{ε/2, ε/(4g−1(ε)c)}) the density f (i′)
scond satisfies the required conditions for Lemma 10

to apply with that choice of κ. The following simple proposition, proved in the long version
of this paper [20], implies that h(i) is likewise O(ε)-close to fBt :

I Proposition 19. Let f and g be two densities in Rd and let x 7→ A(x−z) be any invertible
linear transformation over Rd. Let fA(x) = det(A) ·f(A(x−z)) and gA(x) = det(A) ·g(A(x−
z)) be the densities from f and g under this transformation. Then dTV(f, g) = dTV(fA, gA).

It remains only to observe that by property 1 of Lemma 16 the density fBt is ε-close
to f , and then by the triangle inequality we have that h(i) is O(ε)-close to f . This gives
Lemma 18. J

Tracing through the parameters, it is straightforward to verify that the sample and time
complexities of construct-candidates are as claimed in the statement of Theorem 12. These
sample and time complexities dominate the sample and time complexities of the remaining
portion of the algorithm, the hypothesis selection procedure discussed below.

All that is left is to identify a good hypothesis from the pool of D candidates. This can
be carried out rather straightforwardly using well-known tools for hypothesis selection. Many
variants of the basic hypothesis selection procedure have appeared in the literature, see e.g.
[44, 18, 2, 17, 19]). The following is implicit in the proof of Proposition 6 from [19]:

I Proposition 20. Let D be a distribution with support contained in a set W and let
Dε = {Dj}Mj=1 be a collection of M hypothesis distributions over W with the property that
there exists i ∈ [M ] such that dTV(D,Di) ≤ ε. There is an algorithm SelectD which is
given ε and a confidence parameter δ, and is provided with access to (i) a source of i.i.d.
draws from D and from Di, for all i ∈ [M ]; and (ii) a (1 + β) “approximate evaluation
oracle” evalDi(β), for each i ∈ [M ], which, on input w ∈W , deterministically outputs D̃β

i (w)
such that the value Di(w)

1+β ≤ D̃β
i (w) ≤ (1 + β) ·Di(w). Further, (1 + β)2 ≤ (1 + ε/8). The

SelectD algorithm has the following behavior: It makes m = O
(
(1/ε2) · (logM + log(1/δ))

)
draws from D and from each Di, i ∈ [M ], and O(m) calls to each oracle evalDi

, i ∈ [M ].
It runs in time poly(m,M) (counting each call to an evalDi oracle and draw from a Di

distribution as unit time), and with probability 1−δ it outputs an index i? ∈ [M ] that satisfies
dTV(D,Di?) ≤ 6ε.

As suggested above, the remaining step is to apply Proposition 20 to the list of candidate
hypothesis h(i) which satisfies the guarantee of Lemma 18. However, to bound the sample and
time complexity of running the procedure Proposition 20, we need to bound the complexity
both of sampling from {h(i)}i∈[D] as well as of constructing approximate evaluation oracles
for these measures.5 In fact, we will first construct densities out of the measures {h(i)}i∈[D]
and show how to both efficiently sample from these measures as well as construct approximate
evaluation oracles for these densities.

Towards this, let us now define Hmax as follows: Hmax = maxi∈[D] maxz∈[−1,1]n h
(i)
scond(z).

From Lemma 10 (recall that Lemma 10 was applied with κ = min{ε/2, ε/(4g−1(ε)c)}) we get

that Hmax = Oc,d

((
g−1(ε)
ε

)d
log2d g−1(ε)

ε

)
. We will carry out the rest of our calculations in

terms of Hmax.

5 Note that while h(i) are forced to be non-negative and thus can be seen as measures, they need not
integrate to 1 and thus need not be densities.



A. De, P.M. Long, and R. A. Servedio 28:15

I Observation 21. For any i ∈ [D],
∫
x∈[−1,1]d h

(i)
scond(x)dx can be estimated to additive

accuracy ±ε and confidence 1− δ in time Od
(
H2

max
ε2 · log(1/δ)

)
.

Proof. First note that it suffices to estimate the quantity Ex∈[−1,1]d [h(i)
scond(x)] to additive

error ε/2d. However, this can be estimated using the trivial random sampling algorithm.
In particular, as h(i)

scond(x) ∈ [0, Hmax], the variance of the simple unbiased estimator for
Ex∈[−1,1]d [h(i)

scond(x)] is also bounded by H2
max. This finishes the proof. J

Note that, while the algorithm of Observation 21 does random sampling, this sampling is
not from f , so it adds nothing to the sample complexity of the learning algorithm.

Next, for i ∈ [D], let us define the quantity Zi to be Zi =
∫
x
h(i)(x)dx. Since the functions

h(i) and h(i)
scond are obtained from each other by linear transformations (recall (7)), we get

that 2
√
tZi =

∫
x
h

(i)
scond

(
1

2
√
t
· (x− µ̃(i))

)
dx. We now define the functions H(i) and H(i)

scond as

H(i)(x) = h(i)(x)
Zi

and H
(i)
scond(x) =

h
(i)
scond( 1

2
√

t
·(x−µ̃(i)))

Zi
· 1

2
√
t
. Observe that the functions H(i)

and H(i)
scond are densities (i.e. they are non-negative and integrate to 1). First, we will show

that it suffices to run the procedure SelectD on the densities H(i). To see this, note that
Lemma 18 says that there exists i ∈ [D] such that h(i) satisfies

∫
x
|h(i)(x) − f(x)| = O(ε).

For such an i, Zi ∈ [1−O(ε), 1 +O(ε)]. Thus, we have the following corollary.

I Corollary 22. With probability at least 1−δ, at least one H(i) satisfies
∫
x
|H(i)(x)−f(x)| =

O(ε). Further, for such an i, Zi ∈ [1−O(ε), 1 +O(ε)].

Thus, it suffices to run the procedure SelectD on the candidate distributions {H(i)}i∈[D].
The next proposition shows that the densities {H(i)}i∈[D] are samplable.

I Proposition 23. A draw from the density H(i)(x) can be sampled in time O(Hmax/Zi).

Proof. First of all, note that it suffices to sample from H
(i)
scond since H(i) and H

(i)
scond are

linear transformations of each other. However, sampling from H
(i)
scond is easy using rejection

sampling. More precisely, the distribution H(i)
scond is supported on [−1, 1]d. We sample from

H
(i)
scond as follows:

1. Let C = [−1, 1]d × [0, Hmax]. Sample a uniformly random point z′ = (z1, . . . , zd+1) from
C.

2. If zd+1 ≤ h(i)
scond(z1, . . . , zd), then return the point z = (z1, . . . , zd).

3. Else go to Step 1 and repeat.
Now note that conditioned on returning a point in step 2, the point z is returned with
probability proportional to h(i)

scond(z). Thus, the distribution sampled by this procedure is
indeed H(i)

scond(z). To bound the probability of success, note that the total volume of C is
2d ×Hmax. On the other hand, step 2 is successful only if z′ falls in a region of volume Zi.
This finishes the proof. J

The next proposition says that if Zi ≥ 1/2, then there is an approximate evaluation oracle
for the density H(i).

I Proposition 24. Suppose Zi ≥ 1/2. Then there is a (1 +O(ε))- approximate evaluation
oracle for H(i) which can be computed at any point w in time O

(
H2

max
ε2

)
.
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Proof. Note that we can evaluate h(i) at any point w exactly and thus the only issue is to
estimate the normalizing factor Zi. Note that since Zi ≥ 1/2 , estimating Zi to within an
additive O(ε) gives us a (1 +O(ε)) multiplicative approximation to Zi and hence to H(i)(w)
at any point w. However, by Observation 21, this takes time O

(
H2

max
ε2

)
, concluding the

proof. J

We now apply Proposition 20 as follows.
1. For all i ∈ [D], estimate Zi using Observation 21 up to an additive error ε. Let the

estimates be Ẑi.
2. Let us define Sfeas = {i ∈ [D] : L̂i ≥ 1/2}.
3. We run the routine SelectD on the densities {H(i)}i∈Sfeas . To sample from a density H(i),

we use Proposition 23. We also construct a β = ε/32 approximation oracle for each of
the densities H(i) using Proposition 24. Return the output of SelectD.

The correctness of the procedure follows quite easily. Namely, note that Corollary 22 implies
that there is one i such that both Zi ∈ [1−O(ε), 1 +O(ε)] and

∫
x
|H(i)(x)− f(x)| = O(ε).

Thus such an i will be in Sfeas. Thus, by the guarantee of SelectD, the output hypothesis is
O(ε) close to f .

We now bound the sample complexity and time complexity of this hypothesis selection
portion of the algorithm. First of all, the number of samples required from f for running
SelectD is O((1/ε2) · (log(1/δ) + d2 log d + log log(1/δ)) = O((1/ε2) · (log(1/δ) + d2 log d).
This is clearly dominated by the sample complexity of the previous parts. To bound the
time complexity, note that the time complexity of invoking the sampling oracle for any
H(i) (i ∈ Sfeas) is dominated by the time complexity of the approximate oracle which is
2O(d) ·H2

max/ε
2. The total number of calls to the sampling as well as evaluation oracle is

upper bounded by 1
ε2 (D logD+D log(1/δ)). Plugging in the value of Hmax as well as D, we

see that the total time complexity is dominated by the bound in the statement of Theorem 12.
This finishes the proof.

5 Efficiently learning multivariate log-concave densities

In this section we present our main application, which is an efficient algorithm for learning
d-dimensional log-concave densities. We prove the following:

I Theorem 25. There is an algorithm with the following property: Let f be a unknown
log-concave density over Rd Given any error parameter ε > 0 and confidence parameter
δ > 0 and access to independent draws from f , the algorithm with probability 1− δ outputs a
hypothesis density h : Rd → R≥0 such that

∫
x∈Rd |f(x)− h(x)| ≤ O(ε). The algorithm runs

in time Od
(( 1

ε

)2d+2 log7d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
and uses Od

(( 1
ε

)d+2 log4d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
samples.

We will establish Theorem 25 in two stages. First, we will show that any log-concave f
that is nearly isotropic in fact belongs to a suitable class CSI(c, d); given this, the theorem
follows immediately from Theorem 12 and a straightforward tracing through of the resulting
time and sample complexity bounds. Then, we will reduce to the near-isotropic case, similarly
to what was done in [37, 4].

First, let us state the theorem for the well-conditioned case. For this, the following
definitions will be helpful.
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I Definition 26. Let Σ and Σ̃ be two positive semidefinite matrices. We say that Σ and
Σ̃ are C-approximations of each other (denoted by Σ ≈C Σ̃) if for every x ∈ Rn such that
xT Σ̃x 6= 0, we have 1

C ≤
xT Σx
xT Σ̃x

≤ C.

I Definition 27. Say that the probability distribution is C-nearly-isotropic if its covariance
matrix C-approximates I, the d-by-d identity matrix.

I Theorem 28. There is an algorithm with the following property: Let f be a unknown
C-nearly-isotropic log-concave density over Rd, where C and d are constants.

Given any error parameter ε > 0 and confidence parameter δ > 0 and access to in-
dependent draws from f , the algorithm with probability 1 − δ outputs a hypothesis den-
sity h : Rd → R≥0 such that

∫
x∈Rd |f(x) − h(x)| ≤ O(ε). The algorithm runs in time

OC,d

(( 1
ε

)2d+2 log7d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
and uses OC,d

(( 1
ε

)d+2 log4d ( 1
ε

)
log
( 1
εδ

)
log 1

δ

)
sam-

ples.

By Theorem 12, Theorem 28 is an immediate consequence of the following theorem on
the shift-invariance of near-isotropic log-concave distributions.

I Theorem 29. Let f be a C-nearly-isotropic log-concave density in Rd, for constants C
and d. Then, for g(t) = e−Ω(t), there is a constant c1 = OC,d(1) such that f ∈ CSI(c1, d, g).

Proof. The fact that f has e−Ω(t)-light tails directly follows from Lemma 5.17 of [37], so it
remains to prove that there is a constant c1 such that f ∈ CSI(c1, d). Because membership in
CSI(c1, d) requires that a condition be satisfied for all directions v, rotating a distribution
does not affect its membership in CSI(c1, d).

Choose a unit vector v and κ > 0. By rotating the distribution if necessary, we may
assume that v = e1, and our goal of showing that SI(f, e1, κ) ≤ c1 is equivalent to showing
that

∫
|f(x)− f(x+ κ′e1)|dx ≤ c1κ for all κ′ ≤ κ.

We bound the integral of the LHS as follows. Fix some value of x′ def= (x2, . . . , xd).
Let us define Lx′

def= {(x1, x2, . . . , xd) : x1 ∈ R} to be the line through (0, x2, . . . , xd) and
(1, x2, . . . , xd). Since the restriction of a concave function to a line is concave, the restriction
of a log-concave distribution to a line is log-concave. Since∫

|f(x)− f(x+ κ′e1)| dx =
∫
x′

∫
x1

|f(x1, x2, ..., xd)− f(x1 + κ′, x2, ..., xd)| dx1dx
′ (8)

we are led to examine the one-dimensional log-concave measure f(·, x2, ..., xd). The following
will be useful for that.

I Claim 30. Let ` : R → R be a log-concave measure. Then,
∫
|`(t) − `(t + h)|dt ≤

3h ·maxt∈R `(t).

Proof. Log-concave measures are unimodal (see [31]). Let z be the mode of `, so that ` is
non-decreasing on the interval [−∞, z] and non-increasing in [z,∞]. We have∫

|`(t)− `(t+ h)| dt

=
∫ z−h

−∞
|`(t)− `(t+ h)| dt+

∫ z

z−h
|`(t)− `(t+ h)| dt+

∫ ∞
z

|`(t)− `(t+ h)| dt
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=
∫ z−h

−∞
`(t+ h)− `(t) dt+

∫ z

z−h
|`(t)− `(t+ h)| dt+

∫ ∞
z

`(t)− `(t+ h) dt

(since z is the mode of `)

=
∫ z

z−h
`(t) dt+

∫ z

z−h
|`(t)− `(t+ h)| dt+

∫ z+h

z

`(t) dt ≤ 3hmax
t∈R

`(t). J

Returning to the proof of Theorem 29, applying Claim 30 with (8), we get∫
|f(x)− f(x+ κ′e1)| dx ≤ 3κ′

∫
x′

(
max
x1∈Lx′

f(x1, x
′)
)
dx′. (9)

Now, since an isotropic log-concave distribution g satisfies g(x) ≤ K exp(−‖x‖) for an
absolute constant K (see Theorem 5.1 of [40]), our C-nearly-isotropic log-concave distribution
f satisfies f(x) ≤ CdK exp(−‖x‖) = OC,d(exp(−‖x‖)). Plugging this into (9), we get∫

|f(x)− f(x+ κ′e1)| dx ≤ OC,d(κ′)
∫
x′

(
max
x1∈Lx′

exp(−‖(x1, x
′)‖)
)
dx′

≤ OC,d(κ′)
∫
x′

exp(−‖x′‖) dx′.

Since the integral converges, this finishes the proof. J

To learn log-concave distributions that are not C-nearly-isotropic, using techniques from
[37], we preprocess the data to bring it into isotropic position, and then apply Theorem 29.
The details are in the long version of this paper [20].

6 Learning shift-invariant densities over Rd with bounded support
requires Ω(1/εd) samples

The following lower bound is proved in the long version of this paper [20].

I Theorem 31. Given d ≥ 1, there is a constant cd = Θ(
√
d) such that the following holds:

For all sufficiently small ε, let A be an algorithm with the following property: given access to
m i.i.d. samples from an arbitrary (and unknown) finitely supported density f ∈ CSI(cd, d),
with probability at least 99/100, A outputs a hypothesis density h such that dTV(f, h) ≤ ε.

Then m ≥ Ω((1/ε)d).
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Abstract
A local tester for an error-correcting code is a probabilistic procedure that queries a small subset of
coordinates, accepts codewords with probability one, and rejects non-codewords with probability
proportional to their distance from the code. The local tester is robust if for non-codewords
it satisfies the stronger property that the average distance of local views from accepting views
is proportional to the distance from the code. Robust testing is an important component in
constructions of locally testable codes and probabilistically checkable proofs as it allows for
composition of local tests.

In this work we show that for certain codes, any (natural) local tester can be converted to a
roubst tester with roughly the same number of queries. Our result holds for the class of affine-
invariant lifted codes which is a broad class of codes that includes Reed-Muller codes, as well as
recent constructions of high-rate locally testable codes (Guo, Kopparty, and Sudan, ITCS 2013).
Instantiating this with known local testing results for lifted codes gives a more direct proof that
improves some of the parameters of the main result of Guo, Haramaty, and Sudan (FOCS 2015),
showing robustness of lifted codes.

To obtain the above transformation we relate the notions of local testing and robust testing to
the notion of agreement testing that attempts to find out whether valid partial assignments can
be stitched together to a global codeword. We first show that agreement testing implies robust
testing, and then show that local testing implies agreement testing. Our proof is combinatorial,
and is based on expansion / sampling properties of the collection of local views of local testers.
Thus, it immediately applies to local testers of lifted codes that query random affine subspaces
in Fmq , and moreover seems amenable to extension to other families of locally testable codes with
expanding families of local views.
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1 Introduction

Our main result shows a transformation from local testing to robust testing for the class
of affine-invariant lifted codes. We start by describing the notions of local testing, robust
testing, and lifted codes.

1.1 Local testing and robust testing
A code is a subset C ⊆ Σn. The elements of C are called codewords, Σ is the alphabet of
the code, and n is the block length. The rate of the code is the ratio (log|Σ| |C|)/n. The
code is linear if Σ = Fq where Fq is the finite field of q elements, and C is an Fq-linear
subspace of Fnq . It will be convenient to think of codewords in C as functions f : U → Σ
where U is a domain of size n. For a pair of functions f, g : U → Σ we let dist(f, g) denote
the fraction of inputs x ∈ U for which f(x) 6= g(x). The relative distance dist(C) of the code
is the minimum of dist(f, g) over all codewords f, g ∈ C. For a function f : U → Σ we let
dist(f, C) denote the minimum of dist(f, g) over all codewords g ∈ C.

A local tester for the code C is a probabilistic oracle algorithm that on oracle access to
a function f : U → Σ makes at most Q queries to f , and accepts f ∈ C with probability
one, while rejecting f 6∈ C with probability at least α · dist(f, C). We refer to Q as the
query complexity of the tester, and to α as the soundness. In this work we shall restrict
our attention to local testers that pick a random subset K ⊆ U of cardinality Q according
to some distribution, and accept if and only if f |K ∈ C|K .3 The requirement then is that
f |K ∈ C|K with probability one whenever f ∈ C, and

Pr
K

[f |K /∈ C|K ] ≥ α · dist(f, C) (1)

otherwise.
In this work we will be interested in the stronger notion of robustness. We say that a

local tester as above is robust if for non-codewords the average distance of its local views
from accepting views is proportional to the distance of the given function from the code.
That is, as before we require that f |K ∈ C|K with probability one whenever f ∈ C, but
instead of (1) we now require that

EK
[
dist(f |K , C|K)

]
≥ α · dist(f, C) (2)

whenever f /∈ C. Here we refer to α as the robustness of the tester.
The notion of robustness was introduced by Ben-Sasson and Sudan [8] based on analogous

notions for probabilistically checkable proofs [5, 15]. Robustness is a natural property of
local testers that relates the global distance of a function from the code to its local distance
from accepting views on local views. Moreover, robustness is also an important ingredient in
constructions of locally testable codes and probabilistically checkable proofs as it allows for
composition of local tests. Specifically, it follows by definition that if a code C is robustly

3 Local testers may generally apply a more complex predicate on f |K . However, natural local testers
are typically of the restricted form we consider, and moreover it can be shown that a local tester for a
linear code must be of this form [6].

https://doi.org/10.4230/LIPIcs.ITCS.2019.29
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testable with query complexity Q and soundness α, and additionally each local restriction
C|K is locally testable with query complexity Q′ and soundness α′, then the code C is locally
testable with query complexity Q′ and soundness α · α′. This property is useful when local
restrictions can be tested efficiently which can happen if the code has many symmetries (as
is the case with the class of lifted codes considered in this work) or can be achieved, in the
case of probabilistically checkable proof, by attaching a short proof of proximity.

One can easily observe that (2) implies (1) since f |K /∈ C|K whenever dist(f |K , C|K) > 0,
so robustness is a stronger requirement than local testing. For the other direction, note
that a local tester with soundness α has robustness at least α/Q since dist(f |K , C|K) ≥ 1/Q
whenever f |K /∈ C|K . A natural question is whether this loss in roubstness is necessary, and
whether robustness is strictly stronger notion than local testing. In this work we shall show
that this loss is unnecessary for the class of lifted codes, discussed below.

1.2 Lifted codes

Lifted codes are specified by a base code C ⊆ {F`q → Fq} and a dimension m ≥ `. We further
assume that the base code C is linear and affine-invariant, that is, for any codeword f ∈ C,
and for any affine transformation A : F`q → F`q it holds that f ◦A ∈ C. Given these we define
the lifted code C`↗m to be the code consisting of all functions f : Fmq → Fq that satisfy that
f |L ∈ C for any `-dimensional affine subspace L.

Lifted codes were first introduced by Ben-Sasson et al [7], and their local testability
properties were further explored in subsequent work [20, 21, 19]. They are a natural
generalization of the well-studied family of Reed-Muller codes, and moreover they also give
rise to new families of locally testable codes that outperform Reed-Muller codes in certain
range of parameters [20]. Specifically, lifted codes lead to one of the two known constructions
(the other one being tensor codes [8, 9, 27, 24]) of high-rate locally testable codes (i.e., locally
testable codes with rate approaching one and sublinear locality). Generally, lifted codes
form a natural subclass of affine-invariant codes satisfying the “single-orbit characterization”
property that is known to imply local testability, as well as local decodability [23].

There is a natural local test associated with lifted codes: on oracle access to a function
f : Fmq → Fq, pick a uniform random `-dimensional affine subspace L and accept if and only
if f |L ∈ C. It follows immediately by definition that this test accepts any valid codeword
f ∈ C`↗m with probability one, but more work is required to show that this test is sound.
Specifically, since the test forms a single orbit characterization, it follows from [23] that it
has soundness roughly q−2`. The dependence of the soundness on the dimension ` was later
eliminated in [21] who showed soundness that is only a function of q (though an extremely
quickly decaying one).

As for robustness, the above local testing results, together with the straightforward
transformation from local testing to robust testing, immediately give robustness that is
dependent on the dimension `. This was eliminated recently in [19] who showed robustness
of the form poly(δ) (about δ74, where δ is the relative distance of the code) for the local
test that queries subspaces of slightly larger dimension of 2`. Interestingly, [19] did not rely
on the aforementioned local testing results, but rather relied on viewing lifted codes as the
intersection of “modified tensor codes”. They then proceeded by showing that these modified
tensor codes are robustly testable (using the proof method of [27] showing robustness of
tensor codes), and that this implies local testability of the lifted code (see Section 2.4 for
more details about the proof method of [19]).
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1.3 Our results

Our main result gives a transformation from local testing to robust testing, that does not
suffer the factor of Q (the query complexity) loss in robustness, for the class of lifted codes.
The transformation uses local testability in a “black-box” manner, and shows that if a code
in this family is locally testable (using the natural subspace tester) then it is also robustly
testable with roughly the same number of queries and robustness.

For k ≥ `, let the k-dimensional (subspace) test denote the local tester that on oracle
access to a function f : Fmq → Fq queries a uniform random k-dimensional affine subspace K
and accepts if and only if f |K ∈ C`↗k.

I Theorem 1 (Main). Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ k ≥ `.
Suppose that C`↗m is locally testable using the k-dimensional test with query complexity
qk and soundness α, and let δ := mink≤r≤m dist(C`↗r). Then C`↗m is robustly testable
using the (2k + logq(4/δ))-dimensional test with query complexity O(q2k/δ) and robustness
Ω(α · δ3).

Note that if the relative distance δ is constant, we only incur a constant multiplicative loss
in robustness and testing dimension.

To apply the above theorem one can instantiate it with the local testing result of [23] that
says that lifted codes are locally testable using the `-dimensional test with soundness ≈ q−2`

(see Theorem 6 below). However, to obtain constant robustness we need that the soundness
of the initial local tester would be constant (independent of q and `), and for this we observe
(in Proposition 19) that the soundness of [23] can be easily amplified to Ω(1) at the cost of
increasing the testing dimension to ≈ 3`.4 Using this observation we obtain the following.

I Corollary 2. Let C ⊆ {F`q → Fq} be an affine-invariant linear code of relative distance δ,
and m ≥ `. Then C`↗m is robustly testable using the (6` + logq(128/δ))-dimensional test
with robustness Ω(δ3).

Compared to the above corollary, [19] use lower dimension of 2`, but also obtain lower
soundness of Ω(δ74).

As described next, our proof is combinatorial, relying mainly on expansion / sampling
properties of the collection of local views. In particular, it uses very little about the algebraic
structure of lifted codes or the base code. We thus hope that such techniques would prove
useful in the future for showing robustness for other families of locally testable codes with
similar expansion properties.

2 Proof overview

Our proof is based on a new connection between the notions of local testing, robust testing,
and agreement testing. Specifically, we show that for the class of lifted codes agreement
testing implies robust testing, and local testing implies agreement testing. The combination
of these two implications gives our main Theorem 1. Next we elaborate on the notion of
agreement testing, followed by an overview of each of the implications.

4 Such an amplification with similar blow-up in query complexity can be easily obtained by repeating the
test and accepting if and only if all invocations accept; we however need that the tester would be a
subspace tester which can be obtained using sampling properties of affine subspaces.
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2.1 Agreement testing
An agreement test attempts to find out whether partial assignments to local views can be
stitched together to a single global codeword. Let C ⊆ {U → Σ} be a code, and let S be a
collection of subsets of U . An agreement tester for C,S is a probabilistic oracle algorithm
that receives oracle access to a collection of partial assignments {fS : S → Σ | S ∈ S}
on sets of S, where fS ∈ C|S for any S ∈ S. The tester queries a few of the fS ’s, and is
required to accept with probability one any collection (fS)S that is consistent with some
global codeword g ∈ C (that is, g|S = fS for any S ∈ S), while rejecting any inconsistent
collection (fS)S with probability proportional to the minimal fraction of fS ’s that must be
changed in order to be consistent with some global codeword. In this work we focus on the
two query agreement tester that picks a pair of sets S, S′ ∈ S according to some distribution
and accepts if and only if fS and fS′ agree on their intersection S ∩ S′.

Agreement testing has first appeared in PCP constructions [3, 2] as so-called “low degree
tests”, and is a key component in the proof of almost all PCP theorems. A prime example
is the line vs. line low degree test [17, 26] in the proof of the PCP theorem. In the PCP
construction, a function on a large vector space is replaced by an ensemble of (supposed)
restrictions to all possible affine lines. These restrictions are supplied by a prover and are not
a priori guaranteed to agree with any single global function. The “low degree test” is run by
the verifier to check that restrictions on intersecting lines agree with each other, i.e. they
give the same value to the point of intersection. The main point of the argument is to show
that the passing of the test implies agreement with a single global function. In these early
low degree tests (including the linearity testing work of [10]) an agreement test component
can be discerned but quite implicitly. Indeed, it was only separated in the works [25, 4] that
looked at the so-called list-decoding regime5, with the goal of proving a large gap for the
PCP.

Goldreich and Safra [18] tried to separate the algebraic aspect of the low degree test from
the combinatorial, and formulated a more general “consistency test” which is also referred to
as an agreement test. They also proved a certain local to global result which was too weak to
be useful for PCPs. In hindsight it is clear that since their family of subsets consisted of axis
parallel lines, the expansion was not strong enough for a good agreement test. Only recently
[13] the role of expansion underlying the family of subsets had begun to be uncovered.

Work on agreement testing then continued the combinatorial direction of [18] mainly in the
list-decoding regime for direct product testing [15, 12, 22, 16, 14]. The techniques developed
in this line of work turn out to be useful also for agreement testing in the unique-decoding
regime (which is the more standard testing regime), and in particular for our work here.

2.2 Agreement testing implies robust testing
We begin with an overview of the simpler implication from agreement testing to robust
testing. Suppose that we have a two query agreement tester for C,S as described above.
We would like to show that the local tester that queries a random S ∈ S is robust. Let T
be the collection of subsets of U formed by pairwise intersections of sets in S. The main
properties we need out of S, T are sampling properties, specifically, that S samples well the
set of points U , and that for any S ∈ S all sets in T contained in S sample well the set of
points in S. The main property we need out of the code is that its restrictions to sets in T

5 In the list decoding regime one would like to reject a function that is (1− ε)-far from the code with
very high-probability of 1−O(ε).
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29:6 From Local to Robust Testing via Agreement Testing

have distance. In the case of lifted codes these properties can be guaranteed by letting S, T
be families of affine subspaces of fixed dimension.

To see that the proposed local tester is indeed robust, suppose that we have a function
f : U → Σ that is close to C|S on a typical S, our goal is to show that f is close to a codeword
g ∈ C. We first create an instance (fS)S for the agreement tester by letting fS ∈ C|S be the
closest valid assignment to f |S . Next observe that since f |S is typically close to fS , and by
assumption that T ’s sample well inside S’s, for a typical T and S, S′ containing T it holds
that fS |T ≈ f |T ≈ fS′ |T , and by distance property on T this implies in turn that typically
fS |T = fS′ |T . Consequently, agreement testability implies the existence of a codeword g ∈ C
that agrees with most fS , and so g|S = fS ≈ f |S for most S. But since S samples well inside
U we conclude that f must be close to g as required.

2.3 Local testing implies agreement testing

We now turn to the local testing to agreement testing implication which is a bit more involved.
Suppose that we have a local testing algorithm for C that queries a random set K ∈ K and
accepts if and only if f |K ∈ C|K . We would like to obtain an agreement tester for C with
respect to some collection of subsets S. As before, let T be the collection of subsets of U
formed by pairwise intersections of sets in S. Once more the main properties we require
out of S, T ,K are sampling properties. Specifically, we need that S samples well inside U ,
and that for any T ∈ T all sets in K contained in T sample well inside T . We also require
distance properties out of C, specifically that C has distance on U and on restrictions to
sets in S and T . Once more, in the case of lifted codes these properties can be guaranteed
by letting S, T ,K be families of affine subspaces of fixed dimension.

To show agreement testability, let (fS)S be a collection of valid assignments to sets in
S (so fS ∈ C|S for any S), and suppose that fS agrees with fS′ on S ∩ S′ for most pairs
S, S′. Our goal will be to find a global codeword g ∈ C that agrees with most fS . We find
the function g in the following three stages.

Initial stage

In the first stage we define for any K ∈ K a “most popular function” PlurK by choosing
the most common value among fS |K going over all S ∈ S containing K. We then show,
using the assumption that fS ’s typically agree on their intersections, that this most popular
function is obtained with overwhelming probability for a typical K.

Local structure stage

In the second stage we define for each K ∈ K a function gK : U → Σ by letting gK(x) be the
most common “vote” among all fS that contain K and x and agree with PlurK on K (this
function is well defined because of the initial stage). We then show that for a typical K, gK
is close to some function hK ∈ C, and moreover hK |S = fS for most S containing K.

To see why the above holds, first note that by assumptions that C has distance on T ’s,
and K’s sample well inside T ’s, if a pair of fS ’s agree on K then they must typically also agree
on their whole intersection. Therefore gK(x) is also typically defined with overwhelming
probability. Consequently, for a typical K, and most K ′, gK |K′ agrees with some fS .
Recalling that fS ’s are valid assignments, local testability then implies the existence of
hK ∈ C that is close to gK . The fact that hK |S = fS for most S containing K follows by
assumption that S samples well U , and distance property on S.
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Global structure stage

In the final stage we show that there exists K̂ such that hK̂ agrees with fS for most S
(not necessarily containing K̂). We can then set our “global function” g to be equal to hK̂ .
To this end, we first observe that it suffices to show that most functions hK are in fact
identical. This now follows since for typical S ⊇ K ∪K ′ it holds that hK |S = fS = hK′ |S ,
and consequently since S samples U it must typically hold that hK = hK′ .

2.4 The proof method of Guo et al

The proof method of Guo et al [19] for showing robustness of lifted codes is very different
from ours. In particular, it relies heavily on the algebraic structure of lifted codes. More
specifically, the proof is based on viewing the lifted codes as the intersection of “modified
tensor codes”. The tensor product C⊗m of a code C ⊆ {Fq → Fq} can be thought of as the
’axis-parallel lifting’ of C, that is, it is the code that consists of all functions f : Fmq → Fq
whose restrictions to any axis-parallel line belong to C. The “modified tensor code” is a code
of the form C⊗mb where b is a direction in Fmq , and C⊗mb consists of all functions f ∈ C⊗m
whose restrictions to lines in direction b also belong to C.

The authors first use the proof method of [27], showing robust testing of tensor codes, to
show that the modified tensor codes are also robustly testable. They then use the fact that
the lifted code is the intersection of all codes of the form C⊗mb for all directions b (this is true
when the dimension of the base code for lifting is ` = 1; when ` > 1 the proof becomes more
complicated) to deduce robust testability for the lifted code. However, since intersection of
robustly testable codes is not necessarily robustly testable, a non-trivial work is required to
show robust testability, which in particular exploits the degree structure of affine-invariant
lifted codes.

The above program can be carried out only when the dimension m of the lifted code is a
small constant multiple of `, and the authors use the “bootstrapping” technique [26, 2, 4, 1]
to extend the result to work for arbitrary large m.

In contrast, we work directly with lifted codes of large dimension which allows us to
exploit the sampling / expansion properties of large affine subspaces in Fmq . To the best
of our knowledge, even for the special case of low-degree polynomials, this gives the first
analysis of robustness that is not based on the two step approach of first analyzing the
constant dimensional case and only then moving to the general dimensional case.

As opposed to [19] who reprove local testability on the way, our proof uses local testability
in a black-box manner. Thus, it exhibits a separation between the algebraic properties that
are used for showing local testability, and the combinatorial properties that are needed in
order to turn local testability into robust testability.

Paper organization

The rest of the paper is organized as follows. In Section 3 we set some notation, provide
some definitions, and present the expansion properties of subspaces that we use. The
transformation from agreement testing to robust testing is given in Section 4, while the
transformation from local testing to agreement testing apperas in Section 5. We wrap-up in
Section 6 with the full transformation from local testing to robust testing that proves our
main Theorem 1 and Corollary 2.
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3 Preliminaries

For a prime power q, let Fq denote the finite field of q elements. Let {Fmq → Fq} denote the
set of functions mapping Fmq to Fq. In what follows we focus on codes which are subsets
of functions C ⊆ {Fmq → Fq}. For a pair of functions f, g : Fmq → Fq we use dist(f, g) to
denote the fraction of inputs x ∈ Fmq for which f(x) 6= g(x). The relative distance dist(C) of
the code C is minf 6=g∈C{dist(f, g)}. For a function f : Fmq → Fq we use dist(f, C) to denote
ming∈C{dist(f, g)}.

The code C is said to be linear if it is an Fq-linear subspace, i.e., for every α ∈ Fq and
f, g ∈ C, we have αf +g ∈ C. A function A : Fmq → Fmq is said to be an affine transformation
if there exist a matrix M ∈ Fm×mq and a vector b ∈ Fmq such that A(x) = Mx+ b. The code
C is said to be affine-invariant if for every affine transformation A and every f ∈ C we have
f ◦A ∈ C (where (f ◦A)(x) = f(A(x))).

3.1 Lifted codes
A subset L ⊆ Fmq is said to be an `-dimensional affine subspace if there exist α0 ∈ Fmq and
linearly independent α1, . . . , α` ∈ Fmq such that L = {α0 +

∑`
i=1 αixi|x1, . . . , x` ∈ Fq}. We

fix an arbitrary affine map γL : F`q → L (which we can view as a parameterization of L). For
a function f : Fmq → Fq, the restriction f |L is viewed as a function in {F`q → Fq} through

f ◦ γL : F`q → Fq. In particular, when we ask if f |L
?
∈ C ⊆ {F`q → Fq} what we are really

asking is whether f ◦ γL ∈ C. Note that if C is affine-invariant, whether f |L ∈ C does not
depend on the choice of the parametrization γL.

I Definition 3 (Lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and
m ≥ `. The m-dimensional lift C`↗m of C is given by

C`↗m :=
{
f : Fmq → Fq | f |L ∈ C for every `-dimensional affine subspace L ⊆ Fmq

}
.

I Proposition 4 (Distance of lifted codes, [20], Theorem 5.1, Part (2)). Let C ⊆ {F`q → Fq}
be an affine-invariant linear code, and m ≥ `. Then dist(C`↗m) ≥ dist(C)− q−`.

3.2 Local testing, robust testing, and agreement testing
We now formally define the notions of local testing, robust testing, and agreement testing,
specialized to the class of lifted codes and subspace testers. In the case of local testing and
robust testing this simply means that the tester samples a uniform random k-dimensional
affine subspace and its accepting views are codewords in C`↗k.

I Definition 5 (Local testing of lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant
linear code, and m ≥ k ≥ `. The m-dimensional lift C`↗m is (k, α)-testable if for every
f : Fmq → Fq it holds that

Pr
K

[
f |K /∈ C`↗k

]
≥ α · dist(f, C`↗m),

where the probability is over a uniform random k-dimensional affine subspace K ⊆ Fmq .

I Theorem 6 ([23], Theorem 2.9). Let C ⊆ {F`q → Fq} be an affine-invariant linear code,
and m ≥ `. Then the `-dimensional test rejects a function f : Fmq → Fq with probability at
least 1

2 ·min
{
q−2`,dist(f, C`↗m)

}
. In particular, C`↗m is

(
`, q

−2`

2

)
-testable.
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I Definition 7 (Robust testing of lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant
linear code, and m ≥ k ≥ `. The m-dimensional lift C`↗m is (k, α)-robust if for every
f : Fmq → Fq it holds that

EK
[
dist(f |K , C`↗k)

]
≥ α · dist(f, C`↗m),

where the expectation is over a uniform random k-dimensional affine subspace K ⊆ Fmq .

We note the following easy implications.

I Proposition 8. Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ k ≥ `.
Then the following hold.
1. If C`↗m is (k, α)-robust then it is (k, α)-testable.
2. If C`↗m is (k, α)-testable then it is (k, α · q−k)-robust.
3. If C`↗m is (k, α)-testable then it is (r, α)-testable for any k ≤ r ≤ m.
4. If C`↗m is (k, α)-robust then it is (r, α)-robust for any k ≤ r ≤ m.

Proof. Part (1) follows since f |K /∈ C`↗k whenever dist(f |K , C`↗k) > 0, while Part (2)
follows since dist(f |K , C`↗k) ≥ q−k whenever f |K /∈ C`↗k.

Part (3) follows by observing that for a uniform random r-dimensional affine subspace R,

Pr
R

[
f |R /∈ C`↗r

]
= ER

[
1f |R /∈C`↗r

]
≥ ER

[
Pr
K⊆R

[
f |K /∈ C`↗k

]]
= Pr

K

[
f |K /∈ C`↗k

]
,

where the inequality follows since f |R ∈ C`↗r implies that f |K ∈ C`↗k for any K.
Finally, Part (4) follows by letting fR be the codeword in C`↗r that is closest to f |R,

and noting that

ER
[
dist(f |R, C`↗r)

]
= ER

[
dist(f |R, fR)

]
= ER

[
EK⊆R

[
dist(f |K , fR|K)

]]
≥ ER

[
EK⊆R

[
dist(f |K , C`↗k)

]]
= EK

[
dist(f |K , C`↗k)

]
,

where the inequality follows since fR|K ∈ C`↗k for any K. J

We now turn to the definition of agreement testing. The agreement testers we consider
are two query testers that for t < s, sample a uniform random t-dimensional affine subspace
T , and a pair of uniform random s-dimensional affine subspaces S, S′ containing T , and
accept if and only if fS , fS′ agree on T .

For a code C ⊆ {Fmq → Fq} we let C(s) be the code containing all collections (fS)S of
partial assignments to s-dimensional affine subspaces that are consistent with some global
codeword g ∈ C, formally,

C(s) :=
{

(fS)S | ∃ g ∈ C such that g|S = fS for any s-dimensional affine subspace S
}
.

For a pair of collections (fS)S , (gS)S of partial assignments to s-dimensional affine subspaces
we denote by dist((fS)S , (gS)S) the fraction of s-dimensional affine subspaces S for which
fS 6= gS , and we define dist((fS)S , C(s)) accordingly.
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I Definition 9 (Agreement testing of lifted codes). Let C ⊆ {F`q → Fq} be an affine-invariant
linear code, and m ≥ s > t ≥ `. The m-dimensional lift C`↗m is (s, t, α)-agreement testable
if for every collection (fS)S where fS ∈ C`↗s for every s-dimensional affine subspace S it
holds that

Pr
T, S⊇T, S′⊇T

[fS |T 6= fS′ |T ] ≥ α · dist
(
(fS)S , C`↗m(s)

)
,

where the probability is over a uniform random t-dimensional affine subspace T ⊆ Fmq , and
uniform random s-dimensional affine subspaces S, S′ containing T .

3.3 Subspace expansion
Let d0, d1, d2 ∈ {0, 1, . . . ,m} be integers, and let W ⊆ Fmq be a fixed affine subspace of
dimension d0. We denote by Id1,d2(d0) the bipartite graph whose left side are all d1-
dimensional affine subspaces of Fmq , whose right side are all d2-dimensional affine subspaces
of Fmq containing W , and an edge (U, V ) is present in the graph if and only if U ⊆ V (note
that the structure of the graph is independent of the choice of W ). Our proof makes use of
expansion properties of this graph.

I Proposition 10. The second largest normalized singular value of the adjacency matrix of
Id1,d2(d0) is at most q−(d2−d1−d0)/2.

Proof. Let Gr(m, d1) be the Grassmann graph whose vertices are d1-dimensional spaces and
edges connect two d1-spaces that intersect on an d1 − 1 space. We quote [11, Theorem 9.3.3]
that gives the un-normalized eigenvalues

θj = qj+1
[
d1 − j

1

][
n− d1 − j

1

]
−
[
j

1

]
and the degree is

k = q

[
d1

1

][
n− d1

1

]
Plugging in j = 1 one gets the second largest eigenvalue in absolute value is approximately

λ(Gr(m, d1)) ≈ 1
√
q
. (3)

It can be shown that λ(Id1,d2(0)) ≈ (λ(Gr(m, d1)))d2−d1 . When adding W we are
essentially moving to the graph Id1,d2−d0(0), i.e. λ(Id1,d2(d0)) ≈ λ(Id1,d2−d0(0)). J

We shall use the following sampling property of Id1,d2(d0).

I Proposition 11. Let G = (L ∪R,E) be a bipartite graph with second largest normalized
singular value λ. Then for any subset A ⊆ L of density α it holds that |N(A)| ≥ (1−λ2/α)·|R|
where N(A) denotes the set of neighbors of A in R.

Proof. Let B := R \N(A) and β := |B|/|R|. Noting that Pr(u,v)∈E [u ∈ A ∧ v ∈ B] = 0, by
expander mixing lemma (see e.g., [13, Lemma 2.8.]) we have that

αβ =
∣∣∣∣ Pr
(u,v)∈E

[u ∈ A ∧ v ∈ B]− αβ
∣∣∣∣ ≤ λ√αβ,

and so β ≤ λ2/α. It follows that |N(A)| = (1− β)|R| ≥ (1− λ2/α)|R|. J
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4 From agreement testing to robust testing

In this section we prove the following lemma showing the agreement testing to robust testing
implication.

I Lemma 12 (Agreement testing implies robust testing). Let C ⊆ {F`q → Fq} be an affine-
invariant linear code, and m ≥ s > t ≥ `. Suppose that C`↗m is (s, t, α)-agreement testable,
and let δ := dist(C`↗t). Then C`↗m is

(
s,Ω(αδ)

)
-robust.

Proof. For simplicity of notation, in what follows we let T, S denote the random variables
obtained by sampling a uniform random affine subspace of dimension t, s respectively. Suppose
that f : Fmq → Fq has ES [dist(f |S , C`↗s)] ≤ ε, our goal is to find a codeword g ∈ C`↗m such
that dist(f, g) ≤ O(ε/(αδ)).

The proof proceeds as follows. We would like to apply our assumption on agreement
testability, and towards this, we create an instance (fS)S for the agreement tester by letting
fS be the codeword in C`↗s that is closest to f |S . We then use the fact that fS is typically
close to f |S , together with the fact that t-dimensional affine subspaces sample well inside
s-dimensional affine subspaces, and the assumption that C has distance on t-dimensional
affine subspaces, to show that PrT, S⊇T, S′⊇T [fS |T 6= fS′ |T ] is small. Agreement testability
then gives a codeword g ∈ C`↗m that is consistent with most fS , and using the fact that
s-dimensional affine subspaces sample well inside Fmq this implies in turn that dist(f, g) is
small. Details follow.

We begin by showing that PrT, S⊇T, S′⊇T [fS |T 6= fS′ |T ] is small. Recall first that
ES [dist(f |S , fS)] = ES [dist(f |S , C`↗s)] ≤ ε. Next observe that for a fixed s-dimensional
affine subspace S, any point in a uniform random t-dimensional affine subspace contained in
S is uniform in S. Thus we also have that ES, T⊆S [dist(f |T , fS |T )] ≤ ε, and consequently

Pr
T, S⊇T, S′⊇T

[
dist(fS |T , fS′ |T ) ≥ δ

]
≤ 2 · Pr

T, S⊇T

[
dist(f |T , fS |T ) ≥ δ/2

]
= 2 · Pr

S, T⊆S

[
dist(f |T , fS |T ) ≥ δ/2

]
≤ 4ε

δ
.

But since fS |T , fS′ |T are both codewords of C`↗t, a code of relative distance δ, the above
implies in turn that PrT, S⊇T, S′⊇T [fS |T 6= fS′ |T ] ≤ 4ε

δ .

Our assumption on agreement testability now gives a codeword g ∈ C`↗m that has
PrS [g|S 6= fS ] ≤ 4ε/(αδ). But since any point in a uniform random s-dimensional affine
subspace is uniform in Fmq this gives in turn that

dist(f, g) = ES
[
dist(f |S , g|S)

]
≤ ES

[
dist(f |S , fS)

]
+ES

[
dist(fS , g|S)

]
≤ ε+ 4ε

αδ
≤ 5ε
αδ
. J

5 From local testing to agreement testing

In this section we prove the following lemma that gives the local testing to agreement testing
implication.

I Lemma 13 (Local testing implies agreement testing). Let C ⊆ {F`q → Fq} be an affine-
invariant linear code, and m ≥ k ≥ `. Suppose that C`↗m is (k, α)-testable, and let
δ := mink≤r≤m dist(C`↗r). Then C`↗m is (2k + logq(4/δ), k + 1,Ω(α · δ2))-agreement
testable.
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Proof outline

For simplicity of notation, in what follows let s := 2k+ logq(4/δ) and t := k+ 1. We let both
S, S′ (T , T ′ and K, K ′, resp.) denote random variables obtained by sampling a uniform
random affine subspace of dimension s (t, k, resp.).

Let (fS)S be a collection of partial assignments such that fS ∈ C`↗s for every S, and

Pr
T, S⊇T, S′⊇T

[fS |T 6= fS′ |T ] ≤ ε. (4)

Our goal is to find a global codeword g ∈ C`↗m that has

Pr
S

[g|S 6= fS ] ≤ O
( ε

α · δ2

)
. (5)

We find the codeword g in three stages.
1. In the initial stage (Section 5.1) we define for any k-dimensional affine subspace K a

“most popular function” PlurK : Fkq → Fq by choosing the most common value among
fS |K going over all S ⊇ K. We show that for a typical K, this function is obtained with
an overwhelming plurality of 1−O(ε).

2. In the “local structure” stage (Section 5.2) we define for any k-dimensional affine subspace
K a function gK : Fmq → Fq by letting gK(x) be the most common “vote” among all
fS that contain both K and x and agree with PlurK on K. We then show that for a
typical K, gK is close to some codeword hK ∈ C`↗m, and moreover hK |S = fS for most
S containing K.

3. In the “global structure” stage (Section 5.3) we show that there exists K̂ for which
hK̂ |S = fS for most S (not necessarily containing K̂). We can then set our “global
function” g to be equal to hK̂ .

5.1 Initial stage
For any k-dimensional affine subspace K we let PlurK : Fkq → Fq denote the most common
value among fS |K for S containing K, that is,

PlurK := pluralityS⊇K{fS |K}.

Next we use our assumption (4) to show that for a typical K, the function PlurK is obtained
with overwhelming plurality.

I Lemma 14.

EK
[

Pr
S⊇K

[
fS |K 6= PlurK

]]
≤ 2ε.

Proof. Since the collision probability lower bounds the probability of hitting the most
common value, it suffices to show that

Pr
K, S⊇K, S′⊇K

[
fS |K 6= fS′ |K

]
≤ 2ε. (6)

Clearly if t = k we would be done by (4), so the whole point is to show the same for
t > k. We describe a distribution on triples (S1, S

′, S2) such that (S1, S2) are distributed as
in (6) but the pairs (S1, S

′) and (S′, S2) are distributed as in (4):
1. Choose a uniform random k-dimensional affine subspace K.
2. Choose a pair of uniform random t-dimensional affine subspaces T1, T2 containing K.
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3. For i = 1, 2, choose a uniform random s-dimensional affine subspace Si containing Ti.
4. Choose a uniform random s-dimensional affine subspace S′ containing T1 ∪ T2 (this can

be done since t = k + 1 and s ≥ k + 2).

One can check that indeedK,S1, S2 are distributed as in (6) while Ti, Si, S′ are distributed
as in (4). Thus by our assumption (4),

Pr
K, S1⊇K, S2⊇K

[
fS1 |K 6= fS2 |K

]
≤ Pr
T1, S1⊇T1, S′⊇T1

[
fS1 |T1 6= fS′ |T1

]
+ Pr
T2, S′⊇T2, S2⊇T2

[
fS′ |T2 6= fS2 |T2

]
≤ 2ε. J

5.2 Local structure
Next we define for every k-dimensional affine subspace K the function gK : Fmq → Fq. As
described above, for every x ∈ Fmq , we let gK(x) be the most common value among fS(x) for
S that contain both K and x and agree with PlurK on K, that is,

gK(x) := pluralityS⊇K∪{x}, fS |K=PlurK
{fS(x)}.

Next we would like to show that for a typicalK, gK is close to some codeword hK ∈ C`↗m,
and additionally hK |S = fS for most S containing K. We show these in three steps:
1. Boosting step (Lemma 15): In this step we show that for typical K,x, the plurality in

the definition of gK(x) is obtained with overwhelming probability.
2. LTC step (Lemma 16): In this step we use the previous step to show that for a typical

gK , for most K ′, gK |K′ agrees with some fS on K ′, and therefore is a codeword of C`↗k.
By local testability assumption this implies in turn that such gK is close to being in the
code C`↗m, and we denote by hK ∈ C`↗m the closest codeword to gK .

3. Agreement step (Lemma 17): In this step we show that a typical hK agrees with most
fS for S ⊇ K.

We start with the boosting step, showing that for typical K,x, the plurality in the
definition of gK(x) is obtained with overwhelming probability. Intuitively, this follows by
assumption that the code has distance on t-dimensional affine subspaces, together with the
fact that k-dimensional affine subspaces sample well inside t-dimensional affine subspaces,
which imply that if a pair of fS agree on K then they must typically also agree on their
whole intersection.

I Lemma 15 (Boosting step).

EK, x/∈K
[

Pr
S⊇K∪{x}

[
fS(x) 6= gK(x)

∣∣ fS |K = PlurK
]]
≤ O

(
q−k · ε

δ · (1− 4ε)

)
.

Proof. Since the collision probability lower bounds the probability of hitting the most
common value, it suffices to show that

Pr
K, x/∈K, S⊇K∪{x}, S′⊇K∪{x}

[
fS(x) 6= fS′(x) | fS |K = fS′ |K = PlurK

]
≤ O

(
q−k · ε

δ · (1− 4ε)

)
.

Now we have that
Pr

K, x/∈K, S⊇K∪{x}, S′⊇K∪{x}

[
fS(x) 6= fS′(x) | fS |K = fS′ |K = PlurK

]
≤ Pr

K, T⊇K, S⊇T, S′⊇T

[
fS |T 6= fS′ |T | fS |K = fS′ |K = PlurK

]
=

PrT, S⊇T, S′⊇T, K⊆T

[
fS |K = fS′ |K = PlurK | fS |T 6= fS′ |T

]
· PrT, S⊇T, S′⊇T

[
fS |T 6= fS′ |T

]
PrK, T⊇K, S⊇T, S′⊇T

[
fS |K = fS′ |K = PlurK

] .
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Next we bound each of the terms above.
By our assumption (4), the right hand term in the numerator is upper bounded by ε. To

bound the denominator note that by Lemma 14,

Pr
K, T⊇K, S⊇T, S′⊇T

[fS |K = fS′ |K = PlurK ] ≥ 1− 2 · Pr
K, S⊇K

[fS |K 6= PlurK ] ≥ 1− 4ε. (7)

To bound the left hand term in the numerator note first that since fS , fS′ are both
codewords of C`↗s then fS |T , fS′ |T are distinct codewords in C`↗t, and so dist(fS |T , fS′ |T ) ≥
δ. We now apply Propositions 10 and 11 on the graph I0,k(0): The ambient space is T , and
the graph connects the points of T (which are the 0-dimensional affine subspaces contained
in T ) on the left to the k-dimensional affine subspaces contained in T on the right. By
Proposition 10 the graph I0,k(0) has second largest normalized singular value at most q−k/2,
and so taking A = {x ∈ T | fS(x) 6= fS′(x)} in Proposition 11 we deduce that at most q−k/δ
fraction of K can miss A altogether. Thus,

Pr
T, S⊇T, S′⊇T, K⊆T

[
fS |K = fS′ |K

∣∣ fS |T 6= fS′ |T
]
≤ q−k

δ
. (8)

The final bound is obtained by combining the bounds in (4), (7), and (8). J

Next we use the assumption on local testability to show that for a typical K, gK is close
to being a codeword of C`↗m.

I Lemma 16 (LTC step).

EK
[
dist

(
gK , C

`↗m)] ≤ O ( ε

α · δ

)
.

Proof. To apply our assumption on local testability we first show that gK |K′ is typically
a codeword of C`↗k. For this, first observe that if gK |K′ is not a codeword of C`↗k then
gK |K′ 6= fS |K′ for all S (since fS ∈ C`↗s and so fS |K′ ∈ C`↗k). Thus we have

EK, K′
[
1gK |K′ /∈C`↗k

]
≤ EK, K′

[
Pr

S⊇K∪K′
[gK |K′ 6= fS |K′ ]

]

≤ EK, K′
[

Pr
S⊇K∪K′

[
gK |K′ 6= fS |K′

∣∣ fS |K = PlurK
]]

+ Pr
K, S⊇K

[fS |K 6= PlurK ]

We claim that the above expression is at most O(ε/δ). To see this note first that by
Lemma 14 the right hand term is at most 2ε . To bound the left hand term, note that since
each individual point in K ′ is uniformly distributed in Fmq this term is upper bounded by

qk · EK, x
[

Pr
S⊇K∪{x}

[
gK(x) 6= fS(x)

∣∣ fS |K = PlurK
]]
,

which is in turn at most O(ε/δ) by Lemma 15 (noting that the probability in the above
expression is zero whenever x ∈ K).

Finally, for any k-dimensional affine subspace K let εK := PrK′
[
gK |K′ /∈ C`↗k

]
. Then on

the one hand EK [εK ] = EK, K′
[
1gK |K′ /∈C`↗k

]
≤ O(ε/δ), and on the other hand

dist(gK , C`↗m) ≤ εK/α for any K by assumption that C`↗m is (k, α)-testable. We conclude
that

EK
[
dist

(
gK , C

`↗m)] ≤ EK
[εK
α

]
≤ O

( ε

α · δ

)
. J
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For any k-dimensional affine subspace K let hK ∈ C`↗m be the codeword that is closest
to gK . Then by the above lemma,

EK
[
dist(gK , hK)

]
≤ O

( ε

α · δ

)
.

The following lemma says that for a typical K we have that hK |S = fS for most S containing
K, which follows by the fact that s-dimensional affine subspaces sample well inside Fmq and
by assumption that the code has distance on s-dimensional affine subspaces.

I Lemma 17 (Agreement step).

EK
[

Pr
S⊇K

[
hK |S 6= fS

]]
≤ O

( ε

α · δ2

)
.

Proof. We show that for typical S ⊇ K, on the one hand, by Lemma 16 and the fact that
s-dimensional affine subspaces sample well inside Fmq , dist(hK |S , gK |S) is small, and on the
other hand, by Lemma 15, dist(gK |S , fS) is small. We then conclude by triangle inequality
that dist(hK |S , fS) is small, which implies in turn that hK |S = fS by assumption that the
code has distance on s-dimensional subspaces.

We start by showing that dist(hK |S , gK |S) is typically small. For this note that for a
fixed k-dimensional affine subspace K and uniform random S containing K, each individual
point in S \K is uniformly distributed in Fmq \K. Thus we have

EK, S⊇K
[
dist(hK |S , gK |S)

]
≤ q−(s−k) + EK

[
dist(hK , gK)

]
≤ δ

4 +O
( ε

α · δ

)
, (9)

where the last inequality follows by choice of s ≥ k + logq(4/δ) and Lemma 16.
Next we show that dist(hK |S , fS) is typically small. For this note that

EK, S⊇K

[
dist(gK |S , fS)

]
≤ q−(s−k) + EK, x/∈K

[
Pr

S⊇K∪{x}

[
gK(x) 6= fS(x)

]]
≤ q−(s−k) + EK, x/∈K

[
Pr

S⊇K∪{x}

[
gK(x) 6= fS(x)

∣∣ fS |K = PlurK

]]
+ Pr

K, S⊇K
[fS |K 6= PlurK ]

≤ δ

4 +O

(
ε

δ

)
, (10)

where the last inequality follows by choice of s ≥ k + logq(4/δ) and Lemmas 15 and 14.
Combining (9) and (10), by triangle inequality we have that

EK, S⊇K
[
dist(hK |S , fS)

]
≤ δ

2 +O
( ε

α · δ

)
,

and by Markov’s inequality,

Pr
K, S⊇K

[
dist(hK |S , fS) ≥ δ

]
≤ O

( ε

α · δ2

)
.

Finally, since both hK |S and fS are codewords of C`↗s and dist(C`↗s) ≥ δ we conclude
that hK |S 6= fS with probability at most O

(
ε

α·δ2

)
over the choice of K and S ⊇ K. J
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5.3 Global structure
We now complete the proof of Lemma 13 by showing that there exists a codeword g ∈ C`↗m
that agrees with most fS . We start by showing that most functions hK are in fact identical,
which follows by Lemma 17 and the fact that s-dimensional affine subspaces sample well
inside Fmq .

I Lemma 18. There exists a k-dimensional affine subspace K̂ such that

Pr
K

[
hK 6= hK̂

]
≤ O

( ε

α · δ2

)
.

Proof. By Lemma 17,

Pr
K, K′, S⊇K∪K′

[
hK |S 6= hK′ |S

]
≤ 2 · Pr

K, S⊇K

[
hK |S 6= fS

]
≤ O

( ε

α · δ2

)
,

and so by averaging there exists K̂ such that

Pr
K, S⊇K∪K̂

[
hK |S 6= hK̂ |S

]
≤ O

( ε

α · δ2

)
.

Markov’s inequality then implies that

Pr
S⊇K∪K̂

[
hK |S 6= hK̂ |S

]
≥ 1

2

with probability at most O
(

ε
α·δ2

)
over the choice of K.

Next observe that if hK 6= hK̂ then since hK , hK̂ are both codewords of C`↗m and
dist(C`↗m) ≥ δ, it must hold that dist(hK , hK̂) ≥ δ. We now apply Propositions 10 and 11
on the graph I0,s(2k) that connects the points of Fmq on the left to the s-dimensional affine sub-
spaces containing K∪K̂ on the right. By Proposition 10 the graph I0,s(2k) has second largest
normalized singular value at most q−(s−2k)/2, and so taking A =

{
x ∈ Fmq

∣∣ hK(x) 6= hK̂(x)
}

in Proposition 11 we deduce that

Pr
S⊇K̂∪K

[
hK̂ |S 6= hK |S

]
≥ 1− q−(s−2k)

δ
≥ 1/2,

where the last inequality follows by assumption that s ≥ 2k + logq(2/δ).
It now follows that hK 6= hK̂ with probability at most O

(
ε

α·δ2

)
over the choice of K. J

We can now complete the proof of Lemma 13.

Proof of Lemma 13. Set g ∈ C`↗m to be the function hK̂ guaranteed by Lemma 18. By
Lemmas 17 and 18,

Pr
S

[
g|S 6= fS

]
= Pr
K, S⊇K

[
g|S 6= fS

]
≤ Pr

K

[
g 6= hK

]
+ Pr
K, S⊇K

[
hK |S 6= fS

]
≤ O

( ε

α · δ2

)
.

So g satisfies (5) as required. J

6 From local testing to robust testing

6.1 Proof of Main Theorem 1
We can now combine Lemmas 12 and 13 to prove our main Theorem 1, showing a transform-
ation from local testing to robust testing.

Proof of Theorem 1. By Lemma 13 we have that C`↗m is (2k+ logq(4/δ), k+ 1,Ω(α · δ2))-
agreement testable, and by Lemma 12 this implies in turn that C`↗m is (2k+logq(4/δ),Ω(α ·
δ3))-robust. J
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6.2 Proof of Corollary 2
We now instantiate our main Theorem 1 with Theorem 6 to show that lifted codes are
robustly testable. For this, we first observe that one can amplify the soundness of the tester
given by Theorem 6 to a constant (independent of q and `) at the cost of increasing the
testing dimension to ≈ 3`.

I Proposition 19. Let C ⊆ {F`q → Fq} be an affine-invariant linear code, and m ≥ 3`+logq 4.
Then C`↗m is

(
3`+ logq 4,Ω(1)

)
-testable.

Proof. If the `-dimensional test rejects with probability at least 1
2 · dist(f, C`↗m) then

by Part (3) of Proposition 8, the (3`+ logq 4)-dimensional test also rejects with the same
probability and we are done. Otherwise, by Theorem 6, the `-dimensional test rejects with
probability at least 1

2 · q
−2`.

Consider the graph I`,3`+logq 4(0) with left hand side being all `-dimensional affine
subspaces of Fmq and right hand side being all (3`+ logq 4)-dimensional affine subspaces of
Fmq . Next we apply Propositions 10 and 11 on the graph I`,3`+logq 4(0) with A being the
collection of all `-dimensional affine subspaces on which the `-dimensional test rejects. Noting
that the (3`+ logq 4)-dimensional test will reject on any neighbor of A we conclude that the
(3`+ logq 4)-dimensional test rejects with probability at least 1− q−(2`+logq 4)

q−2`/2 = 1
2 . J

We now turn to the proof of Corollary 2.

Proof of Corollary 2. Suppose first that δ < 2q−`. In this case by Theorem 6, C`↗m is
(`,Ω(q−2`))-testable, and so by Part (2) of Prposition 8, C`↗m is also robustly testable using
the `-dimensional test with robustness Ω

(
q−3`) ≥ Ω(δ3). By Part (4) of Proposition 8 it

follows that the (6`+ logq(128/δ))-dimensional test also has robustness Ω(δ3).
Next assume that δ ≥ 2q−`. In this case Proposition 4 gives that dist(C`↗r) ≥ δ/2 for

any ` ≤ r ≤ m, and so we may apply Proposition 19 and Theorem 1 and conclude that
C`↗m is (6`+ logq(128/δ),Ω(δ3))-robust. J
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Abstract
We show that every set in P is strongly testable under a suitable encoding. By “strongly testable”
we mean having a (proximity oblivious) tester that makes a constant number of queries and rejects
with probability that is proportional to the distance of the tested object from the property. By a
“suitable encoding” we mean one that is polynomial-time computable and invertible. This result
stands in contrast to the known fact that some sets in P are extremely hard to test, providing
another demonstration of the crucial role of representation in the context of property testing.

The testing result is proved by showing that any set in P has a strong canonical PCP,
where canonical means that (for yes-instances) there exists a single proof that is accepted with
probability 1 by the system, whereas all other potential proofs are rejected with probability
proportional to their distance from this proof. In fact, we show that UP equals the class of
sets having strong canonical PCPs (of logarithmic randomness), whereas the class of sets having
strong canonical PCPs with polynomial proof length equals “unambiguous-MA”. Actually, for
the testing result, we use a PCP-of-Proximity version of the foregoing notion and an analogous
positive result (i.e., strong canonical PCPPs of logarithmic randomness for any set in UP).
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1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see,
e.g., a recent textbook [12]). Loosely speaking, property testing typically refers to super-fast
probabilistic algorithms for deciding whether a given object has a predetermined property
or is far from any object having this property. Such algorithms, called testers, obtain local
views of the object by performing queries; that is, the tested object is modeled as a function
and the testers get oracle access to this function (and thus may be expected to work in time
that is sub-linear in the size of the object).
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It is well known that property testing is very sensitive to the representation of the tested
objects, far more so than standard studies in complexity theory (cf. [12, Sec. 1.2.5]). For
example, while the adjacency matrix and the incident lists representations are equivalent as
far as complexity classes such as P are concerned, in the case of property testing there is a
significant difference between the adjacency matrix model (a.k.a. the dense graph model [13])
and the incidence graph model (a.k.a. the bounded-degree graph model [16]).

In this paper we provide another demonstration of the crucial role of representation in
the context of property testing. Specifically, in contrast to the known fact that some sets in
P are extremely hard to test (see, e.g., [15, Theorem 7]),4 we show that, under a suitable
polynomial-time computable (and invertible) encoding, all sets in P are extremely easy to
test, where by “extremely easy to test” we mean having a Proximity Oblivious Tester (POT).

1.1 Our main result: a POT for an encoding of any set in P
The standard definition of a property tester refers to randomized oracle machines that
are given two parameters as explicit inputs along with oracle access to some string (or
function). The two parameters are the size parameter, representing the size of the tested
object, and a proximity parameter, denoted ε, which determines which objects are considered
far from the property5 (according to a fixed metric, typically the relative Hamming distance).
Specifically, on input parameters n and ε, the test is required to distinguish (with constant
probability) n-bit long strings that have the property from n-bit long strings that are ε-far
from the property, where x ∈ {0, 1}n is ε-far from S if for every x′ ∈ S ∩ {0, 1}n it holds that
δ(x, x′) def= |{i ∈ [n] : xi 6=x′i}|/n is greater than ε. (Otherwise, we say that x is ε-close to S.)

The query complexity of testers is stated as a function of the two explicit parameters,
n and ε. Two extreme cases are the case of query complexity n, which can be obtained
for any property, and the case that the query complexity depends only on the proximity
parameter, which is sometimes considered the yardstick for “easy testability” (see, e.g., [1, 2]).
Typically, the query complexity is Ω(1/ε), and so testers of such complexity are extremely
efficient. An even more restricted case refers to one in which the tester operates by repeating
some constant-query check for O(1/ε) times, where the celebrated linearity tester of Blum,
Luby, and Rubinfeld [7] is an archetypical case. The effect of a single repetition of the
constant-query check is captured by the notion of a proximity oblivious tester [17].

A Proximity Oblivious Tester (POT) does not obtain a proximity parameter as input,
but rather the probability gap with which it distinguishes inputs that have the property from
ones that lack the property is allowed to be a function of the distance of the tested input
from the property (defined in (1)). Further restricting ourselves to the case of one-sided
error testers, we require that the POT always accepts inputs that have the property and
rejects objects that lack the property with probability that increases with the distance of
the object from the property.6 For sake of clarity, we recall that the distance of x from S,
denoted δS(x), is defined as follows

δS(x) def= min
x′∈{0,1}|x|∩S

{δ(x, x′)}, (1)

where δS(x) = 1 if {0, 1}|x| ∩ S = ∅.

4 This is essentially due to [13, Prop 4.1.1].
5 As usual in the area, we associate the notion of having a property with the notion of being in the (set
of objects that have the) property.

6 A two-sided error version was also studied (see [18]), but the one-sided error version that we consider
here is much better known.
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I Definition 1.1 (Proximity Oblivious Testers). 7 Let % : (0, 1] → (0, 1] be monotonically
non-decreasing.8 A proximity oblivious tester (POT) with detection probability function % for S
is a probabilistic oracle machine, denoted T , that makes a constant number of queries and
satisfies the following two conditions.
1. T always accepts inputs in S: For every n ∈ N and every w ∈ S ∩ {0, 1}n, it holds that

Pr[Tw(n)=1] = 1.
2. T rejects inputs that are not in S with probability that increases as a function of their

distance from S: For every n ∈ N and every w ∈ {0, 1}n \ S, it holds that Pr[Tw(n) =
0] ≥ %(δS(w)).

The case that % is linear is of special interest; in this case the rejection probability is
proportional to the distance of the input from the set S.

Our main result asserts the existence of a POT for some encoding of any set in P.
Starting with some natural representation of a set S ⊆ {0, 1}∗, we consider a representation
obtained by applying an invertible encoding E : {0, 1}∗ → {0, 1}∗ (i.e., we require that
E is one-to-one). Furthermore, we consider the natural case in which this encoding is
polynomial-time computable and invertible. For example, we may consider an encoding
such as E(x1 · · ·xn) = x1x1 · · ·xnxn or encodings that map graphs in the adjacency matrix
representation to the incidence list representation.

I Theorem 1.2 (a POT for a suitable encoding of any set in P). For any S ∈ P there
exist polynomial-time encoding and decoding algorithms E and D = E−1 such that the
set S′ def= {E(x) : x ∈ S} has a proximity oblivious tester of linear detection probability.
Furthermore, |E(x)| = |E(1|x|)| for every x, the encoding E has constant relative distance,9
and the POT runs in polylogarithmic time and has logarithmic randomness complexity.

Recall that POTs were defined as having constant query complexity, and note that the added
conditions regarding E (i.e., being “length regular” and having constant relative distance)
only make the result potentially more appealing. Theorem 1.2 cannot be significantly
extended, since the existence of a polynomial-time tester (of arbitrary query complexity)
for {E(x) : x ∈ S} such that E is polynomial-time computable implies that S ∈ BPP (and
S ∈ P follows if the tester has logarithmic randomness complexity).10

1.2 The way to our main result: strong canonical PCPPs

Theorem 1.2 is proved by using an encoding that maps the input x to a pair of the
form (C(x)t(|x|),Π(x)), where C is an error-correcting code, Π(x) is a PCP proof that
C(x) ∈ {C(z) : z ∈ S}, and t(|x|) ≈ |Π(x)|/|C(x)| (so that the two parts of the pair have
approximately the same length). This idea, which can be traced back to [19], works only
when the PCP system is of a certain type, as discussed next.

7 Unlike in [17], which considered POTs of arbitrary query complexity, here we mandate that a POT has
constant query complexity. This choice is justified by the fact that our result establishes the existence
of such POTs. Ditto regarding our choice to consider one-sided error only.

8 The postulate that % is monotonically non-decreasing means that any input that is ε-far from S is
rejected with probability at least %(ε); that is, if δS(f) ≥ ε (and not only if δS(f) = ε), then f is rejected
with probability at least %(ε). This postulate is natural (and it can be enforced in general by redefining
%(ε)← infδ≥ε{%(δ)}).

9 That is, for every x 6= y, the encodings E(x) and E(y) differ on a constant fraction of the coordinates.
10The decision procedure maps x to E(x) and invokes the tester with proximity parameter 1/2|E(x)|. In

case E has relative distance δ, invoking the tester with proximity parameter δ/2 will do.
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First, we need a PCP of Proximity (a.k.a. assignment testers), rather than a PCP. The
difference is that a PCP of Proximity does not get an explicit (main) input, but rather oracle
access to both the main input and the alleged proof. Indeed, PCPs of Proximity can be
viewed as a “property testing” variant of PCPs (or “PCP-aided variants” of property testers).
Second, valid assertions in these PCPs of Proximity must have unique valid proofs, otherwise
the mapping x 7→ Π(x) is not even well-defined. Furthermore, the PCP of Proximity should
reject (with constant probability) not only inputs (that encode) strings far from S, but also
proof-parts that are far from the corresponding (unique) valid proof. Last, to get a POT
rather than a tester that works only for constant values of the proximity parameter (i.e.,
constant ε > 0), also inputs and alleged proofs that are close to being valid should be rejected
with probability that is related to their distance from a valid object. A PCP of Proximity
that satisfies all of these conditions is called strongly canonical.11

The foregoing aspects were dealt with in [19], but only for the special case of S = {0, 1}∗,
where the issue was to test that the input-part is a valid codeword (with respect to code C).
Using a linear code C, this was reduced to the special case in which the set (for which the
PCP of Proximity is designed) is a linear space, but even this case was not handled in full
generality in [19]. Subsequent work [21, 14, 20] culminated in providing strongly canonical
PCPs of Proximity for any linear space, but left open the problem of providing strongly
canonical PCPs of Proximity for any set in P, let alone UP.

Recall that the class UP is defined as the subset of NP in which each yes-instance has a
unique valid proof. In this paper, we show that every set in UP has a strong canonical PCP
of Proximity. Furthermore, we provide a polynomial-time transformation of NP-witnesses
(with respect to the original NP-witness relation of the set) to valid proofs (for the resulting
PCP of Proximity).

We seize the opportunity to study the simpler case of strong canonical PCPs. Loosely
speaking, a strong canonical PCP for a set S is a PCP system in which each x ∈ S has a
unique valid proof Π(x) that is accepted with probability 1, whereas each other alleged proof
is rejected with probability that is related to its distance from Π(x). We show that:
1. Every set in UP has a strong canonical PCP of logarithmic randomness, and only sets in
UP have such a PCP (see Theorem 3.1).

2. Similarly, the class of sets having (sufficiently)12 strong canonical PCPs with polynomial
proof length equals “unambiguous-MA” (see Theorem 3.4).

All our constructions are obtained in two steps. First, we show that sets in the relevant
class have PCP systems in which each string in the set has a unique valid proof (that is
accepted with probability 1). Specifically, we show that the only proofs that are accepted
with probability 1 by these PCP systems are the images of the standard transformation
of NP-witnesses to PCP-oracles. Next, we observe that these PCP systems can be made
strongly canonical by a suitable padding of the proofs. Specifically, the padding is determined
such that the ratio of the length of the original proof over the length of the padded proof
equals the lower bound on the rejection probability of invalid proofs (under the original
PCP). Indeed, this simple observation reduces the construction of strong canonical PCPs to
the construction of PCPs that have unique valid proofs.

11See Definition 2.2, which requires that the rejection probability of the oracle pair (x, π) be related to
the maximum, over all x′ ∈ {0, 1}|x| ∩ S, of δ(x, x′) and δ(π,Π(x′)).

12Here we require that any alleged proof is rejected with probability that is polynomially related to its
distance from Π(x) (i.e., %(δ) = poly(δ)).
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Focusing on the construction of PCPs that have unique valid proofs (for sets in UP), we
note that the original PCP construction of Arora et al. [4, 3] will not do. Still, it is possible
that this construction can be modified and augmented so that it has unique valid proofs
(or even becomes a strong canonical PCP). Such an augmentation was indeed performed by
Goldreich and Sudan [19], alas only for the special case of linear spaces, and the route taken
there was quite tedious. Hence, we preferred to work with the gap amplification construction
of Dinur [8], which is more transparent. Starting with a trivial weak-PCP that has unique
valid proofs, we observe that the gap amplification operation is a parsimonious reduction,
and so we are done.

1.3 Organization

In Section 2 we recall the definitions of strong canonical PCPs and PCPPs, starting with the
basic PCP model. In Section 3 we characterize the classes of sets having strong canonical
PCPs of certain types (see Theorems 3.1 and 3.4), and obtain analogous PCPP systems
(see Theorem 3.5). The latter PCPP systems will be used in Section 4 towards establishing
Theorem 1.2. We conclude by spelling out some directions for further research (see Section 5).

2 Definitions of strong canonical PCPs and PCPPs

In this section, we recall the definitions of strong canonical PCPs and PCPPs. Essentially,
we follow the definitional approach presented in [19, Sec. 5.3] (while correcting an error in
one of the actual definitions [19, Def. 5.7]).

2.1 Preliminaries: The PCP model

We start by recalling the basic definition of Probabilistically Checkable Proofs (PCPs): These
are randomized verification procedures that are given an explicit input and oracle access
to an alleged proof π, and are aimed to verify the membership of the (main) input in a
predetermined set by making few (random) queries to the proof (see, e.g., [11, Sec. 9.3]).
Specifically, for a predetermined set S ⊆ {0, 1}∗, on input x and oracle access to an alleged
proof π, a PCP verifier V reads x, makes a constant number of random queries to the proof
π, and satisfies the following conditions.

Completeness: If x ∈ S, then there exists a valid proof π such that V always accepts x
when given oracle access to π; that is, Pr[V π(x)=1] = 1.

Soundness: If x 6∈ S, then for every string π, with probability at least 1/2 the verifier V
rejects x when given oracle access to π; that is, Pr[V π(x)=0] ≥ 1/2.13

Indeed, a string π that makes V always accept x (i.e., that satisfies Pr[V π(x) = 1] = 1) is
called a valid proof for x; the soundness condition implies that valid proofs exist only for
members of S, and the completeness condition asserts that each member of S has a valid
proof. We stress that it is not necessarily the case that the valid proofs are unique; that is,
the same x ∈ S may have several valid proofs (with respect to a fixed verifier).

13Actually, the constant 1/2 can be replaced by any other constant in (0, 1).

ITCS 2019
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Weak-PCPs

We shall also refer to the notion of a weak-PCP, which is defined as above with the crucial
exception that its soundness condition is extremely weak. Specifically, this weak soundness
condition only requires that for every x 6∈ S and π, with positive probability, the verifier
rejects x when given oracle access to π (i.e., Pr[V π(x)=0] > 0). Indeed, an oracle machine
that on input a 3CNF and oracle access to a truth assignment to its variables checks the
values assigned to the variables of a uniformly selected clause constitutes such a trivial
weak-PCP. (Recall that Dinur’s construction [8], which we shall use, gradually transforms
such a weak-PCP into a full fledged PCP.)

2.2 Strong canonical PCPs
We focus on the special case of PCP verifiers, for a set S, with respect to which each x ∈ S
has a unique valid proof, and call such verifiers canonical. Furthermore, we are interested in
the case that invalid proofs are not merely rejected with positive probability, but are rather
rejected with probability that is related to their distance from the (unique) valid proof. We
shall call such verifiers strongly canonical, and quantify their strength by a function % that
relates their rejection probability to the latter distance. Details follow.

We denote the empty string by λ. For two strings w,w′ ∈ {0, 1}m, we let δ(w,w′) denote
the relative Hamming distance between w and w′; that is, δ(w,w′) = |{i ∈ [m] : wi 6= w′i}|/m.
For sake of convenience, we define δ(w,w′) = 1 if w and w′ have different lengths (e.g., the
distance between a non-empty string and the empty string is 1).

I Definition 2.1 (strong canonical PCPs). For a set S ⊆ {0, 1}∗, a monotonically non-
decreasing function % : [0, 1]→ [0, 1] such that %(α) = 0 if and only if α = 0, and an oracle
machine V , we say that V is a %-strong canonical PCP for S if V makes a constant number of
queries to the oracle and there exist functions ` : N→ N and Π: {0, 1}∗ → {0, 1}∗ such that
the following conditions hold.

Canonical Completeness: For every x ∈ S, it holds that Π(x) ∈ {0, 1}`(|x|), and the verifier
always accepts x when given oracle access to Π(x); that is, Pr[V Π(x)(x)=1] = 1.
Strong Canonical Soundness: For every x ∈ {0, 1}∗ and π ∈ {0, 1}∗, the verifier rejects x
when given access to the oracle π with probability at least %(δ(π,Π(x))), where Π(x) def= λ

if x 6∈ S (and in this case δ(π,Π(x)) = 1); that is, Pr[V π(x)=0] ≥ %(δ(π,Π(x))).
The function % is called V ’s detection probability function, and ` is called its proof complexity.
We say that V is a strong canonical PCP for S if, for some % as above, V is a %-strong
canonical PCP for S.

Indeed, the foregoing conditions assert that Π(x) is the unique valid proof for x ∈ S, and
that the verifier is strongly canonical with strength %. Note that strong canonical soundness
implies (standard) soundness by the convention that %(δ(π,Π(x))) = %(1) = Ω(1) for x 6∈ S.
More generally, recall that δ(π,Π(x)) = 1 if |π| 6= |Π(x)|. The case that % is linear is of
special interest; in this case invalid proofs are rejected with probability that is proportional
to their distance from the valid proof.

2.3 Adaptation to the model of PCP of Proximity
Probabilistically checkable proofs of proximity (PCPs of Proximity, abbreviated PCPPs and
a.k.a. assignment testers) are proof systems in which the verifier has oracle access to both
its main input and an alleged proof, and is required to decide whether the main input is in
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some predetermined set or is far from any string that is in this set (cf. [5, 10]). We call such
a PCPP system strong if it rejects every no-instance with probability that is related to the
distance of the instance from the predetermined set. For simplicity, when we say a PCPP
system, we mean a strong one.

Analogously to the case of PCPs, we consider strong canonical PCPs of Proximity14
(henceforth scPCPs of Proximity), which are PCPs of Proximity in which every statement
has a unique valid proof such that a statement–proof pair is rejected with probability that is
related to its distance from a true statement and its corresponding unique valid proof. The
actual definition builds on Definition 2.1, while adapting it to the proofs of proximity model.

I Definition 2.2 (strong canonical PCPs of Proximity). For a set S, a function % as in
Definition 2.1, and an oracle machine V that accesses two oracles, we say that V is a %-strong
canonical PCP of Proximity for S if V makes a constant number of queries to each of its
oracles and there exist functions ` : N→ N and Π: {0, 1}∗ → {0, 1}∗ such that the following
conditions hold.

Canonical Completeness: For every x ∈ S, it holds that Π(x) ∈ {0, 1}`(|x|) and the verifier
always accepts the pair of oracles (x,Π(x)); that is, Pr[V x,Π(x)(1|x|)=1] = 1.
Strong Canonical Soundness: For every x ∈ {0, 1}∗ and π ∈ {0, 1}∗, the verifier rejects the
pair of oracles (x, π) with probability at least %(δΠ(x, π)), where15

δΠ(x, π) def= min
x′∈{0,1}|x|

{max(δ(x, x′), δ(π,Π(x′)))} ; (2)

that is, Pr[V x,π(1|x|)=0] ≥ %(δΠ(x, π)).
The function % is called V ’s detection probability function, and ` is called its proof complexity.
We say that V is a strong canonical PCPP for S if, for some % as above, V is a %-strong
canonical PCPP for S.

We stress that the rejection probability depends on the distance of the oracle-pair (x, π)
from a valid pair consisting of x′ ∈ S ∩ {0, 1}|x| and the corresponding valid proof Π(x′),
where the distance between pairs is defined as the maximum of the distance between the
corresponding elements.16 This represents the fact that we wish to reject with probability
that not only depends on the distance of the input x to a string x′ ∈ S, but also depends on
the distance of the alleged proof π to the corresponding valid proof Π(x′). Indeed, proximity
oblivious testers (POTs) can be viewed as strong canonical PCPs of Proximity with proof
complexity zero.

3 On the existence of strong canonical PCPs and PCPPs

Our first result is a characterization of the class of sets having strong canonical PCPs
of logarithmic randomness. It turns out that this class equals UP. Recall that the class
UP is defined as the subset of NP in which each yes-instance has a unique valid proof;
that is, S ∈ UP if there exists a polynomially-bounded relation R that is recognizable in
polynomial-time such that for every x ∈ S there exists a unique w ∈ R(x) = {y : (x, y)∈R}
whereas R(x) = ∅ if x 6∈ S.

14Alternatively, we use the term strongly canonical.
15Recall that Π(x′) def= λ if x′ 6∈ S, and in this case δ(π,Π(x′)) = 1.
16That is, we effectively define δ(〈x, y〉, 〈x′, y′〉) as max(δ(x, x′), δ(y, y′)). Taking the sum of the latter

distances (or their average) would have been as good, since α+β
2 ≤ max(α, β) ≤ α+ β.
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I Theorem 3.1 (UP and strong canonical PCPs). The set S has a strong canonical PCP of
logarithmic randomness if and only if S ∈ UP. Furthermore, the resulting PCP is %-strong for
%(α) = α/4 and there exists a polynomial-time transformation of NP-witnesses for S ∈ UP
to valid proofs for the resulting PCP.

Proof. The necessary condition is quite straightforward: Let V be a strong canonical PCP
of logarithmic randomness for S, and assume for simplicity that its proof complexity is
polynomial. Now, define R = {(x, π) : Pr[V π(x) = 1] = 1}, and observe that membership
in R can be decided in polynomial-time by trying all possible random choices of V . Hence,
S = {x : R(x) 6= ∅} is in NP, and the hypothesis that the valid proofs (with respect
to V ) are unique implies that S ∈ UP. In the general case (i.e., when the proof length
may be super-polynomial), one may consider the “effective proofs” (i.e., the values of π
at locations that are read by V on some random choices). That is, in this case, we define
R = {(x, (I(x), πI(x))) : Pr[V π(x)=1] = 1}, where I(x) is the set of locations that are in the
“effective proof” (i.e., locations that V (x) probes with positive probability).

Note that the foregoing argument holds also for very weak PCP systems, provided that they
have logarithmic randomness complexity and unique valid proofs. That is, we only used the
hypothesis that for every x ∈ S, there exists a unique π such that px(π) def= Pr[V π(x)=1] = 1,
and capitalized on the fact that it is feasible to compute px(π) exactly.

Turning to the opposite direction, we show that each S ∈ UP has a strong canonical
PCP of logarithmic randomness by presenting such a PCP for USAT and recalling that each
set in UP is reducible to USAT via a parsimonious reduction (see, e.g., [11, Ex 2.29]). Recall
that USAT is the promise problem in which yes-instances are 3CNF formulas with a unique
satisfying assignment and no-instances are formulas with no satisfying assignments. (Actually,
we need to define PCPs for promise problems and state, as well as prove, Proposition 3.2
in this more general setting, but we avoid doing so while commenting that the extension is
straightforward.)17

The key observation is that it suffices to show a PCP for S in which each x ∈ S has
a unique valid proof. This is the case because such PCPs can be transformed into strong
canonical ones, as stated next.

I Proposition 3.2 (deriving strong canonical PCPs from PCPs with unique valid proofs). Let
V be a PCP system of logarithmic randomness complexity for S, and suppose that for every
x ∈ S there exists a unique π such that Pr[V π(x) = 1] = 1. Then, there exist a strong
canonical PCP of logarithmic randomness for S and a polynomial-time transformation of
valid proof with respect to V to valid proofs for the resulting PCP. Furthermore, the resulting
PCP is %-strong for %(α) = α/4 and its proof complexity is 2r · `, where r and ` are the
randomness and proof complexity of V .

Proof. Again, we may assume, without loss of generality, that V has polynomial proof
complexity, since we can efficiently determine all relevant locations (i.e., those queried under
any choice of randomness) without making any queries.

Letting Π be the function mapping instances to their canonical proofs, as in Definition 2.1,
we define Π′(x) = 1(2r(|x|)−1)·`(|x|)Π(x) ∈ {0, 1}2r(|x|)·`(|x|) if Π(x) 6= λ and Π′(x) = λ

otherwise. Note that, for every x ∈ S and π ∈ {0, 1}`(|x|), it holds that

δ(1(2r(|x|)−1)·`(|x|)π,Π′(x)) ≤ 2−r(|x|),

17 Specifically, the canonical soundness condition has to be satisfied only for inputs that satisfy the promise,
whereas the canonical completeness condition is stated for the yes-instances only.
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which means that invalid proofs for x ∈ S are extremely close to valid proofs, and so it
suffices to reject them with tiny probability. This suggests the following verifier, which on
input x ∈ {0, 1}n and access to oracle π′ ∈ {0, 1}2r(n)·`(n), selects uniformly at random one
of the following two tests and performs it.
1. The verifier selects at random i ∈ [(2r(n) − 1) · `(n)], and accepts if and only if the ith bit

of π′ equals 1.
2. The verifier invokes V on input x, while providing it with oracle access to the `(n)-bit

long suffix of π′, and outputs the verdict of V .
Turning to the analysis, we first note that if x 6∈ S, then (by virtue of V ) the resulting verifier
rejects x with probability at least 1

2 ·
1
2 , regardless of the identity of the oracle π′. Hence,

from this point on we assume x ∈ S, and let Π(x) denote the unique valid proof with respect
to V .

Now, let π′ ≡ (w, π) ∈ {0, 1}2r(n)·`(n) such that |π| = `(n). Observe that, on input x and
access to π′, the new verifier rejects with probability that is lower-bounded by (half) the
fraction of 0’s in w, since with probability 1/2 this verifier test whether the (2r(n)−1) ·`(n)-bit
long prefix equals the all-1 string. Next, recall that, for any π ∈ {0, 1}`(n), it holds that
π′′ = 1(2r(n)−1)·`(n)π is 2−r(|x|)-close to Π′(x) = 1(2r(n)−1)·`(n)Π(x), since δ(π,Π(x)) ≤ 1.
Hence, rejecting π′′ with probability at least 1

2 · 2
−r(n) suffices when π 6= Π(x). It follows

that a generic π′ ≡ (w, π) 6= Π′(x) 6= λ is rejected with probability
1
2 · δ(w, 1

(2r(n)−1)·`(n)) + 1
2 · 2

−r(n) ≥ 1
2 · δ(w, 1

(2r(n)−1)·`(n)) + 1
2 · 2

−r(n) · δ(π,Π(x))

≥ 1
2 · δ(π

′, π′′) + 1
2 · δ(π

′′,Π′(x)),

where the second inequality uses δ(w, 1(2r(n)−1)·`(n)) ≥ δ(wπ, 1(2r(n)−1)·`(n)π) = δ(π′, π′′) and

δ(π,Π(x)) = 2r(|x|) · δ(1(2r(n)−1)·`(n)π, 1(2r(n)−1)·`(n)Π(x))
= 2r(|x|) · δ(π′′,Π′(x)).

Using δ(π′, π′′) + δ(π′′,Π′(x)) ≥ δ(π′,Π′(x)), it follows that, on input x and access to π′, the
new verifier rejects with probability at least δ(π′,Π′(x))/2, which means that it constitutes a
strong canonical PCP for S. Indeed, the PCP is %-strong for %(α) = α/4.18 J

In light of Proposition 3.2, it suffices to show a PCP of logarithmic randomness and
unique valid proofs for USAT. This PCP is constructed by merely following the construction of
Dinur [8], while noting that her gap amplification transformation is a parsimonious reduction.

I Proposition 3.3 (PCPs with unique valid proofs for USAT). There exists a PCP system
of logarithmic randomness for USAT such that for every satisfiable formula there exists a
unique valid proof with respect to this system. Furthermore, there exists a polynomial-time
transformation of satisfying assignments for the input formula to valid proofs for the resulting
PCP.

Proof. Let ψ be an m-clause 3CNF formula over n variables, promised to have at most one
satisfying assignment. Let V0 be the trivial weak-PCP system with soundness 1/m, in which
the oracle is allegedly the unique satisfying assignment of ψ, and the verifier checks that

18The factor of 1/4 is due to the case that x 6∈ S, which is rejected with probability at least 1/4.
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this assignment satisfies a random clause of ψ. By construction, V0 has unique valid proofs.
Applying the gap amplification transformation of Dinur [8] to V0, we obtain a PCP system
V of logarithmic randomness for USAT.

As stated above, the crucial point is showing that the aforementioned transformation is
a parsimonious reduction. The argument is detailed in our technical report [9, Appendix
A]; it consists of showing that gap amplification is a one-to-one transformation, and that
the only valid proofs with respect to the resulting proof system are those in the range of
the transformation. These facts are demonstrated by closely inspecting each of the four
steps in the gap amplification procedure: degree reduction, “expanderization”, powering,
and alphabet reduction. We show that each of these steps satisfies the two aforementioned
properties, where in the analysis of the alphabet reduction step we assume that it is performed
by composition with a PCPP that has unique valid proofs. Such a PCPP is immediately
implied by the Hadamard code (alternatively, by the long code); see details in [9, Appendix
A.4]. J

Combining Proposition 3.2 and 3.3, the theorem follows. J

A detour: A variant of Theorem 3.1

Our next result is a characterization of the class of sets having strong canonical PCPs of
polynomial proof length. It turns out that this class equals “unambiguous-MA” (denoted
UMA, and defined next). Recall that the class MA consists of all sets having a non-
interactive probabilistic proof system; that is, S ∈MA if there exists a polynomially-bounded
relation R that is recognizable in coRP such that S = {x : ∃w (x,w) ∈ R}.19 We define
UMA as the subset ofMA in which the non-interactive proof system has unique valid proofs;
that is, S ∈ UMA if there exists a polynomially-bounded relation R that is recognizable in
coRP such that for every x ∈ S there exists a unique w ∈ R(x) = {y : (x, y)∈R}, whereas
R(x) = ∅ if x 6∈ S. (Note that in this case |R(x)| ≤ 1 for every x.)

I Theorem 3.4 (UMA and strong canonical PCPs). The set S has a poly-strong canonical
PCP of polynomial proof complexity if and only if S ∈ UMA.

Above, recall that by poly-strong we mean %-strong with respect to ρ(δ) = δc. We stress
that, unlike in Theorem 3.1, here we do not know whether a %-strong canonical PCP with
arbitrary % for S implies that S ∈ UMA. The point is that invalid proofs of length ` are
only guaranteed to be rejected with probability at least %(1/`), which may be negligible. On
the other hand, the existence of poly-strong canonical PCP (of polynomial-length) for S,
implies S ∈ UMA, which in turn is shown to imply that S has a %-strong canonical PCP (of
polynomial-length) with a linear % (i.e., %(α) = Ω(α)).

Proof. We follow the outline of the proof of Theorem 3.1, while introducing several relevant
modifications. For example, in the proof of the necessary condition we can no longer assume
that the PCP has logarithmic randomness; instead we directly use the hypothesis that the
PCP has polynomial proof complexity, and derive a verification procedure that places the set
in UMA (rather than in UP). Furthermore, using the hypothesis that the PCP is poly-strong,
we infer that invalid proofs are rejected with noticable probability (i.e., probability at least
%(1/`) = poly(1/`). This fact allows for the rejection of invalid proofs by invoking the PCP

19This perfect completeness version ofMA equals the non-perfect one in which R is only required to be
recognizable in BPP (see [11, Ex. 6.12 (2)]).
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verifier polynomially many times. Specifically, let V be a %-strong canonical PCP of proof
complexity ` = poly for S, and define R = {(x, π) : Pr[V π(x)=1] = 1}. Then, R ∈ coRP,
by letting the decision procedure emulate O(1/%(1/`(|x|))) = poly(|x|) executions of V π(x),
and accept if and only if all executions accepted. Hence, S = {x : R(x) 6=∅} is inMA, and
the hypothesis that the valid proofs (with respect to V ) are unique implies that S ∈ UMA.

Turning to the opposite direction, we show that each S ∈ UMA has a poly-strong
canonical PCP of polynomial proof length, by using a randomized reduction of S to USAT
(or rather to a promise problem in the corresponding class UP). Let R be the binary
relation guaranteed by the definition of UMA, and suppose, without loss of generality, that
R ⊆ ∪n∈N({0, 1}n × {0, 1}p(n)) for some polynomial p. Let p′ be a polynomial that upper
bounds the randomness complexity of the decision procedure for R, and let D′ denote the
residual decision predicate of that procedure; that is, D′r(x,w) denotes the verdict on input
(x,w) when using randomness r ∈ {0, 1}p′(n+p(n)). Recall that for (x,w) 6∈ R, it holds that
Prr[D′r(x,w)=1] ≤ 1/2, and it follows that, for every x and w 6∈ R(x) = {y : (x, y)∈R},

Prr1,...,rm∈{0,1}p′(n+p(n)) [∀i ∈ [m] D′ri
(x,w)=1] ≤ 2−m.

Note that if we pick m = p(n) + 2 , then an application of a union bound implies that, for
every x ∈ {0, 1}n, it holds

Prr1,...,rm∈{0,1}p′(n+p(n)) [∃w 6∈R(x)∀i∈ [m] D′ri
(x,w)=1] ≤ 1/4.

Now, consider the randomized mapping of x ∈ {0, 1}n to (x, r1, ..., rm), denoted Ψ, where
m = p(n) + 2 and the ri’s are selected uniformly and independently in {0, 1}p′(n+p(n)). Recall
that |R(x)| ≤ 1 for any x. Now, let P (standing for promise) denote the set of tuples
(x, r1, ..., rm) for which ∀i ∈ [m] D′ri

(x,w)=1 holds only for w ∈ R(x), and S′ denote the set
of tuples (x, r1, ..., rm) with x ∈ S. Then, it holds that Pr[Ψ(x)∈P ] ≥ 3/4 and Pr[Ψ(x)∈
S′⇔x∈S] = 1 for each x, where Ψ(x) is as defined above.20 Letting R′(x, r1, ..., rm) = R(x),
observe that for every (x, r1, ...., rm) ∈ P it holds that w ∈ R′(x, r1, ...., rm) if and only
if ∀i ∈ [m] D′ri

(x,w) = 1. Hence, the promise problem (P ∩ S′, P \ S′) is in the class of
promise problems associated with UP, and we can apply the PCP of Theorem 3.1 to it.
Furthermore, recall that the function Π′ (which generates the canonical proof) used to
construct the strong canonical PCP system in Theorem 3.1 denoted V ′, assigns to the input
(x, r1, ..., rm) ∈ P ∩ S′ the unique proof 1tw such that R(x) = {w}, where t is polynomial
in |(x, r1, ..., rm)|. Combining Ψ with V ′ yields a PCP system for S that, on input x and
oracle access to π, invokes V ′ on input Ψ(x) and provides V ′ with oracle access to π. The
corresponding verifier, denoted V , has the following features:

It (i.e., V ) has polynomial proof complexity.
This feature is inherited from the proof complexity of V ′ and the fact that |Ψ(x)| =
poly(|x|).
It satisfies canonical completeness with respect to the function Π such that Π(x) = 1tw if
and only if R(x) = {w}. Indeed, Π(x) = Π′(Ψ(x)) holds whenever Φ(x) ∈ P ∩ S′.
This is the case because Pr[Ψ(x)∈S′] = 1 for any x ∈ S, and 1tw = Π′(x, r1, ..., rm) and
R(x) = {w} hold for any (x, r1, ..., rm) ∈ P ∩S′. (We also use the canonical completeness
of V ′.)

20That is, Ψ(x) is uniformly distributed over {(x, r1, ..., rm(|x|)) : ∀i ∈ [m(|x|)] ri ∈ {0, 1}p
′(|x|+p(|x|))}

and m(n) = p(n) + 2.
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It satisfies canonical soundness with respect to the foregoing function Π. Furthermore,
invalid proofs are rejected with probability that is proportional to their distabce from the
valid proof.
This is the case because Pr[Ψ(x) ∈ P ] ≥ 3/4 for any x, and in that case the strong
canonical soundness of V ′ beats in. The furthermore clause follows by the fact that V ′ is
a %′-strong canonical PCP for %′(α) = α/4.

Hence, V is a (3%′/4)-strong canonical PCP (of polynomial proof complexity) for S. Note
that (typically) V uses super-logarithmic randomness complexity.21 J

Strong canonical PCPs of Proximity

Next, we adapt the proof of the positive direction of Theorem 3.1 to the PCPP model.

I Theorem 3.5 (UP and strong canonical PCPPs). Every set in UP has a strong canonical
PCP of Proximity of logarithmic randomness and linear detection probability function. Fur-
thermore, there exists a polynomial-time transformation of NP-witnesses for membership in
the set to valid proofs for the resulting PCP.

Indeed, the positive direction of Theorem 3.1 follows from Theorem 3.5 by applying the
latter to the set S′ = {C(x) : x ∈ S}, where C is a good error correcting code. Note that
the claimed PCP system (for S) emulates the input-oracle of the PCPP system (for S′) by
applying C to its own input x, and emulating the proof-oracle of the PCPP system by using
its own proof-oracle. The canonical soundness of the PCP system (for S) follows from the
canonical soundness of the PCPP system (for S′), since in the case that x 6∈ S it holds that
the relative distance of C(x) from the set S′ is a constant.

Proof. The construction and its analysis are analogous to those in the proof of Theorem 3.1,
except that here we start with a trivial weak-PCPP for the set S ∈ UP , use (parsimonious) gap
amplification for PCPPs (see [9, Appendix A.5]), and apply a PCPP version of Proposition 3.2.
Details follow.

Starting with the PCPP analogue of Proposition 3.3, we use a similar construction except
that we apply it to a fixed 3CNF (which is generated based on the input length only). Recall
that the construction consists of two steps: First, we construct a trivial weak-PCPP with
unique proofs, and then we apply the gap amplification procedure to it (obtaining a PCPP
with unique proofs).

Specifically, in the first step, we reduce the verification of the claim x ∈ S to the
satisfiability of a fixed 3CNF by an assignment that extends x, where the formula is derived
by the standard Cook–Levin reduction of S to 3SAT. The fixed formula has main variables X
(which are set by the assignment x) and auxiliary variables Y (which represent the NP-witness
for x as well as intermediate gate-values in the corresponding computation), and the question
is whether this formula is satisfiable by an assignment in which X = x. (Note that when
x ∈ S there is a unique assignment y to Y such that the assignment (X,Y ) = (x, y) satisfies
the fixed formula.) The first step is completed by observing that the forgoing formula yields
a trivial weak-PCPP (with small but noticeable soundness) that is given oracle access to the
input x (i.e., x is the input-oracle) as well as to a proof that corresponds to an assignment
to the auxiliary variables. This PCPP has unique valid proofs.

21This is inherited from the super-logarithmic length of the proofs employed by the MA system (or, altern-
atively, from its super-logarithmic randomness complexity). Note that MA systems with logarithmic
proof length (resp., logarithmic randomness) exist only for coRP (resp., NP).
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In the second step, we apply the gap amplification procedure, which treats the foregoing
PCPP execution as a 2CSP instance such that some variables of the 2CSP are identified
with the bits of the input-oracle and the other variables represent various auxiliary values.
The set of variables that represents bits of the input-oracle will remain intact throughout
the entire process of gap amplification (see[9, Appendix A.5]). Hence, when viewing the
resulting 2CSP as a PCPP, the input-oracle of the resulting PCPP equals the input-oracle
of the original (trivial) PCPP. Observing (as in the proof of Proposition 3.3) that the gap
amplification process maintains the number of valid proofs for each input (see [9, Appendix
A.5]), we obtain a PCPP with unique proofs for S.

Next, we turn to establish a PCPP analogue of Proposition 3.2. This version asserts
a transformation of PCPPs with unique proofs to strong canonical PCPPs, and its proof
is obtained by a straightforward adaptation of the original (PCP) version.22 Using the
notation of Proposition 3.2, the crux of the analysis is that the pair of oracles (x, π′), where
x ∈ {0, 1}n (such that S∩{0, 1}n 6= ∅)23 and π′ ≡ (w, π) ∈ {0, 1}(2r(n)−1)·`(n)+`(n), is rejected
with probability at least

min
x′∈S∩{0,1}n

{max(Ω(δ(x, x′)), 0.5 · δ(w, 1(2r(n)−1)·`(n)) + 0.5 · 2−r(|x|)) · δ(π,Π(x′)))}, (3)

where the foregoing lower bound of Ω(δ(x, x′)) follows from the soundness of the original
PCPP system outlined above. As shown in the proof of Proposition 3.2, it holds that
δ(w, 1(2r(n)−1)·`(n)) + 2−r(|x|) · δ(π,Π(x′)) ≥ δ(π′,Π′(x′)), which implies that (3) is lower-
bounded by Ω(δΠ(x, π′). J

4 The testing result

With strong canonical PCPs of Proximity (as provided by Theorem 3.5) at our disposal, it is
quite straightforward to obtain a proximity oblivious tester for a suitable encoding of any set
in P. Such an encoding incorporates copies of the target object as well as a corresponding
PCPP-oracle that attests its membership in the set. To be meaningful, this encoding should
be polynomial-time computable and invertible.24 One may also require that the encoding is
“length regular” (i.e., equal length strings have an equal encoding length) and has a constant
relative distance, but this seems less essential.

I Theorem 1.2 (restated). For any S ∈ P there exist polynomial-time encoding and decoding
algorithms E and D = E−1 such that the set S′ def= {E(x) : x ∈ S} has a proximity
oblivious tester of linear detection probability. Furthermore, |E(x)| = |E(1|x|)| for every x,
the encoding E has constant relative distance, and the POT runs in polylogarithmic time and
has logarithmic randomness complexity.

22Alternatively, the current version can be derived as a special case of Proposition 5.3.
23 If S ∩ {0, 1}n = ∅, then (x, π′) is rejected with probability at least Ω(1), and the claim follows (since in

this case δΠ(x, π′) = 1).
24The following examples illustrate that restricting the complexity of the encoding is essential for the

meaningfulness of Theorem 1.2. Suppose, for example, that for some m : N → N it holds that
|S ∩ {0, 1}n| = 2m(n), and consider the length preserving bijection E that maps the elements of
S ∩ {0, 1}n to 0n−m(n){0, 1}m(n). Then, testing {E(x) : x ∈ S} amounts to selecting uniformly
i ∈ [n−m(n)] and checking that the ith bit of the n-bit long input equals 0. More generally, assuming
that both S and S = {0, 1}∗ \ S are infinite, and letting idxS(w) denote the index of w ∈ S (e.g.,
according to the standard lexicographical order), consider the bijection E such that E(x) = y if x ∈ S
(resp., x ∈ S) and idxS(x) = idxT (y) (resp., idx

S
(x) = idx

T
(y)), where T = ∪m∈N{0, 1}2m+1. Then,

testing {E(x) : x ∈ S} = T is trivial.
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Recall that proximity oblivious testers (POTs) were defined as having constant query
complexity, and that their detection probability function represents a lower bound on their
rejection probability as a function of the distance of the tested object from the property.

Proof. Let C : {0, 1}∗ → {0, 1}∗ be an arbitrary systematic code (i.e., x is a prefix of C(x))
of relative distance, say, 1/8 such that the mapping x 7→ C(x) can be computed in polynomial
time. Consider a strong canonical PCPP for the set C(S) def= {C(x) : x ∈ S}, as guaranteed
by Theorem 3.5, and let Π(C(x)) denote the (unique) valid proof for C(x) ∈ C(S). The
basic idea is to combine the input and proof oracles of the PCPP into a single codeword that
will be accessed by the POT as an oracle; in order to maintain the soundness guarantee, it is
important that each part of the combined codeword will have approximately the same length.
Since the proof-oracle is typically longer, this requires repeating the input-oracle sufficiently
many times.

Recalling that |Π(C(x))| = `(|C(x)|) for some polynomial `, we proceed to present the
claimed algorithms.
The encoding function E: On input x ∈ {0, 1}∗, we let n = |C(x)| and t = `(n)/n. Then,

E(x) = C(x)tπ such that π = Π(C(x)) if x ∈ S, and π = 1`(n) otherwise.
The encoding can be computed in polynomial time, since the canonical proof Π(C(x)) can
be computed in polynomial time because S ∈ P (and C is polynomial-time computable).
(Formally, the reader may think of S as being in UP by virtue of the witness relation
R = {(x, x) : x ∈ S}, and recall that given an NP-witness one can efficiently obtain the
corresponding proof-oracle.)
The code C and the repetitions are used to create and maintain distance; that is,
δ(E(x), E(x′)) ≥ 0.5 · δ(C(x), C(x′)) ≥ 1/16 for every two distinct x, x′ of equal length.

The decoding function D: On input y ∈ {0, 1}∗, the algorithm outputs x if |y| = 2`(n) and
y = C(x)`(n)/nΠ(C(x)), and outputs a special failure symbol otherwise. Specifically, the
algorithm first determines n = `−1(|y|/2), then determines k such that n = |C(1k)|, and
finally sets x as the k-bit long prefix of y (and verifies that y = C(x)`(n)/nΠ(C(x)) holds).
Note that checking that the suffix of y is the canonical proof Π(C(x)) can be done in
polynomial time, since x is a prefix of y and Π ◦ C is polynomial-time computable.

The tester T : On input y ∈ {0, 1}2`(n), the tester parses y into (w1, ..., wt, π) such that
|w1| = · · · = |wt| = n and |π| = `(n). It first checks at random that the wi’s are all
identical to w1, by selecting a random i ∈ [t] and comparing a random position in wi and
w1. Next, it invokes the (strong canonical) PCPP verifier, providing it with access to the
input-oracle w1 and the proof-oracle π.

We first note that D(E(x)) = x for every x. Next, we show that T is a POT for the set
S′ = {E(x) : x ∈ S}. Observe, on the one hand, that for every y ∈ S′, it holds that
y = E(x) = C(x)tΠ(C(x)) for some x ∈ S, and the tester T accepts y with probability 1 (by
virtue of the perfect completeness of the PCPP verifier). On the other hand, turning to the
case of y 6∈ S′ and letting y ≡ (w1, ..., wt, π) ∈ {0, 1}t·n+`(n), we consider three cases (where
below, by “far” we mean being at relative distance Ω(δS′(y))).
1. If (w1, ..., wt) is far from wt1, then y is rejected with proportional probability by the first

check of T .
2. If (y is close to wt1 but) w1 is far from C(S), then y is rejected with proportional probability

by the (strong canonical) PCPP verifier (which is invoked with input-oracle w1).
3. If w1 is close to C(x) ∈ C(S) but π is far from the canonical proof Π(C(x)), then y is

rejected with proportional probability by the (strong canonical) PCPP verifier (which is
invoked with input-oracle w1 and the proof-oracle π).
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(Here we use the fact that if w1 is close to C(x), then it is far from C(x′) for any
x′ 6= x. Hence, minw′{max(δ(w1, w

′), δ(π,Π(w′))} equals minx′∈S{max(δ(w1, C(x′)),
δ(π,Π(C(x′)))}, which equals max(1/8, δ(π,Π(C(x)))}.)

Hence, T is a POT (of linear detection probability) for S′. J

5 Directions for further research

The begging question is whether a result like Theorem 1.2 can be proved when using an
encoding function of smaller stretch, where the stretch of E : {0, 1}∗ → {0, 1}∗ is the function
that maps n to |E(1n)|. Specifically, which sets S satisfy the conclusion of Theorem 1.2 with
respect to an encoding of almost linear stretch?

Recalling that our proof of Theorem 1.2 is pivoted at the existence of strong canonical
PCPs of Proximity, it is natural to ask which sets have a strong canonical PCP of Proximity
of almost-linear proof complexity. We believe that USAT has such a PCP of Proximity, and
suggest establishing this conjecture as an open problem.

I Problem 5.1 (almost-linear length strong canonical PCPPs). Show that USAT has a strong
canonical PCP of Proximity of almost-linear proof complexity. Furthermore, show that valid
proofs for this PCPP can be constructed in polynomial-time when given the input formula
and a satisfying assignment to it.

Recall that 3SAT has a PCP of Proximity of almost-linear proof complexity: We refer to the
PCPP system of Dinur [8], which builds upon the work of Ben-Sasson and Sudan [6]. A
possible route towards resolving Problem 5.1 is to show that this PCPP is a strong canonical
PCPP, or can be transformed into such a PCPP at moderate cost (i.e., increasing the proof
complexity by a poly-logarithmic factor). We actually believe that such a transformation
is needed, since we believe that the PCPP of [8] is almost there (i.e., it satisfies a relaxed
form of being strongly canonical (detailed below)), and that the extra step can be made by a
generalization (of a PCPP version) of Proposition 3.2.

In order to detail this idea, we need a refinement of Definition 2.2. In this refinement, the
rejection probability is not lower-bounded by a function of the maximum of the distances
δ(x, x′) and δ(π,Π(x)), but is rather the maximum of two (potentially) different functions
applied to the two distances. Maybe more importantly, we allow these functions to depend
also on the input length.

I Definition 5.2 (Definition 2.2, refined). Let %I, %P : N × [0, 1] → [0, 1] be monotonically
non-decreasing in their second argument such that %I(n, α) = 0 (resp., %P(n, α) = 0) if and
only if α = 0. For a set S ⊆ {0, 1}∗ and an oracle machine V that accesses two oracles, we
say that V is a (%I, %P)-strong canonical PCP of Proximity for S if V makes a constant number
of queries to each of its oracles and there exist functions ` : N→ N and Π : {0, 1}∗ → {0, 1}∗
such that the following conditions hold.

Canonical Completeness: As in Definition 2.2.25
Strong Canonical Soundness: For every x ∈ {0, 1}∗ and π ∈ {0, 1}`(|x|), the verifier rejects
the pair of oracles (x, π) with probability at least

min
x′∈{0,1}|x|

{max(%I(|x|, δ(x, x′)), %P(|x|, δ(π,Π(x′))))} . (4)

25That is, for every x ∈ S, it holds that Π(x) ∈ {0, 1}`(|x|) and the verifier always accepts the pair of
oracles (x,Π(x)); i.e., Pr[V x,Π(x)(1|x|)=1] = 1.
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We say that V is a strong canonical PCP of Proximity for S if both %I and %P are oblivious
of the length parameter (i.e., if %I(n, α) = %I

′(α) for some %I
′ : [0, 1]→ [0, 1], and ditto for

%P), and say that V is a semi-strong canonical PCP of Proximity for S if %I is oblivious of the
length parameter. As in Definition 2.2, ` is called the proof complexity of V .

Indeed, Definition 2.2 is obtained as a special case by letting %I(n, α) = %P(n, α) = %(α) for
% : [0, 1]→ [0, 1]. We conjecture that the PCPP system of Dinur [8], which builds on the work
of Ben-Sasson and Sudan [6], yields a semi-strong canonical PCP of Proximity of logarithmic
randomness and almost linear proof complexity for USAT, and that the corresponding function
%P has the form %P(n, α) = α/poly(logn). If this is indeed the case, then using the following
transformation, which generalizes Proposition 3.2, yields a strong canonical PCP of Proximity
of almost-linear proof complexity for USAT, which in turn resolves Problem 5.1.

I Proposition 5.3 (deriving strong canonical PPCPs from semi-strong ones). Let V be a
(%I, %P)-strong canonical PCPP system of logarithmic randomness complexity and proof
complexity ` for S, and suppose that %I(n, α) = %(α) ≤ α and %P(n, α) = %′P(n) · α for some
%′P : N→ (0, 1]. Then, there exists a %-strong canonical PCP of logarithmic randomness and
proof complexity `/%′P for S. Furthermore, there exists a polynomial-time transformation of
valid proofs with respect to V to valid proofs for the resulting PCP.

Note that the PCPP analogue of Proposition 3.2 follows as a special case by observing that
any canonical PCPP system (i.e., one that has unique valid proofs) of randomness complexity
r is an (%I, %P)-strong canonical PCPP, where %I is oblivious of the length parameter and
%P(n, α) = 2−r(n).

Proof. We observe that the proof of Proposition 3.2 can be adapted and generalized as follows.
Again, we may assume, without loss of generality, that V has polynomial proof complexity,
and let t(n) = 1/%′P(n). Letting Π be as in Definition 2.2, we define Π′(x) = 1(t(n)−1)·`(|x|)Π(x)
if Π(x) 6= λ, and Π′(x) = λ otherwise. Analogously to the proof of Proposition 3.2, we
consider the following verifier, which given oracle access to an input x ∈ {0, 1}n and an
alleged proof π′ ∈ {0, 1}t(n)·`(n), selects uniformly at random one of the following two tests
and performs it.
1. The verifier selects at random i ∈ [(t(n)− 1) · `(n)], and accepts if and only if the ith bit

of π′ equals 1.
2. The verifier invokes V on input x and the `(n)-bit long suffix of π′. That is, V ’s queries

to the input-oracle are answered by the input-oracle of the new verifier, whereas V ’s
queries to the proof-oracle are answered by accessing the suffix of the proof-oracle of the
new verifier (i.e., query i ∈ [`(n)] is answered by querying the location (t(n)− 1) · `(n) + i

in π′).
Turning to the analysis, we first note that if S ∩ {0, 1}n = ∅, then (x, π′) is rejected with
probability at least δ(1) = Ω(1), and the claim follows. Hence, we may assume that
S ∩{0, 1}n 6= ∅. Letting π′ ≡ (w, π) ∈ {0, 1}(t(n)−1)·`(n)+`(n), we infer that the pair of oracles
(x, π′) ∈ {0, 1}n × {0, 1}t(n)·`(n) is rejected with probability at least

min
x′∈S∩{0,1}n

{max(%(δ(x, x′)), 0.5 · δ(w, 1(t(n)−1)·`(n)) + 0.5 · %′P(n) · δ(π,Π(x′)))}.

Observing that

δ(w, 1(t(n)−1)·`(n)) + %′P(n) · δ(π,Π(x′))
≥ δ(wπ, 1t(n)−1)·`(n)π) + %′P(n) · t(n) · δ(1t(n)−1)·`(n)π, 1t(n)−1)·`(n)Π(x′))
= δ(π′, 1t(n)−1)·`(n)π) + δ(1t(n)−1)·`(n)π,Π′(x′))
≥ δ(π′,Π′(x′)),
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it follows that (x, π′) is rejected with probability at least

min
x′∈S∩{0,1}n

{max(%(δ(x, x′)), 0.5 · δ(π′,Π′(x′)))}.

Using %(α) ≤ α, it follows that the new verifier is a 0.5%-strong canonical PCPP of proof
complexity `/%′P. J
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Abstract
To select a subset of samples or “winners” from a population of candidates, order sampling [20]
and the k-unit Myerson auction [17] share a common scheme: assign a (random) score to each
candidate, then select the k candidates with the highest scores. We study a generalization of
both order sampling and Myerson’s allocation rule, called winner-selecting dice. The setting for
winner-selecting dice is similar to auctions with feasibility constraints: candidates have random
types drawn from independent prior distributions, and the winner set must be feasible subject to
certain constraints. Dice (distributions over scores) are assigned to each type, and winners are
selected to maximize the sum of the dice rolls, subject to the feasibility constraints. We examine
the existence of winner-selecting dice that implement prescribed probabilities of winning (i.e., an
interim rule) for all types.

Our first result shows that when the feasibility constraint is a matroid, then for any feasible
interim rule, there always exist winner-selecting dice that implement it. Unfortunately, our proof
does not yield an efficient algorithm for constructing the dice. In the special case of a 1-uniform
matroid, i.e., only one winner can be selected, we give an efficient algorithm that constructs
winner-selecting dice for any feasible interim rule. Furthermore, when the types of the candidates
are drawn in an i.i.d. manner and the interim rule is symmetric across candidates, unsurprisingly,
an algorithm can efficiently construct symmetric dice that only depend on the type but not the
identity of the candidate.

One may ask whether we can extend our result to “second-order” interim rules, which not
only specify the winning probability of a type, but also the winning probability conditioning on
each other candidate’s type. We show that our result does not extend, by exhibiting an instance
of Bayesian persuasion whose optimal scheme is equivalent to a second-order interim rule, but
which does not admit any dice-based implementation.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Interim rule, order sampling, virtual value function, Border’s theorem

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.31

Related Version A full version of the paper is available at https://arxiv.org/abs/1811.
11417.

Funding Work supported in part by NSF Grant CCF-1423618.

© Shaddin Dughmi, David Kempe, and Ruixin Qiang;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 31; pp. 31:1–31:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaddin@usc.edu
mailto:David.M.Kempe@gmail.com
mailto:rqiang@usc.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.31
https://arxiv.org/abs/1811.11417
https://arxiv.org/abs/1811.11417
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


31:2 Alea Iacta Est: Auctions, Persuasion, Interim Rules, and Dice

1 Introduction

Economic design often features scenarios in which choices must be made based on stochastic
inputs. In auction design, bidders drawn from a population interact with an auction
mechanism, and the mechanism must then choose winners and losers of the auction. In
information structure design, a principal observes information pertinent to the various actions
available to one or more decision makers, and must use this information to recommend actions
to the decision makers. In such settings, an important framing device is the notion of an
interim rule (also called a reduced form) of an (ex-post) winner selection rule, summarizing
the probability for each candidate to be selected.

We focus on the simplest and most natural class of such decision making scenarios, one
which includes auctions and Bayesian persuasion [12] as special cases. In a winner selection
environment, there is a set of candidates C, each equipped with a random attribute known
as its type. A winner selection rule is a randomized function (or algorithm) which maps
each profile of types, one per candidate, to a choice of winning candidates, subject to the
requirement that the set of winners must belong to a specified family I ⊆ 2C of feasible sets.
The winner selection rule is also referred to as an ex-post rule since it specifies the winning
probabilities conditioned on every realized type profile. In auctions, candidates correspond
to bidders, and a winner selection rule is an allocation rule of the auction. In Bayesian
persuasion, candidates correspond to actions available to a decision maker, and a winner
selection rule corresponds to a persuasion scheme used by a principal to recommend one of
the actions to the decision maker. We restrict our attention to winner selection scenarios in
which the types of different candidates are independently distributed.

We distinguish two classes of interim rules: first-order and second-order. The former is
the traditional notion from auction theory, while the latter is the notion better suited for
persuasion. A first-order interim rule specifies, for each candidate i and type t of candidate
i, the conditional probability of i winning given that his type is t. A second-order interim
rule specifies more information: for each pair of candidates i, j and type t of candidate j,
it specifies the conditional probability of i winning given that j has type t. First-order
interim rules, when combined with a payment rule, suffice for evaluating the welfare, revenue,
and incentive-compatibility of a single-item auction. For Bayesian persuasion, second-order
interim rules are needed for evaluating the incentive constraints of a persuasion scheme.

Our motivation for studying winner selection at this level of generality stems from the
success of Myerson’s [17] famous and elegant characterization of revenue-optimal single-item
auctions when bidder type distributions are independent. In that special case, Myerson
showed that the optimal single-item auction features a particularly structured winner-selection
rule: each type is associated with a virtual value, and given a profile of reported types, the
rule selects the bidder with the highest (non-negative) virtual value as the winner.

Interestingly, order sampling [20] works in a similar way as Myerson’s auction, in the
special case when the feasible sets are sets of k or fewer candidates, and each candidate
has only one type. Order sampling assigns each candidate a random score variable (a die).
The winners are the candidates with the k highest score variables. In the language of order
sampling, virtual value functions define a single-sided die for each type. Unlike Myerson’s
auction, there is no notion of “revenue” or “incentive constraints” in order sampling. The
task is simply to find dice that will induce a prescribed first-order interim rule.

As a generalization of order sampling and Myerson’s virtual-value approach, a dice-based
winner-selection rule assigns each type a die, and selects the feasible set of winners maximizing
the sum of the dice rolls. We explore the extent to which dice-based rules are applicable beyond
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single-parameter auctions or single-type environments, to winner selection with independent
type distributions under more complex constraints. In particular, we examine whether dice-
based winner-selection rules exist for winner selection subject to matroid constraints and for
Bayesian persuasion.

1.1 Our Results

As mentioned previously, all of our results are restricted to settings in which the candid-
ates’ type distributions are independent. It follows from Myerson’s characterization that
every first-order interim rule corresponding to some optimal auction admits a dice-based
implementation.1 Our main result (in Section 3) is an existential proof showing that every
feasible first-order interim rule with respect to a matroid constraint admits a dice-based
implementation. This illustrates that the structure revealed by Myerson’s characterization
is more general, and applies to other settings in which only first-order interim information
is relevant. For example, single-item auctions with (public or private) budgets are such a
setting (see, e.g., [19]). Our result also provides a generalization of order sampling from the
k-winner setting to the general matroid, multi-type setting.

Beyond the existential proof of dice-based implementations, we show (in Section 4) that
for single-winner environments, an algorithm can construct the dice-based rule efficiently.
When the types are identically distributed, we also constructively show (in the full version)
that every first-order interim rule which is symmetric across candidates admits a symmetric
dice implementation; i.e., different candidates have the same die for the same type. This is
consistent with Myerson’s symmetric characterization of optimal single-item auctions with
i.i.d. bidders, and generalizes it to any other first-order single-winner selection setting in which
candidates are identical. Single-item auctions with identically distributed budgeted bidders
are such a setting, and a symmetric dice-based implementation of the optimal allocation rule
was already known from [19].

For single-winner cases, we also show the converse direction: how to efficiently compute
the first-order interim rule of a given dice-based winner selection rule. In effect, these results
show that collections of dice are a computationally equivalent description of single-winner
first-order interim information. This implies a kind of equivalence between the two dominant
approaches for mechanism design: the Myersonian approach based on virtual values (i.e.,
dice), and the Borderian approach based on optimization over interim rules.

In an attempt to leverage the same kinds of insights for Bayesian persuasion, we examine
(in Sections 5 and 6) the dice implementability of second-order interim rules. When the
candidate type distributions are non-identical, we show an impossibility result. We construct
an instance of Bayesian persuasion with independently distributed non-identical actions,
and show that no optimal persuasion scheme for this instance can be implemented by dice.
Since second-order interim rules are sufficient for evaluating the objective and constraints
of Bayesian persuasion, this implies that there exist second-order interim rules which are
not dice-implementable. This rules out the Myersonian approach for characterizing and
computing optimal schemes for Bayesian persuasion with independent non-identical actions,
complementing the negative result of [8] which rules out the Borderian approach for the
same problem.

1 As we show in the full version, there are interim rules which are not optimal for any auction.
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Our impossibility result disappears when the actions are i.i.d., since second-order interim
rules collapse to first-order interim rules in symmetric settings. In particular, as we show
in Section 6, our results for first-order interim rules, combined with those of [8], imply that
Bayesian persuasion with i.i.d. actions admits an optimal dice-based scheme, which can be
computed efficiently.

1.2 Additional Discussion of Related Work

Myerson [17] was the first to characterize revenue-optimal single-item auctions; this charac-
terization extends to single-parameter mechanism design settings more generally (see, e.g.,
[11]). The (first-order) interim rule of an auction, also known as its reduced form, was first
studied by Maskin and Riley [14] and Matthews [15]. The inequalities characterizing the
space of feasible interim rules were described by Border [3, 4]. Border’s analytically tractable
characterization of feasible interim rules has served as a fruitful framework for mechanism
design, since an optimal auction can be viewed as the solution of a linear program over the
space of interim rules. Moreover, this characterization has enabled the design of efficient
algorithms for recognizing interim rules and optimizing over them, by Cai et al. [5] and Alaei
et al. [2]. This line of work has served as a foundation for much of the recent literature on
Bayesian algorithmic mechanism design in multi-parameter settings.

It is important to contrast our dice-based rule with the characterization of Cai et al. [5].
In particular, the results of Cai et al. [5] imply that every first-order interim rule can be
efficiently implemented as a distribution over virtual value maximizers. In our language, this
implies the existence of an efficiently computable dice-based implementation in which the
dice may be arbitrarily correlated. Our result, in contrast, efficiently computes a family of
independent dice implementing any given first-order interim rule in single-winner settings,
and shows the existence of a dice-based rule in matroid settings. This is consistent with
Myerson’s characterization, in which virtual values are drawn independently.

Alaei et al. [2] also studied winner-selection environments, under the different name
“service based environments.” For single-winner settings, they proposed a mechanism called
stochastic sequential allocation (SSA). The mechanism also implements any feasible first-order
interim rule, by creating a token of winning and transferring the token sequentially from one
candidate to another, with probabilities defined by an efficiently computed transition table.
Dice can be considered as the special case of SSA in which the transition probabilities are
independent of the current owner of the token.

As another motivation for our focus on dice-based rules, order sampling studies how
to sample k winners from n candidates with given inclusion probabilities (i.e., implement
an interim rule), by assigning a random score variable (die) to each candidate. Rosén [20]
showed that parameterized Pareto distributions can be used to implement a given interim
rule asymptotically. Aires et al. [1] proved the existence of an order sampling scheme that
exactly implements any feasible interim rule. Our existential proof is a generalization of the
proof of [1] to settings with multiple types and matroid constraints.

The Bayesian persuasion model is due to Kamenica and Gentzkow [12], and is the most
influential model in the general space of information structure design (see the survey by
Dughmi [7] for references). Bayesian persuasion was examined algorithmically by Dughmi
and Xu [8], who observed its connection to auction theory and interim rules, and examined
the computational complexity of optimal schemes through the lens of optimization over
interim rules.
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Of particular relevance to our work is the negative result of Dughmi and Xu [8] for
Bayesian persuasion with independent non-identical actions: it is #P-hard to compute the
interim rule (first- or second-order) of the optimal scheme, or more simply even the sender’s
optimal utility. Most notable about this result is what it does not rule out: an algorithm
implementing the optimal persuasion scheme “on the fly,” in the sense that it efficiently
samples the optimal scheme’s (randomized) recommendation when given as input the profile
of action types. Stated differently, the negative result of Dughmi and Xu [8] merely rules out
the Borderian approach for this problem, leaving other approaches – such as the Myersonian
one – viable as a means of obtaining an efficient “on the fly” implementation. This would
not be unprecedented: Gopalan et al. [9] exhibit a simple single-parameter auction setting
for which the optimal interim rule is #P hard to compute, yet Myerson’s virtual values can
be sampled efficiently and used to efficiently implement the optimal auction. Our negative
result in Section 6 rules out such good fortune for Bayesian persuasion with independent
non-identical actions: there does not exist a (Myersonian) dice-based implementation of the
optimal persuasion scheme in general.

2 Preliminaries

2.1 Winner Selection
Consider choosing a set of winners from among n candidates. Each candidate i has a type
ti ∈ Ti, drawn independently from a distribution fi. A winner-selection rule A maps each
type profile t = (t1, . . . , tn), possibly randomly, to one of a prescribed family of feasible sets
I ⊆ 2[n]. When i ∈ A(t), we refer to i as a winning candidate, and to ti as his winning type.
Writing f = f1 × · · · × fn for the (independent) joint type distribution, we also refer to (f, I)
as the winner-selection environment. When I is the family of singletons, as in the setting of
the single item auction, we call (f, I) a single-winner environment.

This general setup captures the allocation rules of general auctions with independent unit-
demand buyers, albeit without specifying payment rules or imposing incentive constraints.
Moreover, it captures Bayesian persuasion with independent action payoffs, albeit without
enforcing persuasiveness (also called obedience) constraints.

2.2 Matroids
In this paper, we focus on settings in which the feasible sets I are the independent sets of a
matroid. We use the standard definition of a matroidM as a pair (E, I), where E is the
ground set and I ⊆ 2E is a family of so-called independent sets, satisfying the three matroid
axioms. We also use the standard definitions of a circuit and rank function rM : 2E → N.
The restriction M|S ofM = (E, I) to some S ⊆ E is the matroid (E, I ∩ 2S).2 For details
on matroids, we refer the reader to Oxley [18].

A matroidM = (E, I) is separable if it is a direct sum of two matroidsM1 = (E1, I1)
andM2 = (E2, I2). Namely, E = E1 ] E2, I = {A ∪B | A ∈ I1, B ∈ I2}. Note that ifM
is non-separable, then rM(E) < |E|; otherwiseM is the direct sum of singleton matroids.
We use the following theorem.

I Theorem 1 (Whitney [21]). (1) WhenM = (E, I) is a non-separable matroid, for every
a, b ∈ E, there is a circuit containing both a and b. (2) Any separable matroidM is a direct
sum of two or more non-separable matroids called the components ofM.

2 Note that we deviate slightly from the standard definition in that we do not restrict the ground set.
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In most of the remainder of the paper, we focus on winner selection environments (f, I)
where I is the family of independent sets of a matroidM. We therefore also use (f,M) to
denote the environment.

2.3 Interim Rules and Border’s Theorem
A (first-order) interim rule x specifies the winning probability xi(t) ∈ [0, 1] for all i ∈ [n], t ∈
Ti in an environment (f, I). More precisely, we say that a winner-selection rule A implements
the interim rule x for a prior f if it satisfies the following: if the type profile t = (t1, . . . , tn)
is drawn from the prior distribution f = f1 × · · · × fn, then Pr[i ∈ A(t) | ti = t] = xi(t).
An interim rule is feasible (or implementable) within an environment (f, I) if there is a
winner-selection rule implementing it that always outputs an independent set of I.

2.3.1 Border’s theorem and implications for single-winner environments
The following theorem characterizes the space of feasible interim rules for single-winner
settings.

I Theorem 2 (Border [3, 4]). An interim rule x is feasible for a single-winner setting if and
only if for all possible type subsets S1 ⊆ T1, S2 ⊆ T2, . . . , Sn ⊆ Tn,

n∑
i=1

∑
t∈Si

fi(t)xi(t) ≤ 1−
n∏
i=1

(
1−

∑
t∈Si

fi(t)
)
. (1)

The following result leverages Theorem 2 to show that efficient algorithms exist for
checking the feasibility of an interim rule, and for implementing a feasible interim rule.

I Theorem 3 ([5, 2]). Given explicitly represented priors f1, . . . , fn and an interim rule
x in a single-winner setting, the feasibility of x can be checked in time polynomial in the
number of candidates and types. Moreover, given a feasible interim rule x, an algorithm can
find a winner-selection rule implementing x in time polynomial in the number of candidates
and types.

In our efficient construction for single-winner settings, we utilize a structural result which
shows that checking only a subset of Border’s constraints suffices [3, 16, 5]. This subset of
constraints can be identified efficiently.

I Theorem 4 (Theorem 4 of [5]). An interim rule x is feasible for a single-winner setting
if and only if for all possible α ∈ [0, 1], the sets Si(α) = {t ∈ Ti | xi(t) > α} satisfy the
following Border’s constraint:

n∑
i=1

∑
t∈Si(α)

fi(t)xi(t) ≤ 1−
n∏
i=1

1−
∑

t∈Si(α)

fi(t)

 .

When the candidates’ type distributions are i.i.d., i.e., Ti and fi are the same for all
candidates i, it is typically sufficient to restrict attention to symmetric interim rules. For such
rules, xi(t) is equal for all candidates i. In the i.i.d. setting, we therefore notationally omit
the dependence on the candidate and let T refer to the common type set of all candidates, f
to the candidates’ (common) type distribution, and x(t) to the probability that a particular
candidate wins conditioned on having type t. In the i.i.d. setting, only the symmetric
constraints from Theorem 2 suffice to characterize feasibility [3]; namely,

n ·
∑
t∈S

f(t)x(t) ≤ 1−
(

1−
∑
t∈S

f(t)
)n

, (2)
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for all S ⊆ T . Theorem 4 then implies that it suffices to check Inequality (2) for sets of the
form S(α) = {t ∈ T : x(t) > α} with α ∈ [0, 1].

2.3.2 Border’s Theorem for matroid environments
For general settings with matroid constraints, Alaei et al. [2] established the following
generalized “Border’s Theorem.”

I Theorem 5 (Theorem 7 of [2]). Let ν map each type t to the (unique) candidate i with t ∈ Ti.
An interim rule x is feasible within an environment (f,M) if and only if for all possible type
subsets S1 ⊆ T1, S2 ⊆ T2, . . . , Sn ⊆ Tn,

∑n
i=1
∑
t∈Si

fi(t)xi(t) ≤ Et∼f [rM(ν(t ∩ S))] , where
S =

⋃n
i=1 Si.

In later sections, we omit the function ν, and for any type set S just write rM(S) instead of
rM(ν(S)).

2.4 Winner-Selecting Dice
We study winner-selection rules based on dice, as a generalization of order sampling to
multiple types and general constraints. A dice-based rule fixes, for each type t ∈ Ti, a
distribution Di,t over real numbers, which we call a die. Given as input the type profile
t = (t1, . . . , tn), the rule independently draws a score vi ∼ Di,ti for each candidate i by
“rolling his die;” it then selects the feasible set of candidates maximizing the sum of scores as
the winner set, breaking ties with a predefined rule. In this paper, we will mainly discuss
matroid feasibility constraints, for which a feasible set maximizing the sum of scores can be
found by a simple greedy algorithm: candidates are added to the winner set in decreasing
order of their scores, breaking ties uniformly at random, as long as the new winner set is still
an independent set of the matroid and their scores are positive. When candidates have the
same type sets, we call a dice-based rule symmetric if Di,t is the same for all i.

Myerson’s optimal auction is a dice-based winner-selection rule. In Myerson’s nomen-
clature, vi is candidate i’s virtual value, and Di,t is a single-sided die with the virtual
value.

Let T be the set of all types of all candidates and D = (Dt)t∈T be a vector of dice, one
per type. Given an interim rule x, and a winner-selection environment (f, I), we say that
D implements x, or D describes winner-selecting dice for x in (f, I), if the dice-based rule
given by D implements x within the environment (f, I).

2.5 Second-order Interim Rules
A (first-order) interim rule, as defined in Section 2.3, specifies, for each candidate i, the
conditional type distribution of i in the event that i is chosen as the winner. We define
a second-order interim rule3 which maintains strictly more information, as needed for
describing the incentive constraints of Bayesian persuasion. Such a rule specifies, for each
pair of candidates i and i′ (where i′ may or may not be equal to i), the conditional type
distribution of i′ in the event that i is chosen as the winner. Formally, a second-order interim

3 Our notion of second-order interim rules is different from the notion defined in [6]. Because Cai et
al. [6] consider correlation in types, their notion of second-order interim rules is aimed at capturing
the allocation dependencies arising through such type correlation, rather than solely through the
mechanism’s choice.
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rule X specifies xi,i′,t ∈ [0, 1] for each pair of candidates i, i′ ∈ [n], and type t ∈ Ti′ . We
say that a winner-selection rule A implements X for a prior f if it satisfies the following: if
the type profile t = (t1, . . . , tn) is drawn from the prior distribution f = f1 × · · · × fn, then
Pr[i ∈ A(t) | ti′ = t] = xi,i′,t. A second-order interim rule is feasible if there is a winner
selection rule implementing it.

3 Existence of Dice Implementation for Matroids

In this section, we outline the proof of our first theorem:

I Theorem 6. Let (f,M) be a matroid winner selection-environment with a total of m types,
and let x be an interim rule that is feasible within (f,M). There exist winner-selecting dice
D, each of which has at most m+ 1 faces, which implement x.

The proof consists of two parts. First, we generalize the result of [1], which showed the
existence of continuous winner-selecting dice for feasible interim rules for a k-uniform matroid
with fixed types, to general matroids and multiple types. Second, we convert the continuous
dice to dice with at most m+ 1 faces each, while keeping the interim probabilities unchanged.

3.1 Continuous Winner-Selecting Dice
I Theorem 7. LetM be a matroid, and x a feasible interim rule within the winner-selection
environment (f,M). There exist winner-selecting dice D over R that implement x in (f,M).

We assume without loss of generality that the candidates’ type sets are disjoint, and use
T =

⊎n
i=1 Ti to denote the set of all types. We use f(t) and x(t) as shorthand for fi(t) and

xi(t), where i = ν(t) is the candidate for whom t ∈ Ti. Moreover, given a set of types S ⊆ T ,
we write Si = S ∩ Ti. Recall the Border constraints

n∑
i=1

∑
t∈Si

fi(t)xi(t) ≤ R(S), (3)

where R(S) = Et∼f [rM(t ∩ S)] is the expected rank of types in S which show up, a
submodular function over the type set T . The Border constraints can therefore be interpreted
as follows: An interim rule x : T → [0, 1] is feasible for f andM if and only if x̃ is in the
polymatroid given by R(S), where x̃(t) := f(t)x(t). Equivalently, x is feasible if and only if
the submodular slack function σ(S) = R(S)−

∑
t∈S f(t)x(t) is non-negative everywhere.

When x is feasible, we call a set S ⊆ T tight for (f,x,M) if the Border constraint (3)
corresponding to S is tight at x, i.e.,

∑n
i=1
∑
t∈Si

f(t)x(t) = R(S). By definition, S = ∅ is
always tight. The family of tight sets, being the family of minimizers of the submodular
slack function, forms a lattice: the intersection and the union of two tight sets is a tight set.
I Remark. The tightness of a set S means that the expected number of winners from S

equals the expected rank of types in S which show up. In other words, S is tight if and only
if a maximum independent subset of t ∩ S is always selected as winners.

By the preceding remark, the types in minimal non-empty tight sets need to be treated
preferentially, i.e., assigned higher faces on their dice, compared to types outside them.
Because they play such an important role, we define them as barrier sets. Formally, we define
the set of active types T+ = {t ∈ T : f(t)x(t) > 0} to be the types who win with positive
probability. Barrier sets are subsets of T+. If there is at least one non-empty tight set of
active types, we define the barrier sets as the (inclusion-wise) minimal such sets. Otherwise,
we designate the entire set T+ of active types as the unique barrier set.
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To prove Theorem 7, we first assume that the matroidM is non-separable. Separable
matroids will be handled in the proof of Theorem 7 by combining the dice of their non-
separable components. Because barrier sets get precedence, we first show how to construct
dice for barrier sets with Lemma 8. Once we have dice for barrier sets, we can repeatedly
“peel off” the tight sets and combine their dice, which is captured in Lemma 9. We start with
the existence of dice for barrier sets:

I Lemma 8. LetM be a non-separable matroid, and x > 0 a feasible interim rule within
the winner-selection environment (f,M). Let S be a barrier set for (f,x,M), and define
xS to be (x(t))t∈S. There exists a vector of distributions D = (Dt)t∈S over R, such that D
implements xS in (f,M|S).

The proof is quite technically involved, and due to space constraints, it is entirely deferred
to the full version. The high-level idea is to base the dice upon any full-support continuous
distribution for the dice. This distribution is scaled by different parameters θi for different
types i, and shifted by a constant τ . Matching the prescribed interim winning probabilities
x(i) imposes a system of non-linear equations on the θi. We establish that the winning
probabilities of different types satisfy certain key monotonicity properties in the parameters
θi; these monotonicity properties are proved using the fact that the feasible sets form a
matroid. Then, we apply the Intermediate Value Theorem inductively for all types i to
non-constructively prove the existence of the desired θi.

To generalize Lemma 8 to arbitrary sets of types, we will need a construction that allows
us to “scale” the faces of some dice such that they will always be above/below the faces of
another set of newly introduced dice; such a construction will allow us to give dice for types
in barrier sets higher faces than other dice. For the types of full-support distributions over
[0,∞) we have been using so far, this would be impossible. There is a simple mapping that
guarantees our desired properties: we map faces from (0,∞) to the set (1, 2) by mapping all
positive s 7→ 2− 1

1+s , and mapping all negative s to −1. Notice that the new dice implement
the same interim rule as the old ones: in matroid environments, the set maximizing the sum
of die rolls is determined by the greedy algorithm, and hence, only the relative order between
die faces matters. With the help of this mapping, we prove the following lemma, similar to
Lemma 8. The proof is again only given in the full version.

I Lemma 9. Let x > 0 be a feasible interim rule within a winner-selection environment
(f,M), whereM is a non-separable matroid. Fix a tight set S, and let Ŝ be a minimal tight
set that includes S as a proper subset, if such a set exists; otherwise let Ŝ = T . Given dice
D = (Dt)t∈S that implement xS in (f,M|S), there are dice D′ = (D′t)t∈Ŝ which implement
x
Ŝ
in (f,M|Ŝ).

Proof of Theorem 7. First consider the case whenM is non-separable. Let T be the type
set with m types. We define the dice system as follows: First, for all types t with x(t) = 1,
assign them a point distribution (single-sided die) at 2, so they always win. Next, for all
types t with x(t) = 0, assign them a point distribution at −1, so they never win. Next, we
create dice for barrier sets S according to Lemma 8. Then, starting from the barrier sets,
we repeatedly apply Lemma 9 to construct dice for larger tight sets Ŝ ) S (or all of T )
implementing x

Ŝ
.

If M is separable, let M1, . . . ,Mk be the components of M. Using the construction
from the previous paragraph for eachMj , let Dj be the dice set constructed forMj . Since
there is no circuit containing two candidates from different components, the winner set of
one component has no effect on the winner set of any other component. Thus, the union⋃k
j=1Dj of dice implements the desired interim rule. J
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3.2 Winner-Selecting Dice with polynomially many faces
The proof is based on the following generalization of the fundamental theorem of linear
programming to uncountable dimensions.

I Theorem 10 (Theorem B.11 from [13]). Let f1, . . . , fm : X→ R be Borel measurable on a
measurable space X, and let µ be a probability measure on X such that fi is integrable with
respect to µ for each i = 1, . . . ,m. Then, there exists a probability measure ϕ on X with finite
support, such that

∫
X fidϕ =

∫
X fidµ for all i. Moreover, there is such a ϕ whose support

consists of at most m+ 1 points.

Proof of Theorem 6. Theorem 7 establishes that there is a vector of probability measures
D = (Dt)t∈T over V = (1, 2) ∪ {−1}, satisfying the following for all i and ti ∈ Ti:∫

V

∑
t∈T−i

∏
j 6=i

f(tj)
∫
· · ·
∫
V n−1

wti(s1, . . . , sn)dDt1(s1) · · · dDtn(sn)dDti(si) = x(ti). (4)

where wti(s1, . . . , sn) equals 1 if type ti is a winning type with dice rolls s1, . . . , sn, and
equals 0 otherwise.

For a fixed type t∗ ∈ Ti and an equation corresponding to (j, t′j), we can change the order
of integration to make dDt∗ the outermost integral, and isolate the terms that do not involve
dDt∗ . Specifically, we define

qj,t′
j
(si) =

∑
t∈T

tj=t′j ,ti=t∗

∏
k 6=j

f(tk)
∫
· · ·
∫
V n−1

wtj (s1, . . . , sn)dDt1(s1) · · · dDtn(sn)

to be the inner integral over distributions of t 6= t∗, as a function of si, and

cj,t′
j

=


0, for t′j = t∗∫
V

∑
t∈T−j ,ti 6=t∗

∏
k 6=j

f(tk)
∫
· · ·
∫
V n−1

wtj (s1, . . . , sn)

dDt1(s1) · · · dDtn(sn)dDtj (sj), for t′j 6= t∗

as the component of the integral that does not have dDt∗ involved. Thus, Equation (4) can
be rewritten as

∫
V
qj,t′

j
(si)dDt∗(si) + cj,t′

j
= x(t′j). By Theorem 10, Dt∗ can be changed to a

measure D′t∗ with support of size m+1, such that for all j and tj ∈ Tj ,
∫
V
qj,tj (si)dDt∗(si) =∫

V
qj,tj (si)dD′t∗(si). In other words, we can replace Dt∗ with D′t∗ , which has at most m+ 1

faces. Applying the same procedure to each type t∗ in turn, all dice can be replaced by dice
with at most m+ 1 faces. J

4 Efficient Construction of Dice for Single-Winner Environments

In the preceding section, we proved the existence of winner-selecting dice by a “construction.”
However, the construction involves repeated appeals to the Intermediate Value Theorem, and
is thus inherently non-computational. It is certainly not clear how to implement it efficiently.
In this section, we show that when the matroidM is 1-uniform, i.e., at most one winner can
be selected, winner-selecting dice can be computed efficiently. We prove the following.

I Theorem 11. Consider a winner-selection environment with n candidates, where each
candidate i’s type is drawn independently from a prior fi supported on Ti, and at most one
winner can be selected. If x is a feasible interim rule for f = f1 × · · · × fn, an explicit
representation of the associated dice can be computed in time polynomial in n and m =

∑
i |Ti|.
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ALGORITHM 1: Find Barrier Set(f, x).
1 T + ← {t ∈ T : f(t)x(t) > 0}.
2 Define g(S) = f(S)−

∑
t∈S

f(t)x(t) for S ⊆ T +.
3 if min

{
g(S) : ∅ ( S ⊆ T +} 6= 0 then

4 return T +.
5 else
6 T ∗ ← T +.
7 while there is a type t ∈ T ∗ such that min {g(S) : ∅ ( S ⊆ T ∗ \ {t}} = 0 do T ∗ ← T ∗ \ {t}.
8 return T ∗.

We use the same notation f(t) and x(t) as in Section 3. In the single-winner setting, the
function R(S) = Et∼f [rM(t ∩ S)] can be treated as a natural extension of f to subsets of
T : given S ⊆ T , we let R(S) = f(S) = 1−

∏n
i=1(1−

∑
t∈Si

f(t)), which is the probability
that at least one type in S shows up. Border’s constraints can then be written as follows:∑
t∈S f(t)x(t) ≤ f(S) for all S ⊆ T. The slack function becomes σf,x(S) = f(S) −∑
t∈S f(t)x(t) and is nonnegative everywhere when x is feasible.
Tight sets and barrier sets are defined as the special case of the definition for general

matroids in Section 3. The algorithm Find Barrier Set, given as Algorithm 1, simply
implements the definition of barrier sets as minimal non-empty tight sets, and therefore
correctly computes a barrier set.

The following lemma characterizes the key useful structure of barrier sets for the single-
winner setting.

I Lemma 12. Let f and x be such that x is feasible for f . If there are multiple barrier
sets for (f,x), then there is a candidate i∗ such that each barrier set is a singleton {t} with
t ∈ Ti∗ .

Proof. Let A,B be any two barrier sets. Because A and B are both tight, the lattice property
of tight sets implies that A ∩B = ∅.

We first show that there is a candidate i∗ with A ⊆ Ti∗ and B ⊆ Ti∗ . Suppose not
for contradiction; then, there exist i 6= j and types ti ∈ A ∩ Ti and tj ∈ B ∩ Tj . With
non-zero probability, the types ti and tj show up at the same time. However, according to
the definition of a tight set, when a type in A shows up, the winner must be a candidate
with type in A, and the same must hold for B. Then, the winner’s type would have to be in
A ∩B with non-zero probability. This contradicts the disjointness of A and B.

It remains to show that all barrier sets are singletons. Since A is tight and all types in A
belong to the same candidate,

∑
t∈A f(t)x(t) = f(A) =

∑
t∈A f(t). Hence, x(t) = 1 for all

t ∈ A, and because barrier sets are minimally tight, A must be a singleton. J

4.1 Description of the Algorithm
Given a prior f and a feasible interim rule x, the recursive procedure Contruct Dice,
shown in Algorithm 2, returns a family of dice D implementing x for f . It operates as follows.
There are two simple base cases: when no candidate ever wins, and when a single type of a
single candidate always wins. In the recursive case, the algorithm carefully selects a type t∗
and awards its die the highest-valued face M ′. It assigns this new face a probability as large
as possible, subject to still permitting implementation of x. We choose t∗ as a member of
a barrier set; this is important in order to guarantee that the algorithm makes significant
progress.
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ALGORITHM 2: Contruct Dice (f, x).
Input :PDFs f1, . . . , fn supported on disjoint type sets T1, . . . , Tn.
Input : Interim rule x feasible for f .
Output :Vector of dice (Dt)t∈

⊎n

i=1
Ti
.

1 Let T =
⊎

i
Ti.

2 Let T +
i = {t ∈ Ti : fi(t)xi(t) > 0}, and let T + =

⊎n

i=1 T +
i .

3 if T + = ∅ then
4 for all types t ∈ T , let Dt be a single-sided die with a −1 face.
5 else if there is a type t∗ ∈ T + with f(t∗)x(t∗) = 1 then
6 Let Dt∗ be a single-sided die with a +1 face.
7 for all other types t ∈ T \ {t∗}, let Dt be a single-sided die with a −1 face.
8 else
9 Let T ∗ = Find Barrier Set(f, x).

10 Let t∗ ∈ T ∗ be a type chosen arbitrarily.
11 Let (f ′, x′) = Decrement(f, x, t∗, q∗), for the largest value of q∗ ∈ [0, f(t∗)x(t∗)] such that

x′ is feasible for f ′. /* Note that f(t∗)x(t∗) < 1. */
12 Let (D′t)t∈T ← Contruct Dice(f ′, x′).
13 Let M be the maximum possible face of any die D′t, and M ′ := max(M, 0) + 1.
14 Let Dt = D′t for all types t 6= t∗.
15 Let Dt∗ be the die which rolls M ′ with probability q∗

f(t∗) , and D′t∗ with probability 1− q∗

f(t∗) .
16 return (Dt)t∈T .

ALGORITHM 3: Decrement(f, x, t∗, q).
/* q ≥ 0 is the probability allocated to the highest face. Because it is a
contribution to the unconditional winning probability f(t∗)x(t∗) of type t∗, and
we separated out the case that a single type has unconditional winning
probability 1, q satisfies q ≤ f(t∗)x(t∗) < 1. */

1 if q = f(t∗), then let f ′(t∗)← 0 and x′(t∗)← 0
2 else let f ′(t∗)← f(t∗)−q

1−q
and x′(t∗)← f(t∗)x(t∗)−q

f(t∗)−q
.

3 Let i∗ be such that t∗ ∈ Ti∗ .
4 for all t ∈ Ti∗ , t 6= t∗, let f ′(t)← f(t)

1−q
and x′(t)← x(t).

5 for all t ∈ T \ Ti∗ , let f ′(t)← f(t) and x′(t)← x(t)
1−q

.
6 return (f ′, x′).

The subroutine Decrement, shown as Algorithm 3, essentially conditions both f and
x on the face M ′ not winning. Specifically, Decrement computes the conditional type
distribution f ′, and an interim rule x′, such that if there were a dice implementation of x′

for f ′, then adding M ′ to the die of t∗ would yield a set of dice implementing x for f .
We now provide a formal analysis of our algorithm. Theorem 11 follows from Lemmas 13–

15.

I Lemma 13. If Contruct Dice terminates, it outputs dice implementing x for f .

I Lemma 14. Contruct Dice terminates after at most m2 recursive calls. (Recall that
m =

∑
i |Ti|.)

I Lemma 15. Excluding the recursive call, each invocation of Contruct Dice can be
implemented in time polynomial in n and m.
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4.2 Proof of Lemma 13 (Correctness)
We prove the lemma by induction over the algorithm’s calls. Correctness is obvious for the
two base cases: when T+ = ∅ (no type should win), and when there exists a type t∗ with
f(t∗)x(t∗) = 1 (t∗ always shows up and should always win). For the inductive step, suppose
that the recursive call in step 12 returns dice D′ = (D′t)t∈T , correctly implementing x′ for
f ′, and let D = (Dt)t∈T be the new dice defined in steps 14 and 15.

We analyze the interim winning probability of each type when using the dice-based winner
selection rule given by D. For each type t, let vt ∼ Dt be a roll of the die for type t, and
for each i, let ti ∼ fi be a draw of a type; all vt and ti are mutually independent. In other
words, we may assume that the die of every type is rolled (including types that do not show
up), then the type profile is drawn independently. The winning type is then the type ti with
largest positive vti ; if all vti are negative, then no type wins.

Let t∗ ∈ Ti∗ be as defined in step 10. Let E be the event that i∗ has type t∗ and
that vt∗ = M ′, and let E be its complement. By independence of the random choices, the
probability of E is f(t∗) · q∗

f(t∗) = q∗. Type t∗ always wins under the event E . Conditioned on
E , each vt (including vt∗) is distributed as a draw from D′t, the type vector t is distributed
as a draw from f ′1 × · · · × f ′n, and the vt’s and t are mutually independent. By the inductive
hypothesis, conditioned on E , each type t wins with probability f ′(t)x′(t). Using the
definition of f ′ and x′ from the Decrement subroutine, the total winning probability for t∗
is q∗ ·1+(1− q∗) ·f ′(t∗)x′(t∗) = q∗+(1− q∗) · f(t∗)x(t∗)−q∗

1−q∗ = f(t∗)x(t∗). For t 6= t∗, the total
winning probability is q∗ · 0 + (1 − q∗)f ′(t)x′(t) = (1 − q∗) · f(t)x(t)

1−q∗ = f(t)x(t). Therefore,
the interim winning probability for each type t is x(t), and the dice D implement x for f .

4.3 Proof of Lemma 14 (Number of Recursive Calls)
The following lemma is essential in that it shows that invoking Decrement maintains
feasibility and tightness of sets.

I Lemma 16. Let f , x, t∗ and q be valid inputs for Decrement, and f ′, x′ the output of
the call to Decrement(f,x, t∗, q). Let S be any set of types with t∗ ∈ S. Then,
1. The Border constraint for S is satisfied for (f ′,x′) if and only if it is satisfied for (f,x).
2. The Border constraint for S is tight for (f ′,x′) if and only if it is tight for (f,x).

Proof. We will show that the slack for every S 3 t∗ satisfies σf ′,x′(S) = σf,x(S)
1−q , which

implies both claims. Let i∗ be such that t∗ ∈ Ti∗ . Using the definitions of f ′ and x′,

σf ′,x′(S) = f ′(S)−
∑
t∈S

f ′(t)x′(t)

= 1−
(

1− f(Si∗)− q
1− q

)
·
∏
i 6=i∗

(1− f(Si))−
(
∑
t∈S f(t)x(t))− q

1− q

= 1
1− q ·

1− (1− f(Si∗)) ·
∏
i6=i∗

(1− f(Si))−
∑
t∈S

f(t)x(t)

 = σf,x(S)
1− q . J

We are now ready to prove Lemma 14. We will show that with each recursive invocation
of Contruct Dice (step 12), at least one of the following happens: (1) The number of
active types |T+| decreases; (2) The size of the barrier set |T ∗| decreases.

Notice that the number of active types or the size of a barrier set never increase. Because
the size of the barrier set can only decrease at most m times, the number of active types
must decrease at least every m recursive invocations. It, too, can decrease at most m times,
implying the claim of the lemma.
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Let T ∗, t∗, and (q∗, f ′,x′) be as chosen in steps 9, 10, and 11, respectively. Let candidate
i∗ be such that t∗ ∈ Ti∗ . If q∗ = f(t∗)x(t∗), then the type t∗ will be inactive in (f ′,x′),
and there will be one fewer active type in the subsequent invocation of Contruct Dice
(step 12). We distinguish the cases |T ∗| = 1 and |T ∗| > 1.

If |T ∗| = 1, then T ∗ = {t∗}. By definition of a barrier set, T ∗ is tight, implying (for
a singleton set) that x(t∗) = 1. We claim that q∗ is set to f(t∗) = f(t∗)x(t∗) in step 11,
implying that the number of active types decreases. To prove that q∗ = f(t∗), we will show
that this choice of q∗ is feasible in the invocation of Decrement(f,x, t∗, f(t∗)). Consider
the f̂ , x̂ resulting from such an invocation of Decrement. Lemma 16 implies that the
feasibility of each Border constraint corresponding to a set S 3 t∗ is preserved for (f̂ , x̂). For
type sets S excluding t∗,

σ
f̂ ,x̂

(S) =f̂(S)−
∑
t∈S

f̂(t)x̂(t) = 1−
(

1− f(Si∗)
1− f(t∗)

)
·
∏
i 6=i∗

(1− f(Si))−
∑
t∈S f(t)x(t)
1− f(t∗)

= 1
1− f(t∗) ·

(
1− (1− f(Si∗) + f(t∗)) ·

∏
i 6=i∗

(1− f(Si))

−

(∑
t∈S

f(t)x(t) + f(t∗)x(t∗)
))

= σf,x(S ∪ {t∗})
1− f(t∗) ,

which is nonnegative because x is feasible for f . Therefore, step 11 indeed chooses q∗ = f(t∗).
Next, we consider the case |T ∗| > 1, and assume that q∗ < f(t∗)x(t∗) (since otherwise,

we are done). Then, the set of active types T+ is the same for both (f,x) and (f ′,x′).
If the instance (f ′,x′) for the recursive call has multiple barrier sets, then by Lemma 12,

they are all singletons, and indeed the size of the barrier set in the next recursive call (which
is 1) is strictly smaller than |T ∗|. So we assume that (f ′,x′) has a unique barrier set T ′.

Because |T ∗| > 1, Lemma 12 implies that T ∗ is the unique barrier set for (f,x). Therefore,
by the definition of barrier sets, T ∗ (and hence also t∗) is contained in every tight set of
active types for (f,x) (if any). Because t∗ is contained in all tight sets, Lemma 16 implies
that for every q ∈ [0, f(t∗)x(t∗)], the result of Decrement(f,x, t∗, q) does not violate any
constraints which are already tight for (f,x), and in fact preserves their tightness.

Because all other constraints have slack, the optimal q∗ is strictly positive. By assumption,
we also have that q∗ < f(t∗)x(t∗); therefore, a non-empty set S′ which was not tight for
(f,x) must have become tight for (f ′,x′) = Decrement(f,x, t∗, q∗). By Lemma 16, this
set S′ does not include t∗. Because discarding inactive types preserves tightness, we may
assume without loss of generality that S′ ⊆ T+.

We have shown the existence of a non-empty tight set S′ ⊆ T+ \ {t∗} for (f ′,x′). By
definition, the barrier set T ′ is the (unique, in our case) minimal tight set for (f ′,x′), so
T ′ ⊆ S′. We distinguish two cases, based on the possible definitions of barrier sets:

If T ∗ = T+, then because S′ ( T+ = T ∗, the barrier set T ′ is strictly smaller than T ∗.
If T ∗ is tight for (f,x), then it is also tight for (f ′,x′) by Lemma 16; since both S′ and
T ∗ are tight for (f ′,x′), we get that T ′ ⊆ T ∗ ∩ S′ ⊆ T ∗ \ {t∗} is strictly smaller than T ∗.
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4.4 Proof of Lemma 15 (Runtime per Call)

There are only two steps for which polynomial runtime is not immediate: the computation of q∗
in step (11) of Contruct Dice, and finding a non-empty minimizer of a submodular function
in steps (3) and (7) of Find Barrier Set. We prove polynomial-time implementability of
both steps in the following lemmas.

I Lemma 17. In step 11 of Contruct Dice, q∗ can be computed in poly(m) time.

Proof. Let f , x, and t∗ be as in step 11, and let the candidate i∗ be such that t∗ ∈ Ti∗ .
For each q ∈ [0, f(t∗)x(t∗)] ⊆ [0, 1), let (fq,xq) = Decrement(f,x, t∗, q) be the result
of running Decrement(f,x, t∗, q) with parameter q. Lemma 16 implies that all Border
constraints for S 3 t∗ remain feasible for (fq,xq). For type sets S 63 t∗, we can write the
slack in the corresponding Border constraint as a function of q as follows:

σfq,xq
(S) = fq(S)−

∑
t∈S

fq(t)xq(t)

= 1−
(

1− f(Si∗)
1− q

)
·
∏
i 6=i∗

(1− f(Si))−
∑
t∈S f(t)x(t)

1− q

= 1
1− q ·

1− (1− f(Si∗)− q) ·
∏
i 6=i∗

(1− f(Si))−
∑
t∈S

f(t)x(t)− q


= 1

1− q (σf,x(S)− qf(S \ Si∗)) .

The preceding expression is nonnegative if and only if q ≤ h(S) := σf,x(S)
f(S\Si∗ ) . Therefore, q

∗ is
the minimum of f(t∗)x(t∗) and minS⊆T\{t∗} h(S). The function h(S) does not appear to be
submodular, and hence efficient minimization is not immediate. We utilize Theorem 4 to
reduce the search space and compute q∗ efficiently.

For an interim rule x : T → [0, 1], we call S ⊆ T a level set of x if there exists an α ∈ [0, 1]
such that S = {t ∈ T : x(t) > α}. If q∗ = minS 63t∗ h(S), then at least one Border constraint
just becomes tight at q = q∗. Theorem 4 implies that at least one level set of xq∗ corresponds
to one of these newly tightened constraints, and h is minimized by such a level set. It follows
that, in order to compute q∗, it suffices to minimize h over all those sets S 63 t∗ which could
possibly arise as level sets of some xq for q ∈ [0, f(t∗)x(t∗)].

Let t1, . . . , tK be the types in Ti∗ \ {t∗}, ordered by non-increasing x(t); similarly, let
t′1, . . . , t

′
L be the types in T \ Ti∗ , ordered by non-increasing x(t). The relative order of

types in Ti∗ \ {t∗} is the same under xq(t) as under x(t), because xq(t) = x(t); similarly, the
relative order of types in T \ Ti∗ is the same under xq(t) as under x(t), because xq(t) = x(t)

1−q .
Therefore, the family {{t1, . . . , tk, t′1, . . . , t′`} : k ≤ K, ` ≤ L} includes all level sets of every xq
excluding t∗. There are at most m2 type sets in this family, and those sets can be enumerated
efficiently to minimize h. J

I Lemma 18. There is an algorithm for computing a non-empty minimizer of a submodular
function in the value oracle model, with runtime polynomial in the size of the ground set.

Proof. For a submodular function g : 2T → R, let gt(S) = g(S ∪ {t}), for t ∈ T . gt is also
submodular, and can be minimized in time polynomial in |T | [10]. Let St be a minimizer of
gt and t∗ ∈ arg mint∈T gt(St). St∗ ∪ {t∗} is a non-empty minimizer of g. J
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5 From Winner-Selecting Dice to Interim Rules for Single-Winner
Settings

Having shown how to compute winner-selecting dice implementing a given interim rule, we
next show the easier converse direction: how to compute the interim rule given winner-
selecting dice {Di,t} in single-winner environments. As before, we denote the type set of
candidate i by Ti, and assume without loss of generality that the type sets of different
candidates are disjoint. For simplicity of exposition, we assume that each die has a given
finite support4, and we write Ui :=

⋃
t∈Ti

supp(Di,t) for the combined support of candidate
i’s dice. We also assume that we can evaluate the probability Pr[Di,t = u] of the face labeled
with u, for all candidates i, types t, and faces u ∈ Ui.

I Theorem 19. Consider a single-winner selection environment with n candidates and
independent priors f1, . . . , fn, where fi is supported on Ti. Given dice {Di,t | i ∈ [n], t ∈ Ti}
represented explicitly, the interim rule of the corresponding dice-based winner selection rule
can be computed in time polynomial in n, m =

∑
i |Ti|, and the total support size |

⋃
i Ui| of

all the dice.

Proof. First, we can compute the probability mass function of each candidate i’s (random)
score vi. Given u ∈ Ui, we have Pr[vi = u] =

∑
t∈Ti

fi(t) ·Pr[Di,t = u].
From this probability mass function, we easily compute Pr[vi ≤ u] for each u ∈ Ui

by the appropriate summation. When all dice faces are distinct, this is all we need; since
Pr[vi′ < u] = Pr[vi′ ≤ u] for i′ 6= i and u ∈ Ui, the interim rule is given by the following
simple equation:

xi(t) =
∑

u∈supp(Di,t)

Pr[Di,t = u] ·
∏
i′ 6=i

Pr[vi′ ≤ u].

When the dice’s faces are not distinct, recall that we break ties uniformly at random.
To account for the contribution of this tie-breaking rule, we need the distribution of the
number of other candidates that tie candidate i’s score of u; this is a Poisson Binomial
distribution. More, precisely, we need the Poisson Binomial distribution with the n − 1
parameters

(
Pr[vi′=u]
Pr[vi′≤u]

)
i′ 6=i

; we denote its probability mass function by Bi,u. It is well known,
and easy to verify, that a simple dynamic program computes the probability mass function of
a Poisson Binomial distribution in time polynomial in its number of parameters. Therefore,
we can compute Bi,u(k) for each i ∈ [n], u ∈ Ui and k ∈ {1, . . . , n− 1}. The interim rule is
then given by the following equation:

xi(t) =
∑

u∈supp(Di,t)

Pr[Di,t = u] ·

∏
i′ 6=i

Pr[vi′ ≤ u]

 · n−1∑
k=0

Bi,u(k)
k + 1 .

It is easy to verify that all the above computations satisfy the claimed runtime. J

4 Our approach extends easily to the case of continuously supported dice, so long as we can perform
integration with respect to the distributions of the various dice.
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6 Winner-Selecting Dice and Persuasion

In this section, we investigate the existence of winner-selecting dice for instances of Bayesian
persuasion. Our main result (Theorem 20) is to exhibit an instance with independent
non-identical actions for which there is no optimal signaling scheme that can be implemented
using winner-selecting dice. This result is contrasted with Theorem 21, which shows that
when the actions’ types are not just independent, but identically distributed as well, a
dice-based implementation always does exist.

I Theorem 20. There is an instance of Bayesian persuasion (given in Table 1) with
independent actions which does not admit a dice-based implementation of any optimal
signaling scheme. Consequently, there exists a second-order interim rule which does not
admit a dice-based implementation.

I Theorem 21. Every Bayesian persuasion instance with i.i.d. actions admits an optimal
dice-based signaling scheme. Moreover, when the prior type distribution is given explicitly, the
corresponding dice can be computed in time polynomial in the number of actions and types.

The negative result of Theorem 20 has interesting implications. Since second-order interim
rules summarize all the attributes of a winner selection rule relevant to persuasion, second-
order interim rules, unlike their first-order brethren, can in general not be implemented by
dice. Most importantly, this result draws a sharp contrast between persuasion and single-
item auctions, despite their superficial similarity: it rules out a Myerson-like virtual-value
characterization of optimal persuasion schemes, and it joins the #P-hardness result of [8] as
evidence of the intractability of optimal persuasion.

6.1 Basics of Bayesian Persuasion
In Bayesian persuasion, the n candidates are actions which a receiver can take. Each
action i has a type ti, drawn independently5 from the set Ti, according to a commonly
known distribution fi. Each type ti has associated payoffs s(i, ti) and r(i, ti) for the sender
and receiver, respectively. The sender (or principal) also has access to the actual draws
t = (t1, . . . , tn) of the types, and would like to use this leverage to persuade the receiver to
take an action favorable to him6.

Thereto, the sender can commit to a (typically randomized) policy A– called a signaling
scheme – of revealing some of this information to the receiver. It was shown by Kamenica
and Gentzkow [12] that the sender can restrict attention, without loss, to direct schemes:
randomized functions A mapping type profiles to recommended actions. Naturally, the
function must be persuasive: if action i is recommended, the receiver’s posterior expected
utility from action i must be no less than her posterior expected utility from any other action
i′. In this sense, direct schemes can be viewed as winner selection rules in which the actions
are the candidates, and persuasiveness constraints must be obeyed.

6.2 Proof of Theorems
Proof of Theorem 20. The persuasion instance, shown in Table 1, features three actions
{A,B,C}, each of which has two types {1, 2}. The types of the different actions are
distributed independently. In the instance, the sender’s utility from any particular action is
a constant, independent of the action’s type.

5 The draws are independent in this paper. In more general Bayesian persuasion models, they can be
correlated.

6 To avoid ambiguities, we always use male pronouns for the sender and female ones for the receiver.
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Table 1 A Persuasion instance with no dice-based implementation. The notation p × (s, r)
denotes that the type (s, r) (in which the sender and receiver payoffs are s and r, respectively) has
probability p.

action
type 1 2

A 0.5× (100, 2) 0.5× (100,−∞)
B 0.99× (1, 3) 0.01× (1,−∞)
C 0.5× (0, 0) 0.5× (0, 6)

One (optimal, as we will show implicitly) signaling scheme is the following. (In writing a
type vector, here and below, we use ∗ to denote that the type of an action is irrelevant.)

If the type vector is (1, ∗, 1), then recommend action A.
If the type vector is (1, ∗, 2), then recommend each of A,C with equal probability 1

2 .
If the type vector is (2, 1, ∗), then recommend action B.
If the type vector is (2, 2, ∗), then recommend action C.

While this is not the unique optimal scheme, we next prove that none of the optimal
persuasion schemes admit a dice-based implementation.

The given signaling scheme recommends action A with probability 3/8 overall, action B
with probability 99

200 overall, and action C with the remaining probability. No persuasive
signaling scheme can recommend A with probability strictly more than 3/8, because condi-
tioned on receiving the recommendation A, action C must be at least twice as likely to be of
type 1 as of type 2, in addition to action A being of type 1 with probability 1. Similarly, no
persuasive scheme can recommend B with probability strictly more than 99

200 , because action
C must be at least as likely to be of type 1 as of type 2 when C is recommended, in addition
to action B being of type 1 with probability 1. Hence, any optimal signaling scheme must
recommend A with probability 3/8 and B with probability 99

200 , and the given scheme is in
fact optimal.

Suppose for a contradiction that there exist dice (Di,j)i∈{A,B,C},j∈{1,2} implementing an
optimal signaling scheme. We gradually derive properties of these optimal signaling schemes,
eventually leading to a contradiction.

1. Since action A can never be recommended when it has type 2 (the receiver would never
follow the recommendation), it must be recommended with probability 3

4 conditioned on
having type 1.

2. In particular, whenever the type profile is (1, ∗, 1), action A must be recommended,
regardless of the type of action B. This is because action C must be at least twice as
likely of type 1 as of type 2 for a recommendation of A to be persuasive.

3. Therefore, all faces on DA,1 must be larger than all faces on DB,1 and on DB,2.
4. Because of this, action B can never be recommended when the type profile is (1, ∗, 2).
5. Thus, when the type profile is (1, ∗, 2), the signaling scheme has to recommend each

of A and C with probability 1
2 . (The recommendation could of course follow different

distributions based on the type of B; such a correlation is immaterial for our argument.)
6. Given that action B cannot be recommended when action A has type 1, or when action

B has type 2, it must always be recommended for type vectors (2, 1, ∗).
7. This implies that all faces of DB,1 must be larger than all faces on DC,1 and on DC,2.
8. This is a contradiction to Step 5, which states that with positive probability, DC,2 beats

DB,1.



S. Dughmi, D. Kempe, and R. Qiang 31:19

Thus, we have proved that there is no dice-based implementation of any optimal signaling
scheme for the given instance. J

Proof of Theorem 21. When the actions’ (or more generally: candidates’) type distributions
are i.i.d., i.e., Ti and fi are the same for all candidates i, Dughmi and Xu [8] have shown that
there is an optimal symmetric signaling scheme, or more generally a symmetric second-order
interim rule X. We show that any symmetric second-order interim rule X is uniquely
determined by its first-order component, a fact implicit in [8].

For symmetric rules, xi,i′,t depends only on whether i = i′ or i 6= i′, but not on the
identities of the candidates i and i′. Therefore, X can be equivalently described by two
type-indexed vectors y and z, where yt = xi,i,t for all candidates i, and zt = xi,i′,t for all
candidates i and i′ with i 6= i′. The vector y is a first-order interim rule, and we refer
to it as the first-order component of X. If X is feasible and implemented by A, then
yt = xi,i,t = Pr[A(t) = i | ti = t] for all candidates i, so y is the first-order interim rule
implemented by A. For every candidate i and type t, we have

1 =
n∑

i′=1
Pr[A(t) = i′ | ti = t] = (n− 1)zt + yt.

Therefore, z = 1−y
n−1 , and the first-order component of a symmetric second-order interim

rule suffices to fully describe it. The second-order rule is also, by the preceding argument,
efficiently computable from its first-order component, and is feasible if and only if its first-order
component is a feasible symmetric interim rule. Moreover, by [5], feasibility of symmetric
second-order interim rules can be checked in time polynomial in the number of types and
candidates, and given a feasible symmetric second-order interim rule X, a winner selection
rule implementing X can be evaluated in polynomial time. J

7 Directions for Future Work

We have begun an investigation of dice-based winner selection rules, in which each of several
candidates independently draws a “score” from a distribution (rolling a “die”), and a candidate
set is selected to maximize the sum of scores, subject to a feasibility constraint. We have
shown that dice-based winner selection rules can implement all first-order interim rules with
matroid constraints, but not all second-order interim rules; in particular, there are instances
of Bayesian persuasion in which no optimal signaling scheme can be implemented using dice.

A natural direction for future work is to understand the limits of dice-based winner
selection rules. While our existence proof uses matroid properties, matroid constraints
are not the limit of implementability by dice: in the full version, we show an example in
which the feasible sets do not form a matroid, yet every feasible interim rule within the
environment is implementable with dice. This rules out a characterization of the form “a
feasibility constraint I has all feasible (x, f) implementable by dice if and only if I is a
matroid.” In fact, we do not know of any feasibility constraint and corresponding first-order
feasible interim rule for which a dice-based implementation can be ruled out, though we
strongly suspect that such examples exist. A difficulty in verifying our conjecture is that
we are not aware of a useful general technique for proving the non-existence of a dice-based
implementation for a given interim rule.

Another direction is to find an efficient algorithm for matroid environments. To derive
an efficient algorithm from our existential proof, the functions gt and ht would have to be
evaluated efficiently. Furthermore, even if a set of continuous dice is given, it is still unclear
how to convert them to dice with finitely many faces in polynomial time.
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Abstract
We introduce a simple logical inference structure we call a spanoid (generalizing the notion of
a matroid), which captures well-studied problems in several areas. These include combinatorial
geometry (point-line incidences), algebra (arrangements of hypersurfaces and ideals), statistical
physics (bootstrap percolation), network theory (gossip / infection processes) and coding theory.
We initiate a thorough investigation of spanoids, from computational and structural viewpoints,
focusing on parameters relevant to the applications areas above and, in particular, to questions
regarding Locally Correctable Codes (LCCs).

One central parameter we study is the rank of a spanoid, extending the rank of a matroid and
related to the dimension of codes. This leads to one main application of our work, establishing
the first known barrier to improving the nearly 20-year old bound of Katz-Trevisan (KT) on
the dimension of LCCs. On the one hand, we prove that the KT bound (and its more recent
refinements) holds for the much more general setting of spanoid rank. On the other hand we
show that there exist (random) spanoids whose rank matches these bounds. Thus, to significantly
improve the known bounds one must step out of the spanoid framework.

Another parameter we explore is the functional rank of a spanoid, which captures the possi-
bility of turning a given spanoid into an actual code. The question of the relationship between
rank and functional rank is one of the main questions we raise as it may reveal new avenues for
constructing new LCCs (perhaps even matching the KT bound). As a first step, we develop an
entropy relaxation of functional rank to create a small constant gap and amplify it by tensor-
ing to construct a spanoid whose functional rank is smaller than rank by a polynomial factor.
This is evidence that the entropy method we develop can prove polynomially better bounds than
KT-type methods on the dimension of LCCs.

To facilitate the above results we also develop some basic structural results on spanoids
including an equivalent formulation of spanoids as set systems and properties of spanoid products.
We feel that given these initial findings and their motivations, the abstract study of spanoids
merits further investigation. We leave plenty of concrete open problems and directions.
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1 Introduction

This (somewhat long) introduction will be organized as follows. We begin by discussing
Locally Correctable Codes (LCCs) and the main challenges they present as this was the
primary motivation for this work. We proceed to define spanoids as an abstraction of LCCs,
and state some results about their rank which hopefully illuminate the difficulties with
LCCs in a new light. We continue by describing other natural settings in which the spanoid
structure arises in the hope of motivating the questions raised in the context of LCCs and
demonstrating their potential to contribute to research in other areas. We then turn to the
investigation of functional rank of spanoids, which aims to convert them to actual LCCs. We
conclude with describing some of the structural results about spanoids obtained here.

1.1 Locally Correctable Codes
The introduction of locality to coding theory has created a large body of research with
wide-ranging applications and connections, from probabilistically checkable proofs, private
information retrieval, program testing, fault-tolerant storage systems, and many others in
computer science and mathematics. We will not survey these, and the reader may consult
the surveys [27, 10]. Despite much progress, many basic questions regarding local testing,
decoding and correcting of codes remain open. Here we focus on the efficiency of locally
correctable codes, that we now define. Note that the related, locally decodable codes (LDCs),
will not be discussed in this paper, as our framework is not relevant to them (LCCs can be
converted to LDCs with a small loss in parameters).

I Definition 1 (q-LCCs). A code C ⊆ Σn is called a q-query locally correctable code with
error-tolerance δ > 0, if for every i ∈ [n] there is a family (called a q-matching) Mi, of at least
δn disjoint q-subsets of [n], with the following decodability property. For every codeword
c ∈ C, and for every i ∈ [n], the value of ci is determined5 by the values of c in coordinates
S, for every q-subset S in Mi.6

5 Through some function that does not depend on the codeword c.
6 Our definition is a ‘zero-error’ version of the standard definition. By ‘zero-error’ we mean that for any

codeword c, the value of ci can be determined correctly (without error) from the coordinates of c at any
q-subset S in the matching Mi. A more general definition would say that ci can be computed from c|S
with high probability, or even just slightly better than a random guess. Our definition is equivalent to
the more general definition for linear codes, which comprise all of the interesting examples. We still
allow ‘global’ error in the sense that a large (constant) fraction of the coordinates can be corrupted
(this global error tolerance is captured by the parameter δ).
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Intuitively, given a vector c′ ∈ Σn which results from corrupting less than (say) εδn
coordinates of a codeword c ∈ C, recovering ci for any given i ∈ [n] is simple. Picking a
random q-subset from Mi and decoding ci according to it will succeed with probability at
least 1− ε, as only an ε-fraction of these q-subsets can be corrupted.

We focus in this paper on the most well-studied and well-motivated regime where both
the “query-complexity” q and the error-tolerance δ are constants. It is not hard to see that
there are no LCCs with q = 1 (unless the dimension is constant) and so we will start with
the first interesting case of q = 2. A canonical example of a 2-query LCC, which will serve
us several times below, is the Hadamard code. Here Σ = F2. Let k be any integer and set
n = 2k − 1. Let A be the k × n matrix whose columns are all non-zero k-bit vectors. The
Hadamard code CH ∈ Fn2 is generated by A, namely H consists of all linear combinations of
rows of A. Since every column of A can be written as a sum of (namely, spanned by) pairs
of other columns in (n− 1)/2 different ways, the matching Mi suggest themselves, and so is
the linear correcting procedure: add the values in coordinates of the random pair S from Mi

to determine the ith coordinate.
A central parameter of codes is their rate, capturing the redundancy between the di-

mension, namely the number of information bits encoded (here k), and the length of the
codeword (here n). As in this paper this k will be a tiny function of n, we will focus on the
dimension itself. Note that in the example above, as in every linear code, this dimension is
also the rank of the generating matrix. In general codes, dimension may be fractional, and is
defined as follows. All logarithms are in base 2 unless otherwise noted.

I Definition 2 (Dimension and rate of a code). For a general, possibly non-linear code C ⊆ Σn,
we define the dimension of C to be dim(C) = log |C|/ log |Σ|. Note that this coincides with
the linear algebraic definition of dimension when C is a subspace. We refer to the ratio
dim(C)/n as the ‘rate’ of the code.

Note that while the Hadamard code (CH) has fantastic local correction (only 2 queries),
its dimension is only k ∼ logn, which is pathetic from a coding theory perspective. However,
no better 2-query LCC can exist, regardless of the alphabet.

I Theorem 3 (2-LCCs). For all large enough n and over any alphabet:
There exists a 2-query LCC of dimension Ω(logn) and constant δ (Folklore: Hadamard
code).
Every 2-query LCC must have dimension at most O(logn) (for any constant δ) [6].

While we know precisely the optimal dimension for 2 queries, for q ≥ 3 the gap between
known upper and lower bounds is huge. The best lower bounds (constructions) are polyloga-
rithmic: they come from Reed-Muller codes (using polynomials over finite fields), and yield
dimension Ω((logn)q−1).

The best LCC upper bounds are only slightly sub-linear, giving dim(C) ≤ Õ(n1− 1
q−1 )

(up to logarithmic factors). This bound, which we will refer to as the Katz-Trevisan (KT)
bound, is actually a slight refinement/improvement over the bound originally appearing in
[19] (which gave n1−1/q). This improvement was implicit in several works (e.g. [9, 25]) and
is explicitly stated in [18]. We should also note that, over constant-size alphabets, Kerenidis
and De-Wolf proved an even stronger bound using quantum information theory [21]. This
exponential gap between the upper and lower bounds, which we formally state below, has
not been narrowed in over two decades.7 Explaining this gap (in the hope of finding ways to
close it) is one major motivation of this work.

7 For LDCs better constructions than Reed-Muller codes are known, through the seminal works of [26, 12],
but as mentioned we will not discuss them here. Still, the upper bounds for LDCs are the same as for
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I Theorem 4 (q-LCCs, q ≥ 3). For every fixed q ≥ 3 and all large enough n:
There exists a q-query LCC of dimension Ω((logn)q−1) (with constant δ and alphabet of
size q + 1) (Reed-Muller codes, see e.g. the survey [27]).
Every q-query LCC must have dimension at most Õ(n1− 1

q−1 ) (for any constant δ and
any alphabet) [18].

1.2 Spanoids
We shall now abstract the notion of inference used in LCCs. There, for a collection of pairs
(S, i) with S ⊆ [n] and i ∈ [n], the values of codewords in coordinate positions S, determine
the value of of some other coordinate i. We shall forget (for now) the underlying code
altogether, and abstract this relation by the formal “inference” symbol S → i, to be read “S
spans i”.

I Definition 5 (Spanoid). A spanoid S over [n] is a family of pairs (S, i) with S ⊆ [n] and
i ∈ [n]. The pair (S, i) will sometimes be written as S → i and read as S spans i in the
spanoid S.

One natural way to view a spanoid is as a logical inference system, with the pairs
indicating all inference rules. The elements of [n] indicate some n formal statements, and an
inference S → i of the spanoid means that if we know the truth of the statements in S, we
can infer the truth of the ith statement. With this intuition, we shall adopt the convention
that the inferences i→ i are implicit in any spanoid, and that monotonicity holds: if S → i

then also S′ → i for every S′ ⊇ S. These conventions will be formally stated below when we
define general derivations, which sequentially combine these implicit rules and the stated
rules (pairs) of the spanoid.

A key concept of spanoids is, naturally, the span. Given a subset T ⊂ [n] (which we can
think of as “axioms”), we can explore everything they can span by a sequence of applications
of the inference rules of the spanoid S.

I Definition 6 (Derivation, Span). A derivation in S of i ∈ [n] from T ⊆ [n], written T |=S i,
is a sequence of sets T = T0, T1, . . . , Tr with i ∈ Tr such that for each j ∈ [r], Tj = Tj−1 ∪ ij
for some ij ∈ [n] and there exists S ⊂ Tj−1 such that (S, ij) ∈ S is one of the spanoid rules.

The span (or closure) of T , denoted spanS(T ), is the set of all i for which T |=S i. We
shall remove the subscript S from these notations when no confusion about the underlying
spanoid can arise, and write T |= i and span(T ) for short.

Despite being highly abstract, we will see that spanoids can lead to a rich family of
questions and definitions. The first, and perhaps one of the most central definitions is that of
the rank of a spanoid. We shall see other notions of spanoid rank later on (and will discuss
the relation between them).

I Definition 7 (Rank). The rank of a spanoid S, denoted rank(S), is the size of the smallest
subset T ⊆ [n] such that span(T ) = [n]. Note that by the definition of span we always have
rank(S) ≤ n.

We note that the “rank” of a logical inference system does appear (under different names)
in proof complexity. It is the starting point for expansion-based lower bounds on a variety of
proof systems, as introduced for Resolution proofs in [5], and used for many others e.g. in
[1] and [2]). We shall return to this connection presently.

LCCs, and obtained by the same KT-type argument, so the results in this paper may serve to better
understand the (smaller, but still quite large) gap between upper and lower bounds in LDCs as well.
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We can now define the spanoid analog of q-LCCs as spanoids which only specify the
correction structure (the matchings Mi) without requiring any codewords or alphabet.

I Definition 8 (q-LCS, Locally correctable spanoid). A spanoid S over [n] is a q-LCS with
error-tolerance δ if for every i ∈ [n] there exists a family Mi of at least δn disjoint q-subsets
of [n] such that for each S ∈Mi we have (S, i) ∈ S. Namely, each i ∈ [n] is spanned (in S)
by at least δn disjoint subsets of q-elements.

One can now ask about the highest possible rank of a q-LCS. It is not hard to see that the
existence of a q-LCC (over any alphabet) C ⊂ Σn with dimension dim(C) = d automatically
implies that there exists a q-LCS (namely, the one given by the same matchings used in
C) with rank at least dde. Indeed, otherwise there would be r < d coordinates in [n] that
determine any codeword c ∈ C and this would limit the number of codewords to Σr.

One of our main observations is that, remarkably, in locally correctable spanoids there is
no gap between the upper and lower bounds: we know the precise answer up to logarithmic
factors, and it matches the upper bounds for LCCs! Observe the analogies to the theorems in
the previous subsection, for q = 2 and q ≥ 3.

I Theorem 9 (2-LCSs). For all large enough n:
There exists a 2-LCS over [n] with error-tolerance δ of rank Ω( 1

δ log(δn)).
Every 2-LCS over [n] with error-tolerance δ must have rank at most O

( 1
δ log(n)

)
.8

Here, of course, the inference structure of the Hadamard code proves the first item. To
get the required dependence on δ, one can take 1

δ disjoint copies of such spanoids. The
second item requires a new proof we discuss below, which generalizes (and implies) the one
in Theorem 3. It is quite surprising that, even in this abstract setting, with no need for
codewords or alphabet, one cannot do better than the Hadamard code!

We now state our results for q ≥ 3.

I Theorem 10 (q-LCSs with q ≥ 3). For every fixed q ≥ 3 and all large enough n:
There exist a q-LCS of rank Ω̃(n1− 1

q−1 ) (with constant δ).
Every q-LCS over [n] has rank at most Õ

(
n1− 1

q−1

)
(for any constant δ).

Both parts of this theorem demand discussion. The possibly surprising (and tight) lower
bound follows from a simple probabilistic argument (indeed, one which is repeatedly used to
prove expansion in the proof complexity references cited above), where the matchings Mi are
simply chosen uniformly at random. It seems to reveal how significant a relaxation spanoids
are of LCCs (where probabilistic arguments fail completely). However, the best known LCC
upper bound (Theorem 4) does not rule out the possibility that, at least for large alphabets,
the two (LCC’s dimension and LCS’s rank) have the same behavior! From a more pessimistic
(and perhaps more realistic) perspective, our lower bound shows the limitations of any (upper
bound) proof technique which, in effect, applies also for spanoids. These are proofs in which
the LCC structure is used to show that a small subset spans all the others. We note that
there are several LCC upper bounds which ‘beat’ the n1− 1

q−1 bound for certain very special
cases by using additional structure not present in the corresponding abstract spanoid. One
example is the bound of [21], which uses arguments from quantum information theory to
roughly halve the number of queries, over binary (or small) alphabets. Another example is

8 The results of [6] can be interpreted as an upper bound of O (poly(1/δ) log(n)) on the rank of 2-LCS
with error-tolerance δ.
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x1 x2

x3

x4

x5

Figure 1 The pentagon spanoid Π5 where each coordinate is spanned by the coordinates of the
opposite edge.

the paper [11], which gives an improved upper bound on the dimension for linear 3-LCCs
defined over the real numbers, using specific properties of the Reals such as distance and
volume arguments.

Our proof of the upper bound, is again more general than for LCCs, and interesting in its
own right. We use a simple technique which performs random restrictions and contractions
of graphs and hypergraphs (and originates in [11]). It will be described in Section 3, after we
have formulated an equivalent, set-theoretic formulation of spanoids in Section 2.2.

1.2.1 Functional rank: bridging the gap between LCCs and LCSs
We conclude this section of the introduction with an attempt to understand (and possibly
bridge) the gap between LCCs and their spanoid abstraction. The idea is to start with an
LCS of high rank (which we know is possible), and convert it to an LCC without losing too
much in the parameters. More generally, for a given spanoid S, we would like to investigate
the code C with largest dimension (over any alphabet Σ) which would be consistent with
the inferences of S. This is captured in the notion of functional rank which we now define.

I Definition 11 (Functional rank). Let S be a spanoid over [n]. A code C ⊂ Σn is consistent
with S if for every inference (S, i) in S, and for every codeword c ∈ C, its values of coordinates
S determine its value in coordinate i (by some fixed function, fS,i not depending on c).9

Define the functional rank of S, denoted f-rank(S), to be equal to the supremum of the
dimension dim(C), over all possible finite alphabets Σ and codes C ⊂ Σn which are consistent
with S.

Of course, the strategy of constructing LCCs in two stages as above can only work if
we can bound the gap between rank(S) and f-rank(S). This question, of bounding this gap
or proving it can be large, is perhaps the most interesting one we raise (and leave mostly
open for now). For now, we are able to show an example in which the two are different. The
example providing a gap is depicted in Figure 1, arranging the coordinates as the vertices
of a pentagon, the pair of vertices of each edge span the vertex opposite to it. That is,
{x1, x2} → x4, {x2, x3} → x5 etc.

I Theorem 12 (Constant gap between rank and functional rank). The pentagon spanoid Π5
depicted in Figure 1 has rank(Π5) = 3 but f-rank(Π5) = 2.5.

9 One can think of a code consistent with S also as a ‘representation’ of S in the spirit of matroid theory.
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Seeing that rank(Π5) = 3 is easy by inspection. The lower bound of 2.5 on functional rank
comes from a set-theoretic construction of consistent codes. This comes from a simple linear
programming (LP) relaxation we develop for rank(S) called LPcover(S), but surprisingly
this LP captures the best set-theoretic construction of consistent codes. But even in this
small example, the upper bound on functional rank is nontrivial to determine, as we allow
all possible alphabets and consistent codes. Not surprisingly, Shannon entropy is the key
to proving such a bound. We develop a linear programming relaxation, based on entropy
whose optimum LPentropy(S) upper bounds f-rank(S). In this example, it proves 2.5 to be
the optimum. For the definitions of LPentropy(S), LPcover(S) and the proof of Theorem 12
see the full version. One natural way of amplifying gaps as in the example above, which may
also be useful in creating codes of high functional rank, is the idea of tensoring. We develop
different notions of tensoring spanoids inspired by tensoring of codes. In particular, we define
a product of spanoids called the semi-direct product under which rank is multiplicative and
f-rank is sub-multiplicative. By repeatedly applying this product to Π5, we get a spanoid
with polynomial gap between f-rank and rank. See the full version for details.

I Theorem 13 (Polynomial gap between rank and function rank). There exists a spanoid S
on n elements with rank(S) ≥ ncf-rank(S) where c = log5 3− log5 2.5 ≥ 0.113.

Summarizing, we have the following obvious inequalities between the measures we de-
scribed so far for every spanoid S. We feel that understanding the exact relationships better
is worthy of further study

LPcover(S) ≤ f-rank(S) ≤ LPentropy(S) ≤ rank(S). (1)

1.3 Other motivations and incarnations of spanoids
We return to discuss other structures, combinatorial, geometric and algebraic, in which
the same notions of span and inference naturally occur, leading to a set-theoretic one that
elegantly captures spanoids precisely. These raise further issues, some of which we study in
this paper and some are left for future work. These serves to illustrate the breadth of the
spanoid framework.

1.3.1 Bootstrap percolation and gossip processes
The following general set-up occurs in statistical physics, network theory and probability
theory. Fix an undirected graph G([n], E). In a gossip or infection process, or equivalently
bootstrap percolation, we are give a set of “rules” specifying, for every vertex v ∈ [n], a
family of subsets of its neighbors. The intended meaning of such a rule is that if every
member of one such subset is “infected” at a certain time step, then the vertex v becomes
infected in the next time step. Given a set of initial infected vertices, this defines a process in
which infection spreads, and eventually stabilizes. A well studied special case is the (uniform)
r-bond percolation [7], where the family for each vertex is all r-subsets of its neighbors. Many
variants exist, e.g. one can have a similar process on the edges, rather than vertices of the
graph. An important parameter of such a process is the following: what is the size of the
smallest set of vertices which, if infected, will eventually infect all other vertices10.

10This turns out to be crucial for understanding, at least for certain structured graphs like lattices studied
by physicists, the threshold probability for percolation when initial infections are random.
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A moment’s thought will convince the reader that this structure is precisely a spanoid
(where inferring sets are restricted by the graph structure). The infection process is precisely
the inference process defining span in spanoids. Furthermore, the smallest size of an infecting
set is precisely the rank of that spanoid! Much work has been invested to determine that rank
even in very special cases, e.g. for the r-bond percolation above, in e.g. Boolean hypercubes,
where it is known precisely. Interestingly, the paper [16] uses the so-called “polynomial
method” to reprove that bound, which fits even deeper with our framework. In our language,
their method determines the functional rank of this spanoid, and one direction is through
constructing an explicit code that is consistent with the spanoid! The reader is encouraged
to work out the details.

1.3.2 Independence systems and Matroids
An independence system over [n] is a family F of subsets of [n] which is downwards-closed
(if a set is in F , so are all its subsets). The members of F are called independent. While
much of what we say below generalizes to all independence systems, we specify them for the
important special systems called matroids.

A matroid is an independence system in which the independent sets satisfy the so-called
“exchange axiom” (which we will not define here). Matroids abstract linear independence
in subsets of a vector space over a field11, and capture algorithmic problems in which
optimization is possible through the greedy algorithm. Matroids thus come with natural
notions of span and rank, extending the ones in the linear algebraic setting. The rank of a
set is the size of the largest independent set it contains. The span of a set is the maximal
superset of it of the same rank. A matroid can thus be naturally viewed as a spanoid, with
the inference rules F → i for every independent F ∈ F and every i for which F ∪ {i} is not
independent (such minimal dependent sets as F ∪ {i} are called cycles). It is easy to verify
that the notions of span and rank of the matroid and the spanoid it defines coincide. This
also raises the natural question of bounding the gap between f-rank and rank for the special
case of spanoids arising from matroids.

Note that a spanoid resulting from a matroid this way is symmetric: by the exchange
property of matroids, if E ⊂ [n] is a cycle of F , then for every i ∈ E it contains the inference
E \ {i} → i. Symmetric spanoids are interesting, and we note that the pentagon example
witnessing the gap between rank and functional rank is not symmetric, and we do not know
such a gap for symmetric spanoids. We also don’t know if symmetric spanoids can achieve
the lower bound in Theorem 10.

1.3.3 Point-line incidences
Sylvester-Gallai theorem is a celebrated result in combinatorial geometry conjectured by
Sylvester and proved independently by Melchior and Gallai. It states that for any set of n
points in Euclidean space Rd, if the line through any two points passes through a third point,
then they must all be collinear (namely, they span a 1-dimensional affine space). Over the
complex numbers, one can prove a similar theorem but with the conclusion that the points
span a 2-dimensional affine space (and there are in fact two dimensional examples known)
[20]. Over finite fields the conclusion is even weaker, saying that the span has dimension at
most O(log(n)) and this is tight as the example of all points in Fkp with n = pk shows. It

11Matroids are in fact more general than linear independent sets of vectors over a field, for example the
Vámos matroid on eight elements is not representable over any field.
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is not a coincidence that this example reminds one of the Hadamard code described before
as an example of a 2-query LCC. It is in fact true that there is a tight connection between
configurations of points with many collinear triples and linear 2-query LCCs. This was first
noticed in [4, 3] and was used to prove that 2-LCCs do not exist over the characteristic zero
fields (for q ≥ 3 these questions are wide open with even larger gaps than in the finite field
case). LCCs with more than 2 queries naturally correspond to point configurations with
many (q − 2)-dimensional affine spaces containing at least q points.

Given the connections between Sylvester-Gallai type incidence structures and LCCs,
and the insights offered by spanoids for studying LCCs, it is natural that the study of the
spanoid structures can help us get new insights on incidence geometry problems. A dual
way to view these incidences, which we shall presently generalize, is to consider each point
pi : i ∈ [n] as representing a hyperplane Fi through the origin (in the appropriate vector
space) vanishing on the linear function defined by pi. A point pi is spanned by a collection
of points {pj : j ∈ S} iff Fi ⊃ ∩j∈SFj . Therefore the spanning structure of the points
p1, p2, . . . , pn is captured by the spanoid where we would add the inference S → i iff Fi
contains the common intersection of all Fj : j ∈ S.

1.3.4 Systems of polynomial equations

Given the above example, there is no reason to stop at the linear setting. Instead of lines we
can consider n (multivariate) polynomials fi over a field, and again consider Fi to be the zero
set of fi. The spanoid above, having an inference S → i whenever the set Fi contains the
common intersection of all Fj : j ∈ S, is capturing another natural algebraic notion. Namely,
it says that the polynomial fi vanishes on the all the common roots of the polynomials
{fj : j ∈ S}. By the celebrated Hilbert’s Nullstellensatz theorem, over algebraically closed
fields, this implies that fi belongs to the radical of the ideal generated by the fj ’s. Here the
rank function is far from being that of a matroid; the complex spanoid which arises (and in
general is far from understood) plays a role in arithmetic complexity (a beautiful example is
the recent [23] dealing with degree-2 polynomials).

1.3.5 Intersecting set systems

Let us remove all restrictions from the origin or nature of the n sets Fi discussed in the
previous discussion. Assume we are given any such family F of sets (from an arbitrary
universe, say U). As above, a natural spanoid SF will have the inference S → i whenever
the set Fi contains the common intersection of all Fj : j ∈ S. Such situations (and hence,
spanoids) arise in many questions of extremal set theory, for example the study of (weak)
sunflowers, or families with certain forbidden intersection (or union) patterns, e.g. [14, 13, 15].

What is interesting in this more general framework, where the initial family of sets F is
arbitrary, is that it becomes equivalent to spanoids! In other words, every spanoid S arises
as SF of some family of sets F . This possibly surprising fact is not much more than an
observation, but it turns out to be an extremely useful formulation for proving some of the
results in this paper. Let us state it formally (it will be proved in Section 2.2).

I Theorem 14 (Spanoids and intersecting sets). Let S be any spanoid on [n]. Then, there
exists a universe U and a family F of n sets of U , F = {F1, F2, . . . , Fn}, such that S = SF .
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It is convenient to assume that the sets in F have no element in common to all12.

The notions of rank and span are extremely simple in this set-theoretic setting, and do
not require the sequential “derivation” and the implicit ordering which we require to define
these in spanoids. For a family F of n sets and a subset S ⊂ [n], let us denote by ∩S the
subset of U which is the intersection of all {Fj : j ∈ S}. Then the rank of S is the size
of the smallest subset S′ ⊆ S for which ∩S′ = ∩S. Similarly, the span of S is the largest
superset S′′ ⊇ S for which ∩S′′ = ∩S.

These static definitions of rank and span make many things transparent. For example,
the expected fact that testing if the rank of a spanoid (namely the rank of the set [n]) is
at most some given integer k is NP − complete (Claim 22). Complementing the sets Fi
in F , and replacing intersection with union, this is precisely the Set Cover problem. This
connection also underlies the cover-based linear program discussed earlier, as well as proofs
of the main quantitative results Theorem 9 and Theorem 10.

1.3.6 Union-closed families

Spanoids over [n] are equivalent to union-closed families of subsets of [n] i.e. a family of
subsets of [n] such that the union of any two members is again in the family. A closed set of
a spanoid S is a subset A ⊂ [n] such that span(A) = A. The family of all closed sets of a
spanoid S is denoted by CS which is an intersection-closed family. Thus the family of all
open sets which are complements of closed sets is a union-closed family and is denoted by OS .
One can construct all the derivations of the spanoid given its family of open or closed sets.
Conversely, given any union-closed family of subsets of [n], one can define a spanoid whose
open sets are precisely the given family. Thus spanoids on [n] are equivalent to union-closed
families of subsets of [n]. The rank of a spanoid has a very simple interpretation in terms of
its open sets, rank(S) is equal to the size of the smallest hitting set for its family of open sets
OS . Moreover, rank(S) is at most log |OS |. These connections are discussed in Section 2.1.

Union-closed families are interesting combinatorial objects with a rich structure. The
widely open Frankl’s union-closed conjecture states that in every union-closed family of
N sets, there exists an element which is contained in at least N/2 sets. Though this was
proved for various special classes (see survey [8]), the best general bound is Ω(N/ logN) due
to [22, 24]. When seen in the framework of spanoids, this follows immediately from Claim 19
which says that there is a logN sized hitting set for every union-closed family of N sets.
Thus there is an element which should hit at least N/ log2(N) sets. We hope that viewing
union-closed families as spanoids could be of use in understanding them.

1.4 Organization

In Section 2, we will present two alternative ways to represent spanoids that will be very
useful. In Section 3, we show upper bounds on the rank of q-LCSs for q ≥ 2 thus proving the
upper bounds in Theorems 27 and 29. In Section 4, we construct q-LCSs thus proving the
lower bound in Theorem 29.

12 Indeed, otherwise we can remove the common intersection (if non-empty) of all members of F from
each of them, as it does not change the underlying spanoid.
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2 Preliminaries on spanoids

We will now describe two equivalent ways to define spanoids which will turn out to be very
useful.

2.1 Spanoids as union-closed or intersection-closed families
In this subsection, we will define an equivalent and more canonical way of describing
spanoids in terms of intersection closed or union closed families. We have defined spanoids in
Definition 5 by specifying the initial set of derivation rules such as A→ i. But two different
initial set of rules can lead to the same set of derivations and we should consider two spanoids
to be equivalent if they lead to the same set of derivations. We will present an alternative
way to describe spanoids which makes them equivalent to union-closed families of sets or
alternatively intersection-closed families of sets. Moreover this new representation is a more
canonical way to represent spanoids since it will be based only on the set of derivations. For
this, the main new notions we need to define are that of a ‘closed set’ and an ‘open set’.

I Definition 15. (Closed and open sets) Let S be an spanoid on [n]. A closed set13 is
a subset B ⊂ [n] for which span(B) = B. A subset B ⊂ [n] is called an open set if its
complement is a closed set. The family of all closed sets of S is denoted by CS and the family
of all open sets of S by OS (when it is clear from the context, we will drop the subscript S).

I Claim 16. In any spanoid S on [n],
1. the intersection of any number of closed sets is a closed set i.e. CS is an intersection-closed

family,
2. the union of any number of open sets is an open set i.e. OS is a union-closed family and
3. for any set A ⊂ [n], span(A) is equal to the intersection of all closed sets containing A

i.e. span(A) =
⋂
B⊃A,B∈CS B.

Proof.
(1) Let F = F1 ∩ F2 be the intersection of two closed sets. Suppose in contradiction that F

spans some element x ∈ [n] \ F then, by monotonicity, both F1 and F2 have to span x.
Hence, x ∈ span(F1) ∩ span(F2) = F1 ∩ F2 = F in contradiction.

(2) This just follows from (1) by taking complements.
(3) Let F (A) be the intersection of all closed sets containing A. Since span(A) is a closed

set we clearly have F (A) ⊂ span(A). To see the other direction, suppose x ∈ span(A)
and let F be any closed set containing A. Then, by monotonicity, F must also span x
and so we must have x ∈ F . J

I Claim 17. A spanoid is uniquely determined by the set of all its closed (open) sets which is
an intersection-closed (union-closed) family of subsets of [n]. Conversely, every intersection-
closed (union-closed) family of subsets of [n] defines a spanoid whose closed (open) sets are
the given family.

Proof. Given a spanoid S on [n], by Claim 16, we can define span(A) in S using just the
closed sets as:

span(A) =
⋂

B⊃A,B∈CS

B.

13Closed sets are analogous to ‘flats’ or ‘subspaces’ in matroids.
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And A |= i in S iff i ∈ span(A). Thus given the set of all closed sets, we can reconstruct all
the derivations of the spanoid.

For the converse, suppose we are given an intersection-closed family of subsets of [n],
say C. We can define spanC(A) =

⋂
B⊃A,B∈C B and define a spanoid SC where A |= i iff

i ∈ spanC(A). It is easy to see that the closed sets of this spanoid SC is exactly C. J

Thus an equivalent way to define a spanoid is to define all its closed (open) sets which
is some intersection (union) closed family. The following claim shows that the rank of a
spanoid has a very natural interpretation in terms of the open sets.

I Claim 18. The rank of a spanoid S is the size of the smallest hitting set for the collection
OS i.e. a set which intersects every open set in OS non-trivially.

Proof. Observe that a subset A ⊂ [n] spans [n] iff it is a hitting set for all the open sets in
OS . This is because if A doesn’t hit some open set B, then A lies in the complement of B i.e.
A ⊂ B̄. Since B̄ is closed, span(A) ⊂ B̄ 6= [n]. Therefore rank(S) is the size of the smallest
hitting set for OS . J

This interpretation of the rank is used to give a linear programming relaxation LPcover which
lower bounds the rank. We can also upper bound the rank of a spanoid in terms of the
number of closed or open sets as the following claim shows.

I Claim 19. Let S be a spanoid, then rank(S) ≤ log2(|CS |) = log2(|OS |).

Proof. Let r = rank(S) and R ⊂ [n] be a set of size |R| = r spanning [n]. Since the rank
of S is r we know that R is independent (not spanned by any proper subset). For each
of the 2r subsets S ∈ 2R we consider the closed set FS = span(S). We claim that all of
these are distinct. Suppose in contradiction that there were two distinct sets S 6= T ∈ 2R
with span(S) = span(T ). W.l.o.g suppose there is an element x ∈ T \ S. Then x ∈ span(S)
and so we get that R \ {x} spans R (by monotonicity) and so spans the entire spanoid in
contradiction. Thus |CS | ≥ 2r. J

2.2 Spanoids as set systems
In this subsection, we will show yet another way of representing spanoids by families of sets.
This representation (which is equivalent to spanoids) will be easier to work with and, in
fact, we will later work almost exclusively with it instead of with the definition given in the
introduction. Recall the notation introduced at the end of the introduction that, for sets
S1, . . . , Sn and for a subset A ⊂ [n] we let ∩A = ∩i∈ASi.

I Definition 20 (Intersection Dimension of a set system). The intersection-dimension of a
family of sets S1, . . . , Sn, denoted idim(S1, . . . , Sn) is the smallest integer d such that there
exist a set A ⊂ [n] of size d such that ∩A = ∩[n].

I Lemma 21 (Set-Representation of spanoids). Let S be a spanoid on [n] with rank(S) = r.
Then there exists a family of sets S1, . . . , Sn such that A |= i in S iff ∩A ⊂ Si. In this case
we say that the set family (S1, S2, . . . , Sn) is a set-representation of S and this implies in
particular that idim(S1, . . . , Sn) = rank(S).

Proof. For i ∈ [n] we define Si ⊂ CS to be the subfamily of closed sets of S containing the
element i ∈ [n]. For the first direction of the proof suppose that A spans x in the spanoid S.
Then, by Claim 16, x belongs to any closed set containing A and so ∩i∈ASi ⊂ Sx. For the
other direction, suppose ∩i∈ASi ⊂ Sx or that any closed set containing A must also contain
x. Hence, x is in the intersection of all closed sets containing A and, by Claim 16 we have
that x ∈ span(A). J
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An alternative way to represent spanoids is by unions. (T1, T2, . . . , Tn) is called a union set-
representation of the spanoid S when, A |= i in S iff Ti ⊂ ∪j∈ATj . Note that if (S1, S2, . . . , Sn)
is an (intersection) set-representation for S as in Lemma 21, then by taking complements,
(S̄1, S̄2, . . . , S̄n) is a union set-representation for S and vice versa. Thus these two notions of
representing a spanoid by sets is equivalent.

I Claim 22. Given a spanoid S and some positive integer k, deciding if the rank of the
spanoid is at most k is NP-complete.

Proof. Given the description of a spanoid and a subset of its elements, we can check in
polynomial time whether the subset has size at most k and spans all the elements. So the
problem is in NP . To prove that it is NP − complete, we reduce Set Cover problem to this.

Given a collection of sets S1, S2, . . . , Sn ⊂ U such that ∪iSi = U and some positive
integer k, the Set Cover problem asks if there are at most k sets in the collection whose union
is U . To reduce it to the spanoid rank problem, we can create a spanoid over [n] elements
where the inference rules are given by A |= i iff ∪j∈ASj ⊃ Si. The rank of this spanoid is at
most k iff there exists k sets in the collection which cover all of U . J

3 Upper bounds on the rank of q-LCSs

In this section we prove the upper bounds on the rank of q-LCSs stated in Theorems 9 and
10. The proofs will rely on the set representation described in Section 2.2 and on random
restriction and contraction arguments given below.

3.1 Graph theoretic lemmas
In this subsection, we will prove a key technical lemma about a random graph process that
will be useful for proving upper bounds on the rank of q-LCSs. We denote by D(n) the set
of simple directed graphs on n vertices. We always assume w.l.o.g that the set of vertices are
the integers between 1 and n.

I Definition 23 ((α, β)-spread distribution). Let µ be a distribution on D(n). We say that µ
is (α, β)-spread if the following conditions are true for a graph G sampled from µ:
1. Each vertex i ∈ [n] has an incoming edge with probability at least α i.e.

∀i PrG∼µ [∃j : (j, i) ∈ E(G)] ≥ α.

2. For every i, j ∈ [n], the probability that (j, i) is an edge is at most β/n i.e.

∀i, j PrG∼µ [(j, i) ∈ E(G)] ≤ β

n
.

For example, one can generate an (k/n, 1)-spread distribution µ on D(n) in the following
way: Fix arbitrary sets S1, . . . , Sn ⊂ [n] of size k each. To sample a graph G from µ, pick
a uniformly random element j ∈ [n] and let G be the directed graph containing the edges
(j, i) for each i such that j ∈ Si. This satisfies the definition since for any fixed i ∈ [n], i has
an incoming edge if j ∈ Si which happens with probability |Si|/n = k/n. And for any fixed
i′, j′ ∈ [n], the probability that (j′, i′) is an edge is at most 1/n since this happens only when
j′ = j and j is chosen uniformly at random from [n]. Note that the sampled edges overall
are highly correlated (they all have j as an endpoint).
We will need following simple observation about (α, β)-spread distributions.
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I Lemma 24. Let µ be an (α, β)-spread distribution on D(n). For every vertex i and every
subset S ⊂ [n] of size at most αn

2β ,

PrG∼µ[∃j /∈ S : (j, i) ∈ E(G)] ≥ α

2 .

Proof. This follows from union bound and properties of (α, β)-spread distributions.

α ≤ PrG∼µ[∃j : (j, i) ∈ E(G)]
≤ Pr[∃j ∈ S : (j, i) ∈ E(G)] + Pr[∃j /∈ S : (j, i) ∈ E(G)]

≤
∑
j∈S

Pr[(j, i) ∈ E(G)] + Pr[∃j /∈ S : (j, i) ∈ E(G)]

≤ αn

2β ·
β

n
+ Pr[∃j /∈ S : (j, i) ∈ E(G)]

= α

2 + Pr[∃j /∈ S : (j, i) ∈ E(G)] J

Given a distribution µ on graphs we would like to study the random process in which we,
at each iteration, sample from µ and ‘add’ the edges we got to the graph obtained so far.
For two graphs G and H on the same set of vertices, we denote by G ∪H their set theoretic
union (as a union of edges).

I Definition 25 (Graph process associated with µ). Let µ be a distribution on D(n). We
define a sequence of random variables Gµt , t = 0, 1, 2, . . . as follows. Gµ0 is the empty graph
on [n] vertices. At each step t ≥ 1 we sample a graph G according to µ (independently from
all previous samples) and set Gt = Gt−1 ∪G.

For a graph G ∈ D(n) and a vertex i ∈ [n] we denote by Rea(i) the set of vertices that are
reachable from i (via walking on directed edges). By convention, a vertex is always reachable
from itself. Similarly, for a set of vertices S ⊂ [n] we denote by Rea(S) = ∪i∈SRea(i) the
set of vertices reachable from some vertex in S. We denote the set of strongly connected
components of G by Γ(G). We denote by C(i) ∈ Γ(G) the strongly connected component
of G containing i. We say that C ∈ Γ(G) is a source if C has no incoming edges from any
vertex not in C.

I Lemma 26. Let µ be an (α, β)-spread distribution on D(n) and let Gµt be its associated
graph process. Then, for all t ≥ 0, there is positive probability that the graph Γ(Gµt ) has at
most

n · (1− α/4)t + 2β
α

sources.

Proof. If C ∈ Γ(G) is a source, we define the weight of C to be the number of vertices
reachable from C (including vertices of C) that are not reachable from any other source of
G. More formally, let

Rea′(C) = {j ∈ Rea(C) | j 6∈ Rea(C ′), for all sources C ′ ∈ Γ(G), C ′ 6= C}.

Then the weight of a source C ∈ Γ(C) is denoted by w(C) = |Rea′(C)| (we do not define
weight for components that are not sources). Let us call a source C ∈ Γ(Gt) ‘light’ if its
weight w(C) is at most k = αn

2β and ‘heavy’ otherwise. By the definition of weight, there
could be at most n/k = 2β/α heavy sources.
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We will argue that, in each step, as we move from Gt to Gt+1, the number of light sources
must decrease by a factor of (1− α/4) with positive probability. For that purpose, suppose
there are mt sources in Gt and among them m′t are light. Fix some light source and pick
a representative vertex i from it. Since i is contained in a light source, |Rea′(C(i))| ≤ αn

2β .
When going to Gt+1 = Gt ∪G, i gets an incoming edge from outside the set Rea′(C(i)) with
probability at least α/2 by Lemma 24. If this happens then in Gt+1, this source will either
stop being a source or merge with another source.

Picking a representative for each light source in Gt, we see that the expected number of
representatives i which get a new incoming edge from outside Rea′(C(i)) is at least (α/2)m′t.
Hence, this quantity is obtained with positive probability. Now, if at least (α/2)m′t light
sources ‘merge’ with another source or stop being a source in Gt+1 then the total number of
light sources must decrease by at least (α/4)m′t (the worst case being that (α/4)m′t disjoint
pairs of light sources merge with each other). Hence, with positive probability we get that
m′t+1 ≤ m′t · (1− α/4). Therefore, since the samples in each step t are independent, there is
also a positive probability that m′t ≤ n · (1− α/4)t and mt ≤ m′t + 2β/α. This completes
the proof. J

3.2 Proof of upper bound from Theorem 9
I Theorem 27 (Rank of 2-LCSs). Let S be a 2-LCS on [n] with error-tolerance δ. Then
rank(S) ≤ O( 1

δ log2 n).

Proof. We will work with the (equivalent) set formulation: let F = {S1, . . . , Sn} be a set
system representing the spanoid S as in Lemma 21.

We start by defining an (α, β)-spread distribution µ on D(n) as follows: To sample a
graph G from µ we first pick ` ∈ [n] uniformly at random. Then we add a directed edge from
j to i for every i, j such that {j, `} ∈ Mi. In this case we have Sj ∩ S` ⊆ Si and so, after
restricting to S` we have Sj ∩ S` ⊆ Si ∩ S`.

I Claim 28. µ is a (2δ, 1)-spread distribution.

Proof. For any fixed i ∈ [n], i will get an incoming edge if `, which is randomly chosen from
[n], belongs to Mi. Since Mi has at least δn edges, this will happen with probability at least
2δ. Now fix any i, j ∈ [n], (j, i) will be an edge iff ` is equal to the the vertex that matches j
in the matching Mi, this happens with probability at most 1/n. If j is not matched in Mi,
the probability is zero. J

Consider the graph process Gµt and let S`1 , . . . , S`t
be the sets chosen in the t iterations of

sampling from µ. If i ∈ Rea(j) in the graph Gµt , this means that, after restricting to the
intersection S = S`1 ∩ . . . ∩ S`t

, the set Sj is contained in Si (i.e., Sj ∩ S ⊆ Si ∩ S). By
Lemma 26, after t = O( 1

δ log2 n) steps, the graph process Gµt will contain r = O(1/δ) sources.
Pick a representative Sa1 , . . . , Sar

from each of these sources. Then, the intersection of the
t + r = O( 1

δ log2 n) sets S`1 , . . . , S`t
and Sa1 , . . . , Sar

is contained in all n sets S1, . . . , Sn.
That is because, when restricted to the intersection of S`1 , . . . , S`t , each set Si contains one
of the sets Saj

, j ∈ [r]. J

3.3 Proof of upper bound from Theorem 10
I Theorem 29 (Rank of q-query LCSs). Let S be a q-LCS with error-tolerance δ and q ≥ 3.
Then

rank(S) ≤ O
(
δ−

1
q−1 · n

q−2
q−1 log2 n

)
.
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Proof. Like the 2-query case, we work with the set representation F = {S1, . . . , Sn} of S as
in Lemma 21. We follow the same strategy as in the proof of the 2-query case. The difference
is that, in this case, we will need to pick many sets to restrict to in each step instead of just
one. The first observation is that, if {j1, . . . , jq} ∈ Mi then, restricted to the intersection
S = Sj1 ∩ . . .∩ Sjq−1 we have Sjq

⊂ Si. The second observation is that, if we choose a subset
J ⊂ [n] of size roughly n

q−2
q−1 then, in expectation, J will contain q − 1 elements in one of the

q-subsets of Mi for a constant fraction of the i’s. Repeating this a logarithmic number of
times and using Lemma 26, as in the proof of Theorem 27 will then complete the proof.

We start by defining an (α, β)-spread distribution µ on D(n). To sample a graph G from
µ we first pick a random set J ⊂ [n] such that each j ∈ [n] is chosen to be in J independently
with probability (δn)−1/(q−1). By Markov’s inequality we have that

Pr
[
|J | ≥ 4 · δ−

1
q−1n

q−2
q−1

]
≤ 1/4. (2)

For each i ∈ [n] and each q-subset T ∈Mi we select q − 1 elements of T arbitrarily and
refer to them as the distinguished (q − 1)-subset of T . We now argue that, for each i ∈ [n],
there is relatively high probability that J will contain the distinguished (q − 1)-subset of at
least one q-subset in Mi.

I Claim 30. Let Ei denote the event that J contains the distinguished (q − 1)-subset from
at least one q-subset in Mi. Then, for each i ∈ [n] we have that Pr[Ei] ≥ 1/2.

Proof. J will contain the distinguished q − 1 elements in a specific q-subset with probability
(δn)−1. Since the δn q-subsets in Mi are disjoint, the probability that J will not contain any
of the distinguished (q − 1)-subsets is at most (1− (1/δn))δn ≤ 1/2. J

We are now ready to define the edges in the graph G sampled by µ. First we check
if |J | ≥ 4 · δ−

1
q−1n

q−2
q−1 . If this is the case then µ outputs the empty graph (by Eq.2 this

happens with probability at most 1/4). Otherwise for each i ∈ [n] we check to see if J
contains the distinguished (q − 1)-subset from one of the q-subsets of Mi. If there is at
least one such q-subset, we pick one of them uniformly at random. Suppose the q-subset we
chose is {j1, . . . , jq} and that the distinguished elements are the first q− 1. Then we add the
directed edge jq → i to the graph G. By the above discussion, we know that, restricted to
the intersection of all sets indexed by J the set Sjq is contained in Si (hence the directed
edge representing set inclusion).

I Claim 31. µ is (1/4, 1/δ)-spread.

Proof. By Claim 30, and since the probability that |J | is too large is at most 1/4 we see that
any fixed i ∈ [n] will get an incoming edge in G with probability at least α = 1/4. For any
fixed i, j ∈ [n], since the distribution of the special q-subset which is contributing an edge to
i is uniform in Mi (conditioned on J containing a q-subset from Mi), we can conclude that
(j, i) ∈ E(G) with probability at most 1/(δn) = β/n. This proves the claim. J

Now, applying Lemma 26, we get that, after t = O(log2 n) steps, the graph process Gµt will
contain at most O(1/δ) sources with positive probability. Let J1, . . . , Jt be the sets chosen
in the different steps of the process and, w.l.o.g, remove any of them that were too big (i.e.,
when the graph sampled by µ was empty). Hence, all of the sets satisfy |Ji| ≤ 4 · δ−

1
q−1n

q−2
q−1 .

Now, let S be the intersection of all sets Sj such that j belongs to at least one of the sets Ji.
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Then, restricted to S, each of the sets Si contains one of the sources in the graph Gµt . Hence,
if we add to our intersection a representative form each of the sources, we will get a set that
is contained in all the sets Sj . The total number of sets we end up intersecting is bounded by

O(1/δ) +
t∑
i=1
|Ji| = O

(
δ−

1
q−1 · n

q−2
q−1 log2 n

)
.

This completes the proof of the theorem. J

4 Constructing q-LCSs with high rank

In this section we prove the lower bound part of Theorem 10 (the lower bound for the 2-query
case follows from the Hadamard code construction). We will in fact generate this spanoid at
random by picking, for each i ∈ [n], a random q-matching Mi on [n] and, for each q-subset
T ∈Mi add the rule T |= i. The resulting spanoid will thus have, by design, the structure of
a q-LCS. The reason why this spanoid should have high rank (with high probability) relies
on the following observation. Suppose A ⊂ [n] is a set that spans [n]. This means that there
is a sequence of derivations Ti |= i with each q-subset Ti in the matching Mi that eventually
generates all of [n]. We can limit ourselves to the first C · |A| such derivations for some large
C. These derivations generate a set A′ of size (C + 1)|A| (including the original A and the
C|A| newly derived elements). Now, the set A′ must contain all of the q-subsets Ti for C|A|
values of i. However, the union of randomly chosen C|A| q-subsets will generally have size
much larger than (C + 1)|A| (closer to q · C|A|).

I Theorem 32 (Existence of high rank q-LCSs). For any integer q ≥ 3 and all sufficiently
large n the following holds. Consider the following distribution generating a spanoid S on
base set [n]. For each i ∈ [n] pick a q-matching Mi of size bn/2qc uniformly at random and
add the rule T |= i for all T ∈Mi. Then, with probability approaching one, rank(S) is larger
than r = cn

q−1
q−2 / log2(n), where 0 < c < 1 is an absolute constant.

Proof. Let m = r · log2(n) = cn
q−1
q−2 . If the rank of S is at most r then there exists a

set A ⊂ [n] of size r that spans (using the rules obtained from the n random matchings
M1, . . . ,Mn) the entire base set [n]. We will upper bound the probability that such a set
exists by bounding the smaller event given by the existence of a set of m rules that can be
applied one after another starting with the original set A. That is, let E denote the event that
there exists a set A of size r on which one can sequentially apply m rules of the form Tji |= ji
with each Tji

belonging to the matching Mji
and for m different values j1, . . . , jm ∈ [n]

arriving at the final set Â = A ∪ {j1, . . . , jm}. If A spans [n] then clearly the event E must
hold and so, it is enough to show that E happens with probability approaching zero.

We will present the event E as the union of (possibly overlapping) smaller events and then
use the union bound, bounding the probability that each one occurs and multiplying by the
number of bad events. Given a set A ⊂ [n] of size r, a tuple of m indices Ĵ = {j1, j2, . . . , jm}
and a family of q-subsets T̂ = {Tj1 , . . . , Tjm} with Tji ∈Mji denote by E(A, Ĵ, T̂ ) the event
in which the set A spans the set Â = A ∪ Ĵ using the rules Tji

|= ji applied in order with i
going from 1 to m. For every fixing of A, Ĵ, T̂ we can bound

Pr[E(A, Ĵ, T̂ )] ≤
m∏
i=1

Pr[Tji
⊂ Â].
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W.l.o.g suppose we sample the random matchings iteratively, picking a new q-subset at
random among the available elements not covered by any previously chosen q-subsets in the
current matching. Since the number of q-subsets in each matching is bn/2qc we have, at
each step, at least n/2 available elements to chose from and so

Pr[Tji ⊂ Â] ≤
(
m+r
q

)(
n/2
q

) ≤ (4m
n

)q
.

Taking the product over all m q-subsets in T̂ we get

Pr[E(A, Ĵ, T̂ )] ≤
(

4m
n

)qm
.

To complete the proof we bound the number of tuples (A, Ĵ, T̂ ) as above by(
n

r

)
·
(
n

m

)
· bn/2qcm ≤ nr · (en/m)m · nm ≤

(
6n2

m

)m
,

where the last inequality used the fact that r/m ≤ 1/ log2(n). Putting these bounds together
we get that

Pr[E ] ≤
(

4m
n

)qm(6n2

m

)m
=
(

6 · 4q ·mq−1

nq−2

)m
which is exponentially decreasing in m for the given choice of m = c · n(q−2)/(q−1) and for c
a sufficiently small constant. J

One could ask for a more explicit construction of an LCS with rank equal to (or even close
to) that stated above. We are not able to give such a construction but can relate this problem
to a longstanding open problem in explicit construction of expander graphs. A bipartite
(balanced) expander of degree q, is a bipartite graph with n left vertices L and n right vertices
R such that the degree of each vertex is q and such that sets A ⊂ L of size ‘not too large’
have many neighbors in R. More specifically, one typically asks that sets with |A| ≤ n/2
have at least (1 + ε)|A| right neighbors for some constant ε > 0. It is quite easy to see that
a random graph of this form will be a good expander with high probability and, by now,
there are also many explicit constructions [17]. One can also consider unbalanced bipartite
expanders in which |L| � |R|. Take, for example, the setting in which |L| = n2, |R| = n and
when the degree of every vertex in L is some constant q. A simple probabilistic argument
shows that sufficiently small sets in L, namely sets of size |A| ≤ nαq with αq < 1 a constant
depending on q and approaching 1 as q grows, have many neighbors in R (say, at least 2|A|).
However, no explicit constructions of such graphs are known (for any constant q and any
αq > 0). The property we needed in our random construction of LCSs can be thought of as
an ‘easier’ variant of the expander construction problem. Given q-matchings M1, . . . ,Mn

each of size δn consider the bipartite graph with L = [n] × [δn] and R = [n]. We identify
each vertex (i, j) ∈ L with the j’th q-subset Tij of Mi and connect it to the q neighbors in R
given by that q-subset. For our proof to work we need the property that there is no small
set containing many q-subsets from different matchings. This corresponds to asking for the
above graph to be an expander for a restricted family of sets, namely to sets that have at
most one vertex (i, j) for a given i (with each subgraph (i, ∗) defining a matching).
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5 Conclusion and open problems

Our work introduces the abstract notion of a spanoid in the hope that further study of its
properties will lead to progress on LCCs and perhaps in other areas. We list below some
concrete directions for future work.
1. We showed that there exist spanoids, called q-LCSs, which “look like” q-LCCs and whose

rank matches the best known upper bounds. Can we bypass this ‘barrier’ by using
additional properties of LCCs? We have at least two examples where this was possible.
One is the result of [21] for LCCs over constant size alphabet and the other is the work
in [11] for linear 3-LCCs over the real numbers. The bounds of [21] crucially depend on
the alphabet having small size and the bounds in [11] exploit properties of real numbers.

2. Understanding the possible gap between functional rank and formal rank of a spanoid
is a very interesting question. We proved that there can be a polynomial gap. The
next challenge is to find a spanoid on n elements whose f-rank is no(1) and rank is nΩ(1).
Naturally, q-LCSs for constant q ≥ 3 are plausible candidates for this. If there are no such
spanoids, then it would imply the existence of q-LCCs of length n and nΩq(1) dimension!1

3. Suppose we start with a functional representation with large alphabet, can we do alphabet
reduction without losing too many codewords?

4. We have seen that one way to go past the rank barrier is to use LPentropy. Can we improve
the existing upper bounds on the dimension of q-LCCs by upper bounding LPentropy of
q-LCSs? Can we use LP duality and construct good feasible solutions to the dual of
LPentropy to prove good upper bounds on LPentropy?

5. What are other connections of spanoids to existing theory of set systems, matroids,
algebraic equations and other problems described in the introduction?
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Abstract
Algorithmic fairness, and in particular the fairness of scoring and classification algorithms, has
become a topic of increasing social concern and has recently witnessed an explosion of research in
theoretical computer science, machine learning, statistics, the social sciences, and law. Much of
the literature considers the case of a single classifier (or scoring function) used once, in isolation.
In this work, we initiate the study of the fairness properties of systems composed of algorithms
that are fair in isolation; that is, we study fairness under composition. We identify pitfalls
of naïve composition and give general constructions for fair composition, demonstrating both
that classifiers that are fair in isolation do not necessarily compose into fair systems and also
that seemingly unfair components may be carefully combined to construct fair systems. We
focus primarily on the individual fairness setting proposed in [Dwork, Hardt, Pitassi, Reingold,
Zemel, 2011], but also extend our results to a large class of group fairness definitions popular in
the recent literature, exhibiting several cases in which group fairness definitions give misleading
signals under composition.
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1 Introduction

As automated decision-making extends its reach ever more deeply into our lives, there is
increasing concern that such decisions be fair. The rigorous theoretical study of fairness
in algorithmic classification was initiated by Dwork et al in [4] and subsequent works
investigating alternative definitions, fair representations, and impossibility results have
proliferated in the machine learning, economics and theoretical computer science literatures.3
The notions of fairness broadly divide into individual fairness, requiring that individuals
who are similar with respect to a given classification task (as measured by a task-specific
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similarity metric) have similar probability distributions on classification outcomes; and group
fairness, which requires that different demographic groups experience the same treatment in
some average sense.

In a bit more detail, a classification task is the problem of mapping individuals to
outcomes; for example, a decision task may map individuals to outcomes in {0, 1}. A classifier
is a possibly randomized algorithm solving a classification task. In this work we initiate
the study of fairness under composition: what are the fairness properties of systems built
from classifiers that are fair in isolation? Under what circumstances can we ensure fairness,
and how can we do so? A running example in this work is online advertising. If a set of
advertisers, say, one for tech jobs and one for a grocery delivery service, compete for the
attention of users, say one for tech jobs and one for a grocery delivery service, and each
chooses fairly whether to bid (or not), is it the case that the advertising system, including
budget handling and tie-breaking, will also be fair?

We identify and examine several types of composition and draw conclusions about auditing
systems for fairness, constructing fair systems, and definitions of fairness for systems. In the
remainder of this section we summarize our results and discuss related work. A full version
of this paper, containing complete proofs of all our results, is available on ArXiv.

Task-Competitive Compositions

We first consider the problem of two or more tasks competing for individuals, motivated by
the online advertising setting described above. We prove that two advertisers for different
tasks, each behaving fairly (when considered independently), will not necessarily produce fair
outcomes when they compete. Intuitively (and as empirically observed by [17]), the attention
of individuals similarly qualified for a job may effectively have different costs due to these
individuals’ respective desirability for other advertising tasks, like household goods purchases.
That is, individuals claimed by the household goods advertiser will not see the jobs ad,
regardless of their job qualification. These results are not specific to an auction setting and
are robust to choice of “tie-breaking” functions that select among multiple competing tasks
(advertisers). Nonetheless, we give a simple mechanism, RandomizeThenClassify, that solves
the fair task-competitive classification problem using classifiers for the competing tasks, each
of which is fair in isolation, in a black-box fashion and without modification. In the Appendix
(Lemma 15) we give a second technique for modifying the fair classifier of the lower bidder
(loser of the tie-breaking function) in order to achieve fairness.

Functional Compositions

Is the “OR” of two fair clssifiers also fair? Moe generally, when can we build fair classifiers
by computing on values that were fairly obtained? Here we must understand what is the
salient outcome of the computation. For example, when reasoning about whether the college
admissions system is fair, the salient outcome may be whether a student is accepted to at
least one college, and not whether the student is accepted to a specific college4. Even if
each college uses a fair classifier, the question is whether the “OR” of the colleges’ decisions
is fair. Furthermore, an acceptance to college may not be meaningful without sufficient
accompanying financial aid. Thus in practice, we must reason about the OR of ANDs of
acceptance and financial aid across many colleges. We show that although in general there

4 In this simple example, we assume that all colleges are equally desirable, but it is not difficult to extend
the logic to different sets of comparable colleges.

https://arxiv.org/abs/1806.06122
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are no guarantees on the fairness of functional compositions of fair components, there are
some cases where fairness in ORs can be satisfied. Such reasoning can be used in many
applications where long-term and short-term measures of fairness must be balanced. In the
case of feedback loops, where prior positive outcomes can improve the chances of future
positive outcomes, functional composition provides a valuable tool for determining at which
point(s) fairness must be maintained and determining whether the existing set of decision
procedures will adhere to these requirements.

Dependent Compositions

There are many settings in which each individual’s classifications are dependent on the
classifications of others. For example, if a company is interviewing a set of job candidates
in a particular order, accepting a candidate near the beginning of the list precludes any
subsequent candidates from even being considered. Thus, even if each candidate actually
considered is considered fairly in isolation, dependence between candidates can result in
highly unfair outcomes. For example, individuals who are socially connected to the company
through friends or family are likely to hear about job openings first and thus be considered
for a position before candidates without connections. We show that selecting a cohort
of people – online or offline – requires care to prevent dependencies from undermining
an independently fair selection mechanism. We address this in the offline case with two
randomized constructions, PermuteThenClassify and WeightedSampling. These algorithms
can be applied in the online case, even under adversarial ordering, provided the size of the
universe of individuals is known; when this is not known there is no solution.

Nuances of group-based definitions

Many fairness definitions in the literature seek to provide fairness guarantees based on group-
level statistical properties. For example, “Equal Opportunity” [6] requires that, conditioned
on qualification, the probability of a positive outcome is independent of protected attributes
such as race or gender. Group Fairness definitions have practical appeal in that they are
possible to measure and enforce empirically without reference to a task-specific similarity
metric.5 We extend our results to group fairness definitions and we also show that these
definitions do not always yield consistent signals under composition. In particular, we
show that the intersectional subgroup concerns (which motivate [11, 7]) are exacerbated by
composition. For example, an employer who uses group fairness definitions to ensure parity
with respect to race and gender may fail to identify that “parents” of particular race and
gender combinations are not treated fairly. Task-competitive composition exacerbates this
problem, as the employers may be prohibited from even collecting parental status information,
but their hiring processes may be composed with other systems which legitimately differentiate
based on parental status.

Finally, we also show how naïve strategies to mitigate these issues in composition may
result in learning a nominally fair solution that is clearly discriminating against a socially
meaningful subgroup not officially called out as “protected,” from which we conclude that
understanding the behavior of fairness definitions under composition is critical for choosing
which definition is meaningful in a given setting.

5 However, defining and measuring qualification may require care.
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Implications of Our Results

Our composition results have several practical implications. First, testing individual com-
ponents without understanding of the whole system will be insufficient to safely draw either
positive or negative conclusions about the fairness of the system. Second, composition
properties are an important point of evaluation for any definitions of fairness or fairness
requirements imposed by law or otherwise. Failing to take composition into account when
specifying a group-based fairness definition may result in a meaningless signal under com-
position, or worse may lead to ingraining poor outcomes for certain subgroups while still
nominally satisfying fairness requirements. Third, understanding of the salient outcomes on
which to measure and enforce fairness is critical to building meaningfully fair systems. Finally,
we conclude that there is significant potential for improvement in the mechanisms proposed
for fair composition and many settings in which new mechanisms could be proposed.

1.1 Related Work
Fairness retained under post-processing in the single-task one-shot setting is central in
[22, 19, 4]. The definition of individual fairness we build upon in this work was introduced by
Dwork et al. in [4]. Learning with oracle access to the fairness metric is considered by [5, 13].
A number of group-based fairness definitions have been proposed, and Ritov et al. provide a
combined discussion of the parity-based definitions in [21]. In particular, their work includes
discussion of Hardt et al.’s Equality of Opportunity and Equal Odds definitions and Kilbertus
et al.’s Counterfactual Fairness [6, 12]. Kleinberg et al. and Chouldechova independently
described several impossibility results related to simultaneously satisfying multiple group
fairness conditions in single classification settings [14],[2].

Two concurrent lines of work aiming to bridge the gap between individual and group
consider ensuring fairness properties for large numbers of large groups and their (sufficiently
large) intersections [11, 7]. While these works consider the one-shot, single-task setting, we
will see that group intersection properties are of particular importance under composition.
Two subsequent works in this general vein explore approximating individual fairness with
the help of an oracle that knows the task-specific metric [13, 5]. Two works also consider
how feedback loops can influence fair classification, and how interventions can help [8, 18].

Several empirical or observational studies document the effects of multiple task composi-
tion. For example, Lambrecht and Tucker study how intended gender-neutral advertising
can result in uneven delivery due to high demand for the attention of certain demographics
[17]. Datta et al. also document differences in advertising based on gender, although they
are agnostic as to whether the cause is due to multiple task composition or discriminatory
behavior on the part of the advertisers or platform [3]. Whether it is truly “fair” that, say,
home goods advertisers bid more highly for the attention of women than for the attention of
men, may be debatable, although there are clearly instances in which differential targeting is
justified, such as wen advertising maternity clothes. This actuarial fairness is the industry
practice, so we pose a number of examples in this framework and analyze the implications of
composition.

2 Preliminary Definitions and Assumptions

2.1 General Terminology
We refer to classifiers as being “fair in isolation” or “independently fair” to indicate that
with no composition, the classifier satisfies a particular fairness definition. In such cases
expectation and probability are taken over the randomness of the classification procedure
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and, for group fairness, selection of elements from the universe. We denote the universe of
individuals relevant for a task as U , and we generally use u, v, w ∈ U to refer to universe
elements. We generally consider binary classifiers in this work, and use pw to denote the
probability of assigning the positive outcome (or simply 1) to the element w for a particular
classifier. We generally write C : U × {0, 1}∗ → {0, 1}, where {0, 1}∗ represents the random
bits of the classifier. This allows us to comfortably express the probability of positive
classification Er[C(u)] as well as the output of the classifier under particular randomness
C(u, r). In this notation, pu = Er[C(u)]. When considering the distribution on outputs of a
classifier C, we use C̃ : U → ∆({0, 1}). When two or more classifiers or tasks are compared,
we either use a subscript i to indicate the ith classifier or task, or a prime (′) to indicate the
second classifier or task. For example {C,C ′}, {Ci|i ∈ [k]}, {T, T ′}, {Ti|i ∈ [k]}.

2.2 Individual Fairness

Throughout this work, our primary focus is on individual fairness, proposed by Dwork et
al in [4]. As noted above, a classification task is the problem of mapping individuals in a
universe to outcomes.

I Definition 1 (Individual Fairness [4]). Let d : ∆(O) × ∆(O) → [0, 1] denote the total
variation distance on distributions over O6. Given a universe of individuals U , and a task-
specific metric D for a classification task T with outcome set O, a randomized classifier
C : U × {0, 1}∗ → O, such that C̃ : U → ∆(O), is individually fair if and only if for all
u, v ∈ U , D(u, v) ≥ d(C̃(u), C̃(v)).

Note that when |O| = 2 we have d(C̃(u), C̃(v)) = |Er[C(u)]− Er[C(v)]| = |pu − pv|. In
several proofs we will rely on the fact that it is possible to construct individually fair classifiers
with particular distance properties (see Lemma 16 and corollaries in the Appendix).

2.3 Group Fairness

In principle, all our individual fairness results extend to group fairness definitions; however,
there are a number of technicalities and issues unique to group fairness definitions, which
we discuss in Section 6. Group fairness is often framed in terms of protected attributes A,
such as sex, race, or socio-economic status, while allowing for differing treatment based on a
set of qualifications Z, such as, in the case of advertising, the willingness to buy an item.
Conditional Parity, a general framework proposed in [21] for discussing these definitions,
conveniently captures many of the popular group fairness definitions popular in the literature
including Equal Odds and Equal Opportunity [6], and Counterfactual Fairness [16].

I Definition 2 (Conditional Parity [21]). A random variable x satisfies parity with respect to
a conditioned on z = z if the distribution of x | (a, {z = z}) is constant in a:
Pr[x = x | (a = a, z = z)] = Pr[x = x | (a = a′, z = z)] for any a, a′ ∈ A. Similarly, x
satisfies parity with respect to a conditioned on z (without specifying a value of z) if it
satisfies parity with respect to a conditioned on z = z for all z ∈ Z. All probabilities are over
the randomness of the prediction procedure and the selection of elements from the universe.

6 [4] also considered other notions of distributional distance.
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3 Multiple-Task Composition

First, we consider the problem of composition of classifiers for multiple tasks where the
outcome for more than one task is decided. Multiple Task Fairness, defined next, requires
fairness to be enforced independently and simultaneously for each task.

I Definition 3 (Multiple Task Fairness). For a set T of k tasks with metrics D1, . . . ,Dk, a
(possibly randomized) system S : U × r → {0, 1}k, which assigns outputs for task i in the
ith coordinate of the output, satisfies multiple task fairness if for all i ∈ [k] and all u, v ∈ U
Di(u, v) ≥ |E[Si(u)]− E[Si(v)]| where E[Si(u)] is the expected outcome for the ith task in
the system S and where the expectation is over the randomness of the system and all its
components.

3.1 Task-Competitive Composition
We now pose the relevant problem for multiple task fairness: competitive composition.

I Definition 4 (Single Slot Composition Problem). A (possibly randomized) system S is said
to be a solution to the single slot composition problem for a set of k tasks T with metrics
D1, . . . ,Dk, if ∀u ∈ U , S assigns outputs for each task {xu,1, . . . , xu,k} ∈ {0, 1}k such that∑
i∈[k] xu,i ≤ 1, and ∀i ∈ [k], and ∀ u, v ∈ U , Di(u, v) ≥ |E[xu,i]− E[xv,i]|.

The single slot composition problem captures the scenario in which an advertising platform
may have a single slot to show an ad but need not show any ad. Imagine that this advertising
system only has two types of ads: those for jobs and those for household goods. If a person
is qualified for jobs and eager and able to purchase household goods, the system must pick
at most one of the ads to show. In this scenario, it may be unlikely that the advertising
system would choose to show no ads, but the problem specification does not require that any
positive outcome is chosen.

To solve the single-slot composition problem we must build a system which chooses at
most one of the possible tasks so that fairness is preserved simultaneously for each task, across
all elements in the universe. Clearly if classifiers for each task may independently and fairly
assign outputs without interference, the system as a whole satisfies multiple task fairness.
However, most systems will require trade-offs between tasks. Consider a naïve solution to
the single-slot problem for ads: each advertiser chooses to bid on each person with some
probability, and if both advertisers bid for the same person, the advertiser with the higher
bid gets to show her ad. Formally, we define a tie-breaking function and Task-Competitive
Composition:

I Definition 5 (Tie-breaking Function). A (possibly randomized) tie-breaking function B :
U × {0, 1}∗ × {0, 1}k → [k] ∪ {0} takes as input an individual w ∈ U and a k−bit string xw
and outputs the index of a “1” in xw if such an index exists and 0 otherwise.

For notational convenience, in the case of two tasks T and T ′, we use Bw(T ) to refer
to the probability that B chooses task T for element w if both T and T ′ return positive
classifications, and analogously define Bw(T ′).

I Definition 6 (Task-Competitive Composition). Consider a set T of k tasks, and a tie-
breaking function as defined above. Given a set C of classifiers for the set of tasks, define
yw = {yw,1, . . . , yw,k} where yw,i = Ci(w). The task-competitive composition of the set C is
defined as y∗w = B(w, yw) for all w ∈ U .



C. Dwork and C. Ilvento 33:7

Definition 6 yields a system S defined by S(w) = 0k if yw = 0k and S(w) = eB(w,yw) (the
B(w, yw) basis vector of dimension k) if yw 6= 0k. We evaluate its fairness by examining the
Lipschitz requirements |Pr[y∗u = i]− Pr[y∗v = i]| ≤ Di(u, v) for all u, v ∈ U and i ∈ [k].

Task-competitive composition can reflect many scenarios other than advertising, which
are discussed in greater detail in the full paper. Note that the tie-breaking function need not
encode the same logic for all individuals and may be randomized. We start by introducing
Lemma 7, which handles the simple case for a strict tie-breaking function for all individuals,
and extend to all tie-breaking functions in Theorem 8.

I Lemma 7. For any two tasks T and T ′ such that the metrics for each task (D and
D′ respectively) are not identical and are non-trivial7 on a universe U , and if there is a
strict preference for T , that is Bw(T ) = 1 ∀w ∈ U , then there exists a pair of classifiers
C = {C,C ′} which are individually fair in isolation but when combined with task-competitive
composition violate multiple task fairness.

Proof. We construct a pair of classifiers C = {C,C ′} which are individually fair in isolation
for the tasks T and T ′, but do not satisfy multiple task fairness when combined with task-
competitive composition with a strict preference for T for all w ∈ U . Task-competitive
composition ensures that at most one task can be classified positively for each element, so
our strategy is to construct C and C ′ such that the distance between a pair of individuals is
stretched for the ‘second’ task.

By non-triviality of D, there exist u, v such that D(u, v) 6= 0. Fix such a pair u, v and let
pu denote the probability that C assigns 1 to u, and analogously pv, p′u, p′v. We use these
values as placeholders, and show how to set them to prove the lemma.

Because of the strict preference for T , the probabilities that u and v are assigned 1 for
the task T ′ are

Pr[S(u)T ′ = 1] = (1− pu)p′u

Pr[S(v)T ′ = 1] = (1− pv)p′v
The difference between them is

Pr[S(u)T ′ = 1]− Pr[S(v)T ′ = 1] = (1− pu)p′u − (1− pv)p′v

= p′u − pup′u − p′v + pvp
′
v

= p′u − p′v + pvp
′
v − pup′u

Notice that if D′(u, v) = 0, which implies that p′u = p′v, and pu 6= pv, then this quantity is
non-zero, giving the desired contradiction for all fair C ′ and any C that assigns pu 6= pv,
which can be constructed per Corollary 18.

However, if D′(u, v) 6= 0, take C ′ such that |p′u − p′v| = D′(u, v) and denote the distance
|p′u − p′v| = m′, and without loss of generality, assume that p′u > p′v and pu < pv,

Pr[S(u)T ′ = 1]− Pr[S(v)T ′ = 1] = m′ + pvp
′
v − pup′u

Then to violate fairness for T ′, it suffices to show that pvp′v > pup
′
u. Write pv = αpu where

α > 1,

αpup
′
v > pup

′
u

7 A metric D is said to be non-trivial if there exists at least one pair, u, v ∈ U such that D(u, v) /∈ {0, 1}.
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αp′v > p′u

Thus it is sufficient to show that we can choose pu, pv such that α > p′
u

p′
v
. Constrained only

by the requirements that pu < pv and |pu − pv| ≤ D(u, v), we may choose pu, pv to obtain
an arbitrarily large α = pv

pu
by Corollary 19. Thus there exist a pair of fair classifiers C,C ′

which when combined with strictly ordered task-competitive composition violate multiple
task fairness. J

I Theorem 8. For any two tasks T and T ′ with nontrivial metrics D and D′ respectively,
there exists a set C of classifiers which are individually fair in isolation but when combined
with task-competitive composition violate multiple task fairness for any tie-breaking function.

Proof. Consider a pair of classifiers C,C ′ for the two tasks. Let pu denote the probability
that C assigns 1 to u, and analogously let pv, p′u, p′v denote this quantity for the other classifier
and element combinations. As noted before, for convenience of notation, write Bu(T ) to
indicate the preference for each (element, outcome) pair, that is the probability that given
the choice between T or the alternative outcome T ′, T is chosen. Note that in this system,
for each element Bu(T ) + Bu(T ′) = 1.

Note that if Bw(T ) = 1 ∀w ∈ U or Bw(T ′) = 1 ∀w ∈ U , the setting is exactly as described
in Lemma 7. Thus we need only argue for the two following cases:
1. Case Bu(T ) = Bv(T ) 6= 1. We can write an expression for the probability that each

element is assigned to task T :

Pr[S(u)T = 1] = pu(1− p′u) + pup
′
uBu(T )

Pr[S(v)T = 1] = pv(1− p′v) + pvp
′
vBv(T )

So the difference in probabilities is

Pr[S(u)T = 1]− Pr[S(v)T = 1] = pu(1− p′u) + pup
′
uBu(T )− pv(1− p′v)− pvp′vBv(T )

= pu − pv + pvp
′
v − pup′u + pup

′
uBu(T )− pvp′vBv(T )

= pu − pv + (pvp′v − pup′u)(1− Bu(T ))

By our assumption that Bu(T ) 6= 1, we proceed analogously to the proof of Lemma 7
choosing C ′ such that pvp′v > pup

′
u and choosing C to ensure that pu − pv = D(u, v) to

achieve unfairness for T .
2. Case Bu(T ) 6= Bv(T ). Assume without loss of generality that

Bu(T ) 6= 1. Recall the difference in probability of assignment of 1 for the first task in
terms of B:

= pu − pv + pvp
′
v(1− Bv(T ))− pup′u(1− Bu(T ))

Choose C such that pu − pv = D(u, v) (or if there is no such individually fair C, choose
the individually fair C which maximizes the distance between u and v). So it suffices to
show that we can select C ′ such that pvp′v(1− Bv(T ))− pup′u(1− Bu(T )) > 0. As before,
write pu = αpv where α > 1. We require:

pvp
′
v(1− Bv(T )) > αpvp

′
u(1− Bu(T ))

p′v(1− Bv(T )) > αp′u(1− Bu(T ))
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Writing β = (1− Bv(T ))/(1− Bu(T )) (recall that Bu(T ) 6= 1 so there is no division by
zero), we require

p′vβ > αp′u

β/α > p′u/p
′
v

Constrained only by |p′u−p′v| ≤ D′(u, v), we can choose p′u, p′v to be any arbitrary positive
ratio per Corollary 19, thus we can select a satisfactory C ′ to exceed the allowed distance.

Thus we have shown that for the cases where the tie-breaking functions are identical for u
and v and when the tie-breaking functions are different, there always exists a pair of classifiers
C,C ′ which are fair in isolation, but when combined in task-competitive compositiondo not
satisfy multiple task fairness which completes the proof. J

The intuition for unfairness in such a strictly ordered composition is that each task
inflicts its preferences on subsequent tasks, and this intuition extends to more complicated
tie-breaking functions and individuals with positive distances in both tasks. Our intuition
suggests that the situation in Theorem 8 is not contrived and occurs often in practice,
and moreover that small relaxations will not be sufficient to alleviate this problem, as the
phenomenon has been observed empirically [3, 17, 15]. We include a small simulated example
in the Appendix of the full version to illustrate the potential magnitude and frequency of
such fairness violations.

3.2 Simple Fair Multiple-task Composition
Fortunately, there is a general purpose mechanism for the single slot composition problem
which requires no additional information in learning each classifier and no additional coordin-
ation between the classifiers.8 The rough procedure for RandomizeThenClassify (Algorithm 1)
is to fix a fair classifier for each task, fix a probability distribution over the tasks, sample a task
from the distribution, and then run the fair classifier for that task. RandomizeThenClassify
has several nice properties: it requires no coordination in the training of the classifiers, it
preserves the ordering and relative distance of elements by each classifier, and it can be
implemented by a platform or other third party, rather than requiring the explicit cooperation
of all classifiers. The primary downside of RandomizeThenClassify is that it reduces allocation
(the total number of positive classifications) for classifiers trained with the expectation of
being run independently.

4 Functional Composition

In Functional Composition, the outputs of multiple classifiers are combined through logical
operations to produce a single output for a single task. A significant consideration in
functional composition is determining which outcomes are relevant for fairness and at which
point(s) fairness should be measured. For example, (possibly different) classifiers for admitting
students to different colleges are composed to determine whether the student is accepted to
at least one college. In this case, the function is “OR”, the classifiers are for the same task,
and hence conform to the same metric, and this is the same metric one might use for defining

8 See section Appendix Section 6.4 in the full version for another mechanism which requires coordination
between the classifiers.
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fairness of the system as a whole. Alternatively, the system may compose the classifier for
admission with the classifier for determining financial aid. In this case the function is “AND”,
the classifiers are for different tasks, with different metrics, and we may use scholastic ability
or some other appropriate output metric for evaluating overall fairness of the system.

4.1 Same-task Functional Composition
In this section, we consider the motivating example of college admissions. When secondary
school students apply for college admission, they usually apply to more than one institution
to increase their odds of admission to at least one college. Consider a universe of students U
applying to college in a particular year, each with intrinsic qualification qu ∈ [0, 1], ∀u ∈ U .
We define D(u, v) = |qu − qv| ∀u, v ∈ U. C is the set of colleges and assume each college
Ci ∈ C admits students fairly with respect to D. The system of schools is considered OR-fair
if the indicator variable xu, which indicates whether or not student u is admitted to at least
one school, satisfies individual fairness under this same metric. More formally,

I Definition 9 (OR Fairness). Given a (universe, task) pair with metric D, and a set of
classifiers C we define the indicator

xu =
{

1 if
∑
Ci∈C Ci(x) ≥ 1

0 otherwise

which indicates whether at least one positive classification occurred. Define x̃u = Pr[xu =
1] = 1−

∏
Ci∈C(1− Pr[Ci(u) = 1]). Then the composition of the set of classifiers C satisfies

OR Fairness if D(u, v) ≥ d(x̃u, x̃v) for all u, v ∈ U .

The OR Fairness setting matches well to tasks where individuals primarily benefit from
one positive classification for a particular task.9 As mentioned above, examples of such tasks
include gaining access to credit or a home loan, admission to university, access to qualified
legal representation, access to employment, etc.10 Although in some cases more than one
acceptance may have positive impact, for example a person with more than one job offer
may use the second offer to negotiate a better salary, the core problem is (arguably) whether
or not at least one job is acquired.

Returning to the example of college admissions, even with the strong assumption that
each college fairly evaluates its applicants, there are still several potential sources of unfairness
in the resulting system. In particular, if students apply to different numbers of colleges or
colleges with different admission rates, we would expect that their probabilities of acceptance
to at least one college will be different. The more subtle scenario from the perspective of
composition is when students apply to the same set of colleges.

Even in this restricted setting, it is still possible for a set of classifiers for the same task
to violate OR fairness. The key observation is that for elements with positive distance,
the difference in their expectation of acceptance by at least one classifier does not diverge
linearly in the number of classifiers included in the composition. As the number of classifiers
increases, the probabilities of positive classification by at least one classifier for any pair
eventually converge. However, in practice, we expect students to apply to perhaps five or 10
colleges, so it is desirable to characterize when small systems are robust to such composition.

9 We may conversely define NOR Fairness to take ¬xu, and this setting more naturally corresponds to
cases where not being classified as positive is desirable.

10 [1] considers what boils down to AND-fairness for Equal Opportunity and presents an excellent collection
of evocative example scenarios.
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I Theorem 10. For any (universe, task) pair with a non-trivial metric D, there exists a set
of individually fair classifiers C which do not satisfy OR Fairness, even if each element in U
is classified by all Ci ∈ C.

The proof of Theorem 10 follows from a straightforward analysis of the difference in
probability of at least one positive classification.11 The good news is that there exist
non-trivial conditions for sets of small numbers of classifiers where OR Fairness is satisfied:

I Lemma 11. Fix a set C of fair classifiers, and let xw for w ∈ U be the indicator variable
as in Definition 9. If E[xw] ≥ 1/2 for all w ∈ U , then the set of classifiers C ∪ {C ′} satisfies
OR fairness if C ′ satisfies individual fairness under the same metric and Pr[C ′(w) = 1] ≥ 1

2
for all w ∈ U .

This lemma is useful for determining that a system is free from same-task divergence, as
it is possible to reason about an “OR of ORs”, and more generally an “OR” of any fair
components of sufficient weight.

Functional composition can also be used to reason about settings where classification
procedures for different tasks are used to determine the outcome for a single task. For example,
in order to attend a particular college, a student must be admitted and receive sufficient
financial aid to afford tuition and living expenses. Financial need and academic qualification
clearly have different metrics, and in such settings, a significant challenge is to understand
how the input metrics relate to the relevant output metric. Without careful reasoning about
the interaction between these tasks, it is very easy to end up with systems which violate
individual fairness, even if they are constructed from individually fair components. (See
Section 4.2 in the full version for more details.)

5 Dependent Composition

Thus far, we have restricted our attention to the mode of operation in which classifiers
act on the entire universe of individuals at once and each individual’s outcome is decided
independently. In practice, however, this is an unlikely scenario, as classifiers may be acting
as a selection mechanism for a fixed number of elements, may operate on elements in arbitrary
order, or may operate on only a subset of the universe. In this section, we consider the case
in which the classification outcomes received by individuals are not independent. Slightly
abusing the term “composition,” these problems can be viewed as a composition of the
classifications of elements of the universe. We roughly divide these topics into Cohort
Selection problems, when a set of exactly n individuals must be selected from the universe,
and Universe Subset problems, when only a subset of the relevant universe for the task
is under the influence of the classifier we wish to analyze or construct. Within these two
problems we consider several relevant settings:

Online versus offline: Advertising decisions for online ads must be made immediately upon
impression and employers must render employment decisions quickly or risk losing out on
potential employees or taking too long to fill a position.

Random versus adversarial ordering: The order in which individuals apply for an open job
may be influenced by their social connections with existing employees, which impacts
how quickly they hear about the job opening.

11 See Appendix Section 4 in the full version for the complete proof.
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Known versus unknown subset or universe size: An advertiser may know the average num-
ber of interested individuals who visit a website on a particular day, but be uncertain on
any particular day of the exact number.

Constrained versus unconstrained selection: In many settings there are arbitrary con-
straints placed on selection of individuals for a task which are unrelated to the qualification
or metric for that task. For example, to cover operating costs, a college may need at least
n/2 of the n students in a class to be able to pay full tuition.

In dependent composition problems, it is important, when computing distances between
distributions over outcomes, to pay careful attention to the source of randomness. Taking
inspiration from the experiment setup found in many cryptographic definitions, we formally
define two problems, Universe Subset Classification and Cohort Selection, (included in
Definitions 13 and 14 in the Appendix). In particular, it is important to understand the
randomness used to decide an ordering or a subset, as once an ordering or subset is fixed,
reasoning about fairness is impossible, as a particular individual may be arbitrarily included
or excluded.

5.1 Basic Offline Cohort Selection
First we consider the simplest version of the cohort selection problem: choosing a cohort
of n individuals from the universe U when the entire universe is known and decisions are
made offline. A simple solution is to choose a permutation of the elements in U uniformly at
random, and then apply a fair classifier C until n are selected or selecting the last few elements
from the end of the list if n have not yet been selected. With some careful bookkeeping, we
show that this mechanism is individually fair for any individually fair input classifier. (See
Algorithms 2 and 3 in the Appendix below; a complete analysis is included in Appendix
Section 6 in the full version.)

5.2 More complicated settings
In this extended abstract, we omit a full discussion of the more complicated dependent
composition scenarios, but briefly summarize several settings to build intuition.

I Theorem 12. If the ordering of the stream is adversarial, but |U | is unknown, then there
exists no solution to the online cohort selection problem.

The intuition for the proof follows from imagining that a fair classification process exists for
an ordering of size n and realizing that this precludes fair classification of a list of size n+ 1,
as the classification procedure cannot distinguish between the two cases.

Constrained cohort selection

Next we consider the problem of selecting a cohort with an external requirement that some
fraction of the selected set is from a particular subgroup. That is, given a universe U ,
and p ∈ [0, 1], and a subset A ⊂ U , select a cohort of n elements such that at least a p
fraction of the elements selected are in A. This problem captures situations in which external
requirements cannot be ignored. For example, if a certain budget must be met, and only
some members of the universe contribute to the budget, or if legally a certain fraction of
people selected must meet some criterion (as in, demographic parity). In the full version, we
characterize a broad range of settings where the constrained cohort selection problem cannot
be solved fairly.
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To build intuition, suppose the universe U is partitioned into sets A and B, where
n/2 = |A| = |B|/5. Suppose further that the populations have the same distribution on
ability, so that the set B is a “blown up” version of A, meaning that for each element u ∈ A
there are 5 corresponding elements Vu = {vu,1, ..., vu,5} such that D(u, vu,i) = 0, 1 ≤ i ≤ 5,
∀u, u′ ∈ A Vu ∩ Vu′ = ∅, and B = ∪u∈AVu. Let p = 1

2 . The constraint requires all of A to be
selected; that is, each element of A has probability 1 of selection. In contrast, the average
probability of selection for an element of B is 1

5 . Therefore, there exists v ∈ B with selection
probability at most 1/5. Letting u ∈ A such that v ∈ Vu, we have D(u, v) = 0 but the
difference in probability of selection is at least 4

5 . We give a more complete characterization
of the problem and impossibilities in the full version in Appendix Section 6.3 .

6 Extensions to Group Fairness

In general, the results discussed above for composition of individual fairness extend to group
fairness definitions; however, there are several issues and technicalities unique to group
fairness definitions which we now discuss.

Technicalities

Consider the following simple universe: for a particular z ∈ Z, group B is unimodal, having
only elements with medium qualification qm, while group A is bimodal, with half of its
elements having low qualification ql and half having high qualification qh. Choosing ph = 1,
pm = .75, and pl = .5 satisfies Conditional Parity for a single application. However, for the
OR of two applications, the squares diverge (.9375 6= .875), violating conditional parity (see
Figure 1). Note, however, that all of the individuals with z = z have been drawn closer
together under composition, and none have been pulled further apart. This simple observation
implies that in some cases we may observe failures under composition for conditional parity,
even when individual fairness is satisfied. In order to satisfy Conditional Parity under
OR-composition, the classifier could sacrifice accuracy by treating all individuals with z = z

equally. However, this necessarily discards useful information about the individuals in A to
satisfy a technicality.

Subgroup Subtleties

There are many cases where failing to satisfy conditional parity under task-competitive
composition is clearly a violation of our intuitive notion of group fairness. However, conditional
parity is not always a reliable test for fairness at the subgroup level under composition. In
general, we expect conditional parity based definitions of group fairness to detect unfairness
in multiple task compositions reasonably well when there is an obvious interaction between
protected groups and task qualification, as observed empirically in [17] and [3]. For example,
let’s return to our advertising example where home-goods advertisers have no protected
set, but high-paying jobs have gender as a protected attribute. Under composition, home-
goods out-bidding high-paying jobs ads for women will clearly violate the conditional parity
condition for the job ads (see Figure 2).

However, suppose that, in response to gender disparity caused by task-competitive
composition, classifiers iteratively adjust their bids to try to achieve Conditional Parity.
This may cause them to learn themselves into a state that satisfies Conditional Parity with
respect to gender, but behaves poorly for a socially meaningful subgroup (see Figure 3.) For
example, if home goods advertisers aggressively advertise to women who are new parents
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Figure 1 An illustration of the shift in groups from a single classification to the OR of two
applications of the same classifier. Although the two groups originally had the same mean probability
of positive classification, this breaks down under OR composition.

Figure 2 A. When the two tasks are related, one will ‘claim’ a larger fraction of one gender
than another, leading to a smaller fraction of men remaining for classification in the other task
(shown in blue). Conditional parity will detect this unfairness. B. When the tasks are unrelated,
one task may ‘claim’ the same fraction of people in each group, but potentially select a socially
meaningful subgroup, eg parents. Conditional parity will fail to detect this subgroup unfairness,
unless subgroups, including any subgroups targeted by classifiers composed with, are explicitly
accounted for.

(because their life-time value (Z) to the advertiser is the highest of all universe elements),
then a competing advertiser for jobs, noticing that its usual strategy of recruiting all people
with skill level z′ = z′ equally is failing to reach enough women, bids more aggressively on
women. By bidding more aggressively, the advertiser increases the probability of showing ads
to women (for example by outbidding low-value competition), but not to women who are bid
for by the home goods advertiser (a high-value competitor), resulting in a high concentration
of ads for women who are not mothers, while still failing to reach women who are mothers.
Furthermore, the systematic exclusion of mothers from job advertisements can, over time,
be even more problematic, as it may contribute to the stalling of careers. In this case, the
system discriminates against mothers without necessarily discriminating against fathers.

Although problematic (large) subgroup semantics are part of the motivation for [11, 7] and
exclusion of subgroups is not only a composition problem, the added danger in composition
is that the features describing this subset may be missing from the feature set of the jobs
classifier, rendering the protections proposed in [11] and [7] ineffective. In particular, we
expect that sensitive attributes like parental status are unlikely to appear (or are illegal to
collect) in employment-related training or testing datasets, but may be legitimately targeted
by other competing advertisers.
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(a) Initial equal targeting of qualified men and
women results in violation of conditional parity, as
there are unequal rates of ads shown (blue).

(b) By increasing the targeting of women, the jobs
advertiser “fixes” conditional parity at the coarse
group level.

(c) At the subgroup level, it’s clear that the lack
of conditional parity is due to “losing” all of the
new parent women to the home-goods advertiser.

(d) New targeting strategy increases ads shown to
non new-parent women, but continues to exclude
new parent women.

Figure 3 Home-goods advertisers aggressively target mothers, out-bidding the jobs advert-
iser. When the jobs advertiser bids more aggressively on “women” (b) the overall rate of ads
shown to “women” increases, but mothers may still be excluded (d), so Pr[ad |qualified, woman] >

Pr[ad | qualified, mother].
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side of RandomizeThenClassify is that it drastically reduces allocation (the total number of
positive classifications) for classifiers trained with the expectation of being run independently.
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Algorithm 1 RandomizeThenClassify.
Input: universe element u ∈ U , set of fair classifiers C (possibly for distinct tasks)
operating on U , probability distribution over tasks X ∈ ∆(C)
x← 0|C|
Ct ∼ X
if Ct(u) = 1 then
xt = 1

end if
return x

Algorithm 2 PermuteThenClassify.
Input: n← the number of elements to select
C ← a classifier C : U × {0, 1}∗ → {0, 1}
π ∼ S|U | a random permutation from the symmetric group on |U |
L← π(U) An ordered set of elements
M ← ∅
while |M | < n: do
u← pop(L)
if C(u) = 1 then
M ←M ∪ {u}

end if
if n− |M | ≥ |L| then
// the end condition
M ←M ∪ {u}

end if
end while
return M

A.2 Algorithms for Cohort Selection
PermuteThenClassify, Algorithm 2, works through a list initialized to a random permutation
π(U), classifying elements one at a time and independently until either (1) n elements have
been selected or (2) the number of remaining elements in the list equals the number of
remaining spots to be filled. Case (2) is referred to as the “end condition”. Elements in the
“end condition” are selected with probability 1.

WeightedSampling, Algorithm 3, chooses sets of elements with probability proportional to
their weight under a fair classifier. This prevents the arbitrary behavior of the end condition
in case the classifier is poorly tuned for the specific number of desired elements.

A.3 Universe Subset Problems
I Definition 13 (Universe Subset Classification Problem). Given a universe U , let Y be a
distribution over subsets of U . Let X = {X (V )}V⊆U be a family of distributions, one
for each subset of U , where X (V ) is a distribution on permutations of the elements of
V . Let Π(2U ) denote the set of permutations on subsets of U . Formally, for a system
S : Π(2U )× {0, 1}∗ → U∗, we define Experiment(S, X , Y, u) as follows:
1. Choose r ∼ {0, 1}∗

2. Choose V ∼ Y
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Algorithm 3 WeightedSampling.
Input: n← the number of elements to select
C ← a classifier C : U × r → {0, 1}
L← the set of all subsets of U of size n
for l ∈ L do
w(l)←

∑
u∈l E[C(u)] // set the weight of each set

Define X ∈ ∆(L) such that ∀l ∈ L, the weight of l under X is w(l)∑
l′∈L

w(l′)

M ∼ X // Sample a set of size n according to X
end for
return M

3. Choose π ∼ X (V )
4. Run S on π with randomness r, and output 1 if u is selected (positively classified).

The system S is individually fair and a solution to the Universe Subset Classification
Problem for a particular (X ,Y) pair if for all u, v ∈ U ,

|E[Experiment(S,X ,Y, u)]− E[Experiment(S,X ,Y, v)]| ≤ D(u, v)

Note that for any distinct individuals u, v ∈ U , in any given run of the experiment V may
contain u, v, neither or both.

I Definition 14 (Cohort Selection Problem). The Cohort Selection Problem is identical to
the Universe Subset Classification Problem, except the system is limited to choosing exactly
n individuals.

I Lemma 15. Given an instance of the universe subset classification problem (Definition
13) where Y assigns positive weight to all elements w ∈ U , the following procedure applied
to any individually fair classifier C which solely controls outcomes for a particular task will
result in fair classification under the input distribution Y.
Procedure: for each w ∈ U , let qw denote the probability that w appears in V . Let
qmin = minw qw. For each element w ∈ V , with probability qmin/qw classify w normally,
otherwise output the default for no classification.

Proof. Let u = argminw(qw). Then u will be classified positively with probability puqmin
where probability is taken over Y and C. All other elements v ∈ V will be classified positively
with probability qv(qmin/qv)pv = pvqmin. As positive classification by C is the only way to
get a positive outcome for the task, reasoning about |pv − pu| is sufficient to ensure fairness.
Therefore, if |pv−pu| ≤ D(u, v), then the distance under this procedure is also ≤ D(u, v). J

A.4 Construction of Fair Classifiers
I Lemma 16. Let V be a (possibly empty) subset of U . If there exists a classifier C :
V ×{0, 1}∗ → {0, 1} such that D(u, v) ≥ d(C̃(u), C̃(v)) for all u, v ∈ V , then for any x ∈ U\V
there exists classifier C ′ : V ∪ {x} × {0, 1}∗ → {0, 1} such that D(u, v) ≥ d(C̃(u), C̃(v)) for
all u, v ∈ U , which has identical behavior to C on V .

Proof. For V = ∅, any value px suffices to fairly classify x. For |V | = 1, choosing any px
such that |pv − px| ≤ D(v, x) for v ∈ V suffices.
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Algorithm 4 FairAddition(D, V, pt, C, x).
Input: metric D for universe U , a subset V ⊂ U , target probability pt, an individually
fair classifier C : V × {0, 1}∗ → {0, 1}, a target element x ∈ U\V to be added to C.
Initialize L← V

p̂x ← pt
for l ∈ L do
dist← D(l, x)
if dist < pl − p̂x then
p̂x ← pl − dist

else if dist < p̂x − pl then
p̂x ← pl + dist

end if
end for
return p̂x

For |V | ≥ 2, apply the procedure outlined in Algorithm 4 taking pt to be the probability
of positive classification of x’s nearest neighbor in V under C. As usual, we take pw to be
the probability that C positively classifies element w.

Notice that Algorithm 4 only modifies p̂x, and that p̂x is only changed if a distance
constraint is violated. Thus it is sufficient to confirm that on each modification to p̂x,
no distance constraints between x and elements in the opposite direction of the move are
violated.

Without loss of generality, assume that p̂x is decreased to move within an acceptable
distance of u, that is p̂x ≥ pu. It is sufficient to show that for all v such that pv > p̂x that
no distances are violated. Consider any such v. By construction p̂x − pu = D(u, x), and
pv − pu ≤ D(u, v). From triangle inequality, we also have that D(u, v) ≤ D(u, x) +D(x, v).
Substituting, and using that pv ≥ p̂x ≥ pu:

D(u, v) ≤ D(u, x) +D(x, v)

D(u, v)−D(u, x) ≤ D(x, v)

D(u, v)− (p̂x − pu) ≤ D(x, v)

(pv − pu)− (p̂x − pu) ≤ D(u, v)− (p̂x − pu) ≤ D(x, v)

pv − p̂x ≤ D(x, v)

Thus the fairness constraint for x and v is satisfied, and C ′ is an individually fair classifier
for V ∪ {x}. J

Lemma 16 allows us to build up a fair classifier in time O(|U |2) from scratch, or to add
to an existing fair classifier for a subset. We state several useful corollaries:

I Corollary 17. Given a subset V ⊂ U and a classifier C : V × {0, 1}∗ → {0, 1} such
that D(u, v) ≥ d(C̃(u), C̃(v)) for all u, v ∈ V , there exists an individually fair classifier
C ′ : U ×{0, 1}∗ → {0, 1} which is individually fair for all elements u, v ∈ U and has identical
behavior to C on V .

Corollary 17 follows immediately from applying Algorithm 4 to each element of U\V in
arbitrary order.
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I Corollary 18. Given a metric D, for any pair u, v ∈ U , there exists an individually fair
classifier C : U × {0, 1}∗ → {0, 1} such that d(C̃(u), C̃(v)) = D(u, v).

Corollary 18 follows simply from starting from the classifier which is fair only for a particular
pair and places them at their maximum distance under D and then repeatedly applying
Algorithm 4 to the remaining elements of U . From a distance preservation perspective, this
is important; if there is a particular ‘axis’ within the metric where distance preservation is
most important, then maximizing the distance between the extremes of that axis can be very
helpful for preserving the most relevant distances.

I Corollary 19. Given a metric D and α ∈ R+, for any pair u, v ∈ U , there exists an
individually fair classifier C : U × {0, 1}∗ → {0, 1} such that pu/pv = α, where pu = E[C(u)]
and likewise pv = E[C(v)].

Corollary 19 follows from choosing pu/pv = α without regard for the difference between pu
and pv, and then adjusting. Take β|pv − pu| = D(u, v), and choose p̂u = βpu and p̂v = βpv
so that |βpv − βpu| = β|pv − pu| ≤ D(u, v), but the ratio βpu

βpv
= pu

pv
= α remains unchanged.
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strings. Given a color i ∈ [`], we write #iu for the number of coordinates j ∈ [n] for which
uj = i. The vector κ = (#1u, . . . ,#`u) ∈ N` is referred to as the histogram of u. In general,
if κ ∈ N`+ satisfies κ1 + · · ·+ κ` = n (so κ is a composition of n), we define the associated
multislice to be

Uκ = {u ∈ [`]n : #iu = κi for all i ∈ [`]}.

The terminology here is inspired by the well-studied case when ` = 2, in which case Uκ is a
Hamming slice of the Boolean cube. We also remark that when ` = n and κ = (1, 1, . . . , 1),
the set Uκ is the set of all permutations of [n].

1.1 The random transposition Markov chain
The symmetric group Sn acts on strings u ∈ [`]n in the natural way, by permuting coordinates:
(uσ)j = uσ(j) for σ ∈ Sn. This action preserves each multislice Uκ. This paper is concerned
with the Markov chain on Uκ generated by random transpositions. Let Trans(n) ⊆ Sn denote
the set of transpositions on n coordinates. We will specifically be interested in the reversible,
discrete-time Markov chain on state space Uκ in which a step from u ∈ Uκ consists of moving
to uτ , where τ ∼ Trans(n) is chosen uniformly at random. (We always use boldface to
denote random variables.) One also has the associated Schreier graph, with vertex set Uκ
and edges {u, uτ} for all u ∈ Uκ and τ ∈ Trans(n). Since this graph is regular, it follows that
the invariant distribution for the Markov chain is the uniform distribution on Uκ. We will
denote this distribution by πκ, or just π if κ is clear from context.

1.2 Log-Sobolev inequalities
One of the most powerful ways to study mixing time and “small-set expansion” in Markov
chains is through log-Sobolev inequalities (see, e.g., [25, 11]). For a subset A ⊆ Uκ, define its
conductance (or expansion) to be

Φ[A] = Pr
u∼A

τ∼Trans(n)

[uτ 6∈ A].

Sets A with small conductance are natural bottlenecks for mixing in the Markov chain. An
example when ` = 2 and κ = (n/2, n/2) is the “dictator” set A = {u : u1 = 1}. It has
expansion Φ[A] = 1

n−1 , and indeed, if we start the random walk from a string u with u1 = 1,
it will take about n/2 steps on average before there’s even a chance that u1 will change
from 1.

One feature of this example is that the set A is “large”; its (fractional) volume,

vol(A) = |A|/|Uκ| = Pr
u∼π

[u ∈ A],

is bounded below by a constant. The “small-set expansion” phenomenon [28, 37, 47] (occurring
most famously in the standard random walk on the Boolean cube {0, 1}n) refers to the
possibility that all “small” sets have high conductance. Intuitively, if small-set expansion
holds for a Markov chain, then a random walk with a deterministic starting point should
mix rapidly in its early stages, with the possibility for slowdown occurring only when the
chain is somewhat close to mixed.

A log-Sobolev inequality for the Markov chain is one way that such a phenomenon may
be captured. In particular, if the log-Sobolev constant for the transposition chain on Uκ is
%κ, it follows that

Φ[A] ≥ 1
2%κ · ln(1/vol(A)) for all nonempty subsets A ⊆ Uκ. (1)
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So sets of constant volume must have conductance Ω(%κ), but sets of volume 2−Θ(n) (for
example) must have conductance Ω(n%κ). A known further consequence of a log-Sobolev
inequality is a hypercontractive inequality, which concerns expansion in the continuous-time
version of the Markov chain. It implies that if σ is the random permutation generated by
performing the continuous-time chain for t = ln c

2%κ time – i.e.,

σ is the product of Poisson
(

ln c
2%κ

)
random transpositions, c ≥ 1

– then

Pr
u∼A

σ∼Trans(n)

[uσ 6∈ A] ≥ 1− vol(A)(c−1)/(c+1) for all nonempty subsets A ⊆ Uκ.

Thus again, if vol(A) is small, then the Markov chain will almost surely exit A after running
for Θ(%−1

κ ) steps.
We remark that Inequality (1) is merely a consequence of the log-Sobolev constant being %κ.

It is not the case that %κ is defined to be the largest constant for which Inequality (1) holds
(for all A) – though this is a reasonable intuition. Instead, %κ is defined to be the largest
constant for which a certain generalization of Inequality (1) to nonnegative functions holds;
namely,

E
u∼π

τ∼Trans(n)

(√
φ(u)−

√
φ(uτ )

)2
≥ %κ ·KL(φπ ‖ π) for all probability densities φ. (2)

(Here a probability density function is a function φ : Uκ → R≥0 satisfying Eπ[φ] = 1, and
KL(φπ ‖ π) denotes the KL divergence between distributions φπ and π.) Inequality (2)
includes Inequality (1) by taking φ = 1A/vol(A).

Our main theorem in this work is a lower bound on the log-Sobolev constant for Uκ:

I Theorem 1. Let κ ∈ N`+ satisfy κ1 + · · · + κ` = n, and let %κ denote the log-Sobolev
constant for the transposition chain on the multislice Uκ (i.e., the largest constant for which
Inequality (2) holds). Then

%−1
κ ≤ n ·

∑̀
i=1

1
2 log2(4n/κi).

The main case of interest for us is n −→ ∞ with ` = O(1) and κi/n ≥ Ω(1) for each i; in
other words, when we are at a “middling” histogram of a high-dimensional multicube [`]n.
In this case our bound is %κ ≥ Ω(1/n), which is the same bound that holds for the standard
random walk on the Boolean cube. Thus for this parameter setting, the random transposition
chain on the multislice enjoys all of the same small-set expansion properties as the Boolean
cube (up to constants).

1.3 On the sharpness of Theorem 1
When ` is considered to be a constant, Theorem 1 is sharp up to constant factors (which we
did not attempt to optimize); i.e.,

%−1
κ = Θ(n) · log

(
n

mini{κi}

)
for ` = O(1). (3)
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To see the upper bound on %κ, assume without loss of generality that ` = argmini{κi}, and
take

A = {u ∈ Uκ : uj = ` for all j ∈ [κ`]}.

It is easy to compute that Φ[A] = Θ(κ`/n) and vol(A) =
(
n
κ`

)−1 (hence ln(1/vol(A)) =
Θ(κ` log(n/κ`))). Putting this into Inequality (1) shows the claimed upper bound on %κ.

At the opposite extreme, when ` = n and κ = (1, 1, . . . , 1), we have the random trans-
position walk on the symmetric group Sn. In this case, Theorem 1 as stated gives the poor
bound of %κ ≥ Ω(1/n2 logn), whereas the optimal bound is %κ = Θ(1/n logn) [11, 35]. In
fact, our proof of Theorem 1 (which generalizes that of [35]) can actually achieve the tight
lower bound of %κ ≥ Ω(1/n logn) in this case. However, we tailored our general bound for
the case of ` = O(1), and did not try to optimize for the most general scenario of ` varying
with n. A reasonable prediction might be that Equation (3) always holds, up to universal
constants, without the assumption of ` = O(1); we leave investigation of this for future work.

2 Applications

There are many known applications of log-Sobolev and hypercontractive inequalities in
combinatorics and theoretical computer science (see, e.g., [42, Ch. 9, 10]). In this paper we
present four particular consequences of Theorem 1 for analysis/combinatorics of Boolean
functions on the multislice. We anticipate the possibility of several more.

2.1 KKL and Kruskal–Katona for multislices
Throughout the remainder of this section, let us think of n as large, of ` as constant, and let
us fix a histogram κ (with κ1 + · · ·+κ` = n) satisfying κi/n ≥ Ω(1) for all i. For example, we
might think of ` = 3 and κ = (n/3, n/3, n/3), so that Uκ consists of all ternary strings with
an equal number of 1’s, 2’s, and 3’s. The isoperimetric problem for Uκ would ask: for a given
fixed 0 < α < 1, which subset A ⊆ Uκ with vol(A) = α has minimal “edge boundary”, i.e.,
minimal Φ[A]? (Here “edge boundary” is with respect to performing a single transposition,
although in our Kruskal–Katona application we will relate this to the size of A’s “shadows”
at neighboring multislices.)

We typically think of α as “constant”, bounded away from 0 and 1. In our example
with κ = (n/3, n/3, n/3), when α = 1/3 the isoperimetric minimizer is a “dictator” set
like A = {u : u1 = 1}; it has Φ[A] = 4/3

n−1 . The “99% regime” version of the isoperimetric
question would be: if Φ[A] is within a factor 1 + o(1) of minimal, must A be “o(1)-close”
to a minimizer? This question will be considered in a companion paper. We will instead
consider the “1% regime” version of the isoperimetric question: if Φ[A] is at most O(1) times
the minimum, must A at least “slightly resemble” a minimizer?

To orient ourselves, first note that for constant α (bounded away from 0 and 1), the
minimum possible value of Φ[A] among A with vol(A) = α is Θ(1/n); indeed, this follows
from our Theorem 1 and Inequality (1). From this fact, we will derive a multislice variant of
the Kruskal–Katona Theorem. Up to O(1) factors, this minimum is achieved not just
by “dictator” sets like {u ∈ U(n/3,n/3,n/3) : u1 = 1}, but also by any “junta” set, meaning a
set A for which absence or presence of u ∈ A depends only on the colors (uj : j ∈ J) for a set
J ⊆ [n] of cardinality c = O(1). It is not hard to see that if A ⊆ Uκ is such a c-junta, then
Φ[A] ≤ O(c/n). We may now ask: if Φ[A] ≤ O(1/n), must A at least slightly “resemble” a
junta?
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We give two closely related positive answers to this question, as a consequence of our
log-Sobolev inequality. The first answer, a KKL Theorem for the multislice (cf. [28] and
Talagrand’s strengthening of it [51]), follows immediately from previous work [43, 44]. It
says that for any set with Φ[A] ≤ O(1/n), there must exist some transposition τ ∈ Trans(n)
with at least constant influence on A, where the influence of the transposition τ on A is
defined to be

Infτ [A] = Pr
u∼π

[
1A
(
u
)
6= 1A

(
uτ
)]
.

Formally, Talagrand’s strengthening of the KKL theorem in this setting is:

I Theorem 2. Let f : Uκ → {0, 1}. Then

avg
τ∈Trans(n)

{
Infτ [f ]

lg(2/Infτ [f ])

}
& ρκ ·Var

πκ
[f ].

Substituting our lower bound on ρκ from Theorem 1 yields concrete new results. For example,
consider our model scenario of n −→∞ with ` = O(1) and κi/n ≥ Ω(1) for each i; suppose
further that f is “roughly balanced”, meaning Ω(1) ≤ Var[f ] ≤ 1− Ω(1). Then

avg
τ∈Trans(n)

{
Infτ [f ]

lg(2/Infτ [f ])

}
&

1
n
,

and hence the maximum influenceM[f ] satisfies

M[f ] & logn
n

.

The latter statement here is the traditional conclusion of the KKL Theorem.
Let us record here one more concrete corollary of Theorem 2. In our model scenario, that

theorem (roughly speaking) says that the energy E [1A] = avgτ∈Trans(n) Infτ [1A] is at least
Ω
( logn

n

)
unless some transposition (i j) has a rather large influence, like 1/n.01, on 1A.

I Corollary 3. Let A ⊆ Uκ. Assume κi ≥ pn for all i ∈ [`] and that ε ≤ vol(A) ≤ 1 − ε.
Then

E [1A] ≥ Ω
(

ε

` log(1/p)

)
· log(1/M[1A])

n
.

It is the hallmark of a junta A that every transposition τ has either Infτ [A] = 0 or Infτ [A] ≥
Ω(1). Mirroring the original KKL Theorem, our work shows that: (i) if Φ[A] ≤ c/n then
there exists τ with Infτ [A] ≥ exp(−O(c)); (ii) for any A ⊆ Uκ with Ω(1) ≤ vol(A) ≤ 1−Ω(1),
there exists τ with Infτ [A] ≥ Ω

( logn
n

)
.

From our KKL Theorem, we obtain various versions of the Kruskal–Katona Theorem for
multislices. The classical Kruskal–Katona Theorem [50, 33, 29] concerns subsets of Hamming
slices of the Boolean cube. To recall it, let us write a 2-color histogram κ ∈ N2

+ as (κ0, κ1),
with n = κ0 + κ1. If A ⊆ Uκ, then the (lower) shadow of A is defined to be

∂A =
{
v ∈ U(κ0+1,κ1−1) : v ≤ u for some u ∈ A

}
.

It is not hard to show that vol(∂A) ≥ vol(A) always (here the fractional volume vol(∂A) is
vis-à-vis the containing slice U(κ0+1,κ1−1)). The Kruskal–Katona Theorem improves this by
giving an exactly sharp lower bound on vol(∂A) as a function of vol(A). The precise function
is somewhat cumbersome to state, but the qualitative consequence, assuming that vol(A)
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and κ0/n are bounded away from 0 and 1, is that vol(∂A) ≥ vol(A) + Ω(1/n). This is sharp,
up to the constant in the Ω(·), as witnessed by the “dictator set” A = {u : u1 = 0}. See [43,
Sec. 1.2] for more discussion.

To extend the Kruskal–Katona Theorem to multislices, we first need to extend the notion
of neighboring slices and shadows. Fix an ordering on the colors, 1 ≺ 2 ≺ · · · ≺ `. This total
order extends to a partial order on strings in [`]n in the natural way.

I Definition 4. Let κ ∈ N`+ be a histogram. We say that histogram κ′ is a lower neighbor
of κ, and write κ′ / κ, if there exists some c ≺ d ∈ [`] such that κ′c = κd + 1, κ′d = κc − 1,
and κ′i = κi for all other colors i. In the opposite case, when c � d, we say κ′ is an upper
neighbor of κ, and write κ′ . κ.

I Definition 5. Let A ⊆ Uκ, and let κ′ / κ. The lower shadow of A at κ′ is

∂κ′A = {u ∈ Uκ′ : u ≺ v for some v ∈ A}.

We similarly define upper shadows. We may use the same notation ∂κ′A for both kinds of
shadows, since whether a shadow is upper or lower is determined by whether κ′ . κ or κ′ / κ.

I Definition 6. Given a histogram κ ∈ N`+, we define a natural probability distribution
lower(κ) on the lower neighbors of κ as follows. To draw κ′ ∼ lower(κ): take an arbitrary
u ∈ Uκ; choose j, j′ ∼ [n] independently and randomly, conditioned on uj 6= uj′ ; let c,d
denote the two colors uj , uj′ , with the convention c ≺ d; finally, let κ′ be the lower neighbor
of κ with κ′c = κc + 1 and κ′d = κd − 1.

We similarly define a probability distribution upper(κ) on the upper neighbors of κ by
interchanging the roles of c and d.

I Theorem 7. For A ⊆ Uκ we have

E
κ′∼lower(κ)

[vol(∂κ′A)] ≥ vol(A) + 1
n
· vol(A) ln(1/vol(A)) ·

(
n∑
i=1

log2(4n/κi)
)−1

.

In particular, at least one lower shadow of A has volume at least the right-hand side. The
analogous statement for upper shadows also holds.

Thus in the model case when vol(A) and each κi/n is bounded away from 0 and 1, and
` = O(1), we get that the average lower shadow of A has volume at least vol(A) + Ω(1/n).
Using our KKL Theorem (Corollary 3) we can get a “robust” version of this statement;
the volume increase is in fact on the order of (logn)/n unless there is a highly influential
transposition for A:

I Theorem 8. Let A ⊆ Uκ. Assume κi ≥ pn for all i ∈ [`] and that ε ≤ vol(A) ≤ 1 − ε.
Then for any δ > 0 we have

E
κ′∼lower(κ)

[vol(∂κ′A)] ≥ vol(A) + logn
n
· Ω
(

εδ

` log(1/p)

)
,

or else there exists τ ∈ Trans(n) with Infτ [A] ≥ 1/nδ. The analogous statement for upper
shadows also holds.

As in [43], we give a conceptual improvement to the “or else” clause in Theorem 8.
Let us work with upper shadows rather than lower shadows going forward. The natural
example for sets A with upper-shadow expansion “only” Ω(1/n) are “dictator” sets such
as A = {u : u1 = `}. For such sets, all transpositions of the form (1 j) indeed have huge
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influence. However, it’s not so natural to single out one such (1 j) as the “reason” for the
small expansion; instead, we would prefer to say the reason is that A is highly “correlated”
with coordinate 1:

I Theorem 9. For n −→ ∞, let A ⊆ Uκ, with ` = O(1), κi/n ≥ Ω(1) for all i ∈ [`] and
Ω(1) ≤ vol(A) ≤ 1− Ω(1). Then

E
κ′∼upper(κ)

[vol(∂κ′A)] ≥ vol(A) + Ω
(

logn
n

)
,

or else there exists j ∈ [n] and colors c ≺ d ∈ [`] with

Pr
u∼πκ

[u ∈ A | uj = d]− Pr
u∼πκ

[u ∈ A | uj = c] ≥ 1/n.01.

2.2 Friedgut Junta Theorem for multislices

A closely related consequence of our work is a Friedgut Junta Theorem for the multislice
(cf. [24]), which follows (using a small amount of representation theory) from work of
Wimmer [53] (see also [18] for a different account). It states that for any A with Φ[A] ≤ c/n,
and any ε > 0, there is a genuine exp(O(c/ε))-junta A′ ⊆ Uκ that is ε-close to A, meaning
vol(A4A′) ≤ ε. The junta theorem can also be generalized to real-valued functions, following
the work of Bouyrie [4], with a worse dependence on ε in the exponent.

I Theorem 10. Let f : Uκ → {0, 1} be such that Inf[f ] ≤ Kn. Write pi = κi/n. Then for

every ε > 0 there exists h : Uκ → {0, 1} depending on at most
(

1
p1p2···p`

)O(K/ε)
coordinates

such that Pru∼πκ [f(u) 6= h(u)] ≤ ε.

2.3 Nisan–Szegedy Theorem for multislices

Finally, with a little more representation theory effort, we are able to derive from Theorem 1
a Nisan–Szegedy Theorem for the multislice (cf. [41]), which is (roughly) an ε = 0 version
of the Friedgut Junta Theorem; this generalizes previous work on the Hamming slice [20]. It
says that if A ⊆ Uκ is of “degree k” – meaning that its indicator function can be written as
a linear combination of k-junta functions – then A must be an exp(O(k))-junta itself. (The
k = 1 case of this theorem, with the conclusion that A is a 1-junta, was proven recently
in [21].)

More formally, the Nisan–Szegedy Theorem says that a degree-k Boolean-valued function
on the Hamming cube is a k2k-junta. (We remark that the smallest quantity γ2(k) that can
replace k2k here is now known [7] to satisfy 3 · 2k−1− 2 ≤ γ2(k) < 22 · 2k.) Let us extend the
definition of γ2(k); we’ll define γ`(k) to be the least integer such that the following statement
is true: Every degree-k Boolean-valued function f : [`]n → {0, 1} on the “`-multicube” is a
γ`(k)-junta.

Here we say that f : [`]n → R has degree at most k if it is a linear combination of k-juntas
(as usual for functions on product spaces, see [42, Def. 8.32]). We can obtain the following
Nisan–Szegedy Theorem:

I Theorem 11. There is a universal constant C such that the following holds. For all k ∈ N+
and all κ ∈ N`+ with mini{κi} ≥ `Ck, if f : Uκ → {0, 1} has degree at most k, then f is an
γ`(k)-junta.

ITCS 2019
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3 Context and prior work

In this section we review similar contexts where log-Sobolev inequalities and small-set
expansion have been studied.

3.1 The Boolean cube
The simplest and best-known setting for these kinds of results is the Boolean cube {0, 1}n with
the nearest-neighbour random walk. The optimal hypercontractive inequality in this setting
was proven by Bonami [3]. Later, Gross [25] introduced log-Sobolev inequalities, showed
that they were equivalent to hypercontractive inequalities in this setting, and determined the
exact log-Sobolev constant for the Boolean cube, namely % = 2/n. Gross also observed that
all the same results also hold for Gaussian space in any dimension (recovering prior work of
Nelson [40]); Gaussian space is in fact a “special case” of the Boolean cube, by virtue of the
Central Limit Theorem. The Boolean cube also generalizes the well-studied Ehrenfest model
of diffusion [15].

These inequalities for the Boolean cube, as well as the associated small-set expansion
corollaries, have had innumerable applications in analysis, combinatorics, and theoretical
computer science, in topics ranging from communication complexity to inapproximability;
see, e.g., [34] or [42, Chapters 9–11].

A different line of work sought to determine the exact minimum value of Φ[A] in terms of
the size of A. This challenge, known as the edge isoperimetric problem, has been solved by
Harper [26], Lindsey [36], Bernstein [2], and Hart [27], who have shown that the optimal sets
are initial segments of a lexicographic ordering of the vertices of the Boolean cube. Recently
Ellis, Keller and Lifshitz gave a new proof of the edge isoperimetric inequality using the
Kruskal–Katona Theorem [16]. The same set of authors also recently proved a stability
version of the edge isoperimetric inequality in the 99% regime [17].

Returning to log-Sobolev inequalities, an extraordinarily helpful feature of the random
walk on the Boolean cube is that it is a product Markov chain, with a stationary distribution
that is independent across the n coordinates. Because of this, a simple induction lets
one immediately reduce the log-Sobolev (and hypercontractivity) analysis to the base case
of n = 1.

3.2 Other product chains
For any product Markov chain, one can similarly reduce the analysis to the n = 1 case. In
general, let ν be a probability distribution of full support on [`], and consider the Markov
chain on [`]n in which a step from u ∈ [`]n consists of choosing a random coordinate j ∼ [n]
and replacing uj with a random draw from ν. The invariant distribution for this chain is
the product distribution ν⊗n. Though the n = 1 case of this chain is, in a sense, trivial – it
mixes perfectly in one step – it is not especially easy to work out the optimal log-Sobolev
constant. Nevertheless, Diaconis and Saloffe-Coste [11] showed that for the n = 1 chain, the
log-Sobolev constant is

%triv
ν = 2 q − p

ln q − ln p , where p = min
i∈[`]
{ν(i)}, q = 1− p.

It follows immediately that the log-Sobolev constant in the general-n case is %triv
ν /n. In

particular, if κ1 + · · ·+ κ` = n and ν(i) = κi/n, then ν⊗n resembles the uniform distribution
πκ on Uκ, and the product chain on [`]n somewhat resembles the random transposition chain
on Uκ. This gives credence to the possibility that Equation (3) may hold with absolute
constants for any `.
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3.3 The Boolean slice / Bernoulli–Laplace model / Johnson graph
Significant difficulties arise when one moves away from product Markov chains. One of the
simplest steps forward is to the Boolean slice. This is the ` = 2 case of the Markov chains
studied in this paper, with the “balanced” case of κ = (n/2, n/2) being the most traditionally
studied. This Markov chain is also equivalent to the Bernoulli–Laplace model for diffusion
between two incompressible liquids, and to the standard random walk on Johnson graphs;
taking multiple steps in the chain is similar to the random walk in generalized Johnson
graphs. The chain has been studied in wide-ranging contexts, from genetics [38], to child
psychology [45], to computational learning theory [43]. An asymptotically exact analysis of
the time to stationarity of this Markov chain was given by Diaconis and Shahshahani [12],
using representation theory. However, the log-Sobolev constant for the chain took a rather
long time to be determined; it was left open in Diaconis and Saloff-Coste’s 1996 survey [11]
before finally being determined (up to constants) by Lee and Yau in 1998 [35]. This
sharp log-Sobolev inequality, and its attendant hypercontractivity and small-set expansion
inequalities, have subsequently been used in numerous applications – for the Kruskal–Katona
and Erdős–Ko–Rado theorems in combinatorics [43, 8, 22], for computational learning
theory [52, 43], for property testing [39], and for generalizing classic “analysis of Boolean
functions” results [43, 44, 18, 19, 23, 22, 5].

3.4 The Grassmann graph
One direction of generalization for the Johnson graphs are their “q-analogues”, the Grassmann
graphs; understanding this Markov chain was posed as an open problem even in the early
work of Diaconis and Shahshahani [12, Example 2]. For a finite field F and integer parameters
n ≥ k ≥ 1, the associated Grassmann graph has as its vertices all k-dimensional subspaces
of Fn, with two subspaces connected by an edge if their intersection has dimension k − 1.
Understanding small-set expansion (and lack thereof) in the Grassmann graphs was central
to the very recent line of work that positively resolved the 2-to-2 Conjecture [31, 14, 13, 1, 32]
(with the analogous problems on the Johnson graphs serving as an important warmup [30]).
Still, it seems fair to say that the mixing properties of the Grassmann graph are far from
being fully understood.

3.5 The multislice
We now come to the multislice, the other natural direction of generalization for the Johnson
graphs, and the subject of the present paper. One can see the multislice as a generalization
of the Bernoulli–Laplace model, modeling diffusion between three or more liquids. As well,
the space of functions f : Uκ → R, together with the action of Sn on Uκ, is precisely the
Young permutation module Mκ arising in the representation theory of the symmetric group.
Understanding the mixing properties of the Uκ Markov chain with random transpositions was
suggested as an open problem several times [12], [9, p. 59], [20]. The multislice has also played
a key combinatorial role in problems in combinatorics, such as the Density Hales–Jewett
problem (where ` = 3 was the main case under consideration) [46].

Although it might at first appear to be a simple generalization of the Boolean slice,
there are several fundamental impediments that arise when moving from ` = 2 even to
` = 3. These include: the fact that a Hamming slice disconnects the nearest-neighbour
graph in [2]` but not in [3]`; the fact that one can introduce just one variable per coordinate
when representing functions [2]` → R as multilinear polynomials; the fact that 2-row irreps
of Sn (Young diagrams) are completely defined by the number of boxes not in the first

ITCS 2019
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row; and, the fact that when ` ≥ 3, the decomposition of the permutation module Mκ

into irreps has multiplicities. The last of these was the main difficulty to be overcome in
Scarabotti’s work [48] giving the asymptotic mixing time for the transposition walk on
balanced multislices U(n/`,...,n/`) (see also [10, 49]). It also prevents the multislice from
forming an association scheme.

For the purposes of this paper, the main difficulty that arises when analyzing the log-
Sobolev inequality is the following: when ` = 2, any nontrivial step in the Markov chain
(switching a 1 and a 2) has the property that the histogram within [`]n−2 of the unswitched
colors is always the same: (κ1 − 1, κ2 − 1). By contrast, once ` ≥ 3, the multiple “kinds” of
transpositions (switching a 1 and a 2, or a 1 and a 3, or a 2 and a 3, etc.) lead to differing
histograms within [`]n−2 for the unswitched colors. This significantly complicates inductive
arguments.

3.6 The symmetric group and beyond
Finally, we mention that analysis of the multislice can also be motivated simply as a necessary
first step in a full understanding of spectral analysis on the symmetric group and other
algebraic structures, an opinion also espoused in, e.g., [6]. Such structures include classical
association schemes such as polar spaces and bilinear forms, matrix groups such as the
general linear group, and the q-analog of the multislice.
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Abstract
We define new functions based on the Andreev function and prove that they require n3/ polylog(n)
formula size to compute. The functions we consider are generalizations of the Andreev function
using compositions with the majority function. Our arguments apply to composing a hard
function with any function that agrees with the majority function (or its negation) on the middle
slices of the Boolean cube, as well as iterated compositions of such functions. As a consequence, we
obtain n3/polylog(n) lower bounds on the (non-monotone) formula size of an explicit monotone
function by combining the monotone address function with the majority function.
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1 Introduction

We study the problem of proving lower bounds on the De Morgan formula size of explicit
functions.

While it is known that almost all Boolean functions of n variables require formula size
exponential in n, proving lower bounds on the formula size of specific functions remains a
major challenge. The current largest lower bounds on De Morgan formula size for explicitly
defined functions are of the form n3−o(1). Lower bounds for general formula size are weaker,
throughout this paper we only consider De Morgan formulas, but sometimes we just refer to
them as “formulas”.
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History

Formula size lower bounds have a long history. One of the methods for proving formula
size lower bounds is based on shrinkage of De Morgan formulas under random restrictions.
This method was introduced by Subbotovskaya [17] who gave a Ω

(
n1.5) lower bound on

the De Morgan formula size of the parity function. The lower bound for parity has been
improved by Khrapchenko [10] to Ω

(
n2). However, it is also known that Khrapchenko’s

method cannot give larger than quadratic lower bounds. The method of random restrictions
on the other hand has led to the currently known largest lower bounds on formula size.
Andreev [1] used random restrictions to prove an Ω

(
n2.5−o(1)) lower bound for a function

obtained by composing parity with an arbitrary other function f where f is specified as part
of the input. We give more formal definitions in Section 2. After improvements of the bound
by [8, 13], Håstad [5] proved a lower bound of the form n3−o(1) for the Andreev function.
Tal [18] improved the lower order terms to give a Ω

(
n3

(logn)2 log logn

)
lower bound for the

Andreev function, which is tight up to the log logn term. Tal [19] gave a slightly larger
lower bound of the form Ω

(
n3

logn(log logn)2

)
for another function introduced by Komargodski

and Raz [11]. This function is similar to the Andreev function, it still composes parity with
other functions specified as part of the input. The difference is that instead of specifying the
function f by its entire truth table as part of the input, an error correcting code is used to
derive the truth table from the input. Bogdanov [2] showed that the same Ω

(
n3

logn(log logn)2

)
lower bound can also be obtained for any “small-biased” function, that is any randomized
function whose distribution of truth tables is small biased. He also noted that standard
constructions of small biased sets yield explicit families of such functions. [3, 12] showed that
parity in Andreev’s function can be replaced with any good enough bit fixing extractor, and
the resulting function still requires n3/polylog(n) formula size.

Other than Bogdanov’s functions, the only explicit function with n3−o(1) formula size
lower bounds has been the Andreev function, and its variants using error correcting codes by
[11, 19] or bit fixing extractors [3, 12].

Dinur and Meir [4] gave a new proof of n3−o(1) formula size lower bounds for the Andreev
function, based on information theoretic arguments. The bound obtained by their argument
is of the form Ω

(
n3

2
√

log n poly log log n

)
which is weaker in the lower order terms than the bounds

of Håstad [5] and Tal [18]. But their goal was to give a proof that could possibly generalize
to other function compositions, which would be important in light of the KRW conjecture
[9] (see Section 5). Our results can be viewed as a step in this direction.

Our Results

In this paper we obtain n3/ polylog(n) lower bounds on a new class of functions. First we
consider an extension of the Andreev function which we call “Generalized Andreev function
with Majority”, using the majority function instead of parity in the function compositions.
We define the function formally in Section 2. As far as we know this function has not been
studied before, and previous approaches do not directly work to obtain our bounds.

Next we extend our results to composing a hard function with any function that agrees
with the majority function (or its negation) on the middle slices of the Boolean cube, as well
as iterated compositions of such functions. Since parity agrees with majority on the two
middle slices of the Boolean cube, our argument also applies to parity (the original Andreev
function), and composing parity with majority in various ways.
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As another consequence, we prove n3/polylog(n) lower bounds on the (non-monotone)
formula size of the monotone function obtained by combining the monotone address function
of Wegener [21] with the majority function.

It was pointed out to us by Pavel Pudlak [14], that for any function f : {0, 1}n → {0, 1},
one can construct a function f ′ : {0, 1}2n → {0, 1} that is monotone, and has formula size at
least as large as f . Consider inputs of the form (x, y) where x, y ∈ {0, 1}n and simply let
f ′(x, y) = 1 on all inputs of Hamming weight greater than n, f ′(x, y) = 0 on all inputs of
Hamming weight less than n, and f ′(x, y) = f(x) on inputs (x, y) with Hamming weight n.
Observe that f ′ has formula size at least as large as f : identifying for each i ∈ {1, . . . , n}
the literals xi and ¬yi, and similarly ¬xi and yi, we get f from f ′. However, as far as we
know, our results give the first super-quadratic formula size lower bound with a direct proof
for an explicitly defined monotone function.

Our argument gives a formal proof that the monotone formula size of the majority function
is at least nΓmon/ polylogn, where Γmon denotes the shrinkage exponent of monotone formulas
under random restrictions. It is a long standing open problem to determine the value of
Γmon. It is also open to obtain tight bounds on the formula size of majority, both in the
monotone and non-monotone case. The current best lower bound for both monotone and
non-monotone formulas computing majority of n bits is Ω(n2). The best upper bound on
the De Morgan formula size of majority on n bits is O

(
n3.91) [16]. Considering monotone

formulas for majority, the best upper bound remains the O
(
n5.3) bound by Valiant [20].

Håstad [5] noted that determining the value of Γmon is likely to yield improved lower bounds
on the monotone formula size of the majority function. Our results make this connection
explicit, independently of how the value Γmon is obtained.

Our argument is based on random restrictions and analyzing the shrinkage of formula
size under restrictions. However, the main obstacle in applying previous arguments is that
we need random restrictions that leave each Majority undetermined. Previously considered
restrictions are far from achieving this. Instead of standard random restrictions, we use
“staged” random restrictions, and adjust their results to enforce more structure. The idea
of building restrictions in stages appears before in [7, 3, 12]. The main difference in our
approach is that we maintain the structure of the composed hard function with majority
after each stage by performing some clean-up procedure.

In addition to worst case formula size lower bounds, average case lower bounds have been
shown in [3, 11, 12, 19]. These bounds are quantitatively weaker than the n3−o(1) worst
case bounds but provide high probability versions of the shrinkage results under certain
structured random reductions. Tal [19] has shown that average case bounds can be used to
obtain stronger worst case bounds, and in fact the current largest lower bounds of the form
Ω
(

n3

logn(log logn)2

)
by Tal [19] and Bogdanov [2] were obtained this way.

2 Definitions and Background

Given an n-bit string ~x = (x1, . . . , xn) ∈ {0, 1}n, let wt(~x) denote the Hamming weight of ~x,
defined as

wt(~x) = |{i : xi = 1}|

Let Bn = {f : {0, 1}n → {0, 1}} denote the set of all Boolean functions on n bits.
Given a bm-bit string ~x, we can interpret ~x as a b×m matrix with rows ~x1, . . . , ~xb of m

bits each. If f ∈ Bb and g ∈ Bm are arbitrary functions, let f ◦ g : {0, 1}b×m → {0, 1} denote
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their composition, defined as

(f ◦ g)(~x1, . . . , ~xb) = f(g(~x1), . . . , g(~xb))

Given a function f ∈ Bn, let tt(f) denote the truth table of f , defined as the string of
length 2n specifying the output of f on all strings ~x ∈ {0, 1}n in lexicographic order. We use
f and tt(f) interchangeably when f is an input to another function.

Let ⊕m : {0, 1}m → {0, 1} denote the parity function on m bits.
Let Majm : {0, 1}m → {0, 1} denote the majority function on m bits, defined as

Majm(~x) =
{

1 if wt(~x) ≥
⌈
m
2
⌉

0 otherwise

2.1 Andreev Function
Let An : {0, 1}n × {0, 1}n → {0, 1} denote the Andreev function on 2n bits. Let b = logn
and m = n/b = n/ logn. If f ∈ Bb, then |tt(f)| = 2b = 2logn = n.

The function An takes two inputs: an n-bit string representing the truth table of a
function f on b bits, and an n-bit string ~x, interpreted as a b×m matrix with rows ~x1, . . . , ~xb.
Then,

An(f, ~x) = (f ◦ ⊕m)(~x) = f(⊕m(~x1), . . . ,⊕m(~xb))

2.2 Generalized Andreev Function
Let b = logn and m = n/b as before. If gm ∈ Bm is an arbitrary function on m bits, then let
Agm
n : {0, 1}n × {0, 1}n → {0, 1} denote the generalized Andreev function on 2n bits, defined

analogously by

Agm
n (f, ~x) = (f ◦ gm)(~x) = f(gm(~x1), . . . , gm(~xb))

In particular, An = A⊕m
n .

LetMn : {0, 1}n × {0, 1}n → {0, 1} denote the generalized Andreev function with Majm
in place of gm. That is

Mn(f, ~x) = AMajm
n (f, ~x) = (f ◦Majm)(~x) = f(Majm(~x1), . . . ,Majm(~xb))

If f ∈ Bb is a fixed function, defineMn,f : {0, 1}n → {0, 1} as

Mn,f (~x) =Mn(f, ~x)

or equivalently,Mn,f = f ◦Majm.

2.3 De Morgan Formulas
Formulas are tree-like circuits, that is circuits where each gate has fan-out at most one. A
De Morgan formula is a formula that uses only AND, OR and negation gates, where the
gates have fan-in at most 2. Let f ∈ Bn be an arbitrary function. Define L(f) to be the
formula complexity of f , which is the minimum number of leaves required by any De Morgan
formula computing f .

It is known that almost all Boolean functions on n variables require De Morgan formula
size at least 2n

2 logn [15].
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2.4 Random Restrictions and Shrinkage
Consider a function f ∈ Bn and let S = {x1, . . . , xn} denote the variables of f . A restriction
on S is a function ρ : S → {0, 1, ?}. Let fdρ denote the function obtained from f by fixing
inputs xi to ρ(xi) if ρ(xi) 6= ?, which depends only on the inputs xi for which ρ(xi) = ?.
Given arbitrary functions g ∈ Bm and f ∈ Bn for m ≤ n, we say that f computes g as a
sub-function if g can be achieved as a restriction of f .

A random p-restriction on S is a randomly generated restriction ρ where

Pr(ρ(xi) = ?) = p

Pr(ρ(xi) = 0) = Pr(ρ(xi) = 1) = 1− p
2

uniformly and independently for all xi ∈ S. Let Rp denote the distribution of all uniformly
generated random p-restrictions.

Subbotovskaya [17] proved that for any Boolean function f ∈ Bn it holds that

E
ρ∼Rp

[
L
(
fdρ
)]

= O
(
pΓ L(f)

)
for Γ = 3/2. The constant Γ is called the shrinkage exponent, which is the largest number
for which the statement is true. After several improvements [8, 13], Håstad [5] proved that
Γ = 2. The following version is due to Tal [18].

I Theorem 2.1 (Shrinkage Lemma [18]). Let f ∈ Bn be an arbitrary function. Then, ∀p > 0,

E
ρ∼Rp

[
L
(
fdρ
)]
≤ O

(
1 + p2 L(f)

)
(1)

I Corollary 2.2. Let f ∈ Bn be an arbitrary function. Then, ∃c > 0 such that for ∀p > 0
and large enough n,

Pr
ρ∼Rp

(
L
(
fdρ
)
≥ 10c(1 + p2 L(f))

)
≤ 1

10 (2)

Proof. Let c > 0 be chosen such that Eρ∼Rp

[
L
(
fdρ
)]
≤ c(1 + p2 L(f)). Then, by Markov’s

inequality: Prρ∼Rp

(
L
(
fdρ
)
≥ 10c(1 + p2 L(f))

)
≤ 1

10 . J

2.5 Concentration Inequalities
We use the following result on bounds of sums of random variables.

I Theorem 2.3 (Hoeffding’s Inequality [6]). Let X1, . . . , Xn be independent random variables
such that ai ≤ Xi ≤ bi for 1 ≤ i ≤ n and let X =

∑n
i=1Xi. Then,

Pr
(∣∣∣X − E[X]

∣∣∣ ≥ t) ≤ 2 exp
(

−2t2∑n
i=1(bi − ai)2

)
(3)

3 Composition with Majority

Let Mn be the generalized Andreev function with majority. Let b = logn and
m = n/b = n/ logn and assume b,m ∈ N. Let h ∈ Bb be a function of maximum for-
mula complexity and considerMn,h = h ◦Majm. SinceMn,h is a sub-function ofMn, we
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have L(Mn) ≥ L(Mn,h) = L(h ◦Majm). Thus, it suffices to prove a lower bound on the
formula complexity of h ◦Majm. Indeed, this will be our strategy (which is standard when
proving lower bounds for Andreev-type functions). Our main result is the following general
theorem, that may also be applied in other scenarios.

I Theorem 3.1 (Formula Size of Composition with Majority). Let b,m ∈ N and h ∈ Bb be
non-constant. Then,

L(h ◦Majm) ≥ L(h) ·m2/polylog(b ·m)

Since the hardest functions on b = logn bits have formula complexity at least n
2 log logn

[15], Theorem 3.1 implies that

L(Mn) ≥ L(h ◦Majm) ≥ L(h) ·m2/ polylog(b ·m) ≥ n3/ polylog(n)

The rest of this section is devoted to the proof of Theorem 3.1.

Warmup

Let n = mb. The input ~x = (x1, . . . , xn) is divided into b contiguous blocks B1, . . . , Bb of
m variables each. In order to apply a random restriction based argument to h ◦Majm, we
wish to prove that there exists a restriction ρ that leaves each Majm undetermined and the
resulting formula shrinks by a factor of Ω(m2/ polylog(bm)).

A single majority is left undetermined by ρ if the absolute difference between the number
of variables assigned 0 and 1 is at most the number of unassigned variables. Otherwise, the
majority value is already set and there are not enough remaining variables to flip it.

3.1 Random p-Restrictions
Previous random restriction based arguments typically use random p-restrictions defined in
Section 2.4. We start by some observations about them. Let ρ ∈ Rp be a random p-restriction
on S = {x1, . . . , xn} and let Bi = {xi1 , . . . , xim} be a fixed block of the input.

Let Xik and Yik for 1 ≤ k ≤ m be the following random variables:

Xik =
{

1 if ρ(xik ) = ?

0 otherwise
Yik =


1 if ρ(xik ) = 0
−1 if ρ(xik ) = 1

0 if ρ(xik ) = ?

Then,

Xi =
m∑
k=1

Xik

E[Xi] =
m∑
k=1

E[Xik] = mp

Yi =
m∑
k=1

Yik

E[Yi] =
m∑
k=1

E[Yik] = 0

We note that Xi and Yi are not necessarily independent, since for any ` ≥ 0

Xi ≥ ` =⇒ |Yi| ≤ m− `

Since 0 ≤ Xik ≤ 1, Theorem 2.3 gives:

Pr
ρ∈Rp

(|Xi −mp| > t) ≤ 2 exp(−2t2/m)
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To obtain lower bounds of the form L(h) · m2

polylog(mb) by a single round of p-restrictions,
one would need p = O(polylog(mb)/m), thus Xi = Θ(polylog(mb)) would hold with high
probability. Since |Yi| is typically Ω(

√
m), it is likely that Majm(Bidρ) is constant.

Since one p-restriction cannot shrink the formula size sufficiently and leave each majority
undetermined, we will build such a restriction incrementally instead.

3.2 Staged p-Restrictions
Proof of Theorem 3.1. Let c′ be a large constant to be defined later. We first deal with the
case that L(h) ≤ 2c′. Then, since for non-constant h, Majm (or its negation) is a sub-function
of h ◦Majm and since L(Majm) ≥ Ω(m2) ([10]) we get

L(h ◦Majm) ≥ L(Majm) ≥ Ω(m2) ≥ Ω(L(h) ·m2)

which completes the proof in this case. In the following, we shall assume that L(h) > 2c′.
We define the following procedure that runs in t stages: in the j-th stage, we generate

a pj-restriction ρj such that, with high probability, the formula has enough unrestricted
variables to balance the number of 0’s and 1’s and leave enough variables unrestricted for
stage j + 1.

Setting Up Parameters

We set

m1 = m

and

mj+1 = m0.6
j

for j ≥ 1 as long as mj ≥ log5(4b). Let t be the last j such that mj ≥ log5(4b). A small
calculation shows that t ≤ 2 log logm. For j = 1, . . . , t we set

pj = 4m−0.4
j = 4mj+1/mj

Shrinkage In t Stages

Denote by ϕ1 = h ◦Majm. For j = 1, . . . , t, we show how to construct ϕj+1 over variables
Sj+1 from ϕj over Sj . We show by induction that ϕj+1 = h ◦Majmj+1 (up to a renaming of
the variables) and that

L(ϕj+1) ≤ c ·
(
mj+1

mj

)2
· L(ϕj),

for some large enough universal constant c > 0.
Let j ∈ {1 . . . , t}. Let ρj ∈ Rpj

be a random pj-restriction over Sj . Let

Xj
i =

mj∑
k=1

Xj
ik Y ji =

mj∑
k=1

Y jik

for i = 1, . . . , b be defined analogously as in the previous section for block Bi. Then,

E
[
Xj
i

]
= mjpj = 4mj+1
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Let Ej,i denote the event that
∣∣∣Xj

i −mjpj

∣∣∣ ≤ 1
4mjpj and let Fj,i denote the event that∣∣∣Y ji ∣∣∣ ≤ 1

2mjpj . By Theorem 2.3, using the assumption mj ≥ log5(4b),

Pr
ρj∈Rpj

(Ej,i) ≥ 1− 2e−2
m2

j+1
mj = 1− 2e−2m0.2

j ≥ 1− 1
4b (4)

Pr
ρj∈Rpj

(Fj,i) ≥ 1− 2e−2
(2mj+1)2

4mj = 1− 2e−2m0.2
j ≥ 1− 1

4b (5)

By Corollary 2.2, there exists some constant c′ > 0 such that

Pr
ρj∈Rpj

(
L
(
ϕjdρj

)
≤ c′(1 + p2

j L(ϕj))
)
≥ 0.9

Let Hj denote the event that L
(
ϕjdρj

)
≤ c′ · (1 + p2

j · L(ϕj)). Thus Pr[Hj ] ≥ 0.9. By the
union bound, there exists a restriction ρj for which Hj and all Ej,i, Fj,i for i = 1, . . . , b hold
simultaneously. Fix such a restriction ρj . Now, since Ej,i holds, then

Xj
i ≥

3
4mjpj

Since Fj,i also holds, then we can make the number of 0’s and 1’s equal by fixing at most
1
2mjpj variables appropriately, leaving at least 1

4mjpj = mj+1 unrestricted variables in the
block. We restrict the remaining variables further to leave exactly mj+1 unrestricted variables
by assigning an equal number of them 0 and 1 in some arbitrary process. Take ϕj+1 to be
the restricted function.

Since Hj holds, we get

L(ϕj+1) ≤ L
(
ϕjdρj

)
≤ c′ · (1 + p2

j · L(ϕj))

However, since h is a sub-function of ϕj+1 and since we assumed that L(h) > 2c′, we get
that c′ < 1

2 L(ϕj+1). Thus,

L(ϕj+1) < 1
2 L(ϕj+1) + c′ · p2

j · L(ϕj)

which implies that L(ϕj+1) < 2c′ · p2
j · L(ϕj) and we get

L(ϕj+1) ≤ 2c′ ·
(

4mj+1

mj

)2
· L(ϕj) = c ·

(
mj+1

mj

)2
· L(ϕj)

for any j ∈ {1, . . . , t} by setting c = 2c′ · 16. Overall, we get

L(ϕt+1) ≤ ct ·
(mt+1

m

)2
· L(ϕ)

Since h is a sub-function of ϕt+1, the formula size of ϕt+1 is at least L(h), which gives

L(ϕ) ≥ c−t ·
(

m

mt+1

)2
· L(h)

Using mt+1 < log5(4b) and t ≤ 2 log logm we get

L(ϕ) ≥ c−2 log logm ·
(

m

log5(4b)

)2
· L(h) ≥ L(h) ·m2/ polylog(b ·m) J
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In the above proof, we only use two facts about the majority function. First, we use
that the values of the m-bit majority function are 0 on inputs ~x with Hamming weight
wt(~x) =

⌈
m
2
⌉
− 1 and 1 on inputs with wt(~x) =

⌈
m
2
⌉
. In addition, (at the beginning of our

proof) we use that L(Majm) ≥ Ω(m2) [10]. Thus our argument extends to any function with
these two properties. It turns out that the first condition we need implies the second. Let
gm ∈ Bm be any function such that gm(~x) = 0 when wt(~x) =

⌈
m
2
⌉
− 1, and gm(~x) = 1 when

wt(~x) =
⌈
m
2
⌉
. Then by Khrapchenko’s theorem [10] the De Morgan formula size of gm is at

least Ω(m2).
One can also think of such functions as a partial function that generalizes both Majority

and Parity. We obtain the following.

I Theorem 3.2. Let m = n
logn and let gm ∈ Bm be any function such that gm(~x) = 0 when

wt(~x) =
⌈
m
2
⌉
− 1, and gm(~x) = 1 when wt(~x) =

⌈
m
2
⌉
. Then,

L(Agm
n ) ≥ n3/ polylog(n)

4 Consequences

4.1 Composition with Other Threshold Functions
We also obtain lower bounds for compositions with arbitrary threshold functions Thm,k instead
of Majm. We use that Th2k+1,k is a subfunction of Thm,k. Fixing arbitrary m− (2k + 1) bits
to 0 in each block, our results immediately imply that L(h ◦ Thm,k) ≥ L(h) ·k2/polylog(k, b).
We get stronger bounds by noticing that fixing the m− (2k + 1) heaviest variables in each
block, the formula shrinks by a factor of (2k + 1)/m. Thus, we get

L(h ◦ Thm,k) ≥ L(h) ·m · k/polylog(k, b)

This implies the following:

I Theorem 4.1. Let m = n
logn and k ≤ m/2. Then

L
(
AThm,k
n

)
≥ n2 · k/ polylog(n)

4.2 Iterated Compositions
Since the composed function “Parity of Parities” is just Parity, considering iterated composi-
tions in place of Parity in the original lower bound arguments for Andreev function did not
give new functions. But taking iterated compositions of Majorities yield new functions, such
as “Majority of Majorities”, “Parity of Majorities”, “Majority of Parities” and so on. Our
results extend to the generalized Andreev function with iterated compositions in place of gm.
We obtain additional functions with cubic formula size lower bounds.

I Theorem 4.2. Let Gm denote the set of functions gm ∈ Bm such that gm(~x) = 0 when
wt(~x) =

⌈
m
2
⌉
− 1, and gm(~x) = 1 when wt(~x) =

⌈
m
2
⌉
; or the other way around, that is

gm(~x) = 1 when wt(~x) =
⌈
m
2
⌉
− 1, and gm(~x) = 0 when wt(~x) =

⌈
m
2
⌉
.

Let m = n
logn and let u ≥ 2 and v ≥ 2 be integers such that uv = m. For any functions

fu ∈ Gu and gv ∈ Gv

L
(
Afu◦gv
n

)
≥ n3/ polylog(n)
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Proof. Let h ∈ Blogn be a function of maximum formula complexity. By Theorem 3.1

L(h ◦ fu) ≥ L(h) · u2/ polylog(b · u)

where b = logn. Let b′ = b · u. By Theorem 3.1

L(h ◦ fu ◦ gv) ≥ L(h ◦ fu) · v2/ polylog(b′ · v)

Thus,

L(h ◦ fu ◦ gv) ≥ L(h) · u2

polylog(b · u) ·
v2

polylog(b · u · v) ≥ L(h) · m2

polylog(n) ≥
n3

polylog(n) J

The argument extends to repeated iterations. As the proof shows, we lose a polylog(n)
factor from the n3 lower bound at each iteration.

4.3 Cubic Formula Size Lower Bounds for an Explicit Monotone
Function

A function h : {0, 1}b → {0, 1} is called a slice function if on inputs ~z ∈ {0, 1}b, h(~z) = 1 if
wt(~z) ≥

⌊
b
2
⌋

+ 1, and h(~z) = 0 if wt(~z) <
⌊
b
2
⌋
. Note that every slice function is monotone,

and slice functions differ from each other only on inputs in the middle layer of the Boolean
cube, that is on inputs with weight exactly

⌊
b
2
⌋
.

The monotone address function defined by Wegener [21] takes b + n input bits where
n =

(
b
b b

2c
)
. The n bits are interpreted to specify a slice function h on b bits. We denote by

h both the n-bit string and the slice function specified by it. Then, on input (z, h) where
z ∈ {0, 1}b and h ∈ {0, 1}n, the output of the monotone address function is h(z). Note that
the monotone address function itself is monotone.

We are now ready to define a monotone function that requires cubic formula size. Let
n =

(
b
bb/2c

)
, and let m = n/b. Similarly to the Generalized Andreev Function, we define a

function Fn : {0, 1}n × {0, 1}n → {0, 1} on 2n bits.
The function Fn takes two inputs: an n-bit string representing a slice function h on b

bits, and an n-bit string ~x, interpreted as a b×m matrix with rows ~x1, . . . , ~xb. Then,

Fn(h, ~x) = (h ◦Majm)(~x) = h(Majm(~x1), . . . ,Majm(~xb))

We can further generalize this as follows: If gm ∈ Bm is an arbitrary function on m bits,
then let Fgm

n : {0, 1}n × {0, 1}n → {0, 1} denote the function on 2n bits, defined analogously
by

Fgm
n (h, ~x) = (h ◦ gm)(~x) = h(gm(~x1), . . . , gm(~xb))

In particular, Fn = FMajm
n . Note that for any monotone function gm, the function Fgm

n is
also monotone.

Since the number of De Morgan formulas of size s on b input bits is at most (cb)s for
some constant c [15], and the number of different slice functions on b input bits is 2n where
n =

(
b
bb/2c

)
, by a standard counting argument, there are slice functions on b bits that require

formula size at least Ω( n
log b ) = Ω( n

log logn ).
This implies the following bound on the formula size of the monotone function Fn.

I Theorem 4.3.

L(Fn) ≥ n3/ polylog(n)
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4.4 Monotone Formula Size of Majority
Our results highlight again the question of determining the shrinkage exponent for monotone
formulas, raised by Håstad [5]. It was pointed out by Håstad [5], that determining the
shrinkage exponent for monotone formulas could potentially yield improved lower bounds
on the monotone formula size of the Majority function. Our results make this connection
explicit, without any dependence on how the value of the shrinkage exponent is obtained.
More precisely, our arguments imply the following.

I Theorem 4.4. Let Γmon denote the shrinkage exponent of monotone formulas. Then
Lmon(Majn) ≥ nΓmon/ polylogn, where Lmon denotes monotone formula complexity.

Proof. To see this, notice that our argument in the proof of Theorem 3.1 can also be carried
out when b = 1 and h : {0, 1}1 → {0, 1} is the identity function, that is h ◦Majm = Majm,
and we apply our staged restrictions on just one block.

Let Γ = Γmon. Then by definition,

E
ρ∼Rp

[
Lmon

(
fdρ
)]

= O
(
1 + pΓ Lmon(f)

)
Let c′ be a constant such that

E
ρ∼Rp

[
Lmon

(
fdρ
)]
≤ c′ · (1 + pΓ Lmon(f))

Let m1 = m = n. As in the proof of Theorem 3.1, we set mj+1 = m0.6
j for j ≥ 1. Let t

be the last j such that mj ≥ 32 and Lmon

(
Majmj+1

)
≥ 2c′ both hold. (Recall that b = 1,

thus log5(4b) = 25 = 32.)
A small calculation shows that t ≤ 1

log(10/6) log logm ≤ 2 log logm. For j = 1, . . . , t we
set pj = 4m−0.4

j = 4mj+1/mj .
As in the proof of Theorem 3.1, our staged restrictions ensure that ϕj = Majmj

. Similarly
to our previous argument, setting c = 2c′ · 16, and using that

Lmon(ϕj+1) = Lmon

(
Majmj+1

)
≥ 2c′

for j = 1, . . . , t, we get

Lmon(ϕt+1) ≤ ct ·
(mt+1

m

)Γ
· Lmon(ϕ1)

Thus, we obtain

Lmon(Majn) ≥ c−t ·
(

n

mt+1

)Γ
· Lmon

(
Majmt+1

)
By the definition of t above, at least one of mt+1 < 32 or Lmon

(
Majmt+2

)
< 2c′

must hold. The latter implies that mt+2 < 2c′, hence mt+1 = m
10/6
t+2 < (2c′)10/6 and for

c′′ = max
{

32, (2c′)10/6} we have mt+1 < c′′. Since mt ≥ 32 we also have mt+1 ≥ 8. Using
8 ≤ mt+1 < c′′ and t ≤ 2 log logm we get

Lmon(Majn) ≥ c−2 log logm ·
( n
c′′

)Γ
· Lmon

(
Majmt+1

)
≥ nΓ/ polylogn J
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5 Future Directions

A possible extension of our result would be to verify the KRW conjecture [9] for composing
arbitrary functions with the majority function. The KRW conjecture essentially states
that the formula size of composed functions is the product of their formula sizes, e.g.
L(h ◦ g) ≥ Ω(L(h) ·L(g)). The conjecture has been verified for composing arbitrary functions
with parity. Unfortunately, getting asymptotically tight bounds on the formula size of majority
is still open. Currently, the best upper bound on the De Morgan formula size of majority is
O
(
n3.91) [16]. Our lower bound would verify the conjecture for composing arbitrary functions

with majority if L(Majn) = O
(
n2).

Another interesting direction is studying the average-case hardness of the Generalized
Andreev function with Majority. Here, we expect a different behavior than the standard
Andreev function that is hard to compute on 1/2 + exp(−nΩ(1)) fraction of the inputs [11]
(under the uniform distribution). ForMn we could not hope to get such strong average-case
hardness, as we argue next. Observe that a Majority function on the {x1, . . . , xm} agrees
with the dictator function of x1 on 1/2 + Ω(1/

√
m) fraction of the inputs. Replacing each

majority inMn with the appropriate dictator yields the address function, which has formula
complexity Θ(n). A small calculation shows that that a linear size formula (computing the
address function) has agreement at least 1/2 + Ω(1/

√
m)logn ≥ 1/2 + 2− log2(n) with Mn.

We conjecture that getting a much better agreement withMn, say 1/2 + 1/ poly(n), or even
1/2 + 2−o(log2 n), requires almost cubic formula complexity.
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Abstract
We consider the following game between two players Alice and Bob, which we call the mirror
game. Alice and Bob take turns saying numbers belonging to the set {1, 2, . . . , N}. A player
loses if they repeat a number that has already been said. Otherwise, after N turns, when all the
numbers have been spoken, both players win. When N is even, Bob, who goes second, has a very
simple (and memoryless) strategy to avoid losing: whenever Alice says x, respond with N+1−x.
The question is: does Alice have a similarly simple strategy to win that avoids remembering all
the numbers said by Bob?

The answer is no. We prove a linear lower bound on the space complexity of any deterministic
winning strategy of Alice. Interestingly, this follows as a consequence of the Eventown-Oddtown
theorem from extremal combinatorics. We additionally demonstrate a randomized strategy for
Alice that wins with high probability that requires only Õ(

√
N) space (provided that Alice has

access to a random matching on KN ).
We also investigate lower bounds for a generalized mirror game where Alice and Bob alternate

saying 1 number and b numbers each turn (respectively). When 1 + b is a prime, our linear lower
bounds continue to hold, but when 1+b is composite, we show that the existence of a o(N) space
strategy for Bob (when N 6≡ 0 mod (1 + b)) implies the existence of exponential-sized matching
vector families over ZN

1+b.
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1 Introduction

1.1 The Mirror Game and Mirror Strategies
Consider the following simple game. Alice and Bob take turns saying numbers belonging
to the set {1, 2, . . . , N}. If either player says a number that has previously been said, they
lose. Otherwise, after N turns, all the numbers in the set have been spoken aloud, and both
players win. Alice says the first number.

If N is even, there is a very simple and computationally efficient strategy that allows
Bob to win this game, regardless of Alice’s strategy: whenever Alice says x, Bob replies with
N + 1− x. This is an example of a mirror strategy (and for this reason, we refer to the game
above as the mirror game). Mirror strategies are an effective tool for figuring out who wins
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36:2 The Space Complexity of Mirror Games

in a variety of combinatorial games (for example, two-pile Nim [2]). More practically, mirror
strategies can be applied when playing more complex games, such as chess or go (to varying
degrees of success). From a computational perspective, mirror strategies are interesting as
they require very limited computational resources - most mirror strategies can be described
via a simple transformation of the preceding action.

Returning to the game above, this leads to the following natural question: does Alice
have a simple strategy to avoid losing when N is even? Since both players have access to
the same set of actions, one may be tempted to believe that the answer is yes - in fact, if N
is odd, then Alice can start by saying the number N and then adopt the mirror strategy
for Bob described above for a set of N − 1 elements. However, when N is even, the mirror
strategy as stated does not work.

To answer the above question, we need to formalize what we mean by simple; after all,
Alice has plenty of strategies such as “say the smallest number which has not yet been said”.
One useful metric of simplicity is the metric of space complexity, the amount of memory a
player requires to implement their strategy (we formalize this in Section 2). Note that Bob
needs only O(logN) bits of memory to implement his mirror strategy, whereas the naive
strategy for Alice (remembering everything) requires O(N) bits.

In this paper, we show that this gap is necessary; any successful, deterministic strategy
for Alice requires at least Ω(N) bits of memory:

I Theorem 1 (Restatement of Theorem 11). If N is even, then any winning strategy for
Alice in the mirror game requires at least (log2 5− 2)N − o(N) bits of space.

1.2 Eventown and Oddtown
While many tools exist in the computer science literature for showing space lower bounds
(e.g. communication complexity, information theory, etc.), one interesting feature of this
problem absent from many others is that any proof of Theorem 1 must depend crucially on
the parity of N .

In the study of set families in extremal combinatorics, an “Oddtown” is a collection of
subsets of {1, 2, . . . N} where every subset has even cardinality but each pair of distinct
subsets has an intersection of odd cardinality. Likewise, an “Eventown” is a collection of
subsets of {1, 2, . . . , N} where every subset has even cardinality but each pair of distinct
subsets has an intersection of even cardinality. In 1969, Berlekamp [3], answering a question of
Erdős, showed that while there exist Eventowns containing up to 2N/2 subsets, any Oddtown
contains at most N subsets.

It turns out that this exponential gap between the size of Oddtowns and the size of
Eventowns is directly responsible for the exponential gap between the space complexity of
Alice’s strategy and the space complexity of Bob’s strategy! (One way to see this connection is
that, just as Bob’s O(logN)-space strategy involves pairing up the numbers of {1, 2, . . . , N},
one way to construct an Eventown of size 2N/2 is to perform a similar pairing, and then
consider all subsets formed by unions of pairs).

The Eventown-Oddtown theorem figures into our proof of Theorem 1 in the following
way. At a given turn, for each possible state of memory of Alice, label the state with the
possible subsets of numbers that could have possibly been said before this turn. We show
(Lemma 13) that these subsets must form an Oddtown, or else Bob has some strategy that
can force Alice to lose. Since there are a large (exponential) number of total possible subsets
(Corollary 10), and since each Oddtown contains at most N subsets, this implies that Alice’s
memory must be large.
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1.3 Randomized Strategies for Alice

A natural followup to Theorem 1 is whether these lower bounds continue to hold if Alice
instead uses a randomized strategy, which only needs to succeed with high probability.

We provide some evidence to show that this might not be the case. We demonstrate an
O(
√
N log2N)-space algorithm for Alice that succeeds with probability 1−O(1/N), as long

as Alice is provided access to a uniformly chosen perfect matching on the complete graph
on N vertices (KN ) (Theorem 18). In addition, even with O(logN)-space (and access to
a uniformly chosen perfect matching on KN ), Alice can guarantee success with probability
Ω(1/N).

In both of these algorithms, Alice attempts the mirror strategy of Bob, hoping that Bob
does not choose the number with no match. In the O(

√
N log2N) algorithm, Alice decreases

her probability of failure by maintaining a set of Õ(
√
N) possible “backup” points she can

switch to if Bob identifies the unmatched point. This lets Alice survive until turn N−Õ(
√
N),

whereupon Alice can reconstruct the remaining O(
√
N) elements by maintaining O(

√
N)

power sums during the computation.
Since Alice cannot store a perfect matching on KN in o(N) space, this unfortunately

does not give any o(N)-space strategies for Alice. In addition, our lower bound techniques
from Theorem 1 fail to give non-trivial guarantees in the randomized model. Demonstrating
non-trivial algorithms or non-trivial lower bounds for the general case is an interesting open
problem.

1.4 General Mirror Games

It is possible to generalize the mirror game presented earlier to the case where in each turn
Alice says a numbers and Bob says b numbers. We refer to this game as the (a, b)-mirror
game.

By a generalization of the Oddtown theorem that works modulo prime p, our proof of
Theorem 1 immediately carries over to show that if N is not divisible by p, then any winning
strategy for Bob in the (1, p− 1)-mirror game requires Ω(N) space (Theorem 20).

The natural generalization of the Oddtown theorem is known not to hold modulo composite
m. Grolmusz showed [9] that if m is composite, there exists a set family of quasipolynomial
size such that every set has cardinality divisible by m, but the intersection of any two distinct
sets has cardinality not divisible by m. The best known upper bounds for the size of such a
set family are of the form 2O(N), and improving these to any bound of the form 2o(N) is an
important open problem, with applications in coding theory to the construction of matching
vector families [5, 4].

As long as the size of a modulo m Oddtown is bounded above by 2o(N), the proof of
Theorem 20 still achieves an Ω(N) lower bound on the space complexity of Bob’s strategy. It
follows that finding any o(N)-space winning strategy for Bob in the (1,m− 1) mirror game
implies the existence of a 2Ω(N)-size modulo m Oddtown, and hence similarly sized matching
vector families (Theorem 22). Admittedly, Bob may not have an o(N)-space winning strategy
in this game for unrelated reasons; it is interesting whether it is possible to show a converse
result, constructing a low-space strategy for Bob from any 2Ω(N)-size modulo m Oddtown.

For other (a, b)-mirror games, we understand much less about the complexity of winning
strategies (if a+b is prime, then depending on the residue of N modulo a+b it is occasionally
possible to show an Ω(N) lower bound on the lower bound of a winning strategy).

ITCS 2019
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2 Definitions and Preliminaries

2.1 The Mirror Game
The mirror game on N elements as discussed before is a game between two players, Alice
and Bob. Alice and Bob take turns (Alice going first) saying a number in [N ] ([N ] indicates
the set {1, 2, . . . , N}). If a player says a number that has previously been said (either by
the other player or by themselves) they lose and the other player wins. In addition, after N
successful turns (so no numbers in [N ] remain unsaid), both players are declared winners.

With unbounded memory, it is clear that both players can easily win this game. We
therefore restrict our attention to strategies with bounded memory. A strategy computable in
memory m for Alice in the mirror game is defined by an initial memory state s0 ∈ [2m] and
a pair of transition functions f : [N ] × [2m] × [N ] → [2m] and g : [2m] → [N ] computable
in SPACE(m) (see [1] for an introduction to bounded space complexity). The function f
takes in the previous reply b ∈ [N ] of Bob, Alice’s current memory state s ∈ [2m], and the
current turn t ∈ [N ], and returns Alice’s new memory state s′ ∈ [2m]; the function g takes in
Alice’s current memory state s ∈ [2m] (after updating it based on Bob’s move), and outputs
her next move a. We say a strategy for Alice is a winning strategy if Alice is guaranteed to
win regardless of Bob’s choice of actions.

By removing the constraint that the transition function f is computable in SPACE(m),
we obtain a larger class of strategies, which we refer to as strategies weakly computable in
memory m. Our lower bounds in Theorems 1 and 20 continue to hold for this larger class of
strategies.

2.2 Eventown and Oddtown
In this section we review the known literature on the Eventown-Oddtown problem. Note
that while in the introduction we only defined the terms “Eventown” and “Oddtown”, there
are actually four different classes of set system depending on the parity of cardinalities of
the subsets and the parity of the cardinality of the intersection.

I Definition 2. A collection of subsets F ⊆ [N ] forms an (Odd, Even)-town of sets if:
1. For every F ∈ F , |F | ≡ 1 mod 2.
2. For every F1 6= F2 ∈ F , |F1 ∩ F2| = 0 mod 2.

We define (Odd, Odd)-towns, (Even, Odd)-towns, and (Even, Even)-towns similarly.

Note that there exist (Even, Even)-towns and (Odd, Odd)-towns containing exponentially
(in N) many sets; one simple construction of an (Even, Even)-town is to partition the ground
set into pairs (possibly with a leftover element), and consider all sets formed by taking unions
of these pairs. In contrast, (Even, Odd)-towns and (Odd, Even)-towns each contain at most
N sets.

I Lemma 3. Any (Odd, Even)-town F has size at most N i.e. |F| ≤ N . [3, 12]

For completeness, we give the proof below.

Proof. Let F be {F1, F2, ..., Fk}. Let vi ∈ {0, 1}N be the characteristic function of Fi i.e.
vi[l] = 1 ⇐⇒ l ∈ Fi. We know that vT

i vj mod 2 = 1 for i = j and 0 otherwise. We claim
that v1, v2, ..., vk are linearly independent over F2 (where F2 is the field with 2 elements) and
hence, k ≤ N . We prove this claim by contradiction. If they are not linearly independent,
then ∃λ1, λ2, ..., λk ∈ {0, 1} not all zero such that

∑k
i=1 λivi = 0 mod 2. Without loss

of generality, assume λ1 6= 0. As vT
1 (
∑k

i=1 λivi) = λ1 over F2, this implies λ1 = 0; a
contradiction. J
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I Corollary 4. Any (Even, Odd)-town contains at most N sets.

Proof. We prove an upper bound of N + 1 sets by reduction to Lemma 3. Given an (Even,
Odd)-town B = {B1, ..., Bm}, construct an (Odd, Even)-town in space [N + 1] from sets
B1 ∪ {N + 1}, B2 ∪ {N + 1}, ..., Bm ∪ {N + 1}. Using Lemma 3, we get m ≤ N + 1. For a
stronger upper bound of N , refer to [3, 12]. J

By adapting the above linear algebraic arguments to the field Fp (p is prime and Fp refers
to field over p elements), it is possible to show similar upper bounds on the size of set families
with cardinality constraints modulo p. We will use the following lemma, due to Frankl and
Wilson.

I Lemma 5 ([8]). Let p be a prime and L be a set of s integers. Let B1, B2, ..., Bm ⊆ [N ]
be a family of subsets such that:
1. |Bi| mod p /∈ L, ∀i ∈ [m].
2. |Bi ∩Bj | mod p ∈ L, ∀i 6= j.
Then

m ≤
s∑

i=0

(
N

s

)

We call such family of subsets a (p, L)-Modtown.

Interestingly, by a result of Grolmusz, there is no straightforward generalization of these
results modulo a composite number k.

I Theorem 6. Let k be a positive integer with r > 1 different prime divisors. Then there
exists a c > 0, such that for every N , there exists a family of subsets B1, B2, . . . , Bm such
that:
1. m ≥ exp(c(logN)r/(log logN)r−1),
2. |Bi| ≡ 0 mod k, ∀i,
3. |Bi ∩Bj | 6≡ 0 mod k, ∀i 6= j.

Proof. See [9]. J

This type of set family is captured in coding theory by the definition of a matching vector
family.

I Definition 7. A matching vector family [4] over Zn
m of size t is a pair of ordered lists

U = {u1, u2, ..., ut} and V = {v1, v2, ..., vt} where ui, vj ∈ Zn
m such that for all i, uT

i vi = 0,
and for all i 6= j, uT

i vj 6= 0.

By taking ui = vi to be the characteristic vector of Bi above, it is clear that a family of
subsets of size m in Theorem 6 gives rise to a Matching Vector family of size m. Matching
vector families have deep applications to many problems in coding theory, such as private
information retrieval and locally decodable codes [6, 7]. Understanding the maximum possible
size of a matching vector family is an important open problem in coding theory.

ITCS 2019
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3 Alice Requires Linear Space

In this section we prove that Alice requires linear space to win the mirror game when N is
even. To do this, we will show that if Alice is at a specific memory state, then the possible
sets of numbers that have been said till that point in time must form an (Even, Odd)-town
(and hence there are at most N such sets for any memory state).

Before we get into the main proof, we will define and lower-bound the size of what we call
a “covering collection” of subsets (this will later allow us to lower bound the total number of
possible sets of numbers said by round t (2t turns)).

I Definition 8. A collection of subsets C of [N ] is (p, r)-covering if:
1. each S ∈ C has |S| = pr.
2. for every T ⊂ [N ] with |T | = r, there exists a S ∈ C with T ⊂ S.

I Lemma 9. Every (p, r)-covering collection C has size at least (N
r )

(pr
r ) .

Proof. Every set in this collection contains at most
(

pr
r

)
sets T with cardinality r. There

are
(

N
r

)
possible sets T . J

When p = 2, it turns out that the lower bound in Lemma 9 is maximized when r = N/5.

I Corollary 10. When r = N/5, every (2, r)-covering collection has size at least
2(log2 5−2)N−o(N).

We now prove our main theorem.

I Theorem 11. If N is even, then any winning strategy in the mirror game for Alice requires
at least (log2 5− 2)N − o(N) bits of space.

Proof. Fix a winning strategy for Alice. Assume this strategy uses m bits of memory, and
thus has M = 2m distinct states of memory.

Call a subset S of [N ] r-occurring if it is possible that immediately after turn 2r (r
rounds), the set of numbers that have been said is equal to S. Let Sr be the collection of all
r-occurring sets. Before diving into the main proof, for any fixed deterministic strategy of
Alice, we prove a lower bound on Sr i.e. the number of different subsets of numbers that
could have been said in the first 2r turns over various strategies of Bob.

I Lemma 12. Sr is (2, r)-covering.

Proof. Since 2r numbers have been said immediately after turn 2r, every set in Sr has
cardinality 2r. We must show that for any T ⊂ [N ] with |T | = r, that there exists an S in
Sr with T ⊂ S.

Consider the following strategy for Bob: “say the smallest number in T which has not
yet been said”. Note that if Bob follows this strategy, then the set of numbers said by
turn 2r must contain the entire set T . This set belongs to Sr, and it follows that Sr is
(2, r)-covering. J

Write N = 2n, and fix a value r ∈ [n]. For a memory state x out of the M possible
memory states and an r-occurring set S, label x with S if it is possible that Alice is at
memory state x when the set of numbers that have been said is equal to S. Each state
of memory may be labeled with several or none r-occurring sets, but each r-occurring set
must exist as a label to some state of memory (by definition). Let Ux be the collection of
r-occurring labels for memory state x. We want to upper bound the size of Ux. Following
lemma along with (Even, Odd)-town Lemma (Corollary 4) helps us in doing exactly that.
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I Lemma 13. If S1 and S2 belong to Ux, then |S1 \ S2| is odd.

Proof. Let D = S1∆S2, let D1 = S1 \S2, and let D2 = S2 \S1. Assume to the contrary that
|D1| is even. Note then that |D2| is also even (since |S1| = |S2| = 2r) and that |D| = 2|D1|.
We’ll consider two possible cases for the state of the game after turn 2r: 1. Alice is at state
x, and the set of numbers that have been said is S1, and 2. Alice is at state x, and the set of
numbers that have been said is S2.

Consider the following strategy that Bob can play in either of these cases: “say the
smallest number that has not been said and is not in D”. We claim that if Bob uses this
strategy, Alice will be the first person (after turn 2r) to say an element of D. Note that Bob
will not say an element of D until after turn 2n− |D|/2; this is since:
1. If we are in case 1, then all of the numbers in D1 have been said but none of the numbers

in D2 have been said. There are therefore |D2| = |D|/2 numbers in D which have not
been said, so Bob can avoid saying an element of D till turn 2n− |D|/2.

2. Likewise, if we are in case 2, the argument proceeds symmetrically.

On the other hand, if no element of D is spoken by either player between turn 2r and
turn 2n − |D|/2, then at turn 2n − |D|/2 + 1, the only remaining elements belong to D
(the set of remaining elements is either D1 or D2, depending on which case we are in). If
|D1| = |D|/2 is even, then it is Alice’s turn to speak at turn 2n− |D|/2 + 1. It follows that
Alice will be the first person after turn r to say an element of D.

Let y1 be the memory state of Alice when she first speaks an element of D in case 1, and
define y2 similarly. We claim that y1 = y2. Indeed, since Alice’s strategy is deterministic and
starts from x in both cases 1 and 2, Bob’s strategy plays identically in both case 1 and case
2 until an element of D has been spoken. It follows that Alice must speak the same element
of D in both cases. But if this element is in D1, and they are in case 1, then this element
has already been said before; similarly, if this element is in D2, and they are in case 2, then
this element has also been said before. Regardless of which element in D Alice speaks at this
state, there is some case where she loses, which contradicts the fact that Alice’s strategy is
successful. It follows that |D1| must be odd, as desired. J

I Claim 14. |Ux| ≤ N

Proof. We claim the sets in Ux form an (Even, Odd)-town, from which this conclusion
follows (Corollary 4). Each set in Ux has cardinality 2r, so all sets have even cardinality.
By Lemma 13, any pair of distinct sets S1, S2 ∈ Ux has odd |S1 \ S2|. Note that since
|S1 ∩ S2| = |S1| − |S1 \ S2|, and since |S1| is even, it follows that |S1 ∩ S2| is odd, so any pair
of sets have an odd cardinality intersection. J

Choose r = N/5. By Corollary 10, Sr must have cardinality at least 2(log2 5−2)N−o(N).
Since each element in Sr belongs to at least one collection Ux, and since each collection
Ux has cardinality at most N (Claim 14), the number M of memory states x is at least
2(log2 5−2)N−o(N)/(N + 1) = 2(log2 5−2)N−o(N). It follows that m = logM ≥ (log2 5− 2)N −
o(N), as desired. This proves Theorem 11. J

4 Randomized Strategies for Alice

In this section, we consider randomized strategies for Alice. A randomized strategy computable
in memory m is defined similarly as in Section 2, with the exception that the transition
function no longer needs to be deterministic and need only be computable in RSPACE(m);
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i.e. it must be computable by a space m Turing machine with access to a poly(N,m)-sized
read-once random tape. We say a randomized strategy wins with probability p if Alice wins
with probability at least p against every possible strategy for Bob.

Unfortunately, we do not know any randomized strategies with sublinear memory which
win with high probability. We therefore relax the definition of randomized strategy above and
consider randomized strategies where Alice has oracle access to a perfect matching M chosen
uniformly at random from all perfect matchings on KN where KN is the complete graph
on N vertices (we assume here that N is even). Calling this oracle with x ∈ [N ] returns
x’s match M(x) in this matching, and M may be called arbitrarily many times during the
computation of f .

One way to interpret the following upper bounds is as a source of difficulty for proving
strong lower bounds for randomized strategies (of the form “you need linear space to succeed
with high probability”), since a randomized strategy with memory m with access to a
random matching can be viewed as a convex combination of deterministic strategies weakly
computable in memory m. This means that any attempt to extend aforementioned strong
lower bounds against randomized strategies must fail against this stronger class of randomized
strategies.

Another way to interpret this model of computation is as a specific case of the setting
where Alice has arbitrary read access to her random tape (as opposed to read-once access).
It is known [11] that having arbitrary read access to randomness is more powerful than
read-once access as long as certain probabilistic space classes do not collapse. Proving a
strong lower bound for randomized strategies would provide more evidence for this separation
(this time in the setting of streaming games).

We begin by showing that with only logarithmic space (and access to a random perfect
matching), Alice can already win with probability Ω(1/N). In contrast, without access to a
random matching, we know no logarithmic space strategy that succeeds with better than an
exponentially small probability.

I Theorem 15. When N is even, there exists a randomized strategy (with access to a
uniformly random perfect matching M on KN) for Alice with space complexity O(logN)
which succeeds with probability Ω(1/N).

Proof. Consider the following strategy for Alice. She begins by sampling a uniform element
x from [N ]. On her first turn, Alice says x. On subsequent turns, if Bob has just previously
said y, Alice replies with M(y).

Note that with this strategy, Alice wins playing against Bob if the last number said by
Bob on turn N is M(x). This follows since M is a matching, so there is no other number
y 6= M(x) that Bob can say where M(y) has also already been said. It follows that if Bob
says M(x) at turn N , then Alice is guaranteed to win.

What is the probability Bob says M(x) before turn N? We will show it is less than
1− 1/N . To do this, we first claim that any winning strategy for Bob (i.e. any strategy that
doesn’t repeat previously said elements) has the same probability of saying M(x) before turn
N . This follows from symmetry: since a uniformly random perfect matching conditioned
on containing a submatching is still a uniformly random perfect matching on the remaining
vertices, at any point in the protocol, if M(x) has not been said yet, it has an equally likely
chance of being any of the unsaid elements. Therefore, without loss of generality, assume
Bob is playing according to the strategy where each turn he says the smallest number that
has not been said so far.
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Now, note that if M(x) = N , Bob will not say M(x) before turn N (there will always
be a smaller unsaid element). But this happens with probability 1/N , and therefore Alice
succeeds with probability at least 1/N . J

We will next show how to extend this idea to construct an Õ(
√
N) strategy for Alice

which succeeds with high probability. To do this, we will need the following folklore result
on determining missing elements from a set in a streaming setting.

I Definition 16. The “missing k numbers problem” is a streaming problem where a subset
S of cardinality N − k is chosen from [N ], and Alice is shown the elements of S one at a
time, in some order. Alice’s goal is to output the set [N ] \ S.

I Lemma 17. There exists an O(k logN)-space deterministic algorithm for the missing k
numbers problem.

Proof. See [10]. For completeness, we include the proof here.
Choose a prime q ∈ (N, 2N ]. We will perform all subsequent computations over the field

Fq. For a subset T of [N ], define pi(T ) =
∑

x∈T x
i. We first claim that if |T | ≤ k, then Alice

can recover the elements of T given the values of pi(T ) for 1 ≤ i ≤ k.
To show this, define ei(T ) to be the value of ith elementary symmetric polynomial over

the elements of T (that is, ei(T ) =
∑

T ′⊆T,|T ′|=i

∏
x∈T ′ x). Newton’s identities allow us to

compute (in space O(logN)) the values of ei(T ) for 1 ≤ i ≤ k from the values of pi(T ) for
1 ≤ i ≤ k (since k < N < q, all of these operations are valid over Fq). Now, each element x
of T is a root of the polynomial

xk − e1(T )xk−1 + e2(T )xk−2 − · · ·+ (−1)kek(T ) = 0.

We can factor this in space O(logN) by trying all possible x ∈ [N ], and therefore recover
the original set T .

To solve the missing k numbers problem, Alice first computes pi(S) for each 1 ≤ i ≤ k
using O(k logN) space, updating each count every time she receives a new element from
S. This allows her to compute pi([N ] \ S) via pi([N ] \ S) = pi([N ])− pi(S). Finally, since
|[N ] \ S| = k, she can use the previous algorithm to recover the set [N ] \ S. J

I Theorem 18. When N is even, there exists a randomized strategy (with access to a
uniformly random perfect matching M on KN ) for Alice with space complexity O(

√
N log2N)

which succeeds with probability 1−O(1/N).

Proof. Consider the following strategy for Alice. Alice begins by sampling r =
√
N distinct

elements X = {x1, x2, . . . , xr} uniformly at random from all
(

N
r

)
subsets of r elements of N

(and stores them in memory).
At every point in the game, Alice uses her O(

√
N log2N) = O(r log2N) bits of memory

to keep track of: i) which elements of X have already been said, and ii) the first k = r logN
power sums of the elements said so far, modulo some prime q ∈ (N, 2N ] (as per the proof of
Lemma 17).

Alice begins by choosing a random element of X and saying it. Her algorithm in later
rounds is defined as follows:
1. If less than or equal to k elements remain unchosen (i.e., this is turn N −k or later), Alice

uses the O(k logn)-space algorithm from Lemma 17 to compute the remaining unsaid
elements. She then says one of these elements, chosen arbitrarily.

2. Otherwise, if Bob has just said y, Alice checks if M(y) belongs to X.
If it does not belong to X, Alice says M(y).
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If M(y) belongs to X but has not been said yet, Alice says M(y) and marks down
M(y) as having been said.
If M(y) belongs to X and has already been said, Alice chooses an element of X
uniformly at random from the elements of X which have not yet been said (if there
are no such elements, Alice gives up and says a random element). She then marks this
element as having been said.

Let T be the random variable denoting the first turn in which all of the elements of X
have been said. We first claim that if T ≥ N − k, then Alice succeeds. Indeed, since the
algorithm of Lemma 17 always succeeds, Alice is guaranteed to succeed if she makes it to
turn N − k. On the other hand, the only way for Alice to fail before turn N − k is if all of
the elements of X have already been said, and Alice is forced to say a random element.

We now claim that with high probability, T ≥ N − k. To see this, note that, similarly
as in the proof of Theorem 15, any non-trivial strategy of Bob will give rise to the same
distribution over T . This follows from the fact that at any point in the protocol, each unsaid
element has the same probability of belonging to the set X.

We can therefore assume that Bob is playing under the strategy where on his turn, he
says the smallest number that has not been said so far. Note that under this strategy, Bob
will only say numbers less than or equal to i on turn i; it follows that if there exists any xi

such that xi ≥ N − k, then also T ≥ N − k.
We can thus compute

Pr[T < N − k] ≤ Pr[∀i, xi ≤ N − k]

=
(

N−k
r

)(
N
r

)
≤

(
N − k
N

)r

=
(

1− logN√
N

)√N

= O(1/N).

It follows that Alice wins with probability at least 1−O( 1
N ), as desired. J

Note that the same upper bound holds when Alice does not have an oracle access to a random
matching but Bob’s strategy is to choose a random number in [N ] in every turn.

5 The (a, b)-Mirror Game

Consider the following generalization of the mirror game, where Alice says a numbers each
turn, and Bob says b numbers each turn. We call this new game the (a, b)-mirror game.

As with the regular (1, 1)-mirror game, mirror strategies exist for the class of (1, b)-mirror
games (and similarly, the (a, 1)-mirror games).

I Theorem 19. If N is divisible by b+ 1, then Bob has a winning strategy computable in
O(logN) memory for the (1, b)-mirror game.

Proof. Divide the N elements of [N ] into N/(b+1) consecutive (b+1)-tuples. Any time Alice
says an element in a (b+1)-tuple, Bob says all the remaining elements in that (b+1)-tuple. J
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Unlike in the (1, 1)-mirror game, we cannot rule out the existence of low space winning
strategies for other games and other choices of N . In this section, we summarize what we
know about low-space winning strategies for (a, b)-mirror games.

5.1 a + b is Prime
We begin by considering the set of (a, b)-mirror games where a + b is a prime, p. The
Frankl-Wilson Lemma (Lemma 5) allows us to extend some of our proof techniques from
Theorem 11 to this case.

In the case where a = 1, we have the following analogue to Theorem 11, fully characterizing
the N where Bob has a low space winning strategy (Theorem 19) and where Bob requires
linear space.

I Theorem 20. Let p be a prime. If N is not divisible by p, then any winning strategy for
Bob in the (1, p− 1)-mirror game requires Ω(N) space.

Proof. See Appendix A. J

When a > 1, our proof techniques no longer allow us completely characterize the set
of N where Bob requires Ω(N) space to win. Instead, we only have the following partial
characterization.

I Theorem 21. Let p be a prime. If a+ b = p, and N mod p ∈ {a, a+ 1, . . . , p− 1}, then
any winning strategy for Bob in the (a, b)-mirror game requires Ω(N) space.

Proof. See Appendix A. J

5.2 a + b is Composite
The failure of the Frankl-Wilson lemma (Lemma 5) to hold modulo composite numbers
prevents us from directly applying our proof techniques in this case. Gromulz’s construction
(Theorem 6) shows that there exist (m,L)-Modtown families containing a superpolynomial
in N number of sets when m is composite.

However, a sufficiently small superpolynomial upper bound on the size of such a family
would still allow us to prove the analogue of Theorem 20. In fact, any upper bound of F on
the size of such a family leads to a lower bound of log(2Ω(n)/F ) = Ω(n) − logF on Bob’s
memory. This implies the following “contrapositive” to Theorem 20:

I Theorem 22. If Bob has a o(N)-space winning strategy in a (1,m − 1) game when
N ≡ k 6≡ 0 mod m, then there exists 2Ω(N) sized matching vector families over ZN

m (for
sufficiently large N).

Proof. See Appendix A. J

6 Open Problems

Our understanding of the space complexity aspects of mirror games is still very rudimentary.
We conclude by listing some open problems we find interesting.

1. When do low-space winning strategies exist? Does either Alice or Bob ever have
a low-space winning strategy for any (a, b) game when a and b are both larger than 1
(e.g., the (2, 2) game)? Are there any cases where the best deterministic winning strategy
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has space complexity strictly between O(logN) and O(N) (e.g. O(
√
N)), or does the

best winning strategy always fit into one of these two extremes? Is it ever the case that
both Alice and Bob simultaneously have O(logN) winning strategies?

2. Beating low-space with low-space. In order to show that Alice needs Ω(N) space, our
adversarial strategy for Bob also requires Ω(N) space. Given a deterministic low-memory
m strategy for Bob, is there a low-memory strategy for Alice which wins against it?

3. Lower bounds for randomized strategies. Can we prove any sort of lower bound
against randomized strategies that win with high probability? What about against
randomized strategies with additional power, such as access to a uniformly chosen
matching or with multiple read access to the random tape? Is our upper bound of Õ(

√
N)

tight in the latter contexts?
4. Composite a + b. Is it possible to show some sort of converse to Theorem 22, that any

large enough matching vector family gives rise to a low space strategy for Bob? Or is it
possible to show linear space lower bounds for composite a+ b via some other approach?

5. More general mirror games. One of the great successes of the theory of combinatorial
games [2] is that its techniques apply to essentially all sequential two-player games with
perfect information. Is there a more general class of games beyond the family of (a, b)-
mirror games with similar space complexity phenomena? One possible other family of
such games with mirror strategies comes from a generalization of the combinatorial game
“Cram”, where Alice and Bob take turn placing dominoes (more generally, an element
of some set of “symmetric” polyominos) onto a w by h grid (more generally, some high
dimensional grid, or any “symmetric” subset of a high-dimensional grid). For example,
the original mirror game can be thought of as Cram on a 1 by N board, where players
take turn placing unit squares. Can we say anything about the space complexity of
playing Cram, or its generalizations?
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A Omitted Proofs

Proof of Theorem 20
Theorem 20 is a special case of Theorem 21 setting a = 1. Hence, we go on to prove that.

Proof of Theorem 21
Proof. We proceed similarly to the proof of Theorem 11. As before, call a subset S of [N ]
r-occurring if it is possible that immediately after turn 2r, the set of numbers that have
been said is equal to S. Let Sr be the collection of all r-occurring sets. As before, Sr is
(p, r)-covering and we can choose r such that |Sr| ≥ 2Ω(N).

Write N = pn+ k, k ∈ {a, a+ 1, ..., p− 1}, and fix a value r ∈ [n]. For a memory state x
out of the M possible memory states of Bob and an r-occurring set S, label x with S if it is
possible that Bob is at memory state x when the set of numbers that have been said is equal
to S. Each state of memory may be labelled with several r-occurring sets or none, but each
r-occurring set must exist as a label to some state of memory (by definition). Let Ux be the
collection of r-occurring labels for memory state x.

I Lemma 23. If S1 and S2 belong to Ux, then |S1\S2| mod p ∈ {k−a+1, ..., k−1, k, .., p−1}.

Proof. Let D = S1∆S2, let D1 = S1 \S2, and let D2 = S2 \S1. Assume to the contrary that
|D1| ≡ k1 mod p where k1 ∈ {0, 1, .., k − a} . Note then that |D2| = |D1| (since |S1| = |S2|)
and that |D| = 2|D1|. We’ll consider two possible cases for the state of the game after turn
2r (each turn, either Alice says a numbers or Bob says b numbers): 1. Bob is at state x,
and the set of numbers that have been said is S1, and 2. Bob is at state x, and the set of
numbers that have been said is S2.

Consider the following strategy that Alice can play in either of these cases: “say the
smallest number that has not been said that is not in D”. We claim that if Alice uses this
strategy, Bob will be the first person (after turn 2r) to say an element of D. Note that Alice
will not say an element of D until turn 2bN−|D1|

p c+ 1; this is since:
1. If we are in case 1, then all of the numbers in D1 have been said but none of the numbers

in D2 have been said. There are therefore |D2| = |D1| numbers in D which have not been
said, so Alice can avoid saying an element of D until turn 2bN−|D1|

p c+ 1 as the number
of numbers remaining before Alice’s turn would be |D1|+ k− k1 ≥ |D1|+ a. Hence, Alice
can say a numbers not belonging to the set D1.

2. Likewise, if we are in case 2, the argument proceeds symmetrically.

On the other hand, if no element of D is spoken by either player between turn 2r
and turn 2bN−|D1|

p c + 1, then at turn 2bN−|D1|
p c + 2, Bob has to say b elements from

|D1|+ k − k1 − a elements and hence, there would be intersection with elements of D (as
k − k1 − a ≤ p− 1− a = b− 1).

Let y1 be the memory state of Bob when he first speaks an element of D in case 1, and
define y2 similarly. We claim that y1 = y2. Indeed, since Bob’s strategy is deterministic and
starts from x in both cases 1 and 2, Alice’s strategy plays identically in both case 1 and case
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2 until an element of D has been spoken. It follows that Bob must speak the same element
of D in both cases. But if this element is in D1, and they are in case 1, then this element
has already been said before; similarly, if this element is in D2, and they are in case 2, then
this element has also been said before. Regardless of which element in D, Bob speaks at this
state, there is some case where he loses, which contradicts the fact that Bob’s strategy is
successful. It follows that |D1| mod p ∈ {k − a+ 1, ..., k − 1, k, .., p− 1}, as desired. J

I Claim 24. |Ux| ≤ p
(

N
p−1
)
.

Proof. We claim the sets in Ux form a (p, {1, 2, ..., p−1})-Modtown, from which this conclusion
follows (Lemma 5). Each set in Ux has cardinality pr ≡ 0 mod p. By Lemma 23, any pair of
distinct sets S1, S2 ∈ Ux has |S1\S2| mod p ∈ {k−a+1, ..., k−1, k, .., p−1} ⊆ {1, 2, .., p−1}
(as k ≥ a). Note that since |S1 ∩ S2| = |S1| − |S1 \ S2|, it follows that |S1 ∩ S2| mod p also
belongs to {1, 2, .., p− 1}. J

We established that for some r, Sr must have cardinality at least 2Ω(N). Since each
element in Sr belongs to at least one collection Ux, and since each collection Ux has cardinality
at most pNp (Claim 24), the number M of memory states x is at least 2Ω(N)/(pNp). It
follows that m = logM ≥ Ω(N), as desired. This proves Theorem 21. J

Proof of Theorem 22
Proof. In proof of Theorem 21, we use the fact that p is prime only to bound the size of
Ux and thus, Lemma 23 (a = 1) hold even for composite m. As Sr must have cardinality
at least 2Ω(N) and there are at most 2o(N) memory states x, by pigeonhole principle, there
exists x′ with |Ux′ | ≥ 2Ω(N). Let’s define the set of vectors U based on Ux′ . For every
subset S ∈ Ux′ , we add a vector vS ∈ {0, 1}N to U where vS is the characteristic vector of S
(vS(l) = 1 ⇐⇒ l ∈ S). Clearly, |U | = |Ux′ | and U ⊆ {0, 1}N . We claim the U and U form
a Matching Vector family as vT

S vS = |S| mod m = 0, for all S and vT
S1
vS2 = |S1 ∩ S2| 6≡ 0

mod m, ∀S1 6= S2 by Lemma 23 (when N ≡ k 6≡ 0 mod m). Hence, we have a exponential
sized Matching Vector family (U , U) over ZN

m. J
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We initiate a study of testing properties of graphs that are presented as subgraphs of a fixed (or
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1 Introduction

Property testing refers to probabilistic algorithms with sub-linear complexity for deciding
whether a given object has a predetermined property or is far from any object having this
property. Such algorithms, called testers, obtain local views of the object by performing
queries and their performance guarantees are stated with respect to a distance measure that
(combined with a distance parameter) determines what objects are considered far from the
property.

In the last couple of decades, the area of property testing has attracted significant attention
(see, e.g., [13, 31, 32, 14]). Much of this attention was devoted to testing graph properties in
a variety of models ranging from the dense graph model [15], to the bounded-degree graph
model [17], and to the sparse and general graph models [30, 24].1 These models differ in
two main parameters: the types of queries that potential testers can make, and the distance
measure against which their performance is measured.

1 These models are surveyed in Chapters 8, 9, and 10 of the textbook [14].

© Oded Goldreich and Dana Ron;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 37; pp. 37:1–37:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oded.goldreich@weizmann.ac.il
mailto:danaron@tau.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2019.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


37:2 The Subgraph Testing Model

In all aforementioned models, the input graph is arbitrary, except for its size (and possibly
its degree, in the case of the bounded-degree graph model). The same holds with respect to
the graphs that are used to determine the distance of the input from the property. While
some prior works (see, e.g., [3, 22, 6, 20, 9, 7, 29, 5]) restrict the input graph in certain natural
ways, the restrictions considered so far were expressed in terms of general (“uniform”) graph
properties (such as degree bound, hyperfiniteness, planarity, etc). See further discussion in
Section 1.5.1.

In contrast, we envision circumstances in which the input is restricted to be a subgraph
of some fixed graph that is known beforehand. For example, the fixed graph may represent
an existing (or planned) network, and the subgraph represents the links that are actually
in operation (or actually constructed). Alternatively, the graph may represent connections
between data items that may exist under some known constraints, and the edges of the
subgraph represent connections that actually exist. Either way, the input is a subgraph
of some fixed graph, and the distance to having the property is measured with respect to
subgraphs of the same fixed graph.

1.1 The model
In accordance with the foregoing discussion, in the subgraph testing model, there is a fixed base
graph, denoted G = ([n], E), and the tester is given oracle access to a function f : E → {0, 1}
that represents a subgraph of G in the natural manner (i.e., f represents the subgraph
([n], {e∈E : f(e)=1})). Alternatively, the base graph G is not fixed, but the tester is given
free access to G.

I Definition 1.1 (subgraph tester). Fixing G = ([n], E) and ΠG ⊆ FG
def= {f : E→{0, 1}},

a subgraph tester for ΠG is a probabilistic oracle machine, denoted T , that, on input a
(proximity) parameter ε, and oracle access to a function f : E→{0, 1}, outputs a binary
verdict that satisfies the following two conditions.
1. T accepts inputs in ΠG: For every ε > 0, and for every f ∈ ΠG, it holds that Pr[T f (ε)=

1] ≥ 2/3.
2. T rejects inputs that are ε-far from Π: For every ε > 0, and for every f : E→{0, 1} that

is ε-far from ΠG it holds that Pr[T f (ε)=0] ≥ 2/3, where f is ε-far from ΠG if for every
h ∈ ΠG it holds that |{e∈E : f(e) 6= h(e)}| > ε · |E|.

If the first condition holds with probability 1 (i.e., Pr[T f (ε)=1] = 1 for f ∈ ΠG), then we
say that T has one-sided error; otherwise, we say that T has two-sided error.

In the alternative formulation, the subgraph tester is given G as an explicit input (along
with ε). In this case, the random variable being considered is T f (G, ε).

Definition 1.1 falls within the framework of massively parameterized property testing
(cf. [28]). The massive parameter is the base graph G = ([n], E), and the actual input is a
function f : E → {0, 1} (which represents a subgraph of G).

(The subgraph testing model is syntactically identical to the orientation model [21], but
semantically these models are fundamentally different; see further discussion in Section 1.5.2.)

As usual in the area, our primary focus is on the query complexity of such testers, and our
secondary focus is on their time complexity. Both complexities are stated as a function of the
proximity parameter ε and the base graph G. Indeed, the dependency of these complexities
on G, or rather on some parameters of G, will be of major interest.

As an illustration, consider the problem of testing whether the subgraph is bipartite. If
the base graph is bipartite, then this problem is trivial (since every subgraph is bipartite).
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Figure 1 For n ≥ 6, the n-vertex path is oriented by the additional edge {n− 3, n− 1}.

If the base graph isM-minor free2, for any fixed family of graphsM, then testing (with
distance parameter ε) can be done in poly(1/ε)-time (see Proposition 2.2). Lastly, if the
base graph is of bounded-degree, then testing can be done in poly(1/ε) · Õ(

√
n)-time (see

Theorem 1.2), and this result is optimal in general (i.e., for arbitrary bounded-degree base
graphs, see Part 1 of Theorem 1.4).

Our main focus will be on the case that the base graph is sparse (e.g., of bounded-degree).
Furthermore, we shall be interested in cases in which the subgraph testing model is different
from other testing models. Still, let us make a couple of comments regarding cases in which
the subgraph testing model coincides with other testing models.

The dense graph model is a special case of subgraph testing. For the base graph G = Kn

(i.e., the n-vertex clique), the subgraph testing model coincides with the dense graph model.
This is the case since adjacency queries (as in the dense graph model) correspond to edges of
the base graph G, and the distance measure used in both models is the same.

General property testing as a special case of subgraph testing. If the base graph G is
sparse and asymmetric (i.e., its automorphism group consists solely of the identity permuta-
tion), then the subgraph testing model captures property testing (for Boolean functions) at
large. This is shown as follows.

For n ≥ 6, consider an n-vertex graph G′ consisting of an n-vertex long path augmented
with the edge {n − 3, n − 1} (see Figure 1). Observe that the only automorphism of this
graph is the identity permutation, and augment G′ with self-loops on each of the n vertices,
deriving a base graph G with 2n edges. (We note that the construction can be modified
so that self-loops are avoided, by replacing them with disjoint cycles of length 3.) Lastly,
associate any function f : [n] → {0, 1} with a subgraph of G that contains G′ as well as
the self-loop on vertices in f−1(1). Note that, by the asymmetry of G′, there is a bijection
between the set of Boolean functions over [n] and the subgraphs of G that contain G′, and
that distances between the two models are preserved up to a factor of 2.3

On our terminology: Testing graph properties in the subgraph model. Unless the base
graph G = ([n], E) is closed under all possible relabelings of [n] (which happens if and only if
G is either the complete graph or the empty graph),4 we cannot expect a (non-empty) set of

2 Recall that a graph M is a minor of graph G if M can be obtained from G by vertex deletions, edge
deletions and edge contractions; a graph G isM-minor free for a family of graphsM, if no graph inM
is a minor of G.

3 The argument extends to any sparse graph G′ that is asymmetric. Recall that almost all (bounded
degree) graphs are asymmetric (cf. [10, 25]). On the other hand, an asymmetric graph cannot contain
two isolated vertices, and thus it must contain at least a linear number of edges.

4 Indeed, the n-vertex complete graph and the empty (n-vertex) graph are closed under all possible
relabelings of [n]. On the other hand, if G is neither the complete graph nor the empty graph, then G
is not closed under all possible relabelings of [n]. To see this observe that G must contain a vertex w
that has degree in [n− 2]; that is, its neighbor set, denoted ΓG(w), is neither empty nor contains all
other vertices in G. Picking u ∈ ΓG(w) and v 6∈ ΓG(w), observe that the permutation π that switches u
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its subgraphs, ΠG, to constitute a graph property (i.e., to be closed under all relabelings of
[n]). That is, in the general case, the property ΠG ⊆ FG is not a graph property, since it is
not closed under isomorphism (because FG is not closed under isomorphism). Nevertheless,
for any base graph G and every graph property Π, we shall refer to ΠG = FG ∩Π as a graph
property.

Throughout this paper, we assume that G contains no isolated vertices. This can be
assumed without loss of generality, because, for every graph G′ that is obtained from the
graph G = ([n], E) by adding isolated vertices, it holds that FG = FG′ , since in both cases
the subgraphs are represented by Boolean functions on the same edge-set (i.e., E).

1.2 Results
Throughout this paper, the base graph G is viewed as a varying parameter, which may grow
when other parameters (e.g., the degree bound d) are fixed. We focus on bounded-degree
base graphs and on the relation between testing graph properties in the subgraph model and
testing the same properties in the bounded-degree graph (BDG) model.

Recall that in the BDG model [17], the tester is explicitly given three parameters: n, d,
and ε. Its goal is to distinguish with probability at least 2/3 between the case that a graph
G = ([n], E) (of maximum degree bounded by d) has a prespecified property Π, and the case
that G is ε-far from having the property Π, where a graph is said to be ε-far from having
Π if more than ε · d · n edge modifications (additions or removals) are required in order to
obtain a graph (of maximum degree bounded by d) that has Π. To this end the tester can
perform queries of the form “who is the ith neighbor of vertex v?”, for v ∈ [n] and i ∈ [d].5
Unless stated explicitly otherwise, the degree bound d is a constant.

Obviously, the relationship between the subgraph model and the BDG model depends
on the property being tested as well as on the base graph used in the subgraph model. We
identify cases in which testing is significantly easier in one model than in the other as well as
cases in which testing has approximately the same complexity in both models.

More specifically, we distinguish downward-monotone graph properties from other graph
properties, where a graph property is called downward-monotone if it is preserved under
omission of edges (i.e., if G = ([n], E) has the property, then so does G′ = ([n], E′) for every
E′ ⊂ E).

For each of the theorems stated in this section, we provide either a proof outline or a proof
idea in Section 1.3. Full proofs of Theorems 1.2, 1.3, and 1.7 (as well as Propositions 1.6
and 2.1) appear in Section 2. The proofs of our other results can be found in our technical
report [19].

1.2.1 Downward-monotone properties
We first observe that, for every bounded-degree graph G = ([n], E) and any downward-
monotone graph property Π, testing Π ∩ FG in the subgraph model (w.r.t. the base graph
G) reduces to testing Π in the BDG model.

I Theorem 1.2 (a general upper bound on the complexity of testing downward-monotone
properties (see Section 2.1)). Let Π be a downward-monotone graph property that is testable
with query complexity Qd(·, ·) in the bounded-degree graph model, where d ≥ 2 denotes the

and v, while keeping all other vertices intact, does not preserve the graph G (i.e., π(G) 6= G).
5 If v has less than i neighbors, then a special symbol is returned. It is sometimes assumed that the
algorithm can also query the degree of any vertex of its choice, but this assumption saves at most a
multiplicative factor of log d in the complexity of the algorithm.
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degree bound, and Qd is a function of the proximity parameter and (possibly) the size of the
graph. Then, for every base graph G = ([n], E) of degree d, testing whether a subgraph of
G satisfies Π (with proximity parameter ε) can be done with query complexity d ·Qd(ε′, n),
where ε′ = ε/d. The same holds with respect to the time complexity. Furthermore, one-sided
error is preserved.

(Note that, for constant d, it holds that ε′ = Ω(ε).) Properties covered by Theorem 1.2
include bipartitness, cycle-freeness, and all subgraph-freeness and minor-freeness properties.
Hence, testers known for these properties in the BDG model (see [14, Chap. 9]) get translated
to testers of similar complexity for the subgraph testing model.

While Theorem 1.2 asserts that testing downward-monotone graph properties in the
subgraph model is not harder than testing these properties in the BDG model, it raises the
question of whether the former task may be easier.

Testing in the subgraph model may be trivial. A trivial positive answer holds in case the
base graph itself has the property (i.e, G ∈ Π). In this case, by the downward-monotonicity
of Π, every subgraph of G has the property Π, which means that testing Π ∩ FG in the
subgraph model (w.r.t. the base graph G) is trivial.

Testing in the subgraph model may be easier (than in the BDG model). A more inter-
esting case in which testing in the subgraph model may be easier than in the BDG model
occurs when the base graph is not in Π, but has some suitable property Π′ that is not related
to Π. In particular, if the base graph isM-minor free, for some fixed set of graphsM, then,
for any downward-monotone graph property Π, testing Π ∩ FG in the subgraph model has
complexity that is independent of the size of the tested graph, whereas testing Π in the
BDG model may require query complexity that depends on the size of the tested graph.
More generally, we consider hyperfinite families of graphs [8], where an n-vertex graph G is
t-hyperfinite for t : (0, 1)→ N if, for every ε > 0, removing at most εn edges from G results
in a graph with no connected component of size exceeding t(ε). We mention that minor-free
(bounded-degree) graphs are hyperfinite (with t(ε) = O(1/ε2)).

I Theorem 1.3 (on the complexity of testing downward-monotone properties of subgraphs of
hyperfinite base graphs (see Section 2.2)). Let Π be a downward-monotone graph property and
G be a family of t-hyperfinite graphs. Then, for every bounded-degree base graph G = ([n], E)
in G, testing whether a subgraph of G satisfies Π can be done in time that depends only on the
proximity parameter ε. Furthermore, if Π is additive (i.e., a graph is in Π iff all its connected
components are in Π), then its query complexity is O(t(ε/4)/ε) and the tester has one-sided
error.6

Note that by Theorem 1.3, testing bipartiteness of subgraphs of any (bounded-degree) planar
graph G has complexity poly(1/ε), whereas (by [17]) testing bipartiteness of n-vertex graphs
in the BDG model has complexity Ω(

√
n).7

Testing in the subgraph model may not be easier (than in the BDG model). On the
other hand, there are cases in which the testers provided by Theorem 1.2 are essentially the
best possible. Indeed, these cases correspond to base graphs that are not hyperfinite.

6 In general, the tester has two-sided error and the query complexity is at most exponential in O(t(ε/4)2).
7 As discussed in Section 1.5.1, weaker results may be obtained by using testers for the BDG model that
work under the corresponding promise.
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I Theorem 1.4 (testing c-colorability of subgraphs of general bounded-degree base graphs
(see [19, Sec. 3])).
1. There exist explicit bounded-degree graphs G = ([n], E) such that testing whether a

subgraph of G is bipartite, with proximity parameter 1/poly(log |E|), requires Ω̃(
√
|E|)

queries.
2. There exist bounded-degree graphs G = ([n], E) such that testing whether a subgraph of G

is 3-colorable, with constant proximity parameter, requires Ω(|E|) queries.
Item 2 asserts that the complexity of testing 3-Colorability in the subgraph model may be
linear, just as in the BDG model. Item 1 should be contrasted with the tester obtained by
applying Theorem 1.2 to the known tester for the BDG model [16]. The derived tester has
complexity poly(1/ε) · Õ(

√
|E|), where ε denotes the proximity parameter, whereas Item 1

implies that one cannot obtain better complexity in terms of ε and |E| (e.g., complexity
poly(1/ε) ·Q(|E|) is possible only for Q(n) = Ω̃(

√
n)).

1.2.2 Other properties (i.e., non downward-monotone properties)

When turning to graph properties that are not downward-monotone, the statement of
Theorem 1.2 no longer holds. There exist graph properties that are significantly harder to
test in the subgraph model than in the BDG model. Specifically:

I Theorem 1.5 (testing in the subgraph model may be harder than in the BDG model (see [19,
Sec. 4])). There exists a property of graphs Π for which the following holds. On one hand, Π
is testable in poly(1/ε)-time in the bounded-degree graph model. On the other hand, there
exist explicit graphs G = ([n], E) of constant degree such that testing whether a subgraph of G
satisfies Π requires Ω(log logn) queries. Furthermore, the property Π is (upwards) monotone,
and the family of base graphs is hyperfinite.8

The first part of the furthermore-clause implies that a result analogous to Theorem 1.2 does
not hold for monotone (rather than downward-monotone) graph properties. The second part
of the furthermore-clause implies that also a result analogous to Theorem 1.3 does not hold
for monotone graph properties.

We comment that the property Π used in Theorem 1.5 is related to being Eulerian, and
the base graphs are related to a cyclic grid. Hence, it is interesting to note that testing
whether subgraphs of a cyclic grid are Eulerian can be done in complexity that only depends
on the proximity parameters (see [19, Prop. 4.2]).

Turning back to monotone graph properties, we first note the trivial case in which the
base graph G does not have the property (which implies that all its subgraphs lack this
property as well). A non-trivial case is that of testing minimum degree (see Proposition 2.1).
A more interesting case is that of connectivity.

I Proposition 1.6 (testing connectivity in the subgraph model – see Section 2.1)). For every
base graph G = ([n], E), testing whether a subgraph of G is connected can be done in
poly(1/ε)-time.

We mention that even the case of 2-edge connectivity, which has an efficient tester in the
BDG model, seems challenging in the subgraph testing model (see Problem 1.9).

8 See the definition of hyperfinite graphs preceding Theorem 1.3.
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A relatively general positive result. We next state a result for a class of properties that
are not downward-monotone (and not necessarily monotone either). This result is of the
flavor of Theorem 1.2, but introduces an overhead that is logarithmic in the number of
vertices. Specifically, we refer to the class of all graph properties that have proximity-oblivious
testers of constant query complexity (in the BDG model) [18, Sec. 5]. We mention that such
properties are “local” in the sense that satisfying them can be expressed as the conjunction
of conditions that refer to constant-distance neighborhood in the graph (see Definition 2.4).

I Theorem 1.7 (testing local properties in the subgraph model (see Section 2.3)). Let Π be a
local property and suppose that the base graph G is outerplanar and of bounded degree. Then,
testing whether a subgraph of G = ([n], E) has property Π can be done using O(ε−1 logn)
queries.

The result stated in Theorem 1.7 extends to every graph having constant-size separating sets
(the dependence on the size of the separating sets is given explicitly in Theorem 2.5).

Testing in the subgraph model may be easier than in the BDG model. Lastly we note
that moving from the BDG model to the subgraph testing model makes the testing task
potentially easier, since the subgraph tester knows a priori the possible locations of edges.
This is reflected by the following result, which refers to any (bounded-degree) base graph.

I Theorem 1.8 (a property that is extremely easier in the subgraph model). For every constant
d, there exists a graph property Πd that requires linear query complexity in the bounded-degree
model but can be tested using O(1/ε) queries in the subgraph model w.r.t. every base graph
of maximum degree d.

Since the proof of Theorem 1.8 is short and simple, we provide it next.

Proof. Fixing d, let Πd be a set of d-regular graphs such that testing Πd in the BDG model
(with degree bound d) requires a linear number of queries (e.g., Πd is the set of 3-colorable
d-regular graphs [4]). To establish the upper bound in the subgraph model, observe that for
any base graph G that has maximum degree d, the only subgraph of G that may be d-regular
is G itself. Therefore, if the base graph G is not in Πd, then the subgraph-tester can reject
without performing any queries. If G ∈ Πd, then the subgraph-tester simply tests whether
the subgraph of G is G itself (by performing O(1/ε) queries). J

The proof of Theorem 1.8 begs the question of whether the theorem holds also for
downward-monotone properties, and more generally, which properties Πd can be tested
using O(1/ε) queries in the subgraph model w.r.t. every base graph of maximum degree d?
Alternatively, one may reverse the order of quantifiers and ask whether there exists a graph
property Π that satisfies the conclusion of Theorem 1.8 for any constant d.

1.3 Techniques
Some of the testers (algorithms) presented in this paper (e.g., Theorems 1.3 and 1.7) are
based on structural properties of the base graph. In some cases (e.g., Theorem 1.3) these
structural properties, which are inherited by the subgraphs, make the testing task (in the
subgraph model) easier than in the BDG model. The proofs of the lower bounds constitute
the more technically challenging part of the paper. Typically, the challenge is emulating
lower bounds obtained for other testing models on the subgraph testing model. The brief
overviews, especially those referring to the lower bounds, are merely intended to give a flavor
of the techniques (and are not supposed to convince the reader of the validity of the claims).
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1.3.1 Algorithms
The tester used in proving Theorem 1.2 is a simple emulation of the BDG-model tester by
the subgraph tester, and its analysis is based on the observation that the distance between
a graph G′ and a downward-monotone graph property Π equals the number of edges that
should be omitted from G′ in order to place the resulting graph in Π. Proposition 1.6 is also
proved by a simple emulation of the BDG-model tester, but the analysis of the resulting
tester relies on special features of connectivity (and does not extend to 2-connectivity; see
Problem 1.9).

The proofs of Theorems 1.3 and 1.7 are more interesting. In both cases we reduce testing
subgraphs of the base graph G to testing subgraphs of a fixed subgraph G′ of G such that
G′ is close of G and testing subgraphs of G′ is (or seems) relatively easier. Such a reduction
is valid since the property that we test is downward-monotone, and the subgraph G′ is found
without making any queries.

In the proof of Theorem 1.3 the fixed subgraph G′ consists of small connected components.
Hence, in the special case of Theorem 1.3 (i.e., properties that are determined by their
connected components), it suffices to test that the subgraphs induced by the connected
components of the base graph have the relevant property. In the general case, we follow
Newman and Sohler [29] in estimating the frequency of the various graphs that are seen in
these induced subgraphs. We stress that, unlike in [29], we do not use a partition oracle of
the tested graph (which may be implemented based on standard queries (following Hassidim
et al. [22])), but rather determine such a partition of the base graph (without making any
queries).

Theorem 1.7 is proved by applying a recursive decomposition of the base graph using
constant-size separating sets. Essentially, in addition to checking the local neighborhood of
random vertices, we also check the local neighborhoods of the vertices in the separating sets
that correspond to the path in the recursion tree (i.e., the tree of recursive decomposition)
that isolates the chosen vertices. Actually, we check that all these local neighborhoods are
consistent with some subgraph that has the property. These additional checks are used in
the analysis in order to establish the consistency of the various local neighborhoods (i.e., not
only those examined in the same execution).

We highlight the fact that the foregoing testers are non-adaptive. This is remarkable,
because the corresponding testers for the BDG model (which in some cases are actually
emulated by our testers) are inherently adaptive. However, these “BDG model testers”
utilize their adaptivity only for conducting local searches in the input graph, whereas in the
subgraph testing model the input is a subgraph of a fixed (or a priori known) graph, and so
the queries that support these local searches can be determined non-adaptively.

1.3.2 Lower bounds
The lower bound on testing 3-colorability of a subgraph (asserted in Part 2 of Theorem 1.4)
is established by combining the query complexity lower bound of [2] with a variant of the
standard reduction of 3SAT to 3COL (cf. [12, Prop. 2.27]). Recall that Ben-Sasson et al. [2]
prove the existence of (sparse) 3CNF formulae for which testing satisfiability of a given
assignment requires linear query complexity. We reduce this testing problem, which refers to
an explicitly given 3CNF formula (viewed as a massive parameter), to testing 3-colorability of
a subgraph of a base graph. That is, we view the NP-reduction of 3SAT to 3COL as a mapping
of a parameter (i.e., 3CNF formula) of one testing problem to a parameter (i.e., base graph)
of another testing problem. In addition, we establish a one-to-one correspondence between
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Figure 2 A subgraph of the 2-by-8 grid that misses 4 edges. The subgraph is marked by solid
lines, the missing edges by dashed lines, and an external edge that makes this subgraph 2-connected
is dotted.

the bits of the assignment and part of the edges in the base graph, while considering only
subgraphs that contain all other edges of the base graph (i.e., those not in correspondence to
the bits of the assignment).

The proof of Item 1 of Theorem 1.4 (which refers to testing 2-colorability of a subgraph)
is more complicated. The basic idea is to emulate the lower bound on bipartite testing
established in the BDG model [17]. The obvious question is what should be the base graph.
It is natural to pick a base graph that allows an embedding of any bounded-degree graph
in it such that edges of the embedded graph are mapped to short vertex-disjoint paths.
Furthermore, the mapping of edges to paths should be determined in a local manner. We
use a base graph that is related to a routing network of logarithmic depth, and employ
(randomized) oblivious routing on it. This allows us to map bipartite graphs (of the BDG
model) to bipartite subgraphs of the base graph, while mapping graphs that are far from
bipartite (in the BDG model) to subgraphs that are far from bipartite (in the subgraph
testing model). The actual analysis of this construction is quite complicated (as evident from
the length of [19, Sec. 3.1]), because we have to locally emulate a subgraph of the base graph
(by making few queries to the input graph in the BDG model).

The proof of Theorem 1.5 uses a reduction from testing Eulerian orientations of cyclic
grids in the orientation model. As discussed in Section 1.5.2, the orientation model (presented
by Halevy et al. [21]) is related but different from the subgraph testing model. Our reduction
maps the (cyclic) grid, used in the lower bound of Fischer et al. [11], to a base graph that
looks like such a grid, except that edges are replaced by small gadgets. The orientations
of edges in the orientation model are mapped to choices of subgraphs of the corresponding
gadgets. In this case, it is easy to locally emulate a subgraph of the base graph by making
queries to the orientation oracle, and the claimed Ω(log logn) lower bound follows (from
the analogous lower bound of [11]). On the other hand, the property at the image of the
reduction is local, and so it is testable within poly(1/ε) queries in the BDG model.

1.4 Open problems
Moving from the BDG model to the subgraph testing model makes the testing task potentially
easier, since the subgraph tester knows a priori the possible locations of edges. But, when
dealing with properties that are not downward-monotone, there is an opposite effect that
arises from the fact that the distance to the set of subgraphs (of G) that have graph property
Π may be much bigger than the distance to the set of (bounded-degree) graphs that have
property Π. This may require the subgraph tester to reject the input (since its distance to
Π ∩ FG is large), whereas the BDG model tester may be allowed to accept the input (since
its distance Π is small). This difficulty is reflected in the following open problems.

I Problem 1.9 (testing 2-connectivity of subgraphs). Is the query complexity of testing 2-
edge-connectivity in the subgraph testing model independent of the size of the graph? What
about c-edge-connectivity for any constant c ∈ N?

ITCS 2019



37:10 The Subgraph Testing Model

Recall that c-connectivity is testable in the BDG model within complexity that depends
only on the proximity parameter [17]. We note that a straightforward emulation of the
BDG-model tester (for 2-connectivity) calls for trying to find a small 2-connected component
that has a cut of size at most 1 to the rest of the graph. But this approach fails when
considering a base graph that is a 2-by-n grid (since, as illustrated in Figure 2, any subgraph
that misses at most one horizontal edge of each vertex (of degree 4) is O(1/n)-close to being
2-connected but may be far from any 2-connected subgraph of the 2-by-n grid).

The straightforward emulation of the BDG-model tester also fails for testing whether a
subgraph of the n-cycle is a perfect matching (i.e., is 1-regular), but a tester that considers
the locations of edges in the subgraph does work (we discuss this shortly at the very end
of [19, Sec. 4]). Testers of complexity that does not depend on the graph size do exist for this
property when the base graph is a tree (since each tree has at most one perfect matching)9,
but we do not know if they exist when the graph is outerplaner.

I Problem 1.10 (testing whether the subgraph is a perfect matching). What is the complexity
of testing 1-regularity when the base graph is outerplanar? What about the case that the base
graph is planar (e.g., a grid)? And what about testing degree-regularity?

Note that c-connectivity, degree-regularity, and Eulerianity are the only properties covered
in [14, Chap. 9] that are not downward-monotone. Also note that [19, Prop. 4.2] refers to
the complexity of testing the Eulerian property for a base graph that is a grid, and it is clear
that the underlying ideas apply to base graphs of “similar structure” (as arising in the proof
of [19, Prop. 4.2]). But what about going beyond that?

I Problem 1.11 (testing whether the subgraph is Eulerian). What is the complexity of testing
the Eulerian property in any base graph of bounded degree?

The foregoing problems are all rooted in the difficulties that are introduced by the fact that
distances under the subgraph model may be significantly larger than under the BDG model,
which makes the task of the tester potentially harder. On the other hand, the fact that the
base graph is known to the tester makes its task potentially easier. Recalling that only the
latter effect is relevant in the case of downward-monotone properties, begs the following
question.

I Problem 1.12 (a property that is always easier in the subgraph model). Does there exist
a downward-monotone graph property Π such that testing Π in the bounded-degree model
has higher query complexity than testing Π in the subgraph model w.r.t. every base graph of
bounded-degree?

Recall that Theorem 1.8 refers to an upward-monotone property (which depends on the
degree bound).

The foregoing problems are aimed at concretizing the abstract challenge of making better
use of the knowledge of the base graph that is available to the tester. Although Theorem 1.4
indicates that this extra knowledge is not always helpful, other results point out to cases in
which it is helpful. We would like to see more such cases and more substantial use of the
knowledge of the base graph.

9 This perfect matching is determined by a pruning process (started at the leaves), and the tester just
checks that the subgraph equals this perfect matching (if it exists). Note that, also in this case, the
tester does not emulate the BDG-model tester (which just samples vertices and checks their degree);
such an emulation will fail poorly (even when the base graph is a path).
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1.5 Related models
1.5.1 Testing under a promise
As mentioned earlier, testing graph properties under the promise that the tested graph
has some (other) property was considered before (see discussion in [14, Sec. 12.2]). In
fact, the bounded-degree graph model itself may be viewed as postulating such a promise.
More conspicuous cases include the study of testing under the promise that the graph is
hyperfinite [29] or more specifically planar [3], or with bounded tree-width [7]. In continuation
to Theorem 1.2, we observe that testing downward-monotone graph properties in the subgraph
model can be reduced to testing the same property under a promise that contains the base
graph.

I Theorem 1.13 (a generalization of Theorem 1.2). Let G and Π be downward-monotone graph
properties such that G contains graphs of degree at most d. Suppose that, when promised that
the tested graph is in G, the property Π is testable (in the bounded-degree graph model) with
query complexity QG(·, ·), where QG is a function of the proximity parameter and (possibly)
the size of the graph. Then, for every base graph G = ([n], E) in G, testing whether a subgraph
of G satisfies Π (with proximity parameter ε) can be done with query complexity d ·QG(ε′, n),
where ε′ = ε/d.

Hence, results weaker than Theorem 1.3 may be obtained by combining Theorem 1.13 with
the tester provided in [29] (see discussion in Section 2.2). Indeed, the improved results are
due to the fact that in the subgraph model the tester is given the base graph for free. In the
current case (of hyperfinite graphs), the tester does not need to query the tested graph in
order to obtain a partition oracle of the tested graph; it may just use an adequate partition
of the base graph. In general, a main challenge in the study of the subgraph model is in how
to utilize the knowledge of the base graph in order to improve the complexity of testing.

1.5.2 The orientation model
A property testing model that is related to the subgraph model is the orientation model, which
was introduced by Halevy et al. [21]. Similarly to the subgraph model, in the orientation
model there is a fixed (undirected) base graph G = ([n], E). However, the goal in the latter
model is to test properties of directed graphs (digraphs) that are defined by orientations of
the edges of G. That is, for each edge {u, v} ∈ E, either the edge is directed from u to v, or
from v to u, and the algorithm may perform queries in order to obtain the orientation of
edges of its choice. For a property Π of digraphs, the algorithm should distinguish (with
probability at least 2/3) between the case that the tested orientation ~G has the property Π
and the case in which the orientation of more than ε · |E| edges should be flipped in order to
obtain the property.

While the subgraph model and the orientation model are syntactically identical, the
semantics are very different, as we explain next. Similarly to the subgraph model, an
orientation ~G = ([n], ~E) of G is defined by a function f : E → {0, 1}. Here, f(e) = 1
indicates that in ~G the edge e is directed from its smaller (id) endpoint to its larger endpoint.
Querying the orientation of an edge hence corresponds to querying f , and distance between
two functions f and f ′ (representing two different digraphs) is simply the Hamming distance
between the functions.

The fundamental difference in the semantic between the two models is reflected in the
fact that natural properties of digraphs in the orientation model do not correspond to nature
properties of graphs in the subgraph testing model, and vice versa. For example, the functions
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f that define Eulerian orientations of an undirected graph G = ([n], E) (as described above)
do not necessarily define subgraphs of G (i.e., in which f(e) = 1 indicates that e belongs to
the subgraph) that are Eulerian. Hence, natural properties in one model do not necessarily
translate to natural properties in the other model. Still, it may be possible to emulate or
reduce testing properties in one model to testing properties in the other model, as we do in
the proof of Theorem 1.5.

2 Algorithms

In this section we prove Theorems 1.2, 1.3, and 1.7 (as well as Propositions 1.6 and 2.1).
These results refer to different types of base graphs and different classes of properties. We
have organized them according to the type of the base graph. Recall that G is assumed to
have no isolated vertices, so that |E| ≥ n/2.

2.1 General bounded-degree base graphs
In this section d ≥ 2 is a fixed constant, and the base graph G is an arbitrary graph in which
each vertex has degree at most d (and at least 1).

2.1.1 Testing downward-monotone properties
We first consider any graph property Π that is preserved under edge omission. Such properties
are called downward-monotone or downwards monotone. We prove Theorem 1.2, which asserts
that for every graph G = ([n], E) of degree at most d and any downward-monotone graph
property Π, testing Π ∩ FG in the subgraph model (w.r.t. the base graph G) is not harder
than testing Π in the bounded-degree graph (BDG) model.

Proof of Theorem 1.2. Given oracle access to f : E → {0, 1}, the subgraph tester invokes
the tester of the BDG model, and emulates an incidence oracle for the subgraph of G
represented by f in the natural manner. That is, the query (v, i) ∈ [n]× [d] is answered with
the ith vertex in the set Γf (v) = {u : {u, v}∈E & f(u, v)=1}, where vertices are ordered
arbitrarily (e.g., by lexicographic order), and the answer is ⊥ if |Γf (v)| < i. This means
that each query (v, i) of the BDG model tester, denoted T , in answered by first retrieving
Γf (v), which in turn amounts to making at most d queries to f (i.e., querying all edges
incident to v in G). Hence, the subgraph tester emulates the execution of T on the graph
Gf = ([n], {e ∈ E : f(e)=1}).

In the analysis, downward monotonicity is used to associate distance from Π in each
of the two models with the number of edges that should be omitted from the subgraph.
Specifically, in both cases, the distance from the property reflects the number of edges that
should be omitted in order to make the graph satisfy the property (because adding edges
never decreases that distance). Specifically, if f ∈ Π ∩ FG, then Gf ∈ Π, and T accepts
(with probability at least 2/3 in general, and with probability 1 if T has one-sided error).
On the other hand, if f : E → {0, 1} is ε-far from Π ∩ FG, then (by downward-monotonicity
of Π) any graph in Π that is closest to Gf must be a subgraph of Gf (i.e., is in Π ∩ FG
and so differs from Gf on more than ε · |E| edges). It follows that Gf is ε′-far from Π for
ε′ = ε·|E|

dn/2 ≥
ε
d . J

Proof of Theorem 1.13. The proof is identical to the proof of Theorem 1.2, except that
here we rely on the hypothesis that G is downward-monotone. J
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2.1.2 Testing monotone properties
Theorem 1.2 does not apply to monotone properties. Still, several such properties are quite
easy to test in the subgraph testing model. One simple example is the property of having a
specified minimal degree.

I Proposition 2.1 (testing minimal degree in the subgraph model). For d′ ≥ 1, testing whether
all vertices in the subgraph have degree at least d′ can be done in time O(d/ε).

Proof. If d′ is bigger than the minimum degree of the base graph G = ([n], E), then the
tester rejects without performing any queries. Otherwise, the tester selects Θ(1/ε) vertices,
uniformly at random, and computes their degrees in the tested subgraph Gf , by querying all
their incident edges in G. The tester accepts if and only if all sampled vertices have degree
at least d′.

Hence, the tester makes O(d/ε) queries, and always accepts subgraphs that have the
property. To prove that it rejects subgraphs that are ε-far from having the property with
probability at least 2/3, we establish the contrapositive statement. Consider a graph Gf
that is accepted with probability at least 1/3. This implies that the number of vertices in Gf
whose degree is smaller than d′ is at most (ε/2) · n. Since in G every vertex has degree at
least d′, it is possible to add edges to Gf in order to obtain a subgraph that has the property,
whereas the number of required added edges is at most (εn/2) · d′ ≤ ε · |E|. J

Proof of Proposition 1.6. We now turn to the proof of Proposition 1.6, which asserts a
poly(d/ε)-time tester for connectivity in the subgraph model. If the base graph G = ([n], E) is
not connected, then testing is trivial (since all subgraphs of G are disconnected). Otherwise
(i.e., the base graph G is connected), connectivity of the input f ∈ FG can be tested by
emulating the tester used for the BDG model [17]. This tester samples vertices and explores
their local neighborhood in search of small connected components.

The analysis is even simpler than the original (bounded-degree) one since we can add edges
without worrying about the degree bound (similarly to the analysis of testing connectivity in
the sparse (unbounded-degree) model [30]). Specifically, we use the fact that if f represents
a subgraph with t connected components, then by modifying f at one entry we can obtain a
function that represents a subgraph with t− 1 connected components. (This relies on the
fact that G must contain edges between the connected components of Gf .) J

As noted in the introduction (see Section 1.4), the argument does not extend to 2-
connectivity. The reason is that in that case the known tester for the BDG model [17] does
not search for arbitrary 2-connected components but rather for 2-connected components that
are connected to the rest of the graph by at most one edge. The problem with that tester is
that its analysis requires the ability to add edges between any given pair of such 2-connected
components, whereas we can only add edges that exist in the base graph.

2.2 Hyperfinite base graphs
A graph G = ([n], E) is said to have an (ε, t)-partition if its vertex set can be partitioned
into connected components of size at most t such that the number of edges between these
components is at most εn.

Recall that a graph M is called a minor of a graph G if M is isomorphic to a graph that
can be obtained by (zero or more) edge contractions on a subgraph of G. A graph G is
M -minor free if M is not a minor of G. If G has degree at most d and is minor-free (i.e., G is
M -minor free for some fixed subgraph M), then it has an (ε, O((d/ε)2))-partition, for every
ε > 0 (the size of M is “hidden” in the O(·) notation – see [1, 22]).
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More generally, Theorem 1.3 refers to any family of hyperfinite graphs, where a family of
graph G is hyperfinite if there exists a function t : (0, 1)→ N such that, for every ε > 0, every
graph in the family has an (ε, t(ε))-partition. We shall first prove the second clause in the
theorem, which refers to downward-monotone properties that are additive (i.e., determined
by the connected components of the graph).

A special case of interest. We say that a graph property Π is additive if it holds that a
graph is in Π if and only if all its connected components are in Π. We comment that not
every downward-monotone graph property is additive. For example, consider the graph
property Π that consists of all graphs that either constitute of a single (Hamiltonian) cycle
or consist of a collection of isolated paths and vertices. Note that Π is closed under omission
of edges and vertices, but a graph that consists of several isolated cycles is not in Π (i.e., Π
is not additive).10

I Proposition 2.2 (testing downward-monotone properties that are additive). Let Π 6= ∅ be a
downward-monotone graph property that is additive. Let G = ([n], E) be a graph of maximum
degree d, and t : (0, 1)→ N be such that, for every ε > 0, the graph G has an (ε, t(ε))-partition.
Then, testing whether a subgraph of G is in Π can be done by performing O(d2 · t(ε/4)/ε)
queries. Furthermore, the tester is non-adaptive and has one-sided error.

In particular, Proposition 2.2 implies that, for every fixed graph M , testing bipartiteness of
a subgraph of G, when G is M-minor free, can be done in poly(d/ε)-time, when given an
(ε/4, O((d/ε)2))-partition of G.11 This is much more efficient than testing bipartitness in
the bounded-degree model, for which the query complexity is Ω(

√
n) [17]. It is also more

efficient than testing bipartiteness of bounded-degree graphs under the promise that the
graph is minor-free, let alone under the weaker promise that the graph is t-hyperfinite. Indeed,
under these promises, the tester may implement an (ε/4, t(ε/4))-partition oracle of the tested
subgraph, but such an implementation requires more than poly(t(ε/4)) queries. Specifically,
in the special case of minor-free graphs the best implementation known uses O(d/ε)O(log(1/ε))

queries [26], whereas in the general (t-hyperfinite) case the best implementation known uses
exp(dO(t(poly(1/ε)))) queries [22],

Proof Sketch. Let (C1, . . . , Cr) be an (ε/4, t(ε/4))-partition of G. Given query access to
f : E → {0, 1}, which represents the subgraph Gf = ([n], {e ∈ E : f(e) = 1}), we select
at random Θ(d/ε) vertices, and for each selected vertex v we inspect all edges in the
subgraph of G = ([n], E) induced by the part Ci that contains v (i.e., we query all pairs
(u,w) ∈ E ∩ (Ci ×Ci)). We accept if and only if all the retrieved subgraphs are in Π; that is,
we accept if and only if for each inspected Ci it holds that the subgraph of Gf induced by
Ci is in Π.

Using the fact that Π is preserved by omission of edges (and omission of connected
components), we observe that if Gf is in Π, then so are the subgraphs of Gf induced by
the Ci’s. Hence, our tester accepts Gf ∈ Π with probability 1. On the other hand, if Gf is
ε-far from Π, then the subgraph of Gf obtained by omitting all edges between the Ci’s is
(ε/2)-far from Π (since (ε/4)n ≤ (ε/2)|E|). Denoting the latter subgraph by Ĝf , we claim
that at least (ε/4)n/d of its vertices reside in connected components that are not in Π, and
it follows that the tester rejects Gf with high probability (since each connected component
is contained in one of the Ci’s).

10 Indeed, if a graph is in (this) Π, then all its connected are in Π, but the converse does not hold.
11 Such a partition can be found in polynomial-time [1].
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The foregoing claim is proved by relying on the hypothesis that Π is additive. Specifically,
if less than (ε/4)n/d vertices reside in connected components that are not in Π, then by
omitting less that (ε/4)n < (ε/2)|E| edges we can make all connected components reside in
Π (since Π contains the graph consisting of a single vertex). This implies that the graph
consisting of these modified connected components is in Π, which in turn contradicts the
hypothesis that Ĝf is (ε/2)-far from Π. J

Greater generality at larger cost. A more general result refers to graph properties Π that
are only preserved under edge omission (and to hyperfinite base graphs G). The cost of this
generalization is an increase in the query complexity of the tester, as asserted next.

I Proposition 2.3 (testing general downward-monotone properties). Suppose that Π is a
downward-monotone graph property and that, for some t : [0, 1] → N and every ε > 0, the
graph G = ([n], E) has an (ε, t(ε))-partition. Then, we can test whether a subgraph of G is in
Π with query complexity O(d2 · exp(t(ε/4)2)/ε2).

We mention that the exponential dependence on t of query complexity of the foregoing tester
is unavoidable (in the general case of downward-monotone graph properties). Consider, for
example, the case that the base graph is an

√
n-by-

√
n grid augmented by diagonal edges in

each small square, and the following downward-monotone property Π: A graph is in Π if
there exists a k such that the graph consists of connected component that are each a k-by-k
grid augmented by some of the foregoing diagonal edges such that at most half of the possible
patterns occur in these small grids. Now, on proximity parameter ε > 0, consider the task of
distinguishing the case that the subgraph consists of 0.1/ε-by-0.1/ε grids in which half of the
possible patterns occur from the case in which all patterns occur. A lower bound that is a
square root of the nubmber of patterns follows from a birthday paradox argument (and a
lower bound that is almost linear follows from [34, 33]).

Proof Sketch. By the premise of the proposition, for every ε > 0, the base graph G has
an (ε/4, t(ε/4))-partition. Let g ∈ FG denote the all-ones function, and let g′ be ε/2-close
to g and describe a subgraph of G in which each connected component has size at most
t(ε/4). Hence, Gg′ is a subgraph of G that is obtained from G by removing the at most
(ε/4)n ≤ (ε/2)|E| edges between parts in the (ε/4, t(ε/4))-partition.

By the closure of Π to edge omissions, every function f ∈ FG ∩ Π is 0.5ε-close to the
function f ′ ∈ FG∩Π such that f ′(e) = f(e)∧g′(e). Let Π′G denote the set of graphs obtained
in this way; that is, Π′G = {f ∧ g′ : f ∈ FG ∩Π}. Since Π is a graph property, it follows that
Π′G = FG ∩Π′, where Π′ is the set of all graphs that are isomorphic to graphs that appear
in Π′G. Hence, the set Π′G is closed under all automorphisms of the graph G.

Recalling that Π′G and likewise Π′ contain only graphs that consist of connected compon-
ents of size at most t = t(ε/4), it follows Π′ is characterized by the frequencies in which the
various graphs of size at most t appear as connected components. Hence, f ∈ FG describes
a graph in Π if and only if f ′ = f ∧ g′ is in FG ∩Π′, where Π′ is characterized in terms of
the number of connected component that are isomorphic to each of the graphs with at most
t(ε/4) vertices (and contain no smaller connected components). It follows that testing with
proximity parameter ε whether subgraphs of G satisfy Π can be performed by estimating
these numbers in the subgraph described by f ∧ g′, where f is the tested function. Lastly,
we note that estimating the frequencies in which the various t(ε/4)-vertex graphs appear as
connected components can be done using O(d2 · exp(t(ε/4)2)/ε2) queries, where exp(t(ε/4)2)
account for the number of t(ε/4)-vertex graphs. J
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2.3 Local properties and base graphs with small separators
Loosely speaking, a graph property is called local if satisfying it can be expressed as the
conjunction of local conditions, where each local condition refers to a constant-distance
neighborhood of one of the graph’s vertices. A precise definition is given next.

I Definition 2.4. For a constant ` ∈ N, the `-neighborhood of a vertex v in a graph G is the
subgraph of G induced by all vertices that are at distance at most ` from v. A property
Π of n-vertex graphs is called `-local if there exists a graph property Π′ such that G is in
Π if and only if the `-neighborhood of each vertex is G is in Π′. (Actually, Π′ is a set of
rooted graphs, where the root corresponds to the “center” of the `-neighborhood.)12 A graph
property Π =

⋃
n Πn is local if there exists a constant ` such that Πn is an `-local property

of n-vertex graphs.

We mention that this definition coincides with [18, Def. 5.2], and that (in the bounded degree
graph model) every graph property that has a proximity-oblivious tester of constant query
complexity is local [18, Sec. 5].

For s : N→ N we say that a graph G = ([n], E) has separating sets of size s if for every
set of vertices U ⊆ [n] there exists a subset S ⊆ U of at most s(|U |) vertices such that the
subgraph of G induced by U \S has no connected component of size greater than 2

3 · |U |. For
example, every tree has separating sets of size 1, every outerplanar graph has separating sets
of size 2 [23, Lem. 3], and n-vertex planar graphs have separating sets of size O(

√
n) [27].

I Theorem 2.5 (Theorem 1.7, generalized). Let Π be an `-local property and let s : N→ N.
Suppose that the base graph G is of bounded degree d and has separators of size s. Then,
testing whether a subgraph of G = ([n], E) has property Π can be done by performing
O(ε−1s(n) logn · d`+1) queries. Furthermore, the tester is non-adaptive and has one-sided
error.

Proof. We consider a recursive decomposition of the graph G, obtained by applying the
guaranteed separators, and a tree that corresponds to these applications. Specifically, the
root of the tree corresponds to the separating set, denoted Sλ, that disconnects the graph
Gλ

def= G. Collecting the resulting connected components into two subgraphs, each containing
at most two-thirds of G’s vertices, we proceed to obtain separating sets, denoted S0 and S1,
for each of these two subgraphs, denoted G0 and G1, respectively. In general, an internal
node in the tree is labeled by a string α and corresponds to the subgraph Gα as well as to
a separating set Sα for Gα. The children of this node correspond to subgraphs Gα0 and
Gα1 that result from removing Sα from Gα (where the number of vertices in each of these
subgraphs is at most two-thirds of the number of vertices in Gα). When the subgraph reaches
some constant size, the process stops. Hence, the leaves of the tree correspond to subgraphs
of constant size. For a leaf labeled by α, we let Sα be the set of vertices of the subgraph Gα.

For the sake of clarity, we reserve the term ‘node’ for nodes in the tree (describing the
recursive decomposition), and the term ‘vertex’ for the vertices of G. We shall never talk of
edges of the (rooted) tree, but only of the descendance and ancestry relations induced by
it. Recall that each node in the tree is associated with a set of vertices of G, and note that
these sets form a partition of the vertex set of G. We say that vertex v resides in a node
labeled by α if v ∈ Sα. Observe that edges of the graph G can connect vertices that reside in

12Marking the root is important only in case that the center of the graph of radius ` cannot be uniquely
determined.
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the same node and vertices that reside in nodes that are in an ancestry relation, but cannot
connect vertices that reside in nodes that are not in an ancestry relation (equiv., reside in
nodes α′0α′′ and α′1α′′′ for any α′, α′′, α′′ ∈ {0, 1}∗).

We are now ready to describe the tester for Π, which is an `-local property for some
constant ` ∈ N. Given a fixed based graph G = ([n], E) and oracle access to a subgraph
represented by f : E → {0, 1}, the tester repeats the following procedure Θ(d/ε) times, where
if no invocation of the procedure causes rejection, then it accepts.
1. Uniformly select a vertex that resides in one of the leaves of the decomposition tree.

(Note that a constant fraction of the vertices of G resides in leaves of the tree.)
2. For each vertex v of G that resides in a node on the path from the selected leaf to the

root (including both the leaf and the root), explore the `-neighborhood of v in G (i.e.,
query f on each of the edges in that neighborhood).

3. If the subgraph discovered in the previous step is not consistent with any n-vertex
subgraph of G that has property Π, then reject.
Note that the aforementioned discovered subgraph includes not only the explored edges
but also indication that certain edges do not exist in the subgraph (i.e., the latter include
all non-edges of G as well as some edges of G that were queried by the procedure and
answered by the value 0).

The query complexity of this procedure is O(s(n) logn · d`), where d is the degree-bound of
G. Clearly, the tester always accepts subgraphs of G that have the property Π. It remains
to show that if the subgraph is ε-far from Π, then the probability that a single invocation of
the procedure causes rejection is Ω(ε/d).

We establish the contrapositive statement. Suppose that the foregoing procedure rejects
with probability ρ < 1. We show that it suffices to modify an O(ρ · d) fraction of the edges
in G in order to obtain a graph that satisfies Π. We say that a leaf of the tree is good if the
procedure does not reject when it selects a vertex that resides in this leaf. We say that an
internal node of the tree is good if it appears on the path from some good leaf to the root.
Note that ρ < 1 implies that there exist good leaves, and hence the root of the tree is good.
More generally, if a node is good, then all its ancestors are good. Also note that each vertex
that resides in a good node has an `-neighborhood in Gf that satisfies the local condition
(i.e., the `-neighborhood is in Π′), where recall that Gf denotes the subgraph of G defined
by f .

Hence, we only need to modify the neighborhoods of vertices residing in bad nodes, and
we should do so without harming the neighborhoods of vertices that reside in good nodes.
But before explaining how this is done, we note that the number of vertices that reside in
internal nodes belonging to the subtree rooted in node α is only a constant factor larger
than the number of vertices that reside in the leaves of this subtree. On the other hand,
considering the set of bad nodes that have good parents, we note that ρ equals the fraction
of vertices that reside in leaves of the subtrees rooted at these bad nodes.

Consider an arbitrary bad node, denoted ασ, that has a good parent, denoted α. Then,
the `-neighborhoods of the vertices residing in node α satisfy the local condition (in the
subgraph Gf ). We claim that the `-neighborhoods of vertices in Gασ can be modified so
that they satisfy the local conditions as well without modifying the `-neighborhoods of
any vertex that resides in a good node. To verify this claim observe the intersection of
the `-neighborhoods of vertices in Gασ and the `-neighborhoods of vertices that reside in
good nodes is contained in the intersection of the `-neighborhoods of vertices in Gασ and
the `-neighborhoods of vertices that reside either in node α or in one of its ancestors. The
reasoning is that if vertex v in Gασ is adjacent in G to a vertex u, then either u is in Gασ or
u is in Sα′ such that α′ is a (not necessarily proper) prefix of α.
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Recall that by Item 3 of the procedure (based on which the notion of good node is defined)
the fact that node α is good, implies that the `-neighborhoods of vertices in Gασ can be
modified to satisfy Π′ in a manner that is consistent with the `-neighborhoods of all vertices
that reside in node α and its ancestors, and so with the `-neighborhoods of all vertices
that reside in good nodes. It follows that by modifying f on Gασ, while maintaining the
`-neighborhoods of vertices in Sα (as well as Sα′ for each α′ that is an ancestor of α) intact,
we can “fix” the `-local neighborhood of all vertices in Gασ.

The foregoing process modifies f into a function that describes a subgraph of G that is
in Π, while modifying O(ρ · d · n) = O(ρ · d · |E|) edges. The theorem follows. J
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38:2 Adventures in Monotone Complexity and TFNP

1 Our Results

We study the complexity of monotone boolean functions f : {0, 1}n → {0, 1}, that is, functions
satisfying f(x) ≤ f(y) for every pair x ≤ y (coordinate-wise). (An excellent introduction
to monotone complexity is the textbook [36].) Our main results are new separations of
monotone models of computation and characterizations of those models in the language of
query/communication complexity. At the core of these results are two conceptual innovations.
1. We introduce a natural monotone encoding of the usual CSP satisfiability problem

(Subsection 1.1). This definition unifies many other monotone functions considered in the
literature.

2. We extend and make more explicit an intriguing connection between circuit complexity
and total NP search problems (TFNP) via communication complexity. Several prior
characterizations [37, 55] can be viewed in this light. This suggests a potentially useful
organizational principle for circuit complexity measures; see Section 2 for our survey.

1.1 Monotone C-Sat
The basic conceptual insight in this work is a new simple definition: a monotone encoding
of the usual constraint satisfaction problem (CSP). For any finite set of constraints C, we
introduce a monotone function C-Sat. A general definition is given in Section 3, but for now,
consider as an example the set C = 3Xor of all ternary parity constraints

3Xor :=
{

(v1 ⊕ v2 ⊕ v3 = 0), (v1 ⊕ v2 ⊕ v3 = 1)
}
.

We define 3Xor-Satn : {0, 1}N → {0, 1} over N := |C|n3 = 2n3 input bits as follows. An
input x ∈ {0, 1}N is interpreted as (the indicator vector of) a set of 3Xor constraints over n
boolean variables v1, . . . , vn (there are N possible constraints). We define 3Xor-Satn(x) := 1
iff the set x is unsatisfiable, that is, no boolean assignment to the vi exists that satisfies all
constraints in x. This is indeed a monotone function: if we flip any bit of x from 0 to 1, this
means we are adding a new constraint to the instance, thereby making it even harder to
satisfy.

Prior work. Our C-Sat encoding generalizes several previously studied monotone functions.
(NL) Karchmer and Wigderson [37] (also [29, 49, 56] and textbooks [39, 36]) studied the NL-

complete st-connectivity problem. This is equivalent to a C-Sat problem with C consisting
of a binary implication (v1 → v2) and unit clauses (v1) and (¬v1).

(P) Raz and McKenzie [52] (also [14, 15, 25, 18, 56, 48]) studied a certain P-complete
generation problem. In hindsight, this is simply Horn-Sat, that is, C consists of Horn
clauses: clauses with at most one positive literal, such as (¬v1 ∨ ¬v2 ∨ v3).

(NP) Göös and Pitassi [25] and Oliveira [45, §3] (also [47, 48]) studied the NP-complete
(dual of) Cnf-Sat problem, where C consists of bounded-width clauses.

These prior works do not exhaust all interesting classes of C, as is predicted by various
classification theorems for CSPs [59, 20, 11, 63]. In this work, we focus on linear constraints
over finite fields Fp (for example, 3Xor-Sat corresponding to F2) and over the reals R.

1.2 Separations
First, we show that 3Xor-Satn cannot be computed efficiently with monotone circuits.

I Theorem 1. 3Xor-Satn requires monotone circuits of size 2nΩ(1) .
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This theorem stands in contrast to the fact that there exist fast parallel (non-monotone)
algorithms for linear algebra [44]. In particular, 3Xor-Sat is in NC2. Consequently, our
result improves qualitatively on the monotone vs. non-monotone separation of Tardos [61]
who exhibited a monotone function in P (computed by solving a semidefinite program)
with exponential monotone circuit complexity. For further comparison, another famous
candidate problem to witness a monotone vs. non-monotone separation is the perfect matching
function: it is in RNC2 [40] while it is widely conjectured to have exponential monotone
circuit complexity (a quasipolynomial lower bound was proved by Razborov [53]).

Span programs. The computational easiness of 3Xor-Satn can be stated differently: it
can be computed by a linear-size monotone F2-span program. Span programs are a model of
computation introduced by Karchmer and Wigderson [38] (see also [36, §8] for exposition)
with an extremely simple definition. An F-span program, where F is a field, is a matrix
M ∈ Fm×m′ each row of which is labeled by a literal, xi or ¬xi. We say that the program
accepts an input x ∈ {0, 1}n iff the rows of M whose labels are consistent with x (literals
evaluating to true on x) span the all-1 row vector. The size of a span program is its number
of rows m. A span program is monotone if all its literals are positive; in this case the program
computes a monotone function.

A corollary of Theorem 1 is that monotone F2-span programs cannot be simulated by
monotone circuits without exponential blow-up in size. This improves on a separation
of Babai, Gál, and Wigderson [3] who showed that monotone circuit complexity can be
quasipolynomially larger than monotone F2-span program size.

Furthermore, Theorem 1 holds more generally over any field F: an appropriately defined
function 3Lin(F)-Satn (ternary F-linear constraints; see Section 3) is easy for monotone
F-span programs, but exponentially hard for monotone circuits. No such separation, even
superpolynomial, was previously known for fields of characteristic other than 2.

This brings us to our second theorem.

I Theorem 2. 3Lin(R)-Satn requires monotone Fp-span programs of size 2nΩ(1) for any
prime p.

In other words: monotone R-span programs can be exponentially more powerful than
monotone span programs over finite fields. This separation completes the picture for the
relative powers of monotone span programs over distinct fields, since the remaining cases
were exponentially separated by Pitassi and Robere [48].

Finally, our two results above yield a bonus result in proof complexity as a byproduct:
the Nullstellensatz proof system (over any field) can be exponentially more powerful than
the Cutting Planes proof system (see Subsection 4.2).

Techniques. The new lower bounds are applications of the lifting theorems for monotone
circuits [23] and monotone span programs [48]. We show that, generically, if some unsatisfiable
formula composed of C constraints is hard to refute for the Resolution (resp. Nullstellensatz)
proof system, then the C-Sat problem is hard for monotone circuits (resp. span programs).
Hence we can invoke (small modifications of) known Resolution and Nullstellensatz lower
bounds [8, 10, 1]. The key conceptual innovation here is a reduction from unsatisfiable
C-CSPs (or their lifted versions) to the monotone Karchmer–Wigderson game for C-Sat.
This reduction is extremely slick, which we attribute to having finally found the “right”
definition of C-Sat.
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1.3 Characterizations
There are two famous “top-down” characterizations of circuit models (both monotone and non-
monotone variants) using the language of communication complexity; these characterizations
are naturally related to communication analogues of subclasses of TFNP.
(FP) Karchmer and Wigderson [37] showed that the logarithm of the (monotone) formula

complexity of a (monotone) function f : {0, 1}n → {0, 1} is equal, up to constant factors,
to the communication complexity of the (monotone) Karchmer–Wigderson game:

Search problem KW(f) = input: a pair (x, y) ∈ f−1(1)× f−1(0)
[ resp. KW+(f) ] output: an i ∈ [n] with xi 6= yi [resp. xi > yi]

We summarize this by saying that the communication analogue of FP captures formulas.
Here FP ⊆ TFNP is the classical (Turing machine) class of total NP search problems
efficiently solved by deterministic algorithms [42].

(PLS) Razborov [55] (see also [50, 60]) showed that the logarithm of the (monotone) circuit
complexity of a function f : {0, 1}n → {0, 1} is equal, up to constant factors, to the
least cost of a PLS-protocol solving the KW(f) (or KW+(f)) search problem. Here a
PLS-protocol (Definition 14 in Appendix A) is a natural communication analogue of
PLS ⊆ TFNP [35]. We summarize this by saying that the communication analogue of
PLS captures circuits.

We contribute a third characterization of this type: the communication analogue of PPA
captures F2-span programs. The class PPA [46] is a well-known subclass of TFNP embodying
the combinatorial principle “every graph with an odd degree vertex has another”. Informally,
a search problem is in PPA if for every n-bit input x we may describe implicitly an undirected
graph Gx = (V,E) (typically of size exponential in n; the edge relation is computed by a
polynomial-size circuit) such that G has degree at most 2, there is a distinguished degree-1
vertex v∗ ∈ V , and every other degree-1 vertex v ∈ V is associated with a feasible solution
to the instance x (that is, the solution can be efficiently computed from v).

Gx :

v∗

feasible
solutions

Communication PPA. The communication analogue of PPA is defined canonically by letting
the edge relation be computed by a (deterministic) communication protocol. Specifically,
first fix a two-party search problem S ⊆ X × Y × O, that is, Alice gets x ∈ X , Bob gets
y ∈ Y, and their goal is to find a feasible solution in S(x, y) := {o ∈ O : (x, y, o) ∈ S}. A
PPA-protocol Π solving S consists of a vertex set V , a distinguished vertex v∗ ∈ V , and for
each vertex v ∈ V there is an associated solution ov ∈ O and a protocol Πv (taking inputs
from X × Y). Given an input (x, y), the protocols Πv implicitly describe a graph G = Gx,y
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on the vertex set V as follows. The output of protocol Πv on input (x, y) is interpreted
as a subset Πv(x, y) ⊆ V of size at most 2. We define {u, v} ∈ E(G) iff u ∈ Πv(x, y) and
v ∈ Πu(x, y). The correctness requirements are:
(C1) if deg(v∗) 6= 1, then ov∗ ∈ S(x, y).
(C2) if deg(v) 6= 2 for v 6= v∗, then ov ∈ S(x, y).
The cost of Π is defined as log |V |+ maxv |Πv| where |Πv| is the communication cost of Πv.
Finally, define PPAcc(S) as the least cost of a PPA-protocol that solves S.

For a (monotone) function f , define SPF(f) (resp. mSPF(f)) as the least size of a
(monotone) F-span program computing f . Our characterization is in terms of S := KW(f).

I Theorem 3. For any boolean function f , we have log SPF2(f) = Θ(PPAcc(KW(f))).
Furthermore, if f is monotone, we have log mSPF2(f) = Θ(PPAcc(KW+(f))).

Query PPA. Our second characterization concerns the Nullstellensatz proof system; see
Section 3 for the standard definition. Span programs and Nullstellensatz are known to be
connected via interpolation [51] and lifting [48]. Given our first characterization (Theorem 3),
it is no surprise that a companion result should hold in query complexity: the query complexity
analogue of PPA captures the degree of Nullstellensatz refutations over F2.

The query analogue of PPA is defined in the same way as the communication analogue,
except we replace protocols by (deterministic) decision trees. In fact, query PPA was already
studied by Beame et al. [6] who separated query analogues of different subclasses of TFNP.
To define it, first fix a search problem S ⊆ {0, 1}n ×O, that is, on input x ∈ {0, 1}n the goal
is to find a feasible solution in S(x) := {o ∈ O : (x, o) ∈ S}. A PPA–decision tree T solving
S consists of a vertex set V , a distinguished vertex v∗ ∈ V , and for each vertex v ∈ V there
is an associated solution ov ∈ O and a decision tree Tv (querying bits of an n-bit input).
Given an input x ∈ {0, 1}n, the decision trees Tv implicitly describe a graph G = Gx on the
vertex set V as follows. The output of Tv on input x is interpreted as a subset Tv(x) ⊆ V of
size at most 2. We then define {u, v} ∈ E(G) iff u ∈ Tv(x) and v ∈ Tu(x). The correctness
requirements are the same as before, 1 and 2. The cost of T is defined as the maximum over
all v ∈ V and all inputs x of the number of queries made by Tv on input x. Finally, define
PPAdt(S) as the least cost of a PPA–decision tree that solves S.

With any unsatisfiable n-variate boolean CSP F one can associate a canonical search
problem:

CSP search problem S(F ) = input: an n-variate truth assignment x ∈ {0, 1}n

output: constraint C of F falsified by x (i.e., C(x) = 0)

I Theorem 4. The F2-Nullstellensatz degree of an k-CNF formula F equals Θ(PPAdt(S(F ))).

The easy direction of this characterization is that Nullstellensatz degree lower bounds
PPAdt. This fact was already observed and exploited by Beame et al. [6] to prove lower
bounds for PPAdt. Our contribution is to show the other (less trivial) direction.

Let us finally mention a related result in Turing machine complexity due to Belovs et
al. [9]: a circuit-encoded version of Nullstellensatz is PPA-complete. Their proof is highly
nontrivial whereas our characterizations admit relatively short proofs, owing partly to us
working with simple nonuniform models of computation.

ITCS 2019



38:6 Adventures in Monotone Complexity and TFNP

FP

EoML

SoML PPAD

PPADS

PLS PPP PPA

TFNP

= formulas

circuits = = F2-span programs

comparator circuits ≤

Figure 1 The landscape of communication search problem classes (uncluttered by the usual ‘cc’
superscripts). A solid arrow C1 → C2 denotes C1 ⊆ C2, and a dashed arrow C1 99K C2 denotes
C1 * C2 (in fact, an exponential separation). Some classes can characterize other models of
computation (printed in blue). See Appendix A for definitions.

2 Survey: Communication TFNP

Given the results in Section 1, it is natural to examine other communication analogues of
subclasses of TFNP. The goal in this section is to explain the current state of knowledge
as summarized in Figure 1. The formal definitions of the communication classes appear in
Appendix A.

TFNP. As is customary in structural communication complexity [2, 30, 27] we formally
define TFNPcc (resp. PLScc, PPAcc, etc.) as the class of all total two-party n-bit search
problems that admit a nondeterministic protocol5 (resp. PLS-protocol, PPA-protocol, etc.)
of communication cost polylog(n). For example, Karchmer–Wigderson games KW(f) and
KW+(f), for an n-bit boolean function f , have efficient nondeterministic protocols: guess a
logn-bit coordinate i ∈ [n] and check that xi 6= yi or xi > yi. Hence these problems are in
TFNPcc. In fact, a converse holds: any total two-party search problem with nondeterministic
complexity c can be reduced to KW+(f) for some 2c-bit partial monotone function f , see [21,
Lemma 2.3]. In summary, the study of total NP search problems in communication complexity
is equivalent to the study of monotone Karchmer–Wigderson games for partial monotone
functions.

5 That is, for any input (x, y), every accepting computation of the nondeterministic protocol outputs a
feasible solution o ∈ O for (x, y). An alternative, more restrictive definition of TFNPcc (which is closer
to how the classical class is defined) is to require that there is an efficient deterministic protocol that on
input (xo, y) decides whether o ∈ O is feasible for (x, y). In this paper we stick with the stronger (and
simpler) definition for convenience. All results hold equally well under the more restrictive definition.
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Sometimes a partial function f can be canonically extended into a total one f ′ without
increasing the complexity of KW(f) (or KW+(f)). This is possible whenever KW(f) lies in
a communication class that captures some associated model of computation. For example,
if KW(f) is solved by a deterministic protocol (resp. PLS-protocol, PPA-protocol) then
the Karchmer–Wigderson connection can build us a corresponding formula (resp. circuit,
F2-span program) that computes some total extension f ′ of f . Consequently, separating two
communication classes that capture two monotone models is equivalent to separating the
monotone models themselves.

FP. Raz and McKenzie [52] showed an exponential separation between monotone formula
size and monotone circuit size. This can be rephrased as PLScc * FPcc. Their technique is
much more general: they develop a query-to-communication lifting theorem for deterministic
protocols (see also [26] for exposition). By plugging in known query complexity lower bounds
against the class EoML (combinatorial subclass of CLS [17] introduced by [32, 19]), one can
obtain a stronger separation EoMLcc * FPcc.

A related question is whether randomization helps in solving TFNPcc problems. Lower
bounds against randomized protocols have applications in proof complexity [34, 7, 33, 25]
and algorithmic game theory [58, 5, 28, 57, 22, 4]. In particular, some of these works (for
finding Nash equilibria) have introduced a communication analogue of the PPAD-complete
End-of-Line problem, which we will continue to study in Subsection 4.2.

PLS. Razborov’s [54] famous monotone circuit lower bound for the clique/coloring problem
(which is in PPPcc) can be interpreted as an exponential separation PPPcc * PLScc. We show
a stronger separation PPADcc * PLScc using the End-of-Line problem in Subsection 4.2.
Note that this is even slightly stronger than Theorem 1, which only implies PPAcc * PLScc.

PPApD. In light of our characterization of PPAcc, we may interpret the inability of monotone
F2-span program to efficiently simulate monotone circuits [48] as a separation PLScc * PPAcc.
We show an incomparable separation PPADScc * PPAcc in Subsection 4.3.

In the other direction, prior work implies PPAcc * PPADcc as follows. Pitassi and
Robere [48] exhibit a monotone f (in hindsight, one can take f := 3Xor-Satn) computable
with a small monotone F2-span program (hence KW+(f) ∈ PPAcc) and such that KW+(f)
has an exponentially large R-partition number (see Section 3 for a definition); however, we
observe that all problems in PPADcc have a small R-partition number (see Remark 9).

PPP. There are no lower bounds against PPPcc for an explicit problem in TFNPcc. However,
we can show non-constructively the existence of KW(f) ∈ TFNPcc such that KW(f) /∈ PPPcc,
which implies PPPcc 6= TFNPcc. Indeed, we argue in Remark 8 that every S reduces to
KW+(3Cnf-SatN ) over N := exp(O(PPPcc(S))) variables. Applying this to S := KW(f)
for an n-bit f , we conclude that f is a (non-monotone) projection of 3Cnf-SatN for
N := exp(O(PPPcc(KW(f)))). In particular, if KW(f) ∈ PPPcc (i.e., PPPcc(KW(f)) ≤
polylog(n)), then f is in non-uniform quasipoly-size NP. Therefore KW(f) /∈ PPPcc for a
random f .

EoML, SoML, and comparator circuits. One prominent circuit model that currently lacks
a characterization via a TFNPcc subclass is comparator circuits [41, 16]. These circuits are
composed only of comparator gates (taking two input bits and outputting them in sorted
order) and input literals (positive literals in the monotone case).

ITCS 2019
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We can show an upper bound better than PLScc for comparator circuits. Indeed, we
introduce a new class SoML generalizing EoML [32, 19] as follows. Recall that EoML is the
class of problems reducible to End-of-Metered-Line: we are given a directed graph of
in/out-degree at most 1 with a distinguished source vertex v∗ (in-degree 0), and moreover,
each vertex is labeled with an integer “meter” that is strictly decreasing along directed
paths; a solution is any sink or source distinct from v∗. The complete problem defining
SoML is Sink-of-Metered-Line, which is the same as End-of-Metered-Line except
only sinks count as solutions. It is not hard (left as an exercise) to adapt the characterization
of circuits via PLScc [55, 50, 60] to show that KW(f) is in SoMLcc if f is computed by a
small comparator circuit. However, we suspect that the converse (SoML-protocol for KW(f)
implies a comparator circuit) is false.

2.1 Open problems
In query complexity, the relative complexities of TFNP subclasses are almost completely
understood [6, 12, 43]. In communication complexity, by contrast, there are huge gaps in our
understanding as can be gleaned from Figure 1. For example:
(1) There are no lower bounds against classes PPADScc and PPPcc for an explicit problem

in TFNPcc. For starters, show PLScc * PPADScc or PPAcc * PPADScc.
(2) Find computational models captured by EoMLcc, SoMLcc, PPADcc, PPADScc, PPPcc.
(3) Query-to-communication lifting theorems are known for FP [52], PLS [23], PPA [48].

Prove more. (This is one way to attack Question 1 if proved for PPADS.)
(4) Prove more separations. For example, can our result PPADScc * PPAcc be strengthened

to SoMLcc * PPAcc? This is closely related to whether monotone comparator circuits can
be more powerful than monotone F2-span programs (no separation is currently known).

3 Preliminaries

C-Sat. Fix an alphabet Σ (potentially infinite, e.g., Σ = R). Let C be a finite set of
k-ary predicates over Σ, that is, each C ∈ C is a function C : Σk → {0, 1}. We define a
monotone function C-Satn : {0, 1}N → {0, 1} over N = |C|nk input bits as follows. An
input x ∈ {0, 1}N is interpreted as a C-CSP instance, that is, x is (the indicator vector
of) a set of C-constraints, each applied to a k-tuple of variables from v1, . . . , vn. We define
C-Satn(x) := 1 iff the C-CSP x is unsatisfiable: no assignment v ∈ Σn exists such that
C(v) = 1 for all C ∈ x.

For a field F, we define kLin(F) as the set of all F-linear equations of the form∑
i∈[k] aivi = a0, where ai ∈ {0,±1}.

In particular, we recover 3Xor-Satn defined in Section 1 essentially as 3Lin(F2)-Satn. We
could have allowed the ai to range over F when F is finite, but we stick with the above
convention as it ensures that the set kLin(R) is always finite.

Boolean alphabets. We assume henceforth that all alphabets Σ contain distinguished
elements 0 and 1. We define Cbool to be the constraint set obtained from C by restricting each
C ∈ C to the boolean domain {0, 1}k ⊆ Σk. Moreover, if F is a C-CSP, we write Fbool for the
Cbool-CSP obtained by restricting the constraints of F to boolean domains. Consequently,
any S(Fbool) associated with a C-CSP F is a boolean search problem.
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Algebraic partitions. We say that a subset A ⊆ X × Y is monochromatic for a two-party
search problem S ⊆ X ×Y ×O if there is some o ∈ O such that o ∈ S(x, y) for all (x, y) ∈ A.
Moreover, if M ∈ FX×Y is a matrix, we say M is monochromatic if the support of M is
monochromatic. For any field F, an F-partition of a search problem S is a setM of rank-1
matrices M ∈ FX×Y such that

∑
M∈MM = 1 and each M ∈ M is monochromatic for

S. The size of the partition is |M|. The F-partition number χF(S) is the least size of an
F-partition of S. In the following characterization, recall that we use SPF and mSPF to
denote (monotone) span program complexity.

I Theorem 5 ([21]). For any boolean function f and any field F, SPF(f) = χF(KW(f)).
Furthermore, if f is monotone then mSPF(f) = χF(KW+(f)).

Nullstellensatz. Let P := {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of
polynomial equations in F[z1, z2, . . . , zn] for a field F. An F-Nullstellensatz refutation of P is
a sequence of polynomials q1, q2, . . . , qm ∈ F[z1, z2, . . . , zn] such that

∑m
i=1 qipi = 1 where the

equality is syntactic. The degree of the refutation is maxi deg(qipi). The F-Nullstellensatz
degree of P , denoted NSF(P ), is the least degree of an F-Nullstellensatz refutation of P .

Moreover, if F is a k-CNF formula (or a boolean k-CSP), we often tacitly think of it as a
polynomial system PF by using the standard encoding (e.g., (z1 ∨ ¬z2) (1− z1)z2 = 0)
and also including the boolean axioms z2

i − zi = 0 in PF if we are working over F 6= F2.

Lifting theorems. Let S ⊆ {0, 1}n×O be a boolean search problem and g : X ×Y → {0, 1}
a two-party function, usually called a gadget. The composed search problem S ◦ gn ⊆
Xn × Yn ×O is defined as follows: Alice holds x ∈ Xn, Bob holds y ∈ Yn, and their goal is
to find an o ∈ S(z) where z := gn(x, y) = (g(x1, y1), . . . , g(xn, yn)). We focus on the usual
index gadget Indm : [m]× {0, 1}m → {0, 1} given by Indm(x, y) := yx.

The main results of [23, 48] can be summarized as follows (we define more terms below).

I Theorem 6. Let k ≥ 1 be a constant and let m = m(n) := nC for a large enough constant
C ≥ 1. Then for any an unsatisfiable boolean n-variate k-CSP F ,

[23]: PLScc(S(F ) ◦ Indn
m) = PLSdt(S(F )) ·Θ(logn),

[48]: PPAcc(S(F ) ◦ Indn
m) = PPAdt(S(F )) ·Θ(logn),

[48]: logχF(S(F ) ◦ Indn
m) = NSF(F ) ·Θ(logn), ∀F ∈ {Fp,R}.

For aesthetic reasons, we have used PLSdt(S(F )) here to denote the Resolution width
of F (introduced in [10]), which is how the result of [23] was originally stated. (But one
can check that the query analogue of PLS, obtained by replacing protocols with decision
trees in Definition 14, is indeed equivalent to Resolution width.) We also could not resist
incorporating our new characterizations of PPAcc and PPAdt to interpret the result of [48]
specialized to F2.

4 Proofs of Separations

In this section, we show lower bounds for C-Sat against monotone circuits (Theorem 1)
and monotone span programs (Theorem 2), plus some bonus results (PPADcc * PLScc,
PPADScc * PPAcc, Nullstellensatz degree vs. Cutting Planes).
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4.1 Reduction
The key to our lower bounds is a new reduction. We show that a lifted version of S(Fbool),
where F is an unsatisfiable C-CSP, reduces to the monotone Karchmer–Wigderson game
for C-Sat. Note that we require F to be unsatisfiable over its original alphabet Σ, but the
reduction is from the booleanized (and hence easier-to-refute) version of F .
I Lemma 7. Let F be an unsatisfiable C-CSP. Then S(Fbool) ◦ Indn

m reduces to
KW+(C-Satnm).
Proof. Suppose the C-CSP F consists of k-ary constraints C1, . . . , Ct applied to variables
z1, . . . , zn. We reduce S(Fbool) ◦ Indn

m ⊆ [m]n × ({0, 1}m)n × [t] to the problem KW+(f) ⊆
f−1(1)× f−1(0)× [N ] where f := C-Satmn over N := |C|(mn)k input bits. The two parties
compute locally as follows.
Alice: Given (x1, . . . , xn) ∈ [m]n, Alice constructs a C-CSP over variables {vi,j : (i, j) ∈

[n]× [m]} that is obtained from F by renaming its variables z1, . . . , zn to v1,x1 , . . . , vn,xn

(in this order). Since F was unsatisfiable, so is Alice’s variable-renamed version of it.
Thus, when interpreted as an indicator vector of constraints, Alice has constructed a
1-input of C-Satmn.

Bob: Given y ∈ ({0, 1}m)n, Bob constructs a C-CSP over variables {vi,j : (i, j) ∈ [n]× [m]}
as follows. We view y naturally as a boolean assignment to the variables vi,j . Bob
includes in his C-CSP instance all possible C-constraints C applied to the vi,j such that
C is satisfied under the assignment y (i.e., C(y) = 1). This is clearly a satisfiable C-CSP
instance, as the assignment y satisfies all Bob’s constraints. Thus, when interpreted as
an indicator vector of constraints, Bob has constructed a 0-input of C-Satmn.

It remains to argue that any solution to KW+(C-Satmn) gives rise to a solution to
S(Fbool) ◦ Indn

m. Indeed, a solution to KW+(C-Satmn) corresponds to a C-constraint C
that is present in Alice’s C-CSP but not in Bob’s. By Bob’s construction, such a C must
be violated by the assignment y (i.e., C(y) = 0). Since all Alice’s constraints involve only
variables v1,x1 , . . . , vn,xn , the constraint C must in fact be violated by the partial assignment
to the said variables, which is z = Indn

m(x, y). Thus the constraint of F from which C was
obtained via renaming is a solution to S(Fbool) ◦ Indn

m. J

I Remark 8 (Generic reduction to Cnf-Sat). We claim that any problem S ⊆ X × Y ×O
that lies in one of the known subclasses of TFNPcc (as listed in Section 2) reduces efficiently
to KW+(kCnf-Satn) for constant k (one can even take k = 3 by standard reductions). Let
us sketch the argument for S ∈ PPPcc; after all, better reductions are known for PLScc and
PPAcc, namely to Horn-Sat and 3Xor-Sat.

Proof Sketch. Let Π := (V, v∗, ov,Πv) be a PPP-protocol solving S of cost c := PPPcc(S).
We may assume wlog that all the Πv have constant communication cost k ≤ O(1) by
embedding the protocol trees of the Πv as part of the implicitly described bipartite graph. In
particular, we view each Πv as a function X × Y → {0, 1}k where the output is interpreted
according to some fixed map {0, 1}k → V . Consider a set of n := k|V | (|V | ≤ 2c) boolean
variables {zv,i : (v, i) ∈ V × [k]} with the intuitive interpretation that zv,i is the i-th output
bit of Πv. We may encode the correctness conditions for Π as an unsatisfiable 2k-CNF
formula F over the zv,i that has, for each {v, u} ∈

(
V
2
)
, clauses requiring that the outputs of

Πv and Πu (as encoded by the zv,i) should point to distinct vertices. Finally, we note that
computing the i-th output bit (Πv)i : X ×Y → {0, 1} reduces to a large enough constant-size
index gadget IndO(1) (which embeds any two-party function of communication complexity
k ≤ O(1)). Therefore S naturally reduces to S(F ) ◦ Indn

O(1), which by Lemma 7 reduces to
KW+(2kCnf-SatO(n)), as desired. J
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4.2 Monotone circuit lower bounds
Xor-Sat. The easiest result to prove is Theorem 1: an exponential monotone circuit lower
bound for 3Xor-Satn. By the characterization of [55] it suffices to show

PLScc(KW+(3Xor-Satn)) ≥ nΩ(1). (1)

Urquhart [62] exhibited unsatisfiable n-variate 3Xor-CSPs F (aka Tseitin formulas) requiring
linear Resolution width, that is, PLSdt(S(F )) ≥ Ω(n) in our notation. Hence Theorem 6
implies that PLScc(S(F ) ◦ Indn

m) ≥ Ω(n) for some m = nO(1). By the reduction in Lemma 7,
we get that PLScc(KW+(3Xor-Satnm)) ≥ Ω(n). (Note that 3Xor has a boolean alphabet,
so F = Fbool.) This yields the claim (1) by reparameterizing the number of variables.

Lin(F)-Sat. More generally, we can prove a similar lower bound over any field F ∈ {Fp,R}:

PLScc(KW+(3Lin(F)-Satn)) ≥ nΩ(1). (2)

Fix such an F henceforth. This time we start with a kLin(F)-CSP introduced in [13] for
F = Fp (aka mod-p Tseitin formulas), but the definition generalizes to any field. The CSP
is constructed based on a given directed graph G = (V,E) that is regular : in-deg(v) =
out-deg(v) = k/2 for all v ∈ V . Fix also a distinguished vertex v∗ ∈ V . Then F = FG,F is
defined as the following kLin(F)-CSP over variables {ze : e ∈ E}:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1v∗(v), (FG,F)

where 1v∗(v∗) = 1 and 1v∗(v) = 0 for v 6= v∗. This system is unsatisfiable because the sum
over v ∈ V of the RHS equals 1 whereas the sum of the LHS equals 0 (each variable appears
once with a positive sign, once with a negative sign).

We claim that the booleanized k-CSP Fbool (more precisely, its natural k-CNF encoding)
has linear Resolution width, that is, PLSdt(S(Fbool)) ≥ Ω(n) in our notation. Indeed, the
constraints of Fbool are k/2-robust in the sense that if a partial assignment ρ ∈ {0, 1, ∗}k

fixes the value of a constraint of Fbool, then ρ must set more than k/2 variables. Alekhnovich
et al. [1, Theorem 3.1] show that if k is a large enough constant, there exist regular expander
graphs G such that Fbool (or any k-CSP with Ω(k)-robust constraints) has Resolution width
Ω(n), as desired.

Combining the above with the lifting theorem in Theorem 6 and the reduction in Lemma 7
yields PLScc(kLin(F)-Satn) ≥ nΩ(1) for large enough k. Finally, we can reduce the arity from
k to 3 by a standard trick. For example, given the linear constraint a1v1+a2v2+a3v3+a4v4 =
a0 we can introduce a new auxiliary variable u and two equations a1v1 + a2v2 + u = 0 and
−u+a3v3+a4v4 = a0. In general, we replace each equation on k > 3 variables with a collection
of k−2 equations by introducing k−3 auxiliary variables to create an equisatisfiable instance.
This shows that kLin(F)-Satn reduces to (i.e., is a monotone projection of) 3Lin(F)-Satkn,
which concludes the proof of (2).

PPADcc * PLScc via End-of-Line. Consider the R-linear system F = FG,R defined above.
We observe that S(Fbool) is in fact equivalent to (a query version of) the PPAD-complete
End-of-Line problem. In the End-of-Line problem, we are given a directed graph of
in/out-degree at most 1 and a distinguished source vertex v∗ (in-degree 0); the goal is to
find a sink or a source distinct from v∗ (cf. Definition 15). On the other hand, in S(Fbool)
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we are given a boolean assignment z ∈ {0, 1}E , which can be interpreted as (the indicator
vector of) a subset of edges defining a (spanning) subgraph Gz of G; the goal is to find a
vertex v ∈ V such that either
(1) v = v∗ and out-deg(v) 6= in-deg(v) + 1 in Gz; or
(2) v 6= v∗ and out-deg(v) 6= in-deg(v) in Gz.
The only essential difference between S(Fbool) and End-of-Line is that the graph Gz can
have in/out-degree a large constant k/2 rather than 1. But there is a standard reduction
between the two problems [46]: we may locally interpret a vertex v ∈ V (Gz) with out-deg(v) =
in-deg(v) = ` as ` distinct vertices of in/out-degree 1. This reduction also shows that the
lifted problem S(Fbool) ◦ Indm for m = nO(1) admits a O(logn)-cost PPAD-protocol, and
is thus in PPADcc. By contrast, we proved above that this problem is not in PLScc (for
appropriate G).

I Remark 9 (Algebraic partitions for PPADcc). We claim that every problem S ∈ PPADcc

admits a small Z-partition, and hence a small F-partition over any field F. More precisely, we
argue that logχZ(S) ≤ O(PPADcc(S)). Indeed, let Π := (V, v∗, ov,Πv) be an optimal PPAD-
protocol for S. We define a Z-partitionM by describing it as a nondeterministic protocol for
S whose accepting computations output weights in Z (interpreted as values of the entries of
an M ∈M): On input (x, y), guess a vertex v ∈ V ; if v is a sink in Gx,y, accept with weight
1; if v is a source distinct from v∗, accept with weight −1; otherwise reject (i.e., weight 0).
This protocol accepts with overall weight #(sinks)−#(non-distinguished sources) = 1 on
every input (x, y), as desired.

A similar argument yields an analogous query complexity bound
NSZ(F ) ≤ O(PPADdt(S(F ))) where PPADdt(S) is the least cost of a PPAD–decision tree
(Definition 15) solving S.

Nullstellensatz vs. Cutting Planes. By the above remark, Fbool for F = FG,F admits a low-
degree – in fact, constant-degree – Nullstellensatz refutation over any field F. Nullstellensatz
degree behaves well with respect to compositions: if we compose Fbool with a gadget Indn

m,
m = nO(1) (see, e.g., [23, §8] how this can be done), the Nullstellensatz degree can only
increase by the query complexity of the gadget, which is O(logn) for Indn

m. This gives us
an nO(1)-variate boolean k-CSP F ′ := Fbool ◦ Indn

m (where k is constant [23, §8]) such that
NSF(F ′) ≤ O(logn). On the other hand, we can invoke the strong version of the main result
of [23]: if F has Resolution width w, then F ◦ Indn

m requires Cutting Planes refutations of
length nΩ(w). In summary, F ′ witnesses that F-Nullstellensatz can be exponentially more
powerful than log of Cutting Planes length.

4.3 Monotone span program lower bounds
Let us prove Theorem 2: 3Lin(R)-Satn requires exponential-size monotone Fp-span programs,
that is,

χFp
(KW+(3Lin(R)-Satn)) ≥ nΩ(1). (3)

Using Theorem 6 and Lemma 7 similarly as in Subsection 4.2, it suffices to show that
NSFp

(Fbool) ≥ nΩ(1), for some unsatisfiable kLin(R)-CSP F where k is a constant. To this
end, we consider an R-linear system F = FG,U,R that generalizes FG,R defined above:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1U (v), (FG,U,R)



M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:13

where 1U : V → {0, 1} is the indicator function for U ⊆ V . This is unsatisfiable as long
as U 6= ∅. Combinatorially, the boolean search problem S(Fbool) can be interpreted as an
End-of-`-Lines problem for ` := |U |: given a graph with distinguished source vertices U , find
a sink or a source not in U . It is important to have many distinguished sources, |U | ≥ nΩ(n),
as otherwise S(Fbool) is in PPADdt [31] and hence Fbool has too low an Fp-Nullstellensatz
degree (by Remark 9).

Nullstellensatz lower bound. To show NSFp
(Fbool) ≥ nΩ(1) for an appropriate F = FG,U,R,

we adapt a result of Beame and Riis [8]. They proved a Nullstellensatz lower bound for a
related bijective pigeonhole principle Pn whose underlying graph has unbounded degree; we
obtain a bounded-degree version of their result by a reduction.

I Lemma 10 ([8, §8]). Fix a prime p. The following system of polynomial equations over
variables {xij : (i, j) ∈ D×R}, where |D| = n and |R| = n−nΩ(1), requires Fp-Nullstellensatz
degree nΩ(1):

(i) ∀i ∈ D :
∑

j∈R
xij = 1 “each pigeon occupies a hole”,

(ii) ∀j ∈ R :
∑

i∈D
xij = 1 “each hole houses a pigeon”,

(iii) ∀i ∈ D, {j, j′} ∈
(

R
2

)
: xijxij′ = 0 “no pigeon occupies two holes”,

(iv) ∀j ∈ R, {i, i′} ∈
(

D
2

)
: xijxi′j = 0 “no hole houses two pigeons”.

(Pn)

We construct a natural bounded-degree version G of the complete bipartite graph D ×R
and show that each constraint of Fbool for F = FG,U,R is a low-degree Fp-Nullstellensatz
consequence of Pn. Hence, if Fbool admits a low-degree Fp-Nullstellensatz proof, so does Pn

(see, e.g., [13, Lemma 1] for composing proofs), which contradicts Lemma 10.
The directed graph G = (V,E) is obtained from the complete bipartite graph D ×R as

illustrated in Figure 2 (for |D| = 4 and |R| = 3). Specifically, each vertex of degree d in
D ×R is replaced with a binary tree of height log d. The result is a layered graph with the
first and last layers identified with D and R, respectively. We also add a “feedback” edge
from each vertex in R to a vertex in D according to some arbitrary injection R→ D (dashed
edges in Figure 2). The vertices in D not incident to feedback edges will form the set U
(singleton in Figure 2).

This defines a boolean 3-CSP Fbool for F = FG,U,R over variables {ze : e ∈ E}. In order
to reduce Pn to Fbool, we define an affine map between the variables xij of Pn and ze of
Fbool. Namely, for a feedback edge e we set ze := 1, and for every other e = (v, u) we set

z(v,u) :=
∑

i∈Dv j∈Ru

xij ,

where Dv := {i ∈ D : v is reachable from i without using feedback edges},
Ru := {j ∈ R : j is reachable from u without using feedback edges}.

Note in particular that this map naturally identifies the edge-variables ze in the middle of
G (yellow edges) with the variables xij of Pn. The other variables ze are simply affinely
dependent on the middle edge-layer. We then show that from the equations of Pn we can
derive each constraint of Fbool. Recall that the constraint for v ∈ V requires that the out-flow∑

(v,u)∈E z(v,u) equals the in-flow
∑

(u,v)∈E z(u,v) (plus 1 iff v ∈ U).
v /∈ D ∪ R: Suppose v is on the left side of G (right side is handled similarly) so that

z(v,u) =
∑

j∈Ru
xij for some fixed i ∈ D. The out-flow is∑

(v,u)∈E z(v,u) =
∑

(v,u)∈E

∑
j∈Ru

xij =
∑

j∈Rv
xij . (4)
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G :

U

xijD R

Figure 2 Graph G = (V,E), a bounded-degree version of the biclique D ×R.

On the other hand, v has a unique incoming edge (u∗, v) so the in-flow is
∑

(u,v)∈E z(u,v) =
z(u∗,v) =

∑
j∈Rv

xij , which equals (4).
v ∈ D: (Case v ∈ R is handled similarly). The in-flow equals 1 (either v ∈ U so that we have

the +1 term from 1U (v); or v /∈ U and the value of a feedback-edge variable gives +1).
The out-flow equals

∑
j∈Rv

xij =
∑

j∈R xij = 1 by (4), Rv = R, and (ii).
Finally, we can verify the boolean axioms z2

e = ze. This holds trivially for feedback edges e.
Let e = (v, u) be an edge in the left side of G (right side is similar) so that ze =

∑
j∈Ru

xij

for some fixed i ∈ D. We have z2
e = (

∑
j∈Ru

xij)2 =
∑

j∈Ru
x2

ij =
∑

j∈Ru
xij = ze by (iii)

and the boolean axioms for Pn.
This concludes the reduction and hence the proof of (3).

PPADScc * PPAcc via End-of-`-Lines. It is straightforward to check that Fbool for F =
FG,U,R is in the query class PPADSdt (Definition 16). In particular, in the PPADS–decision
tree, we can define the distinguished vertex v∗ as being associated with any vertex from U .
Similarly, the lifted problem S′ := S(Fbool)◦Indm

n form = nO(1) is in the communication class
PPADScc. By contrast, we just proved that χF2(S′) ≥ nΩ(1), which implies that S′ /∈ PPAcc.

5 Proofs of Characterizations

Due to space constraints, the proofs of Theorem 3 and Theorem 4 are omitted from this
extended abstract. See the full version [24] for complete proofs.
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I Definition 12. (EoML)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and

Πv is a protocol outputting a tuple (sv(x, y), pv(x, y), `v(x, y)) ∈ V × V × Z.
Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u, pu(x, y) = v, `v(x, y) > `u(x, y).
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 13. (SoML)
Syntax: Same as in Definition 12.
Object: Same as in Definition 12.
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 14. (PLS)
Syntax: V is a vertex set. For each v ∈ V : ov ∈ O and Πv is a protocol outputting a pair

(sv(x, y), `v(x, y)) ∈ V × Z.
Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and `v(x, y) > `u(x, y).
Correctness: If v is a sink in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 15. (PPAD)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and

Πv is a protocol outputting a pair (sv(x, y), pv(x, y)) ∈ V × V .
Object: Digraph Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and pu(x, y) = v.
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 16. (PPADS)
Syntax: Same as in Definition 15.
Object: Same as in Definition 15.
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 17. (PPA)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and

Πv is a protocol outputting a subset Πv(x, y) ⊆ V of size at most 2.
Object: Undirected graph Gx,y = (V,E) where {v, u} ∈ E iff v ∈ Πu(x, y) and u ∈ Πv(x, y).
Correctness: If v∗ has degree 6= 1 in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ has degree 6= 2 in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 18. (PPP)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each unordered pair
{v, u} ∈

(
V
2
)
: o{v,u} ∈ O. For each v ∈ V : Πv is a protocol outputting values in V − v∗.

Object: Bipartite graph Gx,y = (V × (V − v∗), E) where (v, w) ∈ E iff Πv(x, y) = w.
Correctness: If (v, w) and (u,w), v 6= u, are edges in Gx,y, then o{v,u} ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.
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Abstract
Using a mild variant of polar codes we design linear compression schemes compressing Hidden
Markov sources (where the source is a Markov chain, but whose state is not necessarily observable
from its output), and to decode from Hidden Markov channels (where the channel has a state
and the error introduced depends on the state). We give the first polynomial time algorithms
that manage to compress and decompress (or encode and decode) at input lengths that are
polynomial both in the gap to capacity and the mixing time of the Markov chain. Prior work
achieved capacity only asymptotically in the limit of large lengths, and polynomial bounds were
not available with respect to either the gap to capacity or mixing time. Our results operate in the
setting where the source (or the channel) is known. If the source is unknown then compression
at such short lengths would lead to effective algorithms for learning parity with noise – thus our
results are the first to suggest a separation between the complexity of the problem when the
source is known versus when it is unknown.
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1 Introduction

We study the problem of designing coding schemes, specifically encoding and decoding
algorithms, that overcome errors caused by stochastic, but not memoryless, channels. Spe-
cifically we consider the class of “(hidden) Markov channels” that are stateful, with the states
evolving according to some Markov process, and where the distribution of error depends on
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Nice
=BSC(𝛿𝛿)

Noisy

=BSC 1
2
− 𝛿𝛿

1 − 𝑝𝑝 1 − 𝑞𝑞

𝑝𝑝

𝑞𝑞

Figure 1 A Markovian Channel: The Nice state flips bits with probability δ whereas the Noisy
state flips with probability 1/2− δ. The stationary probability of the Nice state is q/p times that of
the Noisy state.

the state.4 Such Markovian models capture many natural settings of error, such as bursty
error models. (See for example, Figure 1.) Yet they are often less understood than their
memoryless counterparts (or even “explicit Markov models” where the state is completely
determined by the actions of the channel). For instance (though this is not relevant to our
work) even the capacity of such channels is not known to have a closed form expression in
terms of channel parameters. (In particular the exact capacity of the channel in Figure 1 is
not known as a function of δ, p and q!)

In this work we aim to design coding schemes that achieve rates arbitrarily close to
capacity. Specifically given a channel of capacity C and gap parameter ε > 0, we would like to
design codes that achieve a rate of at least C−ε, that admit polynomial time algorithms even
at small block lengths n ≥ poly(1/ε). Even for the memoryless case such coding schemes
were not known till recently. In 2008, Arikan [1] invented a completely novel approach
to constructing codes based on “channel polarization” for communication on binary-input
memoryless channels, and proved that they enable achieving capacity in the limit of large
code lengths with near-linear complexity encoding and decoding. In 2013, independent works
by Guruswami and Xia [5] and Hassani et al. [6] gave a finite-length analysis of Arikan’s
polar codes, proving that they approach capacity fast, at block lengths bounded by poly(1/ε)
where ε > 0 is the difference between the channel capacity and code rate.

The success of polar codes on the memoryless channels might lead to the hope that
maybe these codes, or some variants, might lead to similar coding schemes for channels
with memory. But such a hope is not easily justified: the analysis of polar codes relies
heavily on the fact that errors introduced by the channel are independent and this is exactly
what is not true for channels with memory. Despite this seemingly insurmountable barrier,
Şaşoğlu [4] and later Şaşoğlu and Tal [9] showed, quite surprisingly, that the analysis of
polar codes can be carried out even with Markovian channels (and potentially even broader
classes of channels). Specifically they show that these codes converge to capacity and even
the probability of decoding error, under maximum likelihood decoding, drops exponentially
fast in the block length (specifically as 2−nΩ(1) on codes of length n; see also [10], where
exponentially fast polarization was also shown at the high entropy end). An extension of
Arikan’s successive cancellation decoder from the memoryless case was also given by [12],
building on an earlier version [13] specific to intersymbol interference channels, leading to
efficient decoding algorithms.

4 We use the term hidden to emphasize the fact that the state itself is not directly observable from the
actions of the channel, though in the interest of succinctness we will omit this term for most of the rest
of this section.
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However, none of the works above give small bounds on the block length of the codes as
a function of the gap to capacity, and more centrally to this work, on the mixing time of the
Markov chain. The latter issue gains importance when we turn to the issue of “compressing
Markov sources” which turns out to be an intimately related task to that of error-correction
for Markov channels as we elaborate below and which is also the central task we turn to in
this paper. We start by describing Markov source and the (linear) compression problem.

A (hidden) Markov source over alphabet Σ is given by a Markov chain on some finite
state space where each state s has an associated distribution Ds over Σ. The source produces
information by performing a walk on the chain and at each time step t, outputting a letter of
Σ drawn according to the distribution associated with the state at time t (independent of all
previous choices, and previous states).5 In the special case of additive Markovian channels
where the output of the channel is the sum of the transmitted word with an error vector
produced by a Markov source, a well-known correspondence shows that error-correction for
the additive Markov channel reduces to the task of designing a compression and decompression
algorithm for Markovian sources, with the compression being linear. Indeed in this paper
we only focus on this task: our goal turns into that of compressing n bits generated by the
source to its entropy upto an additive factor of εn, while n is only polynomially large in 1/ε.

A central issue in the task of compressing a source is whether the source is known to the
compression algorithm or not. While ostensibly the problem should be easier in the “known”
setting than in the “unknown” one, we are not aware of any formal results suggesting a
difference in complexity. It turns out that compression in the setting where the source is
unknown is at least as hard as “learning parity with noise” (we argue this in Appendix B),
if the compression works at lengths polynomial in the mixing time and gap to capacity.
This suggests that the unknown source setting is hard (under some current beliefs). No
corresponding hardness was known for the task of compressing sources when they are known,
but no easiness result seems to have been known either (and certainly no linear compression
algorithm was known). This leads to the main question addressed (positively) in this work.

Our Results

Our main result is a construction of codes for additive Markov channels that gets ε close to
capacity at block lengths polynomial in 1/ε and the mixing time of the Markov chain, with
polynomial (in fact near-linear) encoding and decoding time. Informally additive channels
are those that map inputs from some alphabet Σ to outputs over Σ with an abelian group
defined on Σ and the channel generates an error sequence independent of the input sequence,
and the output of the channel is just the coordinatewise sum of the input sequence with the
error sequence. (In our case the alphabet Σ is a finite field of prime cardinality.) The exact
class of channels is described in Definition 4, and Theorem 10 states our result formally. We
stress that we work with additive channels only for conceptual simplicity and that our results
should extend to more general symmetric channels though we don’t do so here. Prior to this
work no non-trivial Markov channel was known to achieve efficient encoding and decoding at
block lengths polynomial in either parameter (gap to capacity or mixing time).

Our construction and analyses turn out to be relatively simple given the works of Şaşoğlu
and Tal [4, 9] and the work of Blasiok et al. [2]. The former provides insights on how to
work with channels with memory, whereas the latter provides tools needed to get short block

5 The phrase “hidden” emphasizes the fact that the output produced by the source does not necessarily
reveal the sequence of states visited.
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length and cleaner abstractions of the efficient decoding algorithm that enable us to apply
it in our setting. Our codes are a slight variant of polar codes, where we apply the polar
transforms independently to blocks of inputs. This enables us to apply the analysis of [2]
in an essentially black box manner, benefiting both from its polynomially fast convergence
guarantee to capacity as well as its generality covering all polarizing matrices over any prime
alphabet (and not just the basic Boolean 2× 2 transform covered in [9]).

We give a more detailed summary of how our codes are obtained and how we analyze
them in Section 3 after stating our results and main theorem formally.

2 Definitions and Main Results

2.1 Notation and Definitions
We will use Fq to denote the finite field with q elements. Throughout the paper, we will deal
only with the case when q is a prime. (This restriction in turn comes from the work of [2]
whose results we use here.)

We use several notations to index matrices. For a matrix M ∈ Fm×nq , the entry in the
ith row, jth column is denoted Mi,j or M(i,j). Columns are denoted by superscripts, i.e.,
M j ∈ Fmq denotes the jth column of M . Note that M j

i = M(i,j). We also use the indices as
sets in the natural way. For example M≤j ∈ Fm×jq denotes the first j columns of M . M≤j≤i
denotes the submatrix of elements in the first j columns and first i rows. M≺(i,j) denotes the
set of elements of M indexed by lexicographically smaller indices than (i, j). Multiplication
of a matrix M ∈ Fm×nq with a vector v ∈ Fnq is denoted Mv.

For a finite set S, let ∆(S) denote the set of probability distributions over S. For a
random variable X and event E, we write X|E to denote the conditional distribution of X,
conditioned on E. For example, we may write X|{X1 = 0}.

The total-variation distance between two distributions p, q ∈ ∆(U) is

||p− q||1 :=
∑
i

|p(i)− q(i)|

We consider compression schemes, as a map Fnq → Fmq . The rate of a compression scheme
Fnq → Fmq is the ratio m/n.

For a random variable X ∈ [q], the (non-normalized) entropy is denoted H(X), and is

H(X) := −
∑
i

Pr[X = i] log(Pr[X = i])

and the normalized entropy is denoted H(X), and is

H(X) := 1
log(q)H(X)

I Definition 1. A Markov chainM = (`,Π, π0) is given by an ` representing the state space
[`], a transition matrix Π ∈ R`×`, and a distribution on initial state π0 ∈ ∆([`]). The rows
of Π, denoted Π1, . . . ,Π` are thus elements of ∆([`]). A Markov chain generates a random
sequence of states X0, X1, X2, . . . determined by letting X0 ∼ π0, and Xt ∼ ΠXt−1 for t > 0
given X0, . . . , Xt−1. The stationary distribution π ∈ ∆([`]) is the distribution such that if
X0 ∼ π, then all Xt’s are marginally identically distributed as π.

We consider only Markov chains which are irreducible and aperiodic, and hence have
a stationary distribution to which they converge in the limit. The rate of convergence is
measured by the mixing time, defined below.
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I Definition 2. The mixing time of a Markov chain is the constant τ > 0 such that for every
initial state s0 of the Markov chain, the distribution of state s` is exp(−`/τ)-close in total
variation distance to the stationary distribution π.

I Definition 3. A (stationary, hidden) Markov source H = (Σ,M, {S1, . . . ,S`}) is specified
by an alphabet Σ, a Markov chainM on ` states and distributions {Si ∈ ∆(Σ)}i∈[`]. The
output of the source is a sequence Z1, Z2, . . . , of random variables obtained by first sampling
a sequence X0, X1, X2, . . . according toM and then sampling Zi ∼ SXi independently for
each i. We let Ht the distribution of output sequences of length t, and H⊗st denote the
distribution of s i.i.d. samples from Ht.

Similarly, we define an additive Markov channel as a channel which adds noise from a
Markov source.

IDefinition 4. An additive Markov channel CH, specified by a Markov sourceH over alphabet
Fq, is a randomized map CH : F∗q → F∗q obtained as follows: On channel input X1, . . . , Xn,
the channel outputs Y1, . . . , Yn where Yi = Xi + Zi where Z = (Z1, . . . , Zn) ∼ Hn.

I Definition 5. A linear code is a linear map C : Fkq → Fnq . The rate of a code is the ratio
k/n.

I Definition 6. For all sets A,B, a constructive source over (A|B) samplable in time T is a
distribution D ∈ ∆(A×B) such that (a, b) ∼ D can be sampled efficiently in time at most T ,
and for every fixed b ∈ B, the conditional distribution A|{B = b} can be sampled efficiently
in time at most T .

I Proposition 7. Every Markov source with state space [`] is a constructive source samplable
in time O(n`2). That is, for every n, let Y1, . . . Yn be the random variables generated by the
Markov source. Then, the sequence Y1, . . . Yn can be sampled in time at most O(n`2), and
moreover for every setting of Y<n = y<n, the distribution (Yn|Y<n = y<n) can be sampled in
time O(n`2).

Proof. Sampling Y1, . . . , Yn can clearly be done by simulating the Markov chain, and sampling
from the conditional distribution (Yn|Y<n = y<n) is possible using the standard Forward
Algorithm for inference in Hidden Markov Models, which we describe for completeness in
Appendix A. J

Finally, we will use the following notion of mixing matrices from [7, 2], characterizing
which matrices lead to good polar codes. In the study of polarization it is well-known
that lower-triangular matrices do not polarize at all, and the polarization characteristics of
matrices are invariant under column permutations. Mixing matrices are defined to be those
that avoid the above cases.

I Definition 8. For prime q andM ∈ Fk×kq ,M is said to be a mixing matrix ifM is invertible
and for every permutation of the columns of M , the resulting matrix is not lower-triangular.

2.2 Main Theorems
We are now ready to state the main results of this work formally. We begin with the statement
for compressing the output of a hidden Markov model.

I Theorem 9. For every prime q and mixing matrixM ∈ Fk×kq there exists a preprocessing al-
gorithm (Polar-Preprocess, Algorithm 6.3), a compression algorithm (Polar-Compress,
Algorithm 4.1), a decompression algorithm (Polar-Decompress, Algorithm 4.2) and a
polynomial p(·) such that for every ε > 0, the following properties hold:
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1. Polar-Preprocess is a randomized algorithm that takes as input a Markov source H
with ` states, and t ∈ N, and runs in time poly(n, `, 1/ε, q) where n = k2t and outputs
auxiliary information for the compressor and decompressor (for Hn).

2. Polar-Compress takes as input a sequence Z ∈ Fnq as well as the auxiliary information
output by the preprocessor, runs in time O(n logn), and outputs a compressed string
Ũ ∈ FH(Z)+εn

q . Further, for every auxiliary input, the map Z → Ũ is a linear map.
3. Polar-Decompress takes as input a Markov source H a compressed string Ũ ∈ FH(Z)+εn

q

and the auxiliary information output by the preprocessor, runs in time O(n3/2`2 +n logn)
and outputs Ẑ ∈ Fnq . 6

The guarantee provided by the above algorithms is that with probability at least 1−exp(−Ω(n)),
the Preprocessing Algorithm outputs auxiliary information S such that

Pr
Z∼Hn

[Polar-Decompress(H, S; Polar-Compress(Z;S)) 6= Z] ≤ O( 1
n2 ),

provided n > p(τ/ε) where τ is the mixing time of H.
(In the above O(·) hides constants depending k and q, but not on ` or n.)

The above linear compression directly yields channel coding for additive Markov channels,
via a standard reduction (the details of which are in Section 7.)

I Theorem 10. For every prime q and mixing matrix M ∈ Fk×kq there exists a randomized
preprocessing algorithm Preprocess, an encoding algorithm Enc, a decoding algorithm
Dec, and a polynomial p(·) such that for every ε > 0, the following properties hold:
1. Preprocess is a randomized algorithm that takes as input an additive Markov channel
CH described by Markov source H with ` states, and t ∈ N, and runs in time poly(n, `, 1/ε)
where n = k2t, and outputs auxiliary information for Hn.

2. Enc takes as input a message x ∈ Frq, where r ≥ n(1− H(Z)
n − ε), as well as auxiliary

information from the preprocessor and outputs and computes Enc(x) ∈ Fnq in O(n logn)
time.

3. Dec takes as input the Markov source H, auxiliary information from the preprocessor
and a string z ∈ Fnq , runs in time Oq(n3/2`2 + n logn), and outputs an estimate x̂ ∈ Frq
of the message x. 7

The guarantee provided by the above algorithms is that with probability at least 1−exp(−Ω(n)),
the Preprocessing algorithm outputs S such that for all x ∈ Frq we have

Pr
CH

[Dec(H; CH(Enc(C;x))) 6= x] ≤ O( 1
n2 ),

provided n > p(τ/ε) where τ is the mixing time of H.
(In the above O(·) hides constants that may depend on k and q but not on ` or n.)

Theorem 10 follows relatively easily from Theorem 9 and so in the next section we focus
on the overview of the proof of the latter.

6 The runtime of the decompression algorithm can be improved to a runtime of O(n1+δ`2 + n logn) by a
simple modification. In particular, by taking the input matrix Z to be n1−δ ×nδ instead of n1/2 ×n1/2.
In fact we believe the decoding algorithm can be improved to an O(n logn) time algorithm with some
extra bookkeeping though we don’t do so here.

7 This can similarly be improved to a runtime of Oq(n1+δ`2 + n logn).
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3 Overview of our construction

Basics of polarization. We start with the basics of polarization in the setting of compressing
samples from an i.i.d. source. To compress a sequence Z ∈ Fn2 drawn from some source,
the idea is to build an invertible linear function P such that for all but ε fraction of the
output coordinates i ∈ [n], the conditional entropy H(P (Z)i|P (Z)<i) is close to 0 and or
close to 1. (Such an effect is called polarization, as the entropies are driven to polarize toward
the two extreme values.) Since a deterministic invertible transformation preserves the total
entropy, it follows that roughly H(Z) output coordinates can have entropy close to 1 and
n−H(Z) coordinates have (conditional) entropy close to 0. Letting S denote the coordinates
whose conditional entropies that are not close to zero, the compression function is simply
Z 7→ P (Z)S , the projection of the output P (Z) onto the coordinates in S.

Picking a random linear function P would satisfy the properties above with high probab-
ility, but this is not known (and unlikely) to be accompanied by efficient algorithms. To get
the algorithmics (how to compute P efficiently, to determine S efficiently, and to decompress
efficiently) one uses a recursive construction of P . For our purposes the following explanation
works best: Let n = m2 and view Z = (Z11, Z12, . . . , Zmm) and as an m ×m matrix over
F2, where the elements of Z arrive one row at a time. Let P row

m (·) denote the operation
mapping Fm×m2 to Fm×m2 that applies Pm to each row of separately. Let P column

m (·) denote
the operation that applies Pm to each column separately. Then Pn(Z) = P column

m (P row
m (Z))T .

The base case is given by P2(U, V ) = (U + V, V ).
Intuitively, when the elements of Z are independent and identical, the operation Pm

already polarizes the outputs somewhat and so a moderate fraction of the outputs of P row
m (Z)

have conditional entropies moderately close to 0 or 1. The further application of P column
m (·)

further polarizes the output bringing a larger fraction of he conditional entropies of the
output even closer to 0 or 1.

Polarization for Markovian Sources. When applied to source Z with memory, roughly the
analysis in [9], reinterpreted to facilitate our subsequent modification of the above polar
constructuion, goes as follows: Since the elements of the row Zi are not really independent
one cannot count on the polarization effects of P row

m . But, letting U = P row
m (Z) one can

show that most elements of the column of U j are almost independent of each other, provided
m is much larger than the mixing time of the source. (Here we imagine that the entries
of Z arrive row-by-row, so that the source outputs within each row are temporally well-
separated from most entries of the previous row, when m is large.) Further, this almost
independence holds even when conditioning on the columns U<j for most values of j. Thus
the operation P column

m (·) continues to have its polarization effects and this is good enough to
get a qualitatively strong polarization theorem (about the operator Pn!).

The above analysis is asymptotic, proving that in the limit of n→∞, we get optimal
compression. However, we do not know how to give an effective finite-length analysis of
the polarization process for Markovian process, as the analysis in [5, 6] crucially rely on
independence which we lack within a row.

Our Modified Code and Ingredients of Analysis. To enable a finite-length analysis, we
make a minor, but quite important, alteration to the polar code: Instead of using Pn(Z) =
P column
m (P row

m (Z))T we simply use the transformation P̃n = P column
m (Z)T (or in other words,

we replace the inner function P row
m (·) in the definition of Pn by the identity function). This

implies that we lose whatever polarization effects of P row
m we may have been counting on, but

as pointed out above, for Markov sources, we weren’t counting on polarization here anyway!
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The crucial property we identify and exploit in the analysis is the following: the Markovian
nature of the source plus the row-by-row arrival ordering of Z, implies that the distribution
of the j’th source column Zj conditioned on the previous columns Z<j = z<j , is a close to a
product distribution, for all but the last few (say εm) columns. 8

It turns out that the analysis of the polar transform Pm only needs independent inputs,
which however need not be identically distributed. We are then able to apply the recent
analysis from [2], essentially as black box, to argue that Pm will compress each of the
conditioned sources Zj |Z<j = z<j to its respective entropy, and also establish fast convergence
via quantitatively strong polynomial (in the gap to capacity) upper bounds on the m needed
to achieve this. Further, we automatically benefit from the generality of the analysis in [2],
which applies not only to the 2 × 2 transform P2 at the base case, but in fact any k × k
transform (satisfying some minimal necessary conditions) over an arbitrary prime field Fq.
Previous works on polar coding for Markovian sources [4, 9, 12] only applied for Boolean
sources.

We remark that the use of the identity transform for the rows in P̃n is quite counterintuitive.
It implies that the compression matrix is a block diagonal matrix (after some permutation
of the rows and columns) – and in turn this seems to suggest that we are compressing
different parts of the input sequence “independently”. However this is not quite true. The
relationship between the blocks ends up influencing the final set S of the bits of P̃n(Z) that
are output by the compression algorithm. Furthermore the decompression relies on the
information obtained from the decompression of the blocks corresponding to Z<j to compute
the block Zj .

Decompression algorithm. Our alteration to apply the identity transform for the rows also
helps us with the task of decompression. Toward this, we build on a decompression algorithm
for memoryless sources from [2] that is somewhat different looking from the usual ones in the
polar coding literature. This algorithm aims to compute U = P row

m (Z) one column at a time,
given Pn(Z)|S . Given the first j − 1 columns U<j = u<j , the algorithm first computes the
conditional distribution of U j conditioned on U<j = u<j and then uses a recursive decoding
algorithm for Pm to determine U j . The key to the recursive use is again that the decoding
algorithm works as long as the input variables are independent (and in particular, does not
need them to be identically distributed).

In our Markovian setting, we now have to compute the conditional distribution of Zj
conditioned on Z<j = z<j . But as mentioned above, this conditional distribution is close to a
product distribution, say Dj(z<j) (except for the last few columns j where decompression is
trivial as we output the entire column). Further, the marginals of this product distribution are
easily computed using dynamic programming (via what is called the “Forward Algorithm” for
hidden Markov models, described for completeness in Appendix A). We can then determine
the j’th column Zj (having already recovered the first j − 1 columns as z<j) by running (in
a black box fashion) the polar decompressor from [2] for the memoryless case, feeding this
product distribution Dj(z<j) as the source distribution.

Computing the output indices. Finally we need one more piece to make the result fully
constructive. This is the preprocessing needed to compute the subset S of the coordinates of
P̃n(Z) that have noticeable conditional entropy. For the memoryless case these computations

8 We handle the non-independence in the last few columns, by simply outputting those columns Pm(Zj)
in entirety, rather than only a set Sj of entropy-carrying positions. This only adds an ε fraction to the
output length, which we can afford.
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Algorithm 4.1 Polar-Compress.
Constants: M ∈ Fk×kq , m = kt, n = m2

Input: Z = (Z11, Z12, . . . , Zmm) ∈ Fnq , and sets Sj ⊆ [m] for j ∈ [m]
Output: U jSj

∈ Fsj
q for all j ∈ [m] . sj := |Sj | for j ≤ (1− ε)m, and sj := m otherwise.

1: procedure Polar-Compress(Z; {Sj}j∈[m])
2: for all j ∈ [m] do
3: Compute U j := Pm(Zj).
4: If j ≤ (1− ε)m then
5: Output U jSj

6: else
7: Output U j

were shown to be polynomial time computable in the works of [8, 5, 11]. We manage to
extend the ideas from Guruswami and Xia [5] to the case of Markovian channels as well. It
turns out the only ingredients needed to make this computation work are, again, the ability
to compute the distributions of Zj conditioned on Z<j = z<j for typical values of z<j . We
note that unlike in the setting of memoryless channels (or i.i.d. sources) our preprocessing
step is randomized. We believe this is related to the issue that there is no “closed” form
solutions to basic questions related to Markovian sources and channels (such as the capacity
of the channel in Figure 1) and this forces us to use some random sampling and estimation
to compute some of the conditional entropies needed by our algorithms.

Organization of rest of the paper. In the next section (Section 4) we describe our com-
pression and decompression algorithms. In Section 5 we describe a notion of “nice”-ness
for the preprocessing stage and show that if the preprocessing algorithm returns a nice
output, then the compression and decompression algorithm work correctly with moderately
high probability (over the message produced by the source). In Section 6 we describe our
preprocessing algorithm that returns a nice set with all but exponentially small failure
probability (over its internal coin tosses). Finally in Section 7 we give the formal proofs of
Theorems 9 and 10.

4 Construction

4.1 Compression Algorithm
Our compression, decompression and preprocessing algorithms are defined with respect
to arbitrary mixing matrices M ∈ Fk×kq . (Recall that mixing matrices were defined in

Definition 8.) Though a reader seeking simplicity may set k = 2 and M =
[

1 1
0 1

]
. Given

integer t, let m = kt and let Pm = Pm,M : Fmq → Fmq be the polarization transform given by
Pm = M⊗t.

4.2 Fast Decompressor
The decompressor below makes black-box use of the Fast-Decoder from [2, Algorithm 4].

The Fast-Decoder takes as input the description of a product distribution DZ on inputs
in Fmq , as well as the specified coordinates of the compression U . It is intended to decode
from the encoding U ′ ∈ {Fq ∪ {⊥}}m, where U := M⊗tZ, coordinates of Z are independent,
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Algorithm 4.2 Polar-Decompress.
Constants: M ∈ Fk×kq , m = kt, n = m2

Input: Markov Source H and U1
S1
, U2

S2
, . . . , UmSm

∈ Fmq
Output: Ẑ ∈ Fm×mq

1: procedure Polar-Decompress(H;U1
S1
, U2

S2
, . . . , UmSm

)
2: for all j ∈ [m] do
3: If j ≤ (1− ε)m then
4: Compute the distribution Dzj |ẑ<j ≡ Z

j |{Z<j = Ẑ<j}, using the Forward
Algorithm on Markov Source H.

5: Define U j ∈ {Fq ∪ {⊥}}m by extending U jSj
using ⊥ in the unspecified co-

ordinates.
6: Set Ẑj ← Fast-Decoder(Dzj |ẑ<j ;U j)
7: else
8: Set Ẑj ← (M−1)⊗tÛ jSj

. Note here Sj = [m]

9: Return Ẑ

and U ′ is defined by U on the high-entropy coordinates of U (and ⊥ otherwise). It outputs
an estimate Ẑ of the input Z.

Note that, for a Markov source H on ` states, Line 4 takes time Oq(m2`2) (time Oq(m`2)
per coordinate of Zj , using the Forward Algorithm). The Fast-Decoder call in Line 6 takes
time Oq(m logm). Thus, the total runtime is Oq(m3`2 +m2 logm) = Oq(n3/2`2 + n logn).

5 Analysis

The goal of this section is to prove that the decompressor works correctly, with high probablity,
provided the preprocessing stage returns the appropriate sets {Sj}. Specifically, we prove
Theorem 12 as stated below. But first we need a definition of “nice” sets {Sj}: We will
later show that pre-processing produces such sets and compression and decompression work
correctly (w.h.p.) given nice sets.

I Definition 11 ((ε, ζ)-niceness). Let H be a Markov source. For every m ∈ N and n = m2,
let Z ∼ H⊗mm be the corresponding “independent” distribution. Let U := P column

m (Z).
We call sets S1, S2, . . . Sm ⊆ [m] “(ε, ζ)-nice” if they satisfy the following:

1.
∑
j |Sj | ≤ H(Z) + εn

2. ∀j ∈ [m], i 6∈ Sj : H(U (i,j)|U≺(i,j)) < ζ

Now, the rest of this section will show the following.

I Theorem 12. There exists a polynomial p(·) such that for every ε > 0, τ > 0, and
n = m2 > p(τ/ε) the following holds:

Let H be an aperiodic irreducible Markov source with alphabet Fq, mixing time τ and
underlying state space [`]. Define random variables Z = (Z11, Z12 . . . Zmm) ∼ Hm2 as
generated by H. Then, for all sets S1, S2, . . . Sm ⊆ [m] that are (ε, ζ)-nice as per Definition 11,
we have:

Pr
Z

[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z] ≤ nζ +m exp(−εm/τ)
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5.1 Proof Overview
Throughout this section, let H be a stationary Markov source with alphabet Fq and mixing-
time τ . The key part of the analysis is showing that compression and decompression succeed
when applied to the “independent” distribution Z ∼ H⊗mm . To do this, we first show that
the compression transform “polarizes” entropies, which follows directly from the results of
[2, 3]. Then we show that, provided “nice” sets can be computed (low-entropy sets, a la
Definition 11), the compression and decompression succeed with high probability. This also
follows essentially in a black-box fashion from the results of [2]. Finally, we argue that the
compression and decompression also work for the actual distribution Z ∼ Hm2 , simply by
observing that the involved variables are close in distribution.

We later describe how such “nice” sets can be computed in polynomial time, given the
description of the Markov source H.

5.2 Polarization
In this section, we show that the compression transform P column

m polarizes entropies.

I Lemma 13. Let H be a Markov source, and let Z ∼ H⊗mm . Let U = P column
m (Z).

Then, there exists a polynomial p(·) such that for every ε > 0, there exists β > 0 such
that if m > p(1/ε), the following holds: For all but ε-fraction of indices i, j ∈ [m]× [m], the
normalized entropy

H(U i,j |U≺(i,j)) 6∈ (exp(−mβ), 1− ε)

Proof. We will show that for each column U
j , all but ε-fraction of indices i ∈ [m] have

entropies

H(U ji |U
j

<i, U
<j) 6∈ (exp(−mβ), 1− ε)

Indeed, this follows directly from the analysis in [3]. For each j, the set of variables
(Zj1, Z

<j

1 ), (Zj2, Z
<j

2 ), . . . , (Zjm, Z
<j

m ) are independent and identically distributed. Thus, The-
orem 14 from [3] (reproduced below) implies that the conditional entropies are polarized. Spe-
cifically, let p(·) and β be as guaranteed by Theorem 14, for the distribution D) ≡ (Zj1, Z

<j

1 ).
Then, since Pm = M⊗t, we have

H(U ji |U
j

<i, U
<j) = H(U ji |U

j

<i, Pm(Z<j)) (by definition)

= H(U ji |U
j

<i, Z
<j) (Pm is invertible)

6∈ (exp(−mβ), 1− ε) (Theorem 14)

J

The following theorem is direct from the works [3].

I Theorem 14. For every k ∈ N, prime q, mixing-matrix M ∈ Fk×kq , discrete set Y,
and any distribution D ∈ ∆(Fq × Y), the following holds. Define the random vectors
A := (A1, A2, . . . An) and B := (B1, B2, . . . Bn) where n = kt and each component (Ai, Bi)
is independent and identically distributed (Ai, Bi) ∼ D.

Let X := M⊗tA. Then, the conditional entropies of X are polarized: There exists a
polynomial p(·) and β > 0 such that for every ε > 0, if n = kt > p(1/ε), then all but
ε-fraction of indices i ∈ [n] have normalized entropy

H(Xi|X<i, B) 6∈ (exp(−nβ), 1− ε) .
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5.3 Independent Analysis
Now we bound the failure probability of the Polar Compressor and Decompresser, when
applied to the “independent” input distribution Z.

I Claim 15. Let Z ∼ H⊗mm and U := P column
m (Z). Then, for all sets S1, S2, . . . Sm ⊆ [m],

Pr
U←P column

m (Z)
[Polar-Decompress(U1

S1
, U2

S2
, . . . , UmSm

) 6= U ] ≤
∑

j∈[m],i6∈Sj

H(U ji |U
j

<i, U
<j)

Proof. Appears in the full version of this paper. J

5.4 Proof of Main Theorem
At this point, we can show the entire process of compression and decompression succeeds
with high probability, proving Theorem 12.

First, we argue Hm2 and H⊗mm are close in the appropriate sense.

I Lemma 16. Let Z ∼ Hm2 and Z ∼ H⊗mm . Then, for every ` ∈ [m], the distribution of
Z<m−` and Z<m−` are m · exp(−`/τ)-close in L1.

Proof. We proceed by a sequence of m hybrids, changing one row at a time to being
independent. Let the i-th hybrid be Hi := Z<m−`≤i ◦ Z<m−`>i , that is, the first i rows of Z,
with the remaining rows replaced by iid copies of Z1.

Consider moving from Hi+1 to Hi. Conditioned on the first i rows of Z<m−`, the
distribution of the hidden state of the Markov source, at the beginning of the (i+ 1)th row,
is exp(−`/τ)-close to its stationary distribution π (since ` steps pass between Zi,m−` and
Zi+1,1). Recall that the distribution of Z1 is generated by the Markov source starting from
π. Thus, the distribution of the (i+ 1)th row of Z, conditioned on the first i rows of Z<m−`,
is exp(−`/τ)-close to the distribution of Z1. So, |Hi+1 −Hi|1 ≤ exp(−`/τ). Since we pass
through m hybrids, the total L1 distance is at most m · exp(−`/τ). J

Proof of Theorem 12. First, we show the corresponding claim about the “independent”
distribution Z ∼ H⊗mm :

I Claim 17. For Z ∼ H⊗mm , we have:

Pr
U←P column

m (Z)
[Polar-Decompress(U1

S1
, U

1
S2
, . . . U

m

Sm
) 6= Z] ≤ nζ

or equivalently,

Pr
Z∼H⊗m

m

[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z] ≤ nζ

Proof. By Claim 15, we have

Pr
U←P column

m (Z)
[Polar-Decompress(U1

S1 , U
1
S2 , . . . U

m
Sm

) 6= Z] ≤
∑

j∈[m],i 6∈Sj

H(U ji |U
j
<i, U

<j)

≤ nζ (by (ε, ζ)-niceness) J

Continuing the proof of Theorem 12, notice that the composition of Polar-Compress
and Polar-Decompress always operate as the identity transform on the inputs Zj for
j > (1−ε)m. Thus, it suffices to consider the behavior of this composition on inputs Z≤(1−ε)m.
In this case, Lemma 16 guarantees that the distributions of Z≤(1−ε)m and Z≤(1−ε)m are
close in L1, and thus we may conclude by Claim 17:
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Pr
Z∼H

m2
[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z]

≤ Pr
Z∼H⊗m

m

[Polar-Decompress(Polar-Compress(Z; {Sj}j∈[m])) 6= Z] +m exp(−εm/τ)

(Lemma 16)
≤ nζ +m exp(−εm/τ) (Claim 17) J

6 Preprocessing

In this section, we describe a pre-processing algorithm to find the (ε, ζ)-nice sets, as defined
in Definition 11, that are required by the compression and decompression algorithms. Recall
the notion of a mixing matrix (Definition 8). The following theorem shows that for every
prime alphabet Fq and mixing matrix M ∈ Fk×kq , there is an efficient algorithm that can
find nice sets in polynomial time. Specifically, we prove the following theorem.

I Theorem 18. For every prime q and mixing-matrix M ∈ Fk×kq , there exists a polynomial
p(·) and a polynomial time preprocessing algorithm Polar-Preprocess (Algorithm 6.3),
such that for every ε > 0 and m > p(1/ε), the following holds:

Let H be a Markov source with mixing-time τ , alphabet Fq, and underlying state space
[`]. Let Z ∼ H⊗mm for m = kt, and U := P column

m (Z).
Let

S1, S2, . . . Sm ← Polar-Preprocess(q, k, t,M,H)

Then, except with probability exp(−Ω(m)) over the randomness of the algorithm, the
output sets S1, S2, . . . Sm ⊆ [m] are (ε, ζ = O( 1

n3 ))-nice for H. Further, the algorithm runs
in time polyq(m, `, 1/ε).

Our main goal will be to estimate the conditional entropies

H(U (i,j)|U≺(i,j)) = H(U i,j |U<i,j , U
<j) = H(U i,j |U<i,j , Z

<j)

for Z ∼ H⊗mm and U := P column
m (Z). Then, we will construct the “nice” sets by defining, for

each j, Sj as the set of indices with high entropy: Sj := {i ∈ [m] : H(U i,j |U<i,j , Z
<j) > 1

n3 }.
By Polarization (Lemma 13), these sets have size at most

∑
j |Sj | ≤ H(Z) + εn, since they

must have conditional entropies close to 1 (except possibly for some ε fraction of indices
(i, j) ∈ [m]× [m]).

We will estimate conditional entropies H(U i,j |U<i,j , Z
<j) by approximately tracking

the distribution of variables as we apply successive tensor-powers of M . Since we are only
interested in conditional entropies, it is sufficient to “quantize” the true distribution of,
for example Ui|U<i, into an approximation Ui|A, such that H(Ui|U<i) ≈ H(Ui|A). This
algorithm follows the same high-level strategy of [5], of approximating the conditional
distributions via quantized bins. It turns out that this strategy can be implemented for
Markov sources, using the fact that Markov sources are constructive. We define our notions
of approximation, and formalize this strategy below.

6.1 Notation and Preliminaries
I Definition 19 (Associated Conditional Distribution). Let X be a random variable taking
values in universe U , and letW be an arbitrary random variable. Let DX|w ∈ ∆(U) denote the
conditional distribution of X|{W = w}. Let DX|W ∈ ∆(∆(U)) be the distribution over DX|w
defined by sampling w ∼W . We call DX|W the associated conditional distribution to X|W .
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As above, we use boldface D to denote objects of type ∆(∆(U)). Note that we can operate
on conditional distributions as we would on their underlying random variables. For example,
for random variables (A1,W ) and (A2, Y ) such that A1, A2 ∈ Fq and (A1,W ) is independent
from (A2, Y ), the associated conditional distribution of A1 +A2|Y,W can be computed from
the associated conditional distributions of A1|Y and A2|W . To more easily describe such
operations on conditional distributions (which may not always arise from underlying random
variables), we define the implicit random variables associated to a conditional distribution:

I Definition 20 (Implicit Random Variables Associated to Conditional Distribution). For every
DX|W ∈ ∆(∆(U)), define implicit random variables X,W associated to DX|W as random
variables (X,W ) such that the associated conditional distribution to X|W is exactly DX|W .
Note that there is not a unique choice of such random variables.

Using this, we can naturally define (for example) DA1+A2|W,Y and DA2|W,Y,A1+A2 from any
DA1,W ,DA2,Y ∈ ∆(∆(Fq)). Note that we will always be performing such operations assuming
independence of the involved implicit random variables, ie (A1,W ) and (A2, Y ).

I Definition 21 (Conditional Distance). Let (X,W ) and (Y, Z) be two joint distributions,
such that X and Y take values in the same universe U . Let DX|W and DY |Z be the associated
distributions in ∆(∆(U)). Then, define the conditional distance

dC(DX|W ,DY |Z) := min
(A,B):a distribution in ∆(∆(U)×∆(U))
s.t. marginals of A match DX|W , and

marginals of B match DY |Z

E
(DA,DB)∼(A,B)

[||DA −DB ||1]

Note that dC can be equivalently defined as an optimal transportation cost between
two distributions in ∆(∆(U)), where the cost of moving a unit of mass between points
Di, Dj ∈ ∆(U) is ||Di −Dj ||1.

This metric behaves naturally under post-processing:

I Claim 22. For all DX|W ,DX′|W ′ ∈ ∆(∆(U)), and any f : U → V ,

dC(Df(X)|W ,Df(X′)|W ′) ≤ dC(DX|W ,DX′|W ′)

For computational purposes, we represent the space of distributions using ε-nets:

I Definition 23 (ε-nets). For every set U and any ε > 0, let Tε(U) ⊆ ∆(U) be an ε-net of
∆(U) with respect to L1. That is, for every D ∈ ∆(U), there exists D̂ ∈ Tε(U) such that
||D − D̂||1 ≤ ε.

Note that for |U | = |Fq| = q, Tε(U) can be chosen such that |Tε(U)| ≤
( q

ε +q
q

)
≤ ( 2q

ε )q =
polyq(1/ε).

Moreover, ∆(Tε(U)) is an ε-net of ∆(∆(U)) under the dC-metric.

6.2 Conditional Distribution Approximation
The below procedure takes as input a conditional distribution DZ|W ∈ ∆(∆(Fq)), and
computes an approximation to the conditional distribution of UI |(U≺I ,W1, . . .Wkt), for an
index I ∈ [k]t, where U := M⊗tZ and {(Zi,Wi)}i∈[kt] are independently defined by DZ|W .

Note that if the input DZ|W is specified in an ε-net ∆(Tε(Fq)), then the above procedure
runs in time polyq(m, 1/ε) for m = kt.
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Algorithm 6.1 Conditional Distribution Approximation.
Input: Conditional distribution on inputs DZ|W ∈ ∆(∆(Fq)), ε > 0, t ∈ N, index I ∈ [k]t,

and M ∈ Fk×kq

Output: Conditional distribution D̃U |W ∈ ∆(∆(Fq)), an approximation to
UI |(U≺I ,W1, . . .Wkt) for U := M⊗tZ and {(Zi,Wi)}i∈[kt] independently defined
by DZ|W .

1: procedure ApproxDist(DZ|W , ε, t, I = (I1, . . . , It),M)
2: If t = 0 then
3: Return DZ|W
4: else
5: D̂Z|Y ← ApproxDist(DZ|W , ε/(2k), t− 1, I<t = (I1, . . . , It−1),M)
6: j ← It.
7: Explicitly compute the following conditional distribution D̂Uj |U<j ,Y1,...Yk

∈
∆(∆(Fq)):

8: Let (Z, Y ) be the implicit random variables associated to D̂Z|Y .
9: Let {(Zi, Yi)}i∈[k] be independent random variables distributed identically to

(Z, Y ).
10: Define random vector U := M · Z ′, Where Z ′ = (Z1, . . . Zk).
11: Let D̂Uj |U<j ,Y1,...Yk

be the associated conditional distribution to
Uj |U<j , Y1, . . . Yk.

12: Round D̂Uj |U<j ,Y1,...Yk
to D̃U |Y ∈ ∆(Tε/2(Fq)), a point in the ε/2-net of ∆(∆(Fq))

under dC .
13: Return D̃U |Y .

I Lemma 24. For all DZ|W ∈ ∆(∆(U)), ε > 0, t ∈ N,M ∈ Fk×kq , and I ∈ [k]t, we have

dC(ApproxDist(DZ|W , ε, t, I,M) , DUI |U≺I ,W1,...Wkt ) ≤ ε

where DUI |U≺I ,W1,...Wkt is the associated conditional distribution to the random variables
defined as follows. Let (Z,W ) be the implicit random variables associated to DZ|W . Let
{(Zi,Wi)}i∈[kt] be independent random variables distributed identically to (Z,W ). Finally,
define random vector U := M⊗t · Z ′, where Z ′ = (Z1, . . . Zkt).

Proof. Appears in the full version of this paper. J

6.3 Approximating Conditional Entropies
Here we use Algorithm 6.1 directly to approximate conditional entropies:

I Theorem 25. For every field Fq, conditional distribution DZ|W ∈ ∆(∆(Fq)), matrix
M ∈ Fk×k, t ∈ N,m = kt, and γ > 0, consider the random variable U := M⊗tZ where each
{(Zi,Wi)}i∈[m] is sampled independently from DZ,W .

Then, Algorithm 6.2 outputs ĥ1, . . . ĥm ← ApproxEntropy(DZ|W , γ, t,M) such that

∀i ∈ [m] : ĥi = H(Ui|U<i,W1, . . . ,Wm)± γ

Further, if the input DZ|W is specified in an ε-net ∆(Tε(Fq)), then the above procedure
runs in time polyq(m, 1/ε, 1/γ).
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Algorithm 6.2 Entropy Approximation.
Input: γ > 0, t ∈ N, Conditional distribution DZ|W ∈ ∆(∆(Fq)), and M ∈ Fk×kq

Output: {ĥi ∈ R}i∈[kt]
1: procedure ApproxEntropy(DZ|W , γ, t,M)
2: m← kt

3: ε← γ2

16 log(q)
4: for all I ∈ [k]t do
5: DU |Y ← ApproxDist(DZ|W , ε, t, I,M)
6: ĥI ← H(U |Y ), the conditional entropy of the implicit random variables (U, Y )

associated to DU |Y .
7: Return {ĥi}i∈[kt] . Abusing notation by identifying [k]t with [kt].

Algorithm 6.3 Polar-Preprocess.
Input: q, k, t ∈ N with q prime, M ∈ Fk×kq , and Markov source H . m = kt, n = m2

Output: Sets S1, S2, . . . Sm ⊆ [m]
1: procedure Polar-Preprocess(q, k, t,M,H)
2: m← kt; γ ← 1

n10 ; N ← |Tγ(Fq)|; R← n(N/γ)2 . N ≤ polyq(1/γ)
3: for all j ∈ [m] do
4: for all i = 1, 2, . . . , R do
5: Sample a sequence wi := (y1, y2, . . . yj−1) from H.
6: Compute Dwi

∈ ∆(Fq), the distribution of Yj |Y<j = wi, using the Forward
Algorithm A.1 for H.

7: Let D̃Y |W ∈ ∆(∆(Fq)) be the empirical distribution of Dw, from the samples Dwi

above.
8: {ĥ1, . . . ĥm} ← ApproxEntropy(D̃Y |W , γ = 1

n4 , t,M)
9: Sj ← {i ∈ [m] : ĥi > 1

n3 }
10: Return S1, S2, . . . Sj .

Proof of Theorem 25. Correctness of Algorithm 6.2 follows from the fact that O( γ2

log(q) )-
closeness in the dC-metric implies γ-closeness of conditional entropies. Thus, using Al-
gorithm 6.1 to approximate the conditional distributions within O( γ2

log(q) ) is sufficient. See
the full version of this paper for details. J

6.4 Nice Subset Selection

Now we can describe how to find “nice” sets. We first approximate the conditional distribution
DZt|Z<t

∈ ∆(∆(Fq)) for Z1, . . . Zt ∼ Ht, by sampling. This crucially relies on the fact that
H is a constructive source (ie, using the Forward Algorithm). Then we use Algorithm 6.2 to
estimate conditional entropies, and select high-entropy indices.

The correctness of this algorithm (proof of Theorem 18) appears in the full version of
this paper.
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7 Proofs of Theorems 9 and 10

Combining Theorem 18 (to compute nice sets) with Theorem 12 (compressing and decom-
pressing assuming nice sets), Theorem 9 follows immediately.

Proof of Theorem 9. The algorithms claimed are Algorithm 6.3 for preprocessing, Al-
gorithm 4.1 for compressing and Algorithm 4.2 for decompression. Theorem 18 asserts that
Algorithm 6.3 returns a nice sequence of sets S1, . . . , Sm with all but exponentially small prob-
ability in n. And Theorem 12 asserts that if S1, . . . , Sm are nice then Algorithm 4.1 and 4.2
compress and decompress correctly with high probability over the output of the Markovian
source. This yields the theorem. J

Finally we show how Theorem 10 follows from Theorem 9.

Proof of Thereom 10. Let H ∈ Fs×nq be the matrix specifying the (linear) compression
scheme given by the Preprocessing Algorithm in Theorem 9, when applied to Markov source
H. The code C for the additive Markov Channel CH is simply specified by the nullspace of
H, ie encoding is given by C(x) := Nx where N ∈ Fn×n−sq spans Null(A).

Note that due to the structure of H, a nullspace matrix N can be applied in Oq(n logn)
time. In particular, H is a subset of rows of the block-diagonal matrix P ∈ Fn×nq , where
each

√
n×
√
n block is the tensor-power M⊗t. Thus, P−1 is also block-diagonal with blocks

(M−1)⊗t, and so can be applied in time Oq(n logn). The matrix N can be chosen as just a
subset of columns of P−1, and hence can also be applied in time Oq(n logn).

Let y1, y2, . . . yn ∈ Fq be distributed according to H, and y := (y1, . . . yn) ∈ Fnq . To decode
from z = Nx + y, the decoder first applies H (by running the compression algorithm of
Theorem 9), to compute Hz = HNx+Hy = Hy. Then, the decoder runs the decompression
algorithm of Theorem 9 on Hy to determine y. Finally, the decoder can compute y − z to
find the codeword sent (Nx), and thus determine x. (Again using the structure of P , as
above, to determine x from Nx in Oq(n logn) time). J
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A Forward Algorithm

Algorithm A.1 Forward Algorithm.
Input: n ∈ N. Markov source H with state-space [`], alphabet Σ, stationary distribution

π ∈ ∆([`]), transition matrix Π ∈ R`×`, and output distributions {Si ∈ ∆(Σ)}i∈[`]. And
y = (y1, y2, . . . yn−1) for yi ∈ Σ.

Output: Distribution Yn ∈ ∆(Σ)
1: procedure ForwardInfer(H = (`,Σ, π,Π, {Si}), n, y)
2: s0 ← π.
3: for all t = 1, 2, . . . n− 1 do
4: Define st ∈ ∆([`]) by st(i)← (Πst−1)i·Si(yt)∑

j∈[`]
(Πst−1)j ·Sj(yt)

. Treating st−1 as a vector in

the probability simplex embedded in R`

5: sn ← Πsn−1.
6: Return The distribution Yn := Ei∼sn

[Si].

I Claim 26. For every Markov source H = (`,Σ, π,Π, {Si}), let random variables Y1, . . . Yn ∼
Hn. For every setting y = (y1, y2, . . . yn−1) for yi ∈ Σ, let DYn|Y<n=y denote the distribution
of Yn conditioned on Y<n = y. Then,

ForwardInfer(H, n, y) ≡ DYn|Y<n=y

This follows inductively, from the fact that st as maintained by the algorithm is exactly
the distribution of St|{Y≤t = y≤t}, where St is the hidden state of H after t steps.

B Connection to Learning Parity with Noise

The problem of learning parity with noise (LPN) is the following. Fix an (unknown) string
a ∈ F`2 and η > 0 and let Da,η be the distribution on F`+1

2 whose samples (x, y) are generated
as follows: Draw x ∈ F`2 uniformly and let z ∈ Bern(η) be drawn independent of x and let
y = 〈a, x〉 + z where 〈a, x〉 =

∑`
i=1 aixi. Given samples (x1, y1), . . . , (xm, ym) drawn i.i.d.

from such a distribution, the LPN problem is the task of “learning” a.

http://dx.doi.org/10.1109/TIT.2010.2080990
http://dx.doi.org/10.1109/ISIT.2011.6033724
http://arxiv.org/abs/1404.3001
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It is well known that a is uniquely determined by O(`) samples (i.e., m = O(`)) where
the constant in the O(·) depends on η < 1/2. However no polynomial time algorithms are
known that work with m = poly(`) and determine a for any η > 0 and indeed this is believed
to be a hard task in learning. We refer to this hardness assumption as the LPN hypothesis.

The connection to learning Markovian sources comes from the fact that samples from
the distribution Da,η can be generated by an O(`)-state Markov chain. (Briefly the states
are indexed (i, b, c) indicating

∑i−1
j=1 ajxj = b and xi = c. For i < ` the state (i, b, c) outputs

c and transtions to (i+ 1, b+ c, 0) w.p. 1/2 and to (i+ 1, b+ c, 1) w.p. 1/2. When i = `,
the state (i, b, c) outputs (c, b + c) w.p. 1 − η and (c, b + c + 1) w.p. η and transitions to
(1, 0, 0) w.p. 1/2 and to (1, 0, 1) w.p. 1/2.) The entropy of this source is (`+H(η))/(`+ 1).
A compression with ε = (1−H(η))/(2(`+ 1)) with poly(`/ε) samples from the source would
distinguish this source from purely random strings which in turn enables recovery of a,
contradicting the LPN hypothesis.

We thus conclude that compressing an unknown Markov source with number of samples
that is a polynomial in the mixing time and the inverse of the gap to capacity contradicts
the LPN hypothesis.
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Abstract
Key-agreement protocols whose security is proven in the random oracle model are an important
alternative to protocols based on public-key cryptography. In the random oracle model, the
parties and the eavesdropper have access to a shared random function (an “oracle”), but the
parties are limited in the number of queries they can make to the oracle. The random oracle
serves as an abstraction for black-box access to a symmetric cryptographic primitive, such as
a collision resistant hash. Unfortunately, as shown by Impagliazzo and Rudich [STOC ’89] and
Barak and Mahmoody [Crypto ’09], such protocols can only guarantee limited secrecy: the key of
any `-query protocol can be revealed by an O(`2)-query adversary. This quadratic gap between
the query complexity of the honest parties and the eavesdropper matches the gap obtained by
the Merkle’s Puzzles protocol of Merkle [CACM ’78].

In this work we tackle a new aspect of key-agreement protocols in the random oracle model:
their communication complexity. In Merkle’s Puzzles, to obtain secrecy against an eavesdropper
that makes roughly `2 queries, the honest parties need to exchange Ω(`) bits. We show that for
protocols with certain natural properties, ones that Merkle’s Puzzle has, such high communication
is unavoidable. Specifically, this is the case if the honest parties’ queries are uniformly random, or
alternatively if the protocol uses non-adaptive queries and has only two rounds. Our proof for the
first setting uses a novel reduction from the set-disjointness problem in two-party communication
complexity. For the second setting we prove the lower bound directly, using information-theoretic
arguments.

Understanding the communication complexity of protocols whose security is proven (in the
random-oracle model) is an important question in the study of practical protocols. Our results
and proof techniques are a first step in this direction.
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1 Introduction

In a key-agreement protocol [5], two parties communicating over an insecure channel want to
securely agree on a shared secret key, such that an eavesdropper observing their communication
cannot find the key. For example, given a hash function h : [n]→ [N ] that is hard to invert,
the players can execute the following protocol, called Merkle’s puzzles [13]: we fix an arbitrary
parameter ` ≈

√
n, and the parties select uniformly random subsets A = {a1, . . . , a`} , B =

{b1, . . . , b`} ⊆ [n] (respectively) of size `. We choose `, n such that with constant probability
there is a unique intersection, |A ∩ B| = 1. The first party evaluates h on every element
a ∈ A, and sends h(a1), . . . , h(a`) to the second party, which then looks for a unique element
b ∈ B such that h(b) = h(ai) for some i ∈ [`]. If found, the second party sends the index i
to the first party and outputs b as the secret key; the second party outputs ai as the secret
key. Because h is a “good” hash function and h(b) = h(ai), it is likely that b = ai, so the
players output the same key. Moreover, since h is hard to invert, an eavesdropper that tries
to find the secret key after seeing h(a1), . . . , h(a`), i must essentially compute h on the entire
universe in order to invert h and find ai. Thus, we have a quadratic gap between the work
performed by the eavesdropper, which must compute Ω(`2) hashes, and the work performed
by the parties, which compute ` hashes each.

Ideally we would strive for an exponential gap between the work required to break the
security of the protocol and the work of the honest parties. There are numerous candidate
constructions of such key-agreement schemes, e.g., [17, 14, 1, 12], based on assumptions
implying that public-key encryption schemes exist. A fundamental open question is whether
we can design key-agreement protocols based on the security of symmetric primitives (e.g.,
collision resistant hash); the security of such primitives is believed to be more robust than
public-key encryption. A very important step in this direction was made by Barak and
Mahmoody[2] (following Impagliazzo and Rudich[10]): they showed that as long as the
symmetric primitive is used as a black box, the quadratic gap achieved by Merkle’s puzzles
is the best possible.

The notion of “black box” is formalized by the random oracle model: instead of a concrete
hash function h, we assume that the parties have access to a random oracle F : [n]→ [n], a
perfectly random function. The random oracle is “the best hash function possible” (w.h.p.),
so lower bounds proven in the random oracle model hold for any instantiation where the
oracle is replaced by a one-way function. Thus, the lower bound of Barak and Mahmoody
rules out any black-box key-agreement scheme from one-way functions that achieves a better
than quadratic gap between the eavesdropper’s work and the honest parties.
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While a quadratic gap between the `-query honest parties and the `2-query eavesdropper
might not seem like much, and ideally we would wish for an exponential gap, on modern
architecture it can yield a good enough advantage, assuming that security is preserved when
the random oracle is replaced with a fixed hash function. For example, a consumer-level
CPU (Intel Core i5-6600) can compute 5 million SHA-256 hashes per second, and specialized
hardware for SHA-256 computation (for example, AntMiner S9) can compute 14 × 1012

hashes per second [3]. It follows that if the honest parties spend one second of computation
on standard CPU, an attacker with specialized hardware can violate the security of Merkle’s
puzzles in less than a second. However, if the parties spend one second on specialized
hardware, an attacker with specialized hardware has to spend more than 200, 000 years to
break the scheme.

So, are Merkle’s puzzles a practical and realistic key-agreement scheme? The answer is
probably not: even setting aside the question of replacing the random oracle by a concrete
hash function, in Merkle’s puzzles, the honest parties send each other Ω̃(`) bits to obtain
security against an eavesdropper that makes roughly `2 queries. In our example above, if
we instantiate Merkle’s puzzles using SHA-256 for one second on specialized hardware, the
first party would need to send more than 100 terabytes to the second party. A fundamental
question is whether this high communication burden is inherent to secure key-agreement,
and more generally, what is the communication cost of cryptographic protocols in the
random oracle model and other oracle models. In this paper we initiate the study of the
communication complexity of cryptographic protocols in the random-oracle model.

1.1 Our Results
We show that for random-oracle protocols with certain natural properties, the high commu-
nication incurred by Merkle’s puzzles is unavoidable: in order to achieve security against an
adversary that can ask Θ(`2) queries, the two parties must exchange Ω(`) bits of communica-
tion. Specifically, we show that the bound above holds for protocols where the parties’ queries
are a uniformly random set, and also for two-round protocols that make non-adaptive (but
arbitrary) queries.6 We stress that a general lower bound for non-adaptive key-agreement
protocols would imply a lower bound on the communication complexity of the set-intersection
problem. This fact suggests that it is unlikely to find a simple proof for the general case.

To simplify the statements of our results, we focus here on key-agreement protocols whose
agreement parameter, the probability that the players output the same key, is larger by some
constant than their secrecy parameter, the probability that an eavesdropper can find the key.

Uniform-query protocols.

We say that a random-oracle protocol makes uniform queries if each party’s oracle queries
are a uniformly random set. We give the following lower bound on the communication
complexity of such protocols.

I Theorem 1 (lower bound on uniform-queries protocols, informal). Any `-uniform-query
key-agreement protocol achieving non-trivial secrecy against o(`2)-query adversaries has
communication complexity Ω(`).

This theorem is proved by a reduction from set-disjointness, a problem in communication
complexity that is known to require high communication.

6 These are both properties of Merkle’s puzzles.
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Two-round non-adaptive protocols.

An oracle protocol is said to make non-adaptive queries if the distribution of queries made
by the players is fixed in advance, i.e., it is determined before the parties communicate with
each other and does not depend on the oracle’s answers. We give the following lower bound
on the communication complexity of such protocols.

I Theorem 2 (lower bound on two-message non-adaptive protocols, informal). Any two-message
`-query non-adaptive key-agreement protocol of non-trivial secrecy against q-query adversaries
has communication complexity Ω(q/`).

Once again this lower bound is nearly-tight with Merkle’s puzzles, where q = Θ(`2), and the
communication cost is Θ̃(`).7

Following Barak and Mahmoody [2] and Impagliazzo and Rudich [10]), we prove this
lower bound by presenting an eavesdropper that makes q queries and prevents the parties
from exploiting the advantage they gain by their joint random oracle calls.

In [2], the communication cost of the protocol is not taken into account: their eavesdropper
makes O(`2) queries and has high probability of finding all intersection queries (i.e., all
queries that were asked by both players). In our case, if the protocol has communication cost
C, then to prove Theorem 2, our eavesdropper must make only O(C · `) queries (to show
the trade-off that C = Ω(q/`)). If C � `, our eavesdropper makes much fewer queries than
the eavesdropper in [2, 10], and in particular it cannot discover all the intersection queries.
Instead, our eavesdropper asks only queries that the players were able to learn are in their
intersection. If a query is in the intersection, but the players have not communicated this
fact to each other, then the eavesdropper will not necessarily ask this query (unlike [2, 10]).
Finding the correct definition for what it means to “learn” that a given query is in the
intersection, and constructing an eavesdropper that makes only O(C · `) queries, are the
main difficulty in our proof.

1.2 Related Work

Impagliazzo and Rudich [10] showed that the key of any `-query key-agreement protocol
in the random-oracle model can be revealed by an Õ(`6) query eavesdropper. Barak and
Mahmoody [2] improve this bound and present an O(`2) query eavesdropper for this task,
which shows that Merkle puzzles is optimal in this respect. Haitner, Omri, and Zarosim [9]
used the machinery of [2] to relate the security of protocols that do not use a random oracle
and solve tasks with no input, to the security of no-input protocols in the random-oracle
model against an O(`2)-query adversary. Finding limitations on the usefulness of random
oracles for protocols that do take input seems to be a more difficult question. Chor and
Kushilevitz [4] and Mahmoody et al. [11] made some progress in this direction. Finally,
Haitner, Hoch, Reingold, and Segev [7] gave lower bounds on the communication complexity
of statistically hiding commitments and single-server private information retrieval in a weaker
oracle model that captures the hardness of one-way functions/permutation more closely than
the random-oracle model.

7 This theorem is also nearly-tight for any q, with a version of Merkle’s puzzle, in which Alice is sending
Θ(q/l) answers, from a universe of size Θ(q).
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1.3 Organization

We begin by giving the formal definitions and notation used throughout the paper in Section
2. High-level overview of our proof techniques is given in Sections 3 and 4. For full proofs,
see the full version of this paper in [8].

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and lowercase for
values. For m ∈ N, let [m] = {1, . . . ,m}. For a random variable X, let x R← X to denote that
x is chosen according to X. Similarly, for a set S let s R←S to denote that s is chosen according
to the uniform distribution over S. The support of the distribution D, denoted Supp(D), is
defined as {u ∈ U : PrD [u] > 0}. The statistical distance between two distributions P and
Q over a finite set U , denoted SD(P,Q), is defined as 1

2
∑
u∈U |PrP [u]− PrQ [u] |, which is

equal to maxS⊂U (PrP [S]− PrQ [S]).
For a vector ~X = X1, ..., Xn and an index i ∈ [n], let X<i denote the vector X1, ..., Xi−1

and X≤i denote the vector X1, ..., Xi. For a set of indexes T = {i1, . . . , ik} ⊆ [n] such that
i1 < i2 < · · · < ik, let XT denote the vector Xi1 , . . . , Xik . Similarly, XT,<i denotes the
vector XT∩{1,...,i−1}. For a function f , let f( ~X) = (f(X1), ..., f(Xn)).

For random variables A and B we use A|B=b to denote the distribution of A condition on
the event B = b, and A× B to denote the product between the marginal distributions of A
and B. When A is independent from B we write A⊥B to emphasize that this is the case.

2.2 Interactive Protocols

A two-party protocol Π = (A,B) is a pair of probabilistic interactive Turing machines. The
communication between the Turing machines A and B is carried out in rounds, where in
each round one of the parties is active and the other party is idle. In the j-th round of the
protocol, the currently active party P acts according to its partial view, writing some value
on its output tape, and then sending a message to the other party (i.e., writing the message
on the common tape). The communication transcript (henceforth, the transcript) of a given
execution of the protocol Π = (A,B), is the list of messages m exchanged between the parties
in an execution of the protocol, where m1,...,j denotes the first j messages in m. A view of a
party contains its input, its random tape and the messages exchanged by the parties during
the execution. Specifically, A’s view is a tuple vA = (iA, rA,m), where iA is A’s input, rA are
A’s random coins, and m is the transcript of the execution. Let outA denote the output of A
in the end of the protocol, and outB B’s output. Notice that given a protocol, the transcript
and the outputs are deterministic function of the joint view (iA, rA, iB, rB). For a joint view
v, let trans(v), outA(v) and outB(v) be the transcript of the protocol and the parties’ outputs
determined by v. For a distribution D we denote the distribution over the parties’ joint view
in a random execution of Π, with inputs drawn from D by Π(D).

A protocol Π has r rounds, if for every possible random tapes for the parties, the number
of rounds is exactly r. The Communication Complexity of a protocol Π, denoted as CC(Π)
is the length of the transcript of the protocol in the worst case.

ITCS 2019
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2.3 Oracle-Aided Protocols
An oracle-aided two-party protocol Π = (A,B) is a pair of interactive Turing machines, where
each party has an additional tape called the oracle tape; the Turing machine can make a
query to the oracle by writing a string q on its tape. It then receives a string ans (denoting
the answer for this query) on the oracle tape. An oracle-aided protocol is `-queries protocol
if each party makes at most ` queries during each run of the protocol. In a non-adaptive
oracle-aided protocol, the parties choose their queries before the protocol starts and before
querying the oracle. A uniform query oracle-aided protocol, is a non-adaptive protocol in
which the parties queries are chosen uniformly form a predetermined set.

2.4 Key-Agreement Protocols
Since we are giving lower bounds, we focus on single bit protocols.

I Definition 3 (key-agreement protocol). Let 0 ≤ γ, α ≤ 1 and q ∈ N . A two-party boolean
output protocol Π = (A,B) is a (q, α, γ)-key-agreement relative to a function family F , if the
following hold:
Accuracy: Π has (1− α)-accuracy. For every f ∈ F :

Pr
v

R←Πf

[
outA(v) = outB(v)

]
≥ 1− α.

Secrecy: Π has (q, γ)-secrecy. For every q-query oracle-aided algorithm E:

Pr
f

R←F,v R←Πf

[
Ef (trans(v)) = outA(v)

]
≤ γ.

If F is a trivial function family (e.g., F contains only the identity function), then all
correlation between the parties’ view is implied by the transcript. Hence, an adversary that
on a given transcript τ samples a random view for A that is consistent with τ , and outputs
whatever A would upon this view, agrees with B with the same probability as does A. This
simple argument yields the following fact:

For every 0 ≤ α ≤ 1 and 0 ≤ γ < 1− α, there exists no (q, α, γ)-key-agreement protocol
relative to the trivial family.

2.5 Entropy and Information
In the proof we often need to measure differences between various distributions. For this
purpose we use f-divergences: given a convex function f : R → R with f(1) = 0, and
distributions P,Q, the f -divergence of P from Q is defined as

Df (P ‖ Q) =
∑
q∈Q

Pr [Q = q] f
(

Pr [P = q]
Pr [Q = q]

)
.

Specifically, the two f -divergences we use in this paper are the statistical distance, obtained
by taking f(x) = |x− 1|/2, and the KL divergence, obtained by taking f(x) = x log x. Each
has its own nice properties and disadvantages: statistical distance is bounded in [0, 1] but it
is not additive, while KL divergence is additive but unbounded.

We frequently need to measure the “amount of dependence” between two random variables.
Let (X,Y) ∼ PX,Y be random variables jointly distributed according to PX,Y, and let PX, PY
be the marginal distribution of X and Y, respectively. Also, let PX × PY be the product
distribution where X and Y are sampled independently of each other, each from its marginal
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distribution PX, PY (respectively). To quantify the dependence between X and Y, we measure
the difference between their joint distribution and the product of the marginals: formally, we
define

If (X; Y) = Df (PX,Y ‖ PX × PY).

This generalizes the usual notion of mutual information, which is the special case of If where
we use KL divergence (i.e., when f = x log x). For clarity, when we use KL divergence we
omit the subscript f , and when using statistical distance, we use the notation ISD (instead
of If(x)=|x−1|/2).

Finally, we also need the notion of conditional mutual information, which is simply
the average mutual information between two variables X,Y, where the average is taken
over a third random variable Z. Formally, let (X,Y,Z) ∼ PX,Y,Z. For any value z, let
PX,Y|Z=z, PX|Z=z, PY|Z=z be the joint distribution of X,Y and the marginals of X and Y,
respectively, all conditioned on the event Z = z.
Then we define If (X; Y|Z) = Ez∼PZ

[
Df (PX,Y|Z=z ‖ PX|Z=z × PY|Z=z)

]
.

In the next sections we outline the strategy of the proofs.

3 Uniform-Query Protocols: Proof Outline

Our lower bound for uniform-query key-agreement protocols is proved via a reduction to set
disjointness, a classical problem in two-party communication complexity.

In the set disjointness problem, we have two players, Alice and Bob. The players receive
inputs X,Y ⊆ [n], respectively, of size |X| = |Y | = `, and the players must determine
whether X ∩ Y = ∅. To do this, the players communicate with each other, and the question
is how many bits they must exchange. It is known [16] that for any sufficiently large n ∈ N,
if the size of the sets is ` = n/4, then the players must exchange Ω(n) bits to solve set
disjointness, and this holds even for randomized protocols where the players have access to
shared randomness and only need to succeed with probability 2/3. Here, we require high
success probability on any input, not over some specific input distribution. We note that in
the 2-party communication complexity model there is no random oracle.

The connection between set disjointness and key agreement comes from the fact that
the only correlation between the parties’ views in a key agreement protocol comes from the
intersection queries, the queries that both players ask and Eve does not know. Indeed, if
Alice asks A ⊆ [n] and Bob asks B ⊆ [n], and the random oracle is F : [n] → [n], then
F (A \ (A∩B)) and F (B \ (A∩B)) are independent of each other. In particular, if A∩B = ∅,
then F (A) and F (B) are independent, and intuitively, in this case the players cannot securely
agree on a secret key, because they have no advantage over the eavesdropper. On the other
hand, if A ∩ B 6= ∅, then the players can exploit the correlation induced by F (A ∩ B) to
securely agree on a secret key. Thus, any secure key agreement protocol “behaves differently”
depending on whether A ∩ B = ∅ or not, and we can use this to solve the set disjointness
problem.

Suppose that we are given a secure key-agreement protocol Π, where the players make
` uniformly-random queries to an oracle F : [n] → [n]. For simplicity we assume that the
protocol has perfect agreement, that is, the players always output the same key, and that the
security parameter is 3/4, that is, an eavesdropper has probability at most 3/4 of outputting
the same key as the players. Our full proof does not make these assumptions.

Now, we want to construct from the key-agreement protocol Π, which uses a random
oracle, a protocol Π′ for set disjointness, without a random oracle (as usual in communication
complexity). To this end, we consider two possible ways of simulating Π without an oracle:

ITCS 2019



40:8 The Communication Complexity of Key-Agreement

ΛCom: the players use their shared randomness to simulate the oracle. They interpret the
shared randomness as a random function F : [n]→ [n], and whenever Π wants to query
some element q ∈ [n], the players use F(q) as the oracle’s answer.
ΛDist: the players use their private randomness to simulate the oracle. Alice and Bob
interpret their private randomness as random functions FA,FB : [n]→ [n], respectively.
Whenever Π indicates that Alice should query an element q ∈ [n], she uses FA(q) as the
answer, while Bob uses FB(q).

The first simulation, ΛCom, is “perfect”: it produces exactly the correct distribution of
transcripts and outputs under our key-agreement protocol Π. In particular, the keys produced
by the players in ΛCom always agree, and an eavesdropper that sees the transcript of ΛCom
(but not the shared randomness) can find the key with probability at most 3/4.

On the other hand, the second simulation ΛDist is “wrong”, because the players do not use
the same random function to simulate the random oracle. In fact, it is known that without
shared randomness, secure key agreement is impossible, as an eavesdropper that sees the
transcript can find the key with the same probability that the players have of agreeing with
each other. Therefore there are two possible cases:
Agreement gap: The probability that the players agree on the key in ΛDist is at most 7/8

(compared to one in ΛCom), or
Secrecy gap: There is an eavesdropper E that guesses Alice’s key in ΛDist with probability

at least 7/8 (compared to 3/4 in ΛCom).
(Instead of 7/8 we could have used here any constant probability in (3/4, 1), but in the full
proof this choice depends on the agreement and security parameters of Π.)

We divide into cases, depending on which of the two gaps we have.

Agreement gap

Assume that the players agree with probability at most 7/8 in ΛDist. For simplicity, let
us make the stronger assumption that for any intersection size c > 0, the probability of
agreement between the players is at most 7/8, even conditioned on the event that |A∩B| = c.
A general key-agreement protocol might not satisfy this assumption, which complicates the
full proof significantly; see the full version of this paper for the details.

So, we assumed that whenever the intersection is non-empty, the players agree with
probability at most 7/8. Observe, however, that when the intersection is empty (A∩B = ∅),
the distribution of transcript and outputs in ΛDist is the same as in Π: although each player
uses a different random function, they never ask the same query, so there is no inconsistency.
Therefore, conditioned on A∩B = ∅, in ΛDist the players have perfect agreement (as in Π). In
other words, ΛDist behaves very differently when A ∩B = ∅, in which case the players always
agree on the key, compared to the general case, where the players agree with probability at
most 7/8. We use this fact to check whether A ∩B = ∅. Thus, by checking whether or not
they got the same key in ΛDist, the players get an indication for whether or not A ∩B = ∅.

Our set disjointness protocol Π′ is defined as follows. Given inputsX,Y ⊆ [n], respectively,
the players simulate ΛDist several times. In each simulation, the players agree on a random
permutation σ : [n]→ [n] using their shared randomness, and then the players simulate ΛDist
using their permuted inputs as the query set; that is, Alice feeds A = σ(X) to ΛDist as her
query set, and Bob feeds B = σ(Y ) to ΛDist as his query set. Note that A,B are uniformly
random, subject to having an intersection of size |X ∩ Y |.

After each simulation of ΛDist, the players send each other the keys output under ΛDist,
and check if they got the same key. Finally, they output “X ∩ Y = ∅” iff they got the same
key in all the simulations of ΛDist.
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Since ΛDist has perfect agreement when there is no intersection, the players always succeed
when X∩Y = ∅. However, by assumption, whenever X∩Y 6= ∅, the probability of agreement
in ΛDist is at most 7/8, so if we repeat ΛDist sufficiently many times, the probability that all
instances output the same key will be at most 1/3.

Secrecy gap

In this case we convert ΛCom and ΛDist into a pair of protocols with an agreement gap, and
then proceed as above.

Consider the protocol Λ′Dist where the parties acts as in ΛDist, but at the end, Bob executes
the eavesdropper E on the transcript, and outputs the key that E outputs. Define Λ′Com
analogously.

By assumption, E guesses Alice’s output in ΛDist with probability at least 7/8, but in ΛCom
it succeeds with probability at most 3/4. Thus, in Λ′Dist the players agree with probability
at least 7/8, but in Λ′Com they agree with probability at most 3/4; there is a gap of at least
1/8 between the probability of agreement in the two protocols (although they have switched
roles and now Λ′Dist has the higher agreement probability). Note also that Λ′Dist does not
have agreement probability 1, as we assumed for simplicity above, but our full proof can
handle this case.

Formal statement

Here we give the formal statements that we prove for uniform-query protocols. Formally, our
reduction is to set-disjointness over the distribution below, which known to be hard for low
complexity protocols.

I Definition 4 (hard distribution for set-disjointness). For ` ∈ N, let
Q0
` = {X ,Y ⊂ [`] : |X | = |Y| = b`/4c , X ∩ Y = ∅} and let
Q1
` = {X ,Y ⊂ [`] : |X | = |Y| = b`/4c , |X ∩ Y| = 1}. Let D0

` and D1
` be the uniform distri-

bution over Q0
` and Q1

` respectively, and let D` = 3
4 ·D

0
` + 1

4 ·D
1
` .

Razborov [16] has shown that solving set-disjointness D` with small error require high
communication complexity.

I Theorem 5 (hardness of D`, [16]). Exists ε > 0 such that for every ` ∈ N and a protocol
Π that solves set-disjointness over D` with error ε, it holds that CC(Π) ≥ Ω(`).

For a finite set S, let FS =
{
f : S 7→ {0, 1}∗

}
be the family of all functions from S to

binary strings. Our reduction is stated in the following theorem.

I Theorem 6 (from uniform-query key-agreement protocols to set-disjointness). Assume exists
an `-uniform-query (0, α, γ)-key agreement protocol relative to FS , for some set S, of com-
munication complexity c. Then there exists a protocol for solving set-disjointness over D`

with ε error and communication complexity 215·`4·log 1/ε
|S|2(1−α−γ)4 · c.

Note that the above theorem holds also for protocols that are only secure against
eavesdropper without access to the oracle. Combining theorems 5 and 6 yields the following
bound on the communication complexity of uniform-query key-agreement protocols.

I Theorem 7 (Main result for uniform-inputs protocols). For any `-uniform-query (q, α, γ)-key
agreement protocol Π relative to FS , it holds that CC(Π) ∈ Ω((1− α− γ)4q2/`3).

ITCS 2019



40:10 The Communication Complexity of Key-Agreement

What about general protocols?

It was important for our reduction to assume that the key-agreement protocol makes
uniformly-random queries. Indeed, this reduction fails in the general case: consider the
protocol where Alice and Bob always query 1, and output F(1) as their secret key. This
protocol is completely insecure, since the eavesdropper can also query 1 and output F(1). But
our reduction would not work for it, because the input distribution where both players get
the set {1} is not hard for set disjointness (indeed it is trivial). We see that the “hardness” of
secure key-agreement is not necessarily that it is hard for the players to find their intersection
queries, but that the eavesdropper should not be able to predict the intersection queries that
the players use. Our second lower bound makes this intuition explicit and uses it to get a
lower bound on two-round protocols with arbitrary (but non-adaptive) query distributions.

4 Two-Message Non-Adaptive Protocols: Proof Outline

In this section we describe a lower bound on the communication cost of any key-agreement
protocol that makes non-adaptive queries and uses two rounds of communication: we show
that any such protocol that makes ` queries and is secure against an adversary that makes q
queries must send a total of Ω(q/`) bits. In particular, taking q = Θ(`2), this shows that
Merkle’s puzzles is optimal in its communication cost. Formally, we show the following
bound, where Fn is the family of all functions from {0, 1}n to {0, 1}n:

I Theorem 8 (Main theorem for two-message, non-adaptive protocols). For any n ∈ N, the
communication complexity of a two-message, non-adaptive, `-query (q, α, γ)-key-agreement
protocol relative to Fn is at least

(1− α− γ)2q

502`
− 6.

In this proof, we once again relate the parties’ advantage over the eavesdropper to the
information they gained about the intersection of their query sets. We show that to produce
a shared key, the parties need to learn a lot of information about this intersection. Moreover,
the query sets and their intersection need to be “unpredictable” (have high min-entropy)
given the transcript, otherwise an eavesdropper could make the same queries and output the
same key.

4.1 Some examples
Let us illustrate the ideas behind the lower bound by way of some examples.

Example 1

We already discussed the na ive example where both players query 1 and output F(1), and
said that it is insecure because the eavesdropper can predict the intersection query. Here
is another instantiation of this idea: Alice and Bob view the domain `2 as an `× ` matrix,
so that the oracle queries are represented by pairs (i, j) ∈ [`]2. Alice chooses a row a ∈ [`],
and queries all the elements of the row (that is, all pairs (a, j) where j ∈ [`]); Bob chooses
a column b ∈ [`] and queries all the elements of the column (all pairs (i, b) where i ∈ [`]).
Then, Alice sends a to Bob, who responds with F(a, b). From F(a, b), Alice can compute b,
by finding the (w.h.p. unique) index j such that F(a, b) = F(a, j). Both players output the
first bit of b as the key.
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This protocol is slightly less naïve than the previous one: now there are no queries that
have high prior probability of being asked, and the index b of the query that determines the
key is uniformly random a-priori. However, once Alice sends a to Bob, the game is up: Eve
can also query row a and find b the same way Alice does.

We see that in addition to queries that have a high prior probability of being asked, Eve
also needs to ask queries that have a high posterior probability of being asked, after she sees
M1. It turns out that this is enough: if we were to continue for more than 2 rounds, then
Eve would also need to ask queries that become likely after seeing M2, and so on, but to
prove a 2-round lower bound, Eve does not need to ask these queries. Intuitively, if a query
only becomes likely after M2 is sent, then this is “too late” for it to be useful to the players,
and Eve can ignore it.

Example 2

First, both players query 1. Then they carry out the protocol from Example 1, but all
messages are “encrypted” by XOR-ing them with F(1).

From this example we see that Eve needs to be somewhat adaptive: when she decides
what queries to ask after seeing M1, she must incorporate the queries she asked before the
first round (in this case, she would query 1). Essentially, when Eve tries to understand what
the players have done in round i, she should take into account all the queries she made up to
round i.

Should Eve be adaptive inside each round? In other words, after seeing M1, should she
ask all queries E1 that became likely, then compute which new queries are now likely given
M1, E1, and so on, until she reaches a fixpoint?

It turns out that for our purposes here, because we consider non-adaptive protocols, Eve
does not need to do this.

Heavy queries

Our attacker Eve tries to break the security of the protocol by asking all queries that are
“somewhat likely” to be asked by the players; these queries are called heavy queries. Informally,
a query q ∈ {0, 1}n is heavy after round i if given the transcript up to round i (inclusive),
and given Eve’s queries up to round i, the probability that q is asked by one (or both) of the
players exceeds some threshold δ which is fixed in advance.

More formally, the set Ei of heavy queries after round i is defined by induction on rounds,
as follows: the a-priory heavy queries, E0, are given by

E0 = {q ∈ {0, 1}n : Pr [q ∈ X ∪ Y ] ≥ δ} .

These are queries that are “somewhat likely” to be asked before the protocol begins. For
i > 0, we define

Ei = Ei−1 ∪ {q ∈ {0, 1}n : Pr [q ∈ X ∪ Y | M≤i,F(Ei−1)] ≥ δ} .

In other words, after round i, Eve asks all queries q ∈ {0, 1}n that have probability at least
δ of being queried by the players, given the messages M≤i that Eve observed up to round i
and the heavy queries she asked before, Ei−1.

ITCS 2019
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A simplified normal form for protocols

To simplify the proof of the lower bound, we first apply an easy transformation to the
protocol: given a key agreement protocol Π, we construct a protocol Π′, which has nearly
the same communication and query complexity as Π, the same number of rounds, and the
same agreement and nearly the same security parameters. But Π′ also has the following
properties: first, Π′ has no a-priori heavy queries, that is, E0 = ∅; and second, the secret key
output by Bob in Π′ is the first bit of Bob’s last query. This easy transformation is omitted
in this overview.

Measuring the Players’ Advantage Over Eve

As we saw in the examples above, the players’ ability to produce a shared secret key is closely
tied to how much information the players have that Eve does not have about the intersection
of the query sets, X ∩ Y .

To quantify this advantage, define the following random variables:
Si = (X ∩Y) \ Ei−1, the intersection queries that have not been asked by Eve.
F(Si): the answers to the queries in Si.
V iE = (E ′i ,F(E ′i)): a subset of the heavy queries for the previous round, and the answers
to them. Here, E ′i ⊆ Ei is a subset that will be defined later (and depends on the round
number i). For technical reasons, it is convenient to use only some of the heavy queries in
some contexts; essentially, in some places in our proof, Eve uses only some of her power.
This helps us avoid some unnecessary dependencies.

We measure the advantage gained by the players in round i by an expression of the form:

If (Si,F(Si); Mi|Z,Vi−1
E ,M<i), (1)

where If is the information with respect to the f -divergence, Mi,M<i are the i-th message
and the messages of rounds 1, . . . , i− 1, Z is the query set of the player that sent Mi (either
X or Y, depending on the round number i). Note that Eve uses her heavy queries from the
previous rounds, Vi−1

E , to “try to understand” what is going on in the current round.
Intuitively, this expression measures how much information the i-th message conveys

about the intersection queries and their answers, which Eve cannot guess. For this reason,
the random variable Si excludes intersection queries that were asked by Eve. Notice that
on the right-hand side we condition on Eve’s view (or on things Eve can sample): Eve has
already seen the messages M<i and asked the heavy queries Vi−1

E = (E ′i−1,F(E ′i−1)), and she
can sample the queries Z, either X or Y, from the correct distribution given the transcript
and her queries. Crucially, this does not require her to make any oracle queries: we do not
require her to sample the answers F(Z), only the queries Z. In other words, Eve can pretend
to be whichever player the query set Z belongs to, and by conditioning on her view, we
essentially neutralize all the information that Eve can extract about the intersection. Thus,
the expression in (1) measures the information the players gain about the intersection but
that is hidden from Eve. 8

Our proof consists of showing:

8 As we said above, we use only some of Eve’s heavy queries, E ′i−1 ⊆ Ei, so this intuition is not completely
accurate; specifically, when (1) is large, it does not mean that Eve cannot guess a lot about the
intersection, because she could use the full set Ei. However, when (1) is small, then indeed Eve knows
almost as much about the intersection as the players do, because her view includes Vi−1

E (and possibly
more).
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Step I: After the first message M1 is sent, the advantage gained is small, only O(δ|M1|).
For this part of the proof we use KL-divergence to measure the advantage.

Step II: After the second message M2 is sent, the advantage is still small, only
O(
√
δ(|M1|+ |M2|)). Here we use statistical distance to measure the advantage,

for reasons we will explain below.
Step III: When the expression in (1) is small (i.e., the players only have a small “advantage”),

then indeed, Eve can break the security of the protocol, by pretending to be one
of the players and sampling the secret key that this player would output.

Next we explain in more detail how each step is carried out.

4.2 Outline of the Proof
Step III: How Eve breaks security

Let us start from the end: suppose that after the second round, the “advantage” is small:

If (S2,F(S2); M2|Y,M1,V1
E) ≤ β,

where β = O(
√
δ(|M1|+ |M2|))� 1. Here, the advantage is measured in statistical distance

(that is, we take f(t) = |t− 1|/2). We want to show that Eve can break the security of the
protocol, by guessing the secret key.

As we said, Eve’s strategy is to “pretend” that she is Bob, and sample Bob’s output,
outB.

In a general protocol, to do this, Eve needs to sample Bob’s queries Y and the answers
F(Y), and then she can compute outB = outB(Y,F(Y),M1,M2). However, recall that we
transformed the protocol so that outB is a fixed function of Y; therefore, Eve in fact needs to
do nothing clever, only sample Y given her view M1,M2, E1,F(E1) and compute outB from Y.

We need to show that Eve’s key is close to the correct distribution, the one used by the
players. In general, if too much communication is allowed, this is not true, as shown by the
following example.

I Example 9. In Merkle’s puzzles, Alice’s message is F(X), and Bob responds with F(s),
where s ∈ X∩Y is some intersection query. The original secret key (before our transformation)
is the first bit s1. After our transformation, the secret key is Y1

`+1, and as part of M2, Bob
sends Alice the bit b = s1 ⊕Y1

`+1 so that she can extract Y1
`+1.

From Alice’s perspective, given X,F(X), Bob’s message M2 = F(s),b fixes Y1
`+1 to the

value b⊕ s1. (We ignore here the tiny probability that s cannot be uniquely computed from
X,F(X) and F(s), i.e., the probability of a collision in F.) However, from Eve’s perspective,
because she does not know X,F(X) and she asks no queries (there are no heavy queries in
Merkle’s puzzles), the intersection element s remains uniformly random. When Eve samples
Y1
`+1 given M1,M2 and her non-existent heavy queries, the result is random, and completely

independent from the true secret key.

We need to show that when the players’ advantage is small, then the example above
cannot happen, and Eve’s key agrees with the players’ w.h.p. To this end, we are interested
in the difference between Eve’s “pretend distribution”, and the true distribution that the
players use to produce the key: if the two distributions are close, then Eve’s chances of
guessing the right secret key are roughly the same as Bob’s. The only difference between
these two distributions is that given M1,M2 and E1,F(E1) (which the players do not use),
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The players’ keys are produced according to the joint distribution (outA, outB), and in
particular, both players have the same answers F(S2) to the non-heavy intersection queries
S2 = (X ∩Y) \ E1.
Eve’s pretense that she is Bob is carried out independently from Alice’s view: Eve cannot
use the true intersection queries (which she does not know), only what she has learned
about them from M1,M2,Vi

E . The joint distribution of Alice and Eve’s keys is therefore
given by the product distribution outA× outB.

So, we would like to bound the difference between the joint distribution and the product
distribution, i.e.,

If (outA; outB |M1,M2, E1,F(E1)).

Given the conditioning, Alice’s output outA is a function of her view, X,F(X). Also, we
assumed that Bob’s output is a function of his queries Y. Therefore,

If (outA; outB |M1,M2, E1,F(E1)) ≤ If (X,F(X); Y|M1,M2, E1,F(E1)). (2)

Now we need to show that given Eve’s view, the dependence between X,F(X) and Y is
bounded in terms of the advantage:

If (X,F(X); Y|M1,M2, E1,F(E1)) ≤ If (S2,F(S2); M2|M1,Y, E1 ∩Y,F(E1 ∩Y)). (3)

This proof is somewhat tedious; it relies on the fact that M2 is a function of M1,Y and
F(Y), and on the fact that X,F(X) are independent of Y,F(Y) given the intersection queries
and answers, S2,F(S2) and E1,F(E1). Intuitively, all the dependence between X,F(X) and Y
“flows through” what the players learn about the intersection, and the proof of (3) formalizes
this intuition.

Step I: Bounding the advantage after the first round

For the first round, we analyze the players’ advantage in terms of KL-divergence, and bound

I(S1,F(S1); M1|X).

Notice that we do not use Eve at this point, because we eliminated any a-priory heavy
queries, so there is nothing Eve needs to query in order to “understand” M1. For the same
reason, S1 = X ∩Y (there are no heavy queries to remove from the intersection).

We claim that

I(S1,F(S1); M1|X) ≤ δ|M1|. (4)

This is not hard to see: suppose X = x. Because we got rid of the a-priori heavy queries,
every individual query q ∈ x has probability at most δ of being asked by Bob (otherwise,
q would be heavy). Therefore, for every q ∈ x, we have Pr [q ∈ S1|X = x] ≤ δ. Because
M1 is generated by Alice without knowing S1, and every query is in S1 only w.p. at most
δ, intuitively, the information in M1 “only applies” to the queries in S1 with probability δ.
Therefore the information that M1 gives about S,F(S1) is at most δ|M1|.

The actual proof involves a Shearer-like argument for mutual information, similar to the
ones used in [6, 15].
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Step II: Bounding the advantage after the second round

Now we must bound the advantage the players gain after the second round, and show that

ISD(S2,F(S2); M2|Y,M1, E1 ∩Y,F(E1 ∩Y)) = O(
√
|M1|+ |M2|). (5)

As we said, we switch here to using statistical distance, and we will see why below.
Following the first round, we know that not much is known about the intersection, because

Alice’s message M1 did not convey a lot of information about it. So, our proof here proceeds
in two steps: first, we “pretend” that nothing is known about the intersection, and consider
the distribution µ′ where given M1 the distribution of Y,F(Y) is completely independent from
X. We show that under µ′, Bob’s message M2 would only convey δ|M2| bits of information
about the intersection. This is very similar to the analysis of the first round, and it is
also carried out using KL-divergence. Formally, we show that for the distribution µ′ where
Y,F(Y) are drawn independently of of X, we have

Iµ
′
(S2,F(S2); M2|Y,M1, E1 ∩Y,F(E1 ∩Y)) ≤ δ|M2|. (6)

The proof relies on the fact that we excluded heavy queries from S2 (recall that S2 =
(X ∩Y)\E1), so given the conditioning, any query in Y can only belong to S2 with probability
at most δ.

However, µ′ is not the real distribution: given M1, we do know a little about the
intersection, so Y,F(Y) are not completely independent from X. Our next step is to switch to
statistical distance, and show that the real distribution µ (where X,Y are not independent)
and µ′ (where they are) are close to each other. Therefore, what we showed for µ′ is also true
for µ, with the addition of a small penalty corresponding to the distance between µ and µ′.

Formally, we prove that

IµSD(S2,F(S2); M2|Y,M1, E1 ∩Y,F(E1 ∩Y))

≤ O
(

Iµ
′

SD(S2,F(S2); M2|Y,M1, E1 ∩Y,F(E1 ∩Y)) + DSD(µ′ ‖ µ)
) (7)

Under µ′, by (6) and Pinsker’s inequality, we have:

Iµ
′

SD(S2,F(S2); M2|Y,M1, E1 ∩Y,F(E1 ∩Y)) ≤
√
δ|M2|. (8)

So, under µ′ the expected amount of information revealed is small.
Next, we bound the difference between µ and µ′. We show that:

I(Y,F(Y); X|M1) ≤ I(S1,F(S1); M1|X).

This is quite similar to the proof of Step III above – here we do use standard mutual
information, so the proof uses the chain rule, just as we did above. Since we have shown in
Step I that I(S1,F(S1); M1|X) ≤ δ|M1|, we conclude using Pinsker’s inequality that

DSD(µ′ ‖ µ) ≤
√

DKL(µ′ ‖ µ) ≤
√
δ|M1|. (9)

Together, (8) and (9) are the ingredients we need to apply (7), and obtain:

IµSD(S2,F(S2); M2|Y,M1, E1 ∩Y,F(E1 ∩Y))

≤ O
(

Iµ
′

SD(S2,F(S2); M2|Y,M1, E1 ∩Y,F(E1 ∩Y)) + DSD(µ′ ‖ µ)
)

≤ O(
√
δ(|M1|+ |M2|)).
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Abstract
The Paulsen problem is a basic problem in operator theory that was resolved in a recent tour-
de-force work of Kwok, Lau, Lee and Ramachandran. In particular, they showed that every
ε-nearly equal norm Parseval frame in d dimensions is within squared distance O(εd13/2) of an
equal norm Parseval frame. We give a dramatically simpler proof based on the notion of radial
isotropic position, and along the way show an improved bound of O(εd2).
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1 Introduction

The Paulsen problem is a basic problem in operator theory that was resolved in a recent work
of Kwok, Lau, Lee and Ramachandran [12]. To state the problem, we need the following
definition:

I Definition 1. We say that a set of vectors v1, v2, . . . , vn ∈ Rd is an equal norm Parseval
frame if

n∑
i=1

viv
T
i = I and ‖vi‖2

2 = d

n
for each i.

Alternatively, we say that it is an ε-nearly equal norm Parseval frame if

(1− ε)I �
n∑

i=1
viv

T
i � (1 + ε)I and (1− ε) d

n
≤ ‖vi‖2

2 ≤ (1 + ε) d
n

for each i.

When we drop the condition on the norm of each vector, we refer to the set of vectors
as a Parseval frame or an ε-nearly Parseval frame respectively. Let F denote the set of
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all equal norm Parseval frames. Lastly for two sequences of vectors V = v1, v2, . . . , vn and
W = w1, w2, . . . , wn of the same length, we let

dist2(V,W ) =
n∑

i=1
‖vi − wi‖2.

With this terminology in hand, the Paulsen problem asks:

I Conjecture 2. For every ε-nearly equal norm Parseval frame V , is

inf
W∈F

dist2(V,W )

bounded by a fixed polynomial in ε and d?

See [12] and references therein for a detailed account of the history of the Paulsen problem
along with earlier bounds on the squared distance that were polynomial in ε, d and n.
Through a tour-de-force utilizing operator scaling, connections to dynamical systems and
ideas from smoothed analysis, Kwok, Lau, Lee and Ramachandran [12] proved that the
squared distance is at most O(εd13/2). The paper was 104 pages long and highly complex.
Our main result is a dramatically simpler proof of the Paulsen conjecture, that also yields a
much better bound:

I Theorem 3 (Main). For any ε-nearly equal norm Parseval frame V , there is an equal
norm Parseval frame W with

dist2(V,W ) ≤ 20εd2.

In terms of lower bounds, Cahill and Casazza [4] gave a family of examples of ε-nearly
equal norm Parseval frames where the squared distance to the closest equal norm Parseval
frame is at least Ω(εd). It is an interesting open question to close this gap.

Our main idea is to make use of the notion of radial isotropic position3. In the next
section, we define it formally. But to understand it informally, it is useful to compare it to the
more familiar notion of placing a set of vectors in isotropic position: Given a set of vectors
V = v1, v2, . . . , vn ∈ Rd, is there an invertible affine transformation that generates a new set
of vectors Y = Av1 + b, Av2 + b, . . . , Avn + b that has mean zero and identity covariance? It
is well known that there is such a transformation if and only if

∑
i viv

T
i has full rank.

However such a transformation can also stretch out some directions much more than
others – e.g. if all but one of the vectors in V are contained in a d− 1-dimensional subspace.
In this case, the set of vectors after applying the transformation would be quite far from
where it started out, in total squared distance. Informally, radial isotropic position asks for a
linear transformation A so that the renormalized vectors wi = Avi/‖Avi‖ have the property
that

∑
i wiw

T
i is a scalar multiple of the identity. The transformation is now nonlinear but

is particularly well suited for constructing a close by equal norm Parseval frame.
One can now ask the same sort of question as before: When can a set of vectors be placed

in radial isotropic position? Barthe [2] gave a complete characterization of when this is and
is not possible which in turn plays a key role in our proof. It turns out that a sufficient
condition is that every d vectors are linearly independent. Now we construct an equal norm
Parseval frame as follows: First we renormalize the vectors in V and then we perturb them.

3 This concept goes by many other names in the literature, such as well-spread vectors [5] or geometric
scaling for rank one Brascamp-Lieb datum [9]. The name we use here originated in [11].
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Perturbations play a delicate role in [12]. They give a dynamical system which constructs an
equal norm Parseval frame from an ε-nearly equal norm Parseval frame as its input. In order
to bound the total squared distance between the input and output, they need to lower bound
the convergence rate. They do this through a certain pseudorandom property (Definition
4.3.2) which they show holds when the input is appropriately perturbed. In our proof, all
we need is that the perturbations do not move the set of points by too much in squared
distance and that afterwards every d of them are linearly independent4. The latter condition
guarantees that there is a linear transformation that places them in radial isotropic position.
Let W be the set of vectors, after applying the linear transformation and renormalizing.
By definition, it is an equal norm Parseval frame. Our main technical contribution is in
bounding the squared distance between V and W , which we do through some elementary
but subtle algebraic manipulations.

Taking a step back, the notion of radial isotropic position seems quite powerful and
mysterious but has thus far only found a handful of applications. Forster [7] used it to prove
a remarkable lower bound in communication complexity (by lower bounding the sign rank
of the Hadamard matrix). Hardt and Moitra [11] gave the first algorithm for computing
the transformation that places a set of vectors in radial isotropic position (under a slight
strengthening of Barthe’s conditions). They also gave applications to linear regression in
the presence of outliers. Dvir, Saraf and Wigderson [5] used it to prove superquadratic
lower bounds for 3-query locally correctable codes over the reals. Here we use it to give a
simple proof of the Paulsen conjecture. Are there other exciting applications waiting to be
discovered?

Connections to Operator Scaling and the Brascamp-Lieb Inequality
Radial isotropic position is itself a special case of the more general notion of geometric position
[1, 2] where we are given an n tuple of linear transformations B1, B2, . . . , Bn of dimensions
d1 × d, d2 × d, . . . , dn × d and a nonnegative vector c of dimension n with

∑n
i=1 cidi = d and

the goal is to find square, invertible matrices A1, A2, . . . , An and A so that

n∑
i=1

ci

(
A−1

i BiA
)T(

A−1
i BiA

)
= I and

(
A−1

i BiA
)(
A−1

i BiA
)T

= I for each i.

If we set di = 1 for all i, then each linear transformation Bi can be written as the inner-
product with some vector vi. Now if we also set ci = d

n for all i, it is easy to check that A
places the set of vectors v1, v2, . . . , vn in radial isotropic position.

It turns out that having A1, A2, . . . , An and A that place B1, B2, . . . , Bn in geometric
position with respect to the vector c yields an explicit expression for the best constant C for
which the inequality∫

x∈Rd

n∏
i=1

(
fi(Bix)

)ci

dx ≤ C
n∏

i=1

(∫
xi∈Rdi

fi(xi)dxi

)ci

holds over allm tuples of nonnegative functions f1, f2, . . . , fm [3]. This is called the Brascamp-
Lieb inequality.

4 In particular, essentially all sufficiently small perturbations would work for us. It could even be an
infinitesimal perturbation because we do not need any quantitative bounds on how far they are from
having a non-trivial linear dependence.
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Finally, in terms of how to compute A1, A2, . . . , An and A, a popular approach is operator
scaling [10] and there has been considerable recent progress in bounding the number of
iterations it needs [8, 9]. As we mentioned, Kwok, Lau, Lee and Ramachandran [12] used
operator scaling to solve the Paulsen conjecture. In this sense, our approach and theirs
are closely related in that they both revolve around algorithms (in our case the ellipsoid
algorithm) for computing radial isotropic position. Perhaps the main technical divergence is
that they track how the squared distance changes after each iteration of operator scaling,
while we are able to bound the squared distance just based on transformation that places
v1, v2, . . . , vn into radial isotropic position. It is also worth mentioning that if instead of
proving existence of a nearby equal norm Parseval frame, we want to find it up to some
target precision δ, the approaches based on operator scaling typically require the number of
iterations to be polynomial in 1/δ. In contrast, we will give algorithms whose running time
is polynomial in log 1/δ.

2 Radial Isotropic Position and the Proof

First we introduce some of the basic concepts and results about radial isotropic position. We
will do so in slightly more generality than we will ultimately need.

I Definition 4. We say that a set of vectors u1, u2, . . . , un ∈ Rd is in radial isotropic position
with respect to a coefficient vector c ∈ Rn if

n∑
i=1

ci

( ui

‖ui‖

)( ui

‖ui‖

)T

= I.

Note that if we take the trace of both sides in the expression, we get the necessary
condition that

∑n
i=1 ci = d. In fact we will only ever consider the case when each ci = d

n .
We will also need the following key definition:

I Definition 5 ([6]). For a set U of vectors u1, u2, . . . , un ∈ Rd, its basis polytope is defined
as

B(U) =
{
c ∈ Rn s.t.

n∑
i=1

ci = d and for all A ⊆ [n], dim
(
span{ui}i∈A

)
≥
∑
i∈A

ci

}
.

Now we are ready to state Barthe’s theorem:

I Theorem 6 ([2]). A set of vectors U = u1, u2, . . . , un ∈ Rd can be put into radial isotropic
position with respect to c by a linear transformation if and only if c ∈ B(U).

Some further remarks: (1) The usual definition of the basis polytope is based on taking the
convex hull of the indicators of subsets of vectors in U that form a basis. (2) The alternative
definition we gave in Definition 5 will be more directly useful for our purposes, and was
proven to be equivalent by Edmonds [6]. He used this equivalence to give a separation oracle
for the basis polytope, which in turn plays a key role in the algorithm of Hardt and Moitra
[11] for computing the linear transformation that puts a set of vectors into radial isotropic
position.

See https://arxiv.org/abs/1809.04726 for the proof of the main theorem. The main
idea is to renormalize and then perturb the vectors in V . After the perturbation, we can
invoke Theorem 6 to find a transformation A that places the vectors in radial isotropic
position. We show that we can assume without loss of generality that A is a nonnegative
diagonal matrix whose entries are sorted in non-increasing order along the diagonal. Our
main technical lemma gives a bound on the squared distance:

https://arxiv.org/abs/1809.04726
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I Lemma 7. Suppose U is a 4ε-nearly Parseval frame and A is an entrywise diagonal matrix
that puts U in radial isotropic position. Also suppose that for each i

(1− γ′) d
n
≤ ‖ui‖2

2 ≤ (1 + γ′) d
n
.

Now set

W = w1, w2, . . . , wn with wi ,

√
d

n

( Aui

‖Aui‖

)
.

Then we have that dist2(U,W ) ≤ 8εd2 + 4γ′d2.

See https://arxiv.org/abs/1809.04726 for the proof of the main technical lemma.

3 An Algorithm for the Paulsen Problem

Every step of the proof of Theorem 3 is straightforward to implement algorithmically, except
for the step where we compute the transformation A that places the set of vectors U in radial
isotropic position. Fortunately, Hardt and Moitra [11] gave an algorithm for computing A
under a slight strengthening of Barthe’s conditions which holds in our setting. Informally,
they require the vector c to be strictly inside the basis polytope according to the following
notion of scaling:

I Definition 8. Let (1−α)B(U) denote the set of vectors c with the following properties: (1)∑n
i=1 ci = d, (2) 0 ≤ ci ≤ 1 for all i and (3) for all nonnegative directions u with umin = 0,

(1− α) max
v∈B(U)

uT v ≥ uT c.

We will state a special case of their main theorem, which is sufficient for our purposes.

I Theorem 9 ([11]). Let δ > 0 and α > 0. Suppose U = u1, u2, . . . , un ∈ Rd has the property
that every set of d vectors are linearly independent. Then given c ∈ (1− α)B(U), there is an
algorithm to find a linear transformation A so that

n∑
i=1

ci

( Aui

‖Aui‖

)( Aui

‖Aui‖

)T

= I + J

where ‖J‖∞ ≤ δ – i.e. the largest entry of J in absolute value is at most δ. The running
time is polynomial in 1/α, log 1/δ and L where L is an upper bound on the bit complexity of
U and c.

By combining their algorithm with our proof of Theorem 3 we get:

I Corollary 10. Suppose V = v1, v2, . . . , vn ∈ Rd is an ε-nearly equal norm Parseval frame.
Furthermore suppose n > d. Then given δ > 0, there is an algorithm to compute a δ-nearly
equal norm Parseval frame W with

dist2(V,W ) ≤ 20εd2

whose running time is polynomial in log 1/δ and L where L is an upper bound on the bit
complexity of V .

See https://arxiv.org/abs/1809.04726 for the proof of the corollary. This answers
an open question of [12], where they ask whether there is an algorithm for finding an equal
norm Parseval frame up to some precision δ whose running time is polynomial in log 1/δ.

ITCS 2019

https://arxiv.org/abs/1809.04726
https://arxiv.org/abs/1809.04726


41:6 The Paulsen Problem Made Simple

References
1 Keith Ball. Volumes of sections of cubes and related problems. In Geometric aspects of

functional analysis, pages 251–260. Springer, 1989.
2 Franck Barthe. On a reverse form of the Brascamp-Lieb inequality. Inventiones mathem-

aticae, 134(2):335–361, 1998.
3 Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao. The Brascamp–

Lieb inequalities: finiteness, structure and extremals. Geometric and Functional Analysis,
17(5):1343–1415, 2008.

4 Jameson Cahill and Peter G Casazza. The Paulsen problem in operator theory. submitted
to Operators and Matrices, 2011.

5 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Superquadratic Lower Bound for 3-Query
Locally Correctable Codes over the Reals. Theory of Computing, 13(1):1–36, 2017.

6 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial
structures and their applications, pages 69–87, 1970.

7 Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002.

8 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic poly-
nomial time algorithm for non-commutative rational identity testing. In Foundations of
Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 109–117. IEEE,
2016.

9 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Algorithmic and op-
timization aspects of Brascamp-Lieb inequalities, via Operator Scaling. Geometric and
Functional Analysis, 28(1):100–145, 2018.

10 Leonid Gurvits. Classical complexity and quantum entanglement. Journal of Computer
and System Sciences, 69(3):448–484, 2004.

11 Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace recovery.
In Conference on Learning Theory, pages 354–375, 2013.

12 Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, and Akshay Ramachandran. The Paulsen
problem, continuous operator scaling, and smoothed analysis. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 182–189. ACM, 2018.



How to Subvert Backdoored Encryption: Security
Against Adversaries that Decrypt All Ciphertexts
Thibaut Horel1

Harvard University, Cambridge, MA, USA

Sunoo Park2

MIT, Cambridge, MA, USA

Silas Richelson
University of California, Riverside, CA, USA

Vinod Vaikuntanathan3

MIT, Cambridge, MA, USA

Abstract
In this work, we examine the feasibility of secure and undetectable point-to-point communication
when an adversary (e.g., a government) can read all encrypted communications of surveillance
targets. We consider a model where the only permitted method of communication is via a
government-mandated encryption scheme, instantiated with government-mandated keys. Parties
cannot simply encrypt ciphertexts of some other encryption scheme, because citizens caught
trying to communicate outside the government’s knowledge (e.g., by encrypting strings which do
not appear to be natural language plaintexts) will be arrested. The one guarantee we suppose
is that the government mandates an encryption scheme which is semantically secure against
outsiders: a perhaps reasonable supposition when a government might consider it advantageous
to secure its people’s communication against foreign entities. But then, what good is semantic
security against an adversary that holds all the keys and has the power to decrypt?

We show that even in the pessimistic scenario described, citizens can communicate securely
and undetectably. In our terminology, this translates to a positive statement: all semantically
secure encryption schemes support subliminal communication. Informally, this means that there
is a two-party protocol between Alice and Bob where the parties exchange ciphertexts of what
appears to be a normal conversation even to someone who knows the secret keys and thus can read
the corresponding plaintexts. And yet, at the end of the protocol, Alice will have transmitted
her secret message to Bob. Our security definition requires that the adversary not be able to tell
whether Alice and Bob are just having a normal conversation using the mandated encryption
scheme, or they are using the mandated encryption scheme for subliminal communication.

Our topics may be thought to fall broadly within the realm of steganography. However, we
deal with the non-standard setting of an adversarially chosen distribution of cover objects (i.e.,
a stronger-than-usual adversary), and we take advantage of the fact that our cover objects are
ciphertexts of a semantically secure encryption scheme to bypass impossibility results which we
show for broader classes of steganographic schemes. We give several constructions of subliminal
communication schemes under the assumption that key exchange protocols with pseudorandom
messages exist (such as Diffie-Hellman, which in fact has truly random messages).

1 Supported, in part, by the National Science Foundation under grants CAREER IIS-1149662, and CNS-
1237235, by the Office of Naval Research under grants YIP N00014-14-1-0485 and N00014-17-1-2131,
and by a Google Research Award.

2 Supported by the Center for Science of Information STC (CSoI), an NSF Science and Technology Center
(grant agreement CCF-0939370), MACS project NSF grant CNS-1413920, and a Simons Investigator
Award Agreement dated 2012-06-05.

3 Supported in part by NSF Grants CNS-1350619, CNS-1414119 and CNS-1718161, Alfred P. Sloan
Research Fellowship, Microsoft Faculty Fellowship and a Steven and Renee Finn Career Development
Chair from MIT.

© Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 42; pp. 42:1–42:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


42:2 How to Subvert Backdoored Encryption

2012 ACM Subject Classification Theory of computation → Cryptographic protocols

Keywords and phrases Backdoored Encryption, Steganography

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.42

Related Version A full version of the paper is available at [17], https://eprint.iacr.org/
2018/212.

Acknowledgements We are grateful to Omer Paneth and Adam Sealfon for insightful remarks
on an early draft.

1 Introduction

Suppose that we lived in a world where the government wished to read all the communications
of its citizens, and thus decreed that citizens must not communicate in any way other than
by using a specific, government-mandated encryption scheme with government-mandated
keys. Even face-to-face communication is not allowed: in this Orwellian world, anyone who
is caught speaking to another person will be arrested for treason. Similarly, anyone whose
communications appear to be hiding information will be arrested: e.g., if the plaintexts
encrypted using the government-mandated scheme are themselves ciphertexts of a different
encryption scheme. However, the one assumption that we entertain in this paper, is that the
government-mandated encryption scheme is, in fact, semantically secure: this is a tenable
supposition with respect to a government that considers secure encryption to be in its interest,
in order to prevent foreign powers from spying on its citizens’ communications.

A natural question then arises: is there any way that the citizens would be able to
communicate in a fashion undetectable to the government, based only on the semantic
security of the government-mandated encryption scheme, and despite the fact that the
government knows the keys and has the ability to decrypt all ciphertexts?4 What can semantic
security possibly guarantee in a setting where the adversary has the private keys?

This question may appear to fall broadly within the realm of steganography: the science
of hiding secret communications within other innocent-looking communications (called “cover
objects”), in an undetectable way. Indeed, it can be shown that if two parties have a shared
secret, then based on slight variants of existing techniques for secret-key steganography, they
can conduct communications hidden from the government.5

However, the question of whether two parties who have never met before can conduct
hidden communications is more interesting. This is related to the questions of public-key
steganography and steganographic key exchange which were both first formalized by von Ahn
and Hopper [23]. Public-key steganography is inadequate in our setting since exchanging or
publishing public keys is potentially conspicuous and thus is not an option in our setting. All
prior constructions of steganographic key exchange require the initial sampling of a public
random string that serves as a public parameter of the steganographic scheme. Intuitively,
in these constructions, the public random string can be thought to serve the purpose of

4 We note that one could, alternatively, consider an adversary with decryption capabilities arising from
possession of some sort of “backdoor.” For the purposes of this paper, we opted for the simpler and still
sufficiently expressive model where the adversary’s decryption power comes from knowledge of all the
decryption keys.

5 We refer the reader to Section 1.4 for more details.
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selecting a specific steganographic scheme from a family of schemes after the adversary has
chosen a strategy. That is, the schemes crucially assume that the adversary (the dystopian
government, in our story above) cannot choose its covertext distribution as a function of the
public parameter.

It is conservative and realistic to expect a malicious adversary to choose the covertext
distribution after the honest parties have decided on their communication protocol (including
the public parameters). After all, malice never sleeps [18]. Alas, we show that if the covertext
distribution is allowed to depend on the communication protocol, steganographic commu-
nication is impossible. In other words, for every purported steganographic communication
protocol, there is a covertext distribution (even one with high min-entropy) relative to
which the communication protocol fails to embed subliminal messages. The relatively simple
counterexample we construct is inspired by the impossibility of deterministic extraction.

Semantic Security to the Rescue? However, this impossibility result does not directly
apply to our setting, as our covertext distribution is restricted to be a sequence of ciphertexts
(that may encrypt arbitrary messages). Moreover, the ciphertexts are semantically secure
against entities that are not privy to the private keys. We define the notion of a subliminal
communication scheme (Definition 7) as a steganographic communication scheme where
security holds relative to covertext distributions that are guaranteed to be ciphertexts of
some semantically secure encryption scheme. Is there a way to use semantic security to
enable subliminal communication?

Our first answer to this question is negative. In particular, consider the following natural
construction: first, design an extractor function f ; then, to subliminally transmit a message
bit b, sample encryptions c of a (even adversarially prescribed) plaintext m using independent
randomness every time, until f(c) = b. There are two reasons this idea does not work. First,
if the plaintext bit b is not random, the adversary can detect this by applying the extractor
function f to the transmitted covertext. Second, the government can pick an adversarial
(semantically secure) encryption scheme where the extractor function f is constant on all
ciphertexts; this is again similar to the impossibility of deterministic extraction.

Nevertheless, we show how to circumvent these difficulties and use the semantic security
of the underlying (adversarial) encryption scheme to construct subliminal communication.

I Theorem 1 (Informal version of Theorem 11). Under the decisional Diffie-Hellman (DDH)
assumption – or any other assumption that gives rise to a key exchange protocol with messages
indistinguishable from random – there is a subliminal communication scheme which allows the
transmission of O(log κ) many bits per ciphertext after a setup phase of Õ(log κ) ciphertexts
(κ is the security parameter).

We then show how to improve our first construction to reduce the length of the setup
phase under additional assumptions.

1.1 Overview of Our Construction
The first idea in our construction is implicit in essentially all the works in steganography
starting from [20]: namely, to achieve subliminal communication of arbitrary messages, it is
sufficient to be able to undetectably communicate uniformly randomly distributed strings of
one’s choice. In other words, Alice samples a string r which is randomly distributed, produces
some ciphertext(s) to be sent to Bob, such that Bob is able to learn r from them, and yet
a PPT eavesdropper Eve who sees the entire communication transcript cannot distinguish
between the following two cases:
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1. Alice is indeed sending (hereafter, “embedding”) random strings to Bob, or
2. Alice is producing ciphertexts using the unmodified government-mandated encryption

algorithm, without embedding such random strings.
To be more precise, the indistinguishability requirement holds for any given (adversarially
specified) distribution M of message sequences that Alice may choose to encrypt using
the government-mandated encryption scheme. Notice that this does not preclude that Eve
may be able to learn r and indeed, our constructions do allow an eavesdropper to learn the
embedded strings. Given the ability to undetectably communicated randomly distributed
strings, Alice and Bob can then embed to each other the messages of a key-exchange protocol
with randomly distributed messages (such as Diffie-Hellman) to establish a shared secret, and
then embed to each other ciphertexts of a secret-key encryption scheme with pseudorandom
ciphertexts, using the established secret as the key.

All known constructions of such undetectable random string embedding rely on the
sampling of a public random seed after the adversarial strategy is fixed. In this paper,
however, we are interested in bootstrapping hidden communications from the very ground
up: we are not willing to assume that the parties start from a state where a seed is already
present.

We observe that the ability to embed randomly distributed strings of one’s choice – rather
than, e.g., to apply a deterministic function to ciphertexts of the government-mandated
encryption scheme, and thereby obtain randomly distributed strings which the creator
of the ciphertexts did not choose – is crucial to the above-outlined scheme. The notion
of undetectably embedding exogenous random strings – i.e., strings that are randomly
distributed outside of Alice’s control, but both Alice and Bob can read them – is seemingly
much weaker, and certainly cannot be used to embed key exchange messages or secret-key
ciphertexts. However, we observe that this weaker primitive turns out to be achievable,
for our specific setting, without the troublesome starting assumption of a public random
seed. We identify a method for embedding exogenous random strings into ciphertexts of an
adversarially chosen encryption scheme (interestingly, our method does not generalize to
embedding into arbitrary min-entropy distributions). We then exploit this method to allow
the communicating parties to establish a random seed – from which point they can proceed
to embed random strings of their choice, as described above.

In building this weaker primitive, in order to bypass our earlier-described impossibility
result, we extract from two ciphertexts at a time, instead of one. We begin with the following
simple idea: for each consecutive pair of ciphertexts c and c′, a single hidden (random) bit b
is defined by b = f(c, c′) where f is some two-source extractor. It is initially unclear why this
should work because (1) c and c′ are encryptions of messages m and m′ which are potentially
dependent, and two-source extractors are not guaranteed to work without independence; and
(2) even if this difficulty could be overcome, ciphertexts of semantically secure encryption
scheme can have min-entropy as small as ω(log κ) (where κ is the security parameter) and
no known two-source extractor known can extract from such a small min-entropy.

We overcome difficulty (1) by relying on the semantic security of the ciphertexts of the
adversarially chosen encryption scheme. Paradoxically, even though the adversary knows the
decryption key, we exploit the fact that semantic security still holds against the extractor,
which does not have the decryption key. The inputs in our case are ciphertexts which are
not necessarily independent, but semantic security implies that they are computationally
indistinguishable from being independent. Thus, the output of f(c, c′) is pseudorandom.
Indeed, when f outputs a single bit (as in our construction), the output is also statistically
close to random. The crucial point here is that the semantic security of the encryption
scheme is used not against the government, but rather against the extraction function f .
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Our next observation, to address difficulty (2), is that the ciphertexts are not only
computationally independent, but they are also computationally indistinguishable from i.i.d.
In particular, each pair of ciphertexts is indistinguishable from a pair of encryptions of
0, by semantic security. Based on this observation, we can use a very simple “extractor”,
namely, the greater-than function GT. In fact, GT is an extractor with two input sources,
whose output bit has negligible bias when the sources have ω(log κ) min-entropy and are
independently and identically distributed (this appears to be a folklore observation; see,
e.g., [3]). Because of the last condition, GT is not a true two-source extractor according to
standard definitions, but is still suitable for our setting.

By repeatedly extracting random bits from pairs of consecutive ciphertexts using GT,
Alice and Bob can construct a shared random string s. Note that in this process, Alice and
Bob generate ciphertexts using the unmodified government-mandated encryption scheme,
so the indistinguishability requirement clearly holds. We stress again that s is also known
to a passive eavesdropper of the communication. This part of our construction, up to the
construction of the string s, is presented in details in Section 5.1. From there, constructing a
subliminal communication scheme is not hard: Alice and Bob use s as the seed of a strong
seeded extractor to subliminally communicate random strings of their choice as explained in
Section 5.2. The complete description of our protocol is given in Section 5.3.

1.2 Improved Constructions for Specific Cases
While our first construction has the advantage of simplicity, the initial phase to agree on
shared random string (using the GT function) transmits only one hidden bit per ciphertext
of the government-mandated encryption scheme. A natural question is whether this rate of
transmission can be improved. We show that if the government-mandated encryption scheme
is succinct in the sense that the ciphertext expansion factor is at most 2, then it is possible
to improve the rate of transmission in this phase to O(log κ) hidden bits per ciphertext using
an alternative construction based on the extractor from [12]. In other words, our first result
showed that if the government-mandated encryption scheme is semantically secure, we can
use it to communicate subliminally; the second result shows that if the government-mandated
encryption scheme is efficient, that is even better for us, in the sense that it can be used for
more efficient subliminal communication.

I Theorem 2 (Informal). If there is a secure key exchange protocol whose message distribution
is pseudorandom, then there is a subliminal communication scheme in which a shared seed is
established in two exchanges of ciphertexts of a succinct encryption scheme.

Theorem 1 exploited the specific nature of the cover object distribution in our setting
(specifically, that a sequence of encryptions of arbitrary messages is indistinguishable from
an i.i.d. sequence of encryptions of zero). Theorem 2 exploits an additional consequence
of the semantic security of the government-mandated encryption scheme: if it is succinct,
then ciphertexts are computationally indistinguishable from sources of high min-entropy (i.e.,
they have large HILL-entropy).

It may be possible to use more advanced two-source extractors to work with a larger
class of encryption schemes (with larger expansion factors); however, the best known such
extractors have an inverse polynomial error rate [8] (whereas our construction’s extractor
has negligible error). Consequently, designing a subliminal communication protocol using
these extractors seems to require additional ideas, and we leave this as an open problem.

Finally, we show yet another approach in cases where the distribution of “innocent”
messages to be encrypted under the government-mandated encryption scheme has a certain
amount of conditional min-entropy. For such cases, we construct an alternative scheme
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that leverages the semantic security of the encryption scheme in a rather different way:
namely, the key fact for this alternative construction is that (in the absence of a decryption
key) a ciphertext appears independent of the message it encrypts. In this case, running a
two-source extractor on the message and the ciphertext works. The resulting improvement
in the efficiency of the scheme is comparable to that of Theorem 2.

I Theorem 3 (Informal). If there is a secure key-exchange protocol whose message distribution
is pseudorandom, then there is a subliminal communication scheme for any cover distribution
that either

consists of ciphertexts of a semantically secure encryption scheme, if the innocent message
distributionM has conditional min-entropy rate 1/2, or
consists of ciphertexts of a semantically secure and succinct encryption scheme, if the
innocent message distributionM has conditional min-entropy ω(log κ).

In both cases, the shared seed is established during the setup phase in only two exchanges of
ciphertexts.

Due to space constraints, the results described in this subsection (1.2) are not discussed
further herein. They are presented in detail in the full version of this paper [17].

1.3 Final Introductory Remarks

On Our Modeling Assumptions. Our model considers a relatively powerful adversary that,
for example, has the ability to choose the encryption scheme using which all parties must
communicate, and to decrypt all such communications. We believe that this can be very
realistic in certain scenarios, but it is also important to note the limitations that our model
places on the adversary.

The most obvious limitation is that the encryption scheme chosen by the adversary
must be semantically secure (against third parties that do not have the ability to decrypt).
Another assumption is that citizens are able to run algorithms of their choice on their
own computers without, for instance, having every computational step monitored by the
government. Moreover, citizens may use encryption randomness of their choice when
producing ciphertexts of the government-mandated encryption scheme: in fact, this is a key
fact that our construction exploits. Interestingly, secrecy of the encryption randomness from
the adversary is irrelevant: after all, the adversary can always choose an encryption scheme
where the encryption randomness is recoverable given the decryption key. Despite this, the
ability of the encryptor to choose the randomness to input to the encryption algorithm can
be exploited – as by our construction – to allow for subliminal communication.

The Meaning of Semantic Security when the Adversary Can Decrypt. In an alternate
light, our work may be viewed as asking the question: what guarantee, if any, does semantic
security provide against adversary in possession of the decryption key? Our results find,
perhaps surprisingly, that some meaningful guarantee is still provided by semantic security
even against an adversary is able to decrypt: more specifically, that any communication
channel allowing transmission of ciphertexts can be leveraged to allow for undetectable
communications between two parties that have never met. From this perspective, our work
may be viewed as the latest in a scattered series of recent works that consider what guarantees
can be provided by cryptographic primitives that are somehow “compromised” – examples of
recent works in this general flavor are cited in Section 1.4 below.
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Concrete Security Parameters. From a more practical perspective, it may be relevant to
consider that the government in our hypothetical Orwellian scenario would be incentivized
to opt for an encryption scheme with the least possible security level so as to ensure
security against foreign powers. In cases where the government considers itself to have more
computational power than foreign adversaries (perhaps by a constant factor), this could
create an interesting situation where the security parameter with which the government-
mandated scheme must be instantiated is below what is necessary to ensure security against
the government’s own computational power.

Such a situation could be risky for citizens’ hidden communications: intuitively, our
constructions guarantee indistinguishability against the citizens’ own government between
an “innocent” encrypted conversation and one which is carrying hidden subliminal messages.
However, the distinguishing advantage in this indistinguishability game depends on the
security parameter of the government-mandated encryption scheme. Thus, it could be that
the two distributions are far enough apart for the citizens’ own government to distinguish
(though not for foreign governments to distinguish). We observe that citizens cognizant of
this situation can further reduce the distinguishing advantage beyond that provided by our
basic construction, using the standard technique of amplifying the proximity of a distribution
(which is far from random) to uniformly random, by taking the XOR of several samples from
the far-from-random distribution.

Having outlined this potential concern and solution, the rest of the paper will disregard
these issues in the interest of clarity of exposition, and present a purely asymptotic analysis.

Open Problems. Our work suggests a number of open problems. A natural one is the
extent to which the modeling assumptions that this work makes – such as the ability of
honest encryptors to use true randomness for encryption – can be relaxed or removed,
while preserving the ability to communicate subliminally. For example, one could imagine
yet another alternate universe, in which the hypothetical Orwellian government not only
mandates that citizens use the prescribed encryption scheme, but also that their encryption
randomness must be derived from a specific government-mandated pseudorandom generator.

The other open problems raised by our work are of a more technical nature and better
understood in the context of the specific details of our constructions; for this reason we defer
their discussion to Section 6.

1.4 Other Related Work
The scientific study of steganography was initiated by Simmons more than thirty years
ago [20], and is the earliest mention of the term “subliminal channel” referring to the
conveyance of information in a cryptosystem’s output in a way that is different from the
intended output,6 of which we are aware. Subsequent works such as [7, 19, 27] initially
explored information-theoretic treatments of steganography, and then Hopper, Langford, and
von Ahn [16] gave the first complexity-theoretic (secret-key) treatment almost two decades
later. Public-key variants of steganographic notions – namely, public-key steganography and
steganographic key exchange – were first defined by [23]. There is very little subsequent
literature on public-key steganographic primitives; one notable example is by Backes and
Cachin [2], which considers public-key steganography against active attacks (their attack
model, which is stronger than that of [23], was also considered in [16] but had never been
applied to the public-key setting).

6 This phrasing is loosely borrowed from [26].
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The alternative perspective of our work as addressing the question of whether any sort
of secret communication can be achieved via transmission of ciphertexts of an adversarially
designed cryptosystem alone fits into a scattered series of recent works that consider what
guarantees can or cannot be provided by compromised cryptographic primitives. For example,
Goldreich [14], and later, Cohen and Klein [10], consider what unpredictability guarantee is
achieved by the classic GGM construction [15] when the traditionally secret seed is known;
Austrin et al. [1] study whether certain cryptographic primitives can be secure even in the
presence of an adversary that has limited ability to tamper with honest parties’ randomness;
Dodis et al. [13] consider what cryptographic primitives can be built based on backdoored
pseudorandom generators; and Bellare, Jaeger, and Kane [4] present attacks that work against
any symmetric-key encryption scheme, that completely compromise security by undetectably
corrupting the algorithms of the encryption scheme (such attacks might, for example, be
feasible if an adversary could generate a bad version of a widely used cryptographic library
and install it on his target’s computer).

The last work mentioned above, [4], is actually part of the broader field of kleptography,
originally introduced by Young and Yung [26, 25, 24]. Broadly speaking, a kleptographic attack
“uses cryptography against cryptography” [26] – i.e., changes the behavior of a cryptographic
system in a fashion undetectable to an honest user with black-box access to the cryptosystem,
such that the use of the modified system leaks some secret information (e.g., plaintexts
or key material) to the attacker who performed the modification. An example of such an
attack might be to modify the key generation algorithm of an encryption scheme such that
an adversary in possession of a “back door” can derive the private key from the public
key, yet an honest user finds the generated key pairs to be indistinguishable from correctly
produced ones. Kleptography has enjoyed renewed research activity since [5] introduced a
formal model of a specific type of kleptographic attack called algorithm substitution attacks
(ASAs), motivated by recent revelations suggesting that intelligence agencies have successfully
implemented attacks of this nature at scale. Recently, [6] formalized an equivalence between
certain variants of ASA and steganography.

Our setting differs significantly from kleptography in that the encryption algorithms are
public and not tampered with (i.e., adhere to a purported specification), and in fact may be
known to be designed by an adversarial party.

2 Preliminaries

Proofs of all propositions, lemmata, and theorems are in the full version of this paper [17]
due to space constraints.

Notation. κ is the security parameter throughout. PPT means “probabilistic polynomial
time.” [n] denotes the set {1, . . . , n}. Un is a uniform variable over {0, 1}n, independent of
every other variable in this paper. We write X ∼ Y to express that X and Y are identically
distributed. Given two variables X and Y over {0, 1}k, we denote by ‖X − Y ‖s the statistical
distance defined by:

‖X − Y ‖s = 1
2

∑
x∈{0,1}k

∣∣Pr[X = x]− Pr[Y = x]
∣∣ .

For a random variable X, we define the min-entropy of X by H∞(X) = − log maxx Pr[X = x].
The collision probability is CP(X) =

∑
x Pr[X = x]2.
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2.1 Encryption and Key Exchange
We assume familiarity with the standard notions of semantically secure public-key and
private-key encryption, and key exchange. This subsection defines notation and terminology.

Public-Key Encryption. We use the notation E = (E.Gen,E.Enc,E.Dec) for the public-key
encryption scheme mandated by the adversary.

Secret-key Encryption. We write SKE = (SKE.Gen,SKE.Enc,SKE.Dec) to denote a secret-
key encryption scheme. We define a pseudorandom secret-key encryption scheme to be a
secret-key encryption scheme whose ciphertexts are indistinguishable from random. It is a
standard result that pseudorandom secret-key encryption schemes can be built from one-way
functions.

Key Exchange. A key-exchange protocol Λ is a two-party protocol executed between two
parties P0 and P1, where each party outputs a key at the end of the protocol. The correctness
guarantee for key-exchange Protocols requires that the two outputted keys be equal with
overwhelming probability. The security guarantee for key-exchange protocols requires that
(T,K) c

≈ (T,K$), where T is a key-exchange protocol transcript, K is the shared key
established in T , and K$ is a random unrelated key.

We define a pseudorandom key-exchange protocol to be a key-exchange protocol whose
transcripts are distributed indistinguishably from random. That is, a pseudorandom key-
exchange protocol has the stronger guarantee that (T,K) c

≈ (U,K$) where U is the uniform
distribution over message sequences of the appropriate length, where messages are drawn
randomly from the message space of Λ.

The classical protocol of Diffie and Hellman [11] is pseudorandom; in fact, its messages
are uniformly random over a cyclic group G. However, the constructions in this paper assume
a key-exchange protocol whose messages are pseudorandom over bit strings. In fact, it is
possible to transform a key-exchange protocol whose messages are pseudorandom over an
arbitrary domain G ⊆ {0, 1}` into a key-exchange protocol whose messages are pseudorandom
over bit strings. Proposition 4, below, gives an encoding and decoding algorithm to transform
uniformly random messages in G into a sequence of uniformly random messages in {0, 1}`.
The encoding and decoding algorithms run in polynomial time as long as the density of
messages |G|2` is noticeable (i.e., at least 1

κc for some c ≥ 1). This is the case, for example,
when the Diffie-Hellman protocol is instantiated with the group of quadratic residues modulo
a safe prime (in which case the density of message is constant close to 1

2 ).

I Proposition 4. Let G be a subset of {0, 1}` and define p = κ2`

|G| . There is an encoding
algorithm E : G→ ({0, 1}`)p and a decoding algorithm D : ({0, 1}`)p → G ∪ {⊥} that satisfy
the following properties:
1. Correctness: for all g ∈ G, Pr

[
D(E(g)) 6= g

]
is negligible in κ.

2. Randomness: for uniformly random g ← G, E(g) is uniformly random over ({0, 1}`)p.
Explicit descriptions of algorithms E,D are given in the full version of this paper.

2.2 Extractors
Next, we give standard definitions of two-source and seeded extractors.

I Definition 5. The family 2Ext : {0, 1}n × {0, 1}n′ → {0, 1}` is a (k1, k2, ε) two-source ex-
tractor if for all κ ∈ N and for all pairs (X,Y ) of independent random variables over
{0, 1}n(κ) × {0, 1}n′(κ) such that H∞(X) ≥ k1(κ) and H∞(Y ) ≥ k1(κ), it holds that
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∥∥2Extκ(X,Y )− U`(κ)
∥∥

s ≤ ε(κ). We say that 2Ext is strong w.r.t. the first input if it
satisfies the stronger property that

∥∥(X, 2Extκ(X,Y ))− (X,U`(κ))
∥∥

s ≤ ε(κ). A strong two-
source extractor w.r.t. the second input is defined analogously. Finally, we say that 2Ext
is a (k, ε) same-source extractor if n = n′ and the extractor output is only required to
be statistically close to uniform when (X,Y ) is a pair of i.i.d. random variables with
H∞(X) = H∞(Y ) ≥ k(κ).

I Definition 6. The family Ext : {0, 1}n × {0, 1}n′ → {0, 1}` is a (k, ε) seeded extractor if
for all κ ∈ N and any random variable X over {0, 1}n′(κ) such that H∞(X) ≥ k(κ), it holds
that

∥∥Extκ(Un(κ), X)− U`(κ)
∥∥

s ≤ ε(κ). We say moreover that Ext is strong if it satisfies the
stronger property that

∥∥(Un(κ),Extκ(Un(κ), X))− (Un(κ), U`(κ))
∥∥

s ≤ ε(κ).

3 Subliminal Communication

Conversation Model. The protocols we will construct take place over a communication
between two parties P0 and P1 alternatingly sending each other ciphertexts of a public-key
encryption scheme. W.l.o.g., we assume that P0 initiates the communication, and that
communication occurs over a sequence of exchange-rounds each of which comprises two
sequential messages: in each exchange-round, one party Pb sends a message to P1−b and
then P1−b sends a message to Pb. Let mb,i denote the plaintext message sent by Pb to P1−b
in exchange-round i, and let mi = (m0,i,m1,i) denote the pair of messages exchanged. For
i ≥ 1, let us denote by τ 0,i = (m1, . . . ,mi−1) and τ 1,i = (m1, . . . ,mi−1,m0,i) the plaintext
transcripts available to P0 and P1 respectively during exchange-round i, in the case when P0
sends the first message in exchange-round i.7 We define τ 0,0 and τ 1,0 to be empty lists (i.e.,
empty starting transcripts). (Note that when a notation contains both types of subscripts,
we write the subscripts denoting the party and round in blue and red respectively, to improve
readability.)

Recall that our adversary has the power to decrypt all ciphertexts under its chosen
public-key encryption scheme E. Intuitively, it is therefore important that the plaintext
conversation between P0 and P1 appears innocuous (and does not, for example, consist of
ciphertexts of another encryption scheme). To model this, we assume the existence of a
next-message distributionM, which outputs a next innocuous message given the transcript
of the plaintext conversation so far. This is denoted by mb,i ←M(τ b,i).

In all the protocols we consider, the symbol s is used to denote internal state kept
locally by P0 and P1. It is implicitly assumed that each party’s state contains an up-to-date
transcript of all messages received during the protocol. Parties may additionally keep other
information in their internal state, as a function of the local computations they perform.
For i ≥ 1, sb,i denotes the state of Pb at the conclusion of exchange-round i. Initial states
sb,0 = ∅ are empty.

We begin with a simpler definition that only syntactically allows for the transmission of a
single message (Definition 7). This both serves as a warm-up to the multi-message definition
presented next (Definition 8), and will be used in its own right to prove impossibility results.

I Definition 7. A subliminal communication scheme is a two-party protocol:

ΠE =
(
ΠE

0,1,ΠE
1,1,ΠE

0,2,ΠE
1,2, . . . ,ΠE

0,r,ΠE
1,r; ΠE

1,out
)

7 If instead P1 spoke first in round i, then τ 0,i would contain m1,i, and τ 1,i would not contain m0,i.



T. Horel, S. Park, S. Richelson, and V. Vaikuntanathan 42:11

where r ∈ poly is the number of exchange-rounds and each ΠE
b,i is a PPT algorithm with

oracle access to the algorithms of a public-key encryption scheme E. Party P0 is assumed
to receive as input a message msg (of at least one bit) that is to be conveyed to P1 in an
undetectable fashion. The algorithms ΠE

b,i are used by Pb in round i, respectively, and ΠE
1,out

denotes the algorithm run by P1 to produce an output msg′ at the end of the protocol.
A subliminal communication scheme must satisfy the following syntax, correctness and

security guarantees.

Syntax. In each exchange-round i = 1, . . . , r:
1. P0 performs the following steps:

a. Sample “innocuous message” m0,i ←M(τ 0,i−1).
b. Generate ciphertext and state (c0,i, s0,i)← ΠE

0,i(msg,m0,i, pk1, s0,i−1).
c. Locally store s0,i and send c0,i to P1.

2. Then, P1 performs the following steps:8
a. Sample “innocuous message” m1,i ←M(τ 1,i−1).
b. Generate ciphertext and state (c1,i, s1,i)← ΠE

1,i(m1,i, pk0, s1,i−1).
c. Locally store s1,i and send c1,i to P0.
After r rounds, P1 computes msg′ = ΠE

1,out(sk1, s1,r) and halts.
Correctness. For any msg ∈ {0, 1}κ, if P0 and P1 play ΠE honestly, then msg′ =
msg with probability 1 − negl(κ). The probability is taken over the key generation
(pk0, sk0), (pk1, sk1)← E.Gen and the randomness of the protocol algorithms, as well as
the message distributionM.
Subliminal Indistinguishability. For any semantically secure public-key encryption
scheme E, any msg ∈ {0, 1}κ and any next-message distributionM, for (pki, ski)← E.Gen,
i ∈ {0, 1}, the following distributions are computationally indistinguishable:

Ideal(pk0, sk0, pk1, sk1,M): SubliminalΠ(msg, pk0, sk0, pk1, sk1,M):
for i = 1, . . . , r:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
c0,i ← E.Enc(pk1,m0,i)
c1,i ← E.Enc(pk0,m1,i)

output
(
pk0, sk0, pk1, sk1; (cb,i)b∈{0,1},i∈[r]

)

for i = 1, . . . , r:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
(c0,i, s0,i)← ΠE

0,i(msg,m0,i, pk1, s0,i−1)
(c1,i, s1,i)← ΠE

1,i(m1,i, pk0, s1,i−1)
output

(
pk0, sk0, pk1, sk1; (cb,i)b∈{0,1},i∈[r]

)
If the subliminal indistinguishability requirement is satisfied only for next-message distri-
butionsM in a restricted set M, rather than for anyM, then Π is said to be a subliminal
communication scheme for M.

For simplicity, Definition 7 presents a communication scheme in which only a single hidden
message msg is transmitted. More generally, it is desirable to transmit multiple messages,
and bidirectionally, and perhaps in an adaptive manner.9 In multi-message schemes, it may
be beneficial for efficiency that the protocol have a two-phase structure where some initial

8 Note that the steps executed by P0 and P1 are entirely symmetric except in the following two aspects:
first, P0’s input msg is present in step 1b but not in step 2b; and secondly, the state s1,i−1 used in
step 2b contains the round-i message c0,i, whereas the state s0,i−1 used in step 1b depends only on the
transcript until round i− 1.

9 That is, the messages to be transmitted may become known as the protocol progresses, rather than all
being known at the outset. This is the case, for example, if future messages depend on responses to
previous ones.
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preprocessing is done in the first phase, and then the second phase can thereafter be invoked
many times to transmit different hidden messages.10 This is a useful notion later in the
paper, for our constructions, so we give the definition of a multi-message scheme here.

I Definition 8. A multi-message subliminal communication scheme is a two-party protocol
defined by a pair (Φ,Ξ) where Φ (“Setup Phase”) and Ξ (“Communication Phase”) each
define a two-party protocol. Each party outputs a state at the end of Φ, which it uses as
an input in each subsequent invocation of Ξ. An execution of a multi-message subliminal
communication scheme consists of an execution of Φ followed by one or more executions of Ξ.
More formally:

ΦE =
(
ΦE

0,1,ΦE
1,1,ΦE

0,2,ΦE
1,2, . . . ,ΦE

0,r,ΦE
1,r
)

ΞE =
(
ΞE

0,1,ΞE
1,1,ΞE

0,2,ΞE
1,2, . . . ,ΞE

0,r′ ,ΞE
1,r′ ; ΞE

1,out
)

where r, r′ ∈ poly are the number of exchange-rounds in Φ and Ξ respectively. and where each
ΦE
b,i,ΞE

b,i is a PPT algorithm with oracle access to the algorithms of a public-key encryption
scheme E. The protocol must satisfy the following syntax, correctness and security guarantees.

Syntax. In each exchange-round i = 1, . . . , r of Φ: P0 executes the following steps for
b = 0, and then P1 executes the same steps for b = 1.
1. Sample “innocuous message” mb,i ←M(τ b,i−1).
2. Generate ciphertext and state (cb,i, sb,i)← ΦE

b,i(mb,i, pk1−b, sb,i−1).
3. Locally store sb,i and send cb,i to P1−b.
After the completion of Φ, either party may initiate Ξ by sending a first message of the Ξ
protocol (with respect to a message msg to be steganographically hidden, known to the
initiating party). Let PS and PR denote the initiating and non-initiating parties in an
execution of Ξ, respectively.11 Let msg ∈ {0, 1}κ be the hidden message that PS is to
transmit to PR in an undetectable fashion during an execution of Ξ.
The execution of Ξ proceeds as follows over exchange-rounds i′ = 1, . . . , r′:
PS acts as follows:
1. Sample mS,r+i′ ←M(τS,r+i′−1).
2. Generate (cS,r+i′ , sS,r+i′)← ΞE

0,i′(msg,mS,r+i′ , pkR, sS,r+i′−1).
3. Locally store sS,r+i′ and send cS,r+i′ to PR.
PR acts as follows:
1. Sample mR,r+i′ ←M(τ ′R,r+i′−1).
2. Generate (cR,r+i′ , sR,r+i′)← ΞE

1,i′(mR,r+i′ , pkS , sR,r+i′−1).
3. Locally store sR,r+i′ and send cR,r+i′ to PS .

At the end of an execution of Ξ, PR computes msg′ = ΞE
1,out(sk1, s1,r+r′).

Correctness. For any msg ∈ {0, 1}κ, if P0 and P1 execute (Φ,Ξ) honestly, then
for every execution of Ξ, the transmitted and received messages msg and msg′ are
equal with overwhelming probability. The probability is taken over the key generation
(pk0, sk0), (pk1, sk1)← E.Gen and the randomness of the protocol algorithms, as well as
the message distributionM.

10As a concrete example: consider a protocol for transmitting multiple encrypted messages with a one-time
“phase 1” consisting of key exchange, and a “phase 2” encompassing the ciphertext transmission which
can be invoked many times.

11 Subscripts S,R ∈ {0, 1} stand for “sender” and “receiver,” respectively.
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Subliminal Indistinguishability. For any semantically secure public-key encryption
scheme E, any polynomial p = p(κ), any sequence of hidden messages ~msg = (msgi)i∈[p] ∈
({0, 1}κ)p, any sequence of bits ~b = (b1, . . . , bp) ∈ {0, 1}p and any next-message distribu-
tionM, for (pkb, skb)← E.Gen, b ∈ {0, 1} the following distributions are computationally
indistinguishable:

Ideal(pk0, sk0, pk1, sk1,M): SubliminalΦ,Ξ( ~msg,~b, pk0, sk0, pk1, sk1,M):
for i = 1, . . . , r + pr′:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
c0,i ← E.Enc(pk1,m0,i)
c1,i ← E.Enc(pk0,m1,i)

output:(
pk0, sk0, pk1, sk1; (cb,i)b∈{0,1},i∈[r+pr′]

)

for i = 1, . . . , r:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
(c0,i, s0,i)← ΦE

0,i(msg,m0,i, pk1, s0,i−1)
(c1,i, s1,i)← ΦE

1,i(m1,i, pk0, s1,i−1)
for j = 1, . . . , p:
let β = bj and β̄ = 1− bj
for i′ = 1, . . . , r′:

let ι = r + (j − 1)r′ + i′

mβ,ι ←M(τβ,ι)
mβ̄,ι ←M(τ β̄,ι)
(cβ,ι, sβ,ι)← ΞE

β,i′ (msg,mβ,ι, pkβ̄ , sβ,ι−1)
(cβ̄,ι, sβ̄,ι)← ΞE

β̄,i′ (mβ̄,ι, pkβ , sβ̄,ι−1)
output:(

pk0, sk0, pk1, sk1; (cb,i)b∈{0,1},i∈[r+pr′]
)

If the subliminal indistinguishability requirement is satisfied only for M in a restricted
set M, rather than for any M, then (Φ,Ξ) is said to be a multi-message subliminal
communication scheme for M.

4 Impossibility Results

4.1 Locally Decodable Subliminal Communication Schemes

A first attempt at achieving subliminal communication might consider schemes with the
following natural property: the receiving party P1 extracts hidden bits one ciphertext at a
time, by the application of a single decoding function. We refer to such schemes as locally
decodable and our next impossibility theorem shows that non-trivial locally decodable schemes
do not exist if the encryption scheme E is chosen adversarially.

I Theorem 9. For any locally decodable protocol Π satisfying the syntax of a single-message
subliminal communication scheme (Definition 7), there exists a semantically secure public-key
encryption scheme E such that E violates the correctness condition of Definition 7. Therefore,
no locally decodable protocol Π is a subliminal communication scheme.

I Remark. The essence of the above theorem is the impossibility of deterministic extraction:
no single deterministic function can deterministically extract from ciphertexts of arbitrary
encryption schemes. The way to bypass this impossibility is to have the extractor depend
on the encryption scheme. Note that multiple-source extraction, which is used in our
constructions in the subsequent sections, implicitly do depend on the underlying encryption
scheme, since the additional sources of input depend on the encryption scheme and thus can
be thought of as “auxiliary input” that is specific to the encryption scheme at hand.
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4.2 Steganography for Adversarial Cover Distributions
Our second impossibility result concerns a much more general class of communication schemes,
which we call steganographic communication schemes. Subliminal communication schemes,
as well as the existing notions of public-key steganography and steganographic key exchange
from the steganography literature, are instantiations of the more general definition of a
(multi-message) steganographic communication scheme. To our knowledge, the general notion
of a steganographic communication scheme has not been formalized in this way in prior work.
In the context of this work, the general definition is helpful for proving broad impossibilities
across multiple types of steganographic schemes.

As mentioned in the introduction, a limitation of all existing results in the steganographic
literature, to our knowledge, is that they assume that the cover distribution – i.e., the
distribution of innocuous objects in which steganographic communication is to be embedded
– is fixed a priori. In particular, the cover distribution is assumed not to depend on the
description of the steganographic communication scheme. The impossibility result given
in Section 4.1 is an example illustrative of the power of adversarially choosing the cover
distribution: Theorem 9 says that by choosing the encryption scheme E to depend on a given
subliminal communication scheme, an adversary can rule out the possibility of any hidden
communication at all.

Our next impossibility result (Theorem 10) shows that if the cover distribution is chosen
adversarially, then non-trivial steganographic communication is impossible.

I Theorem 10. Let Π be a protocol with the syntax of a steganographic communication
scheme. Then for any k ∈ N, there exists a cover distribution C of conditional min-entropy k
such that steganographic indistinguishability of Π does not hold.

We have elected to present the definition of a steganographic communication scheme as
well as the proof of Theorem 10 in the full version of this paper [17] since the definition
introduces a set of new notation only used for the corresponding impossibility result, and
both the definition and the impossibility result are somewhat tangential to the main results
of this work, whose focus is on subliminal communication schemes.

5 Construction of the Subliminal Scheme

The goal of this section is to establish the following theorem, which states that our construction
(Φ?,Ξ?) is a subliminal communication scheme when instantiated with a pseudorandom
key-exchange protocol (such as Diffie-Hellman).

I Theorem 11. The protocol (Φ?,Ξ?) given in Definition 17, when instantiated with a
pseudorandom key-exchange protocol Λ, is a multi-message subliminal communication scheme.

The description of our scheme can be found in the following subsections. Our construction
makes no assumption on the message distribution M and in particular holds when the
exchanged plaintexts (of the adversarial encryption scheme E) are a fixed, adversarially
chosen sequence of messages. An informal outline of the construction is given next.

I Definition 12. Outline of the construction.
1. Setup Phase Φ?

a. A Õ(log κ)-bit string S is established between P0 and P1 by extracting randomness
from pairs of consecutive ciphertexts. (Protocol overview in Section 5.1.)
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b. Let Ext be a strong seeded extractor, and let S serve as its seed. By rejection-sampling
ciphertexts c until ExtS(c) = str, either party can embed a random string str of their
choice in the conversation. (Protocol overview in Section 5.2.) By embedding in this
manner the messages of a pseudorandom key-exchange protocol, both parties establish
a shared secret sk∗.12

2. Communication Phase Ξ?
Both parties can now communicate arbitrary messages of their choice by (1) encrypting
them using a pseudorandom secret-key encryption scheme SKE using sk∗ as the secret
key, and (2) embedding the ciphertexts of SKE using the rejection-sampling technique
described in Step 1b.13 (Detailed protocol in Section 5.3.)

The full protocol is given in Section 5.3.

5.1 Establishing a Shared Seed
In this section, we give a protocol which allows P0 and P1 to establish a random public
parameter which will be used in subsequent phases of our subliminal scheme. This can be
thought of as drawing a subliminal scheme at random from a family of subliminal schemes.
The parameter is public in the sense that any eavesdropper gains knowledge of it. A crucial
point is that the random draw occurs after the adversarial encryption scheme E is fixed, thus
bypassing the impossibility results of Section 4.

Our strategy is simple: extract randomness from pairs of ciphertexts. Since the extractor
does not receive the key, semantic security holds with respect to the extractor: a pair of
ciphertexts for two arbitrary messages is indistinguishable from two encryptions of a fixed
message; thus, a same-source extractor suffices for our purposes. Even though semantic
security guarantees only ω(log κ) min-entropy of ciphertexts, we can use the “greater-than”
extractor (Definition 13) applied to pairs of ciphertexts, and obtain Theorem 14.

I Definition 13. The greater-than extractor GT is defined by GT(x, y) = 1[x ≥ y].

I Theorem 14. Let E be a semantically secure public-key encryption scheme and let ρ ∈ poly.
Define random variables as follows.

For b ∈ {0, 1}, let Kb = (PKb, SKb) = E.Gen(1κ).
For b ∈ {0, 1} and i ∈ [2ρ], let Cb,i = E.Enc(PK1−b,mb,i) representing the ciphertexts
exchanged between P0 and P1 during 2ρ exchange-rounds.
Let S =

(
GT(C0,1, C0,2),GT(C1,1, C1,2), . . . ,GT(C1,2ρ−1, C1,2ρ)

)
.

There exists a negligible function ε such that ‖(K0,K1, S)− (K0,K1, U2ρ)‖s ≤ ε.

5.2 Embedding Random Strings
In this section, we assume that both parties have access to a public parameter S and construct
a protocol which allows for embedding of uniformly random strings into ciphertexts of an
adversarially chosen encryption scheme E, as required by Steps 1b and 2 of the construction
outline (Definition 12). The security guarantee is that for a uniformly random parameter S
and uniformly random strings to be embedded, the ciphertexts of E with embedded random

12An eavesdropper who knows S can compute str. Nonetheless, (1) sk∗ is unknown to the eavesdropper
by the security of the key-exchange protocol and (2) the transcript is indistinguishable from one in
which no key exchange occurred at all, due to the pseudorandomness of the key-exchange messages.

13Again, an eavesdropper could know the SKE ciphertexts exchanged, if he knew the seed S, but could
not distinguish the SKE ciphertexts from truly random strings, and thus could not tell whether any
subliminal communication was occuring at all. See also footnote 12.
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Algorithm 1 Rejection sampler ΣE,S .
Public parameter: S (a d-bit seed).
Input: (str,m, pk) where str is the string to be embedded.
1. Generate encryption c← E.Enc(pk,m).
2. If Ext(S, c) = str, then output c. Else, go back to step 1.

strings are indistinguishable from ciphertexts of E produced by direct application of E.Enc,
even to an adversary who knows the decryption keys of E. This can be thought of as a
relaxation of subliminal indistinguishability (Definition 7) where the two main differences are
that (1) the parties have shared knowledge of a random seed, and (2) indistinguishability only
holds when embedding a random string, rather than for arbitrary strings. Our construction
(Theorem 15) relies on a strong seeded extractor that can extract logarithmically many bits
from sources of super-logarithmic min-entropy, we note that almost universal hashing is a
simple such extractor.

I Theorem 15. Let Ext : {0, 1}d × {0, 1}n → {0, 1}v be a strong seeded extractor for super-
logarithmic min-entropy with v = O(log κ), and let E be a semantically secure encryption
scheme with ciphertext space C = {0, 1}n. Let ΣE,S be defined as in Algorithm 1. Then the
following guarantees hold:

1. Correctness: for any S ∈ {0, 1}d and str ∈ {0, 1}v, if c = ΣE,S(str,m, pk), and str′ =
Ext(S, c), then str′ = str.

2. Security: let (PK,SK) = E.Gen(1κ), C = E.Enc(PK,m) and C ′ = ΣE,Ud(Uv,m, PK);
then ‖(PK,SK,Ud, C)− (PK,SK,Ud, C ′)‖s ≤ ε(κ) for some negligible function ε.

I Remark. Rejection sampling is a simple and natural approach that has been used by prior
work in the steganographic literature, such as [2]. Despite the shared use of this common
technique, our construction is more different from prior art than it might seem at first glance.
The novelty of our construction arises from the challenges of working in a model with a
stronger adversary who can choose the distribution of ciphertexts (i.e., the adversary gets
to choose the public-key encryption scheme E). We manage to bypass the impossibilities
outlined in Section 4 notwithstanding this stronger adversarial model, and in contrast to
prior work, construct a protocol to established a shared seed from scratch, rather than simply
assuming that one has been established in advance.

5.3 Full Protocol (Φ?,Ξ?)
I Definition 16 (Key-exchange protocol syntax). A key-exchange protocol is a two-party
protocol defined by Λ = (Λ0,1,Λ1,1,Λ0,2,Λ1,2, . . . ,Λ0,k,Λ1,k,Λ0,out,Λ1,out). We assume k
simultaneous communication rounds, where Λb,i represents the computation performed by
Pb in the ith round. The parties are stateful and their state is implicitly updated at each
round to contain the transcript so far and any local randomness generated so far. Each Λb,i
takes as input the transcript up to round i− 1 and the state of Pb, and outputs a message
λb,i to be sent in the ith round. For notational simplicity, we write explicitly only the first
input to Λb,i, and leave the second input (i.e., the state) implicit. Λ0,out,Λ1,out are run by
P0, P1 respectively to compute the shared secret at the conclusion of the protocol.

Next, we give the full construction of (Φ?,Ξ?) following the outline in Definition 12.

I Definition 17. (Φ?,Ξ?) is parametrized by the following.
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Ext : {0, 1}d × {0, 1}n → {0, 1}v, a strong seeded extractor.
Λ, a pseudorandom key-exchange protocol with `-bit messages.14
SKE, a pseudorandom secret key encryption scheme with ξ-bit ciphertexts.

We define each phase of our construction in turn.

1. Setup Phase Φ?1

a. Establishing a d-bit shared seed2

For b ∈ {0, 1} and i ∈ {1, . . . , d}, Φ?
b,i(mb,i, pk1−b, sb,i−1) outputs a ciphertext3

cb,i = E.Enc(pk1−b,mb,i) and sets the updated state sb,i to be the transcript of all4

protocol messages sent and received so far.5

At the conclusion of the d exchange-rounds, each party updates his state to contain6

the seed S which is defined by7

S =
(
GT(c0,1, c0,2),GT(c1,1, c1,2), . . . ,GT(c1,d−1, c1,d)

)
.8

This seed S is assumed to be accessible in all future states throughout both phases9

during the remainder of the protocol.10

b. Subliminal key exchange11

Let ν = `
v . Subliminal key exchange occurs over k · ν exchange-rounds.12

For j ∈ {1, . . . , k} and b ∈ {0, 1}:13

Pb retrieves from his state the key-exchange transcript so far (λb,j′)b∈{0,1},j′<j .14

Pb computes the next key-exchange message λb,j ← Λb,j
(
(λb,j′)b∈{0,1},j′<j

)
.15

Pb breaks λb,j into v-bit blocks λb,j = λ1
b,j || . . . ||λνb,j .16

The ν blocks are transmitted sequentially as follows. For ι ∈ {1, . . . , ν}:17

Let i = d+ (j − 1)ν + ι.18

Φ?
b,i(mb,i, pk1−b, sb,i−1) outputs cb,i ← ΣE,S(λιb,j ,mb,i, pk1−b) and sets the19

updated state sb,i to contain the transcript of all protocol messages sent and20

received so far.21

At the conclusion of the ι exchange-rounds, each party b ∈ {0, 1} updates his22

state to contain the jth key-exchange message λ1−b,j computed as follows:23

λ1−b,j = Ext(S, cb,d+(j−1)ν+1)|| . . . ||Ext(S, cb,d+jν)24

At the conclusion of the k ·ν exchange rounds, each party updates his state to contain25

the secret key sk∗ computed as: sk∗ = SKE.Gen
(
1κ; Λout

(
(λb,j)b∈{0,1},j∈[k]

))
.26

2. Communication Phase Ξ?27

Each communication phase occurs over r′ = ξ/v exchange-rounds.28

Let β ∈ {0, 1} be the initiating party and let β̄ = 1− β.29

Pβ performs the following steps.30

Generate c∗ ← SKE.Enc(sk∗,msg).31

Break c∗ into v-bit blocks c∗ = c∗1|| . . . ||c∗r′ .32

For i′ ∈ {1, . . . , r′}:33

Let i′′ = r + i′.34

Ξ?0,i′(msg,m0,i′′ , pkβ̄ , sβ,i′′−1) outputs cβ,i′′ ← ΣE,S(c∗i′ ,mβ,i′′ , pkβ̄).35

Ξ?1,i′(mβ̄,i′′ , pkβ , sβ̄,i′′−1) outputs cβ̄,i′′ ← E.Enc(pkβ ,mβ̄,i′′).36

14 In presenting our construction (Φ?,Ξ?), we do not denote the state of parties w.r.t. the key-exchange
protocol Λ by a separate variable, but assume that it is part of the state sb,i of the overall protocol.
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Both parties update their state to contain the transcript of all protocol messages37

exchanged so far.38

After the r′ exchange-rounds, Pβ̄ computes c∗∗ = Ext(S, cβ,r+1)|| . . . ||Ext(S, cβ,r+r′).39

Then, Pβ̄ outputs msg′ ← SKE.Dec(sk∗, c∗∗). (That is, Ξ?1,out(sβ̄,r′) = msg′.)40

6 Open problems

Deterministic Extraction. Our impossibility result in Theorem 9 holds because the adver-
sary can choose the encryption scheme E as a function of a given candidate subliminal scheme.
However, note that under the additional assumption that E is restricted to a predefined
class E of encryption schemes, we could bypass this impossibility as long as a deterministic
extractor that can extract randomness from ciphertexts of any encryption scheme in E exists.
We are only aware of two deterministic extractors leading to a positive result for restricted
classes of encryption schemes:

if an upper bound on the circuit size of E is known, then we can use the deterministic
extractor from [21]. This extractor relies on strong complexity-theoretic assumptions and
requires the sources to have min-entropy (1− γ)n for some unspecified constant γ.
if E is computed by a circuit of constant depth (AC0), then the deterministic extractor
of [22] can be used and requires

√
n min-entropy.

Both these extractors have a min-entropy requirement which is not satisfied by ciphertexts
of arbitrary encryption schemes. However, it would be interesting to consider improved
constructions for the case of specific encryption schemes, or to consider extractors specifically
for encryption circuits as opposed to arbitrary circuits satisfying a min-entropy requirement.
This would also have direct implications for the efficiency of the subliminal scheme of
Section 5.2: indeed, one could then skip Step 1a and use a deterministic extractor directly in
Steps 1b and 2, thus saving Õ(log κ) exchange-rounds in the setup phase.

Multi-Source Extraction. Another interesting question is whether multi-source extractors
for the specific case when the sources are independent and identically distributed can achieve
better parameters than extractors for general independent sources. We already saw that
a very simple extractor (namely, the “greater-than” function) works for i.i.d. sources and
extracts one bit with negligible bias, even when the sources only have ω(log κ) min-entropy.
The non-constructive result of [9] guarantees the existence of a two-source extractor of
negligible bias and output length ω(log κ) for sources of min-entropy ω(log κ). However,
known explicit constructions are far from achieving the same parameters, and improving
them in the specific case of identically distributed sources is an interesting open problem
which was also mentioned in [3].
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Abstract
Integer programs with a constant number of constraints are solvable in pseudo-polynomial time.
We give a new algorithm with a better pseudo-polynomial running time than previous results.
Moreover, we establish a strong connection to the problem (min, +)-convolution. (min, +)-
convolution has a trivial quadratic time algorithm and it has been conjectured that this cannot be
improved significantly. We show that further improvements to our pseudo-polynomial algorithm
for any fixed number of constraints are equivalent to improvements for (min, +)-convolution.
This is a strong evidence that our algorithm’s running time is the best possible. We also present
a faster specialized algorithm for testing feasibility of an integer program with few constraints
and for this we also give a tight lower bound, which is based on the SETH.
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1 Introduction

Vectors v(1), . . . , v(n) ∈ Rm that sum up to 0 can be seen as a circle in Rm that walks from 0
to v(1) to v(1) + v(2), etc. until it reaches v(1) + . . .+ v(n) = 0 again. The Steinitz Lemma [17]
says that if each of the vectors is small with respect to some norm, we can reorder them in a
way that each point in the circle is not far away from 0 w.r.t. the same norm.

Recently Eisenbrand and Weismantel found a beautiful application of this lemma in the
area of integer programming [8]. They looked at ILPs of the form max{cTx : Ax = b, x ∈
Zn≥0}, where A ∈ Zm×n, b ∈ Zm and c ∈ Zn and obtained a pseudo-polynomial algorithm in
∆, the biggest absolute value of an entry in A, when m is treated as a constant. The running
time they achieve is n ·O(m∆)2m · ‖b‖21 for finding the optimal solution and n ·O(m∆)m · ‖b‖1
for finding only a feasible solution. This improves on a classic algorithm by Papadimitriou,
which has a running time of O(n2m+2 · (m∆ + m‖b‖∞)(m+1)(2m+1)) [15]. The basic idea
in [8] is that a solution x∗ for the ILP above can be viewed as a walk in Zm starting at 0 and
ending at b. Every step is a column of the matrix A: For every i ∈ {1, . . . , n} we step x∗i
times in the direction of Ai (see left picture in Figure 1). By applying the Steinitz Lemma
they show that there is an ordering of these steps such that the walk never strays off far from
the direct line between 0 and b (see right picture in Figure 1). They construct a directed
graph with one vertex for every integer point near the line between 0 and b and create an
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Figure 1 Steinitz Lemma in Integer Programming.

edge from u to v, if v− u is a column in A. The weight of the edge is the same as the c-value
of the column. An optimal solution to the ILP can now be obtained by finding a longest
path from 0 to b. This can be done in the mentioned time, if one is careful with circles.

In this paper, we present an alternative way to apply the Steinitz Lemma to the same
problem. Our approach does not reduce to a longest path problem, but rather solves the
ILP in a divide and conquer fashion. Using the Steinitz Lemma and the intuition of a walk
from 0 to b, we notice that this walk has to visit a vector b′ near b/2 at some point. We
guess this vector and solve the problem with Ax = b′ and Ax = b− b′ independently. Both
results can be merged to a solution for Ax = b. In the sub-problems the norm of b and the
norm of the solution are roughly divided in half. We use this idea in a dynamic program and
speed up the process of merging solutions using algorithms for convolution problems. This
approach gives us better running times for both the problem of finding optimal solutions
and for testing feasibility only. We complete our study by giving (almost) tight conditional
lower bounds on the running time in which such ILPs can be solved.

1.1 Detailed description of results
In the running times we give, we frequently use logarithmic factors like log(k) for some
parameter k. To handle the values k ∈ {0, 1} formally correct, we would need to write
log(k + 1) + 1 instead of log(k) everywhere. This is ignored for simplicity of notation. We
are assuming the word RAM model with word size O(m log(m∆) + log(‖b‖∞) + log(‖c‖∞))
(see Preliminaries for details).

Optimal solutions for ILPs

We show that a solution to max{cTx : Ax = b, x ∈ Zn≥0} can be found in time O(m∆)2m ·
log(‖b‖∞) +O(nm). If given a vertex solution to the fractional relaxation, we can even get to
O(m∆)2m +O(nm). The running time can be improved if there exists a truly sub-quadratic
algorithm for (min, +)-convolution (see Section 4.1 for details on the problem). However,
it has been conjectured that no such algorithm exists and this conjecture is the base of
several lower bounds in fine-grained complexity [7, 14, 3]. We show that for every m the
running time above is essentially the best possible unless the (min, +)-convolution conjecture
is false. More formally, for every m there exists no algorithm that solves ILP in time
f(m) · (n2−δ + (∆ + ‖b‖∞)2m−δ) for some δ > 0 and an arbitrary computable function f ,
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unless there exists a truly sub-quadratic algorithm for (min, +)-convolution. Indeed, this
means there is an equivalence between improving algorithms for (min, +)-convolution and for
ILPs of fixed number of constraints. It is notable that this also rules out improvements when
both ∆ and ‖b‖∞ are small. Our lower bound does leave open some trade-off between n and
O(m∆)m like for example n·O(m∆)m ·log(‖b‖∞), which would be an interesting improvement
for sparse instances, i.e., when n� (2∆+1)m. A running time of nf(m) · (m∆+m‖b‖∞)m−δ,
however, is not possible (see feasibility below).

Feasibility of ILPs

Testing only the feasibility of an ILP is easier than finding an optimal solution. It can be
done in time O(m∆)m · log(∆) · log(∆ + ‖b‖∞) +O(nm) by solving a Boolean convolution
problem that has a more efficient algorithm than the (min, +)-convolution problem that
arises in the optimization version. Under the Strong Exponential Time Hypothesis
(SETH) this running time is tight except for logarithmic factors. If this conjecture holds,
there is no nf(m) · (m∆ + m‖b‖∞)m−δ time algorithm for any δ > 0 and any computable
function f .

1.2 Other related work
The case where the number of variables n is fixed and notm as in this paper behaves somewhat
differently. There is a 2O(n log(n)) · |I|O(1) time algorithm (|I| being the encoding length of
the input), whereas an algorithm of the kind f(m) · |I|O(1) (or even |I|f(m)) is impossible
for any computable function f , unless P = NP. This can be seen with a trivial reduction
from Unbounded Knapsack (where m = 1). The 2O(n log(n)) · |I|O(1) time algorithm is due
to Kannan [12] improving over a 2O(n2) · |I|O(1) time algorithm by Lenstra [11]. It is a long
open question whether 2O(n) · |I|O(1) is possible instead [8].

Another intriguing question is whether a running time like (m∆ +m‖b‖∞)O(m) · nO(1) is
still possible when upper bounds on variables are added to the ILP. In [8] an algorithm for
this extension is given, but the exponent of ∆ is O(m2).

As for other lower bounds on pseudo-polynomial algorithms for integer programming,
the only result we are aware of is a bound of no(m/ log(m)) · ‖b‖o(m)

∞ due to Fomin et al. [9],
which is based on the ETH (a weaker conjecture than the SETH). Their reduction implies
that there is no algorithm with running time no(m/ log(m)) · (∆ + ‖b‖∞)o(m), since in their
construction the matrix A is non-negative and therefore columns with entries larger than
‖b‖∞ can be discarded; thus leading to ∆ ≤ ‖b‖∞. As opposed to our bounds, theirs does
not give a precise value for the constant in the exponent.

2 Preliminaries

In this paper we are assuming a word size of O(m log(m∆) + log(‖b‖∞) + log(‖c‖∞)) in the
word RAM model, that is to say, arithmetic operations on numbers of this encoding size take
constant time. When considering m to be a constant, this makes perfect sense. Also, since
we are going to use algorithms with space roughly O(m∆)m, it is only natural to assume
that a single pointer fits into a word.

In the remainder of the paper we will assume that A has no duplicate columns. Note that
we can completely ignore a column i, if there is another identical column i′ with ci′ ≥ ci.
This implies that in time O(nm) +O(∆)m we can reduce to an instance without duplicate
columns and, in particular, with n ≤ (2∆+1)m. The running time can be achieved as follows.
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We create a new matrix for the ILP with all (2∆ + 1)m possible columns (in lexicographic
order) and objective value ci = −∞ for all columns i. Now we iterate over all n old columns
and compute in time O(m) the index of the new column corresponding to the same entries.
We then replace its objective value with the current one if this is bigger. In the upcoming
running times we will omit the additive term O(nm) and assume the duplicates are already
eliminated (O(∆)m is always dominated by actual algorithms running time).

I Theorem 1 (Steinitz Lemma). Let ‖·‖ be a norm in Rm and let v(1), . . . , v(t) ∈ Rm such
that ‖v(i)‖ ≤ 1 for all i and v(1) + · · · + v(t) = 0. Then there exists a permutation π ∈ St
such that for all j ∈ {1, . . . , t}

‖
j∑
i=1

v(π(i))‖ ≤ m.

The proof for boundm is due to Sevast’janov [16] (see also [8] for a good overview). Eisenbrand
and Weismantel observed that the Steinitz Lemma implies the following.

I Corollary 2 ([8]). Let v(1), . . . , v(t) denote columns of A with
∑t
i=1 v

(i) = b. Then there
exists a permutation π ∈ St such that for all j ∈ {1, . . . , t}

‖
j∑
i=1

v(π(i)) − j

t
· b‖∞ ≤ 2m∆.

This can be obtained by inserting (v(i) − b/t)/(2∆), i ∈ {1, . . . , t}, in the Steinitz Lemma.
Note that ‖v(i) − b/t‖∞ ≤ 2∆.

I Lemma 3. Let max{cTx : Ax = b, x ∈ Zn≥0} be bounded and feasible. Then there exists
an optimal solution x∗ with ‖x∗‖1 ≤ O(m∆)m(‖b‖∞ + 1).

A similar bound is proved for example in [15]. However, we can also give a proof via the
Steinitz Lemma.

Proof. Let x∗ be an optimal solution of minimal 1-norm. Let v(1), . . . , v(t) denote the
multiset of columns of A that represent x∗. Assume w.l.o.g. these vectors are ordered as in
the previous corollary. There cannot be a circle of positive value in v(1), . . . , v(t) or else the
ILP would be unbounded. By circle we mean a non-empty subset that sums up to 0 and
we consider the value of the columns with regard to c. In fact, there cannot be a circle of
nonpositive value either, since the 1-norm of the solution is minimal. Hence, each vector in
Zm is visited at most once by the walk v(1), v(1) + v(2), . . . , v(1) + · · ·+ v(t) = b. The number
of integer points a with

‖a− γb‖∞ ≤ 2m∆ (1)

for some γ ∈ [0, 1] is at most O(m∆)m · (‖b‖∞ + 1) and this upper bounds the 1-norm of x∗:
Assume w.l.o.g. ‖b‖∞ > 0 as the case b = 0 is trivial. Take ‖b‖∞ + 1 many points evenly
distributed along the line from 0 to b, i.e., b · 0/‖b‖∞, b · 1/‖b‖∞,. . . , b · ‖b‖∞/‖b‖∞. Then
the distance between two consecutive points is small:∥∥∥∥b · j + 1

‖b‖∞
− b · j

‖b‖∞

∥∥∥∥
∞

=
∥∥∥∥ b

‖b‖∞

∥∥∥∥
∞

= 1.



K. Jansen and L. Rohwedder 43:5

In particular, for every vector of the form γb, γ ∈ [0, 1], there is a point b · j/‖b‖∞ that is not
further away than 1/2. Thus, for every a that satisfies (1), we have a point b · j/‖b‖∞ with∥∥∥∥a− b · j

‖b‖∞

∥∥∥∥
∞
≤ ‖a− γb‖∞ +

∥∥∥∥γb− b · j

‖b‖∞

∥∥∥∥
∞
≤ 2m∆ + 1/2.

To upper bound the number of vectors of type (1), we count the number of vectors within
distance at most 2m∆ + 1/2 to each of the ‖b‖∞ + 1 points. This number is at most
(‖b‖∞ + 1) · (4m∆ + 2)m. This concludes the proof. J

I Corollary 4. By adding a zero column we can assume w.l.o.g., if the ILP is feasible and
bounded, then there exists an optimal solution x∗ with ‖x∗‖1 = U where U is the upper bound
for ‖x∗‖1. By scaling the bound of Lemma 3 to the next power of 2, we can assume that
‖x∗‖1 = 2K where K ∈ N and K ≤ O(m log(m∆) + log(‖b‖∞)).

3 Dynamic Program

In this section we will show how to compute the best solution x∗ to an ILP with the additional
constraint ‖x∗‖1 = 2K . If the ILP is bounded, then with K = O(m log(m∆) + log(‖b‖∞))
and an extra zero column this is the optimum to the ILP (Corollary 4). In Section 3.2 we
discuss how to cope with unbounded ILPs. For every i = K,K − 1, . . . , 0 and every b′ with

‖b′ − 2−i · b‖∞ ≤ 4m∆

we solve max{cTx : Ax = b′, ‖x‖1 = 2K−i, x ∈ Zn≥0}. We start by computing these for
i = K and then iteratively derive solutions for smaller values of i using only the bigger ones.
Ultimately, we will compute a solution for i = 0 and b′ = b.

If i = K, then every solution must consist of exactly one column (‖x‖1 = 1). We can
compute this solution by finding the column that equals b′ should there exist one and set
−∞ otherwise.

Fix some i < K and b′ and let v(1), . . . , v(t) be columns of A that correspond to an optimal
solution to max{cTx : Ax = b′, ‖x‖1 = 2K−i, x ∈ Zn≥0}. In particular, v(1) + · · ·+ v(t) = b′

and t = 2K−i. Assume w.l.o.g. that the v(i) are ordered such that for all j ∈ {0, . . . , t}

‖
j∑
i=1

v(i) − j

t
· b′‖∞ ≤ 2m∆.

Note that v(1), . . . , v(t/2) is an optimal solution to max{cTx : Ax = b′′, ‖x‖1 = 2K−(i+1), x ∈
Zn≥0} where b′′ = v(1) + · · · + v(t/2). Likewise, v(t/2+1), . . . , v(t) is an optimal solution to
max{cTx : Ax = b′−b′′, ‖x‖1 = 2K−(i+1), x ∈ Zn≥0}. We claim that ‖b′′−2−(i+1) ·b‖∞ ≤ 4m∆
and ‖(b′ − b′′)− 2−(i+1) · b‖∞ ≤ 4m∆. This implies that we can look up solutions for b′′ and
b′− b′′ in the dynamic table and their union is a solution for b′. Clearly it is also optimal. We
do not know b′′, but we can guess it: There are only (8m∆ + 1)m candidates. To compute
an entry, we therefore enumerate all possible b′′ and take the two partial solutions (for b′′
and b′ − b′′), where the sum of both values is maximized.
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Proof of claim

We have that,

‖
t/2∑
i=1

v(i) − 2−(i+1) · b‖∞ = ‖
t/2∑
i=1

v(i) − 1
2 · b

′ + 1
2 · b

′ − 2−(i+1) · b‖∞

≤ ‖
t/2∑
i=1

v(i) − 1
2 · b

′‖∞ + ‖1
2 · b

′ − 2−(i+1) · b‖∞ ≤ 2m∆ + 1
2‖b
′ − 2−i · b‖∞ ≤ 4 ·m∆.

In a similar way, we can show that

‖
t∑

i=t/2+1

v(i) − 2−(i+1) · b‖∞ = ‖
t∑

i=t/2+1

v(i) −
t∑
i=1

v(i) + b′ − 2−(i+1) · b‖∞

= ‖1
2 · b

′ −
t/2∑
i=1

v(i) + 1
2 · b

′ − 2−(i+1) · b‖∞

≤ ‖
t/2∑
i=1

v(i) − 1
2 · b

′‖∞ + ‖1
2 · b

′ − 2−(i+1) · b‖∞ ≤ 4 ·m∆.

3.1 Naive running time

The dynamic table has (K+1) ·O(m∆)m entries. To compute an entry, O(n ·m) ≤ O(m∆)m
operations are necessary during initialization and O(m∆)m in the iterative calculations. This
gives a total running time of

O(m∆)2m·(K+1) = O(m∆)2m·(m log(m∆)+log(‖b‖∞)) = O(m∆)2m·(log(∆)+log(‖b‖∞)).

Note that O(m∆)2m = O(m∆)2m · 2m hides factors polynomial in m.

3.2 Unbounded solutions

In the previous dynamic program there is no mechanism for detecting when the ILP is
unbounded. We follow the approach from [8] to handle unbounded ILPs. The ILP max{cTx :
Ax = b, x ∈ Zn≥0} is unbounded, if and only if {x : Ax = b, x ∈ Zn≥0} has a solution and
max{cTx : Ax = 0, x ∈ Zn≥0} has any solution with positive objective value. After running
the dynamic program - thereby verifying that there exists any solution - we have to check if
the latter condition holds. We can simply run the algorithm again on max{cTx : Ax = 0, x ∈
Zn≥0} with K = m · dlog(2m∆ + 1)e. If it returns a positive value, the ILP is unbounded. Let
us argue why this is enough. We need to understand that when there is a positive solution
to max{cTx : Ax = 0, x ∈ Zn≥0}, then there is also a positive solution with 1-norm at most
(2m∆ + 1)m ≤ 2K . Let x∗ be a positive solution to the former ILP with minimal 1-norm,
i.e., cTx∗ > 0 and ‖x∗‖1 minimal. Let v(1), . . . , v(t) be the multiset of columns representing
x∗. We assume that they are ordered as in Corollary 2. If t > (2m∆ + 1)m, then there must
be two identical partial sums

∑j
i=1 v

(i) =
∑k
i=1 v

(i) with j < k. In other words, the circle
can be decomposed into two circles v(1), . . . , v(j), v(k+1), . . . , v(t) and v(j+1), . . . , v(k). One
of these must be a positive solution or else their sum would be negative. This means the
1-norm of x∗ is not minimal. We conclude that t ≤ (2m∆ + 1)m.
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4 Improvements to the running time

4.1 Applying convolution
Can we speed up the computation of entries in the dynamic table? Let Di be the set of
vectors b′ with ‖b′ − 2−i · b‖∞ ≤ 4m∆. Recall, the dynamic programs computes values for
each element in DK , DK−1, . . . , D1. More precisely for the value of b′ ∈ Di we consider
vectors b′′ such that b′′, b′− b′′ ∈ Di+1 and take the maximum sum of the values for b′′, b′− b′′
among all. First consider only the case of m = 1. Here we have that b′ ∈ Di is equivalent to
−4∆ ≤ b′−2−i ·b ≤ 4∆. This problem is well studied. It is a variant of (min, +)-convolution.

(min, +)-convolution
Input: r1, . . . , rn and s1, . . . , sn.
Output: t1, . . . , tn, where tk = mini+j=k ri + sj .

(max, +)-convolution is the counterpart where the maximum is taken instead of the minimum.
The two problems are equivalent. Each of them can be transformed to the other by negating
the elements. We construct an instance of (max, +)-convolution of size 12∆ + 2. We set rj
and sj , j ∈ {1, . . . , 8∆+1} both to the value for b/2i+1− (4∆+1)+ j ∈ Di+1 in the dynamic
table. Set the remaining values of r and s to −∞. Then for b′ = b/2i − (4∆ + 1) + k ∈ Di,
the correct result will be at t4∆+1+k.

(min, +)-convolution admits a trivial O(n2) time algorithm and it has been conjectured
that there exists no truly sub-quadratic algorithm [7]. There does, however, exist an
O(n2/ log(n)) time algorithm [4], which we are going to use. In fact, there is a slightly faster
algorithm with running time n2/2Ω(

√
log(n)) [6].

We can reduce the problem for arbitrary m to a (max, +)-convolution instance of size
O(m∆)m. To do so, project a vector b′ ∈ Di to

fi(b′) =
m∑
j=1

(16m∆ + 3)j−1 (4m∆ + 1 + b′j − bj/2i)︸ ︷︷ ︸
∈[1, 8m∆+1]

. (2)

The value 16m∆ + 3 is chosen because it is always greater than the sum of two values of the
form 4m∆+1+b′j−bj/2i. For all a, a′ ∈ Di+1, b

′ ∈ Di, it holds that fi+1(a)+fi+1(a′) = fi(b′),
if and only if a+ a′ = b′ − (4m∆ + 1, . . . , 4m∆ + 1)T :

Proof ⇒. Let fi+1(a) + fi+1(a′) = fi(b′). Then in particular,

fi+1(a) + fi+1(a′) ≡ fi(b′) mod 16m∆ + 3

Since all but the first element of the sum (2) are multiples of 16m∆ + 3, i.e., they are equal
0 modulo 16m∆ + 3, we can omit them in the equation. Hence,

(4m∆+1+a1−b1/2i+1)+(4m∆+1+a′1−b1/2i+1) ≡ (4m∆+1+b′1−b1/2i) mod 16m∆+3.

We even have equality (without modulo) here, because both sides are smaller than 16m∆ + 3.
Simplifying the equation gives a1 + a′1 = b′1 − (4m∆ + 1). Now consider again the equation
fi+1(a) + fi+1(a′) = fi(b′). In the sums leave out the first element. The equation still holds,
since by the elaboration above this changes the left and right hand-side by the same value.
We can now repeat the same argument to obtain a2 + a′2 = b′2 − (4m∆ + 1) and the same for
all other dimensions. J
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Proof ⇐. Let a+ a′ = b′ − (4m∆ + 1, . . . , 4m∆ + 1)T . Then for every j,

(4m∆ + 1 + aj − bj/2i+1) + (4m∆ + 1 + a′j − bj/2i+1) = 4m∆ + 1 + b′j − bj/2i.

It directly follows that fi+1(a) + fi+1(a′) = fi(b′). J

This means when we write the value of each b′′ ∈ Di+1 to rj and sj , where j = fi+1(b′′), the
correct solutions will be in t. More precisely, we can read the result for some b′ ∈ Di at tk
where k = fi(b′ + (4m∆ + 1, . . . , 4m∆ + 1)T ).

With an algorithm for (min, +)-convolution with running time T (n) we get an algorithm
with running time T (O(m∆)m) · (m log(m∆) + log(‖b‖∞)). Inserting T (n) = n2/ log(n)
we get:

I Theorem 5. There exists an algorithm that finds the optimum of max{cTx : Ax = b, x ∈
Zn≥0}, in time O(m∆)2m · (1 + log(‖b‖∞)/ log(∆)).

Clearly, a sub-quadratic algorithm, where T (n) = n2−δ for some δ > 0, would directly
improve the exponent. Next, we will consider the problem of only testing feasibility of an
ILP. Since we only record whether or not there exists a solution for a particular right-hand
side, the convolution problem reduces to the following.

Boolean convolution
Input: r1, . . . , rn ∈ {0, 1} and s1, . . . , sn ∈ {0, 1}.
Output: t1, . . . , tn ∈ {0, 1}, where tk =

∨
i+j=k ri ∧ sj .

This problem can be solved very efficiently via fast Fourier transform. We compute the (+, ·)-
convolution of the input. It is well known that this can be done using FFT in time O(n log(n)).
The (+, ·)-convolution of r and s is the vector t, where tk =

∑
i+j=k ri · sj . To get the

Boolean convolution instead, we simply replace each tk > 0 by 1. Using T (n) = O(n log(n))
for the convolution algorithm we obtain the following.

I Theorem 6. There exists an algorithm that finds an element in {x : Ax = b, x ∈ Zn≥0}, if
there is one, in time O(m∆)m · log(∆) · log(∆ + ‖b‖∞).

This can be seen from the calculation below. First we scrape off factors polynomial in m:

O(m∆)m ·m log(m∆) ·(m log(m∆)+log(‖b‖∞)) ≤ O(m∆)m · log(∆) ·(log(∆)+log(‖b‖∞))

Next, we use that log(∆)+log(‖b‖∞) = log(∆·‖b‖∞) ≤ log((∆+‖b‖∞)2) = O(log(∆+‖b‖∞)).

4.2 Use of proximity
Eisenbrand and Weismantel gave the following bound on the proximity between continuous
and integral solutions.

I Theorem 7 ([8]). Let max{cTx : Ax = b, x ∈ Zn≥0} be feasible and bounded. Let x∗ be an
optimal vertex solution of the fractional relaxation. Then there exists an optimal solution z∗
with

‖z∗ − x∗‖1 ≤ m(2m∆ + 1)m.

We briefly explain, how they use this theorem to reduce the right-hand side b at the expense
of computing the optimum of the fractional relaxation: Note that z∗i ≥ `i := max{0, dx∗i e −
m(2m∆ + 1)m}. Since x∗ is a vertex solution, it has at most m non-zero components. By
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setting y = x− ` we obtain the equivalent ILP max{cT y : Ay = b− A`, y ∈ Zn≥0}. Indeed,
this ILP has a bounded right-hand side:

‖b−A`‖∞ = ‖A(x∗ − `)‖∞ ≤ ∆m2(2m∆ + 1)m = O(m∆)m+1.

Here, we use that x∗ and ` differ only in non-zero components of x∗ and in those by at most
m(2m∆+1)m. Like in earlier bounds, the O-notation hides polynomial terms in m. Using the
n ·O(m∆)2m · ‖b‖21 time algorithm from [8], this gives a running time of n ·O(m∆)4m+2 + LP,
where LP is the time to solve the relaxation. The logarithmic dependence on ‖b‖∞ in our
new algorithm leads to a much smaller exponent: Using Theorem 5 and the construction
above, the ILP can be solved in time O(m∆)2m + LP. Feasibility can be tested in time
O(m∆)m · log2(∆) + LP using Theorem 6.

4.3 Heterogeneous matrices
Let ∆1, . . . ,∆m ≤ ∆ denote the largest absolute values of each row in A. When some of
these values are much smaller than ∆, the maximum among all, we can do better than
O(m∆)2m · log(‖b‖∞). An example for a highly heterogeneous matrix is Unbounded
Knapsack with cardinality constraints. Consider the norm ‖v‖ = 1/2 ·maxk |vk/∆k| and
let v(1), . . . , v(t) ∈ Zm be the multiset of columns corresponding to an optimal solution of
the ILP. Using the Steinitz Lemma on this norm, it follows that there exists a permutation
π such that for all j ∈ {1, . . . , t} and k ∈ {1, . . . , k}

|
j∑
i=1

v
(π(j))
k − j

t
· bk| ≤ 2m∆k.

This means the number of states we have to consider reduces from O(m∆)m to
∏m
k=1O(m∆k)

at each level of the dynamic program. Hence, we obtain the running time
∏m
k=1O(m∆k)2 ·

log(‖b‖∞). When the objective function has small coefficients, it is more efficient to perform
a binary search for the optimum and encode the objective function as an additional constraint.
We can bound the optimum by O(m∆)m · (‖b‖∞ + 1) · ‖c‖∞ using the bound on the 1-norm
of the solution. Hence, the binary search takes at most O(m log(m∆ · ‖c‖∞ · ‖b‖∞)) =
O(m log(m∆ + ‖c‖∞ + ‖b‖∞)) iterations. For a guess τ the following feasibility ILP tests if
there is a solution of value at least τ .

c1 . . . cn −1
0

A
...
0

x =


τ

b1
...
bn


x ∈ Zn+1

≥0

We can solve the ILP above in time

T (‖c‖∞·
m∏
k=1

O((m+1)∆k))·log(‖b‖∞+τ) ≤ T (‖c‖∞·
m∏
k=1

O(m∆k))·m log(m∆+‖c‖∞+‖b‖∞),

where T (n) = O(n log(n)) is the running time of Boolean convolution. By adding the time
for the binary search and by hiding polynomials in m, we get the total running time of

‖c‖∞ ·
m∏
k=1

[O(m∆k)] · log(∆ + ‖c‖∞) · log2(∆ + ‖c‖∞ + ‖b‖∞).

ITCS 2019



43:10 On Integer Programming and Convolution

5 Lower bounds

5.1 Optimization problem

We use an equivalence between Unbounded Knapsack and (min, +)-convolution regarding
sub-quadratic algorithms.

Unbounded Knapsack
Input: C ∈ N, w1, . . . , wn ∈ N, and p1, . . . , pn ∈ N.
Output: Multiplicities x1, . . . , xn, such that

∑n
i=1 xi ·wi ≤ C and

∑n
i=1 xi ·pi is maximized.

Note that when we instead require
∑n
i=1 xi ·wi = C in the problem above, we can transform

it to this form by adding an item of profit zero and weight 1.

I Theorem 8 ([7]). For any δ > 0 there exists no O((n + C)2−δ) time algorithm for
Unbounded Knapsack unless there exists a truly sub-quadratic algorithm for (min, +)-
convolution.

When using this theorem, we assume that the input already consists of the at most C relevant
items only, n ≤ C, and wi ≤ C for all i. This preprocessing can be done in time O(n+ C).

I Theorem 9. For every fixed m there does not exist an algorithm that solves ILPs with
m constraints in time f(m) · (n2−δ + (∆ + ‖b‖∞)2m−δ) for some δ > 0 and a computable
function f , unless there exists a truly sub-quadratic algorithm for (min, +)-convolution.

Proof. Let δ > 0 and m ∈ N. Assume that there exists an algorithm that solves ILPs
of the form max{cTx : Ax = b, x ∈ Zn≥0} where A ∈ Zm×n, b ∈ Zm, and c ∈ Zn in time
f(m) · (n2−δ + (∆ + ‖b‖∞)2m−δ), where ∆ is the greatest absolute value in A. We will
show that this implies an O((n+ C)2−δ′) time algorithm for the Unbounded Knapsack
Problem for some δ′ > 0. Let (C, (wi)ni=1, (pi)ni=1) be an instance of this problem. Let us
first observe that the claim holds for m = 1. Clearly the Unbounded Knapsack Problem
(with equality) can be written as the following ILP (UKS1).

max
n∑
i=1

pi · xi

n∑
i=1

wi · xi = C

x ∈ Zn≥0

Since wi ≤ C for all i (otherwise the item can be discarded), we can solve this ILP by
assumption in time f(1) · (n2−δ + (2C)2−δ) ≤ O((n+ C)2−δ). Now consider the case where
m > 1. We want to reduce ∆ by exploiting the additional rows. Let ∆ = bC1/mc+1 > C1/m.
We write C in base-∆ notation, i.e.,

C = C(0) + ∆C(1) + · · ·+ ∆m−1C(m−1),

where 0 ≤ C(k) < ∆ for all k. Likewise, write wi = w
(0)
i + ∆w(1)

i + · · ·+ ∆m−1w
(m−1)
i with
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0 ≤ w(k)
i < ∆ for all k. We claim that (UKS1) is equivalent to the following ILP (UKSm).

max
n∑
i=1

pi · xi

n∑
i=1

[w(0)
i · xi]−∆ · y1 = C(0) (3)

n∑
i=1

[w(1)
i · xi] + y1 −∆ · y2 = C(1) (4)

...
n∑
i=1

[w(m−2)
i · xi] + ym−2 −∆ · ym−1 = C(m−2) (5)

n∑
i=1

[w(m−1)
i · xi] + ym−1 = C(m−1) (6)

x ∈ Zn≥0

y ∈ Zm≥0

Claim x ∈ (USK1) ⇒ x ∈ (USKm)

Let x be a solution to (UKS1). Then for all 1 ≤ ` ≤ m,

n∑
i=1

`−1∑
k=0

∆kw
(k)
i · xi ≡

n∑
i=1

wi · xi ≡ C ≡
`−1∑
k=0

∆kC(k) mod ∆`.

This is because all ∆`w
(`)
i , . . . ,∆m−1w

(m−1)
i and ∆`C(`), . . . ,∆m−1C(m−1) are multiples of

∆`. It follows that there exists an y` ∈ Z such that

n∑
i=1

`−1∑
k=0

[∆kw
(k)
i · xi]−∆` · y` =

`−1∑
k=0

∆kC(k).

Furthermore, y` is non-negative, because otherwise

`−1∑
k=0

∆kC(k) ≤
`−1∑
k=0

∆k(∆− 1) < ∆`−1(∆− 1)
∞∑
k=0

∆−k

= ∆`−1 ∆− 1
1− 1

∆
= ∆` ≤ −∆`y` ≤

n∑
i=1

`−1∑
k=0

[∆kw
(k)
i · xi] −∆`y`.

We choose y1, . . . , ym exactly like this. The first constraint (3) follows directly. Now let
` ∈ {2, . . . ,m}. By choice of y`−1 and y` we have that

n∑
i=1

[(`−1∑
k=0

∆kw
(k)
i −

`−2∑
k=0

∆kw
(k)
i

)
︸ ︷︷ ︸

=∆`−1w
(`−1)
i

·xi
]

+∆`−1·y`−1−∆`·y` =
`−1∑
k=0

∆kC(k) −
`−2∑
k=0

∆kC(k)

︸ ︷︷ ︸
=∆`−1C(`−1)

. (7)
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Dividing both sides by ∆`−1 we get every constraint (4) - (5) for the correct choice of `.
Finally, consider the special case of the last constraint (6). By choice of ym we have that

n∑
i=1

m−1∑
k=0

∆kw
(k)
i︸ ︷︷ ︸

=wi

·xi −∆m · ym =
m−1∑
k=0

∆kC(k)

︸ ︷︷ ︸
=C

.

Thus, ym = 0 and (7) implies the last constraint (with ` = m).

Claim x ∈ (USKm) ⇒ x ∈ (USK1)

Let x1, . . . , xn, y1, . . . , ym−1 be a solution to (UKSm) and set ym = 0. We show by induction
that for all ` ∈ {1, . . . ,m}

n∑
i=1

`−1∑
k=0

∆kw
(k)
i · xi −∆`y` =

`−1∑
k=0

∆kC(k).

With ` = m this implies the claim as ym = 0 by definition. For ` = 1 the equation is exactly
the first constraint (3). Now let ` > 1 and assume that the equation above holds. We will
show that it also holds for `+ 1. From (USKm) we have

n∑
i=1

[w(`)
i · xi] + y` −∆ · y`+1 = C(`).

Multiplying each side by ∆` we get
n∑
i=1

[∆`w
(`)
i · xi] + ∆`y` −∆`+1 · y`+1 = ∆`C(`).

By adding and subtracting the same elements, it follows that
n∑
i=1

[(∑̀
k=0

∆kw
(k)
i −

`−1∑
k=0

∆kw
(k)
i

)
· xi

]
+ ∆` · y`−∆`+1 · y`+1 =

∑̀
k=0

∆kC(k)−
`−1∑
k=0

∆kC(k).

By inserting the induction hypothesis we conclude
n∑
i=1

∑̀
k=0

[∆kw
(k)
i · xi]−∆`+1y`+1 =

∑̀
k=0

∆kC(k).

Constructing and solving the ILP

The ILP (UKSm) can be constructed easily in O(Cm+ nm) ≤ O((n+ C)2−δ/m) operations
(recall that m is a constant). We obtain ∆ = bC1/mc+ 1 by guessing: More precisely, we
iterate over all numbers ∆0 ≤ C and find the one where (∆0 − 1)m < C ≤ ∆m

0 . There are
of course more efficient, non-trivial ways to compute the rounded m-th root. The base-∆
representation for w1, . . . , wn and C can be computed with O(m) operations for each of these
numbers.

All entries of the matrix in (UKSm) and the right-hand side are bounded by ∆ = O(C1/m).
Therefore, by assumption this ILP can be solved in time

f(m) · (n2−δ +O(C1/m)2m−δ) ≤ f(m) ·O(1)2m−δ · (n+ C)2−δ/m = O((n+ C)2−δ/m)

This would therefore yield a truly sub-quadratic algorithm for the Unbounded Knapsack
Problem. J
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5.2 Feasibility problem
We will show that our algorithm for solving feasibility of ILPs is optimal (except for log
factors). We use a recently discovered lower bound for k-SUM based on the SETH.

k-SUM
Input: T ∈ N0 and Z1, . . . , Zk ⊂ N0 where |Z1|+ |Z2|+ · · ·+ |Zk| = n ∈ N.
Output: z1 ∈ Z1, z2 ∈ Z2, . . . , zk ∈ Zk such that z1 + z2 + · · ·+ zk = T .

I Theorem 10 ([1]). If the SETH holds, then for every δ > 0 there exists a value γ > 0
such that k-SUM cannot be solved in time O(T 1−δ · nγk).

This implies that for every p ∈ N there is no O(T 1−δ · np) time algorithm for k-SUM if
k ≥ p/γ.

I Theorem 11. If the SETH holds, for every fixed m there does not exist an algorithm that
solves feasibility of ILPs with m constraints in time nf(m) · (∆ + ‖b‖∞)m−δ.

Proof. Like in the previous reduction we start with the case of m = 1. For higher values of
m the result can be shown in the same way as before.

Suppose there exists an algorithm for solving feasibility of ILPs with one constraint in
time nf(1) · (∆ + ‖b‖∞)1−δ for some δ > 0 and f(1) ∈ N. Set k = df(1)/γe with γ as in in
Theorem 10 and consider an instance (T,Z1, . . . , Zk) of k-SUM. We will show that this can
be solved in time O(T 1−δ · nf(1)), which contradicts the SETH. For every i ≤ k and every
z ∈ Zi we use a binary variable xi,z that describes whether z is used. We can easily model
k-SUM as the following ILP:

k∑
i=1

∑
z∈Zi

z · xi,z = T

∑
z∈Zi

xi,z = 1 ∀i ∈ {1, . . . , k}

xi,z ∈ Z≥0 ∀i ∈ {1, . . . , k}, z ∈ Zi

However, since we want to reduce to an ILP with one constraint, we need a slightly more
sophisticated construction. We will show that the cardinality constraints can be encoded into
the k-SUM instance by increasing the numbers by a factor of 2O(k), which is in O(1) since k
is some constant depending on f(1) and γ only. We will use this to obtain an ILP with only
one constraint and values of size at most O(T ). A similar construction is also used in [1].

Our goal is to construct an instance (T ′, Z ′k, . . . , Z ′k) such that for every x∗ it holds that
x∗ is a solution to the first ILP if and only if x∗ ∈ {x :

∑k
i=1
∑
z∈Z′

i
z ·xi,z = T ′, x ∈ Zn≥0} (∗).

We will use one element to represent each element in the original instance. Consider the
binary representation of numbers in Z ′1∪· · ·∪Z ′k and of T ′. The numbers in the new instance
will consist of three parts and dlog(k)e many 0s between them to prevent interference. For
an illustration of the construction see Figure 2. The dlog(k)e most significant bits ensure
that exactly k elements are selected; the middle part are k bits that ensure of every set
Z ′i exactly one element is selected; the least significant dlog(T )e bits represent the original
values of the elements. Set the values in the first part of the numbers to 1 for all elements
Z ′1 ∪ · · · ∪ Z ′k and to k in T ′. Clearly this ensures that at most k elements are chosen. The
sum of at most k elements cannot be larger than k ≤ 2dlog(k)e times the biggest element.
This implies that the buffers of dlog(k)e zeroes cannot overflow and we can consider each
of the three parts independently. It follows that exactly k elements must be chosen by any
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Z ′i 3 z′ =
bin(1)︷ ︸︸ ︷

0 . . . 0001
dlog(k)e

| 0 . . . 0
dlog(k)e

|
bin(2i)︷ ︸︸ ︷

0 . . . 010 . . . 0
k

| 0 . . . 0
dlog(k)e

|
bin(z)︷ ︸︸ ︷

0110 . . .
dlog(T )e

T ′ =
bin(k)︷ ︸︸ ︷

0 . . . 1011
dlog(k)e

| 0 . . . 0
dlog(k)e

|
bin(2k+1−1)︷ ︸︸ ︷

1111 . . . 1111
k

| 0 . . . 0
dlog(k)e

|
bin(T )︷ ︸︸ ︷

1011 . . .
dlog(T )e

Figure 2 Construction of Z′
i and T ′.

feasible solution. The system {x :
∑k
i=1 2ixi = 2k+1 − 1, ‖x‖1 = k,Zk≥0} has exactly one

solution and this solution is (1, 1, . . . , 1): Consider summing up k powers of 2 and envision
the binary representation of the partial sums. When we add some 2i to the partial sum, the
number of ones in the binary representation increases by one, if the i’th bit of the current
sum is zero. Otherwise, it does not increase. However, since in the binary representation of
the final sum there are k ones, it has to increase in each addition. This means no power of
two can be added twice and therefore each has to be added exactly once.

It follows that the second part of the numbers enforces that of every Z ′i exactly one
element is chosen. We conclude that (∗) solves the initial k-SUM instance. By assumption
this can be done in time nf(1) · (∆ + ‖b‖∞)1−δ = nf(1) ·O(T ′)1−δ = O(nf(1) · T 1−δ). Here
we use that T ′ ≤ 23 log(k)+k+log(T )+4 = O(k32kT ) = O(T ), since k is a constant.

For m > 1 we can use the same construction as in the reduction for the optimization
problem: Suppose there is an algorithm that finds feasible solutions to ILPs withm constraints
in time nf(m) · (∆ + ‖b‖∞)m−δ. Choose γ such that there is no algorithm for k-SUM with
running time O(T 1−δ/m · nγk) (under SETH). We set k = df(m)/γe. By splitting the one
constraint of (∗) into m constraints we can reduce the upper bound on elements from O(T )
to O(T 1/m). This means the assumed running time for solving ILPs can be used to solve
k-SUM in time

nf(m) ·O(T 1/m)m−δ ≤ nγk ·O(1)m−δ · T 1−δ/m = O(nγk · T 1−δ/m). J

6 Applications

We describe the implications of our results on a couple of well-known problems, which
can be formulated using ILPs with few constraints and small entries. In particular, we
give an example, where the reduction of the running time by a factor n improves on the
state-of-the-art and one where the logarithmic dependence on ‖b‖∞ proves useful.

6.1 Unbounded Knapsack and Unbounded Subset-Sum
Unbounded Knapsack with equality constraint is simply an ILP with m = 1 and positive
entries and objective function:

max{
n∑
i=1

pi · xi :
n∑
i=1

wi · xi = C, x ∈ Zn≥0}

where pi ≥ 0 are called the profits and wi ≥ 0 the weights of the items 1, . . . , n. More common
is to let C be only an upper bound on

∑n
i=1 wi · xi, but that variant easily reduces to the

problem above by adding a slack variable. Unbounded Subset-Sum is the same problem
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without an objective function, i.e., the problem of finding a multiset of items whose weights
sum up to exactly C. We assume that no two items have the same weight. Otherwise in time
O(n+∆) we can remove all duplicates by keeping only the most valuable ones. The fractional
solutions to both problems are of a very simple structure: For Unbounded Knapsack
choose only the item i of maximal efficiency, that is pi/wi, and select it C/wi times. For
Unbounded Subset-Sum choose an arbitrary item. This gives algorithms with running
time O(∆2) and O(∆ log2(∆)) for Unbounded Knapsack and Unbounded Subset-Sum,
respectively, where ∆ is the maximum weight among all items (using the results from
Section 4.2). The previously best pseudo-polynomial algorithms for Unbounded Knapsack,
have running times O(nC) (standard dynamic programming; see e.g. [13]), O(n∆2) [8], or
very recently O(∆2 log(C)) [2]. We note that the algorithm from the last paper, which was
discovered independently and concurrently to our results, also uses (min, +)-convolution. It
could probably be improved to the same running time as our general algorithm using the
proximity ideas. For Unbounded Subset-Sum the state-of-the-art algorithm has a running
time O(C log(C)) [5]. Hence, our algorithm is preferable when ∆� C.

6.2 Scheduling on Identical Machines
The problem Scheduling on Identical Machines asks for the distribution of N jobs onto
M ≤ N machines. Each job j has a processing time pj and the objective is to minimize the
makespan, i.e., the maximum sum of processing times on a single machine. Since an exact
solution cannot be computed unless P = NP, we are satisfied with a (1 + ε)-approximation,
where ε > 0 is part of the input. We will outline how this problem can be solved using our
algorithm. More details on many of the techniques involved can be found in [10].

We consider here the variant, in which a makespan τ is given and we have to find a
schedule with makespan at most (1+ε)τ or prove that there exists no schedule with makespan
at most τ . This suffices by using a standard dual approximation framework. It is easy to
see that one can discard all jobs of size at most ε · τ and add them greedily after a solution
for the other jobs is found. The big jobs can each be rounded to the next value of the
form ε · τ · (1 + ε)i for some i. This reduces the number of different processing times to
O(1/ε log(1/ε)) many and increases the makespan by at most a factor of 1 + ε. We are now
ready to write this problem as an ILP. A configuration is a way to use a machine. It describes
how many jobs of each size are assigned to this machine. Since we aim for a makespan
of (1 + ε) · τ , the sum of these sizes must not exceed this value. The configuration ILP
has a variable for every valid configuration and it describes how many machines use this
configuration. Let C be the set of valid configurations and Ck the multiplicity of size k in a
configuration C ∈ C. The following ILP solves the rounded instance. We note that there is
no objective function in it.∑

C∈C
xC = M∑

C∈C
Ck · xC = Nk ∀k ∈ K

xC ∈ Z≥0 ∀C ∈ C

Here K are the rounded sizes and Nk the number of jobs with rounded size k ∈ K. The first
constraint enforces that the correct number of machines is used, the next |K| many enforce
that for each size the correct number of jobs is scheduled.

It is notable that this ILP has only few constraints (a constant for a fixed choice of ε)
and also the entries of the matrix are small. More precisely, they are at most 1/ε, since every
size is at least ε · τ and therefore no more than 1/ε jobs fit in one configuration. The ILP
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can be solved with our algorithm. Note that ∆ ≤ 1/ε, m = O(1/ε log(1/ε)), ‖b‖∞ ≤ N , and
n ≤ (1/ε)O(1/ε log(1/ε)). Including the rounding in time O(N + 1/ε log(1/ε)) the running time
for the ILP is

O(m∆)m · log(∆) · log(∆ + ‖b‖∞) +O(nm) +O(N + 1/ε log(1/ε))

≤ 2O(1/ε log2(1/ε)) log(N) +O(N + 1/ε log(1/ε)) ≤ 2O(1/ε log2(1/ε)) +O(N).

The trick in the bound above is to distinguish between the cases 2O(1/ε log2(1/ε)) ≤ log(N)
and 2O(1/ε log2(1/ε)) > log(N). The same running time (except for a higher constant in the
exponent) could be obtained with [8]. However, in order to avoid a multiplicative factor of
N , one would have to solve the LP relaxation first and then use proximity. Our approach
gives an easier, purely combinatorial algorithm. The crucial feature of our algorithm is the
lower dependence on ‖b‖∞.
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Abstract
Integer linear programs of configurations, or configuration IPs, are a classical tool in the design
of algorithms for scheduling and packing problems, where a set of items has to be placed in
multiple target locations. Herein a configuration describes a possible placement on one of the
target locations, and the IP is used to chose suitable configurations covering the items. We give
an augmented IP formulation, which we call the module configuration IP. It can be described
within the framework of n-fold integer programming and therefore be solved efficiently. As an
application, we consider scheduling problems with setup times, in which a set of jobs has to be
scheduled on a set of identical machines, with the objective of minimizing the makespan. For
instance, we investigate the case that jobs can be split and scheduled on multiple machines.
However, before a part of a job can be processed an uninterrupted setup depending on the job
has to be paid. For both of the variants that jobs can be executed in parallel or not, we obtain
an efficient polynomial time approximation scheme (EPTAS) of running time f(1/ε)× poly(|I|)
with a single exponential term in f for the first and a double exponential one for the second case.
Previously, only constant factor approximations of 5/3 and 4/3 + ε respectively were known.
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1 Introduction

In this paper, we present an augmented formulation of the classical integer linear program of
configurations (configuration IP) and demonstrate its use in the design of efficient polynomial
time approximation schemes for scheduling problems with setup times. Configuration IPs
are widely used in the context of scheduling or packing problems, in which items have to be
distributed to multiple target locations. The configurations describe possible placements on
a single location, and the integer linear program (IP) is used to choose a proper selection
covering all items. Two fundamental problems, for which configuration IPs have prominently
been used, are bin packing and minimum makespan scheduling on identical parallel machines,
or machine scheduling for short. For bin packing, the configuration IP was introduced as
early as 1961 by Gilmore and Gomory [10], and the recent results for both problems typically
use configuration IPs as a core technique, see, e.g., [11, 15]. In the present work, we consider
scheduling problems and therefore introduce the configuration IP in more detail using the
example of machine scheduling.

Configuration IP for Machine Scheduling. In the problem of machine scheduling, a set J
of n jobs is given together with processing times pj for each job j and a number m of identical
machines. The objective is to find a schedule σ : J → [m], such that the makespan is
minimized, that is, the latest finishing time of any job Cmax(σ) = maxi∈[m]

∑
j∈σ−1(i) pj . For

a given makespan bound, the configurations may be defined as multiplicity vectors indexed by
the occurring processing times, where the overall length of the chosen processing times does not
violate the bound. The configuration IP is then given by variables xC for each configuration
C; constraints ensuring that there is a machine for each configuration, i.e.,

∑
C xC = m; and

further constraints due to which the jobs are covered, i.e.,
∑
C CpxC = |{j ∈ J | pj = p}|

for each processing time p. In combination with certain simplification techniques, this type
of IP is often used in the design of polynomial time approximation schemes (PTAS). A
PTAS is a procedure that, for any fixed accuracy parameter ε > 0, returns a solution with
approximation guarantee (1 + ε) that is, a solution, whose objective value lies within a
factor of (1 + ε) of the optimum. In the context of machine scheduling, the aforementioned
simplification techniques can be used to guess the target makespan T of the given instance;
to upper bound the cardinality of the set of processing times P by a constant (depending in
1/ε); and to lower bound the processing times in size, such that they are within a constant
factor of the makespan T (see, e.g., [3, 15]). Hence, only a constant number of configurations
is needed, yielding an integer program with a constant number of variables. Integer programs
of that kind can be efficiently solved using the classical algorithm by Lenstra and Kannan
[21, 17], yielding a PTAS for machine scheduling. Here, the error of (1 + ε) in the quality of
the solution is due to the simplification steps, and the scheme has a running time of the form
f(1/ε) × poly(|I|), where |I| denotes the input size, and f some computable function. A
PTAS with this property is called efficient (EPTAS). Note that for a regular PTAS a running
time of the form |I|f(1/ε) is allowed. It is well known, that machine scheduling is strongly
NP-hard, and therefore there is no optimal polynomial time algorithm, unless P=NP, and
also a so-called fully polynomial PTAS (FPTAS) – which is an EPTAS with a polynomial
function f – cannot be hoped for.

Machine Scheduling with Classes. The configuration IP is used in a wide variety of
approximation schemes for machine scheduling problems [3, 15]. However, the approach
often ceases to work for scheduling problems in which the jobs have to fulfill some additional
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requirements, like, for instance, class dependencies. A problem emerging, in this case, is
that the additional requirements have to be represented in the configurations, resulting
in a super-constant number of variables in the IP. We elaborate on this using a concrete
example: Consider the variant of machine scheduling in which the jobs are partitioned
into K setup classes. For each job j a class kj is given and for each class k a setup time
sk has to be paid on a machine, if a job belonging to that class is scheduled on it, i.e.,
Cmax(σ) = maxi∈[m]

(∑
j∈σ−1(i) pj +

∑
k∈{kj | j∈σ−1(i)} sk

)
. With some effort, simplification

steps similar to the ones for machine scheduling can be applied. In the course of this, the
setup times as well can be bounded in number and guaranteed to be sufficiently big [16].
However, it is not hard to see that the configuration IP still cannot be trivially extended,
while preserving its solvability. For instance, extending the configurations with multiplicities
of setup times will not work, because then we have to make sure that a configuration is
used for a fitting subset of classes, creating the need to encode class information into the
configurations or introduce other class dependent variables.

Module Configuration IP. Our approach to deal with the class dependencies of the jobs is to
cover the job classes with so-called modules and cover the modules in turn with configurations
in an augmented IP called the module configuration IP (MCIP). In the setup class model, for
instance, the modules may be defined as combinations of setup times and configurations of
processing times, and the actual configurations as multiplicity vectors of module sizes. The
number of both the modules and the configurations will typically be bounded by a constant.
To cover the classes by modules each class is provided with its own set of modules, that is,
there are variables for each pair of class and module. Since the number of classes is part of
the input, the number of variables in the resulting MCIP is super-constant, and therefore the
algorithm by Lenstra and Kannan [21, 17] is not the proper tool for the solving of the MCIP.
However, the MCIP has a certain simple structure: The mentioned variables are partitioned
into uniform classes each corresponding to the set of modules, and for each class, the modules
have to do essentially the same – cover the jobs of the class. Utilizing these properties, we
can formulate the MCIP in the framework of n-fold integer programms – a class of IPs whose
variables and constraints fulfill certain uniformity requirements. In 2013 Hemmecke, Onn,
and Romanchuk [12] showed that n-fold IPs can be efficiently solved, and very recently both
Eisenbrand, Hunkenschröder and Klein [9] and independently Koutecký, Levin and Onn [20]
developed algorithms with greatly improved running times for the problem. For a detailed
description of the MCIP, the reader is referred to Section 3. In Figure 1 the basic idea of
the MCIP is visualized.

Using the MCIP, we are able to formulate an EPTAS for machine scheduling in the setup
class model described above. Before, only a regular PTAS with running time nmO(1/ε5) was
known [16]. To the best of our knowledge, this is the first use of n-fold integer programing in
the context of approximation algorithms.

Results and Methodology. To show the conceptual power of the MCIP, we utilize it for
two more problems: The splittable and the preemptive setup model of machine scheduling.
In both variants for each job j, a setup time sj is given. Each job may be partitioned into
multiple parts that can be assigned to different machines, but before any part of the job can
be processed the setup time has to be paid. In the splittable model, job parts belonging to the
same job can be processed in parallel, and therefore beside the partition of the jobs, it suffices
to find an assignment of the job parts to machines. This is not the case for the preemptive
model, in which additionally a starting time for each job part has to be found, and two
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Figure 1 On the left, there is a schematic representation of the configuration IP. There are
constant different sizes each occurring a super-constant number of times. The sizes are directly
mapped to configurations. On the right, there is a schematic representation of the MCIP. There is
a super-constant number of classes, each containing a constant number of sizes which have super-
constant multiplicities. The elements from the class are mapped to a constant number of different
modules, which have a constant number of sizes. These module sizes are mapped to configurations.

parts of the same job may not be processed in parallel. In 1999 Schuurman and Woeginger
[26] presented a polynomial time algorithm for the preemptive model with approximation
guarantee 4/3 + ε, and for the splittable case a guarantee of 5/3 was achieved by Chen, Ye
and Zhang [5]. These are the best known approximation guarantees for the problems at hand.
We show that solutions arbitrarily close to the optimum can be found in polynomial time:

I Theorem 1. There is an efficient PTAS with running time 2f(1/ε)poly(|I|) for minimum
makespan scheduling on identical parallel machines in the setup-class model, as well as in
the preemptive and splittable setup models.

More precisely, we get a running time of 2O(1/ε3 log4 1/ε)K2nm log(Km) in the setup class
model, 2O(1/ε2 log3 1/ε)n2 log3(nm) in the splittable, and 22O(1/ε log 1/ε)

n2m logm log(nm) in the
preemptive model (remember that n, m, and K denote the number of jobs, machines, and
setup classes). Note that all three problems are strongly NP-hard, due to trivial reductions
from machine scheduling, and our results are therefore in some sense best possible.

Summing up, the main achievement of this work is the development of the module
configuration IP and its application in the development of approximation schemes. Up to
now, EPTAS or even PTAS results seemed out of reach for the considered problems, and
for the preemptive model we provide the first improvement in 20 years. The simplification
techniques developed for the splittable and preemptive model in order to employ the MCIP
are original and in the latter case quite elaborate, and therefore interesting by themselfs.
Furthermore, we expect the MCIP to be applicable to other packing and scheduling problems
as well, in particular for variants of machine scheduling and bin packing with additional
class depended constraints. On a more conceptual level, we gave a first demonstration of
the potential of n-fold integer programming in the theory of approximation algorithms, and
hope to inspire further studies in this direction.

We conclude this paragraph with a more detailed overview of our results and their
presentation. For all three EPTAS results we employ the classical dual approximation
framework by Hochbaum and Shmoys [13] to get a guess of the makespan T . This approach is
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introduced in Section 2 together with n-fold IPs and formal definitions of the problems. In the
following section, we develop the module configuration IP, in its basic form and argue that it
is indeed an n-fold IP. The EPTAS results described in the last section follow the same basic
approach described above for machine scheduling: We find a schedule for a simplified instance
via the MCIP and transform it into a schedule for the original one. The simplification steps
typically include rounding of the processing and setup times using standard techniques, as
well as, the removal of certain jobs, which later can be reinserted via carefully selected greedy
procedures. For the splittable and preemptive model, we additionally have to prove that
schedules with a certain simple structure exist, and in the preemptive model, the MCIP has
to be extended. Missing proofs and details can be found in the long version of the paper [14].

Related work. For an overview on n-fold IPs and their applications, we refer to the book by
Onn [24]. There have been recent applications of n-fold integer programming to scheduling
problems in the context of parameterized algorithms: Knop and Kouteckỳ [18] showed, among
other things, that the problem of makespan minimization on unrelated parallel machines,
where the processing times are dependent on both jobs and machines, is fixed-parameter
tractable with respect to the maximum processing time and the number of distinct machine
types. This was generalized to the parameters maximum processing time and rank of the
processing time matrix by Chen et al. [6]. Furthermore, Knop, Kouteckỳ and Mnich [19]
provided an improved algorithm for a special type of n-fold IPs yielding improved running
times for several applications of n-fold IPs including results for scheduling problems.

There is extensive literature concerning scheduling problems with setup times. We
highlight a few closely related results and otherwise refer to the surveys [1, 2]. In the following,
we use the term α-approximation as an abbreviation for polynomial time algorithms with
approximation guarantee α. The setup class model was first considered by Mäcker et al. [22]
in the special case that all classes have the same setup time. They designed a 2-approximation
and additionally a 3/2 + ε-approximation for the case that the overall length of the jobs
from each class is bounded. Jansen and Land [16] presented a simple 3-approximation with
linear running time, a 2 + ε-approximation, and the aforementioned PTAS for the general
setup class model. As indicated before, Chen et al. [5] developed a 5/3-approximation for
the splittable model. A generalization of this, in which both setup and processing times
are job and machine dependent, has been considered by Correa et al. [7]. They achieve
a (1 + φ)-approximation, where φ denotes the golden ratio, using a newly designed linear
programming formulation. Moreover, there are recent results concerning machine scheduling
in the splittable model considering the sum of the (weighted) completion times as the objective
function, e.g. [25, 8]. For the preemptive model, a PTAS for the special case that all jobs have
the same setup time has been developed by Schuurman and Woeginger [26]. The mentioned
(4/3 + ε)-approximation for the general case [26] follows the same approach. Furthermore, a
combination of the setup class and the preemptive model has been considered, in which the
jobs are scheduled preemptively, but the setup times are class dependent. Monma and Potts
[23] presented, among other things, a (2− 1/(bm/2c+ 1))-approximation for this model, and
later Chen [4] achieved improvements for some special cases.

2 Preliminaries

In the following, we establish some concepts and notations, formally define the considered
problems, and outline the dual approximation approach by Hochbaum and Shmoys [13], as
well as n-fold integer programs.

ITCS 2019
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For any integer n, we denote the set {1, . . . , n} by [n]; we write log(·) for the logarithm
with basis 2; and we will usually assume that some instance I of the problem considered
in the respective context is given together with an accuracy parameter ε ∈ (0, 1) such that
1/ε is an integer. Furthermore for any two sets X,Y we write Y X for the set of functions
f : X → Y . If X is finite, we say that Y is indexed by X and sometimes denote the function
value of f for the argument x ∈ X by fx.

Problems. For all three of the considered models, a set J of n jobs with processing times
pj ∈ Q>0 for each job j ∈ J and a number of machines m is given. In the preemptive and
the splittable model, the input additionally includes a setup time sj ∈ Q>0 for each job
j ∈ J ; while in the setup class model, it includes a number K of setup classes, a setup class
kj ∈ [K] for each job j ∈ J , as well as setup times sk ∈ Q>0 for each k ∈ [K].

We take a closer look at the definition of a schedule in the preemptive model. The
jobs may be split. Therefore, partition sizes κ : J → Z>0, together with processing time
fractions λj : [κ(j)] → (0, 1], such that

∑
k∈[κ(j)] λj(k) = 1, have to be found, meaning

that job j is split into κ(j) many parts and the k-th part for k ∈ [κ(j)] has processing
time λj(k)pj . This given, we define J ′ = {(j, k) | j ∈ J , k ∈ [κ(j)]} to be the set of job
parts. Now, an assignment σ : J ′ → [m] along with starting times ξ : J ′ → Q>0 has to
be determined, such that any two job parts assigned to the same machine or belonging to
the same job do not overlap. More precisely, we have to assure that for each two job parts
(j, k), (j′, k′) ∈ J ′ with σ(j, k) = σ(j′, k′) or j = j′, we have ξ(j, k) + sj + λj(k)pj ≤ ξ(j′) or
ξ(j′, k′) + sj′ + λj′(k)pj′ ≤ ξ(j). A schedule is given by (κ, λ, σ, ξ) and the makespan can be
defined as Cmax = max(j,k)∈J ′(ξ(j, k) + sj + λj(k)pj). Note that the variant of the problem
in which overlap between a job part and setup of the same job is allowed is equivalent to the
one presented above. This was pointed out by Schuurmann and Woeginger [26] and can be
seen with a simple swapping argument.

In the splittable model, it is not necessary to determine starting times for the job parts,
because, given the assignment σ, the job parts assigned to each machine can be scheduled as
soon as possible in arbitrary order without gaps. Hence, in this case, the output is of the form
(κ, λ, σ) and the makespan can be defined as Cmax = maxi∈[m]

∑
(j,k)∈σ−1(i) sj + λj(k)pj .

Lastly, in the setup class model the jobs are not split and given an assignment, the jobs
assigned to each machine can be scheduled in batches comprised of the jobs of the same
class assigned to the machine without overlaps and gaps. The output is therefore just an
assignment σ : J → [m] and the makespan is given by Cmax = maxi∈[m]

∑
j∈σ−1(i) pj +∑

k∈{kj | j∈σ−1(i)} sk.
Note that in the preemptive and the setup class model, we can assume that the number

of machines is bounded by the number of jobs: If there are more machines than jobs, placing
each job on a private machine yields an optimal schedule in both models and the remaining
machines can be ignored. This, however, is not the case in the splittable model.

Dual Approximation. All of the presented algorithms follow the dual approximation frame-
work introduced by Hochbaum and Shmoys [13]: Instead of solving the minimization version
of a problem directly, it suffices to find a procedure that for a given bound T on the objective
value either correctly reports that there is no solution with value T or returns a solution
with value at most (1 + aε)T for some constant a. If we have some initial upper bound B for
the optimal makespan OPT with B ≤ bOPT for some b, we can define a PTAS by trying
different values T from the interval [B/b,B] in a binary search fashion, and find a value
T ∗ ≤ (1 +O(ε))OPT after O(log b/ε) iterations. Note that for all of the considered problems
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there are known simple approximation algorithms. Hence, we always assume that a target
makespan T is given. Furthermore, we assume that the setup times and in the preemptive
and setup class cases also the processing times are bounded by T , because otherwise we can
reject T immediately.

n-fold Integer Programs. We briefly define n-fold integer programs (IP) following the
notation of [12] and [18] and state the main algorithmic result needed in the following. Let
n, r, s, t ∈ Z>0 be integers and A be an integer ((r + ns)× nt)-matrix of the following form:

A =


A1 A1 · · · A1
A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2


The matrix A is the so-called n-fold product of the bimatrix

(
A1
A2

)
, with A1 an r × t and

A2 an s× t matrix. Furthermore, let w, `, u ∈ Znt and b ∈ Zr+ns. Then the n-fold integer
programming problem is given by:

min{wx |Ax = b, ` ≤ x ≤ u, x ∈ Znt}

The variables x can naturally be partitioned into bricks x(q) of dimension t for each q ∈ [n],
such that x = (x(1), . . . x(n)). Furthermore, we denote the constraints corresponding to A1
as globally uniform and the ones corresponding to A2 as locally uniform. Hence, r is the
number of globally and s the number of locally uniform constraints (ignoring their n-fold
duplication); t the brick size and n the brick number. We set ∆ to be the maximum absolute
value occurring in A. Up to recently the best known algorithm for solving n-fold IPs was
due to Hemmecke, Onn and Romanchuk [12]:

I Theorem 2. Let ϕ be the encoding length of w, b, `, u and ∆. The n-fold integer
programming problem can be solved in time O(∆3t(rs+st+r+s)n3ϕ), when r, s and t are fixed.

However, in 2018 both Eisenbrand, Hunkenschröder and Klein [20] and independently
Koutecký, Levin and Onn [20] developed algorithms with improved and very similar running
times. We state a variant due to Eisenbrand et al. that is adapted to our needs:

I Theorem 3. Let ϕ be the encoding length of the largest number occurring in the input,
and Φ = maxi(ui − `i). The n-fold integer programming problem can be solved in time
(rs∆)O(r2s+rs2)t2n2ϕ log(Φ) log(ntΦ).

3 Module Configuration IP

In this section, we state the configuration IP for machine scheduling and introduce a basic
version of the module configuration IP (MCIP) that is already sufficiently general to work
for both the splittable and setup class model. Before that, however, we formally introduce
the concept of configurations. Given a set of objects A, a configuration C of these objects is
a vector of multiplicities indexed by the objects, i.e., C ∈ ZA≥0. For given sizes Λ(a) of the
objects a ∈ A, the size Λ(C) of a configuration C is defined as

∑
a∈A CaΛ(a). Moreover, for

a given bound B, we define CA(B) to be the set of configurations of A that are bounded in
size by B, that is, CA(B) = {C ∈ ZA≥0 |Λ(C) ≤ B}.

ITCS 2019
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Configuration IP. We give a recollection of the configuration IP for scheduling on identical
parallel machines. Let P be the set of processing times for some instance I with multiplicities
np for each p ∈ P , meaning, I includes exactly np jobs with processing time p (Λ(p) = p in
this context). Furthermore, let T be a guess of the optimal makespan. The configuration IP
for I and T is given by variables xC ≥ 0 for each C ∈ CP (T ) and the following constraints:∑

C∈CP (T )

xC = m (1)

∑
C∈CP (T )

CpxC = np ∀p ∈ P (2)

Due to constraint (1), exactly one configuration is chosen for each machine, while (2) ensures
that the correct number of jobs or job sizes is covered.

Module Configuration IP. Let B be a set of basic objects (e.g. jobs or setup classes) and
let there be D integer values B1, . . . , BD for each basic object B ∈ B (e.g. processing time or
numbers of different kinds of jobs). Our approach is to cover the basic objects with so-called
modules M and in turn cover the modules with configurations. Depending on the context,
modules correspond to batches of jobs or job piece sizes together with a setup time and
can also encompass additional information like a starting time. Corresponding to the basic
objects, each module M ∈M also has D integer values M1, . . . ,MD, as well as a size Λ(M)
and a set of eligible basic objects B(M). The latter is needed because not all modules are
compatible with all basic objects, e.g., because they do not have the right setup times. Let
H be the set of distinct module sizes, i.e., H = {Λ(M) |M ∈M}, and for each module size
h ∈ H letM(h) be the set of modules with size h. We consider the set C of configurations
of module sizes which are bounded in size by a guess of the makespan T , i.e., C = CH(T ).
In the preemptive case configurations need to additionally encompass information about
starting times of modules, and therefore the definition of configurations will be slightly more
complicated in that case.

Since we want to chose configurations for each machine, we have variables xC for each
C ∈ C and constraints corresponding to (1). Furthermore, we chose modules with variables
yM for each M ∈M and because we want to cover the chosen modules with configurations,
we have some analogue of constraint (2), say

∑
C∈C(T ) ChxC =

∑
M∈M(h) yM for each module

size h ∈ H. It turns out however, that to properly cover the basic objects with modules, we
need the variables yM for each basic object, and this is were n-fold IPs come into play: The
variables stated so far form a brick of the variables of the n-fold IP and there is one brick
for each basic object, that is, we have, for each B ∈ B, variables x(B)

C for each C ∈ C, and
y

(B)
M for each M ∈M. Using the upper bounds of the n-fold model, variables y(B)

M are set to
zero, if B is not eligible for M ; and we set the lower bounds of all variables to zero. Sensible
upper bounds for the remaining variables, will be typically clear from context. Besides that,
the module configuration integer program MCIP (for B,M and C) is given by the following
constraints.∑

B∈B

∑
C∈C

x
(B)
C = m (3)∑

B∈B

∑
C∈C(T )

Chx
(B)
C =

∑
B∈B

∑
M∈M(h)

y
(B)
M ∀h ∈ H (4)

∑
M∈M

Mdy
(B)
M = Bd ∀B ∈ B, d ∈ [D] (5)
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It is easy to see that the constraints (3) and (4) are globally uniform. They are the mentioned
adaptations of (1) and (2). The constraint (5), on the other hand, is locally uniform and
ensures that the basic objects are covered.

Note that, while the duplication of the configuration variables does not carry meaning, it
also does not upset the model: Consider the modified MCIP that is given by not duplicating
the configuration variables. A solution (x̃, ỹ) for this IP gives a solution (x, y) for the MCIP
by fixing some basic object B∗, setting x(B∗)

C = x̃C for each configuration C, setting the
remaining configuration variables to 0, and copying the remaining variables. Given a solution
(x, y) for the MCIP, on the other hand, gives a solution for the modified version (x̃, ỹ) by
setting x̃C =

∑
B∈B x

B
C for each configuration C. Summarizing we get:

I Observation 1. The MCIP is an n-fold IP with brick-size t = |M| + |C|, brick number
n = |B|, r = |H|+ 1 globally uniform and s = D locally uniform constraints.

Moreover, in all the considered applications we will minimize the overall size of the con-
figurations, i.e.,

∑
B∈B

∑
C∈C Λ(C)x(B)

C . This will be required, because in the simplification
steps of our algorithms some jobs are removed and have to be reinserted later, and we
therefore have to make sure that no space is wasted.

4 EPTAS results

In this section, we present approximation schemes for each of the three considered problems.
Each of the results follows the same approach: The instance is carefully simplified, a schedule
for the simplified instance is found using the MCIP, and this schedule is transformed into
a schedule for the original instance. The presentation of the result is also similar for each
problem: We first discuss how the instance can be sensibly simplified, and how a schedule
for the simplified instance can be transformed into a schedule for the original one. Next, we
discuss how a schedule for the simplified instance can be found using the MCIP, and lastly,
we summarize and analyze the taken steps.

For the sake of clarity, we have given rather formal definitions for the problems at hand
in Section 2. In the following, however, we will use the terms in a more intuitive fashion for
the most part, and we will, for instance, often take a geometric rather than a temporal view
on schedules and talk about the length or the space taken up by jobs and setups on machines
rather than time. In particular, given a schedule for an instance of any one of the three
problems together with an upper bound for the makespan T , the free space with respect to
T on a machine is defined as the summed up lengths of time intervals between 0 and T in
which the machine is idle. The free space (with respect to T ) is the summed up free space of
all the machines. For bounds T and L for the makespan and the free space, we say that a
schedule is a (T, L)-schedule if its makespan is at most T and the free space with respect to
T is at least L.

When transforming the instance we will increase or decrease processing and setup times
and fill in or remove extra jobs. Consider a (T ′, L′)-schedule, where T ′ and L′ denote some
arbitrary makespan or free space bounds. If we fill in extra jobs or increase processing or
setup times, but can bound the increase on each machine by some bound b, we end up with
a (T ′ + b, L′)-schedule for the transformed instance. In particular we have the same bound
for the free space, because we properly increased the makespan bound. If, on the other hand,
jobs are removed or setup times decreased, we obviously still have a (T ′, L′)-schedule for the
transformed instance. This will be used frequently in the following.
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4.1 Setup Class Model
In the setup class model, simplification steps similar to the ones developed by Jansen and
Land [16] can be used. We give a brief overview:

The set of big setup jobs J bst is given by the jobs belonging to classes with setup times
at least ε3T and the small setup jobs J sst are all the others. Furthermore, we call a job
tiny or small, if its processing time is smaller than ε4T or εT respectively, and big or large
otherwise. For any given set of jobs J , we denote the subset of tiny jobs from J with Jtiny
and the small, big and large jobs analogously. We simplify the instance in four steps, aiming
for an instance that exclusively includes big jobs with big setup times and additionally only
a constant number of distinct processing and setup times: We remove the small jobs with
small setup times J sst

small; increase the setup times of the remaining classes with small setup
times to ε3T ; replace the tiny jobs from J bst

tiny with placeholders of size ε4T ; and round
up the resulting processing and setup times in a geometric and a subsequent arithmetic
rounding step. The above steps yield certain makespan bounds T̄ ≤ T̆ = (1 +O(ε))T , and
for the resulting instance I ′, the sets P and S of distinct processing and setup times have
bounded cardinality, that is, |P |, |S| ∈ O(1/ε log 1/ε), and each processing and setup time is
a multiple of ε5T . An obvious lower bound on the space taken up by the jobs from J sst

small in
any schedule is given by L =

∑
j∈J sst

small
pj +

∑
k∈Q sk.

I Theorem 4. If there is a schedule for I with makespan T , there is a (T̄ , L)-schedule for
I ′; and if there is a (T̄ , L)-schedule for I ′, there is a schedule for I with makespan T̆ . J

Utilization of the MCIP. At this point, we can employ the module configuration IP.
The basic objects in this context are the setup classes, i.e., B = [K ′], and the different
values are the numbers of jobs with a certain processing time, i.e., D = |P |. We set nk,p
to be the number of jobs from setup class k ∈ [K ′] with processing time p ∈ P . The
modules correspond to batches of jobs together with a setup time. Batches of jobs can
be modeled as configurations of processing times, that is, multiplicity vectors indexed by
the processing times. Hence, we define the set of modules M to be the set of pairs of
configurations of processing times and setup times with a summed up size bounded by T̄ , i.e.,
M = {(C, s) |C ∈ CP (T̄ ), s ∈ S, s + Λ(C) ≤ T̄}, and write Mp = Cp and sM = s for each
module M = (C, s) ∈M. The values of a module M are given by the numbers Mp and its
size Λ(M) by sM +

∑
p∈P Mpp. Remember that the configurations C are the configurations

of module sizes H that are bounded in size by T̄ , i.e., C = CH(T̄ ). A setup class is eligible
for a module, if the setup times fit, i.e., BM = {k ∈ [K ′] | sk = sM}. Lastly, we establish
ε5T = 1 by scaling.

For the sake of readability, we state the resulting constraints of the MCIP with adapted
notation and without duplication of the configuration variables:∑

C∈C
xC = m (6)∑

C∈C
ChxC =

∑
k∈[K′]

∑
M∈M(h)

y
(k)
M ∀h ∈ H (7)

∑
M∈M

Mpy
(k)
M = nk,p ∀k ∈ [K ′], p ∈ P (8)

Note that the coefficients are all integral and this includes those of the objective function,
i.e.,

∑
C Λ(C)xC , because of the scaling step.
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I Lemma 5. With the above definitions, there is a (T̄ , L)-schedule for I ′, iff the MCIP has
a solution with objective value at most mT̄ − L.

Proof. Let there be a (T̄ , L)-schedule for I ′. Then the schedule on a given machine corre-
sponds to a distinct configuration C that can be determined by counting for each possible
group size a the batches of jobs from the same class whose length together with the setup
time adds up to an overall length of a. Note that the length of this configuration is equal to
the used up space on that machine. We fix an arbitrary setup class k and set the variables
x

(k)
C accordingly (and x(k′)

C = 0 for k′ 6= k and C ∈ C). By this setting, we get an objective
value of at most mT̄ − L because there was L free space in the schedule. For each class k
and module M , we count the number of machines on which the there are exactly Mp jobs
with processing time p from class k for each p ∈ P , and set y(k)

M accordingly. It is easy to see
that the constraints are satisfied by these definitions.

Given a solution (x, y) of the MCIP, we define a corresponding schedule: Because of (6),
we can match the machines to configurations such that each machine is matched to exactly
one configuration. If machine i is matched to C, we create CG slots of length Λ(G) on i for
each group G. Next, we divide the setup classes into batches. For each class k and module
M , we create y(k)

M batches of jobs from class k with Mp jobs with processing time p for each
p ∈ P and place the batch together with the corresponding setup time into a fitting slot on
some machine. Because of (8) and (7) all jobs can be placed by this process. Note that the
used space equals the overall size of the configurations and we therefore have free space of at
least L. J

Result. To analyze the running time of the resulting procedure, we mainly have to bound
the parameters of the MCIP. We have |B| = K ′ ≤ K and D = |P | by definition, and
|M| = O(|S|(1/ε3)|P |) = 2O(1/ε log2 1/ε), because |S|, |P | ∈ O(1/ε log 1/ε). This is true, due
to the last rounding step, which also implies |H| ∈ O(1/ε5), yielding |C| = |H|O(1/ε3) =
2O(1/ε3 log 1/ε). According to Observation 1, this yields a brick size of t = 2O(1/ε3 log 1/ε), a
brick number of K, O(1/ε5) globally, and O(1/ε log 1/ε) locally uniform constraints for the
MCIP. We have ∆ = O(1/ε5), because all occurring values in the processing time matrix are
bounded in T̄ , and we have T̄ = O(1/ε5), due to the scaling. Furthermore, the values of the
objective function, the right hand side, and the upper and lower bounds on the variables are
bounded by O(n/ε5), yielding a bound of O(logn/ε5) for the encoding length of the biggest
number in the input ϕ. Lastly, all variables can be bounded by 0 from below and O(m/ε3)
from above, yielding Φ = O(m/ε3).

By Theorem 3 and some arithmetic, the MCIP can be solved in time:

(rs∆)O(r2s+rs2)t2n2ϕ log(Φ) log(ntΦ) = 2O(1/ε11 log2 1/ε)K2 logn logm logKm

When building the actual schedule, we iterate through the jobs and machines, yielding an
additional term that is linear in n and m. To get the running time stated below Theorem 1,
additional rounding steps for the module sizes and slightly altered modules are needed. For
details we refer to the long version of the paper.

4.2 Splittable Model
The approximation scheme for the splittable model presented in this section is probably the
easiest one discussed in this work. There is, however, one problem concerning this procedure:
Its running time is polynomial in the number of machines, which might be exponential in
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the input size. In the long version, we show how this problem can be overcome and further
improve the running time.

For the simplification of the instance, similar ideas to the setup class case can be employed.
We give a brief overview:

In this context, the set of big setup jobs J bst is given by the jobs with setup times at
least εT and the small setup jobs J sst are all the others. Let L =

∑
j∈J sst(sj + pj). Because

every job has to be scheduled and every setup has to be paid at least once, L is a lower
bound on the summed up space due to small jobs in any schedule. The instance is simplified
in two steps: First, all the small setup jobs are removed, and next the remaining processing
and setup times are rounded up to multiples of ε2T . These steps yield certain makespan
bounds T̄ ≤ T̆ = (1 +O(ε))T , and for the resulting instance I ′, the sets P and S of distinct
processing and setup times have bounded cardinality, that is, |P |, |S| ∈ O(1/ε2).

I Theorem 6. If there is a schedule with makespan T for I, there is also (T̄ , L)-schedule for
I ′ in which the length of each job part is a multiple of ε2T ; and if there is a (T̄ , L)-schedule
for I ′, there is also a schedule for I with makespan at most T̆ .

We will use the MCIP to find a (T̄ , L)-schedule for I ′ in which the length of each job part is
a multiple of ε2T .

Utilization of the MCIP. The basic objects in this context are the (big setup) jobs, i.e.,
B = J bst, and they have only one value (D = 1), namely, their processing time. Moreover,
the modules are defined as the set of pairs of job piece sizes and setup times, i.e., M ={

(q, s)
∣∣ s, q ∈ S × P}, and we write sM = s and qM = q for each module M = (q, s) ∈ M.

Corresponding to the value of the basic objects the value of a module M is qM , and its
size Λ(M) is given by qM + sM . A job is eligible for a module, if the setup times fit, i.e.,
BM = {j ∈ J ′ | sj = sM}. In order to ensure integral values, we establish ε2T = 1 via scaling.
The set of configurations C is comprised of all configurations of module sizes H that are
bounded in size by T̄ , i.e., C = CM(T̄ ). We state the constraints of the MCIP for the above
definitions with adapted notation and without duplication of the configuration variables:∑

C∈C
xC = m (9)∑

C∈C
ChxC =

∑
j∈J ′

∑
M∈M(h)

y
(j)
M ∀h ∈ H (10)

∑
M∈M

qMy
(j)
M = pj ∀j ∈ J ′ (11)

Note that we additionally minimize the summed up size of the configurations, via the objective
function

∑
C Λ(C)xC .

I Lemma 7. With the above definitions, there is a (T̄ , L)-schedule for I ′ in which the length
of each job piece is a multiple of ε2T , iff MCIP has a solution with objective value at most
mT̄ − L.

Proof. Given such a schedule for I ′, the schedule on each machine corresponds to exactly
one configuration G that can be derived by counting the job pieces and setup times with
the same summed up length a and setting CG accordingly, where G is the group of modules
with length a. The size of the configuration C is equal to the used space on the respective
machine. Therefore, we can fix some arbitrary job j and set the variables x(j)

C to the number
of machines whose schedule corresponds to C (and x(j′)

C = 0 for j′ 6= j and C ∈ C). Since
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there is at least a free space of L for the schedule, the objective value is bounded by mT̄ −L.
Furthermore, for each job j and job part length q, we count the number of times a piece of j
with length q is scheduled and set y(j)

(q,sj) accordingly. It is easy to see that the constraints
are satisfied.

Now, let (x, y) be a solution to the MCIP with objective value at most mT̄ − L. We use
the solution to construct a schedule: For job j and configuration C, we reserve x(j)

C machines.
On each of these machines, we create Ch slots of length h, for each module size h ∈ H. Note
that, because of (9), there is the exact right number of machines for this. Next, consider
each job j and possible job part length q and create y(j)

(q,sj) split pieces of length q and place
them together with a setup of sj into a slot of length sj + q on any machine. Because of
(11), the entire job is split up by this, and because of (10), there are enough slots for all the
job pieces. Note that the used space in the created schedule is equal to the objective value of
(x, y), and therefore there is at least L free space. J

Result. To assess the running time of the procedure, we mainly need to bound the parameters
of the MCIP, namely |B|, |H|, |M|, |C| and D. By definition, we have |B| ≤ n and D = 1.
Since all setup times and job piece lengths are multiples of ε2T and bounded by T , we have
|M| = O(1/ε4) and |H| = O(1/ε2). This yields |C| ≤ |H|O(1/ε+2) = 2O(1/ε log 1/ε), because
the size of each module is at least εT and the size of the configurations bounded by (1 + 2ε)T .

According to Observation 1, we now have brick-size t = 2O(1/ε log 1/ε), brick number |B| = n,
r = |Γ|+ 1 = O(1/ε2) globally uniform and s = D = 1 locally uniform constraints. Because
of the scaling step, all occurring numbers in the constraint matrix of the MCIP are bounded
by 1/ε2 and therefore ∆ ≤ 1/ε2. Furthermore, each occurring number can be bounded by
O(m/ε2) and this is an upper bound for each variable as well, yielding ϕ = O(logm/ε2) and
Φ = O(m/ε2). Hence the MCIP, can be solved in time:

(rs∆)O(r2s+rs2)t2n2ϕ log(Φ) log(ntΦ) = 2O(1/ε4 log 1/ε)n2 log2m lognm

When building the actual schedule, we iterate through the jobs and machines, yielding an
additional term that is linear in n and m. To get the running time stated below Theorem 1,
some additional considerations are needed. For details, we refer to the long version of the
paper.

4.3 Preemptive Model
In the preemptive model, we have to actually consider the time-line of the schedule on
each machine instead of just the assignment of the jobs or job pieces, and this causes some
difficulties. For instance, we will have to argue that it suffices to look for a schedule with few
possible starting points, and we will have to introduce additional constraints in the IP in
order to ensure that pieces of the same job do not overlap. Our first step, in dealing with
this extra difficulty is to introduce some concepts and notation: For a given schedule with
a makespan bound T , we call a job piece together with its setup a block, and we call the
schedule X-layered, for some value X, if each block starts at a multiple of X. Corresponding
to this, we call the time in the schedule between two directly succeeding multiples of X
a layer and the corresponding time on a single machine a slot. We number the layers
bottom to top and identify them with their number, that is, the set of layers Ξ is given by
{` ∈ Z>0 | (`− 1)X ≤ T}. Note that in an X-layered schedule, there is at most one block in
each slot and for each layer there can be at most one block of each job present. Furthermore,
for X-layered schedules, we slightly alter the definition of free space: We solely count the
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space from slots that are completely free. If in such a schedule, for each job there is at
most one slot occupied by this job but not fully filled, we additionally call the schedule
layer-compliant.

Simplification of the Instance. In the preemptive model, we distinguish big, medium and
small setup jobs, using two parameters δ and µ: The big setup jobs J bst are those with setup
time at least δT , the small J sst have a setup time smaller than µT , and the medium Jmst

are the ones in between. We set µ = ε2δ and we choose δ ∈ {ε1, . . . , ε2/ε2} such that the
summed up processing time together with the summed up setup time of the medium setup
jobs is upper bounded by mεT , i.e.,

∑
j∈Jmst(sj + pj) ≤ mεT . If there is a schedule with

makespan T , such a choice is possible, because of the pidgeon hole principle, and because
the setup time of each job has to occur at least once in any schedule. Similar arguments
are widely used, e.g. in the context of geometrical packing algorithms. Furthermore, we
distinguish the jobs by processing times, calling those with processing time at least εT big
and the others small. For a given set of jobs J , we call the subsets of big or small jobs Jbig
or Jsmall respectively. We perform three simplification steps, aiming for an instance in which
the small and medium setup jobs are big; small setup jobs have setup time 0; and for which
an εδT -layered, layer-compliant schedule exists.

Let I1 be the instance we get by removing the small jobs with medium setup times Jmst
small

from the given instance I.

I Lemma 8. If there is a schedule with makespan at most T for I, there is also such a
schedule for I1, and if there is a schedule with makespan at most T ′ for I1 there is a schedule
with makespan at most T ′ + (ε+ δ)T for I.

Proof. The first claim is obvious. For the second, we create a sequence containing the jobs
from Jmst

small each directly preceded by its setup time. Recall that the overall length of the
objects in this sequence is at most mεT , and the length of each job is bounded by εT . We
greedily insert the objects from the sequence, considering each machine in turn. On the
current machine we start at time T ′ + δT and keep inserting until T ′ + δT + εT is reached.
If the current object is a setup time, we discard it and continue with the next machine and
object. If, on the other hand, it is a job, we split it such that the remaining space on the
current machine can be perfectly filled. We can place all objects like this, however the first
job part placed on a machine might be missing a setup. We can insert the missing setups
because they have length at most δT and between time T ′ and T ′+δT there is free space. J

Next, we consider the jobs with small setup times: Let I2 be the instance we get by removing
the small jobs with small setup times J sst

small and setting the setup time of the big jobs with
small setup times to zero, i.e., s̄j = 0 for each j ∈ J sst

big . Note that in the resulting instance
each small job has a big setup time. Furthermore, let L :=

∑
j∈J sst

small
pj + sj . Then L is an

obvious lower bound for the space taken up by the jobs from J sst
small in any schedule.

I Lemma 9. If there is a schedule with makespan at most T for I1, there is also a (T, L)-
schedule for I2; and if there is a γT -layered (T ′, L)-schedule for I2, with T ′ a multiple of γT ,
there is also a schedule with makespan at most (1 + γ−1µ)T ′ + (µ+ ε)T for I1.

Proof. The first claim is obvious, and for the second consider a γT -layered (T ′, L)-schedule
for I2. We create a sequence that contains the jobs of J sst

small and their setups such that
each job is directly preceded by its setup. Remember that the remaining space in partly
filled slots is not counted as free space. Hence, since the overall length of the objects in the
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sequence is L, there is is enough space in the free slots of the schedule to place them. We
do so in a greedy fashion guaranteeing that each job is placed on exactly one machine: We
insert the objects from the sequence into the free slots, considering each machine in turn and
starting on the current machine from the beginning of the schedule and moving on towards
its end. If an object cannot be fully placed into the current slot there are two cases: If its a
setup we discard it and if its a job, we cut it and continue placing it in the next slot, or, if
the current slot was the last one, we place the rest at the end of the schedule. The resulting
schedule is increased by at most εT , which is caused by the last job placed on a machine.

To get a proper schedule for I1 we have to insert some setup times: For the large jobs
with small setup times and for the jobs that were cut in the greedy procedure. We do so by
inserting a time window of length µT at each multiple of γT and at the end of the original
schedule on each machine. By this, the schedule is increased by at most γ−1µT ′ + µT . Since
all the job parts in need of a setup are small and did start at multiples of µT or at the end,
we can insert the missing setups. Note that blocks that span over multiple layers are cut by
the inserted time windows. This, however, can easily be repaired by moving the cut pieces
properly down. J

We continue by rounding the medium and big setup and all the processing times. In
particular, we round the processing times and the big setup times up to the next multiple of
εδT and the medium setup times to the next multiple of εµT , i.e., p̄j = dpj/(εδT )eεδT for
each job j, s̄j = dsj/(εδT )eεδT for each big setup job j ∈ J bst, and s̄j = dsj/(εµT )eεµT for
each medium setup job j ∈ Jmst

big .

I Lemma 10. If there is a (T, L)-schedule for I2, there is also an εδT -layered, layer-compliant
((1 + 3ε)T, L)-schedule for I3; and if there is a γT -layered (T ′, L)-schedule for I3, there is
also such a schedule for I2.

While the second claim is easy to see, the proof of the first is rather elaborate and can be
found in the long version of the paper.

For the big and small setup jobs both processing and setup times are multiples of εδT .
Therefore, the length of each of their blocks in an εδT -layered, layer-compliant schedule is a
multiple of εδT . For a medium setup job, on the other hand, we know that the overall length
of its blocks has the form xεδT + yεµT , with non-negative integers x and y. In particular it
is a multiple of εµT , because εδT = (1/ε2)εµT . In a εδT -layered, layer-compliant schedule,
for each medium setup job the length of all but at most one block is a multiple of εδT and
therefore a multiple of εµT . If both the overall length and the lengths of all but one block
are multiples of εµT , this is also true for the one remaining block. Hence, we will use the
MCIP not to find an εδT -layered, layer-compliant schedule in particular, but an εδT -layered
one with block sizes as described above and maximum free space.

Based on the simplification steps, we define two makespan bounds T̄ and T̆ : Let T̄ be
the makespan bound we get by the application of the Lemmata 8-10, i.e., T̄ = (1 +O(ε))T .
We will use the MCIP to find an εδT -layered (T̄ , L)-schedule for I3, and apply the Lemmata
8-10 backwards to get schedule for I with makespan at most T̆ = (1 +O(ε))T̄ = (1 +O(ε))T .

Utilization of the MCIP. Similar to the splittable case, the basic objects are the (big) jobs,
i.e., B = Jbig, and their single value is their processing time (D = 1). The modules, on the
other hand, are more complicated, because they additionally need to encode which layers are
exactly used and, in case of the medium jobs, to which degree the last layer is filled. For
the latter, we introduce buffers, representing the unused space in the last layer, and define
modules as tuples (`, q, s, b) of starting layer, job piece size, setup time and buffer size. For a
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module M = (`, q, s, b), we write `M = `, qM = q, sM = s and bM = b, and we define the size
Λ(M) of M as s+ q + b. The overall set of modulesM is the union of the modules for big,
medium and small setup jobsMbst,Mmst andMsst that are defined in the following. For
this let Qbst = {q | q = xεδT, x ∈ Z>0, q ≤ T̄} and Qmst = {q | q = xεµT, x ∈ Z>0, q ≤ T̄} be
the sets of possible job piece sizes of big and medium setup jobs; Sbst = {s | s = xεδT, x ∈
Z≥1/ε, s ≤ T̄} and Smst = {s | s = xεµT, x ∈ Z≥1/ε, s ≤ δT} be the sets of possible big and
medium setup times; B = {b | b = xεµT, x ∈ Z≥0, b < εδT} the set of possible buffer sizes;
and Ξ = {1, . . . , 1/(εδ) + 3/δ} the set of layers. We set:

Mbst = {(`, q, s, 0) | ` ∈ Ξ, q ∈ Qbst, s ∈ Sbst, (`− 1)εδT + s+ q ≤ T̄}
Mmst = {(`, q, s, b) ∈ Ξ×Qmst× Smst×B |x = s+ q + b ∈ εδTZ>0, (`− 1)εδT + x ≤ T̄}
Msst = {(`, εδT, 0, 0) | ` ∈ Ξ}

Concerning the small setup modules, note that the small setup jobs have a setup time of
0 and therefore may be covered slot by slot. We establish εµT = 1 via scaling, to ensure
integral values. A big, medium or small job is eligible for a module, if it is also big, medium
or small respectively and the setup times fit.

We have to avoid that two modules M1,M2, whose corresponding time intervals overlap,
are used to cover the same job or in the same configuration. Such an overlap is given, if there
is some layer ` used by both of them, that is, (`M−1)εδT ≤ (`−1)εδT < (`M−1)εδT +Λ(M)
for both M ∈ {M1,M2}. Hence, for each layer ` ∈ Ξ, we set M` ⊆ M to be the set of
modules that use layer `. Furthermore, we partition the modules into groups Γ by size and
starting layer, i.e., Γ = {G ⊆M|M,M ′ ∈ G⇒ Λ(M) = Λ(M ′) ∧ `M = `M ′}. The size of a
group G ∈ Γ is the size of a module from G, i.e. Λ(G) = Λ(M) for M ∈ G. Unlike before,
we consider configurations of module groups rather than module sizes. More precisely, the
set of configurations C is given by the configurations of groups, such that for each layer at
most one group using this layer is chosen, i.e., C = {C ∈ ZΓ

≥0 | ∀` ∈ Ξ :
∑
G⊆M`

CG ≤ 1}.
With this definition, we prevent overlap conflicts on the machines. Note that unlike in the
cases considered so far, the size of a configuration does not correspond to a makespan in
the schedule, but to used space, and the makespan bound is realized in the definition of the
modules instead of in the definition of the configurations. To also avoid conflicts for the
jobs, we extend the basic MCIP with additional locally uniform constraints. In particular,
the constraints of the extended MCIP for the above definitions with adapted notation and
without duplication of the configuration variables are given by:∑

C∈C
xC = m (12)∑

C∈C(T )

CGxC =
∑
j∈J

∑
M∈G

y
(j)
M ∀G ∈ Γ (13)

∑
M∈M

qMy
(j)
M = pj ∀j ∈ J (14)∑

M∈M`

y
(j)
M ≤ 1 ∀j ∈ J , ` ∈ Ξ (15)

Like in the first two cases, we minimize the summed up size of the configurations, via the
objective function

∑
C Λ(C)xC . Note that in this case the size of a configuration does not

have to equal its height. It is easy to see that the last constraint is indeed locally uniform.
However, since we have an inequality instead of an equality, we have to introduce |Ξ| slack
variables in each brick, yielding:
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I Observation 2. The MCIP extended like above is an n-fold IP with brick-size t = |M|+
|C|+ |Ξ|, brick number n = |J |, r = |Γ|+ 1 globally uniform and s = D+ |Ξ| locally uniform
constraints.

I Lemma 11. With the above definitions, there is an εδT -layered (T̄ , L)-schedule for I3 in
which the length of a block is a multiple of εδT , if it belongs to a small or big setup job, or a
multiple of εµT otherwise, iff the extended MCIP has a solution with objective value at most
mT̄ − L.

Proof. We first consider such a schedule for I3. For each machine, we can derive a configura-
tion that is given by the starting layers of the blocks together with the summed up length of
the slots the respective block is scheduled in. The size of the configuration C is equal to the
used space on the respective machine. Hence, we can fix some arbitrary job j and set x(j)

C

to the number of machines corresponding to j (and x(j′)
C = 0 for j′ 6= j). Keeping in mind

that in an εδT -layered schedule the free space is given by the free slots, the above definition
yields an objective value bounded by mT̄ − L, because there was free space of at least L.
Next, we consider the module variables for each job j in turn: If j is a small setup job, we
set y(j)

(`,εδT,0,0) to 1, if the j occurs in `, and to 0 otherwise. Now, let j be a big setup job.
For each of its blocks, we set y(j)

(`,z−sj ,sj ,0) = 1, where ` is the starting layer and z the length
of the block. The remaining variables are set to 0. Lastly, let j be a medium setup job. For
each of its blocks, we set y(j)

(`,z−sj ,sj ,b) = 1, where ` is the starting layer of the block, z its
length and b = dz/(εδT )eεδT − z. Again, the remaining variables are set to 0. It is easy to
verify that all constraints are satisfied by this solution.

If, on the other hand, we have a solution (x, y) to the MCIP with objective value at most
mT̄ − L, we reserve

∑
j x

(j)
C machines for each configuration C. There are enough machines

to do this, because of (12). On each of these machines we reserve space: For each G ∈ Γ, we
create an allocated space of length Λ(G) starting from the starting layer of G, if CG = 1. Let
j be a job and ` be a layer. If j has a small setup time, we create y(j)

(`,εδT,0,0) pieces of length
εδT and place these pieces into allocated spaces of length εδT in layer `. If, on the other
hand, j is a big or medium setup job, we consider each possible job part length q ∈ Qbst

or q ∈ Qmst, create y(j)
(`,q,sj ,0) or y(j)

(`,q,sj ,b), with b = dq/(εδT )eεδT − εδT , pieces of length
q, and place them together with their setup time into allocated spaces of length q in layer
`. Because of (14) the entire job is split up by this, and because of (13) there are enough
allocated spaces for all the job pieces. The makespan bound is ensured by the definition of
the modules, and overlaps are avoided, due to the definition of the configurations and (15).
Furthermore, the used slots have an overall length equal to the objective value of (x, y) and
therefore there is at least L free space. J

Result. We analyze the running time of the procedure, and start by bounding the parameters
of the extended MCIP. We have |B| = n and D = 1 by definition, and the number of layers
|Ξ| is obviously O(1/(εδ)) = O(1/ε2/ε+1) = 2O(1/ε log 1/ε). Furthermore, it is easy to see that
|Qbst| = O(1/(εδ)), |Qmst| = O(1/(ε3δ)), |Sbst| = O(1/(εδ)), |Smst| = O(1/ε3), and |B| =
O(1/ε2). This gives usMbst ≤ |Ξ||Qbst||Sbst|,Mmst ≤ |Ξ||Qmst||Smst||B| andMsst = |Ξ|,
and therefore |M| = |Mbst| + |Mmst| + |Msst| = 2O(1/ε log 1/ε). Since their are O(1/(δε))
distinct module sizes, the number of groups |Γ| can be bounded by O(|Ξ|/(εδ)) = 2O(1/ε log 1/ε).
Hence, for the number of configurations we get |C| = O((1/(εδ))|Γ|) = 22O(1/ε log 1/ε) . By
Observation 2, the modified MCIP has r = 2O(1/ε log 1/ε) many globally and s = 2O(1/ε log 1/ε)

many locally uniform constraints; its brick number is n, and its brick size is t = 22O(1/ε log 1/ε) .
All occurring values in the matrix are bounded by T̄ , yielding ∆ ≤ T̄ = 1/(εµ) + 1/µ =
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2O(1/ε log 1/ε), due to the scaling step. Furthermore, the numbers in the input can be bounded
by m2O(1/ε log 1/ε) and all variables can be upper bounded by O(m). Hence, we have ϕ =
O(logm + 1/ε log 1/ε) and Φ = O(m), and due to Theorem 3 we can solve the MCIP in
time:

(rs∆)O(r2s+rs2)t2n2ϕ log(Φ) log(ntΦ) = 22O(1/ε log 1/ε)
n2 log2m lognm

When building the actual schedule we iterate through the jobs and machines yielding the
slightly increased running time stated below Theorem 1.

5 Conclusion

We presented a more advanced version of the classical configuration IP, showed that it can
be solved efficiently using algorithms for n-fold IPs, and developed techniques to employ
the new IP for the formulation of efficient polynomial time approximation schemes for three
scheduling problems with setup times, for which no such algorithms were known before.

For further research the immediate questions are whether improved running times for
the considered problems, in particular for the preemptive model, can be achieved; whether
the MCIP can be solved more efficiently; and to which other problems it can be reasonably
employed. From a broader perspective, it would be interesting to further study the potential
of new algorithmic approaches in integer programming for approximation, and, on the other
hand, further study the respective techniques themselfs.
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Abstract
We consider a variation of the problem of corruption detection on networks posed by Alon, Mossel,
and Pemantle ’15. In this model, each vertex of a graph can be either truthful or corrupt. Each
vertex reports about the types (truthful or corrupt) of all its neighbors to a central agency, where
truthful nodes report the true types they see and corrupt nodes report adversarially. The central
agency aggregates these reports and attempts to find a single truthful node. Inspired by real
auditing networks, we pose our problem for arbitrary graphs and consider corruption through
a computational lens. We identify a key combinatorial parameter of the graph m(G), which is
the minimal number of corrupted agents needed to prevent the central agency from identifying
a single corrupt node. We give an efficient (in fact, linear time) algorithm for the central agency
to identify a truthful node that is successful whenever the number of corrupt nodes is less than
m(G)/2. On the other hand, we prove that for any constant α > 1, it is NP-hard to find a
subset of nodes S in G such that corrupting S prevents the central agency from finding one
truthful node and |S| ≤ αm(G), assuming the Small Set Expansion Hypothesis (Raghavendra
and Steurer, STOC ’10). We conclude that being corrupt requires being clever, while detecting
corruption does not.

Our main technical insight is a relation between the minimum number of corrupt nodes
required to hide all truthful nodes and a certain notion of vertex separability for the underlying
graph. Additionally, this insight lets us design an efficient algorithm for a corrupt party to decide
which graphs require the fewest corrupted nodes, up to a multiplicative factor of O(logn).
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1 Introduction

1.1 Corruption Detection and Problem Set-up
We study the problem of identifying truthful nodes in networks, in the model of corruption
detection on networks posed by Alon, Mossel, and Pemantle [1]. In this model, we have a
network represented by a (possibly directed) graph. Nodes can be truthful or corrupt. Each
node audits its outgoing neighbors to see whether they are truthful or corrupt, and sends
reports of their identities to a central agency. The central agent, who is not part of the
graph, aggregates the reports and uses them to identify truthful and corrupt nodes. Truthful
nodes report truthfully (and correctly) on their neighbors, while corrupt nodes have no such
restriction: they can assign arbitrary reports to their neighbors, regardless of whether their
neighbors are truthful or corrupt, and coordinate their efforts with each other to prevent the
central agency from gathering useful information.

In [1], the authors consider the problem of recovering the identities of almost all nodes in
a network in the presence of many corrupt nodes; specifically, when the fraction of corrupt
nodes can be very close to 1/2. They call this the corruption detection problem. They show
that the central agency can recover the identity of most nodes correctly even in certain
bounded-degree graphs, as long as the underlying graph is a sufficiently good expander. The
required expansion properties are known to hold for a random graph or Ramanujan graph of
sufficiently large (but constant) degree, which yields undirected graphs that are amenable
to corruption detection. Furthermore, they show that some level of expansion is necessary
for identifying truthful nodes, by demonstrating that the corrupt nodes can stop the central
agency from identifying any truthful node when the graph is a very bad expander (e.g. a
cycle), even if the corrupt nodes only make up 0.01 fraction of the network.

This establishes that very good expanders are very good for corruption detection, and
very bad expanders can be very bad for corruption detection. We note that this begs the
question of how effective graphs that do not fall in either of these categories are for corruption
detection. In the setting of [1], we could ask the following: given an arbitrary undirected
graph, what is the smallest number of corrupt nodes that can prevent the identification of
almost all nodes? When there are fewer than this number, can the central agency efficiently
identify almost all nodes correctly? Alon, Mossel, and Pemantle study these questions for the
special cases of highly expanding graphs and poorly expanding graphs, but do not address
general graphs.

Additionally, [1] considers corruption detection when the corrupt agencies can choose their
locations and collude arbitrarily, with no bound on their computational complexity. This
is perhaps overly pessimistic: after all, it is highly unlikely that corrupt agencies can solve
NP-hard problems efficiently and if they can, thwarting their covert operations is unlikely to
stop their world domination. We suggest a model that takes into account computational
considerations, by factoring in the computation time required to select the nodes in a graph
that a corrupt party chooses to control. This yields the following question from the viewpoint
of a corrupt party: given a graph, can a corrupt party compute the smallest set of nodes it
needs to corrupt in polynomial time?

In addition to being natural from a mathematical standpoint, these questions are also
well-motivated socially. It would be naïve to assert that we can weed out corruption in
the real world by simply designing auditing networks that are expanders. Rather, these
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networks may already be formed, and infeasible to change in a drastic way. Given this, we
are less concerned with finding certain graphs that are good for corruption detection, but
rather discerning how good existing graphs are; specifically, how many corrupt nodes they
can tolerate. In particular, since the network structure could be out of the control of the
central agency, algorithms for the central agency to detect corruption on arbitrary graphs
seem particularly important.

It is also useful for the corrupt agency to have an algorithm with guarantees for any graph.
Consider the following example of a corruption detection problem from the viewpoint of a
corrupt organization. Country A wants to influence policy in country B, and wants to figure
out the most efficient way to place corrupted nodes within country B to make this happen.
However, if the central government of B can confidently identify truthful nodes, they can
weight those nodes’ opinions more highly, and thwart country A’s plans. Hence, the question
country A wants to solve is the following: given the graph of country B, can country A
compute the optimal placement of corrupt nodes to prevent country B from finding truthful
nodes? We note that in this question, too, the graph of country B is fixed, and hence, country
A would like to have an algorithm that takes as input any graph and computes the optimal
way to place corrupt nodes in order to hide all the truthful nodes.

We study the questions above for a variant of the corruption detection problem in [1],
in which the goal of the central agency is to find a single truthful node. While this goal
is less ambitious than the goal of identifying almost all the nodes, we think it is a very
natural question in the context of corruption. For one, if the central agency can find a single
truthful node, they can use the trusted reports from that node to identify more truthful and
corrupt nodes that it might be connected to. The central agency may additionally weight
the opinions of the truthful nodes more when making policy decisions (as alluded to in
the example above), and can also incentivize truthfulness by rewarding truthful nodes that
it finds and giving them more influence in future networks if possible (by increasing their
out-degrees). Moreover, our proofs and results extend to finding larger number of truthful
nodes as we discuss below.

Our results stem from a tie between the problem of finding a single truthful node in a
graph and a measure of vertex separability of the graph. This tie not only yields an efficient
and relatively effective algorithm for the central agency to find a truthful node, but also allows
us to relate corrupt party’s strategy to the problem of finding a good vertex separator for
the graph. Hence, by analyzing the purely graph-theoretic problem of finding a good vertex
separator, we can characterize the difficulty of finding a good set of nodes to corrupt. Similar
notions of vertex separability have been studied previously (e.g. [13, 17, 3]), and we prove
NP-hardness for the notion relevant to us assuming the Small Set Expansion Hypothesis
(SSEH). The Small Set Expansion Hypothesis is a hypothesis posed by Raghavendra and
Steurer [19] that is closely related to the famous Unique Games Conjecture of Khot [11].
In fact, [19] shows that the SSEH implies the Unique Games Conjecture. The SSEH yields
hardness results that are not known to follow directly from the UGC, especially for graph
problems like sparsest cut and treewidth ([20] and [2] respectively), among others.

1.2 Our Results

We now outline our results more formally. We analyze the variant of corruption detection
where the central agency’s goal is to find a single truthful node. First, we study how effectively
the central agency can identify a truthful node on an arbitrary graph, given a set of reports.
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Given an undirected graph4 G, we let m(G) denote the minimal number of corrupted nodes
required to stop the central agency from finding a truthful node, where the minimum is
taken over all strategies of the corrupt party (not just computationally bounded ones). We
informally call m(G) the “critical” number of corrupt nodes for a graph G. Then, we show
the following:

I Theorem 1. Fix a graph G and suppose that the corrupt party has a budget b ≤ m(G)/2.
Then the central agency can identify a truthful node, regardless of the strategy of the corrupt
party, and without knowledge of either m(G) or b. Furthermore, the central agency’s algorithm
runs in linear time (in the number of edges in the graph G).

Next, we consider the question from the viewpoint of the corrupt party: can the corrupt
party efficiently compute the most economical way to allocate nodes to prevent the central
agency from finding a truthful node? Concretely, we focus on a natural decision version of
the question: given a graph G and a upper bound on the number of possible corrupted nodes
k, can the corrupt party prevent the central agency from finding a truthful node?

We actually focus on an easier question: can the corrupt party accurately compute m(G),
the minimum number of nodes that they need to control to prevent the central agency
from finding a truthful node? Not only do we give evidence that computing m(G) exactly
is computationally hard, but we also provide evidence that m(G) is hard to approximate.
Specifically, we show that approximating m(G) to any constant factor is NP-hard under the
Small Set Expansion Hypothesis (SSEH); or in other words, that it is SSE-hard.

I Theorem 2. For every β > 1, there is a constant ε > 0 such that the following is true.
Given a graph G = (V,E), it is SSE-hard to distinguish between the case where m(G) ≤ ε · |V |
and m(G) ≥ β · ε · |V |. Or in other words, the problem of approximating the critical number
of corrupt nodes for a graph to within any constant factor is SSE-hard.

This Theorem immediately implies the following Corollary 25.
I Corollary 25 (restated). Assume the SSE Hypothesis and that P 6= NP. Fix any β > 1.
There does not exist a polynomial-time algorithm that takes as input an arbitrary graph
G = (V,E) and outputs a set of nodes S with size |S| ≤ O(β ·m(G)), such that corrupting
S prevents the central agency from finding a truthful node.

We note that in Corollary 25, the bad party’s input is only the graph G: specifically, they
do not have knowledge about the value of m(G).

Our proof for Theorem 2 is similar to the proof of Austrin, Pitassi, and Wu [2] for the
SSE-hardness of approximating treewidth. This is not a coincidence: in fact, the “soundness”
in their reduction involves proving that their graph does not have a good 1/2 vertex separator,
where the notion of vertex separability (from [4]) is very related to the version we use to
categorize the problem of hiding a truthful vertex. We give the proof of Theorem 2 in
Section 3.2.

However, if one allows for an approximation factor of O(log |V |), then m(G) can be
approximated efficiently. Furthermore, this yields an approximation algorithm that the
corrupt party can use to find a placement that hinders detection of a truthful node.

I Theorem 3. There is a polynomial-time algorithm that takes as input a graph G = (V,E)
and outputs a set of nodes S with size |S| ≤ O(log |V | ·m(G)), such that corrupting S prevents
the central agency from finding a truthful node.

4 Unless explicitly specified, all graphs are undirected by default.
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The proof of Theorem 3, given in Section 3.2, uses a bi-criterion approximation algorithm
for the k-vertex separator problem given by [13]. As alluded to in Section 1.1, Theorems 2
and 3 both rely on an approximate characterization of m(G) in terms of a measure of vertex
separability of the graph G, which we give in Section 3.

Additionally, we note that we can adapt Theorems 1 and 2 (as well as Corollary 25) to
a more general setting, where the central agency wants to recover some arbitrary number
of truthful nodes, where the number of nodes can be proportional to the size of the graph.
We describe how to modify our proofs to match this more general setting in Section 5 in
full-length version [8].

Together, Theorems 1 and 2 uncover a surprisingly positive result for corruption detection:
it is computationally easy for the central agency to find a truthful node when the number
of corrupted nodes is only somewhat smaller than the “critical” number for the underlying
graph, but it is in general computationally hard for the corrupt party to hide the truthful
nodes even when they have a budget that far exceeds the “critical” number for the graph.

1.2.1 Results for Directed Graphs
As noted in [1], it is unlikely that real-world auditing networks are undirected. For example,
it is likely that the FBI has the authority to audit the Cambridge police department, but it
is also likely that the reverse is untrue. Therefore, we would like the central agency to be
able to find truthful nodes in directed graphs in addition to undirected graphs. We notice
that the algorithm we give in Theorem 1 extends naturally to directed graphs.

I Theorem 4. Fix a directed graph D and suppose that the corrupt party has a budget
b ≤ m(D)/2. Then the central agency can identify a truthful node, regardless of the strategy
of the corrupt party, and without the knowledge of either m(D) or b. Furthermore, the central
agency’s algorithm runs in linear time.

The proof of Theorem 4 is similar to the proof of Theorem 1, and effectively relates
the problem of finding a truthful node on directed graphs to a similar notion of vertex
separability, suitably generalized to directed graphs.

1.2.2 Results for Finding An Arbitrary Number of Good Nodes
In fact, the problem of finding one good node is just a special case of finding an arbitrary
number of good nodes, g, on the graph G. We define m(G, g) as the minimal number of bad
nodes required to prevent the identification of g good nodes on the graph G. We relate it
to an analogous vertex separation notion, and prove the following two theorems, which are
extensions of Theorems 1 and 2 to this setting.

I Theorem 5. Fix a graph G and the number of good nodes to recover, g. Suppose that
the corrupt party has a budget b ≤ m(G, g)/2. If g < |V | − 2b, then the central agency can
identify g truthful nodes, regardless of the strategy of the corrupt party, and without knowledge
either of m(G, g) or b. Furthermore, the central agency’s algorithm runs in linear time.

I Theorem 6. For every β > 1 and every 0 < δ < 1, there is a constant ε > 0 such that
the following is true. Given a graph G = (V,E), it is SSE-hard to distinguish between the
case where m(G, δ|V |) ≤ ε · |V | and m(G, δ|V |) ≥ β · ε · |V |. Or in other words, the problem
of approximating the critical number of corrupt nodes such that it is impossible to find δ|V |
good nodes within any constant factor is SSE-hard.
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The proof of Theorem 6 is similar to the proof of Theorem 1, and the hardness of
approximation proof also relies on the same graph reduction and SSE conjecture. Proofs are
presented in Section 5 in our full-length paper [8].

1.3 Related Work
The model of corruptions posed by [1] is identical to a model first suggested by Preparata,
Metze, and Chien [18], who introduced the model in the context of detecting failed components
in digital systems. This work (as well as many follow-ups, e.g. [9, 12]) looked at the problem
of characterizing which networks can detect a certain number of corrupted nodes. Xu and
Huang [22] give necessary and sufficient conditions for identifying a single corrupted node
in a graph, although their characterization is not algorithmically efficient. There are many
other works on variants of this problem (e.g. [21, 5]), including recovering node identities
with one-sided or two-sided error probabilities in the local reports [14] and adaptively finding
truthful nodes [7].

We note that our model of a computationally bounded corrupt party and our stipulation
that the graph is fixed ahead of time rather than designed by the central agency, which are our
main contributions to the model, seem more naturally motivated in the setting of corruptions
than in the setting of designing digital systems. Even the question of identifying a single
truthful node could be viewed as more naturally motivated in the setting of corruptions than
in the setting of diagnosing systems. We believe there are likely more interesting theoretical
questions to be discovered by approaching the PMC model through a corruptions lens.

The identifiability of a single node in the corruptions setting was studied in a recent
paper of Mukwembi and Mukwembi [15]. They give a linear time greedy algorithm to recover
the identify of a single node in many graphs, provided that corrupt nodes always report other
corrupt nodes as truthful. Furthermore, this assumption allows them to reduce identifying
all nodes to identifying a single node. They argue that such an assumption is natural in
the context of corruptions, where corrupt nodes are selfishly incentivized not to out each
other. However, in our setting, corrupt nodes can not only betray each other, but are in fact
incentivized to do so for the good of the overarching goal of the corrupt party (to prevent
the central agency from identifying a truthful node). Given [15], it is not a surprise that the
near-optimal strategies we describe for the corrupt party in this paper crucially rely on the
fact that the nodes can report each other as corrupt.

Our problem of choosing the best subset of nodes to corrupt bears intriguing similarities
to the problem of influence maximization studied by [10], where the goal is to find an optimal
set of nodes to target in order to maximize the adoption of a certain technology or product.
It is an interesting question to see if there are further similarities between these two areas.
Additionally, social scientists have studied corruption extensively (e.g.[6], [16]), though to
the best of our knowledge they have not studied it in the graph-theoretic way that we do in
this paper.

1.4 Comparison to Corruption in Practice
Finally, we must address the elephant in the room. Despite our theoretical results, corruption
is prevalent in many real-world networks, and yet in many scenarios it is not easy to pinpoint
even a single truthful node. One reason for that is that some of assumptions do not seem to
hold in some real world networks. For example, we assume that audits from the truthful
nodes are not only non-malicious, but also perfectly reliable. In practice this assumption is
unlikely to be true: many truthful nodes could be non-malicious but simply unable to audit
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their neighbors accurately. Further assumptions that may not hold in some scenarios include
the notion of a central agency that is both uncorrupted and has access to reports from every
agency, and possibly even the assumption that the number of corrupt nodes is less than
|V |/2. In addition, networks G may have very low critical numbers m(G) in practice. For
example, there could be a small set of three nodes (named, “President”, “Congress” and
“Houses”) that is all corrupt, and all audits in the graph are performed by one of these three
nodes. It is thus plausible that a corrupt party could use the structure of realistic auditing
networks for their corruption strategy to overcome our worst-case hardness result.

While this points to some shortcomings of our model, it also points out ways to change
policy that would potentially bring the real world closer to our idealistic scenario, where a
corrupt party has a much more difficult computational task than the central agency. For
example, we can speculate that perhaps information should be gathered by a transparent
centralized agency, that significant resources should go into ensuring that the centralized
agency is not corrupt, and that networks ought to have good auditing structure (without
important agencies that can be audited by very few nodes).

2 Preliminaries

2.1 General Preliminaries
We denote undirected graphs by G = (V,E), where V is the vertex set of the graph and E is
the edge set. We denote directed graphs by D = (V,ED). When the underlying graph is
clear, we may drop the subscripts. Given a vertex u in an undirected graph G, we let N (u)
denote the neighborhood (set of neighbors) of the vertex in G. Similarly, given a vertex u
in a directed graph D, let N (u) denote the set of outgoing neighbors of u: that is, vertices
v ∈ V such that (u, v) ∈ ED.

2.1.1 Vertex Separator
I Definition 7 (k-vertex separator,[17],[3]). For any k ≥ 0, we say a subset of vertices U ⊆ V
is k-vertex separator of a graph G, if after removing U and incident edges, the remaining
graph forms a union of connected components, each of size at most k.

Furthermore, let

SG(k) = min
(
|U | : U is a k-vertex separator of G

)
denote the size of the minimal k-vertex separator of graph G.

2.1.2 Small Set Expansion Hypothesis
In this section we define the Small Set Expansion (SSE) Hypothesis introduced in [19]. Let
G = (V,E) be an undirected d-regular graph.

I Definition 8 (Normalized edge expansion). For a set S ⊆ V of vertices, denote ΦG(S) as
the normalized edge expansion of S,

ΦG(S) = |E(S, V \S)|
d|S|

,

where |E(S, V \S)| is the number of edges between S and V \S.

The Small Set Expansion Problem with parameters η and δ, denoted SSE(η, δ), asks
whether G has a small set S which does not expand or all small sets of G are highly expanding.
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I Definition 9 (SSE(η, δ)). Given a regular graph G = (V,E), distinguish between the
following two cases:

Yes There is a set of vertices S ⊆ V with S = δ|V | and ΦG(S) ≤ η
No For every set of vertices S ⊆ V with S = δ|V | it holds that ΦG(S) ≥ 1− η

The Small Set Expansion Hypothesis is the conjecture that deciding SSE(η, δ) is NP-hard.

I Conjecture 10 (Small Set Expansion Hypothesis [19]). For every η > 0, there is a δ > 0
such that SSE(η, δ) is NP-hard.

We say that a problem is SSE-hard if it is at least as hard to solve as the SSE problem.
The form of conjecture most relevant to our proof is the following “stronger” form of the SSE
Hypothesis. [20] showed that the SSE-problem can be reduced to a quantitatively stronger
form of itself. In order to state this version, we first need to define the Gaussian noise
stability.

I Definition 11 (Gaussian Noise Stability). Let ρ ∈ [−1, 1]. Define Γρ : [0, 1] 7→ [0, 1] by

Γρ(µ) = Pr[X ≤ Φ−1(µ) ∧ Y ≤ Φ−1(µ)]

where X and Y are jointly normal random variables with mean 0 and covariance matrix(
1 ρ

ρ 1

)
.

The only fact that we will use for stating the stronger form of SSEH is the asymptotic
behavior of Γρ(µ) when ρ is close to 1 and µ bounded away from 0.

I Fact 12. There is a constant c > 0 such that for all sufficiently small ε and all µ ∈
[1/10, 1/2],5

Γ1−ε(µ) ≤ µ(1− c
√
ε).

I Conjecture 13 (SSE Hypothesis, Equivalent Formulation [20]). For every integer q > 0 and
ε, γ > 0, it is NP-hard to distinguish between the following two cases for a given regular graph
G = (V,E):

Yes There is a partition of V into q equi-sized sets S1, · · · , Sq such that ΦG(Si) ≤ 2ε for
every 1 ≤ i ≤ q.
No For every S ⊆ V, letting µ = |S|/|V |, it holds that ΦG(S) ≥ 1− (Γ1−ε/2(µ) + γ)/µ,

where the Γ1−ε/2(µ) is the Gaussian noise stability.

We present two remarks about the Conjecture 13 from [2], which are relevant to our proof
of Theorem 2.
I Remark 14. [2] The Yes instance of Conjecture 13 implies that the number of edges leaving
each Si is at most 4ε|E|/q, so the total number of edges not contained in one of the Si is at
most 2ε|E|.
I Remark 15. [2] The No instance of Conjecture 13 implies that for ε sufficiently small, there
exists some constant c′ such that ΦG(S) ≥ c′

√
ε, provided that µ ∈ [1/10, 1/2] and setting

γ ≤
√
ε. In particular, |E(S, V \S)| ≥ Ω(

√
ε|E|), for any |V |/10 ≤ |S| ≤ 9|V |/10. 6

5 Note that the lower bound on µ can be taken arbitrarily close to 0. So the statement holds with
µ ∈ [ε′, 1/2] for any constant ε′ > 0.

6 Recall that Fact 12 is true for µ ∈ [ε′, 1/2] for any constant ε′ > 0. Therefore, Remark (15) can be
strengthened and states, for any ε′|V | ≤ |S| ≤ (1 − ε′)|V |, |E(S, V \S)| ≥ Ω(

√
ε|E|). This will be a

useful fact for proving hardness of approximation of m(G, g) for finding many truthful nodes in Section
5 in full length paper [8].
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Remark 14 follows from the definition of normalized edge expansion and the fact that sum
of degree is two times number of edges. Remark 15 follows from Fact 12. The strong form of
SSE Hypothesis 13, Remark 14 and Remark 15 will be particularly helpful for proving our
SSE-hardness of approximation result (Theorem 2).

2.2 Preliminaries for Corruption Detection on Networks
We model networks as directed or undirected graphs, where each vertex in the network can
be one of two types: truthful or corrupted. At times, we will informally call truthful vertices
“good” and corrupt vertices “bad.” We say that the corrupt party has budget b if it can afford
to corrupt at most b nodes of the graph. Given a vertex set V , and a budget b, the corrupt
entity will choose to control a subset of nodes B ⊆ V under the constraint |B| ≤ b. The
rest of the graph remains as truthful vertices, i.e., T = V \B ⊆ V . We assume that there
are more truthful than corrupt nodes (b < |V |/2). It is easy to see that in the case where
|B| ≥ |T |, the corrupt nodes can prevent the identification of even one truthful node, by
simulating truthful nodes (see e.g. [1]).

Each node audits and reports its (outgoing) neighbors’ identities. That is, each vertex
u ∈ V will report the type of each v ∈ N (u), which is a vector in {0, 1}|N (u)|. Truthful
nodes always report the truth, i.e., it reports its neighbor v ∈ T if v is truthful, v ∈ B if v is
corrupt. The corrupt nodes report their neighbors’ identities adversarially. In summary, a
strategy of the bad agents is composed of a strategy to take over at most b nodes on the
graph, and reports on the nodes that neighbor them.

I Definition 16 (Strategy for a corrupt party). A strategy for the corrupt party is a function
that maps a graph G and budget b to a subset of nodes B with size |B| ≤ b, and a set of
reports that each node v ∈ B gives about its neighboring nodes, N (v).

I Definition 17 (Computationally bounded corrupt party). We say that the corrupt party is
computationally bounded if its strategy can only be a polynomial-time computable function.

The task for the central agency is to find a good node on this corrupted network, based
on the reports. It is clear that the more budget the corrupt party has, the harder the task
of finding one truthful node becomes. It was observed in [1] that, for any graph, it is not
possible to find one good node if b ≥ |V |/2. If b = 0, it is clear that the entire set V is
truthful. Therefore, given an arbitrary graph G, there exists a critical number m(G), such
that if the bad party has budget lower than m(G), it is always possible to find a good node;
if the bad party has budget greater than or equal to m(G), it may not be possible to find a
good node. In light of this, we define the critical number of bad nodes on a graph G. First,
we formally define what we mean when we say it is impossible to find a truthful node on a
graph G.

I Definition 18 (Impossibility of finding one truthful node). Given a graph G = (V,E), the
bad party’s budget b and reports, we say that it is impossible to identify one truthful node if
for any v ∈ V , there exists a configuration of the identities of the nodes where v is bad, at
most b nodes are bad, and the configuration is consistent with the given reports.

I Definition 19 (Critical number of bad nodes on a graph G, m(G)). Given an arbitrary
graph G = (V,E), we define m(G) as the minimum number b such that there is a way to
distribute b corrupt nodes and set their corresponding reports such that it is impossible to
find one truthful node on the graph G, given G, the reports and that the bad party’s budget
is at most b.
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For example, for a star graph G with |V | ≥ 5, the critical number of bad nodes is
m(G) = 2. If there is at most 1 corrupt node on G, the central agency can always find a
good node, thus m(G) > 1. If there are at most 2 bad nodes on G, then the bad party can
control the center node and one of the leaves. Then for any node v in the graph, there exists
a configuration where v is bad, only two nodes are assigned bad, and the configuration is
consistent with observed reports. Therefore, it is impossible for central agency to find one
good node, m(G) = 2.

Given a graph G, by definition there exists a set of nodes of size m(G) that can make it
impossible to find a good node if they are corrupted. However, this does not mean that the
corrupt party can necessarily find this set in polynomial time. Indeed, Theorem 2 establishes
that they cannot always find this set in polynomial time if we assume the SSE Hypothesis
(Conjecture 13) and that P 6= NP.

3 Proofs and Main Lemmas

In the following section, we state our main results by first presenting the close relation of
our problem to the k-vertex separator problem. Then we use this characterization to prove
Theorem 1. This characterization will additionally be useful for the proofs of Theorems 2
and 3, which we will sketch in Section 3.2, and provide in Section 3.3 in our full length
paper [8].

3.1 2-Approximation by Vertex Separation
I Lemma 20 (2-Approximation by Vertex Separation). The critical number of corrupt nodes for
graph G, m(G), can be bounded by the minimal sum of k-vertex separator and k, mink(SG(k)+
k), up to a factor of 2. i.e.,

1
2 min

k
(SG(k) + k) ≤ m(G) ≤ min

k
(SG(k) + k)

Proof of Lemma 20. The direction m(G) ≤ mink SG(k) + k follows simply. Let k∗ =
arg mink(SG(k) +k). If the corrupt party is given SG(k∗) +k∗ nodes to corrupt on the graph,
it can first assign SG(k∗) nodes to the separator, thus the remaining nodes are partitioned
into components of size at most k∗. Then it arbitrarily assigns one of the components to be
all bad nodes. The bad nodes in the connected components report the nodes in the same
component as good, and report any node in the separator as bad. The nodes in the separator
can effectively report however they want (e.g. report all neighboring nodes as bad). It is
impossible to identify even one single good node, because all connected components of size k
can potentially be bad, and all vertices in the separator are bad.

The direction 1/2 mink(SG(k) + k) ≤ m(G) can be proved as follows. When there are
b = m(G) corrupt nodes distributed optimally in G, it is impossible to find a single good
node by definition, and therefore, in particular, the following algorithm (Algorithm 1) cannot
always find a good node:

Algorithm 1 Finding one truthful vertex on undirected graph G.
Input: Undirected graph G

If the reports on edge (u, v) does not equal to (u ∈ T, v ∈ T ), remove both u, v and any
incident edges. Remove a pair of nodes in each round, until there are no bad reports left.
Call the remaining graph H. Declare the largest component of H as good.
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Run Algorithm 1 on G, and suppose the first step terminates in i rounds, then:
No remaining node reports neighbors as corrupt
|V | − 2i nodes remain in graph
≤ b− i bad nodes remain in the graph, because each time we remove an edge with bad
report, and one of the end points must be a corrupt vertex.

Note that if two nodes report each other as good, they must be the same type (either
both truthful, or both corrupt.) Since graph H only contains good reports, nodes within a
connected component of H have the same types. If there exists a component of size larger
than b − i, it exceeds bad party’s budget, and must be all good. Therefore, Algorithm 1
would successfully find a good node.

Since Algorithm 1 cannot find a good node, the bad party must have the budget to corrupt
the largest component of H, which means it has size at most b− i. Hence, SG(b− i) ≤ 2i.
Plugging in b = m(G), we get that

m(G) = 2i
2 + b− i ≥ min

k
(SG(k)/2 + k) ≥ 1

2 min
k

(SG(k) + k),

where the first inequality comes from 2i ≥ SG(b− i). J

Furthermore, the upper bound in Lemma 20 additionally tells us that if corrupt party’s
budget b ≤ m(G)/2, the set output by Algorithm 1 is guaranteed to be good.

I Theorem 1 (restated). Fix a graph G and suppose that the corrupt party has a budget
b ≤ m(G)/2. Then the central agency can identify a truthful node, regardless of the strategy
of the corrupt party, and without knowledge of either m(G) or b. Furthermore, the central
agency’s algorithm runs in linear time (in the number of edges in the graph G).

Proof of Theorem 1. Suppose the corrupt party has budget b ≤ m(G)/2. Run Algorithm 1.
We remove 2i nodes in the first step, and separate the remaining graph H into connected
components. Notice each time we remove an edge with bad report, at least one of the
end point is a corrupt vertex. So we have removed at most 2b ≤ m(G) ≤ d|V |/2e nodes.
Therefore, the graph H is nonempty, and the nodes in any connected component of H have
the same identity. Let k∗ ≥ 1 be the size of the maximum connected component of H. We
can conclude that SG(k∗) ≤ 2i, since 2i is a possible size of k∗-vertex separator of G.

Notice there are at most b− i ≤ m(G)/2− i bad nodes in H by the same fact that at
least one bad node is removed each round. By the upper bound in Lemma 20,

b− i ≤ m(G)/2− i ≤ min
k

(SG(k) + k)/2− i ≤ (2i+ k∗)/2− i ≤ k∗

2 .

Since k∗ ≥ 1, the connected component of size k∗ exceeds the bad party’s remaining
budget k∗/2, and must be all good.

Algorithm 1 is linear time because it loops over all edges and removes any “bad” edge
that does not have reports (T, T ) (takes ≤ |E| time when we use a list with “bad” edges at
the front), and counts the size of the remaining components (≤ |V | time), and thus is linear
in |E|. J

I Remark 21. Both bounds in Lemma 20 are tight. For the lower bound, consider a complete
graph with an even number of nodes. For the upper bound, consider a complete bipartite
graph with one side smaller than the other.
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A tight lower bound and a tight upper bound example can be found in full-length version
of our paper [8].

We end by discussing that the efficient algorithm given in this section does not address
the regime when the budget of the bad party, b, falls in m(G)/2 < b ≤ m(G). Though by
definition of m(G), the central agency can find at least one truthful node as long as b ≤ m(G),
by, for example, enumerating all possible assignments of good/bad nodes consistent with the
report, and check the intersection of the assignment of good nodes. However, it is not clear
that the central agency has a polynomial time algorithm for doing this. Of course, one can
always run Algorithm 1, check whether the output set exceeds b− i/2, and concludes that
the output set is truthful if that is the case. However, there is no guarantee that the output
set will be larger than b− i/2 if m(G)/2 < b ≤ m(G). We propose the following conjecture:

I Conjecture 22. Fix a graph G and suppose that the corrupt party has a budget b such
that m(G)/2 < b ≤ m(G). The problem of finding one truthful node given the graph G, bad
party’s budget b and the reports is NP-hard.

3.2 SSE-Hardness of Approximation for m(G)
In this section, we present the hardness of approximation result for m(G) within any constant
factor under the Small Set Expansion (SSE) Hypothesis [19]. Specifically, we give essential
steps for proving Theorem 2.
I Theorem 2 (restated). For every β > 1, there is a constant ε > 0 such that the following
is true. Given a graph G = (V,E), it is SSE-hard to distinguish between the case where
m(G) ≤ ε · |V | and m(G) ≥ β · ε · |V |. Or in other words, the problem of approximating the
critical number of corrupt nodes for a graph to within any constant factor is SSE-hard.

In order to prove Theorem 2, we construct a reduction similar to [2], and show that the
bad party can control auxiliary graph of the Yes case of SSE with b = O(ε|V ′|) and cannot
control the auxiliary graph of the No case of SSE with b = Ω(ε0.51|V ′|). In the following, we
present the arguments for the No case.

Given an undirected d-regular graph G = (V,E), construct an auxiliary undirected graph
G′ = (V ′, E′) in the following way [2]. Let r = d/2. For each vertex vi ∈ V , make r copies
of vi and add to the vertex set of G′, denoted vi1, · · · , vir. Denote the resulting set of vertices
as Ṽ = V × {1, · · · , r}. Each edge ek ∈ E of G becomes a vertex in G′, denoted ek. Denote
this set of vertices as Ẽ. In other words, V ′ = Ṽ ∪ Ẽ = V × {1, · · · , r} ∪E. There exists an
edge between a vertex vij and a vertex ek of G′ if vi and ek were adjacent edge and vertex
pair in G. Note that G′ is a bipartite d-regular graph with d/2|V |+ |E| = 2|E| vertices.

I Lemma 23. Suppose q = 1/ε, and G can be partitioned into q equi-sized sets S1, · · · , Sq
such that ΦG(Si) ≤ 2ε for every 1 ≤ i ≤ q. Then the bad party can control the auxiliary graph
G′ with at most 3ε|E| = 1.5ε|V ′| nodes.

Proof of Lemma 23. Notice by Remark (2.1.1), the total number of edges in G not contained
in one of the Si is at most 2ε|E|.

This implies that a strategy for the bad party to control graph G′ is as follows. Control
vertex ek ∈ Ẽ if ek ∈ E is not contained in any of the Sis in G. Call the set of such vertices
E∗ ⊆ Ẽ. Let S∗i ⊆ V ′ be the set that contains all r copies of nodes in Si ⊆ V . Control one
of the S∗i s, say S∗1 . Corrupt nodes in S∗1 report their neighbors in S∗1 as good, and report E∗
as bad. Nodes in E∗ can effectively report however they want; suppose they report every
neighboring node as bad. Then, it is impossible to identify even one truthful node, since
assigning any S∗i as corrupt is consistent with the report and within bad party’s budget.
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If q = 1/ε, this strategy amounts to controlling 2ε|E|+ d/2 · |V |/q = 3ε|E| nodes on G′.
Notice, this number is guaranteed to be smaller than 1/2|V ′|, as long as q > 4, because the
bad party controls less than 2/q of all the “edge vertices” Ẽ, and controls less than 1/q of all
the “vertex vertices” Ṽ . J

Note that, different from the argument in [2], we cannot take r to be arbitrarily large (e.g.
> O(|V ||E|)). This is because when r is large, 2ε|E|+r · |V |/q = O(ε(|E|+ |V ′|)) = O(ε|V ′|),
and will not be comparable with the O(

√
ε|E|) in Lemma 24.

I Lemma 24. Let G = (V,E) be an undirected d-regular graph with the property that
for every |V |/10 ≤ |S| ≤ 9|V |/10 we have |E(S, V S)| ≥ Ω(

√
ε|E|). If bad party controls

O(ε0.51|E|) = O(ε0.51|V ′|) < 1/2|V ′| nodes on the auxiliary graph G′ constructed from G, we
can always find a truthful node on G′.

Combining Lemma 23 and Lemma 24, Theorem 2 follows in standard fashion. The proofs
for Lemma 24 and Theorem 2 are presented in our full-length paper [8].

We also obtain the following Corollary 25 from Theorem 2.

I Corollary 25. Assume the SSE Hypothesis and that P 6= NP. Fix any β > 1. There does
not exist a polynomial-time algorithm that takes as input an arbitrary graph G = (V,E) and
outputs a set of nodes S with size |S| ≤ O(β ·m(G)), such that corrupting S prevents the
central agency from finding a truthful node.

In summary, the analysis in this section tells us that given an arbitrary graph, it is hard
for bad party to corrupt the graph with minimal resources. Moreover, it is still hard for the
bad party to corrupt the graph even if they are given a budget of βm(G), for any β ≥ 1. On
the other hand, if the budget of the bad party is a factor of two less than m(G), a good node
can always be detected with an efficient algorithm, e.g. using Algorithm 1. This contrast
highlights that the corruption detection problem of finding one good node (and, as later
proven, finding any arbitrary fraction of good nodes) is easier for the good party and harder
for the bad party.

Finally, the existence of efficient algorithms for good party to detect one good node on
directed graphs (i.e. Theorem 4), and detect any fraction of the good nodes (i.e. Theorem
5) follows from analogous notions of vertex-separators to Definition 7. The hardness of
approximation results for finding any arbitrary fraction of good nodes, i.e. 6 can be proven
following similar constructions and arguments as in the proof sketch of Theorem 2. Then, we
give a simple a gadget reduction that extends the result to δ ∈ [1/2, 1). The full details of
this proof can be found in the full version of our paper, together with the proofs of Theorem
3, 4, 5, 6.
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Abstract
We study the problem of approximately simulating a t-step random walk on a graph where
the input edges come from a single-pass stream. The straightforward algorithm using reservoir
sampling needs O(nt) words of memory. We show that this space complexity is near-optimal for
directed graphs. For undirected graphs, we prove an Ω(n

√
t)-bit space lower bound, and give a

near-optimal algorithm using O(n
√
t) words of space with 2−Ω(

√
t) simulation error (defined as

the `1-distance between the output distribution of the simulation algorithm and the distribution
of perfect random walks). We also discuss extending the algorithms to the turnstile model, where
both insertion and deletion of edges can appear in the input stream.
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1 Introduction

Graphs of massive size are used for modeling complex systems that emerge in many different
fields of study. Challenges arise when computing with massive graphs under memory
constraints. In recent years, graph streaming has become an important model for computation
on massive graphs. Many space-efficient streaming algorithms have been designed for solving
classical graph problems, including connectivity [2], bipartiteness [2], minimum spanning tree
[2], matching [8, 12, 1], spectral sparsifiers [14, 13], etc. We will define the streaming model
in Section 1.1.

Random walks on graphs are stochastic processes that have many applications, such as
connectivity testing [17], clustering [18, 3, 4, 5], sampling [11] and approximate counting [10].
Since random walks are a powerful tool in algorithm design, it is interesting to study them
in the streaming setting. A natural problem is to find the space complexity of simulating
random walks in graph streams. Das Sarma et al. [7] gave a multi-pass streaming algorithm
that simulates a t-step random walk on a directed graph using O(

√
t) passes and only

O(n) space. By further extending this algorithm and combining with other ideas, they
obtained space-efficient algorithms for estimating PageRank on graph streams. However,
their techniques crucially rely on reading multiple passes of the input stream.

In this paper, we study the problem of simulating random walks in the one-pass streaming
model. We show space lower bounds for both directed and undirected versions of the problem,
and present algorithms that nearly match with the lower bounds. We summarize our results
in Section 1.3.
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1.1 One-pass streaming model
Let G = (V,E) be a graph with n vertices. In the insertion-only model, the input graph
G is defined by a stream of edges (e1, . . . , em) seen in arbitrary order, where each edge ei
is specified by its two endpoints ui, vi ∈ V . An algorithm must process the edges of G in
the order that they appear in the input stream. The edges can be directed or undirected,
depending on the problem setting. Sometimes we allow multiple edges in the graph, where
the multiplicity of an edge equals its number of occurrences in the input stream.

In the turnstile model, we allow both insertion and deletion of edges. The input is a
stream of updates ((e1,∆1), (e2,∆2), . . . ), where ei encodes an edge and ∆i ∈ {1,−1}. The
multiplicity of edge e is f(e) =

∑
ei=e ∆i. We assume f(e) ≥ 0 always holds for every edge e.

1.2 Random walks
Let f(u, v) denote the multiplicity of edge (u, v). The degree of u is defined by d(u) =∑
v∈V f(u, v). A t-step random walk starting from a vertex s ∈ V is a random sequence of

vertices v0, v1, . . . , vt where v0 = s and vi is a vertex uniformly randomly chosen from the
vertices that vi−1 connects to, i.e., P[vi = v|vi−1 = u] = f(u, v)/d(u). Let RWs,t : V t+1 →
[0, 1] denote the distribution of t-step random walks starting from s, defined by1

RWs,t(v0, . . . , vt) = 1[v0 = s]
t−1∏
i=0

f(vi, vi+1)
d(vi)

. (1)

For two distributions P,Q, we denote by |P−Q|1 their `1 distance. We say that a randomized
algorithm can simulate a t-step random walk starting from v0 within error ε, if the distribution
Pw of its output w ∈ V t+1 satisfies |Pw −RWv0,t|1 ≤ ε. We say the random walk simulation
is perfect if ε = 0.

We study the problem of simulating a t-step random walk within error ε in the streaming
model using small space. We assume the length t is specified at the beginning. Then the
algorithm reads the input stream. When a query with parameter v0 comes, the algorithm
should simulate and output a t-step random walk starting from vertex v0.

It is without loss of generality to assume that the input graph has no self-loops. If we
can simulate a random walk on the graph with self-loops removed, we can then turn it into
a random walk of the original graph by simply inserting self-loops after u with probability
dself(u)/d(u). The values dself(u), d(u) can be easily maintained by a streaming algorithm
using O(n) words.

The random walk is not well-defined when it starts from a vertex u with d(u) = 0. For
undirected graphs, this can only happen at the beginning of the random walk, and we simply
let our algorithm return Fail if d(v0) = 0. For directed graphs, one way to fix this is to
continue the random walk from v0, by adding an edge (u, v0) for every vertex u with d(u) = 0.
We will not deal with d(u) = 0 in the following discussion.

1.3 Our results
We will use log x = log2 x throughout this paper.

The following two theorems give space lower bounds on directed and undirected versions
of the problem. Note that the lower bounds hold even for simple graphs2.

1 For a statement p, define 1[p] = 1 if p is true, and 1[p] = 0 if p is false.
2 A simple graph is a graph with no multiple edges.
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I Theorem 1. For t ≤ n/2, simulating a t-step random walk on a simple directed graph in
the insertion-only model within error ε = 1

3 requires Ω(nt log(n/t)) bits of memory.

I Theorem 2. For t = O(n2), simulating a t-step random walk on a simple undirected graph
in the insertion-only model within error ε = 1

3 requires Ω(n
√
t) bits of memory.

Theorem 3 and Theorem 4 give near optimal space upper bounds for the problem in the
insertion-only streaming model.

I Theorem 3. We can simulate a t-step random walk on a directed graph in the insertion-only
model perfectly using O(nt) words3 of memory. For simple directed graphs, the memory can
be reduced to O(nt log(n/t)) bits, assuming t ≤ n/2.

I Theorem 4. We can simulate a t-step random walk on an undirected graph in the insertion-
only model within error ε using O

(
n
√
t · q

log q

)
words of memory, where q = 2 + log(1/ε)√

t
. In

particular, the algorithm uses O(n
√
t) words of memory when ε = 2−Θ(√t).

Our algorithms also extend to the turnstile model.

I Theorem 5. We can simulate a t-step random walk on a directed graph in the turnstile
model within error ε using O(n(t+ log 1

ε ) log2 max{n, 1/ε}) bits of memory.

I Theorem 6. We can simulate a t-step random walk on an undirected graph in the turnstile
model within error ε using O(n(

√
t+ log 1

ε ) log2 max{n, 1/ε}) bits of memory.

2 Directed graphs in the insertion-only model

The simplest algorithm uses O(n2) words of space (or only O(n2) bits, if we assume the
graph is simple) to store the adjacency matrix of the graph. When t� n, a better solution
is to use reservoir sampling.

I Lemma 7 (Reservoir sampling). Given a stream of n items as input, we can uniformly
sample m of them without replacement using O(m) words of memory.

We can also sample m items from the stream with replacement in O(m) words of memory
using m independent reservoir samplers each with capacity 1.

I Theorem 8. We can simulate a t-step random walk on a directed graph in the insertion-only
model perfectly using O(nt) words of memory.

Proof. For each vertex u ∈ V , we sample t edges eu,1, . . . , eu,t outgoing from u with
replacement. Then we perform a random walk using these edges. When u is visited for the
i-th time (i ≤ t), we go along edge eu,i. J

By treating an undirected edge as two opposite directed edges, we can achieve the same
space complexity in undirected graphs.

Now we show a space lower bound for the problem. We will use a standard result from
communication complexity.

I Definition 9. In the Index problem, Alice has an n-bit vector X ∈ {0, 1}n and Bob has
an index i ∈ [n]. Alice sends a message to Bob, and then Bob should output the bit Xi.

3 A word has Θ(log max{n, m}) bits.

ITCS 2019
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I Lemma 10 ([15]). For any constant 1/2 < c ≤ 1, solving the Index problem with success
probability c requires sending Ω(n) bits.

I Theorem 11. For t ≤ n/2, simulating a t-step random walk on a simple directed graph in
the insertion-only model within error ε = 1

3 requires Ω(nt log(n/t)) bits of memory.

Proof. We prove by showing a reduction from the Index problem. Before the protocol starts,
Alice and Bob agree on a family F of t-subsets of [n] 4 such that the condition |S ∩ S′| < t/2
is satisfied for every S, S′ ∈ F , S 6= S′. For two independent uniform random t-subsets
S, S′ ⊆ [n], let p = P[|S ∩ S′| ≥ t/2] ≤

(
t
t/2
)
( tn )t/2 < ( 4t

n )t/2. By union bound over all pairs
of subsets, a randomly generated family F satisfies the condition with probability at least
1−

(|F|
2
)
p, which is positive when |F| = d

√
1/pe ≥ ( n4t )

t/4. So we can choose such family F
with log |F| = Ω(t log(n/t)).

Assume |F| is a power of two. Alice encodes n log |F| bits as follows. Let G be a directed
graph with vertex set {v0, v1, . . . , v2n}. For each vertex u ∈ {vn+1, vn+2, . . . , v2n}, Alice
chooses a set Su ∈ F , and inserts an edge (u, vi) for every i ∈ Su.

Suppose Bob wants to query Su. He adds an edge (v, u) for every v ∈ {v0, v1, v2, . . . , vn},
and then simulates a random walk starting from v0. The random walk visits u every two
steps, and it next visits vi for some random i ∈ Su. At least t/2 different elements from Su
can be seen in 2t samples with probability at least 1−

(
t
t/2
)
( 1

2 )2t ≥ 1− 2−t, so Su can be
uniquely determined by an O(t)-step random walk (simulated within error ε) with probability
1− 2−t − ε

2 >
1
2 . By Lemma 10, the space usage for simulating the O(t)-step random walk is

at least Ω(n log |F|) = Ω(nt log(n/t)) bits. The theorem is proved by scaling down n and t
by a constant factor. J

For simple graphs, we can achieve an upper bound of O(nt log(n/t)) bits.

I Theorem 12. For t ≤ n/2, we can simulate a t-step random walk on a simple directed
graph in the insertion-only model perfectly using O(nt log(n/t)) bits of memory.

Proof. For every u ∈ V , we run a reservoir sampler with capacity t, which samples (at most)
t edges from u’s outgoing edges without replacement. After reading the entire input stream,
we begin simulating the random walk. When u is visited during the simulation, in the next
step we choose at random an outgoing edge used before with probability dused(u)/d(u), or an
unused edge from the reservoir sampler with probability 1− dused(u)/d(u), where dused(u) is
the number of edges in u’s sampler that are previously used in the simulation. We maintain
a t-bit vector to keep track of these used samples.

The number of different possible states of a sampler is at most
∑

0≤i≤t
(
n
i

)
≤ (t+ 1)( ent )t,

so it can be encoded using
⌈

log
(

(t + 1)( ent )t
)⌉

= O(t log(n/t)) bits. The total space is
O(nt log(n/t)) bits. J

3 Undirected graphs in the insertion-only model

3.1 A space lower bound
I Theorem 13. For t = O(n2), simulating a t-step random walk on a simple undirected
graph in the insertion-only model within error ε = 1

3 requires Ω(n
√
t) bits of memory.

4 Define [n] = {1, 2, . . . , n}. A t-subset is a subset of size t.
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a

b

Aj Bj Aj+1

V0

... · · ·

...

...

v0

Figure 1 Proof of Theorem 13.

Proof. Again we show a reduction from the Index problem.
Alice encodes Ω(n

√
t) bits as follows. Let G be an undirected graph with vertex set

V0 ∪ V1 ∪ · · · ∪ Vn/√t, where each Vj has size 2
√
t, and the starting vertex v0 ∈ V0. For

each j ≥ 1, Vj is divided into two subsets Aj , Bj with size
√
t each, and Alice encodes

|Aj | × |Bj | = t bits by inserting a subset of edges from {(u, v) : u ∈ Aj , v ∈ Bj}. In total she
encodes t · n/

√
t = n

√
t bits.

Suppose Bob wants to query some bit, i.e., he wants to see whether a and b are connected
by an edge. Assume (a, b) ∈ Aj × Bj . He adds an edge (u, v) for every u ∈ Aj and every
v ∈ V0 (see Figure 1). A perfect random walk starting from v0 ∈ V0 will be inside the
bipartite subgraph (Aj , Bj ∪ V0). Suppose the current vertex of the perfect random walk is
vi ∈ Aj . If a, b are connected by an edge, then

P[(vi+2, vi+3) = (a, b) | vi]
≥ P[vi+1 ∈ V0 | vi]P[vi+2 = a | vi+1 ∈ V0]P[vi+3 = b | vi+2 = a]

≥ |V0|
|V0|+ |Bj |

· 1
|Aj |

· 1
|V0|+ |Bj |

≥ 2
9t ,

so in every four steps the edge (a, b) is passed with probability Ω( 1
t ). Then a O(t)-step

perfect random walk will pass the edge (a, b) with probability 0.9. Hence Bob can know
whether the edge (a, b) exists by looking at the random walk (simulated within error ε)
with success probability 0.9− ε

2 > 1/2. By Lemma 10, the space usage for simulating the
O(t)-step random walk is at least Ω(n

√
t) bits. The theorem is proved by scaling down n

and t by a constant factor. J

3.2 An algorithm for simple graphs
Now we describe our algorithm for undirected graphs in the insertion-only model. As
a warm-up, we consider simple graphs in this section. We will deal with multi-edges in
Section 3.3.

ITCS 2019
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Intuition

We start by informally explaining the intuition of our algorithm for simple undirected graphs.
We maintain a subset of O(n

√
t) edges from the input graph, and use them to simulate

the random walk after reading the entire input stream.
For a vertex u with degree smaller than

√
t, we can afford to store all its neighboring

edges in memory. For u with degree greater than
√
t, we can only sample and store O(

√
t)

of its neighboring edges. During the simulation, at every step we first toss a coin to decide
whether the next vertex has small degree or large degree. In the latter case, we have to pick
a sampled neighboring edge and walk along it. If all sampled neighboring edges have already
been used, our algorithm fails. Using the large degree and the fact that edges are undirected,
we can show that the failure probability is low.

Description of the algorithm

We divide the vertices into two types according to their degrees: the set of big vertices
B = {u ∈ V : d(u) ≥ C + 1}, and the set of small vertices S = {u ∈ V : d(u) ≤ C}, where
parameter C is an positive integer to be determined later.

We use arc (u, v) to refer to an edge when we want to specify the direction u→ v. So an
undirected edge (u, v) corresponds to two different5 arcs, arc (u, v) and arc (v, u).

We say an arc (u, v) is important if v ∈ S, or unimportant if v ∈ B. Denote the set of
important arcs by E1, and the set of unimportant arcs by E0. The total number of important
arcs equals

∑
s∈S d(s) ≤ |S|C, so it is possible to store E1 in O(nC) words of space.

The set E0 of unimportant arcs can be huge, so we only store a subset of E0. For every
vertex u, we sample with replacement C unimportant arcs outgoing from u, denoted by
au,1, . . . , au,C .

To maintain the set E1 of important arcs and the samples of unimportant arcs after
every edge insertion, we need to handle the events when some small vertex becomes big.
This procedure is straightforward, as described by ProcessInput in Figure 2. Since |E1|
never exceeds nC, and each of the n samplers uses O(C) words of space, the overall space
complexity is O(nC) words.

We begin simulating the random walk after ProcessInput finishes. When the current
vertex of the random walk is v, with probability d1(v)/d(v) the next step will be along
an important arc, where d1(v) denotes the number of important arcs outgoing from v. In
this case we simply choose a uniform random vertex from {u : (v, u) ∈ E1} as the next
vertex. However, if the next step is along an unimportant arc, we need to choose an unused
sample av,j and go along this arc. If at this time all C samples av,j are already used, then
our algorithm fails (and is allowed to return an arbitrary walk). The pseudocode of this
simulating procedure is given in Figure 3.

In a walk w = (v0, . . . , vt), we say vertex u fails if |{i : vi = u and (vi, vi+1) ∈ E0}| > C. If
no vertex fails in w, then our algorithm will successfully return w with probability RWv0,t(w).
Otherwise our algorithm will fail after some vertex runs out of the sampled unimportant arcs.
To ensure the output distribution is ε-close to RWv0,t in `1 distance, it suffices to make our
algorithm fail with probability at most ε/2, by choosing a large enough capacity C.

5 We have assumed no self-loops exist, so u 6= v.
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procedure InsertArc(u, v)
d(v)← d(v) + 1
if d(v) = C + 1 then . v changes from small to big

for x ∈ V such that (x, v) ∈ E1 do . arc (x, v) becomes unimportant
E1 ← E1\{(x, v)}
Feed arc (x, v) into x’s sampler

end for
end if
if d(v) ≤ C then . v ∈ S

E1 ← E1 ∪ {(u, v)}
else . v ∈ B

Feed arc (u, v) into u’s sampler
end if

end procedure
procedure ProcessInput

E1 ← ∅ . Set of important arcs
for u ∈ V do

d(u)← 0
Initialize u’s sampler (initially empty) which maintains au,1, . . . , au,C

end for
for undirected edge (u, v) in the input stream do

InsertArc(u, v)
InsertArc(v, u)

end for
end procedure
Figure 2 Pseudocode for processing the input stream (for simple undirected graphs).

procedure SimulateRandomWalk(v0, t)
for v ∈ V do

c(v)← 0 . counter of used samples
end for
for i = 0, . . . , t− 1 do

N1 ← {u : (vi, u) ∈ E1}
x← uniformly random integer from {1, 2, . . . , d(vi)}
if x ≤ |N1| then

vi+1 ← uniformly random vertex from N1
else

j ← c(vi) + 1
c(vi)← j

if j > C then return Fail
else

vi+1 ← u, where (vi, u) = avi,j

end if
end if

end forreturn (v0, . . . , vt)
end procedure
Figure 3 Pseudocode for simulating a t-step random walk starting from v0.

ITCS 2019
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To bound the probability P[at least one vertex fails | v0 = s]6, we will bound the indi-
vidual failure probability of every vertex, and then use union bound.

I Lemma 14. Suppose for every u ∈ V , P[u fails | v0 = u] ≤ δ. Then for any starting vertex
s ∈ V , P[at least one vertex fails | v0 = s] ≤ tδ.

Proof. Fix a starting vertex s. For any particular u ∈ V ,

P[u fails | v0 = s]
= P[u fails, and ∃i ≤ t− 1, vi = u | v0 = s]
= P[∃i ≤ t− 1, vi = u | v0 = s]P[u fails | v0 = s, and ∃i ≤ t− 1, vi = u]
≤ P[∃i ≤ t− 1, vi = u | v0 = s]P[u fails | v0 = u]
≤ P[∃i ≤ t− 1, vi = u | v0 = s] · δ.

By union bound,

P[at least one vertex fails | v0 = s]

≤
∑
u∈V

P[u fails | v0 = s]

≤
∑
u∈V

P[∃i ≤ t− 1, vi = u | v0 = s] · δ

= E[number of distinct vertices visited in {v0, . . . , vt−1} | v0 = s] · δ
≤ tδ. J

I Lemma 15. We can choose integer parameter C = O
(√

t · q
log q

)
, where q = 2 + log(1/δ)√

t
,

so that P[u fails | v0 = u] ≤ δ holds for every u ∈ V .

Proof. Let d0(u) = |{v : (u, v) ∈ E0}|.
For any u ∈ V ,

P[u fails | v0 = u]
≤ P[u fails | v0 = u, (v0, v1) ∈ E0].

We rewrite this probability as the sum of probabilities of possible random walks in which
u fails. Recall that u fails if and only if |{i : vi = u, (vi, vi+1) ∈ E0}| ≥ C + 1. In the
summation over possible random walks, we only keep the shortest prefix (v0, . . . , vk) in which
u fails, i.e., the last step (vk−1, vk) is the (C + 1)-st time walking along an unimportant arc
outgoing from u. We have

P[u fails | v0 = u, (v0, v1) ∈ E0]

=
∑
k≤t

∑
walk(v0,...,vk)

1
[
v0 = vk−1 = u, (v0, v1), (vk−1, vk) ∈ E0,

|{i : vi = u, (vi, vi+1) ∈ E0}| = C + 1
]

1
d0(u)

k−1∏
i=1

1
d(vi)

=
∑
k≤t

∑
walk(v0,...,vk−1)

1
[
v0 = vk−1 = u, (v0, v1) ∈ E0,

|{i : vi = u, (vi, vi+1) ∈ E0}| = C

] k−1∏
i=1

1
d(vi)

. (2)

6 If not specified, assume the probability space is over all t-step random walks (v0, . . . , vt) starting from v0.
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Let v′i = vk−1−i. Since the graph is undirected, the vertex sequence (v′0, . . . , v′k−1) (the reversal
of walk (v0, . . . , vk−1)) is also a walk starting from and ending at u. So the summation (2)
equals∑

k≤t

∑
walk(v′0,...,v′k−1)

1
[
v′0 = v′k−1 = u, (v′k−1, v

′
k−2) ∈ E0,

|{i : v′i = u, (v′i, v′i−1) ∈ E0}| = C

] k−2∏
i=0

1
d(v′i)

= P
random walk (v′0, . . . , v

′
t−1)

[
|{i : v′i = u, (v′i, v′i−1) ∈ E0}| ≥ C

∣∣∣ v′0 = u
]
.

Recall that (v′i, v′i−1) ∈ E0 if and only if v′i−1 ∈ B. For any 1 ≤ i ≤ t− 1 and any fixed prefix
v′0, . . . , v

′
i−1,

P
[
v′i = u, (v′i, v′i−1) ∈ E0

∣∣ v′0, . . . , v′i−1
]

≤ 1[v′i−1 ∈ B] · 1
d(v′i−1)

<
1
C
. (3)

Hence the probability that |{1 ≤ i ≤ t− 1 : v′i = u, (v′i, v′i−1) ∈ E0}| ≥ C is at most(
t− 1
C

)(
1
C

)C
≤
(
e(t− 1)
C

)C ( 1
C

)C
<

(
et

C2

)C
.

We set C =
⌈
4
√
t q/ log q

⌉
, where q = 2 + log(1/δ)/

√
t > 2. Notice that q/ log2 q > 1/4.

Then

C log
(
C2

et

)
≥ 4
√
tq

log q log
(

16q2

e log2 q

)
>

4
√
tq

log q log(4q/e) > 4
√
tq > log(1/δ),

so (
et

C2

)C
< δ.

Hence we have made P[u fails | v0 = u] < δ by choosing C = O(
√
tq/ log q). J

I Theorem 16. We can simulate a t-step random walk on a simple undirected graph in
the insertion-only model within error ε using O

(
n
√
t · q

log q

)
words of memory, where q =

2 + log(1/ε)√
t

.

Proof. The theorem follows from Lemma 14 and Lemma 15 by setting δ = ε
2t . J

3.3 On graphs with multiple edges
When the undirected graph contains multiple edges, condition (3) in the proof of Lemma 15
may not hold, so we need to slightly modify our algorithm.
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We still maintain the multiset E1 of important arcs. Whether an arc is important will be
determined by our algorithm. (This is different from the previous algorithm, where important
arcs were simply defined as (u, v) with d(v) ≤ C.) We will ensure that condition (3) still
holds, i.e., for any u ∈ V and any fixed prefix of the random walk v0, . . . , vi−1,

P
[
(vi, vi−1) /∈ E1, and vi = u

∣∣ v0, . . . , vi−1
]
< 1/C. (4)

Note that there can be both important arcs and unimportant arcs from u to v. Let
f(u, v) denote the number of undirected edges between u, v. Then there are f(u, v) arcs
(u, v). Suppose f1(u, v) of these arcs are important, and f0(u, v) = f(u, v)− f1(u, v) of them
are unimportant. Then we can rewrite condition (4) as

f0(u, vi−1)
d(vi−1) < 1/C, (5)

for every u, vi−1 ∈ V .
Similarly as before, we need to store the multiset E1 using only O(nC) words of space.

And we need to sample with replacement C unimportant arcs au,1, . . . , au,C outgoing from
u, for every u ∈ V . Finally we use the procedure SimulateRandomWalk in Figure 3 to
simulate a random walk.

The multiset E1 is determined as follows: For every vertex v ∈ V , we run Misra-
Gries algorithm [16] on the sequence of all v’s neighbors. We will obtain a list Lv of at
most C vertices, such that for every vertex u /∈ Lv, f(u,v)

d(v) < 1
C . Moreover, we will get

a frequency estimate Av(u) > 0 for every u ∈ Lv, such that 0 ≤ f(u, v) − Av(u) < d(v)
C .

Assuming Av(u) = 0 for u /∈ Lv, we can satisfy condition (5) for all u ∈ V by setting
f1(u, v) = Av(u). Hence we have determined all the important arcs, and they can be stored
in O(

∑
v |Lv|) = O(nC) words. To sample from the unimportant arcs, we simply insert

the arcs discarded by Misra-Gries algorithm into the samplers. The pseudocode is given in
Figure 4.

I Lemma 17. After ProcessInput (in Figure 4) finishes, |Lv| ≤ C. For every u ∈ Lv,
0 ≤ f(u, v)−Av(u) ≤ d(v)

C+1 . For every u /∈ Lv, f(u, v) ≤ d(v)
C+1 .

Proof. Every time the for loop in procedure InsertArc finishes, the newly added vertex
u must have been removed from Lv, so |Lv| ≤ C still holds. Let W = {w1, · · · , wC+1} be
the set of vertices in Lv before this for loop begins. Then for every u ∈ V , f(u, v)−Av(u)
equals the number of times u is contained in W (assuming Av(u) = 0 for u /∈ Lv), which is
at most 1

C+1
∑
W |W | ≤

d(v)
C+1 . J

I Corollary 18. Procedure ProcessInput in Figure 4 computes the multiset E1 of important
edges and stores it using O(nC) words. It also samples with replacement C unimportant arcs
au,1, . . . , au,C outgoing from u, for every u ∈ V . Moreover,

f0(u, v)
d(v) <

1
C

holds for every u, v ∈ V .

Now we analyze the failure probability of SimulateRandomWalk (in Figure 3), similar
to Lemma 15.

I Lemma 19. We can choose integer parameter C = O
(√

t · q
log q

)
, where q = 2 + log(1/δ)√

t
,

so that P[u fails | v0 = u] ≤ δ holds for every u ∈ V .
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procedure InsertArc(u, v)
d(v)← d(v) + 1
if u ∈ Lv then

Av(u)← Av(u) + 1
else

Insert u into Lv
Av(u)← 1
if |Lv| ≥ C + 1 then

for w ∈ Lv do
Feed arc (w, v) into w’s sampler
Av(w)← Av(w)− 1
if Av(w) = 0 then

Remove w from Lv
end if

end for
end if

end if
end procedure
procedure ProcessInput

for u ∈ V do
d(u)← 0
Initialize u’s sampler (initially empty) which maintains au,1, . . . , au,C
Initialize empty list Lu

end for
for undirected edge (u, v) in the input stream do

InsertArc(u, v)
InsertArc(v, u)

end for
E1 ←

⋃
v∈V

⋃
u∈Lv

{Av(u) copies of arc (u, v)} . Multiset of important arcs
end procedure
Figure 4 Pseudocode for processing the input stream (for undirected graphs with possibly

multiple edges).

Proof. Let d0(u) =
∑
v∈V f0(u, v). As before, we rewrite this probability as a sum over

possible random walks. Here we distinguish between important and unimportant arcs. Denote
si = 1[step (vi−1, vi) is along an important arc]. Then for any u ∈ V ,

P[u fails | v0 = u]
≤ P[u fails | v0 = u, arc (v0, v1) is unimportant]

= d(u)
d0(u)

∑
k≤t

∑
(v0,...,vk)

∑
s1,...,sk

1
[
v0 = vk−1 = u, s1 = sk = 0,

|{i : vi = u, si+1 = 0}| = C + 1
] k−1∏
i=0

fsi+1(vi, vi+1)
d(vi)

=
∑
k≤t

∑
(v0,...,vk−1)

∑
s1,...,sk−1

1
[
v0 = vk−1 = u, s1 = 0,

|{i : vi = u, si+1 = 0}| = C

] k−2∏
i=0

fsi+1(vi, vi+1)
d(vi)

.
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Let v′i = vk−1−i, s
′
i = sk−i. Then this sum equals

∑
k≤t

∑
(v′0,...,v′k−1)

∑
s′1,...,s

′
k−1

1
[
v′0 = v′k−1 = u, s′k−1 = 0,

|{i : s′i = 0, v′i = u}| = C

] k−1∏
i=1

fs′
i
(v′i, v′i−1)
d(v′i−1)

= P
random walk (v′0, . . . , v

′
t−1)

[
|{i : v′i = u, arc (v′i, v′i−1) is unimportant}| ≥ C

∣∣∣ v′0 = u
]
.

Notice that for any i and any fixed prefix v′0, . . . , v′i−1,

P
[
v′i = u, arc (v′i, v′i−1) is unimportant

∣∣∣ v′0, v′1, . . . , v′i−1

]
=
f0(u, v′i−1)
d(v′i−1) <

1
C

by Corollary 18. The rest of the proof is the same as in Lemma 15. J

I Theorem 20. We can simulate a random walk on an undirected graph with possibly multiple
edges in the insertion-only model within error ε using O

(
n
√
t · q

log q

)
words of memory, where

q = 2 + log(1/ε)√
t

.

Proof. The theorem follows from Lemma 14 and Lemma 19 by setting δ = ε
2t . J

4 Turnstile model

In this section we consider the turnstile model where both insertion and deletion of edges
can appear.

I Lemma 21 (`1 sampler in the turnstile model, [9]). Let f ∈ Rn be a vector defined by a
stream of updates to its coordinates of the form fi ← fi + ∆, where ∆ can either be positive
or negative. There is an algorithm which reads the stream and returns an index i ∈ [n] such
that for every j ∈ [n],

P[i = j] = |fj |
‖f‖1

+O(n−c), (6)

where c ≥ 1 is some arbitrary large constant. It is allowed to output Fail with probability
δ, and in this case it will not output any index. The space complexity of this algorithm is
O(log2 n log(1/δ)) bits.

I Remark. For ε� 1/n, the O(n−c) error term in (6) can be reduced to O(εc) by running
the `1 sampler on f ∈ Rd1/εe, using O(log2(1/ε) log(1/δ)) bits of space.

We will use the `1 sampler for sampling neighbors (with possibly multiple edges) in the
turnstile model. The error term O(n−c) (or O(εc)) in (6) can be ignored in the following
discussion, by choosing sufficiently large constant c and scaling down ε by a constant.

4.1 Directed graphs
I Theorem 22. We can simulate a t-step random walk on a directed graph in the turnstile
model within error ε using O(n(t+ log 1

ε ) log2 max{n, 1/ε}) bits of memory.
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Proof. For every u ∈ V , we run C ′ = 2t+ 16 log(2t/ε) independent `1 samplers each having
failure probability δ = 1/2. We use them to sample the outgoing edges of u (as in the
algorithm of Theorem 8). By Chernoff bound, the probability that less than t samplers
succeed is at most ε/(2t).

We say a vertex u fails if u has less than t successful samplers, and u ∈ {v0, v1, . . . , vt−1}
(where v0, v1, . . . , vt is the random walk). Then P[u fails] ≤ ε

2tP[u ∈ {v0, . . . , vt−1}]. By union
bound, P[at least one vertex fails] ≤ ε

2t
∑
u∈V P[u ∈ {v0, . . . , vt−1}] ≤ ε

2 . Hence, with prob-
ability 1− ε

2 , every vertex u visited (except the last one) has at least t outgoing edges sampled,
so our simulation can succeed. The space usage is O(nC ′ log2 max{n, 1/ε} log(1/δ)) =
O(n(t+ log 1

ε ) log2 max{n, 1/ε}) bits. J

4.2 Undirected graphs

We slightly modify the ProcessInput procedure of our previous algorithm in Section 3.3.
We will use the `1 heavy hitter algorithm in the turnstile model.

I Lemma 23 (`1 heavy hitter, [6]). Let f ∈ Rn be a vector defined by a stream of updates to
its coordinates of the form fi ← fi + ∆, where ∆ can either be positive or negative. There
is a randomized algorithm which reads the stream and returns a subset L ⊆ [n] such that
i ∈ L for every |fi| ≥ ‖f‖1

k , and i /∈ L for every |fi| ≤ ‖f‖1
2k . Moreover it returns a frequency

estimate f̃i for every i ∈ L, which satisfies 0 ≤ fi − f̃i ≤ ‖f‖1
2k . The failure probability of this

algorithm is O(n−c). The space complexity is O(k log2 n) bits.

I Remark. For ε � 1/n, the O(n−c) failure probability of this `1 heavy hitter algorithm
can be reduced to O(εc) by running the algorithm on f ∈ Rd1/εe, using O(k log2(1/ε)) bits
of space. In the following discussion, this failure probability can be ignored by making the
constant c sufficiently large.

I Theorem 24. We can simulate a t-step random walk on an undirected graph in the turnstile
model within error ε using O(n(

√
t+ log 1

ε ) log2 max{n, 1/ε}) bits of memory.

Proof. Similar to the previous insertion-only algorithm (in Figure 4), we perform two arc
updates ((u, v),∆), ((v, u),∆) when we read an edge update ((u, v),∆) from the stream.

For every u ∈ V , we run C ′ = 2C + 16 log(2t/ε) independent `1 samplers each having
failure probability δ = 1/2, where C is the same constant as in the proof of Lemma 19 and
Theorem 20. By Chernoff bound, the probability that less than C samplers succeed is at
most ε/(2t). For every arc update ((u, v),∆), we send update (v, ∆) to u’s `1 sampler.

In addition, for every v ∈ V , we run `1 heavy hitter algorithm with k = C. For every arc
update ((u, v),∆), we send update (u,∆) to v’s heavy hitter algorithm. In the end, we will
get a frequency estimate Av(u) for every u ∈ V , such that f(u, v)− d(v)

C ≤ Av(u) ≤ f(u, v).
We then insert Av(u) copies of arc (u, v) into E1 (the multiset of important arcs), and send
update (v,−Av(u)) to u’s `1 sampler. Then we use the `1 samplers to sample unimportant
arcs for every u.

As before, we use the procedure SimulateRandomWalk (in Figure 3) to simulate the
random walk. The analysis of the failure probability of the `1 samplers is the same as in
Theorem 22. The analysis of the failure probability of procedure SimulateRandomWalk is
the same as in Lemma 19. The space usage of the algorithm is O(nC ′ log2 max{n, 1/ε} log δ) =
O(n(

√
t+ log 1

ε ) log2 max{n, 1/ε}) bits. J

ITCS 2019



46:14 Simulating Random Walks on Graphs in the Streaming Model

5 Conclusion

We end our paper by discussing some related questions for future research.

The output distribution of our insertion-only algorithm for undirected graphs is ε-close
to the random walk distribution. What if the output is required to be perfectly random,
i.e., ε = 0?
For insertion-only simple undirected graphs, we proved an Ω(n

√
t)-bit space lower bound.

Our algorithm uses O(n
√
t logn) bits (for not too small ε). Can we close the gap between

the lower bound and the upper bound, as in the case of directed graphs?
In the undirected version, suppose the starting vertex v0 is drawn from a distribution
(for example, the stationary distribution of the graph) rather than being specified. Is it
possible to obtain a better algorithm in this new setting? Notice that our proof of the
Ω(n
√
t) lower bound does not work here, since it requires v0 to be specified.

We required the algorithm to output all vertices on the random walk. If only the last
vertex is required, can we get a better algorithm or prove non-trivial lower bounds?
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Abstract
The fundamental theorem of symmetric polynomials states that for a symmetric polynomial
fSym ∈ C[x1, x2, . . . , xn], there exists a unique “witness” f ∈ C[y1, y2, . . . , yn] such that fSym =
f(e1, e2, . . . , en), where the ei’s are the elementary symmetric polynomials.

In this paper, we study the arithmetic complexity L(f) of the witness f as a function of
the arithmetic complexity L(fSym) of fSym. We show that the arithmetic complexity L(f) of
f is bounded by poly(L(fSym), deg(f), n). To the best of our knowledge, prior to this work
only exponential upper bounds were known for L(f). The main ingredient in our result is an
algebraic analogue of Newton’s iteration on power series. As a corollary of this result, we show
that if VP 6= VNP then there exist symmetric polynomial families which have super-polynomial
arithmetic complexity.

Furthermore, we study the complexity of testing whether a function is symmetric. For poly-
nomials, this question is equivalent to arithmetic circuit identity testing. In contrast to this, we
show that it is hard for Boolean functions.
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1 Introduction

Lipton and Regan [10] ask the question whether understanding the arithmetic complexity of
symmetric polynomials is enough to understand the arithmetic complexity of all polynomials.
We here answer this question in the affirmative. The fundamental theorem of symmetric
polynomials establishes a bijection between symmetric polynomials and arbitrary polynomials.
It states that for every symmetric polynomial fSym ∈ C[x1, x2, . . . , xn], there exists a unique
polynomial f ∈ C[y1, y2, . . . , yn] such that fSym = f(e1, e2, . . . , en), where the ei’s are the
elementary symmetric polynomials. We prove that the arithmetic circuit complexity of f
and fSym are polynomially related.

An arithmetic circuit C is a directed acyclic graph with the following kind of nodes
(gates):

1 Supported by European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 759557) and by Academy of Finland, under grant number
310415. This work was done while the author was a graduate student at Saarland University and the
Max-Planck-Institut für Informatik.

© Markus Bläser and Gorav Jindal;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mblaeser@cs.uni-saarland.de
mailto:gorav.jindal@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2019.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


47:2 Complexity of Symmetric Polynomials

Nodes with in-degree zero labeled by variables or scalars, these are called input gates.
Nodes labeled by addition (+), subtraction (−) or multiplication (×) gates, these gates
have in-degree two and unbounded out-degree.
Nodes with out-degree zero (it can be an input, +,− or × gate), these are called output
gates.

Each gate of such a circuit computes a multivariate polynomial in the following way:
Input gates compute the polynomial by which they are labeled.
A ◦ gate g computes the polynomial g1 ◦ g2, if the children gates of g compute the
polynomials g1 and g2, here ◦ ∈ {+,−,×}.

If the output gates of C compute the polynomials g1, g2, . . . , gt then we say that C computes
the set {g1, g2, . . . , gt} of polynomials. In the literature, it is usually assumed that any
arithmetic circuit C has a unique output gate and thus C computes a single multivariate
polynomial. The size of an arithmetic circuit C is defined as the number of gates in C.

We can naturally model computations over a field by arithmetic circuits and thus the
study of arithmetic circuits is essential in studying the computational complexity in algebraic
models of computation. Valiant [15] defined the complexity classes VP and VNP as algebraic
analogues of the classes P and NP. In algebraic complexity theory, complexity classes such
as VP and VNP are defined as sets of polynomial families. For the precise definitions of VP
and VNP, see section A in the appendix. For a polynomial f , L(f) is defined as the size of
the smallest circuit computing f . We use the same notation L(S) to denote the size of the
smallest circuit computing a set of polynomials S. There is also a notion of oracle complexity
Lg(f) of a polynomial f with respect to some polynomial g, see Definition 9.

LetSn be the symmetric group defined as the set of all permutations of the set {1, 2, . . . , n}.
A Boolean function f : {0, 1}n → {0, 1} is said to be symmetric if f(x1, x2, . . . , xn) =
f(xσ(1), xσ(2), . . . , xσ(n)) for all (x1, x2, . . . , xn) ∈ {0, 1}n, σ ∈ Sn. It is easy to see that all
symmetric Boolean functions can be computed by constant depth threshold circuits, that is,
are contained in the class TC0. The notion of symmetric polynomials can also be defined
similarly. It is natural to ask whether symmetric polynomials can also be computed efficiently,
i.e., whether the arithmetic complexity of symmetric polynomials is also small? This is the
question we study in this paper.

1.1 Previous Work
It is well known that for every symmetric polynomial g ∈ C[x1, x2, . . . , xn], there exists a
unique polynomial f ∈ C[x1, x2, . . . , xn] such that g = f(e1, e2, . . . , en). Here, e1, e2, . . . , en
denote the elementary symmetric polynomials in x1, x2, . . . , xn. For an arbitrary polynomial
f ∈ C[x1, x2, . . . , xn], let fSym defined by fSym

def==== f(e1, e2, . . . , en) be the symmetric
polynomial corresponding to f (see Section 2). We want to study the relation between the
complexities L(f) and L(fSym). The question was studied and partially solved in [7, 6, 10].
More specifically, the following theorems were proved in [7, 6, 10].

I Theorem 1 (Theorem 1 in [7]). For any polynomial f ∈ C[x1, x2, . . . , xn], L(f) ≤
∆(n)L(fSym) + 2, where ∆(n) ≤ 4n(n!)2.

Whereas [7] showed the bound on L(f) for exact computation, [10] investigated a related
problem of approximating the value of f at a given point by using an arithmetic circuit
computing fSym.

I Theorem 2 ([10]). For any polynomial f ∈ Q[x1, x2, . . . , xn], there is an algorithm that
computes the value f(a) within ε in time L(fSym) + poly(log ||a|| , n, log 1

ε ) for any a ∈ Qn.
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Note that Theorem 2 does not compute a circuit for f but only gives an algorithm to
approximate the value of f at a given point. The results in [6] were in a much more general
setting. [6] studied the in-variance under general finite matrix groups, not just under Sn as
we do in this paper. By specializing the theorems in [6] for the finite matrix group Sn, we
get the following result.

I Theorem 3 ([6]). For any polynomial f ∈ C[x1, x2, . . . , xn], we have L(f) ≤ ((n +
1)!)6L(fSym).

The upper bound in [6] (Theorem 3) is worse than that of [7] (Theorem 1) but this is to
be expected because [6] solves a more general problem.

1.2 Our results
It is easy to see that L(fSym) ≤ L(f)+nO(1) (see [10]). All the exact bounds (with respect to
L(fSym)) on L(f) above are exponential. It was left as an open question in [10] whether L(f)
can be bounded polynomially with respect to L(fSym). In this paper, we demonstrate that
L(f) can be polynomially bounded in terms of L(fSym). In whatever follows, the complexity
notation Õ hides poly-logarithmic factors. The following Theorem 4 is the main contribution
of this paper.

I Theorem 4. For any polynomial f ∈ C[x1, x2, . . . , xn] of degree d with dSym
def=== deg(fSym),

we have the following upper bounds on LfSym(f) and L(f):

LfSym(f) ≤ Õ
(
n3 · d2 · dSym

)
,

L(f) ≤ Õ
(
d2L(fSym) + d2n2) .

I Remark. It can be shown that dSym ≤ dn and d ≤ dSym. Thus Theorem 4 implies that
LfSym(f) ≤ Õ

(
n4 · d3).

From Theorem 4, it easily follows that there exist families of symmetric polynomials of
super-polynomial arithmetic complexity (assuming VP 6= VNP).

In addition, we also consider the following problems:
1. SFT (symmetric function testing)
2. SPT (symmetric polynomial testing)

I Problem 5 (SFT). Given a Boolean circuit C computing the Boolean function f(x1, x2,

. . . , xn), check if f is symmetric, that is, is f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n))) for
all σ ∈ Sn?

I Problem 6 (SPT). Given an arithmetic circuit C computing the polynomial f(x1, x2, . . . ,

xn), check if f is a symmetric polynomial?

Let CSAT be the problem of deciding whether a given Boolean circuit has a satisfying
assignment, that is, computes a non-zero function (see [8]). ACIT is the problem of deciding
whether the polynomial computed by a given arithmetic circuit is zero (see [1]). We prove
the following results on the complexity of SPT and SFT.

I Lemma 7. SFT and CSAT are polynomial time Turing reducible to each other, i.e.,
SFT ≤T

P CSAT and CSAT ≤T
P SFT.

I Lemma 8. SPT and ACIT are polynomial time many one reducible to each other, i.e.,
SPT ≤P ACIT and ACIT ≤P SPT.

ITCS 2019



47:4 Complexity of Symmetric Polynomials

In light of above results, we notice the following contrasting situations in Boolean and
algebraic models of computation:

All symmetric Boolean functions are easy to compute but the problem of deciding the
symmetry of a Boolean function is hard.
There exist families of symmetric polynomials which are hard to compute (assuming
VP 6= VNP) but deciding the symmetry of a polynomial is easy.

1.3 Proof ideas

The main proof idea is much easier to demonstrate in the case of n = 2. Let B(y) be the
following uni-variate polynomial in y with coefficients in C[x1, x2]:

B(y) def==== y2 − (x1 + x2)y + x1x2.

Note that the roots of B(y) are x1, x2. Hence we have the following equalities:

x1 =
x1 + x2 +

√
(x1 + x2)2 − 4x1x2

2 ,

x2 =
x1 + x2 −

√
(x1 + x2)2 − 4x1x2

2 .

We use the symbols e1, e2 for the elementary symmetric polynomials: e1
def==== (x1 + x2) and

e2
def==== x1x2. Thus we have the following equalities:

x1 = e1 +
√
e2

1 − 4e2

2 , (1)

x2 = e1 −
√
e2

1 − 4e2

2 . (2)

Let fSym ∈ C[x1, x2] be a symmetric polynomial and deg(f) = d.
If we substitute the above radical expressions (in Equation 1 and Equation 2) for x1

and x2 in fSym(x1, x2), then we obtain f(e1, e2). But unfortunately, we can not perform
these kind of substitutions in our model of computation. This is because we cannot compute
expressions of the form

√
e2

1 − 4e2 with arithmetic circuits.
If we use the substitution e2 ← e2 − 1 in Equation 1 and Equation 2 and thereafter

substitute x1 and x2 in fSym(x1, x2), we shall obtain f(e1, e2− 1). The degree of f(e1, e2− 1)
is also bounded by d. Even by using this substitution, the expressions in Equation 1 and
Equation 2 cannot be computed by arithmetic circuits. But this substitution allows us to use
Taylor expansion on

√
e2

1 − 4(e2 − 1) to obtain a power series in e1, e2. Since f(e1, e2 − 1)
has degree at most d, we only need to substitute truncations of degree d of these Taylor series
to obtain f(e1, e2 − 1) (also some additional junk terms which can be removed efficiently)
and subsequently use the substitution e2 ← e2 + 1 to obtain f(e1, e2).

This method works for two variables. It can be extended to work for at most four variables
because it is well known that polynomials of degree more than four are not solvable by
radicals (see e.g. Section 15.9 in [2]). To make this idea work in general, we shall substitute
en by en + (−1)n−1 and then compute degree d truncation of roots of B(y) using Newton’s
iteration.
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1.4 Organization
Section 2 introduces elementary symmetric polynomials and also formally states the funda-
mental theorem of symmetric polynomials. We also state a folklore result about computing
the homogeneous components of a polynomial. Section 3 describes the complexity of the
problems SFT and SPT. Section 4 describes the main contribution of this paper, we use the
classical Newton’s iteration to prove Theorem 4 in this section. As an easy consequence of
Theorem 4, Section 5 proves that there exist hard symmetric polynomial families (assuming
VP 6= VNP).

2 Preliminaries

2.1 Notation and background
For a positive integer n, we use the notation [n] to denote the set {1, 2, . . . , n}. Similarly,
[[n]] is used to denote the set {0, 1, 2, . . . , n}. Now we formally define the notion of oracle
computations [5].

I Definition 9 ([5]). The oracle complexity Lg(f) of a polynomial f ∈ F[x1, x2, . . . , xn] with
respect to the oracle polynomial g is the minimum number of arithmetic operations +,−,×
and evaluations of g (at previously computed values) that are sufficient to compute f from
the indeterminates xi and constants in F.

I Definition 10. The ith elementary symmetric polynomial eni in n variables x1, x2, . . . , xn
is defined as the following polynomial:

eni
def====

∑
1≤j1<j2<···<ji≤n

xj1 · xj2 · · · · · xji
.

For an arbitrary polynomial f ∈ F[x1, x2, . . . , xn], we define the polynomial fSym as:

fSym
def==== f(en1 , en2 , . . . , enn). (3)

Whenever n is clear from the context, we use the notation ei to denote the ith elementary
symmetric polynomial eni . Note that fSym is a symmetric polynomial. So Equation 3
is a method to create symmetric polynomials. The fundamental theorem of symmetric
polynomials states that Equation 3 is the only way to create symmetric polynomials.

I Theorem 11 (see [3]). If g ∈ C[x1, x2, . . . , xn] is a symmetric polynomial, then there exists
a unique polynomial f ∈ C[y1, y2, . . . , yn] such that g = f(en1 , en2 , . . . , enn).

Theorem 11 states that every symmetric polynomial g can be uniquely written as fSym
for some f . Thus in whatever follows, we always use the notation of the kind fSym to denote
a symmetric polynomial.

2.2 Basic tools
Suppose we have a circuit C computing a polynomial f ∈ C[x1, x2, . . . , xn] of degree d. It
might be the case that f is not homogeneous. For some applications, it might be better to
work with homogeneous polynomials. So we want to know if there exist “small” circuits also
for the homogeneous components of f . For a polynomial f , f [m] is used to denote the degree
m homogeneous component of f . The following Lemma 12 proves that the homogeneous
components of f also have “small” arithmetic circuits.

ITCS 2019



47:6 Complexity of Symmetric Polynomials

I Lemma 12 (Folklore). Let f ∈ C[x1, x2, . . . , xn] be a polynomial with d = deg(f). For any
0 ≤ m ≤ d, we have: Lf (f [m]) ≤ O(nd).

Proof. For a fresh indeterminate y, consider the polynomial f(yx1, yx2, . . . , yxn). We
consider f(yx1, yx2, . . . , yxn) as a uni-variate polynomial in y of degree d, with coeffi-
cients in C[x1, x2, . . . , xn]. We observe that for any 0 ≤ m ≤ d, the coefficient of ym in
f(yx1, yx2, . . . , yxn) is f [m]. Let α1, α2, . . . , αd+1 be d+1 distinct constants in C. By interpol-
ation, we know that for any 0 ≤ m ≤ d, the coefficient f [m] of ym is a C-linear combination of
d+ 1 evaluations f(αix1, αix2, . . . , αixn) of f(yx1, yx2, . . . , yxn) at αi ∈ {α1, α2, . . . , αd+1}.
Formally, for any 0 ≤ m ≤ d we have:

f [m] ∈ 〈{f(αix1, αix2, . . . , αixn) | αi ∈ {α1, α2, . . . , αd+1}}〉. (4)

It is easy to observe that Lf (f(αix1, αix2, . . . , αixn)) = O(n). Equation 4 implies that
Lf (f [m]) ≤ O(nd). J

Lemma 12 implies that L(f [m]) ≤ O(L(f) · n · d), this bound depends on the degree d of
f . But if we do not care about the oracle complexity, the following bound (independent of
degree of f) on L(f [m]) is known.

I Lemma 13 ([13, 14]). Let f ∈ C[x1, x2, . . . , xn] be a polynomial and m be a non-negative
integer. Then we have:

L({f [0], f [1], . . . , f [m]}) ≤ O(m2L(f)).

3 Complexity of SFT and SPT

Here we prove Lemma 7 and Lemma 8.

Proof of Lemma 7. Given a Boolean circuit C, we want to check if the function f(x1, x2,

. . . , xn) computed by C is symmetric. As the permutation group Sn is generated by two
permutations σ def==== (1, 2) and π def==== (1, 2, . . . , n) [4], it is necessary and sufficient to check
if the given function f is invariant under these two permutations of variables. Thus we define
the following Boolean functions:

g(x1, x2, . . . , xn) def==== f(xσ(1), xσ(2), . . . , xσ(n)),

h(x1, x2, . . . , xn) def==== f(xπ(1), xπ(2), . . . , xπ(n)).

Now note that the equality of two Boolean variables x, y can be checked by the following
equality gadget:

(x ?= y) = (¬x ∨ y) ∧ (x ∨ ¬y).

Thus we only need to check if both (¬f ∨ g)∧ (f ∨¬g) and (¬f ∨h)∧ (f ∨¬h) are tautologies
(always equal to 1). This can be checked by two oracles calls to CSAT. Thus SFT ≤T

P CSAT.
Now we prove the other direction. Given a Boolean circuit C, we want to check if the

function f(x1, x2, . . . , xn) computed by C is always zero. First we make an oracle call to
SFT to check if f is symmetric. If f is not symmetric then obviously f is a non-zero function
because the zero function is trivially symmetric. Thus we can assume f to be symmetric.
Now we ask the SFT oracle if the function h def==== f ∧ x1 is symmetric? If f was the zero
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function then so is h, therefore SFT oracle will answer that h is symmetric. So if SFT oracle
answers h to be non-symmetric then obviously f was non-zero. If h also turns out to be
symmetric then we know that:

∀(a1, a2, . . . , an) ∈ {0, 1}n : f ∧ a1 = f ∧ a2 = · · · = f ∧ an. (5)

Suppose f evaluated to 1 on a point (a1, a2, . . . , an) 6∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}. This
means that there exists (a1, a2, . . . , an) ∈ {0, 1}n such that f(a1, a2, . . . , an) = 1 with
ai = 1, aj = 0 for some i, j ∈ [n]. Then obviously we have f(a1, a2, . . . , an) ∧ ai = 1 and
f(a1, a2, . . . , an)∧aj = 0. Hence Equation 5 can not to be true. Thus f can only be non-zero
on the set {(0, 0, . . . , 0), (1, 1, . . . , 1)}. The value of f at both these points can be checked
manually to check whether f is the zero function or not. Therefore CSAT ≤T

P SFT. J

Proof of Lemma 8. Given an arithmetic circuit C, we want to check if the polynomial
f(x1, x2, . . . , xn) computed by C is symmetric.

As in the proof of the Lemma 7, we use the fact that permutation group Sn is generated
by two permutations σ def==== (1, 2) and π

def==== (1, 2, . . . , n). It is necessary and sufficient
to check if the given polynomial f is invariant under these two permutations of variables.
Analogous to the proof of the Lemma 7, we define the following polynomials:

g(x1, x2, . . . , xn) def==== f(xσ(1), xσ(2), . . . , xσ(n)),

h(x1, x2, . . . , xn) def==== f(xπ(1), xπ(2), . . . , xπ(n)).

Thus f is symmetric iff f − g = f − h = 0. Consider the polynomial F = y(f − g) + z(f − h),
here y, z are fresh variables. Thus f is symmetric iff F is the zero polynomial. Hence
SPT ≤P ACIT.

Now we prove the reverse direction. Given an arithmetic circuit C, we want to check if
the polynomial f(x1, x2, . . . , xn) computed by C is the zero polynomial or not. Consider
the polynomial G def==== f(x2

1, x
2
2, . . . , x

2
n) · x1. We know that f is non-zero iff G is non-zero.

Suppose that G 6= 0. Now observe that in every monomialM of G, the degree of x1 inM
is odd and the degrees of the other variables x2, . . . , xn inM are even. Now consider the
polynomial H def==== G(xσ(1), xσ(2), . . . , xσ(n)) where σ def==== (1, 2). In every monomialM′ of
H, the degree of x2 in M′ is odd and the degrees of the other variables x1, x3, . . . , xn in
M′ are even. Thus H 6= G. Hence if G is non-zero then G is not symmetric because it is
not invariant under the permutation σ def==== (1, 2). Thus G is symmetric iff f = 0. Hence
ACIT ≤P SPT. J

4 Main algorithm

4.1 Roots as power series
Let F (y) = F (y, u1, u2, . . . , un) = yn + f1(u1, u2, . . . , un)yn−1 + . . .+ fn(u1, u2, . . . , un) be a
monic square-free polynomial in variables y and u1, u2, . . . , un, here fi ∈ C[u1, u2, . . . , un].
Let A(u1, u2, . . . , un) be a root of F with respect to y. The root is usually an algebraic
function in u1, u2, . . . , un but not a power series. The following Lemma 14 formalizes a
sufficient condition when roots of F (y) can be expressed as power series in u1, u2, . . . , un.

I Lemma 14 (Condition A in [12]). Let F (y, u1, u2, . . . , un) be square free and monic with
respect to y. If F (y, 0, 0, . . . , 0) has no multiple root (as a uni-variate polynomial in y)
then the roots Ai(u1, u2, . . . , un) of F (y, u1, u2, . . . , un) can be expanded into power series in
u1, u2, . . . , un.

ITCS 2019



47:8 Complexity of Symmetric Polynomials

Algorithm 1 Newton’s Method.
Input: A square free monic polynomial F (y) = F (y, u1, u2, . . . , un) ∈ C[u1, u2, . . . , un][y]

with respect to y of degree n such that F (y, 0, 0, . . . , 0) has n simple roots. A positive
integer d with d = 2` for some ` ∈ N. We assume that A1, A2, . . . , An ∈ C[[u1, u2, . . . , un]]
are the roots of F (y).

Output: Degree d truncations A(`)
1 , A

(`)
2 , . . . , A

(`)
n of the n roots (A1, A2, . . . , An) of F (y),

that is, A(`)
i ≡ Ai mod Id with I def==== (u1, u2, . . . , un) for all i ∈ [n].

1: {α1, α2, . . . , αn} ← Roots of F (y, 0, 0, . . . , 0).
2: for 1 ≤ i ≤ n do
3: A

(0)
i ← αi.

4: for 0 ≤ k ≤ `− 1 do
5: A

(k+1)
i ← A

(k)
i −

F (A(k)
i

)
F ′(A(k)

i
)
.

6: end for
7: end for
8: return A

(`)
1 , A

(`)
2 , . . . , A

(`)
n .

As stated above, we are interested in the following special case:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)nen.

This F is being considered as a uni-variate polynomial in y over the power series ring
C[[e1, e2, . . . , en]]. In this case, the roots of F (y, e1, e2, . . . , en) are x1, x2, . . . , xn. We want
to express roots of this F as power series in e1, e2, . . . , en. For this purpose, we consider a
slightly modified version of F . More specifically, consider:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en + (−1)n−1). (6)

Notice that F (y, 0, 0, . . . , 0) has n distinct roots, namely the nth roots of unity. Thus the
roots of this F (y) (Equation 6) can be expressed as power series in e1, e2, . . . , en, this follows
from Lemma 14. Let us record this as corollary 15.

I Corollary 15. If F is as in Equation 6, then there exist n power series A1, A2, . . . , An ∈
C[[e1, e2, . . . , en]] such that F (Ai) = 0 for all i ∈ [n].

Now we show how to compute the degree d truncations of such roots A1, A2, . . . , An.
This already follows from [9]. For the reader’s convenience, we describe the algorithm here
and a proof of correctness can be found in Appendix A.

4.2 Newton’s Method
For the analysis of Algorithm 1, define the ideal I as:

I
def==== (u1, u2, . . . , un).

I Theorem 16. In Algorithm 1, A(k)
i ≡ Ai mod I2k for all 0 ≤ k ≤ ` and for all i ∈ [n].

In Algorithm 1, we need to compute the inverse of F ′(A(k)), since we want to compute
A(k+1), it is enough to compute the inverse of F ′(A(k)) mod I2k+1 . This also follows from
[9]. We explicitly describe this in Algorithm 2.

I Lemma 17. Algorithm 2 computes a polynomial p such that p ≡ g−1 mod Id.
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Algorithm 2 Inverse computation.
Input: A circuit C computing the polynomial g(u1, u2, . . . , un) such that g(0, 0, . . . , 0) 6= 0

and a positive integer d with d = 2` for some ` ∈ N.
Output: A circuitD for computing a polynomial p(u1, u2, . . . , un) such that p ≡ g−1 mod Id,

here I = (u1, u2, . . . , un) and g−1 is the inverse of g in C[[u1, u2, . . . , un]].
1: p0 ← 1

g(0,0,...,0) .
2: for 0 ≤ k ≤ `− 1 do
3: pk+1 ← pk · (2− g · pk).
4: end for
5: return p`.

We can also prove that there is a “small” circuit for p in Lemma 17.

I Lemma 18. Let g(u1, u2, . . . , un) be a polynomial such that g(0, 0, . . . , 0) 6= 0. For any
positive integer d with d = 2` for some ` ∈ N, there is a polynomial p ∈ C[u1, u2, . . . , un]
such that p ≡ g−1 mod Id. Moreover, L(p) ≤ L(g) +O(`).

Proof. In Algorithm 2, we need three arithmetic operations to compute pk+1 from pk.
It follows from Lemma 17 that p` = g−1 mod Id. Thus there exists a circuit of size
L(g) + 3 · ` = L(g) +O(`) computing p ≡ g−1 mod Id. J

Now the following Theorem 19 follows by applying Lemma 18 and Theorem 16.

I Theorem 19. Let F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en + (−1)n−1) and let

A1, A2, . . . , An ∈ C[[e1, e2, . . . , en]] such that F (Ai, e1, e2, . . . , en) = 0 for all i ∈ [n]. Let d
be a positive integer with d = 2` for some ` ∈ N and let I = (e1, e2, . . . , en) be the ideal
generated by e1, e2, . . . , en in the polynomial ring C[e1, e2, . . . , en]. Let polynomials Di be
such that Di ≡ Ai mod Id. Then L({D1, D2, . . . , Dn}) ≤ O(n2`+ n`2).

Proof. We construct a circuit D whose outputs are D1, D2, . . . , Dn. We construct the desired
circuit D by using Algorithm 1 on F (y, e1, e2, . . . , en) and s = (0, 0, . . . , 0). It is enough to
describe a circuit computing each Di such that Di ≡ Ai mod Id. The circuit for A(0)

i in
Algorithm 1 is trivially of size one. By Step 5 of Algorithm 1, a circuit for A(k+1)

i can be
constructed given any circuits for A(k)

i , F (A(k)
i ) and F ′(A(k)

i ). Note that there are circuits of
size O(n) computing F (y, e1, e2, . . . , en) and F ′(y, e1, e2, . . . , en) def==== ∂F (y,e1,e2,...,en)

∂y . Thus
if A(k)

i has a circuit of size s, then there exists a size s+O(n+log d) circuit computing A(k+1)
i ,

this follows from Lemma 18. In particular, there exists a circuit computing Di
def==== A

(dlog de)
i

of size O(n log d+ log2 d). By Theorem 16, it follows that Di ≡ Ai mod Id. We combine the
circuits computing Di’s to construct the desired circuit D of size O(n · n log d+ n log2 d) =
O(n2 log d+ n log2 d). J

Now we are ready to prove Theorem 4.

Proof of Theorem 4. The main idea is what we have hinted above. Namely, let F (y, e1, e2,

. . . , en) be the following polynomial:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en). (7)

Here ei = eni is the ith elementary symmetric polynomial. We know that the roots (as a
uni-variate polynomial in y) of F are x1, x2, . . . , xn. Therefore, x1, x2, . . . , xn are algebraic
functions in e1, e2, . . . , en. Thus xi = Ai(e1, e2, . . . , en) for some algebraic function Ai.
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Let CSym(x1, x2, . . . , xn) be a circuit of size L(fSym) computing fSym(x1, x2, . . . , xn). If
we could substitute the xi’s by the Ai’s in CSym(x1, x2, . . . , xn), we would obtain a circuit
for f . But we cannot compute algebraic functions using arithmetic circuits. Now replace en
by en + (−1)n−1 in Equation 7. Thus the new F (y, e1, e2, . . . , en) is:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en + (−1)n−1). (8)

We call the roots of F (y) in Equation 8 again A1, A2, . . . , An. By using Lemma 14, we know
that the Ai’s are in C[[e1, e2, . . . , en]]. The following Equation 9 follows from the above
discussion:

CSym(A1, A2, . . . , An) = f(e1, e2, . . . , en + (−1)n−1). (9)

To compute f , it is enough to substitute the degree d truncations of the Ai’s in Equation 9,
instead of the exact infinite power series Ai. Let D1, D2, . . . , Dn be the outputs of the circuit
D obtained by applying Theorem 19 with degree 2dlog de. We substitute the xi → Di in the
circuit CSym(x1, x2, . . . , xn). We obtain the following equality:

h
def==== CSym(D1, D2, . . . , Dn) = f(e1, e2, . . . , en + (−1)n−1) + g. (10)

In the above Equation 10, g is a polynomial with all its monomials of degree at least d+ 1,
i.e., g ∈ Id+1 with I = (e1, e2, . . . , en). Hence it follows that:

f(e1, e2, . . . , en + (−1)n−1) =
d∑
i=0

h[i].

By applying Theorem 19, we know that LfSym(h) ≤ (n2 log d+n log2 d). Note that the degree
of each Di is at most 2dlog de, which is at most 2d. Thus the degree of h is at most 2ddSym.
By using Lemma 12, we conclude that for any 0 ≤ i ≤ deg(h):

Lh(h[i]) ≤ O(n · d · dSym). (11)

Equation 11 implies that Lh(
∑d
i=0 h

[i]) ≤ O(n · d2 · dSym). By using LfSym(h) ≤ (n2 log d+
n log2 d), we obtain that:

LfSym(
d∑
i=0

h[i]) ≤ O(n · d2 · dSym · (n2 log d+ n log2 d))

= Õ
(
n3 · d2 · dSym

)
.

By using the substitution en → en − (−1)n−1, we obtain that:

LfSym(f) ≤ Õ
(
n3 · d2 · dSym

)
.

If we use Lemma 13 instead of Lemma 12 in the above argument, we obtain that:

L(f) ≤ O(d2(L(fSym) + n2 log d+ n log2 d)))
= Õ

(
d2L(fSym) + d2n2) .

This concludes the proof. J

I Remark. In contrast to results in [7, 6], our results do depend on the degree d. But if the
degree d is poly(n) then our upper bound on L(f) is polynomial in n and L(fSym). This
upper bound was exponential in [7, 6].
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5 Hard Symmetric Polynomials

By using Theorem 4, we are ready to prove that there exist hard symmetric polynomials. To
this end, the following Theorem 20 suffices.

I Theorem 20. Let (fn)n∈N be a VNP-complete family. Then the corresponding symmetric
polynomial family ((fn)Sym)n∈N is VNP-complete under c-reductions.

Proof. Let d = deg(fn) and dSym = deg((fn)Sym). Since (fn)n∈N ∈ VNP, we know that
both d and dSym are polynomially bounded in n. By using Theorem 4, we know that
LfSym(f) ≤ Õ

(
n3 · d2 · dSym

)
= Õ (poly(n)). Thus ((fn)Sym)n∈N is VNP-hard under c-

reductions. It is also easy to see that ((fn)Sym)n∈N is in VNP. Therefore ((fn)Sym)n∈N is
VNP-complete under c-reductions. J

I Corollary 21. The polynomial family (qn)n∈N defined by qn
def=== (pern)Sym is VNP-complete

under c-reductions. Therefore if VP6= VNP, then the polynomial family (qn)n∈N is not in VP.
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A Appendix

A.1 Algebraic complexity theory
Analogous to the idea of classical complexity classes, we can also define algebraic complexity
classes. We refer the reader to [5, 11] for a more comprehensive introduction to algebraic
complexity classes. In this section, a p-bounded function is simply a polynomially bounded
function.

I Definition 22 (Arithmetic Circuit Complexity). For a polynomial p ∈ F[x1, x2, . . . , xn], the
(arithmetic) circuit complexity L(p) of p is defined as the size of smallest arithmetic circuit
computing p, that is

L(p) def==== min{s | ∃ size s arithmetic circuit computing p}.

I Definition 23 (p-family). A family (or a sequence) (fn)n∈N of (multivariate) polynomials
over the field F is said to be a p-family iff the number of variables as well as the degree of fn
are p-bounded functions of n.

Now we define the notion of efficient polynomial families.

I Definition 24 (p-computable). A p-family (fn)n∈N is called p-computable iff the arithmetic
complexity L(fn) is a p-bounded function of n.

p-computable polynomial families define the algebraic analogue of the P, called VP.

I Definition 25 (Class VP). The (algebraic complexity) class VP is the set of all p-computable
polynomial families.

I Definition 26 (Class VNP). A p-family (fn)n∈N is said to be in the (algebraic complexity)
class VNP if there exists a polynomial family (gn)n∈N ∈ VP with gn ∈ F[x1, x2, . . . , xq(n)]
such that:

fn(x1, x2, . . . , xp(n)) =
∑

e∈{0,1}q(n)−p(n)

gn(x1, x2, . . . , xp(n), e1, e2, . . . , eq(n)−p(n)).

Similar to the Boolean case, there is an algebraic notion of reduction also, called the
p-projections.

I Definition 27 (Projection). A polynomial f(x1, x2, . . . , xn) ∈ F[x1, x2, . . . , xn] is said to
be a projection of a polynomial g(y1, y2, . . . , ym) ∈ F[y1, y2, . . . , ym], if there exists a map
α : {y1, y2, . . . , ym} → {x1, x2, . . . , xn} ∪ F such that f = g under the substitution map α.
We write f ≤ g to denote that f is a projection of g.

http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1145/800135.804419
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I Definition 28 (p-projection). A polynomial family (fn)n∈N is said to be a p-projection of a
polynomial family (g)n∈N if there is a p-bounded function β : N→ N and n0 ∈ N such that:

∀n ≥ n0 : fn ≤ gβ(n).

We denote (fn)n∈N being a p-projection of (g)n∈N by f ≤p g.

Definition 9 naturally lends to the following definition:

I Definition 29 ([5]). Let f = (fn), g = (gn) be two polynomial families. We say that f is
a c-reduction of g, denoted by f ≤c g, iff there is a p-bounded function t : N→ N such that
Lgt(n)(fn) is a p-bounded function of n.

Now the idea of completeness and hardness can be defined as in the case of Boolean case.

I Definition 30 (Hardness and Completeness). For an algebraic complexity classic C, a
p-family f = (fn)n∈N is said to be a C-hard if g ≤p f for all g ∈ C, f is called C-complete if
f is C-hard and f ∈ C. Similarly, we can define the notion of hardness under c-reductions.

I Theorem 31 ([15], see also [5]). Over the fields F with char(F) 6= 2, the p-family (pern) is
VNP-complete.

The holy grail of algebraic complexity theory is to show that VP 6= VNP. For this it is
enough to show that (pern) 6∈ VP over fields F with char(F) 6= 2 . Note that pern and detn
are the same polynomials if char(F) = 2 . Thus if char(F) = 2 then (pern) ∈ VP hence (pern)
is unlikely to VNP-complete over fields of characteristic two.

A.2 Missing proofs
We provide some proofs of known results used in this work for the reader’s convenience.

Proof of Lemma 13. Let C be a circuit of size L(f) computing f . We create m+ 1 copies
of each arithmetic gate in C, i.e., each{+,−,×}-gate G has m + 1 copies G0, G1, . . . , Gm.
If the gate G computes the polynomial g then Gi computes the polynomial g[i]. This can
be trivially done for input and constant gates. Suppose G = G1 + G2 is a “+” gate and
g1, g2 are the polynomials computed by gates G1 and G2 respectively. Now we know that
g[i] = g

[i]
1 +g[i]

2 for all i ∈ [[m]]. A similar statement is true for “−” gates also. If G = G1×G2
is a “×” gate, then we have the following equality:

g[i] =
i∑

j=0
g

[j]
1 · g

[i−j]
2 . (12)

Suppose we already have the gates for g[j]
1 , g

[j]
2 for all j ∈ [[m]]. Then one g[i] in Equation 12

can be computed using 2(i + 1) additional gates. Thus the gates G0, G1, . . . , Gm can be
constructed using

∑m
k=0 2(k + 1) = O(m2) gates. Hence every gate in C corresponds to at

most O(m2) new gates. Therefore:

L({f [0], f [1], . . . , f [m]}) ≤ O(m2L(f)). J

Proof of Theorem 16. Our claim is obviously true for k = 0. We prove the theorem by
induction on k. We prove it simultaneously for all i ∈ [n], so for the sake of brevity we use
A(k) to denote A(k)

i and α to denote αi. Consider the following equalities for a root A = Ai
of F (y):

0 = F (A) = F (A(k) + (A−A(k)))

= F (A(k)) + (A−A(k))F ′(A(k)) +
∑
j>1

(A−A(k))j

j! F (j)(A(k)). (13)
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Here F (j) def==== ∂jF (y,u1,u2,...,un)
∂yj is the jth derivative of F (y) with respect to y. Since α is a

simple root of F (y, 0, 0, . . . , 0), we know that:

constant term of F ′(A(k)) = F ′(α) 6= 0.

Thus F ′(Ak) is invertible in the ring C[[u1, u2, . . . , un]] of power series. Therefore we have:

A−A(k+1) = A−
(
A(k) − F (A(k))

F ′(A(k))

)
= −

∑
j>1

(A−A(k))jF (j)(A(k))
j! · F ′(A(k))

. (by using Equation 13)

Since A−A(k) ∈ I2k , the right hand side of the above equation is in I2k+1 . Thus A(k+1) ≡
A mod I2k+1 . J

Proof of Lemma 17. We again prove it by induction on k, the induction hypothesis is that
pk ≡ g−1 mod I2k . This induction hypothesis is trivially true for k = 0. Consider:

1
g
− pk+1 = 1

g
− pk(2− g · pk)

= g · ( 1
g2 −

2pk
g

+ p2
k)

= g · (1
g
− pk)2.

By using the induction hypothesis, we know that 1
g − pk ∈ I

2k . Therefore it implies that
1
g − pk+1 ∈ I2k+1 . Now the lemma follows from the fact that ` = dlog de. J
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48:2 The OV Conjecture for Branching Programs and Formulas

1 Introduction

We investigate the following basic problem:

Orthogonal Vectors (OV)
Given: n vectors v1, . . . , vn ∈ {0, 1}d
Decide: Are there i, j such that 〈vi, vj〉 = 0?

An instructive way of viewing the OV problem is that we have a collection of n sets
over [d], and wish to find two disjoint sets among them. The obvious algorithm runs in time
O(n2 · d), and log(n) factors can be shaved [33]. For d < log2(n), stronger improvements are
possible: there are folklore O(n · 2d · d)-time and Õ(n+ 2d)-time algorithms (for a reference,
see [1]). Truly subquadratic-time algorithms have recently been developed for even larger
dimensionalities: the best known result in this direction is that for all constants c ≥ 1,
OV with d = c logn dimensions can be solved in n2−1/O(log c) time [7, 19]. However, it
seems inherent that, as the vector dimension d increases significantly beyond logn, the time
complexity of OV approaches the trivial n2 bound.

Over the last several years, a significant body of work has been devoted to understanding
the following plausible lower bound conjecture:

I Conjecture 1 (Orthogonal Vectors Conjecture (OVC) [37, 6, 9, 3]). For every ε > 0, there
is a c ≥ 1 such that OV cannot be solved in n2−ε time on instances with d = c logn.

In other words, OVC states that OV requires n2−o(1) time on instances of dimension
ω(logn). The popular Strong Exponential Time Hypothesis [27, 18] (on the time complexity of
CNF-SAT) implies OVC [37]. For this reason, and the fact that the OV problem is very simple
to work with, the OVC has been the engine under the hood of many recent conditional lower
bounds on classic problems solvable within P. For example, the OVC implies nearly-quadratic
time lower bounds for Edit Distance [9], approximating the diameter of a graph [34], Frechet
Distance [13, 15], Longest Common Substring and Local Alignment [6], Regular Expression
Matching [10], Longest Common Subsquence, Dynamic Time Warping, and other string
similarity measures [3, 14], Subtree Isomorphism and Largest Common Subtree [2], Curve
Simplification [16], intersection emptiness of two finite automata [35], first-order properties
on sparse finite structures [24] as well as average-case hardness for quadratic-time [11]. Other
works surrounding the OVC (or assuming it) include [38, 36, 5, 20, 8, 23, 26, 17, 30, 22].

Therefore it is of strong interest to prove the OVC in reasonable computational models.
Note that OV can be naturally expressed as a depth-three formula with unbounded fan-in:
an OR of n2 NORs of d ANDs on two input variables: an AC0 formula of size O(n2 · d). Are
there smaller formulas for OV?

1.1 OVC is True in Restricted Models
In this paper, we study how well OV can be solved in the Boolean formula and branching
program models. Among the aforementioned OV algorithms, only the first two seem
to be efficiently implementable by formulas and branching programs: for example, there
are DeMorgan formulas for OV of size only O(n2d) and size O(nd2d), respectively (see
Proposition 4).

The other algorithms do not seem to be implementable in small space, in particular with
small-size branching programs. Our first theorem shows that the simple constructions solving
OV with O(n2 · d) and O(n · 2d · d) work are essentially optimal for all choices of d and n:
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I Theorem 2 (OVC For Formulas of Bounded Fan-in). For every constant c ≥ 1, OV on
n vectors in d dimensions does not have c-fan-in formulas of size O(min{n2/(log d), n ·
2d/(d1/2 log d)}), for all sufficiently large n, d.

I Theorem 3 (OVC For Branching Programs). OV on n vectors in d dimensions does not
have branching programs of size O(min{n2, n ·2d/(d1/2)}/(log(nd) log(d))), for all sufficiently
large n, d.

As far as we know, size-s formulas of constant fan-in may be more powerful than size-s
branching programs (but note that DeMorgan formulas can be efficiently simulated with
branching programs). Thus the two lower bounds are incomparable. These lower bounds are
tight up to the (negligible) factor of min{

√
logn, d1/2} log(d) log(nd), as the following simple

construction shows:

I Proposition 4. OV has AC0 formulas (and branching programs) of size O(dn ·min(n, 2d)).

Proof. The O(dn2) bound is obvious: take an OR over all
(
n
2
)
pairs of vectors, and use an

AND ◦ OR of O(d) size to determine orthogonality of the pair. For the O(dn2d) bound, our
strategy is to try all 2d vectors v, and look for a v that is equal to one input vector and is
orthogonal to another input vector. To this end, take an OR over all 2d possible vectors w
over [d], and take the AND of two conditions:
1. There is a vector v in the input such that v = w. This can be computed with an OR over

all n vectors of an O(d)-size formula, in O(nd) size.
2. There is a vector u in the input such that 〈u,w〉 = 0. This can be computed with a

parallel OR over all n vectors of an O(d)-size formula, in O(nd) size.
Note that the above formulas have constant-depth, with unbounded fan-in AND and OR
gates. Since DeMorgan formulas of size s can be simulated by branching programs of size
O(s), the proof is complete.3 J

Formulas with symmetric gates

As mentioned above, OV can be naturally expressed as a depth-three formula of unbounded
fan-in: an AC0

3 formula of O(n2d) wires. We show that this wire bound is also nearly optimal,
even when we allow arbitrary symmetric Boolean functions as gates. Note this circuit model
subsumes both AC (made up of AND, OR, and NOT gates) and TC (made up of MAJORITY
and NOT gates).

I Theorem 5 (OVC For TC Formulas). Every formula computing OV composed of ar-
bitrary symmetric functions with unbounded fan-in needs at least Ω(min{n2/(log d), n ·
2d/(d1/2 log d)}) wires, for all n and d.

1.2 Lower Bounds for Batch Partial Match, Batch Subset Query,
Batch Hamming Nearest Neighbors, etc.

A primary reason for studying OV is its ubiquity as a “bottleneck” special case of many
other basic search problems. In particular, many problems have very succinct reductions
from OV to them, and our lower bounds extend to these problems.

3 This should be folklore, but we couldn’t find a reference; see the Appendix B. An anonymous referee
thought we should attribute Borodin [12], but that reference only shows that circuits of depth s can be
simulated in space O(s). We need something much stronger: branching programs of size O(s) correspond
to log2(s) + O(1) space. Lynch [31] showed that formulas of size s can be simulated in O(log s) space,
but in our case we need log2(s) + O(1) space.
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We say that a linear projection reduction from a problem A to problem B is a circuit
family {Cn} where each Cn has n input and O(n) outputs, each output of Cn depends on at
most one input, and x ∈ A if and only if C|x|(x) ∈ B, for all possible inputs x. Under this
constrained reduction notion, it is easy to see that if OV has a linear projection reduction to
B, then size lower bounds for OV (even in our restricted settings) imply analogous lower
bounds for B as well. Via simple linear projection reductions which preserve both n and d
(up to constant multiplicative factors), analogous lower bounds hold for many other problems
which have been commonly studied, such as:

Batch Partial Match
Given: n “database” vectors v1, . . . , vn ∈ {0, 1}d and n queries q1, . . . , qn ∈ {0, 1, ?}d
Decide: Are there i, j such that vi is a partial match of qj , i.e. for all k, qj [k] ∈ {vi[k], ?}?

Batch Subset Query
Given: n sets S1, . . . , Sn ⊆ [d] and n queries T1, . . . , Tn ⊆ [d]
Decide: Are there i, j such that Si ⊆ Tj?

Batch Hamming Nearest Neighbors
Given: n points p1, . . . , pn ∈ {0, 1}d and n queries q1, . . . , qn ∈ {0, 1}d, integer k
Decide: Are there i, j such that pi and qj differ in at most k positions?

1.3 “Average-Case” OVC is False, Even for AC0

The method of proof in the above lower bounds is an input restriction method that does
not assign variables independently (to 0, 1, or ?) at random. (Our restriction method could
be viewed as a random process, just not one that assigns variables independently.) Does
OV become easier under natural product distributions of instances, e.g., with each bit of
each vector being an independent random variable? Somewhat surprisingly, we show that a
reasonable parameterization of average-case OVC is false, even for AC0 formulas.

For p ∈ (0, 1), and for a given n and d, we call OV(p)n,d the distribution of OV instances
where all bits of the n vectors are chosen independently, set to 1 with probability p and 0
otherwise. We would like to understand when OV(p)n,d can be efficiently solved on almost
all instances (i.e., with probability 1− o(1)). We give formulas of truly sub-quadratic size for
every p > 0:

I Theorem 6. For every p ∈ (0, 1), and every n and d, there is an AC0 formula of size
n2−εp that correctly answers all but a on(1) fraction of OV(p)n,d instances on n vectors and
d dimensions, for an εp > 0 such that εp → 1 as p→ 1.

Interestingly, our AC0 formulas have one-sided error, even in the worst case: if there
is no orthogonal pair in the instance, our formulas always output 0. However, they may
falsely report that there is no orthogonal pair, but this only occurs with probability o(1) on
a random OV(p)n,d instance, for any n and d.
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1.4 Intuition
Our lower bounds give some insight into why OV is hard. There are two main ideas:
1. OV instances with n d-dimensional vectors can encode difficult Boolean functions on

d inuts, requiring circuits of size Ω̃(min(2d, n)). This can be accomplished by encoding
those strings with “middle” Hamming weight from the truth table of a hard function
with the vectors in an OV instance, in such a way that finding an orthogonal pair is
equivalent to evaluating the hard Boolean function at a given d-bit input. This is an
inherent property of OV that is independent of the computational model.

2. Because we are working with simple computational models, we can generally make the
following kind of claim: given an algorithm for solving OV and given a partial assignment
to all input vectors except for one appropriately chosen vector, we can propagate this
partial assignment through the algorithm, and “shrink” the size of the algorithm by a
factor of Ω(n). This sort of argument was first used by Nechiporuk [32] in the context of
branching program lower bounds, and can be also applied to formulas.

Combining the two ideas, if we can “shrink” our algorithm by a factor of n by restricting
the inputs appropriately, and argue that the remaining subfunction requires circuits of size
Ω̃(min(2d, n)), we can conclude that the original algorithm for OV must have had size
Ω̃(min(n2d, n2)). (Of course, there are many details to verify, but this is the basic idea.)

The small AC0 formulas for OV(p) (the average-case setting) involve several ideas. First,
given the probability p ∈ (0, 1) of 1 and the number of vectors n, we observe a simple
phase transition phenomenon: there is only a particular range of dimensionality d in which
the problem is non-trivial, and outside of this range, almost all instances are either “yes”
instances or “no” instances. Second, within this “hard” range of d, the orthogonal vector
pairs are expected to have a special property: with high probability, at least one orthogonal
pair in a “yes” instance has noticeably fewer ones than a typical vector in the distribution.
To obtain a sub-quadratic size AC0 formula from these observations, we partition the instance
into small groups such that the orthogonal pair (if it exists) is the only “sparse” vector in its
group, whp. Over all pairs of groups i, j in parallel, we take the component-wise OR of all
sparse vectors in group i (call the resulting vector ui), and similarly for group j (call the
result vj). Then we test if ui and vj are orthogonal. By doing so, if our formula ever reports
1, then there is some orthogonal pair in the instance (even in the worst case).

2 Lower Bounds

Functions hard for the middle layer of the hypercube

In our lower bound proofs, we will use functions on d-inputs for which every small circuit
fails to agree with the function on inputs of Hamming weight about d/2. Let

([d]
k

)
denote

the set of all d-bit vectors of Hamming weight k.

I Lemma 7. Let d be even, let C be a set of Boolean functions, let N(d, s) be the number of
functions in C on d inputs of size at most s, and let s? ∈ N satisfy log2(N(d, s?)) <

(
d
d/2
)
.

Then there is a sequence S of
(
d
d/2
)
pairs (xi, yi) ∈

( [d]
d/2
)
×{0, 1}, such that each xi ∈

( [d]
d/2
)

appears exactly once among the pairs in S, and every function f : {0, 1}d → {0, 1} satisfying
f(xi) = yi (for all i = 1, . . . ,

(
d
d/2
)
) requires C-size at least s?.

Proof. By definition, there are N(d, s) functions of size s on d inputs from C, and there are
2( d
d/2) possible input/output sequences (xi, yi) ∈

( [d]
d/2
)
× {0, 1} defined over all d-bit vectors

of Hamming weight d/2. When 2( d
d/2) > N(d, s), there is at least one input/output sequence

that is not satisfied by any function in C of size s. J

ITCS 2019
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Note that it does not matter what is meant by “size” in the above lemma: the size
measure could be gates, wires, etc., and the lemma still holds (as it is just counting). The
above simple lemma applies to formulas, as follows:

I Corollary 8. Let c ≥ 2 be a constant. There are
(
d
d/2
)
pairs (xi, yi) ∈

( [d]
d/2
)
× {0, 1}, such

that every function f : {0, 1}d → {0, 1} satisfying f(xi) = yi (for all i = 1, . . . ,
(
d
d/2
)
) needs

c-fan-in formulas of size at least Ω(2d/(d1/2 log d)).

Proof. There are N(d, s) ≤ dkc·s formulas of size s on d inputs, where the constant kc depends
only on c. When 2( d

d/2) > dkc·s, Lemma 7 says that there is an input/output sequence of
length

(
d
d/2
)
that no formula of size s can satisfy. Thus to satisfy that sequence, we need

a formula of size s at least large enough that 2( d
d/2) ≤ dkc·s, i.e., s ≥ Ω

((
d
d/2
)
/ log(d)

)
≥

Ω(2d/(d1/2 log d)). J

2.1 Lower Bound for Constant Fan-in Formulas
We are now ready to prove the lower bound for Boolean formulas of constant fan-in:

I Reminder of Theorem 2. For every constant c ≥ 1, OV on n vectors in d dimensions does
not have c-fan-in formulas of size O(min{n2/(log d), n · 2d/(d1/2 log d)}), for all sufficiently
large n, d.

All of the lower bound proofs have a similar structure. We will give considerably more
detail in the proof of Theorem 2 to aid the exposition of the later lower bounds.

Proof. To simplify the calculations, assume d is even in the following. Let Fn,d+1(v1, . . . , vn)
be a c-fan-in formula of minimal size s computing OV on n vectors of dimension d+ 1, where
each vi denotes a sequence of d+ 1 Boolean variables (vi,1, . . . , vi,d+1).

Let ` be the number of leaves of Fn,d+1. Since Fn,d+1 is minimal, each gate has fan-in
at least two (gates of fan-in 1 can be “merged” into adjacent gates). Therefore (by an easy
induction on s) we have

s ≥ ` ≥ s/2. (1)

Observe there must be a vector vi? (for some i? ∈ [n]) whose d+ 1 Boolean variables appear
on at most `/n leaves of the formula Fn,d. Our plan now is to leave the d + 1 variables
corresponding to vi? free, and set all other variables in a particular way, so that the remaining
subfunction requires many gates. We consider two cases (based on how d compares with n),
which determine how we set those variables.

Case 1. Suppose
(
d
d/2
)
≤ n− 1. Let {(xi, yi)} ⊆

( [d]
d/2
)
× {0, 1} be a list of hard pairs from

Corollary 8, and let f : {0, 1}d → {0, 1} be any function that satisfies f(xi) = yi, for all i.
By Corollary 8, such an f needs c-fan-in formulas of size at least Ω(2d/(d1/2 log d)).
Let {x′1, . . . , x′t} ⊆

( [d]
d/2
)
be those d-bit strings of Hamming weight d/2 such that f(x′i) = 1,

for some t ≤
(
d
d/2
)
≤ n− 1.

Case 2. Suppose
(
d
d/2
)
≥ n − 1. Then we claim that there is a list of input/output pairs

(x1, y1), . . ., (xn−1, yn−1) ∈
( [d]
d/2
)
×{0, 1} such that for every f : {0, 1}d → {0, 1} satisfying

f(xi) = yi, for all i, f needs formulas of size at least Ω(n/ log d). To see this, note that
if we take n− 1 distinct strings x1, . . . , xn−1 from

(
d
d/2
)
, there are 2n−1 possible choices

for the list of pairs. So when 2n−1 > dkc·s, there is a list of hard pairs (x1, y1), . . .,
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(xn−1, yn−1) that no formula of size s satisfies. For any function f : {0, 1}d → {0, 1} such
that f(xi) = yi for all i = 1, . . . , n− 1, its formula size s must be at least Ω(n/ log d) in
this case.
Let {x′1, . . . , x′t} ⊆

( [d]
d/2
)
be those d-bit strings of Hamming weight d/2 such that (x′i, 1)

is on the list of hard pairs, for some t ≤ n− 1.

In either of the two cases, we will use the list of t ≤ min{n− 1,
(
d
d/2
)
} strings {x′1, . . . , x′t}

to assign all variables vi of our OV formula, for all i 6= i?. In particular, for the first t
integers i ∈ [n] such that i 6= i?, we substitute each (d+ 1)-bit input vector vi with a distinct
(d + 1)-bit string 1x′i′ (the bit 1 concatenated with the complement of xi′ , obtained by
flipping all the bits of x′i′). If t < n− 1 (which can happen in Case 1), we also substitute
all other input vectors vj where j 6= i? with the (d + 1)-bit vector ~1. Note that all of the
pairs of vectors substituted so far are not orthogonal to each other: for all i 6= i′, we have
〈1x′i, 1x′i′〉 6= 0, and for all i we have 〈1x′i,~1〉 6= 0. Finally, we substitute a 0 in the first input
bit of ~vi? .

After these substitutions, the remaining formula F ′n has only d inputs, namely the last d
bits of the vector vi? . Moreover, F ′n is a formula with at most `/n leaves labeled by literals:
the rest of the leaves are labeled with 0/1 constants. After simplifying the formula (replacing
all gates with some 0/1 inputs by equivalent functions of smaller fan-in, and replacing gates
of fan-in 1 by wires), the total number of leaves of F ′n is now at most `/n. Therefore by (1)
we infer that

size(F ′n) ≤ 2`/n. (2)

Since Fn,d+1 computes OV, it follows that for every input vector z ∈ {0, 1}d of Hamming
weight d/2, F ′n on input z outputs 1 if and only if there is some i such that 〈1x′i, 0z〉 = 0.
Note that since both x′i and z have Hamming weight exactly d/2, we have 〈1xi, 0z〉 = 0 if
and only if z = xi.

Let f : {0, 1}d → {0, 1} be any function that is consistent with the list of hard pairs
{(xi, yi)} (from Corollary 8 in case 1, and our claim in case 2). By our choice of xi’s, it
follows that for all z ∈ {0, 1}d of Hamming weight d/2, F ′n(z) = 1 if and only if f(z) = 1. By
our choice of f , we must have

size(F ′n) ≥ min{Ω(2d/(d1/2 log d)),Ω(n/ log d))}, (3)

depending on whether
(
d
d/2
)
≤ n− 1 or not (case 1 or case 2). Combining (2) and (3), we

infer that

` ≥ Ω(n ·min{2d/(d1/2 log d), n/ log d}). (4)

Therefore the overall lower bound on formula size is s ≥ Ω
(

min
{

n2

log d ,
n·2d

d1/2 log d

})
. J

Remark on a Red-Blue Variant of OV

In the literature, OV is sometimes posed in a different form, where half of the vectors are
colored red, half are colored blue, and we wish to find a red-blue pair which is orthogonal.
Calling this form OV’, we note that OV’ also exhibits the same lower bound up to constant
factors. Given an algorithm/formula/circuit A for computing OV’ on 2n vectors (n of which
are red, and n of which are blue), it is easy to verify that an algorithm/formula/circuit for
OV on n vectors results by simply putting two copies of the set of vectors in the red and
blue parts. Thus our lower bounds hold for the red-blue variant as well.
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2.2 Lower Bound for Branching Programs
Recall that a branching program of size S on n variables is a directed acyclic graph G on
S nodes, with a distinguished start node s and exactly two sink nodes, labeled 0 and 1
respectively. All non-sink nodes are labeled with a variable xi from {x1, . . . , xn}, and have
one outgoing edge labeled xi = 1 and another outgoing edge labeled xi = 0. The branching
program G evaluated at an input (a1, . . . , an) ∈ {0, 1}n is the subgraph obtained by only
including edges of the form xi = ai, for all i = 1, . . . , n. Note that after such an evaluation,
the remaining subgraph has a unique path from the start node s to a sink; the sink reached
on this unique path (be it 0 or 1) is defined to be the output of G on (a1, . . . , an).

I Reminder of Theorem 3. OV on n vectors in d dimensions does not have branching
programs of size O(min{n2, n · 2d/(d1/2)}/(log(nd) log(d))), for all sufficiently large n, d.

Proof Sketch. The proof is similar to Theorem 2; here we focus on the steps of the proof
that are different. Let G be a branching program with S nodes computing OV on n vectors
in d+ 1 dimensions. Each node of G reads a single input bit from one of the input vectors;
thus there is an input vector vi? that is read only O(S/n) times in the entire branching
program G.

We will assign all variables other than the d + 1 variables that are part of vi? . Using
the same encoding as Theorem 2, by assigning n − 1 other vectors, we can implement a
function f : {0, 1}d → {0, 1} that is hard for branching programs to compute on the d-bit
inputs in

( [d]
d/2
)
. In particular, we substitute (d+ 1)-bit vectors which represent inputs from

f−1(1) ∩
( [d]
d/2
)
for all n− 1 input vectors different from vi? . For each of these assignments,

we can reduce the size of the branching program accordingly: for each input bit xj that is
substituted with the bit aj , we remove all edges with the label xj = ¬aj , so that every node
labeled xj now has outdegree 1. After the substitution, two properties hold:
1. There is a hard function f such that the minimum size T of a branching program computing

f on the n − 1 inputs satisfies T log2(T ) ≥ Ω(min{
(
d
d/2
)
, n}/ log(d)). To see that such

an f exists, we again use a counting argument. First note there are dT · 2Θ(T log(T ))

branching programs of size T on d inputs (there are dT choices for the node labels, and
2Θ(T log(T )) choices for the remaining graph on T nodes). In contrast, there are at least
2min{( d

d/2),n−1} choices for the hard function f ’s values on d-bit inputs of Hamming weight
d/2. Therefore there is a function f such that dT · 2Θ(T log(T )) ≥ 2min{( d

d/2),n−1}, or

T + Θ(T log(T )) ≥ min
{(

d

d/2

)
, n− 1

}
/ log2(d).

2. The minimum size of a branching program computing a function f : {0, 1}d → {0, 1}
on the remaining d bits of input is at most O(S/n). This follows because every node
v with outdegree 1 can be removed from the branching program without changing its
functionality: for every arc (u, v) in the graph, we can replace it with the arc (u, v′),
where (v, v′) is the single edge out of v, removing the node v.

Combining these two points, we have (S/n) · log(S/n) ≥ Ω
(

min
{(

d
d/2
)
, n
}
/ log(d)

)
, or

S ≥ Ω
(

min{n
(
d
d/2
)
, n2}

log(S/n) · log(d)

)
.

Since S ≤ n2d, we have

S ≥ Ω
(

min{n
(
d
d/2
)
, n2}

log(nd) · log(d)

)
≥ Ω

(
min{n · 2d/d1/2, n2}

log(nd) · log(d)

)
.

This concludes the proof. J
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2.3 Formulas With Symmetric Gates
We will utilize a lower bound on the number of functions computable by symmetric-gate
formulas with a small number of wires:

I Lemma 9. There are nO(w) symmetric-gate formulas with w wires and n inputs.

Proof. There is an injective mapping from the set of trees of unbounded fan-in and w wires
into the set of binary trees with at most 2w nodes: simply replace each node of fan-in k
with a binary tree of at most 2k nodes. The number of such binary trees is O(42w) (by
upper bounds on Catalan numbers). This counts the number of “shapes” for the symmetric
formula; we also need to count the possible gate assignments. There are 2k+1 symmetric
functions on k inputs. So for a symmetric-gate formula with g gates, where the ith gate has
fan-in wi for i = 1, . . . , g, the number of possible assignments of symmetric functions to its
gates is

∏g
i=1 2wi+1 = 2g+

∑
i
wi = 2g+w. There are at most w leaves, and there are nw ways

to choose the variables read at each leaf. Since g ≤ w, we conclude that there are at most
42w · 22w · nw ≤ nO(w) symmetric-gate formulas with w wires. J

I Reminder of Theorem 5. Every formula computing OV composed of arbitrary symmetric
functions with unbounded fan-in needs at least Ω(min{n2/(log d), n · 2d/(d1/2 log d))}) wires,
for all n and d.

Proof. (Sketch) With Lemma 9 in hand, the proof is quite similar to the previous lower
bounds, so we just sketch the ideas. Let F be a symmetric-gate formula for computing OV
with unbounded fan-in and w wires. Let wi be the number of wires touching inputs and wg
be the number of wires that do not touch inputs. Since F is a formula, we have (by a simple
induction argument) that wi ≥ wg, thus

w ≤ 2wi. (5)

As before, each leaf of the formula is labeled by an input from one of the input n vectors;
in this way, every leaf is “owned” by one of the n input vectors. We will substitute a 0/1
variable assignment to all vectors, except the vector ~z? which owns the fewest leaves. This
gives a 0/1 assignment to all but O(wi/n) of the wi wires that touch inputs.

After any such variable assignment, we can simplify F as follows. For every symmetric-
function gate g which has wg input wires with k wires assigned 0/1, we can replace g with
a symmetric function g′ that has only wg − k inputs, and no input wires assigned 0/1 (a
partial 0/1 assignment to a symmetric function just yields another symmetric function on a
smaller set of inputs). If g′ is equivalent to a constant function itself, then we remove it from
the formula and substitute its output wire with that constant, repeating the process on the
gates that use the output of g as input. When this process completes, our new formula F ′
has d inputs and no wires that are assigned constants. So F ′ has O(wi/n) wires touching
inputs, and therefore by (5) the total number of wires in F ′ is O(w/n).

As described earlier, the n− 1 vectors we assign can implement 2min{n−1,( d
d/2)} different

functions on d-bit inputs, but there are at most dO(w/n) functions computable by the
symmetric formula remaining, by Lemma 9. Thus the number of wires w must satisfy
dO(w/n) ≥ 2min{n−1,( d

d/2)}, or

w ≥ Ω(min{n2, n · 2d/(d1/2)}/(log d)).

This completes the proof. J
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3 Small Formulas for OV in the Average Case

Recall that for p ∈ (0, 1) and for a fixed n and d, we say that OV(p)n,d is the distribution of
OV instances where all bits of the n vectors from {0, 1}d are chosen independently, set to 1
with probability p and 0 otherwise. We will often say that a vector is “sampled from OV(p)”
if each of its bits are chosen independently in this way. We would like to understand how
efficiently OV(p)n,d can be solved on almost all instances (i.e., with probability 1− o(1)),
for every n and d.

I Reminder of Theorem 6. For every p ∈ (0, 1), and every n and d, there is an AC0 formula
of size n2−εp that correctly answers all but a on(1) fraction of OV(p)n,d instances on n

vectors and d dimensions, for an εp > 0 such that εp → 1 as p→ 1.

Proof. Let ε > 0 be sufficiently small in the following. First, we observe that OV(p)n,d is
very easy, unless d is close to (2/ log2(1/(1− p2))) log2(n). In particular, for dimensionality
d that is significantly smaller (or larger, respectively) than this quantity, all but a o(1)
fraction of the OV(p)n,d instances are “yes” (or “no”, respectively). To see this, note that
two randomly chosen d-dimensional vectors under the OV(p)n,d distribution are orthogonal
with probability (1− p2)d. For d = (2/ log2(1/(1− p2))) log2(n), a random pair is orthogonal
with probability

(1− p2)(2/ log2(1/(1−p2))) log2(n) = 1/n2.

Thus an OV(p)n,d instance with n vectors has nontrivial probability of being a yes instance
for d approximately (2/ log2(1/(1− p2))) log2(n).

Therefore if d > (2/ log2(1/(1− p2)) + ε) log2(n), or d < (2/ log2(1/(1− p2))− ε) log2(n),
then the random instance is either almost surely a “yes” instance, or almost surely a “no”
instance, respectively. These comparisons could be done with the quantities (2/ log2(1/(1−
p2))− ε) log2(n) and (2/ log2(1/(1− p2)) + ε) log2(n) (which can be hard-coded in the input)
with a poly(d, logn)-size branching program, which can output 0 and 1 respectively if this is
the case.4

From here on, assume that

d ∈ [(2/ log2(1/(1− p2))− ε) log2(n), (2/ log2(1/(1− p2)) + ε) log2(n)].

Note that for p sufficiently close to 1, the dimensionality d is δ logn for a small constant δ > 0
that is approaching 0. Thus in the case of large p, the AC0 formula given in Proposition 4
has sub-quadratic size. In particular, the size is

O(n · 2d · d) ≤ n1+2/ log2(1/(1−p2))+o(1). (6)

For p ≥ 0.867 >
√

3/4, this bound is sub-quadratic. For smaller p, we will need a more
complex argument.

Suppose u, v ∈ {0, 1}d are randomly chosen according to the distribution of OV(p) (we
will drop the n, d subscript, as we have fixed n and d at this point).

We now claim that, conditioned on the event that u, v is an orthogonal pair, both u and
v are expected to have between (p/(1 + p) − ε)d and (p/(1 + p) + ε)d ones, with 1 − o(1)

4 As usual, poly(m) refers to an unspecified polynomial of m of fixed degree.
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probability. The event that both u[i] = v[i] = 1 holds with probability p2; conditioned on
this event never occurring, we have

Pr[u[i] = 0, v[i] = 0 | ¬(u[i] = v[i] = 1)] = (1− p)2/(1− p2),
Pr[u[i] = 1, v[i] = 0 | ¬(u[i] = v[i] = 1)] = p(1− p)/(1− p2),
Pr[u[i] = 0, v[i] = 1 | ¬(u[i] = v[i] = 1)] = p(1− p)/(1− p2).

Hence the expected number of ones in u (and in v) is only p(1− p)d/(1− p2) = pd/(1 + p),
and the number of ones is within (−εd, εd) of this quantity with probability 1− o(1). (For
example, in the case of p = 1/2, the expected number of ones is d/3, while a typical vector
has d/2 ones.)

Say that a vector u is light if it has at most (p/(1 + p) + ε)d ones. It follows from the
above discussion that, conditioned on an OV(p) instance being a “yes” instance, there is an
orthogonal pair with two light vectors, with probability 1− o(1). Since the expected number
of ones is pd, the probability that a randomly chosen u is light is

Pr
[
u has ≤

(
p

1 + p
+ ε

)
d = pd

(
1− p

p+ 1 + ε

p

)
ones

]
≤ e−(p/(p+1)−ε/p)2pd/2

= e−p
3d/(2(p+1)2)+Θp(ε)d,

by a standard Chernoff tail bound (see Theorem 11 in Appendix A). So with high probability,
there are at most n · e−p3d/(2(p+1)2)+Θp(ε)d = n1−α light vectors in an OV(p) instance, where

α = log2(e) · p3

(p+ 1)2 log2(1/(1− p2)) + Θp(ε)/ log2(1/(1− p2)).

Divide the n vectors of the input arbitrarily into n1−α(1−ε) groups G1, . . . , Gn1−α(1−ε) , of
O(nα(1−ε)) vectors each. WLOG, suppose an orthogonal pair u, v lies in different groups
u ∈ Gi and v ∈ Gj , with i 6= j (note that, conditioned on there being an orthogonal pair,
this event also occurs with 1− o(1) probability). Since every vector is independently chosen,
and given that Prv[v is light] ≤ 1/nα, note that

Pr
v1,...,vnα(1−ε)

[all vi in group Ga are not light] ≥ (1− 1/nα)n
α(1−ε)

≥ 1− 1/nεα,

for every group Ga. Thus the groups Gi and Gj have at most one light vector with probability
1− o(1).

Let Light(v) be the function which outputs 1 if and only if the d-bit input vector v is light.
Since every symmetric function has poly(d)-size formulas [29], Light(v) also has poly(d)-size
formulas. We can now describe our formula for OV(p), in words:

Take the OR over all n2−2α(1−ε) pairs (i, j) ∈ [n1−α(1−ε)]2 with i < j:
Take the ¬OR over all k = 1, . . . , d, of the AND of two items:

1. The OR over all O(nα(1−ε)) vectors u in group Gi of (Light(u)∧u[k]).
2. The OR over all O(nα(1−ε)) vectors v in group Gj of (Light(v)∧ v[k]).

To see that this works, we observe:
If there is an orthogonal pair u, v in the instance, then recall that with probability 1−o(1),
(a) u and v are light, (b) u and v appear in different groups Gi and Gj , and (c) there
are no other light vectors in Gi and no other light vectors in Gj . Thus the inner ORs
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over the group Gi (and respectively Gj) will only output the bits of the vector u (and
respectively v). Thus the above formula, by guessing the pair (i, j), and checking over all
k = 1, . . . , d that (u[k]∧ v[k]) is not true, will find that u, v are orthogonal, and output 1.
If there is no orthogonal pair, then we claim that the formula always outputs 0. Suppose
the formula outputs 1. Then there is some (i, j) ∈ [n1−α(1−ε)]2 such that the inner
product of two vectors Vi and Wj is 0, where Vi is the OR of all light vectors in group Gi
and Wj is the OR of all light vectors in group Gj . But for these two vectors to have zero
inner product, it must be that all pairs of light vectors (one from Gi and one from Gj)
are orthogonal to each other. Thus there is an orthogonal pair in the instance.

Using the poly(d)-size formulas for Light, the DeMorgan formula has size

O(n2−2α(1−ε) · d · nα(1−ε) · poly(d)) ≤ O(n2−α(1−ε) · poly(d)). (7)

Substituting in the value for α, the exponent becomes

2− p3(1− ε)
(p+ 1)2 ln(1/(1− p2)) + Θp(ε)/ ln(1/(1− p2)).

Recalling that we are setting ε to be arbitrarily small (its value only affects the o(1) probability
of error), the formula size is

n
2− p3

2(p+1)2 ln(1/(1−p2))
+o(1)

.

Observe that our formula can in fact be made into an AC0 formula of similar size; this is
easy to see except for the poly(d)-size formula for Light. But for d = O(logn), any formula
of poly(logn)-size on O(logn) bits can be converted into an AC0 circuit of depth c/ε and
size 2(logn)ε , for some constant c ≥ 1 and any desired ε > 0.

The final formula is the minimum of the formulas of (6) and (7). For every fixed p ∈ (0, 1],
we obtain a bound of n2−εp for an εp > 0. J

4 Conclusion

Let us highlight two interesting directions for future work.

Lower Bounds for AC0 Circuits?

While we give fairly strong lower bounds for Boolean formulas, our results seem to leave
open the following compelling conjecture about the difficulty of OV with low-depth circuits:

I Conjecture 10. There is a δ > 0 such that OV is not computable by depth-3 AC0 circuits
with n2−ε wires.

The obvious translation of a depth-3 circuit into a formula would blow up the size too
much, so our formula lower bounds do not (easily) extend to resolve the above conjecture.
Typical random restriction methods (e.g.,[25]) appear to be too coarse to handle such
conjectures, but perhaps deterministic restriction methods (e.g., [21]) can.

Generalizations of OV?

It is important to note that the largest known lower bound for branching programs computing
any explicit function is due to Neciporuk [32] from 1966, and is only Ω(N2/ log2N) for inputs
of length N . A similar statement holds for Boolean formulas over the full binary basis (see for
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example [28]). Our lower bounds for OV match these bounds up to polylogarithmic factors.
Thus it would be a significant breakthrough to generalize our results to other problems
believed to require cubic time, such as:

3-Orthogonal Vectors (3-OV)
Given: n vectors v1, . . . , vn ∈ {0, 1}d
Decide: Are there i, j, k such that

∑d
`=1 vi[`] · vj [`] · vk[`] = 0?

It is known that the Strong Exponential Time Hypothesis also implies that 3-OV requires
n3−o(1) for dimensionality d = ω(logn) [37, 4].

References
1 Pairwise comparison of bit vectors, January 20, 2017. URL: https://cstheory.

stackexchange.com/questions/37361/pairwise-comparison-of-bit-vectors.
2 Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams,

and Or Zamir. Subtree Isomorphism Revisited. In SODA, pages 1256–1271, 2016.
3 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results

for LCS and Other Sequence Similarity Measures. In FOCS, pages 59–78, 2015.
4 Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures Imply Strong Lower

Bounds for Dynamic Problems. In FOCS, pages 434–443, 2014.
5 Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and fixed

parameter subquadratic algorithms for radius and diameter in sparse graphs. In SODA,
pages 377–391. Society for Industrial and Applied Mathematics, 2016.

6 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of Faster
Alignment of Sequences. In ICALP, pages 39–51, 2014.

7 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More Applications of the Poly-
nomial Method to Algorithm Design. In SODA, pages 218–230, 2015.

8 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya P. Razenshteyn, and Francesco Silvestri. On
the Complexity of Inner Product Similarity Join. In PODS, pages 151–164, 2016.

9 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Sub-
quadratic Time (unless SETH is false). In STOC, pages 51–58, 2015.

10 Arturs Backurs and Piotr Indyk. Which Regular Expression Patterns Are Hard to Match?
In FOCS, pages 457–466, 2016.

11 Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-Case
Fine-Grained Hardness. IACR Cryptology ePrint Archive, 2017:202, 2017. URL: http:
//eprint.iacr.org/2017/202.

12 Allan Borodin. On Relating Time and Space to Size and Depth. SIAM J. Comput.,
6(4):733–744, 1977. doi:10.1137/0206054.

13 Karl Bringmann. Why Walking the Dog Takes Time: Frechet Distance Has No Strongly
Subquadratic Algorithms Unless SETH Fails. In FOCS, pages 661–670, 2014.

14 Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In FOCS, pages 79–97, 2015.

15 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
JoCG, 7(2):46–76, 2016.

16 Kevin Buchin, Maike Buchin, Maximilian Konzack, Wolfgang Mulzer, and André Schulz.
Fine-grained analysis of problems on curves. In EuroCG, Lugano, Switzerland, 2016.

17 Massimo Cairo, Roberto Grossi, and Romeo Rizzi. New Bounds for Approximating Ex-
tremal Distances in Undirected Graphs. In SODA, pages 363–376, 2016.

ITCS 2019

https://cstheory.stackexchange.com/questions/37361/pairwise-comparison-of-bit-vectors
https://cstheory.stackexchange.com/questions/37361/pairwise-comparison-of-bit-vectors
http://eprint.iacr.org/2017/202
http://eprint.iacr.org/2017/202
http://dx.doi.org/10.1137/0206054


48:14 The OV Conjecture for Branching Programs and Formulas

18 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The Complexity of Satisfia-
bility of Small Depth Circuits. In Parameterized and Exact Complexity (IWPEC), pages
75–85, 2009.

19 Timothy M. Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and
More: Quickly Derandomizing Razborov-Smolensky. In SODA, pages 1246–1255, 2016.
doi:10.1137/1.9781611974331.ch87.

20 Krishnendu Chatterjee, Wolfgang Dvorák, Monika Henzinger, and Veronika Loitzenbauer.
Model and Objective Separation with Conditional Lower Bounds: Disjunction is Harder
than Conjunction. In LICS, pages 197–206, 2016.

21 Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit com-
plexity. In STOC, pages 30–36. ACM, 1996.

22 Lijie Chen and Ryan Williams. An Equivalence Class for Orthogonal Vectors. In SODA,
page to appear, 2019.

23 Jacob Evald and Søren Dahlgaard. Tight Hardness Results for Distance and Centrality
Problems in Constant Degree Graphs. CoRR, abs/1609.08403, 2016. arXiv:1609.08403.

24 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams. Complete-
ness for First-Order Properties on Sparse Structures with Algorithmic Applications. In
SODA, pages 2162–2181, 2017.

25 Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

26 Costas S. Iliopoulos and Jakub Radoszewski. Truly Subquadratic-Time Extension Queries
and Periodicity Detection in Strings with Uncertainties. In 27th Annual Symposium on
Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel, pages
8:1–8:12, 2016.

27 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

28 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag,
2012.

29 V. M. Khrapchenko. The complexity of the realization of symmetrical functions by formulae.
Mathematical notes of the Academy of Sciences of the USSR, 11(1):70–76, 1972.

30 Marvin Künnemanm, Ramamohan Paturi, and Stefan Schneider. On the Fine-grained
Complexity of One-Dimensional Dynamic Programming. CoRR, abs/1703.00941, 2017.
arXiv:1703.00941.

31 Nancy A. Lynch. Log Space Recognition and Translation of Parenthesis Languages. J.
ACM, 24(4):583–590, 1977. doi:10.1145/322033.322037.

32 E. I. Nechiporuk. On a Boolean function. Doklady of the Academy of Sciences of the USSR,
169(4):765–766, 1966. English translation in Soviet Mathematics Doklady 7:4, pages 999–
1000.

33 Paul Pritchard. A Fast Bit-Parallel Algorithm for Computing the Subset Partial Order.
Algorithmica, 24(1):76–86, 1999.

34 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In STOC, pages 515–524, 2013.

35 Michael Wehar. Intersection Non-Emptiness for Tree-Shaped Finite Automata. Available
at http://michaelwehar.com/documents/TreeShaped.pdf, February 2016.

36 Richard Ryan Williams. Strong ETH Breaks With Merlin and Arthur: Short Non-
Interactive Proofs of Batch Evaluation. In 31st Conference on Computational Complex-
ity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 2:1–2:17, 2016. doi:
10.4230/LIPIcs.CCC.2016.2.

37 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. See also ICALP’04.

38 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In
SODA, pages 1867–1877, 2014. doi:10.1137/1.9781611973402.135.

http://dx.doi.org/10.1137/1.9781611974331.ch87
http://arxiv.org/abs/1609.08403
http://arxiv.org/abs/1703.00941
http://dx.doi.org/10.1145/322033.322037
http://michaelwehar.com/documents/TreeShaped.pdf
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.2
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.2
http://dx.doi.org/10.1137/1.9781611973402.135


D.M. Kane and R. R. Williams 48:15

A Chernoff Bound

We use the following standard tail bound:

I Theorem 11. Let p ∈ (0, 1) and let X1, . . . , Xd ∈ {0, 1} be independent random variables,
such that for all i we have Pr[Xi = 1] = p. Then for all δ ∈ (0, 1),

Pr
[∑

i

Xi < (1− δ)pd
]
≤ e−δ

2pd/2.

B DeMorgan Formulas into Branching Programs

Here we describe at a high level how to convert a DeMorgan formula (over AND, OR, NOT)
of size s into a branching program of size O(s). Our construction is similar to the log-space
algorithm for formula evaluation of Lynch [31], except we have to be extremely careful
with the time and space efficiency to get a branching program with only O(s) total nodes
(corresponding to log2(s) +O(1) space).

Our branching program will perform an in-order traversal of the DeMorgan formula,
maintaining a counter (from 1 to s) of the current node being visited in the formula. The
branching program begins at the root (output) of the formula. If the current node is a leaf,
its value b is returned to the parent node. If the current node is not a leaf, the branching
program recursively evaluates its left child (storing no memory about the current node).

The left child returns a value b. If the current node is an AND and b = 0, or the current
node is an OR and b = 1, the branching program propagates the bit b up the tree (moving
up to the parent). If the current node is a NOT, then the branching program moves to the
parent with the value ¬b.

If none of the above cases hold, then the branching program erases the value b, and
recursively evaluates the right child, which returns a value b. This value is simply propagated
up the tree (note the fact that we visited the right child means that we know what the left
child’s value was).

Observe that we only hold the current node of the formula in memory, as well as O(1)
extra bits.

ITCS 2019





SOS Lower Bounds with Hard Constraints:
Think Global, Act Local

Pravesh K. Kothari
Department of Computer Science, Princeton University and Institute for Advanced Study,
Princeton, USA
kothari@cs.princeton.edu

Ryan O’Donnell1

Department of Computer Science, Carnegie Mellon University, Pittsburgh, USA
odonnell@cs.cmu.edu

Tselil Schramm2

Department of Computer Science, Harvard and MIT, Cambridge, USA
tselil@mit.edu

Abstract
Many previous Sum-of-Squares (SOS) lower bounds for CSPs had two deficiencies related to
global constraints. First, they were not able to support a “cardinality constraint”, as in, say, the
Min-Bisection problem. Second, while the pseudoexpectation of the objective function was shown
to have some value β, it did not necessarily actually “satisfy” the constraint “objective = β”. In
this paper we show how to remedy both deficiencies in the case of random CSPs, by translating
global constraints into local constraints. Using these ideas, we also show that degree-Ω(

√
n)

SOS does not provide a ( 4
3 − ε)-approximation for Min-Bisection, and degree-Ω(n) SOS does not

provide a ( 11
12 +ε)-approximation for Max-Bisection or a ( 5

4−ε)-approximation for Min-Bisection.
No prior SOS lower bounds for these problems were known.

2012 ACM Subject Classification Theory of computation→ Semidefinite programming, Theory
of computation → Randomness, geometry and discrete structures

Keywords and phrases sum-of-squares hierarchy, random constraint satisfaction problems

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.49

Related Version https://arxiv.org/abs/1809.01207

Acknowledgements The authors very much thank Sangxia Huang and David Witmer for their
contributions to the early stages of this research. Thanks also to Svante Janson for discussions
concerning contiguity of random graph models. We also greatfully acknowledge comments on the
manuscript from Johan Håstad as well as several anonymous reviewers.

1 Some work performed at the Boğaziçi University Computer Engineering Department, supported by Marie
Curie International Incoming Fellowship project number 626373. Also supported by NSF grants CCF-
1618679, CCF-1717606. This material is based upon work supported by the National Science Foundation
under grant numbers listed above. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views of the National Science
Foundation (NSF).

2 This work was partly supported by an NSF Graduate Research Fellowship (1106400), and also by a
Simons Institute Fellowship.

© Pravesh Kothari, Ryan O’Donnell, and Tselil Schramm;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 49; pp. 49:1–49:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kothari@cs.princeton.edu
mailto:odonnell@cs.cmu.edu
mailto:tselil@mit.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.49
https://arxiv.org/abs/1809.01207
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


49:2 SOS Lower Bounds with Hard Constraints

1 Introduction

Consider the task of refuting a random 3SAT instance with n variables and 50n clauses; i.e.,
certifying that it’s unsatisfiable (which it is, with very high probability). There is no known
2o(n)-time algorithm for this problem. An oft-cited piece of evidence for the exponential
difficulty is the fact [9, 19] that the very powerful Sum-of-Squares (SOS) SDP hierarchy fails
to refute such random 3SAT instances in 2o(n) time. Colloquially, degree-Ω(n) SOS “thinks”
that the random 3SAT instance is satisfiable (with high probability).

But consider the following method of refuting satisfiability of a random 50n-clause CNF φ:

For all k ∈ {0, 1, 2, . . . , n},
refute “φ is satisfiable by an assignment of Hamming weight k”.

Could it be that O(1)-degree SOS succeeds in refuting random 3SAT instances in this manner?
It seems highly unlikely, but prior to this work the possibility could not be ruled out.

SOS lower bounds with Hamming weight constraints

Recall that the known SOS lower bounds for random 3SAT are actually stronger: they show
degree-Ω(n) SOS thinks that random 3SAT instances are satisfiable even as as 3XOR (i.e.,
with every clause having an odd number of true literals). Hamming weight calculations are
quite natural in the context of random 3XOR; indeed Grigoriev, Hirsch, and Pasechnik [10]
showed that the dynamic degree-5 SOS proof system can refute random 3XOR instances
by using integer counting techniques. Thus the above “refute solutions at each Hamming
weight” strategy seems quite natural in the context of random CSPs.

In 2012, Yuan Zhou raised the question of proving strong SOS lower bounds for random
3XOR instances together with a global cardinality constraint such as

∑
i xi = n

2 . This
would rule out the above refutation strategy. It is also a natural SOS challenge, seemingly
combining the two strong SOS results known prior to 2012 – the bound for random 3XOR
due to Grigoriev and Schoenebeck [9, 19] and the bound for Knapsack due to Grigoriev [8].

One may ask why the Grigoriev–Schoenebeck SOS lower bound doesn’t already satisfy∑
i xi = n

2 . The difficulty is connected to the meaning of the word “satisfy”. One should
think of the SOS Method as trying to find not just a satisfying assignment to a CSP, but
more generally a distribution on satisfying assignments. The SOS algorithm finds a “degree-d
pseudodistribution” on satisfying assignments in nO(d) time, provided one exists; roughly
speaking, this means an object that “looks like” a distribution on satisfying assignment to all
tests that are squared polynomials of degree at most d. For a random 3XOR instance with n
variables and O(n) constraints, the Grigoriev–Schoenebeck degree-Ω(n) pseudodistribution
indeed claims to have 100% of its probability mass on satisfying assignments. Furthermore,
its assignments claim to give probability 50% to each of xi = 0 and xi = 1 for all i; in other
words, the “pseudoexpectation” of xi is 1

2 , so the pseudoexpectation of
∑
i xi is

n
2 . However,

this doesn’t mean that the pseudodistribution “satisfies” the hard constraint
∑
i xi = n

2 . To
actually “satisfy” this constraint, the expression

∑
i xi must have pseudovariance zero; i.e.,

SOS must not only “think” it knows a distribution on 3XOR-satisfying assignments which
has

∑
i xi = n

2 on average, it must think that all of these satisfying assignments have
∑
i xi

exactly n
2 .

In this work we show how to upgrade any SOS lower bound for random CSPs based
on t-wise uniformity so as to include the hard cardinality constraint

∑
i xi = n

2 (or indeed
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∑
i xi = n

2 + k for any |k| = O(
√
n)).3 The idea is conceptually simple: just add a matching

of 2XOR constraints, x2i−1 6= x2i for all 1 6 i 6 n
2 .

SOS lower bounds with exact objective constraints

A random 3AND CSP with n variables and m = αn constraints (each an AND of 3 random
literals) will have objective value 1

8 + ε with high probability, for ε arbitrarily small as
a function of α; i.e., the best assignment will satisfy at most ( 1

8 + ε)m constraints. On
the other hand, it’s not too hard to show that the Grigoriev–Schoenebeck degree-Ω(n)
pseudodistribution will give the objective function a pseudoexpectation of 1

4 ± o(1). (Roughly
speaking, for almost all 3AND constraints, the SOS pseudodistribution will think it can
obtain probability 1

4 on each of the 3XOR-satisfying assignments, and one of these, namely
(1, 1, 1), satisfies 3AND.) Thus it would appear that degree-Ω(n) SOS has an integrality gap
of factor 2− ε on random 3AND instances.

But is this misleading? Suppose we solved the SOS SDP and it reported a solution with
pseudoexpectation 1

4 . We might then “double-check” by re-running the SDP, together with an
additional “equality constraint” specifying that the number of satisfied 3AND constraints is
indeed 1

4m.4 As far as we know now, this run could return “infeasible”, actually refuting the
possibility of 1

4m constraints being satisfiable! Again, the issue is that under the Grigoriev–
Schoenebeck SOS pseudodistribution, the objective function will have a pseudoexpectation
like 1

4 , but will also have nonzero pseudovariance.
We show how to fix this issue – i.e., have the objective constraint be exactly SOS-satisfied

– in the context of any SOS lower bound for random CSPs based on t-wise uniformity. Here
we briefly express the idea of our solution, in the specific case of 3AND: We show that one
can design a probability distribution θ on r × 3 Boolean matrices such that two properties
hold: (i) θ is 2-wise uniform; (ii) for every outcome in the support of θ, exactly a 1

4 − εr
fraction of the r rows satisfy 3AND, where εr is an explicit positive constant depending on r
that tends to 0 as r grows. We then use recent work [14] on constructing SOS lower bounds
from t-wise uniform distributions to show that degree-Ω(n) SOS thinks it can “weakly satisfy”
a random “distributional CSP” in which each constraint specifies that a random 4r-tuple of
variables should be distributed according to θ. By “weak satisfaction”, we mean that SOS
will at least think it can get a local distribution on each 4r-tuple whose support is contained
within θ’s support (and therefore always having exactly a 1

4 − εr fraction of rows satisfying
3AND). Now viewing each such tuple as the conjunction of r (random) 3AND constraints,
we get that the SOS solution thinks it satisfies exactly a 1

4 − εr fraction of these constraints.

Further consequences

Via our first result – satisfying global cardinality constraints – we open up the possibility
of establishing SOS lower bounds for natural problems like Min- and Max-Bisection (by
performing reductions within SOS, as in [21]). Previously, no such SOS integrality gaps were
known (Guruswami, Sinop, and Zhou [11] had given an SOS integrality gap approaching 11

10
for the Balanced-Separator problem, which is like Min-Bisection but without a hard bisection
constraint.) Under assumptions like NP 6⊆

⋂
ε>0 TIME(2nε), some hardness results were

3 We also show in the full version that this is not too far from tight, in the sense that it is easier to refute
XOR with Hamming weight constraints that are too imbalanced (if k = ω(n1/4)).

4 Actually, it was recently observed that it is not clear we can definitely solve the associated SDP
exactly [16, 18]. This does not affect the status of our lower bounds.
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previously known: no PTAS for Min-Bisection (due to Khot [13]) and factor 15
16 + ε hardness

for Max-Bisection (due to Holmerin and Khot [13], improving on the factor 16
17 +ε NP-hardness

known for Max-Cut). However, in the context of SOS lower bounds, it makes sense to shoot
for more: namely, hardness factors that are known subject to Feige’s R3SAT Hypothesis [7]
(and similar hypotheses for random CSPs).

Feige himself [7] showed factor 4
3 − ε hardness for Min-Bisection under his hypothesis

(with a quadratic size blowup). Also, it’s possible to show factor 11
12 + ε hardness for Max-

Bisection (with linear size blowup) under Feige’s Hypothesis for 4XOR; this is arguably
“folklore”, via the gadget techniques of Trevisan et al. [20] (see also [12, 17]). We are able to
convert both of these results to SOS lower bounds, showing that degree-Ω(

√
n) SOS fails

to ( 4
3 − ε)-approximate Min-Bisection, and degree-Ω(n) SOS fails to ( 5

4 + ε)-approximate
Min-Bisection. Our proof of the latter can also be modified to show that degree-Ω(n) SOS
fails to ( 11

12 + ε)-approximate Max-Bisection.
It is worth pointing out that the benefit of our second main result, the ability to enforce

objective equality constraints exactly, also arises in these SOS Bisection lower bounds. For
example, the ( 4

3 − ε)-hardness for Min-Bisection is a kind of gadget reduction from random
3AND CSPs; showing that the “good cut” in the completeness case is an exact bisection
relies on the “good assignment” in the 3AND instance satisfying exactly a 1

4 fraction of
constraints.

1.1 Statement of main theorems
Recent work [3, 14] has established a general framework for showing lower bounds for SOS on
random CSPs, using the idea of t-wise uniformity. The following is a fairly general example
of what’s known:

I Theorem 0 ([14]). Let P : {0, 1}k → {0, 1} be a predicate, and suppose there is a (t− 1)-
wise uniform distribution ν on {0, 1}k with Eν [P ] = β. Consider a random n-variable,
m = ∆n-constraint instance of CSP(P±), meaning that each constraint is P applied to k
randomly chosen literals. Then with high probability, there is a degree-Ω

(
n

∆2/(t−2) log ∆

)
SOS

pseuodexpectation Ẽ[·] with the following property:
Case 1: β = 1. In this case, Ẽ[·] satisfies all the CSP constraints as identities.
Case 2: β < 1. In this case, Ẽ[OBJ(x)] = β ± o(1), where OBJ(x) denotes the objective

value of the CSP.
For example, the case of random 3SAT described in the previous section corresponds to
P = OR3, t = 3, ν being the uniform distribution on triples satisfying XOR3, β = 1, and
∆ = 50; the case of random 3AND has the same t, ν, and ∆, but P = AND3 and β = 1

4 .

Our main theorems are now as follows:

I Theorem 1. In the β = 1 case of Theorem 0, one can additionally get the pseudodistri-
bution Ẽ to satisfy (with pseudovariance zero) the global bisection constraint

∑n
i=1 xi = n

2
(assuming n even). More generally, for any integer B ∈ [n2 −O(

√
n), n2 +O(

√
n)], we can

ensure the pseudodistribution satisfies the global Hamming weight constraint
∑n
i=1 xi = B.

I Theorem 2. In the β < 1 case of Theorem 0, there exists a sequence of positive constants
εr with εr → 0 such that for a random* n-variable, m = ∆n-constraint instance of CSP(P±),
with high probability there is a degree-Ωr

(
n

∆2/(t−2) log ∆

)
SOS pseudodistribution Ẽ which

satisfies (with pseudovariance zero) the hard constraint “OBJ(x) = β − εr”. Furthermore, we
can also obtain cardinality constraints as in Theorem 1.
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In the full version, we show that Theorem 1 is not too far from tight, by demonstrating that
random k-XOR instances become easier to refute when one imposes an imbalanced Hamming
weight constraint

∑n
i=1 xi = n

2 ± ω(n1/4).5

I Remark. In the above theorem we have written “random*” with an asterisk because the
random instance is not drawn precisely in the standard way. Rather, it is obtained by
choosing m/r groups of random constraints, where in each group we fix a literal pattern and
then choose r nonoverlapping constraints with this pattern. This technicality is an artifact
of our proof; it seems likely that it is unnecessary. Indeed, it is possible that these two
distributions on random hypergraphs are simply o(1)-close in total variation distance, at least
when m = O(n).6 In any case, by alternate means (including the techniques from Theorem 1)
we are able to show the following alternative result in Section 5.2: When m = o(n1.5), with
high probability a purely random instance of CSP(P±) has an SOS pseudodistribution of
the stated degree that exactly satisfies OBJ(x) = β − ε for some ε > 0 that can be made
arbitrarily small.
I Remark. Our proof of Theorem 2 only relies on the “Case 1, β = 1” part of [14]’s Theorem 0.
In fact, our Theorem 2 can actually be used to effectively deduce “Case 2, β < 1” from
“Case 1, β = 1” in Theorem 0. This is of interest because [14]’s argument for Case 2 was not
a black-box reduction from Case 1, but instead involved verifying a more technical expansion
property in random graphs, as well as slightly reworking the proof of Case 2.

Finally, we obtain the following theorems concerning Bisection problems:

I Theorem 3. For the Max-Bisection problem in a graph on n vertices, for d = Ω(n), the
degree-d Sum-of-Squares Method cannot obtain an approximation factor better than 11

12 − ε
for any constant ε > 0.

For the Min-Bisection problem, for d′ = Ω(
√
n), the degree-d′ SOS Method cannot obtain

an approximation factor better than 4
3 − ε, and for d = Ω(n) the degree-d SOS Method cannot

obtain an approximation factor better than 5
4 − ε.

The proofs are included in the full version.

Organization of this paper
In Section 2, we provide some preliminaries and technical context for the study of CSPs
and SOS. In Section 3, we extend the results of [14] to obtain lower bounds for CSPs with
global cardinality constraints, proving Theorem 1. Section 4 shows how to construct local
distributions over assignments to groups of disjoint predicates so that the number of satisfied
constraints is always exactly the same, and Section 5 shows how to use such distributions to
prove Theorem 2. In Section 5, one can also find a discussion of random vs. random* CSPs.
We wrap up with some concluding remarks and future directions in Section 6.

2 Preliminaries

CSPs

A constraint satisfaction problem (CSP) is defined by an alphabet Ω (usually {0, 1} or {±1}
in this paper) and a collection P of predicates, each predicate being some P : Ωk → {0, 1}
(with different P ’s possibly having different arities, k). An instance H consists of a set V of

5 We conjecture that Theorem 1 is tight, and that Hamming weight constraints with imbalance ω(n1/2)
already make k-XOR easier to refute.

6 Thanks to Svante Janson for some observations in the direction of showing this.
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49:6 SOS Lower Bounds with Hard Constraints

n variables, as well as m constraints. Each constraint h consists of a scope S and a predicate
P ∈ P , where S is a tuple of k distinct variables, k being the arity of P . An assignment gives
a value xi ∈ Ω to the ith variable; it satisfies constraint h = (S, P ) if P (xS1 , . . . , xSk) = 1.
We may sometimes write this as P (xS) = 1 for brevity. The associated objective value is the
fraction of satisfied constraints,

OBJ(x) = avg
h=(S,P )∈H

{P (xS)}.

Sometimes we are concerned with CSPs of the following type: the alphabet Ω = {±1} is
Boolean, there is a single predicate P : Ωk → {0, 1} (e.g., P = OR3, the 3-ary Boolean OR
predicate), and the predicate set P consists of all 2k versions of P in which inputs may be
negated. We refer to this scenario as P -CSP with literals, denoted CSP(P±). For example,
the case of P = OR3 is the classic “3SAT” CSP.

Distributional CSPs

A distributional CSP is one where, rather than having a predicate associated with each scope,
we have a probability distribution. More precisely, each distributional constraint h = (S, ν)
now consists of a scope S of some arity k, as well as a probability distribution ν on Ωk. The
optimization task involves finding a global probability distribution µ on assignments. We say
that µ satisfies constraint h = (S, ν) if the marginal µ|S of µ on S is equal to ν; we say the
distributional CSP is satisfiable if there is a µ satisfying all constraints.

We may also say that µ weakly satisfies h = (S, ν) if supp(µ|S) ⊆ supp(ν). A “usual”
(predicative, i.e., non-distributional) CSP can be viewed as a distributional CSP as follows:
For each predicate P , select any distribution νP whose support is exactly the satisfying
assignments to P ; then the existence of a global assignment in the predicative CSP of
objective value β is equivalent to the existence of a global probability distribution µ that
weakly satisfies a β fraction of constraints.

Random CSPs

We are frequently concerned with CSPs chosen uniformly at random. Given a predicate
set P, a random CSP with n variables and m constraints is chosen as follows: For each
constraint we first choose a random P ∈ P. Supposing it has arity k, we then choose a
uniformly random length-k scope S from the n variables, and impose the constraint (S, P ).
We can similarly define a random distributional CSP given a collection D of distributions ν.
We remark that our choice of having exactly m constraints is not really essential, and not
much would change if we had, e.g., a Poisson(m) number of random constraints, or if we
chose each possible constraint independently with probability such that m constraints are
expected.

SOS

The SOS Method [5] can be thought of as an algorithmic technique for finding upper bounds
on the best objective value achievable in a predicative or distributional CSP. For example,
in a random 3SAT instance with m = 50n, it is very likely that every assignment x has
OBJ(x) 6 7

8 + o(1); ideally, the SOS Method could certify this, or could at least certify
unsatisfiability, meaning an upper bound of OBJ(x) < 1 for all assignments. The SOS
Method has a tunable degree parameter d; increasing d increases the effectiveness of the
method, but also its run-time, which is essentially nO(d) (though see [16, 18] for a more
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precise discussion). In this work we are only concerned with showing negative results for
the power of SOS. Showing that degree-d SOS fails to certify a good upper bound on the
maximum objective value is equivalent to showing that a degree-d pseudodistribution exists
under which the objective function has a large pseudoexpectation. We define these terms now.

For simplicity we restrict attention to CSPs with Boolean alphabet (either Ω = {0, 1}
or Ω = {±1}), although it straightforward to extend the definitions for larger alphabets.7
The SOS method introduces indeterminates X1, . . . , Xn associated to the CSP variables;
intuitively, one thinks of them as standing for the outcome of a global assignment chosen from a
supposed probability distribution on assignments. An associated degree-d pseudoexpectation is
a real-valued linear map Ẽ on R6d[X1, . . . , Xn] (the space of formal polynomials inX1, . . . , Xn

of degree at most d) satisfying three properties:

1. Ẽ[multilin(Q(X))] = Ẽ[Q(X)]; here multilin(Q(X)) refers to the multilinearization of
Q(X), meaning the reduction mod X2

i = Xi (in case Ω = {0, 1}) or mod X2
i = 1 (in case

Ω = {±1}).
2. Ẽ[1] = 1;
3. Ẽ[Q(X)2] > 0 whenever deg(Q) 6 d/2.

We tend to think of the first condition (as well as the linearity of Ẽ) as being “syntactically”
enforced; i.e., given Ẽ’s values on the multilinear monomials, its value on all polynomials
is determined through multilinearization and linearity. It is not hard to show that every
pseudoexpectation Ẽ arises from a signed probability distribution µ; i.e., a (possibly negative)
function µ : Ωn → R with

∑
x µ(x) = 1. We call this the associated pseudodistribution.

Intuitively, we think of a degree-d pseudodistribution as a “supposed” distribution on global
assignments, which at least passes the tests in Item 3 above.

Given a CSP instance H, if there is a degree-d pseudodistribution with Ẽ[OBJ(X)] > β,
this means that the degree-d SOS Method fails to certify an upper bound of OBJ(x) < β for
the CSP. Informally, we say that degree-d SOS “thinks” that there is a distribution on assign-
ments under which the average objective value is at least β. Similarly, given a distributional
CSPH, if there is a degree-d pseudodistribution in which P̃[XS = (a1, . . . , ak)] = ν(a1, . . . , ak)
for all constraints h = (S, ν), we say that degree-d SOS “thinks” that H is fully satisfiable.
Here P̃[XS = (a1, . . . , ak)] means Ẽ[1XS=(a1,...,ak)], where 1XS=(a1,...,ak) denotes the natural
arithmetization of the 0-1 indicator as a degree-k multilinear polynomial.

Satisfaction of identities in SOS

Formally speaking, one says that a degree-d pseudodistribution satisfies an identity Q(X) = b

if Ẽ[(Q(X)− b)R(X)] = 0 for all polynomials R(X) of degree at most d− deg(Q). Note that
this is stronger than simply requiring Ẽ[Q(X)] = b (the R ≡ 1 case). A great deal of this
paper is concerned with precisely this distinction; it may be relatively easy to come up with
a degree-d pseudodistribution over {0, 1}n satisfying, say, Ẽ[

∑
iXi] = n

2 , but much harder to
find one that “satisfies the identity

∑
iXi = n

2 ”. The terminology here is a little unfortunate;
we will try to ameliorate things by introducing the following stronger phrase:

I Definition 4. We say that a degree-d pseudodistribution satisfies identity Q(X) = b with
pseudovariance zero if we have both Ẽ[Q(X)] = b and also

ṼAR[Q(X)− b] = Ẽ[Q(X)2]− b2 = 0.

7 Specifically, for each variable x and each alphabet element a ∈ Ω, one introduces an indeterminate
called 1x=a that is constrained as a {0, 1} value and is interpreted as the indicator of whether x is
assigned a.
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49:8 SOS Lower Bounds with Hard Constraints

As is shown in [2, Lemma 3.5 (SOS Cauchy-Schwarz)], this condition is equivalent to the
pseudodistribution “satisfying the identity Q(X) = b” for Q of degree up to d/2.8

Intuitively, in this situation degree-d SOS not only “thinks” that it knows a distribution on
assignments x under which Q(x) has expectation b, it further thinks that every outcome x
in the support of its supposed assignment has Q(x) = b.

3 Random CSPs with Hamming weight constraints

In this section we will prove Theorem 1, which extends the known random CSP lower
bounds (as in Theorem 0) to CSPs with a hard Hamming weight constraint on the variable
assignment.

3.1 Hypergraph expansion and prior SOS lower bounds for random
CSPs

The paper [14] works in the general setting of distributional CSPs with an upper bound
of K on all constraint arities. An instance is thought of as a “factor graph” G: a bipartite
graph with n variable-vertices, m constraint-vertices, and edges joining a constraint-vertex to
the variable-vertices in its scope. More precisely, the neighborhood N(h) of each constraint-
vertex h is defined to be an ordered tuple of kh variable-vertices. We write νh for the local
probability distribution on ΩN(h) associated to constraint h. In [14], each νh is assumed
to be a (τ − 1)-wise uniform distribution, where τ is a global integer parameter satisfying
3 6 τ 6 K. Finally, the graph G is assumed to satisfy a certain high-expansion condition
(discussed in the full version) called the “Plausibility Assumption” involving two parameters
0 < ζ < 1 and 1 6 SMALL 6 n/2, assumed to satisfy K 6 ζ · SMALL. In this case, the main
theorem of [14] is that there is a SOS-pseudodistribution of degree 1

3ζ · SMALL that weakly
satisfies all constraints.

In [14] it is assumed that all constraint distributions νh have the same level of uniformity,
namely (τ − 1)-wise uniformity, τ > 3. In this work, in order to incorporate Hamming
weight constraints on the assignment, we would like to consider the possibility that different
constraint distributions have different levels of uniformity. To that end, suppose that each νh
is (th − 1)-wise uniform, where the th’s are various integers. Slightly more broadly than [14],
we allow 1 6 th 6 kh + 1 for all h, and we allow the constraints to have arity kh as low as 1.

In the full version, we examine how these assumptions affect the proofs in [14]. The
upshot is Theorem 5 below. Before we give the theorem, we briefly introduce some notation
and comments: A “constraint-induced” subgraph H is a subgraph of the factor graph G

given by choosing some set of constraints C, as well as all edges and constraint-vertices
adjacent to C. We write c(H) for the number of constraints in H, e(H) for the number of
edges, v(H) for the number of variable-vertices, and T (H) =

∑
h∈cons(H) th. To reduce to

(3.1) in the following theorem, we use the observation in the full version that adding edges to
a subgraph to make it constraint-induced can only decrease “income”.

For notational simplicity we have also adjusted the parameters ζ and SMALL by factors of 2.

8 In this paper we are flexible when it comes to constant factors in the degree. For this reason we need
not worry about this factor-2 loss in the degree, as a degree-2d pseudoexpectation which satisfies an
identity with pseudovariance 0 automatically gives a degree-d pseudoexpectation which satisfies the
identity exactly.
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I Theorem 5 (Essentially from [14]). Let 0 < ζ < 1, SMALL 6 n and assume all constraint-
vertices in G have arity at most ζ · SMALL.

Suppose that for every set of nonempty constraint-induced subgraph H with c(H) 6 SMALL,
it holds that

v(H) > e(H)− T (H)
2 + ζc(H). (3.1)

Then there is an SOS-pseudodistribution of degree 1
3ζ · SMALL that weakly satisfies all con-

straints.

There are a lot of parameters in the above theorem, and our goal is not to derive the
most general possible quantitative result. Instead we’ll simply work out some of the basic
consequences.

A basic setting treated in [14], relevant for Theorem 0, is the following. For a fixed
small t we choose a random CSP with n variables and ∆n constraints, with each constraint
supporting a (t− 1)-wise uniform distribution. E.g., in random 3SAT, t = 3. Then if

∆ = const ·
( n

SMALL

) t
2−1−ζ

for a sufficiently small positive constant, it is shown in [14] that the main condition (3.1)
indeed holds with high probability. Choosing, say, ζ = 1

logn and SMALL = polylog(n), we
see that, with high probability, we will have weakly satisfying pseudodistributions of degree
polylog(n) even when ∆ = Θ̃(nt/2−1).

In fact, it’s possible to show that we have such pseudoexpectations when there are,
simultaneously, n1.5/polylog(n) 2-wise-supporting constraints, and n2/ polylog(n) 3-wise-
supporting constraints, and n2.5/ polylog(n) 4-wise-supporting constraints, . . . and also
n/polylog(n) 1-wise-supporting constraints, and n.5/ polylog(n) 0-wise-supporting con-
straints.

3.2 Expansion in the presence of matching and unary constraints
However, if we want to impose a cardinality constraint by way of adding 1-wise independent
2-ary 6= constraints, then n/ polylog(n) such constraints will not suffice. Indeed, what we
would like to now show is that if the 1-wise-supporting constraints are carefully chosen to not
overlap, we can add a full, linear-sized “matching” of them without compromising the lower
bound. Then, when Ω = {0, 1}, we can impose the 1-wise-uniform constraints x1 ⊕ x2 = 1,
x3⊕x4 = 1, . . . , xn−1⊕xn = 1 and thereby force the pseudoexpectation to satisfy the global
constraint

∑
i xi = n

2 .

I Theorem 6. Fix a uniformity parameter 3 6 t 6 O(1), an arity k 6 O(1), a number
U = O(

√
n) of “unary” constraints, and a small failure probability 0 < p < 1/2. Assume also

that ζ 6 1/2.
Suppose we form a random factor graph with n variable-vertices and ∆n constraint-

vertices C of arity k; assume each constraint-vertex is equipped with an associated (t− 1)-wise
uniform distribution.

Furthermore, suppose we add in two setsM1,M2 of nonrandom, nonoverlapping con-
straints, whose associated variable vertices partition [n]. The “unary” constraints of M1
should satisfy |M1| 6 U and have an associated 0-wise uniform distribution; the “match-
ing” constraints of M2 should be of constant arity and have an associated 1-wise uniform
distribution.
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Then provided

∆ 6 const · p ·
( n

SMALL

) t
2−1−ζ′

for a sufficiently small universal constant, and ζ ′ = (k + 1)ζ, the expansion condition in
Theorem 5 holds except with probability at most p.

The proof of Theorem 6, appearing in the full version, uses standard combinatorial tech-
niques for verifying the expansion of random graphs. Due to the fact that the unary and
matching constraints are deterministic, we must augment these standard techniques with
some straightforward case analysis. In fact, we only prove the theorem under the assumption
that the constraints ofM2 have arity 2; the more general case of constant arity is a slight
elaboration that we omit.

3.3 Lower bound for CSPs with Hamming weight constraints
As in [14], we observe that for a given ∆ > 10, a good choice for ζ is 1

log ∆ . This yields the
following corollary, which we will show implies Theorem 1:

I Theorem 7. Let ν be a (t− 1)-wise uniform distribution on {0, 1}k. Consider a random
n-variable, m = ∆n-constraint k-ary distributional CSP, in which each constraint distribution
is ν up to a negation pattern in the k inputs. (All such “reorientations” are still (t− 1)-wise
uniform.) Suppose we also impose the following nonrandom distributional constraints:

The 0-wise uniform constraints x1 = b1, x2 = b2, . . . , xU = bU , for some string b ∈ {0, 1}U
with U = O(

√
n);

The 1-wise uniform constraint that (xU+1, xU+2) is uniform on {(0, 1), (1, 0)}, and simil-
arly for the pairs (xU+3, xU+4), . . . , (xn−1, xn).

Then with high probability, there is an SOS-pseudodistribution of degree D = Ω
(

n
∆2/(t−2) log ∆

)
that weakly satisfies all constraints.

Let us now see why this implies Theorem 1. In this “β = 1” scenario, we have a (t−1)-wise
uniform ν supported on the satisfying assignments for P . Whenever the random CSP(P±)
instance has a P -constraint with a particular literal pattern, we impose the analogous ν-
constraint with equivalent negation pattern. Now the SOS-pseudodistribution Ẽ[·] promised
by Theorem 6 weakly satisfies all these ν-constraints, and hence satisfies all the P -constraints.
Furthermore, it also has Ẽ[xi] = bi ∈ {0, 1} for all i 6 U , and Ẽ[xi(1−xi+1)]+Ẽ[(1−xi)xi+1] =
1 for all pairs (i, i+ 1) = (U + 1, U + 2), . . . , (n− 1, n), by weak satisfaction. Notice that the
latter implies

Ẽ[(xi + xi+1 − 1)2] = 1− Ẽ[xi]− Ẽ[yi] + 2 Ẽ[xixi+1] = 0,

and hence the SOS solution satisfies xi + xi+1 = 1 with pseudovariance zero. Similarly (and
easier), it satisfies the identity xi = bi for all i 6 U . It now follows that the pseudodistribution
satisfies the identity

∑n
i=1 xi = n

2 + (|b| − U
2 ) with pseudovariance zero, and this completes

the proof of Theorem 1, because we can take any |b| ∈ {0, . . . , U}.

4 Exact Local Distributions on Composite Predicates

In this section and in Section 5 we will show how to satisfy the constraint OBJ(x) = β

exactly, with pseudovariance zero. Our strategy will be to group predicates together into
“composite” predicates, and then prove that there is a local (t− 1)-wise uniform distribution
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which is moreover supported on variable assignments for which an exact β-fraction of the
predicates within the composite predicate are satisfied. We’ll then apply Theorem 6 to the
composite predicates.

We begin with an easier proof for the case when there is a pairwise-uniform distribution
over satisfying assignments to our predicate in Section 4.1, and later in Section 4.2 we handle
t-wise uniform distributions for larger t. While the pairwise-uniform theorem is less general,
the proof is simpler and it already suffices for all of our bisection applications.

4.1 Pairwise-uniform distributions over β-satisfying assignments
Recall our setting: we have a Boolean k-ary predicate P : {±1}k → {0, 1} and a pairwise-
uniform distribution ν over assignments x ∈ {±1}k such that E[P (x)] = β. The following
theorem states that we can extend ν into a distribution θ over assignments to groups of r
predicates at a time, {±1}r×k so that exactly (β − ε) · r of the r predicates are satisfied by
any assignment y ∼ θ.

I Theorem 8. Let P : {±1}k → {0, 1} be a k-ary Boolean predicate, and let ν be a
pairwise-uniform distribution over assigments {±1}k with the property that ν(x) is rational
for each x ∈ {±}k; that is, there exist a multiset S ⊆ {±1}k such that for each x ∈ {±1}k,
ν(x) = Ps∼S(s = x). Suppose also that Ex∼ν [P (x)] = β, and that this is more than the
expectation under the uniform distribution, so β > Ex∼{±1}k [P (x)].

Then for any constant ε > 0, there exists an integer r = Oε,k(|S|3) and a rational ε̃ 6 ε

so that there is a pairwise-uniform distribution θ over assigments to groups of r predicates,
{±1}r×k such that exactly (β − ε̃)r of the predicates are satisfied by any assigment y ∼ θ.

Throughout we’ll refer to the assignments in the support of θ as matrices, with each row
of the r × k matrix corresponding to the assignment for a single copy of the predicate.

Since we have assumed that the probability of seeing any string in the support of ν is
rational, without loss of generality we can assume that ν is uniform over some multiset
S ⊆ {±1}k. As a first guess at θ, one might try to take r = c · |S| for some positive integer
c, make c copies of the multiset S, and use a random permutation of the elements of this
multiset to fill the rows of an r×k matrix. But this distribution is not quite pairwise uniform.
The issue is that because each individual bit is uniformly distributed, every column of the
matrix will always be perfectly balanced between ±1. Therefore the expected product of two
distinct bits in a given column is

1(
c|S|

2
) (( 1

2c|S|
2

)
(−1)2 +

( 1
2c|S|

2

)
(+1)2 +

(
1
2c|S|

)2
(+1)(−1)

)
= − 1

c|S| − 1 6= 0.

So, the bits within a particular column have a slight negative correlation.
We’ll compensate for this shortcoming as follows: we will randomly choose an element s

in the support of ν to repeat multiple times. This may in turn alter the number of predicates
satisfied out of the r copies of P , whereas our express goal was to satisfy the exact same
number of predicates under every assignment. To adjust for this, we’ll mix in some rows
from the uniform distribution over {±1}k, where the number of rows we mix in will depend
on whether P (s) = 1 or 0.

Proof. Let S be a multiset of strings in {±1}k such that Ps∼S(s = a) = ν(a). We will
also require a multiset T ⊆ {±1}k which is a well-chosen mixture of ν and the uniform
distribution; the following claim shows that we can choose such a set. Here, we take some
care in choosing this combination; the exact choice of parameters will not matter until later.
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I Claim 9. For any constant ε > 0, there is a constant L = O(1/ε) and a constant
R > 1 so that there are multisets S′, T ⊆ {±1}k with the following properties: S′ is RL2k
copies of S, T has size |T | = |S′| = LR2k|S|, and Px∼T [P (x) = 1] = β − ε′, where
ε > ε′

def= 1
L (β − Ex∼{±1}k [P (x)]).

Proof. Let s = |S|, and let U = {±1}k. Suppose that η2k of U ’s assignments satisfy P .
Define T to be the multiset given by 2k(L− 1)R copies of S and sR copies of U . We have

P
x∼T

[P (x) = 1] = 1
2kLRs

(
βs · 2k(L− 1)R+ η2k · sR

)
= β − β − η

L
.

By choosing L large as a function of ε, we can make this probability as small as we want. J

For convenience, let ` = 2kLR|S|. Set the number of rows r = d` for an integer d = Oε(`2)
to be specified later. We also let a, b1, b0, c1, c0 be integers which will specify the number of
rows from S′, T , and the repeated assignment set; we’ll set the integers later, but we will
require the property that

d = a+ b1 + c1 = a+ b0 + c0. (4.1)

We generate a sample from θ in the following fashion:
1. Sample s ∼ S, and fill the first a` rows with copies of s. Call these the A rows.
2. Set i = P (s), that is i = 1 if s satisfies P and i = 0 otherwise.
3. Fill the next bi` rows with bi copies of each string in S′. Call these the B rows.
4. Fill the last ci` rows with ci copies of each string in T . Call these the C rows.
5. Randomly permute the rows of the matrix.

If δ` assignments in T are satisfying and β` assignments in S′ are satisfying, to ensure that
the number of satisfying rows are always the same we enforce the constraint

a`+ b1β`+ c1δ` = b0β`+ c0δ`, (4.2)

Now we handle uniformity. We will prove that all of the degree-1 and degree-2 moments
of the bits in the matrix are uniform under θ. First, we argue that the degree-1 moments are
zero, and that the correlation of any two bits in the same row is zero.

I Claim 10. The bits in a single row of M are pairwise uniform.

Proof. We can condition on the row type, A,B, or C. For each type of row, there is a
multiset U such that E[Mij ] = Ex∼U [xj ] = 0 by the pairwise uniformity of the uniform
distribution over U . The same argument proves the statement for the product of two bits in
a fixed row. J

Thus, it suffices to prove that the bits in each column are pairwise-uniform; this is because
the pairwise uniformity of rows implies that we can fix the values of any entire column, and
the remaining individual bits in other columns will remain uniformly distributed. So we turn
to proving that the columns are pairwise-uniform.

I Claim 11. If we choose a, b0, b1, c0, c1 so that

a(`− 1)− β(b1 + c1)− (1− β)(b0 + c0) = 0,

then the bits in a single row of M are pairwise uniform.
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Proof. We’ll prove this by computing the expected product of two distinct bits, x and y,
which both come from the ith column of M . We will compute the conditional expectation of
xy given the group of rows that x, y were sampled from.

We first notice that conditioned on x coming from one type of row and y coming from
another, x and y are independent of each other, and by the uniformity of individual bits in
each group, E[xy | x, y ∼ different groups] = 0.

Restricting our attention now to pairs of bits from within the same group, we compute
the conditional expectations. If both bits come from the A rows, they are perfectly correlated.
On the other hand, if both bits come from the B or C rows their correlation is as we computed
above, − 1

b`−1 or − 1
c`−1 respectively. Therefore we can simplify

E[xy]
= β · E[xy | P (a) = 1] + (1− β) · E[xy | P (a) = 0]

= +β

((
a`
2

)(
d`
2

) + E[xy|x, y ∼ B,P (a) = 1] ·
(

b1`
2

)(
d`
2

) + E[xy|x, y ∼ C,P (a) = 1] ·
(

c1`
2

)(
d`
2

) )

+ (1− β)

((
a`
2

)(
d`
2

) + E[xy|x, y ∼ B,P (a) = 0] ·
(

b0`
2

)(
d`
2

) + E[xy|x, y ∼ C,P (a) = 0] ·
(

c0`
2

)(
d`
2

) )

= `

2
(

d`
2

)(a(a`− 1)− β(b1 + c1)− (1− β)(b0 + c0)
)
, (4.3)

where (4.3) gives us the condition of the claim. J

Finally, we are done given that we can find positive integers satisfying the constraints

d− a = b1 + c1 = b0 + c0 (from (4.1))
0 = a+ β(b1 − b0) + δ(c1 − c0) (from (4.2))
0 = a(`− 1)− β(b1 + c1)− (1− β)(b0 + c0) (from (4.3))

The following can be verified to satisfy the constraints above:

a := 2(β − δ)`; b1, c0 := ((β − δ)(`− 1)− 1)`;
b0, c1 := ((β − δ)(`− 1) + 1)`; d := 2(β − δ)`2.

By our choice of ` = 2k|S|LR and since β − δ = β−E[P (x)]
L , we can choose R large enough

so that (β − δ)(` − 1) > 1, and because β` and δ` are integers, these are all also positive
integers, as required.

We compute the number of satisfied assigments as a function of the total, which is

β
b0
d

+ δ
c0
d

= β − ε′

2 + 1
`

(
1 + ε′

2 − β
)
.

The conclusion thus holds, with ε̃ def= ε′

2 −
1
`

(
1+ε′

2 − β
)
. J

4.2 t− 1-wise uniform distributions over β-satisfying assignments
We now prove the generalization of the statement in the previous section to t-wise uniform
distributions over β-satisfying assignments.
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I Theorem 12. Let P : {±1}k → {0, 1} be a k-ary Boolean predicate, let t > 2 be an integer,
and let ν be a (t− 1)-wise uniform distribution over assigments {±1}k so that there exist a
multiset S ⊆ {±1}k such that for each x ∈ {±1}k, ν(x) = Ps∼S(s = x). Suppose also that
Ex∼ν [P (x)] = β > Ex∼{±1}k [P (x)].

Then for any constant ε > 0, there exists an integer r = Oε,k(|S|4) and a rational ε̃ 6 ε

so that there is a (t− 1)-wise uniform distribution θ over assigments to groups of r predicates,
{±1}r×k such that exactly (β − ε̃)r of the predicates are satisfied by any assigment y ∼ θ.

The proof will use a similar, though slightly more involved, construction of θ than in the
pairwise case. It may be helpful to note that the choice of t = 3 in Theorem 12 will not give
the same construction as in Theorem 8 (although of course one could set t = 3 and obtain a
result for pairwise-uniform ν). In particular, it will not be enough to choose one string to
repeat many times in order to improve the column-wise correlations. Instead, we will repair
the correlations in one column at a time, by sampling some subset of the bits in each column
from a bespoke distribution, designed to make the columns (t− 1)-wise independent. We will
have to be careful with the choice of distribution, so that we can still control the number of
satisfying assigmnets in M as a whole.

Proof. As in the proof of Theorem 8, we will require a well-chosen convex combination of ν
and the uniform distribution to ensure that the number of satisfying assingments is always
the same. We appeal to Claim 9, taking S′ and T to be as described there, with L = O(1/eps)
(to be set more precisely later) and R = 1. For convenience let’s let ` def= 2kL|S| and let’s let
δ = β − ε′.

We also call S′i=1 and S′i=−1 to be the sub-multisets of S′ which have the ith bit set to 1
and −1 respectively. We notice that a uniform sample from S′i=1 is equivalent to a uniform
sample from ν conditioned on the ith bit being 1. Also by the (t− 1)-wise uniformity we
have |S′i=1| = `/2. Notice that since S′ is made up of 2kL copies of S, the discrepancy in the
number of satisfying assignments between Si=1 and Si=−1 is always an integer multiple of
2kL.

Set r, the number of rows, be an integer which we will specify later. We also choose the
integer a to represent the size of the correction rows, and bn, cn, the number of copies of
S′ and T for each n ∈ [ak`/(2kL)] (where n2kL is the number of satisfying assignments in
the correction rows). To make sure the number of rows always adds up to r, we’ll need the
constraint,

r = ak`+ bn`+ cn` ∀z ∈ {±1}k (4.4)

In order to make sure that the columns are (t−1)-wise independent, we require a “column
repair” distribution κ over {±1}a`. We will specify this distribution later; for now, we need
only that κ is symmetric and that the number of 1s in any z ∼ κ is a multiple of `/2. The
latter property is because, when we choose some part of column i according to κ, we will
want to fix the rows with copies of Si=1 and Si=−1.

We generate a sample M ∈ {±1}r×k from θ in the following fashion:

1. For each i ∈ [k], independently sample a string zi ∼ κ. Add a` rows to M , where in the
ith column we put the bits of zi, and we set the remaining row bits so that if zi has
(a− a′)`/2 entries of value 1 and a′`/2 entries of value −1, then we end up with a′ copies
of S′i=−1 and a− a′ copies of S′i=1. Call these rows Ai.

2. Compute the integer n such that n · 2kL is the number of rows in ∪ki=1Ai containing
satisfying assignments to P , given our choices of zi ∀i ∈ [k].



P. Kothari, R. O’Donnell, and T. Schramm 49:15

3. Add bn` rows to M which contain bn copies of each string from S. Call these rows B.
4. Add cn` rows to M which contain cn copies of each string from T . Call these rows C.
5. Randomly permute the rows of M .

So that the number of satisfying assignments Λ is always the same, we require that

Λ = n2kL+ bn · β`+ cn · δ` ∀n ∈ [ak`/(2kL)] (4.5)

Now, we will derive the conditions under which (t − 1)-wise independence holds. As
above, we first consider bits that are all contained in a fixed row.

I Claim 13. The bits in a single row of M are (t− 1)-wise uniform.

Proof. We can condition on the row type, A1, . . . , Ak, B, or C. Sampling a uniform row
from B or C is equivalent to sampling from ν or γ, which are (t− 1)-wise uniform. Since κ
is symmetric, sampling a row from Ai is equivalent to sampling from ν as well, and we are
done. J

From the claim above, if we condition on the value in d < t− 2 columns, the remaining
t− 2− d columns will remain identically distributed; this is because the rows are (t− 1)-wise
uniform, so after conditioning the distribution in each row will remain (t − 1 − d)-wise
uniform. Thus, proving that each column is (t− 1)-wise uniform suffices to prove (t− 1)-wise
uniformity on the whole.

The following lemma states that we may in fact choose κ so that this condition holds
exactly.

I Lemma 14. Let y ∈ {±}r−a` be a perfectly balanced string. If a` > h1 ·
√
tr for a fixed

constant h1 and
√
r > (t − 1)`2h2t for a fixed constant h2, then there is a distribution κ

over {±1}a`, supported on strings which have a number of 1s which is a multiple of `/2,
such that if x is sampled by choosing z ∼ κ, concatenating z with y and applying a random
permutation, then for any S ⊂ [r] with |S| 6 t− 1, E[xS ] = 0.

Since each column is distributed as the string x described in the lemma statement, the lemma
suffices to give us (t− 1)-wise uniformity of the columns. We’ll prove the lemma below, but
first we conclude the proof of the theorem statement.

We now choose the parameters to satisfy our constraints. We have the requirements:

Λ = n2kL+ bnβ`+ cnδ` ∀n ∈ [ak`/(2kL)] (from (4.5))
r − ak` = bn`+ cn` ∀n ∈ [ak`/(2kL)] (from (4.4))

a` > h1
√
tr (from Lemma 14)

√
r > (t− 1)`2h2t (from Lemma 14)

where h1 and h2 are universal constants. The below choice of integer parameters satisfies
these requirements, as well as the requirement of always being non-negative:

u =
(
β − E

x∼{±1}k
[P (x)]

)
2k|S|; L = u ·max(1, dh1 + h2e) ·

⌈
1
ε

⌉
· k; ` = 2kL|S|;

a =
⌈
h12h2t/2tk

⌉
; r =

⌊
a2

h2
1t

⌋
· `2;

b0 = 1
2

(
1
`
r − ak

)
; bn+1 = bn −

2kL
u

;
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c0 = 1
2

(
1
`
r − ak

)
; cn+1 = cn + 2kL

u
.

Finally, we have that the fraction of satisfying rows in M is always exactly

Λ
r

=
1
2 (r − ak`)β + 1

2 (r − ak`) δ
r

= β − ε′

2 −O
(
ak`

r

)
.

The latter term is O( 1
` ), and we have chosen L large enough so that it is smaller than

ε′/2. J

Proof of Lemma 14. For convenience, call m def= r−a`. Recall that we take x to be sampled
by taking a balanced string y ∈ {±1}m, sampling z ∼ κ, appending z to y and then applying
a uniform permutation to the coordinates.

We will solve for κ with a linear program (LP) over the probability pz of each string
z ∈ {±1}a`. We have the program

∀S ∈ [m], |S| ∈ {1, . . . , t− 1} :
∑

z∈{±1}a`

(`/2)|
∑

j
zj

E

xS ∣∣∣∣ ∑
i

xi =
∑
j∈[a`]

zj

 · pz = 0

∀z ∈ {±1}a` s.t. `2

∣∣∣∣∑
j

zj : pz > 0

Since we can take any solution to this LP and scale the pz so that they sum to 1, the
feasibility of this program implies our conclusion. So suppose by way of contradiction that
this LP is infeasible. Then Farkas’ lemma implies that there exists a q ∈ Rt−1 such that

∀z ∈ {±1}a` s.t. `2

∣∣∣∣∑
j

zj ,
∑
S⊆[m]

|S|∈{1,...,t−1}

E

xS ∣∣∣∣ ∑
i

xi =
∑
j∈[a]

zj

 · ys > 0.

Without loss of generality, we scale q so that
∑
S q

2
S = 1. Moreover by the symmetry of the

expectation over subsets S, we can assume that qS = qT whenever |S| = |T |. This implies
that the degree-t mean-zero polynomial

q(x) =
∑
S⊆[m]

16|S|6t−1

qS · χS(x)

has positive expectation over every layer of the hypercube with |
∑
i xi| = d such that d 6 a`

and `
2 |d. Furthermore, q is a symmetric polynomial, which implies that it takes the same

value on all inputs of a fixed Hamming weight; this implies that it takes positive values on
every inputs x with |

∑
xi| ∈ [2a] · `2 .

The following fact will give us the contradiction we desire:

I Fact 15 (Tails of low-degree polynomials [6], see Theorem 4.1 in [1]). Let f : {0, 1}m → R
be a degree-t polynomial with mean zero and variance 1. Then, there exist universal constants
c1, c2 > 0 such that P[p 6 −2−c1t] > 2−c2t.

We will show that since q takes positive value on every hypercube slice of discrepancy
`
2 · [2a], this implies that it takes positive values on most hypercube slices with discrepancy
at most a`. Because we have chosen a` so that this comprises the bulk of the hypercube,
this in turn will contradict Fact 15.
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In fact, because q is symmetric and of degree t−1 over the hypercube, we can equivalently
write q as a degree-(t− 1) polynomial in the single variable x′ :=

∑
i xi, q(x) = g(

∑
i xi) =∑

s∈{0,...,t−1} gs · (
∑
i xi)

s. Viewing g as a univariate polynomial over the reals, g has at
most t− 1 roots. Therefore we conclude that q can only be non-positive on at most t− 1
intervals of layers of discrepancy (i`/2, (i+ 1)`/2). So for at least 2a`− (t− 1) `2 slices of the
hypercube around 0, q takes positve value.

Each slice of the hypercube has probability mass at most 1√
π
2 (m+a`)

. By our choice of
a, `,m and by a Chernoff bound,

P(q(x) > 0) > P

(∣∣∣∣∣∑
i

xi

∣∣∣∣∣ 6 a`

)
− (t− 1)`

2
√
m+ a`

> 1− 2−c2t,

which contradicts Fact 15. J

5 SOS lower bounds for CSPs with exact objective constraints

In this section we put things together and show how to extend Theorem 12 to prove Theorem 2.
As discussed briefly in Section 1.1, our random instance of the CSP (P±) will be sampled in
a somewhat non-standard way, which we will refer to as “batch-sampling.” This is because,
in order to apply Theorem 12 to a random instance Φ of a Boolean CSP, we need to partition
Φ’s constraints into groups of r non-intersecting constraints for some integer r, while also
maintaining the expansion properties required by Theorem 5.

We first prove Theorem 2 as stated, for random CSPs sampled from a slightly different
distribution. Then in Section 5.2 we show that for a “standard” random CSP withm = o(n3/2)
constraints, we can still get a theorem along the lines of Theorem 2.

5.1 Exact objective constraints for batch-sampled random CSPs
Suppose that P is a k-ary predicate, and let r be some positive integer which divides m.
We’ll “batch-sample” an n-variate random CSP (P±) with m clauses as follows:
1. Choose independently m/r subsets each of r · k distinct variables uniformly at random

from [n], S1, . . . , Sm
2. For each j ∈ [m/r], Sj = {xi1, . . . , xirk}:

Choose a random signing of P , zj ∈ {±1}k
To each block of k variables in Sj , (xi(`−1)·k+1 , . . . , xi`k) for ` ∈ [r], add the predicate
P with signing zj .

I Theorem 16 (Restatement of Theorem 2). Let P be a k-ary predicate, and let ν be a
(t− 1)-wise uniform distribution over {±1}k under which Eν [P ] = β. Then for each constant
ε > 0 there is a choice of positive integer r such that for a random instance of CSP (P±) on n
variables with m = ∆n constraints for sufficiently large ∆ and r|m, sampled as detailed above,
there is a degree-Ω( n

∆2/(t−2) log ∆ ) SOS pseudodistribution whch satisfies with pseudovariance
zero the constraint OBJ(x) = β − εr, where εr < ε. This is also true when cardinality
constraints are imposed as in Theorem 1.

Proof. This distribution over instances is equivalent to the standard notion of sampling a
random CSP with m/r constraints in the composite predicates from Theorem 12: a scope
is chosen independently and uniformly at random for each predicate. Therefore, if we
replace each collection of constraints corresponding to Sj with the composite predicate from
Theorem 12, and modify ν in accordance with the signing zj , we have a (t− 1)-wise uniform
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distribution over solutions to the composite predicates supported entirely on assignments
which satisfy exactly β − εr of the clauses. Combining this with the expansion theorem
(Theorem 6), we have our conclusion. J

5.2 Exact objective constraints for sparse random CSPs.
Though the batch-sampled distribution over CSPs for which Theorem 2 holds is slightly
non-standard, here we show that with minimal effort, we can prove a similar theorem for
sparse random instances sampled in the usual manner, when m = o(n3/2).

I Theorem 17. Let P be a k-ary predicate, let ν be a (t− 1)-wise uniform distribution over
{±1}k such that Eν [P ] = β, and suppose we sample a random instance Φ of a CSP (P±)
in the usual way, by selecting m random signed P -constraints on n variables. Then if
m = ∆n = o(n3/2) for sufficiently large ∆, with high probability over the choice of Φ, for
each ε > 0 there exists some constant εΦ 6 ε such that there is a degree-Ωε( n

∆2/(t−2) log ∆ )
pseudodistribution which satisfies with pseudovariance zero the constraint OBJ(x) = β − εΦ
and a Hamming weight constraint

∑
i∈[n] xi = B for |B| = O(

√
n).

Proof. Fix ε, and let r be the corresponding constant required to achieve objective OBJ(x) =
β − ε∗ under Theorem 12 for ε∗ < ε/2.

We first couple the standard sampling procedure for a random P -CSP to a different
sampling procedure. For simplicity we at first ignore the possible signings of P , and assume we
work only with un-negated variables; later we explain how to modify the proof to accomodate
negative literals.

We sample a random CSP by independently and uniformly choosing m random scopes
S1, . . . , Sm. For each ` ∈ {0, 1, . . . bm/rc − 1}, the probability that S`r+1, . . . , S(`+1)r have
non-intersecting scopes is at least

P[∩j∈[r]Sj = ∅] =
r∏
i=2

P[Si∩ (∩j<iSj) = ∅ | ∩j<i Sj = ∅] =
r∏
i=2

(
1− i k

n

)
> 1−O

(
r · k
n

)
.

So with high probability for all but O(mn ) of the intervals of constraints j ∈ [` · r+ 1, (`+ 1)r],
the constraints will be non-intersecting. Call this the “non-intersecting configuration”.

Define a “collision configuration” to be a choice of scopes for which the above condition
does not hold; that is, a specific way in which Sj intersects with one or more Sj′ when
j, j′ ∈ [` · r + 1, (`+ 1)r]. Each of the ≈

(2kr
r

)
collision configurations has a fixed probability

of ocurring (which may be easily calculated), and the total sum of these probabilities is at
most O(r · k/n).

Let D(m)
r be the multinomial distribution which describes the number of occurrences of

each configuration for a random CSP with m constraints (bm/rc configurations). We couple
the standard sampling procedure with the following alternative sampling procedure: we first
sample c ∼ D(m)

r to determine how many configurations of each type there are. Then, for
each collision configuration specified by c, sample the scope (of size < k · r) for each of the
collision configurations independently and uniformly at random. Also, sample and additional
(m mod r) scopes of k variables for the “leftover copies” of P . Finally, sample the scopes of
the non-intersecting configurations specified by c independently uniformly at random. The
coupling of the two processes is immediate.

Let C be the number of collision configurations plus (m mod r), the number of leftover
copies. As shown above, with high probability over c ∼ S(m)

r , the number of collision
configurations is at most O(m/n) = o(n1/2), so C = o(n1/2) = o(m).
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From our alternate sampling procedure, we conclude that with high probability we can
meet the conditions of Theorem 6 by fixing an arbitrary variable assignment to any collision
configuration. That is, we could alternately first sample the collision configurations and
leftover copies, and then set all of the variables present inside be set to (say) False. We
take note of how many constraints in the P -CSP are and are not satisfied by this unary
assignment, and we correspondingly amend ε∗ to εΦ. Since with high probability at most
o(m) constraints are fixed, we retain the property that εΦ 6 ε∗ + o(1) 6 ε.

Now, if we wish to satisfy a Hamming weight constraint, we add arbitrary matching and
unary constraints to get the desired Hamming weight; at most O(C) unary constraints are
needed to compensate for the 6 Ckr variables we set to False.

Finally, we sample the remaining non-intersecting configurations independently; by
Theorem 6 when C = o(n1/2), the expansion properties we require are met for the composite
predicates on the non-intersecting configurations. Since this occurs with high probability, we
are done.

To extend the argument to allow predicates on negative literals, we couple with a slightly
more elaborate sampling procedure: for each signing pattern z ∈ {±1}k, we draw a separate
set of mz predicates (where mz may either be deterministic or sampled from a multinomial
distribution). For each signing separately we repeat the argument above, and then in the
final sampling procedure we sample counts cz for each signing z, add the leftover copies
and collision configurations separately for each signing, add the unary constraints, and then
sample the remaining non-intersecting copies. J

6 Conclusions

In this work we have shown that, in the context of random Boolean CSPs, the following
strategies do not give SOS any additional refutation power: (i) trying out all possible
Hamming weights for the solution; (ii) trying out all possible (exact) values for the objective
function. We also gave the first known SOS lower bounds for the Min- and Max-Bisection
problems.

We end by mentioning some open directions. There are two technical challenges arising
in our work that look approachable. The first is to extend our results from Section 4 on
“exactifying” distributions to the case of larger alphabets. The second is to prove (or disprove)
that the “random*” and “purely random” distributions discussed in Remark 1.1 are o(1)-close
(depending on m(n)).

Finally, we suggest investigating further strategies for handling hard constraints in the
context of SOS lower bounds. Sometimes this is not too difficult, especially when reducing
from linear predicates such as 3XOR, where there are perfectly satisfying SOS solutions.
Other times, it’s of moderate difficulty, perhaps as in this paper’s main Theorem 1 and
Theorem 2. In still other cases it appears to be very challenging.

One difficult case seems to be in the context of SOS lower bounds for refuting the existence
of large cliques in random graphs. In [4] it is shown that in a G(n, 1/2) random graph, with
high probability degree-Ω(logn) SOS thinks there is a clique of size ω := n1/2−ε. (Here ε > 0
can be any constant.) However, it’s merely the case that Ẽ[clique size] > ω, and it is far
from clear how to upgrade the SOS solution so as to actually satisfy the constraint “clique
size = ω” with pseudovariance zero. Besides being an improvement for its own sake, it would
be very desirable to have such an SOS solution for the purposes of further reductions; for
example, it would greatly simplify the recent proofs of SOS lower bounds for approximate
Nash welfare in [15]. It also seems it might be useful for tackling SOS lower bounds for
coloring and stochastic block models.
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Finally, we leave as open one more “hard constraint” challenge that arises even in
the simple context of random 3XOR or 3SAT. Suppose one tried to refute random m-
constraint 3XOR instances by trying to refute the following statement for all quadruples
(k001, k010, k100, k111) that sum to m:

“exactly ka constraints are satisfied with assignment a”, for each a ∈ {001, 010, 100, 111}.

As far as we know, constant-degree SOS may succeed with this strategy when m = O(n). It
is natural to believe that there is (whp) an Ω(n)-degree SOS pseudodistribution that satisfies
all of the above constraints with pseudovariance zero when k001 = k010 = k100 = k111 = m/4,
but we do not know how to construct one.
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Abstract
In this paper we introduce the semi-online model that generalizes the classical online computa-
tional model. The semi-online model postulates that the unknown future has a predictable part
and an adversarial part; these parts can be arbitrarily interleaved. An algorithm in this model
operates as in the standard online model, i.e., makes an irrevocable decision at each step.

We consider bipartite matching in the semi-online model. Our main contributions are com-
petitive algorithms for this problem and a near-matching hardness bound. The competitive ratio
of the algorithms nicely interpolates between the truly offline setting (i.e., no adversarial part)
and the truly online setting (i.e., no predictable part).
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1 Introduction

Modeling future uncertainty in data while ensuring that the model remains both realistic
and tractable has been a formidable challenge facing the algorithms research community.
One of the more popular, and reasonably realistic, such models is the online computational
model. In its classical formulation, data arrives one at a time and upon each arrival, the
algorithm has to make an irrevocable decision agnostic of future arrivals. Online algorithms
boast a rich literature and problems such as caching, scheduling and matching, each of which
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abstracts common practical scenarios, have been extensively investigated [4, 20]. Competitive
analysis, which measures how well an online algorithm performs compared to the best offline
algorithm that knows the future, has been a linchpin in the study of online algorithms.

While online algorithms capture some aspect of the future uncertainty in the data, the
notion of competitive ratio is inherently worst-case and hence the quantitative guarantees it
offers are often needlessly pessimistic. A natural question that then arises is : how can we
avoid modeling the worst-case scenario in online algorithms? Is there a principled way to
incorporate some knowledge we have about the future? There have been a few efforts trying
to address this point from different angles. One line of attack has been to consider oracles that
offer some advice on the future; such oracles, for instance, could be based on machine-learning
methods. This model has been recently used to improve the performance of online algorithms
for reserve price optimization, caching, ski-rental, and scheduling [19, 16, 14]. Another line of
attack posits a distribution on the data [5, 17, 21] or the arrival model; for instance, random
arrival models have been popular in online bipartite matching and are known to beat the
worst-case bounds [10, 18]. A different approach is to assume a distribution on future inputs;
the field of stochastic online optimization focuses on this setting [8]. The advice complexity
model, where the partial information about the future is quantified as advice bits to an
online algorithm, has been studied as well in complexity theory [3].

In this work we take a different route. At a very high level, the idea is to tease the future
data apart into a predictable subset and the remaining adversarial subset. As the names
connote, the algorithm can be assumed to know everything about the former but nothing
about the latter. Furthermore, the predictable and adversarial subsets can arrive arbitrarily
interleaved yet the algorithm still has to operate as in the classical online model, i.e., make
irrevocable decisions upon each arrival. Our model thus offers a natural interpolation
between the traditional offline and online models; we call ours the semi-online model. Our
goal is to study algorithms in the semi-online model and to analyze their competitive
ratios; unsurprisingly, the bounds depend on the size of the adversarial subset. Ideally, the
competitive ratio should approach the offline optimum bounds if the adversarial fraction
is vanishing and should approach the online optimum bounds if the predictable fraction is
vanishing.

Bipartite matching. As a concrete problem in the semi-online setting, we focus on bipartite
matching. In the well-known online version of the problem, which is motivated by online
advertising, there is a bipartite graph with an offline side that is known in advance and
an online side that is revealed one node at a time together with its incident edges. In the
semi-online model, the nodes in the online side are partitioned into a predicted set of size
n − d and an adversarial set of size d. The algorithm knows the incident edges of all the
nodes in the former but nothing about the nodes in the latter. We can thus also interpret
the setting as online matching with partial information and predictable uncertainty (pardon
the oxymoron). In online advertising applications, there are many predictably unpredictable
events. For example, during the soccer world cup games, we know the nature of web traffic
will be unpredictable but nothing more, since the actual characteristics will depend on how
the game progresses and which team wins.

We also consider a variant of semi-online matching in which the algorithm does not know
which nodes are predictable and which are adversarial. In other words, the algorithm receives
a prediction for all online nodes, but the predictions are correct only for some n− d of them.
We call this the agnostic case.
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Main results. In this paper, we assume that the optimum solution on the bipartite graph,
formed by the offline nodes on one side and by the predicted and adversarial nodes on the
other, is a perfect matching1. We present two algorithms and a hardness result for the
semi-online bipartite matching problem. Let δ = d/n be the fraction of adversarial nodes.
The Iterative Sampling algorithm, described in Section 3, obtains a competitive ratio of
(1 − δ + δ2

2 (1 − 1/e))2. This algorithm “reserves” a set of offline nodes to be matched to
the adversarial nodes by repeatedly selecting a random offline node that is unnecessary for
matching the predictable nodes. It is easy to see that algorithms that deterministically
reserve a set of offline nodes can easily be thwarted by the adversary.

The second algorithm, described in Section 4, achieves an improved competitive ratio
of (1 − δ + δ2(1 − 1/e)). This algorithm samples a maximum matching in the predicted
graph by first finding a matching skeleton [7, 15] and then sampling a matching from each
component in the skeleton using the dependent rounding scheme of [6]. This allows us to
sample a set of offline nodes that, in expectation, has a large overlap with the set matched
to adversarial nodes in the optimal solution. Surprisingly, in Section 5, we show that it is
possible to sample from arbitrary set systems so that the same “large overlap” property is
maintained. We prove the existence of such distributions using LP duality and believe that
this result may be of independent interest.

To complement the algorithms, in Section 6 we obtain a hardness result showing that
the above competitive ratios are near-optimal. In particular, no randomized algorithm can
achieve a competitive ratio better than (1 − δe−δ) ≈ (1 − δ + δ2 − δ3/2 + . . .). Note that
this expression coincides with the best offline bound (i.e, 1) and the best online bound (i.e.,
1 − 1/e) at the extremes of δ = 0 and δ = 1, respectively. We conjecture this to be the
optimal bound for the problem.

Extensions. In Section 7, we explore variants of the semi-online matching model, including
the agnostic version and fractional matchings, and present upper and lower bounds in those
settings. To illustrate the generality of our semi-online model, we consider a semi-online
version of the classical ski rental problem. In this version, the skier knows whether or not
she’ll ski on certain days while other days are uncertain. Interestingly, there is an algorithm
with a competitive ratio of the same form as our hardness result for matchings, namely
1− (1− x)e−(1−x), where (1− x) is a parameter analogous to δ in the matching problem.
We wonder if this form plays a role in semi-online algorithms similar to what (1− 1/e) has
in many online algorithms [11].

Other related work. The use of (machine learned) predictions for revenue optimization
problems was first proposed in [19]. The concepts were formalized further and applied to
online caching in [16] and ski rental and non-clairvoyant scheduling in [14]. Online matching
with forecasts was first studied in [22]; however, that paper is on forecasting the demands
rather than the structure of the graph as in our case. The problem of online matching when
edges arrive in batches was considered in [15] where a (1/2 + 2−O(s))-competitive ratio is
shown, with s the number of stages. However, the batch framework differs from ours in that
in our case, the nodes arrive one at a time and are arbitrarily interleaved.

1 Our techniques extend to the case without a perfect matching; we defer the proof of the general case to
the full version of the paper.

2 Observe that an algorithm that ignores all the adversarial nodes and outputs a maximum matching in
the predicted graph achieves a competitive ratio of only 1 − δ.
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There has been a lot of work on online bipartite matching and its variants. The RANKING
algorithm [13] selects a random permutation of the offline nodes and then matches each online
node to its unmatched neighbor that appears earliest in the permutation. It is well-known to
obtain a competitive ratio of (1− 1/e), which is best possible. For a history of the problem
and significant advances, see the monograph [20]. The ski rental problem has also been
extensively studied; the optimal randomized algorithm has ratio e/(e− 1) [12]. The term
“semi-online” has been used in scheduling when an online scheduler knows the sum of the
jobs’ processing times (e.g., see [1]) and in online bin-packing when a lookahead of the next
few elements is available (e.g., see [2]); our use of the term is more quantitative in nature.

2 Model

We now formally define the semi-online bipartite matching problem. We have a bipartite
graph G = (U, V,EG) where U is the set of nodes available offline and nodes in V arrive online.
Further, the online set V is partitioned into the predicted nodes VP and the adversarial nodes
VA. The predicted graph H = (U, VP , EH) is the subgraph of G induced on the nodes in U
and VP . Initially, an algorithm only knows H and is unaware of edges between U and VA.
The algorithm is allowed to preprocess H before any online node actually arrives. In the
online phase, at each step, one node of V is revealed with its incident edges, and has to be
either irrevocably matched to some node in U or abandoned. Nodes of V are revealed in an
arbitrary order3 and the process continues until all of V has been revealed.

We note that when a node v ∈ V is revealed, the algorithm can “recognize” it by its
edges, i.e., if there is some node v′ ∈ VP that has the same set of neighbors as v and has not
been seen before, then v can be assumed to be v′. There could be multiple identical nodes in
VP , but it is not important to distinguish between them. If an online node comes that is not
in VP , then the algorithm can safely assume that it is from VA. (In Section 7, we consider a
model where the predicted graph can have errors and hence this assumption is invalid.)

We introduce a quantity δ to measure the level of knowledge that the algorithm has about
the input graph G. Competitive ratios that we obtain are functions of δ. For any graph I,
let ν(I) denote the size of the maximum matching in I. Then we define δ = δ(G) = 1− ν(H)

ν(G) .
Intuitively, the closer δ is to 0, the more information the predicted graph H contains and
the closer the instance is to an offline problem. Conversely, δ close to 1 indicates an instance
close to the pure online setting. Note that the algorithm does not necessarily know δ, but
we use it in the analysis to bound the competitive ratio. For convenience, in this paper
we assume that the input graph G contains a perfect matching. Let n = |U | = |V | be the
number of nodes on each side and d = |VA| be the number of adversarial online nodes. In this
case, δ simplifies to be the fraction of online nodes that are adversarial, i.e., δ = |VA|

|V | = d
n .

3 Iterative Sampling Algorithm

In this section we give a simple polynomial time algorithm for bipartite matching in the
semi-online model. We describe the algorithm in two phases: a preprocessing phase that
finds a maximum matching M in the predicted graph H and an online phase that processes
each node upon its arrival to find a matching in G that extends M .

3 The arrival order can be adversarial, including interleaving the nodes in VP and VA.
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Algorithm 1: Iterative Sampling: Preprocessing Phase.
Function: Preprocess(H):

Data: Predicted graph H
Result: Maximum matching in H, a sequence of nodes from U

Let H0 ← H,U0 ← U ;
for i = 1, 2, . . . , d do

Ui ← {u ∈ Ui−1 | ν(Hi−1 \ {u}) = n− d} ; /* Set of nodes whose
removal does not change the size of the maximum matching. */
Let ui be a uniformly random node in Ui;
Hi ← Hi−1 \ {ui};

M ← Arbitrary maximum matching in Hd;
R← Uniformly random permutation of {u1, . . . , ud};
return M, R

Algorithm 2: Online Phase.

M,R← Preprocess(H);
for v ∈ V arriving online do

if v ∈ VP then /* predicted node */
Match v to M(v);

else /* adversarial node */
Match v to the first unmatched neighbor in R, if one exists; /* RANKING */

Preprocessing Phase

The goal of the preprocessing phase is to find a maximum matching in the predicted graph
H. However, if we deterministically choose a matching, the adversary can set up the
neighborhoods of VA so that all the neighbors of VA are used in the chosen matching, and
hence the algorithm is unable to match any node from VA. Algorithm 1 describes our
algorithm to sample a (non-uniform) random maximum matching from H.

Online Phase

In the online phase nodes from V arrive one at a time and we are required to maintain a
matching such that the online nodes are either matched irrevocably or dropped. In this
phase, we match the nodes in VP as per the matching M obtained from the preprocessing
phase, i.e., we match v ∈ VP to node M(v) ∈ U where M(v) denotes the node matched to v
by matching M . The adversarial nodes in VA are matched to nodes in R that are not used
by M using the RANKING algorithm [13]. Algorithm 2 describes the complete online phase
of our algorithm.

Analysis

For the sake of analysis, we construct a sequence of matchings {M∗i }di=0 as follows. Let
M∗0 be an arbitrary perfect matching in G. For i ≥ 1, by definition of Ui, there exists a
matching M ′i in Hi of size n− d that does not match node ui. Hence, M ′i ∪M∗i−1 is a union
of disjoint paths and cycles such that ui is an endpoint of a path Pi. Let M∗i = M∗i−1 ⊕ Pi,

ITCS 2019
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i.e. obtain M∗i from M∗i−1 by adding and removing alternate edges from Pi. It’s easy to
verify that M∗i is indeed a matching and |M∗i | ≥ |M∗i−1| − 1. Since |M∗0 | = n, this yields
|M∗i | ≥ n − i, ∀ 0 ≤ i ≤ d. Further, by construction, M∗i does not match any nodes in
{u1, . . . , ui}.

I Lemma 1. For all 0 ≤ i ≤ d, all nodes v ∈ VP are matched by M∗i . Further, |M∗i (VA)| ≥
d− i, i.e. at least d− i adversarial nodes are matched by M∗i .

Proof. We prove the claim by induction. Since M∗0 is a perfect matching, the base case
is trivially true. By the induction hypothesis, we assume that M∗i−1 matches all of VP .
Recall that M ′i also matches all of VP and M∗i = M∗i−1 ⊕ Pi where Pi is a maximal path
in M ′i ∪ M∗i−1. Since each node v ∈ VP has degree 2 in M ′i ∪ M∗i−1, v cannot be an
end point of Pi. Hence, all nodes v ∈ VP remain matched in M∗i . Further, we have
|M∗i (VA)| = |M∗i | − |M∗i (VP )| ≥ (n− i)− (n− d) = d− i as desired. J

Equipped with the sequence of matchings M∗i , we are now ready to prove that, in
expectation, a large matching exists between the set R of nodes left unmatched by the
preprocessing phase and the set VA of adversarial nodes.

I Lemma 2. E[ν(G[R∪VA])] ≥ d2/(2n) where G[R∪VA] is the graph induced by the reserved
vertices R and the adversarial vertices VA.

Proof. We construct a sequence of sets of edges {Ni}di=0 as follows. Let N0 = ∅. If
M∗i−1(ui) ∈ VA, let ei = {ui,M∗i−1(ui)} be the edge of M∗i−1 incident with ui and let
Ni = Ni−1 ∪ {ei}. Otherwise, let Ni = Ni−1. In other words, if the node ui chosen during
the ith step is matched to an adversarial node by the matching M∗i−1, add the matched edge
to set Ni.

We show by induction that Ni is a matching for all i ≥ 0. N0 is clearly a matching.
When i > 0, either Ni = Ni−1 (in which case we are done by the inductive hypothesis), or
Ni = Ni−1 ∪ {ei}. Let ei = (ui, vi) and consider any other edge ej = (uj , vj) ∈ Ni−1. Since
uj /∈ Hi−1, we have uj 6= ui. By definition, node vi is matched in M∗i−1. By construction,
this implies that vi must be matched in all previous matchings in this sequence, in particular,
vi must be matched in M∗j (since a node v ∈ VA that is unmatched in M∗k−1 can never be
matched by M∗k ). However, since vj = M∗j−1(uj), the matching M∗j = M∗j−1 \{ej} and hence
vj is not matched in M∗j . Hence vi 6= vj . Thus we have shown that ei does not share an
endpoint with any ej ∈ Ni−1 and hence Ni is a matching.

By linearity of expectation we have the following.

E[|Ni|] = E[|Ni−1|] + Pr
ui

[M∗i−1(ui) ∈ VA]

However, by Lemma 1, since M∗i−1 matches all of VP , we must have M∗i−1(VA) ⊆ Ui. Hence,

E[|Ni|] ≥ E[|Ni−1|] +
|M∗i−1(VA)|
|Ui|

≥ E[|Ni−1|] + d− (i− 1)
n

Solving the recurrence with |N0| = 0 gives

E[|Nd|] ≥
d∑
i=1

i

n
≥ d(d+ 1)

2n

The lemma follows since Nd is a matching in G[R ∪ VA]. J
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I Theorem 3. There is a randomized algorithm for the semi-online bipartite matching
problem with a competitive ratio of at least (1− δ + (δ2/2)(1− 1/e)) in expectation.

Proof. Algorithm 1 guarantees that the matching M found in the preprocessing phase
matches all predicted nodes and has size n− d = n(1− δ). Further, in the online phase, we
use the RANKING [13] algorithm on the graph G[R ∪ VA]. Since RANKING is (1− 1/e)-
competitive, the expected number of adversarial nodes matched is at least (1− 1/e)ν(G[R ∪
VA]). By Lemma 2, this is at least (1− 1/e)( d

2

2n ) = (δ2n/2)(1− 1/e).
Therefore, the total matching has expected size n(1− δ+ (δ2/2)(1− 1/e)) as desired. J

Using a more sophisticated analysis, we can show that the iterative sampling algorithm
yields a tighter bound of (1− δ + δ2/2− δ3/2). However we omit the proof because the next
section presents an algorithm with an even better guarantee.

4 Structured Sampling

In this section we give a polynomial time algorithm for the semi-online bipartite matching
that yields an improved competitive ratio of (1− δ + δ2(1− 1/e)). We first discuss the main
ideas in Section 4.1 and then describe the algorithm and its analysis in Section 4.2.

I Theorem 4. There is a randomized algorithm for the semi-online bipartite matching
problem with a competitive ratio of at least (1− δ + δ2(1− 1/e)) in expectation.

4.1 Main Ideas and Intuition
As with the iterative sampling algorithm, we randomly choose a matching of size n − d
(according to some distribution), and define the reserved set R to be the set of offline nodes
that are not matched. As online nodes arrive, we follow the matching for the predicted nodes;
for adversarial nodes, we run the RANKING algorithm on the reserved set R.

Let M∗ be a perfect matching in G. For a set of nodes S, let M∗(S) denote the set
of nodes matched to them by M∗. Call a node u ∈ U marked if it is in M∗(VA), i.e., it
is matched to an adversarial node by the optimal solution. We argue that the number of
marked nodes in the set R chosen by our algorithm is at least d2/n in expectation. Since
RANKING finds a matching of at least a factor (1− 1/e) of optimum in expectation, this
means that we find a matching of size at least d2/n · (1 − 1/e) on the reserved nodes in
expectation. Combining this with the matching of size n− d on the predicted nodes, this
gives a total of n− d+ d2/n · (1− 1/e) = n(1− δ + δ2(1− 1/e)).

The crux of the proof lies in showing that R contains many marked nodes. Ideally, we
would like to choose a random matching of size n− d in such a way that each node of U has
probability d/n of being in R. Since there are d marked nodes total, R would contain d2/n

of them in expectation. However, such a distribution over matchings does not always exist.
Instead, we use a graph decomposition to guide the sampling process. The marginal

probabilities for nodes of U to be in R may differ, but nevertheless R gets the correct total
number of marked nodes in expectation. H is decomposed into bipartite pairs (Si, Ti), with
|Si| ≤ |Ti|, so that the sets Si partition VP and the sets Ti partition U . This decomposition
allows one to choose a random matching between Si and Ti of size |Si| so that each node in Ti
is reserved with the same probability. Letting ni = |Ti| and di = |Ti| − |Si|, this probability
is precisely di/ni. Finally, we argue that the adversary can do no better than to mark di
nodes in Ti, for each i. Hence, the expected number of nodes in R that are marked is at least∑
i(d2

i /ni), which we lower bound by d2/n.

ITCS 2019
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4.2 Proof of Theorem 4
We decompose the graph H into more structured pieces using a construction from [7] and
utilize the key observation that the decomposition implies a fractional matching. Recall that
a fractional matching is a function f that assigns a value in [0, 1] to each edge in a graph,
with the property that

∑
e3v f(e) ≤ 1 for all nodes v. The quantity

∑
e3v f(e) is referred to

as the fractional degree of v. We use Γ(S) to denote the set of neighbors of nodes in S.

I Lemma 5 (Restatement of Lemma 2 from [15]). Given a bipartite graph H = (U, VP , EH)
with |U | ≥ |VP | and a maximum matching of size |VP |, there exists a partition of VP into sets
S0, . . . , Sm and a partition of U into sets T0, . . . , Tm for some m such that the following
holds:

Γ(
⋃
i<j Si) =

⋃
i<j Ti for all j.

For all i < j, |Si||Ti| >
|Sj |
|Tj | .

There is a fractional matching in H of size |VP |, where for all i, the fractional degree
of each node in Si is 1 and the fractional degree of each node in Ti is |Si|/|Ti|. In this
matching, nodes in Si are only matched with nodes in Ti and vice versa.

Further, the (Si, Ti) pairs can be found in polynomial time.

In [7] and [15], the sets in the decomposition with |Si| < |Ti| are indexed with positive
integers i > 0, the sets with |S0| = |T0| get an index of 0, and the ones with |Si| > |Ti| get
negative indices i < 0. Under our assumption that H supports a matching that matches all
nodes of VP , the decomposition does not contain sets with |Si| > |Ti|, as the first such set
would have |Si| > |Γ(Si)|, violating Hall’s theorem. So we start the indices from 0.

Equipped with this decomposition, we choose a random matching between Si and Ti
such that each node in Ti is reserved4 with the same probability. Since each (Si, Ti) pair
has a fractional matching, the dependent randomized rounding scheme of [6] allows us to do
exactly that.

I Lemma 6. Fix an index i and let Si, Ti be defined as in Lemma 5. Then there is a
distribution over matchings with size |Si| between Si and Ti such that for all u ∈ Ti, the
probability that the matching contains u is |Si|/|Ti|.

Proof. Given any bipartite graph G′ and a fractional matching over G′, the dependent
rounding scheme of Gandhi et. al. [6] yields an integral matching such that the probability
that any node v ∈ G′ is matched exactly equals its fractional degree. Since Lemma 5
guarantees a fractional matching such that the fractional degree of each node in Si is 1 and
the fractional degree of each node in Ti is |Si|/|Ti|, the lemma follows. J

We are now ready to complete the description of our algorithm. Algorithm 3 is the
preprocessing phase, while the online phase remains the same as earlier (Algorithm 2). In
the preprocessing phase, we find a decomposition of the predicted graph H, and sample a
matching using Lemma 6 for each component in the decomposition. In the online phase, we
match all predicted online nodes using the sampled matching and use RANKING to match
the adversarial online nodes.

Let ni = |Ti| and di = |Ti| − |Si|, and let Ri = R ∩ Ti be the set of reserved nodes in Ti.
Then Lemma 6 says that each node in Ti lands in Ri with probability di/ni (although not
independently). We now argue in Lemmas 7 and 8 that the adversary can do no better than
to choose di marked nodes in each Ti.

4 Recall that we say a node u is reserved by an algorithm if u is not matched in the predicted graph H.



R. Kumar, M. Purohit, A. Schild, Z. Svitkina, and E. Vee 50:9

Algorithm 3: Structured Sampling: Preprocessing Phase.
Function: Preprocess(H):

Data: Predicted graph H
Result: Maximum matching in H, sequence of nodes from U

Decompose H into {(Si, Ti)}mi=0 pairs using Lemma 5.
Mi ← Random matching between Si and Ti using Lemma 6
M ←

⋃
i

Mi

Let Rset ⊆ U be the set of nodes unmatched by M
R← Uniformly random permutation of Rset
return M, R

I Lemma 7. Let `i = |M∗(VA) ∩ Ti|. That is, let `i be the number of marked nodes in Ti.
Then for all t ≥ 0,∑

i≤t

`i ≤
∑
i≤t

di

Proof. Fix t ≤ m, and let U ′ = U −
⋃
i≤t Ti. Since there is a perfect matching in the realized

graph G, Hall’s Theorem guarantees that there must be at least |U ′| − |ΓH(U ′)| marked
nodes in U ′ where ΓH(U ′) denotes the set of neighbors of U ′ in the predicted graph H. That
is, ∑

i>t

`i ≥ |U ′| − |ΓH(U ′)|

But Lemma 5 tells us that Γ(
⋃
i≤t Si) =

⋃
i≤t Ti, hence there is no edge between U ′ and⋃

i≤t Si. That is, ΓH(U ′) ⊆ VP −
⋃
i≤t Si. Hence,

|ΓH(U ′)| ≤ |VP | −
∑
i≤t

|Si| = n− d−
∑
i≤t

(ni − di)

Further, |U ′| = |U | − |
⋃
i≤t Ti| = n−

∑
i≤t ni. Putting this together,∑

i>t

`i ≥ |U ′| − |ΓH(U ′)|

≥ n−
∑
i≤t

ni −
(
n− d−

∑
i≤t

(ni − di)
)

= d−
∑
i≤t

di

Recalling that
∑
i≤m `i = d, we see that

∑
i≤t `i = d−

∑
i>t `i ≤

∑
i≤t di, as desired. J

I Lemma 8. Let 0 < a0 ≤ a1 ≤ . . . ≤ am be a non-decreasing sequence of positive numbers,
and `0, . . . , `m and k0, . . . , km be non-negative integers, such that

∑m
i=0 `i =

∑m
i=0 ki and for

all t ≤ m,
∑
i≤t `i ≤

∑
i≤t ki. Then

m∑
i=0

`iai ≥
m∑
i=0

kiai.
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Proof. We claim that for any fixed sequence k0, . . . , km, the minimum of the left-hand
side (

∑
i `iai) is attained when `i = ki for all i. Suppose for contradiction that {`i} is the

lexicographically-largest minimum-attaining assignment that is not equal to {ki} and let j
be the smallest index with `j 6= kj . It must be that `j < kj to satisfy

∑
i≤j `i ≤

∑
i≤j ki.

Also,
∑m
i=0 `i =

∑m
i=0 ki implies that j < m and that there must be an index j′ > j such

that `j′ > kj′ . Let j′ be the lowest such index.
Let `′i = `i for all i /∈ {j, j′}. Set `′j = `j + 1 and `′j′ = `j′ − 1. Notice that we still have∑
i≤t `

′
i ≤

∑
i≤t ki for all t and

∑m
i=0 `

′
i =

∑m
i=0 ki, and {`′i} is lexicographically larger than

{`i}. In addition,∑
i

`′iai =
∑
i

`iai + aj − aj′ ≤
∑
i

`iai,

which is a contradiction. J

We need one last technical observation before the proof of the main result.

I Lemma 9. Let di, ni be positive numbers with
∑
i di = d and

∑
i ni = n. Then∑

i

d2
i

ni
≥ d2

n

Proof. We invoke Cauchy-Schwartz, with vectors u and v defined by ui = di√
ni

and vi = √ni.
Since ||u||2 ≥ |u · v|2/||v||2, the result follows. J

I Theorem 10. Choose reserved set R according to Algorithm 2. Then the expected number
of marked nodes in R is at least δ2n. That is, |R ∩M∗(VA)| ≥ δ2n in expectation.

Proof. As in Lemma 7, let `i = |M∗(VA) ∩ Ti|. Again, we have
∑
i≤t `i ≤

∑
i≤t di for all

t and
∑
i≤m `i = d =

∑
i≤m di. For each i, the node u ∈ Ti is chosen to be in R with

probability di/ni, with the di/ni forming an increasing sequence. So the expected size of
|R ∩M∗(VA)| is given by∑

i

di
ni
`i ≥

∑
i

di
ni
di by Lemma 8

≥ d2

n
by Lemma 9

Since δ = d/n, the theorem follows. J

Proof of Theorem 4. The size of the matching, restricted to non-adversarial nodes, is∑
i(ni − di) = n− d = n− δn. Further, by Theorem 10, we have reserved at least δ2n nodes

that can be matched to the adversarial nodes. RANKING will match at least a (1− 1/e)
fraction of these in expectation. So in expectation, the total matching has size at least
n− δn+ δ2n(1− 1/e) = n(1− δ + δ2(1− 1/e)) as desired. J

5 Sampling From Arbitrary Set Systems

In Section 4, we used graph decomposition to sample a matching in the predicted graph such
that, in expectation, there is a large overlap between the set of reserved (unmatched) nodes
and the unknown set of marked nodes chosen by the adversary. In this section we prove the
existence of probability distributions on sets, with this “large overlap” property, in settings
more general than just bipartite graphs.
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Let U be a universe of n elements and let S denote a family of subsets of U with equal
sizes, i.e., |S| = d,∀S ∈ S. Suppose an adversary chooses a set T ∈ S, which is unknown to
us. Our goal is to find a probability distribution over S such that the expected intersection
size of T and a set sampled from this distribution is maximized. We prove in Theorem 11
that for any such set system, one can always guarantee that the expected intersection size is
at least d2

n .
The connection to matchings is as follows. Let U , the set of offline nodes in the matching

problem, also be the universe of elements. S is a collection of all maximal subsets R of U
such that there is a perfect matching between U \ R and VP . All these subsets have size
d = |VA| = δn. Notice that M∗(VA) is one of the sets in S, although of course we don’t know
which. What we would like is a distribution such that sampling a set R from it satisfies
E[|R ∩M∗(VA)|] ≥ d2/n = δ2n.

I Theorem 11. For any set system (U,S) with |U | = n and |S| = d for all S ∈ S, there

exists a probability distribution D over S such that ∀T ∈ S, ES∼D[|S ∩ T |] ≥ d2

n
.

As an example, consider U = {v, w, x, y, z} and S = {{v, w}, {w, x}, {x, y}, {y, z}}. Here
n = 5 and d = 2, so the theorem guarantees a probability distribution on the four sets
such that each of them has an expected intersection size with the selected set of at least
4
5 . We can set Pr[{v, w}] = Pr[{y, z}] = 3

10 and Pr[{w, x}] = Pr[{x, y}] = 1
5 . Then the

expected intersection size for the set {v, w} is Pr[{v, w}] · 2 + Pr[{w, x}] · 1 = 4
5 because the

intersection size is 2 if {v, w} is picked and 1 if {w, x} is picked. Similarly, one can verify
that the expected intersection for any set is at least 4

5 . However, in general, it is not trivial
to find such a distribution via an explicit construction.

Theorem 11 is a generalization to Theorem 10, and we could have selected a matching
and a reserved set R according to the methods used in its proof. Indeed, this gives the same
competitive ratio. However, the set system generated by considering all matchings of size
n− d is exponentially large in general. Hence the offline portion of the algorithm would not
run in polynomial time.

5.1 Proof of Theorem 11

Let D be a probability distribution over S with the probability of choosing a set S denoted by
pS . Now, for any fixed set T ∈ S, the expected intersection size is given by ES∼D[|S ∩ T |] =∑
S∈S pS · |S ∩ T | =

∑
u∈T

∑
S3u pS . For a given set system (U,S), consider the following

linear program and its dual.
The primal constraints exactly capture the requirement that the expected intersection

size is at least d2

n for any choice of T . Thus, to prove the theorem, it suffices to show that
the optimal primal solution has an objective value of at most 1. We show that any feasible
solution to the dual linear program must have objective value at most 1 and hence the
theorem follows from strong duality.

I Lemma 12. For any set system (U,S), the optimal solution to Dual-LP has objective value
at most 1.
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min
∑
S∈S

pS

s.t.

∀T ∈ S,
∑
u∈T

∑
S3u

pS ≥
d2

n
(1)

∀S ∈ S, pS ≥ 0 (2)

Figure 1 Primal-LP.

max
∑
T∈S

qT

s.t.

∀S ∈ S,
∑
u∈S

∑
T3u

qT ≤
d2

n
(3)

∀T ∈ S, qT ≥ 0 (4)

Figure 2 Dual-LP.

Proof. Let {qT }T∈S denote an optimal, feasible solution to Dual-LP. For any element u ∈ U ,
define w(u) =

∑
T3u qT to be the total weight of all the sets that contain u. From the dual

constraints, we have

∀S ∈ S,
∑
u∈S

w(u) ≤ d2

n

Since each S ∈ S has exactly d elements, we can rewrite the above as

∀S ∈ S,
∑
u∈S

(
w(u)− d

n

)
≤ 0

Multiplying each inequality by qS and adding over all S ∈ S yields

∑
S∈S

(∑
u∈S

(
w(u)− d

n

)
qS

)
≤ 0

∑
u∈U

(∑
S3u

(
w(u)− d

n

)
qS

)
≤ 0

∑
u∈U

w(u)
(
w(u)− d

n

)
≤ 0

Using the fact that y(x − y) ≤ x(x − y) for any two real numbers x and y, we get that
∀u ∈ U , dn (w(u)− d

n ) ≤ w(u)(w(u)− d
n ). Thus,

∑
u∈U

d

n

(
w(u)− d

n

)
≤ 0∑

u∈U
w(u) ≤ d (5)

On the other hand, we have
∑
u∈U w(u) =

∑
u∈U

∑
T3u qT =

∑
T∈S

∑
u∈T qT =

d
∑
T∈S qT . Inequality 5 then shows that

∑
T∈S qT ≤ 1. J
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12U :

UA

VA

V :

VP

Figure 3 Hard instance for n = 12, d = 6, and t = 1.

6 Hardness of Semi-Online Bipartite Matching

In this section, we show that no algorithm solving the semi-online bipartite matching problem
can have a competitive ratio better than 1− δe−δ. The construction is similar in spirit to
the original bound for online bipartite matching of [13]. However, rather than using a graph
whose adjacency matrix is upper triangular, the core hardness comes from using a block
upper triangular matrix.

6.1 Graph Construction
The constructed instance will have a perfect matching in G. Let d = |VA| = δn be the
number of adversarial online nodes and set t = d2/3 (it’s only important that t = o(d)).
Assume for simplicity that t

δ is an integer. We construct the graph as follows (refer to Figure
3 for an illustration).

Let U = {u1, . . . , un} be the n offline nodes, VP = {v1, . . . , vn−d} be the n− d predicted
online nodes and VA = {vn−d+1, . . . vn} be the d adversarial online nodes.
Let the predicted graph H be a complete bipartite graph between U and VP .
Pick d nodes uniformly at random from U to be neighbors of VA. Without loss of
generality, let these nodes be UA = {un−d+1, . . . un}. Partition the d nodes in each of
UA and VA in blocks of t

δ consecutive nodes. Let UkA = {un−d+(k−1) tδ+1, . . . , un−d+(k) tδ }
and V kA = {vn−d+(k−1) tδ+1, . . . , vn−d+(k) tδ } denote the kth blocks of offline and online
nodes respectively. For each j ≤ k, connect all online nodes in V jA to all offline nodes in
UkA. Notice that the adjacency matrix on this part of the graph looks like a block upper
triangular matrix.
Finally, the online nodes arrive in order, i.e. vi arrives before vj whenever i < j.

6.2 Analysis
After the first n− d nodes have arrived, any online algorithm can do no better than guess
which offline nodes to leave unmatched uniformly at random. Let d̃ ≥ d be the number
of offline nodes left unmatched by the best online algorithm after the arrival of all n − d
predicted nodes. So at this point, we are left with a bipartite graph with d adversarial
online nodes and d̃ offline nodes such that each of the n total offline nodes is available with
probability d̃/n = δ̃.

Consider a block UkA of offline nodes. Since each node is available with probability δ̃, in
expectation t̃ = ( δ̃δ )t nodes from the block remain available. Further, since nodes are chosen
to remain available using sampling without replacement, we can obtain tight concentration
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around t̃. In particular, if tk denotes the number of available nodes remaining in block UkA, by
Hoeffding bounds we obtain that Pr(|tk− t̃| ≥ t̃2/3) ≤ 2e−δ·t̃1/3 . Hence by a union bound over
the δ2n

t blocks, we have that every block has t̃± t̃2/3 available nodes with high probability
(as t → ∞). At this point, it is somewhat clearer why blocks were chosen. Had we used
single edges (as in the construction of [13]), many of them would have become unavailable,
making the analysis difficult.

Let G′ denote the remaining graph, that is, the graph with d adversarial online nodes
and d̃ remaining offline nodes. At this point, we’ll analyze the water-filling algorithm [9] on
G′. By [9], this is the best deterministic algorithm for fractional matching in the adversarial
setting. Further, a lower bound on the performance of this algorithm provides a lower bound
for any randomized algorithm for integer matchings.

I Lemma 13. The water-filling algorithm achieves a fractional matching of total weight at
most δn ·

(
1− e−δ̃(1+o(1)) + o(1)

)
on the graph G′.

Proof. Recall that in the water-filling algorithm, for each arriving online node, we spread its
total weight of 1 across its incident edges so that the total fractional matching across the
adjacent offline nodes is as even as possible. Let B = d

t/δ = δ2n
t be the number of blocks.

For simplicity, let’s first assume that each block has exactly t̃ available nodes, rather than
t̃ ± o(t̃). By construction, each online node in the first block is connected to Bt̃ available
nodes. Every online node in the second block is connected to (B − 1)t̃ available nodes, and
so on, with every online node in the k-th block connected to (B − k + 1)t̃ available nodes.
Hence, in the water-filling algorithm, for each of the first t/δ online nodes, we will give
1/(Bt̃) weight to every available offline node. Then we will give a weight of 1/(Bt̃− t̃) to
every available offline neighbor for each of the next t/δ online nodes and so on. This process
continues until the weight we have given to the last available offline node is 1, at which point
we cannot allocate any more weight.

Consider the weight given to last available offline node. After seeing the first k+ 1 blocks,
this is

t

δ

(
1
t̃B

+ 1
t̃(B − 1)

+ . . .+ 1
t̃(B − k)

)
≥ (1/δ)(t/t̃) ·

∫ B+1

B−k+1

1
x
dx = (1/δ)(t/t̃) ln

(
B + 1

B − k + 1

)

In our case, the number of available offline nodes in each block is between t̃− t̃2/3 and
t̃+ t̃2/3, w.h.p. So the amount of weight assigned to the last available node after block k + 1
is at least

ln
(

B + 1
B − k + 1

)(
1
δ

)(
t

t̃+ t̃2/3

)
≥ ln

(
B + 1

B − k + 1

)(
1
δ̃

)(
1

(1 + t̃−1/3)

)
Note that once we have given a total weight of 1 to the last node, the water-filling algorithm
will not be able to distribute any more weight. Hence, the water-filling algorithm stops after
k blocks, with k being at most the smallest integer satisfying

ln
(

B + 1
B − k + 1

)(
1
δ̃

)(
1

(1 + t̃−1/3)

)
≥ 1

In this case,

k = (B + 1)(1− e−δ̃(1+t̃−1/3)) = (B + 1)(1− e−δ̃(1+o(1)))
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Since each block allocates a total weight of t
δ , the total weight of the fractional matching

obtained by the water-filling algorithm is at most(
t

δ

)
(B + 1)

(
1− e−δ̃(1+o(1))

)
=
(
t

δ

)(
δ2n

t
+ 1
)(

1− e−δ̃(1+o(1))
)

= δn
(

1− e−δ̃(1+o(1))
)(

1 + t

δ2n

)
Since, by construction, we have t = o(d), this is δn

(
1− e−δ̃(1+o(1)) + o(1)

)
as desired. J

I Theorem 14. No (randomized) algorithm for the semi-online bipartite matching problem
can achieve a competitive ratio better than 1− δe−δ.

Proof. Lemma 13 shows that after matching n− d̃ predicted vertices, the best randomized
algorithm can match at most δn

(
1− e−δ̃(1+o(1)) + o(1)

)
of the adversarial vertices. Let M

be the matching found by any randomized algorithm on the graph G. Hence, we have

E[|M |] ≤ n− d̃+ δn
(

1− e−δ̃(1+o(1)) + o(1)
)
≤ n− δn+ δn

(
1− e−δ(1+o(1)) + o(1)

)
= n− δne−δ(1+o(1)) + δno(1)

= n
(

1− δe−δ(1+o(1)) + δo(1)
)

Since G has a perfect matching of size n, the competitive ratio is upper bounded by
(
1− δe−δ

)
as n→∞. J

7 Extensions - Imperfect Predictions and Agnosticism

In this section, we consider a more general model where we allow the predicted graph to
have small random errors. We define the (d, ε) semi-online model as follows - We are given a
predicted graph H = (U, V,EH), where |U | = |V | = n. As before, U are the offline nodes
and V are the online5 nodes. However, we do not explicitly separate V into predicted and
adversarial nodes; all nodes are seen by the offline preprocessing stage, but some subset of
these nodes will be altered adversarially.

An adversary selects up to d online nodes and may arbitrarily change their neighborhoods.
In addition, we allow the realized graph G to introduce small random changes to the remaining
predicted graph after the adversary has made its choices. Specifically, each edge in H not
controlled by the adversary is removed independently with probability ε. Further, for each
u ∈ U, v ∈ V , we add edge (u, v) (if it does not already exist in the graph) independently with
probability ε|M |/n2, where M is a maximum matching in H. Note that in expectation, we
will add fewer than ε|M | edges; simply adding edges with probability ε (instead of ε|M |/n2)
would overwhelm the embedded matching. We call an algorithm agnostic if it does not know
the d nodes chosen by the adversary during the preprocessing (offline) phase. There are two
variants - either the algorithm knows the value of d or it does not. We show a hardness result
in the former case and consider algorithms in the latter case.

We first consider agnostic algorithms to find integral matchings in this (d, ε) semi-online
model and give a hardness result and a corresponding tight algorithm for the case when
ε = 0.

5 The algorithm does not know the arrival order of nodes in V .
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v1

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12U :

V :

v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12U :

V :

Predicted graph H

Realized graph G

Adversarial nodes Randomly deleted edge

Figure 4 Hard instance for Agnostic algorithms.

I Theorem 15. In the (d, ε) semi-online model with d < n/4, no (randomized) agnostic
algorithm can find a matching of size more than n− d− ε(n− 3d) +O(ε2n) in expectation,
taken over the randomness of the algorithm and the randomness of the realized graph. This
holds even if d is known in advance by the algorithm.

Proof. Assume n is even. Our hard instance consists of the following predicted graph H:
For each integer i ∈ [0, n2 ), add edges (v2i+1, u2i+1), (v2i+1, u2i+2), and (v2i+2, u2i+2). This
creates n/2 connected components. See Figure 4 for an illustration.

The adversary chooses d components uniformly at random. Let A = {i1, i2, . . . , id} ⊂
[0, n2 ) denote the indices of the d components selected by the adversary. For each index i ∈ A,
the adversary then selects v2i+2 and changes its neighborhood so it only connects with u2i+1
(instead of u2i+2).

For simplicity, let’s first consider the case when ε = 0. The algorithm can do no better than
picking some p ∈ [0, 1], and matching v2i+1 to u2i+1 with probability p, and matching v2i+1
to u2i+2 otherwise, for all i. The algorithm then matches v2i+2 to its neighbor, if possible.
Now, for all i ∈ A (components selected by the adversary), this gets an expected matching
of size p+ 2(1− p) = 2− p. On the other hand, for all i /∈ A, the expected matching is size
2p+(1−p) = 1+p. Since there are d components with an adversary and n/2−d components
without, this gives a total matching of size (2− p)d+ (1 + p)(n/2− d) = n/2 + d+ p(n2 − 2d).
This is maximized when p = 1 (since d < n/4) to yield a matching of size n− d.

When ε > 0, the algorithm still should set p = 1; if the desired edge is removed, then the
algorithm will match with whatever node is available. Components with an adversarial node
gain an edge in the matching when the edge (v2i+1, u2i+1) is removed since the algorithm
is forced into the right choice; if both edges (v2i+1, u2i+1) and (v2i+1, u2i+2) are removed,
we neither gain nor lose. The expected gain is ε− ε2. Components without an adversarial
node lose an edge in the matching whenever either edge (v2i+1, u2i+1) or edge (v2i+2, u2i+2)
is removed, and they lose an additional edge if all three edges of the component are removed.
So the expected loss is 2ε− ε2 + ε3 Since there are d components with adversarial nodes and
n/2− d without, this is a total of loss of

−d(ε− ε2) + (n/2− d)(2ε− ε2 + ε3) = ε(n− 3d)−O(ε2n)

Hence, the total matching is size n− ε(n− 3d) +O(ε2n), as claimed. J



R. Kumar, M. Purohit, A. Schild, Z. Svitkina, and E. Vee 50:17

I Theorem 16. Given a predicted graph H with a perfect matching, suppose there are d
adversarial nodes and ε = 0 as described above in the (d, ε) semi-online model. Then there is
an agnostic algorithm that does not know d that finds a matching of expected size n− d.

Proof. Before any online nodes arrive, find a perfect matching M in H. In the online stage,
as each node v arrives, we attempt to identify v with an online node in the predicted graph
with the same neighborhood, and match v according to M . If no node in the predicted graph
has neighborhood identical to v, we know that v is adversarial and we can simply leave it
unmatched. (Note that adversarial nodes can mimic non-adversarial nodes, but it doesn’t
actually hurt us since they are isomorphic.) The predicted matching had size n, and we lose
one edge for each adversarial node, so the obtained matching has size n− d. J

7.1 Fractional matchings for predictions with errors
In this section, we show that we can find an almost optimal fractional matching for the (d, ε)
semi-online matching problem.

We use a result from [22], which gives a method of reconstructing a fractional matching
using only the local structure of the graph and a single stored value for each offline node.
They provide the notion of a reconstruction function. Their results extend to a variety of
linear constraints and convex objectives, but here we need only a simple reconstruction
function. For any positive integer k, define gk : (R+

0 )k → (R+
0 )k by

gk(α1, α2, . . . , αk) = (α1 −max(0, z), α2 −max(0, z), . . . , αk −max(0, z))

where z is a solution to
∑
j min(max(0, αj − z), 1) = 1.

The reconstruction function g is this family of functions. Note that this is well-defined:
there is always a solution z between −1 and the largest αj , and the solution is unique unless
z ≤ 0.

The result of [22] assigns a value αu to each u in the set of offline nodes, and reconstructs
a matching on the fly as each online node arrives, using only the neighborhood of the online
node and the stored α values. Crucially, the reconstruction assigns reasonable values even
when the neighborhood is different than predicted. In this way, it is robust to small changes
in the graph structure.

I Lemma 17 (Restated from [22]). Let gki be defined as above, and let H = (U, V,EH) be
a bipartite graph with a perfect matching of size n = |U | = |V |. Then there exist values αu
for each u ∈ U (which can be found in polynomial time) such that the following holds: For
all v ∈ V , define xui,v = gi(αu1 , αu2 , . . . αuk), where u1, u2, . . . , uk is the neighborhood of v.
Then x defines a fractional matching on H with weight n.

Interested readers can find the proof in the full version. Given this reconstruction
technique, we can now describe the algorithm:

In the preprocessing phase, find the αu values for all u ∈ U using Lemma 17.
In the online phase, for each online node v, compute x̃ui,v = gi(αu1 , . . . , αuk), where
u1, . . . , uk ∈ ΓG(v), as described above. Assign weight x̃ui,v to the edge from ui to v; if
that would cause node ui to have more than a total weight 1 assigned to it, just assign as
much as possible.

Note that we make the online computation based on the neighborhood in G, the realized
graph, although the αu values were computed based on H, the predicted graph. We have
the following.
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I Theorem 18. In the (d, ε) semi-online matching problem in which the predicted graph
has a perfect matching, there is a deterministic agnostic algorithm that gives a fractional
matching of size n(1− 2ε− δ) in expectation, taken over the randomized realization of the
graph. The algorithm does not know the value of d or the value of ε in advance.

Proof. If the realized graph were exactly as predicted, we would give the fractional assignment
x guaranteed in Lemma 17, which has weight n. However, the fractional matching that is
actually realized is somewhat different. For each online node that arrives, we treat it the
same whether it is adversarial or not. But we have a few cases to consider for analysis:

Case 1: The online node v is adversarial. In this case, we forfeit the entire weight of 1 in
the matching. We may assign some fractional matching to incident edges. However, we
count this as ‘excess’ and do not credit it towards our total. In this way, we lose at most
δn total weight.
Case 2: The online node v is not adversarial, but it has extra edges added through a
random process. There are at most εn such nodes in expectation. In this case, we treat
them the same as adversarial. We forfeit the entire weight of 1, and ignore the ‘excess’
assignment. This loses at most εn total weight in expectation.
Case 3: The online node v is as exactly as predicted. In this case, we correctly calculate
xuv for each u ∈ Γ(v). Further, we assign xuv to each edge, unless there was already
‘excess’ there. Since we never took credit for this excess, we will take xuv credit now. So
we do not lose anything in this case.
Case 4: The online node v is as predicted, except each edge is removed with probability
ε (and no edges are added). In this case, when we solve for z, we find a value that
is bounded above by the true z. The reason is that in the predicted graph, we solved∑
u∈Γ(v) min(max(0, αu − z), 1) = 1 for z when computing g. In the realized graph, this

same sum has had some of its summands removed, meaning the solution in z is at most
what it was before. So the value of x̃uv that we calculate is at least xuv for all u in the
realized neighborhood. We take a credit of xuv for each of these, leaving the rest as
excess. Note that we have assigned 0 to each edge that was in the predicted graph but
missing in the realized graph. Since each edge goes missing with probability ε, this is a
total of at most εn in expectation.

So, the total amount we lose in expectation is 2εn+ δn. Since the matching in the predicted
graph has weight n, the claim follows. J

7.2 Semi-Online Algorithms For Ski Rental
In this section, we consider the semi-online ski rental problem. In the classical ski rental
problem, a skier needs to ski for an unknown number of days and on each day needs to
decide whether to rent skis for the day at a cost of 1 unit, or whether to buy skis for a
higher cost of b units and ski for free thereafter. We consider a model where the skier has
perfect predictions about whether or not she will ski on a given day for a few days in the
time horizon. In addition, she may or may not ski on the other days. For instance, say the
skier knows whether or not she’s skiing for all weekends in the season, but is uncertain of
the other days. The goal is to design an algorithm for buying skis so that the total cost of
skiing is competitive with respect to the optimal solution for adversarial choices for all the
days for which we have no predictions.

Let x denote the number of days that the predictions guarantee the skier would ski.
Further, it is more convenient to work with the fractional version of the problem so that it
costs 1 unit to buy skis and renting for z (fractional) days costs z units. In this setting, we
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know in advance that the skier will ski for at least x days. There is a randomized algorithm
that guarantees a competitive ratio of 1/(1 − (1 − x)e−(1−x)). Our analysis is a minor
extension of an elegant result of [11].

I Theorem 19. There is a e

e− (1− x)ex competitive randomized algorithm for the semi-
online ski-rental problem where x is a lower bound of the number of days the skier will ski.

Proof. Without loss of generality, we can assume that all the days with a prediction occur
before any of the adversarial days arrive. Otherwise, the algorithm can always pretend as if
the predictions have already occurred, since only the number of skiing days is important and
not their order. Recall that x denotes the number of days that the predictions guarantee the
skier would ski. Let u ≥ x be the actual number of days (chosen by the adversary) that she
will ski. Since buying skis costs 1, the optimal solution has a cost of min(u, 1). Clearly, if
x ≥ 1, we must always buy the skis immediately and hence we assume that 0 ≤ x < 1 in the
rest of the section. Further, even the optimal deterministic algorithm buys skis once z = 1,
so we may assume that u ≤ 1.

Let px(z) denote the probability that we buy the skis on day z, and let q(x) denote
the probability that we buy skis immediately. Recall that px is implicitly a function of the
prediction x. Given a fixed number of days to ski u, we can now compute the expected cost
of the algorithm as

Cost(x, u) = q(x) +
∫ u

0
(1 + z) · px(z)dz +

∫ 1

u

u · px(z)dz

Our goal is to choose a probability distribution p so as to minimize Cost(x, u)/min(u, 1)
while the adversary’s goal is to choose u to maximize the same quantity. We will choose px
and q so that Cost(x, u)/min(u, 1) is constant with respect to u. As we noted, u ≤ 1, so
min(u, 1) = u. Setting the Cost(x, u) = c · u for constant c and taking the derivative with
respect to u twice gives us

0 = ∂

∂u
px(u)− px(u)

Of course, px must also be a valid probability distribution. Thus, we set px(z) = (1− q(x)) ·
ez

e− ex
for z ≥ x. For z < x, we set px(z) = 0 since there is no reason to buy skis while

z < x if we did not already buy it immediately.
Recalling that we set Cost(x, u) = c ·u, we can substitute px(z) and solve for q(x), finding

q(x) = xex

e− (1− x)ex

Hence, the competitive ratio is thus given by

Cost(x, u)
u

= 1
u

(
q(x) + 1− q(x)

e− ex

∫ u

x

(1 + z)ezdz + 1− q(x)
e− ex

∫ 1

u

u · ezdz
)

Substitute q(x), and after some manipulation, this becomes

Cost(x, u)
u

= e

e− (1− x)ex

Note that when x = 0, this becomes the classic ski rental problem, and the above bound is
e/(e− 1), as expected. J
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Abstract
We initiate the study of quantum races, games where two or more quantum computers compete
to solve a computational problem. While the problem of dueling algorithms has been studied
for classical deterministic algorithms [12], the quantum case presents additional sources of un-
certainty for the players. The foremost among these is that players do not know if they have
solved the problem until they measure their quantum state. This question of “when to measure?”
presents a very interesting strategic problem. We develop a game-theoretic model of a multi-
player quantum race, and find an approximate Nash equilibrium where all players play the same
strategy. In the two-party case, we further show that this strategy is nearly optimal in terms
of payoff among all symmetric Nash equilibria. A key role in our analysis of quantum races is
played by a more tractable version of the game where there is no payout on a tie; for such races
we completely characterize the Nash equilibria in the two-party case.

One application of our results is to the stability of the Bitcoin protocol when mining is done
by quantum computers. Bitcoin mining is a race to solve a computational search problem, with
the winner gaining the right to create a new block. Our results inform the strategies that eventual
quantum miners should use, and also indicate that the collision probability – the probability that
two miners find a new block at the same time – would not be too high in the case of quantum
miners. Such collisions are undesirable as they lead to forking of the Bitcoin blockchain.
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1 Introduction

We study the scenario of two or more quantum computers competing to solve a computational
task, which we call a quantum race. This setting presents a different problem to finding the
fastest algorithm for a task, as the only goal is to solve the task before the competitors. For
example, imagine a search race where Alice and Bob, each armed with identical quantum
computers, compete to find a marked item in a database. The first person to find the marked
item wins $1, with the payout being split in the case of a tie. The first natural idea is for Alice
to run Grover’s algorithm [11], which can find a marked item in a database of size N with
high probability in time O(

√
N). However, if Alice’s strategy is to run Grover’s algorithm

and measure after the specified number of steps to maximize her success probability, Bob
will have an advantage by measuring after running Grover’s algorithm for a few less steps.
Although this way Bob has a slightly lower success probability, he gains a huge advantage in
always answering first. This simple example shows that the optimal algorithm to solve a
problem can be different from the optimal strategy to employ when the goal is to solve the
problem before an opponent.

The scenario of competing algorithms has been studied before in the classical deterministic
setting [12]. In a classical game, the uncertainty is provided by an unknown probability
distribution over the inputs: depending on what the input is, one algorithm may perform
better than another. The quantum setting inherently has additional sources of uncertainty,
most interestingly that players do not know if they have solved the problem until they
measure their quantum state. Going back to the search game, in the classical version the
players know at every instant if they have found the marked item or not. This is not the case
in the quantum setting, where a player can only tell if she has found the desired item by
measuring her quantum state. Furthermore, if she measures her state and does not find the
marked item, then she must begin the search again from scratch. In the quantum case there
is a natural tension between waiting to measure, and thereby building up the probability
of success upon measuring, and measuring sooner, to answer before one’s competitors. We
study this game theoretic problem to develop strategies for players to use in quantum races.

One of our main motivations for studying quantum races is to model quantum computers
mining the decentralized currency Bitcoin [16]. Mining is the process by which new blocks
of transactions are added to the history of Bitcoin transactions, called the blockchain. The
winner of a race to solve a computational search problem gains the right to add a new block
of transactions to the blockchain, and participants in this race are called miners. Quantum
miners could use Grover’s algorithm to solve the search problem with quadratically fewer
search queries than needed classically. But what should the strategy of quantum miners be
when competing against each other?

I Question 1. What is the optimal strategy for quantum miners?

Figuring out the optimal strategy for quantum miners is important to analyze the impact
of quantum mining on the stability of the Bitcoin protocol. When two miners solve the
computational search problem at (nearly) the same time, the blockchain can fork as it is
unclear which new block is the “correct” history of Bitcoin transactions. Forking is bad for
the security of Bitcoin as it can decrease the cost of attacks [10], increase the gain from
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deviating from the intended mining protocol [9], and generally decreases chain growth and
wastes resources. In the classical case, each search query has the same probability of success.
In the quantum case, however, because of Grover’s algorithm the success probability grows
roughly quadratically with the number of search queries. Does this lead to many quantum
miners finding blocks at the same time?

I Question 2. What is the probability that two or more quantum miners playing the optimal
strategy find a block at the same time?

In the next subsections, we describe our model and results in more detail and the impact it
has on these questions.

1.1 The model and results
In a symmetric game all players have the same payoff function. In his original paper defining a
Nash equilibrium, Nash showed that every symmetric multiparty finite game has a symmetric
equilibrium, i.e. one where all players play the same strategy [17]. When all players have
identical quantum computers, a quantum race is naturally a symmetric race, and we describe
this scenario first.

We model a symmetric multiplayer quantum race in the following way. The pure strategies
available to a player are the possible times at which she can measure 1, 2, 3, . . . ,K. For each
time t, a player has an algorithm that she can run for t steps and for which the success
probability is pt. Without loss of generality, we assume that these probabilities form an
increasing sequence 0 < p1 < p2 < · · · < pK ≤ 1. A general strategy is a probability
distribution over the possible times to measure. The player who succeeds first receives a
payoff of 1. In the case of a tie, the payoff is split amongst all players who succeed first at
the same time. Our model can be thought of as a “one-shot” race, as if a player measures
and does not succeed, she does not get a chance to restart and try again. While a race
where players are allowed to repeatedly restart until someone wins would be more realistic,
it becomes much more difficult to analyze due to the proliferation of possible stategies, and
we leave this for future work.

Two-player case

We begin explaining our model and results in more detail in the two-player case. In this case,
a game defined by the probabilities p1, . . . , pK can be represented by the payoff matrix for
Alice, given by the K-by-K matrix A, and the payoff matrix for Bob B. The (s, t) entry of
A gives Alice’s payoff when she runs an algorithm for time s and Bob plays time t. In the
case of a quantum race, this is defined as

A(s, t) =


ps if s < t

ps(1− ps) + 1
2p

2
s if s = t

ps(1− pt) if s > t .

(1)

As the game is symmetric, Bob’s payoff matrix is B = AT.
Our analysis of quantum races begins in Section 3 by analyzing a more tractable variant

of the game we call a stingy quantum race. In a stingy quantum race, there is no payout in
the case of a tie (the game organizer is stingy). A Nash equilibrium of a two-party stingy
quantum race has very strong constraints on its support structure (see Corollary 16). In
particular, if (x, y) is a Nash equilibrium in a two-party stingy quantum race, then the union
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of the supports of x and y must be an interval {T, T + 1, . . . ,K} that contains the maximum
running time K. There are 3 possible types of Nash equilibria in a two-party stingy quantum
race, and we characterize all of them (see Theorem 22, and Appendix of [14].

One particularly nice type of equilibrium is what we call a coinciding equilibrium. In a
coinciding equilibrium, the support of all player’s strategies is the same, but the strategies
do not have to be identical. This is a more general notion than a symmetric equilibrium
where all strategies are the same. In a coinciding equilibrium for a stingy quantum race, the
support of each player’s strategy is an interval {T, T + 1, . . . ,K}. This leaves the problem
of determining the starting point T of this interval in a Nash equilibrium. We are able to
show that there is always exactly one T such that there is a Nash equilibrium with support
{T, T + 1, . . . ,K}.

I Theorem 3 (Informal, see Theorem 22). In a two-party stingy quantum race defined by
probabilities p1, . . . , pK , there is a unique coinciding Nash equilibrium. In this equilibrium
all players play the same strategy, and the support of the strategies is an interval {T ∗, T ∗ +
1, . . . ,K}.

We also explicitly find this Nash equilibrium.
This result begs the question: what is this value of T ∗? At what success probability

does it become worthwhile to start measuring? By putting an additional restriction on the
probabilities p1, . . . , pK , we can give quite a precise answer to this question. We say p1, . . . , pK
is an `-dense sequence (see Definition 13) if p1 ≤ `

K , pK ≥ 1 − `
K , and pi+1 − pi ≤ `

K for
i = 2, . . . ,K − 1. This is quite a natural restriction that is satisfied for many races. In the
quantum search race, where the pi are the Grover success probabilities, and therefore also in
the application to Bitcoin, the `-density condition is satisfied with ` = π/2. In the `-dense
case, we can give the following bound on T ∗.

I Theorem 4 (Informal, see Corollary 25 and Corollary 28). Let p1, . . . , pK be an `-dense
sequence with K ≥ 6`. Then the starting point T ∗ of the unique coinciding Nash equilibrium
in the stingy quantum race defined by these probabilities is such that pT∗ =

√
2− 1 + Θ

(
`
K

)
.

Thus it is worthwhile to start measuring once the success probability becomes around
√

2− 1,
and this is largely independent of the actual values of p1, . . . , pK .

In Section 4, we apply our analysis of two-player stingy quantum races to the case of
general quantum races. As the only difference between a stingy quantum race and a quantum
race is the payout on ties, intuitively strategies in these two kinds of races should have similar
payoffs when the probability of ties is small. We follow this intuition and show that when
p1, . . . , pK form an `-dense sequence the probability of a tie is O( `K ) (see Theorem 27) when
players use the unique coinciding equilibrium from the stingy race, and this strategy is an
O( `K )-approximate Nash equilibrium of the corresponding quantum race.

Approximate Nash equilibria are naturally an imperfect lens into true Nash equilibria.
The approximate Nash equilibrium we give would not be a reasonable suggestion for the
actual strategies of quantum players if there were other equilibria with much higher payoff,
for example. We show that this is not the case, and the approximate Nash equilibrium we
give is nearly optimal in terms of payoff amongst all symmetric equilibria.

I Theorem 5 (Informal, see Theorem 31 and Theorem 33). Let p1, . . . , pk be an `-dense
sequence with K ≥ 6`. Then the unique coinciding equilibrium of the two-player stingy
quantum race defined by these probabilities is an O( `K )-approximate Nash equilibrium in the
corresponding quantum race. Moreover, the payoff achieved by this strategy is within O(

√
`
K )

of the largest payoff achievable by any symmetric Nash equilibrium.



T. Lee, M. Ray, and M. Santha 51:5

To show that the approximate Nash equilibrium we give is nearly optimal in terms of
payoff (Theorem 33), we use the bilinear programming formulation of Nash equilbria due
to Mangasarian and Stone [15]. We exploit the properties of the sum of Alice’s and Bob’s
payoff matrices A+AT (from Eq. (1)). More specifically, It turns out that over a probability
simplex x, the quadratic form xT(A+AT)x is a negative-definite plus linear function. When
optimizing over symmetric strategies this makes the Mangasarian and Stone bilinear program
(which is a maximization problem) into a convex quadratic program. We then use Dorn’s
[8] equivalent dual formulation of a convex quadratic program (see Eq. (17)), which is a
minimization problem. We explicitly construct a feasible solution to this dual minimization
problem to upper bound the payoff of any symmetric Nash equilibrium. Our construction of
this dual solution again makes use of our analysis of stingy quantum races.

Multiplayer case

The case of many players is what we are interested in for the application to Bitcoin. Luckily,
we are able to recover analogs of many of the results from the two-player case in the
multiplayer case as well. We start in Section 5 by analyzing n-player stingy quantum races,
and show the following.

I Theorem 6 (Informal, see Theorem 41). Let p1, . . . , pK define an n-player stingy quantum
race. This race has a unique coinciding Nash equilibrium, and in this equilibrium all players
play the same strategy. The support of each strategy is an interval {T ∗, T ∗ + 1, . . . ,K}.

To show that an n-player stingy quantum race has a unique coinciding Nash equilibrium, our
proof proceeds through a 2-player asymmetric stingy quantum race. In a 2-player asymmetric
race, Alice has probabilities p1, . . . , pK of succeeding after t steps and Bob has a (potentially
different) sequence of probabilities P1, . . . , PK . An asymmetric race models the case where
Alice and Bob have quantum computers of potentially different speeds. We relate the payoff
for Alice in a n-player stingy quantum race to the payoff for Alice in a 2-player quantum
race against a more powerful opponent (see Lemma 40). We can then refer to Theorem 21 in
Section 3 which completely characterizes coinciding equilibria in asymmetric 2-player stingy
quantum races. This gives Theorem 6.

When the sequence p1, . . . , pK is `-dense, we can also say something about the starting
point T ∗ of the n-player coinciding equilibrium, though not as precisely as in the two-party
case.

I Theorem 7 (Informal, see Theorem 44). Let p1, . . . , pK be an `-dense sequence defining
a stingy n-player quantum race with n ≥ 2. If K ≥ 4e`n then the starting point T ∗ of the
unique coinciding equilibrium is such that pT∗ = Θ( 1

n ).

This means that the more players there are in a game, the earlier one starts to measure in
the unique coinciding equilibrium.

In light of Question 2 we also want to see what the probability of more than one player
succeeding at the same time in this unique coinciding equilibrium. We show the following.

I Theorem 8. Let P1, ...., PK define an `-dense stingy n-player quantum race such that
4en` ≤ K. When the players play the coinciding equilibrium of the stingy race, the probability
that two or more players succeed at the same time is at most 8en`

K .

Finally, as in the two-party case, we show that the unique coinciding equilibrium of a
stingy race is also an approximate Nash equilibrium in the corresponding quantum race,
provided the sequence of probabilities is `-dense.
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I Theorem 9. Let P1, ...., PK define an `-dense stingy n-player quantum race, n ≥ 2, with
4en` ≤ K. If x = (x1, ..., xn) is the coinciding Nash equilibrium for this stingy race, then x
is an 8e`

K - approximate Nash equilibrium of the corresponding quantum race.

1.2 Application to Bitcoin
One application of our study of quantum races is to the decentralized digital currency
Bitcoin, developed in 2008 by Satoshi Nakamoto [16]. Bitcoin transactions are packaged into
blocks and stored in a public ledger called the blockchain. A major obstacle in creating a
decentralized currency is to find a way for all parties to agree on the history of transactions.
In Bitcoin, this is done through Nakamoto consensus: the right to create a new block is
decided through proof-of-work, a contest to solve a computational problem. The winner
of this contest has the right to make a new block of transactions, is given a reward in
bitcoin, and then the process repeats itself. The players competing in this process are called
miners. Nakamato consensus remains the primary means of achieving consensus across
all cryptocurrencies, although there are coins using other consensus mechanisms such as
proof-of-stake [13] or Byzantine agreement [6].

The proof-of-work task used in Bitcoin (originally developed in a system called Hashcash
[2]) is essentially a search problem. The problem is to find a value x (called a nonce) such
that h(H ‖ x) ≤ t, where h is a hash function (doubly iterated SHA-256 in the case of
Bitcoin), H is the header of the block of transactions to be processed, and t is a hardness
parameter that can be varied so that the entire network takes 10 minutes to solve this task,
on average.

Several works have studied the impact that quantum computers would have on the Bitcoin
protocol [5, 1, 18], both on the mining process we have described above and on the digital
signatures used in Bitcoin to authenticate ownership of coins. We will focus here on the
impact of quantum computers on Bitcoin mining.

As the Bitcoin proof-of-work is a search task, quantum miners could use Grover’s algorithm
to find a nonce x satisfying h(H ‖ x) ≤ t with quadratically fewer evaluations of the hash
function h than is needed by a classical computer 1. The use of Grover’s algorithm creates
new issues for proof-of-work that do not exist in the classical case. Desirable properties of
a proof-of-work task have been studied from an axiomatic point of view by Biryukov and
Khovratovich [3]. One property they give is progress-freeness: the probability of a miner
solving the proof-of work task in any moment is independent of previous events. This is
achieved for a classical miner in the Bitcoin proof of work, as every call to the hash function
is equally likely to find a good nonce x. Progress-freeness is not achieved for a quantum
miner running Grover’s algorithm, as the success probability grows roughly quadratically
with the amount of time the algorithm is run.

Sattath [18] points out that this gives a way for quantum miners to deviate from the
prescribed protocol in order to increase their chance of winning a block. To explain this
deviation, imagine a simplified case where the proof-of-work is to find a unique marked item
in a database of size N . Say that Alice, a quantum miner, receives a new block from the
network which was found by Bob. When Alice receives this block she will be in the middle
of running Grover’s algorithm to find the marked item herself. The prescribed protocol
says that she should immediately halt this run of Grover’s algorithm and begin working

1 While this seems to give quantum computers a huge advantage for Bitcoin mining, specialized classical
Bitcoin mining hardware currently can perform14 trillion hashes per second [4] and would outperform a
near-term quantum computer with gate speeds of 100MHz [1]
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on a new search problem by mining on top of Bob’s new block. However, if Alice has run
Grover algorithm for c

√
N steps, for a constant c, she will have already built up a constant

probability of finding the marked item upon measuring. From the point of view of maximizing
her payoff, there is no harm in just measuring to see if she finds the marked item. If Alice
gets lucky and indeed finds the marked item, then she can broadcast her new block to the
network. Depending on her connectivity to the network, some other miners may receive
Alice’s block before Bob’s, and there is some probability that Alice’s new block eventually
becomes the block accepted by the network rather than Bob’s, meaning that Alice will receive
the bitcoin reward. Note that this does not happen in the classical case, where after Alice
receives Bob’s block she would still just have probability 1/N to find the marked item with
each additional search query. In this case it makes sense to immediately start mining on top
of the new block.

Luckily, Sattath also provides an easy fix for the Bitcoin protocol to remedy this problem.
Without going into the technical details, this fix essentially forces miners to commit to how
long they will run Grover’s algorithm before they begin. Thus if Alice commits to running
Grover’s algorithm for time

√
N/100, yet receives Bob’s block after time

√
N/200, if she

tries to immediately measure and publish her own block, the network will reject it because
of the timing discrepancy. This fix fits in very well with our model of quantum races, as a
strategy is exactly a probability distribution over choices of times to measure.

The quantum race that captures the case of Bitcoin mining is what we call the Grover
race (see Definition 12). In this race, the success probability pt is given by the success
probability of t-iterations of Grover’s algorithm 2. This race is an `-dense race for ` = π/2.
The size of the search space, and thus the maximum number of iterations K to run Grover’s
algorithm, is determined by the difficulty setting of the Bitcoin protocol. Currently the
difficulty (as of September 7, 2018) is approximately 7 · 1012, which, by Bitcoin’s definition of
difficulty, means that the network has to do roughly 232 · 7 · 1012 many hashes to succeed, in
expectation. This leads to a value of K of approximately 1011. Thus for this application `

K

is very small, and Theorem 9 implies that the unique coinciding equilibrium for the stingy
Grover race is an ε-approximate Nash equilibrium in the Grover race for ε ≤ 3 · 10−10. This
gives a reasonable answer to Question 1 for what a good strategy would be for quantum
miners, and moreover has the desirable property that all miners run the same algorithm. By
Theorem 8, when there are n miners running this strategy the probability of a tie is at most
3n · 10−10. This gives an answer to Question 2, that quantum mining is not likely to produce
a high forking rate and thereby destabilize the Bitcoin protocol.

2 Preliminaries

We use e ≈ 2.71828 for Euler’s number. For a probability 0 ≤ p ≤ 1, we set p̄ = 1− p. For a
natural number n, we let [n] = {1, ..., n}. We let ∆n = {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1} be the

probability simplex. For x ∈ ∆n we let sup(x) = {i ∈ [n] : xi > 0} be the support of x.

I Definition 10 (quantum race). A 2-player quantum race is specified by two sequences of
increasing probabilities 0 < p1 < p2 < · · · < pK ≤ 1, and 0 < P1 < P2 < · · · < PK ≤ 1 for
some integer K ≥ 2. The set of pure strategies of both players is [K]. The K ×K payoff

2 It is known that t queries of Grover’s algorithm maximizes the probability of success in a search problem
over all t-query quantum algorithms [7].
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matrix A of Alice and B of Bob are defined as

A(i, j) =


pi if i < j,

piP̄j + 1
2piPi if i = j,

piP̄j otherwise.
B(i, j) =


Pj if j < i,

Pj p̄i + 1
2piPi if i = j,

Pj p̄i otherwise.

If pi = Pi for all i = 1, . . . ,K then we call the game a symmetric quantum race. Note that
in this case B = AT.

In our study of quantum races, a key role will be played by an auxiliary game that is easier
to analyze called a stingy quantum race. A stingy quantum race differs from a quantum race
only in that no payout is given in the case of a tie.

I Definition 11 (stingy quantum race). A 2-player stingy quantum race is specified by two
sequences of increasing probabilities 0 < p1 < p2 < · · · < pK ≤ 1, and 0 < P1 < P2 < · · · <
PK ≤ 1 for some integer K ≥ 2. The set of pure strategies of both players is [K]. The K×K
payoff matrix A0 of Alice is defined as

A0(i, j) =
{
pi if i < j,

piP̄j otherwise.

The payoff matrix of Bob B0 is defined as

B0(i, j) =
{
Pj if j < i,

Pj p̄i otherwise.

If pi = Pi for all i = 1, . . . ,K then we call the game a symmetric stingy quantum race. Note
that in this case B0 = AT

0 .

The main specific quantum race we will be interested in is the Grover race. This results
from two players competing to find a marked item in a database and playing by running
Grover’s algorithm for a certain amount of time and then measuring. Formally, the race is
defined as follows.

IDefinition 12 (Grover race). We define the (stingy) Grover race onN items as the symmetric
(stingy) quantum race with K =

⌈
π
4
√
N − 3/2

⌉
and pt = sin2

(
2(t+ 1/2) arcsin

(
1√
N

))
, for

1 ≤ t ≤ K.

Here pt is the success probability of Grover’s algorithm of finding a unique marked item in
a database of N items. It is known that pt is the highest success probability for finding a
marked item for any quantum algorithm making t many calls to the database [7].

The Grover race has many nice properties, and we will abstract out one of them here.
This allows us to show results for a general class of quantum races, rather than just the
Grover race.

I Definition 13 (dense race). Let p1 < p2 < · · · < pK ≤ 1. We call the sequence (p1, . . . , pK)
`-dense if p1 ≤ `

K , pK ≥ 1 − `
K , and pi+1 − pi ≤ `

K for all i = 1, . . . ,K − 1. For a dense
sequence (p1, . . . , pK) will similarly call the symmetric (stingy) quantum race defined by this
sequence a symmetric (stingy) `-dense quantum race.

The (stingy) Grover race is an `-dense race with ` = π/2.
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3 Two-player stingy quantum races

We will first analyze Nash equilibria in stingy quantum races. We can show several structural
properties about the support of Nash equilibria in stingy quantum races that make them
easier to analyze than quantum races. After our analysis in this section, we will bootstrap
our knowledge of Nash equilibria in stingy quantum races to find an approximate Nash
equilibrium for quantum races.

Consider a stingy quantum race given by the probabilities 0 < p1 < p2 < · · · < pK ≤ 1
and 0 < P1 < P2 < · · · < PK , and let y be a mixed strategy of Bob. For t ≤ K, we let
sup≤t(y) = {j ∈ sup(y) : j ≤ t} be the set of times played by Bob that are at most t, and
similarly, we let sup>t(y) = {j ∈ sup(y) : j > t} be the set of times played by Bob that are
greater than t. Observe that when Alice plays the pure strategy t against y, her payoff is

eT
t Ay = pt

 ∑
j∈sup≤t(y)

yjP̄j +
∑

j∈sup>t(y)

yj

 .

I Claim 14. Let (x, y) be a Nash equilibrium of a 2-player stingy quantum race. If t1 ∈ sup(x)
then there does not exist t2 > t1 with sup≤t1(y) = sup≤t2(y).

Proof. Say that the game is defined by probabilities 0 < p1 < p2 < · · · < pK ≤ 1 and
0 < P1 < P2 < · · · < Pk If sup≤t1(y) = sup≤t2(y) then

eT
t2Ay = pt2

pt1
eT
t1Ay.

As pt1 < pt2 , the payoff for playing t2 is strictly larger than that for playing t1. Therefore t1
is not a best response for y, in contradiction with the definition of a Nash equilibrium. J

This claim implies that the support structure of Nash equilibria in stingy quantum races
is relatively simple. We first make the following definition.

I Definition 15. A pair of strategies (x, y) is called coinciding if sup(x) = sup(y). A
pair of strategies (x, y) is called alternating if there exists 1 ≤ t1 < t2 ≤ K such that the
support of one player is {t1, t1 + 2, . . . , t2 − 1} and the support of the other is sup(y) =
{t1 + 1, t1 + 3, . . . , t2}. A pair of strategies (x, y) is called (t1, c, t2)-alternating-coinciding
if there are natural numbers 1 ≤ t1 < t2 ≤ K and t1 + 2 ≤ c ≤ t2 such that the support
of one player is {t1, t1 + 2, . . . , c − 2, c, c + 1, c + 2, . . . , t2} and the support of the other is
sup(y) = {t1 + 1, t1 + 3, . . . , c− 3, c− 1, c, c+ 1, c+ 2, . . . , t2}.

I Corollary 16. Let (x, y) be a Nash equilibrium of a stingy quantum race specified by
probabilities 0 < p1 < p2 < · · · < pK ≤ 1 and 0 < P1 < P2 < · · · < Pk. Then there is some
1 ≤ T ≤ K such that

sup(x) ∪ sup(y) = [T,K] ,
(x, y) is either coinciding, alternating, or alternating-coinciding.

Proof. From Claim 14 we can easily derive the following two statements:
sup(x) ∪ sup(y) is an interval containing the time with maximum success probability,
For every t1, t2 ∈ sup(x) there must be t ∈ sup(y) with t1 < t ≤ t2.

These statements immediately imply the claim. J

We now study the particularly simple coinciding equilibria. Due to space constraints we
do not discuss the other types of equilibria here. However, we give a full characterization of
all Nash equilibria in a symmetric stingy quantum race in the full version of the paper [14].
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3.1 Unique coinciding equilibrium

We first look for Nash equilibria where the mixed strategies of Alice and Bob have the same
support. If the number of strategies is K, we know by Corollary 16 that this support must
be a set {T, T + 1, . . . ,K}, for some 1 ≤ T ≤ K.

I Lemma 17. Consider a stingy quantum race defined by 0 < p1 < . . . < pK ≤ 1 and
0 < P1 < P2 < · · · < Pk. Let x, y ∈ RK . Then (x, y) is a Nash equilibrium for this game with
support {T, T + 1, . . . ,K}, for some 1 ≤ T ≤ K, if and only if x and y satisfy the following
system of equations and inequalities.

eT
t Ay = eT

TAy, for T < t ≤ K , (2)
eT
T−1Ay ≤ eT

TAy, (3)
yt = 0 for 0 < t < T , (4)
yt > 0 for T ≤ t ≤ K , (5)

K∑
t=T

yt = 1 (6)

xTBet = xTBeT , for T < t ≤ K , (7)
xTBeT−1 ≤ xTBeT , (8)

xt = 0 for 0 < t < T , (9)
xt > 0 for T ≤ t ≤ K , (10)

K∑
t=T

xt = 1 . (11)

Proof. Eq. (4)–(6) and (9)–(11) express that x and y are probability distributions with
support {T, T +1, . . . ,K}. The other conditions for a Nash equilibrium are that all strategies
in the support of x are best responses against y and vice versa. That all strategies in the
support of x are best responses against y means

eT
t Ay = eT

TAy, for T < t ≤ K ,

eT
t−1Ay ≤ eT

t Ay, for 1 ≤ t < T.

The first equation here is exactly Eq. (2). The inequality here is implied by Eq. (3). This
is because for t < T − 1, eT

t Ay = pt

pT −1
eT
T−1Ay, as sup≤T−1(y) = sup≤t(y). A similar

argument show that Eq. (7)–(8) show that all strategies in the support of y are best responses
against x. J

When PK = 1, then Alice has zero payoff on playing time K. Thus as long as K ≥ 2,
when PK = 1 there is no coinciding Nash equilibrium (x, y) where sup(x) = sup(y) = {K}.
A similar argument applies when pK = 1. We will therefore exclude the case T = K and
either pK = 1 or PK = 1 for the next definition and Lemma 19.

I Definition 18. We define the values qAT , qBT , for T = 2, . . . ,K, and rAT , r
B
T , z

A
T , z

B
T , for

T = 1, . . . ,K − 1. The values zAK , rAK are not defined when T = K, pK = 1 and zBK , rBK are
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not defined when T = K,PK = 1.

qAi = 1
pi

(
1

Pi−1
− 1
Pi

)
, qBi = 1

Pi

(
1

pi−1
− 1
pi

)
,

rAT = 1
p̄T

(
1
PK
−

K∑
i=T+1

p̄iq
A
i

)
, rBT = 1

P̄T

(
1
pK
−

K∑
i=T+1

P̄iq
B
i

)
,

zAT = rAT +
K∑

i=T+1
qAi , zBT = rBT +

K∑
i=T+1

qBi .

I Lemma 19. For every 1 ≤ T ≤ K − 1, and the case T = K and PK 6= 1, the system of
linear equations composed of the Eq. (2), (4) and (6) of Lemma 17 has a unique solution
given by

yt =


rBT /z

B
T if t = T,

qBt /z
B
T if T < t ≤ K,

0 otherwise .

Proof. For convenience, we drop the normalization condition
∑K
t=T yt = 1 and instead scale

y such that the expected payoff of a best response is 1. That is, we replace Eq. (6) by
Eq. (12):

eT
TAy = 1. (12)

Clearly the solutions of Eq. (2),(4),(6) and the solutions of Eq. (2),(4),(12) differ only by
a constant multiplicative factor, and from a solution of the latter system a solution of the
former one can be obtained by dividing it coordinate-wise by

∑K
t=T yt.

We first want to find the solutions of Eq. (2) and (12). Together, they can be expressed
in matrix form as:

pT P̄T pT pT · · · pT
pT+1P̄T pT+1P̄T+1 pT+1 · · · pT+1
pT+2P̄T pT+2P̄T+1 pT+2P̄T+2 · · · pT+2

...
. . .

...
pK P̄T pK p̄T+1 pK P̄T+2 · · · pK P̄K




yT
yT+1
yT+2
...
yK

 =


1
1
1
...
1

 . (13)

We can simplify the above system of linear equations as follows:
0 PT+1 0 · · · 0
0 0 PT+2 · · · 0
0 0 0 · · · 0
...

. . .
...

P̄T P̄T+1 P̄T+2 · · · P̄K




yT
yT+1
yT+2
...
yK

 =


1/pT − 1/pT+1

1/pT+1 − 1/pT+2
1/pT+2 − 1/pT+3

...
1/pK

 .

From this we can see that, for every 1 ≤ T ≤ K, Eq. (13) has a unique solution, given by
yT = rBT , and yt = qBt , for T < t ≤ K. J

I Definition 20. Define T ∗A (respectively T ∗B) as the smallest integer 1 ≤ T ≤ K such that
rAT > 0 (respectively rBT > 0). When T ∗A = T ∗B we denote their common value as T ∗.

This definition makes sense as in the case pK = 1 (when rAK is not defined) we see that
rAK−1 > 0 and otherwise rAK = 1

p̄KPK
> 0. A similar argument applies for rBK .
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I Lemma 21. Eq. (2)–(6) have a solution if and only if T = T ∗B. In the case T = T ∗B, the
solution is unique and is given by

yt =
{
rBT∗

B
/zBT∗

B
if t = T ∗B ,

qBt /z
B
T∗

B
if T ∗B < t ≤ K.

Proof. Refer [14]. J

The following theorem characterizes the coinciding Nash equilibria in a stingy quantum
race.

I Theorem 22. A stingy quantum race defined by probabilities 0 < p1 < . . . < pK ≤ 1 and
0 < P1 < . . . < PK ≤ 1 has a coinciding Nash equilibrium if and only if T ∗A = T ∗B. In this
case, letting T ∗ = T ∗A = T ∗B there is a unique coinciding equilibrium given by

xt =
{
rAT∗/zAT∗ if t = T ∗,

qAt /z
A
T∗ if T ∗ < t ≤ K

, yt =
{
rBT∗/zBT∗ if t = T ∗,

qBt /z
B
T∗ if T ∗ < t ≤ K .

In particular, when pi = Pi for all 1 ≤ i ≤ K then (x, x) is the unique coinciding Nash
equilibrium.

Proof. By Lemma 17 a coinciding Nash equilibrium (x, y) supported on {T, T + 1, . . . ,K}
must satisfy Eq. (2)–(11). By Theorem 21, Eq. (2)–(6) are satisfied if and only if T = T ∗B and
y is given as in the Lemma. We can also apply Theorem 21 to (the transpose of) Eq. (7)–(11)
to see that they have a solution if and only if T = T ∗A and x is given by

xt =


rAT∗

A
/zAT∗

A
if t = T ∗A,

qAt /z
A
T∗

A
if T ∗A < t ≤ K,

0 otherwise.

As x and y must have the same support in a coinciding Nash equilibrium, there can only
exist a coinciding Nash equilibrium if T ∗A = T ∗B .

When pi = Pi for all 1 ≤ i ≤ K then clearly rAT = rBT and qAi = qBi and it will always be
the case that T ∗A = T ∗B . Thus there will always exist a Nash equilibrium in this case, given
by the unique solution to Eq. (2)–(11). J

3.2 Payoff and collision probability
In this section we will explore the consequences of the coinciding Nash equilibrium we have
found for the payoff of the game and for the probability that the two players win at the same
time, the collision probability. For these results, we will only consider the symmetric case
when there is always a unique symmetric equilibrium whose support begins at T ∗ = T ∗A = T ∗B .
Note that the payoff for each player with this strategy is 1

zT ∗ . Since a player receives payoff
1 upon winning, 1

zT ∗ is also exactly the each player’s winning probability.
To investigate the collision probability, we will also make the following definitions.

I Definition 23 (Unnormalized collision probability). Define

σ(T ) = p2
T r

2
T +

K∑
i=T+1

p2
i q

2
i .
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With this definition, 1
z2

T ∗
σ(T ∗) is the collision probability we are interested in. First we

analyze the payoff in a symmetric stingy quantum race.

I Theorem 24. Let p1 < p2 < · · · < pK define a stingy symmetric quantum race. Then
zT∗ = 1 +

√
1 + 1

p2
K

+ σ(T ∗). In particular, 1
zT ∗ ≤

√
2− 1.

Proof. Refer [14]. J

I Corollary 25. If T ∗ ≥ 2 then

pT∗−1 ≤
√

2− 1 .

Proof. As can be seen from Bob playing time T ∗ − 1, we have pT∗−1zT∗ ≤ 1, thus pT∗−1 ≤√
2− 1 by Theorem 24. J

Although Theorem 24 gives an exact expression for the payoff, we would like to get a
general lower bound on the payoff. This requires showing an upper bound on the collision
probability. Showing an upper bound on the collision probability is also important for the
application to Bitcoin, to estimate the forking probability amongst quantum miners.

The first step to upper bounding the collision probability is to get a rough lower bound on
pT∗ . This is our initial bootstrap, which will then let us upper bound the collision probability
and then in turn get a sharper lower bound on pT∗ in Corollary 28. For these results we
restrict to `-dense stingy quantum races.

I Lemma 26. Let p1, . . . , pK define an `-dense symmetric stingy quantum race. If K ≥ 6`
then pT∗ > 5

21 . In particular, T ∗ ≥ 2.

Proof. Refer [14]. J

I Theorem 27. Let p1, . . . , pK define an `-dense symmetric stingy quantum race. If K ≥ 6`
then

σ(T ∗)
z2
T∗
≤ 6`
K

and σ(T ∗) ≤ 196`
K

.

Proof. Refer [14]. J

Now that we have an upper bound on the collision probability, we obtain the following
corollary to Theorem 24.

I Corollary 28. Let p1, . . . , pK define an `-dense symmetric stingy quantum race. Let
τ = 50

√
2`

K . If K ≥ 6` then

zT∗ ≤
√

2 + 1 + τ,
1
zT∗
≥
√

2− 1− τ(
√

2− 1)2, pT∗ ≥
√

2− 1− τ(
√

2− 1)2 .

Proof. Refer [14]. J
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4 Two-player quantum races

In this section, we bootstrap our results about symmetric stingy quantum races to analyze
symmetric quantum races. Our main results are two-fold.
1. The unique coinciding Nash equilibrium in an `-dense symmetric stingy quantum race is

an approximate Nash equilibrium in the corresponding quantum race.
2. The approximate Nash equilibrium from (1) achieves a payoff which is nearly optimal

among all symmetric Nash equilibria in a symmetric quantum race.

The intuition for item (1) is clear. The only difference between a stingy quantum race
and a quantum race is the payoff on ties. For the unique coinciding Nash equilibrium we
have shown that the collision probability is O(`/K), thus the change in payoff on ties will
make only a small change to the payoffs under this strategy.

For item (2), we use the quadratic programming characterization of Nash equilibria [15].
Consider a game (A,B) where A,B are m-by-n matrices. The program

maximize
x∈∆m,y∈∆n,α,β∈R

xT (A+B)y − α− β

subject to Ay ≤ α1,
BTx ≤ β1,

(14)

has an optimal value of 0, and any (x, y) attaining the value 0 is a Nash equilibrium. In
the case of a symmetric quantum race (A,AT ), when we restrict to symmetric strategies
(x, x) the objective function in Eq. (14) becomes negative definite plus linear, making this a
standard quadratic program. We then use the tight dual formulation of a quadratic program
[8] to give an upper bound on the payoff of any symmetric Nash equilibrium, by explicitly
constructing solutions to the dual problem. This allows us to show that the payoff of the
unique coinciding equilibrium in a stingy race achieves a payoff which is within O(

√
`/K) of

optimal amongst all symmetric equilibria in the corresponding quantum race.
We now proceed to show these two results.

4.1 Approximate Nash equilibrium
I Definition 29. A two-player game described by payoff matrices (A,B) is said to have an
ε-approximate Nash equilibrium (p, q), for ε ≥ 0, if the following two conditions hold

pTAq ≥ vTAq − ε for all v ∈ ∆m (15)
pTBq ≥ pTBu− ε for all u ∈ ∆n . (16)

I Definition 30. A two-player game described by payoff matrices (A,B) is said to have an
ε-well supported Nash equilibrium (p, q), for ε ≥ 0 if

eT
i Aq ≥ eT

j Aq − ε for all i ∈ sup(p) and j ∈ [m]
pTBei ≥ pTBej − ε for all i ∈ sup(q) and j ∈ [n] .

Note that an ε-well supported Nash equilibrium is also an ε-approximate Nash equilibrium,
but the reverse does not hold.

I Theorem 31. Let p1, . . . , pK be an `-dense sequence defining the symmetric stingy quantum
race (A0, A

T
0 ) and the symmetric quantum race (A,AT ). Let (x, x) be the unique coinciding

Nash equilibrium for the stingy quantum race (A0, A
T
0 ) given by Theorem 22. Then (x, x) is

a 7(
√

2−1)`
K -well supported Nash equilibrium in the quantum race (A,AT ).
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Proof. To show that (x, x) is an ε-well supported Nash equilibrium in the quantum race
(A,AT ) it suffices to show that eT

i Ax ≥ eT
j Ax− ε for all T ∗ ≤ i ≤ K and j ∈ [K]. We omit

the details of the proof here and refer the readers to [14]. J

4.2 Upper bound on payoff
Let (x, x) be the unique coinciding Nash equilibrium in an `-dense symmetric stingy quantum
race (A0, A

T
0 ). We have just shown that (x, x) is a 7(

√
2−1)`
K -well supported Nash equilibrium

in the corresponding quantum race (A,AT). By Corollary 28, (x, x) achieves payoff at least√
2− 1− 50

√
2(
√

2− 1)2 `
K in the game (A,AT). In this section, we show that this payoff is

within O(
√
`/K) of optimal among all symmetric strategies (y, y) for the game (A,AT).

Our starting point is to use the program in Eq. (14) to provide a means to upper bound
the value of any symmetric equilibrium.

I Lemma 32. Let (A,AT ) be a symmetric game and define for c ≥ 0

γA(c) = maximize
x

1
2x

T (A+AT )x

subject to Ax ≤ c1,
1Tx = 1, x ≥ 0.

For all c0, such that γA(c) < c for all c ≥ c0, the payoff of any symmetric Nash equilibrium
in the game (A,AT) is less than c0.

Proof. We show the contrapositive. Suppose there is a symmetric Nash equilibrium (x, x)
with payoff c ≥ c0. Then (x, x, c, c) is a feasible solution to the program in Eq. (14) with
objective value 0. Thus Ax ≤ c and 1

2x
T(A+AT)x = c. J

This is the approach we take to upper bounding the payoff of symmetric Nash equilibria
in a quantum race.

I Theorem 33. Let p1, . . . , pK be an `-dense sequence with K ≥ 6`. Then any symmetric
Nash equilibrium (x, x) in the two-player quantum race defined by p1, . . . , pK has payoff at
most

√
2− 1 + 5

√
`
K .

Proof. Let (A,AT) be the payoff matrices of a two-player quantum race defined by p1, . . . , pK .
We will show that γA(c) < c for all c >

√
2 − 1 + 5

√
`
K . By Lemma 32 this proves the

theorem.
In the case of a quantum race A + AT = p1T + 1pT − ppT. This means that over the

probability simplex, the quadratic form xT(A+ AT)x = −xT(ppT)x+ 2pTx is a negative-
definite plus linear function. In this case, γA(c) is in the standard form of a quadratic
program and has a dual program with matching value [8].

γA(c) = minimize
v∈RK ,λ,d∈R

1
2λ

2 + c · 1Tv + d

subject to AT v ≥ (1− λ)p− d1 ,

v ≥ 0.

(17)

Our approach will be to construct a feasible solution to Eq. (17) to demonstrate that
γA(c) < c for all c >

√
2− 1 + 5

√
`
K .
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First note that for c > 1
2 there is a trivial solution where λ = 1, d = 0 and v is the all-zero

vector which shows that γ(c) < c. We now focus on the case c ≤ 1
2 . Let

√
2− 1 ≤ c ≤ 1

2 . We
will develop a lower bound on c which implies γA(c) < c.

Let S be the smallest index i such that pi ≥ c. Note that as A is an `-dense quantum
race we have pS ≤ c+ `

K . We let

d = (1− λ)
(

1 + pK −
pK
pS

)
and

v(i) =


0 if 1 ≤ i < S

(1− λ− d)pS

p̄S

1
pi

(
1
pi
− 1

pi+1

)
if S ≤ i < K

(1− λ− d) pS

p2
K
p̄S
− (1−λ)

pK
if i = K .

The choice of v comes from solving the system of linear equations (AT
0 v)i = (1− λ)pi − d for

S ≤ i ≤ K. The parameter λ will be chosen later.
Let us see that v satisfies the constraints of Eq. (17). Note that 1− λ− d = (1− λ)pK p̄S

pS
.

Thus v(K) = 0 and v ≥ 0 so long as λ ≤ 1.
As mentioned, by construction v satisfies (AT0 v)i = (1− λ)pi − d for S ≤ i ≤ K. Thus as

A = A0 + 1
2diag(p)2 and v ≥ 0 we also have (AT v)i ≥ (1− λ)pi − d for S ≤ i ≤ K.

For i < S we have that

(AT v)i ≥ (AT0 v)i = p̄ip
T v ≥ p̄SpT v = (1− λ)pS − d ≥ (1− λ)pi − d .

Thus the constraint AT0 v ≥ (1−λ)p−d1 is satisfied. We have shown that v is a feasible solution
for any choice of λ ≤ 1. We now choose λ to minimize the objective value. Substituting our
choices of v, d into the objective value we have

γA(c) ≤ 1
2λ

2 + (1− λ)
(

1 + pK −
pK
pS

)
+ c(1− λ)pK

K−1∑
i=S

1
pi

(
1
pi
− 1
pi+1

)

= 1
2λ

2 + (1− λ)
(

1 + pK

(
− p̄S
pS

+ c ·
K−1∑
i=S

1
pi

(
1
pi
− 1
pi+1

)))

Define

β(c) = 1 + pK

(
− p̄S
pS

+ c ·
K−1∑
i=S

1
pi

(
1
pi
− 1
pi+1

))
.

The objective value 1
2λ

2 + (1 − λ)β(c) is minimized over λ by taking λ = β(c). This
makes the objective value β(c) − β(c)2/2. We have now reduced the problem to showing
β(c)− β(c)2/2− c < 0. The roots of the corresponding quadratic equation are 1±

√
1− 2c.

Note that c ≤ 1/2, thus the square root term will be real. Thus we will simultaneously have
β(c) ≤ 1 and β(c) − β(c)2/2 < c when β(c) < 1 −

√
1− 2c. In Lemma 34, we show that

β(c) < 1−
√

1− 2c when
√

2− 1 + 5
√

`
K ≤ c ≤

1
2 . This will conclude the proof. J

I Lemma 34. β(c) < 1−
√

1− 2c for any
√

2− 1 + 5
√

`
K ≤ c ≤

1
2 .

Proof. Refer [14]. J
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5 Multiplayer quantum races

5.1 Basic properties
For an integer n ≥ 2, an n-player game is specified by a set of pure strategies Si, and payoff
functions ui : S → R, for each player i ∈ [n], where by definition S = S1 × · · · × Sn is the
set of pure strategy profiles. For s ∈ S, the value ui(s) is the payoff of player i for pure
strategy profile s. Let S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn be the set of all pure strategy
profiles of players other than i. For s ∈ S and i ∈ [n], we set the partial pure strategy profile
s−i ∈ S−i to be (s1, . . . si−1, si+1, . . . , sn). For s′ in S−i, and si ∈ Si, we denote by (s′, si)
the combined pure strategy profile (s′1, . . . , s′i−1, si, s

′
i+1, . . . , s

′
n) ∈ S. We will suppose that

each player has m pure strategies and that Si = {e1, . . . , em}, the canonical basis of the
vector space Rm, for all i ∈ [n], and therefore S = {e1, . . . , em}n. For simplicity, instead of
ej we often say strategy j.

A mixed strategy for player i is a probability distribution over Si that we identify with a
vector xi = (x1

i , . . . x
m
i ) such that xji ≥ 0, for all j ∈ [m], and

∑
j∈[m] x

j
i = 1. We denote by

∆i the set of mixed strategies for i, and we call ∆ = ∆1 × · · · ×∆r the set of mixed strategy
profiles. For a mixed strategy profile x = (x1, . . . , xn) and pure strategy profile s ∈ S, the
product xs = xs1

1 x
s2
2 · · ·xsn

n is the probability of s in x. We will consider the multilinear
extension of the payoff functions from S to ∆ defined by ui(x) =

∑
s∈S x

sui(s). The set
∆−i, the partial mixed strategy profile x−i, for x ∈ ∆ and i ∈ [n], and the combined mixed
strategy profile (x′, xi) for x′ ∈ ∆−i and xi ∈ ∆i are defined analogously to the pure case.

The pure strategy si is a best response for player i against the partial mixed strategy
profile x′ ∈ ∆−i if it maximizes ui(x′, ·). For x ∈ ∆ and i ∈ [n], we will denote by br(x−i)
the set of best responses of player i against x−i. A Nash equilibrium is a mixed strategy
profile x = (x1, . . . , xn) such that sup(xi) ⊆ br(x−i), for all i ∈ [n].

I Definition 35 (n-party stingy quantum race). Let n ≥ 2 be a positive integer. An n-party
stingy quantum race is defined by a sequence of increasing probabilities 0 < P1 < P2 < . . . <

PK ≤ 1, for some positive integer K. The set of pure strategies of all players is [K]. For
every i, the utility function of the ith player is defined as

ui(s1, . . . , sn) = Psi

∏
k 6=i,sk≤si

P̄sk
.

Consider an n-party stingy quantum race given by the probabilities 0 < P1 < . . . < PK ≤
1, and let x−i ∈ ∆−i for some i ∈ [n]. If player i plays the pure strategy s against x−i, her
payoff is

ui(x−i, s) = Ps
∏
k 6=i

 ∑
sk∈sup≤s(xk)

xsk

k P̄sk
+

∑
sk∈sup>s(xk)

xsk

k

 . (18)

The following is the multiparty analog of Claim 14.

I Claim 36. Let x = (x1, . . . xn) be a Nash equilibrium of an n-party stingy quantum race
defined by probabilities P1 < . . . < PK . If s1 ∈ sup(xi), for some i ∈ [n], then for all s2 > s1
there exists k 6= i such that sup≤s1(xk) 6= sup≤s2(xk).

Proof. If sup≤s1(xk) = sup≤s2(xk), for all k 6= i then

ui(x−i, s2) = Ps2

Ps1

ui(x−i, s1).

As ps1 < ps2 , the payoff for playing s2 is strictly larger than that for playing s1. Therefore s1
is not a best response for x−i, in contradiction with the definition of a Nash equilibrium. J
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This claim implies the following properties for the supports of Nash equilibria in a
multiplayer stingy quantum race.

I Corollary 37. Let x be a Nash equilibrium of an n-party stingy quantum race defined by
probabilities 0 < P1 < P2 < . . . < PK ≤ 1. Then we have:⋃n

i=1 sup(xi) is an interval containing K,
for every i ∈ [n], for every s1, s2 ∈ sup(xi) there exists s ∈

⋃
k 6=i sup(xk) with s1 < s ≤ s2.

Let x be a Nash equilibrium of an n-party stingy quantum race. We say that x is
coinciding if sup(xi) = sup(xk), for all i, k ∈ [n]. We call this common support in a coinciding
Nash equilibrium the support of the equilibrium. In the multiparty case we will only study
coinciding Nash equilibria.

5.2 Coinciding Nash equilibria of stingy multiplayer races
By Corollary 37 we know that in a coinciding Nash equilibrium of an n-party stingy quantum
race the support of the equilibrium is of the form {T, T + 1, . . . ,K}, for some 1 ≤ T ≤ K.
We would like to characterize these coinciding equilibria.

I Lemma 38. Let x = (x1, . . . , xn), where xi is a K-dimensional real vector for every i ∈ [n],
and let 1 ≤ T ≤ K. Then x is a Nash equilibrium of support {T, T + 1, . . . ,K} in an n-party
stingy quantum race defined by 0 < P1 < . . . < PK ≤ 1 if and only x satisfies the following
system, for all i ∈ [n]:

ui(x−i, t) = ui(x−i, T ) for T < t ≤ K , (19)
ui(x−i, T − 1) ≤ ui(x−i, T ) , (20)

xti = 0 for 0 < t < T , (21)
xti > 0 for T ≤ t ≤ K , (22)

K∑
t=T

xti = 1 . (23)

Proof. For every i ∈ [n], Eq. (21)–(23) express that xi is a probability distribution of support
{T, T + 1, . . . ,K}. For T ≥ 2, when playing a strategy t < T against the partial mixed
strategy profile x−i, the ith player’s payoff is maximized if she plays T − 1. Therefore
Eq. (19) and (20) express that the strategies in her support are all best responses against
x−i. J

I Definition 39. For an n-party stingy quantum race defined by 0 < P1 < . . . < PK ≤ 1 we
define its reduced game as the 2-party stingy quantum race defined by the two sequences of
probabilities p1 < . . . < pK , and P1 < . . . < PK where pj = P

1/(n−1)
j , for 1 ≤ j ≤ K.

We denote by A the payoff matrix of the first player in the reduced game

I Lemma 40. Let an n-party stingy quantum race be defined by 0 < P1 < . . . < PK ≤ 1, let
x = (x1, . . . , xn), where xi is a K-dimensional vector, and let 1 ≤ T ≤ K. Then Eq. (19)–
(23) are satisfied by x, for every i ∈ [n] if and only if Eq. (2)–(6) for the reduced game are
satisfied by xi, for every i ∈ [n].

Proof. Refer [14]. J

The following theorem characterizes the coinciding Nash equilibria in an n-party stingy
quantum race.



T. Lee, M. Ray, and M. Santha 51:19

I Theorem 41. An n-party stingy quantum race always has a unique coinciding Nash
equilibrium x = (x1, . . . , xn), where x1 = · · · = xn. If the game is defined by the probabilities
0 < P1 < P2 < · · · < PK then the coinciding equilibrium has support {T ∗, T ∗ + 1, . . . ,K},
where T ∗ = T ∗B of the reduced game, and for all i ∈ [n], the distribution xi is defined on its
support as

xti =
{
rBT∗/zBT∗ if t = T ∗,

qBt /z
B
T∗ if T ∗ < t ≤ K.

Proof. Combining Lemma 38 and Lemma 40, we get that x is a coinciding Nash equilibrium
of support {T, T + 1, . . . ,K} if and only if xi satisfies Eq. (2)–(6) for the reduced game, for
all i ∈ [n]. By Theorem 21 this happens if and only if T = T ∗B of the reduced game, and the
unique solution for xi, for i ∈ [n], is the one stated by the Theorem. J

5.3 Collision probability of the stingy coinciding equilibrium
Our main objective in this section is to upper bound the collision probability – the probability
that two or more players succeed at the same time – in the coinciding equilibrium found in
the last section for an `-dense stingy n-player quantum race. To help with this, we make the
following definition.

I Definition 42. For a joint probability distribution y = (y1, . . . , yn) ∈ ∆, let cpmi (y) denote
the probability that player i succeeds first and that exactly m players (including i) succeed at
the same time under the joint strategy y. Let cpi(y) =

∑n
m=2 cpmi (y) denote the probability

that player i succeeds first and at least one other player succeeds at the same time.

Let us also set up notation to describe the coinciding equilibrium in a stingy multiplayer
race. Define the following quantities

qi = 1
Pi

(
1

P
1/(n−1)
i−1

− 1
P

1/(n−1)
i

)
, rT = 1

P̄T

(
1

P
1/(n−1)
K

−
K∑

i=T +1

P̄iqi

)
, zT = rT +

K∑
i=T +1

qi .

Let T ∗ be the starting point of the support of the coinciding equilibrium. Then by
Theorem 41, the strategy of player i in the coinciding equilibrium is given by

xti =


rT∗/zT∗ if t = T ∗,

qt/zT∗ if T ∗ < t ≤ K,
0 if t < T ∗ .

(24)

To obtain concrete bounds on the collision probability, we will need bounds on zT∗ and
PT∗−1.

I Lemma 43. In any stingy multiplayer quantum race with n players (1/zT∗)n−1 < 1/n.

Proof. Refer [14]. J

I Theorem 44. Let P1, . . . , PK define a stingy n-player quantum race with n ≥ 2. Then
PT∗−1 < 1

n . If in addition P1, ...., PK form an `-dense sequence and 4e`n ≤ K then
PT∗−1 ≥ 1

2en , where e is Euler’s number.

Proof. Refer [14]. J
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The next lemma bounds the collision probability for player i when all players but player i
play according to the coinciding equilibrium, and player i plays an arbitrary strategy v. We
will use this lemma to bound the total collision probability and also in Section 5.4 to show
that the stingy coinciding equilibrium is an approximate equilibrium in a multiparty race.

I Lemma 45. Let P1, ...., PK define an `-dense stingy n-player quantum race, n ≥ 2,
with 4en` ≤ K, and let x be the unique coinciding equilibrium given by Eq. (24). Then
cpi(x−i, v) ≤ 8e`

K for any i ∈ [n] and v ∈ ∆i.

Proof. Refer [14]. J

I Theorem 8. Let P1, ...., PK define an `-dense stingy n-player quantum race such that
4en` ≤ K. When the players play the coinciding equilibrium of the stingy race, the probability
that two or more players succeed at the same time is at most 8en`

K .

Proof. By Lemma 45, the probability that two or more players succeed at the same time is
at most

n∑
i=1

cpi(x) ≤ 8en`
K

. J

5.4 Multiplayer quantum races

In this section we use our results about the stingy multiplayer quantum race to analyse the
multiplayer quantum race. Namely, we show that the coinciding equilibrium in a stingy
multiplayer quantum race is an approximate equilibrium in a multiplayer race. The difference
between a stingy multiplayer race and a multiplayer race is that in a multiplayer race, the
payoff is equally divided amongst all players who succeed first at the same time.

I Definition 46 (Multiplayer quantum race). Let ui be the payoff function for player i ∈ [n] in
the n-player stingy race defined by P1 < · · · < Pk, as given by Eq. (18). The payoff function
u′i in the n-player quantum race defined by P1, . . . , Pk is

u′i(x) = ui(x) +
n∑

m=2

cpmi (x)
m

.

While the tie-splitting payoff in Definition 46 is quite natural, one could imagine other
definitions in-between stingy multiplayer races and the definition of multiplayer races we
have given. Our results in this section depend very weakly on the exact definition of how ties
are split in a multiplayer race. In fact, the only property we use is u′i(x) ≤ ui(x) + cpi(x).
This property holds under any reasonable definition of tie-splitting.

Now we show Theorem 9 from the introduction that the coinciding Nash equilibrium
in a multiplayer stingy quantum race is an approximate Nash equilibrium in a multiplayer
quantum race.

I Theorem 9. Let P1, ...., PK define an `-dense stingy n-player quantum race, n ≥ 2, with
4en` ≤ K. If x = (x1, ..., xn) is the coinciding Nash equilibrium for this stingy race, then x
is an 8e`

K - approximate Nash equilibrium of the corresponding quantum race.

Proof. Refer [14]. J
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Abstract
We introduce a new model for testing graph properties which we call the rejection sampling model.
We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires
complexity Ω̃(n2). Via reductions from the rejection sampling model, we give three new lower
bounds for tolerant testing of Boolean functions of the form f : {0, 1}n → {0, 1}:

Tolerant k-junta testing with non-adaptive queries requires Ω̃(k2) queries.
Tolerant unateness testing requires Ω̃(n) queries.
Tolerant unateness testing with non-adaptive queries requires Ω̃(n3/2) queries.

Given the Õ(k3/2)-query non-adaptive junta tester of Blais [7], we conclude that non-adaptive
tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given
the Õ(n3/4)-query unateness tester of Chen, Waingarten, and Xie [19] and the Õ(n)-query non-
adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri
[3], we conclude that tolerant unateness testing requires more queries than non-tolerant unate-
ness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first
separation between tolerant and non-tolerant testing for a natural property of Boolean functions.
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1 Introduction

Over the past decades, property testing has emerged as an important line of research in
sublinear time algorithms. The goal is to understand randomized algorithms for approximate
decision making, where the algorithm needs to decide (with high probability) whether a
huge object has some property by making a few queries to the object. Many different
types of objects and properties have been studied from this property testing perspective
(see the surveys by Ron [35, 36] and the recent textbook by Goldreich [26] for overviews of
contemporary property testing research). This paper deals with property testing of Boolean
functions f : {0, 1}n → {0, 1} and property testing of graphs with vertex set [n].

1 Research supported by NSERC Discovery grant and the David R. Cheriton Graduate Scholarship. Part
of this work was done while the author was visiting Columbia University.

2 This work is supported in part by the NSF Graduate Research Fellowship under Grant No. DGE-16-
44869, CCF-1703925, CCF-1563155, and CCF-1420349.

© Amit Levi and Erik Waingarten;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 52; pp. 52:1–52:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amit.levi@uwaterloo.ca
mailto:eaw@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.52
https://arxiv.org/abs/1805.01074v1
https://arxiv.org/abs/1805.01074v1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


52:2 Lower Bounds for Tolerant Junta and Unateness Testing

In this paper we describe a new model of graph property testing, which we call the
rejection sampling model. For n ∈ N and a subset P of graphs on the vertex set [n], we say a
graph G on vertex set [n] has property P if G ∈ P and say G is ε-far from having property P
if all graphs H ∈ P differ on at least εn2 edges3. The problem of ε-testing P with rejection
sampling queries is the following task:

Given some ε > 0 and access to an unknown graph G = ([n], E), output “accept” with
probability at least 2

3 if G has property P, and output “reject” with probability at
least 2

3 if G is ε-far from having property P . The access to G is given by the following
oracle queries: given a query set L ⊆ [n], the oracle samples an edge (i, j) ∼ E

uniformly at random and returns {i, j} ∩ L.

We measure the complexity of algorithms with rejection sampling queries by considering
the sizes of the queries. The complexity of an algorithm making queries L1, . . . , Lt ⊆ [n] is∑t
i=1 |Li|.
The rejection sampling model allows us to study testers which rely on random sampling of

edges, while providing the flexibility of making lower-cost queries. This type of query access
strikes a delicate balance between simplicity and generality: queries are constrained enough
for us to show high lower bounds, and at the same time, the flexibility of making queries allows
us to reduce the rejection sampling model to Boolean function testing problems. Specifically,
we reduce to tolerant junta testing and tolerant unateness testing (see Subsection 1.1).

Our main result in the rejection sampling model is regarding non-adaptive algorithms.
These algorithms need to fix their queries in advance and are not allowed to depend on
answers to previous queries (in the latter case we say that the algorithm is adaptive). We
show a lower bound on the complexity of testing whether an unknown graph G is bipartite
using non-adaptive queries.

I Theorem 1. There exists a constant ε > 0 such that any non-adaptive ε-tester for
bipartiteness in the rejection sampling model has cost Ω̃(n2).4

More specifically, Theorem 1 follows from applying Yao’s principle to the following lemma.

I Lemma 2. Let G1 be the uniform distribution over the union of two disjoint cliques of size
n/2, and let G2 be the uniform distribution over complete bipartite graphs with each part of
size n/2. Any deterministic non-adaptive algorithm that can distinguish between G1 and G2
with constant probability using rejection sampling queries, must have complexity Ω̃(n2).

We discuss a number of applications of the rejection sampling model (specifically, of
Lemma 2) in the next subsection. In particular, we obtain new lower bounds in the tolerant
testing framework introduced by Parnas, Ron, and Rubinfeld in [34] for two well-studied
properties of Boolean functions (specifically, k-juntas and unateness; see the next subsection
for definitions of these properties). These lower bounds are obtained by a reduction from
the rejection sampling model; we show that too-good-to-be-true Boolean function testers for
these properties imply the existence of rejection sampling algorithms which distinguish G1
and G2 with õ(n2) complexity. Therefore, we may view the rejection sampling model as a
useful abstraction in studying the hard instances of tolerant testing k-juntas and unateness.

3 The distance definition can be modified accordingly when one considers bounded degree or sparse
graphs.

4 We use the notations Õ, Ω̃ to hide polylogarithmic dependencies on the argument, i.e. for expressions of
the form O(f logc f) and Ω(f/ logc f) respectively (for some absolute constant c).
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1.1 Applications to Tolerant Testing: Juntas and Unateness
Given n ∈ N and a subset P of n-variable Boolean functions, a Boolean function f : {0, 1}n →
{0, 1} has property P if f ∈ P . The distance between Boolean functions f, g : {0, 1}n → {0, 1}
is dist(f, g) = Prx∼{0,1}n [f(x) 6= g(x)]. The distance of f to the property P is dist(f,P) =
ming∈P dist(f, g). We say that f is ε-close to P if dist(f,P) ≤ ε and f is ε-far from P if
dist(f,P) > ε. The problem of tolerant property testing [34] of P asks for query-efficient
randomized algorithms for the following task:

Given parameters 0 ≤ ε0 < ε1 < 1 and black-box query access to a Boolean function
f : {0, 1}n → {0, 1}, accept with probability at least 2

3 if f is ε0-close to P and reject
with probability at least 2

3 if f is ε1-far from P.

An algorithm which performs the above task is an (ε0, ε1)-tolerant tester for P. A (0, ε1)-
tolerant tester is a standard property tester or a non-tolerant tester. As noted in [34], tolerant
testing is not only a natural generalization, but is also very often the desirable attribute
of testing algorithms. This motivates the high level question: how does the requirement of
being tolerant affect the complexity of testing the properties studied? We make progress
on this question by showing query-complexity separations for two well-studied properties of
Boolean functions: k-juntas, and unate functions.

(k-junta) A function f : {0, 1}n → {0, 1} is a k-junta if it depends on at most k of its
variables, i.e., there exists k distinct indices i1, . . . ik ∈ [n] and a k-variable function
g : {0, 1}k → {0, 1} where f(x) = g(xi1 , . . . , xik ) for all x ∈ {0, 1}n.
(unateness) A function f : {0, 1}n → {0, 1} is unate if f is either non-increasing or non-
decreasing in every variable. Namely, there exists a string r ∈ {0, 1}n such that the
function f(x⊕ r) is monotone with respect to the bit-wise partial order on {0, 1}n.

While separations between tolerant and non-tolerant testing of Boolean function properties
were known for an (artificial) property (see Subsection 1.2), these results are the first to give
such lower bounds for a natural class of well-studied properties of Boolean functions. The
first such theorem we state concerns non-adaptive tolerant testers for k-juntas.

I Theorem 3. For any α < 1, there exists constants 0 < ε0 < ε1 < 1 such that for any
k = k(n) ≤ αn, any non-adaptive (ε0, ε1)-tolerant k-junta tester must make Ω̃(k2) queries.

We give a noteworthy consequences of the Theorem 3. In [7], Blais gave a non-adaptive
Õ(k3/2)-query tester for (non-tolerant) testing of k-juntas, which was shown to be optimal
for non-adaptive algorithms by Chen, Servedio, Tan, Waingarten and Xie in [17]. Combined
with Theorem 3, this shows a polynomial separation in the query complexity of non-adaptive
tolerant junta testing and non-adaptive junta testing.

The next two theorems concern tolerant testers for unateness.

I Theorem 4. There exists constants 0 < ε0 < ε1 < 1 such that any (possibly adaptive)
(ε0, ε1)-tolerant unateness tester must make Ω̃(n) queries.

I Theorem 5. There exists constant 0 < ε0 < ε1 < 1 such that any non-adaptive (ε0, ε1)-
tolerant unateness tester must make Ω̃(n3/2) queries.

A similar separation in tolerant and non-tolerant testing occurs for the property of
unateness as a consequence of Theorem 4 and Theorem 5. Recently, in [3], Baleshzar,
Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri gave a non-adaptive Õ(n)-query
tester for (non-tolerant) unateness testing, and Chen, Waingarten and Xie [18] gave an
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(adaptive) Õ(n3/4)-query tester for (non-tolerant) unateness testing. We thus, conclude
that by Theorem 4 and Theorem 5, tolerant unateness testing is polynomially harder than
(non-tolerant) unateness testing, in both adaptive and non-adaptive settings.

1.2 Related Work
The properties of k-juntas and unateness have received much attention in property testing
research ([24, 20, 7, 8, 10, 37, 17, 9] study k-juntas, and [27, 31, 14, 3, 18, 19] study unateness).
We briefly review the current state of affairs in (non-tolerant) k-junta testing and unateness
testing, and then discuss tolerant testing of Boolean functions and the rejection sampling
model.

Testing k-juntas. The problem of testing k-juntas, introduced by Fischer, Kindler, Ron,
Safra, and Samorodnitsky [24], is now well understood up to poly-logarithmic factors.
Chockler and Gutfreund [20] show that any tester for k-juntas requires Ω(k) queries (for a
constant ε1). Blais [8] gave a junta tester that uses O(k log k + k/ε1) queries, matching the
bound of [20] up to a factor of O(log k) for constant ε1. When restricted to non-adaptive
algorithms, [24] gave a non-adaptive tester making Õ(k2/ε1) queries, which was subsequently
improved in [7] to Õ(k3/2)/ε1. In terms of lower bounds, Buhrman, Garcia-Soriano, Matsliah,
and de Wolf [10] gave a Ω(k log k) lower bound for ε = Ω(1), and Servedio, Tan, and Wright
[37] gave a lower bound which showed a separation between adaptive and non-adaptive
algorithms for ε1 = 1

log k . These results were recently improved in [17] to Ω̃(k3/2/ε1), settling
the non-adaptive query complexity of the problem up to poly-logarithmic factors.

Testing unateness. The problem of testing unateness was introduced alongside the problem
of testing monotonicity in Goldreich, Goldwasser, Lehman, Ron, and Samorodnitsky [27],
where they gave the first O(n3/2/ε1)-query non-adaptive tester. Khot and Shinkar [31]
gave the first improvement by giving a Õ(n/ε1)-query adaptive algorithm. A non-adaptive
algorithm with Õ(n/ε1) queries was given in [13, 3]. Recently, [18, 2] show that Ω̃(n)
queries are necessary for non-adaptive one-sided testers. Subsequently, [19] gave an adaptive
algorithm testing unateness with query complexity Õ(n3/4/ε2

1). The current best lower bound
for general adaptive testers appears in [18], where it was shown that any adaptive two-sided
tester must use Ω̃(n2/3) queries.

Tolerant testing. Once we consider tolerant testing, i.e., the case ε0 > 0, the picture is not
as clear. In the paper introducing tolerant testing, [34] observed that standard algorithms
whose queries are uniform (but not necessarily independent) are inherently tolerant to some
extent. Nevertheless, achieving (ε0, ε1)-tolerant testers for constants 0 < ε0 < ε1, can require
applying different methods and techniques (see e.g, [30, 34, 25, 1, 32, 33, 22, 11, 6, 5, 38]).

By applying the observation from [34] to the unateness tester in [3], the tester accepts
functions which are O(ε1/n)-close to unate with constant probability. We similarly obtain
weak guarantees for tolerant testing of k-juntas. Diakonikolas, Lee, Matulef, Onak, Rubinfeld,
Servedio, and Wan [21] observed that one of the (non-adaptive) junta testers from [24] accepts
functions that are poly(ε1, 1/k)-close to k-juntas. Chakraborty, Fischer, Garcia-Soríano, and
Matsliah [15] noted that the analysis of the junta tester of Blais [8] implicitly implies an
exp(k/ε1)-query complexity tolerant tester which accepts functions that are ε1/c-close to
some k-junta (for some constant c > 1) and rejects functions that are ε1-far from every
k-junta. Recently, Blais, Canonne, Eden, Levi and Ron [9] showed that when required to
distinguish between the cases that f is ε1/10-close to a k-junta, or is ε1-far from a 2k-junta,
poly(k, 1/ε1) queries suffice.
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For general properties of Boolean functions, tolerant testing could be much harder than
standard testing. Fischer and Fortnow [23] used PCPs in order to construct a property of
Boolean functions P which is (0, ε1)-testable with a constant number of queries (depending
on ε1), but any (1/4, ε1)-tolerant test for P requires nc queries for some c > 0. While
[23] presents a strong separation between tolerant and non-tolerant testing, the complexity
of tolerant testing of many natural properties remains open. We currently neither have
a poly(k, 1

ε1
)-query tester which (ε0, ε1)-tests k-juntas, nor a poly(n, 1

ε1
)-query tester that

(ε0, ε1)-tests unateness or monotonicity when ε0 = Θ(ε1).

Testing graphs with rejection sampling queries. Even though the problem of testing
graphs with rejection sampling queries has not been previously studied, the model shares
characteristics with previous studied frameworks. These include sample-based testing studied
by Goldreich, Goldwasser, and Ron in [28, 29], where the oracle receives random samples
from the input. One crucial difference between rejection sampling algorithms (which always
query [n]) and sample-based testers is the fact that rejection sampling algorithms only receive
positive examples (in the form of edges), as opposed to random positions in the adjacency
matrix (which may be a negative example indicated the non-existence of an edge).

The rejection sampling model for graph testing also bears some resemblance to the
conditional sampling framework for distribution testing introduced in Canonne, Ron, and
Servedio, as well as Chakraborty, Fischer, Goldhirsh, and Matsliah [12, 16], where the
algorithm specifies a query set and receives a sample conditioned on it lying in the query set.

1.3 Techniques and High Level Overview
We first give an overview of how the lower bound in the rejection sampling model (Lemma 2)
implies lower bounds for tolerant testing of k-juntas and unateness, and then we give an
overview of how Lemma 2 is proved.

Reducing Boolean Function Testing from Rejection Sampling. This work should be
considered alongside some recent works showing lower bounds for testing the properties of
monotonicity, unateness, and juntas in the standard property testing model [4, 18, 17]. At a
high level, the lower bounds for Boolean function testing proceed in three steps:
1. First, design a randomized indexing function Γ : {0, 1}n → [N ] that partitions the Boolean

cube {0, 1}n into roughly equal parts in a way compatible with the property (either junta,
or unateness). We want to ensure that algorithms that make few queries cannot learn too
much about Γ, and that queries falling in the same part are close in Hamming distance.

2. Second, define two distributions over functions hi : {0, 1}n → {0, 1} for each i ∈ [N ]. The
hard functions are defined by f(x) = hΓ(x)(x), so that one distribution corresponds to
functions with the property, and the other distribution corresponds to functions far from
the property.

3. Third, show that any testing algorithm for the property is actually solving some algorithmic
task (determined by the distributions of hi) which is hard when queries are close in
Hamming distance.

The first step in the above-mentioned plan is standard (given familiarity with [18] and
[17]). We will use a construction from [17] for the junta lower bound and a Talagrand-based
construction (similar to [18], but somewhat simpler) for the unateness lower bounds. The
novelty in this work lies in steps 2 and 3. We will define the distributions over sub-functions
hi such that the resulting Boolean functions f(x) = hΓ(x)(x) either is ε0-close to desired
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property (k-juntas and unateness), or is ε1-far from having the desired property (k-juntas
and unateness). Then, we will show that any algorithm for tolerant testing of k-juntas or
unateness must be able to solve a hard instance of bipartiteness testing in the rejection
sampling model.

At a very high level, our reductions will follow by associating to each distribution of
Boolean functions f : {0, 1}n → {0, 1} a distribution over graphs G defined on a subset of [n]
(these will be G1 and G2). The edges of a graph G sampled from G1 or G2 will encode how the
variables of f interact with one another, and the distance of f to k-junta (or unateness) will
depend on a global parameter of the G.5 In addition, Boolean function queries on f will be
interpreted as rejection sampling queries to G, so that tests distinguishing the distributions
of Boolean functions will give rise to rejection sampling algorithms which distinguish between
G1 and G2. Since we will show a lower bound in the rejection sampling model, we will obtain
a lower bound for tolerant testing of k-juntas and unateness.

For a more detailed discussion of the distributions and the reductions see Sections 3
and 4.

Distinguishing G1 and G2 with Rejection Sampling Queries. In order to prove Lemma 2,
one needs to rule out any deterministic non-adaptive algorithm which distinguishes between
G1 and G2 with rejection sampling queries of complexity õ(n2). In order to keep the discussion
at a high level, we identify three possible “strategies” for determining whether an underlying
graph is a complete bipartite graph, or a union of two disjoint cliques:
1. One approach is for the algorithm to sample edges and consider the subgraph obtained

from edges returned by the oracle. For instance, the algorithm may make all rejection
sampling queries to be [n]. These queries are expensive in the rejection sampling model,
but they guarantee that an edge from the graph will be observed. If the algorithm is lucky,
and there exists a triangle in the subgraph observed, the graph must not be bipartite, so
it must come from G2.

2. Another sensible approach is for the algorithm to forget about the structure of the
graph, and simply view the distribution on the edges generated by the randomness in the
rejection sampling oracle as a distribution testing problem. Suppose for simplicity that
the algorithm makes rejection sampling queries [n]. Then, the corresponding distributions
supported on edges from G1 and G2 will be Ω(1)-far from each other, so a distribution
testing algorithm can be used.

3. A third, more subtle, approach is for the algorithm to use the fact that G1 and G2
correspond to the union of two cliques and a complete bipartite graph, and extract
knowledge about the non-existence of edges when making queries which return either ∅
or a single vertex. More specifically, suppose that by having observed some edges, the
algorithm observes two connected components L1 and L2. If when querying L1 ∪ L2
multiple times, we do not observe an edge, it is more likely the underlying graph comes
from G1 than G2. Specifically, if G ∼ G1 and L1 lies in one clique and L2 lies in the other
clique, there would be no edges with edges from L1 and L2; on the other hand, if G ∼ G2,
then L1 and L2 would always have some edges between them.

5 The relevant graph parameter in k-juntas and unateness will be different. Luckily, both graph parameters
will have gaps in their value depending on the distribution the graphs were drawn from (either G1 or G2).
This allows us to reuse the work of proving Lemma 2 to obtain Theorem 3, Theorem 4, and Theorem 5.



A. Levi and E. Waingarten 52:7

The three strategies mentioned above all fail to give õ(n2) rejection sampling algorithms.
The first approach fails because with a budget of õ(n2), rejection sampling algorithms will
observe subgraphs which consist of various trees of size at most logn, thus we will not observe
cycles. The second approach fails since the distributions are supported on Ω(n2) edges, so
distribution testing algorithms will require Ω(n) edges (which costs Ω(n2)) to distinguish
between G1 and G2. Finally, the third approach fails since algorithms will only observe
o(n) responses from the oracle corresponding to lone vertices which will be split roughly
evenly among the unknown parts of the graph, so these observations will not be enough to
distinguish between G1 and G2.

Our lower bound rules out the three strategies sketched above when the complexity is
õ(n2), and shows that if the above three strategies do not work (in any possible combination
with each other as well), then no non-adaptive algorithm of complexity õ(n2) will work. The
main technical challenge is to show that the above strategies are the only possible strategies
to distinguish G1 and G2. In Section 5, we give a more detailed, yet still high-level discussion
of the proof of Lemma 2.

Finally, the analysis of Lemma 2 is tight; there is a non-adaptive rejection sampling
algorithm which distinguishes G1 and G2 with complexity Õ(n2). The algorithm (based on
the first approach mentioned above) is simple: make Õ(n) queries L = [n], and if we observe
an odd-length cycle, we output “G1”, otherwise, output “G2”.

1.4 Preliminaries
We use boldfaced letters such as A,M to denote random variables. Given a string x ∈ {0, 1}n
and j ∈ [n], we write x(j) to denote the string obtained from x by flipping the j-th coordinate.
An edge along the j-th direction in {0, 1}n is a pair (x, y) of strings with y = x(j). In addition,
for α ∈ {0, 1} we use the notation x(j→α) to denote the string x where the jth coordinate is
set to α. Given x ∈ {0, 1}n and S ⊆ [n], we use x|S ∈ {0, 1}S to denote the projection of x
on S. For a distribution D we write d ∼ D to denote an element d drawn according to the
distribution. We sometimes write a ≈ b± c to denote b− c ≤ a ≤ b+ c.

2 The Rejection Sampling Model

In this section, we define the rejection sampling model and the distributions over graphs
we will use throughout this work. We define the rejection sampling model tailored to our
specific application of proving Lemma 2.

I Definition 6. Consider two distributions, G1 and G2 supported on graphs with vertex
set [n]. The problem of distinguishing G1 and G2 with a rejection sampling oracle aims to
distinguish between the following two cases with a specific kind of query:

Cases: We have an unknown graph G ∼ G1 or G ∼ G2.
Rejection Sampling Oracle: Each query is a subset L ⊆ [n]; an oracle samples an edge
(j1, j2) from G uniformly at random, and the oracle returns v = {j1, j2} ∩ L. The
complexity of a query L is given by |L|.

We say a non-adaptive algorithm Alg for this problem is a sequence of query sets
L1, . . . , Lq ⊆ [n], as well as a function Alg : ([n] ∪ ([n]× [n]) ∪ {∅})q → {“G1”, “G2”}. The
algorithm sends each query to the oracle, and for each query Li, the oracle responds
vi ∈ [n] ∪ ([n]× [n]) ∪ {∅}, which is either a single element of [n], an edge in G, or ∅. The
algorithm succeeds if:

Pr
G∼G1,

v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”]− Pr
G∼G2,

v1,...,vq

[Alg(v1, . . . ,vq) outputs “G1”] ≥
1
3 .
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The complexity of Alg is measured by the sum of the complexity of the queries, so we let
cost(Alg) =

∑q
i=1 |Li|.

While our interest in this work is primarily on lower bounds for the rejection sampling
model, an interesting direction is to explore upper bounds of various natural graph properties
with rejection sampling queries. Our specific applications only require ruling out non-adaptive
algorithms, but one may define adaptive algorithms in the rejection sampling model and
study the power of adaptivity in this setting as well.

2.1 The Distributions G1 and G2

Let G1 and G2 be two distributions supported on graphs with vertex set [n] defined as follows.
Let A ⊆ [n] be a uniform random subset of size n

2 .

G1 =
{
KA ∪KA : A ⊆ [n] random subset size n2

}
G2 =

{
KA,A : A ⊆ [n] random subset size n2

}
,

where for a subset A, KA is the complete graph on vertices in A and KA,A is the complete
bipartite graph whose sides are A and A.

3 Tolerant Junta Testing

In this section, we will prove that distinguishing the two distributions G1 and G2 using
a rejection sampling oracle reduces to distinguishing two distributions Dyes and Dno over
Boolean functions, where Dyes is supported on functions that are close to k-juntas and Dno
is supported on functions that are far from any k-junta with high probability.

3.1 High Level Overview
We start by providing some intuition of how our constructions and reduction implement
the plan set forth in Subsection 1.3 for the property of being a k-junta. We define two
distributions supported on Boolean functions, Dyes and Dno, so that functions in Dyes are
ε0-close to being k-juntas and functions in Dno are ε1-far from being k-juntas (where ε0 and
ε1 are appropriately defined constants and k = 3n

4 ).
As mentioned in the introduction, our distributions are based on the indexing function

used in [17]. We draw a uniform random subset M ⊆ [n] of size n/2 and our function
Γ = ΓM : {0, 1}n → [2n/2] projects the points onto the variables in M. Thus, it remains to
define the sequence of functions H = (hi : {0, 1}n → {0, 1} : i ∈ [2n/2]).

We will sample a graph G ∼ G1 (in the case of Dyes), and a graph G ∼ G2 (in the
case of Dno) supported on vertices in M. Each function hi : {0, 1}n → {0, 1} is given by
first sampling an edge (j1, j2) ∼ G and letting hi be a parity (or a negated parity) of the
variables xj1 and xj2 . Thus, a function f from Dyes or Dno will have all variables being
relevant, however, we will see that functions in Dyes have a group of n4 variables which can
be eliminated efficiently6.

We think of the sub-functions hi defined with respect to edges from G as implementing
a sort of gadget: the gadget defined with respect to an edge (j1, j2) will have the property
that if f eliminates the variable j1, it will be “encouraged” to eliminate variable j2 as well.

6 We say that a variable is eliminated if we change the function to remove the dependence of the variable.
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In fact, each time an edge (j1, j2) ∼ G is used to define a sub-function hi, any k-junta
g : {0, 1}n → {0, 1} where variable j1 or j2 is irrelevant will have to change half of the
corresponding part indexed by Γ. Intuitively, a function f ∼ Dyes or Dno (which originally
depends on all n variables) wants to eliminate its dependence of n− k variables in order to
become a k-junta. When f picks a variable j ∈M to eliminate (since variables in M are
too expensive), it must change points in parts where the edge sampled is incident on j. The
key observation is that when f needs to eliminate multiple variables, if f picks the variables
j1 and j2 to eliminate, whenever a part samples the edge (j1, j2), the function changes the
points in one part and eliminates two variables. Thus, f eliminates two variables by changing
the same number of points when there are edges between j1 and j2.

At a high level, the gadgets encourage the function f to remove the dependence of
variables within a group of edges, i.e., the closest k-junta will correspond to a function g
which eliminates groups of variables with edges within each other and few outgoing edges.
More specifically, if we want to eliminate n

4 variables from f , we must find a bisection of the
graph G whose cut value is small; in the case of G1, one of the cliques will have cut value 0,
whereas any bisection of a graph from G2 will have a high cut value, which makes functions
in Dyes closer to 3n

4 -juntas than functions in Dno.
The reduction from rejection sampling is straight-foward. We consider all queries which

are indexed to the same part, and if two queries indexed to the same part differ on a variable
j, then the algorithm “explores” direction j. Each part i ∈ [2n/2] where some query falls in
has a corresponding rejection sampling query Li, which queries the variables explored by the
Boolean function testing algorithm.

3.2 The Distributions Dyes and Dno

The goal of this subsection is to define the two distributions Dyes and Dno, supported over
Boolean functions with n variables. Functions f ∈ Dyes will be close to being a k-junta with
high probability, and functions f ∼ Dno will be far from any k-junta with high probability.
We note that it suffices to consider k = 3n

4 to obtain Theorem 3. We refer the reader to the
full version of the paper for the reduction from arbitrary k to k = 3n

4 .

Distribution Dyes. A function f from Dyes is generated from a tuple of three random
variables, (M,A,H), and we set f = fM,A,H. The tuple is drawn according to the following
randomized procedure:
1. Sample a uniformly random subset M ⊆ [n] of size m def= n

2 . Let N = 2m and ΓM :
{0, 1}n → [N ] be the function that maps x ∈ {0, 1}n to a number encoded by x|M ∈ [N ].

2. Sample A ⊆ M of size n
4 uniformly at random, and consider the graph G defined on

vertices [M] with G = KA ∪KA, i.e., G is a uniformly random graph drawn according
to G1.

3. Define a sequence of N functions H = {hi : {0, 1}n → {0, 1} : i ∈ [N ]} drawn from a
distribution E(G). For each i ∈ {1, . . . , N/2}, we let hi(x) =

⊕
`∈M x`.

For each i ∈ {N/2 + 1, . . . , N}, we will generate hi independently by sampling an edge
(j1, j2) ∼ G uniformly at random, as well as a uniform random bit r ∼ {0, 1}. We let

hi(x) = xj1 ⊕ xj2 ⊕ r.

4. Using M,A and H, define fM,A,H = hΓM(x)(x) for each x ∈ {0, 1}n.
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Dyes Dno

A A A A

α

β

Figure 1 Example of graphs G from Dyes and Dno. On the left, the graph G is the union of two
cliques of size n

4 , corresponding to Dyes. We note that χ(G) = 1
2 , since if we let S = A (pictured as

the blue set), we see that S contains half of the edges. On the right, the graph G is the complete
bipartite graph with side sizes n

4 , corresponding to Dno. We note that χ(G) = 3
4 : consider any set

S ⊆ M of size at least n
4 pictured in the blue region, and let α = |S ∩ A| and β = |S ∩ A|, where

α+ β ≥ n
4 , so E(S, S) + E(S, S) ≥ ( n

4 )2 − αβ ≥ ( n
4 )2(1− 1

4 ).

Distribution Dno. A function f drawn from Dno is also generated by first drawing the tuple
(M,A,H) and setting f = fM,A,H. Both M and A are drawn using the same procedure;
the only difference is that the graph G = KA,A, i.e., G is a uniformly random graph drawn
according to G2. Then H ∼ E(G) is sampled from the modified graph G.

We let k def= 3n
4 , ε0

def= 1
8 , and ε1

def= 3
16 . Consider a fixed subset M ⊆ [n] which

satisfies |M | = n
2 , and a fixed subset A ⊆ M which satisfies |A| = n

4 . Let G be a
graph defined over vertices in M , and for any subsets S1, S2 ⊆ M , let EG(S1, S2) =
|{(j1, j2) ∈ G : j1 ∈ S1, j2 ∈ S2}|, be the number of edges between sets S1 and S2. Addition-
ally, we let

χ(G) = min
{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊆M, |S| ≥ n

4

}
(1)

be the minimum fraction of edges adjacent to a set S of size at least n
4 . The following lemma

relates the distance of a function f = fM,A,H where H ∼ E(G) to being a k-junta to χ(G).
We then apply this lemma to the graph in Dyes and Dno to show that functions in Dyes are
ε0-close to being k-juntas, and functions in Dno are ε1-far from being k-juntas.

I Lemma 7. Let G be any graph defined over vertices in A. If f = fM,A,H, where H ∼ E(G),
then with probability at least 1− o(1),

1
4 · χ(G)− o(1) ≤ dist(f , k-Junta) ≤ 1

4 · χ(G) + o(1).

I Corollary 8. We have that f ∼ Dyes has dist(f , k-Junta) ≤ ε0 + o(1) with probability
1− o(1), and that f ∼ Dno has dist(f , k-Junta) ≥ ε1 − o(1) with probability 1− o(1).

The proof shows that distinguishing the two distributions G1 and G2 using rejection
sampling oracle reduces to distinguishing the two distributions Dyes and Dno.
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I Lemma 9. Suppose there exists a deterministic non-adaptive algorithm Alg making q
queries to Boolean functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-
adaptive algorithm Alg′ making rejection sampling queries to an n-vertex graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G1”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G1”].

and has cost(Alg′) = O(q logn) with probability 1− o(1) over the randomness in Alg′.

4 Tolerant Unateness Testing

In this section, we show how to reduce distinguishing distributions G1 and G2 to distinguishing
between Boolean functions which are close to unate and Boolean functions which are far
from unate. We start with a high level overview of the constructions and reduction, and then
proceed to give formal definitions and the reductions for adaptive and non-adaptive tolerant
testing.

4.1 High Level Overview

We now describe how our constructions and reduction implement the plan set forth in
Subsection 1.3 for the property of unateness. Similarly to Section 3, we define two distributions
Dyes and Dno supported on Boolean functions, so that functions in Dyes are ε0-close to being
unate, and functions in Dno are ε1-far from being unate (where ε0 and ε1 are appropriately
defined constants).

We will use a randomized indexing function Γ : {0, 1}n → [N ] ∪ {0∗, 1∗} based on the
Talagrand-style constructions from [4, 18] to partition {0, 1}n in a unate fashion, specifically,
Γ will satisfy that for all i 6= j ∈ [N ], if x, y ∈ {0, 1}n have Γ(x) = i and Γ(y) = j, then x and
y are incomparable, x 6≺ y and y 6≺ x. Again, we will then use a graph G ∼ G1 or G2 to define
the sequence of sub-function H = (hi : {0, 1}n → {0, 1} : i ∈ [N ]). The sub-functions hi will
be given by a parity (or negated parity) of three variables: two variables will correspond
to the end points of an edge sampled (j1, j2) ∼ G, the third variable will be one of two
pre-specified variables, which we call m1 and m2. Consider for simplicity the case when
hi(x) = xj1 ⊕ xj2 ⊕ xm1 , and assume that we require that variable m1 is non-decreasing.

Similarly to Section 3, the functions hi are thought of as gadgets. We will have that if hi
is defined with respect to an edge (j1, j2) and m1, then the function f will be “encouraged”
to make variables j1 and j2 have opposite directions, i.e., either j1 is non-increasing and j2
is non-decreasing, or j1 is non-decreasing and j2 is non-increasing. In order to see why the
three variable parity implements this gadget, we turn our attention to Figure 2 and Figure 3.

Intuitively, the function f needs to change some of its inputs to be unate, and it must
choose whether the variables j1 and j2 will be monotone (non-decreasing) or anti-monotone
(non-increasing). Suppose f decides that the variable j1 should be monotone and j2 be
anti-monotone, and m1 will always be monotone (since it will be too expensive to make it
anti-monotone). Then, when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , hi will have some violating edges, i.e.,
edges in direction j1 which are decreasing, or edges in direction j2 which are increasing, or
edges in direction m1 which are decreasing (see Figure 2, where these violating edges are
marked in red). In this case, there exists a way that f may change 1

4 -th fraction of the points
and remove all violating edges (again, this procedure is shown in Figure 2).
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j1
+

j2
−

m1
+

−→

j1
+

j2
−

m1
+

Figure 2 Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕ xj2 ⊕ xm1 with variable
j1 (which ought to be monotone), j2 (which ought to be anti-monotone), and m1 (which is always
monotone). The image on the left-hand side represents hi, and the red edges correspond to violating
edges for variables j1, j2 and m1. In other words, the red edges correspond to anti-monotone edges
in variables j1, monotone edges in variables j2, and anti-monotone edges in direction m1. On the
right-hand side, we show how such a function can being “fixed” into a function h′

i : {0, 1}n → {0, 1}
by changing 1

4 -fraction of the points.

In contrast, suppose that f decides that the variables j1 and j2 both should be monotone.
Then, when hi(x) = xj1 ⊕ xj2 ⊕ xm1 , the violating edges (shown in Figure 3) form vertex-
disjoint cycles of length 6 in {0, 1}n, thus, the function f will have to change 3

8 -th fraction of
the points in order to remove all violating edges. In other words, when there is an edge (j1, j2)
sampled in hi, the function f is “encouraged” to make j1 and j2 have opposite directions,
and “discouraged” to make j1 and j2 have the same direction. The other cases are presented
in Figures 4, 5, and 6.

In order for f to become unate, it must first choose whether each variable will be monotone
or anti-monotone. f will choose all variables in M to be monotone, the variable m1 to be
monotone, and m2 to be anti-monotone, but will have to make a choice for each variable in
M, corresponding to each vertex of the graph G. As discussed above, for each edge (j1, j2)
in the graph, f is encouraged to make these orientations opposite from each other, so f will
want to look for the maximum cut on the graph, whose value will be different in G1 and G2.

Similarly to the case in Section 3, the reduction will follow by defining the rejection
sampling queries Li corresponding to variables explored in sub-function hi. The unate
indexing functions Γ are not as strong as the indexing functions from the Section 3, so
for each query in the Boolean function testing algorithm, our reduction will lose some cost
in the rejection sampling algorithm. In particular, the adaptive reduction loses n cost for
each Boolean function query, since adaptive algorithms can efficiently explore variables
with a binary search; this gives the Ω̃(n) lower bound for tolerant unateness testing. The
non-adaptive reduction loses O(

√
n logn) cost for each Boolean function query since queries

falling in the same part may be Ω(
√
n) away from each other (the same scenario occurs in

the non-adaptive monotonicity lower bound of [18]). The non-adaptive reduction is more
complicated than the adaptive reduction since it is not exactly a black-box reduction (we
require a lemma from Section 5). This gives the Ω̃(n3/2) lower bound for non-adaptive
tolerant unateness testing.
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j1
+

j2
+

m1
+

−→

j1
+

j2
+

m1
+

Figure 3 Example of a function hi : {0, 1}n → {0, 1} with hi(x) = xj1 ⊕xj2 ⊕xm1 with variables
j1 and j2 (which ought to be monotone), and m1 (which ought to be monotone). On the left side,
we indicate the violating edges with red arrows, and note that the functions in the left and right
differ by 3

8 -fraction of the points. We also note that any function h′
i : {0, 1}n → {0, 1} which has j1,

j2 and m1 monotone must differ from hi on at least 3
8 -fraction of the points because the violating

edges of hi form a cycle of length 6.

4.2 The Distributions Dyes and Dno

We now turn to describing a pair of distributions Dyes and Dno supported on Boolean
functions f : {0, 1}n → {0, 1}. These distributions will have the property that for some
constants ε0 and ε1 with 0 < ε0 < ε1,

Pr
f∼Dyes

[dist(f ,Unate) ≤ ε0] = 1− o(1) and Pr
f∼Dno

[dist(f ,Unate) ≥ ε1] = 1− o(1).

We first define a function f ∼ Dno, where we fix the parameter N = 2
√
n.

1. Sample some set M ⊆ [n] of size |M| = n
2 uniformly at random and let m1,m2 ∼M be

two distinct indices.

2. We let T ∼ E(M \ {m1,m2}) (which we describe next). T is a sequence of terms
(Ti : i ∈ [N ]) which is used to defined a multiplexer map ΓT : {0, 1}n → [N ] ∪ {0∗, 1∗}.

3. We sample A ⊆M of size |A| = n
2 and define a graph as G = KA ∪KA.

4. We now define the distribution over sub-functions H = (hi : i ∈ [N ]) ∼ H(m1,m2,G).
For each function hi : {0, 1}n → {0, 1}, we generate hi independently:

When i ≤ 3N/4, we sample j ∼ {m1,m2} and we let:

hi(x) =
{

xj j = m1
¬xj j = m2

.

Otherwise, if i > 3N/4, we sample an edge (j1, j2) ∼ G and an index j3 ∼ {m1,m2}
we let:

hi(x) =
{

xj1 ⊕ xj2 ⊕ xj3 j3 = m1
¬xj1 ⊕ xj2 ⊕ xj3 j3 = m2

.
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The function f : {0, 1}n → {0, 1} is given by f(x) = fT,A,H(x) where:

fT,A,H(x) =


1 |x|M| > n

4 +
√
n

0 |x|M| < n
4 −
√
n

1 ΓT(x) = 1∗
0 ΓT(x) = 0∗
hΓT(x)(x) otherwise

. (2)

We now turn to define the distribution E(M) supported on terms T, as well as the multiplexer
map ΓT : {0, 1}n → [N ]. As mentioned above, T ∼ E(M) will be a sequence of N terms
(Ti : i ∈ [N ]), where each Ti is given by a DNF term: Ti(x) =

∧
j∈Ti

xj , where the set
Ti ⊆M is a uniformly random

√
n-element subset. Given the sequence of terms T, we let:

ΓT(x) =


0∗ ∀i ∈ [N ],Ti(x) = 0
1∗ ∃i1 6= i2 ∈ [N ],Ti1(x) = Ti2(x) = 1
i Ti(x) = 1 for a unique i ∈ [N ]

.

It remains to define the distribution Dyes supported on Boolean functions. The function
f ∼ Dyes will be defined almost exactly the same. We still have f = fT,A,H as defined above,
however, the graph G will be different. In particular, we will let G = KA,A.

Fix any set M ⊆ [n] of size n
2 and let m1,m2 ∈ M be two distinct indices and M ′ =

M \ {m1,m2}. For any T ∼ E(M ′), let X ⊆ {0, 1}n be the subset of points indexed to some
subfunction hi:

X def=
{
x ∈ {0, 1}n : |x|M | ∈ [n/4−

√
n, n/4 +

√
n] and ΓT (x) ∈ [N ]

}
,

and define γ ∈ (0, 1) be the parameter: γ def= ET∼E(M ′)

[
|X|
2n

]
.

In addition, let Xi ⊆ X be the subset of points x ∈ X with ΓT (x) = i, and note that the
subsets X1, . . . , XN partition X, where each |Xi| ≤ 2n−

√
n. With probability 1− o(1) over

the draw of T ∼ E(M), we have:
3N/4∑
i=1
|Xi| = 2n · 3γ

4

(
1± 1

n

)
and

N∑
i=3N/4+1

|Xi| = 2n · γ4

(
1± 1

n

)
. (3)

Thus, we only consider functions f ∼ Dyes (or ∼ Dno) where the sets M , and T satisfy (3).
We consider any set A ⊆M of size n

4 . Now, consider any graph G defined over vertices
in M , and we let:

χ(G) = min
{
EG(S, S) + EG(S, S)

EG(M,M)
: S ⊆M

}
.

In other words, we note that χ(G) is one minus the fractional value of the maximum cut, and
the value of χ(G) is minimized for the set S achieving the maximum cut of G. The following
lemma relates the distance to unateness of a function f = fT,A,H with H ∼ H(m1,m2, G),
where G is an underlying graph defined on vertices in M .

I Lemma 10. Let G be any graph defined over vertices in M . If f = fT,A,H where
H ∼ H(m1,m2, G), then with probability at least 1− o(1),

γ

16

(
1 + 1

2 · χ(G)
)
− o(1) ≤ dist(f ,Unate) ≤ γ

16

(
1 + 1

2 · χ(G)
)

+ o(1).

We consider the constants ε0 = γ
16 and ε1 = 5γ

64 .

I Corollary 11. We have that f ∼ Dyes has dist(f ,Unate) ≤ ε0 + o(1) with high probability,
and f ∼ Dno has dist(f ,Unate) ≥ ε1 − o(1) with high probability.
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j1
−

j2
+

m1
+

−→

j1
−

j2
+

m1
+

Figure 4 Similarly to Figure 2, this is an example of a function hi : {0, 1}n → {0, 1} with
hi(x) = xj1 ⊕ xj2 ⊕ xm1 variables j1 (which ought to be anti-monotone), j2 (which ought to be
monotone), and m1 (which is always monotone) being “fixed” into a function h′

i : {0, 1}n → {0, 1}
defined on the right-hand side.

4.3 Reducing from Rejection Sampling
In order to reduce from rejection sampling, we need the following two lemmas.

I Lemma 12. Suppose there exists a deterministic algorithm Alg making q queries to Boolean
functions f : {0, 1}2n → {0, 1}. Then, there exists a deterministic non-adaptive algorithm
Alg′ making rejection sampling queries to an n-vertex graph with cost(Alg′) = qn such that:

Pr
f∼Dyes

[Alg(f) “accepts”] = Pr
G∼G2

[Alg′(G) outputs “G2”], and

Pr
f∼Dno

[Alg(f) “accepts”] = Pr
G∼G1

[Alg′(G) outputs “G2”].

I Lemma 13. Suppose there exists a deterministic non-adaptive algorithm Alg making q
queries to Boolean functions f : {0, 1}2n → {0, 1} where q ≤ n3/2

log8 n
. Then, there exists a

deterministic non-adaptive algorithm Alg′ making rejection sampling queries to an n-vertex
graph such that:

Pr
f∼Dyes

[Alg(f) “accepts”] ≈ Pr
G∼G2

[Alg′(G) outputs “G2”]± o(1), and

Pr
f∼Dno

[Alg(f) “accepts”] ≈ Pr
G∼G1

[Alg′(G) outputs “G2”]± o(1).

and has cost(Alg′) ≤ q
√
n logn with probability 1− o(1) over the randomness in Alg′.

Combining Lemma 12 with Theorem 1, we conclude Theorem 4, and combining Lemma 13
with Theorem 1, we conclude Theorem 5.

5 A lower bound for distinguishing G1 and G2 with rejection samples

In this section, we derive a lower bound for distinguishing G1 and G2 with rejection samples.

I Lemma 14. Any deterministic non-adaptive algorithm Alg with cost(Alg) ≤ n2

log6 n
, has:

Pr
G∼G1

[Alg outputs “G1”] ≤ (1 + o(1)) Pr
G∼G2

[Alg outputs “G1”] + o(1).
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j1
−

j2
+

m1
−

−→

j1
−

j2
+

m1
−

Figure 5 Similarly to Figure 2, this is an example of a function hi : {0, 1}n → {0, 1} with
hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 variables j1 (which ought to be anti-monotone), j2 (which ought to be
monotone), andm2 (which is always anti-monotone) being “fixed” into a function h′

i : {0, 1}n → {0, 1}
defined on the right-hand side.

We assume Alg is a deterministic non-adaptive algorithm with cost(Alg) ≤ n2

log6 n
. Alg

makes queries L1, . . . , Lt ⊆ [n] and the oracle returns v1, . . . ,vt, some of which are edges,
some are lone vertices, and some are ∅. Let Go ⊆ G be the graph observed by the algorithm
by considering all edges in v1, . . . ,vt. We let |Go| be the number of edges.

Before going on to prove the lower bound, we use the following simplification. First, we
assume that any algorithm Alg has all its queries L1, . . . , Lt satisfying that either |Li| ≤ n

logn ,
or Li = [n]. Thus, it suffices to show for this restricted class of algorithms, the cost must be
at least n2

log5 n
.

5.1 High Level Overview
We will argue outcome-by-outcome; i.e., we consider the possible ways the algorithm can act,
which depends on the responses to the queries the algorithm gets. Consider some responses
v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅}, where each vi may be either a lone vertex, an edge, or ∅.
Suppose that upon observing this outcome, the algorithm outputs “G1”. There will be two
cases:

The first case is when the probability of observing this outcome from G2 is not too much
lower than the probability of observing this outcome from G1. In these outcomes, we will
not get too much advantage in distinguishing G1 and G2.
The other case is when the probability of observing this outcome from G2 is substantially
lower than the probability of observing this outcome from G1. These cases do help us
distinguish between G1 and G2; thus, we will want to show that collectively, the probability
that we observe these outcomes from G1 is o(1).

We will be able to characterize the outcomes which fall into the first case and the second
case by considering a sequence of events. In particular we define five events which depend on
v1, . . . , vt, as well as the random choice of A. Consider the outcome v1, . . . , vt which together
form components C1, . . . , Cα. The events are the following7:

7 We note that the first two event are not random and depends on the values v1, . . . , vt, and the rest are
random variables depending on the partition A and the oracle responses v1, . . . , vt.
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j1
+

j2
+

m2
−

j1
+

j2
+

m2
−

Figure 6 Examples of functions hi : {0, 1}n → {0, 1} with orientations on the variables and
violating edges. On the left-hand side, hi(x) = ¬xj1 ⊕ xj2 ⊕ xm2 with variables j1 and j2 (which
ought to be monotone), and m2 (which is always anti-monotone). On the right-hand side, hi(x) =
¬xj1 ⊕ xj2 ⊕ xm2 with variables j1 and j2 (which ought to be anti-monotone), and m2 (which is
always anti-monotone). We note that the violating edges form a cycle of length 6, so any unate
function whose orientations on j1 and j2 are as indicated (both monotone on the left-hand side, and
both anti-monotone on the right-hand side) must disagree on a 3

8 -fraction of the points.

1. ET (Observe small trees): this is the event where the values of v1, . . . , vt form components
C1, . . . , Cα which are all trees of size at most logn.

2. EF (Observe few non-empty responses): this is the event where the values of v1, . . . , vt
have at most n

log4 n
non-∅ responses. This event implies that the total number of vertices

in the responses v1, . . . , vt is at most n
log4 n

.
3. EC,yes and EC,no (Consistency condition of the components observed): these are the

events where A ⊆ [n] partitions the components C1, . . . , Cα in a manner consistent with
G1 in EC,yes or G2 in EC,no, i.e., either every Ci is contained within A or A (in the case
of G1, or edges in every Ci cross the partition on vertices induced by A (in the case of
G2). These events are random variables that depend only on A. It will become clear that
in order to observe the outcome v1, . . . , vt in G1, event EC,yes must be triggered, and in
G2, event EC,no must be triggered. See Figure 7 for an illustration.

4. EO (Observe specific responses): this event is over the randomness in A, as well as the
randomness in the responses of the oracle v1, . . . ,vt. The event is triggered when the
responses of the oracle are exactly those dictated by v1, . . . , vt; i.e., for all i ∈ [t], vi = vi.

5. EB (Balanced lone vertices condition): this event is over the randomness in A, as well as
the responses v1, . . . ,vt. The event occurs when the queries Li corresponding to lone
vertices vi have |Li ∩A| and |Li ∩A| roughly equal, and roughly half of vi fall in A.

Having defined these events, the lower bound follows by the following three lemmas. The
first lemma says that for any outcomes satisfying ET and EF , the probability over A of
being consistent in G1 cannot be much higher than in G2. The second lemma says that the
outcomes satisfying the events described above do not help in distinguishing G1 and G2. The
third lemma says that good outcomes occur with high probability over G1.

I Lemma 15 (Consistency Lemma). Consider a fixed v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅}
forming components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1

v1,...,vt

[EC,yes] ≤ (1 + o(1)) Pr
G∼G2

v1,...,vt

[EC,no].
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A A A A

C1

C3

C2

C4

C1

C2

C3

C4

Figure 7 A consistently partition of the components C1, C2, C3 and C4 according to G1 (on the
left) and G2 (on the right).

I Lemma 16 (Good Outcomes Lemma). Consider a fixed v1, . . . , vt ∈ [n] ∪ ([n]× [n]) ∪ {∅}
forming components C1, . . . , Cα where events ET and EF are satisfied. Then, we have:

Pr
G∼G1

v1,...,vt

[EO ∧ EB | EC,yes] ≤ (1 + o(1)) Pr
G∼G2

v1,...,vt

[EO | EC,no].

I Lemma 17 (Bad Outcomes Lemma). We have that:

Pr
G∼G1

v1,...,vt

[¬ET ∨ ¬EF ∨ ¬EB ] = o(1).

Assuming the above three lemmas, we may prove Lemma 14.
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Abstract
Shamir’s celebrated secret sharing scheme provides an efficient method for encoding a secret of
arbitrary length ` among any N ≤ 2` players such that for a threshold parameter t, (i) the
knowledge of any t shares does not reveal any information about the secret and, (ii) any choice
of t+ 1 shares fully reveals the secret. It is known that any such threshold secret sharing scheme
necessarily requires shares of length `, and in this sense Shamir’s scheme is optimal. The more
general notion of ramp schemes requires the reconstruction of secret from any t + g shares, for
a positive integer gap parameter g. Ramp secret sharing scheme necessarily requires shares of
length `/g. Other than the bound related to secret length `, the share lengths of ramp schemes
can not go below a quantity that depends only on the gap ratio g/N .

In this work, we study secret sharing in the extremal case of bit-long shares and arbitrarily
small gap ratio g/N , where standard ramp secret sharing becomes impossible. We show, however,
that a slightly relaxed but equally effective notion of semantic security for the secret, and negli-
gible reconstruction error probability, eliminate the impossibility. Moreover, we provide explicit
constructions of such schemes. One of the consequences of our relaxation is that, unlike standard
ramp schemes with perfect secrecy, adaptive and non-adaptive adversaries need different analysis
and construction. For non-adaptive adversaries, we explicitly construct secret sharing schemes
that provide secrecy against any τ fraction of observed shares, and reconstruction from any ρ
fraction of shares, for any choices of 0 ≤ τ < ρ ≤ 1. Our construction achieves secret length
N(ρ − τ − o(1)), which we show to be optimal. For adaptive adversaries, we construct explicit
schemes attaining a secret length Ω(N(ρ− τ)). We discuss our results and open questions.
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1 Introduction

Secret sharing, introduced independently by Blakley [3] and Shamir [20], is one of the most
fundamental cryptographic primitives with far-reaching applications, such as being a major
tool in secure multiparty computation (cf. [12]). The general goal in secret sharing is to
encode a secret s into a number of shares X1, . . . ,XN that are distributed among N players
such that only certain authorized subsets of the players can reconstruct the secret. An
authorized subset of players is a set A ⊆ [N ] such that the set of shares with indices in A
can collectively be used to reconstruct the secret s (perfect reconstructiblity). On the other
hand, A is an unauthorized subset if the knowledge of the shares with indices in A reveals
no information about the secret (perfect privacy). The set of authorized and unauthorized
sets define an access structure, of which the most widely used is the so-called threshold
structure. A secret sharing scheme with threshold access structure, is defined with respect to
an integer parameter t and satisfies the following properties. Any set A ⊆ [N ] with |A| ≤ t
is an unauthorized set. That is, the knowledge of any t shares, or fewer, does not reveal any
information about the secret. On the other hand, any set A with |A| > t is an authorized
set. That is, the knowledge of any t+ 1 or more shares completely reveals the secret.

Shamir’s secret sharing scheme [20] gives an elegant construction for the threshold access
structure that can be interpreted as the use of Reed-Solomon codes for encoding the secret.
Suppose the secret s is an `-bit string and N ≤ 2`. Then, Shamir’s scheme treats the secret
as an element of the finite field Fq, where q = 2`, padded with t uniformly random and
independent elements from the same field. The resulting vector over Ft+1

q is then encoded
using a Reed-Solomon code of length N , providing N shares of length ` bits each. The fact
that a Reed-Solomon code is Maximum Distance Separable (MDS) can then be used to show
that the threshold guarantee for privacy and reconstruction is satisfied.

Remarkably, Shamir’s scheme is optimal for threshold secret sharing in the following
sense: Any threshold secret sharing scheme sharing `-bit secrets necessarily requires shares
of length at least `, and Shamir’s scheme attains this lower bound [23]. It is natural to ask
whether secret sharing is possible at share lengths below the secret length log q < `, where
log is to base 2 throughout this work. Of course, in this case, the threshold guarantee that
requires all subsets of participants be either authorized, or unauthorized, can no longer be
attained. Instead, the notion can be relaxed to ramp secret sharing which allows some subset
of participants to learn some information about the secret. A ramp scheme is defined with
respect to two threshold parameters, t and r > t+ 1. As in threshold scheme, the knowledge
of any t shares or fewer does not reveal any information about the secret. On the other hand,
any r shares can be used to reconstruct the secret. The subsets of size between t+ 1 and
r − 1, may learn some information about the secret. The information-theoretic bound (see
e.g. [17]) now becomes

` ≤ (r − t) log q. (1)

https://eprint.iacr.org/2018/746
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Ideally, one would like to obtain equality in (1) for as general parameter settings as possible.
Let g : = r − t denote the gap between the privacy and reconstructibility parameters.

Let the secret length ` and the number of players N be unconstrained integer parameters.
It is known that, using Reed-Solomon code interpretation of Shamir’s approach applied to
a random linear code, for every fixed relative gap γ : = g/N , there is a constant q only
depending on γ such that a ramp secret sharing scheme with share size q exists. Such schemes
can actually be constructed by using explicit algebraic geometry codes instead of random
linear codes. In fact, this dependence of share size q on relative gap g/N is inherent for
threshold and more generally ramp schemes. It is shown in an unpublished work of Kilian
and Nisan 1 for threshold schemes, and later more generally in [8], that for ramp schemes
with share size q, threshold gap g, privacy threshold t and unconstrained number of players
N , the following always holds: q ≥ (N − t+ 1)/g. Very recently in [4], a new bound with
respect to the reconstruction parameter r is proved through connecting secret sharing for
one bit secret to game theory: q ≥ (r + 1)/g. These two bounds together yield

q ≥ (N + g + 2)/(2g). (2)

Note that the bound (2) is very different from the bound (1) in nature. The bound (1) is
the fundamental limitation of information-theoretic security, bearing the same flavour as the
One-Time-Pad. The bound (2) is independent of the secret length and holds even when the
secret is one bit.

We ask the following question: For a fixed constant share size q (in particular, q = 2),
is it possible to construct (relaxed but equally effective) ramp secret sharing schemes with
arbitrarily small relative gap γ > 0 that asymptotically achieve equality in (1)?

Our results in this work show that the restriction (2) can be overcome if we allow a negli-
gible privacy error in statistical distance (semantic security) and a negligible reconstruction
error probability.

1.1 Related work
Secret sharing with binary shares is recently selectively studied in [5] with the focus on
the tradeoff between the privacy parameter t and the computational complexity of the
reconstruction function. The concern of this line of works is to construct secret sharing
schemes whose sharing and reconstructing algorithms are both in the complexity class AC0

(i.e., constant depth circuits).
The model of secret sharing considered in [5] has perfect privacy, namely, the distributions

of any t shares from a pair of distinct secrets are identical, while reconstruction is not
necessarily with probability 1. In a followup work [6], the privacy is further relaxed to
semantic security with an error parameter ε > 0. The relaxation is shown to be useful in
allowing more choices of t while keeping the computational complexity of the reconstruction
algorithm within AC0.

In [5, 6], the secret is one bit. In [9], secrets of length equal to a fraction of N (number
of players) is considered. This time binary secret sharing with adaptive and non-adaptive
adversaries similar to the model we consider in this work is defined. However the paper
considers only a privacy threshold t, and reconstruction is from the full share set (r = N

always). Their goal is to achieve large secrets ` = Ω(N) over binary shares with large privacy
parameter t = Ω(N), which is also similar to ours. They have an additional goal of keeping

1 Their result is unpublished, and is independently obtained and generalised by [8] (see [8, Appendix A]).
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the computational complexity of the reconstruction algorithm within AC0, which we do not
consider in this work. Their large privacy parameter t = τN is with a τ much smaller than
1, which means that the relative threshold gap γ = 1− τ can not be arbitrarily small.

In the literature, perhaps the closest notion to secret sharing with binary shares is that
of wiretap codes, first studied in information theory. In the basic wiretap channel model
of Wyner and its extension to broadcast channel with confidential messages [25, 13], there
is a point-to-point main channel between a sender and a receiver that has partial leakage
to the adversary, and the leakage of information is modelled by a second point-to-point
wiretapper channel between the sender and the adversary. To goal of the sender is to encode
messages in such a way that the receiver can decode them, while the adversary does not
learn much about them [25]. The highest information rate achievable for a wiretap channel is
called the secrecy capacity. A Binary Erasure Channel with erasure probability p (BECp) is a
probabilistic transformation that maps inputs 0 and 1 to a symbol ?, which denotes erasure,
with probability p and to the inputs themselves with probability 1− p. The erasure channel
scenario of wiretap model is closely related to secret sharing with fixed share size. For a pair
(BECpm

,BECpw
) of BEC’s, such that pm < pw, it is known that the secrecy capacity is the

difference of the respective channel capacities: (1− pm)− (1− pw) = pw − pm.
It is important to note the distinctions between the erasure wiretap model above, and

binary secret sharing. First, the guarantees of wiretap codes are required to only hold
for random messages, whereas in secret sharing, the cryptographic convention of security
for worst-case messages is required. Second, in the standard wiretap model, the notion of
secrecy is information-theoretic and is typically measured in terms of the mutual information.
Namely, for a random `-bit message M, and letting W denote the information delivered to
the adversary, secrecy is satisfied in the weak (resp., strong) sense if I(M; W) ≤ ε` (resp.,
I(M; W) ≤ ε) for an arbitrarily small constant ε. The randomness of the random variable W
depends on the randomness of M, the two channels, as well as the internal randomness of
the encoder. For secret sharing, on the other hand, either perfect secrecy or semantic secrecy
(negligible leakage with respect to statistical distance) is a requirement.

The notion of secrecy in wiretap codes has evolved over years. More recently the notion of
semantic security for wiretap model has been introduced [2], which allows arbitrary message
distribution and is shown to be equivalent to negligible leakage with respect to statistical
distance.

There remains one last distinction between semantically secure wiretap model and secret
sharing with fixed share size. That is the nature of the main and wiretapper channels are
typically stochastic (e.g., the erasure channel with random i.i.d. erasures), whereas for secret
sharing a worst-case guarantee for the erasure patterns is required. Namely, in secret sharing,
reconstruction with overwhelming probability is required for every choice of r or more shares,
and privacy of the secret is required for every (adaptive or non-adaptive) choice of the t
shares observed by the adversary.

On the other hand, Ozarow and Wyner proposed the wiretap channel II, where an
adversary observes arbitrary t out of the total N bits of the communication [18]. The
wiretapper channel of the wiretap channel II is the adversarial analogue of a BECpw with
erasure probability pw = (N − t)/N . This is exactly the same as the privacy requirement
of the binary secret sharing. But in the wiretap channel II model, the main channel is
a clear channel. This is corresponding to the special case of binary secret sharing where
the reconstruction is only required when all shares are available. The adversarial analogue
of the erasure scenario Wyner wiretap channel should have a main channel that erases
Npm components out of the total N components, which is the same as the reconstruction
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requirement of binary secret sharing. Moreover, same as the Wyner wiretap channel model,
the secrecy of the wiretap channel II is only required for uniform message and satisfies the
weak (resp., strong) secrecy mentioned above.

1.2 Our contributions
We motivate the study of secret sharing scheme with fixed share size q, and study the extremal
case of binary shares. Our goal is to show that even in this extremely restrictive case, a
slight relaxation of the privacy and reconstruction notions of ramp secret sharing guarantees
explicit construction of families of ramp schemes2 with any constant relative privacy and
reconstruction thresholds 0 ≤ τ < ρ ≤ 1, in particular, the relative threshold gap γ = ρ− τ
can be an arbitrarily small constant. Namely, for any constants 0 ≤ τ < ρ ≤ 1, it can be
guaranteed that any τN or fewer shares reveal essentially no information about the secret,
whereas any ρN or more shares can reconstruct the exact secret with a negligible failure
probability. While we only focus on the extremal special case q = 2 in this presentation, all
our results can be extended to any constant q (see Section 6).

We consider binary sharing of a large `-bit secret and for this work focus on the asymptotic
case where the secret length `, and consequently the number of players N , are sufficiently
large. We replace perfect privacy with semantic security, the strongest cryptographic notion
of privacy second only to perfect privacy. That is, for any two secrets (possibly chosen by
the adversary), we require the adversary’s view to be statistically indistinguishable. The
view of the adversary is a random variable with randomness coming solely from the internal
randomness of the sharing algorithm. The notion of indistinguishability that we use is
statistical (total variation) distance bounded by a leakage error parameter ε that is negligible
in N . Using non-perfect privacy creates a distinction between non-adaptive and adaptive
secrecy. A non-adaptive adversary chooses any τ fraction of the N players at once, and
receives their corresponding shares. An adaptive adversary however, selects share holders one
by one, receives their shares and uses its available information to make its next choice. When
ε = 0, i.e., when perfect privacy holds, non-adaptive secrecy automatically implies adaptive
secrecy as well. However, this is not necessarily the case when ε > 0 and we thus study
the two cases separately. Similarly, we replace the perfect reconstruction with probabilistic
reconstruction allowing a failure probability δ that is negligible in N . The special case of
δ = 0 means perfect reconstruction.

Note that secret sharing with fixed share size necessarily imposes certain restrictions
that are not common in standard secret sharing. Unlike secret sharing with share length
dependent on the secret length (for threshold schemes) or secret length and threshold gap
(for ramp schemes), binary sharing of an `-bit secret obviously requires at least ` shares
to accommodate the secret information. For a family of ramp secret sharing schemes with
fixed share size q and fixed relative thresholds 0 ≤ τ < ρ ≤ 1, as N grows the absolute gap
length (ρ − τ)N grows, and the accommadatable length of the secret is expected to grow
and so the ratio `/N ∈ (0, 1] becomes a key parameter of interest for the family, referred
to as the coding rate. As is customary in coding theory, it is desired to characterize the
maximum possible ratio `/N ∈ (0, 1] for binary secret sharing. We use the relation (a similar
relation was used in [10] for robust secret sharing) between a binary secret sharing family
with relative threshold (τ, ρ) and codes for a Wyner wiretap channel with two BEC’s to
derive a coding rate upper bound of ρ− τ for binary secret sharing (see Lemma 11).

2 We abuse the notion and will continue calling these relaxed schemes ramp schemes.
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Our main technical contributions are explicit constructions of binary secret sharing
schemes in both the non-adaptive and adaptive models, and proving optimality of non-
adaptive construction. Namely, we prove the following:

I Theorem 1 (informal summary of Lemma 11, Corollary 17, and Corollary 21). For any choice
of 0 ≤ τ < ρ ≤ 1, and large enough N , there is an explicit construction of a binary secret
sharing scheme with N players that provides (adaptive or non-adaptive) privacy against
leakage of any τN or fewer shares, as well as reconstruction from any ρN or more of the
shares (achieving semantic secrecy with negligible error and imperfect reconstruction with
negligible failure probability). For non-adaptive secrecy, the scheme shares a secret of length
` = (ρ− τ −o(1))N , which is asymptotically optimal. For adaptive secrecy, the scheme shares
a secret of length ` = Ω((ρ− τ)N).

As a side contribution, our findings unify the Wyner wiretap model and its adversarial
analogue. Our capacity-achieving construction of binary secret sharing for non-adaptive
adversaries implies that the secrecy capacity of the adversarial analogue of the erasure
scenario Wyner wiretap channel is similarly characterized by the erasure ratios of the two
channels. Moreover, the secrecy can be strengthened to semantic security.

This answers an open question posted in [1]. The authors studied a generalisation of
the wiretap II model, where the adversary chooses t bits to observe and erases them. They
showed that the rate 1−τ−h2(τ), where h2(·) is the binary entropy function, can be achieved
and left open the question of whether a higher rate is achievable. Our result specialized to
their setting shows that, the rate 1− 2τ can be explicitly achieved.

1.3 Our approach and techniques
Our explicit constructions follow the paradigm of invertible randomness extractors formalized
in [11]. Invertible extractors were used in [11] for explicit construction of optimal wiretap
coding schemes in the Wiretap channel II [18]. This, in particular, is corresponding to the
ρ = 1 special case of secret sharing where reconstruction is only required when all shares are
available. Moreover, the secrecy there is an information-theoretic notion, and only required
to hold for uniform messages. The consequence of the latter is that the construction in [11]
does not directly give us binary secret sharing, not even for the ρ = 1 special case. The
exposition below is first focused on how semantic security is achieved.

As in [11], we rely on invertible affine extractors as our primary technical tool. Such an
extractor is an explicit function AExt : {0, 1}n → {0, 1}` such that, for any random variable X
uniformly distributed over an unknown k-dimensional affine subspace of Fn2 , the distribution
of AExt(X) is close to the uniform distribution over F`2 in statistical distance. Furthermore,
the invertibility guarantee provides an efficient algorithm for sampling a uniform element
from the set AExt−1(s) of pre-images for any given output s ∈ F`2.

It is then natural to consider the affine extractor’s uniform inverter as a candidate building
block for the sharing algorithm of a secret sharing scheme. Intuitively, if the secret s is chosen
uniformly at random, we have the guarantee that for any choice of a bounded number of
the bits of its random pre-image revealed to the adversary, the distribution of the random
pre-image conditioned on the revealed value satisfies that of an affine source. Now according
to the definition of an affine extractor, the extractor’s output (i.e., the secret s) remains
uniform (and thus unaffected in distribution) given the information revealed to the adversary.
Consequently, secrecy should at least hold in an information-theoretic sense, i.e. the mutual
information between the secret and the revealed vector components is zero. This is what was
formalized and used in [11] for the construction of Wiretap channel II codes.



F. Lin, M. Cheraghchi, V. Guruswami, R. Safavi-Naini, and H. Wang 53:7

For non-adaptive adversaries, in fact it is possible to use invertible seeded extractors
rather than invertible affine extractors described in the above construction. A (strong) seeded
extractor assumes, in addition to the main input, an independent seed as an auxiliary input
and ensures uniformity of the output for most fixings of the seed. The secret sharing encoder
appends a randomly chosen seed to the encoding and inverts the extractor with respect to
the chosen seed. Then, the above argument would still hold even if the seed is completely
revealed to the adversary.

The interest in the use of seeded, as opposed to seedless affine, extractors is twofold.
First, nearly optimal and very efficient constructions of seeded extractors are known in the
literature that extract nearly the entire source entropy with only a short seed. This allows
us to attain nearly optimal rates for the non-adaptive case. Furthermore, and crucially,
such nearly optimal extractor constructions (in particular, Trevisan’s extractor [24, 19]) can
in fact be linear functions for every fixed choice of the seed (in contrast, seedless affine
extractors can never be linear functions). We take advantage of the linearity of the extractor
in a crucial way and use a rather delicate analysis to show that in fact the linearity of the
extractor can be utilized to prove that the resulting secret sharing scheme provides the
stringent worst-case secret guarantee which is a key requirement distinguishing secret sharing
schemes (a cryptographic primitive) from wiretap codes (an information-theoretic notion).

Using a seeded extractor instead of a seedless extractor, however, introduces a new
challenge. In order for the seeded extractor to work, the seed has to be independent of the
main input, which is a distribution induced by the adversary’s choice of reading positions.
The independence of the seed and the main input can be directly argued when the adversary
is non-adaptive. An adaptive adversary, however, may choose its reading positions to learn
about the seed first, and then choose the rest of the reading positions according the value of
the seed. In this case, we can not prove the independence of the seed and the main input.

For adaptive adversaries, we go back to using an invertible affine extractor. We prove
that both security for worst-case messages and against adaptive adversaries are guaranteed
if the affine extractor provides the strong guarantee of having a nearly uniform output with
respect to the `∞ measure rather than `1. However, this comes at the cost of the extractor
not being able to extract the entire entropy of the source, leading to ramp secret sharing
schemes with slightly sub-optimal rates, albeit still achieving rates within a constant factor
of the optimum. As a proof of concept, we utilize a simple padding and truncation technique
to convert any off-the-shelf seedless affine extractor (such as those of Bourgain [7] or Li [16])
to one that satisfies the stronger uniformity condition that we require.

We now turn to reconstruction from an incomplete set of shares. In order to provide
reconstructibility from a subset of size r of the shares, we naturally compose the encoding
obtained from the extractor’s inversion routine with a linear erasure-correcting code. The
linearity of the code ensures that the extractor’s input subject to the adversary’s observation
(which now can consist of linear combinations of the original encoding) remains uniform on
some affine space, thus preserving the privacy guarantee.

However, since by the known rate-distance trade-offs of binary error-correcting codes, no
deterministic coding scheme can correct more than a 1/2 fraction of erasures (a constraint
that would limit the choice of ρ), the relaxed notion of stochastic coding schemes is necessary
for us to allow reconstruction for all choices of ρ ∈ (τ, 1]. Intuitively, a stochastic code is a
randomized encoder with a deterministic decoder, that allows the required fraction of errors
to be corrected. We utilize what we call a stochastic affine code. Such codes are equipped
with encoders that are affine functions of the message for every fixing of the encoder’s internal
randomness. We show that such codes are as suitable as deterministic linear codes for
providing the linearity properties that our construction needs.
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In fact, we need capacity-achieving stochastic erasure codes, i.e., those that correct
every 1− ρ fraction of erasures at asymptotic rate ρ, to be able to construct binary secret
sharing schemes with arbitrarily small relative gap γ = ρ−τ . To construct capacity-achieving
stochastic affine erasure codes, we utilize a construction of stochastic codes due to Guruswami
and Smith [15] for bit-flip errors. We observe that this construction can be modified to yield
capacity-achieving erasure codes. Roughly speaking, this is achieved by taking an explicit
capacity-achieving linear code for BEC and pseudo-randomly shuffling the codeword positions.
Combined with a delicate encoding of hidden “control information” to communicate the
choice of the permutation to the decoder in a robust manner, the construction transforms
robustness against random erasures to worst-case erasures at the cost of making the encoder
randomized.

1.4 Organization of the paper
Section 2 contains a brief introduction to the two building blocks for our constructions:
randomness extractors and stochastic codes. In Section 3, we formally define the binary secret
sharing model and prove a coding rate upper bound. Section 4 contains a capacity-achieving
construction with privacy against non-adaptive adversaries. Section 5 contains a constant
rate construction with privacy against adaptive adversaries. Finally, we conclude the paper
and discuss open problems in Section 6.

2 Preliminaries and definitions

In this section, we review the necessary facts and results about randomness extractors, both
the seeded and seedless affine variants, as well as the stochastic erasure correcting codes.

Randomness extractors extract close to uniform bits from input sequences that are not
uniform but have some guaranteed entropy. The closeness to uniform of the extractor output
is measured by the statistical distance (half the `1-norm). For a set X , we use X ← X
to denote that X is distributed over the set X . For two random variables X,Y ← X , the
statistical distance between X and Y is defined as,

SD(X; Y) = 1
2
∑
x∈X
|Pr[X = x]− Pr[Y = x]| .

We say X and Y are ε-close if SD(X,Y) ≤ ε. A randomness source is a random variable with
lower bound on its min-entropy, which is defined by H∞(X) = − log maxx{Pr[X = x]}. We
say a random variable X← {0, 1}n is a (n, k)-source if H∞(X) ≥ k.

For well structured sources, there exist deterministic functions that can extract close
to uniform bits. The support of X ← X is the set of x ∈ X such that Pr[X = x] > 0. An
affine (n, k)-source is an (n, k)-source whose support is an affine sub-space of {0, 1}n and
each vector in the support occurs with the same probability. Let Um denote the random
variable uniformly distributed over {0, 1}m.

I Definition 2. A function AExt : {0, 1}n → {0, 1}m is an affine (k, ε)-extractor if for any
affine (n, k)-source X, we have

SD(AExt(X); Um) ≤ ε.

An affine extractor can not be a linear function.
For general (n, k)-sources, there does not exist a deterministic function that can extract

close to uniform bits from all of them simultaneously. A family of deterministic functions are
needed.
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I Definition 3. A function Ext : {0, 1}d×{0, 1}n → {0, 1}m is a strong seeded (k, ε)-extractor
if for any (n, k)-source X, we have

SD(S,Ext(S,X); S,Um) ≤ ε,

where S is chosen uniformly from {0, 1}d. A seeded extractor Ext(·, ·) is called linear if for
any fixed seed S = s, the function Ext(s, ·) is a linear function.

We will use Trevisan’s extractor [24] in our first construction. In particular, we use the
following improvement of this extractor due to Raz, Reingold and Vadhan [19].

I Lemma 4 ([19]). There is an explicit linear strong seeded (k, ε)-extractor Ext : {0, 1}d ×
{0, 1}n → {0, 1}` with d = O(log3(n/ε)) and ` = k −O(d).

We will use Bourgain’s affine extractor in our second construction. We note, however,
that we could have used other explicit extractors for this purpose, such as [16].

I Lemma 5 ([7]). For every constant 0 < µ ≤ 1, there is an explicit affine (µn, ε)-extractor
AExt : {0, 1}n → {0, 1}m with output length m = Ω(n) and error ε = 2−Ω(n).

Explicit constructions of randomness extractors have efficient forward direction of ex-
traction. In some applications, we usually need to efficiently invert the process: Given an
extractor output, sample a random pre-image.

I Definition 6 ([11]). Let f be a mapping from {0, 1}n to {0, 1}m. For 0 ≤ v < 1, a function
Inv : {0, 1}m × {0, 1}r → {0, 1}n is called a v-inverter for f if the following conditions hold:

(Inversion) Given y ∈ {0, 1}m such that its pre-image f−1(y) is nonempty, for every
r ∈ {0, 1}r we have f(Inv(y, r)) = y.
(Uniformity) Inv(Um,Ur) is v-close to Un.

A v-inverter is called efficient if there is a randomized algorithm that runs in worst-case
polynomial time and, given y ∈ {0, 1}m and r as a random seed, computes Inv(y, r). We call a
mapping v-invertible if it has an efficient v-inverter, and drop the prefix v from the notation
when it is zero. We abuse the notation and denote the inverter of f by f−1.

A stochastic code has a randomised encoder and a deterministic decoder. The encoder
Enc : {0, 1}m ×R → {0, 1}n uses local randomness R← R to encode a message m ∈ {0, 1}m.
The decoder is a deterministic function Dec : {0, 1}n → {0, 1}m ∪ {⊥}. The decoding
probability is defined over the encoding randomness R← R. Stochastic codes are known to
explicitly achieve the capacity of some adversarial channels [15].

Affine sources play an important role in our constructions. We define a general requirement
for the stochastic code used in our constructions.

I Definition 7 (Stochastic Affine codes). Let Enc : {0, 1}m ×R → {0, 1}n be the encoder of
a stochastic code. We say it is a stochastic affine code if for any r ∈ R, the encoding function
Enc(·, r) specified by r is an affine function of the message. That is we have

Enc(m, r) = mGr + ∆r,

where Gr ∈ {0, 1}m×n and ∆r ∈ {0, 1}n are specified by the randomness r.

We then adapt a construction in [15] to obtain the following capacity-achieving Stochastic
Affine-Erasure Correcting Code (SA-ECC). In particular, we show for any p ∈ [0, 1), there is
an explicit stochastic affine code that corrects p fraction of adversarial erasures and achieves
the rate 1− p.
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I Lemma 8 (Adapted from [15]). For every p ∈ [0, 1), and every ξ > 0, there is an
efficiently encodable and decodable stochastic affine code (Enc,Dec) with rate R = 1− p− ξ
such that for every m ∈ {0, 1}NR and erasure pattern of at most p fraction, we have
Pr[Dec(Ẽnc(m)) = m] ≥ 1 − exp(−Ω(ξ2N/ log2N)), where Ẽnc(m) denotes the partially
erased random codeword and N denotes the length of the codeword.

Proof Sketch. We defer the details of the construction to the full version of this paper. For
now we refer to [15, Theorem 6.1] and point out the adaptations needed. There are six
building blocks involved in the construction: SC, RS, Samp, KNR, POLYt and REC. We
replace the first and last building blocks.

The first building block is a Stochastic Code (SC). We need two properties from this
building block: detect when the codeword is masked by a random offset and correct from
erasures of no more than 1− ρ+ ξ fraction. Since the correction is with respect to erasure,
as opposed to flips in [15, Theorem 6.1], we then use an erasure list-decodable code [14]
instead of an error list-decodable code. This is necessary when ρ < 1

2 , since the latter can
not correct errors beyond one half.

The last building block is a Random Error Code (REC). We need two properties from
this building block: correct from random erasures of 1 − ρ fraction and the encoder is a
linear function. The linearity was not required in [15, Theorem 6.1]. Explicit linear codes at
rate 1 − p that correct p fraction of random erasures are known. We can use any explicit
construction of capacity achieving linear codes for BEC1−ρ to obtain REC and use a similar
argument of [22]. J

3 Binary secret sharing schemes

In this section, we define our model of nearly-threshold binary secret sharing schemes. We
begin with a description of the two models of non-adaptive and adaptive adversaries which
can access up to t of the N shares.

A leakage oracle is a machine O(·) that takes as input an N -bit string c ∈ {0, 1}N and
then answers the leakage queries of the type Ij , for Ij ⊂ [N ], j = 1, 2, . . . , q. Each query
Ij is answered with cIj

. An interactive machine A that issues the leakage queries is called
a leakage adversary. Let Ac = ∪qj=1Ij denote the union of all the index sets chosen by A
when the oracle input is c. The oracle is called t-bounded, denoted by Ot(·), if it rejects
leakage queries from A if there exists some c ∈ {0, 1}N such that |Ac| > t. An adaptive
leakage adversary decides the index set Ij+1 according to the oracle’s answers to all previous
queries I1, . . . , Ij . A non-adaptive leakage adversary has to decide the index set Ac before
any information about c is given. This means that for a non-adaptive adversary, given any
oracle input c ∈ {0, 1}N , we always have Ac = A for some A ⊂ [N ]. Let ViewOt(·)

A denote
the view of the leakage adversary A interacting with a t-bounded leakage oracle. When A is
non-adaptive, we use the shorthand ViewOt(·)

A = (·)A, for some A ⊂ [N ] of size |A| ≤ t.
A function ε : N → R is called negligible if for every positive integer k, there exists an

Nk ∈ N such that |ε(N)| < 1
Nk for all N > Nk. The following definition of ramp Secret

Sharing Scheme (SSS) allows imperfect privacy and reconstruction with errors bounded by
negligible functions ε(·) and δ(·), respectively.

I Definition 9. For any 0 ≤ τ < ρ ≤ 1, an (ε(N), δ(N))-SSS with relative threshold pair
(τ, ρ) is a pair of polynomial-time algorithms (Share,Recst),

Share : {0, 1}`(N) ×R → {0, 1}N ,

where R denote the randomness set, and

Recst : ˜{0, 1}N → {0, 1}`(N) ∪ {⊥},
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where ˜{0, 1}N denotes the subset of ({0, 1} ∪ {?})N with at least Nρ components not equal
to the erasure symbol “?”, that satisfy the following properties.

Reconstruction: Given r(N) = Nρ correct shares of a share vector Share(s), the recon-
struct algorithm Recst reconstructs the secret s with probability at least 1− δ(N).
When δ(N) = 0, we say the SSS has perfect reconstruction.
Privacy (non-adaptive/adaptive):

Non-adaptive: for any s0, s1 ∈ {0, 1}`(N), any A ⊂ [N ] of size |A| ≤ t(N) = Nτ ,

SD(Share(s0)A; Share(s1)A) ≤ ε(N). (3)

Adaptive: for any s0, s1 ∈ {0, 1}`(N) and any adaptive adversary A interacting with a
t(N)-bounded leakage oracle Ot(N)(·) for t(N) = Nτ ,

SD
(

ViewOt(N)(Share(s0))
A ; ViewOt(N)(Share(s1))

A

)
≤ ε(N). (4)

When ε(N) = 0, we say the SSS has perfect privacy.

The difference γ = ρ − τ is called the relative gap, since Nγ = r(N) − t(N) is the
threshold gap of the scheme. When clear from context, we write ε, δ, t, k, ` instead of
ε(N), δ(N), t(N), r(N), `(N). When the parameters are not specified, we call a (ε, δ)-SSS
simply a binary SSS.

In the above definition, a binary SSS has a pair of designed relative thresholds (τ, ρ). In
this work, we are concerned with constructing nearly-threshold binary SSS, namely, binary
SSS with arbitrarily small relative gap γ = ρ− τ . We also want our binary SSS to share a
large secret ` = Ω(N).

I Definition 10. For any 0 ≤ τ < ρ ≤ 1, a coding rate R ∈ [0, 1] is achievable if there exists
a family of (ε, δ)-SSS with relative threshold pair (τ, ρ) such that ε and δ are both negligible
in N and `

N → R. The highest achievable coding rate of binary SSS for a pair (τ, ρ) is called
its capacity.

By relating binary SSS to Wyner wiretap codes with a pair of BEC’s, we obtain the
following coding rate upper bound for binary SSS.

I Lemma 11. For 0 ≤ τ < ρ ≤ 1, the coding rate capacity of binary SSS with relative
threshold pair (τ, ρ) is asymptotically upper-bounded by ρ− τ .

Due to the space constraint, details of the proof are given in the full version of this paper.

Proof Sketch. Let (Share,Recst) be a non-adaptive binary SSS with relative threshold pair
(τ, ρ). We use Share as the encoder and Recst as the decoder, and verify that we obtain a
Wyner wiretap code with a BECpm

main channel and a BECpw
wiretapper channel, where

pm = 1 − ρ − ξ and pw = 1 − τ + ξ, respectively, for arbitrarily small ξ > 0. Erasures in
binary SSS are worst-case, while they are probabilistic in the Wyner wiretap model. We
however note that asymptotically, the number of random erasures of BECpm

and BECpw

approaches Npm and Npw, respectively, with overwhelming probability, and so a code that
protects against worst-case erasure can be used as a code with probabilistic erasure. We
also take into account the difference in the secrecy notion in binary SSS and Wyner wiretap
code. J

In the rest of the paper, we give two constant rate constructions of nearly-threshold binary
SSS against non-adaptive adversary and adaptive adversary, respectively. The non-adaptive
adversary construction is optimal in the sense that the coding rate achieves the upper bound
in Lemma 11.
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4 Secret sharing against non-adaptive adversaries

We first present our construction of capacity-achieving binary SSS against non-adaptive ad-
versaries, using linear strong seeded extractors and optimal rate stochastic erasure correcting
codes. The following theorem describes the construction using these components.

I Theorem 12. Let Ext : {0, 1}d × {0, 1}n → {0, 1}` be a linear strong seeded (n − t, ε8 )-
extractor and Ext−1(z, ·) : {0, 1}` × R1 → {0, 1}n be the inverter of the function Ext(z, ·)
that maps an s ∈ {0, 1}` to one of its pre-images chosen uniformly at random. Let
(SA-ECCenc,SA-ECCdec) be a stochastic affine-erasure correcting code with the encoder
SA-ECCenc : {0, 1}d+n×R2 → {0, 1}N that tolerates N − r erasures and decodes with success
probability at least 1− δ. Then the following coding scheme (Share,Recst) is a non-adaptive
(ε, δ)-SSS with threshold pair (t, r).{

Share(s) = SA-ECCenc(Z||Ext−1(Z, s)),where Z $← {0, 1}d;
Recst(ṽ) = Ext(z, x),where (z||x) = SA-ECCdec(ṽ).

Here ṽ denotes an incomplete version of a share vector v ∈ {0, 1}N with some of its components
replaced by erasure symbols.

The proof of Theorem 12 will follow naturally from Lemma 13. We first state and prove
this general property of a linear strong extractor, which is of independent interest. For the
property to hold, we in fact only need the extractor to be able to extract from affine sources.
The proof of Lemma 13 is a bit long. We then break it into a claim and two propositions.

I Lemma 13. Let Ext : {0, 1}d × {0, 1}n → {0, 1}m be a linear strong (k, ε)-extractor. Let
fA : {0, 1}d+n → {0, 1}t be any affine function with output length t ≤ n− k. For any m,m′ ∈
{0, 1}m, let (Z,X) = (Ud,Un)| (Ext(Ud,Un) = m) and (Z′,X′) = (Ud,Un)| (Ext(Ud,Un) = m′).
We have

SD(fA(Z,X); fA(Z′,X′)) ≤ 8ε. (5)

Proof. For the above pairwise guarantee (5) to hold, it suffices to show that for every fixed
choice of m ∈ {0, 1}m, the distribution of fA(Z,X) is (4ε)-close to Ud ×D, where Ud is the
uniform distribution on {0, 1}d.

Without loss of generality, we assume that the linear function Ext(z, ·) : {0, 1}n → {0, 1}m,
for every seed z, has the entire {0, 1}m as its image 3 . Without loss of generality, it
suffices to assume that fA is of the form fA(Z,X) = (Z,W (X)) for some affine function
W : {0, 1}n → {0, 1}t. This is because for any arbitrary fA, the information contained in
fA(Z,X) can be obtained from (Z,W (X)) for a suitable choice of W . Let D be the uniform
distribution on the image of W .

Let K← {0, 1}n be a random variable uniformly distributed over the kernel of the linear
transformation defined by W , and note that it has entropy at least n− t ≥ k. The extractor
Ext thus guarantees that Ext(Z,K), for a uniform and independent seed Z, is ε-close to
uniform. By averaging, it follows that for at least 1− 4ε fraction of the choices of the seed
z ∈ {0, 1}d, the distribution of Ext(z,K) is (1/4)-close to uniform.

3 If this condition is not satisfied for some choice z of the seed, there must be linear dependencies between
the m output bits of Ext(z, ·). Therefore, for this choice Ext(z, ·) can never be an extractor and arbitrarily
changing Ext(·, z) to be an arbitrary full rank linear function will not change the overall performance of
the extractor.
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I Claim 14. Let U be uniformly distributed on {0, 1}m and U′ be any affine source that is
not uniform on {0, 1}m. Then, the statistical distance between U and U′ is at least 1/2.

Claim 14 follows from the observation that any affine source U′ that is not uniform on
{0, 1}m will have a support (the set of vectors u such that Pr[U′ = u] > 0) that is an affine
subspace of {0, 1}m with dimension at most m− 1.

Continuing with the previous argument, since Ext is a linear function for every seed, the
distribution of Ext(z,K) for any seed z is an affine source. Therefore, the above claim allows
us to conclude that for at least 1− 4ε fraction of the choices of z, the distribution of Ext(z,K)
is exactly uniform. Let G ⊆ {0, 1}d be the set of such choices of the seed. Observe that if
Ext(z,K) is uniform for some seed z, then for any affine translation of K, namely, K + v for
any v ∈ {0, 1}n, we have that Ext(z,K + v) is uniform as well. This is due to the linearity of
the extractor.

Recall that our goal is to show that fA(Z,X) = (Z,W (X)) is (4ε)-close to Ud ×D. The
distribution (Z,W (X)) is obtained as (Ud,W (Un))|(Ext(Ud,Un) = m). For the rest of the
proof, we first find out the distribution (Ud,W (Un))|(Ext(Ud,Un) = m,Ud = z) for a seed
z ∈ G (Proposition 15) and then take the convex combination over the uniform seed to obtain
(Z,W (X)) (Proposition 16). The argument starts with a uniform message M $← {0, 1}m
instead of a particular message m ∈ {0, 1}m. We define a new set of simplified notations.
Let Z $← {0, 1}d be an independent and uniform seed. Let (Z,Y) be the pre-image of M and
(Z,W) : = fA(Z,Y). Proposition 15 and 16 are stated in terms of the triple (M,Z,W).

I Proposition 15. Let z ∈ G and consider any m ∈ {0, 1}m. Then, the conditional distribu-
tion of W|(Z = z,M = m) is exactly D.

To prove Proposition 15, note that the distribution of (Z,Y) is uniform on {0, 1}d+n.
Now, fix any z ∈ G and let w ∈ {0, 1}t be any element in the image of W (·). Since the
conditional distribution Y|(Z = z) is uniform over {0, 1}n, further conditioning on W (Y) = w
yields that Y|(Z = z,W = w) is uniform over a translation of the kernel of W (·). By the
assumption z ∈ G and recalling M = Ext(Z,Y), we therefore know that the extractor output
is exactly uniform over {0, 1}m. That is, M|(Z = z,W = w) is exactly uniform over {0, 1}m
and hence in this case M and W are independent. On the other hand, the distribution of
(Z,W) is exactly Ud ×D, since the map W (·) is linear. In particular, for any z ∈ {0, 1}d, the
conditional distribution W|(Z = z) is exactly D. This together with the fact that M and W
are independent yield that the conditional distribution of (M,W)|(Z = z) is exactly Um ×D.
We have therefore proved Proposition 15.

I Proposition 16. For any m ∈ {0, 1}m, the conditional distribution of (Z,W)|(M = m) is
(4ε)-close to Ud ×D.

To prove Proposition 16, it suffices to note that the distribution of (Z,W)|(M = m) is a
convex combination of the distributions (Z,W)|(M = m,Z = z) and then use the result of
Proposition 15 along with the fact that Pr[Z /∈ G] ≤ 4ε. A detailed derivation follows.

Recall that for any z ∈ {0, 1}d, the conditional distribution of W|(Z = z) is exactly
D (since Y|(Z = z) is uniform over {0, 1}n). Consider any event E ⊆ {0, 1}d+t and let
p := Pr[(Z,W) ∈ E ]. Since Z and W are independent, we have that

p = 2−d
∑

(z,w)∈E

D(w),

where D(w) denotes the probability assigned to the outcome w by D. On the other hand, we
shall write down the same probability in the conditional probability space M = m and show
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that it is different from p by at most 4ε, concluding the claim on the statistical distance.
We have

Pr[(Z,W) ∈ E|M = m] =
∑

(z,w)∈E

Pr[Z = z,W = w|M = m]

=
∑

(z,w)∈E,z∈G

Pr[Z = z,W = w|M = m]

+
∑

(z,w)∈E,z/∈G

Pr[Z = z,W = w|M = m].

Note that

η :=
∑

(z,w)∈E,z/∈G

Pr[Z = z,W = w|M = m] ≤ Pr[Z /∈ G|M = m] ≤ 4ε,

since M and Z are independent. Therefore,

Pr[(Z,W) ∈ E|M = m] =
∑

(z,w)∈E,z∈G

Pr[Z = z,W = w|M = m] + η

= 2−d
∑

(z,w)∈E,z∈G

Pr[W = w|M = m,Z = z] + η (6)

= 2−d
∑

(z,w)∈E,z∈G

D(w) + η (7)

= 2−d
( ∑

(z,w)∈E

D(w)−
∑

(z,w)∈E,z/∈G

D(w)
)

+ η

where (6) uses the independence of W and Z and (7) follows from Proposition 15. Observe
that

η′ := 2−d
∑

(z,w)∈E,z/∈G

D(w) = 2−d
∑
z/∈G

∑
w :

(z,w)∈E

D(w) ≤ 2−d(2d − |G|) ≤ 4ε.

Therefore,

Pr[(Z,W) ∈ E|M = m] = p+ η − η′ = p± 4ε = Pr[(Z,W) ∈ E ]± 4ε,

since 0 ≤ η ≤ 4ε and 0 ≤ η′ ≤ 4ε. We have therefore proved Proposition 16. J

With Lemma 13 at hand, we are now at a good position to prove Theorem 12.

Proof of Theorem 12. The reconstruction from r shares follows trivially from the definition
of stochastic erasure correcting code. We now prove the privacy.

The sharing algorithm of the SSS (before applying the stochastic affine code) takes a secret,
which is a particular extractor output s ∈ {0, 1}`, and uniformly samples a seed z ∈ {0, 1}d
of Ext before uniformly finds an x ∈ {0, 1}n such that Ext(z, x) = s. This process of obtaining
(z, x) is the same as sampling (Ud,Un) $← {0, 1}d+n and then restrict to Ext(Ud,Un) = s. We
define the random variable tuple

(Z,X) := (Ud,Un)| (Ext(Ud,Un) = s) (8)

and refer to it as the pre-image of s.
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Let ΠA : {0, 1}N → {0, 1}t be the projection function that maps a share vector to
the t shares with index set A ⊂ [N ] chosen by the non-adaptive adversary. Observe that
the combination (ΠA ◦ SA-ECCenc) : {0, 1}d+n → {0, 1}t (for any fixed randomness r of
SA-ECCenc) is an affine function. So the view of the adversary is simply the output of the
affine function fA = (ΠA ◦ SA-ECCenc) applied to the random variable tuple (Z,X) defined
in (8).

We can now formulate the privacy of the SSS in this context. We want to prove that the
statistical distance of the views of the adversary for a pair of secrets s and s′ can be made
arbitrarily small. The views of the adversary are the outputs of the affine function fA with
inputs (Z,X) and (Z′,X′) for the secret s and s′, respectively. According to Lemma 13, we
then have that the privacy error is 8× ε

8 = ε. J

We now analyze the coding rate of the (ε, δ)-SSS with relative threshold pair ( tN ,
r
N )

constructed in Theorem 12 when instantiated with the SA-ECC from Lemma 8 and the
Ext from Lemma 4. The secret length is ` = n − t − O(d), where the seed length is
d = O(log3(2n/ε)). The SA-ECC encodes d + n bits to N bits and with coding rate
RECC = ρ−ξ for a small ξ determined by δ (satisfying the relation δ = exp(−Ω(ξ2N/ log2N))
according to Lemma 8). We then have n = N(ρ− ξ)− d, resulting in the coding rate

R = `

N
= n− t−O(d)

N
= N(ρ− ξ)− t−O(d)

N
= ρ− τ − (ξ + O(d)

N
) = ρ− τ − o(1).

I Corollary 17. For any 0 ≤ τ < ρ ≤ 1, there is an explicit construction of non-adaptive
(ε, δ)-SSS with relative threshold pair (τ, ρ) achieving coding rate ρ− τ − o(1), where ε and δ
are both negligible.

The binary SSS obtained in Corollary 17 is asymptotically optimal as it achieves the
upper bound in Lemma 11.

5 Secret sharing against adaptive adversaries

In this section, we will describe our construction which achieves privacy against adaptive
adversaries, using seedless affine extractors. We start with the specific extraction property
needed from our affine extractors.

I Definition 18. An affine extractor AExt : {0, 1}n → {0, 1}m is called (k, ε)-almost perfect
if for any affine (n, k)-source X,∣∣∣∣Pr[AExt(X) = y]− 1

2m

∣∣∣∣ ≤ 2−m · ε, for any y ∈ {0, 1}m.

Almost perfect property can be trivially achieved by requiring an exponentially (in m) small
error in statistical distance, using the relation between `∞-norm and `1-norm.

I Theorem 19. Let AExt : {0, 1}n → {0, 1}` be an invertible (n− t, ε2 )-almost perfect affine
extractor and AExt−1 : {0, 1}`×R1 → {0, 1}n be its v-inverter that maps an s ∈ {0, 1}` to one
of its pre-images chosen uniformly at random. Let (SA-ECCenc,SA-ECCdec) be a stochastic
affine-erasure correcting code with encoder SA-ECCenc : {0, 1}n×R2 → {0, 1}N that tolerates
N − r erasures and decodes with success probability at least 1− δ. Then the (Share,Recst)
defined as follows is an adaptive (ε+ v, δ)-SSS with threshold pair (t, r).{

Share(s) = SA-ECCenc(AExt−1(s));
Recst(ṽ) = AExt(SA-ECCdec(ṽ)),

where ṽ denotes an incomplete version of a share vector v ∈ {0, 1}N with some of its
components replaced by erasure symbols.
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Proof. The (r, δ)-reconstructability follows directly from the erasure correcting capability of
the SA-ECC. For any ṽ with at most N − r erasure symbols and the rest of its components
consistent with a valid codeword v ∈ {0, 1}N , the SA-ECC decoder identifies the unique
codeword v with probability 1− δ over the encoder randomness. The corresponding SA-ECC
message of v is then inputted to AExt and the original secret s is reconstructed with the same
probability.

We next prove the (t, ε)-privacy. Without loss of generality, we first assume the inverter
of the affine extractor is perfect, namely, v = 0. When v is negligible but not equal to zero,
the overall privacy error will increase slightly, but still remain negligible. For any r ∈ R2,
the affine encoder of SA-ECC is characterised by a matrix Gr ∈ {0, 1}n×N and an offset ∆r.
For n unknowns x = (x1, . . . , xn), we have

SA-ECCenc(x) = xGr + ∆r = (xG1, . . . ,xGN ) + ∆r,

where Gi = (g1,i, . . . , gn,i)T (here the subscript “r” is omitted to avoid double subscripts)
denotes the ith column of Gr, i = 1, . . . , N . This means that knowing a component ci
of the SA-ECC codeword is equivalent to obtaining a linear equation ci ⊕ ∆i = xGi =
g1,ix1 + · · · + gn,ixn about the n unknowns x1, . . . , xn, where ∆i (again, the subscript “r”
is omitted) denotes the ith component of ∆r. Now, we investigate the distribution of
ViewOt(Share(s))

A for any secret s ∈ {0, 1}` by finding the probability Pr[ViewOt(Share(s))
A = w]

for arbitrary w. We then have

Pr[ViewOt(Share(s))
A = w] = Pr[ViewOt(SA-ECCenc(X))

A = w|AExt(X) = s]

=
Pr[AExt(X) = s|ViewSA-ECCenc(X)

A = w] · Pr[ViewSA-ECCenc(X)
A = w]

Pr[AExt(X) = s]

(i)=
(1± ε

2 )2−` · Pr[ViewSA-ECCenc(X)
A = w]

Pr[AExt(X) = s]

(ii)=
(1± ε

2 )2−` · 2n−rank(A)

2n

2−`

= (1± ε

2) · 2−rank(A),

where notations X, ±, rank(A) and (i), (ii) are explained as follows. In above, we first use the
fact that Pr[ViewOt(Share(s))

A = w] can be seen as the probability of uniformly selecting X from
{0, 1}n, with the condition that AExt(X) = s. This is true because the sets AExt−1(s) for all s,
partition {0, 1}n and the rest follows from Definition 6. The shorthand “y = 1± ε

2” denotes
“1− ε

2 ≤ y ≤ 1 + ε
2”. The shorthand “rank(A)” denotes the rank of the up to t columns of

G corresponding to the index set A adaptively chosen by A. The equality (i) follows from
the fact that AExt is an (n− t, 2−(`+1)ε)-affine extractor and the uniform X conditioned on
at most t linear equations is an affine source with at least n− t bits entropy. The equality
(ii) holds if and only if w is in the set {SA-ECCenc(x)A : x ∈ {0, 1}n}. Indeed, consider X as
unknowns for equations, the number of solutions to the linear system SA-ECCenc(X)A = w is
either 0 or equal to 2n−rank(A).

The distribution of ViewOt(Share(s))
A for any secret s is determined by the quantity rank(A),

which is independent of the secret s. Let W be the uniform distribution over the set
{SA-ECCenc(x)A : x ∈ {0, 1}n}. Then by the triangular inequality, we have

SD
(

ViewOt(Share(s0))
A ; ViewOt(Share(s1))

A

)
≤ SD

(
ViewOt(Share(s0))

A ; W
)

+ SD
(

W; ViewOt(Share(s1))
A

)
≤ ε

2 + ε
2 = ε.
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When the inverter of the affine extractor is not perfect, the privacy error is upper bounded
by ε+ v. This concludes the privacy proof. J

There are explicit constructions of binary affine extractors that, given a constant fraction
of entropy, outputs a constant fraction of random bits with exponentially small error (see
Lemma 5). There are known methods for constructing an invertible affine extractor AExt′ from
any affine extractor AExt such that the constant fraction output size and exponentially small
error properties are preserved. A simple method is to let AExt′(Un||M) := AExt(Un)⊕M
(see Appendix A for a discussion). This is summarized in the lemma below.

I Lemma 20. For any δ ∈ (0, 1], there is an explicit seedless (δn, ε)-almost perfect affine
extractor AExt : {0, 1}n → {0, 1}m where m = Ω(n) and ε = exp(−Ω(n)). Moreover, there is
an efficiently computable ε-inverter for the extractor.

Proof. Let AExt : {0, 1}n → {0, 1}m be Bourgain’s affine extractor (Lemma 5) for entropy
rate µ, output length m = Ω(n), and achieving exponentially small error ε = exp(−Ω(n)).
Using the one-time pad trick (Appendix A), we construct an invertible variant achieving
output length m′ = Ω(m) = Ω(n) and exponentially small error. Finally, we simply truncate
the output length of the resulting extractor to m′′ = Ω(m′) = Ω(n) bits so that the closeness
to uniformity measured by `∞ norm required for almost-perfect extraction is satisfied. The
truncated extractor is still invertible since the inverter can simply pad the given input with
random bits and invoke the original inverter function. J

It now suffices to instantiate Theorem 19 with the explicit construction of SA-ECC and
the invertible affine extractor AExt of Lemma 20. Let RECC denote the rate of the SA-ECC.
Then we have RECC = n

N , where n is the input length of the affine extractor AExt and
N is the number of players. The intuition of the construction in Theorem 19 is that if
a uniform secret is shared and conditioning on the revealed shares the secret still has a
uniform distribution (being the output of a randomness extractor), then no information is
leaked. In fact, the proof of Theorem 19 above is this intuition made exact, with special
care on handling the imperfectness of the affine extractor. So as long as the “source” of the
affine extractor AExt has enough entropy, privacy is guaranteed. Here the “source” is the
distribution Un conditioned on the adversary’s view, which is the output of a t-bit affine
function. The “source” then is affine and has at least n− τN = n(1− τ

RECC
) bits of entropy.

Now as long as τ < RECC , using the AExt from Lemma 5 (more precisely, an invertible
affine extractor AExt′ : {0, 1}n′ → {0, 1}` constructed from AExt) with µ = 1 − τ

RECC
, a

constant fraction of random bits can be extracted with exponentially small error. This
says that privacy is guaranteed for τ ∈ [0, RECC). The stochastic affine ECC in Lemma 8
asymptotically achieves the rate 1− (1− ρ) = ρ. We then have the following corollary.

I Corollary 21. For any 0 ≤ τ < ρ ≤ 1, there is an explicit constant coding rate adaptive
(ε, δ)-SSS with relative threshold pair (τ, ρ), where ε and δ are both negligible.

The construction above achieves a constant coding rate for any (τ, ρ) pair satisfying
0 ≤ τ < ρ ≤ 1. However, since the binary affine extractor in Lemma 5 does not extract all
the entropy from the source and moreover the step that transforms an affine extractor into
an invertible affine extractor incurs non-negligible overhead, the coding rate of the above
construction does not approach ρ− τ . We leave explicit constructions of binary SSS against
adaptive adversary with better coding rate as an interesting technical open question.
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6 Conclusion

We studied the problem of sharing arbitrary long secrets using constant length shares and
required a nearly-threshold access structure. By nearly-threshold we mean a ramp scheme
with arbitrarily small gap to number of players ratio. We show that by replacing perfect
privacy and reconstructibility with slightly relaxed notions and inline with similar strong
cryptographic notions, one can explicitly construct such nearly-threshold schemes. We gave
two constructions with security against non-adaptive and adaptive adversaries, respectively,
and proved optimality of the former. Our work also make a new connection between secret
sharing and wiretap coding.

We presented our model and constructions for the extremal case of binary shares. However,
we point out that the model and our constructions can be extended to shares over any desired
alphabet size q. Using straightforward observations (such as assigning multiple shares to
each player), this task reduces to extending the constructions over any prime q. In this
case, the building blocks that we use; namely, the stochastic error-correcting code, seeded
and seedless affine extractors need to be extended to the q-ary alphabet. The constructions
[24, 19, 15] that we use, however, can be extended to general alphabets with straightforward
modifications. The only exception is Bourgain’s seedless affine extractor [7]. The extension
of [7] to arbitrary alphabets is not straightforward and has been accomplished in a work by
Yehudayoff [26].

Our constructions are not linear: even the explicit non-adaptive construction that uses an
affine function for every fixing of the encoder’s randomness does not result in a linear secret
sharing. Linearity is an essential property in applications such as multiparty computation
and so explicit constructions of linear secret sharing schemes in our model will be an
important achievement. Yet another important direction for future work is deriving bounds
and constructing optimal codes for finite length (N) case. Such result will also be of high
interest for wiretap coding.
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A One-Time-Pad trick of inverting extractors

The following trick to transform an efficient function into one that is also efficiently invertible
has appeared in different form before (see for example [21]). We prove it here for the case of
affine extractors, for completeness.

I Lemma 22. Let AExt : {0, 1}n → {0, 1}m be an affine (n, k)-extractor with error ε. Then
AExt′ : {0, 1}n+m → {0, 1}m defined as follows is a ε-invertible affine (n+m, k+m)-extractor
with error ε.

AExt′(z) = AExt′(x||y) = AExt(x) + y,

where the input z ∈ {0, 1}n+m is separated into two parts: x ∈ {0, 1}n and y ∈ {0, 1}m.

Proof. Let Z be a random variable with flat distribution supported on an affine subspace
of {0, 1}n+m of dimension at least k + m. Separate Z into two parts Z = (X||Y), where
X ∈ {0, 1}n and Y ∈ {0, 1}m. Then conditioned on any Y = y, X has a distribution supported
on an affine subspace of {0, 1}n of dimension at least k. This asserts that conditioned on any
Y = y,

SD(AExt(X) + y; U{0,1}m) ≤ ε.

Averaging over the distribution of Y concludes the extractor proof.
We next show an efficient inverter AExt′−1 for AExt′. For any s ∈ {0, 1}m, define

AExt′−1(s) = (Un||AExt(Un) + s).

The randomised function AExt′−1 is efficient and AExt′−1(Um) ε∼ Un+m. J
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Abstract
We study the multiparty communication complexity of high dimensional permutations in the
Number On the Forehead (NOF) model. This model is due to Chandra, Furst and Lipton (CFL)
who also gave a nontrivial protocol for the Exactly-n problem where three players receive integer
inputs and need to decide if their inputs sum to a given integer n. There is a considerable body
of literature dealing with the same problem, where (N,+) is replaced by some other abelian
group. Our work can be viewed as a far-reaching extension of this line of research. We show
that the known lower bounds for that group-theoretic problem apply to all high dimensional
permutations. We introduce new proof techniques that reveal new and unexpected connections
between NOF communication complexity of permutations and a variety of well-known problems
in combinatorics. We also give a direct algorithmic protocol for Exactly-n. In contrast, all
previous constructions relied on large sets of integers without a 3-term arithmetic progression.
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circuits for a natural function in P [40, 23]. They also imply lower bounds for branching
programs, time-space tradeoffs for Turing machines [26], and proof complexity lower bounds
[8]. The implications of good NOF lower bounds go in other, less expected directions as well.
E.g., knowing the communication complexity of specific natural functions, even for k = 3,
would have profound implications in graph theory and combinatorics. Finally, the search for
nontrivial protocols in this area is a wonderful challenge for algorithms designers. There is a
short list of such beautiful examples [13, 22] which begs to be extended.

Furthermore, our understanding of NOF communication complexity, even for k = 3
players, lags well behind our understanding of the standard model (k = 2 players). This
gap is usually attributed to the dearth of proof techniques in the NOF setting. In the
2-party setting, many measures of complexity allow us to prove both upper and lower bounds.
Such measures include matrix rank, various matrix norms, nonnegative rank, discrepancy,
corruption bounds and information complexity. Most of these measures are computationally
simple and admit dual characterizations which are very helpful in proving both upper and
lower bounds. On the other hand, in the NOF setting for k ≥ 3, the key combinatorial
objects are cylinder intersections (rather than combinatorial rectangles) and tensor norms.
These are much more complex, and thus far have resisted a workable characterization.

A case in point is the separation of randomized from deterministic communication
complexity. The 2-party equality function has a randomized protocol of bounded cost,
whereas a simple rank argument shows that every deterministic protocol must incur linear
cost. This provides an optimal separation of deterministic and randomized communication
complexity [26]. On the other hand, for k ≥ 3, the best explicit separation between
nondeterministic and randomized NOF complexity is logarithmic, even though counting
arguments yield linear separations [7]. The Exactly-n function is defined as follows: Input
x1, . . . , xk ∈ [n] is accepted iff

∑
i xi = n. In their seminal paper, Chandra, Furst and

Lipton [13] conjectured that Exactly-n achieves a strong separation, and also connected the
communication complexity of this function to well-known problems in additive combinatorics.
But thus far, despite considerable research effort, the lower bounds for Exactly-n are much
weaker even than the best (logarithmic) explicit separations.

The main goal of our work is to further investigate the connections between NOF com-
plexity of functions and questions in additive combinatorics, with the hope of stimulating
further research to make progress in both directions. A large and rapidly growing body of
work establishes interesting relationships between problems in additive combinatorics and
complexity theory. For example, the study of expander graphs and extractors, pseudoran-
domness, and property testing is closely related, some time even synonymous with similar
notions in additive combinatorics. Moreover, techniques from complexity theory have been
useful in additive combinatorics and vice versa. Some recent examples include the proof of
the cap-set conjecture [14, 17] and Dvir’s resolution [15] of the finite field Kakeya problem,
as well as the beautiful interplay between dense model theorems in additive combinatorics
and the notions of boosting and hardcore sets from complexity theory [11, 38, 29].

Here we consider a broad class of functions called high dimensional permutations. We
uncover strong connections between the NOF communication complexity of these functions
and several fundamental problems in additive combinatorics. Originally defined in [27], a
(k − 1)-dimensional permutation is a function f : [n]k → {0, 1} such that for every index
k ≥ i ≥ 1 and for every choice of x1, . . . , xi−1, xi+1, . . . , xk ∈ [n], there is exactly one value
of xi ∈ [n] for which f(x1, . . . , xi−1, xi, xi+1, . . . , xk) = 1. This class of functions generalizes
many well-studied functions in communication complexity. It is also closely related to many
other functions such as the Exactly-n function mentioned above.
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We will show that many well-studied problems in NOF complexity are not just related,
but are in fact identical or nearly identical to central problems in additive combinatorics.
We feel that this mutual relation deserves much more attention, and that progress in this
area is likely to greatly advance both domains. Specifically we believe that the study of the
communication complexity of high dimensional permutations and related graph functions
(defined in [7]) is a worthwhile undertaking that will help us develop new lower bounds proof
techniques for the notoriously difficult NOF model. Using these connections, we make modest
progress on several upper and lower bounds in NOF communication complexity.

1.1 Our Contributions

As mentioned above, our main goal and contribution is to unveil the strong relationships
between the NOF complexity of high dimensional permutation problems and central problems
in additive combinatorics and Ramsey theory. Already the founding paper of Chandra, Furst
and Lipton [13] makes a connection between the NOF complexity of Exactly-n and the areas
of Ramsey theory and additive combinatorics. A more general framework was introduced
in [10]: Given an abelian group G and T ∈ G, the function fGk,T evaluates to 1 on input
x1, . . . , xk ∈ G iff

∑
i xi = T (this expression is well-defined since G is abelian). The functions

fGk,T are high dimensional permutations. (Note that this holds as well for non-abelian G,
though we need to specify the order at which

∏
i xi is evaluated). Another strong connection

is that the Hales-Jewett theorem, a cornerstone of Ramsey theory, can be interpreted in
terms of communication complexity [35].

We establish a new and close connection between the NOF communication complexity of
high dimensional permutations and dense Ruzsa-Szemerédi graphs. These graphs appear
in various contexts in Combinatorics, Computer Science and Information Theory, thus
highlighting new connections between communication complexity and these various problems.
For example, an efficient deterministic communication protocol for any permutation yields
an efficient wiring scheme for shared directional multi-channels. For more on this, see e.g.,
[12] and [4]. In the classical, k = 2 case, monochromatic submatrices play a key role in the
theory. For higher k this is replaced by the much more poorly understood monochromatic
cylinder intersection. Naturally, much of our work here revolves around these complicated
objects. However, in certain simple cases we are able to get a grip on the largest size of a
cylinder intersection that contains only 1-inputs of f . As we show, in this case knowledge
of this quantity essentially determines the NOF communication complexity of f (see more
on this in the next section). The case in question is k = 3 and the group G = Zn2 . As we
show, the size of the largest cylinder intersection containing only 1-inputs of f is the largest
cardinality of a subset W ⊆ Zn4 such that for every three distinct members x,y, z ∈W there
is an index 1 ≤ i ≤ n for which (xi, yi, zi) 6∈ X, where

X = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (0, 1, 2), (1, 0, 3), (2, 3, 0), (3, 2, 1)}.

This parameter may seem artificial, but in fact, this framework includes several im-
portant problems in combinatorics, for different choices of X. Thus, if we take X :=
{(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (0, 1, 2)}, then this becomes precisely the density Hales-
Jewett problem, solved in [19]. Also, if X is comprised of all triplets (a, b, c) ∈ Z3

4 with
a + c = 2b, we arrive at the cap-set problem for Zn4 which was recently settled in break-
through papers by Croot, Lev, and Pach, and by Ellenberg and Gijswijt [14, 17]. In the next
subsection we list our new results that stem from these connections.
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1.1.1 Upper Bounds
We give a new algorithm for Exactly-n as well as several other instances of fGk,T . All
previous upper bounds for these functions crucially depend on Behrend’s famous construction
[9] of a large set of integers with no 3-term arithmetic progressions. This yields a large
monochromatic cylinder intersection, and a simple probabilistic translation lemma then shows
how to cover the whole space by monochromatic cylinder intersections, thus providing an
efficient protocol. To show that this indeed yields a large monochromatic cylinder intersection,
we appeal to the notion of corner-free sets [2, 36] which here, too, plays a key role. We cannot
realistically hope to improve the bounds by finding a construction better than Behrend’s, in
view of the many such failed attempts throughout the past 70 years (but note [16]). However,
Behrend’s construction is actually more than we need. The solution of fGk,T only requires
corner-free sets. That is, 3-term AP freeness implies corner-freeness, but we do not expect
that the two concepts are equivalent. We take a first step in this direction and give a new
algorithm which is not dependent on 3-term AP freeness. We hope that this indicates a viable
approach to improved protocols for the Exactly-n function. We also describe a nontrivial
protocol for the fG3,T problem for G = Zn2 .

1.1.2 Lower Bounds
We give a counting argument which shows that almost every k-dimensional permutation
has communication complexity Ω( logn

k ). Clearly, up to the 1
k factor, this is as high as this

quantity can get. Our proof relies on a recent lower bound of Keevash [25] on the number of
high-dimensional permutations. This method resembles the counting argument for graph
functions of [7], which does not apply, though, to permutations.

Regarding bounds on explicit functions, we prove a weak upper bound on the size of
a 1-monochromatic cylinder intersection for any permutation (in fact our result holds for
a wider family of functions that we call linjections). This bound uses a graph theoretic
characterization of the communication complexity of permutations, connecting it also to
Ruzsa-Szemerédi graphs. Not unexpectedly, our proof mirrors a similar result for Ruzsa-
Szemerédi graphs: Solymosi [36] showed that the multidimensional Szemeréedi theorem
follows from the triangle removal lemma. We adapt Solymosi’s proof to our context. The
main tools in the proof are thus the graph and the hypergraph removal lemmas.

We note that previous results were limited to the fGk,T function for abelian groups with
many factors, whereas ours works for general permutations. To emphasize the significance
of the last point, consider the NOF complexity of following three classes of functions: (i)
Permutations that come from Abelian groups, (ii) Those that come from general groups,
(iii) Latin squares. We consider each such function up to an arbitrary renaming of rows and
columns. The sizes of these three classes differ very substantially. For a given order n the
size of the relevant class is (i) exp(O(

√
logn)), (ii) At most exp(( 2

27 + o(1)) log3 n), and (iii)
((1 + o(1)) ne2 )n2 .

For k = 3 we can say more: The communication complexity of every 2-dimensional
permutation [n]3 → {0, 1} is Ω(log log logn). This extends the lower bound of [10] from the
realm of abelian groups to all permutations. The proof of the this lower bound uses only
elementary counting arguments, and is closely related to the result of [20] on monochromatic
corners on the integer grid.

The above lower bound also implies a result of Meshulam that was derived toward the
study of shared directional multi-channels. Meshulam’s result appears as Proposition 4.3 in
[4], where further background can be found.
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1.2 Related Work
The NOF model was introduced by Chandra, Furst and Lipton in [13]. One of the functions
they consider is Exactly-n : [n]3 → {0, 1}. For x, y, z ∈ [n], we let Exactly-n (x, y, z) = 1 if
and only if x+ y + z = n. Surprisingly, they proved that the communication complexity of
this function is only O(

√
logn), but their proof yields no explicit protocol. Although this

function is not a permutation, the proofs go through as well for the modn permutation [10],
and thus far this is the most efficient protocol found for any permutation. The protocol of
[13] is based on Behrend’s famous construction [9] of a large subset of [n] with no three-term
arithmetic progression. In addition, they prove an inexplicit lower bound of ωn(1) on the
complexity of Exactly-n . This is based on Gallai’s result [21, p. 38] that every finite coloring
of a Euclidean space contains a monochromatic homoteth of every finite set in that space.

Beigel, Gasarch and Glenn [10] considered the more general fGk,T problem, where G is an
abelian group, T is an element of G and k ≥ 2 an integer. In this scenario k players need
to decide whether x1 + x2 + · · ·+ xk = T . They show that the communication complexity
of fG3,T is at least Ω(log log logn) for every abelian group G and any T ∈ G. For the case
G = Zn, this follows as well from [20] and a recent result of Shkerdov [34] also yields a similar
lower bound for every abelian group G. For general k ≥ 3 and for an abelian group G that
is the product of t cyclic groups, it is shown in [10] that the deterministic NOF complexity
of fGk,T is ωt(1). The proof is by reduction to a lower bound from [37], that is based on the
Hales-Jewett Theorem (see [21]).

Note that fGk,T can be defined as well in non-abelian groups G. Namely, fGk,T (x1, . . . , xk) =
1 iff x1 · x2 · . . . · xk = T , where now the order of multiplication matters. Note also that the
function fGk,T is a permutation for every group G, every T ∈ G and k ≥ 2.

As mentioned above, [7] studies graph functions and give a nonexplicit strong separation
between randomized and deterministic NOF complexity. To be precise, this counting
argument shows that most graph functions f : [n]k−1 × [N ] → {0, 1} with N ∼=

√
n
k have

deterministic communication complexity Ω(log n
k ). Still, even for k = 3 it remains open to

find explicit graph functions with high deterministic communication complexity. Currently,
the best lower bound on the deterministic communication complexity of a graph function
f : [n]k−1 × [N ]→ {0, 1} for k ≥ 3 is Ω(log logn) proved in [7] (using also results from [5]).
We note that the discrepancy method, used to establish NOF lower bounds (e.g., [6]), cannot
be utilized here since it also applies to randomized communication complexity.

Lastly, we comment on the Hales-Jewett theorem, a pillar of Ramsey theory. It was
previously applied in the study of the combinatorial problems mentioned above. It turns out
that this theorem has an equivalent formulation in the language of communication complexity
[35], and is tightly coupled with the NOF multiparty communication complexity of high
dimensional permutations.

2 Basics

2.1 NOF Communication Complexity
In the Number On the Forehead (NOF) multiparty communication complexity game, k
players collaborate to compute a function f : X1 × . . .×Xk → {0, 1}. Usually, Xi = [n] for
all i ∈ [k], but we also consider occasionally a variation where the last player is exceptional
and Xk = [N ] for some integer N that is not necessarily equal to n.

For (x1, . . . , xk) ∈ X1 × . . . × Xk, and for each i ∈ [k], player i receives x−i ∈ X1 ×
. . . ×Xi−1 ×Xi+1 × . . . ×Xk; that is, all but xi. The players exchange bits according to

ITCS 2019
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an agreed-upon protocol, by writing them on a publicly visible blackboard. The protocol
specifies, for every possible blackboard contents, whether or not the communication is ongoing.
It shows the final output when the communication is over, and shows the next player to
speak if the communication is still ongoing. The protocol also specifies what each player
writes as a function of the blackboard contents and of the inputs seen by that player. The
cost of the protocol is the maximum number of bits written on the blackboard.

The deterministic communication complexity of f , Dk(f), is the minimum cost of a
deterministic protocol for f that always outputs the correct answer. A randomized protocol
of cost c is just a distribution over deterministic protocols each of cost at most c. For
0 ≤ ε < 1/2, the randomized communication complexity of f , Rk,ε(f), is the minimum cost
over randomized protocols such that for every input, err with probability at most ε (over the
distribution of deterministic protocols).

In the k = 2 players case, the key combinatorial objects of study are combinatorial
rectangles: Every cost-c communication protocol for f : X1×X2 → {0, 1} partitions X1×X2
into 2c monochromatic combinatorial rectangles. For k-party NOF communication, a cost-c
protocol induces a partition of X1 × . . .×Xk into 2c monochromatic cylinder intersections:

I Definition 1. A cylinder in dimension i is a subset S ⊆
∏
Xi such that if (x1, . . . , xk) ∈ S,

then (x1, . . . , xi−1, x
′
i, xi+1, . . . , xk) ∈ S for all x′i. A cylinder intersection is a set of the form

∩ki=1Ti, where Ti is a cylinder in dimension i.

2.2 Graph Functions, Permutations and Linjections
I Definition 2. The line L ⊆ [n]k, defined by a pair (a, i), where a ∈ [n]k−1, i ∈ [k], is the
set of vectors v ∈ [n]k such that v−i = a and vi is an arbitrary element in [n].

I Definition 3. A function f : [n]k−1 × [N ] → {0, 1} is a graph function if for every
(x1, . . . , xk−1) there is a unique b ∈ [N ] such that f(x1, . . . , xk−1, b) = 1. In other words,
every line in the kth dimension, L = (a, k), intersects f−1(1) in exactly one point.

Associated with every graph function f : [n]k−1 × [N ]→ {0, 1} is a map A(f) : [n]k−1 →
[N ], where A(f)(x1, . . . , xk−1) = y if and only if f(x1, . . . , xk−1, y) = 1. We consider the two
as one and the same object and freely switch back and forth between the two descriptions.

I Definition 4. Let f : [n]k−1 × [N ]→ {0, 1} be a graph function. We denote by αk(f) the
largest size of a cylinder intersection that is contained in f−1(1). In other words, the largest
cardinality of 1-monochromatic cylinder intersection with respect to f . Also, let χk(f) be
the least number of 1-monochromatic cylinder intersections whose union is f−1(1). We omit
the subscript k when it is clear from context.

Given a graph function f , the measure χ(f) corresponds to the nondeterministic NOF
communication complexity of f , since it is a covering of the 1’s of f by cylinder intersections
[26]. In general, the nondeterministic NOF communication complexity of a Boolean function
can be much smaller than the deterministic complexity – in fact, for the set disjointness
function, nondeterministic complexity is logarithmic in the deterministic complexity (for
constant k). However, graph functions are special; the following lemma shows that for graph
functions, the two notions basically coincide. The proof is an adaptation of a proof from [13];
see also [10, 7] for similar arguments.

I Theorem 5. For every graph function f : [n]k−1 × [N ] → {0, 1}, logχk(f) ≤ Dk(f) ≤
dlogχk(f)e+ k − 1.
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A communication protocol in which players write only one message on the board, of
arbitrary length is called a one-way protocol. This applies to the protocol in the proof of
Theorem 5. The restriction to a single message per player may make one-way protocols much
weaker than standard protocols [30, 5]. However for graph functions, one-way protocols and
regular protocols are equally powerful:

I Corollary 6. For every graph function f : [n]k−1 × [N ] → {0, 1}, Dk(f) ≤ D1
k(f) ≤

Dk(f) + k where D1
k(f) is the one-way communication complexity of f .

Implicit in the proofs of the above statements is the fact that for graph functions,
monochromatic cylinder intersections can be nicely characterized by forbidden (dual) objects
called stars, which we define next. We will see in the next section that stars are very closely
connected to corners (and higher dimensional generalizations) in Ramsey theory.

I Definition 7. A star Star(x,x′) is a subset of [n]k−1 × [N ] of the form

{(x′1, x2, . . . , xk), (x1, x
′
2, . . . , xk), . . . , (x1, x2, . . . , x

′
k)},

where xi 6= x′i for each i. We refer to x = (x1, x2, . . . , xk) as the star’s center, and note that
the center does not belong to the star.

I Lemma 8. Let f : [n]k−1 × [N ]→ {0, 1} be a graph function, and let S ⊆ f−1(1). Then
S is a (1-monochromatic) cylinder intersection with respect to f if and only if it does not
contain a star.

Next we define high dimensional permutations and linjections.

I Definition 9. A (k − 1)-dimensional permutation of order-n is a map f : [n]k → {0, 1}
with the property that for every line L = (a, i) in [n]k,

∣∣L ∩ f−1(1)
∣∣ = 1.

In other words, f is a permutation function if and only if every line contains a unique
1 entry. This property is easily seen to be equivalent to the property that for every choice
of x1, . . . , xi−1, xi+1, . . . , xk ∈ [n], there is exactly one value, Ai(x−i) for xi ∈ [n] such that
f(x1, . . . , xi−1, Ai(x−i), xi+1, . . . , xk) = 1.

I Example 10. For the sake of gaining better intuition we often consider the important
special case k = 3. This is insightful, since 2-dimensional permutations f : [n]3 → {0, 1} are
synonymous with Latin squares. In this case A(f) is an n×n matrix with entries in [n] where
every row and column contains each element in [n] exactly once. Here we see an elementary
but important connection with additive combinatorics; stars coincide with the well-studied
notion of corners [2, 36]. A star is a triplet of entries in f−1(1), (x, y, z′), (x′, y, z), (x, y′, z),
which corresponds to the “corner” or “A-star”, (x, y), (x′, y), (x, y′), where A(x′, y) and
A(x, y′) have the same value (z), but A(x, y) has a different value z′.

I Example 11. High dimensional permutations generalize the family of functions fGk,T for
abelian groups G. For this communication problem, each player receives (on his/her forehead)
an element xi ∈ G, and they want to decide whether or not x1 + . . . + xk = T , that is,
whether the sum of the elements is exactly T .

We can further generalize the notion of a permutation function as follows.

I Definition 12. A linjection is a graph function f : [n]k−1 × [N ]→ {0, 1} with N ≥ n such
that |f−1(1)| = nk−1 and every line contains at most one point at which f = 1. A function
f is a linjection if and only if the restriction of A(f) to any line is an injection.
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Linjections are graph functions where N ≥ n, (with permutation functions corresponding
to n = N), but not vice versa. Determining the least possible communication complexity of
a linjection in certain dimensions is an interesting and challenging problem. Henceforth, we
use and study the following two notions.

I Definition 13. Define αk(n,N) = maxf αk(f), and χk(n,N) = minf χk(f), both taken
over all linjections f : [n]k−1 × [N ]→ {0, 1}.

Note that χk(n,N) ≥ nk−1/αk(n,N).

3 High Dimensional Permutations and Additive Combinatorics

3.1 A Graph-theoretic Characterization
In this section we give a new characterization of αk which will turn out to be a variant of
the maximum density of Ruzsa-Szemerédi graphs. We start with the case k = 3.

Recall that we can view a linjection f : [n]2 × [N ]→ {0, 1} as an n× n matrix, A = A(f)
with entries from [N ]. Alternatively we view it as a tripartite graph G(A) with parts R =
[n], C = [n] and W ⊆ [N ]. Its edge set is defined as follows: for every triple (x, y, b) ∈ f−1(1),
we add the triangle (x, y), (y, b), (x, b), x ∈ R, y ∈ C, b ∈W to G(A). In particular, R ∪ C
span a complete bipartite subgraph of G(A) and (i, b), i ∈ R, b ∈W is an edge iff there is a
b entry in row i of A, likewise for columns.

Let us consider the triangles < x, y, b >, x ∈ R, y ∈ C, b ∈ W , in G(A). A triangle
< x, y, b > in G is trivial if A(x, y) = b. However, there can also be nontrivial (induced)
triangles in G, which correspond to centers of stars. We define a G-star to be a triple of
triangles in G of the form < x, y, b′ >,< x′, y, b >,< x, y′, b >. The point is that while
these (trivial) triangles are edge-disjoint, their union contains the additional induced triangle
< x, y, b >. Define α(G) to be the largest cardinality of a family of edge-disjoint triangles
that contains no G-star. In other words, a family of edge-disjoint triangles the union of
which contains no additional triangle.

Let α(n,N) = maxG α(G) where the maximum is over subgraphs of Kn,n,N . Then:

I Theorem 14. For every two integers n,N > 0, if n ≤ N then α3(n,N) ≤ α(n,N). If
N ≥ 2n− 1, then α3(n,N) = α(n,N).

Proof. We show first that α3(n,N) ≤ α(n,N). Let f : [n]× [n]× [N ]→ {0, 1} be a linjection
and let S ⊆ [n]× [n]× [N ] be a star-free subset of f−1(1). We prove the claim by constructing
a G-star-free family T of |S| edge-disjoint triangles in G = G(A(f)). Let

T = {< x, y, b > |(x, y, b) ∈ S}.

The claim follows, since stars {(x′, y, b), (x, y′, b), (x, y, b)} correspond to G-stars in T . Next
we prove the reverse inequality α3(n,N) ≥ α(n,N) when N ≥ 2n− 1.

Given a G-star-free family T of edge-disjoint triangles in a subgraph G of Kn,n,N , we
find a linjection A : [n]× [n]→ [N ] that contains an A-star-free subset S ⊂ [n]2 of size |T |.
In the proof we actually first construct S and only then proceed to define A in full.

We define S to be the projection of T to its first two coordinates. Namely,

S = {(x, y) | < x, y, b >∈ T for some b}.

To define A, we first let A(x, y) = b for every < x, y, b > ∈ T .
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Since T is G-star-free, it follows that S is A-star-free. What is missing is that A is only
partially defined. We show that when N ≥ 2n− 1 this partial definition can be extended to
a linjection. Since the triangles in T are edge-disjoint it follows that in the partially defined
A, no value appears more than once in any row or column. It remains to define A on all the
entries outside of S and maintain this property. Indeed this can be done entry by entry. At
worst there are 2n− 2 values that are forbidden for the entry of A that we attempt to define
next, and therefore there is always an acceptable choice. J

General k. The construction for general k is a natural extension of the case k = 3. We
associate with every linjection A : [n]k−1 → [N ] a k-partite (k−1)-uniform hypergraph H(A).
The parts of the vertex set are denoted Q1, . . . , Qk−1 and W . Each Qi is a copy of [n] and, as
above, W is the range of A. There is a complete (k−1)-partite hypergraph on the k − 1 parts
Q1, . . . , Qk−1. Given x1 ∈ Q1, . . . , xi−1 ∈ Qi−1, xi+1 ∈ Qi+1, . . . , xk−1 ∈ Qk−1 and w ∈ W ,
we put the hyperedge x1, . . . , xi−1, xi+1, . . . , xk−1, w in H(A) iff there is a (necessarily unique)
x∗i ∈ [n] for which A(x1, . . . , xi−1, x

∗
i , xi+1, . . . , xk−1) = w.

We proceed to investigate cliques in H(A), i.e., sets of k vertices, every k − 1 of which
form an edge. For k = 3, we distinguished between those triangles in G(A) that correspond
to an entry in [n]2 and those that form a star, and a similar distinction applies for general k.

It is easy to see that if A(x1, . . . , xk−1) = w, then x1, . . . , xk, w from a clique. Such a
clique is considered trivial. In contrast, x1, . . . , xk−1, w is a nontrivial clique iff for every i
there exists an x′i 6= xi such that A(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk−1) = w.

As above, we define for H = H(A) the parameter αk(H). It is the largest size of a
family K of cliques in H such that: (i) No two share a hyperedge, and (ii) The hypergraph
comprised of all cliques in K contains no additional cliques. Let αk(n,N) = maxH αk(H)
over all k-partite (k − 1)-uniform hypergraphs H. Then

I Theorem 15. For every two integers n ≤ N , αk(n,N) ≤ αk(n,N), and if N > (k−1)(n−1)
then αk(n,N) = αk(n,N).

The proof is similar to the proof of Theorem 14 and appears in the full paper.
As the proofs show, αk(n,N) is the largest cardinality of a star-free subset of [n]k−1× [N ]

that meets every line in [n]k−1×[N ] at most once. To qualify for αk(n,N) this subset must, in
addition, be extendable to a linjection, so clearly αk(n,N) ≥ αk(n,N). We wonder whether
this additional requirement creates a substantial difference between the two parameters.
Specifically, how are αk(n,N) and αk(n,N) related in the range n ≤ N ≤ (k − 1)(n− 1)?
These two parameters need not be equal in this range, since α3(4, 4) = 8 and α3(4, 4) = 9, as
we show in Section 4.3.

Connection to Ruzsa-Szemerédi Graphs. A graph is called an (r, t)-Ruzsa-Szemerédi graph
if its edge set can be partitioned into t edge-disjoint induced matchings, each of size r. These
graphs were introduced in 1978 and have been extensively studied since then. Of particular
interest are dense Ruzsa-Szemerédi graphs, with r and t large, in terms of n, the number of
vertices. Such graphs have applications in Combinatorics, Complexity theory and Information
theory. Also, there are several known interesting constructions, relying on different techniques.

Let G be a tripartite graph with parts R,C,W of cardinalities n, n,N respectively. Let
T be a G-star-free family of edge disjoint triangles in G. Let F be the bipartite graph with
parts R and C where there is an edge between r ∈ R and c ∈ C iff there is some b ∈W such
that (r, c, b) ∈ T . Then F is the union of at most N edge-disjoint induced matchings, since
all the edges that correspond to a given b ∈W form an induced matching.
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This construction can easily be reversed: Let F be a subgraph of Kn,n that is the union
of N edge disjoint induced matchings, with a total of α edges. We can construct a tripartite
G (a subgraph of Kn,n,N ) that contains a family of α pairwise disjoint triangles, and has no
G-stars. We conclude that

I Observation 16. Let n ≤ N be positive integers, then α3(n,N) is the largest number of
edges in a union of N edge-disjoint induced matchings in Kn,n.

This observation exhibits a strong connection between (i) The problem of constructing
dense (r, t)-Ruzsa-Szemerédi graphs, and (ii) The construction of a large star-free subset
S ⊆ [n]× [n]× [t] that meets every line at most once. The two problems differ only slightly.
In one, the underlying graph is bipartite and in the other all induced matching must have
the same cardinality. But these differences can be bridged quite easily, as observed in the
following lemma.

I Lemma 17. 1. (r, t)-Ruzsa-Szemerédi graphs on n vertices imply α3(n2 , t) ≥
rt
2 .

2. α3(n, t) ≥ rt implies that there exists a ( r2 , t)-Ruzsa-Szemerédi graph on n vertices.

Proof. For the first claim, let G = (V,E) be a (r, t)-Ruzsa-Szemerédi graph on n vertices,
and let E1, E2, . . . , Et be the partition of E into induced matchings. We can find (e.g., by
a random choice) a subset A ⊂ V of bn2 c vertices, so that at least |E|/2 edges are in the
cut C = (A, Ā). Also, C ∩ E1, C ∩ E2, . . . , C ∩ Et is a partition of the edges of the bipartite
graph (A, Ā, C) into t disjoint induced matchings. Therefore, α3(n2 , t) ≥

rt
2 .

For the second part, suppose that α3(n, t) ≥ rt. Namely, there is a collection of disjoint
induced matchings M1, . . .Mt ⊆ E(Kn,n) with

∑t
1 |Mi| ≥ rt. We split each Mi into b 2|Mi|

r c
sets of ≥ r/2 edges each. Note that

∑t
1 ai ≥ rt implies that

∑t
1b

2ai
r c ≥ t and a subset of an

induced matching is an induced matching, so we finally have a family of at least t disjoint
induced matchings each of size r

2 . J

3.1.1 Application to Shared Directional Multi-channels
Ruzsa-Szemerédi graphs have various applications in several fields [36, 4, 33, 3, 24, 12]. In [12]
they are applied to Information Theory, and the study of shared directional multi-channels, a
subject that is strongly related to communication complexity. Such a channel is comprised
of a set of inputs and a set of outputs. to which are connected transmitters and receivers
respectively. Associated with each input is a set of outputs, that receive any signal placed
at that input. A message is received successfully at an output of the channel if and only if
it is addressed to the receiver connected to that output and no other signals concurrently
reach that output. Therefore, when communicating over a shared channel, we want the edges
(corresponding to messages sent in one round) to form an induced matching. The challenge is
to partition Kn,n into families of pairwise disjoint induced matchings. The number of parts
correspond to the number of receivers allowed at each output, and the number of matchings
in each partition corresponds to the number of rounds.

The relation to communication complexity is as follows: A c-bit communication protocol
for any linjection A : [n] × [n] → [N ] induces a partition of Kn,n into c such families of
disjoint induced matchings. Thus, such a communication protocol, gives an N round protocol
for the shared directional multi-channel, with c receivers per station, and vice-versa.

In constructing a shared directional multi-channel, we seek to minimize the number of
rounds required for a given number of transmitters. Alon, Moitra, and Sudakov [4] showed
that for any ε > 0 there is partition of Kn,n into at most 2O( 1

ε ) graphs each of which is a
family of at most O(n1+ε) induced matchings. This gives an O(n1+ε) round protocol for
shared directional multi-channel with 2O( 1

ε ) receivers.
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Translated to the language of NOF protocols and combining with Corollary 34 (see
Section 5.3 in the sequel), we conclude:

I Theorem 18. For all ε > 0 and all large enough n, 2O( 1
ε ) ≥ χ3(n, n1+ε) ≥ Ω(log 1

ε ).

3.2 A Characterization of αk(f
Zn

2
k,T )

In this section we focus on the problem fGk,T for the abelian group Zn2 . In other words,
we study the permutation fZ

n
2

k,T . We give an alternative characterization of α3(fZ
n
2

3,T ) which
brings forth the relation between this problem and several known combinatorial objects. The
complexity of fZ

n
2

k,T is independent of T , so we will omit the subscript T in this section. Also,
throughout this section we let AGk = A(fGk ).

Let X ⊂ Z3
4. We call a subset of W ⊆ Zn4 X-free if for every three distinct members

x,y, z ∈W there is an index 1 ≤ i ≤ n for which (xi, yi, zi) 6∈ X.

I Theorem 19. Let

X = {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (0, 1, 2), (1, 0, 3), (2, 3, 0), (3, 2, 1)} ⊂ Z3
4,

then α3(AZn2
3 ) is the largest cardinality of an X-free subset of Zn4 .

Proof. Recall that α3(AZn2
3 ) is the largest cardinality of an An-star free subset of (Zn2 )2,

where An = A
Zn2
3 . So it suffices to find a bijection ψ from (Zn2 )2 to Zn4 such that S ⊆ (Zn2 )2

is mapped to an X-free set if and only if S is An-star free.
We define ψ for n = 1 and extend is entry-wise to a mapping from (Zn2 )2 to Zn4 . The

definition for n = 1 is as follows: ψ(0, 0) = 0, ψ(0, 1) = 1, ψ(1, 0) = 2 and ψ(1, 1) = 3.
We need to show that if (x1, y1), (x2, y2), (x3, y3) ∈ (Zn2 )2 is a An-star, then every

coordinate in (ψ(x1, y1), ψ(x2, y2), ψ(x3, y3)) belongs to X, and vice versa. Since the map ψ
is defined coordinate-wise it suffices to check this for n = 1. A triple (x1, y1), (x1, y1 +d), (x1 +
d′, y1) is a (trivial or non-trivial) star in A1 iff x1 + (y1 + d) = (x1 + d′) + y1, i.e., d = d′,
and thus an A1-star is a triple of the form (x1, y1), (x1, y1 + d), (x1 + d, y1). If d = 0 then
obviously (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) ∈ {(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3)} ⊂ X.
When d = 1 there are four cases to check:
1. x1 = 0 and y1 = 0 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (0, 1, 2) ∈ X.
2. x1 = 0 and y1 = 1 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (1, 0, 3) ∈ X.
3. x1 = 1 and y1 = 0 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (2, 3, 0) ∈ X.
4. x1 = 1 and y1 = 1 then (ψ(x1, y1), ψ(x1, y1 + d), ψ(x1 + d, y1)) = (3, 2, 1) ∈ X.
On the other hand it is not hard to check that for each (a, b, c) ∈ X the triplet ψ−1(a), ψ−1(b),
ψ−1(c) is a star in A1 or a = b = c. This proves the claim. J

Fix an integer s ≥ 2 and let HJ(n, s) denote the largest size of a Ys-free subset of
[s]n, where Ys is the following set of s-tuples: {(1, . . . , s)} ∪ {(i, i, . . . , i)|i = 1, 2, . . . , s}.
The density Hales-Jewett theorem states that HJ(n, s) = o(sn) for every fixed s [19, 31].
Theorem 19, and the observation that the first three coordinates of the 4-tuples in Y4 all
belong to X, imply that α3(AZn2

3 ) ≤ HJ(n, 4).
The cap-set problem for Zn4 also belongs to the same circle of problems. It concerns

the largest size of an arithmetic-triple-free set in Zn4 . We mention in passing the recent
breakthrough [14, 17] in this area which showed that this size is at most 4(γ+o(1))·n with
γ ≈ 0.926. Let Z ⊂ Z3

4 be the set of all ordered triplets (a, b, c) ∈ Z3
4 satisfying a+ c = 2b.

The cap set problems concerns exactly the largest possible cardinality of a Z-free subset of
Zn4 . Since X ⊂ Z it follows that this size is bounded by α3(AZn2

3 ).
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The proof of Theorem 19 extends verbatim to general k ≥ 3. It yields a subset X ⊂ Zk2k−1

such that αk(AZn2
k ) is the largest cardinality of an X-free subset of Zn2k−1 .

By taking X that includes all vectors (a, a, . . . , a) ∈ Zk2k−1 for a ∈ Z2k−1 and the vector
(0, 1, 2, 4, . . . , 2k−2) we can maintain the relation between αk(AZn2

k ) and the density Hales-
Jewett theorem for every k.

4 Upper Bounds

4.1 An Algorithmic Protocol for Exact-T over Zd

The aim of this section is to give the first algorithmic protocol for Exactly-n as well as other
Exact-T functions. Our protocol is explicit, and does not rely on a construction of a large
set without a 3-term AP. We only appeal to the elementary fact that no sphere can contain
three equally spaced colinear points. The algorithm has two main steps. We first provide a
very efficient protocol for Exact-T over Zd, whose cost grows only logarithmically with d.

Let f : ([m]d)3 → {0, 1} be defined via f(x, y, z) = 1 if and only if x+ y + z = T , where
T ∈ Zd is some fixed vector. We provide an explicit NOF protocol for f whose cost is only
O(logmd). In words, players try to compute the vector x + 2y + 3z “to the best of their
knowledge” and then they compare notes.

1. Player 1 computes vx = T − y − z + 2y + 3z.
2. Player 2 computes vy = x+ 2(T − x− z) + 3z.
3. Player 3 computes vz = x+ 2y + 3(T − x− y).
4. Player 1 writes ‖vx‖22 on the blackboard.
5. Player 2 writes 1 or 0 on the blackboard depending on whether ‖vy‖22 = ‖vx‖22.
6. Player 3 writes 1 or 0 on the blackboard depending on whether ‖vz‖22 = ‖vx‖22.
7. The protocol outputs 1 if the last two bits were both equal to 1, and 0 otherwise.

The cost of the above protocol is essentially determined by the largest possible value of
‖vx‖22 in step 4 which is at most O(m2d). Therefore, this cost does not exceed O(logmd).
We turn to prove correctness.

I Lemma 20. The above protocol is correct.

Proof. First note that the protocol outputs 1 if and only if ‖vx‖22 = ‖vy‖22 = ‖vz‖22. Also,
vx + vz = 2vy, so that this condition holds only if all three vectors are equal, in which case
T − x− y − z = 0. J

I Remark (More general protocols). Several variations on the above theme suggest them
selves. Fix integers a, b, c ∈ Z and a d × d positive definite matrix D with integer entries.
The players compute a(T −y− z) + by+ cz, ax+ b(T −x− z) + cz and ax+ by+ c(T −x−y),
and rather than comparing the values of ‖v‖2, they consider the values of vDvt. We wonder
if these, or similar variations can together improve the complexity of the protocol.

4.2 Algorithmic Protocols for Exactly-N and fGk,T over Znm
We seek algorithmically explicit protocols for Exactly-N 2, namely for the function f : [N ]3 →
{0, 1} such that f(x, y, z) = 1 if and only if x+ y + z = N , i.e., the exact-T problem over Z

2 Since n is used as an exponent in this section we use N for the size of input in Exactly-N .
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or equivalently over ZN . We can give an efficient protocol to this problem by reduction to
the protocol in the previous section, even though when applied directly to ZN they give no
improvement over the trivial protocol.

First fix a base m and let n = 1 + dlogmNe. Consider the base-m representation on
the elements of [N ]. Given a representation x ∈ {0, 1, . . . ,m− 1}n of a number base m, for
convenience we consider x1 as the least significant digit. Note that all representations are of
length n, if a number is small its representation is padded with zeros. The following protocol
solves the Exactly-N problem in these settings. Let T be the base-m representation of N .

1. Player 1 computes the vector C ∈ {0, 1, 2}m defined as follows: the i-th entry of C is
equal to k ∈ {0, 1, 2} satisfying

Ti + (k − 1)m < yi + zi + Ci−1 ≤ Ti + km,

where addition is over Z, and we define C0 = 0.
2. Denote by Cx the carry vector computed by Player 1 in step 1. Player 2 and 3 compute

corresponding vectors Cy and Cz, in a similar way.
3. Player 1 writes C = Cx on the board.
4. Player 2 and 3, in turn, write 1 on the board if and only if their vector Cy (Cz) is equal

to Cx.
5. If the last two bits written on the board are equal to 1, continue. Otherwise output 0

and terminate.
6. All players compute (in private) the vector T ′i = Ti +mCi − Ci−1, for i = 1, . . . , n.
7. The players run a protocol for the exact-T problem over Zn with x, y, z and T ′.

The cost of the above protocol is O(n+ 2) for steps 1-5, plus the cost of the protocol used
in step 7. The cost is thus O(n+ logmn) if the players use the protocol from Section 4.1 in
the last step. We prove next that this protocol is correct.

I Lemma 21. The above protocol is correct.

Proof. First assume N = x+ y+ z over Z. It is easy to verify the correctness of the protocol
in this case, except maybe step 5. The correctness of step 5 follows from the following
simple observation: assume xi + yi + zi + Ci−1 = Ti + km (over Z) for k ∈ {0, 1, 2}, then it
must be that the sum of any pair of xi, yi, zi and Ci−1 is larger than Ti + (k − 1)m and at
most Ti + km. Now consider the case T 6= x+ y + z. If the protocol rejects on step 5 then
obviously this is correct. If it does not reject then all players compute the same vector T ′,
and x+ y + z = N over Z if and only if x+ y + z = T ′ over Zn. The correctness now follows
from the correctness of the protocol over Zn. J

The above protocol for Exactly-N is correct for any choice of base m. To get an efficient
protocol we optimize the choice of m. The running time of the protocol is O(n+ logmn) =
O(n+ logm). Since mn = N , we get that logN = n logm, and thus the optimal choice is
roughly m = 2

√
logN which gives a running time of O(

√
logN).

I Remark (The group Znm). The above protocol can also be adapted for Znm (with addition
modulo m). The idea is very similar, the only difference is that in the first steps Player
1 computes the vector Ix ∈ {0, 1, 2}n defined as follows: the i-th entry of Ix is equal to
k ∈ {0, 1, 2} satisfying

Ti + (k − 1)m < yi + zi ≤ Ti + km,

where addition is over Z. The other two players compute analogous vectors.
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4.3 A Protocol for fGk,T over Zn2
In this section we focus on the exact-T problem for the abelian group Zn2 . In other words, we
study the permutation fZ

n
2

k,T . First we prove a lower bound on α3(fZ
n
2

3,T ), and then show that
this lower bound implies the existence of an efficient protocol for fZ

n
2

3,T . The complexity of
f
Zn2
k,T is independent of T , so we can and will omit the subscript T in this section. Throughout
this subsection we let AGk = A(fGk ).

First we prove that AZn2
t -star freeness is preserved under tensor product.

Let S ⊂ (Zn2 )k−1, denote by S ⊗ S the subset of (Z2n
2 )k−1 comprised of all vectors

(x1, y1, . . . , xk−1, yk−1) such that xi, yi ∈ S for i = 1, . . . , k − 1.

I Lemma 22. If S is AZn2
k -star free then S ⊗ S is AZ2n

2
k -star free.

Proof. Let A = A
Z2n

2
k and let

(z1, . . . , zk−1), (z1 + d, . . . , zk−1), . . . , (z1, . . . , zk−1 + d)

be an A-star in S × S, where for each 1 ≤ i ≤ k − 1, zi = (xi, yi) with xi, yi ∈ S. Denote
also d = (d1, d2) where d1, d2 ∈ Zn2 . Then either

(x1, . . . , xk−1), (x1 + d1, . . . , xk−1), . . . , (x1, . . . , xk−1 + d1)

is an AZn2
k -star in S, or

(y1, . . . , yk−1), (y1 + d2, . . . , yk−1), . . . , (y1, . . . , yk−1 + d2)

is an AZn2
k -star in S, since either d1 6= 0 or d2 6= 0. J

It follows that if, for some fixed m, we can find a large AZm2
k -star free subset S, then

tensor powers of S are large AZn2
k -star free sets. We show:

I Lemma 23. α3(AZ2
2

3 ) = α3(n, n) = 8.

Together with Lemma 22 this yields:

I Corollary 24. For every integer n ≥ 2, there holds α3(AZn2
3 ) ≥ 23n/2.

Proof. Let S be a star-free subset in AZ2
2

3 of cardinality 8 = 43/2 as in Lemma 23. The claim
follows by taking the tensor powers of S as in Lemma 22. J

Proof of Lemma 23. We denote the elements of Z2
2 as follows (0, 0) = 0, (0, 1) = 1, (1, 0) = 2

and (1, 1) = 3. The matrix associated with AZ2
2

3 is:

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

The 8 entries in bold form a star-free set, so that α3(AZ2
2

3 ) ≥ 8, and consequently α3(4, 4) ≥ 8.
One can verify that in fact α3(4, 4) = α3(AZ2

2
3 ) = 8. To see this first notice that if there is a

star-free subset of cardinality 9 then one of the values must appear three times which already
determines 10 out of the 16 entries. One can now rule out the existence of a size 9 star-free
subset by exhaustive search. J
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It is interesting to determine αk(n, n) for some small values of n. For example:
Determine α3(8, 8), in particular compute α3(AZ3

2
3 ).

Determine αk(4, 4), in particular compute αk(AZ2
2
k ), for k > 3.

It is interesting to note that, while as shown, α3(4, 4) = 8, there holds α3(4, 4) = 9. The
fact that α3(4, 4) ≤ 9 is easy to verify, and the following example shows the equality:

1 * * 3
* 1 * 4
* * 1 2
2 3 4 *

Thus, continuing the discussion at the end of Section 3.1, α3(n,N) and α3(n,N) need
not be equal when N < 2n− 1.

The following theorem shows that for groups, αk (the size of the largeset 1-monochromatic
cylinder intersection) completely characterizes χk (the minimum number of cylinder inter-
sections that partition the 1’s). The proof is a simple generalization of Theorem 4.3 in
[13].

I Theorem 25. If G is a group of order n, then

χk(fGk ) ≤ O
(
knk−1 logn
αk(fGk )

)
.

Proof. The proof is in two steps:
Step I: A-star freeness is preserved under translation, where A = AGk . Indeed, let S ⊂ Gk−1

and let a = (a1, . . . , ak−1) ∈ Gk−1. If

(x1, . . . , xk−1), (x1 + d, . . . , xk−1), . . . , (x1, . . . , xk−1 + d)

is an A-star in S + a, then

(x1, . . . , xk−1)− a, (x1 + d, . . . , xk−1)− a, . . . , (x1, . . . , xk−1 + d)− a

is an A-star in S.
Step II: Every S ⊂ Gk−1 has O(kn

k−1 logn
|S| ) translates whose union covers all of Gk−1. This

follows from the integrality gap for covering [28], but for completeness here is a proof.
Pick at random t translates a1, . . . ,at ∈ [n]k−1 of S. The probability that a given element
x ∈ [n]k−1 is covered by a random translate of S is exactly |S|

nk−1 . Therefore, and since
the translates are picked independently uniformly at random, the expected number of
uncovered elements of Gk−1 is

nk−1 ·
(

1− |S|
nk−1

)t
.

Taking t = O(kn
k−1 logn
|S| ) makes the expectation less than 1, which proves the lemma. J

I Corollary 26. χ3(fZ
m
2

3 ) ≤ O
(
m · 2m/2

)
.

The bound in Corollary 26 is similar to the bound of Ada, Chattopadhyay, Fawzi and
Nguyen [1] for the case k = 3, with slight improvement in the log factors. Ada et al. proved
χ3(fZ

m
2

3 ) ≤ O(mk+12m/2k−2), by observing that this function is a composed function of the
form NOR ◦XOR and giving non trivial protocols for such cases.
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Note that the proof of Theorem 25 yields a cover of [n]k−1 by A-star free sets, but this is
easily turned into a partition, since a subset of an A-star free set is also A-star free. Therefore,
any lower bound on αk(fGk ) can be translated into an upper bound on χk(fGk ) which in
turn implies an efficient (non-explicit) protocol for fGk (By Theorem 5). Another interesting
consequence of Theorem 25 is that any lower bound on χk(fGk ) significantly larger than logn
improves the known bounds for the size of a corner-free subset of G. This clearly boosts our
interest in the multiparty communication complexity of fGk .

We wonder whether there are analogs of Theorem 25 for every permutation.

I Question 27. How large can χk(A) · αk(A)/nk−1 be for an arbitrary permutation A?

5 Lower Bounds

5.1 Nonconstructive Lower Bounds
We first prove a nearly tight but nonconstructive lower bound on the communication
complexity of random high-dimensional permutations.

I Theorem 28. For every integer k ≥ 3, and for most (k − 1)-dimensional permutations
f : [n]k → {0, 1},

logχk(f) ≥ Ω(logn
k

).

Proof. The lower bound on the number of high-dimensional permutations was recently
improved by Keevash [25] who showed that there are at least 2Ω(nd logn) d-dimensional
permutations. If we view a permutation as a map [n]k → {0, 1}, this means at least
2Ω(nk−1 logn) permutations. In the spirit of the proof of Lemma 3.5 in [7], we now estimate
the number of such permutation for which χk(f) is bounded. Note that we cannot simply
use the estimate from [7] since it only works for functions f : [n]k−1 × [N ]→ {0, 1} with N
that is much smaller than n, roughly N ≤

√
n
k .

Let f : [n]k → {0, 1} be a (k − 1)-dimensional permutation, and let {C1, . . . , Cχ} be
a partition of f−1(1) into χ = χk(f) cylinder intersections. For i ∈ [k] define a function
Ai : [n]k−1 → [χ] as follows: For a = (a1, . . . , ak−1) ∈ [n]k−1, let L = (a, i) be a line in [n]k−1.
There is a unique 1 entry in L and this entry is in exactly one of the cylinder intersections
{C1, . . . , Cχ}, say Cj . In this case we define Ai(a1, . . . , ak−1) = j.

As seen in the proof of Theorem 5, it is possible to recover f from knowledge of the func-
tions A1, . . . , Ak. Namely, f(x1, . . . , xk) = 1 if and only if all the values Ai(x1, . . . , xi−1, xi+1,

. . . , xk−1) for i = 1, . . . , k are equal. But for every i ∈ [k] there are χnk−1 possible functions
Ai : [n]k−1 → [χ]. Thus, the number of (k − 1)-dimensional permutations f : [n]k → {0, 1}
with χk(f) ≤ χ is at most (χnk−1)k = 2knk−1·logχ. Combining this with Keevash’s lower
bound achieves our result. J

A simple corollary of Theorem 28, and Theorem 5 is:

I Corollary 29. For every integer k ≥ 2, almost all (k − 1)-dimensional permutations
f : [n]k → {0, 1} satisfy Dk(f) ≥ Ω( logn

k ).

Theorem 28 proves the lower bound χk(f) ≥ 2Ω( logn
k ) for a random permutation f :

[n]k → {0, 1}. It is interesting to find out how this extends for a random linjection f :
[n]k−1 × [N ]→ {0, 1} with n < N . It is also interesting to see whether the dependency on k
can be removed.



N. Linial, T. Pitassi, and A. Shraibman 54:17

Finally we turn to the case k = 3. The number of 2-dimensional permutations (aka Latin
squares) is known to be ((1 + o(1)) ne2 )n2 (see [39]). It follows that for most 2-dimensional
permutations f there holds logχ3(f) ≥ 1

3 logn−Θ(1).

5.2 Lower Bounds for χk(n,N)
We prove an upper bound on αk(n,N), using its graph theoretic interpretation from Sec-
tion 3.1, which implies the corresponding lower bound on χk. We start with k = 3:

I Theorem 30. Let A : [n]× [n]→ [N ] be a linjection, where N ≤ n · 2c log∗(n). Then there
exists c > 0 such that α3(A) ≤ O

(
n2

2c log∗(n)

)
.

The proof of Theorem 30 is an adaptation of Solymosi’s [36] simplification of Ajtai and
Szemerédi’s [2] Corners Theorem. We will use the improved version of the triangle removal
lemma [33] due to Fox [18]:

I Lemma 31 (Triangle removal lemma). For every ε > 0 there is a δ > 0 such that every
n-vertex graph with at most δn3 triangles can be made triangle-free by removing εn2 edges.
Specifically δ−1 can be taken as a tower of twos of height 405 log ε−1.

Proof of Theorem 30. Let G = G(A), V = V (G). Notice that |V | = 2n + N . Let
S ⊂ [n]2 be an A-star free subset of size α3(A). As in the proof of Theorem 14 we let
T = {< x, y,A(x, y) > |(x, y) ∈ S} be the family of triangles in G that corresponds to S.
Let F be that subgraph of G whose edge set is the union of all triangles in T . This graph
contains the |S| edge-disjoint triangles in T , and no additional triangles.

Thus, if we denote δ = |S|/|V |3 and ε = |S|/|V |2, then F contains exactly δ|V |3 triangles
and it cannot be made triangle free by removing fewer than ε|V |2 edges. Lemma 31 yields
log∗(δ−1) ≤ 405 log(ε−1), and since δ < n2

(2n+N)3 <
1
N we conclude that

ε ≤ 2
−1
405 log∗(N).

But |S| = ε|V |2 ≤ 9εN2, so that for N ≤ 2c log∗(n)n, with c = (3 ·405)−1, |S| ≤ O
(

n2

2c log∗(n)

)
.

J

We now state the case of general k, proved in the full version.

I Theorem 32. For every natural numbers k ≥ 3 ,n and N it holds that

αk(n,N) ≤ O
(
knk−2N

log∗(n)

)
.

5.3 A Lower Bound on χ3(n,N)
In this section we state our better lower bound for the case k = 3. The proofs appears in the
full version of our paper.

I Lemma 33. Let L = χ3(n,N) for some integers N ≥ n, then logn < (2L+1 − 1) ·
log(4NL/n). In particular for k = 3, we have χ3(n, n) ≥ log logn−O(log log logn).

Another simple corollary of Lemma 33 is due to Meshulam and is reproduced in [4].

I Corollary 34. If χ3(n,N) ≤ L for some integers N ≥ n, then N ≥ 1
4L · n

1+1/(2L−1).
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A note on the case k > 3. As we have just seen χ3(A) ≥ Ω(log logn) for every 2-
dimensional permutation A. It is conceivable that a similar bound holds for higher dimensions
as well. This was previously conjectured in [10] for the Exact-T problem. If we try to adapt
the proof of Lemma 33 to higher k, exactly one difficulty arises which we formulate as a
question.

I Question 35. Let S ⊆ [n]k be a set of cardinality m that meets every line at most once.
Determine, or estimate φk(n,m), the least possible cardinality |S̄| of its closure. We use the
shorthand φk(m) when appropriate.

For k = 2 the answer is easy: φ2(m) = m2, since |S̄| = |S|2. But for k > 2 the problem
becomes very hard and no lower bound is known. In fact, for k ≥ 3, and for large enough m
there holds φk(m) = m. In other words, unlike the case k = 2 it may happen that S̄ = S for
large S. For example, as shown in [13], φ3(m) = m when m = n2/2Ω(

√
logn), whereas it is

shown in [34] that φ3(m) > m when m ≥ n2/(log logn) 1
22 . For k > 3 the situation is even

worse, and all we have are the very weak lower bounds from Section 5.2. Namely, it follows
from Theorem 32 that φk(m) must be larger than m when m ≥ Ω

(
knk−1

log∗(n)

)
. Proving any

non-trivial bounds on φk(m) is a very interesting challenge. We raise the following conjecture
in an attempt to improve the lower bounds on χ3(n, n):

I Conjecture 36. There are constants c1, c2 > 0 such that if S ⊆ [n]3 meets every line at
most once, and if |S| ≥ n2/(log logn)c1 , then |S̄| ≥ n3/(log logn)c2 .

6 Conclusion and Open Problems

This paper raises numerous open problems. Below we collect some of the major ones and
explain some implications that would follow from progress on these questions.

I Question 37. Improve the lower bound χ3(n, n) ≥ Ω(log logn).

Any lower bound χ3(n, n) ≥ ω(log logn) yields an improvement to the best known bound
on the number of colors required to color the n× n grid with no monochromatic equilateral
right triangles. This subject goes back to Ajtai and Szemerédi’s corners theorem [2] and its
implications in additive combinatorics due to Solymosi [36]. A lower bound χ3(n, n) ≥ ω(logn)
would improve the best known gap between randomized and deterministic communication
complexity in the 3-players NOF model. A lower bound χ3(n, n) ≥ Ω(logn · log logn) will
improve the best known upper bound on the size of corner-free subsets of G2 for any abelian
group G. And finally, a lower bound χ3(n, n) ≥ Ω(log2 n) will improve the best bounds on
the size of a subset of Zn with no three-term arithmetic progression. This is a classic problem
that goes back at least to the 1950’s [32].

I Question 38. Improve the upper bound χ3(n, n) ≤ 2O(
√

logn).

The construction of denser Ruzsa-Szemerédi graphs than currently known. Namely,
n-vertex graphs which are the disjoint union of n induced matchings, all of the same size r.
This, in turn, reflects on the many applications of these. This would also improve our
understanding regarding the limits of the triangle removal lemma; note that the current gaps
between the bound in this lemma are huge.

I Question 39. Improve the bounds on χk(n, n) for k > 3.

I Question 40. Improve the bounds on αk(n, n) for k > 3.
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That would improve our state of knownledge regarding the bounds for the hypergraph
removal lemma. It is also interesting to determine αk(n, n) for some small values of n. For
example: Determine α3(8, 8), and in particular compute α3(AZ3

2
3 ), or Determine αk(4, 4), and

in particular compute αk(AZ2
2
k ) for k > 3.

I Question 41. What is the relationship between αk(n,N) and αk(n,N) in the whole range
n ≤ N ≤ (k − 1)(n− 1)?
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Abstract
The Ising model originated in statistical physics as a means of studying phase transitions in
magnets, and has been the object of intensive study for almost a century. Combinatorially, it
can be viewed as a natural distribution over cuts in a graph, and it has also been widely studied
in computer science, especially in the context of approximate counting and sampling. In this
paper, we study the complex zeros of the partition function of the Ising model, viewed as a
polynomial in the “interaction parameter”; these are known as Fisher zeros in light of their
introduction by Fisher in 1965. While the zeros of the partition function as a polynomial in
the “field” parameter have been extensively studied since the classical work of Lee and Yang,
comparatively little is known about Fisher zeros. Our main result shows that the zero-field Ising
model has no Fisher zeros in a complex neighborhood of the entire region of parameters where the
model exhibits correlation decay. In addition to shedding light on Fisher zeros themselves, this
result also establishes a formal connection between two distinct notions of phase transition for
the Ising model: the absence of complex zeros (analyticity of the free energy, or the logarithm of
the partition function) and decay of correlations with distance. We also discuss the consequences
of our result for efficient deterministic approximation of the partition function. Our proof relies
heavily on algorithmic techniques, notably Weitz’s self-avoiding walk tree, and as such belongs to
a growing body of work that uses algorithmic methods to resolve classical questions in statistical
physics.
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1 Introduction

In combinatorial terms, the Ising model is a probability distribution over the cuts of a graph.
Given a graph G = (V,E), the configurations of the model are assignments σ of “+” or “−”
spins to the vertices of G; σ corresponds to the cut between spin-“+” and spin-“−” vertices.
The model assigns to configuration σ the weight wG,β(σ) = β|{e=(u,v)∈E : σ(u)6=σ(v)}|, where
β > 0 is a parameter. The associated probability distribution, known as the Gibbs measure,
is then defined by assigning probability µG,β(σ) := 1

ZG(β)wG,β(σ) to each configuration σ.
The normalizing factor here is the partition function, defined as

ZG(β) :=
∑

σ:V→{+,−}

wG,β(σ) =
|E|∑
k=0

γkβ
k, (1)

where γk is the number of k-edge cuts in G. Note that ZG(β) is a polynomial in β with
positive coefficients. We also sometimes consider graphs in which certain vertices are pinned
to “+” or “−” spins. For such a graph, we restrict the sum in the definition of ZG to those
configurations σ in which these vertices have the spin determined by their pinning.

The origins of the Ising model lie in the qualitative modeling of phase transitions in
magnets [11]; indeed, it was the first model among the wide class of spin systems to be studied
extensively in statistical physics. The parameter β above is a proxy for the “temperature” or
“interaction strength”, while the graph is a proxy for the physical structure of the magnet.
In this parameterization, β > 1 corresponds to so-called anti-ferromagnetic interactions
(where neighbors prefer to have different spins), β < 1 to ferromagnetic interactions (where
neighbors prefer to have the same spins), and β = 1 to infinite temperature (where the
neighbors behave independently of each other). We will restrict our attention throughout to
graphs of fixed (but arbitrary) maximum degree ∆.

Historically, there have been two distinct (though closely related) mechanisms for defining
and understanding phase transitions in statisical physics. The first is decay of long-range
correlations in the Gibbs measure, which is familiar in theoretical computer science due
to its extensive use in approximation algorithms and the analysis of spin systems and
graphical models. The second, which is more classical and less familiar in computer science,
is analyticity of the “free energy” logZ (where Z is the partition function). This second
notion connects naturally to stability theory of polynomials, and in particular to the study of
the location of complex roots of the partition function Z, even when only real values of the
parameters make physical sense in the model. The seminal work of Lee and Yang [12, 28]
was one of the first, and certainly the best known, to use this notion. We note in passing that
stability theory has seen a surge of recent interest in theoretical computer science, in contexts
ranging from approximation algorithms to the construction of Ramanujan graphs (see, e.g.,
[17, 18, 1, 2, 26]).

We now briefly describe the connection between the analyticity of the free energy and
the location of complex zeros of the partition function. The first ingredient is that natural
observables of the model (e.g., the magnetization) can be written as derivatives of the free
energy with respect to an appropriate parameter of the model. Thus, analyticity of the free
energy for a given range S of parameters implies that all such observables vary continuously
(and have continuous derivatives) when the parameter value lies in S, which in turn implies
that there is no phase transition in S. However, it is not hard to see that for any finite
graph, the free energy is always analytic as a function of β when β lies on the positive real
axis, suggesting a complete absence of phase transitions. Indeed, it turns out (see, e.g.,
[23, Chapter 1]) that in order to see phase transitions one has to consider infinite graphs.
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For concreteness, we consider the case of the Ising model on the infinite 2-dimensional
integer lattice Z2 [28]. In order to define the free energy for such an infinite graph, one
takes the limit of the free energies of a suitable increasing sequence of finite subgraphs (e.g.,
increasing rectangles in Z2), after scaling them by their size. Lee and Yang [28] showed that,
for infinite graphs of sub-exponential growth (including Z2), the free energy obtained via
this prescription is well defined and analytic for a range of parameters S provided that the
partition functions of the finite graphs used in the limit definition, viewed as polynomials in
the parameter, are zero-free in a complex neighborhood of S. Thus, proving zero-freeness of
partition functions of such a sequence of finite graphs in a fixed (i.e., not depending upon the
finite graphs in question) complex neighborhood of S implies the absence of phase transitions
in S.

Algorithms, phase transitions, and roots of polynomials. While the algorithmic con-
sequences of phase transitions defined in terms of decay of correlations have been well studied,
first in the context of Markov Chain Monte Carlo algorithms (Glauber dynamics) and more
recently in determinstic algorithms that directly exploit correlation decay, algorithmic use of
the information on complex roots of the partition function originated only recently in the
work of Barvinok (see [3] for a survey). This has led to increased interest in understanding
the relationship between the above two notions of phase transitions. Such connections have
been the focus of some recent work on the independent set (or “hard core lattice gas”) model;
notably, connections similar to the ones in this paper have been explored for that model by
Peters and Regts [20], while related ideas are harnessed in early work of Shearer [22], as later
elucidated by Scott and Sokal [21] and further elaborated by Harvey et al. [10], to shed light
on the Lovász Local Lemma.

The motivation for our work here is to take a step towards achieving a fuller understanding
of these connections. Specifically, we study the zeros of the Ising partition function (at zero
field), viewed as a polynomial in the interaction parameter. While the study of zeros in
terms of the fugacity (or field) parameter was famously pioneered by Lee and Yang [12], and
has given rise to a well developed theory, very little is known about the zeros in terms of the
interaction parameter, which were first studied in the classical 1965 paper of Fisher [8] and
are thus known as “Fisher zeros”.

Our main result is that the Ising model has no Fisher zeros in a region of the complex
plane that contains the entire interval B on the positive real line where correlation decay
holds. Our analysis crucially exploits the correlation decay property in order to understand
the Fisher zeros. Thus, in the particular case of the zero field Ising model, we are able to
establish a tight connection between correlation decay and the absence of zeros. Another
potentially interesting aspect of this result is the use of algorithmic techniques associated
with correlation decay (notably, Weitz’s algorithm [27]) to understand a classical concept in
statistical physics.

We now proceed to formally describe our results. First we identify the range of the
parameter β for which the Ising model is, in a certain sense, well-behaved on graphs of
bounded degree ∆.

I Definition 1 (Correlation decay region). Given ∆ > 0, the correlation decay region B = B∆
for β is the interval (∆−2

∆ , ∆
∆−2 ).

The correlation decay region is very well studied in both physical and algorithmic contexts,
and comes from a consideration of the behavior of the Gibbs measure on trees. In particular,
it corresponds to those β for which there is exponential decay of correlations in the Gibbs
measure on any finite subtree of the infinite ∆-regular tree – a fact which has been used to
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give a deterministic algorithm for approximating the partition function of the Ising model
for such β [27, 29]. On the other hand, Sly and Sun [25] have shown that for β > ∆

∆−2 , this
approximation problem is NP-hard under randomized reductions. In statistical physics, the
correlation decay region describes those β for which the definition of the Gibbs measure
given by eq. (1) for finite graphs can be extended in a unique way to a Gibbs measure on
the infinite ∆-regular tree [9]; for this reason, the correlation decay region is also referred to
as the uniqueness region.

As advertised earlier, our goal is to prove the existence of a region of the complex plane,
containing B, which contains no Fisher zeros. We state this now as our main theorem.

I Theorem 2. Fix any ∆ > 0. For any real β ∈ B :=
(∆−2

∆ , ∆
∆−2

)
, there exists a δ > 0 such

that for all β′ ∈ C with |β′ − β| < δ, the Ising partition function ZG(β′) 6= 0 for all graphs G
of maximum degree ∆. Moreover the same holds even if G contains an arbitrary number of
vertices pinned to + or − spins.

I Remarks.
(1) It is worth noting that the choice of δ does not depend on the size of the graph, only

on ∆ and β. In particular, given any δ1 > 0, one can choose δ > 0 such that, for all β′
in a complex neighborhood of radius δ around the closed interval [∆−2

∆ + δ1,
∆

∆−2 − δ1],
ZG(β′) is non-zero for all graphs of degree at most ∆.

(2) For the case of the Ising model, the above theorem establishes a connection between
the two notions of phase transition discussed above. Namely, for the zero-field Ising
model, it shows that decay of correlations on the ∆-regular tree also implies the absence
of Fisher zeros for finite graphs of degree at most ∆, and hence the analyticity of the
free energy for appropriate infinite graphs (i.e., those of maximum degree at most ∆ and
of subexponential growth, such as regular lattices).

Discussion. To the best of our knowledge, the previous best general result on the Fisher
zeros of the Ising model appears in the work of Barvinok and Soberón [6], who showed that
ZG(β) is non-zero if |β − 1| < c/∆, where ∆ is the maximum degree of G, and c can be
chosen to be 0.34 (and as large as 0.45 if ∆ is large enough). While this result provides a
disk around 1 in which there are no Fisher zeros, it cannot guarantee the absence of Fisher
zeros in a neighborhood of the correlation decay region B (which would require at least that
c ≥ 2− o∆(1)). Our Theorem 2 therefore strengthens this result to a neighborhood of the
entire correlation decay region B.4

Our main theorem on Fisher zeros can also be combined with the techniques of Barvinok [3]
and Patel and Regts [19] to give a new deterministic polynomial time approximation algorithm
for the partition function of the ferromagnetic Ising model with zero field on graphs of degree
at most ∆ when β ∈ (∆−2

∆ , ∆
∆−2 ). In particular, combining Theorem 2 with Lemmas 2.2.1

and 2.2.3 of [3] (see also the discussion at the bottom of page 27 therein) and the proof of
Theorem 6.1 of [19], we obtain the following corollary:

I Corollary 3. Fix a positive integer ∆ and δ > 0. There exist positive constants δ1 > 0
and c such that for any complex β with <(β) ∈

[∆−2
∆ + δ, ∆

∆−2 − δ
]
and |=(β)| ≤ δ1, the

following is true. There exists an algorithm which, on input a graph G of degree at most
∆ on n vertices, and an accuracy parameter ε > 0, runs in time O(n/ε)c and outputs Ẑ
satisfying

∣∣Ẑ − ZG(β)
∣∣ ≤ ε |ZG(β)|.

4 Technically the results are incomparable in the sense that, while our results cover a much larger portion
of the real line than that in [6], the diameter of the disk centered around 1 in the region of [6] may be
larger than the radius guaranteed by our result.
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For real β in the same range, a deterministic algorithm with the above properties, based
on correlation decay, was already analyzed in [29]. However, our extension to complex values
of the parameter is also interesting in light of the fact that algorithms for approximating the
Ising partition function at complex values of the parameters have recently been studied in
the context of classical simulation of restricted models of quantum computation [16].

Finally, we emphasize that in contrast to most other recent applications of Barvinok’s
method (e.g., [19, 5, 6, 4, 14]), where the required results on the location of the roots of
the associated partition function are derived without reference to correlation decay, the
algorithmic version of correlation decay is crucial to our proof. Indeed, implicit in our proof
is an analysis of Weitz’s celebrated correlation decay algorithm [27] (proposed originally for
the independent set (or “hard core”) model, and analyzed by Zhang, Liang and Bai [29]
for the Ising model in the case of real positive β ∈ B) for the Ising model with complex β′
close to β ∈ B. Thus, as mentioned earlier, our work shows that Weitz’s algorithm can be
viewed as a bridge between the “decay of correlations” and “analyticity of free energy” views
of phase transitions. We note also that our work is close in spirit to recent work of Peters
and Regts [20] (see also [7]), who employ correlation decay in the hard core model to prove
stability results for the hard core partition function.

2 Outline of proof

We fix ∆ to be the maximum degree throughout, and let d = ∆− 1. Let G be any graph
of maximum degree ∆. Our starting point is a recursive criterion that guarantees that
the partition function ZG(β) has no zeros. For any non-isolated vertex v of G, let Z+

G,v(β)
(respectively, Z−G,v(β)) be the contribution to ZG(β) from configurations with σ(v) = +
(respectively, with σ(v) = −), so that ZG(β) = Z+

G,v(β) + Z−G,v(β). Define also the ratio

RG,v(β) := Z+
G,v

(β)
Z−

G,v
(β) . Now note that Z+

G,v(β) and Z−G,v(β) can be seen as Ising partition
functions defined on the same graph G with the vertex v pinned to the appropriate spin; i.e.,
they are partition functions defined on a graph with one less unpinned vertex. Thus we may
assume recursively that neither Z+

G,v(β) nor Z−G,v(β) vanishes. Under this assumption, the
condition ZG(β) 6= 0 is equivalent to RG,v(β) 6= −1.

Our next ingredient is a formal recurrence, due to Weitz [27], for computing ratios such
as RG,v(β) in two-state spin systems. This recurrence is based on the so-called “tree of
self-avoiding walks” (or “SAW tree”) in G, rooted at v, with appropriate boundary conditions
(i.e., initial inputs, or fixed values at the leaves of the tree). Weitz’s recurrence has been used
in the development of several approximate counting algorithms based on decay of correlations
(see, e.g., [27, 29, 13, 24]). We now state a precise version of Weitz’s result that is tailored
to our application.

I Lemma 4. Let G be a graph of maximum degree ∆ = d+ 1, with some vertices possibly
pinned to spins “+” or “−”. Given β ∈ C, define hβ(x) := β+x

βx+1 . For integers k ≥ 0 and s,
define the maps

Fβ,k,s(x) := βs
k∏
i=1

hβ(xi).

Then, the ratio RG,v(β) can be obtained by iteratively applying a sequence of multivariate
maps of the form Fβ,k,s(x) such that, in all but the final application, one has 1 ≤ k+ |s| ≤ d,
while for the final application one has 1 ≤ k+ |s| ≤ ∆, and any initial input to these maps is
xi = 1.
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For completeness we sketch a proof of Lemma 4 at the end of this section.
Returning now to the condition RG,v(β) 6= −1 derived above, we see from Lemma 4 that

a sufficient condition for the absence of zeros of ZG(β) is the existence of a subset D ⊆ C
such that 1 ∈ D, −1 /∈ D, and D is closed under the recurrence Fβ,k,s (in the sense that
Fβ,k,s maps Dk into D). These properties guarantee that the recurrence, with initial inputs 1
at the leaves, can never yield the value −1, and hence that RG,v(β) 6= −1, so ZG(β) 6= 0.
The main technical content of this paper is to prove, under the conditions on β stated in
Theorem 2, the existence of such a set D, a result which we formally state as follows.

I Theorem 5. Fix a degree ∆ = d+ 1. For any β ∈
(∆−2

∆ , ∆
∆−2

)
, there exists δβ > 0 such

that, for any β′ ∈ C with |β′ − β| ≤ δβ, there exists a set D ⊆ C with 1 ∈ D, −1 6∈ D, and
(a) Fβ′,k,s(Dk) ⊆ D for integers k ≥ 0 and s such that 1 ≤ k + |s| ≤ d;
(b) −1 /∈ Fβ′,k,s(Dk) for integers k ≥ 0 and s such that 1 ≤ k + |s| ≤ ∆.
At the end of this section, we spell out the details of how to combine Lemma 4 and Theorem 5
into a proof of our main result, Theorem 2.

The main technical task of the paper is to prove Theorem 5. We briefly sketch our
approach in this extended abstract; the details can be found in the full version [15]. The first
step is to simplify the problem by working with a univariate version of the recurrence Fβ,k,s
defined in Lemma 4. The univariate version is defined as fβ,k,s(x) := βshβ(x)k, and we can
show that it satisfies Fβ(Dk) = fβ(D) for any set D such that C := log(hβ(D)) is convex in
the complex plane. (Henceforth we will drop the subscripts k, s for simplicity.) This means
that the set D we seek in Theorem 5 should be the image of a convex set C under the map
log ◦ hβ .

Next, to enable us to exploit the fact that β is in the correlation decay interval B =(∆−2
∆ , ∆

∆−2
)
, we further modify the univariate recurrence to fϕβ := ϕ ◦ fβ ◦ ϕ−1, where

ϕ(x) := log x. This is an example of the use of a so-called “potential” function ϕ in order
to smooth a recurrence, as has been useful in several correlation decay arguments. The key
point here is that, when β ∈ B, fϕβ (unlike fβ itself) is actually a uniform contraction on
an appropriate domain in C; hence we can conclude that fϕβ (S) ⊆ S for “nice” sets S (i.e.,
S that are convex and symmetric around the origin). Since the condition fβ(D) ⊆ D is
equivalent to fϕβ (logD) ⊆ logD, this imposes the further constraint that logD be a “nice”
set.

Putting together the constraints in the previous two paragraphs, we need to construct a
suitable convex set C whose image log(h−1

β (exp(C))) is nice; our set D in Theorem 5 will
then be defined as h−1

β (exp(C)) (and this set must include 1 and exclude −1). This turns
out to be hard to achieve directly due to the complexity of the map p := log ◦ h−1

β ◦ exp.
However, we are able to show that one can instead work with a (non-analytic) approximation
of p under which the image of a natural convex C becomes a nice (in fact, rectangular) set.
Moreover, this holds even for complex β that are sufficiently close to the region B. This fact
then allows us to push through the analysis and arrive at a proof of Theorem 5.

We conclude this overview with the proofs of Lemma 4 and Theorem 2 promised earlier.
The proof of our main technical result, Theorem 5, can be found in the full version [15].

Proof of Lemma 4 (Sketch). This description is exactly the same as the version of Weitz’s
result used for the Ising model in, e.g., [24] and [29], except that there, only the maps
Fβ,k,0 for 1 ≤ k ≤ d (with at most one final application with k = ∆) are used, and the
initial values come from the set {0,∞}; these initial values are the values of the ratio for
single leaf vertices in the SAW tree pinned to − and + respectively, and the maps Fβ,k,0
describe how to combine the ratios from k subtrees. The version in the lemma follows by
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noticing that hβ(1) = 1, hβ(0) = β and hβ(∞) = 1/β, so that Fβ,k,0 applied to a vector
x with k coordinates, s1 of which are set to 0 and s2 to ∞, produces the same output as
Fβ,k−|s1−s2|,s1−s2 applied to the vector x′ of k − |s1 − s2| coordinates obtained from x by
removing the 0 and∞ entries, and then appending s1 +s2−|s1 − s2| entries which are 1. J

Proof of Theorem 2. As indicated earlier, the induction is on the number of unpinned
vertices, n, of G. For the base case n = 0, ZG(β) = βk, where k is the number of pairs
of adjacent vertices in G that are pinned to different spins. Therefore, ZG(β) 6= 0 unless
β = 0. Next suppose that for some positive integer t, it holds that for every β ∈ B,
there exists a δ > 0 such that for all β′ ∈ C with |β′ − β| < δ, ZG(β′) 6= 0 for all graphs
G of maximum degree ∆ with at most t unpinned vertices. Now, let G′ be any graph
of the same maximum degree with t + 1 unpinned vertices. Fix any non-isolated vertex
v in G′, and let Z+

G′,v(β′), Z
−
G′,v(β′) be the contributions to the partition function from

configurations with σ(v) = +, σ(v) = −, respectively. By the induction hypothesis, we know
that Z+

G′,v(β′) 6= 0, Z−G′,v(β′) 6= 0 as they are exactly the Ising partition function defined on
the same graph G′ with the vertex v pinned (thus reducing the number of unpinned vertices

to t). Further, Lemma 4 implies that RG′,v(β′) =
Z+

G′,v
(β′)

Z−
G′,v

(β′) can be computed by iteratively

applying a sequence of maps of the form Fβ′,k,s for 1 ≤ k + |s| ≤ d, followed by at most
one application where k + |s| = ∆, starting with initial values of 1. Part (a) of Theorem 5
then implies that the outputs of all except possibly the final application remain in the set D
defined in that theorem, and part (b) of the theorem implies that the final output, which is
equal to RG′,v(β) by Lemma 4, is not −1. Since Z+

G′,v(β′) and Z−G′,v(β′) are non-zero, this
implies that ZG′(β′) 6= 0, completing the induction. J
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Abstract
We define a model of size-S R-way branching programs with oracles that can make up to S dis-
tinct oracle queries over all of their possible inputs, and generalize a lower bound proof strategy
of Beame [SICOMP 1991] to apply in the case of random oracles. Through a series of succinct
reductions, we prove that the following problems require randomized algorithms where the prod-
uct of running time and space usage must be Ω(n2/poly(logn)) to obtain correct answers with
constant nonzero probability, even for algorithms with constant-time access to a uniform random
oracle (i.e., a uniform random hash function):

Given an unordered list L of n elements from [n] (possibly with repeated elements), output
[n]− L.
Counting satisfying assignments to a given 2CNF, and printing any satisfying assignment to
a given 3CNF. Note it is a major open problem to prove a time-space product lower bound
of n2−o(1) for the decision version of SAT, or even for the decision problem Majority-SAT.
Printing the truth table of a given CNF formula F with k inputs and n = O(2k) clauses,
with values printed in lexicographical order (i.e., F (0k), F (0k−11), . . . , F (1k)). Thus we have
a 4k/poly(k) lower bound in this case.
Evaluating a circuit with n inputs and O(n) outputs.

As our lower bounds are based on R-way branching programs, they hold for any reasonable model
of computation (e.g. log-word RAMs and multitape Turing machines).
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1 Introduction

Infamously little progress has been made towards the resolution of P vs NP. It is still
open whether there are linear time algorithms for solving generic NP-hard problems such as
Circuit Sat although for certain NP-hard problems, non-linear lower bounds on multitape
Turing machines are known [23, 18]. In fact it remains open whether Circuit Sat has a
generic algorithm in a random-access machine model running in O(n1.9999) time and O(logn)
additional space beyond the input.2 Currently the best known time lower bound for solving
SAT in O(logn) space is n2 cos(π/7)−o(1) ≥ n1.801 ([27, 14], building on [17]).

Other prominent work has used combinatorial methods to prove time-space lower bounds
for decision problems in P [10, 3, 12, 11, 25, 4, 22]. For general random-access models of
computation, modest super-linear (e.g. n logn-type) time lower bounds for explicit problems
in P are known when the space is restricted to n.99 or less (for randomized models as
well [11, 22]). Thus for such problems, the time-space product can be lower-bounded to
nearly Ω(n2) when the space is close to n; however, when the space is O(logn), the best
time lower bound against RAMs appears to be the aforementioned n1.801 bound for SAT.

All the above cited lower bounds are for decision problems. For example, the SAT
lower bound applies to algorithms which are only required to determine if a given formula
is satisfiable or not. There are several well-studied extensions of SAT which are function
problems, outputting multiple bits:

1. How difficult is it to print a satisfying assignment, when one exists? For 3CNF
formulas, call this problem Print-3SAT. Of course, Print-3SAT has a polynomial-time
algorithm if and only if P = NP, but perhaps it is easier to prove concrete lower bounds
for it, compared to the decision version.

2. How difficult is #2SAT , in which we count the number of satisfying assign-
ments to a 2CNF? Since #2SAT is #P -complete, the problem should intuitively be
harder to solve than 3SAT .

3. How difficult is it to print the truth table of a CNF? Given a CNF formula F of
n variables and up to 2n size, F can be evaluated on all possible 2n inputs in 4n · poly(n)
time and poly(n) space (using a linear-time, log-space algorithm for evaluating a CNF on
a given input). Call this problem TTPrint (for truth-table printing).
Is this quadratic running time optimal? This question is considerable interest
for SAT algorithms; for some circuit classes, the only known SAT algorithms beating
exhaustive search (e.g., [28]) proceed by reducing SAT to a quick truth table evaluation.

In this paper, we prove that for essentially any generic randomized computation model
using no(1) space but having O(1)-access to a random oracle (i.e., a random string of 2no(1)

bits), the above three problems all require nearly quadratic time to compute with nonzero
constant probability. We revisit a quadratic time-space lower bound of Beame [8] for the
Unique Elements problem, show that his technique can be used to prove an analogous
lower bound for an even “simpler” problem that we call Non-Occurring Elements,
extend the lower bound’s reach to include random oracles, and give succinct reductions from
Non-Occurring Elements to the above problems, proving hardness for them.

2 Note that for multitape Turing machines, such lower bounds are not hard to show [24]. However, these
lower bounds rely on the sequential access of Turing machines on tapes; once random access is allowed,
these lower bounds break.
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Lower Bound for Non-Occurring Elements

We define the Non-Occurring Elements problem to be: given an unordered list L of
n elements from [n], output [n]− L in any order.3 That is, we simply wish to output the
elements that do not occur in the given list.

Observe it is easy to get a space-O(s(n)) algorithm on the log(n)-word RAM for computing
NOE with running time O(n2/s(n)). Start by partitioning [n] into n/s(n) blocks of s(n)
elements each. Do n/s(n) passes over L, where in the ith pass, check which numbers in the
ith block do not occur in L: this can be done in s(n) bits of space by simply keeping a bit
vector. Hence we would say NOE has time-space product O(n2) for all n ≤ t(n) ≤ n2.

Our first main theorem builds on the aforementioned work of Beame to show that this
time-space product is optimal, even when programs have access to a random oracle and can
err with high probability.

I Theorem 1. For all p ∈ (0, 1], every random oracle n-way branching program family of
size 2s(n) and height t(n) computing NOE with success probability p has t(n) · s(n) ≥ Ω(n2)
for all sufficiently large n.

(Note, we need to formally define what a “random oracle branching program” even
means. For now, think of it as a non-uniform version of space-bounded computation with
constant-time access to a uniform random 2s(n)-bit string. The preliminaries in Section 2
give full detailed definitions.) Using a standard translation of word-RAMs into branching
programs, it follows that every probabilistic word-RAM with a random oracle and wordsize
log(n) computing NOE in time t(n) and space s(n) must have t(n) · s(n) ≥ Ω(n2) in order
to have any non-zero constant success probability.

Lower Bound for Sorting and Circuit Evaluation

Informally, we say that a reduction from a problem A to a problem B is succinct if any
particular output bit of the reduction can be computed in poly(logn) time with random
access to the input. (Definitions can be found in the Preliminaries.) As a warm-up, in
Theorem 24 of the paper, we use a simple succinct reduction to obtain an analogous random
oracle lower bound for the problem of sorting n unordered elements from [n], which we call
Sort. (A tight lower bound without random oracles was proved by Beame [8].) The sorting
lower bound is combined with another simple reduction to obtain an analogous lower bound
for evaluating a circuits. Let FCircEval be the problem: Given a circuit of size n with
at most n inputs (all fixed to 0-1 values) and at most n outputs, determine its output. The
decision version of FCircEval is well-known to be P-complete.

I Theorem 2. For all finite Σ, there is a k > 0 such that the random oracle Σ-way branching
program time-space product of FCircEval is at least Ω(n2/ logk n).

As in the case of NOE, Theorem 2 implies analogous time-space lower bounds on
probabilistic random access machines computing FCircEval. We note that without the
“random oracle” modifier, Theorem 2 is almost certainly folklore; it follows from our simple
reduction and the Ω̃(n2) time-space product lower bound on sorting of Borodin and Cook [13].

3 As usual, we define [n] := {1, . . . , n}.

ITCS 2019
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Lower Bound for Printing SAT Assignments

Any practical algorithm for Satisfiability would need to print satisfying assignments when
they exist. We give a succinct reduction from Circuit Evaluation to the printing problem for
3SAT, proving a nearly-quadratic time lower bound in the no(1) space setting.

I Theorem 3. For all finite Σ, there is a k > 0 such that the random oracle Σ-way branching
program time-space product of Print-3SAT is at least Ω(n2/ logk n).

Lower Bound for Computing Truth Tables of CNFs

We show that the trivial algorithm for computing the truth table of a large CNF has optimal
time-space product, even for randomized algorithms.

I Theorem 4. For all finite Σ, there is a k > 0 such that the random oracle Σ-way
branching program time-space product of TTPrint for CNF formulas with n clauses and
log(n) + log log(n) many variables is at least Ω(n2/ logk n).

The proof of Theorem 4 works by giving a succinct reduction from NOE to TTPrint,
constructing a CNF whose truth table encodes (at the bit level) the non-occurring elements
of a given list.

Lower Bound for #2SAT

Finally, we give a succinct reduction from the truth table problem TTPrint for CNF
formulas to counting SAT assignments to a given 2CNF, implying an analogous lower bound
for #2SAT. In particular, we encode the output 2CNF in such a way that the bits of its
number of satisfying assignments encode the value of the original CNF on various inputs.

I Theorem 5. For all finite Σ, there is some k > 0 such that the random oracle Σ-way
branching program time-space product of #2SAT is at least Ω(n2/ logk(n)).

Lower Bounds Beyond?

Finally, we note that the random oracle model we consider may not be the most general
possible one. We could also consider oracles where the queries are on write-only storage
that does not count towards the space bound. Although such oracles are sometimes used in
space-bounded complexity ([20]), it is hard for us to see how such queries could help in the
random oracle setting. In the paper’s conclusion (Section 5) we outline how to coherently
define this sort of oracle access in branching programs, and conjecture that our lower bounds
also hold in this “extended oracle” model.

1.1 Intuition for the NOE Lower Bound
Our proof of the NOE lower bound (Theorem 1) starts from Beame’s lower bound for Unique
Elements [8]. We generalize his proof, and use our generalization to show that any function
problem satisfying two basic properties has a non-trivial branching program lower bound,
even when the branching program has access to a huge number of random bits.

I Theorem 6. Let {fn : Σnn → Σ∗n} be a family of functions, {Dn} be a family of distributions,
and let g : N→ N satisfy the following properties.
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1. [f typically has “long” outputs]. For all ε > 0, there is an n0 ≥ 0 such that for all
n > n0, there is a δ > 0 such that

Pr
x∈Dn

[|fn(x)| > δg(n)] > 1− ε.

2. [Short random-oracle branching programs have low probability of printing
long substrings of f ]. Let Un be the uniform distribution over Σn and let N ≤ 2s(n)

be an integer. There is an ε > 0 such that for all Σn-way branching programs P of height
at most n/4,

Pr
(x,r)∼Dn×UNn

[(P (xr) is a substring of fn(x)) ∧ (|P (xr)| ≥ m)] < e−εm.

Then, for all n > n0 and p ∈ (0, 1], and for every random oracle Σn-way branching program
of size 2s(n) and height t(n) computing fn with success probability at least p on inputs drawn
from Dn, it must be that t(n) · s(n) ≥ Ω(ng(n)).

The intuition behind Theorem 6 is that, if a function f on input x requires a long output
(Property 1), then some (possibly many) subprograms of an efficient branching program P

computing f will need to produce somewhat-long output. But by Property 2, this is “hard”
for all short subprograms even with a random oracle: they have low probability of correctly
answering a large fraction of f .

Beame’s original lower bound for Unique Elements [8] follows a similar high-level
pattern (as we review in Theorem 21). One of our insights is that the Non-Occurring
Elements problem satisfies stronger versions of the properties used in his proof for Unique
Elements; these stronger properties give us extra room to play with the computational
model in our lower bound against Non-Occurring Elements. Another insight is that the
conditioning on uniform random input in his argument can be modified to accommodate
very long auxiliary random inputs. Together, this allows us to extend the lower bounds to
models equipped with random oracles.

Why Random Oracles?

Let us give one comment on the model itself. One may wonder why it is even necessary
to add random oracles to branching programs (BPs), which are a non-uniform model of
computation. Can’t we use Adleman’s argument [5] to show that the randomness can be
hard-coded in the non-uniform model, similarly to how BPP ⊂ P/poly?

Indeed, a random-oracle BP can always be simulated by a deterministic BP; however,
the running time of the deterministic BP increases by a multiplicative factor of Ω(n) (hence,
a time lower bound of Θ(n2) on a deterministic BP says nothing a priori about randomized
BPs). Given a randomized BP for a decision problem with constant success probability
1/2 < p < 1, it is derandomized by taking Ω(n) copies of the BP (with independent random
bits filled in each copy), and computing the majority value of the BP outputs. The Ω(n)
copies are needed because one needs to guarantee correctness over all 2n possible inputs:
this increases the running time by an Ω(n) multiplicative factor. In our case, the situation
is even more complicated because we are concerned with function problems. The upshot is
that n2 lower bounds on random-oracle BPs give strictly more information than a typical
randomized model with one-way access to random bits, or a deterministic model.

Another randomized branching program model considered in prior work (e.g., [9]) is to
define a randomized time-T space-S branching program to be a distribution D of deterministic
time-T and space-S BPs. Such a model is said to compute a function f with error ε if, on

ITCS 2019
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every input x, a randomly drawn BP from D outputs f(x) with probability at least 1− ε.
This model looks even more general than our random oracle model, since no resources are
spent accessing randomness (the randomness is “drawn” prior to any computation, then
fixed for free). An anonymous reviewer for ITCS observed that our time-space lower bound
for Non-Occurring Elements also holds in this BP model. The idea is to apply Yao’s
principle [29] which reduces worst-case lower bounds for distributions of BPs to finding a
hard distribution of inputs for deterministic BPs, and to verify that our proofs essentially
show that the uniform distribution is hard for deterministic BPs.

2 Preliminaries

We assume basic familiarity with computational complexity [5]. Here we recall (and introduce)
various computational models and notations needed in the paper.

All of our lower bounds are on the product of time and space for various problems. For
clarity, we define the time-space product as follows.

I Definition 7. Let f be a function. We say that the time-space product of f is at least b(n)
if for every algorithm running in t(n) time and s(n) space for f , it must be the case that
t(n) · s(n) ≥ Ω(b(n)).

Random Access Machines With Oracles

For this work, we consider random access machines (RAMs) with access to an oracle and a
write-only output tape. More precisely, our RAMs can only append new characters to the
end of their output tape.

I Definition 8. Let O be a language over a finite alphabet. An oracle RAM MO is a
random access machine with an additional oracle tape. During a time step, in addition to
any normal RAM operations, an oracle RAM can read or write a character to the oracle
tape, can move the oracle tape head left or right, or can query the oracle with the contents
of the tape to obtain a uniform random bit. Additionally, MO has a write-only output tape
to which it can append a character in any step.

R-Way Branching Programs With Oracles and Output

Our lower bounds for Non-Occurring Elements (Theorem 1) will be against a generaliza-
tion of branching programs with a (large) alphabet of size R, often called R-way branching
programs [13]. We recall the definition here.

I Definition 9. Let R ≥ 2 be an integer. An R-way branching program with n inputs
x1, . . . , xn as a directed acyclic graph with one source node in which every non-sink node
has out-degree R. Every non-sink node is labeled with an index i ∈ [n] corresponding to an
input variable, and each edge is labeled with an element of [R] such that no edge (u, v) and
(u,w) where v 6= w share a label. Additionally, each vertex v is labeled with an instruction
to print a value p(v) (which may be empty). The height of an R-way branching program P

is the length of the longest path in its graph, and the size is the number of vertices. The
computation path of P on input x is the unique path π = (v0, v1), (v1, v2), . . . , (vk−1, vk)
such that v0 is the source node, vk is a sink node, and for all i ∈ {0, . . . , k − 1}, if vertex
vi is labeled j, then the label on (vi, vi+1) is the value of xj . The output of P on input
x, denoted as P (x), is the concatenation of the values printed by the vertices along the
computation path of P on input x, i.e., p(v0)p(v1) · · · p(vk).
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Let Σ be a finite alphabet. For notational convenience, we call a P a Σ-way branching
program if P is a |Σ|-way branching program with edges labeled with elements of Σ instead
of [|Σ|].

I Definition 10. A function f : Σ∗ → Σ∗ has a Σ-way branching programs of height
t(n) and size S(n) if for all n ≥ 0, there is a Σ-way branching program Pn of height t(n)
and size S(n) such that for all x ∈ Σn, Pn(x) = f(x).

We study a natural generalization of R-way branching programs with oracles whose
queries count towards the space bound. This is a natural set-up for the random oracle
setting, where random oracles model truly random hash functions. Let O : Σ? → {0, 1} in
the following.

I Definition 11. An O-oracle R-way branching program with n inputs is an R-way
branching program with the following additional properties. Each vertex is labeled with
either a variable index i ∈ [n] or with a string qj ∈ {0, 1}? (where j is an integer ranging
from 1 to the number of vertices in the program); we call the latter Q-vertices (for “Query”).
All Q-vertices have two outgoing arcs, labeled with the two possible query answers yes or no
(i.e., 1 or 0). Computation on an O-oracle branching program is defined analogously to usual
branching programs, with the following extra rule for Q-vertices. Each time a Q-vertex v is
reached during a computation, the outgoing yes (i.e., 1) edge of v is taken in the computation
path if and only if the label qj of v satisfies O(qj) = 1.

I Remark. Note that in the above definition, the oracle queries could be strings of arbitrary
length, but in a size-S branching program we are only allowed S possible distinct oracle
queries over all possible inputs. So the above definition is more general than the condition
that “oracle queries count towards the space bound”. In the random oracle setting, this
distinction will make little difference; we might as well think of the query strings as being of
length about log2(S).

It is natural to augment branching programs with oracles. Barrington and McKenzie [6],
motivated by an approach to proving NC1 6= P, defined an oracle branching program model
in terms of finite automata, where instead of branching on individual input bits, the program
can branch on (in principle) all possible n-bit inputs, corresponding to oracle queries on
the input. The usual branching program model is captured in their model by a branching
program with an oracle for the predicate BIT (x, i) which returns the ith bit of the input
x. They proved exponential size lower bounds for branching programs with certain weak
oracles. Our oracle model is designed to give a natural correspondence between O-oracle
R-way branching programs and word RAMs with wordsize log(R) and oracle access to O.

It is helpful to think of oracle branching programs as simply branching programs which
receive the oracle as part of their input. The following proposition formalizes this:

I Proposition 2.1. Let PO be an O-oracle Σ-way branching program with n inputs, height T ,
and size S, and let q1, ..., qm be the set of all possible oracle queries appearing at Q-vertices
of PO. There is a Σ-way branching program P ′ of height T and size S such that for all
x ∈ Σn, PO(x) = P ′(xy), where y = O(q1), ..., O(qm).

Proof. The branching program P ′ is simply a relabeling of P in which every Q-vertex with
label qj is instead labeled by the variable index n+ j. J
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Random Oracles

We will ultimately study R-way branching programs with random oracles. All of our random
oracles will have the form O : Σ∗ → Σ for a finite alphabet Σ. Thus we define random oracles
as a random elements of the set (Σ∗ → Σ).

I Definition 12. DΣ is the uniform distribution over functions in (Σ∗ → Σ). That is,
drawing some f ∼ DΣ is equivalent to, for each x ∈ Σ∗, choosing an element of Σ uniformly
at random as f(x).

We define computation with a random oracle branching program as follows.

I Definition 13. A function f has a random oracle branching program family of
height t(n) and size 2s(n) with success probability p ∈ (0, 1] if there is a family of
oracle branching programs {POn } such that the height of each POn is at most t(n), the size of
each POn is at most 2s(n), and for all inputs x,

Pr
O∼DΣ

[
PO|x|(x) = f(x)

]
≥ p.

Borodin and Cook show that R-way branching programs of height O(t(n)) and size
2O(s(n)) can simulate time-t(n) space-s(n) RAMs of wordsize blog2Rc [13]. We observe that
their proof relativizes to allow oracle R-way branching programs to simulate oracle RAMs
with wordsize blog2Rc.

I Lemma 14. For every language O and oracle RAM MO running in time t(n) ≤ 2O(s(n))

and space s(n) ≥ log(n) with wordsize log(Σ), there is an oracle Σ-way branching program of
height O(t(n)) and size 2O(s(n)) such that MO(x) = PO(x) for all inputs x.

Proof. Without loss of generality, assume that at any step, MO either accesses its input of
length n by writing an index j ∈ [n] to an “access register”, or MO queries O by writing
the character Q to the access register. Let the configuration of machine M contain the
description of the random access memory of M , the state of M , and the character currently
being output, if any. For integer n ≥ 1, define a graph Gn = (Vn, En) as follows. Let

Vn = {(C, i, j) | C is a space-s(n) configuration of M , i ∈ {0, 1, . . . , t(n)}, j ∈ [n] ∪ {Q}}.

Our corresponding branching program, has each vertex (C, i, j) with j ∈ [n] labeled by j,
and those (C, i, j) with j = Q are Q-vertices, which we label with a string qj representing
the content of the oracle tape of MO in configuration C.

For j ∈ [n], we put the edge ((C1, i, j), (C2, i+ 1, j′)) ∈ En and label it with a string p
if and only if MO in configuration C1 would transition to configuration C2 given that in
configuration C1, j is put in the access register, xj = p, and j′ is put in the access register in
C2. For configurations making an oracle query, put ((C1, i, Q), (C2, i+ 1, j′)) ∈ En and label
it with b ∈ {0, 1} if and only if MO in configuration C1 would transition to configuration C2
given that in configuration C1, Q is written on the access register in C1, the oracle query O
returns b, and j′ is written on access register in C2.

Observe that |Vn| ≤ 2O(s(n)) · t(n) · n ≤ 2O(s(n), assuming the size of the tape alphabet
and the number of states in the state machine of MO are constants. Further observe that
all paths in Gn have length at most t(n), since every step in the path must be from some
(C, i, j, k) to some (C ′, i+ 1, j′, k′) and i, i+ 1 ∈ [t(n)]. Finally, the oracle branching program
POn is defined to be the Σ-way branching program which is the induced subgraph of Gn
containing all vertices reachable from v0 = (C0, 0, j0) (with the labels prescribed above),
where C0 is the initial configuration of MO, and j0 is the index of the input read in the
initial configuration. We see that by construction, for all x ∈ Σn, POn (x) = MO(x). J
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Lemma 14 immediately implies that R-way branching program lower bounds provide
analogous RAM lower bounds:

I Proposition 2.2. Let f : Σ∗ → Σ∗. Suppose there is no R-way branching program family
of height O(t(n)) and size 2O(s(n)) computing f . Then there is no RAM of wordsize log(R)
running in time t(n) with space s(n) computing f .
Furthermore, if there is no random oracle R-way branching program family of height O(t(n))
and size 2O(s(n)) computing f with success probability p, then there is no oracle RAM MO

with wordsize log(R) such that for all x ∈ Σ?, PrO∼DΣ [MO(x) = f(x)] ≥ p.

Succinct Reductions

After our lower bound for NOE has been proved, we can apply very efficient reductions from
NOE to extend the lower bound to other problems. For this purpose, we need some notation.
In what follows, let f , g, and π be functions from Σ∗ to Σ∗.

I Definition 15. We say A has a t(n)-time reduction with blowup b(n) to B if there is
a many-one reduction f reducing A to B such that |f(x)| ≤ b(|x|), and any character in
the string f(x) can be computed by an algorithm running in time t(|x|), given the index
i = 1, . . . , |f(x)| of the character and random access to x.

Polylog-time reductions with quasi-linear blowup essentially preserve lower bounds for our
branching program model, up to polylog factors. As the proof is relatively straightforward
and our space is limited, the proof is omitted (but appears in the full version).

I Lemma 16. Let π be an O(logk(n))-time reduction with blowup b(n) from f to g, and
suppose g has an oracle branching program family {POn } of height t(n) and size 2s(n) with
success probability p > 0. Then f has an oracle branching program family {QOn } of height
t(b(n)) logk(n) and size 2O(s(b(n))+logk(n)) with success probability at least p.

I Definition 17. The random oracle Σ-way branching program time-space product
of f is at least b(n) if for every constant p ∈ (0, 1] and every random oracle branching
program family of height t(n) time and size 2s(n) computing f with success probability p, it
must be that t(n) · s(n) ≥ Ω(b(n)).

We also note (proof omitted in this version) that lower bounds on time-space products
are roughly preserved by polylog-time reductions of quasi-linear blowup.

I Lemma 18. Let π be an O(logj(n))-time reduction with blowup O(n logj(n)) from f to g.
Suppose there are k and d such that the random oracle Σ-way branching program time-space
product of f is at least Ω(nd)/ logk(n). Then there is some k′ such that the random oracle
Σ-way branching program time-space product of g is at least Ω(nd)/ logk

′
(n).

For our #2SAT lower bound, we inspect a reduction of Hoffmeister, and note that it is
succinct.

I Theorem 19 ([19]). There is a log(n)-time reduction from #3-SAT to #2-SAT with
blowup Õ(n).

Finally, our lower bound for FCircEval exploits the fact that there are highly efficient
circuits for sorting n items from [n].

I Theorem 20 ([7, 26, 15]). There is a k such that Sort has O(logk(n)) time uniform
circuits of size O(n logk(n)).
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Other Related Work

Besides the work cited earlier, there is an extensive literature on proving ˜Ω(n2) time-
space product lower bounds for computing functions in generic word-RAM-like models
(usually by proving a R-way branching program lower bound). The functions include matrix
multiplication and the discrete Fourier transform [30], generalized string matching [1], bit-
vector convolution and integer multiplication [2], universal hashing from n bits to O(n)
bits [21], and computing various functions over sliding windows [9].

3 Lower Bound for NOE and Sorting

In this section, we abstract out key properties of the Unique Elements problem that were
used in Beame’s proof of an Ω(n2) time-space product lower bound for Unique Elements
against R-way branching programs [8]. This abstraction is useful in two ways. First, it
allows us to easily prove lower bounds for other problems, by simply verifying that the key
properties hold. Second, this level of abstraction helps us identify stronger generalizations of
the lower bounds: average-case lower bounds against R-way branching programs and RAMs
with random oracles.

3.1 Beame’s Method (Without Random Oracles)
To give intuition for our lower bound theorem for branching programs with random oracles
(Theorem 6), we begin with a similar but weaker theorem, which is an abstraction of the
technique used by Beame [8].

I Theorem 21. Let {fn : Σn
n → Σ∗n} be a family of functions, {Dn} be a family of

distributions, and g : N→ N with the following properties.
1. [f typically has “long” outputs]. There is an ε > 0 and δ > 0 such that

Pr
x D

[|f(x)| > δg(n)] > ε.

2. [Short branching programs have low probability of printing long substrings of
f ]. There is an ε > 0 such that, for all Σn-way branching programs P of height at most
n/4, and for all m ≥ 1,

Pr
x∼D

[P (x) is a substring of f(x) ∧ |P (x)| ≥ m] < e−εm.

Then for n > n0, every Σn-way branching program of size 2s(n) and height t(n) for fn has
s(n)t(n) ≥ Ω(ng(n)).

Theorem 21 is motivated by the observation that if a function f on input x requires a
long output (Property 1), then some (possibly many) subprograms of a branching program
P computing f need to output a large fraction of f . But by Property 2, this is “hard” for all
short subprograms: they have low probability of correctly answering a large fraction of f .

Proof of Theorem 21. Let f,D, g(n), ε, δ be given as above. We prove the lower bound by
demonstrating that any space-S branching program P of sufficiently low height T has a
nonzero probability of error on an input x drawn from D. To do this, we lower bound the
probability of error by

Pr
x∼D

[|f(x)| > δg(n)]− Pr
x∼D

[(|f(x)| > δg(n)) ∧ (P (x) = NOE(x))] .
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By Property 1 of the hypothesis, the first term is lower bounded by some constant ε > 0.
The second term is at most Prx∼D[|P (x)| > δg(n)], giving us an error probability of at least

ε− Pr
x∼D

[|P (x)| > δg(n)].

We now upper-bound Prx∼D[|P (x)| > δg(n)].
Without loss of generality, let P be layered, having size 2S in each layer, and height T .

Partition P into 4T/n layers of height n/4. By the pigeonhole principle, some layer must
output at least ng(n)/4T elements of the output. There are at most 2S such subprograms
in that layer, and the probability that P outputs at least δg(n) elements correctly is upper
bounded by the probability that some layer outputs m := δng(n)/4T elements correctly. As
there are at most 2S such subprograms, by a union bound over property 2 of the hypothesis,
the probability that P outputs all elements correctly is upper bounded by

2Se−ε
′δng(n)/4T

for some ε′ > 0. This implies that the error probability of P on an input x drawn from D is
at least ε− 2Se−ε′δng(n)/4T .

Finally, we observe that if ST ≤ α · ng(n) for sufficiently small α > 0, the term
2Se−ε′δng(n)/4T becomes less than ε. Thus there is some input length n such that the
probability of error for P on an input x drawn from D is nonzero. This implies that
ST ≥ Ω(ng(n)). J

Beame’s lower bound against Unique Elements follows from showing that Unique
Elements has the properties required by Theorem 21. In particular, on random inputs
Unique Elements has long outputs with high probability, and it is difficult to guess even a
small number of elements in the output of a random input, without seeing most of the input.
Instead of reproving the Unique Elementslower bound, we give a lower bound against the
problem Non-Occurring Elements (NOE) defined in the introduction, as it admits a
slightly easier analysis.

First let us verify Property 1 of Theorem 21, for the uniform distribution Unn and g(n) = n.

I Proposition 3.1 (Property 1 holds for NOE). For all ε > 0, there is a δ > 0 such that for
sufficiently large n, Prx∈Unn [|NOE(x)| > δn] > 1− ε.

Proof. The desired bound reduces to a weak version of a well-known Balls-and-Bins bound
(see [16, p.75] for a reference). In particular, when selecting m integers from [n] uniformly at
random, the number Z of integers in [n] not selected (the non-occurring elements) is tightly
concentrated around its mean:

Pr[|Z − E[Z]| > t] ≤ 2 exp(−2t2/m).

For our problem, we have n = m and E[Z] = n/e. Let c > 0 be a parameter, and let t = cn.
Therefore we have

Pr[|Z − n/e| > cn] ≤ 2 exp(−2c2n).

Complementing and rearranging variables, the inequality becomes Pr[Z ≥ n/e − cn] ≥
1− 2 exp(−2c2n). Finally, for any ε > 0, we can pick c ∈ (0, 1/e) such that ε > 2 exp(−2c2n)
for sufficiently large n. Letting δ ∈ (0, 1/e− c), we have Pr[Z > δn] > 1− ε. J
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Note that the bound of Proposition 3.1 is stronger than that required by Theorem 21.
This will be useful for the extension to random oracles later (Theorem 6).

Next, we verify that for Non-Occurring Elements, Property 2 of Theorem 21 holds
as well. In fact, we prove a stronger statement that allows for extra side randomness in the
input (and therefore random oracle branching programs). This randomness can be ignored
in the application of Theorem 21.

I Proposition 3.2 (Property 2 holds for NOE). For all integers n, k,N ≥ 0 and all branching
programs P of height at most n/4 computing a function with m outputs,

Pr
x∼Unn ,r∼UNk

[P (xr) outputs m non-occurring elements of x] < e−3m/4.

Proof. The desired probability equals∑
paths π in P

Pr
x,r

[P (xr) follows π] · Pr
x,r

[P (xr) has m NOEs of x | P (xr) follows π].

We show that for all such π,

Pr
x,r

[P (xr) has m non-occurring elements of x | P (xr) follows π] < e−3m/4.

From this, it will follow that our desired probability is less than e−3m/4.
For a path π, let q be the number of distinct variable queries to x and let q′ be the

number of distinct queries made to r. Notice that q + q′ ≤ n/4. To bound the probability
that P (xr) has at least m non-occurring elements of x, given that P (xr) follows π, we simply
count the relevant numerator and denominator.

The total number of xr that follow π is nn−q · kN−q′ : there are n− q unqueried inputs of
x, and N − q′ unqueried inputs of r. The total number of xr that follow π, and for which
the m outputs of π are non-occurring elements of x, is at most (n−m)n−q · kN−q′ : since the
m outputs are supposed to be non-occurring in x, none of the remaining n− q unqueried
variables can take on any of the m outputs. By simple manipulation, we have

(n−m)n−qkN−q′

nn−qkN−q′
= (1−m/n)n−q ≤ (1−m/n)n−n/4 ≤ (1−m/n)3n/4 ≤ e−3m/4.

This completes the proof. J

3.2 Lower Bounds With Random Oracles
We are now ready to present our main lower bound theorem against branching programs
with random oracles.

I Reminder of Theorem 6. Let {fn : Σnn → Σ∗n} be a family of functions, {Dn} be a family
of distributions, and let g : N→ N satisfy the following properties.
1. [f typically has “long” outputs]. For all ε > 0, there is an n0 ≥ 0 such that for all

n > n0, there is a δ > 0 such that

Pr
x∈Dn

[|fn(x)| > δg(n)] > 1− ε.

2. [Short random-oracle branching programs have low probability of printing
long substrings of f ]. Let Un be the uniform distribution over Σn and let N ≤ 2s(n)

be an integer. There is an ε > 0 such that for all Σn-way branching programs P of height
at most n/4,

Pr
(x,r)∼Dn×UNn

[(P (xr) is a substring of fn(x)) ∧ (|P (xr)| ≥ m)] < e−εm.
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Then, for all n > n0 and p ∈ (0, 1], and for every random oracle Σn-way branching program
of size 2s(n) and height t(n) computing fn with success probability at least p on inputs drawn
from Dn, it must be that t(n) · s(n) ≥ Ω(ng(n)).

Theorem 6 prescribes a general scheme for proving time-space product lower bounds
against random oracle R-way branching programs, and thus against word RAMs with random
oracles as well.

Proof of Theorem 6. The proof is similar to Theorem 21; we focus on highlighting what is
different. First, we note that by Proposition 2.1, it is sufficient to demonstrate that for all
n > n0 and p ∈ (0, 1], and for every Σn-way branching program of size 2s(n) and height t(n)
where Prx∼Dn,r∼UNn [P (xr) = fn(x)] > p, it must be that t(n) · s(n) ≥ Ω(ng(n)).

As in Theorem 21, we establish the lower bound by demonstrating that every n/4-
height branching program P has a large probability of error on an input x ∼ Dn. In what
follows, assume P successfully computes fn(x) on inputs (x, r) drawn from Dn × UNn with
probability at least p. By property 1 of the hypothesis, letting ε := p/2, there is a δ such
that Prx∈D,r∼UNn [|f(x)| > δg(n)] > 1− p/2.

Analogously as in the proof of Theorem 21, we lower bound the probability of error of P
on Dn by

Pr
x∼D

[|f(x)| > δg(n)]− Pr
x∼D,r∼UNn

[|f(x)| > δg(n) ∧ P (xr) = f(x)];

note that this probability is at least (1− p/2)− Prx∼D,r∼UNn [|P (xr)| > δg(n)].
Applying a union bound over all 2s(n) subprograms of P as before, but substituting

property 2 from the hypothesis, we determine by an analogous argument as Theorem 21 that
Prx∼D,r∼UNn [|P (xr)| > δg(n)] is at most 2s(n)e−εδng(n)/4t(n). Therefore the error probability
of P on Dn is at least

1− p/2− 2Se
−εδng(n)

4t(n) .

Finally, if we assume s(n)t(n) ≤ αn · g(n) for all α > 0, we can tune 2s(n)e−εδng(n)/(4t(n)) to
be arbitrarily small: it is at most 2s(n)e−εδs(n)/(4α). Thus we can make the error probability
for P on an input x drawn from Dn to be at least 1 − 2p/3, implying that the success
probability is at most 2p/3 < p. This is a contradiction, so there is some α > 0 (depending
on δ, ε, and p) such that s(n)t(n) ≤ αn · g(n). J

I Remark. If a function does not satisfy Property 2 of Theorem 6 but satisfies a slightly
weaker property, namely that there is an ε > 0 such that for all |Σn|-way branching programs
P of height at most n/4,

Pr
x∼Dn

[P (x) is a substring of f(x) ∧ P (x) ≥ m] < e−εm,

we can still obtain an average case lower bound against f for inputs drawn from Dn, but not
necessarily a lower bound against random-oracle branching programs. We omit an exposition
of this result, because we have not yet found applications of it.

We conclude this subsection with the lower bound for NOE with a random oracle.

I Reminder of Theorem 1. For every p ∈ (0, 1], every random oracle n-way branching
program family of size 2s(n) and height t(n) computing NOE with success probability p must
have t(n) · s(n) ≥ Ω(n2) for all sufficiently large n.

Proof. Applying Proposition 3.1 and 3.2 and set Dn := Unn and ε := 3/4. Then both
properties 1 and 2 of Theorem 6 hold for Non-Occurring Elements. J
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3.3 Sort and Random Oracles
By reducing from Non-Occurring Elements to Sort, it follows that random oracle n-way
branching programs still require a time-space product of Ω(n2) to sort a list L ∈ [n]n. (The
proof is omitted due to space restrictions.)

I Theorem 22. For any constant c ∈ (0, 1], let {POn } be an oracle n-way branching pro-
gram family of size 2s(n) and height t(n) such that for all n, x ∈ [n]n, PrO∼D[n] [POn (x) =
Sort(x)] ≥ c. Then, ST = Ω(n2).

To prove our lower bounds for other problems in the following section, we require a
somewhat stronger result: a nearly-quadratic time-space product lower bound for computing
the non-occurring elements of a list of n items from [n], as well as sorting n items from [n] for
lists encoded over a finite alphabet Σ. By a reduction, we can prove this using the general
lower bounds of Theorem 1 and Theorem 22.

I Lemma 23. Let {fn : Σn
n → Σ∗n} be a family of functions, and let fΣ : Σ∗ → Σ∗ be such

that f(〈x〉Σ) =
〈
f|x|(x)

〉
Σ, where 〈s〉Σ is s encoded by a string over Σ. Suppose {fn} requires

a random oracle Σn- way branching program time-space product of Ω(nd). Then there is some
k > 0 such that fΣ requires a random oracle Σ-way branching program time-space product of
Ω(nd/ logk(n)).

Proof. By contradiction. Suppose for all k > 0, fΣ has random oracle Σ-way branching
program family {POn } of height t(n) and size 2s(n) with success probability p > 0 where
t(n)s(n) ≤ O(nd/ logk(n)). We show that {fn} has a random oracle n-way branching
program family {QOn } of height t′(n) and size 2s′(n) with success probability p > 0 where
t′(n)s′(n) ≤ O(nd/ logk(n)). To do this, we simply simulate POn with QOn . We first consider
the input l ∈ [n]n a length ndlog|Σ|(n)e string where each number is represented by some
string of characters from Σ. We then modify POndlog|Σ|(n)e as follows. For each vertex v which
queries an input i, instead query input bi/ log|Σ|(n)c. Then, for all edges (u, v) with label
α ∈ Σ in POndlog|Σ|e

, add an edge from u to v with label β ∈ [n] for all β whose representation
in base Σ contains α at position i mod dlog|Σ|(n)e. Finally, we need only modify the output
behavior of POndlog|Σ|(n)e. It prints the representation of characters σ ∈ Σn using characters
from Σ. We need only O(log(n)) extra bits of storage to remember the last dlog|Σ|e characters
POndlog|Σ|(n)e would have printed, and upon reaching enough characters, we simply print the
corresponding element of Σn and remember that we have started a new character. As in
the proof of Theorem 22, we can do this by creating O(n) copies of our modified branching
program and transitioning accordingly and letting this be QOn .

Finally, we see that by construction, {Qn} computes {fn} with success probability p.
Further, we see that the height of Qn is O(t(n log(n))) and the size is 2O(s(n)+log(n)). By our
assumption, we see that t(n log(n))(s(n) + log(n)) ≥ Ω(nd) and t(n log(n))(s(n) + log(n)) ≤
O((n log(n))d/ logd+1(n)). This is a contradiction. J

From this we can conclude lower bounds for Non-Occurring Elements and Sort for
strings over finite alphabets.

I Lemma 24. Let Non-Occurring ElementsΣ : Σ∗ → Σ∗ be a function which maps the
encoding in Σ of a list 〈L〉 (where L ∈ [n]n for some n) to 〈Non-Occurring Elements(L)〉,
and let SortΣ : Σ∗ → Σ∗ be the function which maps the encoding of a list 〈L〉 where
∃n ∈ N(L ∈ [n]n) to 〈Sort(L)〉. For all Σ, there is some k > 0 such that, the random oracle
Σ-way branching program time-space product for both Non-Occurring ElementsΣ and
SortΣ are both at least Ω(n2/ logk n).
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Proof. This follows directly from Theorems 1 and 22 and Lemma 23. J

I Remark. It will be important later that the branching program lower bounds we have
established hold even if we allow the branching program to make small perturbations on
the output. For example, all above lower bound proofs still go through, if we permit
branching programs to output 0 at any node that does not already output some other
number. Thus our lower bounds hold for any BP computing Non-Occurring Elements or
Non-Occurring ElementsΣ which prints the binary representation of a list L, such that
L contains all non-occurring elements of x, along with any number of elements which are 0.

4 Reductions

We now give a series of reductions from NOE and Sort, showing nearly-quadratic time-space
product lower bounds for several natural circuit-analysis problems. Each reduction is very
efficient, requiring only poly(logn)) time to look up any bit of the output of the reduction,
and only creating problem instances of size Õ(n) from inputs of size n.

As a warm-up, we observe a very simple reduction from Sort{0,1} (sorting n log(n)-bit
strings) to FCircEval. Recall in FCircEval we are given a circuit of size n with at most
n inputs (all fixed to 0-1 values) and at most n outputs, and want to determine its output.

I Reminder of Theorem 2. For all finite Σ, there is some k > 0 such that the random
oracle Σ-way branching program time-space product of FCircEval is at least Ω(n2/ logk n).

Proof. The idea is simple: on an unsorted input, we can succinctly produce a circuit for
sorting and ask FCircEval for its output. We observe there is an O(logn)-time reduction
with blowup O(logk n) from Sort to FCircEval (for some k). Given a input list x to be
sorted, we produce a circuit C for Sort with x hard-coded as the input. Any bit of the circuit
description can be computed in O(logn) time, as Sort has O(logn)-time uniform circuits of
size Õ(n), and any bit of x can trivially be produced in O(logn) time. By Lemmas 24 and
18, we conclude a time-space lower bound of the form Ω(n2/ logk n) for FCircEval. J

A straightforward corollary of Theorem 2 is a similar lower bound against a seemingly
weaker version of 3SAT.

I Definition 25. Let Promise-Printing-Unique-SAT be the problem: given a circuit C
promised to have exactly one satisfying assignment, print the satisfying assignment of C.

I Lemma 26. For all finite Σ, there is a k > 0 such that the random oracle Σ-way branching
program time-space product of Promise-Printing-Unique-SAT is at least Ω(n2/ logk n).

Proof. We give a reduction from FCircEval to Promise-Printing-Unique-SAT. Given
an instance C of FCircEval with only constant inputs and m output bits y1, ..., ym, consider
the circuit C ′(x) with m free input bits x1, ..., xm and one output bit. C ′ can be made such
that C ′(x1, ..., xm) = 1 if and only if xi = yi by using only as many gates as an needed to
construct C and O(m) additional gates to check equality of the output bits of C with the
free input bits and then to take the conjunction of these equalities. In total, we see then that
|C ′| = O(|C|). Finally we see this gives us an O(log(n))-time reduction with blowup O(n)
from FCircEval to Promise-Printing-Unique-SAT, since FCircEval(C) = Promise-
Printing-Unique-SAT(C ′), and each bit of C ′ can be computed by simply looking up bits
of C directly or deciding if they are part of the equality check or conjunction of the equality
checks added to C. By Lemma 18, we can conclude that Promise-Printing-Unique-SAT
has a time-space lower bound of Ω(n2/ logk n). J
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To establish a connection with printing satisfying assignments for 3CNFs, we consider the
problem Promise-Printing-Unique-3SAT, which is just Promise-Printing-Unique-
SATrestricted to 3CNF formulas. By another straightforward reduction, it follows that
Promise-Printing-Unique-3SAT cannot be computed more efficiently than FCircEval.

I Lemma 27. For all finite Σ, there is a k > 0 such that the random oracle Σ-way branching
program time-space product of Promise-Printing-Unique-3SAT is at least Ω(n2/ logk n).

Proof. We present a reduction from the Promise-Printing-Unique-SAT function to
Promise-Printing-Unique-3SAT. Consider the standard reduction from Circuit Sat to
3SAT in which a circuit C with n variables x1, . . . , xn andm gates is mapped to a CNF φ with
O(m) clauses, variables x1, . . . , xn and m extra variables. Assume without loss of generality
(blowing up only an additional constant factor in size otherwise) that C is comprised only of
NAND gates. The typical reduction from Circuit Sat to 3SAT uses an additional variable
y1, . . . , ym for each gate g1, . . . , gm, and for each gate gi = ¬(gj ∧ gk), gi = ¬(gj ∧ xk),
or gi = ¬(xj ∧ xk), we add to φ the constraints (yi = ¬(yj ∧ yk)), (yi = ¬(yj ∧ xk)), or
(yi = ¬(xj ∧ xk)) respectively, where each requires only O(1) clauses of width 3.

Notice that printing the first n bits of a satisfying assignment to φ is sufficient for
computing a satisfying assignment to C, and observe that this reduction can be done in
O(logk(n)) time with blowup O(logk(n)) for some k. Analogously to Lemma 18, we can
conclude that Promise-Printing-Unique-3SAT requires a random oracle Σ-way branching
program time-space product of Ω(n2/ logk

′
(n)) for some k′ > 0. J

As a corollary, we can immediately conclude that the harder problem of Print-3SAT
also has a time-space lower bound of Ω(n2/ logk n) for some k.

I Reminder of Theorem 3. For all finite Σ, there is a k > 0 such that the random oracle
Σ-way branching program time-space product of Print-3SAT is at least Ω(n2/ logk n).

Proof. Follows from the trivial reduction from Promise-Printing-Unique-3SAT to Print-
3SAT and Lemma 18. J

Next, we show by a reduction directly from Non-Occurring Elements{0,1} that print-
ing the truth tables of CNF formulas with a small number of variables admits a time-space
lower bound similar to those above.

I Reminder of Theorem 4. For all finite Σ, there is some k > 0 such that the random
oracle Σ-way branching program time-space product of TTPrint for CNF formulas with n
clauses and log(n) + log log(n) many variables is at least Ω(n2/ logk n).

Proof. We consider that the output of a machine computing NOE{0,1} can be a list L
which contains the non-occurring elements of its input as well as any number of elements
which are 0, as in Remark 3.3. We give a poly(log(n))-time reduction with blowup Õ(n)
from Non-Occurring Elements{0,1} to TTPrint. That is, we will show that given
a list L of n elements from [n], we can produce a CNF formula whose truth table is a
representation of a list L′ of n strings each of log(n) bits, where the i-th string in L′ equals
i if i ∈ [n] − L, otherwise the i-th string equals all-zeroes. Then, the lower bound for
Non-Occurring Elements{0,1} will carry over to TTPrint.

Given a list L ∈ {1, . . . , n}n, we show how to efficiently construct a CNF formula F with
log(n) + log log(n) variables and O(n) clauses such that the truth table of F is the binary
representation of the list of non-occurring elements of l separated by strings of 0’s.
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Denote the first log(n) variables of F by x = x1 · · ·xlog(n). Letting b ∈ {0, 1}log(n), we
make a clause Cb(x) expressing that x 6= b. In detail, suppose b is represented by the bit
string b1, . . . , blog(n). Then

Cb(x) := ((x1 ⊕ b1) ∨ ... ∨ (xlog(n) ⊕ blog(n))).

Note for all i, we can think of Cb as containing the literal xi if bi = 1, otherwise it contains
the literal xi.

Given a list L = `1, . . . , `n of elements of {0, 1}log(n), we first construct a CNF formula
F ′(x) which says that x is a non-occurring element of `:

F ′(x) := C`1(x) ∧ · · · ∧ C`n(x).

Suppose we can construct a CNF formula D(x, i) which is true exactly when the i-th bit
of x is 1, and define our output formula to be

F (x, i) := F ′(x) ∧D(x, i)

where i = i1 · · · ilog log(n). This F would have log(n) + log log(n) variables, and its the truth
table in lexicographical order could be viewed as a list of n different log(n)-bit strings, each of
which are either a non-occurring element of `, or the all-zeroes string. (This would complete
our reduction.)

We show how to construct such a D(x, i) with |x| clauses. For each variable of x, and
j = 1, . . . , |x|, we construct a clause Ej which is true if and only if either i 6= j or xj = 1.
That is, we define Ej = ((i1 ⊕ j1) ∨ ... ∨ (ilog(|x|) ⊕ jlog(|x|)) ∨ xj). Then we can define

D(x, i) :=
|x|∧
j=1

Ej .

The final formula F (x1, ..., xlog(n), i1, ..., ilog log(n)) is a width-(log(n)+1) CNF of O(n) clauses,
and all of the clauses of F can be efficiently constructed in a local way. J

Using the lower bound on truth table printing, we can now show the lower bound for
counting SAT assingnments (Theorem 5). Again we do this by providing a poly(log(n))-time
reduction with blowup Õ(n) from one problem to another. We show how to modify a circuit
C to efficiently produce another circuit C ′, such that the bit representation of the number of
SAT assigments of C equals the truth table of C.

I Lemma 28. Let C be a circuit of size s with n input variables x1, . . . , xn. Then, there
exists a circuit C ′ of size O(s + 2n) with input variables x1, ..., xn, y1, ..., y2n such that
#(C ′) = TT (C). Moreover, there is an algorithm that given such a circuit and index i can
produce the i-th bit of C ′ in time Õ(log(s+ n+ i)).

Proof. Let C be a circuit of size s with inputs x1, . . . , xn. First, we construct a new
circuit D(x1, . . . , xn, y1, . . . , y2n) which outputs 1 if and only if y ≤ 2bin(x), where bin(x)
is the number in {1, . . . , 2n} represented by the binary string x1 · · ·xn. Note that D can
be constructed with O(2n) gates (by standard arguments), and any particular gate of
D can constructed in poly(log(n)) time. Finally, we define the circuit C ′ on variables
x1, . . . , xn, y1, . . . , y2n by

C ′(x, y) := C(x) ∧D(x, y).

Observe that the number of assignments satisfying C ′ is Σx∈{0,1}nC(x) · 2bin(x), as for each
x ∈ {0, 1}n there are 2bin(x) assignments to y ∈ {0, 1}2n such that C ′(x, y) = 1. This is
exactly the number represented in binary by TT (C). J
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From Lemma 28 and Theorem 4, we can conclude Lemma 29.

I Lemma 29. For all finite Σ, there is some k > 0 such that the random oracle Σ-way
branching program time-space product of #Circuit Sat is at least Ω(n2/ logk n).

From Lemma 29, we can conclude Lemma 30.

I Lemma 30. For all finite Σ, there is some k > 0 such that the random oracle Σ-way
branching program time-space product of #3SAT is at least Ω(n2/ logk n).

Proof. The standard reduction from #Circuit Sat to #3SAT can be implemented as an
O(log(n))-time reduction with blowup Õ(n). J

From Lemmas 30 and 19, we can conclude Theorem 5.

I Reminder of Theorem 5. For all finite Σ, there is some k > 0 such that the random
oracle Σ-way branching program time-space product of #2SAT is at least Ω(n2/ logk n).

Proof. Lemma 19 gives an O(logk(n)) time reduction with blowup O(n logk(n)) from #3SAT
to #2SAT. Hence, by Lemmas 30 and 18, we can conclude that the random oracle Σ-way
branching program time-space product of #2SAT is at least Ω(n2/ logk(n)). J

5 Conclusion

We extended a lower bound framework for branching programs, lifting it to random oracles.
We demonstrated its utility for lower bound results by giving several unorthodox reductions
which show sharp relationships between counting satisfying assignments, printing truth tables
of CNFs, printing satisfying assignments, and evaluating circuits on given inputs. It would
be interesting to find more applications of the encoding techniques used in our reductions.
Perhaps they can be used to show lower bounds for other models, or better algorithms.

Another interesting direction would be to explore other lower bound methods, such as
those for decision problems, and determine to what extent they can be “lifted” to lower
bounds with random oracles. To give one tantalizing example, although it is known that
deciding SAT requires n1.8 time on deterministic O(logn)-space machines, and this paper
shows that printing SAT assignments requires n2−o(1) time on randomized O(logn)-space
machines with constant error probability, it is still open whether deciding SAT is in O(n)
time and O(logn) space on randomized machines with two-sided error(!). Perhaps it is easier
to find bridges between function problems and decision problems when we consider efficient
programs for NP problems (rather than decision problems in P).

Finally, our oracle model for branching programs is not the most general that one could
imagine (although for the random oracle case, we believe it does not matter). One can define
a sensible “extended oracle” model, where oracle queries can be as long as the height of the
branching program. (This model is not very practical in a truly space-bounded setting, e.g.,
when we view a random oracle as a random hash function, but it would be interesting for
lower bounds.)

At a high level, here is how such an “extended oracle” model can be defined. In each step,
we allow the BP to output an “oracle character” σ from the input alphabet of the oracle
(along with its usual outputs). Instead of labeling the query vertices of the BP with specific
query strings (as in Definition 11), we instead label them with a special symbol Q. The
Q-vertices still have two outgoing arcs for their yes/no query answers. However, each time a
Q-vertex v is reached during a computation, the outgoing yes edge of v is now taken in the
computation path if and only if the string of oracle characters y = σ1 · · ·σt output since the



D.M. McKay and R. R. Williams 56:19

previous Q-vertex (or source node, if there is no previous Q-vertex) satisfies Q(y) = 1. One
can think of this as allowing the BP “append-only” access to an arbitrarily long oracle tape,
for which it can ask queries, and for which the oracle tape is reset to blank after each query
(as in the oracle model of Ladner and Lynch [20]).

With the above model, we can ask queries whose length is only bounded by the height
of the branching program (rather than the logarithm of its size). We strongly believe that
our lower bounds also hold for random oracles in this more powerful model. The main
conceptual bottleneck is that, unlike normal branching programs, we cannot easily partition
these extended-oracle branching programs into short independent branching programs: the
oracle queries have “memory” that can stretch all the way back to the source node. It seems
likely that lower bounds based on Yao’s principle [29] can be extended to this model, but we
have not yet confirmed this.
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Abstract
It has been recently shown via simulations [8] that random projection followed by a cap operation
(setting to one the k largest elements of a vector and everything else to zero), a map believed
to be an important part of the insect olfactory system, has strong locality sensitivity properties.
We calculate the asymptotic law whereby the overlap in the input vectors is conserved, verify-
ing mathematically this empirical finding. We then focus on the far more complex homologous
operation in the mammalian brain, the creation through successive projections and caps of an
assembly (roughly, a set of excitatory neurons representing a memory or concept) in the presence
of recurrent synapses and plasticity. After providing a careful definition of assemblies, we prove
that the operation of assembly projection converges with high probability, over the randomness
of synaptic connectivity, even if plasticity is relatively small (previous proofs relied on high plas-
ticity). We also show that assembly projection has itself some locality preservation properties.
Finally, we propose a large repertoire of assembly operations, including associate, merge, recip-
rocal project, and append, each of them both biologically plausible and consistent with what we
know from experiments, and show that this computational system is capable of simulating, again
with high probability, arbitrary computation in a quite natural way. We hope that this novel way
of looking at brain computation, open-ended and based on reasonably mainstream ideas in neur-
oscience, may prove an attractive entry point for computer scientists to work on understanding
the brain.
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1 Introduction

The striking computational nature of the animal brain manifests itself even in the humblest
circumstances. Flies sense odorants in their environment through specialized olfactory
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receptor neurons, of which there are roughly fifty different kinds. So, each smell is initially
coded as a vector in 50 dimensions, where each coordinate is the level of activity of neurons
of each kind. Then a remarkable thing happens: This vector undergoes a random projection
– a familiar ingredient of many algorithms, especially in connection to learning [7, 2, 23, 1, 3]
– to a higher dimensional space. There is a 50× 2000 sparse, and by all evidence [6] random,
bipartite graph of synapses projecting the 50 kinds of olfactory receptors to a population of
2000 neurons called Kenyon cells. Next, the resulting 2000-dimensional vector of synaptic
inputs undergoes an operation that is routine in neural systems: The activity of the Kenyon
cells excites an inhibitory neuron, and the resulting activity of this neuron, at equilibrium,
has the effect of increasing everybody’s membrane potential, “turning off” all but roughly
the 100 most active cells. We call this operation cap; it is also known as k winners take all,
in this case with k = 100.

In a recent paper [8] it was shown empirically that this mapping, random projection
followed by cap, has strong locality sensitivity properties (and therefore preserves similarity
of smells, presumably to the animal’s advantage), in fact outperforming in simulations
certain variants of locality-sensitive hashing1. One of our results in this paper puts some
mathematical teeth to this interesting empirical observation: We prove that if two binary
vectors of the same sparsity overlap in a fraction α of their entries, and both undergo random
projection to n dimensions followed by k-cap, then the two results will overlap in a fraction
of about ( kn )

1−α
1+α (Theorem 1). For the small numbers of the insect brain (nk ≈

2000
100 ), this is

substantial overlap that helps explain the empirical findings in [8] (see Figure 1).
In the mammalian brain numbers get roughly three orders of magnitude higher, and

yet something similar seems to happen. Importantly, there is strong recurrent synaptic
connectivity between excitatory neurons; that is, the random graph is now not just a directed
bipartite graph, but the union of a bipartite directed graph and a non-bipartite directed
graph interconnecting the receiving side (in contrast, synapses between the fly’s Kenyon cells,
if any, play no role there). In mammals, the random projection and cap operation does take
place, but it is only the first step of a complex and sophisticated process, culminating in the
creation of an assembly of neurons.

Assemblies. Already in 1949, neuroscience pioneer Donald Hebb predicted that memories
and concepts are represented by tightly connected sets of neurons he called assemblies, whose
near-simultaneous firing is tantamount to these concepts being thought about. During the
last decade, it has been established experimentally [13, 14, 19], see also the survey [5], that
such near-simultaneous firing of stable sets of neurons is an important part of the way the
brain works. Assemblies have been hypothesized to underlie many of the higher cognitive
operations in mammals, such as memory, reasoning, language, planning, etc., and yet, the
way and manner in which this happens has not begun to be articulated; the computational
framework of this paper is a first attempt at understanding how assemblies of neurons can
carry out computation.

In our framework. In our framework, the brain is divided into a bounded number of brain
areas. Each brain area contains a number of excitatory neurons denoted by n; there are
of course other neurons as well, for instance see the discussion on inhibition below. These
excitatory neurons are interconnected in a sparse directed Gn,p graph. Pairs of brain areas

1 As Alex Andoni notes (private communication, 2018), this is not true of the more advanced versions of
LSH.
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may also be connected, in one or both directions, through bipartite directed Gn,p graphs2.
Finally, the other two important aspects of our model are cap and plasticity. We assume

that neurons fire – or do not – in discrete time steps (a very convenient and unrealistic
assumption, which however does not interfere much with the rest of our framework). At
each time and each brain area, the k out of n neurons that have largest synaptic input fire.
That is, at time t for each neuron we add together the weights of the incoming synapses that
originate in neurons (in the same or different area) which fired the previous time t− 1, and
select the k neurons out of the n in the brain area that have the largest sums. These are
the neurons in the area that will fire at time t. The k-cap process is a simplification and
approximation of the reality of inhibition, whereby an independent population of inhibitory
neurons cause the excitatory neurons to have high enough membrane potential that an
equilibrium at k firing neurons is quickly reached. Finally, plasticity: we assume that if there
is a synapse from neuron i to neuron j, and neuron i fires at time t while neuron j at t+ 1,
the weight of the synapse is increased by a factor of 1 + β with β > 0; synaptic weights start
at one, say3. Thus, the key parameters of our model are n, k, p, β, whose indicative intended
values for the mammalian brain are, respectively, 107, 104, 10−3 − 10−2, 10−1.

Defining Assemblies. An assembly is of course a set of neurons, in our framework all
belonging to the same brain area. In past theoretical work [17] this is exactly how they were
defined, a set of k neurons firing simultaneously. It is a highly interconnected set to ensure
stability, that is, if enough neurons in it fire then soon all of them will4 – and one of the
main points of [17] was that there is a biologically plausible algorithm for selecting such a
highly connected set of neurons in a sparse Gn,p graph. These neurons might be poised to
fire in a particular pattern, not necessarily all simultaneously as was assumed in [17] – and
indeed, in our simulations, as well as in the literature on assembly simulations, one does see
nontrivial patterns of firing. We believe the right way to define assemblies is as distributions
over the set of neurons in a Brain area whose support has size at most a fixed multiple of the
cap size k.

Projection. The most basic operation of assemblies is what we call projection – this is
how assemblies are created and, once created, copied to other brain areas for further use.
Assembly projection has been conjectured for a long time and has been established in several
simulation papers [20, 18] and recently analytically proved [17] for a range of parameters. An
assembly x in area A can project to a different area B, to which A has ample connectivity,
creating a new assembly y; this operation is denoted project(x,B, y). If in the future x
is activated, y will follow suit; we say that x = parent(y). We show that the operation
project(x,B, y) is carried out by assembly A simply firing for a small number of steps5.
Once an assembly x has been created, its area is implicit, denoted by area(x). To create

2 See [17] for a technical discussion of synaptic biases, departures from the Gn,p model noted in experiments,
and the reasons why they may provide further support for the assembly hypothesis. We do not pursue
this direction in the present paper.

3 There should also be a process of homeostasis which, at a slower time scale, keeps the sum of all weights
from growing; but this aspect of the model, taken up in Section 5, does not affect the relative ordering
of synaptic weights or sums thereof.

4 This is one of the many important differences between this work and Valiant’s pioneering theory of
items from the 1990s [21, 22]

5 project(x,B, y) may seem superficially equivalent to an assignment x = y in a programming language –
except that, after such an assignment, variables x and y go on to live largely independent lives, whereas
in assemblies x retains power over y, while y can only exist through x.
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an altogether new assembly y by project(x,B, y), x must be a “proto-assembly,” a set of
neurons coding a world experience and residing at some higher area of the sensory cortex
(such as the area IT of the visual cortex where whole objects are represented), projected
to a non-sensory area admitting new assemblies (typically the hippocampus). One of our
main results in this paper (Theorem 3) is that projection indeed works as described – with
high probability, of course, with randomness supplied by the graph, and in fact for quite
low plasticity.

The projection process is quite intricate. It starts with the random projection plus k-cap
described early in this introduction, creating a set of neurons that we call A1, namely, the
cells that happen to have the largest synaptic input from the projecting assembly x. We
assume that the synaptic input of a neuron from assembly x is a Bernoulli random variable
with parameters k, p and n samples. Notice also that, after the first round, the synapses
between x and A1 have been boosted by plasticity. As the projecting assembly keeps firing,
cap will select the set of neurons A2 that have highest combined synaptic input from x and
A1, and these will include two kinds of cells: the core neurons in A1 ∩A2, and new winners
from outside A1. What fraction of A1 will become core? This is an important parameter of
the situation, and we call it λ. To compute it, we set up an algebraic equation of Bernoulli
expectations; as the expectation of a Bernoulli quantile depends explicitly on the fraction of
winners, and concentration is strong, we can set up the equation and solve it in the “high
probability” sense. For the parameter range of interest, λ is about half. Notice that, after
this step, all synapses from x and A1 to A2 are boosted by plasticity.

Then the process is repeated, A3, A4, . . . , At, . . ., and we wish to show that |B∗| = |
⋃
tAt|

converges to some finite multiple of k (recall that this is our definition of an assembly). That
is, eventually there will be a time after which there are no first-time winners. Unfortunately
our already complicated Bernoulli analysis is no longer an option, for a variety of reasons.
First, at time t the number of types of neurons grows exponentially with t: the type of each
neuron is the set of τ ’s for which the neuron was in Aτ . In addition, the distribution of
the synaptic input of neurons with complex type is not Bernoulli, because of conditioning.
Instead, we resort to classifying each neuron by its rough type at time t, which is the number
of consecutive times τ leading to t− 1 during which the neuron was in Aτ . A crucial lemma
states that the probability that the run will end at time t and the neuron will find itself
outside At decreases exponentially with the length of the run (that is to say, the neuron’s
rough type), and in fact uniformly in t. Convergence to a union size that is a multiple of k
(with a multiplier that is, naturally, a steeply increasing function of 1

β ) follows (Theorem 3).

The proof is quite a bit easier in the high plasticity regime defined by β >
√

(1−p) lnn
pk , in

which case convergence is stronger in that the sequence At itself converges in finitely many
steps (as indicated in [17]).

Operations on Assemblies. What is the right scale for understanding computation in
the brain? We suspect that assemblies may underlie an important and powerful mode of
brain computation, complementary to the computation involved in the processing of sensory
input – heretofore the main focus of neuroscience. Such computation would encompass
memory recall and association, deduction and reasoning, generating and parsing natural
language, generating and manipulating stories and plans, even math. It happens at a level of
abstraction intermediate between individual neurons and synapses at the lowest level, and
whole brain computation at the highest; it is far more expressive than the latter, and much
less cumbersome to describe than the former. In our quest to understand the full power of
this mode of computation, in Section 5 we identify a repertoire of additional operations on
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assemblies, beyond projection. We only seek operations that are “realistic” in the following
two orthogonal senses: (a) operations for which there is experimental evidence, in the sense
that their existence would help explain extant experimental data, and which could possibly be
themselves tested experimentally; and (b) operations which are in addition plausible, shown
(analytically if at all possible, otherwise through simulations) to be realizable at the level of
neurons and synapses in our framework. That is to say, each assembly operation must be
“compiled down” to the level of neurons and synapses. Our list of operations includes, besides
projection: association, in which two assemblies in the same area increase their intersection
to reflect conceptual or statistical affinity – there is extensive experimental evidence for this
operation, see [17] for an extensive discussion; merge, in which two assemblies from two
different areas project to the same new assembly in a third area, an operation that seems
important for processing syntax in natural language; reciprocal project (like project, except
that the projected assembly is able to activate the original one, in addition to vice-versa); and
append, an operation useful for creating and maintaining sequences. There are also several
control operations allowing one to read the information of assembly activity in specific areas,
or disable synaptic connectivity between areas – ultimately, to write simple programs. We
show that this repertoire of assembly operations constitutes a programming system6 which
can simulate arbitrary computation in a way that is quite natural (Theorem 4). The point
of this exercise is to demonstrate the power of this basis of primitives, not to hypothesize
that the brain must function exactly this way.

Related work
Our work on assemblies is superficially related to (and was undoubtedly inspired by) Valiant’s
theory of items. There are stark contrasts between the two approaches: Assemblies are
hypothesized to be densely connected, a requirement that makes their creation challenging,
while items are ransom sets of neurons. And we believe that our model is far closer to
the realities of the brain, as they are known now, than Valiant’s; for one key difference,
Valiant assumes plasticity (change in synaptic weights) to be arbitrarily programmable at the
post-synaptic site, while we assume a very simple implementation of Hebb’s rule. With this
model we are able to address the problem of how the brain creates similar representations
for similar stimuli.

Our earlier work on assemblies established experimentally the plausibility of projection
and association [20], and theoretically so by relying on very high plasticity [17]. In this paper,
we attack analytically the more realistic and considerably more challenging regime of small
plasticity.

2 Model

We assume a finite number of brain areas, denoted by A,B, . . .. Each brain area is a weighted
directed graph whose vertices are n (think of n as 106 or 107) excitatory neurons, and whose
edges are synapses between neurons; the positive weights vary dynamically through plasticity,
see below. We assume that the edges are drawn from a Gn,p distribution. That is, we
assume that the probability of any edge is p and edges are chosen independently. In addition,
between certain ordered pairs of areas (A,B) there is a Gn,p directed bipartite graph from
nodes of A to nodes of B. In other words, there is a finite directed graph with the areas as

6 Which, to our credit, we refrained from dubbing “Assembly Language”...
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nodes, determining whether the two areas have synaptic connections. We assume that there
is a mechanism to disable the synaptic connections between two areas A and B at any time.

We assume that events happen in discrete time steps (think of each step as about 20 ms).
At each step t, every neuron i in every area A may or may not fire. Whether i fires depends
on its synaptic input at time t. This is defined the sum over all neurons j that have synapses
(j, i) (note that j can be either in area A or in an area B that does have synapses into A that
are not disabled at time t). Denote this quantity as SI(j). We assume that neuron i in area
A fires at time t if and only if |{j ∈ A : SI(j) ≥ SI(i)}| < k, where k is a key parameter of
the model (think of it as roughly

√
n). We call the set of neurons firing at a time t the cap

of the area. The cap is a mathematically tractable way of capturing the important process
of inhibition, whereby inhibitory neurons in an area (typically outnumbering excitatory ones)
are excited by the firing of excitatory neurons in the area, and in response fire, preventing
some excitatory neurons from further firing, and eventually reaching an equilibrium (called
the E-I balance in the literature). Here we model this equilibrium by a constant k and ignore
the transient.

The other important ingredient of our model is plasticity: We assume that if there is a
synapse with weight w from neuron i to neuron j (either in the same area, or in another area
with enabled synapses), and it so happens that i fires in time t− 1 and j fires in time t, then
the weight of synapse ij is in time t+ 1 equal to w(1 + β), where β (think of it as between 0
and 1, realistically at the lower end of this) is the plasticity coefficient. Plasticity is a very
complex phenomenon with many important aspects and cases, but we feel that this simple
rule (corresponding to Hebb’s “fire together wire together” maxim) captures the essence of
the matter reasonably well.

We shall elaborate certain further aspects of our model in the section on assembly
operations.

3 The Overlap of Projections

In this and the next section we analyze how assemblies can be formed in our model. We
assume that there is a stimulus A of k neurons firing in an area, with enabled synaptic
projections to another area, where the assembly will be formed. We start with the simple
case (modeling the insect brain) where A fires only once, forming the cap in the downstream
area denoted cap(A), and analyze how the overlap of two stimuli A and B is maintained in
the process; note that here recurrent connections and plasticity do not get involved, and the
weights can be thought to be one. The following observation will be useful: conditioning on
a neuron not making it to a cap cannot increase its cap probability for future steps.

I Lemma 1. Let A,B be two stimuli. Then for any node i ∈ V ,

Pr(i ∈ cap(B) | i 6∈ cap(A)) ≤ Pr(i ∈ cap(B)) = k

n

where the probability is over the randomness of the graph.

Also, we will need the following well-known bound on the Gaussian tail.

I Lemma 2 (Gaussian tail). For x ∼ N(0, 1) and t > 0,

1√
2π

(
1
t
− 1
t3

)
exp(−t2/2) ≤ Pr(x ≥ t) ≤ 1√

2πt
exp(−t2/2).

Now we state and prove our quantitative assessment of the locality sensitivity properties
of the insect olfactory map pointed out empirically in [8].
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I Theorem 3. The expected overlap of the caps two stimuli that overlap in an α fraction of
their nodes is

|cap(A) ∩ cap(B)|
k

&
1

(ln(n/k))
α

1+α

(
k

n

) 1−α
1+α

.

Proof. We bound the probability that any neuron i is in the cap of both A and B. For
this, let xi, yi, zi be the total input to node i ∈ V from A \ B,A ∩ B and B \ A. Then
xi, zi ∼ N((1 − α)kp, (1 − α)kp(1 − p)) and yi ∼ N(αkp, αkp(1 − p)). Then, using the
independence of xi + yi and zi + yi given yi,

Pr i ∈ cap(A) ∩ cap(B)

=
∫ ∫ ∫

χ(xi + yi ∈ top k of {xj + yj} and zi + yi ∈ top k of {zj + yj}) dγ(x)dγ(z)dγ(y)

=
∫ ∫ ∫

χ(xi + yi ∈ top k of {xj + yj} | y)χ(zi + yi ∈ top k of {zj + yj} | y) dγ(x)dγ(z)dγ(y)

≥
∫ (∫

χ(xi + yi ∈ top k of {xj + yj} | y) dγ(x)
)2

dγ(y)

≥
∫
yi

[Pr(xi ≥ −yi + kp+ t | yi)]2 dγ(yi).

The last step above is the simple observation that a random draw xi+yi from N(kp, kp(1−p))
is, with constant probability, in the top k of n iid draws from the same distribution if
xi + yi ≥ E(xi + y + i) + t where Pr(xi + yi ≥ t) ≥ k/n. The tail bound below shows that

t ∼
√

(2 ln(n/k)− ln(2 ln(n/k))kp.

For convenience, we shift the distributions of xi, yi to x̄ = (x − (1 − α)kp)/kp and ȳ =
(y − αkp)/kp so that x̄ ∼ N(0, (1− α)) and ȳ ∼ N(0, α). For x ∼ N(0, 1), we will use the
tail bound in Lemma 2:

1√
2π

(
1
t
− 1
t3

)
exp(−t2/2) ≤ Pr(x ≥ t) ≤ 1√

2πt
exp(−t2/2).

Thus, for any α < 1,

Pr(i ∈ cap(A) ∩ cap(B))

≥
∫
ȳ

Pr
x̄

(x̄ ≥ −ȳ + t)2 dγ(ȳ)

≥
∫
ȳ

1
2π(1− α) min

{
1− α

(t− ȳ)2 , 1− α
}

exp
(
−2 (t− ȳ)2

2(1− α)

)
1√
2πα

exp
(
− ȳ

2

2α

)
dȳ

≥
(

1
2πt2/(1+α) exp

(
− t2

1 + α

))∫
ȳ

t2/(1+α)
√

2πα
min

{
1

(t− ȳ)2 , 1
}

exp
(
−

(ȳ − 2α
(1+α) t)

2

2α(1− α)/(1 + α)

)
dȳ

≥

√
1− α
1 + α

(
k

n

) 2
1+α 1

t2α/(1+α)

∫
y

min
{

1(
1−α
1+α− y

t

)2 , 1
}

√
2πα(1− α)/(1 + α)

exp
(
− y2

2α(1− α)/(1 + α)

)
dy

≥

√
1− α
1 + α

(
k

n

) 2
1+α 1

t2α/(1+α)

∫
y

1√
2π

min


1(

1−α
1+α −

y
t

√
α(1−α)

1+α

)2 , 1

 exp
(
−y

2

2

)
dy

≥

√
1−α
1+α

(2 ln(n/k))α/(1+α)

(
k

n

) 2
1+α

.
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Figure 1 The first figure is with n = 2000, k = 100 and the second with n = 10000, k = 100; each
empirical plot is the average of 5 independent trials. For the assembly creation we used plasticity of
β = 0.1. The theoretical bound plotted is (k/n)(1−α)/(1+α)/ ln(n/k)α/(1+α), while the conjectured
bound is the same without the log factor.

Thus the expected fraction of overlap is this probability times n divided by k, i.e.,

Ω
(

1
(ln(n/k))

α
1+α

(
k

n

) 2
1+α n

k

)
= Ω

(
1

(ln(n/k))
α

1+α

(
k

n

) 1−α
1+α
)
. J

It seems that the steps in this proof, including the suppression of constants in the end,
are quite parsimonious, in that the stated lower bound is not very far from the truth. In
Figure 1 we compare our bound with simulations of the map for various values of α and with
n/k = 2000/100 = 20 (the values that pertain to insect olfaction) and n = 104, k = 100, and
also to our bound without the logarithmic factor.

4 Bounding the Support of an Assembly

In this section we turn to assemblies in the mammalian brain, in which recurrent synapses
and plasticity become important. We assume that a stimulus consisting of k ≥

√
n neurons

in an upstream area fires repeatedly. The cap at t = 1, denoted A1, which was analyzed in
the previous section, is only the preamble of a complex process. At t = 2 the stimulus fires
again, and now the area receives combined input from the stimulus and from A1. A cap
denoted A2 will be formed, probably containing a considerable part of A1 but also first-timers
(by which we mean, neurons not heretofore participating in any cap). Meanwhile, plasticity
has changed the weights. The process is repeated a number of times, with new winners
displacing some past winners from the new cap, while plasticity acts in a stabilizing way.
Convergence – that is, At = A for all t > t0 – cannot be guaranteed with high probability
(experiments show some periodic-like movement of neurons, without any new first-timers).
The interesting question is, will the process converge, in that after some point and after there
will be no new winners? (Recall that this is what we mean by an assembly, a set of neurons
of size a small multiple of k firing in a pattern.). If so, we are interested in the size of the
assembly’s support, the union of all the Ats. The bound on the support depends crucially on
the plasticity parameter β, with high plasticity leading to small support (close to the cap
size k) but even very small positive plasticity leading to bounded support size (a fact that is
harder to prove). We denote by A∗ the union of A0, A1, A2, . . ..



C.H. Papadimitriou and S. S. Vempala 57:9

I Theorem 4 (High Plasticity). Assume that the plasticity parameter β ≥ β0 =
(
√

2−1)
√

lnn+
√

2√
pk+
√

lnn
. Then WHP the total support of the assembly can be bounded as

|A∗| ≤ k 1
1− exp(−( ββ0

)2)
≤ k +O

(
lnn
pβ2

)
.

Proof. Let µ1 = 1, µ2, . . . , µt, . . . be the fraction of first-timers in the cap at step t. The
process stabilizes when µt < 1/k. Using the tail bound of the Gaussian, since the new
winners must be in the top µtk of remaining n− k ∼ n neurons, the activation threshold at
step t is therefore very close to

C1 = pk +
√

2pk ln n
k
, Ct = 2pk + 2

√
pk ln n

µtk
for t ≥ 2.

Note that the mean term is pk for the first step and 2pk for all subsequent steps since the
number of neurons firing is the k stimulus ones plus k from the brain area.

First consider a neuron that make it to the first cap. To bound the probability that
that it will remain in the next cap, we note that at this point, the total activation from the
input synapses is at least (1 + β)C1 and from the recurrent synapses it is at least X where
X ∼ N(pk, p(1− p)k) is the signal from the recurrent synapses coming from nodes in the
first cap. In order for a node to remain in the next cap, we need that

(1 + β)C1 + pk +X ≥ C2

where now X ∼ N(0, p(1− p)k). Substituting for C1, C2, and using L = 2 ln(n/k), and µ as
the fraction of first-timers in the second cap, we have

Pr(j ∈ C2 | j ∈ C1) = 1− µ ≥ Pr(X ≥ −βpk − (1 + β)
√
pkL+

√
2pk(L+ 2 ln(1/µ)))

≥ Pr(X ≥ −β
√
pk +

√
2(L+ ln(1/µ))− (1 + β)

√
L)

rescaling so that X ∼ N(0, 1).

& 1− exp
{
−(β

√
pk + (1 + β)

√
L−

√
2(L+ ln(1/µ)))2/2

}
.

In other words,√
2 ln(1/µ) ≤ β

√
pk + (1 + β)

√
L−

√
2(L+ ln(1/µ)).

Now setting

β ≥ β0 = (
√

2− 1)
√
L+
√

2
√
pk +

√
L

gives µ < 1/e, i.e., the overap with the next cap is at least a 1 − (1/e) fraction. The
probability of remaining in the cap rapidly increases with the number of consecutive times a
neuron stays in the cap. To see this, suppose neuron j enters the cap for the first tiema at
time t, by exceeding the threshold Ct and stays for i consecutive caps (including Ct. The, to
stay in the next cap, it suffices that

(1 + β)iC1 + pk +X ≥ Ci+1

where X ∼ (0, p(1− p)k). Then, rescaling so X ∼ N(0, 1),

Pr(j ∈ Ci+1 | j ∈ C1) = 1− µ
≥ Pr(X ≥ (1− (1 + β)i

√
pk − (1 + β)i

√
L+

√
2(L+ 2 ln(1/µ)))

& 1− exp
{
−(iβ

√
pk + (1 + iβ)

√
L−

√
2(L+ ln(1/µ)))2/2

}
.
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Rewriting,√
2 ln(1/µ) +

√
2(L+ ln(1/µ))−

√
L ≤ iβ(

√
pk +

√
L)

or

β ≥ 1
i
·
√

2 ln(1/µ) +
√

2(L+ ln(1/µ))−
√
L

(
√
pk +

√
L)

which is less than β0 for µ = e−i
2 .

Next we consider a new first time winner in round t. In order for this neuron to make it
to the cap at time t+ 1, we need that

(1 + β) (2− µ)
2 Ct + µpk +X ≥ Ct+1

where µ = µt+1 is the fraction of newcomers in the next cap and X ∼ N(0, µp(1 − p)k).
Rescaling so that X ∼ N(0, µ), we have Pr(j ∈ Ct+1 | j ∈ Ct) is

1− µ ≥ Pr(X ≥ −β(1− µ

2 )2
√
pk− (1 + β)(1− µ

2 )
√

2(L+ ln(1/µt)) +
√

2(L+ ln(1/µ)))

Using the tail bound and rewriting as before, we have

β ≥
2 ln(1/µ) + µ

2
√

2(L+ ln(1/µt)) + ln(µt/µ)
L

(1− µ
2 )(2
√
pk +

√
2(L+ ln(1/µt)))

which is less than β0 for µ = µt/e. In other words, the β threshold to do this and ensure
that µ drops by a constant factor is lower than the threshold β0 for the first step. Finally, as
before, the probability of staying in the cap increases rapidly with the length of the neurons’
winning streak.

If β ≥ β0, then µt drops off exponentially. i.e., the probability of leaving the cap once in
the cap for i consecutive times 1− pti drops off exponentially. Using these facts, we get

I Claim 1.∏
i≥1

pi ≥
∏
i≥1

(1− exp(−i2( β
β0

)2)) ≥ 1
2 .

The claim gives a lower bound on the probability that a neuron that makes it to a cap
for the first time remains in the cap for all future times. As a result, each neuron that makes
it a cap for the first time has a probability of at least q = 1− exp(−( ββ0

)2) of remaining in
all future caps. Thus, the total support of all caps together is at most k/q in expectation.
This completes the proof of the theorem. J

We now turn to the regime of low plasticity, including zero plasticity. The bounds here
will be higher asymptotically, as reflected also in our experiments (see Figure 2). We note
however that for parameter ranges of interest for the brain, e.g., n = 106, k = 103,(n

k

)1/4
< ln(n/k).

The guarantees below are meaningful and nontrivial only when k is sufficiently large as a
function of n.
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Figure 2 The total support size at different values of plasticity β ranging from 0 to just over 0.5
for a random network with n = 104 neurons, edge probability p = 0.01 and assembly size k = 100.
The x axis is the number of iterations.

I Theorem 5 (Low Plasticity). Let a network with n nodes have edge density p, plasticity
parameter β, and cap size k ≥

√
n. For a sequence of caps A0, A1, A2, ... . . . At, . . ., let A∗ be

their union. Denote µ =
√
k/n. Then,

1. for β = 0,

E (|A∗|) ≤ k
(

1
µ

) 1
µ

.

2. for β > 0,

E (|A∗|) ≤ k
(

1
µ

) 1
2β

.

Proof. For the first part, let µ0, µ1, . . . , µt, . . . be defined as µ0 = 0 and

µt = |At ∩At−1|
k

,

the fraction of the cap that persists to the next step.
We will show that the expected values of µt form an increasing sequence and give a

recursive lower bound. To get a lower bound on µ1, for a neuron j, let x be the total signal
from the stimulus and y from A0, normalized, i.e., x, y ∼ N(0, 1). Then,

Pr(j ∈ A1 | j ∈ A0)

≥ Pr(x+ y ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)))

≥ Pr(y ≥ (2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥ µ0 =
(
k

n

)−(
√

2−1)2

.
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For general t > 1, let x be the signal from the stimulus y from the overlap At ∩At−1 and z
from the rest of At. Then, with z ∼ N(0, (1− µt)),

µt+1 = Pr(j ∈ At+1 | j ∈ At)

≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)),

and y ≥ µt(2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥ Pr(x ≥ (2−
√

2)(1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥
(
k

n

)−(
√

2−1)2(1−µt)

= µ1−µt
0 .

The probability that a neuron j, which enters the cap at the first step, stays in the cap is
thus at least∏

t

µt ≥ µ0 · µ1−µ0
0 · µ1−µ1−µ0

0
0 · . . .

= µ
1+(1−µ0)+(1−µ1−µ0

0 )+...
0

≥ µ1+(1−µ0)+(1−µ0)2+(1−µ0)3+...
0

= µ
1
µ0
0

where we used the fact that 1− µ(1−µ0)i
0 = 1− (1− (1− µ0))(1−µ0)i ≥ (1− µ0)i+1.

So far, the computation was only for neurons that were in the very first caps. For neurons
that make their first entrance later, the calculation is a bit different. Suppose a neuron enters
the cap for the first time at iteration t. For general t > 1, let x be the signal from the stimulus
y from the overlap At ∩ At−1 and z from the rest of At. Then, with z ∼ N(0, (1 − µt)),
noting that x, y make up (1 + µt)/2 of the threshold Ct,

µt+1

= Pr(j ∈ At+1 | j ∈ At)

≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x+ y

≥ (1 + µt)
√

ln(n/k)− ln(2 ln(n/k))

≥ Pr(x ≥ (1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥
(
k

n

)−(1−µt)/2

= µ1−µt .

Note that µ here is smaller than µ0 for neurons that enter in the first cap. The computation
for later steps, for such a neuron is similar, and we get that the probability that such a
neuron stays in the cap forever is∏

t

µt ≥ µ · µ1−µ · µ1−µ1−µ
· . . . ≥ µ

1
µ

as before. This completes the first part for β = 0.
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For the second part, with β > 0, the calculation follows the same outline, except that
the signal from the input is boosted by a factor of (1 + β) in each iteration, and the signal
from previous caps is boosted by (1 + β) for a diminishing fraction

∏
t µt. Ignoring the latter

boost (for a lower bound),

µt+1 ≥ Pr(x+ y + z ≥ 2
√

ln(n/k)− 0.5 ln(2 ln(n/k)) |x ≥
√

2 ln(n/k)− ln(2 ln(n/k)),

and y ≥ µt(2−
√

2)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥ Pr(x ≥ (2−
√

2(1 + β)t)(1− µt)
√

ln(n/k)− 0.5 ln(2 ln(n/k)))

≥
(
k

n

)−(
√

2−(1+β)t)2(1−µt)

= µ(1−tβ)(1−µt).

We can now lower bound the probability of a neuron staying in the cap once it enters, and
thereby the expected size of the total support. J

Locality Sensitivity of Assemblies. Returning to the motivating story on fly olfaction, is
the assembly projection operation as locality sensitive as the simpler variant in insects? It
appears that overlap of assemblies is an important indication of affinity of various sorts
(co-occurrence, correlation, connection, similarity, etc.), and thus it matters whether or not
it is preserved in projection. What we are able to show is that, if two sets of k cells overlap
in a fraction of α, and these two sets are projected sequentially to the same brain area, the
cores of two resulting assemblies will share at least λ2 fraction of the overlap of their initial
projections (given by Theorem 3); recall that λ is the size of the core over k, and for the
parameters of interest is about half. Such a modest overlap at the core – the best connected
part of the assembly – is a good omen for a large overlap of the two assemblies that will
eventually emerge, an intuition that is supported by simulations, see Figure 1.7

5 Computing with Assemblies

The assembly hypothesis proposes that assemblies are the standard representations used
in higher brain functions – memory, language, reasoning, decision-making, planning, math,
music, story-telling and discourse – suggesting a grand and mysterious computational system
with assemblies at its center, its basic data type. How does this computational system work?
Foremost, what are its elementary operations?

Assemblies do appear to project (see the discussion in [12] for an inspiring description of
the process in the mouse piriform cortex): this is about the only way that assemblies can
be created, and projection appears to be a most useful operation – in fact, in its absence,
it is hard to imagine what assemblies may be good for. We denote the operation of an
assembly x projecting to area A to create a new assembly y as project(x,A, y) (the area
of assembly x, denoted area(x) 6= A, is implicit). Henceforth, parent(y) = x8. Through
project, arbitrary relations can be maintained, with brain areas being the columns and
time steps the rows; for example, a recent experiment [11] seems to suggest that the
“subject-verb-object” relation in natural language may be achieved this way.

7 We can prove something weaker, namely that substantial overlap persists to the assemblies, albeit only
for sufficiently high plasticity, and under the additional assumption that the synaptic weights from the
first projection have “faded” enough by homeostasis.

8 As we shall see, some operations such as reciprocal-project make the parent function ambiguous,
but we shall be ignoring this issue here.
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We also know from experiments [15, 9] that assemblies associate by exchanging cells
(apparently a few percentage points of their support) when they become related through
co-occurrence in the world and perhaps through other acquired relations. We denote this
by associate(x, y) – x and y should of course be in the same area. It can be provably
carried out by activating parent(x) and parent(y), assumed to be in different areas,
for a few steps [17]. It is natural to hypothesize that cell sharing between x and y has
the effect that y may be henceforth activated, with some non-zero probability, when
x is activated, and vice-versa. This opens up intriguing possibilities of sophisticated
probabilistic reasoning and programming, and we suspect that much of the power of the
assembly model may lie in this direction – which however we do not explore or exploit
here.
On another front, recent fascinating experiments [10, 24, 25, 16] suggest that language
processing in humans involves the building and maintenance of syntactic structures such as
syntax trees, and it is natural to assume that assemblies representing words are implicated
there as well. We postulate the operation merge(x, y,A, z) which takes two assemblies
x, y in different areas, and projects them both to assembly z in a third area A. Merge,
the ability to consider two things as one, has been hypothesized in linguistics to be the
quintessence of syntax, see for example [4]. It follows from the results in this paper that
it can be implemented in our framework.
A more complex and very useful operation is reciprocal-project(x,A, y,B, z) which
creates in two areas A and B two assemblies y and z that can activate one another
(while y can activated by x, as in ordinary project). It is assumed that there is synaptic
connectivity from area(x) to A and both ways between A and B. The original assembly
x, residing in a third area, can activate directly y. We conjecture that this operation can
be carried out in our framework with high probability; it works reliably in simulations.
reciprocal-merge is a straightforward generalization, which seems useful for language
generation. Finally, another related operation is append(x,A, y), useful for creating
sequences, which we do not detail here.

5.1 The Power of Computation with Assemblies
According to the assembly hypothesis, assemblies and their operations are crucial for higher
mental activities such as planning, language, and reason. The question may then arise: Is
this purported computational system powerful enough? In particular, is it Turing complete?
Many computer scientists are by instinct dubious about the value of such a pursuit; we
agree, and in addition we are convinced that, if the assembly hypothesis is correct, the
computational power of assemblies is wielded through means that are orthogonal to computer
programming. On the other hand, an assessment of the computational power of this system
can usefully inform our modeling, and in particular our search for essential primitives.

To continue on this path, we must create a programming system, formal enough to
address the Turing completeness question, for writing simple programs with lines such as

if area(y) = A, project(parent(y), B, z).

To this end, we need to assume an environment in which names of assemblies, once declared
– typically in a command such as project(x,A, y) – can be used in subsequent steps of the
same program (area names are finite and fixed). Also, we introduce certain new primitives:
activate(x) simply activates assembly x for a few steps; that is, we assume that project
creates as a side-effect a fuse that can activate the new assembly. Also, we assume that
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the downstream synapses from area A to area B are by default inactive, and must be
activated explicitly by the operation enable(A,B). To illustrate, project(x,A, y) is almost
equivalent to

enable(area(x), A); repeat T times: activate(x); disable(area(x), A),

missing only a mechanism that names the new assembly y. Here T is the number of spikes
required for assembly projection (about a dozen in simulations). Of course, it is debatable
how realistically one expect such a programming framework to be operating in the brain.

We also introduce a read operation9 returning information about the assemblies that
are presently active, and their areas. Notice that all this assumes a simple computational
mechanism acting as an interpreter, and lying outside our framework10.

Finally, we must address the issue of reliability in assembly computation. We shall make
some assumptions:

Any newly created assembly is a random set of k = γ
√
n neurons in its area.

Two assemblies can interfere destructively in their operations, for example by spurious
associations between them, but only if they overlap in more than ε

√
n cells; the literature

seems to suggest that ε is at least 1%.
At last we need to introduce homeostasis:. We assume that synaptic weights fade
with time, regressing to the value 1. That is, at every time step weight w becomes
max{ w

(1+β′) , 1}, where 0 < β′ << β, the plasticity parameter.11
Fading is both realistic and necessary for the simulation, since in its absence the compu-
tational system cannot erase information, and is therefore severely limited.
Fading means that eventually all assemblies will lose their synaptic density and connection
with their parent. To prevent this, we introduce permanent versions of operations
such as project. For example, permanent_project(x,A, y) involves, besides executing
n ordinary project operation, repeating activate(x) every τ steps (with synaptic
connections between the two areas in focus enables), where τ is a small constant, much
smaller than β

β′ , either indefinitely or until an explicit fade(y) command. There is
evidence that such processes do happen in the brain, for example by fading, or reviving
through rehearsal raw memory traces in the hippocampus.

The following is needed in the proof of the main result:

I Lemma 6. The probability that a new assembly will interact destructively with a particular
already existing assembly in the same area is at most exp(− ε

√
n

γ2 ).

I Theorem 7. The computational system described above can correctly simulate arbitrary
O(
√
n)-space computations with probability 1− exp(O(

√
n)).

Sketch: A Turing machine with a one-way circular tape of length m = O(
√
n), tape alphabet

Σ and state set K can be simulated by a program of assembly operations. Let us assume the
input-output convention that a new assembly appears in one of two designated input areas
I0, I1 at designated and well separated times, encoding a binary input tape; and that, upon

9 Following a suggestion by Buszáki [5] that assemblies must be accompanied by a reader mechanism – as
Buszáki puts it: “if a tree falls in the forest and there is nobody around to hear it fall, has it really
fallen?”

10We do realize this is a strong assumption, unlikely to be literally true; we expect that the computational
power of assemblies is realized through more organic means

11An equivalent, and perhaps more realistic, model of homeostasis would be to normalize the incoming
weights of each neuron separately.
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Figure 3 Our representation of configuration (state, circular tape contents) [p, 011a].

accepting termination, an assembly will appear in another area T . The Turing machine will
be simulated by |Σ|+ |K|+ 6 brain areas: the three input-output areas I1, I0, O, two areas
for representing the tape denoted T1 and T2, one area for representing the current state,
denoted S, plus one area for each tape symbol a and state q, denoted, respectively, La and
Sq. See Figure 3.

In the input phase, while the input is read from either I0 or I1 (depending on whether
the input symbol is 0 or 1, assumed both to be in Σ (recall the input-output conventions), a
chain of assemblies is created projecting back and forth between the two Ti areas (see Figure)
through permanent project operations.

Each assembly in these two areas represents a tape square. The current symbol a in this
square is represented through a projection to an assembly in area La, a projection that is
permanent until it is explicitly faded when the same tape square is scanned again.

Similarly, another standard assembly s in area S points, through a projection (non-
permanent, since the state changes at every step), to an area Sq representing the current
state q (initially the starting state). The synapses from S to Sq are enabled, while the
synapses from S to all other Sp’s are not12.

When the square corresponding to an assembly x, in one of the areas T1, T2, is scanned
by the tape head, then x and s fire and a read is issued. Depending on the areas where
assembly activity is read, say Sq and La, the correct current symbol a and state q are
identified. Suppose that Turing machine’s transition is δ(q, a) = (p, b). The synapses from S

to Sq are disabled and those to Sp enabled, the assembly representing the previous symbol
q is faded, and permanent_project(x, Lb, y) is executed to record the current symbol of
the tape square represented by x; similarly for state. Then x fires again and a read is
issued, to identify the tape assembly corresponding to the tape square that is next, and the
computation continues. The straightforward details are omitted. J

12Notice that this effectively stores the state in the current instruction of the program; it can be done in
more natural ways.
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6 Discussion and open questions

We have identified a basic computational operation – random synaptic projection to a brain
area followed by the selection, through inhibition, of the k neurons with the highest synaptic
input – that appears to be ubiquitous in the animal brain and also useful for implementing
more complex operations, but also happens to be mathematically concrete, productive,
and interesting. Assembly projection can be the basis of a computational system at an
intermediate level of abstraction – and unlike anything else that we have seen in theoretical
neuroscience. Such a system, we hypothesize, may underlie the higher mental functions of
the human brain – not an intensely researched subject in neuroscience. This hypothesis must
be pursued both analytically, and – importantly – experimentally. We also believe that this
line of work, and the rather simple and concrete model of brain operation it entails involving
distinct brain areas, random graph connections, inhibition through cap, and probabilistic
analysis, may constitute a promising entry point for theoretical computer scientists who want
to work on brain-related problems. One of the contributions of this paper is pointing out the
locality sensitive nature of assembly projection; this, together with the computational nature
of association (which we did not consider here) promise to be important future directions for
this work.

Assemblies may be implicated in implementing natural language in the human brain.
Many recent experimental papers, see [24, 25, 11, 16, 10] among many others, appear to
suggest that assembly-like operations like projection and merge may be implicated in
language generation and processing.

We conclude with some more precise questions, that are motivated directly by our findings,
and will help solidify the mathematical theory of assemblies, some of which we have already
discussed in context in this paper.

1. Assembly support size. Is there a phase transition in the support size of an assembly
(from ω(k) to k + o(k)) as the plasticity parameter β increases?

2. Assembly convergence. For high plasticity and with high probability, the limit of the
random project plus cap process is a single fixed subset of size k. What are other possible
limiting behaviors? E.g., is it possible to get two subsets of size k (possibly overlapping)
that fire alternately? (We know cases where this happens at a small scale, that is, the
two subsets of size k differ in 1-3 cells.) Will the limit have a common core (of what size
as a function of plasticity) that always fires? Is the limit an activity pattern of finite
length/description?

3. Model. Can our results be extended to less stylized models in which neurons fire
asynchronously, or there is explicit inhibition (instead of cap)?

4. Base graph. We have assumed the base graph to have independently chosen edges. What
is a deterministic condition on the base graph that suffices? E.g., is it enough to have
expansion and roughly uniform degrees? Is global expansion necessary or do sufficiently
strong local properties suffice (e.g., degree and co-degree)?

5. Extending GNP. Are richer models, e.g., those with higher reciprocity or triangle density,
useful? For example, do they enable more powerful or efficient computations?

6. Computational power. Show that randomized s(n) space bounded computation can be
simulated with n neurons and O(1) brain areas for some function s(n) larger than

√
n.

7. Capacity. Suppose that, in a brain area, we want to maintain with high probability
pairwise intersections: two assemblies that intersect in a large (α or more, say) fraction
of their support should continue to so intersect, and similarly for pairs that intersect
in less than α fraction. For how many assemblies can we guarantee this invariant, as a
function of n?
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8. Learning. Can assemblies perform learning (supervised or unsupervised)? Simulations
suggest that assemblies can learn well-separated half-spaces quite naturally. Can this be
proved formally? And what more ambitious forms of learning through assemblies are
possible?

9. Assemblies vs 1-step Projections. Are assemblies (created as the limit of iterated random-
project-and-cap) better for learning than 1-step (insect-like) projections? Is the recurrence
of the mammalian brain a bonus or a handicap for learning?

10. Articulate a brain architecture for syntax (the building of syntactic trees) based on the
assemblies operations project and merge and involving the medial temporal lobe, the
superior temporal gyrus, and Broca’s area of the left human brain.
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Abstract
A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances
in the input graph up to a small multiplicative stretch. The common objective in the computation
of spanners is to achieve the best-known existential size-stretch trade-off efficiently.

Classical models and algorithmic analysis of graph spanners essentially assume that the al-
gorithm can read the input graph, construct the desired spanner, and write the answer to the
output tape. However, when considering massive graphs containing millions or even billions of
nodes not only the input graph, but also the output spanner might be too large for a single
processor to store.

To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for
graph spanners in general graphs, where the algorithm should locally decide whether a given edge
(u, v) ∈ E belongs to the output (sparse) spanner or not. Such LCAs give the user the “illusion”
that a specific sparse spanner for the graph is maintained, without ever fully computing it. We
present several results for this setting, including:

For general n-vertex graphs and for parameter r ∈ {2, 3}, there exists an LCA for (2r −
1)-spanners with Õ(n1+1/r) edges and sublinear probe complexity of Õ(n1−1/2r). These
size/stretch trade-offs are best possible (up to polylogarithmic factors).
For every k ≥ 1 and n-vertex graph with maximum degree ∆, there exists an LCA for O(k2)
spanners with Õ(n1+1/k) edges, probe complexity of Õ(∆4n2/3), and random seed of size
polylog(n). This improves upon, and extends the work of [Lenzen-Levi, ICALP’18].

We also complement these constructions by providing a polynomial lower bound on the probe
complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse
connected subgraph with o(m) edges.

To the best of our knowledge, our results on 3 and 5-spanners are the first LCAs with sublinear
(in ∆) probe-complexity for ∆ = nΩ(1).
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1 Introduction

One of the fundamental structural problems in graph theory is to find a sparse structure
which preserves the pairwise distances of vertices. In many applications, it is crucial for
the sparse structure to be a subgraph of the input graph; this problem is called the spanner
problem. For an input graph G = (V,E), a k-spanner H ⊆ G (for k ≥ 1) satisfies that for
any v, u ∈ V , the distance from v to u in H is at most k times the distance from v to u in
G, where k is referred to as the stretch of the spanner. Furthermore, to reduce the cost of
the solution, it is desired to output a minimum size/weight such subgraph H. The notion of
spanners was introduced by Peleg and Schäffer [31] and has been used widely in different
applications such as routing schemes [3, 30], synchronizers [2, 32], SDD’s [37] and spectral
sparsifiers [19].

It is folklore that for every n-vertex graph G, there exists a (2k − 1)-spanner H ⊆ G

with O(n1+1/k) edges. In particular, if the girth conjecture of Erdős [14] is true, then this
size-stretch trade-off is optimal. Spanners have been considered in many different models
such as distributed algorithms [5, 8–11,13,33] and dynamic algorithms [4, 6, 12].

Local computation of small stretch spanners. When the graph is so large that it does not
fit into the main memory, the existing algorithms are not sufficient for computing a spanner.
Instead, we aim at designing an algorithm that answers queries of the form “is the edge (u, v)
in the spanner?” without computing the whole solution upfront. One way to get around
this issue is to consider the Local Computation Algorithms (LCAs) model (also known as
the Centralized Local model), introduced by Rubinfeld et al. [35] and Alon et al. [1]. There
can be many different plausible k-spanners; however, the goal of LCAs for the k-spanner
problem is to design an algorithm that, given access to primitive probes (i.e. Neighbor,
Degree and Adjacency probes) on the input graph G, for each query on an edge e ∈ E(G)
consistently with respect to a unique k-spanner H ⊆ G (picked by the LCA arbitrarily),
outputs whether e ∈ H. The performance of the LCA is measured based on the quality of
solution (i.e. number of edges in H) and the probe complexity (the maximum number of
probes per each query) of the algorithm5. In other words, an LCA gives us the “illusion” as
if we have query access to a precomputed k-spanner of G.

The study of LCAs with sublinear probe complexity for nearly linear size spanning
subgraphs (or sparsifiers) is initiated by Levi, Ron, and Rubinfeld [24,25] for some restricted
families of graphs such as minor-closed families. However, their focus is mainly on designing
LCAs that preserve the connectivity while allowing the stretch factor to be as large as n.
Moreover, in their work, the input graph is sparse (has O(n) edges), while the classical
k-spanner problem becomes relevant only when the input graph is dense (with superlinear
number of edges). Recently, Lenzen and Levi [21] designed the first sparsifier LCA in
general graphs with (1 + ε)n edges, stretch O(log2 n · poly(∆/ε)) and probe complexity of
O(poly(∆/ε) · n2/3), where ∆ is the maximum degree of the input graph.

5 We may also measure the time complexity of an LCA. In our LCAs, the time complexities are clearly
only a factor of poly(log n) higher than the corresponding probe complexities, so we focus our analysis
on probe complexities.

https://doi.org/10.4230/LIPIcs.ITCS.2019.58
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In this work, we show that sublinear time LCAs for spanners are indeed possible in several
cases. We give: (I) 3 and 5-spanners for general graphs with optimal trade-offs between the
number of edges and the stretch parameter (up to polylogarithmic factors), and (II) general
k-spanners, either in the dense regime (when the minimum degree is at least n1/2−1/(2k)) or
in the sparse regime (when the maximum degree is n1/12−ε).

Broader scope and agenda: local computation algorithms for dense graphs. LCAs have
been established by now for a large collection of problems, including Maximal Independent
Set, Maximum Matching, and Vertex Cover [1,15,26,27,29,34,35]. These algorithms typically
suffer from a probe complexity that is exponential in ∆ and thus are efficient only in the
sparse regime when ∆ = O(1).

To this end, obtaining LCAs even with a polynomial dependency in ∆ is a major open
problem for many classical local graph problems, as noted in [16,26,28]. For instance, recently
Ghaffari and Uitto [16] obtained an LCA for the MIS problem with probe complexity of
∆O(log log ∆) · logn improving upon a long line of results. Their result also illustrates the
connection between LCAs with good dependency on ∆, and algorithms for the massively
parallel computation model with sublinear space per machine. Recently, [26] and [21] provided
LCAs with probe complexities polynomial in ∆ for the problems of (1−ε)-maximum matching
and sparse connected subgraphs, respectively. Note that in the context of spanners, such
algorithms are still inefficient when the maximum degree is polynomial in n, which is precisely
the setting where graph sparsification is applied.

1.1 Our results and techniques
In this paper we initiate the study of LCAs for graph spanners in general graphs which concerns
with the following task: How can we decide quickly (e.g., sublinear in n time) if a given edge
e belongs to a sparse spanner (with fixed stretch) of the input graph, without preprocessing
and storing any auxiliary information? In the design of LCAs for graph problems, the set of
defined probes to the input graph plays an important role. Here we consider the following
common probes: Neighbor probes (“what is the ith neighbor of u”?), Degree probes (“what
is deg(u)?”) and Adjacency probes (“are u and v neighbors”?) [17,18]. We emphasize that
the answer to an Adjacency probe on an ordered pair 〈u, v〉 is the index of v in Γ(u) if6
the edge exists and ⊥ otherwise. Note that if the maximum degree in the input graph is
O(1), each Adjacency probe can be implemented by O(1) number of Neighbor probes.

The problem of designing LCAs for spanners is closely related to designing LCAs for
sparse connected subgraphs with (1 + ε)n edges which was first introduced by [24]. With the
exception of [21], a long line of results for this problem usually concerns special sparse graph
families, rather than general graphs. A summary of these results with a comparison to our
results is provided in Table 1.

1.1.1 LCAs for 3 and 5-Spanners for General Graphs
Our first contribution is the local construction of 3 and 5-spanners for general graphs, while
achieving the optimal trade-offs between the number of edges and the stretch factors (up
to polylogarithmic factors)7. In particular, our LCAs have n1−ε probe complexity even
when the input graph is dense with ∆ = Ω(n); note that in such a case, given a query

6 Γ(u) denotes the neighbor set of u, whereas Γ+(u) = Γ(u) ∪ {u}.
7 Indeed, the girth conjecture of Erdős is resolved for these stretch factors; see e.g., [39].
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Table 1 Table of results on LCAs for the spanner problem. The symbol ′−′ indicates that the
stretch is not analyzed. The input graph is a simple graph with n vertices, m edges, maximum
degree ∆, and belongs to the indicated graph family. Õ hides a factor of poly(log n, k).

Reference Graph Family # Edges Stretch Probe Complexity

P
rio

r
w
or
ks

[24]
Bounded Degree Graphs (1 + ε)n − Ω(

√
n)

Expanders (1 + ε)n − O(
√

n)
Subexponential growth (1 + ε)n − O(

√
n)

[23] Minor-free (1 + ε)n poly(∆, 1/ε) poly(∆, 1/ε)
[25] Minor-free (1 + ε)n O((log ∆)/ε) poly(∆, 1/ε)
[22] Expansion (1/ log n)1+o(1) (1 + ε)n super-exponential in 1/ε super-exponential in 1/ε

[21] General (1 + ε)n O(log2 n · poly(∆/ε)) O(n2/3 · poly(∆/ε))

H
er
e

Thm. 1 General Õ(n1+1/r) 2r − 1 (r ∈ {2, 3}) Õ(n1−1/(2r))
Thm. 12 Min degree O(n1/2−1/(2k)) Õ(n1+1/k) 5 Õ(n1−1/(2k))
Thm. 2 Max degree O(n1/12−ε) Õ(n1+1/k) O(k2) Õ(n1−4ε)
Thm. 3 General o(m) any k ≤ n Ω(min{

√
n, n2/m})

edge (u, v), the LCA should return yes or no without being able to inspect the neighbor
lists Γ(u) and Γ(v). In what follows we show how to manipulate the common distributed
construction by Baswana and Sen [5] to yield LCAs for 3-spanners and 5-spanners with
sublinear probe complexity.

The common distributed approach. Most distributed spanner constructions are based on
thinning the graph via clustering: construct a random set S of centers by adding each vertex
to S independently with some fixed probability. For each vertex v sufficiently close to a
center in S, include the edges of the shortest path connecting v to its closest member s ∈ S:
this induces a cluster around each center s ∈ S, where every pair of vertices in the same
cluster are connected by a short path. Then, add edges connecting pairs of neighboring
clusters to ensure the desired stretch factor.

The following algorithm constructs a 3-spanner H ⊆ G with Õ(n3/2) edges. First, add
to H all edges incident to vertices of degree at most

√
n. Second, pick a collection S of

centers by sampling each vertex independently with probability Θ(logn/
√
n). Each vertex v

of degree at least
√
n picks a single neighboring center s ∈ S ∩ Γ(v) (which exists w.h.p.) as

its center, then adds (v, s) to H, forming a collection of |S| = O(
√
n) clusters (stars) around

these centers. Lastly, every vertex u adds only one edge to each of its neighboring clusters –
note that this last step may add edges whose endpoints are both non-centers. This results in
a 3-spanner: For omitted edge (u, v) in G, if u and v are in the same cluster, then they have
a path of length 2 through their shared center s. If u and v are in different clusters, an edge
from u to some other vertex w in v’s cluster would have been chosen, providing the path
〈u,w, s, v〉 of desired stretch 3 connecting u and v, where s is v’s center.

The challenge and key ideas. Recall that our goal is to design an LCA for 3-spanners
H ⊆ G of size Õ(n3/2) and probe complexity of Õ(n3/4): the LCA is given an edge (u, v)
and must answer whether (u, v) ∈ E(H). First, if deg(u) or deg(v) is at most

√
n, then the

algorithm can immediately say YES. This requires only two Degree probes for the endpoints
u, v. Hence, the interesting case is where both u and v have degrees at least

√
n.

We start by sampling each vertex into the center set S with probability of p = Θ(logn/
√
n),

thus w.h.p. guaranteeing that each high-degree vertex has at least one sampled neighbor. For
clarity of explanation, assume that given the ID of a vertex v, the LCA algorithm can decide
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(with no further probes) whether v is sampled. Upon selecting the set of centers S, the above
mentioned distributed algorithm has two degrees of freedom (which our LCA algorithm will
enjoy). First, for a high-degree vertex v, there could be potentially many sampled neighbors
in S: the distributed algorithm lets v join the cluster of an arbitrarily sampled neighbor.
The second degree of freedom is in connecting a high-degree vertex to neighboring clusters.
In the distributed algorithm, a vertex connects to an arbitrarily chosen neighbor in each of
its neighboring clusters. Since the answers of the LCA algorithm should be consistent, it is
important to carefully fix these decisions to allow small probe complexity.

The naïve approach for 3-spanners and its shortcoming. The most naïve approach is as
follows: for each v, traverse the list Γ(v) in a fixed order and pick the first neighbor that
satisfies the required conditions. That is, a vertex joins the cluster of its first sampled
neighbor (center) and connects to its first representative neighbor in each of its neighboring
clusters. To analyze the probe complexity of such a construction, consider a query edge
(u, v) where deg(u),deg(v) ≥

√
n. By probing for the first

√
n neighbors of u and v, one can

compute the cluster centers cu and cv of u and v with high probability. The interesting case is
where u and v belong to different clusters. In such a case, the LCA algorithm should say YES
only if v is the first neighbor of u that belongs to the cluster of cv. To check if this condition
holds, the algorithm should probe for each of the neighbors w of u that appears before v
in Γ(u), and say NO if there exists such earlier neighbor w that belongs to the cluster of cv.
Here, it remains to show how this cluster-membership testing procedure is implemented.

A cluster-membership test, for a pair 〈s, w〉 with s ∈ S, must return YES iff w belongs to
the cluster of the center s. The above mentioned algorithm thus makes O(deg(v)) cluster-
membership tests for each w preceding u in Γ(v) and s = cv. Since each center is sampled
with probability p = logn/

√
n, the probe complexity of a single cluster-membership test is

O(
√
n) w.h.p., leading to a total probe complexity of O(deg(v) ·

√
n).

Idea (I) – Multiple centers for efficient cluster-membership test. The key idea in our
solution is to pick the cluster centers in a way that allows answering each cluster-membership
test for a pair 〈s, w〉 using a single Neighbor probe! Towards this goal, we let each high-
degree vertex join multiple clusters, instead of just one. In particular, for a vertex w, we
look at the subset Γ1(w) consisting of its first

√
n neighbors in Γ(w). We then let w join the

clusters of all sampled neighbors in Γ1(w) ∩ S. Since each vertex is a center with probability
p, this implies that, w.h.p., w joins Θ(p · |Γ1(w)|) = Θ(logn) many clusters. Though this
approach adds a multiplicative O(logn) factor to the size of our spanner, it will pay off
dramatically in terms of the probe complexity of our LCA. In particular, this modification
enables the algorithm to test cluster-membership with a single Adjacency probe: the vertex
w belongs to the cluster of s, if the index of s in w’s neighbor-list is at most

√
n (the index

is returned by the Adjacency probe on u and s). This idea alone decreases the probe
complexity of our LCA to Õ(deg(w)).

Idea (II) – Neighborhood partitioning. The multiple center technique above allows our
LCA to handle edges adjacent to a vertex u of degree at most n3/4. For deg(u) > n3/4, our
LCA cannot afford to look at all neighbors of u. To this end, we partition the neighbors
of u into blocks of size n3/4 each. Rather than adding only one edge between u to each
neighboring cluster, we make the decision on which edges to keep for each block independently,
by scanning only the block containing v and keeping (u, v) if v belongs to the cluster that
was not previously seen in this block. Though this leads to an increase in the number of
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edges by a factor of deg(u)/n3/4 ≤ n1/4, we can now keep the probe complexity down to
Õ(n3/4) as we only need to scan the block containing v given the query (u, v) instead of
u’s entire neighbor-list. To keep the size of the spanner small, e.g., Õ(n3/2), we use the
fact that O(n1/4 logn) sampled vertices are enough to hit the neighborhoods of all vertices
with degree more than n3/4 with high probability. Since for each block of size n3/4 in the
neighborhood of u the algorithm adds O(|S|) edges, the total number of edges added per
vertex is O(|S| · deg(u)/n3/4) = Õ(n3/2), as desired.

Overview of the LCA for 5-spanners. For 5-spanners, the desired number of edges is
Õ(n4/3). This allows us to immediately add to the spanner all edges incident to low-
degree vertices u with deg(u) = Õ(n1/3). The common distributed construction for 5-
spanners computes O(n2/3) clusters by sampling each center independently with probability
Θ(logn/n1/3). By letting each high-degree vertex (i.e., with deg(u) = Ω(n1/3)) join the
cluster of one of its sampled neighbors, the spanner contains a collection of O(n2/3) (vertex-
disjoint) clusters that, w.h.p., cover all high-degree vertices. Finally, each pair of neighboring
clusters C1, C2 are connected by adding an edge (u, v) ∈ (C1 ×C2) ∩E to the spanner H. It
is straightforward to verify that H is a 5-spanner of size Õ(n4/3).

Designing LCAs for the 5-spanner problem turns out to be significantly more challenging
than the 3-spanner case. The reason is that deciding whether an edge (u, v) is in the 5-spanner
requires information from the second neighborhoods of v and u, which is quite cumbersome
when one cannot even read the entire neighborhood of a vertex. Our solution extends the
3-spanner construction in two ways: some of the edges added to our 5-spanner are between
cluster pairs, instead of edges between a vertex and a cluster as in the 3-spanner solution.
Another set of edges added to the 5-spanner is between pairs of vertex and cluster, but unlike
the 3-spanner case, these clusters have now radius two.

Idea (III) – Cluster partitioning (bucketing). The standard clustering-based construction
of 5-spanners adds an edge between every pair of neighboring clusters (stars). This clustering-
based construction cannot be readily implemented with the desired probe complexity. To see
why, consider clusters centered at s and t, containing u and v respectively. A naïve attempt
spends deg(s) · deg(t) probes for vertices between these clusters, as to consistently pick a
unique edge between the two clusters.

One of our tools extends the idea of neighborhood partitioning from 3-spanner into
cluster partitioning. Each of the O(n2/3) clusters is partitioned into balanced buckets of
size Θ(n1/3).8 The algorithm then picks only one edge between any pair of neighboring
buckets. Since the number of buckets can be shown to be Õ(n2/3), the spanner size still
remains Õ(n4/3). Unlike partitioning neighbor-lists, partitioning a cluster requires the full
knowledge of its members – which are no longer nicely indexed in a list. To be able to
efficiently partition a clusters, the algorithm allows only vertices with degree at most n5/6 to
be chosen as cluster centers. The benefit of this restriction is that one can inspect the entire
neighborhood of a center in O(n5/6). The drawback of this approach is that it only clusters
vertices that have sufficiently many neighbors (i.e., at least n1/3) with degree less than n5/6.
The remaining vertices are handled via their high-degree neighbors (i.e., of degree at least
n5/6) as described next.

8 Note that each cluster may have at most one bucket of size o(n1/3).
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Idea (IV) – Representatives. Using the neighborhood-partitioning idea from 3-spanner,
all vertices with degree at least n5/6 can be clustered by sampling Õ(n1/6) cluster centers.
By partitioning the neighborhood of each high-degree vertex into disjoint blocks each of size
Õ(n5/6), one can construct a 3-spanner for all edges incident to these high-degree vertices
with probe complexity of Õ(n5/6) while using Õ(n4/3) edges. To take care of vertices of
degrees less than n5/6 that have many high-degree neighbors, we let them join the cluster of
their high-degree neighbors, hence creating clusters of depth 2.

To choose which cluster to join (in the second level), our vertex, which has many high-
degree neighbors, simply chooses and connects itself to one or more high-degree neighbors,
called its representatives. To determine the representatives of a vertex u, we simply pick
Θ(logn) random neighbors of u, and w.h.p. one of them will have high-degree, and hence is
chosen as u’s representative.

We implement our LCA by first picking |S| = Õ(n1/6) centers. Consider the query
edge (u, v) where deg(u),deg(v) ≥ n1/3 and u has many high-degree neighbors. Here, u has
Θ(logn) representatives, each of which has Θ(logn) centers in S w.h.p., so u belongs to
O(log2 n) clusters. As in the 3-spanner case, we keep (u, v) if v is the first neighbor of u in
the cluster that v belongs to. We find the representatives of each neighbor of u by making
O(logn) probes, and for all these deg(u) ·O(logn) = Õ(n5/6) representatives, check if they
belong to any of v’s O(log2 n) clusters with Õ(n5/6) total probes.

I Theorem 1 (3 and 5-spanners). For every n-vertex simple undirected graph G, there exists
an LCA for (2r − 1)-spanners with Õ(n1+1/r) edges and probe complexity Õ(n1−1/(2r)) for
r ∈ {2, 3}. Moreover, the algorithm only uses a seed of O(log2 n) random bits.

In fact, if G has minimum degree ω(n1/3), we may apply the 5-spanner construction (with
modified parameters) to obtain 5-spanners with even smaller number of edges as indicated
in Table 1 (Theorem 12): this minimum degree assumption indeed allows even sparser
spanners, bypassing the girth conjecture that holds for general graphs. We also remark that,
in the somewhat related setting of dynamic computation, spanner algorithms with worst-case
sublinear update time are currently known only for 3 and 5-spanners as well (see Bodwin
and Krinninger, [6]).

1.1.2 LCA for O(k2)-spanners
Our second contribution is the local construction of O(k2)-spanners with O(n1+1/k) edges
for any k ≥ 1, which has sub-linear probe complexity for graphs of maximum degree
∆ = O(n1/12−ε). Our approach improves upon and extends the recent work of Lenzen and
Levi [21]. The work of [21] aims at locally constructing a spanning subgraph with O(n)
edges, but the stretch parameter of their subgraph might be as large as O(poly(∆) log2 n).
In addition, this construction requires a random seed of polynomial size. In our construction,
we reduce the stretch parameter of the constructed subgraph to O(k2), independent of both
n and ∆, while using only Õ(n1+1/k) edges. In addition, we implement our randomized
constructions using poly(logn) independent random bits, whereas [21] uses poly(n) bits. We
remark that for the LCAs with large stretch parameter considered in [21], our techniques
can still be applied to exponentially reduce the required amount of random bits, and save
a factor of ∆ in the probe complexity. The details of O(k2)-spanners are omitted in this
version: please refer to the longer version of this paper for the missing details of this result.

I Theorem 2 (O(k2)-spanners). For every integer k ≥ 1 and every n-vertex simple undirected
graph G with maximum degree ∆, there exists a (randomized) LCA for O(k2)-spanner
with Õ(n1+1/k) edges and probe complexity Õ(∆4n2/3). Moreover, the algorithm only uses
O(log2 n) random bits.
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The high level structure is as in [21]: for a given stretch parameter k, partition the edges
in G into the sparse set Esparse and the dense set Edense. Roughly speaking, the sparse
set Esparse only consists of edges (u, v) for which the k-neighborhood in G of either u or v
contains at most O(n2/3) vertices. For this sparse region in the graph, we can simulate a
standard distributed algorithm for spanners [5, 7] (using only a poly-logarithmic number of
random bits), with small probe complexity. This yields an LCA handling the sparse edges
with O(∆2n2/3) probe complexity.

To take care of the dense edges, we sample a collection of O(n2/3 logn) centers and
partition the (dense) vertices into Voronoi cells around these centers.

The main challenge is in connecting the Voronoi cells, keeping in mind that taking an
edge between every pair of cells adds too many edges to the spanner. To get around it,
the main contribution of [21] was in designing a set of rules for connecting bounded-size
sub-structures in Voronoi cells, called clusters. The high-level description of the rules are
as follows9: mark a random subset of O(n1/3 logn) Voronoi cells (among the n2/3 Voronoi
cells), then connect10 them according to the following rules using Õ(n) edges each. Rule (1):
connect every marked Voronoi cells to each of its neighboring Voronoi cells. Rule (2): if a
Voronoi cell has no neighboring marked Voronoi cells, then connect it to all its neighboring
Voronoi cells as well. Rule (3): For each pair of (not necessarily adjacent) Voronoi cell a and
marked Voronoi cell c sharing common neighboring Voronoi cells Γ(a) ∩ Γ(c), keep an edge
from a to a single Voronoi cell b∗ ∈ Γ(a) ∩ Γ(c) (i.e., b∗ has the minimum ID in Γ(a) ∩ Γ(c)).
This last rule handles the edges of (unmarked) Voronoi cells that have some neighboring
marked Voronoi cell.

Idea (V) – Establishing the O(k2) stretch guarantee. In our implementation, the radius
of each Voronoi cell is O(k) (as opposed to O(∆ logn) in [21]). Thus, it suffices to show
that the spanner path from Voronoi cell supervertices a to b only visits O(k) other Voronoi
cells. To this end, we impose a random ordering of the Voronoi cells, by assigning them
distinct random ranks. We then make the following modification to Rule (3): add an edge
from a to b if there exists a marked Voronoi cell c such that the rank r(b) of b is among the
O(n1/k logn) lowest ranks in Γ(a) ∩ Γ(c), restricted to those discovered by the LCA. This
modified rule allows us to extend the inductive connectivity argument of [21] to show that
every pair of adjacent cells are connected by a path that goes through O(k) cells – since each
cell has radius O(k), the final stretch is O(k2).

Idea (VI) – Graph connectivity with bounded independence. One of our key technical
contributions is in showing that one can implement the above randomized random rank
assignment using small number of random bits. We show that the ranks of Voronoi cells can
be computed using T = Θ(k) hash functions h1, · · · , hT chosen uniformly at random form a
family of O(logn)-wise independent hash functions of the form {0, 1}logn → {0, 1}O((logn)/k).
We define our rank function as a concatenation of hi’s on the ID of the Voronoi cell’s center:
for the Voronoi cell centered at v, r(v) = h1(ID(v)) ◦ . . . ◦ hT (ID(v)). We then carefully
adopt the inductive stretch argument to this randomized rank assignment with limited
independence so that in the ith step, our analysis only relies on the hash function hi.

9 Here, we state a simplified version of the rules. In particular, the rules are expressed in terms of clusters
whose exact definitions are skipped for now. Refer to the longer version of our paper for the precise
definitions of the rules.

10We connect two vertex sets by adding the unique lexicographically-first edge between the two vertex
sets (if any exists) based on the vertex IDs of the endpoints.
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1.1.3 Lower Bounds
To establish the lower bound, we construct two distributions over undirected d-regular graph
instances that contain a designated edge e. For graphs in the first family, it holds that after
removing e, w.h.p., they remain connected while in the second family, removing e disconnects
the endpoints of e and leave them in separate connected components. We show that for
the edge e, any LCA that makes o(min{

√
n, n/d}) = o(min{

√
n, n2/m}) probes can only

distinguish whether the underlying graph is from the first family or the second family with
probability 1/2 + o(1).

Our approach mainly follows from the analysis of Kaufman, Krivelevich, and Ron [20],
on the lower bound construction of [24]. While [20] studies a rather different problem of
bipartiteness testing, we consider similar probe types and obtain a similar lower bound as
those of [20]. On the other hand, the construction of [24] shows the probe complexity of Ω(

√
n)

for LCAs for spanning graphs that only use Neighbor probes, not Adjacency probes.

I Theorem 3 (Lower Bound). Any local randomized LCA that computes, with success
probability at least 2/3, a spanner of the simple undirected m-edge input graph G with o(m)
edges, has probe complexity Ω(min{

√
n, n2/m}).

The details of this result are deferred to the longer version of this paper.

1.2 Model Definition and Preliminaries
Graph notation. Throughout, we consider simple unweighted undirected graphs G = (V,E)
on n = |V | vertices andm = |E| edges. Each vertex v is labeled by a unique O(logn)-bit value
ID(v)11. For u ∈ V , let Γ(u,G) = {v : (u, v) ∈ E} be the neighbors of u, deg(u,G) = |Γ(u,G)|
be its degree, and define Γ+(u,G) = Γ(u,G) ∪ {u}. Denote VI = {v ∈ V : deg(v,G) ∈ I}
where I is an interval. For u, v ∈ V , let dist(u, v,G) be the shortest-path distance between u
and v in G. Let Γk(u,G) = {v : dist(u, v,G) ≤ k} be the kth-neighborhood of u, and denote
its size degk(u,G) = |Γk(u,G)|. For subsets V1, V2 ⊆ V , let E(V1, V2) = E ∩ (V1 × V2). The
parameter G may be omitted for the input graph.

We assume that the input graph has an adjacency list representation: each neighbor
set has a fixed ordering, Γ(u) = {v′1, . . . , v′deg(u)}; this ordering may be arbitrarily (e.g.,
not necessarily sorted by vertex IDs). Many of the algorithms in this paper are based
on partitioning the neighbor-list into balanced-size blocks. For ∆ ∈ [n] and u ∈ V such
that deg(u) ≥ ∆, let Γ∆,1(u), . . . ,Γ∆,Θ(deg(u)/∆)(u) be blocks of neighbors obtained by
partitioning Γ(u) into consecutive parts. Each block is of size ∆, except possibly for the last
block that is allowed to contain up to 2∆ vertices.

Local Computation Algorithms. We adopt the definition of LCAs by Rubinfeld et al. [35].
A local algorithm has access to the adjacency list oracle OG which provides answers to the
following probes (in a single step):

Neighbor probes: Given a vertex v ∈ V and an index i, the ith neighbor of v is returned
if i ≤ deg(v). Otherwise, ⊥ is returned. The orderings of neighbor sets are fixed in
advance, but can be arbitrary.
Degree probes: Given a vertex v ∈ V , return deg(v). This probe type is defined for
convenience, and can alternatively be implemented via a binary search using O(logn)
Neighbor probes.

11We do not require IDs to be a bijection V → [n] as in other LCA papers.
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Adjacency probes: Given an ordered pair 〈u, v〉, if v ∈ Γ(u) then the index i such that
v is the ith neighbor of u. Otherwise, ⊥ is returned.

I Definition 4 (LCA for Graph Spanners). An LCA A for graph spanners is a (randomized)
algorithm with the following properties. A has access to the adjacency list oracle OG of the
input graph G, a tape of random bits, and local read-write computation memory. When
given an input (query) edge (u, v) ∈ E, A accesses OG by making probes, then returns YES
if (u, v) is in the spanner H, or returns NO otherwise. This answer must only depend on
the query (u, v), the graph G, and the random bits. For a fixed tape of random bits, the
answers given by A to all possible edge queries, must be consistent with one particular sparse
spanner.

The main complexity measures of the LCA for graph spanners are the size and stretch of
the output spanner, as well as the probe complexity of the LCA, defined as the maximum
number of probes that the algorithm makes on OG to return an answer for a single input
edge. Informally speaking, imagine m instances of the same LCA, each of which is given
an edge of G as a query, while the shared random tape is broadcasted to all. Each instance
decides if its query edge is in the subgraph by making probes to OG and inspecting the
random tape, but may not communicate with one another by any means. The LCA succeeds
for the input graph G and the random tape if the collectively-constructed subgraph is a
desired spanner. All the algorithms in this paper are randomized and, for any input graph,
succeed with high probability 1− 1/nc over the random tape.

Paper Organization. In Section 2 and 3 we describe our results for 3 and 5-spanners in
general graphs. For simplicity, we first describe all our randomized algorithms as using full
independence, then in Section 4, we explain how these algorithms can be implemented using
a seed of poly-logarithmic number of random bits).

Clarification. Throughout we use the term “spanner construction” when describing how to
construct our spanners. These construction algorithms are used only to define the unique
spanner, based on which the LCA makes its decisions: we never construct the full, global
spanner at any point.

2 LCA for 3-Spanners

In this section, we present the 3-spanner LCA with probe complexity of Õ(n3/4). We begin
in Section 2.1 by establishing some observations that allow us to “take care” of different types
of edges separately based on the degrees of their endpoints. In Section 2.2-2.3 we provide
constructions that take care of each type of edges; the analysis of stretch, probe complexity
and spanner size for each case is included in their respective sections. We establish our final
LCA for 3-spanners in Section 2.4.

2.1 Edge classification
I Definition 5 (Subgraphs taking care of edges). For stretch parameter k and set of edges
E′ ⊆ E, we say that the subgraph H ′ ⊆ G takes care of E′ if for every (u, v) ∈ E′,
dist(u, v,H ′) ≤ k.

Observe that if we have a collection of subgraphs Hi’s such that every edge in (u, v) ∈ E
is taken care by at least one Hi, then the union H of the Hi’s constitutes a k-spanner for G.



M. Parter, R. Rubinfeld, A. Vakilian, and A. Yodpinyanee 58:11

I Observation 6 (Spanner construction by combining subgraphs). For a collection of subsets
E1, . . . , E` ⊆ E where ∪i∈[`]Ei = E, if Hi is a subgraph of G that takes care of Ei, then
H = ∪i∈[`]Hi is a k-spanner of G. Further, if we have an LCA Ai for computing each Hi

(i.e., deciding whether the query edge (u, v) ∈ Hi and reporting YES or NO accordingly), we
may construct a final LCA that runs every Ai and answer YES precisely when at least one
of them does so. The performance of our overall LCA (number of edges, probes, or random
bits) can then be bounded by the respective sum over that of Ai’s.

Note that Hi may contain edges of E that are not in Ei, thus it is necessary that the overall
LCA invokes every Ai even if Ai does not take care of the query edge.

Graph partitioning. A vertex v is low-degree if deg(v) ≤
√
n, it is high-degree if deg(v) ≥

√
n

and it is super-high degree if deg(v) ≥ n3/4. Our LCA for 3-spanner assigns each edge of E
into one or more of the subsets Elow, Ehigh, or Esuper based on the degrees of its endpoints,
where

Elow = {(u, v) ∈ E | min{deg(u),deg(v)} ≤
√
n},

Ehigh = {(u, v) ∈ E |
√
n < min{deg(u),deg(v)} ≤ n3/4}, and Esuper = E \ (Elow∪Ehigh).

Because vertices of degree at most
√
n have O(n ·

√
n) = O(n3/2) incident edges in total,

we may afford to keep all these edges, letting Hlow = (V,Elow). Thus, an LCA simply needs
to check the degrees of both endpoints (via Degree probes), and answer YES precisely
when both (or in fact, even one) have degrees at most

√
n. From now on, assume that

deg(u), deg(v) ≥
√
n.

2.2 3-spanner for the edges Ehigh

We pick a random center set S of size O(
√
n logn) by sampling vertex v ∈ V into S

independently with probability p = Θ((logn)/
√
n). For now, we assume that given an ID of

a vertex v, we can decide in O(1) time if v ∈ S. At the end of the section, we describe how
to implement this using a seed of O(logn) random bits. For each endpoint v of Ehigh, let
S(v) = Γ′(v) ∩ S where Γ′(v) is the set of the first

√
n neighbors of v in Γ(v). By Chernoff

bound we have that |S(v)| = Θ(logn) (and in particular, S(v) is non-empty). We call S(v)
the multiple-center set of v. The algorithm adds to Hhigh the edges (v, s) connecting v to
each of its centers s ∈ S(v). This adds a total of O(n logn) edges.

Next, for every v with deg(v) = O(n3/4), the algorithm traverses its neighbor list
Γ(v) = {u1, . . . , u`} and adds the edges (ui, v) ∈ Ehigh to the spanner Hhigh only if ui belongs
to a new cluster; i.e., ui has a center s ∈ S(ui) that no previous neighbor uj , j < i, has as its
center in S(uj). Since the algorithm adds an edge whenever a new center is revealed and there
are O(

√
n logn) centers, the total number of edges added to the spanner is O(n3/2 logn).

We next describe the LCA that, given an edge (u, v) ∈ Ehigh, says YES iff (u, v) ∈ Hhigh.
We assume throughout that deg(v) ≤ deg(u), so deg(v) = O(n3/4). First, by probing
for the first

√
n neighbors of u and v, one can compute the center-sets S(u) and S(v)

each containing O(logn) centers in S. Next, the algorithm probes for all of v’s neighbors
Γ(v) = {u1, . . . , uj = u, . . . , u`}. For every neighbor ui appearing before u in Γ(v), i.e., for
every i < j, and for every center s ∈ S(u), the algorithm makes a cluster-membership test for s
and ui. This cluster-membership test can be answered by making a single Adjacency probe
on the pair 〈ui, s〉, namely s ∈ S(ui) only if s is among the first

√
n neighbors of ui. Eventually,

the algorithm Ahigh answers YES only if there exists s′ ∈ S(u) such that s′ /∈
⋃j−1
i=1 S(ui). It

is straightforwards to verify that the probe complexity is Õ(deg(u) +
√
n) = O(n3/4).
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𝑢𝑢𝑢𝑢𝑖𝑖𝑣𝑣

cluster-membership test
check if 𝑠𝑠 ∈ 𝑆𝑆 𝑢𝑢𝑖𝑖

𝑠𝑠

𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸high?
Γ 𝑣𝑣

size = Θ(log𝑛𝑛)

size ≤ 𝑛𝑛3/4

⋯ ⋯ ⋯

compute the
center set 𝑆𝑆 𝑢𝑢

𝑆𝑆 𝑢𝑢

Figure 1 Illustration for the local construction of Hhigh.

Finally, we show that Hhigh is indeed a 3-spanner. For every edge (u, v) not added to
the spanner, let s ∈ S(u) and let ui be the first vertex in Γ(v) satisfying s ∈ S(ui). By
construction, (ui, v) ∈ Hhigh and also the edges (ui, s) and (u, s) are in the spanner Hhigh,
providing a path of length 3 in Hhigh.

2.3 3-spanner for the edges Esuper

We proceed by describing the construction of the 3-spanner Hsuper that takes care of the
edges Esuper. Let S′ be a collection of O(n1/4 logn) centers obtained by sampling each v ∈ V
independently with probability p′ = Θ((logn)/n3/4). For each vertex v, define its center set
S′(v) to be the members of S′ among the first n3/4 neighbors of v, and if deg(v) ≤ n3/4, then
S′(v) = S′ ∩ Γ(v). First, as in the construction of Hhigh, the algorithm connects each v to
each of its centers by adding the edges (u, s) for every u and s ∈ S′(u) to the spanner Hsuper.

Consider a vertex v and divide its neighbor list into consecutive blocks Γ1(v), . . . ,Γ`(v),
each of size n3/4 (expect perhaps for the last block). In every block Γi(v) = {ui,1, . . . , ui,`′},
the algorithm adds the edge (v, ui,j) to the spanner Hsuper only if ui,j belongs to a new cluster
with respect to all other vertices that appear before it in that block. Formally, the edge
(v, ui,j) is added iff there exists s ∈ S′(ui,j) such that s /∈

⋃
q≤j−1 S

′(ui,q). This completes
the description of the construction. Observe that within each block, the LCA adds an edge
for each new center. W.h.p., there are O(n/n3/4) = O(n1/4) blocks and |S′| = O(n1/4 logn)
centers, so O(

√
n logn) edges are added for each v, yielding a spanner of size O(n3/2 logn).

The LCA Asuper is very similar to Ahigh: the main distinction is that given an edge
(u, v) with deg(u) ≥ n3/4, the algorithm Asuper will probe only for the block Γi(v) =
{ui,1, . . . , ui,j = u, ui,`′} to which v belongs, ad will make its decision only based on that
block. By probing for the degree of v, and the index j such that u is the jth neighbor of v,
one can compute the block Γi(v) by making n3/4 Neighbor probes. In addition, by probing
for the first n3/4 neighbors of both u and v, one can compute the multiple-center sets S′(u)
and S′(v). Finally, the algorithm applies a cluster-membership test for each pair s ∈ S′(u)
and ui,q for q ≤ j − 1. It returns YES only if there exists s /∈

⋃
q≤j−1 S

′(ui,q). Hence, the
number of probes made by the LCA is w.h.p. bounded by |Γi(v)| · |S′(u)| = O(n3/4 logn).

We now show that Hsuper is a 3-spanner for the edges Hsuper. Let (u, v) be such that
deg(u) ≥ n3/4 and let Γi(v) be the block in Γ(v) to which u belongs. Since deg(u) ≥ n3/4,
w.h.p. |S′(u)| = Θ(logn). Assume that (u, v) /∈ Hsuper. Fix s ∈ S′(u) and let ui,q be the
first vertex in Γi(v) that belongs to the cluster of s. Since (u, v) /∈ Hsuper, such a vertex ui,q
is guaranteed to exist. The spanner Hsuper contains the edges (s, u), (s, ui,q) and (v, ui,q),
thus containing a path of length 3 between u and v.
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𝑢𝑢𝑢𝑢𝑖𝑖,𝑞𝑞𝑣𝑣

cluster-membership test
check if 𝑠𝑠 ∈ 𝑆𝑆′ 𝑢𝑢𝑖𝑖,𝑞𝑞

𝑠𝑠

𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸super?

size = Θ(log𝑛𝑛)

⋯ ⋯ ⋯⋯ ⋯

(ignore other blocks)
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≤ ⁄𝑛𝑛 𝑛𝑛 ⁄3 4

= 𝑛𝑛 ⁄1 4

Γ𝑖𝑖 𝑣𝑣
size = 𝑂𝑂 𝑛𝑛 ⁄3 4

compute the
center set 𝑆𝑆′ 𝑢𝑢

𝑆𝑆′ 𝑢𝑢

Figure 2 Illustration for the local construction of Hsuper.

2.4 The Final LCA

Given an edge (u, v) the algorithm says YES if one of the following holds:
deg(u), deg(v) ≤

√
n.

u ∈ S(v) ∪ S′(v) (or vice versa).
the local algorithm Ahigh says YES on edge (u, v).
the local algorithm Asuper says YES on edge (u, v).

This completes the 3-spanner LCA from Theorem 1.

Missing piece: computing centers in the LCA model. In the LCA model, we do not
generate the entire set S (or S′) up front. Instead, we may verify whether v ∈ S on-the-fly
using v’s ID by, e.g., applying a random map (chosen according to the given random tape)
from v’s ID to {0, 1} with expectation p. In fact, this hitting set argument does not require
full independence – the discussion on reducing the amount of random bits is given in Section 4,
but for now we formalize it as the following observation.

I Observation 7 (Local Computation of Centers). Let S be a center set obtained by placing
each vertex into S independently with probability p = Θ(logn/∆). W.h.p., S forms a hitting
set for the collection of neighbor sets of all vertices of degree at least ∆. Further, under the
LCA model, we may check whether v ∈ S locally without making any probes.

3 LCA for 5-Spanners

We now consider LCAs for 5-spanners, aiming for spanners of size Õ(n4/3) with probe
complexity Õ(n5/6). We start by noting that the construction of Hsuper for the 3-spanners
in fact gives for every r ≥ 1, a 3-spanner of size Õ(n1+1/r) for the subset of edges (u, v)
with min{deg(u),deg(v)} ≥ n1−1/(2r): this is achieved by instead setting the threshold for
super-high degree at n1−1/(2r), pick |S′| = Õ(n1/(2r)) centers, and use block size n1−1/(2r).
The probe complexity for querying the spanner is Õ(n1−1/(2r)). For 5-spanner, by taking
r = 3, one takes care of all edges (u, v) with max{deg(u), deg(v)} ≥ n5/6.

Let ∆low = n1/r, ∆med = n1/2−1/(2r) and ∆super = n1−1/(2r). For the purpose of
constructing 5-spanners for general graphs, we let r = 3, simplifying the thresholds to
∆low = ∆med = n1/3 and ∆super = n5/6.) Again, we may afford to keep all edges incident to
some vertex of degree at most ∆low.

For integers a ≤ b, let V[a,b] = {v ∈ V (G) | deg(v) ∈ [a, b]}. We will design a subgraph
H ⊆ G that will take care of the remaining edges Emed = E(V[∆med,∆super], V[∆med,∆super]).
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Table 2 Edge categorization for the construction of 5-spanners.

Subset Criteria # Edges Probe Complexity
Elow (u, v) ∈ E(V, V[1,∆low]) O(n ·∆low) = O(n1+ 1

r ) O(1)
Ebckt (u, v) ∈ E(Vdsrt, Vdsrt) O(n

2 log2 n
∆2

med
) = O(n1+ 1

r log2 n) O((∆super + ∆2
med) log2 n) = O(n1− 1

2r log2 n)

Erep (u, v) ∈ E(V[∆med,∆super], Vcrwd) O( n2

∆super
· log n) = O(n1+ 1

r log n) O(∆super log3 n) = O(n1− 1
2r log3 n)

Esuper (u, v) ∈ E(V, V[∆super,n)) O(n
3 logn

∆2
super

) = O(n1+ 1
r log n) O(∆super log n) = O(n1− 1

2r log n)

I Definition 8 (Deserted and Crowded vertices). A vertex v ∈ V[∆med,∆super] is deserted if
at least half of its neighbors in Γ∆med,1(v) are of degree at most ∆super; i.e., |Γ∆med,1(v) ∩
V[1,∆super]| ≥ ∆med/2. Otherwise, the vertex is crowded.

Criteria for edges. We aim to take care of edges for which both endpoints are in V[∆med,∆super].
To categorize our edges for the purpose of constructing 5-spanners, we need the following
partition of these vertices.

Let Vdsrt (resp., Vcrwd) be the set of deserted (resp., crowded) vertices in V[∆med,∆super].
Given a vertex, we can verify whether it is in any of these sets using O(∆med) probes by
checking the degrees of v and each vertex in Γ∆med,1(v). We then assign each (u, v) ∈ E
into one of the four cases {low,bckt, rep, super} as given in Table 2 It is straightforward to
verify that when ∆low = ∆med (namely when we choose r = 3, which also yields the required
performance), these four cases take care of all edges in E. We note that Hrep assumes that
Hsuper is included: Erep is taken care by Hrep ∪Hsuper, not by Hrep alone.

LCA for Ebckt: the cluster partitioning method. The algorithm is as follows.

Only vertices of degree at most ∆super are chosen to be in S with probability p =
Θ((logn)/∆med). Since at least half the vertices in Γ∆med,1(v) for any v ∈ Vdsrt have degree
smaller than ∆super, we have that w.h.p. |S(v)| = Θ(logn) the cluster-membership test
can be done with constant number of probes. Let us denote by C(s) = {s}∪{v : s ∈ S(v)}
the cluster of center s.

The partitioning of clusters into buckets is defined in a consistent way (regardless of the
given query edge); for instance, create a list of vertices in the cluster, sort them according
to their IDs, divide the list into buckets of size ∆med possibly except for the last one.
Note that we partition C(s) and C(t) separately – we do not combine their elements.
Similarly, once we obtain buckets containing u and v, the order in which we check the
adjacency of u′ and v′ must be consistent. To this end, define the ID of an edge (u, v) as
(ID(u),ID(v)), where the comparison between edge IDs is lexicographic. Thus, this step
only adds the edge of minimum ID between the two clusters.

We also set the precondition (u, v) ∈ E(V[∆med,n), V[∆med,n)), and consistently only allow
candidate pairs (u′, v′) ∈ E(V[∆med,n), V[∆med,n)), to ensure that the lexicographically first
edge of this exact specification is added if one exists. We do not restrict to Ebckt, which
require both endpoints to be deserted vertices, because checking whether (u′, v′) ∈ Ebckt
would take Θ(∆med) probes instead of constant probes. We restrict to edges whose
endpoints have degrees at least ∆med instead of considering the entire E so that S would
be well-defined.
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Local construction of Hbckt. Each v ∈ V[1,∆super] is added to S with probability
p = Θ(logn/∆med).
(A) If u ∈ S(v) or v ∈ S(u), answer YES.
(B) If (u, v) ∈ E(V[∆med,n), V[∆med,n)):

Compute S(u) and S(v) by iterating through Γ∆med,1(u) and Γ∆med,1(v).
For each pair of s ∈ S(u) and t ∈ S(v):

Partition each of the clusters C(s) and C(t) into buckets of size (mostly) ∆med.
Denote the buckets containing u and v by Bucket(u, s) and Bucket(v, t), respec-
tively.
Iterate through each pair of u′ ∈ Bucket(u, s) and v′ ∈ Bucket(v, t) and check if
(u′, v′) ∈ E(V[∆med,n), V[∆med,n)). Answer YES if the edge of minimum ID found
is (u′, v′) = (u, v).

I Lemma 9. For 1 ≤ ∆med ≤
√
n ≤ ∆super ≤ n, there exists a subgraph Hbckt ⊆ G such

that w.h.p.:
(i) Hbckt has O(n

2 log2 n
∆2

med
) edges,

(ii) Hbckt takes care of Ebckt; that is, for every (u, v) ∈ Hbckt, dist(u, v,Hbckt) ≤ 5, and
(iii) for a given edge (u, v) ∈ E, one can test if (u, v) ∈ Hbckt by making O((∆super +

∆2
med) log2 n) probes.

Proof.
(i) Size. In (A) we add |S(v)| = Θ(logn) edges for each v ∈ Vdsrt, which constitutes to

O(n logn) edges in total. In (B), we add one edge between each pair of buckets. We
now compute the total number of buckets. The total size of clusters

∑
s∈S |C(s)| ≤

|S| +
∑
v∈V[∆med,n)

|S(v)| = O(n logn), so there can be up to O((n logn)/∆med) full
buckets of size ∆med. As buckets are formed by partitioning |S| clusters, there are up
to |S| = Θ((n logn)/∆med) remainder buckets of size less than ∆med. Thus, there are
Θ((n logn)/∆med) buckets, and O(((n logn)/∆med)2) edges are added in (B).

(ii) Stretch. Suppose that (u, v) is omitted. Fix centers s ∈ S(u) and t ∈ S(v), then the
lexicographically-first edge (u′, v′) ∈ E(Bucket(u, s),Bucket(v, t)) must have been added
to Hbckt, forming the path 〈u, s, u′, v′, t, v〉 (or shorter, if there are repeated vertices),
yielding dist(u, v,Hbckt) ≤ 5.

(iii) Probes. Computing S(u) and S(v) takes O(∆med) probes. For each pairs of centers,
we scan through the entire neighbor-lists Γ(s) and Γ(t) and collect all vertices in their
respective clusters. This takes O(∆super) probes each because we restrict to centers of
degree at most ∆super. Given the clusters, we identify the buckets containing u and v
each of size O(∆med). We then check through candidates (u′, v′) between these buckets,
taking O(∆2

med) Adjacency probes. So, each pair of centers requires O(∆super + ∆2
med)

total probes. We repeat the process for |S(u)| · |S(v)| = O(log2 n) pairs of centers w.h.p.,
yielding the claimed probe complexity. J

LCA for Erep: the Representative method. We first explain the computation of the
representative set Reps(v) for a croweded vertex v ∈ Vcrwd, i.e., a collection of neighbors of
v that have degree at least n5/6. Using the random bits and the vertex ID, we sample a
set Rv of Θ(logn) (not necessarily distinct) indices in [∆med] at random (for details, see
Sec. 4). Denote the neighbor-list of v by {x′1, . . . , x′deg(v)}, then define Reps(v) = {x′i : i ∈
Rv and deg(x′i) ≥ ∆super}. Then since at least half of the vertices in Γ∆med,1(v) are of degree
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𝑣
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adjacency test to find and keep 
the edge with minimum ID

𝑢′
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𝑠
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Bucket 𝑣, 𝑡

Figure 3 Illustration for the local construction of Hbckt. Green lines show the partition of clusters
into buckets.

at least ∆super, w.h.p. Reps(v) 6= ∅. For consistency, we allow the same definition for Reps(v)
for any v ∈ V[∆med,n) as well, even if it may result in empty sets of representatives. Hence
computing Reps(v) takes O(logn) probes12.

Let Esuper = {(u, v) ∈ E | max{deg(u), deg(v)} ≥ n5/6} and apply the 3-spanner
algorithm algorithm of Sec. 2 to construct a subgraph Hsuper that takes care of the edges
Esuper. To construct Hsuper the algorithm (fully described13 in Sec. 2) samples a set S′ of
centers by picking each v ∈ V independently with probability O(logn/n5/6). For every v
with deg(v) ≥ n5/6, let S′(v) be the sampled neighbors in S′ ∩ Γ1(v) where Γ1(v) is the
first block of size n5/6 in Γ(v). This allows us to check membership to a cluster of s ∈ S′
using a single adjacency probe. The idea would be to extend the 1-radius clusters of S′ by
one additional layer consisting of the crowded vertices connected to the cluster via their
representatives.

For convenience, for a crowded v, define RS(v) = ∪
x′∈Reps(v)S

′(x′), the set of (multiple)
centers of any of v’s representatives. Observe that by adding the edge (v, x′) to Hrep for
every x′ ∈ Reps(v), it yields that dist(v, s,Hrep ∪Hsuper) ≤ 2 for any s ∈ RS(v).

Consider the query (u, v), and suppose that v = v′i is the ith neighbor in u’s neighbor-list,
Γ(u) = {v′1, . . . , v′deg(u)}. We then add (u, v) to Hrep if and only if v introduces a new center
through some representative; that is, RS(v′i) \ ∪j<iRS(v′j) 6= ∅. To verify this condition
locally, we first compute RS(v), and for each of {v′j}j<i, Reps(v′j). Then, we discard (u, v)
if for every center s ∈ RS(v), there exists x and v′j where x ∈ Reps(v′j) and s ∈ S′(x); the
last condition takes constant probes to verify. This gives the full LCA for constructing Hrep
below.

Local construction of Hrep. Each v ∈ V is added to S′ with probability p =
Θ((logn)/∆super).
(A) If v ∈ V[∆med,∆super] and u ∈ Reps(v), answer YES.
(B) If u, v ∈ V[∆med,∆super]:

Compute RS(v).
Denote the neighbor-list of u by {v′1, . . . , v′deg(u)}; identify i such that v = v′i.
For each vertex w ∈ {v′1, . . . , v′i−1}, if w ∈ V[∆med,∆super], compute Reps(w).
For each s ∈ RS(v), iterate to check for a vertex x in any of the Reps(w)’s obtained
above, such that s ∈ S′(x). Answer YES if there exists a vertex s where no such x
exists.

12The naïve solution traverses the entire ∆med first neighbors of v which is too costly.
13Upon replacing the degree threshold of n3/4 with n5/6.
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𝑣𝑣𝑣𝑣𝑗𝑗′𝑢𝑢

cluster-membership test
check if 𝑠𝑠 ∈ 𝑆𝑆′ 𝑥𝑥 for 
some 𝑥𝑥 ∈ Reps(𝑣𝑣𝑗𝑗′)

𝑥𝑥′

𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸rep?
Γ 𝑢𝑢

size = Θ(log2 𝑛𝑛)

size ≤ 𝑛𝑛5/6

⋯ ⋯ ⋯

𝑠𝑠

𝑥𝑥⋯ ⋯

Reps 𝑣𝑣Reps 𝑣𝑣𝑗𝑗′
size = Θ log𝑛𝑛

compute
Reps 𝑣𝑣

compute
Reps 𝑣𝑣𝑗𝑗′

compute all the
center sets 𝑆𝑆′ 𝑥𝑥′
of 𝑥𝑥′ ∈ Reps(𝑣𝑣)

𝑅𝑅𝑆𝑆 𝑣𝑣

Figure 4 Illustration for the local construction of Hrep.

I Lemma 10. For 1 ≤ ∆med ≤ ∆super ≤ n, there exists a subgraph Hrep ⊆ G such that
w.h.p.:
(i) Hrep has O(n2/∆super · logn) edges,
(ii) Hrep ∪ Hsuper takes care of Erep; that is, for every (u, v) ∈ Erep, dist(u, v,Hrep ∪

Hsuper) ≤ 3, and
(iii) for a given edge (u, v) ∈ E, one can test if (u, v) ∈ Hrep by making O(∆super log3 n)

probes.

Proof.
(i) Size. W.h.p., in (A) we add at most

∑
v∈V[∆med,∆super]

|Reps(v)| ≤ n·O(logn) = O(n logn).
Similarly to the analysis of Hhigh, in (B) we add |S′| = O((n logn)/∆super) edges per
vertex u, so |E(Hrep)| = O(n2/∆super · logn).

(ii) Stretch. This claim follows from the argument given in the overview, and is similar to
the analysis of Hhigh.

(iii) Probes. Computing RS(v) takes O(logn) ·∆super = O(∆super logn) (recall that we only
check Γ∆super,1 of each reprsentative). Note also that |RS(v)| = O(log2 n) since v has
O(logn) representative, each of which belongs to Θ(logn) clusters. Computing Reps for
each neighbor w ∈ {v′j}j<i of u takes O(logn) probes each, which is O(∆super logn) in
total since deg(u) ≤ ∆super. This also introduces up to ∆super ·O(logn) representatives
in total. Checking whether each of the O(log2 n) centers in RS(v) is a center of each of
these O(∆super logn) representative takes, in total w.h.p., O(∆super log3 n) probes. J

Final 5-spanner results. To obtain an LCA for 5-spanners, we again invoke all of our
LCAs for the four cases. Applying Lemma 9 and 10, we obtain the following LCA result for
5-spanner in general graphs.

I Theorem 11. For every n-vertex simple undirected graph G = (V,E) there exists an LCA
for 5-spanner with O(n4/3 log2 n) edges and probe complexity O(n5/6 log3 n).

Again, by combining results for larger degrees, we obtain an LCA for 5-spanners with
smaller sizes on graphs with minimum degree at least n1/2−1/(2r).

I Theorem 12. For every r ≥ 1 and n-vertex simple undirected graph G = (V,E) with
minimum degree at least n1/2−1/(2r), there exists a (randomized) LCA for 5-spanner with
O(n1+1/r log2 n) edges and probe complexity of O(n1−1/(2r) log3 n).
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4 Bounded Independence

In this section, we show that all our LCA constructions succeed w.h.p. using Θ(logn)-wise
independent hash functions which only require Θ(log2 n) random bits. We use the following
standard notion of d-wise independent hash functions as in [38]. In particular, our algorithms
use the explicit construction of H by [38], with the parameters as stated in Lemma 14.

IDefinition 13. ForN,M, d ∈ N such that d ≤ N , a family of functionsH={h : [N ]→ [M ]}
is d-wise independent if for all distinct x1, ..., xd ∈ [N ], the random variables h(x1), ..., h(xd)
are independent and uniformly distributed in [M ] when h is chosen randomly from H.

I Lemma 14 (Corollary 3.34 in [38]). For every γ, β, d ∈ N, there is a family of d-wise
independent functions Hγ,β =

{
h : {0, 1}γ → {0, 1}β

}
such that choosing a random function

from Hγ,β takes d ·max {γ, β} random bits, and evaluating a function from Hγ,β takes time
poly(γ, β, d).

Then, we exploit the following result to show the concentration of d-wise independent
random variables:

I Fact 15 (Theorem 5(III) in [36]). If X is a sum of d-wise independent random variables,
each of which is in the interval [0, 1] with µ = E(X), then:

(I) For δ ≤ 1 and d ≤ bδ2µe−1/3c, it holds that Pr[|X − µ| ≥ δµ] ≤ e−bd/2c.
(II) For δ ≥ 1 and d = dδµe, it holds that: Pr[|X − µ| ≥ δµ] ≤ e−δµ/3.

Bounded independence for hitting set procedures. Most of our algorithms are based on
the following hitting set procedure. For a given threshold ∆ ∈ [1, n], each vertex flips a coin
with probability p = (c logn)/∆ of being head and the set of all vertices with head outcome
join the set of centers S. Assuming the outcome of coin flips are fully independent, by the
Chernoff bound, the followings hold w.h.p.:
(HI) There are Θ(pn) sampled vertices S.
(HII) For each vertex of degree at least ∆, it has Θ(logn) centers among its first ∆ neighbors.
Here we show that to satisfy properties (HI) and (HII), it is sufficient to assume that
the outcomes of the coin flips are d-wise independent. By Lemma 14, to simulate d-wise
independent coin flips for all vertices, the algorithm only requires t = Θ(d(logn+ log 1/p))
random bits: more precisely, setting γ = Θ(logn) and β = log 1/p (for simplicity, lets
assume that log 1/p is an integer), there exits a family of d-wise independent functions
H =

{
h : {0, 1}Θ(logn) → {0, 1}log(1/p)

}
such that a random function h ∈ H can be specified

by a string of random bits of length t. In other words, each function h ∈ H maps the
ID of each vertex to the outcome of its coin flip according to a coin with bias p. Then,
from a string R of t random bits, the algorithm picks a function hR ∈ H at random to
simulate the coin flips of the vertices accordingly: the outcome of the coin flip of v is head if
hR(ID(v)) = 0 (which happens with probability p) and the coin flips are d-wise independent.
Setting d = c logn for some constant c > 1, we prove the following:

I Claim 16. If the coin flips are d-wise independent then properties (HI) and (HII) holds.
Furthermore, the sequence of n d-wise independent coin flips can be simulated using a string
of O(log2 n) random bits.
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Construction of representatives in Section 3. The analysis above also extends to the
process of computing Reps. Each crowded vertex chooses values c logn random indices (of its
neighbor-list) in [∆med], each of which has probability 1/2 of hitting a neighbor of degree at
least ∆super. Let {Zi}i∈[c logn] be indicators for these events and Z denote their sum, then
the expected sum E(Z) ≥ (c/2) logn. Imposing d-wise independence, Fact 15(I) implies that
w.h.p., Z > 0, so the representative set is non-empty. We apply the union bound to show
that Reps(v) 6= ∅ for every v ∈ Vcrwd, as desired.

References
1 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation

algorithms. In Proc. 23rd ACM-SIAM Sympos. Discrete Algs. (SODA), pages 1132–1139,
2012.

2 Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic over-
head. In Proc. 31st Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 514–522,
1990.

3 Baruch Awerbuch and David Peleg. Routing with polynomial communication-space trade-
off. SIAM J. Discrete Math., 5(2):151–162, 1992.

4 Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic randomized
algorithms for graph spanners. ACM Transactions on Algorithms (TALG), 8(4):35, 2012.

5 Surender Baswana and Sandeep Sen. A Simple and Linear Time Randomized Algorithm
for Computing Sparse Spanners in Weighted Graphs. Random Structures and Algorithms,
30(4):532–563, 2007.

6 Greg Bodwin and Sebastian Krinninger. Fully Dynamic Spanners with Worst-Case Update
Time. In Proc. 24th Annu. European Sympos. Algorithms (ESA), pages 17:1–17:18, 2016.

7 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing Local Dis-
tributed Algorithms under Bandwidth Restrictions. In 31st International Symposium on
Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, pages 11:1–
11:16, 2017.

8 Bilel Derbel and Cyril Gavoille. Fast deterministic distributed algorithms for sparse span-
ners. Theoretical Computer Science, 2008.

9 Bilel Derbel, Cyril Gavoille, and David Peleg. Deterministic distributed construction of
linear stretch spanners in polylogarithmic time. In Proc. 21st Int. Symp. Dist. Comp.
(DISC), pages 179–192, 2007.

10 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of dis-
tributed sparse spanner construction. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August
18-21, 2008, pages 273–282, 2008.

11 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. Local computation of
nearly additive spanners. In Proc. 23rd Int. Symp. Dist. Comp. (DISC), 2009.

12 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Transactions on Algorithms (TALG), 7(2):20, 2011.

13 Michael Elkin and Ofer Neiman. Efficient Algorithms for Constructing Very Sparse Span-
ners and Emulators. In Proc. 28th ACM-SIAM Sympos. Discrete Algs. (SODA), pages
652–669, 2017.

14 P Erdös. On some extremal problems in graph theory. Israel Journal of Mathematics,
3(2):113–116, 1965.

15 Guy Even, Moti Medina, and Dana Ron. Deterministic stateless centralized local algorithms
for bounded degree graphs. In Proc. 22nd Annu. European Sympos. Algorithms (ESA),
pages 394–405, 2014.

ITCS 2019



58:20 Local Computation Algorithms for Spanners

16 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications in
massively parallel computation and centralized local computation. Proc. 30th ACM-SIAM
Sympos. Discrete Algs. (SODA), 2019.

17 Oded Goldreich. A brief introduction to property testing. In Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages
465–469. Springer, 2011.

18 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.

19 Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages 393–
398, 2012.

20 Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness
in general graphs. SIAM Journal on computing, 33(6):1441–1483, 2004.

21 Christoph Lenzen and Reut Levi. A Centralized Local Algorithm for the Sparse Spanning
Graph Problem. In Proc. 45th Int. Colloq. Automata Lang. Prog. (ICALP), pages 87:1–
87:14, 2018.

22 Reut Levi, Guy Moshkovitz, Dana Ron, Ronitt Rubinfeld, and Asaf Shapira. Constructing
near spanning trees with few local inspections. Random Structures & Algorithms, 50(2):183–
200, 2017.

23 Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Transactions on Algorithms (TALG), 11(3):24, 2015.

24 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local Algorithms for Sparse Spanning Graphs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM, pages 826–842, 2014.

25 Reut Levi, Dana Ron, and Ronitt Rubinfeld. A local algorithm for constructing spanners
in minor-free graphs. arXiv preprint, 2016. arXiv:1604.07038.

26 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local Computation Algorithms for
Graphs of Non-constant Degrees. Algorithmica, 77(4):971–994, 2017.

27 Yishay Mansour, Boaz Patt-Shamir, and Shai Vardi. Constant-time local computation
algorithms. In International Workshop on Approximation and Online Algorithms, pages
110–121, 2015.

28 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algo-
rithms to local computation algorithms. In Automata, Languages, and Programming - 39th
International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part
I, pages 653–664. Springer, 2012.

29 Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 260–273. Springer, 2013.

30 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.
31 David Peleg and Alejandro A Schäffer. Graph spanners. Journal of graph theory, 13(1):99–

116, 1989.
32 David Peleg and Jeffrey D Ullman. An optimal synchronizer for the hypercube. SIAM

Journal on computing, 18(4):740–747, 1989.
33 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Dis-

tributed Computing, 22(3):147–166, 2010.
34 Omer Reingold and Shai Vardi. New techniques and tighter bounds for local computation

algorithms. Journal of Computer and System Sciences, 82(7):1180–1200, 2016.
35 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast Local Computation Algorithms.

In Innovations in Computer Science - ICS 2010, pages 223–238, 2011.

http://arxiv.org/abs/1604.07038


M. Parter, R. Rubinfeld, A. Vakilian, and A. Yodpinyanee 58:21

36 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds for
applications with limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

37 Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal
on Computing, 40(4):981–1025, 2011.

38 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

39 Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Combinatorial
Theory, Series B, 52(1):113–116, 1991.

ITCS 2019





Proofs of Catalytic Space
Krzysztof Pietrzak1

Institute of Science and Technology Austria, Austria
pietrzak@ist.ac.at

Abstract
Proofs of space (PoS) [Dziembowski et al., CRYPTO’15] are proof systems where a prover can
convince a verifier that he “wastes” disk space. PoS were introduced as a more ecological and
economical replacement for proofs of work which are currently used to secure blockchains like
Bitcoin. In this work we investigate extensions of PoS which allow the prover to embed useful
data into the dedicated space, which later can be recovered.

Our first contribution is a security proof for the original PoS from CRYPTO’15 in the
random oracle model (the original proof only applied to a restricted class of adversaries which
can store a subset of the data an honest prover would store). When this PoS is instantiated
with recent constructions of maximally depth robust graphs, our proof implies basically optimal
security.

As a second contribution we show three different extensions of this PoS where useful data
can be embedded into the space required by the prover. Our security proof for the PoS extends
(non-trivially) to these constructions. We discuss how some of these variants can be used as
proofs of catalytic space (PoCS), a notion we put forward in this work, and which basically is
a PoS where most of the space required by the prover can be used to backup useful data. Finally
we discuss how one of the extensions is a candidate construction for a proof of replication
(PoR), a proof system recently suggested in the Filecoin whitepaper.
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1 Introduction

1.1 Proofs of Space (PoS)
A proof of space (PoS) [16, 30, 3] is an interactive proof system in which a prover P can
convince a verifier V that it “wastes” a large amount of disk-space. PoS were suggested as
an alternative to proofs of work (PoW), which are currently used for securing blockchains
including Bitcoin and Ethereum. PoS-based proposals include Spacemint [27] and the Chia
network [1]. In the full version of this paper [29] we provide more discussion on sustainable
blockchains and PoS.

The core of the pebbling-based PoS [16, 30] is a mode of operation for hash-functions
EPoS◦ which is specified by a directed acyclic graph (DAG) G = (V,E) with a dedicated
set VC ⊆ V of |VC | = N “challenge nodes”. The constructions in [16, 30] mostly differ in
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Prover P Verifier V

random oracle H : {0, 1}∗ → {0, 1}w

shared inputs: a DAG G = (V,E), VC ⊆ V, |V | = N , of indegree δ.

parameters: block size w, data/waste ratio κ (only in PoCSF),
µ controlling soundness of exectution phase.

data ~d = (d1, . . . , dN ), di ∈ {0, 1}κ·w

χ← {0, 1}w

~c← V µC

accept if verify(φ~̀,~c, ~o) = 1

(φ~̀, φ+
~̀ ) := commit(~̀)

~̀ := EPoXX(χ) (cf. Figure 2)

store
χ ∈ {0, 1}w, ~̀= {`′i}i∈VC ∈ {0, 1}N ·λ

φ+
~̀ ∈ {0, 1}(N−1)·w (cf. Remark 4.7)

store
χ ∈ {0, 1}w, φ~̀ ∈ {0, 1}w

~o := open(~̀, φ+
~̀ ,~c)

initialization phase
statement χ

commitment φ~̀

prove that φ~̀“mostly correct”

cf. Remark 4.7

execution phase

challenge ~c
answer ~o

Figure 1 Illustration of protocol structure of the proof of space PoS◦, our proofs of catalytic
space PoCSF,PoCSφ and the proof of replication PoR (replace PoXX in the figure with any of those).
In PoCSF κ is a parameter, in PoCSφ,PoR set κ = 1 and for PoS◦ set κ = 0 (i.e., ~d is empty) in the
figure. The label size λ is w(κ+ 1) in PoCSF and w in PoS◦,PoR and PoCSφ.

what type of graphs are used. The only input EPoS◦ takes is a short statement χ which is
used to sample a hash function Hχ (modelled as random oracle in all our proofs), and it
outputs a large file ~̀= {`i}i∈VC which P must store. P sends a commitment φ~̀ to ~̀ to V. To
check the prover really stores this file, the verifier can occasionally send a random challenge
i ∈ VC to the prover, who then must open the label `i ∈ ~̀ of this file. If such audits happen
sufficiently often, the rational thing for P to do is to store ~̀, and not recompute labels as
they are requested. The high level proof structure of this PoS, denoted PoS◦, is illustrated
in Figure 1, the underlying mode of operation, denoted EPoS◦ , is illustrated in Figure 2.

1.2 An Uncoditional Security Proof for the [16] PoS
Informally, the security we want from a PoS is as follows: if a malicious prover P̃ dedicates
slightly less space than the honest prover would after the initialization phase, say (1− ε) ·N
instead N for some small ε > 0, then it should be “expensive” for him to pass the audit.
Note that P̃ can always pass the audit by simply recomputing the entire ~̀ right before the
audit, so the best we can hope for is that passing the audit is almost as expensive for P̃ as it
is to compute the entire ~̀.

The first contribution in this paper is a security proof that shows PoS◦ is a secure PoS in
the random oracle model (Corollary 8 in §7.2). The existing proof from [16] only showed
security against restricted adversaries who store a subset of the data ~̀ an honest prover
would store, but didn’t imply anything against more general adversaries who can store an
arbitrary function of this data. We discuss this in more detail in §5.

When we instantiate EPoS◦ with recent constructions of depth-robust graphs, the security
we get is basically optimal. Informally, for any ε > 0, we can chose parameters such that
any cheating prover who dedicates only an 1 − α fraction of the required space will fail
to efficiently answer an α − ε fraction of the challenges (which simply ask to open some
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EPoS◦ : The proof of space from [DFKP15]
instantiated with (a toy example of) a depth-
robust graph.

EPoR: Our proof of replication is similar to
EPoCSφ , but the data is XOR’ed to the lables as
the computation goes on, not just at the end.

χ `1 `2 `3 `4 `5 `6Hχ

EPoCSφ : Our proof of catalytic space where
the data is committed by a standard Merkle
tree commitment φd. The hash function for
this commitment depends on χ, the hash func-
tion for the labelling also on φd.

EPoCSF
: Our efficiently updatable proof of

catalytic space where the catalytic data com-
mitted via random invertible function F.

`i = Hχ(i, `p1 , . . . , `pδi ) VC = {3, 4, 5, 6}

`i = Hχ(i, `p1 , . . . , `pδi ) for all i ∈ V
`′i = `i ⊕ Fχ(dĩ) for i ∈ VC

χ

`1 `2 `3 `4 `5 `6

`′3 `′4 `′5 `′6

d1 d2 d4d3

Fχ

`i = Hχ,φd
(i, `p1 , . . . , `pδi ) for all i ∈ V

`′i = `i ⊕ dĩ for i ∈ VC

χ

`1 `2 `3 `4 `5 `6

`′3 `′4 `′5 `′6

d1 d2 d4d3

φd

Hχ

`i =

{
Hχ,φd

(i, `p1 , . . . , `pδi ) if i ∈ V \ VC
Hχ,,φd

(i, `p1 , . . . , `pδi )⊕ dĩ if i ∈ VC

χ d1 d2 d4d3

φd

Hχ

`1 `2 `3 `4 `5 `6

Figure 2 Illustration of the graph based modes of operation used in the proof of space PoS◦, proof
of catalytic space PoCSφ and its efficiently updatable variant PoCSF and the proof of replication
PoR. We use a toy example of a depth robust DAG G = (V,E), V = {1, . . . , 6} with VC = {3, . . . , 6}
being the challenge nodes. The embedded data is shown in blue, the labels the prover stores are in
red. The values represented by all nodes are in {0, 1}w, except the bold nodes in PoCSF, where the
di are in {0, 1}w·κ and the `i`′i, i ∈ VC are in {0, 1}w·(κ+1).

blocks in the file ~̀ the prover is committed to). Thus, if say α = 2ε, the prover fails on an ε
fraction, and we can amplify this to be overwhelmingly close to 1 by using O(1/ε) challenges
in parallel. Above, with “efficiently recover”, we mean it needs parallel time2 N , this is
basically optimal in terms of time complexity, as running the entire initialization phase takes
only (sequential) time 4N . We will discuss how our proof compares with existing results in
more detail in §2.

The efficiency of our schemes (i.e., proof size, proof generation time, proof verification
time) are all in O(logN), where the hidden constant depends on the above mentioned ε (i.e.,
the constant grows as ε goes to 0).

1.3 Embedding Useful Data into a PoS
The file ~̀ := EPoS◦(χ) the prover is supposed to store just wastes disk space, and cannot
be used for anything useful. This makes sense, as after all a PoS is supposed to prove the
dedicated space is wasted.

In this paper we investigate the setting where the space dedicated towards the PoS can
at the same time be used to encode some useful data ~d. We identify two applications for
such objects, proofs of replication (PoR), which were (informally) introduced in the Filecoin

2 Our proof is in the random oracle model, and parallel time N means N rounds of queries, where in
each round one can make many queries in parallel. In sequential time just one query is allowed.
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paper [23] and proofs of catalytic space (PoCS), which we introduce and motivate in this
work. The naming of the latter is inspired by catalytic space computations [9, 10], which are
computations that can be done in small space, but only if one is additionally given “catalytic
space”. This space is initially filled with arbitrary (potentially incompressible) data, and
must be in the same state after the computation finishes. It thus functions like a catalyst in
chemical reactions.

We introduce three new proof systems which allow for such embedded data. Two of them
are intended to be used as PoCS, denoted PoCSφ and PoCSF. The PoCSF scheme has a worse
rate than PoCSφ, by which we mean the ratio ‖~d‖/‖~̀‖ of embedded data vs. dedicated space,
but unlike PoCSφ, it allows for efficient updates of the embedded data. The third scheme
we introduce is called PoR and is intended to be used as a PoR. Our new proof systems are
derived from the [16] PoS PoS◦ by replacing its underlying mode EPoS◦ by another mode of
operation EPoXX ∈ {EPoCSφ ,EPoCSF ,EPoR}. These modes take as input χ (just like EPoS◦), and
additionally some data ~d = {di}i∈VC and output a file ~̀ := EPoXX(χ, ~d) to be stored. The
data ~d can be recovered from ~̀ at any time. These four modes are all illustrated in Figure 2.

1.4 Fisch’s PoR
That depth-robust graphs are useful to construct proofs of replication has been observed
independently by Ben Fisch, he discusses this in a BPASE’18 talk3 which took place almost
a month before this paper was posted in a public archive.

In a recent paper [18] Fisch starts developing the foundations of PoR. His paper addresses
many conceptual and technical aspects of PoR, including PoR constructions based on depth-
robust graphs similar to the ones in this paper. His security proofs crucially use the main
technical from this paper, i.e., that pebbling lower bounds for parallel time complexity imply
lower bounds in the random oracle model as stated in Theorem 7. In a subsequent work Fisch
presents PoR based on depth robust graphs with even better provable security guarantees [19].
The construction in that paper is conceptually somewhat different from ours in terms of
the underlying graphs but also in the way in which the data is embedded. The graphs are
stacked depth robust graphs, and are somewhat reminiscent of the simple and elegant PoS of
Ren and Devadas [30] which is based on stacked expanders. We’ll say more on the efficiency
of those constructions in §2.

1.5 Properties of PoS, PoCS and PoR
Fisch [18] observes that for any meaningful definition of PoR, a a PoR necessarily is also a
PoS as defined in [16]. Also a PoCS must necessarily be a PoS.

We (non-trivially) extend our security proof for PoS◦ to prove that also the schemes
PoCSφ,PoCSF,PoR are PoS (The final bound for PoS◦,PoCSφ,PoR is stated in Corallary 8
in §8.2, the bound for PoCSF is in the full version [29]. On the other hand, we observe
that being a PoS with the option to embed useful data is not sufficient to constitute a good
PoCS or PoR. Moreover the “whish list” of properties one might have for PoCS and PoR is
somewhat contradictory. Our PoR candidate PoR is not a good PoCS, while PoCSφ,PoCSF
do not make for a good PoR, as we’ll elaborate next.

The most important property we want from a PoCS is that any particular block of data
from ~d = {di}i∈VC cannot be recovered too efficiently from ~̀. The reason is that otherwise
the PoCS wouldn’t compose: a malicious prover P̃ could run a PoCS for some statement χ,

3 https://www.youtube.com/watch?v=8_9ONpyRZEI

https://www.youtube.com/watch?v=8_9ONpyRZEI
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and at the same time using the embedded data ~d for a PoCS for other statement χ′, thus
pretending to dedicate more space than it does. To prevent this, we want the PoCS to lock
the catalytic data, by which we mean accessing any particular block di ∈ ~d should be almost
as expensive as recovering the entire ~d from ~̀.

In a typical application of a PoR, the data ~d is not chosen by P but provided by V,
together with some replication parameter r ∈ N (and statement χ). P will then run the
PoR for various statements χ1, . . . , χr (generated from χ), each embedding ~d. Informally,
the security property we want is that a prover who later successfully passes the audits must
have stored r redundant copies of ~d (as ~d can be incompressible, the redundancy requirement
implies that PoR is a PoS). So unlike for a PoCS, in a PoR, being able to recover any data
block efficiently is actually a feature, not an issue that breaks security.

We’ll discuss those properties and how our schemes do or don’t achieve them in more
detail in §4, after having defined our various modes. We’ll keep the discussion about the
exact notion of a PoCS or PoR, and in particular any properties beyond being a PoS, like
the locking and replication property mentioned above, informal. We expect future work to
come up with the right definition for a PoCS, and also [18] is probably also not the last
word on definitional issues for PoRs. There certainly are more properties one might need
from a PoR or PoCS in particular applications that have not yet been identified, coming
up with the right definitions and constructions satisfying them (in particular, showing that
the constructions presented in this work do or do not satisfy them) is a promising research
agenda.

2 Comparison With Previous Work

We somewhat divert from [16] when formally defining the security as a PoS. In [16], a PoS
is defined to be (N0, N1, T )-secure if an adversary who stores a file ~̀̃ of size N0 (recall
that we measure size in blocks, typically of size something like w = 256 bits) after the
initialization phase, uses N1 space and T time during the proof executing phase, will fail in
making the verifier accept with overwhelming probability. Below we shortly compare the
four pebbling-based instantiations of the PoS◦ construction that so far have been suggested,
and what security has been proven for them. Those just differ in the graphs G = (V,E) and
the dedicated set of challenge vertices VC ⊆ V, |VC | = N . We also mention the total number
of edges |E|, as this basically determines the efficiency of the initialization procedure, and
the indegree δ, as this determines the size of the proofs and also the time to generate and
verify proof. Let us mention that there is one work [3] constructing PoS using a completely
different approach than graph-pebbling, for space reasons we’ll only discuss his in the full
version [29].

2.1 The original PoS [16]
[16] introduced the notion of PoS and gave two constructions, the first is

(Θ(N/ log(N)), N/ log(N),∞)-secure with |V | = N, δ = 2, |E| = 2N

and based on a graph with high space pebbling complexity by Paul, Tarjan and Celoni [28],
the second uses a rather sophisticated construction combining random bipartite graphs,
superconcentrators and depth-robust graphs [17] and is

(Θ(N),∞,Θ(N))-secure with |V | = N, δ ∈ O(log logN), |E| ∈ O(N log logN))
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2.2 The Ren-Devadas PoS [30]
Ren and Devadas [30] propose a very elegant instantiation of PoS◦ using stacked expanders
and give a proof for it which in terms of security improves upon both constructions from [16]
(just |E| is asymptotically larger). For any α ∈ [0, 0.5], their proof implies security (almost)

(α ·N, (1− α) ·N,∞)-secure with|V | ∈ O(N logN), δ ∈ O(1), |E| ∈ O(N logN)

For say α = 1/3, this means an adversary storing N0 = N/3 blocks after initialization, must
use at least N1 = 2N/3 space during execution. Their construction is a stack of log(N)
expanders of indegree 2, and VC is the graph on top of this stack.

2.3 Fisch’s tight PoS [19]
The PoS underlying Fisch’s recent PoR construction which we shortly discussed in §1.4, is
based on a PoS that for any ε > 0 achieves

(N · (1− ε),∞, N)-security with|V | = O(N log(1/ε)), δ ∈ O(1), |E| ∈ O(N log(1/ε))

Fisch provides concrete bounds for all the constants, the bounds are so good that he gets a
very practical construction for parameters where the proofs guarantee good practical security.
For our construction, which we discuss below, this is not the case. As there’s a huge gap
between the lower and upper bounds on the security we can prove for PoS based on the simple
depth robust graphs from [4, 6], it’s not clear whether the actual security of the “stacked”
constructions as used in [19, 30] really is practically better, or if those constructions just
allow for much tighter proofs, while not actually having better security in practice. Settling
this is an interesting open question.

2.4 Our PoS
In this work we use the depth-robust graphs from [4, 6] to instantiate PoS◦, and also our
three new constructions which allow to embed useful data. For any ε > 0, we can instantiate
it as to get

(N · (1− ε),∞, N)-security with|V | = 4N, δ ∈ O(log(N)), |E| ∈ O(N logN)

This might not seem terribly impressive, note that unlike [30] we don’t claim any lower
bound on N1, the space a cheating adversary must dedicate during proof execution. And
asymptotically, |E| is larger than in the second construction of [16] which (ignoring constants)
has the same security. But as we’ll explain next, we improve upon all existing constructions,
except the subsequent work by Fisch [19], in three crucial points.
1. Unconditional Proof: Our proof holds unconditionally (in the random oracle model),

whereas [16, 30] only argued security against restricted adversaries who store a subset of
the file an honest prover would store. Let us mention that for such relaxed adversaries,
we can also prove bounds on the space a successful prover needs during execution.4

4 Basically, for this restricted class of adversaries, whatever bound on time and/or space is proven for
the underlying graph translates to a time and/or space bound for the construction. Our unconditional
proof only translates parallel time complexity. The graphs we use to instantiate our construction are
depth-robust, and such graphs are known [5] to have high “cumulative pebbling complexity”, which
(for restricted adversaries as just mentioned) translates to the fact that if adversary runs in T rounds
during proof execution, it must use Ω(N2/T ) space on average during this computation.
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2. Tight Bound: We get tight security: for any constant ε > 0, we can instantiate our
PoS to be ((1− ε) ·N,∞, N) secure. Equivalently, an adversary storing just an ε fraction
less than the honest prover, and which can run in time T = N , will still fail to make the
verifier accept with overwhelming probability.
Having such a tight bound is crucial for many applications, as it means we get security
against an adversary dedicating an (1− ε) fraction of the space for any ε > 0. Note that
even the (proof of the) [30] construction doesn’t imply any security against adversary
who dedicates just N0 = N/2, i.e., half the claimed space.

3. Security Against Parallelism: The security we prove even holds if we strengthen the
meaning of the parameter T from “total number of oracle queries”, to “total number of
parallel oracle queries”, where each parallel query can contains many inputs, as long as
in total they are bound by an exponential.
This stronger security notion implies that even massive parallelism doesn’t help a potential
adversary. This is useful in a setting where the timepoint at which audits happen is not
known to the prover (in proofs of replication this can be achieved), and we have a bound
on the latency of network between prover and verifier (so the prover cannot make T = N

sequential computations in time less than this latency). Here we can be sure a prover
who passes the audits really dedicates the claimed space, and does not simply reinitalize
the entire space once the audit starts fast enough using massive parallelism. Compare
this to the construction from [30], which can be initalized in sequential time log(N) using
parallelism N .

We will not use the formalism from [16] to quantify security outside of this subsection, but
in our security statements explicitly state what is achieved, which should be easier to parse.
The PoS security of EPoS◦ is stated in Corollary 8, The PoS security of EPoCSφ and EPoR in
Corollary 13 and the PoS security of EPoCSF in the full version [29].

3 Basic Notation and Definitions

3.1 Notation

For an object X, ‖X‖ denotes its bitlength, for a set ~x, |~x| is the number of elements in ~x. For
an integerm we denote [m] def= {1, 2, . . . ,m} and for a, b ∈ R we denote [a, b] def= {c : a ≤ c ≤ b}.
With {0, 1}≤m we denote the set of strings of length ≤ m.

We typically use small greek letters ι, δ, ω, µ, ν, ε, . . . for our parameters used to quantify
security, efficiency etc.. An exception is N which throughout denotes the space requirement
of a prover. All these parameters are values in N except ε which is in [0, 1]. For the security
games considered in this paper we use capital greek letters Φ,Λ. The sans-serif font is used
for interactive systems like parties V,P, P̃,A (modelled as randomized interactive Turing
machines), functions H,F, g, f or algorithms like commitments discussed below (V,P and
P̃ are reserved for an honest verifier, an honest prover, and a potentially malicious prover,
respectively). We use bold letters ~̀, ~d, ~o,~c, . . . for sets (usually ordered) of values, except
for graph notation where we use simply G = (V,E) to denote a graph with vertices V and
directed edges E.

We will often consider a subset VC ⊂ N, |VC | = N of challenge nodes. It will be convenient
to define concise notion for mapping VC to [N ], which we do using a tilde, i.e.,

VC = (v1, . . . , vN ) ⇒ (ṽ1, . . . , ṽN ) = (1, . . . , N) (1)
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3.2 Random Oracles

3.2.1 Fresh Random Oracles.
If H is a fixed random oracle and z ∈ {0, 1}∗, we denote with Hz the function Hz(·) = H(z, ·).
If z is random and long enough (concretely, the amount of non-uniform advice an adversary
has on H is a not too large exponential in ‖z‖), we can treat Hz as a fresh uniformly random
oracle [14]. We do this repeatedly in this work without always explicitly mentioning it.

3.2.2 The Parallel Random Oracle Model.
We prove security of our schemes in the parallel random oracle model, where in every round an
adversary can output a set x1, . . . , xi of queries, and it receives the outputs H(x1), . . . ,H(xi)
at the beginning of the next round. For us the number of rounds will be important, but the
total number of queries is secondary. Although also the total number of queries must be
bound, in our proofs it can be as large as exponential in the block size w, and for the basic
PoS◦, the number of queries during the initialization phase can be even unbounded (not so
for the other schemes). We will denote the number of oracle queries to H an adversary is
allowed to make in the initialization and proof execution phase by qH

1 and qH
2 , respectively.

3.3 Commitments
We will make extensive use of a Merkle-tree commitment scheme, which allows to compute
a short commitment to a long string, and later efficiently open any particular location of
that long string. It is specified by a triple of algorithms commit, open, verify which use a
hash-function H : {0, 1}∗ → {0, 1}w as a building block. For the security as a commitment
scheme, it’s sufficient for H to be collision resistant. In our proofs we will sometimes need to
extract committed values from the commiting party, for this we must assume H is given as
an oracle so our reduction can observe all queries.

If it’s relevant what hash function is used it’s shown as superscript (otherwise one can
just assume any collision-resistant hash function is used). A party A which wants to commit
to values ~x = (x1, . . . , xm) invokes

(φ~x, φ+
~x ) := commitH(~x)

here φ+
~x ∈ {0, 1}(m−1)w denotes the values of all inner nodes in the Merkle-tree, which are

required to later efficiently open any position in ~x, and φ~x ∈ {0, 1}w is the value at the root,
which is the commitment.

Once A announces φ~x it is committed to ~x. It can then open any subset ~i ⊆ [m] of the
committed values (i.e., {xi}i∈~i) by invoking

~o := openH(~x, φ+
~x ,
~i) ∈ {0, 1}≤|~i|dlog(m)e·w .

Everyone can verify that ~o is the correct opening by invoking verifyH(φ~x,~i, ~o) and accepting
iff this value is 1.

3.4 Random Strings are Incompressible
In our proofs we’ll repeatedly use the following fact, which states that a random string cannot
be compressed.
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I Fact 1 (statement from [13]). For any randomized encoding procedure enc : {0, 1}r ×
{0, 1}n → {0, 1}m and decoding procedure dec : {0, 1}r × {0, 1}m → {0, 1}n where

Pr
x←{0,1}n,ρ←{0,1}r

[dec(ρ, enc(ρ, x)) = x] ≥ δ

we have m ≥ n− log(1/δ).

4 Overview of Our Modes and Protocols

In this section we will formally define the mode EPoS◦ underlying the PoS from [16] and our
new modes EPoR,EPoCSφ ,EPoCSF as illustrated in Figure 2. The actual protocols using those
modes as illustrated in Figure 1 will then be defined in §4.5. As we define the modes, we
will also continue our discussion from §1 showing how they (fail to) perform as PoCS or
PoR. In particular, we’ll show that our mode EPoR is not locking (and thus not suitable as
PoCS), whereas EPoCSφ ,EPoCSF do not imply replication. All the modes are defined over a
DAG G = (V,E), for i ∈ V we denote with parents(i) = {j : (j, i) ∈ E} the parents of i, and
we define ~̀parents(i) = {`j : j ∈ parents(i)}.

4.1 The Mode EPoS◦

In the basic PoS the file ~̀ := EPoS◦(χ) contains the “labels” of nodes in VC , where the labels
of the nodes of the underlying DAG G = (V,E) are computed in topological order by hashing
(using a fresh random oracle sampled using χ) the labels of its parents

∀i ∈ V : `i = Hχ(i, ~̀parents(i)) , ~̀ def= {`i}i∈VC (EPoS◦) (2)

The most obvious way to somehow embed data ~d = {di}i∈[N ] into this basic PoS is to simply
XOR the data blocks to the labels in VC . There are two natural ways to do this, XOR the
data to the labels as the computation goes on, or first compute the labels and then XOR
the data to it. The first approach is basically what we do in our construction PoR, and the
second in PoCSφ. Before computing the labels, we first commit to ~d, and then sample a
fresh random oracle to compute the labels using this commitment. We’ll explain below why
without this trick our constructions would miserably fail to be PoS.

4.2 The Mode EPoR

In our PoR ~̀ := EPoR(χ, ~d), the data ~d = {di}i∈[N ] is first committed

(φ~d, φ
+
~d

) := commitHχ(~d) .

Then φ~d is used to sample a fresh random oracle Hχ,φ~d(·) = Hχ(φ~d, ·), which is then used to
compute the labels. For labels of a node i ∈ VC , one additionally XORs the data block dĩ
(recall that {̃i}i∈VC = [N ]) to the label right after it has been computed.

`i =
{

Hχ,φ~d(i, ~̀parents(i)) if i ∈ V \ VC
Hχ,φ~d(i, ~̀parents(i))⊕ dĩ if i ∈ VC

, ~̀= {`i}i∈VC (EPoR) (3)
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4.3 The Mode EPoCSφ

In our PoCS ~̀ := EPoCSφ(χ, ~d) one first computes φ~d as above, uses this to sample a fresh
random oracle Hχ,φ~d to compute labels (as in the basic PoS◦), and only then XORs the data
to the labels to be stored

∀i ∈ V : `i = Hχ,φ~d(i, ~̀parents(i)) (4)

∀i ∈ VC : `′i = `i ⊕ dĩ , ~̀= {`′i}i∈VC (EPoCSφ) (5)

As mentioned above, the fact that the random oracle Hχ,φ~d used to computed the labels
depends on the commitment φ~d to ~d is crucial, let us sketch why. Assume we’d change
Hχ,φ~d to Hχ in the definition of EPoCSφ . Now a malicious prover (in the protocol PoCSφ to
be defined in §4.5) could set the `′i to be stored to whatever it wants (and thus also store
them using low space). Only after choosing the `′i, it then fixes the data ~d = {di}i∈[N ] by
“equivocating” it, i.e., setting it as dĩ := `′i ⊕ `i, so everything is consistent. This malicious
behaviour (not using any space) cannot be distinguished from honest behaviour, thus it’s
not a PoS.

Now let us observe that PoCSφ is not a good PoR, as it doesn’t imply replication. A
prover who is supposed to compute and store ~̀i := PoCSφ(χi, ~d) for r statements χ1, . . . , χr
but the same ~d can instead store ~d once in the clear, and for then for each χj only store the
labels {`i}i∈VC as in eq.(4) instead {`′i = `i ⊕ dĩ}i∈VC , i.e., avoid the XORing step of eq.(5).
Note that this prover has only stored one copy of ~d, instead of storing it r times redundantly,
while it can still pass the audits for all χi, i ∈ [r] because it can compute the correct labels
`′i using its single copy of ~d as `′i = `i ⊕ dĩ. The prover here doesn’t seem to gain much, in
particular it doesn’t save on space by deviating from the honest behaviour. But in a PoR we
probably want to enforce replication, or at least argue that it’s not rational for a prover to
deviate, and there are settings where deviating as just explained can be rational. Assume the
prover has large remote storage space, but only low bandwidth to access it. By deviating as
explained, it can use the space for the r proofs without large communication, in particular,
without ever having to send ~d to the remote disk.

In the other direction one can argue that EPoR is not a good PoCS as given all la-
bels {`i}i∈V as in eq.(3), one can efficiently recover the embedded data as dĩ = `i ⊕
Hχ,φ~d(i, ~̀parents(i)), so it doesn’t provide the locking property we want from a PoCS. The
above argument highlights a problem with the PoCS security of EPoR, but is not totally
convincing, as the prover actually only needs to store the `i for i ∈ VC (not all i ∈ V ), so it
couldn’t necessarily recover those labels efficiently.

4.4 The Mode EPoCSF

Besides PoCSφ, we propose a second PoCS PoCSF, which allows for efficient updates. Instead
of committing to ~d and using this commitment to sample the random oracle Hχ,φ~d for
computing the labels as in PoCSφ, in PoCSF the labels are computed directly using Hχ, i.e.,
independently of ~d. To prevent the “equivocation” attack outlined above, in PoCSF the
prover samples (using χ) a random invertible function Fχ : {0, 1}(κ+1)·w → {0, 1}κ·w and
applies it to the data before XORing it to the label, where κ is a parameter discussed below.
The labels `i, i ∈ V \ VC have length w bits, the labels `i, i ∈ VC are (κ + 1) · w bits long.
Below Hχ : {0, 1}≤ι → {0, 1}(κ+1)·w, and Hχ(·)|w means we cap the output after w bits.

`i =
{

Hχ(i, ~̀parents(i)) if i ∈ VC
Hχ(i, ~̀parents(i))|w if i ∈ V \ VC

(6)

∀i ∈ VC : `′i = `i ⊕ Fχ(dĩ) , ~̀= {`′i}i∈VC (EPoCSφ) (7)
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A random invertible function Fχ as used in this construction can be constructed efficiently,
and with almost no loss in concrete security (which is crucial for our application) instantiated
from a random oracle [21].

PoCSφ has a better rate than PoCSF. In PoCSφ we have rate ‖~d‖
‖~̀‖

= 1, so the stored file ~̀

is as big as the data ~d that can be recovered from it.5 The rate of PoCSF is only ‖~d‖
‖~̀‖

= κ
κ+1 .

For efficiency reasons the κ can’t be too large (κ ≈ 10 is reasonable, then the size of ~̀ is
≈ 10% larger than ~d).

But unlike PoCSφ, PoCSF allows for fast updates of the catalytic data: if P wants to
change a single data block dĩ (embedded in `′i = `i ⊕ Fχ(dĩ)) to d′ĩ then it can simply replace
the label `′i with `′i ⊕ Fχ(dĩ)⊕ Fχ(d′

ĩ
). It then must also update the commitment (φ~̀, φ+

~̀ ),
but this takes only time log(N). For this update P actually needs to know the currently
embedded data block dĩ. There are natural settings where ~d is readily available in the
clear. For example if the catalytic data ~d encoded in ~̀ is used as backup, and a working
copy of ~d is available in the clear. So we think this feature might be useful. This mode is
somewhat different than the other three modes considered. Below we define and analyze
the PoS◦,PoR,PoCSφ modes together as they’re very similar, but PoCSF is different, and for
space reasons the precise definitions and security proofs are only given in the full version [29].

I Remark (efficiently updatable PoR). Looking at Figure 2, one might wonder why there’s no
mode EPoRF , where the data ~d is first pre-processed by Fχ as in EPoCSF , but then XORed to
the labels right after they are computed (as in EPoR). The reason is that the only advantage
of preprocessing ~d using Fχ as in EPoCSF instead of committing to it as in EPoCSφ is the fact
that it makes updating data blocks cheap. But if we XOR the data to the labels right after
it has been computed as in EPoR, then updating a block in label `i, will also change all
subsequent labels `j , j > i, even if the hash function used to compute labels is independent
of ~d. Thus, this update is not cheap after all. It’n an interesting open problem to construct
a candidate for a PoR where data blocks can be efficiently updated.

4.5 The Protocols PoS◦,PoCSφ and PoR

The protocols we consider in this work are a generalization of the pebbling-based PoS
from [16] PoS◦, where we allow the prover to chose and embed additional data ~d into the
file ~̀ to be stored. We define PoS◦,PoCSφ,PoR together as they are very similar, we use
PoXX ∈ {PoS◦,PoCSφ,PoR} as placeholder for any of those constructions.
w,µ : A block length w (w = 256 is a typical value) and a statistical security parameter µ.
G : A directed acyclic graph G = (V,E) with max. indegree δ and a designated set VC ⊆ V

of “challenge nodes” of size N = |VC |.
H : A hash function, which for the proof is modelled as a random oracle H : {0, 1}≤ι → {0, 1}w

which takes inputs of length at most ι = (δ + 2) · w bits.
The space required by the honest prover is ≈ N · w = |VC | · w bits (we’ll discuss the exact
space requirement in Remark 4.7).

5 The prover also must store opening information φ+
~̀ for a Merkle commitment, but as we’ll discuss in

Remark 4.7 this is small compared to ~̀.
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4.6 Initialization

V picks a random statement χ ∈ {0, 1}w and sends it to P.
If PoXX 6= PoS◦, the prover P can choose any data ~d = {di}i∈[N ], di ∈ {0, 1}w and then

computes the file to store (if PoXX = PoS◦, ~d is empty)

~̀ := EPoXX(χ, ~d)

as shown in Figure 2 and explained in eq.(2)-(4).
Finally P computes the commitment (φ~̀, φ+

~̀ ) := commit(~̀) for all the labels i ∈ VC , sends
the short commitment φ~̀ to V and locally stores the opening information φ+

~̀ . This concludes
the initialization if we assume P is honest during this phase (we’ll discuss the general case in
Remark 4.7).

At the end of the initalization phase the verifier stores the short strings χ, φ~̀. The prover
stores χ, φ+

~̀ and additionally a large file ~̀= {`i}i∈VC of size ‖~̀‖ = w ·N .

4.7 Proof execution

The protocol where P(~̀, χ, φ+
~̀ ) convinces V(χ, φ~̀) that it stores ~̀ is very simple. V samples

a few nodes from the challenge set ~c = (c1, . . . , cµ) ⊂ VC at random, and sends the challenge
~c to P. P sends openings ~o := open(~̀, φ+

~̀ ,~c) to the labels {`ĩ}i∈~c to V, who then accepts iff
verify(φ~̀,~c, ~o) = 1.

I Remark (prover is honest during initialization). For most of the paper we will assume that
even a malicious prover P̃ follows the protocol during the initialization phase (i.e., behaves
like the honest P). Of course we can’t make this assumption in practice, that’s why pebbling-
based PoS have an extra communication round at the end of the initialization phase where –
for some statistical security parameter ν – V challenges P̃ to open ν labels and their parents
to check that they were correctly computed. For this, P̃ initially sends a commitment to all
nodes V , not just VC , and (except for PoS◦) also a commitment to ~d. If P̃ committed to
labels {`∗i }i∈V where it cheated on an ε fraction of the lables, i.e., for PoS◦ this means we
have `∗i 6= Hχ(i, `∗p1

, . . . , `∗pδi
), then P̃ will fail to pass this check with probability 1− (1− ε)ν .

P̃ can still get away with cheating at a small fraction of labels, but one can easily take care
of this in the proof by assuming that storing such inconsistent labels can be done by P “for
free”. As this is a minor technicality in the proof, we ignore this as not to obfuscate the main
technical contributions.

I Remark (P’s space). The size of the file ~̀ is N · w bits, which is basically the same as the
(N − 1) ·w bits required to store the opening info φ+

~̀ of the Merkle-tree commitment to ~̀: on
the 0’th level of the tree (the leaves) we have the N labels, then on level 1 we have N/2 values,
on level 2 we have N/4 values, etc., for a total of N/2 +N/4 + . . .+ 2 + 1 = N − 1 labels
of internal nodes that constitute φ+

~̀ . But the prover can decide to not store levels 1 . . . k,
thus saving only (N − 1)/2k blocks, while all values in the omitted layers can be recomputed
by hashing at most 2k leaf values (i.e., values from ~̀). Thus, for say k = 5, the Merkle tree
requires just a 1/32 fraction of the space of ~̀, but requires to hash 32 values. In practice
that wouldn’t be expensive as those leave labels can always be stored consecutively on a
disk, and thus reading them comes at small cost compared to reading the first random block
(and hashing 32 blocks is not expensive compared to a disk access). In the discussions in this
writeup we will thus mostly ignore the space required for storing the opening information φ+

~̀ .



K. Z. Pietrzak 59:13

5 The Main Proof Ideas

In this section we’ll discuss the main ideas used in the proofs of this paper, and give an
overview of the work we borrowed ideas from. Pebbling is a game played on directed acyclic
graphs (DAG), where a player can put pebbles on nodes of the graph according to some
rules, and its goal is usually to pebble some particular node or set of nodes using as few
“resources” as possible. There are various pebbling games one can consider, in this work
we just consider the basic black-pebbling game, where the player can put a pebble on a
node if all of its parents have pebbles. The resource considered is typically time (i.e., how
many rounds it takes) or space (i.e., the maximum number of pebbles on the graph at any
time), or combinations thereof. For example cumulative space (the sum of the number of
pebbles on the graph over all rounds) [5] and sustained space (the number of rounds at which
many pebbles were on the graph) [6] have been suggested to model memory-hard functions.
Another important distinction is between sequential and parallel strategies; a parallel player
can – in every round – put as many pebbles on the graph as he wants, whereas a sequential
player can put only one. For reasons discussed below, in this paper we will consider time
complexity in the parallel black-pebbling model.

As pebbling is a simple combinatorial game, it’s often possible to prove unconditional
lower bounds on the resources required to pebble some graphs, and in some cases one can
prove that these bounds imply lower bounds for problems in more interesting computational
models. In particular, if the pebbling game considered is “deterministic” in the sense that
the player is initially given the graph and a designated set of nodes to pebble, then one can
use an elegant proof strategy (coined “ex-post facto” in the paper [15] that introduced it) to
translate basically any pebbling lower bound to a corresponding lower bound in the random
oracle model for computing the “labels” of the designated set of nodes, where the label of a
node is the output of the random oracle on input the labels of its parents.6

Pebbling games capture most constructions of so called memory-hard functions (MHFs),
which are functions that require a lot of memory to be computed. One distinguishes
between data-independent MHFs, where the memory access pattern is independent of the
functions input, and more general data-dependent MHFs. The pebbling game capturing
data-independent MHFs is deterministic, but for data-dependent MHFs it’s randomized, for
this reason almost all security proofs for data-dependent MHFs need to make additional
assumptions on the adversary. An exception is the recent security proof for the data-
dependent MHF called SCRYPT [7], which proves that SCRYPT has high cumulative
memory complexity in the parallel random-oracle model. Despite the fact that here the
underlying pebbling game is randomized, their proof does not need to make any assumptions
on the adversarial behaviour.

Like data-dependent MHFs, also the pebbling game (called Φ and defined in §6.1)
underlying pebbling-based PoS [16, 30] is randomized. Prior to this work no pebbling-based
PoS had an unconditional security proof in the random oracle model; one had to assume
that an adversarial prover only stores a subset of the data the honest prover would store,
but not arbitrary functions of this data.7

6 The high-level idea of an “ex-post-facto” proof is to look at the execution of the game in the random
oracle model and translate this to a pebbling strategy, where every time a label is computed, we put a
pebble on the corresponding node. Now, if the resources (where a round the pebble game translates to
a round of queries to the random oracle, and a pebble translates to space requrired to store one label)
required by the labelling game are smaller than in the derived pebbling game, we can use the adversary
in the labelling game to compress the random oracle. But this is impossible as a uniformly random
string cannot be compressed, so we have a contradiction, and the labelling game must have used at
least as many resources as the lower bound for the corresponding pebbling game dictates.

7 In [16] some combinatorial conjectures were stated which – if true – would have implied that restricting
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The key observation that allows us to translate pebbling-lower bounds for a “randomized”
pebbling game like Φ to lower bounds for the “labelling game” ΛPoS◦ in the random oracle
model (this game is defined in §7.1) is already implicit in [7], and goes as follows: If the
complexity we consider is time complexity in the parallel black-pebbling game, then the
optimal pebbling strategy is oblivious to the randomness (which in our game is a random node
we need to pebble). Concretely, the strategy minimizing the number of rounds required is to
put in every round a pebble on every possible node (i.e., every node whose parents are pebbled).
We observe that the reason “ex-post facto” proofs can’t be done for randomized pebbling
games is that the adversaries’ pebbling strategy can depend on the game’s randomness, but
as just outlined, for parallel time complexity we can assume the adversary is oblivious to
the randomness, and this allows us to push through a pretty standard ex-post facto type
proof (proof of Theorem 7 in §7.2) showing that lower bounds on the hardness of the game
Φ imply lower bounds on the game ΛPoS◦ , which captures the security of PoS◦ as a PoS.
Very informally, the proof is a compression argument, which uses an adversary that is “too
successful” in computing the labels of nodes it is being challenged on into a compressing
encoding algorithm for the random oracle H. As a random oracle is incompressible, such an
encoding cannot exist, and we get a contradiction.

In Theorem 12 in §8.2 we extend this proof from the basic PoS◦ to the modes PoCSφ and
PoR. The problem we face is that now, the values this “too successful” adversary predicts
are not just outputs (i.e., labels `i as in EPoS◦) of the random oracle H, but now they are
of the form `i ⊕ dĩ, where dĩ is chosen by the adversary itself. Thus we can’t readily use
the fact that we learned them to compress H. To solve this problem, we use the fact that
in PoCSφ,PoR, the adversary must first commit to the di’s, and this commitment is then
used to sample a fresh random oracle to compute the labels. We let our encoding algorithm
first runs this adversary who chooses the di’s and computes the commitment. From this
adversary we can extract all the di’s. Once these are known, the encoding proceeds basically
as for the basic PoS◦.

Extending the proof to show that our efficiently updatable PoCS PoCSF is a PoS is much
more challenging, and for space reasons we only provide the proof in the full version [29],
now only giving a high level idea of the challenges. In PoCSF the labels of the “too succesful”
adversary predicts are of the form `i ⊕ F(dĩ), but the adversary has not committed to the
di’s before computing the di’s. The key idea is to replace in the security game the random
invertible function F : {0, 1}λ−w → {0, 1}λ with the composition of two randomly sampled
functions g(f(·)), where f : {0, 1}λ−w → {0, 1}w/2, g : {0, 1}w/2 → {0, 1}λ, and argue that
with high probability this game will behave like the original one (in particular, the adversary
is almost as successful here). In this new game, we can recover `i from the labels the adversary
predicts, which now are of the form `i ⊕ g(f(dĩ)), if additionally given only the short w/2 bit
string f(dĩ), this is good enough to get compression and again push through an ex-post-facto
type proof.

6 The Graph Pebbling Game Φ and its Hardness

In this section we define a pebbling game Φ and show it’s hard if instantiated with depth-
robust graphs. Later we will prove that hardness of Φ implies hardness of games capturing
the PoS security of our schemes.

adversaries like this is without loss of generality. But these conjectures have been beautifully refuted in
[24].
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6.1 The Pebbling Game Φ(G, VC)
The game is parameterized by a DAG G = (V,E), a subset VC ⊆ V of |VC | = N challenge
nodes, and an integer s, 0 ≤ s ≤ N . It is played by an adversary given as a pair AΦ =
{A1

Φ,A2
Φ}.

initialization: A1
Φ gets no input, and outputs the initial pebbling configuration, which is a

subset P0 ⊆ V of |P0| = s nodes.
execution: A random challenge node c← VC is chosen.

A2
Φ gets as input P0 and the challenge c. It then proceeds in rounds, starting at round 1.

In round i, A2
Φ can place (arbitrary many) pebbles on the nodes of V to update the

pebbling configuration from Pi−1 to P ′i according to the following rule: a pebble can be
placed on node v ∈ V only if all the parents of v are pebbled in Pi−1. It then can remove
any number of pebbles to get the configuration Pi ⊆ P ′i .

I Definition 2 (hardness of the game Φ). For s, t ∈ N, ε ∈ [0, 1], we say AΦ does (s, t, ε)-win
the pebbling game Φ(G, VC) (as defined above) if the probability (over the choice of c and
AΦ’s random coins) that A2

Φ puts a pebble on c in t− 1 rounds or less is at most ε.
We say Φ(G, VC) is (s, t, ε)-hard if no such AΦ exists, that is, no adversary can pebble an

ε fraction of VC in t rounds or less, having only s initial pebbles.
I Remark (greedy is best). We observe that the optimal strategy for A2

Φ is trivial: the greedy
strategy, where in every round A2

Φ puts pebbles on all nodes possible and never removes a
pebble, is at least as good as any other strategy. This greedy strategy is oblivious to the
challenge c, which will be crucial in our proofs.

6.2 Depth Robust Graphs
I Definition 3 (depth-robust graphs). A DAG G = (V,E) on V = |N | nodes is (e, d)-depth
robust if after removing any subset of e ·N nodes, there remains a path of length d ·N .

Such graphs were first considered by Erdős et al. [17], and recent work has made them more
practical, cf. [4, 6] and references therein. Concretely, for any ε > 0, [6] constructs a family
{GεN}N∈N of graphs of indegree O(logN) (here the hidden constant depends on ε) which, for
any e, d, e+ d ≤ 1− ε are (e, d)-depth robust.

Note that any graph, even the complete graph (which has indegree N − 1) is only (e, d)
depth-robust for e + d = 1. It is maybe surprising that one gets almost as good depth-
robustness as the complete graph with only O(logN) indegree (one the negative side, it’s
known that Ω(logN) indegree is necessary for this). Let us mention that the indegree of
the G we use to instantiate our schemes is important as the efficiency of our schemes (in
particular the proof size) depends linearly on it.

6.3 Φ(G, VC) is Hard if G is Depth Robust
Let us observe that the ΛPoS◦(G, VC) cannot be (s = N · ce, t, ε = ce)-hard for any ce ∈ [0, 1]
even for tiny t = 1, as one always can simply put those s initial pebbles on an ce fraction of
VC , and this ε = ce fraction is then already pebbled in round 1. By the lemma below, using
the depth-robust graphs Gε′4N the game becomes hard – i.e. we need t ≥ N rounds – for just
a slightly larger fraction ε = ce + 4ε′.

I Lemma 4 (hardness of Φ with the depth-robust graphs from [6]). For any N ∈ N, ε′ > 0
consider the graph Gε′4N from [6], which is (e, d)-depth robust for any e + d ≥ 1 − ε′. Let
VC ⊂ V, |VC | = N be the N topologically last nodes in V . Then, for any ce ∈ [0, 1] the game
Φ(Gε′4N , VC) is (s, t, ε)-hard with

s = N · ce , t = N , ε = ce + 4ε′
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Proof. We can assume ε′ ≤ 1/4 as the statement is void for ε < 0. Let e = ce/4, then
s = e·4N and e ≤ 1/4 (as ce ≤ 1, which holds as for s ≥ N the statement is void). e+d ≥ 1−ε′
implies d ≥ 1 − e − ε′. After removing s nodes (i.e., an e fraction) from V , by the (e, d)
depth-robustness, there’s still a path P ⊂ V of length at least d · 4N ≥ 4N(1− e− ε′) ≥ 2N
in V \ S (second inequality using e ≤ 1/4 and ε′ ≤ 1/4). All but 4N(e+ ε′) of VC must lie
on this path (as the path contains all but 4N(e+ ε′) of the vertices), i.e.,

|VC ∩ P |
N

≥ N − 4N(e+ ε′)
N

= 1− 4e− 4ε′ = 1− ce − 4ε′

The nodes in VC ∩ P are all at the end of the path P (as VC was chosen topologically last
in V ), and as |P | ≥ 2N, |VC | = N , each node in VC ∩ P has depth at least N in P , thus
the number of sequential pebbling queries required to put a pebble on any of those nodes is
t > N . Equivalently, only an ε = 1− |VC∩P |N ≤ ce + 4ε′ fraction of VC can be pebbled in t
rounds or less, as claimed. J

7 PoS Security of PoS◦

In this Section we state and prove our main technical result Theorem 1, which states that
hardness of the pebbling game Φ implies hardness of a game ΛPoS◦ capturing the PoS security
of PoS◦. We start with defining the the ΛPoS◦ game

7.1 The Labelling Game ΛPoS◦(G, VC, w)

The game is parameterized by a DAG G = (V,E), a subset VC ⊆ V of |VC | = N challenge
nodes and a block size w. Moreover a function H∗ : {0, 1}≤ι → {0, 1}w, ι = (δ + 2) · w. Let

∀i ∈ V : `i = H∗(i, ~̀parents(i)) (8)

(note that these are the labels PoS◦(χ) would compute if Hχ = H∗). The game is played by
an adversary APoS◦ = {A1

PoS◦ ,A
2
PoS◦}

initialization: A1
PoS◦ is given oracle access to H∗. It outputs a string (the initial state) S0 of

length ‖S0‖ = m bits (A1
PoS◦ is computationally unbounded).

execution: A random challenge node c← VC is chosen.
A2

PoS◦ gets as input S0 and the challenge c. It then proceeds in rounds, starting at round
1.
In round i, APoS◦ gets as input its state Si−1. It can either decide to stop the game by
outputting a single guess `guess (for `c), or it can make one parallel oracle query: on
query (x1, . . . , xqi) it receives (y1, . . . , yqi) where yi = H∗(xi). It can do any amount of
computation before and after this query, and at the end of the round output its state Si
for the next round.

I Definition 5 (hardness of the game ΛPoS◦). For m, t, qH
2 , w, α ∈ N and pH, epsilon ∈ [0, 1],

we say APoS◦ = (A1
PoS◦ ,A

2
PoS◦) does (m, t, ε, p, qH

2 )-win the labelling game ΛPoS◦(G, C, w) (as
defined above) if for all but a pH fraction of H∗ the following holds: for at most an ε fraction of
challenges c, A2

PoS◦ correctly guesses c’s label (i.e., `guess = `c) in round t or earlier. Moreover
A2

PoS◦ makes at most qH
2 queries to H∗. We say ΛPoS◦(G, VC , w) is (m, t, ε, pH, qH)-hard if no

such APoS◦ exists.
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7.2 Φ Hardness Implies ΛPoS◦ Hardness
Before we show that lower bounds in the pebbling game Φ translate to lower bounds on the
labelling game ΛPoS◦ , let us first mention the other (trivial) direction.

Any pebbling strategy AΦ = {A1
Φ,A2

Φ} can be transformed into a labelling strategy
APoS◦ = {A1

PoS◦ ,A
2
PoS◦} which has the same parallel time complexity and which uses w bits

of space in its initial state S0 for pebble in the initial state P0. The idea is to simply have
APoS◦ mimic AΦ’s strategy, computing a label whenever AΦ places a pebble.

I Proposition 6 ((trivial) hardness of ΛPoS◦ implies hardness of Φ). If an AΦ exists that (s, t, ε)-
wins the pebbling game Φ(G = (V,E), VC), then an APoS◦ exists which (m, t, ε, qH

2 )-wins the
ΛPoS◦(G, VC , w) labelling game for any w, qH

2 = |V | and

m = s · w

Proof. By Remark 6.1 we can assume A2
Φ is a “greedy” adversary who never deletes pebbles,

and thus puts at most |V | pebbles on G during the entire game. If A1
Φ outputs an initial

pebbling P0, then A1
PoS◦ will output an initial state that contains all the labels of the pebbles

in P0

S0 = {`v : v ∈ P0} .

Note that |S0| = w · |P0| ≤ w · s as claimed. A2
PoS◦ will also be greedy, i.e., store all the labels

it ever computes. In step i, when A2
Φ puts fresh pebbles on Pi \ Pi−1, A2

PoS◦ makes a parallel
query to H∗ to compute all the new labels {`v : v ∈ Pi \Pi−1}. In the round where A2

Φ puts
a pebble on c, A2

PoS◦ can compute and output `guess = `c. J

Proving the other direction – that pebbling lower bounds imply lower bounds on the labelling
game – is more challenging.

I Theorem 7 (hardness of Φ implies hardness of ΛPoS◦). For any α > 0, if the pebbling game
Φ(G, VC) is (s, t, ε)-hard, then the labelling game ΛPoS◦(G, VC , w) is (m, t, ε, 2−α, qH

2 )-hard
where

m ≥ s · (w − 2(logN + log qH
2 ))− α

Before we get to proof of this theorem, let us state what security it implies for PoS◦ using
the hardness of Φ as stated in Lemma 4.

I Corollary 8 (of Thm. 7 and Lem. 4). For Gε′4N , VC as in Lemma 4, and any ce ∈ [0, 1],

ΛPoS◦(Gε
′

4N , VC , w) is (m, t, ε, 2−α, qH
2 )-hard

whith m = N · ce · (w − 2(logN + log qH
2 ))− α , t = N , ε = ce + 4ε′

Let us observe that the hardness as stated is basically optimal. For slightly larger m = N · ce
(i.e., if we ignore the additive log terms), it means an adversary dedicating N · (1−4ε′−∆) ·w
(instead N · w) space after initialization will fail to answer a ∆ fraction of the challenges in
parallel time < N . Note that in 4N = |V | sequential time every challenge can be answered
with no storage at all by recomputing the entire labelling. As always, by challenging this
adversary on O(1/∆) queries in parallel we can amplify the probability of the adversary
failing to answer fast arbitrary close to 1.
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Proof of Theorem 7. To prove the theorem we assume an adversary APoS◦ = (A1
PoS◦ ,A

2
PoS◦)

exists who (m, t, ε, 2−α, qH
2 )-wins the labelling game. Let H,Pr[H∗ ∈ H] ≥ 2−α be the subset

of H∗ for which APoS◦ can win the labelling game like that, i.e., using an initial state of ≤ m
bits, in ≤ t rounds, and for an ≥ ε fraction of challenges where A2

PoS◦ makes ≤ qH
2 queries to

H∗ (cf. Definition 5).
We will consider the random experiment where for a given H∗ ∈ H, we first run A1

PoS◦
to get S0, and then we run A2

PoS◦ on all challenges in parallel. This will define a set F of
“fresh” labels, which are labels that occur during the execution before they have been actually
computed (and thus intuitively must somehow have been stored in the initial state S0). We
then prove two claims.

The first shows how the above execution translates into a strategy to (|F |, t, ε)-win he
the pebbling game, as this game is (s, t, ε)-hard, we have |F | ≥ s. The second claim shows
how to compress H∗ by almost |F | ·w bits when given the initial state S0. As most functions
are incompressible, we get m = ‖S0‖ ' s · w. We now give the detailed proof.

As outlined above, consider any H∗ ∈ H, and let S0 ← A1
PoS◦ be the initial state. Let

V ′C ⊆ VC be the set of challenges which A2
PoS◦(S0, ·) answers correctly in t rounds or less, as

H∗ ∈ H we have |V ′C | ≥ ε|VC |. In the proof we’ll consider two algorithms
A‖PoS◦ runs A2

PoS◦ in parallel for all possible challenges c ∈ VC . Concretely, A‖PoS◦ invokes
|VC | instances of A2

PoS◦(S0, c), one for every challenge c ∈ VC . In each round, A‖PoS◦
collects the queries made by all the instances of A2

PoS◦ that have not yet terminated, then
makes one parallel query to H∗ containing all the collected queries, and forwards the
corresponding answers to the A2

PoS◦ instances. We let A‖PoS◦ run for t rounds, and then
stop.

LG computes the labels `1, `2, . . . , `|V | in topological order, making sequential queries to H∗.
We refer to a query that correctly computes a label as in eq.(8), i.e., a query of the form

`i = H∗(i, ~̀parents(i))

as a real query. For i ∈ V , we say i is fresh if in some round A‖PoS◦ uses a label `i as (part
of an) input to a query or the thread A2

PoS◦(S0, i) outputs `i as its guess `guess = `i (note that
then i ∈ V ′C) before this label `i was received as output of a real query. Let F ⊆ V denote
the (indices of) the fresh labels. Thus, {`i}i∈F are all the labels that appear during A‖PoS◦ ’s
execution before they have been computed, i.e., received as output on a real query.

I Claim 9. There is an adversary AΦ that (s′, t, ε)-wins the pebbling game Φ(G, VC) with
s′ = |F | initial pebbles (thus |F | ≥ s).

Proof of Claim. Consider an A1
Φ which choses an initial pebbling P0 = F . Then A2

Φ in round
i puts a pebble on v if A‖PoS◦ received `v as output of a real query in round i. By construction
this is a valid parallel black pebbling.

We claim that this A2
Φ puts a pebble on every node in V ′C in t steps or less, and thus

(s, t, ε)-wins Φ(G, VC). To see this, consider any c ∈ V ′C . If c ∈ F = P0 it’s pebbled already
in round 1. Otherwise, if c ∈ V ′C \ F , the label `guess = `c output by the thread A2

PoS◦(S0, c)
was not fresh, and thus must have been received as output of a real query in some round
j ≤ t. By construction this A2

Φ will have put a pebble on c in round no later than j. J

Now that we have shown |F | ≥ s, the next step is to lower bound ‖S0‖, the bitlength of the
initial state, in terms of |F |. For this, we show how to compress the function table of H∗ given
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S0 by almost by almost |F | · w bits. Using the fact that a random oracle is incompressible
(cf. Fact 1 in §3), we’ll then derive a lower bound ‖S0‖ ' |F | · w. Let

[H∗] ∈ {0, 1}(2
ι+1−1)×w

denote the function table of H∗ : {0, 1}≤ι → {0, 1}w.

I Claim 10. There exists an ecoding (enc, dec) which correctly decodes an 2−α fraction of
the tables

Pr
H∗

[dec(enc([H∗])) = [H∗]] ≥ 2−α

and the length of the encoding is ‖enc([H∗], S0)‖ ≤ ‖[H∗]‖+‖S0‖−|F | ·(w−2(logN+log qH
2 )).

Before we prove this claim, let us observe this implies the statement of the theorem by using
Fact 1, which implies

‖S0‖ ≥ |F | · (w − 2(logN + log qH
2 ))− α .

Proof of Claim. The encoding enc/dec will correctly decode all the [H∗] which are in H. For
this, enc([H∗]) first determines if H∗ ∈ H, and if this is not the case outputs whatever (say
the bit 0). Let B denote the following computation: we first invoke A‖PoS◦(S0, VC) followed
by LG , we’ll denote with q ≤ N · (qH

2 + 1) the number of distinct H∗ queries made during B’s
execution (at most qH

2 for each invocation of the N invocations of A‖PoS◦ and N more for LG).
Let the list ~c contain all the outputs of H∗ queries made during B. The outputs in ~c

are stored in the order the queries were made, and if a query is repeated, the output is not
stored. Let ~c denote the function table of H∗ with the |~c| w-bit entries that are in ~c removed.
Note that given ~c,~c, S0, VC′ we can recover [H∗] by running B using ~c to answer all the oracle
queries. After this, we have learned all the inputs corresponding to the outputs stored in ~c,
and thus know which queries were deleted from [H∗] to get ~c. Thus now we can recover all
of [H∗]. We haven’t compressed anything yet (as ‖~c‖+ ‖~c‖ = ‖[H∗]‖, or as all elements in
those sets and the table are w bit strings, equivalently |~c|+ |~c| = |[H∗]|). Next we’ll show
how to compress ~c into a smaler ~cF which, with some short extra information ~bF , will suffice
to answer all H∗ queries made during B correctly.

Recall that F ⊆ V are the fresh queries. Consider i ∈ F , at some point during the
evaluation of B the real query `i = H∗(i, ~̀parents(i)) is made (the only reason we invoke LG as
part of B is to ensure this query is made at some point). As i ∈ F , at the point where this
query is made for the first time, we have already observed the value `i as part of some query
input. Let ~cF denote ~c, but with the |F | entries corresponding to the real queries of i ∈ F
deleted. With this ~cF we can answer all of B’s queries if we’re given some extra information
which, for every i ∈ F , tells as at which point during the execution of B we observe `i, and
where the corresponding real query is made. This extra information requires at most 2 log q
bits for every i ∈ F , let ~bF denote a string encoding this information, we now define the
encoding as

enc([H∗]) = (S0,~cF ,~bF ,~c)

The decoding dec(S0,~cF ,~bF ,~c) reconstructs [H∗] as outlined above. As

‖~cF ‖+ ‖~c‖ = ‖[H∗]‖ − w · |F |
‖~bF ‖ ≤ |F | · 2 log q′ ≤ |F | · 2(logN + log q)

the encoding length is ‖enc([H∗], S0)‖ ≤ ‖S0‖ + ‖[H∗]‖ − |F | · (w − 2(logN + log q)) as
claimed. J
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J

8 PoS Security of PoCSφ and PoR

In this section we extend the result from the previous section, and show that hardness
of Φ implies hardness of games ΛPoCSφ and ΛPoR, which capture the PoS security of our
constructions PoCSφ and PoR. We start with defining the games

8.1 The Labelling Games ΛPoCSφ
and ΛPoR

Let PoXX ∈ {PoCSφ,PoR}. The game is parameterized by a DAG G = (V,E), a subset
VC ⊆ V of |VC | = N challenge nodes and a block size w. Moreover a function H∗ : {0, 1}≤ι →
{0, 1}w, ι = (δ + 2) · w. The game is played by an adversary APoXX = {A1

PoXX,A2
PoXX}.

initialization: A1
PoXX is given oracle access to H∗. It can choose any data ~d = {di}i∈VC , di ∈

{0, 1}w, which defines labels ~̀ to store as in eq.(3) and eq.(4), but using H∗ instead
Hχ. Recall that for this we first compute (φ~d, φ

+
~d

) := commitH∗(~d), now let H∗,φ~d be the
function H∗,φ~d(·) ≡ H∗(φ~d, ·), and then compute ~̀ as

(if PoXX = PoR) ~̀= {`i}i∈VC where `i =
{

H∗,φ~d(i, ~̀parents(i)) if i ∈ V \ VC
H∗,φ~d(i, ~̀parents(i))⊕ dĩ if i ∈ VC

(if PoXX = PoCSφ) ~̀= {`′i}i∈VC where ∀i ∈ V : `i = H∗,φ~d(i, ~̀parents(i))
∀i ∈ VC : `′i = `i ⊕ dĩ

A1
PoXX outputs a string (the initial state) S0 of length ‖S0‖ = m bits.

execution: A random challenge node c← VC is chosen.
A2

PoXX gets as input S0 and challenge c. It then proceeds in rounds starting with i = 1:
In round i, APoXX gets as input its state Si−1. It can either decide to stop the game by
outputting a single guess `guess (for `c in PoR or `′c in PoCSφ), or it can make one parallel
oracle query: on query (x1, . . . , xqi) it receives (y1, . . . , yqi) where yi = H∗(xi). It can
do any amount of computation before and after this query, and at the end of the round
output its state Si for the next round.

I Definition 11 (hardness of the games ΛPoXX ∈ {ΛPoR,ΛPoCSφ}). For m, t, qH
1 , q

H
2 , w ∈ N and

pH, ε ∈ [0, 1], we say APoXX = (A1
PoXX,A2

PoXX) does (m, t, ε, pH, q
H
1 , q

H
2 )-win the labelling game

ΛPoXX(G, VC , w) (as defined above) if for all but a pH fraction of H∗ the following holds: for at
most an ε fraction of challenges c, A2

PoXX correctly guesses c’s label (i.e., `guess = `c) in round
t or earlier. Moreover A1

PoXX and A2
PoXX make at most qH

1 and qH
2 queries to H∗, respectively.

We say ΛPoXX(G, VC , w) is (m, t, ε, pH, q
H
1 , q

H
2 )-hard if no such APoXX exists.

8.2 Φ Hardness Implies ΛPoR and ΛPoCSφ
Hardness

I Theorem 12 (hardness of Φ implies hardness of ΛPoR&ΛPoCSφ). For any α > 0, if the
pebbling game Φ(G, VC) is (s, t, ε)-hard, then the labelling game ΛPoR(G, VC , w) and also the
labelling game ΛPoCSφ(G, VC , w) is (m, t, ε, 2−α + qH

1
2
/2w, qH

1 , q
H
2 )-hard where

m ≥ s · (w − 2(logN + log qH
2 ))− α

Before we get to proof of this theorem, let us state what security it implies for PoR and
PoCSφ using the hardness of Φ as stated in Lemma 4.
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I Corollary 13 (of Thm. 7 and Lem. 4). For Gε′4N , VC as in Lemma 4, and any ce ∈ [0, 1],

ΛPoCSφ(Gε
′

4N , VC , w) and ΛPoR(Gε
′

4N , VC , w) are (m, t, ε, 2−α, qH
2 )-hard

whith m = N · ce · (w − 2(logN + log qH
2 ))− α , t = N , ε = ce + 4ε′

Proof. We assume the reader is familiar with the proof of Theorem 7, as we will only explain
how that proof needs to be adapted.

The proof of Theorem 7 goes through almost unchanged for PoXX ∈ {PoR,PoCSφ}
instead of PoS◦, the point where it fails is when we need to compress fresh labels. In the
proof of Theorem 7 every fresh label `i, i ∈ F allowed us to compress one element of H∗. Now
the situation is seemingly more complicated. For concreteness, let’s consider PoR. Now even
if the encoding enc observes a fresh label `i when invoking A‖PoR (which is defined analogous
to A‖PoS◦ in the proof of Theorem 7), it’s not clear how to compress one entry of H∗,φ~d ’s
function table as now

`i = H∗,φ~d(i, ~̀parents(i))⊕ dĩ

only provides an output that is blinded with dĩ. If we could make sure the encoding and
decoding enc/dec knew the ~d, this problem would disappear. We fix this problem as follows.
We define A‖PoR analogous to A‖PoS◦ , i.e., it runs A2

PoR(S0, c) on all challenges c ∈ VC in parallel.
But additionally, at the very beginning (before invoking the A2

PoR’s), it invokes A1
PoR, but

only runs it to the point where the commitment φ~d is received as on output of H∗ (recall we
assume A1

PoR follows the protocol, so this commitment must be computed at some point).
This way enc/dec, wo invoke A‖PoR, learn the entire ~d, as it can be extracted from the H∗
queries leading to φ~d. At the same time A1

PoR will almost certainly not have made any
H∗,φ~d(·) = H∗(φ~d, ·) queries as φ~d is uniform and we stop executing A1

PoR once φ~d is received.
This is necessary, so a label that was fresh without running A1

PoR first, will still be fresh if
we do run A1

PoR. The above argument works as long as A1
PoR doesn’t find a collision in H∗

(otherwise we can’t extract a unique ~d). For this reason in the theorem security holds only
for a slightly smaller pH = 2−α + qH

1
2
/2w fraction of the H∗ than the pH = 2−α fraction we

got for the ΛPoS◦ game in Theorem 7. J
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A Discussion and Motivation

A.1 The Quest for a Sustainable Blockchain

PoW based blockchains, most notably Bitcoin, have been critisized as the mining process
(required to secure the blockchain) results in a massive energy waste. This is not only
problematic ecologically, but also economically, as it requires high rewards for the miners to
compensate for this energy loss.8

A.1.1 Proofs of Stake

The idea behind “Nakamoto consensus” used in Bitcoin, is to randomly chose a miner to
generate the next block, where the probability of any miner to be chosen is proportional to
its hashing power. The most investigated idea to replace PoWs in blockchains are “proofs of
stake” (PoStake), where the idea is to choose the winner proportional to the fraction of coins
they hold. At first, this idea looks promising, but it seems to be difficult to actually realize it
in a secure and efficient way. Early ad-hoc implementations of this idea include Peercoin [22]
and NXT [31]. More recent proposals come with security proofs in various models [25, 12, 20],
but those protocols are fairly complicated, and basically run a byzantine agreement protocol
amongst rotating subsets of the miners, thus losing the appealing simplicity of Bitcoin, where
a winning miner simply gossips the next block and no other interaction is required.

8 The block reward currently used as main compensation for miners in Bitcoin is decreasing (it’s halved
every four years), and thus ultimately will be replaced with only transaction fees, which might create
serious problems [11].
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A.1.2 Space as a Resource
After time, space is the best investigated resource in computational complexity, it’s thus
only natural to try using disk space as a resource for mining. This has the potential to
give blockchains which are much more sustainable than PoW based designs, while avoiding
at least some of the technical issues that PoStake has. Permacoin [26] requires a miner to
dedicate disk space, but it’s still a proof of work based design, only now the computation
itself (which is a so called “proof of retrievability”) requires access to a large disk. A proposal
which mostly uses space as resource is Burstcoin [2], this design is poorly document, but it
seems to have security and efficiency issues.9 Another suggestion are “proofs of space” (PoS),
which are the topic of this paper and we’ll discuss them in more detail below in §A.1.4.

A.1.3 Useful Proofs
While PoStake aim to avoid wasting significant resources for mining in the first place, another
approach to minimize the footprint of mining is to use the resources required to sustain the
blockchain for something useful. A intriguing idea is to use the computing power wasted for
PoWs for solving actual computational problems, we refer the reader to [8] and the references
therein. In this work we also follow this approach and construct “proofs of catalytic space”
(PoCS), which are defined like PoS, but where most of the space required by the prover can
be used to store useful data.

A.1.4 Proofs of Space (PoS)
Proofs of space (PoS) [16] are proofs systems that were developed to serve as a replacement
for PoW in blockchain designs. The first proposal of a PoS-based blockchain is Spacemint [27],
a recent ongoing effort which combines PoS with some type of proofs of sequential work is
the Chia network [1]. A PoS [16] is a two stage protocol between a prover P and a verifier
V. The first phase is an intialization protocol which is run only once, after which P has
initalized its space. Then there’s a proof execution phase which typically is run many times,
in which an honest prover P can efficiently convince the verifier that dedicates the space.
The verifier V is required to be very efficient during both phases, this means it can be
polynomial in some security parameter, but should be almost independent (i.e., depend at
most polylogarithmically) on the size N of the space committed by the prover. The honest
prover P is required to be very efficient during the execution phases. During the initialization
P cannot be very efficient, as it must at the very least overwrite all of the claimed space, but
it shouldn’t require much more than that.

To date two very different types of PoS have been suggested. PoS-based on hard to
pebble graphs [16, 30] and PoS-based on inverting random functions [3], the new proofs
systems – for proofs of catalytic space (PoCS) and proofs of replication (PoR) – we propose
in this work extend the pebbling-based PoS. We leave it as an open problem to extend

9 [27, Appendix B of the full version] discusses some issues with (our best guess on what is) Burst and
the underlying proof system called “proofs of capacity” (PoC). In a nutshell, PoC are rather inefficient
as the prover needs to access a constant (albeit small) fraction of the entire space for generating
a proof, and verification requires over a Million hashes. As to security, PoC allow for strong time-
memory trade-offs (a recent ad-hoc fix https://www.burst-coin.org/wp-content/uploads/2017/07/
The-Burst-Dymaxion-1.00.pdf claims to address at least the most obvious time-memory attacks
outlined in [27]). But most worryingly, the blockchain designs seems to have no mechanisms to address
nothing-at-stake issues, which are responsible for the most delicate and complicated issue of any
blockchain design not based on proofs of work.

https://www.burst-coin.org/wp-content/uploads/2017/07/The-Burst-Dymaxion-1.00.pdf
https://www.burst-coin.org/wp-content/uploads/2017/07/The-Burst-Dymaxion-1.00.pdf
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the [3] PoS to PoR and PoCS, this would be very interesting as although the [3] PoS has
worse asymptotic security than pebbling-based PoS, but it’s much more efficient (with proofs
of length a few hundred bits, and proof generation and verification requiring just a small
constant number of hash queries). Moreover, unlike pebbling-based PoS, this PoS has a
non-interactive initialization phase, which makes it easier to use it for a blockchain design
where we have no dedicated verifier, and thus the proof must be made non-interactive.10

10Concretely, for subtle security reasons Spacemint [27] (which uses the pebbling-based PoS) requires the
miners to commit to the transcript of a challenge response protocol which is run during the initialization
phase. This is done by uploading this (short) transcript to the blockchain. The Chia network which are
based on [3] will not require any such commitments.
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Abstract
We construct a verifiable delay function (VDF) by showing how the Rivest-Shamir-Wagner time-
lock puzzle can be made publicly verifiable.

Concretely, we give a statistically sound public-coin protocol to prove that a tuple (N, x, T, y)
satisfies y = x2T (mod N) where the prover doesn’t know the factorization of N and its running
time is dominated by solving the puzzle, that is, compute x2T , which is conjectured to require T
sequential squarings. To get a VDF we make this protocol non-interactive using the Fiat-Shamir
heuristic.

The motivation for this work comes from the Chia blockchain design, which uses a VDF as a
key ingredient. For typical parameters (T ≤ 240, N = 2048), our proofs are of size around 10KB,
verification cost around three RSA exponentiations and computing the proof is 8000 times faster
than solving the puzzle even without any parallelism.
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1 Introduction

1.1 The RSW time-lock puzzle

Rivest, Shamir and Wagner [10] introduced the concept of a time-lock puzzle, and proposed
the following elegant construction
The puzzle is a tuple (N, x, T ) where N = p · q is an RSA modulus, x ∈ Z∗N is random and

T ∈ N is a time parameter.
The solution of the puzzle is y = x2T mod N . It can be computed making two expo-

nentiations by the party who generates the puzzle (and thus knows the group order
φ(N) = (p− 1)(q − 1)) as

e := 2T mod φ(N) , y := xe mod N (1)

but is conjectured to require T sequential squarings if the group order (or equivalently,
the factorization of N) is not known

x→ x2 → x22
→ x23

→ . . .→ x2T mod N (2)
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To be more precise, the conjecture here is that T sequential steps are necessary to compute
x2T (mod N) even if one can use large parallelism.

As an application, [10] show how to “encrypt to the future”: sample a puzzle (N, x, T )
together with its solution y, then derive a key ky from y and encrypt a message m into a
ciphertext c = ENC(ky,m). Given (N, x, T ) and c one can recover the message m in time
required to compute T squarings sequentially, but (under the above conjecture) not faster.

1.2 Proofs of sequential work (PoSW)
Proofs of sequential work (PoSW) are closely related to time-lock puzzles. PoSW were
introduced in [9], and informally are proof systems where on input a random challenge x
and time parameter T one can compute a publicly verifiable proof making T sequential
computations, but it’s hard to come up with an accepting proof in significantly less than T
sequential steps, even given access to massive parallelism.

The PoSW constructed in [9] is not very practical (at least for large T ) as the prover needs
not only T time, but also linear in T space to compute a proof. Recently [5] constructed a
very simple and practical PoSW in the random oracle model. They were interested in PoSW
as they serve as a key ingredient in the Chia blockchain design (chia.net).

The main open problem left open in [5] was to construct PoSW that is unique, in the sense
that one cannot compute two accepting proofs on the same challenge. The existing PoSW
all allow to generate many accepting proofs at basically the same cost as honestly computing
the proof. Unfortunately such PoSW cannot be used for the blockchain application just
mentioned, as this would allow for so called grinding attacks. More precisely, the output of
the PoSW is used to compute a challenge for generating the next block. If the PoSW is not
unique, a malicious miner could compute many proofs, and then pick the one which results
in a challenge that is most favourable for him.

1.3 Verifable delay functions (VDF)
Boneh, Bonneau, Bünz and Fisch [3] recently introduced the notion of a verifiable delay
function (VDF). A VDF can be seen as a relaxation of unique PoSW which still suffices for
all known applications of unique PoSW. We refer the reader to [3] for a thorough discussion
on VDFs including many interesting applications. In a VDF the proof on challenge (x, T )
has two parts (y, π), where y is a deterministic function of x that needs T sequential time to
compute, and π is a proof that y was correctly computed (the reason this is not necessarily a
unique PoSW is the fact that this π does not need to be unique). It must be possible to
compute π with low parallelism and such that π can be output almost at the same time as y.
In [3] this is achieved using incrementally verifiable computation [12]. The (very high level)
idea is to compute a hash chain

y = h(h(. . . h(x) . . .))︸ ︷︷ ︸
T times

and at the same time use incrementally verifiable computation to compute the proof π, so
the proof will be ready shortly after y is computed. To make this generic approach actually
practical the h used in [3] is a particular algebraic function (a permutation polynomial)
which has the property that one can invert it significantly faster than compute in forward
direction (so instead of verifying the evaluation of h(·), one can just verify the the much
simpler computation of h−1(·)), and also the proof system used to compute π is tailored so
it can exploit the algebraic structure of h.

chia.net
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1.4 A VDF from RSW

The RSW time-lock puzzle looks like a promising starting point for constructing a VDF.
The main difficulty one needs to solve is achieving public verifiability: to efficiently verify
y

?= x2T (mod N) one needs the group order of Z∗N (or equivalently, the factorization of N).
But the factorization cannot be public as otherwise also computing y becomes easy.

One idea to solve this issue is to somehow obfuscate the group order so it can only be
used to efficiently verify if a given solution is correct, but not to speed up its computation.
There currently is no known instantiation to this approach.

In this work we give a different solution. We construct a protocol where a prover P can
convince a verifier V it computed the correct solution y = x2T (mod N) without either party
knowing the factorization (or any other hard to compute function) of N . Our interactive
protocol is public-coin, but can be made non-interactive – and thus give a VDF – by the Fiat-
Shamir transformation. Here the prover’s messages are replaced by simply applying a random
function to the transcript. The Fiat-Shamir transformation applied to any constant-round
public-coin interactive proof systems results in a sound non-interactive proof system in the
random oracle model. Although our proof is not constant-round, we can still show that this
transformation works, i.e., gives a sound non-interactive proof system relative to a random
function (i.e., in the random oracle model). In practice the random function is instantiated
with an actual hash-function like SHA256, as then soundness only holds computationally,
such systems are called arguments, not proofs.

Our protocol is inspired by the sumcheck protocol [8, 11]. The key idea of the proof
is very simple. Assume P wants to convince V that a tuple (x, y) satisfies y = x2T . For
this, P first sends µ = x2T/2 to V. Now µ = x2T/2 together with y = µ2T/2 imply y = x2T .
The only thing we have achieved at this point is to reduce the time parameter from T to
T/2 at the cost of having two instead just one statement to verify. We then show that
the verifier can merge those two statements in a randomized way into a single statement
(x′, y′) = (xr · µ, µr · y) that satisfies y′ = x′

2T/2 if the original statement y = x2T was true
(and P sends the correct µ), but is almost certainly wrong (over the choice of the random
exponent r) if the original statement was wrong, no matter what µ the malicious prover did
send. This subprotocol is repeated log(T ) times – each time halving the time parameter T –
until T = 1, at which point V can efficiently verify correctness of the claim itself.

The VDF we get has short proofs and is efficiently verifiable. For typical parameters
(2048 bit modulus and log(T ) ≤ 40) a proof is about 10KB large and the cost for verification
is around three full exponentiations (for comparison, a standard RSA decryption or RSA
signature computation requires one full exponentiation).

The algebraic setting of our proof systems differs a bit from RSW, as we’ll discuss in §2.
In a nutshell, to prove statistical soundness, we need to assume that N is the product of
two safe primes, i.e., N = p · q where p′ = (p− 1)/2 and q′ = (q − 1)/2 are prime, as then a
random quadratic residue x ∈ QRN almost certainly is a generator of QRN . We’ll actually
preform all computations in the group of signed quadratic residues QR+

N , as unlike for QRN ,
one can efficiently decide if an element is in QR+

N , which will make the protocol slightly
simpler and more efficient. Using QR+

N instead of QRN will also make the proof unique, so
our VDF is a unique PoSW.
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1.5 Wesolowski’s VDF
A closely related result to our VDF is a concurrent paper by Wesolowski [14]. A recent
survey [4] compares his construction with the one presented in this paper.

Wesolowski also constructs a VDF by making the RSW time-lock puzzle publicly verifiable.
The prover, who claims y = x2T , receives as challenge a large prime B, and must respond
with the proof π = xb

2T
B c. To verify this proof one checks πB ·x2T mod B ?= y.2 To get a VDF

one makes this protocol non-interactive using the Fiat-Shamir heuristic, i.e., B = hash(y) is
computed as a hash of the first message.

To prove soundness (i.e., that it’s hard to come up with a z 6= x2T together with a π
that passes verification) one needs a computational hardness assumption which basically
states that for any z 6= 1 it is hard to compute the B’th root of z (i.e. a y s.t. zB = y) in
the underlying group when B is a large random prime (whereas soundness of our proof is
unconditional).

The main advantage of Wesolowski’s construction over ours is that his proof is just a single
group element, and thus about a log(T ) factor smaller than in our VDF, also verification
time is about this factor smaller. A drawback of his construction is that the overhead for
computing the proof π is larger, though it improved significantly in the latest writeup. It’s
currently at O(T/ log(T )) multiplications (our construction just needs O(

√
T · log(T )). The

computation of the proof can be parallelized to some extent in both constructions.
Another potential advantage (communicated to us by Dan Boneh) of our proof system is

that it can be applied for any underlying endomorphism, not just the squaring operation.
This could be useful to construct new VDFs, potentially achieving post-quantum security,
though currently we don’t know of any such instantiations.

In summary, Wesolowski’s proof system has shorter proofs and faster verification time.
Our proof system allows for more efficient computation of the proof, does not require any
computational assumptions and seems to apply in a more general setting.

Weselowski and the survey [4] also discuss how to instantiate those proof systems in other
groups than Z∗N , including groups that will not require trusted setup. We’ll discuss this in
more detail in §6.1, for now let us just mention that if instantiated in such groups the proof
systems will rely on a computational assumption (for Wesolowski’s construction, in addition
the root assumption), which basically states that it must be hard to find group elements of
small order.

1.6 Outline
In §2 we discuss the slightly different algebraic setting used here as compared to [10]. We
then present the protocol in §3 and the security proof in §4. In §5 we define VDFs, and in §6
we discuss how the protocol is turned into a VDF and discuss several efficiency and security
issues.

1.7 Notation
For a set X , x $← X means x is assigned a random value from X . For a randomized algorithm
alg we denote with x $← alg that x is assigned the output of alg on fresh random coins, if alg
is deterministic we just write x← alg.

2 This construction appears in the 2nd version of the eprint paper [14] from July 1st and improves over
the construction in the first posting.
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2 The algebraic setting

The exact algebraic setting for our proof system differs slightly from the setting of the original
RSW time-lock puzzle [10]. First, we require that N = p · q is the product of safe primes (a
prime p is safe if (p− 1)/2 is also prime), and moreover we perform the computation in the
group of signed quadratic residues QR+

N . In an earlier version of this paper we used “normal”
quadratic residues QRN . QR+

N is isomorphic to QRN , but makes the protocol slightly
simpler as unlike for QRN , one can efficiently decide if an element is in QR+

N . Moreover
using QR+

N instead of QRN will make the proof unique, i.e., it’s hard to come up with any
proof other than the one generated by the honest prover, so we even get a unique PoSW. As
working with QRN instead of QR+

N is more intuitive, in the proof we’ll assume the proof is
over QRN .

As we’ll outline below, if computing x2T is hard in the original RSW setting, it will
remain hard in our setting (the other direction is not clear, it might be that our setting is
more secure).

2.1 Signed quadratic residues

For two safe primes p and q, and N := p · q we denote the quadratic residues with QRN
def=

{z2 mod N : z ∈ Z∗N} , and the signed quadratic residues [6, 7] are defined as the group

QR+
N

def= {|x| : x ∈ QRN},

where |x| is the absolute value when representing the elements of Z∗N as {−(N−1)/2, . . . , (N−
1)/2}. Since −1 ∈ Z∗N is a quadratic non-residue with Jacobi symbol +1, the map | · | acts as
an (efficiently-computable) isomorphism3 from QRN to QR+

N , and as a result QR+
N is also a

cyclic group, with the group operation defined as

a ◦ b def= |a · b mod N |.

However, unlike for QRN , membership in QR+
N can be efficiently tested since QR+

N = J+
N

where JN is the group of elements with Jacobi symbol +1 and

J+
N

def= {|x| : x ∈ JN} = JN/{±1}.

In other words, to test whether a given x ∈ Z∗N (represented as {−(N −1)/2, . . . , (N −1)/2})
belongs also to QRN+, ensure that x ≥ 0 and that its Jacobi symbol is +1.

2.2 Using (QR+
N , ◦) instead (Z∗N , ·)

Recall that the assumption underlying the security of the RSW time-lock puzzle [10] states
that computing x2T is hard in (Z∗N , ·). We note that using (QR+

N , ◦) instead (i.e., when
x ∈ QR+

N and squaring is defined as x2 def= x ◦ x), as we require for our protocol, will not
make this assumption any weaker. By the two reductions below, we’ll lose at most a factor
4 · 2 = 8 in advantage.

First, let us observe that using (QRN , ·) instead of (Z∗N , ·) can only make the problem
harder: Because |QRN | = |Z∗N |/4, a random element in Z∗N also belongs to QRN with
probability 1/4. So if one can break the assumption with probability ε over QRN , we still
can break it with probability ε/4 over Z∗N .

3 Note, however, that the inverse of this isomorphism is hard to compute under the quadratic residuosity
assumption.
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Second, we observe that using (QR+
N , ◦) instead of (QRN , ·) will not make computing

x2T significantly easier: Consider any x ∈ QRN and let y := x2T mod N in (QRN , ·), and
let x′ = |x| and y′ := x′2

T in (QR+
N , ◦), as the groups are isomorphic, y′=|y|, so y = |y′|−1,

which means y ∈ {y′, N − y′}. Although we can’t efficiently decide if y = y′ or y = N − y′
(as it would contradict the quadratic residuosity assumption), we can pick one of the two
values at random and will get the right one with probability 1/2. This shows that given an
algorithm that finds x2T in QR+

N in time t with probability δ , we get an algorithm that
computes x2T in QR+

N in basically the same time t and probability δ/2.

2.3 On using safe primes
Another difference to the setting of [10] is that we assume that N = p · q is the product of
random safe primes, whereas [10] just assume random primes. We do this to make sure that
QRN (and thus also QR+

N ) contains no sub-group of small order, this property is required to
prove statistical soundness.

It is conjectured that for some constant c, there are c · 2λ/n2 safe λ-bit primes (cf. [13]),
so a random n bit prime is safe with probability ≈ c/n. Under this assumption, the product
of two random n-bit primes will be the product of two safe primes with probability c2/n2.

3 The protocol

Our protocol, where P convinces V it solved an RSW puzzle, goes as follows:
The verifier V and prover P have as common input an RSW puzzle (N, x, T ) and a
statistical security parameter λ. Here T ∈ N, N = p · q is the product of safe primes and
x ∈ QR+

N .
P solves the puzzle by computing y = x2T (making T sequential squarings in (QR+

N , ◦)),
and sends y to V.
Now P and V iterate the “halving protocol” below. In this subprotocol, on common input
(N, x, T, y) the output is either of the form (N, x′, dT/2e, y′), in which case it is used as
input to the next iteration of the halving subprotocol, or the protocol has stopped with
verifier output in {reject, accept}.

3.1 The halving subprotocol
On common input (N, x, T, y)
1. If T = 1 then V outputs accept if y = x2T = x2 and reject otherwise. If T > 1 go to the

next step.
2. The prover P sends µ = x2T/2 to V.
3. If µ 6∈ QR+

N then V outputs reject, otherwise V samples a random r
$← Z2λ and sends it

to P.
4. If T/2 is even, P and V output

(N, x′, T/2, y′)

where
x′ := xr · µ

(
= xr+2T/2

)
y′ := µr · y

(
= xr·2

T/2+2T
)

(note that if y = x2T then y′ = x′
2T/2). If T/2 is odd, output

(N, x′, (T + 1)/2, y′2) .
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3.2 Security statement
I Theorem 1. If the input (N, x, T ) to the protocol satisfies
1. N = p · q is the product of safe primes, i.e., p = 2p′ + 1, q = 2q′ + 1 for primes p′, q′.
2. 〈x〉 = QR+

N .4
3. 2λ ≤ min{p′, q′}
Then for any malicious prover P̃ who sends as first message y anything else than the solution
to the RSW time-lock puzzle, i.e.,

y 6= x2T

V will finally output accept with probability at most

3 log(T )
2λ .

4 Security proof

4.1 Usage of QRN instead QR+
N in the proof

We’ll prove Theorem 1 where the signed quadratic residues (QR+
N , ◦) are replaced with

regular quadratic residues (QRN , ·) throughout. This will make the proof a bit more intuitive
as multiplication modulo N as in QRN is a more familiar and simpler operation than the ◦
operation in QR+

N (which additionally requires the | · | mapping after each multiplication).
As discussed in §2, those two groups are isomorphic, so the proof for (QRN , ·) implies the
same security for (QR+

N , ◦).
The main reason we don’t use (QRN , ·) in the actual protocol is only because in step 3.

of the halving subprotocol V needs to check if µ ∈ QR+
N , which would not be efficient if we

used QRN (in an earlier version of the protocol we did use QRN , and P had to send µ′ s.t.
µ′2 = µ, the verifier would then compute µ := µ′2 can thus could be sure that µ ∈ QRN . As
here P can send any of the 4 roots of µ, this protocol was not unique).

4.2 The language L
It will be convenient to define the language

L = {(N, x, T, y) : y 6= x2T mod N and 〈x〉 = QRN}

We’ll establish the following lemma.

I Lemma 2. For N,λ as in Thm. 1, and any malicious prover P̃ the following holds. If the
input to the halving protocol in §3.1 satisfies

(N, x, T, y) ∈ L

then with probability ≥ 1− 3/2λ (over the choice of r) V’s output is either reject or satisfies

(N, x′, dT/2e, y′) ∈ L

Before we prove the lemma, let’s see how it implies Theorem 1.

4 That is, x generates QR+
N , the quadratic residues modulo N . For our choice of N we have |QR+

N | =
|QRN | = p′q′, so 〈x〉 def= {x, x2, . . . , xp′q′} = QR+

N .
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Proof of Theorem 1. In every iteration of the halving protocol the time parameter decreases
from T to dT/2e and it stops once T = 1, this means we iterate for at most dlog(T )e rounds.
By assumption, the input (N, x, T, y) to the first iteration is in L, and by construction, the
only case where V outputs accept is on an input (N, x, 1, y) where y = x2T = x2 mod N , in
particular, this input is not in L.

So, if V outputs accept, there must be one iteration of the halving protocol where the
input is in L but the output is not. By Lemma 2, for any particular iteration this happens
with probability ≤ 3/2λ. By the union bound, the probability of this happening in any of
the dlog(T )e − 1 rounds can be upper bounded by 3 log(T )/2λ as claimed. J

Proof of Lemma 2. We just consider the case where T is even, the odd T case is almost
identical.

Assuming the input to the halving protocol satisfies (N, x, T, y) ∈ L, we must bound the
probability that V outputs reject or the output (N, x′, T/2, y′) 6∈ L.

If T = 1 then V outputs reject and we’re done. Otherwise, if P̃ sends a µ 6∈ QRN in step
2. then V outputs reject in step 3. and we’re done. So from now we assume µ ∈ QRN . We
must bound

Pr
r

[(y′ = x′
2T/2) ∨ (〈x′〉 6= QRN )] ≤ 3/2λ

using Pr[a ∨ b] = Pr[a ∧ b] + Pr[b] we rewrite this as

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN ] + Pr

r
[〈x′〉 6= QRN ] ≤ 3/2λ (3)

Eq. (3) follows by the two claims below.

I Claim 1. Prr[〈x′〉 6= QRN ] ≤ 2/2λ .

Proof of Claim. We’ll denote with eµ the unique value in Zp′q′ satisfying xeµ = µ (it’s
unique as µ ∈ 〈x〉 = QRN and |QRN | = p′q′). As x, µ ∈ QRN , also x′ = xr · µ = xr+eµ is in
QRN , and 〈x′〉 = QRN holds if ord(x′) = p′q′, which is the case except if (r+eµ) = 0 mod p′
or (r + eµ) = 0 mod q′ or equivalently (using that 2λ < min(p′, q′)) if

r ∈ B def= {Z2λ ∩ {(−eµ mod p′), (−eµ mod q′)}} . (4)

Clearly |B| ≤ 2 and the claim follows. J

I Claim 2. Prr[y′ = x′
2T/2 mod N ∧ 〈x′〉 = QRN ] ≤ 1/2λ .

Proof of Claim. If y 6∈ QRN , then also y′ = µr · y 6∈ QRN (as a ∈ QRN , b 6∈ QRN implies
a · b 6∈ QRN ). As 〈x′〉 = QRN and y′ 6= x′

2T/2 can’t hold simultaneously in this case the
probability in the claim is 0. From now on we consider the case y ∈ QRN . We have

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN ] =

Pr
r

[y′ = x′
2T/2 | 〈x′〉 = QRN ] · Pr

r
[〈x′〉 = QRN ] (5)

For the second factor in (5) we have with B as in (4)

Pr
r

[〈x′〉 = QRN ] = 2λ − |B|
2λ . (6)
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Conditioned on 〈x′〉 = QRN the r is uniform in Z2λ \ B, so the first factor in (5) is

Pr
r

[y′ = x′
2T/2 | 〈x′〉 = QRN ] = Pr

r∈Z2λ\B
[y′ = x′

2T/2 ] . (7)

Let ey ∈ Zp′q′ be the unique value such that xey = y. Using 〈x〉 = QRN in the last step
below we can rewirte

y′ = x′
2T/2 mod N ⇐⇒

µry = (xrµ)2T/2 mod N ⇐⇒

xr·eµ+ey = x(r+eµ)·2T/2 mod N ⇐⇒
r · eµ + ey = (r + eµ) · 2T/2 mod p′q′

rearranging terms

r(eµ − 2T/2) + ey − eµ2T/2 = 0 mod p′q′ . (8)

If eµ = 2T/2 this becomes

ey − 2T = 0 mod p′q′

which does not hold as by assumption we have y 6= x2T . So from now on we assume
eµ 6= 2T/2 mod p′q′. Then for a = eµ − 2T/2 6= 0 mod p′q′ (and b = ey − eµ2T/2) eq. (8)
becomes

r · a = b mod p′q′

which holds for at most one choice of r from its domain Z2λ \ B, thus

Pr
r∈Z2λ\B

[y′ = x′
2T/2 ] ≤ 1

2λ − |B|

and the claim follows from the above equation and (5)-(7) as

Pr
r

[y′ = x′
2T/2 ∧ 〈x′〉 = QRN ] =

Pr
r∈Z2λ\B

[y′ = x′
2T/2 ] · Pr

r
[〈x′〉 = QRN ] ≤ 1

2λ − |B| ·
2λ − |B|

2λ ≤ 1
2λ . J

J

5 Verifiable delay functions

In this section we define verifiable delay functions (VDF) mostly following the definition
from [3]. A VDF is defined by a four-tuple of algorithms:
VDF.Setup(1λ)→ pp on input a statistical security parameter 1λ outputs public paramet-

ers pp.
VDF.Gen(pp, T )→ (x, T ) on input a time parameter T ∈ N, samples an input x.
VDF.Sol(pp, (x, T ))→ (y, π) on input (x, T ) outputs (y, π), where π is a proof that the

output y has been correctly computed.
VDF.Ver(pp, (x, T ), (y, π))→ {accept/reject} given an input/output tuple (x, T ), (y, π)

outputs either accept or reject.
The VDF.Setup and VDF.Gen algorithms are probabilistic, VDF.Sol and VDF.Ver are determ-
inistic. They all run in time poly(log(T ), λ).
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5.1 The statistical security parameter
λ measures the bit-security we expect from our protocol, i.e., an adversary of complexity τ
should have advantage no more than ≈ τ/2λ in breaking the scheme. It only makes sense to
consider time parameters T that are much smaller than 2λ (say we require T ≤ 2λ/2) so the
sequential running time of the honest prover is much smaller than what is required to break
the underlying hardness assumptions.

5.2 Efficiency of solving
The VDF.Sol algorithm can compute the output y in T sequential steps (in this work a
“sequential step” is the ◦ operation, which basically is a multiplication modulo N). Moreover
we require that π can be computed with in much fewer than T steps. As we’ll discuss in §6.2,
we’ll achieve O(

√
T log(T )) sequential steps, and less if parallelism is available. In [3] the

requirement is more relaxed, they compute π in parallel with y using bounded poly(log(T ), λ)
parallelism, so the π is available shortly after y is computed, but overall the computation
is much larger than T . As discussed in the introduction, Wesolowski’s VDF [14] requires
O(T/ log(T )) steps to compute π.

5.3 Completeness
The completeness property simply requires that correctly generated proofs will always accept,
that is, for any λ, T

Pr


VDF.Ver(pp, (x, T ), (y, π)) = accept
where
pp $← VDF.Setup(1λ)
(x, T ) $← VDF.Gen(pp, T )
(y, π)← VDF.Sol(pp, (x, T ))

 = 1

5.4 Security (sequentiality)
The first security property is sequentiality. For this we consider a two part adversary
A = (A1,A2), where A1 can run a pre-computation and choose T . Then A2 gets a random
challenge for time T together with the output state of the precomputation, we require that
whenever

Pr



VDF.Ver(pp, (x, T ), (ỹ, π̃)) = accept
where
pp $← VDF.Setup(1λ)
(T, state) $← A1(pp)
(x, T ) $← VDF.Gen(pp, T )
(ỹ, π̃) $← A2(pp, (x, T ), state)


6= negl(λ)

the A2 adversary must use almost the same sequential time T as required by an honest
execution of VDF.Sol(pp, (π, T )), and this even holds if A is allowed massive parallel compu-
tation (say we just bound the total computation to 2λ/2). This means there’s no possible
speedup to compute the VDF output by using parallelism. Let us stress that by this we
mean any parallelism that goes beyond what can be used to speed up a single sequential
step, which here is a multiplication in Z∗N , and we assume the honest prover can use such
bounded parallelism.
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5.5 Security (soundness)

The second security property is soundness, which means that one cannot come up with an
accepting proof π̃ for a wrong statement. Formally, for an adversary A = (A1,A2) we have
(unlike in the previous definition, here we don’t make any assumption about A2’s sequential
running time, just the total running time of A must be bounded to, say 2λ/2)

Pr



VDF.Ver(pp, (x, T ), (ỹ, π̃)) = accept
and ỹ 6= y

where
pp $← VDF.Setup(1λ)
(T, state) $← A1(pp)
(x, T ) $← VDF.Gen(pp, T )
(y, π)← VDF.Sol(pp, (x, T ))
(ỹ, π̃) $← A2(pp, (x, T ), state)


= negl(λ)

6 A VDF from RSW

In this section we explain the simple transformation of the protocol from §3 into a VDF and
then discuss the efficiency, security and some other issues of this construction.

To keep things simple we’ll assume that the time parameter T = 2t is a power of two.
The four algorithms from §5 are instantiated as

VDF.Setup(1λ) The statistical security parameter λ defines another security parameter
λRSA specifying the bitlength of an RSA modulus, where λRSA should be at least as
large so that an λRSA bit RSA modulus offers λ bits of security (e.g. λ = 100 and
λRSA = 2048). As hardness of factoring is subexponential, while the soundness of our
protocol is exponentially small in λ (in the random oracle model), we can without loss of
generality assume that λ ≤ λRSA/2, so point 3. in the statement of Theorem 1 is satisfied.
The setup algorithm samples two random λRSA/2 bit safe primes p, q and output as public
parameters the single λRSA bit RSA modulus N := p · q.

VDF.Gen(N, T ) samples a random x ∈ QR+
N and outputs (x, T ).

VDF.Sol(N, (x, T )) outputs (y, π) where y = x2T is the solution of the RSW time-lock
puzzle (but over (QR+

N , ◦) not (Z∗N , ·)) and π = {µi}i∈[t] is a proof that y has been
correctly computed. It is derived by applying the Fiat-Shamir heuristic to the protocol
in §3. Recall that in this heuristic the public-coin challenges ri ∈ Z2λ of the verifier
are replaced with a hash of the last prover message. Concretely, we fix a hash function
hash : Z× Z4

N → Z2λ , let (x1, y1) := (x, y) and for i = 1 . . . t let5

5 Note that in the Fiat-Shamir heuristic, we not just hash the first prover message µi in eq. (9),
but also the statement (xi, T/2i−1, yi) of the halving subprotocol. It has been observed that this
is necessary in a setting like ours, where the prover has some influence on the statement to be
proven [1]. There exists an easy attack (communicated to us by Benjamin Wesolowski) on uniqueness
of the VDF if the y’s are not included in the hash: for (x, T ) = (x1, T1), pick µ1 at random, let
r1 = hash((x, T ), µ1), y = (x2T/2/µ1)r1µ2T/2

1 , x2 = xr1
1 µ1, y2 = µr1

1 y. The above y is almost certainly
wrong, i.e., y 6= x2T , but by construction y2 = x2T/2

2 , so one can continue with the honest proof.
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µi := x2T/2
i

i ∈ QR+
N

ri := hash((xi, T/2i−1, yi), µi) ∈ Z2λ (9)
xi+1 := xrii ◦ µi
yi+1 := µrii ◦ yi

VDF.Ver(N, (x, T ), (y, π)) parses π = {µi}i∈[t] and checks if x, y and all µi are in QR+
N ,

if this is not the case output reject. Otherwise set (x1, y1) := (x, y) and then for i = 1 . . . t
compute

ri := hash((xi, T/2i−1, yi), µi)
xi+1 := xrii ◦ µi (10)
yi+1 := µrii ◦ yi (11)

Finally check whether

yt+1
?= x2

t+1 (12)

and output accept if this holds, otherwise output reject.

6.1 Public parameters for the VDF
For the security of the VDF it’s crucial that a prover does not know the factorization of the
public parameter N , as otherwise he could compute x2T in just two exponentiations as in
eq. (1). Thus one either has to rely on a trusted party, or use multiparty-computation to
sample N . In particular, it’s possible to sample N securely as long as not all the participants
in the multiparty computation are malicious. Such an “MPC ceremony” has been done
before, e.g. to set up the common random string for Zcash.6 This is in contrast to the
random-oracle based PoSW [9, 5] which don’t require a setup procedure at all.

To avoid trusted setup, Boneh et al. [4] and Wesolowski [14] suggested to use class groups
of an imaginary quadratic field [2] instead of an RSA group. Recall that the statistical
soundness of our proof systems relies on the fact that the underlying group (the quadratic
residues of Z∗N where N is the product of safe primes) has no subgroups of small order. If
the underlying group does have groups of small order, then computational soundness holds
under the assumption that it’s hard to find elements of small order, which is conjectured to
hold for the class groups mentioned above.

6.2 Efficiency of the VDF

6.2.1 Cost of verification
The cost of running the verification VDF.Ver(N, (x, T = 2t), (y, π)) is dominated by the 2t
exponentiations (with λ bit long exponents) in eq. (10-11). As exponentiation with a random
λ bit exponent costs about 1.5λ multiplications,7 the cost of verification is around 3 · λ · t

6 https://z.cash/technology/paramgen.html
7 Exponentiation is typically done via “square and multiply”, which for a z bit exponent with hamming
weight h(z) requires z + h(z) multiplications, or about 1.5 · z multiplication for a random exponent
(where h(z) ≈ z/2).

https://z.cash/technology/paramgen.html
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multiplications.8 For concreteness, consider an implementation where λ = 100, λRSA = 2048
and assume t = 40, this gives a cost of about 3 · λ · t = 12000 multiplications, which
corresponds to 12000/(2048 · 1.5) ≈ 4 full exponentiations in Z∗N .

6.2.2 A minor efficiency improvement
There’s a simple way to save on verification time and proof size. Currently, for T = 2t we
run the halving protocol for t rounds, and then in eq. (12) check if yt+1

?= x2
t+1. For any

integer ∆ ≥ 0 we could run the protocol for just t−∆ rounds, but then the verifier must
check if yt+1−∆

?= x22∆

t+1−∆, which requires 2∆ squarings (more generally, if T is not a power
of 2 then the check becomes yt+1−∆

?= x2Tt+1−∆
t+1−∆ mod N where T1 = T, Ti = dTi−1/2e).

If we set, say ∆ = 10, this saves 10 rounds and thus reduces the proof size by 25%
from 40 to 30 elements. The verification time decreases by around 15% (we save 20 short
exponentiations as in eq. (10,11) at the price of 1024 extra squarings).

6.2.3 Cost of computing the proof
Computing the proof (y, π)← VDF.Sol(N, (x, T )) requires one to solve the underlying RSW
puzzle y = x2T , which is done by squaring x sequentially T times (the security of the RSW
puzzle and thus also our VDF relies on the assumption that there’s no shortcut to this
computation).

On top of that, for the VDF we also must compute the proof π = {µi}i∈[t] where
µi = x2T/2

i

i . But we still assume that T = 2t is a power of 2.
If naïvely implemented, computing the µi will require T/2 squarings for µ1, T/4 for µ2

etc., adding up to a total of T ≈ T/2 + T/4 + T/8 . . .+ 1 sequential steps. Fortunately we
don’t have to compute µ1 = x2T/2 as we already did so while computing y = x2T by repeated
squaring (cf. eq. (2)). This observation already saves us half the overhead. We can also
compute the remaining µ2, µ3, . . . using stored values, but it becomes increasingly costly, as
we discuss below.

In general, for some s ∈ [t] the prover can compute µ1, . . . , µs using stored values, and
then fully recompute the remaining µs+1 = x2T/2

s+1

s+1 , µs+2, . . . , µt which will only require
T/2s+1 + T/2s+2 . . . < T/2s squarings.

To see how the µi’s can be efficiently computed for small i, for z ∈ QR+
N let z denote z’s

log to basis x, i.e., xz = z. We have x1 = 1, y1 = 2T and

µi := xi · 2T/2
i

xi+1 := ri · xi + µi

yi+1 := ri · µi + yi

How those exponents concretely develop for i = 1 to 3 is illustrated in Figure 1. For example,
we can compute µ3 assuming we stored the x2T/8 , x2T3/8

, x2T5/8
, x2T7/8 values as

µ3 = (x2T/8)r1·r2 · (x2T5/8
)r2 · (x2T3/8

)r1 · x2T7/8

8 Here multiplication means the ◦ operation, which requires one multiplication modulo N , followed by
the map | · |. As the cost of this map is marginal compared to the multiplication we just ignore it.
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i x′i µi yi
1 1 2T/2 2T
2 r1 + 2T/2 r1 · 2T/4 + 23T/4 r1 · 2T/2 + 2T
3 r1 · r2 + r2 · 2T/2 + 2T/4 · r1 + 23T/4 r1 · r2 · 2T/8 + r2 · 2T5/8 + r1 · 2T3/8 + 2T7/8 r1 · r2 · 2T/4 + r2 · 23T/4 + r1 · 2T/2 + 2T
...

...
...

...

Figure 1 Exponents of the the values in the protocol, here z = xz.

In general, computing µ1, . . . , µs will require to store 2s values {x2T ·i/2
s

}i∈[2s], and then
compute 2s exponentiations with exponents of bitlength at most λ · (s− 1) (and half that
on average). We can’t speed this up by first taking the exponents modulo the group order
p′q′ as it is not know, but if we have bounded parallelism 2p, p ≤ (s− 2) this can be done in
2s−p · λ · (s− 1) · 3

4 sequential steps. Summing up, with sufficient space to store 2s elements
in ZN and 2p ≤ 2s parallelism the proof π can be computed in roughly

2s−p · λ · (s− 1) · 3
4 + 2t−s sequential steps and 2s · log(N) bits of storage

after y has been computed. For example with a single core p = 0 and s = t/2− log(t · λ)/2
the number of steps (i.e., ◦ operations) becomes

2t/2−log(t·λ)/2·λ·(s−1)·34+2t/2+log(t·λ)/2 = 2t/2
(
λ(s− 1)√

tλ
· 3

4 +
√
tλ

)
<
√
T ·11

8 ·
√

log(T ) · λ

For our typical values t = 40, λ = 100 this is ≤ 227, and thus over 240−27 = 213 times
faster than computing y, e.g. if computing y takes 1h, computing π just takes half a
second on top. The memory required (to store intermediate values) is around 2s · logN =
2t/2−log(t·λ)/2 · 1024 ≤ 227 bits, or 8MB.

6.3 Security of the VDF
6.3.1 Soundness
If we model hash as a random oracle, then by Lemma 2 (which is used in the proof of
Theorem 1) we are guaranteed that a malicious prover will not find an accepting proof (ỹ, π̃)
for a wrong statement ỹ 6= x2T except with exponentially small probability. We can even
let the malicious prover choose the challenge (x, T ) for which it must forge such a proof
itself, the only restriction being that x must be a generator 〈x〉 = QR+

N (a random x ∈ QR+
N

satisfies this almost certainly, but we can’t efficiently verify if a given x is such a generator).
The well known Fiat-Shamir heuristic states that replacing the prover’s queries with the

output of a random oracle in a sound public-coin interactive proof system results in a sound
non-interactive proof system, but this only applies for protocols with a constant number of
rounds.

Even though our protocol has logarithmically many rounds, we can directly conclude
that our non-interactive proof is sound as follows: if we are given a valid proof for a wrong
statement, then, during the execution of the verification algorithm for this proof, we must
make a query hash(xi, T/2i−1, yi, µi) where (N, xi, T/2i−1, yi) ∈ L (L as defined in §4) but
for the next query made hash(xi+1, T/2i, yi+1, µi+1) we have (N, xi+1, T/2i, yi+1) 6∈ L. By
Lemma 2, every random oracle query will correspond to such a query with probability at
most 3/2λ. Thus, by the union bound, the probability that a malicious prover that makes
up to q queries to hash will find such a query (which as outlined is necessary to find an
accepting proof for a wrong statement) is at most q · 3/2λ.
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6.3.2 Sequentiality
To break sequentiality means computing y faster than in T sequential computations. We rely
on the same assumption as [10], which simply states that such a shortcut does not exist. As
outlined in §2, the fact that we work over (QR+

N , ◦) not (ZN , ·) only makes the assumption
on which we rely weaker, and the fact that in our case N is the product of safe primes
doesn’t affect the assumption assuming that safe primes are not too sparse.

References
1 David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to Prove Yourself:

Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In Xiaoyun Wang and
Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 626–643. Springer,
Heidelberg, December 2012. doi:10.1007/978-3-642-34961-4_38.

2 Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas Meyer. A Signa-
ture Scheme Based on the Intractability of Computing Roots. Des. Codes Cryptography,
25(3):223–236, 2002.

3 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable Delay Functions.
In CRYPTO 2018, 2018.

4 Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable Delay Functions.
Cryptology ePrint Archive, Report 2018/712, 2018. URL: https://eprint.iacr.org/
2018/712.

5 Bram Cohen and Krzysztof Pietrzak. Simple Proofs of Sequential Work. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 451–467. Springer, Heidelberg, April / May 2018. doi:10.1007/
978-3-319-78375-8_15.

6 Roger Fischlin and Claus-Peter Schnorr. Stronger Security Proofs for RSA and Rabin Bits.
Journal of Cryptology, 13(2):221–244, 2000.

7 Dennis Hofheinz and Eike Kiltz. The Group of Signed Quadratic Residues and Applications.
In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 637–653. Springer,
Heidelberg, August 2009.

8 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods
for Interactive Proof Systems. In 31st FOCS, pages 2–10. IEEE Computer Society Press,
October 1990.

9 Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs of
sequential work. In Robert D. Kleinberg, editor, ITCS 2013, pages 373–388. ACM, January
2013.

10 R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock Puzzles and Timed-release Crypto.
Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1996.

11 Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Computer Society Press,
October 1990.

12 Paul Valiant. Incrementally Verifiable Computation or Proofs of Knowledge Imply
Time/Space Efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
1–18. Springer, Heidelberg, March 2008.

13 Joachim von zur Gathen and Igor E. Shparlinski. Generating safe primes. J. Mathematical
Cryptology, 7(4):333–365, 2013. doi:10.1515/jmc-2013-5011.

14 Benjamin Wesolowski. Slow-timed hash functions. Cryptology ePrint Archive, Report
2018/623, 2018. URL: https://eprint.iacr.org/2018/623.

ITCS 2019

http://dx.doi.org/10.1007/978-3-642-34961-4_38
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
http://dx.doi.org/10.1007/978-3-319-78375-8_15
http://dx.doi.org/10.1007/978-3-319-78375-8_15
http://dx.doi.org/10.1515/jmc-2013-5011
https://eprint.iacr.org/2018/623




Sum of Squares Lower Bounds from Symmetry
and a Good Story

Aaron Potechin
University of Chicago Department of Computer Science, 5730 S. Ellis Avenue,
John Crerar Library, Chicago, IL 60637, United States
potechin@uchicago.edu

Abstract
In this paper, we develop machinery which makes it much easier to prove sum of squares lower
bounds when the problem is symmetric under permutations of [1, n] and the unsatisfiability of
our problem comes from integrality arguments, i.e. arguments that an expression must be an
integer. Roughly speaking, to prove SOS lower bounds with our machinery it is sufficient to
verify that the answer to the following three questions is yes:

1. Are there natural pseudo-expectation values for the problem?

2. Are these pseudo-expectation values rational functions of the problem parameters?

3. Are there sufficiently many values of the parameters for which these pseudo-expectation values
correspond to the actual expected values over a distribution of solutions which is the uniform
distribution over permutations of a single solution?

We demonstrate our machinery on three problems, the knapsack problem analyzed by Grigor-
iev, the MOD 2 principle (which says that the complete graph Kn has no perfect matching when
n is odd), and the following Turan type problem: Minimize the number of triangles in a graph
G with a given edge density. For knapsack, we recover Grigoriev’s lower bound exactly. For
the MOD 2 principle, we tighten Grigoriev’s linear degree sum of squares lower bound, making
it exact. Finally, for the triangle problem, we prove a sum of squares lower bound for finding
the minimum triangle density. This lower bound is completely new and gives a simple example
where constant degree sum of squares methods have a constant factor error in estimating graph
densities.
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1 Introduction

The sum of squares hierarchy (which we call SOS for brevity), a hierarchy of semidefinite
programs first indepedently investigated by Shor [33], Nesterov [27], Parrilo [28], Lasserre
[22], and Grigoriev [15, 16], is an exciting frontier of algorithm design, complexity theory,
and proof complexity. SOS is exciting because it provides a single unified framework
which can be applied to give approximation algorithms for a wide variety of combinatorial
optimization problems. Moreover, SOS is conjectured to be optimal for many of these
problems. In particular, SOS captures the Goemans-Williamson algorithm for MAX-CUT
[13], the Goemans-Linial relaxation for sparsest cut (analyzed by Arora, Rao, and Vazirani
[2]), and the subexponential time algorithm for unique games found by Arora, Barak, and
Steurer [1]. More recently, SOS has been applied directly to give algorithms for several
problems including planted sparse vector [5], dictionary learning [6], tensor decomposition
[12, 19, 25], tensor completion [8, 29], and quantum separability [7].

That said, there are limits to the power of SOS. As shown by SOS lower bounds for
constraint satisfactions problems (CSPs) [16, 32, 3, 20] and gadget reductions [34], SOS
requires degree Ω(n) (and thus exponential time) to solve most NP-hard problems. As shown
by SOS lower bounds on planted clique and other planted problems [26, 10, 17, 4, 18], SOS
can have difficulty distinguishing between a random input and an input which is random
except for a solution which has been planted inside it. Finally, as shown by Grigoriev’s
SOS lower bound for the knapsack problem [15], SOS has difficulty capturing integrality
arguments, i.e. arguments which say that an expression must be an integer.

In this paper, we further explore this last weakness of SOS. In particular, we develop
machinery which makes it much easier to prove SOS lower bounds when the problem is
symmetric and the unsatisfiability of our problem comes from integrality arguments. The
usual process for proving SOS lower bounds involves finding pseudo-expectation values (see
subsection 2.3) and then proving that a matrix called the moment matrix is PSD (postive
semidefinite), which can be quite difficult. Roughly speaking, to prove SOS lower bounds
with our machinery it is sufficient to verify that the answer to the following three questions
is yes:
1. Are there natural pseudo-expectation values for the problem?
2. Are these pseudo-expectation values rational functions of the problem parameters?
3. Are there sufficiently many values of the parameters for which these pseudo-expectation

values correspond to the actual expected values over a distribution of solutions which is
the uniform distribution over permutations of a single solution?

We demonstrate our machinery on three problems, the knapsack problem itself, the MOD
2 principle (which says that the complete graph Kn on n vertices does not have a perfect
matching when n is odd), and the following Turan-type problem: Minimize the number of
triangles in a graph G with a given edge density.

1.1 Equations and SOS lower bounds for knapsack, the MOD 2
principle, and a triangle problem

To state our SOS lower bounds on knapsack, the MOD 2 principle, and the triangle problem,
we must first express these problems as infeasible systems of polynomial equations. We do
this because as we will discuss in subsection 2.3, SOS gives a proof system for proving that
systems of polynomial equations over R are infeasible. Our lower bounds show that SOS
requires high degree to prove that the systems of equations corresponding to knapsack, the
MOD 2 principle, and the triangle problem are infeasible.



A. Potechin 61:3

For the knapsack problem, we consider the simple case when all of the weights are 1, the
knapsack capacity is k, and we are asked whether it is possible to fill the knapsack to its
capacty. We can express this problem with equations as follows:
1. ∀i, x2

i − xi = 0
2.
∑n
i=1 xi − k = 0.

These equations are clearly infeasible whenever k /∈ Z. However, as Grigoriev [15] showed,
since SOS has difficulty capturing integrality arguments, SOS requires high degree to refute
these equations.

I Theorem 1 (Grigoriev’s SOS lower bound for knapsack).
Degree min {2bmin {k, n− k}c+ 3, n} SOS fails to prove that the knapsack equations are
infeasile.

In this paper, we observe that Grigoriev’s lower bound (which is tight) follows immediately
from our machinery.

For the MOD 2 principle, we are asked whether the complete graph Kn has a perfect
matching. To express this problem with equations, we take a variable xij for each possible
edge (i, j) and we want that xij = 1 if the edge (i, j) is in our matching and xij = 0 otherwise.
We encode this and the claim that we have a perfect matching as follows:
1. For all i, j ∈ [1, n] such that i < j, x2

ij − xij = 0
2. For all i ∈ [1, n],

∑
j∈[1,n]:j 6=i xij − 1 = 0 (where we take xij = xji whenever i > j)

These equations are infeasible whenever n is odd. However, Grigoriev [16] showed that SOS
requires high degree to refute these equations. While Grigoriev’s lower bound is shown via a
reduction from the Tseitin equations and is tight up to a constant factor, in this paper we
use our machinery to obtain the following tight SOS lower bound directly.

I Theorem 2 (SOS lower bound for the MOD 2 principle).
Degree n−1

2 SOS fails to prove that the equations for the MOD 2 principle are infeasible.

For the triangle problem, we want to minimize the number of triangles in a graph with edge
density ρ. For this problem, Goodman [14] showed the following lower bound.

I Theorem 3 (Goodman’s bound). The minimal number of triangles in a graph G with n
vertices and edge density ρ is at least

t(n, ρ) :=
(
n

3

)
− n(n− 1)(1− ρ)

6 ((1 + 2ρ)n− 2− 2ρ)

As we will discuss in the full version of this paper, this bound is tight if there is an integer k
such that
1. n

k − 1 = (1− ρ)(n− 1)
2. n is divisible by k.
If so, then we can take G to have k independent sets of size n

k and have all of the edges
between different independent sets, which minimizes the number of triangles in G and matches
Goodman’s bound. Otherwise, Goodman’s bound cannot be achieved.

To express this problem using equations, we again create a variable xij for each possible
edge (i, j) and we want xij = 1 if the edge (i, j) is in the graph and xij = 0 if the edge (i, j)
is not in the graph. We encode this, the requirement the edge density is ρ, and the claim
that Goodman’s bound can be achieved with the following equations
1. For all i, j ∈ [1, n] such that i < j, x2

ij − xij = 0
2.
∑
i,j∈[1,n]:i<j xij − ρ

(
n
2
)

= 0
3.
∑
i,j,k∈[1,n]:i<j<k xijxikxjk − t(n, ρ) = 0 where t(n, ρ) =

(
n
3
)
− n(n−1)(1−ρ)

6 ((1 + 2ρ)n −
2− 2ρ)
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Using our machinery, we show the following SOS lower bound which is completely new and
was the motivation for developing our machinery.

I Theorem 4 (SOS lower bound for the triangle problem).
Letting k be the number such that n

k − 1 = (1− ρ)(n− 1), degree bmin {k, nk }c+ 1 SOS fails
to refute the triangle problem equations.

1.2 Relation to previous work on symmetry and SOS
There is a considerable body of prior research on symmetry and SOS. Several works built
on the difficulty on knapsack and/or further investigated symmetric polynomials on the
variables {x1, . . . , xn}. Laurent [23] used the difficulty of knapsack to show that degree dn2 e
SOS is required to capture the CUT polytope of the complete graph. Bleckherman, Gouveia,
and Pfeiffer [9] used the difficulty of knapsack to construct degree 4 polynomials which are
non-negative but cannot be written as a sum of squares of low degree rational functions. Lee,
Prakash, Wolf, and Yuen [24] showed that there are symmetric non-negative polynomials on
the variables {x1, . . . , xn} which cannot be approximated with low degree sums of squares.
Kurpisz, Leppänen, and Mastrolilli [21] gave a general criterion for determining if a symmetric
polynomial on {x1, . . . , xn} is a sum of squares or not.

While these prior works give more precise results for symmetric problems on the vari-
ables {x1, . . . , xn}, they do not show how to handle problems which are symmetric under
permutations of [1, n] but have variables such as {xij : i < j} which depend on 2 or more
indices. Thus, these prior works are incomparable with this work.

Another line of research on symmetry and SOS which is more closely connected to this
work uses symmetry to reduce the algorithmic complexity of implementing SOS. Gatermann
and Parrilo [11] showed how representation theory can be used to greatly reduce the search
space for pseudo-expectation values, allowing SOS to be run more efficiently on symmetric
problems. Recently, Raymond et. al. [30] combined the analysis of Gatermann and Parrilo
with Razborov’s flag algebras [31] to show that in the case of k-subset hypercubes, the
resulting semidefinite program has size which is independent of n. These results are quite
general and apply to all of the problems we are considering. That said, these results do not
tell us how to find or verify pseudo-expectation values by hand, which is generally what is
needed for SOS lower bounds.

In this paper, we show how the representation theory which allows Gatermann and Parrilo
[11] and Raymond et. al. [30] to dramatically reduce the size of the semidefinite programs
for SOS on symmetric problems can also be used to help prove theoretical SOS lower bounds
on symmetric problems. In particular, Theorem 21, which is a crucial part of our machinery,
essentially follows from Corollary 2.6 of Raymond et. al. [30]. We obtain our lower bounds
by combining this theorem with the additional assumption that the unsatisfiability of the
problem we are analyzing comes from integrality arguments.

1.3 Paper outline
The remainder of the paper is organized as follows. In Section 2, we give some preliminaries.
In Section 3 we describe how we can find candidate pseudo-expectation values from stories.
In Section 4 we highlight how symmetry is useful for proving SOS lower bounds even without
additional assumptions. In Section 5, we rigorously define what stories and good stories
are and show that good stories imply SOS lower bounds. Finally, in Section 6, we show a
method for verifying that stories are good stories.
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2 Preliminaries

Before we can describe our machinery, we must first give some preliminaries. We begin by
describing the class of symmetric problems which our machinery can be applied to. We then
define the sum of squares hierarchy and discuss some notation for the paper.

2.1 Symmetric problems
I Definition 5. We make the following assumptions about the problem P we are analyzing:
1. We assume that P is a problem about hypergraphs G with vertices V (G) = [1, n] and a

set of possible hyperedges EP . We view the hyperedges e ∈ EP as subsets of [1, n] which
may be unordered or ordered depending on P . If all of these subsets have the same size
t ≥ 1 then we say that the problem P has arity t.

2. We assume that P has variables {xe : e ∈ EP } and P is a YES/NO question which is
described by a set of problem equations {si({xe : e ∈ EP }) = 0}. The answer to P is
YES if all of these equations can be satisfied simultaneously and NO otherwise.

3. We assume that the set EP of possible hyperedges and the set {si({xe : e ∈ EP }) = 0}
of problem equations are both symmetric under permutations of [1, n].

If a problem P satisfies all of these assumptions then we say that P is a symmetric hypergraph
problem. Since we only consider problems of this type, for brevity we will just say symmetric
problem rather than symmetric hypergraph problem.

I Example 6. Symmetric problems P of arity 1 are YES/NO questions on the variables
{x1, . . . , xn} which are symmetric under permutations of [1, n].

I Example 7. For symmetric problems P of arity 2, EP is the set of subsets of [1, n] of size
2. If the subsets in EP are unordered then G is an undirected graph and we have variables
{xij : i, j ∈ [1, n], i 6= j} where we take xji = xij . If the subsets in EP are ordered then G is
a directed graph and we have distinct variables {xij : i, j ∈ [1, n], i 6= j}.

I Remark. While our machinery can handle symmetric problems of any arity, the examples
we focus on all have arity 1 or 2. Knapsack with unit weights has arity 1 while the MOD 2
principle and the triangle problem have arity 2 and are about undirected graphs.
I Remark. Since our machinery is based on polynomial interpolation, it is important that the
symmetric problem P does not have inequalities as well as equalities. If P has inequalities
then our machinery does not immediately give an SOS lower bound and more analysis is
needed.

2.2 Index degree
For our results, rather than considering the degree of a polynomial f , it is more natural to
consider the largest number of indices mentioned in any one monomial of f . We call this the
index degree of f .

I Definition 8 (Index degree).
1. Given a monomial p =

∏
e∈Ep xe, we define I(p) = {i : ∃e ∈ Ep : i ∈ e} and we define the

index degree of p to be

indexdeg(p) = indexdeg[1,n](p) = |I(p)|

In other words, indexdeg(p) is the number of indices which p depends on.
2. Given a polynomial f , if f =

∑
j cjpj is the decomposition of f into monomials then we

define the index degree of f to be indexdeg(f) = maxj {indexdeg(pj)}
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I Example 9. If p is the monomial p = x12x34 then p has degree 2 and index degree 4.

I Example 10. If f = x12x13 + x4
24 then f has degree 4 and index degree 3.

We will also need an analagous definition where we only consider the indices outside of a
subset I ⊆ [1, n].

I Definition 11 (Index degree outside of I). Let I ⊆ [1, n] be a subset of indices.
1. Given a monomial p =

∏
e∈Ep xe, we define the index degree of p on [1, n] \ I to be

indexdeg[1,n]\I(p) = |I(p) \ I|

In other words, indexdeg[1,n]\I(p) is the number of indices in [1, n] \ I which p depends
on.

2. Given a polynomial f , if f =
∑
j cjpj is the decomposition of f into monomials then we

define the index degree of f on [1, n] \ I to be indexdeg[1,n]\I(f) =
maxj {indexdeg[1,n]\I(pj)}

2.3 SOS and pseudo-expectation values
We now define SOS and pseudo-expectation values, which are used to prove SOS lower
bounds. One way to describe SOS is through SOS/Positivstellensatz proofs, which are
defined as follows:

I Definition 12. Given a system of polynomial equations {si = 0} over R, an index degree
d SOS/Positivstellensatz proof of infeasibility is an equality of the form

−1 =
∑
i

fisi +
∑
j

g2
j

where
1. ∀i, indexdeg(fi) + indexdeg(si) ≤ d
2. ∀j, indexdeg(gj) ≤ d

2

I Remark. This is a proof of infeasibility because the terms fisi should all be 0 by the
problem equations and the terms g2

j must all be non-negative, so they can’t possibly sum to
−1 if all of the problem equations are satisfied.

I Definition 13. Index degree d SOS gives the following feasibility test for whether a
system of polynomial equations over R is feasible or not. If there is an index degree d
Positivstellensatz proof of infeasibiblity then index degree d SOS says NO. Otherwise, index
degree d SOS says YES.
I Remark. Index degree d SOS may give false positives by failing to say NO on systems of
equations which are infeasible but will never give a false negative.
In this paper, we show SOS lower bounds for the infeasible systems of equations described
in subsection 2.1 by showing that for small d there is no index degree d Positivstellensatz
proof of infeasibility for our system of equations. This can be done with index degree d
pseudo-expectation values, which are defined as follows:

I Definition 14. Given a system of polynomial equations {si = 0} over R, index degree d
pseudo-expectation values are a linear mapping Ẽ from polynomials of index degree ≤ d to
R which satisfies the following conditions:
1. Ẽ[1] = 1
2. ∀i, f, Ẽ[fsi] = 0 whenever indexdeg(f) + indexdeg(si) ≤ d
3. ∀g, Ẽ[g2] ≥ 0 whenever indexdeg(g) ≤ d

2
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I Proposition 15. If there are index degree d pseudo-expectation values Ẽ for a system
of polynomial equations s1 = 0, s2 = 0, etc. over R, then there is no index degree d

Positivstellensatz proof of infeasibility for these equations.

Proof. Assume that we have both index degree d pseudo-expectation values and an index
degree d Positivstellensatz proof of infeasibility. Applying the pseudo-expectation values to
the Positivstellensatz proof, we get the following contradiction:

−1 = Ẽ[−1] =
∑
i

Ẽ[fisi] +
∑
j

Ẽ[g2
j ] ≥ 0 J

I Remark. Condition 3 of definition 14 is equivalent to the statement that the moment
matrix M is PSD (positive semidefinite) where M is indexed by monomials p, q of index
degree ≤ d

2 and has entries Mpq = Ẽ[pq]. Proving SOS lower bounds usually involves proving
that M � 0, which can be quite difficult. In this paper we can instead analyze Ẽ[g2] more
directly.
I Remark. The idea behind pseudo-expectation values is that they should mimic actual
expected values over a distribution of solutions. In particular, as shown by the following
proposition, if Ẽ comes from a distribution over actual solutions then it automatically gives
pseudo-expectation values. This fact is crucial for our results.

I Proposition 16. If the equations {si = 0} are feasible over R and Ω is a probability
distribution over actual solutions then the linear mapping Ẽ[p] = EΩ[p] gives index degree d
pseudo-expectation values for these equations for all d.

Proof. Observe that:
1. For any x ∼ Ω, 1 = 1. Thus, Ẽ[1] = EΩ[1] = 1.
2. For any x ∼ Ω, for all i, f , f(x)si(x) = 0. Thus, for all i, f , Ẽ[fsi] = EΩ[fsi] = 0.
3. For any x ∼ Ω, for all g, g(x)2 ≥ 0. Thus, for all g, Ẽ[g2] = EΩ[g2] ≥ 0. J

2.4 Sequences of distinct indices
We will need the following definitions about sequences of distinct indices in [1, n].

I Definition 17 (Operations on sequences).
1. Given a sequence of distinct indices A = (i1, . . . , im), we define the set IA to be IA =
{i1, . . . , im}. In other words, IA is just A without the ordering.

2. Given two sequences of distinct indices A = (i1, . . . , im1) and B = (i′1, . . . , i′m2
), we say

that A ⊆ B if m1 ≤ m2 and ∀j ∈ [1,m1], i′j = ij .
3. Given two sequences of distinct indices A = (i1, . . . , im1) and B = (i′1, . . . , i′m2

) such that
IA ∩ IB = ∅, we define A ∪B to be the sequence A ∪B = (i1, . . . , im1 , i

′
1, . . . , i

′
m2

)
In this paper, we will never consider sequences of indices which are not distinct, so we assume
without stating it explicitly that all of our sequences contain distinct indices.

3 Finding pseudo-expectation values: Stories and a verifier/adversary
game for SOS

In this section, we describe a verifier/adversary game which we use to find pseudo-expectation
values and deduce SOS lower bounds. We then describe how the adversary can play this
game using stories and describe the resulting pseudo-expectation values for knapsack, the
MOD 2 principle, and the triangle problem.
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The verifier/adversary game is as follows. The verifier queries sequences of indices {Ai}.
For each sequence of indices A = (i1, . . . , im) the verifier queries, for each j ∈ [1,m] and
every possibility for what happens with the previous indices (i1, . . . , ij−1), the adversary
must provide a probability distribution for what happens with the index ij . Taken together,
these answers give a probability distribution for all of the possibilities for what happens with
the indices in A. From these probability distributions, we can obtain pseudo-expectation
values.

The verifier wins if he/she detects one of the following flaws in the adversary’s answers
1. The adversary gives a probability for some event which is either negative or undefined.
2. The adversary’s answers do not result in well-defined pseudo-expectation values because

they are inconsistent. More precisely, there exist two sequences of indices A = (i1, . . . , im)
and A′ = (i′1, . . . , i′m) such that A′ and A are equal as sets (i.e. {i′1, . . . , i′m} is a
permutation of {i1, . . . , im}) and the resulting probability distributions for what happens
with the indices {i1, . . . , im} do not match.

3. The adversary’s answers result in pseudo-expectation values such that some problem
equation si = 0 is violated i.e. Ẽ[fsi] 6= 0 for some polynomial f .

If the verifier is unable to find such a flaw then the adversary wins.
I Remark. Roughly speaking, when we say that the adversary specifies what happens with a
set of indices I we mean that the adversary assigns values to all variables xe such that the
indices of e are contained in I. We make this more precise in Section 5.
The adversary often has a strategy for this game based on a story for what happens with the
indices. For the problems we are analyzing, the adversary’s stories are as follows:
1. Knapsack: We set k out of the n xi to be 1 and set the rest to 0.
2. The MOD 2 principle: For each vertex i, the perfect matching contains precisely one of

the edges which are incident to i.
3. The triangle problem: We have k independent sets of size n

k .
I Remark. The adversary’s stories are not convicing to us, as we can understand integrality
arguments. However, the adversary just has to fool SOS, which is poor at capturing integrality
arguments.

We now demonstrate how these stories naturally give probability distributions for what
happens with the indices and thus give pseudo-expectation values.

I Example 18 (Knapsack). For knapsack, if the verifier first queries vertex i, the adversary
says that xi = 1 with probability k

n and xi = 0 with probability n−k
n . Thus, according to the

adversary the expected value of xi is k
n so we take Ẽ[xi] = k

n

If the verifier then queries xj , if we have xi = 1 then the adversary says that xj = 1 with
probability k−1

n−1 and xj = 0 with probability n−k
n−1 as the adversary wants to set k − 1 of the

remaining n− 1 variables to 1. If we have xi = 0 then the adversary instead says that xj = 1
with probability k

n−1 and xj = 0 with probability n−k−1
n−1 as the adversary wants to set k of

the remaining n− 1 variables to 1. Thus, according to the adversary the expected value of
xixj is k(k−1)

n(n−1) so we take Ẽ[xixj ] = k(k−1)
n(n−1) .

Following similar logic, for all I ⊆ [1, n] such that |I| ≤ d, Ẽ[
∏
i∈I xi] = ( k|I|)

( n|I|)

I Example 19 (MOD 2 principle). For the MOD 2 principle, if the verifier first queries i, the
adversary gives no information because there is nothing distinguishing i from other vertices.
If the verifier then queries j, the adversary says that xij = 1 with probability 1

n−1 and
xij = 0 with probability n−2

n−1 because the adversary wants to match 1 out of the remaining
n− 1 vertices with i. Thus, we take Ẽ[xij ] = 1

n−1
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We now consider Ẽ[xijxkl] where i, j, k, l are all distinct. xijxkl = 0 unless xij = 1 so
we can focus on the case when xij = 1, which according to the adversasry happens with
probability 1

n−1 . In this case, if the verifier queries k, the adversary gives no additional
information because there is nothing distinguishing k from other vertices in [1, n] \ (i, j). If
the verifier then queries l, the adversary says that xkl = 1 with probabililty 1

n−3 and xkl = 0
with probabililty n−4

n−3 because the adversary wants to match 1 of the n− 3 remaining vertices
with k. Thus, we take Ẽ[xijxkl] = 1

(n−1)(n−3)
Following similar logic, we obtain that for all E ⊆ {(i, j) : i, j ∈ [1, n], i < j} such that

|E| ≤ d, Ẽ[
∏

(i,j)∈E xij ] = 1∏|E|
j=1

(n−2j+1)
if E is a partial matching and Ẽ[

∏
(i,j)∈E xij ] = 0

otherwise.

I Example 20 (Triangle Problem). For the triangle problem, if the verifier first queries i, the
adversary gives no information because there is nothing distinguishing i from other vertices.
If the verifier then queries j, the adversary says that j is in the same independent set as i
with probability

n
k−1
n−1 and is in a different independent set with probability n−nk

n−1 .
If the verifier then queries k, if i, j are in the same independent set then the adversary

says that k is in the same independent set as i, j with probability
n
k−2
n−2 and is in a different

independent set with probability n−nk
n−2 . If i, j are in different independent sets then the

adversary says that k is in the same independent set as i with probability
n
k−1
n−2 , k is in the

same independent set as j with probability
n
k−1
n−2 , and k is in a different independent set with

probability n−2nk
n−2 . Thus, the adversary gives the following probabilities for what happens

with i, j, k:
1. The probability that i, j, k are all in the same independent set is (nk−1)(nk−2)

(n−1)(n−2)
2. The probability that i, j are in the same independent set and k is in a different independent

set is (nk−1)(n−nk )
(n−1)(n−2) . This is also the probability that i, k are in the same independent

set and j is in a different independent set and the probability that j, k are in the same
independent set and i is in a different independent set.

3. The probability that i, j, k are all in different independent sets is (n−nk )(n−2nk )
(n−1)(n−2)

This gives the following pseudo-expectation values:
1. Ẽ[xij ] = n−nk

n−1

2. Ẽ[xijxik] = Ẽ[xijxjk] = Ẽ[xikxjk] = (nk−1)(n−nk )
(n−1)(n−2) + (n−nk )(n−2nk )

(n−1)(n−2) = (n−nk )(n−nk−1)
(n−1)(n−2)

3. Ẽ[xijxikxjk] = (n−nk )(n−2nk )
(n−1)(n−2)

I Remark. For the triangle problem, it is difficult to write down the general expression for Ẽ
explicitly. Fortunately, as we will show, we can verify the conditions of Definition 14 based
on the story for Ẽ

4 Symmetry and SOS lower bounds

In this section, we highlight how symmetry can help prove SOS lower bounds even without
additional assumptions. In particular, we have the following theorem which essentially follows
from Corollary 2.6 of [30].

I Theorem 21. If Ẽ is a linear map from polynomials to R which is symmetric with respect
to permutations of [1, n] then for any polynomial g, we can write

Ẽ[g2] =
∑

I⊆[1,n],j:|I|≤indexdeg(g)

Ẽ[g2
Ij ]

where for all I, j,
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1. gIj is symmetric with respect to permutations of [1, n] \ I.
2. indexdeg(gIj) ≤ indexdeg(g)
3. ∀i ∈ I,

∑
σ∈S[1,n]\(I\{i})

σ(gIj) = 0
Theorem 21 is very useful for proving SOS lower bounds on symmetric problems because
it implies that instead of checking that Ẽ[g2] ≥ 0 for all polynomials of index degree ≤ d

2 ,
it is sufficient to check polynomials which are symmetric under permutations of all but d

2
indices. However, despite its simplicity, Theorem 21 is quite deep. To prove Theorem 21, we
must carefully decompose g and then use symmetry to analyze all of the non-square terms of
g2 and either eliminate them or reduce them to square terms. Fortunately, this has already
been done by Corollary 2.6 of [30] using representation theory. We now sketch how Theorem
21 follows from Corollary 2.6 of [30].

Proof sketch of Theorem 21 using Corollary 2.6 of [30].

I Definition 22 (Definition 2.1 of [30]). If ⊕λVλ is the isotypic decomposition of the vector
space of polynomials of degree ≤ d and τλ is a tableau of shape λ, define

Wτλ := V
Rτλ
λ

to be the subspace of the isotypic Vλ fixed by the action of the row group Rτλ (which keeps
each row of τλ fixed but may permute the elements within each row of τλ)

Corollary 2.6 of [30] (rephrased slightly) says the following:

I Corollary 23 (Corollary 2.6 of [30]). Suppose p is a polynomial on the variables {xij : i, j ∈
[1, n], i < j} such that p is symmetric under permutations of [1, n] and p can be written as
a sum of squares of polynomials of degree ≤ d. For each partition λ ` n, fix a tableau τλ
of shape λ and choose a vector space basis {bτλ1 , . . . , bτλmλ} for Wτλ . Then for each partition
λ ∈ Λ, there exists an mλ ×mλ PSD matrix Qλ such that

p =
∑
λ∈Λ

tr(QλY τλ)

where Λ := {λ ` n : λ ≥lex (n− 2d, 12d)} and Y τλij := sym(bτλi b
τλ
j )

Using Corollary 2.6 of [30], we can prove Theorem 21 as follows. Since Ẽ is symmetric,
Ẽ[g2] = Ẽ[sym(g2)] where sym(g2) = 1

n!
∑
σ∈Sn (σ(g))2. Since sym(g2) is symmetric and a

sum of squares, by Corollary 2.6 of [30], there exist PSD matrices Qλ such that

Ẽ[g2] =
∑
λ∈Λ

Ẽ[tr(QλY τλ)]

Since Ẽ is symmetric, this implies that

Ẽ[g2] =
∑
λ∈Λ

Ẽ[tr(QλY ′
τλ)]

where Y ′τλij := bτλi b
τλ
j . Now consider each λ ∈ Λ separately and observe that since Qλ � 0,

we can write Qλ =
∑
j q

jqj
T for some vectors {q1, . . . , qmλ}. Thus,

tr(QλY τλ) = tr(
∑
j

qjqj
T
bτλbτλT ) =

∑
j

qj
T
bτλbτλT qj =

∑
j

(∑
i∈mλ

qji b
τλ
i

)2

which means we can reexpress sym(g2) as a sum of squares, each of which has the form
(
∑mλ
i=1 cib

τλ
i )2 for some partition λ ` n, tableau τλ of shape λ, and coefficients {ci}
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For each square (
∑mλ
i=1 cib

τλ
i )2, let I be the set of indices which are not in the top row

of τλ. To show the first statement of Theorem 21, observe that permuting the indices of
[1, n] \ I is just permuting the top row of τλ. By definition, the elements of Wτλ are all
invariant under such permutations, so

∑mλ
i=1 cib

τλ
i is invariant under permutations of [1, n] \ I,

as needed.

I Remark. In the setting of Corollary 2.6 of [30] the variables are {xij : i, j ∈ [1, n], i < j}
so if g has degree d, g can have index degree 2d which matches the fact that Λ := {λ ` n :
λ ≥lex (n− 2d, 12d)}. To prove Thorem 21 as stated using Corollary 2.6 of [30], Corollary
2.6 of [30] must be restated in terms of index degree and the proof adjusted accordingly.

The second statement of Theorem 21 is trivial as all of the bτλi are in the vector space of
polynomials of degree ≤ d and thus index degree ≤ 2d.

To show the third statement of Theorem 21, we need to prove the following lemma

I Lemma 24. For any τλ, letting I be the set of indices which are not in the top row of τλ,
for any i ∈ I and any p ∈Wτλ ,∑

σ∈S([1,n]\I)∪{i}

σ(p) = 0

Proof sketch. This lemma follows from the following claim:

I Definition 25. Define Ur = span{p : ∃I ⊆ [1, n] : |I| = r, ∀σ ∈ S[1,n]\I , σ(p) = p} and
define

Vr = Ur/Ur−1 =span{p : ∃I ⊆ [1, n] : |I| = r, ∀σ ∈ S[1,n]\I , σ(p) = p,

∀J ⊆ [1, n] : |J | ≤ r − 1,
∑

σ∈S[1,n]\J

σ(p) = 0}

I Claim 26. Vr = ⊕λ:The top row of λ has length n−rVλ

Assuming this claim, for any τλ, letting I be the set of indices which are not in the top row
of τλ, for any p ∈ Wτλ ⊆ Vλ and any J such that |J | < |I|,

∑
σ∈S[1,n]\J

σ(p) = 0}. Taking
J = I \ {i}, the result follows.

We defer the proof of this claim to the full version. J

J

However, Corollary 2.6 of [30] does not give us an explicit expression for Ẽ[g2], so we can
ask whether we can obtain an explicit expression for Ẽ[g2]. It turns out that there is such
an expression but it is quite complicated. For an alternative proof of Theorem 21 which is
explicit and combinatorial but technical, see the full version of this paper.

5 Sum of squares lower bounds from symmetry and a good story

In this section, we show how strategies for the verifier/adversary game described in section 3
with certain properties, which we call good stories, imply SOS lower bounds.
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5.1 Stories
In this subsection, we rigorously define what we mean by stories. Once the definition is
understood, stories are generally recognizable on sight.

I Definition 27. Given a subset I of [1, n], we define PI to be the set of all polynomials
which only depend on the variables {xe : e ⊆ I}

I Definition 28 (Stories). Let P be the problem we are anaylzing and let A = (i1, . . . , im)
be a sequence of indices. We say that a strategy S for adversary is a level n′ story for (P,A),
describing what will happen with the remaining indices after we have already queried A, if
the following is true:
1. n′ ≤ n− |IA|
2. S specifies what happened with the indices in A. More precisely, there is a linear map

ẼS,A : PIA → R corresponding to S
3. For all i ∈ [1, n] \ IA, S gives values {pij} for the probabilities of level n′ − 1 stories Sij

for (P,A ∪ (i)).
4. We have that for all i ∈ [1, n] \ IA,

∑
j pij = 1 and ∀f ∈ PIA ,∀j, ẼS,A[f ] = ẼSij ,(A∪(i))[f ]

Given a level n′ story S for (P,A), for all sequences B such that A ⊆ B, letting i be the next
element in B after A, we define ẼS,B =

∑
j pijẼSij ,B

I Remark. Note that we do not require the values pij to be non-negative in this definition.
I Remark. For all of our examples we will have that n′ = n− |IA| but we do not force this
to be the case in the definition.

5.2 Useful story properties part 1
We now define several properties our stories may have which are useful for proving SOS lower
bounds. In Section 6 we will describe a method for verifying these properties.

The first property we want is that our story S gives the same linear map ẼS regardless
of the order we query the indices.

I Definition 29. We say that a level n′ story S for (P,A) is self-consistent if whenever B,B′
are sequences such that A ⊆ B,A ⊆ B′, |IB \ IA| ≤ n′, |IB \ IA| ≤ n′,

∀p ∈ PIB∩IB′ , ẼS,B [p] = ẼS,B′ [p]

If S is self-consistent then we define ẼS : {f : indexdeg[1,n]\IA(f) ≤ n′} → R to be the linear
map such that for all monomials p such that indexdeg[1,n]\IA(p) ≤ n′, for any sequence B of
length at most n′ such that IB ∩ IA = ∅ and B contains all indices in variables of p which
are not in IA, ẼS [p] = ẼS,(A∪B)[p]

A second property we want is that our story sounds like we are taking the expected values
over the uniform distribution of permutations of a single input graph G0. To make this
precise, we note a useful property such expected values have. We then define single-graph
mimics to be stories/pseudo-expectation values which also have this property.

I Proposition 30. If Ω is the trivial distribution consisting of a single graph G0 then for
any polynomials f and g, EΩ[fg] = EΩ[f ]EΩ[g]

Proof. EΩ[fg] = f(G0)g(G0) = EΩ[f ]EΩ[g] J

I Proposition 31. If Ω is the uniform distribution over all permutations of a single graph
G0 then for all symmetric polynomials f and g, EΩ[fg] = EΩ[f ]EΩ[g].



A. Potechin 61:13

Proof. For any symmetric polynomial h and any permutation σ, h(σ(G0)) = h(G0) which
implies that EΩ[h] = h(G0). Thus, we again have that EΩ[fg] = f(G0)g(G0) = EΩ[f ]EΩ[g],
as needed. J

I Remark. The property that E[fg] = E[f ]E[g] for all symmetric polynomials f, g is useful
because it immediately implies that for all symmetric polynomials g, E[g2] = (E[g])2 ≥ 0.

We now define single graph mimics.

I Definition 32. Let P be a symmetric problem with equations {si = 0} and let I be a
subset of [1, n]. We say that Ẽ is a level n′ single graph mimic for P on [1, n] \ I if the
following conditions hold:
1. Ẽ : {p : indexdeg[1,n]\I(p) ≤ n′} → R is a linear map which is symmetric under

permutations of [1, n] \ I
2. For all i and all polynomials f such that indexdeg[1,n]\I(f) + indexdeg[1,n]\I(si) ≤ n′,

Ẽ[fsi] = 0
3. For all polynomials f, g which are symmetric under permutations of [1, n] \ I such that

indexdeg[1,n]\I(f) + indexdeg[1,n]\I(g) ≤ n′, Ẽ[fg] = Ẽ[f ]Ẽ[g].
We say that S is a level n′ single-graph mimic for (P,A) if S is a self-consistent level n′ story
for (P,A) and ẼS is a level n′ single-graph mimic for P on [1, n] \ IA.

A third property we want is that is that our story assigns non-negative probabilities to its
substories as long as we don’t query too many indices. If our story and all of its substories
satisfy these three properties then we call it a good story.

I Definition 33. We say that S is a level (r, n′) good story for (P,A) if the following
conditions hold:
1. S is a level n′ single graph mimic for (P,A).
2. If r > 0 then for any i ∈ [1, n] \ IA, the values pij are non-negative and the stories {Sij}

are all level (r − 1, n′ − 1) good stories for (P,A ∪ (i)).

5.3 SOS lower bounds from good stories
We now prove that good stories imply SOS lower bounds.

I Theorem 34. Let P be a symmetric problem with equations {si = 0}. If we have a level
(r, n′) good story for P then index degree d = min {2r, n′} SOS fails to refute the equations
for P .

Proof. We need two components to prove this theorem. The first component is the following
theorem which shows that if we have a good story then we satisfy all of the linear constraints
on Ẽ and we have that Ẽ[g2] ≥ 0 whenever g is symmetric under permutations of all but a
few indices.

I Theorem 35. Let P be a symmetric graph problem with constraints {si = 0} (where the
{si} are polynomials in the input variables). If we have a level (r, n′) good story S for P
then the corresponding linear map ẼS : {f : indexdeg(f) ≤ n′} → R satisfies the following
properties
1. ẼS is symmetric under permutations of [1, n]
2. If I ⊆ [1, n] is a subset of indices of size at most r and g is a polynomial which is

symmetric under permutations of [1, n] \ I such that indexdeg[1,n]\I(g) ≤ n′−|I|
2 then

ẼS [g2] ≥ 0
3. For all i and all f such that indexdeg(f) + indexdeg(si) ≤ n′, ẼS [fsi] = 0.
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Proof. Since S is a single graph mimic and single graph mimics are symmetric with respect
to permutations of [1, n], the first statement follows. Similarly, the third statement follows
directly from condition 2 of Definition 32

For the second statement, by conditions 1 and 2 of Definition 33, we can express ẼS as a
probability distribution Ω over level n− |I| single graph mimics Ẽj for P on [1, n] \ I. Since
g is symmetric under permutations of [1, n] \ I, for all of the Ẽj , Ẽj [g2] = Ẽj [g]Ẽj [g] ≥ 0.
We now have that ẼS [g2] = EEj∼Ω

[
Ẽj [g2]

]
≥ 0, as needed. J

The second component we need is Theorem 21, which shows that it is sufficient to verify that
ẼS [g2] ≥ 0 whenever g is symmetric with respect to permutations of all but a few indices.
which is exactly what is shown by Theorem 35.

With these components in hand, we now prove Theorem 34. We need to check the
following:
1. Whenever indexdeg(f) + indexdeg(si) ≤ d = min {2r, n′}, ẼS [fsi] = 0.
2. Whenever indexdeg(g) ≤ d

2 = min {r, n
′

2 }, ẼS [g2] ≥ 0
For the first statement, note that indexdeg(f) + indexdeg(si) ≤ n′, so by Theorem 35,
ẼS [fsi] = 0. For the second statement, given a polynomial g of index degree at most d

2 , by
Theorem 21 we can write

ẼS [g2] =
∑

I⊆[1,n],j:|I|≤indexdeg(g)

ẼS [g2
Ij ]

where for all I, j,

∀i ∈ I,
∑

σ∈S[1,n]\(I\{i})

σ(gIj) = 0

We now use the following lemma to upper bound indexdeg[1,n]\I(gIj):

I Lemma 36. If gIj is symmetric with respect to permutations of [1, n] \ I and

∀i ∈ I,
∑

σ∈S[1,n]\(I\{i})

σ(gIj) = 0

then all monomials in gIj depend on all of the indices in I

Proof. Assume that there is an i ∈ I and some monomial p which does not depend on i
which has a nonzero coefficient in gIj . By symmetry, for all permutations σ of [1, n] \ I, the
coefficient of σ(p) is the same as the coefficient of p. However, these are also the coefficients
of σ2(p) for permutations σ2 of [1, n] \ (I \ {i}). Since ∀i ∈ I,

∑
σ∈S[1,n]\(I\{i})

σ(gIj) = 0, all
of these coefficients must be 0, which is a contradiction. J

This lemma implies that for all of the gIj , indexdeg[1,n]\I(gIj) ≤ n′

2 − |I| ≤
n′−|I|

2 . Thus, by
Theorem 35, ẼS [g2

Ij ] ≥ 0. Since this holds for all I, j, ẼS [g2] ≥ 0, as needed. J

6 Verifying good stories

In this section, we describe a method to verify that a story S is a good story. For this
method, we make the following assumption.

I Definition 37. We assume that the problem equations and S depend on a set of parameters
and we take α1, . . . , αm to be these parameters.

I Remark. For knapsack and the triangle problem, we have two parameters n and k. For
the MOD 2 principle we only have the parameter n.
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6.1 Useful story properties part 2
We now describe two additional properties our stories may have which are useful for verifying
that they are good stories. Once the definitions are understood, these properties are generally
recognizable on sight.

One property S usually has is that the linear maps ẼS,B assign values to monomials
which are rational functions of the parameters α1, . . . , αm.

I Definition 38. We say that a level n′ story S for (P,A) is rational if the following conditions
hold
1. For all B such that A ⊆ B and |IB \ IA| ≤ n′, for all monomials p such that I(p) ⊆ IB,

ẼS,B [p] is a rational function of the parameters α1, . . . , αm.
2. The rational functions {ẼS,B[p] : A ⊆ B, |IB \ IA| ≤ n′, I(p) ⊆ IB} have a common

denominator qS(α1, . . . , αm) and the degree of the numerator is bounded by a function
of n′ and indexdeg(p).

A second property our stories may have is that there are many settings of the parameters
α1, . . . , αm for which S and ẼS actually correspond to probabilities and expected values of
the uniform distribution over permutations of a single input G0.

I Definition 39. Let S be a story for (P,A)
1. We say that S is honest for (α1, . . . , αm) if S corresponds to what happens if we take

the uniform distribution for all permutations of an actual input graph G0 over [1, n] \ IA
and G0 satisfies the equations for P . Note that if this is the case then S is automatically
a single graph mimic for (P,A) for the parameter values (α1, . . . , αm) and ẼS [p] =
Eσ∈S[1,n]\IA

[p(σ(G0))]
2. We say that S is z-honest for (α1, . . . , αm−1) if there are at least z values of αm such

that S is honest for (α1, . . . , αm).
3. For all j ∈ [1,m − 2], we say that S is z-honest for (α1, . . . , αj) if there are at least z

values of αj+1 such that S is z-honest for (α1, . . . , αj+1).
4. We say that S is z-honest if there are at least z values of α1 such that S is z-honest for

(α1).
The intution is that it is difficult for SOS to determine whether the parameters take one of
these values for which we actually have a solution or we are in between these values.

The following lemma is very useful

I Lemma 40. Let S be a story which is z-honest. If p(α1, . . . , αm) is a polynomial
such that deg(p) < z and p(α1, . . . , αm) = 0 whenever S is honest for (α1, . . . , αm) then
p(α1, . . . , αm) = 0

Proof. We prove this lemma by induction. Assume that p(α1, . . . , αm) = 0 whenever S is
z-honest for α1, . . . , αj .

Consider p as a polynomial in the variables αj+1, . . . , αm. Each monomial has a coefficient
which is a polynomial c(α1, . . . , αj) and we must have that c(α1, . . . , αj) = 0 whenever S
is z-honest for α1, . . . , αj . We now show that all of these coefficients c(α1, . . . , αj) must
be 0 whenever S is z-honest for α1, . . . , αj−1. To see this, consider such a polynomial
c(α1, . . . , αj) and assume that we have α1, . . . , αj−1 such that S is z-honest for α1, . . . , αj−1.
Considering c as a polynomial in αj , c(αj) = 0 whenever S is z-honest for α1, . . . , αj , which
by definition happens for at least z values of αj . Since deg(c) < z, we must have that
c(α1, . . . , αj) = c(αj) = 0. Thus, p(α1, . . . , αm) = 0 whenever S is z-honest for α1, . . . , αj−1,
as needed. J
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6.2 Sufficient conditions for single graph mimics
With these definitions, we can now give sufficient conditions for showing that a story S is a
single graph mimic.

I Lemma 41. Let S be a level n′ story for (P,A). If S and the parameter values α1, . . . , αm
satisfy the following conditions
1. S is rational and symmetric with respect to permutations of [1, n] \ IA.
2. For all z > 0, S is z-honest.
3. Letting qS(α1, . . . , αm) be the common denominator for {ẼS,B[p] : A ⊆ B, |IB \ IA| ≤

n′, I(p) ⊆ IB}, qS(α1, . . . , αm) 6= 0
then for the parameter values α1, . . . , αm, S is a level n′ single graph mimic for (P,A).

Proof. We need to verify the following for the given values of α1, . . . , αm:
1. S is self-consistent.
2. For all i and all polynomials f such that indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(si) ≤ n′,

ẼS [fsi] = 0
3. For any polynomials f, g such that f, g are symmetric under permutations of [1, n] \ IA

and indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(g) ≤ n′, ẼS [fg] = ẼS [f ]ẼS [g].
We first verify that S is self-consistent for the given values of α1, . . . , αm. Let p be a monomial
and let B,B′ be sequences of indices such that A ⊆ B, A ⊆ B′, and I(p) ⊆ IB ∩ IB′ . Since
S is rational, ẼS,B [p] = p1(α1,...,αm)

q(α1,...,αm) and ẼS,B′ [p] = p2(α1,...,αm)
q(α1,...,αm) are rational functions of the

parameters α1, . . . , αm. Now note that whenever S is honest for (α1, . . . , αm), ẼS,B′ [p] =
ẼS,B [p] which implies that

p1(α1, . . . , αm)qS(α1, . . . , αm) = p2(α1, . . . , αm)qS(α1, . . . , αm)

Since S is z-honest for all z > 0, by Lemma 40 we have that p1qS = p2qS as polyno-
mials in α1, . . . , αm. Plugging in our actual values of α1, . . . , αm, qS(α1, . . . , αm) 6= 0 so
p1(α1, . . . , αm) = p2(α1, . . . , αm) and thus ẼS,B′ [p] = ẼS,B [p], as needed.

We can use similar ideas to prove the second and third statements but there is a
subtle point we must be careful of. A problem equations si may be a polynomial which
is symmetric in n \ IA rather than being a fixed polynomial. In this case, ẼS [si] and
ẼS [fsi] will still be rational functions in the parameters α1, . . . , αm. However, the equality
ẼS [fsi] = pfsi (α1,...,αm)

qS(α1,...,αm) may break down if

indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(si) > n′

I Example 42. If f = x1x2 and si =
∑n
i=1 xi − k then

fsi = x2
1x2 + x1x

2
2 + x1x2

∑
i∈[1,n]\{1,2}

xi − kx1x2

and by symmetry

ẼS [fsi] = ẼS [x2
1x2] + ẼS [x1x

2
2] + (n− 2)ẼS [x1x2x3]− kẼS [x1x2]

Thus, fsi generally has index degree 3 and ẼS [fsi] = pfsi (α1,...,αm)
qS(α1,...,αm) is a rational function

of the parameters α1, . . . , αm. However, if n′ = n = 2 then we are missing the term
x1x2

∑
i∈[1,n]\{1,2} xi from fsi which may break the equality ẼS [fsi] = pfsi (α1,...,αm)

qS(α1,...,αm) . Note
that this problem will not occur as long as

indexdeg[1,n]\IA(f) + indexdeg[1,n]\IA(si) ≤ n′
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With this point in mind, for the second statement, note that since S is rational and
indexdeg(f) + indexdeg(si) ≤ n′, we can write ẼS [fsi] = pfsi (α1,...,αm)

q(α1,...,αm) . Now observe
that Ẽ[fsi] = 0 whenever Ẽ is honest for (α1, . . . , αm) and thus pfsi(α1, . . . , αm) = 0
whenever S is honest for (α1, . . . , αm). Since S is z-honest for all z > 0, by Lemma
40, pfsi(α1, . . . , αm) = 0 as a polynomial. Plugging in the given values of α1, . . . , αm,
q(α1, . . . , αm) 6= 0 so ẼS [fsi] = pfsi (α1,...,αm)

q(α1,...,αm) = 0, as needed.
Similarly, for the third statement we want to view f , g, and fg as polynomials which

depend on n rather than being fixed polynomials. Still, since S is rational and indexdeg(f) +
indexdeg(g) ≤ n′, we can write ẼS [f ] = pf (α1,...,αm)

q(α1,...,αm) , ẼS [g] = pg(α1,...,αm)
q(α1,...,αm) , and ẼS [fg] =

pfg(α1,...,αm)
q(α1,...,αm) . Now observe that ẼS [fg] = ẼS [f ]ẼS [g] whenever S is honest for (α1, . . . , αm)

and thus

pf (α1, . . . , αm)pg(α1, . . . , αm)− q(α1, . . . , αm)pfg(α1, . . . , αm) = 0

whenever S is honest for (α1, . . . , αm). Since S is z-honest for all z, by Lemma 40, pfpg −
qpfg = 0 as a polynomial. Plugging in the given parameters α1, . . . , αm, q(α1, . . . , αm) 6= 0
so

ẼS [fg] = pfg(α1, . . . , αm)
q(α1, . . . , αm) = pf (α1, . . . , αm)pg(α1, . . . , αm)

(q(α1, . . . , αm))2 = ẼS [f ]ẼS [g] J

6.3 Verifying good stories

We are now ready to give sufficient conditions for a story to be a good story.

I Theorem 43. If S is a story for (P,A) such that
1. S is symmetric with respect to permutations of [1, n] \ IA
2. S is rational
3. For all z > 0, S is z-honest.
then for a given choice of parameters α1, . . . , αm, if n′ and r are numbers such that n′ ≤
n− |IA| and
1. If we consider up to r further indices, the probabilities pij are always non-negative.
2. If we consider up to n′ further indices, we may get negative values for some pij but these

values are always well-defined (i.e. the denominator is nonzero).
then S is a level (n′, r) good story for (P,A).

Proof. Since we can consider up to n′ further indices and get well-defined values for the pij ,
S is a level n′ story for (P,A). Now by Lemma 41, S is a level n′ single graph mimic for
(P,A).

We now prove the theorem by induction on r. The base case r = 0 is trivial. If r > 0 then
for all i ∈ [1, n] \ IA, S gives non-negative values {pij} for the probabilities of level n′ − 1
stories Sij for (P,A ∪ (i)). Now note that for each of these Sij , the values of subsequent
pij will always be non-negative if we consider up to r − 1 further indices and will be well-
defined if we consider up to n′ − 1 further indices. Moreover, Sij is symmetric with respect
to permutations of [1, n] \ (IA ∪ {i}), rational, and is z-honest because Sij is honest for
(α1, . . . , αm) whenever S is honest for (α1, . . . , αm). Thus, by the inductive hypothesis, each
Sij is a level (r − 1, n′ − 1) good story for (P,A ∪ (i)) so S is a level (r, n′) good story for
(P,A), as needed. J
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6.4 Good stories for knapsack, the MOD 2 principle, and the triangle
problem

In this subsection, we apply Theorem 43 to verify that our stories for knapsack, the MOD 2
principle, and the triangle problem are good stories.

I Theorem 44.
1. Saying that we take k out n elements is a level (bmin {k, n− k}c+ 1, n) good story for

the knapsack problem.
2. Saying that we every vertex is incident with precisely one edge is a level (bn2 c+ 1, n) good

story for the MOD 2 principle.
3. Saying that we have k independent sets of size n

k is a level (bmin {k, nk }c + 1, n) good
story for the triangle problem.

Proof. For knapsack and the triangle problem, we take α1 = n and α2 = k. For the MOD 2
principle, we just take α1 = n.

Our stories are clearly rational and symmetric with respect to permutations of [1, n]. We
now check that they are z-honest for all z.

For knapsack, note that our story is honest for (n, k) whenever k is an integer between 0
and n. Thus, whenever n ≥ z there are at least z values of k such that our story is honest
for (n, k), which implies that our story is z-honest for (n) whenever n ≥ z. For all z there
are infinitely many valules of n such that n ≥ z so our story is z-honest for all z, as needed.

For the MOD 2 principle, note that our story is honest for (n) whenever n is an even
integer. There are infinitely many even integers so our story is z-honest for all z, as needed.

For the triangle problem, note that ourstory is honest for (n, k) whenever k is an integer
and n is divisible by k. Thus, whenever n = a! and a ≥ z then there are at least z values of
k such that our description is honest for (n, k), which implies that our story is z-honest for
(n) whenever n = a! and a ≥ z. For all z there are infinitely many valules of n such that
n = a! where a ≥ z so our story is z-honest for all z, as needed.

All that we have to do now is to determine n′ and r.
For knapsack, when we consider polynomials of index degree at most n′, the common

denominator will be n(n − 1) . . . (n − n′ + 1) as we are choosing n′ elements one by one
from [1, n]. This is well-defined as long as n′ ≤ n so we may take n′ = n. The probabilities
will be non-negative up to the (bmin {k, n− k}c+ 1)-th index we consider, so we may take
r = bmin {k, n− k}c+ 1.

For the MOD 2 principle, when we consider polynomials of index degree at most n′,
the common denominator will be n(n − 1) . . . (n − n′ + 1) as we are choosing n′ elements
one by one from [1, n]. This is well-defined as long as n′ ≤ n so we may take n′ = n. The
probabilities will be non-negative up to the (bn2 c+ 1)-th index we consider, so we may take
r = bn2 c+ 1.

For the triangle problem, when we consider polynomials of index degree at most n′, the
common denominator will be kn′

n(n− 1) . . . (n− n′ + 1). The additional kn′ factor appears
because there are n

k choices for the first element in an independent set of size n
k ,

n−k
k choices

for the second element, etc. Again, this is well-defined as long as n′ ≤ n so we may take
n′ = n. The probabilities will be non-negative up to the (bmin {k, nk }c + 1)-th index we
consider, so we may take r = bmin {k, nk }c+ 1 J

I Corollary 45.
1. For all positive integers n and all non-integer k ∈ [0, n], index degree

min{2bmin {k, n− k}c+ 3, n} SOS fails to refute the knapsack equations.
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2. For all odd n, index degree n SOS fails to refute the equations for the MOD 2 principle.
3. For all n ≥ 6, and all k ∈ [1, n] such that k /∈ Z or n

k /∈ Z, index degree 2bmin {k, nk }c+ 2
SOS fails to refute the claim that Goodman’s bound can be achieved for the triangle
problem.
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Abstract
We explore questions dealing with the learnability of models of choice over time. We present a
large class of preference models defined by a structural criterion for which we are able to obtain
an exponential improvement over previously known learning bounds for more general preference
models. This in particular implies that the three most important discounted utility models of
intertemporal choice – exponential, hyperbolic, and quasi-hyperbolic discounting – are learnable
in the PAC setting with VC dimension that grows logarithmically in the number of time periods.
We also examine these models in the framework of active learning. We find that the commonly
studied stream-based setting is in general difficult to analyze for preference models, but we provide
a redeeming situation in which the learner can indeed improve upon the guarantees provided by
PAC learning. In contrast to the stream-based setting, we show that if the learner is given full
power over the data he learns from – in the form of learning via membership queries – even very
naive algorithms significantly outperform the guarantees provided by higher level active learning
algorithms.
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1 Introduction

We study the learnability of economic models of choice over time. Our setting is that of an
analyst who first observes an agent’s choices between plans that specify payoffs over time, and
then attempts to learn the preference parameters guiding the choices. While such parameters
are stylized – in reality subjects are not likely to perform standardized computations according
to private parameters before making decisions – experiments have shown that they often
provide accurate descriptions of how an agent behaves. By observing enough choice data, one
can hope to learn the economic parameters that most closely describe the agent’s preferences.
Thus, learning theory provides an especially meaningful lens with which to view the theory of
choice – it allows us to answer questions regarding the volume of data required to faithfully
predict future decisions made by an observed agent. The overarching goal of this paper is
to identify structural criteria that yield strong learnability results for preferences over time
under different restrictions placed on the learner/analyst. The criteria we present captures a

© Zachary Chase and Siddharth Prasad;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 62; pp. 62:1–62:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zchase@caltech.edu
mailto:sprasad@caltech.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


62:2 Learning Time Dependent Choice

large class of preference models that give the agent significant freedom in weighting decisions
against time delays. In particular, it encompasses the most popular models of time dependent
choice used by economists.

The main economic application of our results is in understanding the learnability of
models of intertemporal choice. Intertemporal choice is what governs an agent’s decisions
over several time periods. The most important models of intertemporal choice are discounted
utility models, in which agents evaluate plans by discounting actions as they are delayed –
in analogy to how markets value the loss or gain of money over time. The first axiomatic
treatment of discounting was by Koopmans in 1960 [18], in which he demonstrates that
simple postulates for preferences over an infinite time horizon yield “impatience”. The three
most commonly studied discounting models are exponential, hyperbolic, and quasi-hyperbolic,
and all have been studied by both economists and computer scientists (though less so by the
latter) as well as researchers from various other fields. The importance of discounted utility
in economics cannot be overstated – it is the canonical framework used by economists to
study choice over time.

Problems of learning economic parameters have received recent attention from computer
scientists; see, e.g., [1, 2, 3, 16, 21]. Inspired by a general theme of demanding computational
robustness from economic models (Echenique, Golovin, and Wierman provide a nice discussion
of this topic in [11]), the tools of learning theory provide relevant and exciting perspectives
from which to view economic models that have been around for several decades. In contrast to
the usual goal of truthfully extracting the agent’s parameters adopted by classical mechanism
design, the learning problem aims to efficiently extract a truthful agent’s parameters in the
restricted message space of binary classification. Our paper contributes to the line of work
that specifically studies models of choice using the perspectives of learning theory. This
confluence of decision theory and learning theory was initiated by Basu and Echenique [2],
who consider the learning problem for models of choice under uncertainty. Our investigation
in this paper is motivated by models of how agents make choices over time. We provide
learnability results that are fine tuned to structural requirements on such models.

We now summarize our main contributions at a high level. Section 3 contains a more
detailed exposition of our results.

Summary of results and techniques
Our situation is one of an analyst trying to learn the parameters governing an agent’s
preferences over time. The two main learning themes we consider are (1) when the analyst
has no control over the data he sees and (2) when the analyst has some control over the data
he sees. The first theme is aptly captured by probably approximately correct (PAC) learning.
To analyze the second theme, we investigate two models of active learning: stream-based
selective sampling and membership queries.

In the first part, we study the PAC model, where the analyst is presented with pairs
of alternatives and a label for each pair indicating the agent’s preference between the
alternatives. The data points are drawn according to some unknown distribution, and
the analyst has no control over the data he is presented with. Our main result here is a
structural criterion on preference models that allows for a drastic improvement over the PAC
learning complexity bounds achieved in [2]. We stipulate that the agent weights time-delayed
payoffs according to polynomials, which allows for considerable freedom in how payoffs are
weighted. Under this requirement, we show that such classes of preference models admit
an exponential improvement in sample complexity bounds over the more general preference
models considered in [2]. This is achieved via a computation of the VC dimension (which



Z. Chase and S. Prasad 62:3

quantifies the complexity of PAC learning). A simple application of our result shows that
each of the discounted utility models are learnable (and in fact admit polynomial time
learning algorithms), with sample complexity that grows logarithmically in the number of
time periods T over which decisions are being made. The computation of the VC dimension
is due to a natural connection between pairs of choices and the signs of polynomials that
arise from the choices.

In the second part, we consider active learning models, where the analyst is given a certain
amount of control over the data that he uses to learn. The two active learning models we
study are stream-based selective sampling and learning via membership queries. In the former,
the analyst is given some control over what data he learns from: as in the PAC setting he is
presented with points drawn from an unknown distribution, but now the analyst chooses
whether or not to see the label representing the agent’s choice for each point. In the latter, the
analyst has complete control over the data he learns from: the analyst can at any time request
the label for any point. The former model seems to have been commonly adopted in order to
study the very general problem of concept learning, when there is no extra information about
the structure of the concepts. We find that the disagreement methods used to study the
stream-based setting are in general difficult to analyze in the context of preference models –
requiring quantitative information about the underlying distribution from which points are
drawn. However, we provide a redeeming situation (by examining a particular distribution)
where we obtain an improvement over the PAC guarantees. Membership queries, on the
other hand, allow us to heavily exploit the structure of the preference models we consider.
We present a naive membership query-based algorithm that significantly outperforms the
guarantees provided in the stream-based setting. Learning via membership queries, we
conclude, seems to be the appropriate model to actively learn economic parameters. It allows
the analyst to make use of the preference relations’ structure, and also precisely captures the
situation in which the analyst and agent are participating in a real time experiment.

Related work
Discounted utility models of intertemporal choice have been studied extensively not only
by economists, but also by researchers from various other fields. We first briefly survey
some of the relevant work pertaining to the exponential, quasi-hyperbolic, and hyperbolic
discounting models and then survey existing work in the more general topic of learning
economic parameters.

In the exponential discounting model, the agent evaluates his utilities based on a discount
factor δ ∈ (0, 1), where a delay of t time periods incurs an exponential discount in utility by δt.
Climate change policies are traditionally evaluated according to an exponential discounting
model – for example, the Stern review on the economics of climate change deals with issues
of how to choose an appropriate discount rate in evaluating such policies [20]. Chambers and
Echenique [8] present results related to the problem of aggregating discount rates proposed
by a group of experts facing disagreement. While it is the most commonly used discounting
model due to its simplicity, the exponential discounting model has been criticized due to its
inability to match empirical data recording actual human behavior. Quasi-hyperbolic and
hyperbolic discounting aim to mend such issues. The quasi-hyperbolic discounting model is
parametrized by β, δ ∈ (0, 1), where a delay of t time periods incurs a discount in utility by
βδt, and was first introduced by Phelps and Pollack [19] to study preferences over generations.
They proposed that the constant β discount factor represents how much a given generation
t is affected by the utilities of other people relative to their own – and remark that β = 1
represents “perfect altruism”, while β < 1 represents “imperfect altruism”. Kleinberg and
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Oren [17] study agents with quasi-hyperbolic discounting and propose a graph-theoretic
model to investigate phenomena such as procrastination and abandonment of long-range
tasks. Hyperbolic discounting aims to capture the notion that people are more impatient
in making short term decisions (today vs. tomorrow) than long term decisions (365 days
from today vs. 366 days from today)1, and is modeled via a discount of (1 + tα)−1 at time t.
Researchers in fields such as psychology and neuroscience [4, 15] have adopted the hyperbolic
discounting model to study, for example, issues of self control and anticipation in humans
and animals, and have compared the predictions by the different discounted utility models
to neurobiological data obtained via MRI scans. Chabris et al. [7] give an exposition of
the discounted utility models of intertemporal choice and survey sociological research that
examines empirical data pertaining to how discount rates are affected by factors like age,
drug use, gambling, etc.

The study of economic models has witnessed a recent influx of work from computer
scientists dealing with questions of robustness under various notions of complexity (learning
complexity, computational complexity, communication complexity, etc.). Kalai [16] in 2001
studied the learnability of choice functions, where the observed choices are in the form of a
given set of alternatives along with the most preferred alternative from the set. Beigman
and Vohra [3], Zadimoghaddam and Roth [21], and Balcan et al. [1] investigate the problem
of learning utility functions in the context of an expected utility maximizing agent in a
demand environment. Most recently (and most related to our work), Basu and Echenique
[2] study the learnability of preference models of choice under uncertainty, in which an
agent is uncertain about states of a lottery and is made to choose between acts that encode
utilities over each state. Here, the different models of choice under uncertainty arise from
different ways of representing the subjective probability held by an agent. They are also
the first to study learnability in the decision-theoretic setting where choice is modeled by
preference relations rather than by expected utility maximizing behavior in a demand setting.
However, it does not appear that the learnability of models of intertemporal choice has been
previously studied.

2 Model and Preliminaries

We now formally set up the discounted utility models of intertemporal choice and state the
standard definitions from learning theory in the context of preference relations. Much of
the following material regarding learning and preference relations is taken from [2] since we
require a similar list of definitions and setup. First, we sketch our high level model.

Let X be a Euclidean space equipped with a Borel σ-algebra. A preference relation on
X is a binary relation %⊆ X ×X such that % is measurable with respect to the product
σ-algebra on X ×X. A model P of preference relations is a collection of preference relations.

An agent makes choices from pairs of alternatives (xi, yi)ni=1 that are drawn according to
some unknown distribution on X ×X. The choices are presented as labels (ai)ni=1 where
ai = 1 if the agent chooses xi and ai = 0 if the agent chooses yi. A dataset is any finite
sequence of pairs of plans and their labels (((x1, y1), a1), . . . , ((xn, yn), an)). An analyst
observes a dataset, and attempts to guess the preference relation governing the agent’s
choices. A learning rule is any map σ from datasets to preference relations. The output of
the learning rule is the analyst’s hypothesis as to what the agent’s true preference relation is,
having seen some finite dataset.

1 In particular note that exponential discounting does not capture this issue, i.e. it is dynamically
consistent, in that preferences do not change according to shifts in time.
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2.1 Learnability
The two notions of learnability we consider are the PAC model and the active model. We
now state the standard definitions of PAC and active learning in the context of preference
relations. Most of the following definitions for the PAC setting are taken from [2] since the
setup involving preference relations is identical. These definitions of course apply to the
more general setting of concept learning (for example, see [6]).

I Definition 1. A collection P of preference relations is (PAC) learnable if there is a learning
rule σ such that for every 0 < ε, δ < 1, there is s(ε, δ) ∈ N such that for every n ≥ s(ε, δ),
%∈ P, and µ ∈ ∆(X ×X),

µn({((x1, y1), . . . , (xn, yn)) : µ(%∗ 4 %) > ε}) < δ,

where

%∗= σ({((x1, y1), Ix1%y1), . . . , ((xn, yn), Ixn%yn)})

is the hypothesis preference relation produced by the learning rule2. The quantity s(ε, δ) is
called the sample complexity of the learning rule σ.

The complexity of learning is commonly quantified by the Vapnik-Chervonenkis (VC)
dimension, defined based on so-called shattered sets. A set of points {(x1, y1), . . . , (xn, yn)}
from X×X is shattered by a model of preferences P if for every vector of labels (a1, . . . , an) ∈
{0, 1}n, there is a preference relation %∈ P that realizes the labelling, i.e. for i = 1, . . . , n
we have that xi % yi if and only if ai = 1. In this case, P is said to rationalize the dataset
{((x1, y1), a1), . . . , ((xn, yn), an)}. The VC dimension of P , denoted by V C(P), is the largest
integer n such that there exist n points that are shattered by P.

Blumer et al. [6] in 1989 proved that learnability is equivalent to having a finite VC
dimension3.

I Theorem 2. A model of preferences P is learnable if and only if V C(P) <∞.

The VC dimension (denoted by d for the remainder of this subsection) additionally
characterizes the sample complexity of learning a model of preferences: the optimal sample
complexity of PAC learning is s(ε, δ) = Θ

( 1
ε

(
d+ log 1

δ

))
[14].

The other learning model we consider is the active learning framework, where the analyst
has some control over the data from which he learns. In stream-based selective sampling,
points drawn according to an unknown distribution are presented to the analyst as before,
but without the labels. The analyst can choose whether or not to query the label of a
given point, and the complexity of the learning rule is measured by label complexity, i.e. the
number of labels requested by the analyst. Disagreement based active learning refers to the
paradigm in which the learner only requests labels on points that significantly reduce the
hypothesis space. The disagreement of a preference model with respect to the underlying
distribution is quantified through the disagreement coefficient θ, which is defined in Section
5. A finite disagreement coefficient implies (for the underlying distribution) an exponential
improvement in label complexity over the sample complexity of PAC learning. For example,
the CAL algorithm [9, 10, 13], a simple disagreement based learning algorithm, yields a label
complexity of

`CAL(ε, δ) = O

(
θ log 1

ε

(
d log θ + log log(1/ε)

δ

))
.

2 µn denotes the product measure induced by µ on (X ×X)n.
3 This result requires P to satisfy a certain measurability requirement. We note in Section 4 that the

models of choice we consider all satisfy said requirement.
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In the membership queries model, the analyst has complete control over the learning data
and is allowed to request the label for any point at any time. Learning via membership queries
is thus a question of optimal algorithm design, and bounds on query complexity obtained in
this manner would presumably be independent from learning-theoretic quantities (e.g. VC
dimension and disagreement coefficient). There appears to be a dearth of literature/results
pertaining to the complexity of membership query algorithms for learning when the hypothesis
space is infinite. One explanation for this is that improvements to the “passive” disagreement
based methods used in the stream-based setting would need specific information about the
problem domain: disagreement based methods are designed to work on a very general class of
concept learning problems without assuming anything about the learning space. In our case,
we have specific details about how the preference relations take shape. Thus, the membership
query model turns out to be an interesting and useful perspective to use in the study of
learning preference models.

For a more detailed survey of active learning, see [10].

2.2 Discounted utility
We now present the definitions for the discounted utility models of intertemporal choice. An
agent chooses between plans or vectors in X = RT that encode payoffs over T time periods.
A preference relation over plans is a binary relation %⊆ RT × RT .

The most important model of intertemporal choice is the discounted utility model, in
which the agent’s payoffs xt for having chosen a plan x ∈ RT are reduced, or discounted, as t
increases from 1 to T . In its most general form, we can characterize the preference relations
that follow time discounting as follows:

I Definition 3 (Discounted utility model). The class of preference relations PD that satisfy the
discounted utility model are those % such that there exists a decreasing map D : {1, . . . , T} →
(0, 1) where

x % y if and only if
T∑
t=1

D(t)xt ≥
T∑
t=1

D(t)yt.

We use the following notation for the preference models arising from the three most
commonly studied discounting functions D:
PD denotes the set of preferences that satisfy the discounted utility model.
PED denotes the set of preferences that satisfy the discounted utility model with expo-
nential discounting: D(t) = δt for δ ∈ (0, 1).
PHD denotes the set of preferences that satisfy the discounted utility model with hyperbolic
discounting: D(t) = 1

1+tα for α > 0.
PQHD denotes the set of preferences that satisfy the discounted utility model with
quasi-hyperbolic discounting: D(t) = 1 if t = 1, D(t) = β · δt−1 if t > 1 for β, δ ∈ (0, 1).

For a more thorough exposition on the various discounted utility models of intertemporal
choice, see [7].

3 Main Results

In this section we provide a formal discussion and interpretation of our results, which is split
into two themes: the first dealing with an analyst who has no control over the learning data,
the second dealing with an analyst who has some control over the learning data.
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A powerless analyst
The first part of our paper investigates the situation of an analyst trying to learn the
preference relation by which an agent makes choices, but has no control over what choices he
gets to observe, and is agnostic to the process by which they are drawn. We thus adopt the
PAC learning model.

The agent chooses between plans that encode payoffs over T periods of time and evaluates
the total payoff of a plan vector x ∈ RT according to private weights w1, . . . , wT that
he multiplicatively applies to each state: payoff(x) =

∑T
t=1 wtxt. This defines a model of

preference relations, which we denote by PW , where for any %∈ PW , there exists a vector of
weights w = (w1, . . . , wT ) ∈ RT such that

x % y if and only if w.x ≥ w.y.

In [2], it is shown that T −1 ≤ V C(PW) ≤ T +1. In the context of choice over time, however,
this model is extremely general and does not capture any of the intuitive notions of how an
agent values payoffs when they are delayed4. For example, the discounted utility models of
intertemporal choice require the weights to be of a particular functional form. Moreover,
when there is no structure to the discount function we cannot improve the bounds on PW :

I Proposition 4. T − 1 ≤ V C(PD) ≤ T + 1.

This leads us to the motivating question of the first part of the paper: what structural
conditions can we impose on the weights w1, . . . , wT such that this bound can be improved?

We investigate the situation where the agent computes his weights by evaluating poly-
nomials at a private parameter δ. Specifically, let Q1, . . . , QT be polynomials of degree
at most d, and suppose the agent evaluates total payoff of a plan vector x ∈ RT by
payoff(x) =

∑T
t=1 Qt(δ)xt. Consequently, let PPW be the model of preference relations

parametrized by δ such that

x % y if and only if
T∑
t=1

Qt(δ)xt ≥
T∑
t=1

Qt(δ)yt.

This class of preference models allows us to approximate preference relations where the
weights are given by any real valued functions – we choose Q1, . . . , QT to be the appropriate
Taylor polynomials. Moreover, existing models of intertemporal choice fit this characterization
– for example PED and PHD.

We additionally consider a slightly larger class of preference models where the agent has a
private parameter β (in addition to δ) that in evaluating total payoff of a plan vector x ∈ RT
allows the agent to modify the constant term

∑T
t=1 Qt(0)xt of the polynomial

∑T
t=1 Qt(δ)xt.

This model aims to more generally capture the effects of the β parameter in quasi-hyperbolic
discounting. For polynomials Q1, . . . , QT of degree at most d, let PBPW be the model of
preference relations parametrized by β and δ such that x % y if and only if(

1
β
− 1
) T∑
t=1

Qt(0)xt +
T∑
t=1

Qt(δ)xt ≥
(

1
β
− 1
) T∑
t=1

Qt(0)yt +
T∑
t=1

Qt(δ)yt.5

4 In [2] the complete control over weights is used to model choice under uncertainty, which calls for such
generality since the agent’s beliefs/weights are given by an element of the probability simplex on RT .
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Our main results show that with this additional structure on the preference model, we
can achieve an exponential improvement in the bounds for the VC dimension of PW obtained
in [2]6.

I Theorem 5. For every ε > 0, there exists a dε such that for every d ≥ dε we have
V C(PPW), V C(PBPW) ≤ (1 + ε) log d for any T and any T polynomials Q1, . . . , QT of
degree at most d.

Note that when Q1, . . . , QT have degree at most polynomial in T , we obtain an exponential
improvement over the linear growth of V C(PW). We show that in this case, we get a tight
(asymptotic) bound of log T :

I Theorem 6. Let Q1, . . . , QT be polynomials in δ of degree at most T − 1 that span the
space of polynomials in δ of degree at most T −1. Then V C(PPW), V C(PBPW) ≥ log(T −1).

An interesting feature of Theorems 5 and 6 is that for fixed Q1, . . . , QT with degrees
at most T − 1, V C(PPW) and V C(PBPW) satisfy the same asymptotic bounds, so giving
the agent an extra parameter that allows control over the constant term of the polynomial∑T
t=1 Qt(δ)xt does not introduce a significant amount of richness to the model.
Applying Theorems 5 and 6 to the discounted utility models, we have:

I Corollary 7. V C(PED), V C(PHD), V C(PQHD) ∼ log(T − 1)

Thus, PD, PED, PHD, and PQHD are all learnable. PD requires a minimum sample size
that grows linearly with T , while PED, PHD, and PQHD require a minimum sample size that
grows logarithmically in T . We also note that these classes are all efficiently learnable, that
is, the learning rule can be described by a polynomial time algorithm.

The main technique in proving Theorems 5 and 6 is interpreting the shattering criteria
as a statement about the sign combinations achieved by a collection of polynomials. The
upper bound on the VC dimension follows from an upper bound on the number of sign
combinations a collection of polynomials can achieve. In demonstrating the lower bound
on the VC dimension, we construct a set of points that is shattered by finding polynomials
achieving all possible sign combinations – chosen according to a Hamiltonian path in the
log(T − 1)-dimensional hypercube.

Table 1 summarizes the definitions and bounds on the VC dimensions for the various
preference models we consider.

A powerful analyst
Our other results concern the active learning framework, which broadly deals with situations
in which the analyst has some control over the choices he observes and learns from. The
two models we consider are stream-based selective sampling and learning via membership
queries. A large body of active learning research is devoted to the stream-based model,
specifically focusing on disagreement based algorithms – a class of learning algorithms that
instructs the analyst only to request labels on points he sees that reduce the hypothesis space
significantly. In the most general setting of concept learning, this is a useful framework since
the error guarantees can be described using the same setup as the PAC model. Moreover
without additional information about the problem domain, it is unclear how to devise efficient
algorithms that are more specific in instructing the analyst on what questions to ask.

6 It is important to note that the classes PPW and PBPW are defined for a given Q1, . . . , QT . That is,
the analyst knows Q1, . . . , QT , and is trying to learn the parameters β and δ. If the Q1, . . . , QT are
private information only available to the agent, we are in no better shape than in the case of PW .
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Table 1 VC dimensions of various preference models (the lower bounds for PPW and PBPW
require that Q1, . . . , QT span the space of polynomials with degree at most T − 1).

Preference Model P Payoff(x) V C(P) lower bound V C(P) upper bound

PW
w.x

for w ∈ RT T − 1 T + 1

PPW
(defined with
respect to
polynomials
Q1, . . . , QT )

∑T

t=1 Qt(δ)xt

for δ ∈ (0, 1).
log(T − 1)

(1 + ε) log d,
for ε > 0 and

d = max{degQt}
large enough.

PBPW
(defined with
respect to
polynomials
Q1, . . . , QT )

(
1
β
− 1
)∑T

t=1 Qt(0)xt

+
∑T

t=1 Qt(δ)xt

for δ, β ∈ (0, 1).

log(T − 1)

(1 + ε) log d,
for ε > 0 and

d = max{degQt}
large enough.

PD

∑T

t=1 D(t)xt
for D : [T ]→ (0, 1)
a decreasing map.

T − 1 T + 1

PED

∑T

t=1 δ
txt

for δ ∈ (0, 1).
log(T − 1)

(1 + ε) log(T − 1)
for ε > 0 and
T large enough.

PQHD
x1 + β

∑T

t=2 δ
t−1xt

for β, δ ∈ (0, 1).
log(T − 1)

(1 + ε) log(T − 1)
for ε > 0 and
T large enough.

PHD

∑T

t=1
1

1+tαxt

for α > 0.
log(T − 1)

(1 + ε) log(T − 1)
for ε > 0 and
T large enough.

We find that the stream-based model is in general difficult to analyze for the preference
relations we work with. This difficulty seems to arise from the apparent need to quantify
disagreement in order to explicitly write down learning guarantees. Though in most general
situations it is unclear how to quantify disagreement for our preference relations, we present
a redeeming situation for which we are able to provide a precise analysis of the learning
guarantees for PED. Here, the analyst can learn PED with an exponential improvement
in label complexity over the guarantees provided by the PAC model. This is achieved via
a computation of the disagreement coefficient (defined in Section 5) of PED for a specific
distribution.

I Theorem 8. There exists a distribution µ on RT×RT for which the disagreement coefficient
of PED is θ = 2. Thus, for this distribution,

`CAL(ε) = Õ

(
log T log 1

ε

)
,

where the Õ notation suppresses terms that are logarithmic in log T and log 1/ε.

The measure µ we construct is induced by the product Lebesgue measure on (0, 1)T−1,
and allows us to precisely translate statements about disagreement into statements about
the roots of polynomials arising from a given choice. Once we have defined µ, the calculation
of θ follows from basic probability arguments.

Now, in our case the analyst has structural information regarding the preference relation
of the agent he is questioning. We find that allowing the analyst full control over the
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membership queries he makes yields a learning algorithm that, despite its simplicity, takes
advantage of this extra structure and yields a significant improvement in complexity over
the stream-based setting. Additionally, the membership queries model naturally describes
an experimental environment in which the analyst is able to ask the agent questions in real
time.

We show that when the preference model satisfies some relatively benign structural
requirements, even very naive algorithms outperform the guarantees provided by CAL in the
stream-based setting (we are not aware of any lower bounds on the sample complexity of
disagreement based active learning, so this only an improvement over the current sample
complexity upper bound of the CAL algorithm). The example algorithm we give, relying
on a simple binary search, has a query complexity of O(log 1/ε), which gets rid of the log T
dependence in Theorem 8.

The class of preference models is defined as follows: let g1, . . . , gT : R→ R be a collection
of functions satisfying the properties listed in Section 5.3 and consider the model of preference
relations P parametrized by δ where x % y if and only if

∑T
t=1 gt(δ)xt ≥

∑T
t=1 gt(δ)yt7. We

have (where M and C are constants that depend on g1, . . . , gT )

I Proposition 9. There exists an algorithm that takes as input ε > 0 and using O(log MC
ε )

membership queries outputs δh such that |δ − δh| ≤ ε, where δ parametrizes the target
preference relation in P.

The remainder of the paper is devoted to proving the results discussed in this section.

4 PAC Learning

In this section we prove Theorems 5 and 6. We first note a preliminary upper bound due to
Basu and Echenique [2]. Let PI be the set of preference relations that satisfy the following
axioms:

Order: For all x, y either x % y or y % x (completeness). For all x, y, z, if x % y and y % z,
then x % z (transitivity).

Independence: For all x, y, z and for any λ ∈ (0, 1), x % y if and only if λx + (1 − λ)z %
λy + (1− λ)z.

The class PI satisfies the property that for any %∈ PI , there are finitely many vectors
q1, . . . , qK , with K ≤ T , such that x % y if and only if (qk.x)Kk=1 ≥L (qk.y)Kk=1, where ≥L
denotes the lexicographic order [5]. Then, PPW ,PBPW ⊂ PW ⊂ PI , since the aforementioned
characterization is satisfied with K = 1 and q1 = (w1, . . . , wT ).

This has two main consequences. First, PPW and PBPW (and thus all the discounted
utility models) satisfy the measurability requirement discussed in Lemma 4 of [2] for the
equivalence result of Theorem 2 to hold. Second, the VC dimensions of PPW and PBPW
are all bounded above by T + 1 (and in particular T − 1 ≤ V C(PW) ≤ T + 1). This follows
due to Theorem 3.1 of [2], in which an argument similar to that required to compute the
VC dimension of the class of half-spaces is used to show that V C(PI) = T + 1. In all cases
excluding the most general model of discounted utility, we are able to bring this down to
log(T − 1) (which we then show is tight by demonstrating the corresponding lower bound).

We begin by demonstrating that even in the discounted utility setting, without any
structure we cannot do better than the learning bounds obtained for PI .

7 As before, the g1, . . . , gT are known to the analyst.
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I Proposition 4 (restated). T − 1 ≤ V C(PD) ≤ T + 1.

Proof. That V C(PD) ≤ T + 1 follows from Theorem 3.1 of [2], since PD ⊂ PI .
Here is a simple construction that shows V C(PD) ≥ T−1. Fix an ε > 0. Let e1, . . . , eT be

the standard unit vectors in RT , and consider the set of points {(x1, y1), . . . , (xT−1, yT−1)},
where xi = (1− ε)ei and yi = ei+1.

This set is shattered by PD: for any (ai)T−1
i=1 , choose D(1) arbitrarily from (0, 1), and if

D(i) has been defined, inductively define D(i+ 1) such that D(i+ 1) ≤ D(i)(1− ε) if ai = 1
and D(i) > D(i+ 1) > (1− ε)D(i) if ai = 0. J

We now prove Theorems 5 and 6, which are restated below for convenience.

I Theorem 5 (restated). For every ε > 0, there exists a dε such that for every d ≥ dε we
have V C(PPW), V C(PBPW) ≤ (1 + ε) log d for any T and any T polynomials Q1, . . . , QT of
degree at most d.

Proof. It suffices to establish the bound for PPBW .
Let (z1, . . . , zn) be a set of points in RT ×RT , zi = (xi, yi). For each zi = (xi, yi), define

the plan f i := xi − yi. Then, note that (z1, . . . , zn) is shattered by PPBW if and only if
((f1, 0), . . . , (fn, 0)) is shattered by PPBW . Hence, we may (and do) restrict attention to
datasets of the form ((f1, 0), . . . , (fn, 0)).

We have that ((f1, 0), . . . , (fn, 0)) is shattered by PPBW if and only if for all vectors
(a1, . . . , an) ∈ {0, 1}n, there exists a δ and β (which determines the preference relation) such
that

(QT (δ)f iT + · · ·+Q1(δ)f i1) +
(

1
β
− 1
)

(QT (0)f iT + · · ·+Q1(0)f i1) ≥ 0 whenever ai = 1,

and

(QT (δ)f iT + · · ·+Q1(δ)f i1) +
(

1
β
− 1
)

(QT (0)f iT + · · ·+Q1(0)f i1) < 0 whenever ai = 0.

Therefore, if the n points ((f1, 0), . . . , (fn, 0)) can be shattered, there are polynomials
P1, . . . , Pn in δ (where Pi is the polynomial Q1(δ)f i1 + · · ·+QT (δ)f iT ), each of degree at most
d, such that for every labeling (a1, . . . , an) ∈ {0, 1}n, there exists a δ and β such that8

(sgn(P1(δ) + (1/β − 1)P1(0)), . . . , sgn(Pn(δ) + (1/β − 1)Pn(0))) = (a1, . . . , an).

First, for any n polynomials P1, . . . , Pn of degree at most d, we give an upper bound on
the number of possible values (sgn(P1(δ)), . . . , sgn(Pn(δ))) can realize. Each polynomial has
at most d real roots, so together P1, . . . , Pn have at most nd distinct real roots. Since sign
changes can only occur at the roots, there are at most nd+ 1 possible values of {0, 1}n that
(sgn(P1(δ)), . . . , sgn(Pn(δ))) can realize.

Now, for a fixed δ, varying β shifts the collection of polynomials

P1(δ) + (1/β − 1)P1(0), . . . , Pn(δ) + (1/β − 1)Pn(0)

vertically, which in the worst case induces sign changes in all entries. We thus get
at most an additional n new sign combinations for every sign combination realized by

8 For notational convenience, let sgn(x) be 1 if x ≥ 0 and 0 otherwise.
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(sgn(P1(δ)), . . . , sgn(Pn(δ))). Hence, there are at most nd+ 1 +n(nd+ 1) = (n2 +n)d+n+ 1
possible values of {0, 1}n that

(sgn(P1(δ) + (1/β − 1)P1(0)), . . . , sgn(Pn(δ) + (1/β − 1)Pn(0)))

can realize.
In order for all 2n elements of {0, 1}n to be realized, it must be that

(n2 + n)d+ n+ 1 ≥ 2n.

If n > (1 + ε) log d, then for large enough d this inequality does not hold, and so any set of
n points cannot be shattered. Thus, for all ε > 0, n ≤ (1 + ε) log d for large enough d, so
V C(PPBW) ≤ (1 + ε) log d. J

We now establish the corresponding lower bound when the polynomials Q1, . . . , QT span
the space of polynomials of degree at most T − 1.

I Theorem 6 (restated). Let Q1, . . . , QT be polynomials in δ of degree at most T − 1 that
span the space of polynomials in δ of degree at most T − 1. Then V C(PPW), V C(PBPW) ≥
log(T − 1).

Proof. It suffices to establish the bound for PPW .
Consider the graph on {0, 1}n where two vertices are connected by an edge if they differ

in exactly one location. Fix a Hamiltonian path v1, v2, . . . , v2n in this graph (the existence
of which is well known). Let b1,2, . . . , b2n−1,2n be the sequence where bi,i+1 is the index of
the location at which vi and vi+1 differ. Note that if n = log(T − 1), the graph has T − 1
vertices, so each index in {1, . . . , n} can appear in the sequence (bi,i+1) at most T − 1 times.

Now, let r1 < r2 < · · · < r2n be any points in (0, 1). Define n polynomials P1, . . . , Pn by
Pk(δ) =

∏
bi,i+1=k(δ − ri), so the roots of Pk are precisely the ri’s that correspond to a flip

in the entry at the kth position of a vertex in the path. Then, (sgn(P1(δ)), . . . , sgn(Pn(δ)))
realizes every element of {0, 1}n.

Since Q1, . . . , QT span the space of polynomials of degree at most T − 1, for each Pi we
can find f i1, . . . , f iT such that

Pi(δ) = Q1(δ)f i1 + · · ·+QT (δ)f iT ,

which gives us a collection of log(T − 1) points that is shattered. Hence log(T − 1) ≤
V C(PPW). J

It is readily seen that PED and PQHD satisfy the conditions of Theorems 5 and 6 (PED
is given by PPW with Qt(δ) = δt−1 and PQHD is given by PBPW with Qt(δ) = δt−1).
We give a quick argument verifying that PHD does as well: For 1 ≤ t ≤ T , let Qt(α) =∏
`∈{1,...,T}\{t}(1 + `α) (these are the polynomials obtained by clearing denominators of

the hyperbolic discount factors). We argue that {Qt(α)}Tt=1 are linearly independent over
(and thus span) the vector space of polynomials in α of degree at most T − 1. Indeed, if
Q1(α)f1 + · · ·+QT (α)fT = 0, then we must have that f1 = · · · = fT = 0 since at α = −1

t

we get Qt(α)ft = 0. Hence, PHD is simply PPW with Qt(α) =
∏
`∈{1,...,T}\{t}(1 + `α).

I Remark. These bounds also hold in the scenario where the agent can report indifference
in the data. More precisely, the condition for x % y is now a strict inequality, and we
have three possible labels for the pair (x, y): +1 indicates that x % y, −1 indicates that
y % x, and 0 indicates that x ∼ y. Then, using a Hamiltonian path on {−1, 0, 1}n, we can
construct polynomials P1, . . . , Pn such that (sgn(P1(δ)), . . . , sgn(Pn(δ))) realizes all elements
of {−1, 0, 1}n as δ ranges from 0 to 1 (where sgn is the true sign function).
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4.1 A Remark on Efficient Learnability
While PAC learnability is a positive result, it does not take into account the computational
complexity of computing a hypothesis. Blumer et. al. [6] show that any learning rule that
outputs a hypothesis consistent with the data seen yields with high probability a hypothesis
that has very low error. However, if the problem of outputting a consistent hypothesis is
computationally intractable, PAC learnability on its own is perhaps unsatisfying. In this
section we note that the discounted utility models of intertemporal choice are efficiently
learnable. This is due to an algorithm of Grigor’ev and Vorobjov [12] for solving a system of
polynomial inequalities.

For notational convenience, it will be useful to write P = {PT }T≥1, for each of the models
above, where PT is the collection of preference relations for a given T . Moreover, suppose
acts are chosen from [−1, 1]T instead of RT . It is clear that this does not change any of the
analysis above.

Polynomial learnability, as defined by Blumer et. al. [6], stipulates that the learning
rule be computable in poly(1/ε, 1/δ, T )-time (where ε and δ denote the error threshold
and confidence threshold respectively). Polynomial learnability is equivalent to the task of
outputting a hypothesis consistent with the given data set in polynomial time [6].

I Definition 10. A randomized polynomial hypothesis finder (r-poly hy-fi) for P is a ran-
domized polynomial time algorithm that takes as input a sample of a preference relation in
P, and for some γ > 0, with probability at least γ produces a hypothesis that is consistent
with the sample.

I Theorem 11. P is properly polynomially learnable if and only if there is an r-poly hy-fi
for P and V C(PT ) grows only polynomially in T .

We have just shown that V C(PT ) ∼ log(T − 1). Using techniques involving algebraic
geometry, Grigor’ev and Vorobjov [12] present an algorithm to solve a system of N polynomial
inequalities with a poly(N,T ) runtime. This serves as our r-poly hy-fi, and thus we obtain:

I Theorem 12. PED, PHD, and PQHD are all properly polynomially learnable.

5 Active Learning

In this section we study two models of active learning: stream-based selective sampling and
learning via membership queries. We first define a distribution for which the disagreement
coefficient of PED is 2, showing that disagreement methods (specifically the CAL algorithm
[9, 10, 13]) in the stream-based model can yield an exponential improvement over the sample
complexity of PAC learning (thus proving Theorem 8).

We then consider learning via membership queries and show that in this setting even
very naive algorithms outperform the disagreement methods in the stream-based model (that
is, the analyst needs to ask fewer questions to the agent in order to learn his preference than
the number of label requests he would need to make using disagreement methods).

5.1 Preliminaries
For notational convenience, %δ will to refer to the preference relation in PED with discounting
factor δ.

Let µ be a distribution on RT × RT . µ induces a metric on PED by d(%δ,%γ) = µ(%δ
4 %γ), and thus we can define the closed ball of radius R centered at %δ by

B(%δ, R) = {%γ : d(%δ,%γ) ≤ R}.
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For V ⊆ PEU , the disagreement region of V , Dis(V ) is defined by

Dis(V ) = {(x, y) ∈ RT × RT : ∃ %δ,%γ∈ V s.t. (x, y) ∈%δ 4 %γ} =
⋃

%δ,%γ∈V

(%δ 4 %γ)

Intuitively, Dis(V ) is the collection of points (x, y) such that we can find two hypothesis
relations in the current version space that rank x and y differently.

If %δ is the target preference relation, the disagreement coefficient of %δ with respect to
µ is the quantity

θ = sup
R>0

µ(Dis(B(%δ, R))
R

5.2 Disagreement based active learning
In this subsection, we define a distribution µ on RT × RT and show that the disagreement
coefficient of PED with respect to µ is 2.

Choosing a measure
The main challenge here is that θ depends on the underlying distribution over RT × RT .
Since preferences are polynomial inequalities, the disagreement coefficient seems to lend itself
to a characterization involving polynomials and their roots, which is the motivation for our
choice of distribution. For a general distribution µ over RT × RT , it is not clear how to
compute the disagreement coefficient.

We show that θ = 2 for a suitably chosen distribution on RT × RT , which is induced by
the Lebesgue measure on (0, 1)T−1. This allows us to work with a measure on sets of roots
of polynomials that arise from the definition of the preference relations.

Let µ∗∗ be a measure on (0, 1)T−1. We interchangeably represent elements of RT as
polynomials P of degree at most T − 1 or as T − 1-tuples of coefficients. Let ∼ be the
equivalence relation on RT defined by P ∼ Q ⇐⇒ P = cQ for some constant c, and let
RT / ∼ be the resulting quotient space. Let g : (0, 1)T−1 → RT / ∼ be the map taking
a tuple of roots to the equivalence class of the polynomials with those roots, and let
h : RT × RT → RT / ∼ be the map h(x, y) = [x− y].

We define the following measures µ∗ and µ on g((0, 1)T−1) and h−1(g((0, 1)T−1)) respect-
ively.

Define µ∗ on all sets S ⊂ g((0, 1)T−1) such that

{(r1(P ), . . . , rT−1(P )) ∈ (0, 1)T−1 : P ∈ S}

(where r1(P ), . . . rT−1(P ) denote the roots of P ) is µ∗∗-measurable, for which we set

µ∗(S) = µ∗∗({(r1(P ), . . . , rT−1(P )) ∈ (0, 1)T−1 : P ∈ S}).

Define µ on all sets S ⊂ h−1(g((0, 1)T−1)) such that

{[z] ∈ g((0, 1)T−1) : ∃(x, y) ∈ S s.t. z ∼ x− y}

is µ∗-measurable, for which we set

µ(S) = µ∗({[z] ∈ g((0, 1)T−1) : ∃(x, y) ∈ S s.t. z ∼ x− y}).
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Intuitively, µ∗ is defined only on those polynomials that have all their roots in (0, 1).
When T = 2, this is a desirable property since the analyst is only presented with polynomials
that have some disagreement in (0, 1). He is not presented with meaningless polynomials
that are, for example, always positive on (0, 1) (the analyst has nothing to learn from such
polynomials since such a polynomial will be preferred to 0 for all δ ∈ (0, 1)). For T ≥ 3, this
is a more restrictive property since the analyst is only presented with polynomials that have
all T − 1 roots in (0, 1).

Let µ∗∗ be the product Lebesgue measure on (0, 1)T−1. Choosing µ∗∗ in this fashion
allows us to neatly characterize B(%δ, R).

Let X1, . . . , XT−1 be uniform i.i.d. random variables on (0, 1), and let Yδ,γ be the random
variable Yδ,γ = |{i : Xi is between δ and γ}|. Let Eoddδ,γ denote the event that Yδ,γ is odd, let
Ekδ,γ denote the event Yδ,γ = k, and let E≥kδ,γ denote the event Yδ,γ ≥ k.

I Lemma 13. %γ∈ B(%δ, R) if and only if P[Eoddδ,γ ] ≤ R.

Proof. Given (x, y) ∈ RT × RT , let Px−y(X) =
∑T
t=1 X

t−1 · (xt − yt). Then,

%γ ∈ B(%δ, R)
⇐⇒ µ({(x, y) ∈ h−1(g((0, 1)T−1)) : sgn(Px−y(δ)) 6= sgn(Px−y(γ)))}) ≤ R
⇐⇒ µ∗({[P ] ∈ g((0, 1)T−1) : sgn(P (δ)) 6= sgn(P (γ))}) ≤ R
⇐⇒ µ∗∗({(r1, . . . , rT−1) ∈ (0, 1)T−1 : sgn(

∏
(δ − ri)) 6= sgn(

∏
(γ − ri))}) ≤ R

But sgn(
∏

(δ − ri)) 6= sgn(
∏

(γ − ri)) occurs exactly when an odd number of roots lie
between γ and δ (modulo a set of measure 0 since the probability that we have a root of
multiplicity greater than 1 is 0). J

While it seems difficult to write down a general characterization of µ, Propositions 14
and 15 give some basic observations regarding the σ-algebras on which µ∗ and µ are defined.
We defer their proofs (along with a description of µ∗ in the case T = 2) to the appendix:

I Proposition 14. The σ-algebra on g((0, 1)T−1) is the Borel σ-algebra.

The σ-algebra induced on h−1(g((0, 1)T−1)) does not appear to yield a clean characteriz-
ation, but we can show the weaker statement that µ is a Borel measure, i.e. it is defined on
all open sets of h−1(g((0, 1)T−1)).

I Proposition 15. µ is a Borel measure on h−1(g((0, 1)T−1)).

Computing θ

We now show θ = 2 for the distribution µ as chosen above. We use the notation d = dδ,γ :=
|δ − γ| to denote the distance between δ and γ. Let %δ be the target preference relation.

First, note that since Yδ,γ is distributed according to Bin(T−1, d), P[Eoddδ,γ ] = 1−(1−2d)T−1

2
9.

We us this fact to derive an explicit description of the preference relations %γ contained in
the ball B(%δ, R) in terms of d. We break the analysis up into a few cases.

First, when R > 1
2 , we have supR> 1

2

µ(Dis(B(%δ,R)))
R = 2. Let R ≤ 1

2 . By Lemma 13,

%γ∈ B(%δ, R) ⇐⇒ P[Eoddδ,γ ] = 1− (1− 2d)T−1

2 ≤ R (1)

9 This is due to the general fact that if X is a random variable distributed according to Bin(n, p), the
probability that X is odd is 1−(1−2p)n

2 .
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Suppose d ≤ 1
2 . Then 1− 2d and 1− 2R are both non-negative, so rearranging Equation (1)

yields

d ≤ 1− (1− 2R)1/(T−1)

2 . (2)

Suppose d > 1
2 , so 1− 2d < 0. Rearranging Equation (1), we get 1− 2R ≤ (1− 2d)T−1. If

T − 1 is odd, (1− 2d)T−1 is negative, so 1− 2R ≤ (1− 2d)T−1 does not hold. Thus, when
T − 1 is odd the ball consists of %γ such that d satisfies condition (2). If T − 1 is even,
(1− 2d)T−1 is positive, so we get

d ≥ 1 + (1− 2R)1/(T−1)

2 . (3)

Thus, when T − 1 is even the ball consists of %γ such that d satisfies conditions (2) or (3).
Now, the disagreement region of B(%δ, R) consists of all points (x, y) such that the

polynomial Px−y (as defined in Lemma 13) has a root γ such that %γ∈ B(%δ, R) (since
we can find two hypotheses that disagree on (x, y) by taking a point slightly below γ and
a point slightly above γ such that Px−y has no sign changes in between). Hence, with
R1 = 1−(1−2R)1/(T−1)

2 and R2 = 1+(1−2R)1/(T−1)

2 , we have that

µ(Dis(B(%δ, R))) =
{
P[E≥1

δ−R1,δ+R1
] if T − 1 is odd

P[E≥1
δ−R1,δ+R1

∪ E≥1
0,δ−R2

∪ E≥1
δ+R2,1] if T − 1 is even

We have

P[E≥1
δ−R1,δ+R1

] = 1− (1− 2R1)T−1 = 2R,

and

P[E≥1
δ−R1,δ+R1

∪ E≥1
0,δ−R2

∪ E≥1
δ+R2,1] = 1− (2(R2 −R1))T−1 = 1− 2T−1(1− 2R).

Therefore, when T − 1 is odd sup0<R≤1/2
µ(Dis(B(%δ,R)))

R = 2 and when T − 1 is even

sup
0<R≤1/2

µ(Dis(B(%δ, R)))
R

= sup
0<R≤1/2

1− 2T−1(1− 2R)
R

= 2,

which is achieved at R = 1/2 since 1−2T−1(1−2R)
R is increasing on 0 < R ≤ 1

2 .
Finally, θ = supR>0

µ(Dis(B(%δ,R)))
R = 2.

We have thus established Theorem 8:

I Theorem 8 (restated). There exists a distribution µ on RT ×RT for which the disagreement
coefficient of PED is θ = 2. Thus, for this distribution,

`CAL(ε) = Õ

(
log T log 1

ε

)
,

where the Õ notation suppresses terms that are logarithmic in log T and log 1/ε.
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5.3 Learning via membership queries
In this subsection, we present a simple membership queries algorithm that outperforms the
guarantees provided by the disagreement based CAL algorithm. For simplicity, we restrict
attention to preference models that are parametrized by a single parameter (e.g. PED and
PHD).

Let g1, . . . , gT : R→ R be a collection of functions such that there exist 1 ≤ t1, t2 ≤ T

satisfying
1. M := supδ

gt1 (δ)
gt2 (δ) is finite, and

2. The map δ 7→ gt1 (δ)
gt2 (δ) satisfies an inverse Lipschitz condition with constant C :

|δ − δ′| ≤ C
∣∣∣∣gt1(δ)
gt2(δ) −

gt1(δ′)
gt2(δ′)

∣∣∣∣ .
Consider the model of preference relations P parametrized by δ such that

x % y if and only if
T∑
t=1

gt(δ)xt ≥
T∑
t=1

gt(δ)yt.

I Proposition 9 (restated). There exists an algorithm that takes as input ε > 0 and using
O(log MC

ε ) membership queries outputs δh such that |δ − δh| ≤ ε, where δ parametrizes the
target preference relation in P.

Proof. Fix a ρ > 0 and an η-cover of [0,Mρ], where 0 < η ≤ ρε
C . Let bρ be the quantity such

that the agent is indifferent between receiving a payoff of ρ at time t1 or receiving a payoff of
bρ at time t2, i.e. bρ solves

gt2(δ)bρ = gt1(δ)ρ.

By running a binary search over the η-cover of [0,Mρ], the analyst can find an approximation
bhρ to the indifference point for which |bρ − bhρ | ≤ η (the binary search is performed on the
parameter bhρ by requesting labels for pairs of the form (ρet1 , bhρet2)). The analyst then
outputs the δh that solves gt2(δh)bhρ = gt1(δh)ρ.

We have

|δ − δh| ≤ C
∣∣∣∣gt1(δ)
gt2(δ) −

gt1(δh)
gt2(δh)

∣∣∣∣ = C

∣∣∣∣∣bρρ − bhρ
ρ

∣∣∣∣∣ ≤ Cη

ρ
≤ ε,

as desired.
Since M := supδ

gt1 (δ)
gt2 (δ) is finite, bρ ≤Mρ, so the binary search over the η-cover of [0,Mρ]

terminates. J

I Remark. Outputting a hypothesis parameter δh that is ε-close to δ is a reasonable
measurement for the error of learning via membership queries since there is no underlying
distribution providing points to the analyst. However, note that for a distribution on RT ×RT ,
a hypothesis close to the target parameter implies the set of misclassified points is assigned a
small measure, due to continuity of measure.
The main feature of this algorithm is that its query complexity has no dependence on the
number of time periods T . Both PED and PHD fit the conditions of Proposition 9, and thus
we obtain a large improvement over the guarantees provided by disagreement methods in the
stream-based model. Such methods assume no extra knowledge about the problem domain
and are written to fit a wide class of learning problems. When we are learning economic
parameters, membership queries allow us to take advantage of the extra structure present in
preference models.
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A Properties of µ and µ∗

Proof of Proposition 14. Let B denote the Borel σ-algebra on (0, 1)T−1.
Let X = RT / ∼ endowed with the quotient topology, and g∗ : [0, 1]T−1 → X be the

map g∗(r1, . . . , rT−1) = [
∏

(x − ri)]. Explicitly, the terms of g∗(r1, . . . , rT−1) are given by
symmetric sums:

g∗(r1, . . . , rT−1) =

c,−c∑
i

ri, c
∑
i,j

rirj , . . . , (−1)T−1cr1 · · · rT−1

 ,

where c is the appropriate constant for the representative of the equivalence class. Each
symmetric sum is a continuous function of T − 1 variables, so g∗ is continuous. Moreover,
note that g∗ is injective. Then, with Y = g∗([0, 1]T−1), we have that g∗ : [0, 1]T−1 → Y is a
continuous bijection from a compact set into a Hausdorff space. Hence, g∗ is a homeomorphism.
Then g, which is the restriction of g∗ to (0, 1)T−1 is a homeomorphism onto Z := g((0, 1)T−1).
Thus, the σ-algebra g(B) that we obtain on Z is the Borel σ-algebra. J

When T = 2, we can give an explicit description of µ∗. Identify R2/ ∼ with the unit
circle. Then, a degree 1 polynomial P is identified with the point (cos θ, sin θ), where P (x) =
(cos θ)x+ sin θ. Z := g((0, 1)T−1) consists of the boundary of the unit circle for which the
argument θ satisfies − tan θ ∈ (0, 1). This is satisfied precisely for θ ∈ (3π/4, π) ∪ (7π/4, 2π).
Hence, if U is a basic open subset of {(cos θ, sin θ) : θ ∈ (3π/4, π)∪ (7π/4, 2π)}, we can write
U = {(cos θ, sin θ) : θ1 < θ < θ2} with θ1, θ2 both in the same segment of the unit circle and

µ∗(U) = µ∗∗({− tan θ : θ1 < θ < θ2}) = | tan θ1 − tan θ2|.

Proof of Proposition 15. Let h : RT × RT → RT / ∼ be the map h(x, y) = [x − y]. Let
V ⊆ h−1(g((0, 1)T−1)) be open. We show that

h(V ) = {[z] : ∃(x, y) ∈ V (z = x− y)}

is open. Indeed, let z = x− y for (x, y) ∈ V and choose ε small enough such that the square
with vertices {(x + ε, y + ε), (x + ε, y − ε), (x − ε, y + ε), (x − ε, y − ε)} is contained in V .
Then, for any λ ≤ ε, [z + λ] = [(x+ λ)− y] with (x+ λ, y) ∈ V and [z − λ] = [x− (y + λ)]
with (x, y + λ) ∈ V , so in particular the open ball with radius λ centered at [z] is contained
in h(V ). J
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Abstract
We initiate the study of the role of erasures in local decoding and use our understanding to
prove a separation between erasure-resilient and tolerant property testing. Local decoding in the
presence of errors has been extensively studied, but has not been considered explicitly in the
presence of erasures.

Motivated by applications in property testing, we begin our investigation with local list
decoding in the presence of erasures. We prove an analog of a famous result of Goldreich and
Levin on local list decodability of the Hadamard code. Specifically, we show that the Hadamard
code is locally list decodable in the presence of a constant fraction of erasures, arbitrary close to
1, with list sizes and query complexity better than in the Goldreich-Levin theorem. We use this
result to exhibit a property which is testable with a number of queries independent of the length
of the input in the presence of erasures, but requires a number of queries that depends on the
input length, n, for tolerant testing. We further study approximate locally list decodable codes
that work against erasures and use them to strengthen our separation by constructing a property
which is testable with a constant number of queries in the presence of erasures, but requires nΩ(1)

queries for tolerant testing.
Next, we study the general relationship between local decoding in the presence of errors and

in the presence of erasures. We observe that every locally (uniquely or list) decodable code that
works in the presence of errors also works in the presence of twice as many erasures (with the
same parameters up to constant factors). We show that there is also an implication in the other
direction for locally decodable codes (with unique decoding): specifically, that the existence of
a locally decodable code that works in the presence of erasures implies the existence of a locally
decodable code that works in the presence of errors and has related parameters. However, it
remains open whether there is an implication in the other direction for locally list decodable
codes1. We relate this question to other open questions in local decoding.
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1 Introduction

The contributions of this work are two-fold: on one hand, we initiate the investigation of
erasures in local decoding; on the other hand, we apply our understanding of local list
decoding to study the relative difficulty with which sublinear algorithms can cope with
erasures and errors in their inputs.

Intuitively, a family of codes is locally decodable in the presence of a specified type of
corruptions (erasures or errors) if there exists an algorithm that, given oracle access to a
codeword with a limited fraction of specified corruptions, can decode each desired character of
the encoded message with high probability after querying a small number of characters in the
corrupted codeword. In other words, we can simulate oracle access to the message by using
oracle access to a corrupted codeword. This notion can be extended to local list decoding
by requiring the algorithm to output a list of descriptions of local decoders. Intuitively, a
family of codes is locally list decodable in the presence of a specified type of corruptions if
there exists an algorithm that, given oracle access to a corrupted codeword w, outputs a
list of algorithms such that for each message x whose encoding sufficiently agrees with w,
there is an algorithm in the list that, given oracle access to w, can simulate oracle access
to x. In addition to the usual quantities studied in the literature on error-correcting codes
(such as the fraction of corruptions a code can handle, its rate and efficiency of decoding),
the important parameters in local decoding are the number of queries that the algorithms
make to w and, in the case of local list decoding, list size.

The notion of locally decodable codes (LDCs) arose in the 1990s, motivated by numerous
applications in complexity theory, such as program checking, probabilistically checkable
proofs, derandomization, and private information retrieval. Locally decodable codes that
work in the presence of errors have been extensively studied [2, 9, 16, 17, 35, 3, 40, 14, 13,
5]. The related notion of locally list decodable codes (LLDCs) has also received a lot of
attention [19, 38, 27, 5, 31, 29, 22, 20] and found applications in cryptography, learning
theory, average-to-worst-case reductions, and hardness amplification and derandomization.
The literature on decoding in the presence of erasures is too vast to survey here. List
decoding in the presence of erasures (without the locality restriction) has been addressed by
Guruswami [23] and Guruswami and Indyk [24]. In particular, Guruswami [23] constructed an
asymptotically good family of binary linear codes that can be list decoded from an arbitrary
fraction of erasures with lists of constant size. Even though decoding in the presence of
erasures is an important and well established problem, to the best of our knowledge, local
(unique and list) decoding from erasures has not been studied before.

https://eccc.weizmann.ac.il/report/2018/195
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Motivated by applications in property testing [18, 37], we begin our investigation of
effects of erasures with local list decoding. Our first result is a local list erasure-decoder
for the Hadamard code. Local list decodability of the Hadamard code in the presence of
errors is a famous result of Goldreich and Levin [19]. However, (local list) decoding of
the Hadamard code is impossible when the fraction of errors reaches or exceeds 1/2. In
contrast, we show that the Hadamard code is locally list decodable in the presence of any
constant fraction of erasures in [0, 1). Moreover, the list size and the query complexity for
our decoder is better than for the Goldreich-Levin decoder: for our decoder, both quantities
are inversely proportional to the fraction of input that has not been corrupted, whereas for
the Goldreich-Levin decoder they are quadratically larger and are known to be optimal for
that setting. Thus, our Hadamard decoder demonstrates that a square-root reduction in
the list size and query complexity in local list decoding can be achieved for some settings of
parameters when we move from errors to erasures.

The second thrust of our work, enabled by our local list decoding results, is investigating
the effects of adversarial corruption to inputs on the complexity of sublinear-time algorithms.
Understanding the relative difficulty of designing algorithms that work in the presence of
input errors and in the presence of input erasures is a problem of fundamental importance.
The motivation of investigating adversarial input corruption spurred the generalization of
property testing, one of the most widely studied models of sublinear-time algorithms, to
(error) tolerant testing [34] and erasure-resilient testing [12].

Erasure-resilient property testing falls between (standard) property testing and tolerant
testing. Specifically, an erasure-resilient tester for a property, in the special case when no
erasures occur, is a standard tester for this property. Also, a tolerant tester for a property
implies the existence of an erasure-resilient tester with comparable parameters for the same
property. Fischer and Fortnow [15] separated standard and tolerant testing by describing
a property that is easy to test in the standard model and hard to test tolerantly. Dixit et
al. [12] showed that the property defined by Fischer and Fortnow separates standard property
testing from erasure-resilient testing in the same sense. Dixit et al. [12] asked whether it is
possible to obtain a separation between erasure-resilient and tolerant testing.

In this work, we provide such a separation. Specifically, we describe a property of binary
strings that is easy to test in the erasure-resilient model, but hard to test tolerantly.

The key idea in our construction of the separating property is to encode sensitive regions
of strings (without which testing becomes hard) with an error correcting code. We need a
code that exhibits a difference in its local list decoding capabilities for the same fraction of
erasures and errors. Specifically, we want, for some constant α, q and L, a code that can
be decoded from an α fraction of erasures with q queries and lists of size L, but cannot be
decoded from an α fraction of errors. We first define a property where the sensitive regions
are encoded with the Hadamard code and show that it is testable in the erasure-resilient
model (with a constant number of queries), but is not testable tolerantly.

Next, we want to strengthen the separation to obtain a property that is testable with
erasures, but requires as many queries as possible to test tolerantly. In our construction, the
lower bound on the number of queries needed for tolerant testing is determined by the rate
of the code. Since the Hadamard code has low rate, we only get a polylogarithmic lower
bound on the query complexity of tolerant testing. To obtain a lower bound of nΩ(1), we
would need a code of polynomial rate. The question of whether there is a locally list erasure
decodable code (with constant α, q and L) of polynomial rate remains open. An LLDC with
such parameters is the holy grail of research on local decoding.

We circumvent the above difficulty by starting out with a property of binary strings that
has a tester whose queries to a sensitive region of the input are nearly uniformly distributed.
This implies that testing remains easy even if a constant fraction of the sensitive region is
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corrupted. We construct a new separating property by encoding the sensitive region using a
code that is approximate locally list decodable from erasures, where an approximate locally
list decodable code (ALLDC) is defined identically to an LLDC except that the algorithms
output by a decoder for such a code simulate oracle access to strings that are close to the
original messages. We show that the resulting property can be erasure-resiliently tested using
a constant number of queries but needs nΩ(1) queries in order to be tested tolerantly, thus
obtaining a strengthened separation.

Next, we study the general relationship between local decoding in the presence of errors
and in the presence of erasures. One can observe that every LLDC that works in the presence
of errors also works in the presence of twice as many erasures (with the same parameters up
to constant factors). We ask if LLDCs or ALLDCs that work in the presence of erasures can
have significantly smaller list sizes and query complexity than LLDCs or ALLDCs of the
same rate that work in the presence of errors. We also prove that such a statement cannot
hold for the case of local unique decoding: specifically, we show that if a code is locally
unique erasure-decodable, then there exists another comparable code that is locally unique
decodable (up to minor losses in parameters).

1.1 Model Definitions and Our Results
This section contains descriptions and definitions of the codes and property testing models
we study, and also statements and discussion of our main results.

Local List Erasure-Decoding and the Hadamard Code

In this paper, we restrict our attention to binary codes. A binary code is an infinite family
of maps {Cn : Fn2 → FN2 }n∈N. The parameter n is called the message length, N is the block
length, and n/N is the rate of the code. Corruptions in codewords can either be in the form
of erasures (missing entries, denoted by the symbol ⊥) or in the form of errors (wrong values
from F2).

Recall that a local list decoder outputs a list of algorithms which give oracle access to
decoded messages or, in other words implicitly compute the decoded messages. This, and the
notion of local list erasure-decoders are formalized in the following definitions.

I Definition 1.1 (Implicit Computation). An algorithm A is said to implicitly compute x ∈ Fn2
if, for all i ∈ [n], the algorithm A on input i, outputs the ith bit of x.

I Definition 1.2 (Locally List Erasure-Decodable Codes (LLEDCs)). A family of codes {Cn :
Fn2 → FN2 }n∈N is (α, q, L)-locally list erasure-decodable if there exists a randomized algorithm
A such that, for every n ∈ N and every w ∈ (F2 ∪ {⊥})N with at most an α fraction of
erasures, the algorithm A makes at most q queries to w and outputs a list of randomized
algorithms {T1, T2, . . . , TL} such that the following hold:
1. With probability at least 2/3, for all x ∈ Fn2 such that Cn(x) agrees with w on all

nonerased bits, there exists an index j ∈ [L] such that Tj with oracle access to w

implicitly computes x.
2. For all j ∈ [L] and i ∈ [n], the expected number of queries that the algorithm Tj makes

to w on input i is at most q.

The definition of an (α, q, L)-LLDC is identical to Definition 1.2 except that the input
word has no erasures, and the list is required to contain, with probability at least 2/3,
algorithms that implicitly compute messages corresponding to codewords disagreeing with
the input word on at most an α fraction of bits. The celebrated Goldreich-Levin theorem [19]
states that the Hadamard code, defined next, is an LLDC that has an efficient decoder.
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I Definition 1.3 (Hadamard code). For a ∈ Fn2 , let Ha : Fn2 → F2 be defined as follows:
Ha(x) =

⊕
i∈[n] ai · xi for all x ∈ Fn2 . The Hadamard code, denoted by {Hn : Fn2 → F2n

2 }n∈N,
is such that for a ∈ Fn2 , the encoding Hn(a) is the string of evaluations of Ha over Fn2 .

Our first result is about the local list erasure-decodability of the Hadamard code. It is an
analogue of the Goldeich-Levin Theorem [19] for corruptions in the form of erasures.

I Theorem 1.4 (Local List Erasure-Decoder for Hadamard). There is an
(
α,Θ( 1

1−α ),Θ( 1
1−α )

)
-

local list erasure-decoder for the Hadamard code that works for every α ∈ [0, 1).

The Goldreich-Levin theorem holds for any fraction of errors in [0, 1/2). In contrast,
our local list erasure-decoder works for any fraction of erasures less than 1. However, it is
impossible to decode the Hadamard code in the presence of 1/2 fraction of errors because
every Hadamard codeword has relative distance at most 1/2 from the all-zero codeword.
Another improvement in Theorem 1.4 as compared to Golreich-Levin is in the list size and
the query complexity: from Θ( 1

(1/2−α)2 ) to Θ( 1
1−α ). Such an improvement is impossible if we

are decoding against errors as opposed to erasures. Specifically, for the list size, Blinovsky [8]
and Guruswami and Vadhan [26] show that every list decoder for every binary code that is
list decodable in the presence of an α fraction of errors must output lists of size Ω( 1

(1/2−α)2 ).
Grinberg, Shaltiel, and Viola [21] show that the same lower bound holds for query complexity.

Separation between Erasure-Resilient and Tolerant Testing

We first describe the erasure-resilient and tolerant models of testing. A property P is a set of
strings. Given α ∈ [0, 1), a string is α-erased if at most an α fraction of its values are erasures
(denoted by ⊥). A completion of an α-erased string x ∈ {0, 1,⊥}n is a string y ∈ {0, 1}n that
agrees with x on all the positions where x is nonerased. An α-erasure-resilient ε-tester [12]
for a property P is a randomized algorithm that, given parameters α ∈ [0, 1), ε ∈ (0, 1)
and oracle access to an α-erased string x, accepts with probability at least 2/3 if x has a
completion in P and rejects with probability at least 2/3 if, in every completion of x, at least
an ε fraction of the nonerased values has to be changed to get a string in P. The property
P is α-erasure-resiliently ε-testable if there exists an α-erasure-resilient ε-tester for P with
query complexity that depends only on the parameters α and ε (but not on n).

A string x ∈ {0, 1}n is ε′-far (α-close) from (to, respectively) a property P, if the
normalized Hamming distance of x from P is at least ε′ (at most α, respectively). An
(α, ε′)-tolerant tester [34] for P is a randomized algorithm that, given parameters α ∈
(0, 1), ε′ ∈ (α, 1) and oracle access to a string x, accepts with probability at least 2

3 if x is
α-close to P and rejects with probability at least 2

3 if x is ε′-far from P. The property P is
(α, ε′)-tolerantly testable if there exists an (α, ε′)-tolerant tester for P with query complexity
that depends only on α and ε′ (but not n).

Comparison of parameters. We remark that, while comparing the two models, it is appro-
priate to compare (α, α+ ε(1− α))-tolerant testing of a property P with α-erasure-resilient
ε-testing of P for the same values of α and ε. The parameter α in both models is an upper
bound on the fraction of corruptions (erasures, or errors) that an adversary can make to an
input. An α-erasure-resilient ε-tester rejects with probability at least 2

3 if, for every way of
completing an input string, one needs to change at least an ε fraction of the remaining part
of the input to make it satisfy P. Similarly, an (α, α+ ε(1− α))-tolerant tester rejects with
probability at least 2

3 if, for every way of correcting an α fraction of the input values, one
needs to change at least an ε fraction of the remaining (1− α) fraction of the input to make
it satisfy P.
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Separation. The following theorem states that there exists a property that is erasure-
resiliently testable but is not tolerantly testable. This proves that tolerant testing is, in
general, harder problem than erasure-resilient testing.

I Theorem 1.5 (Separation). There exist a property P and constants ε, α ∈ (0, 1) such that
P is α-erasure-resiliently ε-testable;
P is not (α, α+ ε(1− α))-tolerantly testable.

Approximate Local List Erasure-Decoding and Strengthened Separation. We obtain
a separation better than in Theorem 1.5 with the help of a variant of LLEDCs, called
approximate locally list erasure-decodable codes (ALLEDC). An approximate local list
erasure-decoder is identical to a local list erasure-decoder in all aspects except that the
algorithms in its list are required to implicitly compute strings that are just “close” to the
actual messages. More formally, (α, β, q, L)-ALLEDCs are defined as (α, q, L)-LLEDCs in
Definition 1.2, except that we replace “implicitly computes x” at the end of Item 1 with
“implicitly computes a string x′ ∈ Fn2 that is β-close to x”.

The definition of an (α, β, q, L)-approximate locally list decodable code (ALLDC) is
identical to that of an (α, β, q, L)-ALLEDC except that the input word has no erasures,
and the list is required to contain, with probability at least 2/3, algorithms that implicitly
compute strings that are β-close to messages corresponding to codewords which are α-close
to the input word. We observe (Observation 4.2) that every (α, β, q, L)-ALLDC is also
a (2α, β, 4q, 4L)-ALLEDC, and combine this observation with existing constructions for
ALLDCs [28, 4] to obtain efficient ALLEDCs. We use them and get our strengthened
separation.

I Theorem 1.6 (Strengthened Separation). There exist a property P ′ and constants ε, α ∈
(0, 1) such that
P ′ is α-erasure-resiliently ε-testable;
every (α, α+ ε(1− α))-tolerant tester for P ′ makes nΩ(1) queries.

Relationship between Local Erasure-Decoding and Local Decoding.

We investigate the general relationship between the erasures and errors in the context of
local unique and list decoding. We show that local (unique) decoding from erasures implies
local (unique) decoding from errors, up to some loss in parameters.

I Definition 1.7 (Locally Erasure-Decodable Codes (LEDCs)). A code family {Cn : Fn2 →
FN2 }n∈N is (α, q)-locally erasure-decodable if there exists an algorithm A that, given an index
i ∈ [n] and oracle access to an input word w ∈ ({⊥} ∪ F2)N with at most α fraction of
erasures, makes at most q queries to w and outputs xi with probability at least 2

3 .

An (α, q)-locally decodable code (LDC) is defined similarly to an (α, q)-LEDC except
that the input word w contains at most α fraction of errors instead of erasures. We observe
(Observation 6.4) that an LDC is also locally erasure-decodable from (nearly) twice as many
erasures. We also show that constant-query LEDCs are constant-query locally decodable (up
to constant loss in parameters).

I Theorem 1.8. For every α ∈ [0, 1), if a code family {Cn : Fn2 → FN2 }n∈N is (α, q)-locally
erasure-decodable, then it is ( α

O(q2·81q) , O(q · 9q)) locally decodable.
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We note that although our final code has small decoding radius (that is, it tolerates only
a small fraction of errors), the decoding radius can be amplified to any constant arbitrarily
close to 1/4 at the cost of increasing the query complexity and encoding length by a constant
factor. Specifically, using a local version of the AEL transformation [1] (see [30, Lemma 3.1]),
one can amplify the decoding radius to any constant arbitrarily close to 1/2 at the cost of
increasing the query complexity, alphabet size, and length by constant factors. The alphabet
then can be reduced back to binary by encoding the binary representation of each alphabet
symbol with the Hadamard code. The length will grow by another constant factor, and using
a local version of the GMD decoder [30, Corollary 3.9], one can show that final decoding
radius is arbitrarily close to 1/4 and query complexity grows only by a constant factor.

1.2 Open Questions
The main open question raised by our work is whether local list decoding is significantly
easier in terms of the query complexity, the list size, or the rate of codes when corruptions
are in the form of erasures. The same question can be asked about approximate local list
decoding. Our local list erasure-decoder for the Hadamard code shows that there is some
advantage for having erasures over errors, in terms of the list size and query complexity,
for some settings of parameters. A positive or negative answer to this question, combined
with our result on the equivalence of errors and erasures in the local decoding regime, will
enhance the understanding of whether local list decoding is an inherently more powerful
model when compared to local decoding.

2 Local List Erasure-Decoding of the Hadamard Code

In this section, we describe a local list erasure-decoder for the Hadamard code and prove
Theorem 1.4. We follow the style of the proof of the Goldreich-Levin theorem given in a
tutorial by Luca Trevisan [39] on the applications of coding theory to complexity.

Proof of Theorem 1.4. For b1, b2 ∈ F2, let b1⊕ b2 denote the XOR of b1 and b2. For vectors
x, y ∈ Fn2 , let x� y denote the bitwise XOR of x and y. Let ek ∈ Fn2 denote the kth standard
basis vector. A codeword of the Hadamard code Hn (see Definition 1.3) is the string of all
evaluations of a linear function mapping Fn2 to F2. A function f : Fn2 → F2 ∪{⊥} is α-erased,
if f evaluates to ⊥ on at most α fraction of its domain. Our local list erasure-decoder,
described in Algorithm 1, gets a parameter α ∈ [0, 1) as its input and has oracle access to an
α-erased linear function f : Fn2 → F2 ∪ {⊥} (or, equivalently, oracle access to an α-erased
codeword of Hn) .

Let t = dlog2(1+ 12
1−α )e. Consider z1, z2, . . . , zt ∈ Fn2 sampled uniformly and independently

at random. For a nonempty set S ⊆ [t], let zS denote
⊙

i∈S zi. Let zφ denote ~0. For any
two nonempty sets R,S ⊆ [t] such that R 6= S, the vectors zR and zS are independently and
uniformly distributed in Fn2 . Recall that for a string a ∈ Fn2 , let Ha : Fn2 → {0, 1} denotes
the Hadamard encoding (see Definition 1.3) of a.

Let a ∈ Fn2 be such that for all x ∈ Fn2 where f(x) 6=⊥, the functions Ha and f agree with
each other. There exists some iteration of Step 5 of Algorithm 1 such that bi = Ha(zi) for
all i ∈ B. Let T and A denote the algorithms whose descriptions are generated in Steps 12
and 7 of this iteration respectively.

First, we show that for x distributed uniformly in Fn2 , the algorithm A on input x,
returns Ha(x) with probability at least 2

3 . Fix x ∈ Fn2 . Consider a set S ⊆ [t] such
that f(x � zS) 6=⊥. According to the description of A, we get, A(x) = (⊕j∈S∩Bbj) ⊕
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Algorithm 1 Local List Erasure-Decoder for the Hadamard code.
Input: α ∈ [0, 1); oracle access to α-erased linear function f : Fn2 → F2 ∪ {⊥}
1: Let t = dlog2(1 + 12

1−α )e.
2: Choose z1, z2, . . . , zt ∈ Fn2 uniformly and independently at random.
3: Let zS ←

⊙
i∈S zi for all nonempty S ⊆ [t]. Let zφ ← ~0.

4: Set B ← {i ∈ [t] : f(zi) =⊥}.
5: for all b1, b2, . . . , b|B| ∈ {0, 1} do define
6: . Description of the local decoder Tb1,...,b|B| follows.
7: function Ab1,...,b|B|

8: input: x ∈ Fn2 ; oracle access to f : Fn2 → F2 ∪ {⊥}
9: for all S ⊆ [t] do

10: if f(x�zS) 6=⊥ then return (
⊕

j∈S∩B bj)⊕ (
⊕

j∈S∩([t]\B) f(zj))⊕f(x�zS).

11: Return ⊥.
12: function Tb1,...,b|B|

13: input: k ∈ [n]; oracle access to f : Fn2 → F2 ∪ {⊥}
14: repeat
15: Pick y ∈ Fn2 uniformly and independently at random.
16: u← Ab1,...,b|B|(y � ek), v ← Ab1,...,b|B|(y).
17: if v 6=⊥ and u 6=⊥ then return u⊕ v.
18: Return the descriptions of Tb1,...,b|B| for all b1, b2, . . . , b|B| ∈ {0, 1}.

(
⊕j∈S∩([t]\B)f(zj)

)
⊕ f(x� zS) = (⊕j∈S∩BHa(zj))⊕

(
⊕j∈S∩([t]\B)Ha(zj)

)
⊕Ha(x� zS) =

(⊕j∈SHa(zj))⊕Ha(x)⊕ (⊕j∈SHa(zj)) = Ha(x).
Let α? ≤ α denote the fraction of erasures in f . For each S ⊆ [t] and x ∈ Fn2 , we have

that f(x� zS) 6=⊥ with probability equal to 1− α?, since x� zS is uniformly distributed
in Fn2 . Define an indicator random variable ZS = 1(f(x� ZS) 6=⊥). Then E[ZS ] = 1− α?
and Var(ZS) = (1 − α?) · α?. Note that the collection {x � zS |S ⊆ [t], S 6= ∅} is pairwise
independent, and hence the collection {ZS |S ⊆ [t], S 6= ∅} is also pairwise independent.

Let Z =
∑
S⊆[t]:S 6=∅ ZS . The random variable Z denotes the number of nonerased values

among f(x� zS) over all nonempty S ⊆ [t]. The event that ∀S ⊆ [t], S 6= ∅, f(x� zS) =⊥ is
equivalent to the event that Z < 1. Also, E[Z] =

∑
S⊆[t],S 6=∅ E[ZS ] = (1− α?) · (2t − 1) and

Var[Z] =
∑
S⊆[t],S 6=∅Var[ZS ] = (2t − 1) · α?(1− α?). By Chebyshev’s inequality,

Pr[Z < 1] = Pr[E[Z]− Z > E[Z]− 1]

≤ Pr
[
E[Z]− Z >

(1− α?) · (2t − 1)
2

]
≤ 4Var(Z)

(1− α?)2 · (2t − 1)2 ≤
1
3 .

The last inequality follows from our setting of t. Therefore, for x distributed uniformly
in Fn2 , the algorithm A on input x, returns Ha(x) with probability at least 2

3 .
We now prove that T implicitly computes a ∈ Fn2 and that the expected number of

queries that it makes to f is Θ( 1
1−α ). It is clear that the output of T on input k is always

a[k] = Ha(y � ek)⊕Ha(y) = Ha(ek). The number of queries made by T to A is a geometric
random variable with success probability ≥ 1

3 . Hence, the expected number of queries made
by T to A is at most 3. Since the query complexity of A is at most 2t, the expected number of
queries made to f in one invocation of T is Θ(2t), that is, Θ( 1

1−α ). The number of algorithms
whose descriptions are generated is also at most 2t, which is, Θ( 1

1−α ). J
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3 Separation

In this section, we describe a property P that is erasure-resiliently testable using a constant
number of queries, but not tolerantly testable using a constant number of queries, and prove
Theorem 1.5. In fact, we prove the following (more general) statement and show that it
implies Theorem 1.5.

I Theorem 3.1. Let ε? ∈ (0, 1
100 ) be a constant. There exists a property P ⊆ {0, 1}∗ such

that
for every α ∈ [0, 3ε?

16 ) and ε ∈ ( 3ε?
4(1−α) , 1), the property P can be α-erasure-resiliently

ε-tested using O( 1
ε(1−2α) ) queries.

for all α ∈ ( ε
?

8 , 1) and ε′ ∈ (α, ε? − (ε?)2

4 ), the query complexity of (α, ε′)-tolerant testing
P on inputs of length N is Ω̃(logN).

3.1 Description of the Separating Property P
The property P is defined in terms of a propertyR that is hard to test in the standard property
testing model [18, 37], a probabilistically checkable proof system (PCP of proximity [6, 11]2)
for the problem of testing R, and the Hadamard code. We discuss them below. The idea
of using PCPs of proximity in separating property testing models comes from the work of
Fischer and Fortnow [15]. Our contribution is to use locally list decodable codes in this
context.

Given a Boolean formula φ over n variables, letRφ ⊆ {0, 1}n denote the set of all satisfying
assignments to φ, represented as n-bit strings. Ben-Sasson, Harsha and Raskhodnikova [7]
showed that for infinitely many n ∈ N, there exists a 3CNF formula φn on n variables such
that every tester for Rφn requires Ω(n) queries.

I Lemma 3.2 ([7]). There exists a parameter ε? ∈ (0, 1) and a countably infinite set ℵ ⊆ N
such that for all n ∈ ℵ, there exists a 3CNF formula φn with n variables and Θ(n) clauses
such that every ε?-tester for Rφn has query complexity Ω(n).

As mentioned before, another important ingredient in the description of the separating
property P is a probabilistically checkable proof system for property testing problems, called
PCP of proximity, defined and studied independently by Ben-Sasson et al. [6] and Dinur and
Reingold [11]. PCPs of proximity were further studied by Dinur [10] and Meir [32, 33].

I Definition 3.3 (PCP of proximity [6, 11]). Given a property Pn ⊆ {0, 1}n, the PCP of
proximity (PCPP) for Pn is a randomized algorithm V that takes a parameter ε ∈ (0, 1] as
input, gets oracle access to a string y ◦ π, where y ∈ {0, 1}n is the input and π ∈ {0, 1}m is
the proof, and satisfies the following:

if y ∈ Pn, then, for some π, the algorithm V always accepts y ◦ π;
if y is ε-far from Pn, then, for every π, the algorithm V rejects y ◦ π with probability at
least 2

3 .

A result by Dinur [10, Corollary 8.4] states that there are efficient PCPPs (over a small
constant alphabet Σ) for testing properties (over Σ) that are decidable using polynomial-sized
circuits. By representing the symbols in Σ using the binary alphabet, we obtain the following.

2 PCPs of proximity are referred to as assignment testers by Dinur and Reingold [11]. Ben-Sasson et
al. [6] and Dinur and Reingold [11] defined these objects concurrently and independently in order to
obtain simpler and more efficient PCP constructions.
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I Lemma 3.4 ([10]). If Pn ⊆ {0, 1}n is a property decidable by a circuit of size s(n),
then there exists a PCPP V that works for every ε ∈ (0, 1], uses a proof of length at
most s(n) · polylog s(n), and has query complexity O( 1

ε ). Moreover, the queries of V are
nonadaptive.

I Claim 3.5. There exists a constant c > 0 such that for every large enough n ∈ N, there
exists a PCPP V for the property Rφn that works for all ε ∈ (0, 1], uses a proof of length at
most cn · polylog n, and has query complexity O( 1

ε ).

The following is the definition of our separating property P . At a high level, the definition
says that, for all n ∈ ℵ, a string of length O(2n·polylog n) satisfies P if its first part is the
repetition of a string y satisfying R, and the second part is the encoding (by the Hadamard
code) of y concatenated with a proof π that makes the algorithm V in Claim 3.5 accept.

I Definition 3.6 (Separating Property P). Let ε? ∈ (0, 1) be as in Lemma 3.2. For n ∈ ℵ,
let p(n) ≤ cn · polylog n denote the length of proof that the algorithm V in Claim 3.5 has
oracle access to. A string x ∈ {0, 1}N of length N = 4

ε? · 2
n+p(n) satisfies P if:

1. The first ( 4
ε? − 1) · 2n+p(n) bits of x (called the plain part of x) consist of ( 4

ε? − 1) · 2n+p(n)

n

repetitions of a string y ∈ Rφn of length n, for φn from Lemma 3.2.
2. The remaining bits of x (called the encoded part of x) form the Hadamard encoding of a

string y ◦ π(y) of length n+ p(n), where ◦ denotes the concatenation operation on strings.
The string y ∈ {0, 1}n is the same as the one in the description of the plain part. The
string π(y) ∈ {0, 1}p(n) is a proof such that the algorithm V (from Claim 3.5) accepts
when given oracle access to y and π(y).

3.2 Proof of Theorem 3.1

In this section, we prove Theorem 3.1, which in turn implies Theorem 1.5. Lemmas 3.7
and 3.10 prove the first and second parts of Theorem 3.1, respectively. The erasure-resilient
tester for P first obtains a list of (implicit) decodings of the encoded part (see Definition 3.6)
of an input string x ∈ {0, 1}N using the local list erasure-decoder guaranteed by Theorem 1.4.
If x ∈ P, with high probability, at least one of the algorithms implicitly computes (see
Definition 1.1) the string y ◦π(y), where y is such that the plain part of x (see Definition 3.6)
consists of repetitions of y, and π(y) is a proof string such that the algorithm V (from
Claim 3.5) accepts upon oracle access to y ◦ π(y). In case x is ε-far from P we show that for
every algorithm T output by the local list erasure-decoder, the string y′ ◦ π(y′) implicitly
computed by T is such that, (1) either the plain part of x is far from being the repetitions of
y′, (2) or y′ is far from R (in which case, the algorithm V from Claim 3.5 rejects when given
oracle access to y′ ◦ π(y′)). To show that tolerant testing of P is hard, we reduce ε?-testing
of Rφn to it. Specifically, given oracle access to a string y ∈ {0, 1}n that we want to ε?-test,
we simulate oracle access to a string x ∈ {0, 1}N such that the plain part of x consists of
repetitions of y, and every bit in the encoded part of x is 0. Since every Hadamard codeword
has an equal number of 0s and 1s, the string x can be thought of as having 0.5 fraction of
“errors” in the encoded part. If y ∈ Rφn , then the string x is close to being in P, as the
errors are only in the encoded part of x and the length of the encoded part is a small fraction
of the length of x. If y is far from Rφn , then x is also far from P, since the plain part of x,
whose length is a large fraction of the length of x, is the repetitions of y. Thus, the decision
of a tolerant tester for P on x can be used to test y for Rφn , implying that the complexity
of tolerant testing of P is equal to the complexity of testing Rφn .
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Algorithm 2 Erasure-resilient tester for separating property P.
Input: α, ε ∈ (0, 1), N = 4

ε? · 2
(n+p(n)); oracle access to x ∈ {0, 1,⊥}N

1: Set s← ( 4
ε? − 1) · 2(n+p(n))/n, ε′ ← ε(1− 2α)/3.

2: Set Q← C/(ε(1− 2α)) for a large enough constant C.
3: Accept whenever the number of queries exceeds Q.
4: Let T1, T2, . . . , TL be the list of algorithms returned by a ( 3

4 , q, L)-local list erasure-
decoder for the Hadamard code (Algorithm 1), given oracle access to x[sn+ 1..N ], the
encoded part of x.

5: for each k ∈ [L] do
6: . Check if the plain part of x is the repetition of y, where y denotes the first n bits of the

decoding (given by Tk) of the encoded part of x.
7: repeat

⌈
9 logL
ε(1−2α)

⌉
times:

8: Pick a ∈R [n], i ∈R [s].
9: if x[(i− 1)n+ a] 6=⊥ and Tk(a) 6= x[(i− 1)n+ a] then
10: Discard the current k
11: . Check if the string y ∈ Rφn , where y denotes the first n bits of the decoding (by Tk) of

the encoded part of x.
12: repeat d4 logLe times:
13: Run V , from Claim 3.5, with input ε′ and oracle access to Tk.
14: Discard the current k if V rejects.
15: Reject if every k ∈ [L] is discarded; otherwise, accept.

We first prove the existence of an efficient erasure-resilient tester for P. An α-erased
string x is ε-far from a property P if there is no way to complete x to a string that satisfies
P without changing at least an ε fraction of the nonerased values in x.

I Lemma 3.7. Let ε? ∈ (0, 1) be as in Lemma 3.2. For every α ∈ [0, 3ε?
16 ), and every

ε ∈ ( 3ε?
4(1−α) , 1), the property P can be α-erasure-resiliently ε-tested using O( 1

ε(1−2α) ) queries.

Proof. The erasure-resilient tester for P is described in Algorithm 2. The query complexity
of the tester is evident from its description. We now prove that the tester, with probability
at least 2

3 , accepts strings in P and rejects strings that are ε-far from P.
Let ℵ, ε? ∈ (0, 1) be as in Lemma 3.2. Fix n ∈ ℵ and let p(n) and N be as in Definition 3.6.

Let s denote ( 4
ε?−1)· 2

n+p(n)

n . Consider a string x ∈ {0, 1}N that we want to erasure-resiliently
test for P. As in Definition 3.6, we refer to the substring x[1 . . . sn] as the plain part of x
and the substring x[sn+ 1 . . . N ] as the encoded part of x.

Assume that x ∈ P. Since α < 3ε?/16, the fraction of erasures in the encoded part of
x is at most 3/4. Hence, by Theorem 1.4, with probability at least 2/3, there exists an
algorithm Tk computed in Step 4 of Algorithm 2, such that Tk implicitly computes the string
y ◦ π ∈ {0, 1}n+p(n), where y ∈ Rφn , the plain part of x can be completed to a repetition of
y, and π is a proof such that the algorithm V (from Claim 3.5) accepts when given oracle
access to y ◦ π. Therefore k is not discarded in either Step 10 or Step 14. Thus, the tester
will accept with probability at least 2/3.

Now, assume that x is ε-far from P. Let E denote the event that the number of queries
made by the tester does not exceed its query budget. We will first show that, conditioned on
E, the tester rejects x with probability at least 4/5.

Let N1 denote the set of nonerased points in the plain part of x and N2 denote those
in the encoded part and let N denote the set of nonerased points in x. Even if all of at
most Nα erased points in x are in the plain part of x, the total number of nonerased points
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in plain part of x, which is |N1|, is at least sn − Nα. Since, for large enough n, we have
N ≤ 2sn by Definition 3.6, we can see that |N1| ≥ sn(1 − 2α). We first prove two claims
about the plain part of x, that is, x[1 . . . sn].

I Claim 3.8. The plain part of x is 2ε
3 -far from being s repetitions of a string y ∈ Rφn .

From Claim 3.8, it follows that at least 2ε·|N1|
3 ≥ 2ε·sn(1−2α)

3 nonerased points need to be
changed in the plain part of x for it to be s repetitions of a string y ∈ Rφn .

I Claim 3.9. For every y ∈ {0, 1}n, if the plain part of x can be changed to s repetitions of
y by modifying less than ε·sn(1−2α)

3 nonerased values, then y is ε(1−2α)
3 -far from Rφn .

Fix k ∈ [L]. Let y′ ∈ {0, 1}n be the first n bits from the left in the decoding, using Tk, of
the encoded part of x. We will show that the algorithm discards k with high probability. We
split the analysis into two cases.

Case I: Suppose we need to change at least ε|N1|
3 ≥ ε·sn(1−2α)

3 nonerased points in the plain
part of x for it to become s repetitions of y′. We show that in this case, Steps 7-10
discard k with probability at least 9

10L . A point (i − 1)n + a for i ∈ [s] and a ∈ [n]
is called a witness if x[(i − 1)n + a] 6=⊥ and x[(i − 1)n + a] 6= y′[a]. Since we need to
change at least ε · sn(1− 2α)/3 nonerased points in the plain part of x for it to become
s repetitions of y′, there are at least ε · sn(1 − 2α)/3 witnesses in the plain part of x.
In each iteration of Steps 7-10, the point selected is a witness with probability at least
ε·sn(1−2α)

3sn = ε·(1−2α)
3 . Thus, in d 9 logL

ε(1−2α)e iterations, Algorithm 2 finds a witness (and
discards k) with probability at least 9/10L.

Case II: In this case, we assume that we can change less than ε · sn(1− 2α)/3 nonerased
points in the plain part of x and make it s repetitions of y′. Then, by Claim 3.9, y′ is
ε ·(1−2α)/3-far from Rφn . Let ε′ = ε·(1−2α)

3 . By Claim 3.5, for every proof π ∈ {0, 1}p(n),
the algorithm V (from Claim 3.5), on input ε′ and oracle access to y′ ◦π (obtained via Tk),
rejects (causing k to be discarded) with probability at least 2/3. Thus, the probability
that tester fails to discard k in d4 logLe independent iterations of Steps 12-14 is at most
1/16L.

Therefore, the probability that the tester fails to discard k is at most 1
10L + 1

16L < 1
5L .

By the union bound, the probability that Algorithm 2 fails to discard some k ∈ [L] is at
most 1/5. Thus, conditioned on the event E that the number of queries made by the tester
does not exceed its query budget, with probability at least 4/5, the tester rejects.

We bound the probability of E by first showing that the expected number of queries made
by Algorithm 2 is O( 1

ε(1−2α) ) and then applying Markov’s inequality. Hence, the probability
that the tester accepts x that is ε-far from P is at most 1/3. J

I Lemma 3.10. Let ε? ∈ (0, 1) be as in Lemma 3.2. For every α ∈ ( ε
?

8 , 1) and ε′ ∈
(α, ε? − (ε?)2

4 ), the query complexity of (α, ε′)-tolerant testing P on strings of length N is
Ω̃(logN).

Proof. Let ℵ, ε? ∈ (0, 1) be as in Lemma 3.2. We will prove the lemma by showing a
reduction from ε?-testing of Rφn . Fix n ∈ ℵ and let p(n) and N be as in Definition 3.6. Let
s denote ( 4

ε? − 1) · 2n+p(n)

n .
Consider a string y ∈ {0, 1}n that we want to ε?-test for Rφn . Let x ∈ {0, 1}N be the

string where the first sn bits of x are s repetitions of y and the remaining bits are all 0s. We
refer to the substring x[1 . . . sn] as the plain part of x and the substring x[sn+ 1 . . . N ] as
the encoded part of x.
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Assume that A is an (α, ε′)-tolerant tester for P. We now describe an ε?-tester A′ for
Rφn that has the same query complexity as A. Given oracle access to y ∈ {0, 1}n, the tester
A′ runs the tester A on the string x ∈ {0, 1}N and accepts if and only if A accepts, where x
is constructed from y as described above. Observe that one can simulate a query to x by
making at most one query to y.

If y ∈ Rφn , then x is α-close to P. Observe that the encoded part of x needs to be
changed in at most 1/2 fraction of its positions in order to make it the encoding of a string
y ◦ π, where π is a proof that makes a PCP of proximity for testing Rφn accept. This follows
from the fact that the normalized weight of every nonzero codeword in the Hadamard code
is 1/2. Thus, the fraction of bits in x that needs to be changed in order to make it satisfy P
is at most 1

2 ·
N−sn
N = ε?

8 , which is less than α. Therefore, by definition, A′ will accept x
with probability at least 2/3.

If y is ε?-far from Rφn , then x needs to be changed in at least ε? · sn positions to make
it satisfy P. From this, one can observe that x is (ε? − (ε?)2

4 )-far from P. Hence, for all
ε′ < ε? − (ε?)2

4 , we have that A will reject x with probability at least 2/3, and therefore A′
will reject y with probability at least 2/3.

Thus, we have shown that the query complexity of (α, ε′)-tolerant testing P is at least the
query complexity of ε?-testing Rφn . Hence, the query complexity of (α, ε′)-tolerant testing
P is Ω(n), which is equal to Ω̃(logN). J

Proof of Theorem 1.5. For every 0 < ε? < 1/100, the system of constraints on α, ε ∈ (0, 1)
(by Theorem 3.1) has a feasible solution with α = ε?/6 and ε = 4ε?/5. J

4 Approximate Local List Erasure-Decoding

In this section, we prove the existence of an approximate locally list erasure-decodable code
(ALLEDC) with inverse polynomial rate. Our starting point is an approximate locally list
decodable code (ALLDC) due to Impagliazzo et al. [28]. To this code, we apply Observation 4.2
which states that every ALLDC that works in the presence of errors also works in the presence
of twice as many erasures (with the same parameters up to constant factors).

I Theorem 4.1 ([28] as restated by [4]). For every γ, β > 0, there exists a number f(γ, β) > 0
and a code family {Ck : Fk2 → Ff(γ,β)k5

2 }k∈N that is a (γ, β,O( log(1/β)
( 1

2−γ)3 ), O( 1
( 1

2−γ)2 ))-ALLDC.

I Observation 4.2. If a code family {Ck : Fk2 → Fn2}k∈N is an (α, β, q, L)-ALLDC, it is also
a (2α, β, 4q, 4L)-ALLEDC.

Applying Observation 4.2 to Theorem 4.1, we get the ALLEDCs that we need.

I Lemma 4.3. Let c3 > 0 be a constant. For every γ, β > 0, there exists a number f(γ, β) > 0
and a code family {Ck : Fk2 → {0, 1}f(γ,β)k5}k∈N that is a (γ, β, c3 log(1/β)

(1−γ)3 , c3
(1−γ)2 )-ALLEDC.

5 Strengthened Separation

In this section, we describe a property P ′ that can be erasure-resiliently tested using a
constant number of queries, but for which every tolerant tester has query complexity nΩ(1),
and prove Theorem 1.6. The following theorem implies Theorem 1.6.
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I Theorem 5.1. There exists a property P ′ and constants ε? ∈ (0, 1), c2 > 1 such that,
For every ε ∈

(
ε?

8 , 1
)

and α ∈ (0, ε?

57600·c2
), property P ′ can be α-erasure-resiliently

ε-tested using a constant number of queries,
For every α ∈ ( ε?

57600·c2+2ε? , 1), and ε′ ∈
(
α, 28800·c2·ε?

28800·c2+ε?

)
, every (α, ε′)-tolerant tester for

P ′ on inputs of length N has query complexity NΩ(1).

5.1 Description of the Separating Property P ′

The property P ′ is very similar to the property P that we used in our first separation (see
Definition 3.6). Like a string that satisfies P, a string that satisfies P ′ can also be thought
of as consisting of a plain part (that contains the repetition of a string y ∈ Rφn) and an
encoded part. The encoded part of a string in P is the Hadamard encoding of a string y ◦ π,
where π is a proof that makes the algorithm V from Claim 3.5 accept. However, the encoded
part of a string satisfying P ′ is the encoding of a string π′, where π′ is a proof (whose length
is asymptotically equal to |π|) that makes a ‘smoothed ’ PCPP accept. In addition, the
encoding uses an ALLEDC (from Section 4) instead of the Hadamard code.

We first describe the ‘smoothed ’ PCPP used in our construction. The following lemma
by Ben-Sasson et al. [6] and Guruswami and Rudra [25] states that algorithms making
nonadaptive queries can be transformed into algorithms that make nearly uniform queries.

I Lemma 5.2 ([25, 6]). For every nonadaptive algorithm T , there exists a mapping ϕ :
{0, 1}∗ → {0, 1}∗ and an algorithm T ′ satisfying the following:

For every x ∈ {0, 1}∗, the decision of T with oracle access to x is identical to the decision
of T ′ with oracle access to ϕ(x). Moreover, 3|x| < |ϕ(x)| ≤ 4|x|, and the number of
queries that T ′ makes to ϕ(x) is at most twice the number of queries that T makes to x.
Given oracle access to x′ ∈ {0, 1}n, each query of T ′ is to location j ∈ [n] with probability
at most 2/n.

Combining Lemma 3.4 with Lemma 5.2 (along with the fact that R = {Rφn}n∈ℵ can be
decided using linear-sized circuits), we get the required ‘smoothed ’ PCPP for R.

I Lemma 5.3. Let c1 > 0, c2 > 1 be constants. The property Rφn has a PCPP V that works
for all ε ∈ (0, 1], gets oracle access to an input y of length n and a proof π of length at most
c1n · polylog n, and makes at most c2

ε queries. Moreover, the queries of V are nonadaptive
and satisfy the following:

Each query V makes to y is to any particular location of y with probability at most 2/n.
Each query V makes to π is to any particular location of π with probability at most 2/|π|.

The following is the definition of our separating property P ′. Note that the encoded part
of a string satisfying P ′ contains the encoding of a proof as well as the complement of that
encoding. This is done in order to equalize the number of 0s and 1s in the encoded part.

I Definition 5.4 (Separating Property P ′). Let ℵ and ε? ∈ (0, 1) be as in Lemma 3.2. Let
c1 > 0, c2 > 1 be as in Lemma 5.3 and c3 > 0 be as in Lemma 4.3. Let m = 28800·c2

ε? ,
γ = 1

2 + ε?

57600·c2
and β = ε?

9000c2·
⌈

ln 6c3
(1−γ)2

⌉ . For n ∈ ℵ, let p(n) ≤ c1 · n · polylog n denote

the length of the proof that makes the algorithm V in Lemma 5.3 accept. Let f(·, ·) be as
in Lemma 4.3. Let C = {Ck}k∈N be the (γ, β, c3 log(1/β)

(1−γ)3 , c3
(1−γ)2 )-ALLEDC from Lemma 4.3.

A string x ∈ {0, 1}N of length N = (m+ 1) · 2f(γ, β) · (p(n))5 satisfies P ′ if the following
conditions hold:
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1. The firstm·2f(γ, β)·(p(n))5 bits of x (called the plain part of x) consist ofm· 2f(γ,β)·(p(n))5

n

repetitions of a string y ∈ Rφn of length n, for Rφn from Lemma 3.2.
2. The remaining 2f(γ, β) · (p(n))5 bits of x is called the encoded part. Its first half is the

encoding, using C, of a string π ∈ {0, 1}p(n) such that the PCPP V in Lemma 5.3 accepts
when given oracle access to y ◦ π. The second half of the encoded part is the complement
of its first half.

5.2 Proof of Strengthened Separation
In this section, we prove Theorem 5.1. Lemmas 5.5 and 5.9 together imply the first and
second parts of Theorem 5.1, respectively. The high level idea of the proof of Lemma 5.5
is very similar to that of Lemma 3.7. The differences arise mainly because of the way the
encoded parts of strings satisfying P and P ′ differ. The erasure-resilient tester for P could
first check whether the plain part is a repetition of the ‘decoded input’, and then check
whether the ‘decoded input’ is in R with the help of the ‘decoded PCPP proof’. Since the
encoded part of P ′ is the encoding of just a PCPP proof, this is not possible. Instead,
the erasure-resilient tester for P ′ samples a uniformly random nonerased point u from the
plain part and uses the ‘block’ from which u is obtained as a ‘candidate input’ y. It then
checks whether the plain part is a repetition of y and also checks whether y ∈ R using the
‘approximately decoded proof’. In case a string is α-erased and ε-far from P ′, we show that
the ‘candidate input’ y that we sample is cα-erased and c′ε-far from R, for some constants
c, c′. Hence, the smoothed PCPP verifier rejects.

I Lemma 5.5. Let ε? ∈ (0, 1) be as in Lemma 3.2 and c2 > 1 be as in Lemma 5.3. For every
ε ∈

(
ε?

8 , 1
)
and α ∈ (0, ε?

57600·c2
), the property P ′ is α-erasure-resiliently ε-testable using a

constant number of queries.

Proof. The erasure-resilient tester is presented in Algorithm 3. Let m denote 28800 · c2/ε?.
Let γ = 1/2 + ε?/57600c2, β = ε?

9000c2·
⌈

ln 6c3
(1−γ)2

⌉ , q = c3 log(1/β)
(1−γ)3 , and L = c3/(1 − γ)2. For

n ∈ ℵ, consider a string x ∈ {0, 1}N , where N = (m+ 1) · 2f(γ, β) · (p(n))5. The plain part of
x is m times larger than the encoded part. Let s denote the number m · 2f(γ, β) · (p(n))5/n.

Assume that x satisfies P ′. Since x satisfies P ′, the plain part of x is completable to
the repetitions of some y ∈ Rφn . Therefore, Steps 5-9 never reject. By definition of P ′, the
first half of the encoded part of x is the encoding (using the (γ, β, q, L)-ALLED code C from
Lemma 4.3) of a proof π(y) ∈ {0, 1}p(n) such that the PCPP V with oracle access to y ◦ π(y)
always accepts. The second half of the encoding is the complement of the first half. The
fraction of erasures in the encoded part (even if all of the erasures were there) is at most
(m+ 1)α. Therefore, the fraction of erasures in either the first half or the second half of the
encoded part is at most (m+ 1) · α = 1/2 + 1/2m = γ.

By the definition of a (γ, β, q, L)-ALLED code, with probability at least 2/3, one of
the algorithms T1, T2, . . . , TL returned by the approximate local list decoder provides oracle
access to π(y) with at most β fraction of errors. Let Tk be that algorithm. The tester discards
this k only if an erroneous point is queried in some iteration of Steps 14-18. Since each proof
query of V (in Step 17) is made to a specific index in the proof with probability at most
2/|p(n)| and the string decoded by Tk is β-erroneous, by the union bound over queries of V ,
the probability of V querying an erroneous point is at most 2β · c2·75

24ε . Hence, by the union
bound, the probability that the tester discards k is at most 1

3 + 2 · 6 · dln 6Le · c2·75
24ε · β ≤

2
5 ,

where the inequality follows from our setting of β. Hence, Step 19 does not reject with
probability at least 3/5. That is, the tester accepts x with probability at least 3/5.
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Algorithm 3 Erasure-resilient tester for separating property P ′.
Input: α, ε ∈ (0, 1), N = (m+ 1) · 2f(γ, β) · (p(n))5; oracle access to x ∈ {0, 1,⊥}N

1: Set s← m · 2f(γ,β)·(p(n))5

n , q ← c3 log(1/β)
(1−γ)3 , and L← c3

(1−γ)2 .

2: Set the query budget Q← 30 ·
(
d 432
ε e ·

2
1−(m+1)α + Ld6 ln 6Le · c2·75

24ε · q
)
.

3: Accept whenever the number of queries exceeds Q.
4: . Steps 5-9 check that the plain part of x is the repetition of a string y ∈ {0, 1}n.
5: repeat d 432

ε e times:
6: Repeatedly sample a uniformly random point u from the plain part until x[u] 6=⊥.
7: Let u be (i− 1)n+ a for i ∈ [s] and a ∈ [n].
8: Repeatedly sample j ∈ [s] uniformly at random until x[(j − 1)n+ a] 6=⊥ .
9: Reject if x[(i− 1)n+ a] 6= x[(j − 1)n+ a].

10: . In order to query the i-th bit of the encoding, we query the i-th bits of both the first and
second halves of the encoded part. We set the i-th bit of the encoding to the i-th bit of the
first half if that is nonerased, and to the complement of the i-th bit of second half if that is
nonerased. If both are erased, we set the i-th bit of the encoding to ⊥.

11: Run the decoder for the (γ, β, q, L)-ALLED code (Lemma 4.3) with oracle access to the
encoded part of x. Let A1, A2, . . . , AL be the list of algorithms it returns.

12: . Steps 13-19 check that y ∈ Rφn using the PCPP V on decoded proofs.
13: for each k ∈ [L] do
14: repeat d6 ln 6Le times:
15: Repeatedly sample a uniformly random point u from the plain part until x[u] 6=⊥.
16: Let u be (i− 1)n+ a for i ∈ [s] and a ∈ [n].
17: Run the PCPP V (guaranteed by Lemma 5.3) with proximity parameter 24ε

75 ,
and oracle access to x[(i− 1)n+ 1, . . . , (i− 1)n+ n] as the input string and the string
decoded by Tk as the proof.

18: Discard the current k if all query answers to V are nonerased and V rejects.
19: Reject if every k ∈ [L] is discarded; otherwise, accept.

Assume now that x is ε-far from P ′. Let Npl denote the set of nonerased points in the
plain part of x. Let Nen denote the set of nonerased points in the encoded part of x. Let αpl
denote the fraction (with respect to sn) of erased points in the plain part. Let E denote the
event that the number of queries made by the tester does not exceed the query budget Q.

I Claim 5.6. The probability that Algorithm 3 exceeds its query budget is at most 1/30.

We now analyze the probability that Algorithm 3 rejects, conditioned on E.

Case I: the plain part of x is ε/144-far from being the repetitions of every y ∈ {0, 1}n.
Let εpl denote the fraction of points (with respect to |Npl|) in Npl whose values need

to be changed in order to make the plain part a repetition of some string y ∈ {0, 1}n. Let
Sa = {(i− 1)n+ a : i ∈ [s]} for all a ∈ [n]. We use the term a-th segment to refer to the set
Sa. For all a ∈ [n], we have |Sa| = s. For all a ∈ [n], let αa = |{u ∈ Sa : x[u] =⊥}|/s denote
the fraction of points in Sa that are erased. Let Na ⊆ Sa denote the set of nonerased points
in the a-th segment. Let εa for all a ∈ [n] denote the fraction of points in Na whose values
need to be changed in order to satisfy x[u] = x[v] for all u, v ∈ Sa such that both x[u] and
x[v] are nonerased.
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For every a ∈ [n] and u ∈ Na, the number of v ∈ Na such that x[u] 6= x[v], is at least
εa · |Na|. Let Ga for all a ∈ [n] denote the (good) event that the tester samples a point from
Na in Step 6. Let F denote the event that the tester rejects in a single iteration Steps 5-9.
Hence,Pr[F |E] =

∑
a∈[n] Pr[Ga|E] ·Pr[F |Ga, E] ≥

∑
a∈[n]

|Na|
|Npl| · εa = εpl ≥ ε/144. Therefore,

conditioned on E, in at least 432/ε iterations, the tester will reject with probability at least
19/20. Hence, the algorithm accepts with probability at most 1/20 + Pr[E] ≤ 1/20 + 1/30 ≤
2/5, since Pr[E] ≤ 1/30. Thus, the algorithm rejects with probability at least 3/5.

Case II: the plain part of x is ε/144-close to being repetitions of a string y∗ ∈ {0, 1}n.

I Claim 5.7. The string y∗ is ε/2-far from Rφn .

Let Bi = {(i− 1)n+ a : a ∈ [n]} for all i ∈ [s]. We use the term i-th block to refer to the set
Bi. For all i ∈ [s], we have, |Bi| = n. Let αi = |{u ∈ Bi : x[u] =⊥}|/n for all i ∈ [s] denote
the fraction of points in Bi that are erased. Let Ni ⊆ Si denote the set of nonerased points
in the i-th block. Let εi for all i ∈ [s] denote the fraction of points in Ni whose values need
to be changed in order to satisfy x[(i− 1)n+ a] = y∗[a] for all a ∈ [n].

Fix k ∈ [L]. We show that Algorithm 3 discards k with high probability. Consider a
single iteration of Steps 15-18. Let y′ denote the (partially erased) string represented by
the block that Algorithm 3 samples in Step 15. Let G1 denote the (good) event that y′ is
ε/6-close to y∗. Let G2 denote the (good) event that y′ has at most 48α fraction of erasures.

I Claim 5.8. Conditioned on G1 and G2, the string y′ is 24ε/75-far from Rφn .

The PCPP V , with proximity parameter 24ε
75 , is run on y′ and the proof decoded by Tk.

Let B1 denote the (bad) event that the PCPP V obtains an erased bit as the answer to some
query. Let B2 denote the (bad) event that V accepts. By Lemma 5.3, each query of V to
the input part is made to each input index with probability at most 2

n uniformly distributed
among the n input indices. Hence Pr[B1|E,G1, G2], the probability that some input query
is made to an erased point, is at most c2·75

24ε · 96α. The probability that the V accepts (even
if there were no erased query answers) is Pr[B2|E,G1, G2] and is, by Definition 3.3, at most
1/3. Thus, the probability that the PCPP accepts, conditioned on E, G1, and G2, is by the
union bound, at most c2·75

24ε · 96α+ 1
3 ≤

1
24 + 1

3 , where the inequality follows from our setting
of ε and α.

To bound the probability that the PCPP accepts in a single iteration of Steps 15-18, we
now evaluate Pr[G1] and Pr[G2]. Let the random variable X denote the relative Hamming
distance of y′ from y∗. Then, E[X] =

∑
i∈[s]

|Ni|
|Npl| · εi = εpl ≤ ε

144 . By Markov’s inequality,
Pr[G1] = Pr[X ≥ ε

6 ] ≤ E[X]/(ε/6) ≤ 1/24. To bound Pr[G2], let the random variable Y
denote the fraction of erasures in y′. We first show that E[Y ] = αpl. Even if all the erasures
were in the plain part, αpl ≤ αN

sn ≤ α · (1 + 1
m ). Again, by an application of Markov’s

inequality, we get Pr[G2] = Pr[Y > 48α] ≤ E[Y ]
48α ≤

1+ 1
m

48 ≤ 1/24.
Therefore, conditioned on E, the probability that the PCPP accepts in one iteration

of Steps 15-18 is at most Pr[B1|E,G1, G2] + Pr[B2|E,G1, G2] + Pr[G2] + Pr[G1] ≤ 1
24 +

1
3 + 1

24 + 1
24 ≤

2
3 . That is, conditioned on E, for a fixed k ∈ [L], in d6 ln 6Le independent

repetitions of Steps 15-18, the probability that the PCPP does not discard k is at most(
1− 1

3
)d6 ln 6Le ≤ 1

36L2 . Hence, conditioned on E, the probability that for some k ∈ [L],
Steps 14-18 accepts is, by the union bound, at most 1/36L. Thus, if x is in Case II, the
probability that the tester accepts is at most, 1

36L + Pr[E] ≤ 1
36L + 1

30 ≤
2
5 , where Claim 5.6

shows that Pr[E] is at most 1/30. J
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Next, we show that it is hard to tolerant test P ′. The proof of Lemma 5.9 is identical to the
proof of Lemma 3.10 up to change in parameters and is hence omitted.

I Lemma 5.9. Let ε? ∈ (0, 1) be as in Lemma 3.2 and c2 > 1 be as in Lemma 5.3. For every
α ∈ ( ε?

57600·c2+2ε? , 1), and ε′ ∈
(
α, 28800·c2·ε?

28800·c2+ε?

)
, every (α, ε′)-tolerant tester for P ′ requires

Ω̃(N0.2) queries.

Proof of Theorem 1.6. For sufficiently small ε?, setting α = ε?

57600·c2+ε? and ε = 57599
57600·c2+2ε?

satisfies all the constraints on ε and α imposed by Theorem 5.1. J

6 Local Erasure-Decoding Versus Local Decoding

In this section, we prove Theorem 1.8 and an observation that if a code is locally decodable, it
is also locally erasure-decodable up to (nearly) twice as many erasures. To prove Theorem 1.8,
we first make the local erasure-decoder for {Cn}n∈N nonadaptive. We then show that every
LEDC with a nonadaptive decoding algorithm is such that uncorrupted codewords can be
locally decoded using an algorithm that queries nearly uniformly distributed codeword indices
(Claim 6.2). We then use this ‘smoothness’ property (see Definition 6.1) to show that the
code family is locally decodable from a smaller fraction of errors than erasures (Claim 6.3).

I Definition 6.1 (Smooth Locally Decodable Codes). A code family {Cn : Fn2 → FN2 }n∈N is
(q, η)-smooth locally decodable if there exists a (0, q)-local erasure-decoder A (see Defini-
tion 1.7) that, given oracle access to an uncorrupted codeword w ∈ FN2 , and input i ∈ [n], is
such that for all j ∈ [N ], the probability that A queries j is at most η.

I Claim 6.2. For every α ∈ [0, 1), if a code Cn : Fn2 → FN2 is (α, q)-locally erasure-decodable,
then Cn is (q′, η)-smooth locally decodable, where q′ = 18q · 9q−1, and η = q′/αN .

I Claim 6.3. For every α ∈ [0, 1), if a code Cn : Fn2 → FN2 is (q, q/αN)-smooth locally
erasure-decodable, then Cn is (α/12q2, 72q)-locally decodable.

Proof of Claim 6.2. Let A be an (α, q)-local erasure-decoder for Cn. We first design a
nonadaptive local erasure-decoder A1 for Cn that makes a higher number of queries than
A. Consider a (partially erased) codeword w ∈ ({⊥} ∪ F2)N that has at most α fraction
of erasures. The algorithm A1, on oracle access to w and an input i ∈ [n], has 18 · 9q−1

independent iterations. In each iteration, A1 simulates A, guesses the answers to the first
q − 1 queries made by A, and decides the q-th query of A based on these guesses. A′ then
queries w on the q queries made by A in the simulation. If all the query answers agree with
the guesses, the decoder A1 stores the output of A as the output of the current iteration.
Otherwise, it stores a uniformly random bit as the output of the current iteration. Finally,
A1 outputs the majority value output among all iterations.

In any particular iteration, the probability that A1 outputs the correct answer in that
iteration, is at least 3q−1−1

3q−1 · 1
2 + 1

3q−1 · 2
3 , which is equal to 1

2 + 1
6·3q−1 . Hence, using standard

arguments, the probability that A1 outputs the correct answer after 18 · 9q−1 independent
iterations, is at least 2/3. The query complexity of A1 is 18q · 9q−1, which we denote by q′.

We now use A1 to construct A2, a (q′, q′

αN )-smooth local decoder for Cn. Consider an
uncorrupted codeword w = Cn(x) for x ∈ Fn2 . For each i ∈ [n], let Si denote the set consisting
of indices in [N ] that get queried by A1 (on input i) with probability more than q′

αN . Since∑
j∈[N ] Pr[ACn(x)

1 (i) queries j] = q′, we have |Si| ≤ α ·N . On input i ∈ [n] and oracle access
to w = Cn(x), the algorithm A2 simulates A1 in the following way. If A1 queries j′ ∈ Si, the
algorithm A2 does not query j′ and assumes that w[j′] =⊥. Thus, A2 is a (q′, q′

αN )-smooth
local decoder for Cn. J
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Proof of Claim 6.3. Consider a (q, q
αN )-smooth local decoder A for Cn. We will construct

an ( α
12q2 , 72q)-local decoder A′ for Cn. Algorithm A′, on input i ∈ [n] and oracle access to

a word w with at most α
12q2 fraction of errors, performs 72 independent repetitions of A

and outputs the majority value output among all the iterations. Let x ∈ Fn2 be such that
y = Cn(x) is the codeword closest to w. If A is run on input i with oracle access to y, then
for at least 2

3 fraction of the sequences of its random coin tosses, A returns xi correctly.
When A is run on input i with oracle access to w, by the union bound and the smoothness
of A, at most q · α

12q2 ·N · q
αN = 1

12 fraction of sequences of its random coin tosses result in
an erroneous position being queried. Hence, the probability that A, on input i and oracle
access to w, returns xi correctly is at least 2

3 −
1
12 . Hence, the probability that A′ outputs xi

correctly is at least 2/3. The query complexity of A′ is 72q. J

I Observation 6.4. Every (α, q)-locally decodable code Cn : Fn2 → FN2 is also (2α− ρ, 72q)-
locally erasure-decodable, where ρ = 2 ·

√
ln(12) · α/N .
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Abstract
We introduce new models and new information theoretic measures for the study of communication
complexity in the natural peer-to-peer, multi-party, number-in-hand setting. We prove a number
of properties of our new models and measures, and then, in order to exemplify their effectiveness,
we use them to prove two lower bounds. The more elaborate one is a tight lower bound of Ω(kn)
on the multi-party peer-to-peer randomized communication complexity of the k-player, n-bit
function Disjointness, Disjnk . The other one is a tight lower bound of Ω(kn) on the multi-party
peer-to-peer randomized communication complexity of the k-player, n-bit bitwise parity function,
Parnk . Both lower bounds hold when n = Ω(k). The lower bound for Disjnk improves over the lower
bound that can be inferred from the result of Braverman et al. (FOCS 2013), which was proved
in the coordinator model and can yield a lower bound of Ω(kn/ log k) in the peer-to-peer model.

To the best of our knowledge, our lower bounds are the first tight (non-trivial) lower bounds
on communication complexity in the natural peer-to-peer multi-party setting.

In addition to the above results for communication complexity, we also prove, using the same
tools, an Ω(n) lower bound on the number of random bits necessary for the (information theoretic)
private computation of the function Disjnk .
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1 Introduction

Communication complexity, first introduced by Yao [44], has become a major topic of research
in Theoretical Computer Science, both for its own sake, and as a tool which has yielded
important results (mostly lower bounds) in various theoretical computer science fields such
as circuit complexity, streaming algorithms, or data structures (e.g., [34, 36, 24, 39, 23]).
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solve a problem whose input is distributed among several players. The two-party case, where
two players, usually called Alice and Bob, cooperate in order to compute a function of their
respective inputs, has been widely studied with many important results; yet major questions
in this area are still open today (e.g., the log-rank conjecture, see [34]). The multi-party
case, where k ≥ 3 players cooperate in order to compute a function of their inputs, is much
less understood.

A number of variants have been proposed in the literature to extend the two-party
setting into the multi-party one. In this paper we consider the more natural number-in-hand
(NIH) setting, where each player has its own input, as opposed to the so-called number-on-
forehead (NOF) setting, where each player knows all pieces of the input except one, its own.
Moreover, also the communication structure between the players in the multi-party setting
was considered in the literature under a number of variants. For example, in the blackboard (or
broadcast) model the communication between the players is achieved by each player writing,
in turn, a message on the board, to be read by all other players. In the coordinator model,
introduced in [20], there is an additional entity, the coordinator, and all players communicate
back and forth only with the coordinator. The most natural setting is, however, the peer-to-
peer message-passing model, where each pair of players is connected by a communication link,
and each player can send a separate message to any other player. This latter setting has been
studied, in the context of communication complexity, even less than the other multi-party
settings, probably due to the difficulty in tracking the distributed communication patterns
that occur during a run of a protocol in that setting. This setting is, however, not only
the most natural one, and the one that occurs the most in real systems, but is the setting
studied widely in the distributed algorithms and distributed computation communities, for
complexity measures which are usually other than communication complexity.

In the present paper we attempt to fill this gap in the study of peer-to-peer communi-
cation complexity, and, further, to create a more solid bridge between the research field of
communication complexity and the research field of distributed computation. We propose
a computation model, together with an information theoretic complexity measure, for the
analysis of the communication complexity of protocols in the asynchronous multi-party
peer-to-peer (number-in-hand) setting. We argue that our model is, on the one hand, only a
slight restriction over the asynchronous model usually used in the distributed computation
literature, and, on the other hand, stronger than the models that have been previously
suggested in order to study communication complexity in the peer-to-peer setting common
in the distributed computation literature (e.g., [20, 42]). Furthermore, our model lends itself
to the analysis of communication complexity, most notably using information theoretic tools.

Indeed, after defining our model and our information theoretic measure, that we call
Multi-party Information Cost (MIC), we prove a number of properties of that measure, and
then prove a number of fundamental properties of protocols in our model. We then exemplify
the effectiveness of our model and information theoretic measure by proving two tight lower
bounds. The more elaborate one is a tight lower bound of Ω(kn), when n = Ω(k), on
the peer-to-peer randomized communication complexity of the function set-disjointness
(Disjnk ). This function is a basic, important function, which has been the subject of a large
number of studies in communication complexity, and is often seen as a test for our ability to
give lower bounds in a given model (cf. [16]). We note that the communication complexity
of Disjointness in the two-party case is well understood [29, 38, 3, 7, 9]. From a quantitative
point of view, our result for peer-to-peer multi-party Disjointness improves by a log k factor
the lower bound that could be deduced for the peer-to-peer model from the lower bound on
the communication complexity of Disjointness in the coordinator model [8]. The second lower
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bound that we prove is a tight lower bound of Ω(kn), when n = Ω(k), on the peer-to-peer
randomized communication complexity of the bitwise parity function Parnk . Both our lower
bounds are obtained by giving a lower bound on the MIC of the function at hand, which
yields the lower bound on the communication complexity of that function. We believe that
our lower bounds are the first tight (non-trivial) lower bound on communication complexity
in a peer-to-peer multi-party setting.3

It is important to note that, to the best of our knowledge, there is no known method
to obtain tight lower bounds on multi-party communication complexity in a peer-to-peer
setting via lower bounds in other known multi-party settings. Lower bounds obtained in
the coordinator model can be transferred to the peer-to-peer model at the cost of a log k
factor, where k is the number of players, because any peer-to-peer protocol can be simulated
in the coordinator model by having the players attach to every message the identity of the
destination of that message [37, 21]. The loss of this factor in the lower bounds is unavoidable
when the communication protocols can exploit a flexible communication pattern, since there
are examples of functions where this factor in the communication complexity is necessary,
while others, e.g., the parity function of single-bit inputs, have the same communication
complexity in the coordinator and peer-to-peer settings (see a more detailed discussion on
this point in Section 2.2). Therefore, one cannot prove tight lower bounds in the peer-to-
peer setting by proving corresponding results in the coordinator model. Note that flexible
communication configurations arise naturally for mobile communicating devices, for example,
when these devices exchange information with the nearby devices. Constructions based on
the pointer jumping problem also seem to be harder in the coordinator model, as solving the
problem usually requires exchanging information in a specific order determined by the inputs
of the players. It is thus important to develop lower bound techniques which apply directly
in the peer-to-peer model, as we do in the present paper. Information theoretic tools seem,
as we show, most suitable for this task.

Information theoretic complexity measures. As indicated above, our work makes use
of information theoretic tools. Based on information theory, developed by Shannon [40],
Information Complexity (IC), originally defined in [2, 14], is a powerful tool for the study
of two-party communication protocols. Information complexity is a measure of how much
information, about each other’s input, the players must learn during the course of the
protocol, if that protocol must compute the function correctly. Since IC can be shown to
provide a lower bound on the communication complexity, this measure has proven to be a
strong and useful tool for obtaining lower bounds on two-party communication complexity
in a sequence of papers (e.g., [3, 4, 11, 7]). However, information complexity cannot be
extended in a straightforward manner to the multi-party setting. This is because with three
players or more, any function can be computed privately (cf. [5, 19]), i.e., in a way such that
the players learn nothing but the value of the function to compute. This implies that the
information complexity of any function is too low to provide a meaningful lower bound on the
communication complexity in the natural peer-to-peer multi-party setting. Therefore, before
the present paper, information complexity and its variants have been used to obtain lower
bounds on multi-party communication complexity only in settings which do not allow for
private protocols (and most notably not in the natural peer-to-peer setting), with the single

3 Lower bounds in a seemingly peer-to-peer setting were given in [42]. However, in the model of that
paper, the communication pattern is determined by an external view of the transcript, which makes the
model equivalent to the coordinator model.
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exception of [30]. For example, a number of lower bounds have been obtained via information
complexity for a promise version of set-disjointness in the broadcast model [3, 13, 26] (also
cf. [28]), and external information complexity was used in [10] for a lower bound on the general
disjointness function, also in the broadcast model. In the coordinator model, lower bounds
on the communication complexity of set-disjointness were given via variants of information
complexity [8]. The latter result was extended in [15] to the function Tribes. A notion of
external information cost in the coordinator model was introduced in [27] to study maximum
matching in a distributed setting. We note that the study of communication complexity in
number-in-hand multi-party settings via techniques other than those based on information
theory is limited to very few papers. One such example is the technique of symmetrization
that was introduced for the coordinator model in [37], and was shown to be useful to study
functions such as the bitwise AND. That technique was further developed along with other
reduction techniques in [41, 42, 43]. Another example is the notion of strong fooling sets,
introduced in [12] to study deterministic communication complexity of discreet protocols,
also defined in [12].

Private computation. It is well known that in the multi-party number-in-hand peer-to-peer
setting, unlike in the two-party case, any function can be privately computed [5, 19]. The
model that we define in the present paper does allow for (information theoretic) private
computation of any function [5, 19, 1]. The minimum amount of private randomness needed
in order to compute privately a given function is often referred to in this context as the
randomness complexity of that function. Randomness complexity (in private computation) is
of interest because true randomness is considered a costly resource, and since randomness
complexity in private computation has been shown to be related to other complexity measures,
such as the circuit size of the function or its sensitivity. For example, it has been shown [35]
that a boolean function f has a linear size circuit if and only if f has constant randomness
complexity. A small number of works [6, 33, 25, 30] prove lower bounds on the randomness
complexity of the parity function. The parity and other modulo-sum functions are, to the
best of our knowledge, the only functions for which randomness complexity lower bounds
are known. Using the information theoretic results that we obtain in the present paper for
the set-disjointness function, we are able to give a lower bound of Ω(n) on the randomness
complexity of Disjnk . The significance of this result lies in that it is the first such lower bound
that grows with the size of the input (which is kn), while the output remains a single bit,
contrary to the sum function (see [6]) or the bitwise parity function (see [30]).

1.1 Our techniques and contributions
Our contribution in the present paper is twofold.

First, on the conceptual, modeling and definitions side we lay the foundations for proving
lower bounds on (randomized) communication complexity in the natural peer-to-peer multi-
party setting. Specifically, we propose a model that, on the one hand, is a very natural
peer-to-peer model, and very close to the model used in the distributed computation literature,
and, at the same time, does have properties that allow one to analyze protocols in terms
of their information complexity and communication complexity. While at first sight the
elaboration of such model does not seem to be a difficult task, many technical, as well as
fundamental, issues render this task non-trivial. For example, one would like to define a notion
of “transcript” that would guarantee both a relation between the length of the transcript
and the communication complexity, and at the same time will contain all the information
that the players get and use while running the protocol. The difficulty in elaborating such
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model may be the reason for which, prior to the present paper, hardly any work studied
communication complexity directly in a peer-to-peer, multi-party setting (cf. [21]), leaving
the field with only the results that can be inferred from other models, hence suffering the
appropriate loss in the obtained bounds. We propose our model (see Section 2.1) and prove
a number of fundamental properties that allow one to analyze protocols in that model (see
Section 3.2), as well as prove the accurate relationship between the entropy of the transcript
and the communication complexity of the protocol (Proposition 2.4).

We then define our new information theoretic measure, that we call “Multi-party Infor-
mation Cost” (MIC), intended to be applied to peer-to-peer multi-party protocols, and prove
that it provides, for any (possibly randomized) protocol, a lower bound on the communication
complexity of that protocol (Lemma 3.4). We further show that MIC has certain properties
such as a certain direct-sum property (Theorem 3.5). We thus introduce a framework as well
as tools for proving lower bounds on communication complexity in a peer-to-peer multi-party
setting.

Second, we exemplify the effectiveness of our conceptual contributions by proving, using
the new tools that we define, two tight lower bounds on the randomized communication
complexity of certain functions in the peer-to-peer multi-party setting. Both these lower
bounds are proved by giving a lower bound on the Multi-party Information Complexity of
the function at hand. The more elaborate lower bound is a tight lower bound of Ω(nk) on
the randomized communication complexity of the function Disjnk (under the condition that
n = Ω(k)). The function Disjointness is a well studied function in communication complexity
and is often seen as a test-case of one’s ability to give lower bounds in a given model (cf. [16]).
While the general structure of the proof of this lower bound does have similarities to the
proof of a lower bound for Disjointness in the coordinator model [8],4 we do, even in the parts
that bear similarities, have to overcome a number of technical difficulties that require new
ideas and new proofs. For example, the very basic rectangularity property of communication
protocols is, in the multi-party (peer-to-peer) setting, very sensitive to the details of the
definition of the model and the notion of a transcript. We therefore need first to give a
proof of this property in the peer-to-peer model (Lemma 3.6 and Lemma 3.7). We then
use a distribution of the input which is a modification over the distributions used in [8, 15]
(see Section 5). Our proof proceeds, as in [8], by proving a lower bound for the function
AND, on a certain information theoretic measure that, in our proof, is called SMIC (for
Switched Multi-party Information Cost), and then, by using a direct-sum-like lemma, to
infer a lower bound on SMIC for Disjointness (we note that SMIC is an adaptation to the
peer-to-peer model of a similar measure used in [8]). However, the lack of a “coordinator” in
a peer-to-peer setting necessitates a definition of a more elaborate reduction protocol, and
a more complicated proof for the direct-sum argument, inspired by classic secret-sharing
primitives. See Lemma 6.1 for our construction and proof. We then show that SMIC provides
a lower bound on MIC, which yields our lower bound on the communication complexity of
Disjointness.

We further give a tight lower bound of Ω(nk) on the randomized communication complexity
of the function Parnk (bitwise parity) in the peer-to-peer multi-party setting (under the
condition that n = Ω(k)). This proof proceeds by first giving a lower bound on MIC for the
parity function Par1

k, and then using a direct-sum property of MIC to get a lower bound on
MIC for Parnk . The latter yields the lower bound of Ω(nk) on the communication complexity
of Parnk .

4 The lower bound in [8] would yield an Ω( 1
log k · nk) lower bound in the peer-to-peer setting.
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To the best of our knowledge, our lower bounds are the first tight (non-trivial) lower
bound on communication complexity in a peer-to-peer multi-party setting.

In addition to our results on communication complexity, we analyze the number of random
bits necessary for private computations [5, 19], making use of the model, tools and techniques
we develop in the present paper. It has been shown [30] that the public information cost
(defined also in [30]) can be used to derive a lower bound on the randomness complexity of
private computations. In the present paper we give a lower bound on the public information
cost of any synchronous protocol computing the Disjointness function by relating it to its
Switched Multi-party Information Cost, which yields the lower bound on the randomness
complexity of Disjointness.

Organization. Due to space limitation all proofs are deferred to the full version of the
paper. Section 2 introduces our model. In Section 3 we define our new information theoretic
measure, MIC, give some of its properties, and give a number of fundamental properties
of protocols in our model. In Section 4 we give the lower bound for the bitwise parity
function. In Section 5 we prove a lower bound on the switched multi-party information cost
of ANDk, and in Section 6, we prove, using the results of Section 5, the lower bound on
the communication complexity of Disjnk . In Section 7 we apply our information theoretic
lower bounds in order to give a lower bound on the number of random bits necessary for the
private computation of Disjnk . Last, in Section 8 we discuss some open questions.

2 Multi-party communication protocols

We start with our model, and, to this end, give a number of notations.

Notations. We denote by k the number of players. We often use n to denote the size (in
bits) of the input to each player. Calligraphic letters will be used to denote sets. Upper case
letters will be used to denote random variables, and given two random variables A and B, we
will denote by AB the joint random variable (A,B). Given a string (of bits) s, |s| denotes
the length of s. Using parentheses we denote an ordered set (family) of items, e.g., (Yi).
Given a family (Yi), Y−i denotes the sub-family which is the family (Yi) without the element
Yi. The letter X will usually denote the input to the players, and we thus use the shortened
notation X for (Xi), i.e., the input to all players. A protocol will usually be denoted by π.

We now define a natural communication model which is a slight restriction of the general
asynchronous peer-to-peer model. The restriction of our model compared to the general
asynchronous peer-to-peer model is that for a given player at a given time, the set of
players from which that player waits for a message before sending any message of its own is
determined by that player’s own local view, i.e., from that player’s input and the messages it
has read so far, as well as its private randomness, and the public randomness. This allows us
to define information theoretic tools that pertain to the transcripts of the protocols, and
at the same time to use these tools as lower bounds for communication complexity. This
restriction however does not exclude the existence of private protocols, as other special cases
of the general asynchronous model do. We observe that practically all multi-party protocols
in the literature are implicitly defined in our model, and that without such restriction, one
bit of communication can bring log k bits of information, because not only the content of the
message, but also the identity of the sender may reveal information. To exemplify why the
general asynchronous model is problematic consider the following simple example (that we
borrow from our work in [30]).
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I Example 2.1. There are 4 players A, B and C, D. The protocol allows A to transmit
to B its input bit x. But all messages sent in the protocol are the bit 0, and the protocol
generates only a single transcript over all possible inputs. The protocol works as follows:

A: If x = 0 send 0 to C; after receiving 0 from C, send 0 to D.
If x = 1 send 0 to D; after receiving 0 from D, send 0 to C

B: After receiving 0 from a player, send 0 back to that player.
C,D: After receiving 0 from A send 0 to B. After receiving 0 from B send 0 to A.

It is easy to see that B learns the value of x from the order of the messages it gets.

In what follows we formally define our model, compare it to the general one and to other
restricted ones, and explain the usefulness and logic of our specific model.

2.1 Definition of the model
We work in a multi-party, number-in-hand, peer-to-peer setting. Each player 1 ≤ i ≤ k has
unbounded local computation power and, in addition to its input Xi, has access to a source
of private randomness Ri. We will use the notation R for (Ri), i.e., the private randomness
of all players. A source of public randomness Rp is also available to all players. We will
call a protocol with no private randomness a public-coins protocol. The system consists of
k players and a family of k functions f = (fi)i∈[[1,k]], with ∀ i ∈ [[1, k]], fi : Πk

`=1X` → Yi,
where X` denotes the set of possible inputs of player `, and Yi denotes the set of possible
outputs of player i. The players are given some input x = (xi) ∈ Πk

i=1Xi, and for every i,
player i has to compute fi(x).

We define the communication model as follows, which is the asynchronous setting, with
some restrictions. To make the discussion simpler we assume a global time which is unknown
to the players. Every pair of players is connected by a bidirectional communication link that
allows them to send messages to each other. There is no bound on the delivery time of a
message, but every message is delivered in finite time, and the communication link maintains
FIFO order in each of the two directions. Given a specific time we define the view of player i
as the input of this player, Xi, its private randomness, Ri, the public randomness, Rp, and
the messages read so far by player i. After the protocol has started, each player runs the
protocol in local rounds. In each round, player i sends messages to some subset of the other
players. The identity of these players, as well as the content of these messages, depend on
the current view of player i. The player also decides whether it should stop, and output (or
“return”) the result of the function fi. Then (if player i did not stop and return the output),
the player waits for messages from a certain subset of the other players, this subset being also
determined by the current view of the player. Then the (local) round of player i terminates.5
To make it possible for the player to identify the arrival of the complete message that it waits
for, we require that each message sent by a player in the protocol is self-delimiting.

Denote by D`i the set of possible views of player i at the end of local round `, ` ≥ 0,
where the beginning of the protocol is considered round 0.
Formally, a protocol π is defined by a set of local programs, one for each player i, where the
local program of player i is defined by a sequence of functions, parametrized by the index of
the local round `, ` ≥ 1:

5 The fact that the receiving of the incoming messages comes as the last step of the (local) round comes
only to emphasize that the sending of the messages and the output are a function of only the messages
received in previous (local) rounds.
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S`,si : D`−1
i → 2{1,...,k}\{i}, defining the set of players to which player i sends the messages.

m`
i,j : D`−1

i → {0, 1}∗, such that for any D`−1
i ∈ D`−1

i , if j ∈ S`,si (D`−1
i ), then m`

i,j(D`−1
i )

is the content of the message player i sends to player j. Each such message is self-
delimiting.
O`i : D`−1

i → {0, 1}∗ ∪ {⊥}, defining whether or not the local program of player i stops
and the player returns its output, and what is that output. If the value is ⊥ then no
output occurs. If the value is y ∈ {0, 1}∗, then the local program stops and the player
returns the value y.
S`,ri : D`−1

i → 2{1,...,k}\{i}, defining the set of players from which player i waits to receive
a message.

To define the transcript of a protocol we proceed as follows. We first define k(k − 1)
basic transcripts Πr

i,j , denoting the transcript of the messages read by player i from its link
from player j, and another k(k − 1) basic transcripts Πs

i,j , denoting the transcript of the
messages sent by player i on its link to player j.
We then define the transcript of player i, Πi, as the 2(k − 1)-tuple of the 2(k − 1) basic
transcripts Πr

i,j ,Πs
i,j , j ∈ [[1, k]] \ {i}. The transcript of the whole protocol Π is defined as

the k-tuple of the k player transcripts Πi, i ∈ [[1, k]]. We denote by Πi(x, r) the transcript
of player i when protocol π is run on input x and on randomness (public and private of all
players) r. By Π`

i(x, r) we denote Πi(x, r) modified such that all the messages that player i
sends in local rounds `′ > `, and all the messages that player i reads in local rounds `′ > `

are eliminated from the transcript. Observe that while Πr
i,j is always a prefix of Πs

j,i, the
definition of a protocol does not imply that they are equal. Further observe that each bit
sent in π appears in Π at most twice.

We note that while seemingly the model that we introduce here is the same as the one
used in [30], there are important differences between the models, and that these differences
are crucial for the properties that we prove in the present paper to hold. See Section 2.2 for
a comparison.

For a k-party protocol π we denote the set of possible inputs as X , and denote the
projection of this set on the i’th coordinate (i.e., the set of possible inputs for player i) by
Xi. Thus X ⊆ X1 × · · · × Xk. The set of possible transcripts for a protocol is denoted T ,
and the projection of this set on the i’th coordinate (i.e., the set of possible transcripts of
player i) is denoted Ti. Observe that T ⊆ T1 × · · · × Tk.

Furthermore, in the course of the proofs, we sometimes consider a protocol that does not
have access to public randomness (but may have private randomness). We call such protocol
a private-coins protocol.

We now formally define the notion of a protocol computing a given function with certain
bounded error. We will give most of the following definitions for the case where all functions
fi are the same function, that we denote by f . The definitions in the case of family of
functions are similar.

I Definition 2.2. For a given 0 ≤ ε < 1, a protocol π ε-computes a function f if for all
x ∈ Πk

i=1Xi:
For all possible assignments for the random sources Ri, 1 ≤ i ≤ k, and Rp, every player
eventually stops and returns an output.
With probability at least 1− ε (over all random sources) the following event occurs: each
player i outputs the value f(x), i.e., the correct value of the function.

We also consider the notion of external computation.
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I Definition 2.3. For a given 0 ≤ ε < 1, a protocol π externally ε-computes f if there
exists a deterministic function θ taking as input the possible transcripts of π and verifying
∀ x ∈ X , Pr[θ(Π(x)) = f(x)] ≥ 1− ε.

The communication complexity of a protocol is defined as the worst case, over the
possible inputs and the possible randomness, of the number of bits sent by all players. For a
protocol π we denote its communication complexity by CC(π). For a given function f and
a given 0 ≤ ε < 1, we denote by CCε(f) the ε-error communication complexity of f , i.e.,
CCε(f) = inf

π ε-computing f
CC(π).

Finally, we give a proposition that relates the communication complexity of a k-party
protocol π to the entropy of the transcripts of the protocol π.

I Proposition 2.4. Let the input to a k-party protocol π be distributed according to an
arbitrary distribution. Then,

∑k
i=1 H(Πi) ≤ 4 · CC(π) + 4k2, where the entropy is according

to the input distribution and the randomization of protocol π.

2.2 Comparison to other models
The somewhat restricted model (compared to the general asynchronous model) that we work
with allows us to use information theoretic tools for the study of protocols in this model, and
in particular to give lower bounds on the multi-party communication complexity. Notice that
the general asynchronous model is problematic in this respect since one bit of communication
can bring log k bits of information, because not only the content of the message, but also the
identity of the sender may reveal information. Thus, information cannot be used as a lower
bound on communication. In our case, the sets Sl,ri and Sl,si are determined by the current
view of the player, Π contains only the content of the messages, and thus the desirable
relation between the communication and the information is maintained. On the other hand,
our restriction is natural, does not seem to be very restrictive (practically all protocols in
the literature adhere to our model), and does not exclude the existence of private protocols.
To exemplify why the general asynchronous model is problematic see Example 2.1.

While the model that we introduce in the preset paper bears some similarities to the
model used in [30], there are a number of important differences between them. First, the
definition of the transcript is different, resulting in a different relation between the entropy
of the transcript and the communication complexity. More important is the natural property
of the model in the present paper that the local program of a protocol in a given node ends
its execution when it locally gives its output. It turns out that the very basic rectangularity
property of protocols, used in many papers, holds in this case (and when the transcript is
defied as we define in the present paper), while if the local protocol may continue to operate
after output, there are examples where this property does not hold. Thus, we view the
introduction of the present model also as a contribution towards identifying the necessary
features of a peer-to-peer model so that basic and useful properties of protocols hold in the
peer-to-peer setting.

There has been a long series of works about multi-party communication protocols in
different variants of models, for example [20, 13, 26, 28, 37, 17, 18] (see [21] for a comparison
of a few of these models). In the coordinator model (cf. [20, 37, 8]), an additional player (the
coordinator) with no input can communicate privately with each player, and the players
can only communicate with the coordinator. We first note that the coordinator model does
not yield exact bounds for the multi-party communication complexity in the peer-to-peer
setting (neither in our model nor in the most general one). Namely, any protocol in the
peer-to-peer model can be transformed into a protocol in the coordinator model with an
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O(log k) multiplicative factor in the communication complexity, by sending each message to
the coordinator with an O(log k)-bit label indicating its destination. This factor is sometimes
necessary, e.g., for the permutation functional defined as follows: Given a permutation
σ : [[1, k]]→ [[1, k]], each player i has as input a bit bi and σ−1(σ(i)−1) and σ−1(σ(i)+1) (i.e.,
each player has as input the indexes of the players before and after itself in the permutation).6
For player i the function fi is defined as fi = bσ−1(σ(i)+1) (i.e., the value of the input bit of
the next player in the permutation σ). Clearly in our model the communication complexity
of this function is k (each player sends its input bit to the correct player), and the natural
protocol is valid in our model. On the other hand, in the coordinator model Ω(k log k) bits of
communication are necessary. But this multiplicative factor between the complexities in the
two models is not always necessary: the communication complexity of the parity function
Par is Θ(k) both in the peer-to-peer model and in the coordinator model.

Moreover, when studying private protocols in the multi-party setting, the coordinator
model does not offer any insight. In the coordinator model, described in [20] and used for
instance in [8], if one does not impose any privacy requirement with respect to the coordinator,
it is trivial to have a private protocol by all players sending their input to the coordinator,
and the coordinator returning the results to the players. If there is a privacy requirement
with respect to the coordinator, then if there is a random source shared by all the players
(but not the coordinator), privacy is always possible using the protocol of [22]. If no such
source exists, privacy is impossible in general. This follows from the results of Braverman et
al. [8] who show a non-zero lower bound on the total internal information complexity of all
parties (including the coordinator) for the function Disjointness in that model. Our model,
on the other hand, does allow for the private computation of any function [5, 19, 1].

It is worthwhile to contrast our model, and the communication complexity measure that
we are concerned with, with work in the so-call congested-clique model that has gained
increasing attention in the distributed computation literature (cf. [31, 32]). While both
models are based on a communication network in the form of a complete graph (i.e., every
player can send messages to any other player, and these messages can be different) there are
two significant differences between them. Most of the works in the congested clique model
deal with graph-theoretic problems and the input to each player is related to the adjacency
list of a node (identified with that player) in the input graph, while in our model the input is
not associated in any way with the communication graph. More importantly, the congested
clique model is a synchronous model while ours is an asynchronous one. This brings about
a major difference between the complexity measures studied in each of the models. Work
in the congested clique model is concerned with giving bounds on the number of rounds
necessary to fulfill a certain task under the condition that in each round each player can
send to any other player a limited number of bits (usually O(log k) bits). The measure of
communication complexity, that is of interest to us in the present paper, deals with the total
number of communication bits necessary to fulfill a certain task in an asynchronous setting
without any notion of global rounds.7

6 All additions are modulo k. This is a promise problem.
7 Any function can be computed in the congested clique model with O(k) communication complexity (at

a cost of having many rounds) by each player, having input x, sending a single bit to player 1 only at
round number x. On the other hand, in the asynchronous model any function can be computed in a
single “round” (at a cost of high communication complexity) by each player sending its whole input to
player 1.
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3 Tools for the study of multi-party communication protocols

In this section we consider two important tools for the study of peer-to-peer multi-party com-
munication protocols. First, we define and introduce an information theoretic measure that
we call Multi-party Information Cost (MIC); we later use it to prove our lower bounds. Then,
we prove, in the peer-to-peer multi-party model that we define, the so-called rectangularity
property of communication protocols, that we also use in our proofs.

3.1 Multi-party Information Cost
We now introduce an information theoretic measure for multi-party peer-to-peer protocols
that we later show to be useful for proving lower bounds on the communication complexity of
multi-party peer-to-peer protocols. We note that a somewhat similar measure was proposed
in [8] for the coordinator model, but, to the best of our knowledge, never found an application
as a tool in a proof of a lower bound.

I Definition 3.1. For any k-player protocol π and any input distribution µ, we define the
multi-party information cost of π:

MICµ(π) =
k∑
i=1

(I(X−i; Πi | XiRi) + I(Xi; Πi | X−iR−i)) .

Observe that the second part of each of the k summands can be interpreted as the
information that player i “leaks” to the other players on its input. While the “usual” intuitive
interpretation of two-party IC is “what Alice learns on Bob’s input plus what Bob learns on
Alice’s input”, one can also interpret two-party IC as “what Alice learns on Bob’s input plus
what Alice leaks on her input”. Thus, MIC can be interpreted as summing over all players i
of “what player i learns on the other players’ inputs, plus what player i leaks on its input.”
Indeed, the expression defining MIC is equal to the sum, over all players i, of the two-party IC
for the two-party protocol that results from collapsing all players, except i, into one virtual
player. Thus, for number of players k = 2, MIC = 2 · IC. We note that defining our measure
without the private randomness in the condition of the mutual information expressions would
yield the exact same measure (as is the case for 2-party IC); we prefer however to define MIC
with the randomness in the conditions, as we believe that it allows one to give shorter, but
still clear and accurate, proofs.

On the other hand observe that the second of the two mutual information expressions
has X−i in the condition, contrary to a seemingly similar measure used in [8] (Definition
3 in [8]). Our measure is thus “internal” in nature, while the one of [8] has an “external”
component. The fact that MIC is “internal” allows us to give lower bounds on MIC, and thus
to use it for lower bounds on the communication complexity, contrary to the measure of [8].

Further observe that the summation, over all players, of each one of the two mutual
information expressions alone would not yield a measure useful for proving lower bounds on
the communication complexity of functions. The first mutual information expression would
yield a measure for functions that would never be higher than the entropy of the function
at hand, due to the existence of private protocols for all functions [5, 19]. For the second
mutual information expression there are functions for which that measure would be far too
low compared to the communication complexity: e.g., the function f = x1, x ∈ {0, 1}n (i.e.,
the value of the function is the input of player 1); in that case the measure would equal only
n, while the communication complexity of that function is Ω(kn).

We now define the multi-party information complexity of a function.
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I Definition 3.2. For any function f , any input distribution µ, and any 0 ≤ ε ≤ 1, we define
the quantity

MICεµ(f) = inf
π ε-computing f

MICµ(π) .

I Definition 3.3. For any f , and any 0 ≤ ε ≤ 1, we define the quantity

MICε(f) = inf
π ε-computing f

sup
µ

MICµ(π) .

We now claim that the multi-party information cost and the communication complexity
of a protocol are related, as formalized by the following lemma.

I Lemma 3.4. For any k-player protocol π, and for any input distribution µ,

CC(π) ≥ 1
8MICµ(π)− k2 .

We now show that the multi-party information cost satisfies a direct sum property for
product distributions. In what follows, the notation f⊗n denotes the task of computing n
instances of f , where the requirement from an ε-computing protocol is that each instance is
computed correctly with probability at least 1− ε (as opposed to the stronger requirement
that the whole vector of instances is computed correctly with probability at least 1− ε).

I Theorem 3.5. For any protocol π (externally) ε-computing a function f⊗n, there exists a
protocol π′ (externally) ε-computing f such that, for any product distribution µ for the input,
it holds that

MICµn(π) ≥ n ·MICµ(π′) .

3.2 The rectangularity property
The rectangularity property (or Markov property) is one of the key properties that follow
from the structure and definition of (some) protocols. For randomized protocols it was
introduced in the two-party setting and in the multi-party blackboard model in [3], and in
the coordinator model in [8]. We prove a similar rectangularity property in the peer-to-peer
model that we consider in the present paper.

We note that the proof of this property in the peer-to-peer model makes explicit use of
the specific properties of the model we defined: the proof that follows explicitly uses the
definition of the transcript on an edge by edge basis as in our model, as well as the fact that
a player returns and stops as one operation. One can build examples where if any of these
two properties does not hold, then the rectangularity property of protools does not hold.
Thus we view the following proof of rectangularity in our model also as an identification of
model properties needed for the useful rectangularity property of multiparty peer-to-peer
protocols to hold.

To define this property, for any transcript τ ∈ Ti, let Ai(τ) = {(x, r) | Πi(x, r) = τ} (i.e.,
the set of input, randomness pairs that lead to transcript τ), and define the projection of Ai(τ)
on coordinate i as Ii(τ) = {(x′, r′),∃ (x, r) ∈ Ai(τ), x′ = xi & r′ = ri}, and the projection
of Ai(τ) on the complement of coordinate i as Ji(τ) = {(x′, r′),∃ (x, r) ∈ Ai(τ), x′ =
x−i & r′ = r−i}. Similarly, for any transcript τ ∈ T , let B(τ) = {(x, r) | Π(x, r) = τ)}, and
for any player i, let Hi(τ) = {(x′, r′),∃ (x, r) ∈ B(τ), x′ = x−i & r′ = r−i}.
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We start by proving a combinatorial property of transcripts of communication protocols,
which intuitively follows from the fact that each player has access to only its own input and
private randomness. The proof of this property is technically more involved compared to the
analogous property in other settings, since the structure of protocols and the manifestation
of the transcripts in the peer-to-peer setting are more flexible than in the other settings.

I Lemma 3.6. Let π be a k-player private-coins protocol with inputs from X = X1×· · ·×Xk.
Let T denote the set of possible transcripts of π, and for i ∈ [[1, k]] let Ti denote the set of
possible transcript observed by player i, so that T ⊆ T1 × · · · × Tk. Then, ∀ i ∈ [[1, k]]:
∀ τ ∈ Ti, Ai(τ) = Ii(τ)× Ji(τ).
∀ τ ∈ T , B(τ) = Ii(τi)×Hi(τ).

We now prove the rectangularity property of randomized protocols in the peer-to-peer
setting.

I Lemma 3.7. Let π be a k-player private-coins protocol with inputs from X = X1×· · ·×Xk.
Let T denote the set of possible transcripts of π, and for i ∈ [[1, k]] let Ti denote the set of
possible transcript observed by player i, so that T ⊆ T1 × · · · × Tk. Then for every i ∈ [[1, k]],
there exist functions qi : Xi × Ti → [0, 1], q−i : X−i × Ti → [0, 1] and p−i : X−i × T → [0, 1]
such that ∀ x ∈ X ,∀ τ = (τ1, . . . , τk) ∈ T ,Pr[Πi(x) = τi] = qi(xi, τi)q−i(x−i, τi), and
∀ x ∈ X ,∀ τ = (τ1, . . . , τk) ∈ T ,Pr[Π(x) = τ ] = qi(xi, τi)p−i(x−i, τ).

4 The function parity

We now prove a lower bound on the multi-party peer-to-peer randomized communication
complexity of the k-party n-bit parity function Parnk , defined as follows: each player i receives
n bits (xpi )p∈[[1,n]] and player 1 has to output the bitwise sum modulo 2 of the inputs, i.e.,
Parnk (x) =

(
⊕ki=1x

1
i ,⊕ki=1x

2
i , . . . ,⊕ki=1x

n
i

)
(the case where all k players compute the function

is trivial). To start, we prove a lower bound on the multi-party information complexity of
the parity function, where each player has a single input bit. For simplicity we denote this
function Park, rather than Par1

k.

I Theorem 4.1. Let µ be the uniform distribution on {0, 1}k. Given any fixed 0 ≤ ε < 1
2 ,

for any protocol π ε-computing Park, it holds that MICµ(π) = Ω(k).

The next theorem follows immediately from Theorem 4.1 and Theorem 3.5.

I Theorem 4.2. Let µ be the uniform distribution on {0, 1}k. Given any fixed 0 ≤ ε < 1
2 ,

for any protocol π ε-computing Parnk , it holds that MICµn(π) = Ω(kn).

We can now prove a lower bound on the communication complexity of Parnk . Note that
the lower bound for Parnk given in [30] is valid only for a restricted class of protocols, called
“oblivious” in [30].

I Theorem 4.3. Given any fixed 0 ≤ ε < 1
2 , there is a constant α such that for n ≥ 1

αk,

CCε(Parnk ) = Ω(kn) .

5 The function AND

In this section we consider an arbitrary k-party protocol, π, where each player has an input
bit xi, and where π has to compute the AND of all the input bits. We prove a lower bound
on a certain information theoretic measure (that we define below) for π. The proof makes
use of the following input distribution.
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Input distribution. Consider the distribution µ defined as follows. Draw a bit M ∼
Ber( 2

3 ,
1
3 ), and a uniformly random index Z ∈ [[1, k]]. Assign 0 to XZ . If M = 0, sample

X−Z uniformly in {0, 1}k−1; if M = 1, assign 1k−1 to X−Z . We will also work with the
product distribution µn. Our distribution is similar to the ones of [8, 15] in that it leads to a
high information cost (or similar measures) for the function ANDk. The distribution that we
use has the property that the AND of any input in the support of µ is 0. This allows us to
prove lower bounds for the Disjointness function without the constraint that k = Ω(logn)
which was necessary in [8] (but not in [15]).

5.1 Switched multi-party information cost of ANDk

We propose the following definition, which is an adaptation of the switched information cost
of [8]. We call it Switched Multi-party Information Cost (SMIC).

I Definition 5.1. For a k-player protocol π with inputs drawn from µn let

SMICµn(π) =
k∑
i=1

(I(Xi; Πi |MZ) + I(M ; Πi | XiZ)) .

Note that the notion of SMIC is only defined with respect to the distribution µn that
we defined, and we may thus omit the distribution from the notation. We note that in
order to simplify the expressions we often consider the public randomness as implicit in the
information theoretic expressions we use below. It can be materialized either as part of the
transcript or in the conditioning of the information theoretic expressions.

We can now prove the main result of this section.

I Theorem 5.2. For any fixed 0 ≤ ε < 1
2 , for any protocol π externally ε-computing ANDk,

SMICµ(π) = Ω(k) .

6 The function Disjointness

In the k players n-bit disjointness function Disjnk , every player i ∈ [[1, k]] has an n-bit string
(x`i)`∈[[1,n]], and the players have to output 1 if and only if there exists a coordinate ` where
all players have the bit 1. Formally, Disjnk (x) =

∨n
`=1
∧k
i=1 x

`
i .

6.1 Switched multi-party information cost of Disjnk
We first prove a direct-sum-type property which allows us to make the link between the
functions ANDk and Disjnk . A similar property was proved in [8] in the coordinator model;
our peer-to-peer model requires a different, more involved, construction, since we do not
have the coordinator, and moreover no player can act as the coordinator since it would get
too much information. Since Disjnk is the disjunction of n ANDk functions, we analyze the
switched multi-party information cost of Disjnk using the distribution µn.

I Lemma 6.1. Let k > 3. For any protocol π externally ε-computing Disjnk , there exists a
protocol π′ externally ε-computing ANDk such that

SMICµn(π) ≥ n · SMICµ(π′) .

Coupled with the lower bound on SMIC(π′) for any protocol π′ that computes ANDk
(Section 5), the above lemma gives us a lower bound on SMIC(π) for any protocol that
computes the function Disjnk :
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I Theorem 6.2. Let k > 3. Given any fixed 0 ≤ ε < 1
2 , for any protocol π externally

ε-computing Disjnk it holds that

SMICµn(π) = Ω(kn) .

6.2 Multi-party information complexity and communication complexity
of Disjnk

The next lemma is key to our argument. The theorem that follows is a consequence of it and
of Theorem 6.2.

I Lemma 6.3. For any k-player protocol π, SMICµn(π) ≤ MICµn(π).

The next theorem follows immediately from Theorem 6.2 and Lemma 6.3.

I Theorem 6.4. Let k > 3. Given any fixed 0 ≤ ε < 1
2 , for any protocol π externally

ε-computing Disjnk , it holds that

MICµn(π) = Ω(kn) .

We now conclude with a lower bound on the randomized communication complexity of
the disjointness function.

I Theorem 6.5. Given any fixed 0 ≤ ε < 1
2 , there is a constant α such that for n ≥ 1

αk,

CCε(Disjnk ) = Ω(kn) .

We note that our tight lower bound holds also for protocols where only one player is
required to output the value of the function.

7 Randomness complexity of private protocols

A protocol π is said to privately compute a function f if, at the end of the execution of the
protocol, the players have learned nothing but the value of that function. We now prove
that the (information theoretic) private computation of Disjnk requires Ω(n) random bits. We
prove this result using the information theoretic results for Disjnk of the previous sections.
The definitions and the details of the proof are deferred to the full version of the paper.

I Theorem 7.1. Let k > 3. Then R(Disjnk ) = Ω(n), where R(f) is the minimum number of
random bits necessary for a protocol to privately compute f .

8 Conclusions and open problems

We introduce new models and new information theoretic tools for the study of communication
complexity, and other complexity measures, in the natural peer-to-peer, multi-party, number-
in-hand setting. We prove a number of properties of our new models and measures, and
exemplify their effectiveness by proving two lower bounds on communication complexity, as
well as a lower bound on the amount of randomness necessary for certain private computations.

To the best of our knowledge, our lower bounds on communication complexity are the
first tight (non-trivial) lower bounds on communication complexity in the natural peer-to-
peer multi-party setting, and our lower bound on the randomness complexity of private
computations is the first that grows with the size of the input, while the computed function
is a boolean one (i.e., the size of the output does not grow with the size of the input).
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We believe that our models and tools may find additional applications and may open the
way to further study of the natural peer-to-peer setting and to the building of a more solid
bridge between the the fields of communication complexity and of distributed computation.

Our work raises a number of questions. First, how can one relax the restrictions that
we impose on the general asynchronous model and still prove communication complexity
lower bounds in a peer-to-peer setting? Our work seems to suggest that novel techniques
and ideas, possibly not based on information theory, are necessary for this task, and it would
be most interesting to find those. Second, it would be interesting to identify the necessary
and sufficient conditions that guarantee the “rectangularity” property of communication
protocols in a peer-to-peer setting. While this property is fundamental to the analysis of
two-party protocols, it turns out that once one turns to the multi-party peer-to-peer setting,
not only does this property become subtle to prove, but also this property does not always
hold. Given the central (and sometimes implicit) role of the rectangularity property in the
literature, it would be interesting to identify when it holds in the multi-party peer-to-peer
number-in-hand setting.
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A Schur Complement Cheeger Inequality
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Abstract
Cheeger’s inequality shows that any undirected graph G with minimum normalized Laplacian
eigenvalue λG has a cut with conductance at most O(

√
λG). Qualitatively, Cheeger’s inequality

says that if the mixing time of a graph is high, there is a cut that certifies this. However, this
relationship is not tight, as some graphs (like cycles) do not have cuts with conductance o(

√
λG).

To better approximate the mixing time of a graph, we consider a more general object. Spe-
cifically, instead of bounding the mixing time with cuts, we bound it with cuts in graphs obtained
by Schur complementing out vertices from the graph G. Combinatorially, these Schur comple-
ments describe random walks in G restricted to a subset of its vertices. As a result, all Schur
complement cuts have conductance at least Ω(λG). We show that unlike with cuts, this inequality
is tight up to a constant factor. Specifically, there is a Schur complement cut with conductance
at most O(λG).
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1 Introduction

In this paper, we give a constant-factor approximation for the minimum ratio of electrical
conductance to volume of any pair of sets S1, S2. When S1 is the complement of S2, for
example, this quantity is what is classically called the conductance of the set S1, so the
ratio that we consider is less than conductance of the graph G. We obtain this constant-
factor approximation by showing that the minimum electrical conductance-to-volume ratio is
approximated within a constant factor by λG. Thus, our quantity closes the classical

√
λG

gap present between the upper and lower bounds in Cheeger’s inequality.
In particular, we prove the following partitioning result, which relates 1/λG to effective

resistances between sets in the graph G. Think of the weighted graph G as an electrical
network, where each edge represents a conductor with electrical conductance equal to its
weight. For two sets of vertices S1 and S2, obtain a graph H by contracting all vertices in S1
to a single vertex s1 and all vertices in S2 to a single vertex s2. Let ReffG(S1, S2) denote
the effective resistance between the vertices s1 and s2 in the graph H. Then, we show the
following in Appendix A:

I Theorem 1. In any weighted graph G, there are two sets of vertices S1 and S2 for which
ReffG(S1, S2) ≥ 1/(25600λG min(volG(S1), volG(S2))). Furthermore, for any pair of sets
S′1, S

′
2, ReffG(S′1, S′2) ≤ 2/(λG min(volG(S′1), volG(S′2)).

1 Supported by NSF grant CCF-1816861.

© Aaron Schild;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 65; pp. 65:1–65:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aschild@berkeley.edu
https://doi.org/10.4230/LIPIcs.ITCS.2019.65
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


65:2 A Schur Complement Cheeger Inequality

1.1 Relationship to Cheeger’s Inequality
For a set of vertices S, let φS denote the total weight of edges leaving S divided by the
total degree of the vertices in S. Throughout the literature, this quantity is often called the
conductance of S. To avoid confusion with electrical conductance, we call this quantity the
fractional conductance of S. Let φG denote the minimum fractional conductance of any set S
with at most half of the volume (total vertex degree). Cheeger’s inequality for graphs [3, 2]
is as follows:

I Theorem 2 (Cheeger’s Inequality). For any weighted graph G, λG/2 ≤ φG ≤
√

2λG.

Cheeger’s inequality was originally introduced in the context of manifolds [6]. It is a
fundamental primitive in graph partitioning [20, 15] and for upper bounding the mixing time
of Markov chains [19]. Motivated by spectral partitioning, much work has been done on
higher-order generalizations of Cheeger’s inequality [13, 14]. The myriad of applications for
Cheeger’s inequality and generalizations of it [4, 21], along with the the

√
λG gap between

the upper and lower bounds, have led to a long line of work that seeks to improve the quality
of the partition found when the spectrum has certain properties (for example, bounded
eigenvalue gap [11] or when the graph has special structure [10].)

Here, we get rid of the
√
λG gap by taking a different approach. Instead of assuming

special combinatorial or spectral structure of the input graph to obtain a tighter relationship
between conductance and λG, we introduce a more general object than graph cuts that
enable a tighter approximation to λG. Instead of just considering cuts in the given graph G,
we consider cuts obtained by picking two disjoint sets of vertices S1 and S2, computing the
Schur complement of G onto S1 ∪ S2, and looking at the cut consisting of all edges between
S1 and S2 in that Schur complement. Let ρG be the minimum conductance of any such cut
(defined formally in Section 2). We show that the minimum conductance of any such cut is a
constant factor approximation to λG:

I Theorem 3. Let G be a weighted graph. Then

λG/2 ≤ ρG ≤ 25600λG

1.2 Graph Partitioning
Effective resistance in spectral graph theory has been used several times recently (for
example [16, 1]) to obtain improved graph partitioning results. 1/λG may not yield a
good approximation to the effective resistance between pairs of vertices [5]. For example,
on an n-vertex grid graph G, all effective resistances are between Ω(1) and O(logn), but
λG = Θ(1/n). Theorem 1 closes this gap by considering pairs of sets of vertices, not just
pairs of vertices.

Cheeger’s inequality is the starting point for analysis of spectral partitioning. In some
partitioning tasks, cutting the graph does not make sense. For example, spectral partitioning
is an important tool in image segmentation [18, 17]. Graph partitioning makes the most sense
in image segmentation when one wants to find an object with a sharp boundary. However,
in many images, like the one in Figure 1 on the right, objects may have fuzzy boundaries. In
these cases, it is not clear which cut an image segmentation algorithm should return.

Considering cuts in Schur complements circumvents this ambiguity. Think of an image
as a graph by making a vertex for each pixel and making an edge between adjacent pixels,
where the weight on an edge is inversely related to the disparity between the colors of the
endpoint pixels for the edge. An optimal segmentation in our setting would consist of the
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S1

S2

S1

S2

Figure 1 Spectral partitioning finds the S1-S2 cut in the left image, but may not in the right due
to the presence of many equal weight cuts. The minimum fractional conductance Schur complement
cut is displayed in both images.
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Figure 2 A tight example for the upper bound in Cheeger’s inequality. The minimum fractional
conductance of any cut in this graph is 1/8, while the fractional conductance of the illustrated Schur
complement cut on the right is 2(1/4)/(2(1/4) + 8(1)) = 1/17 < 1/8.

two sets S1 and S2 corresponding to pixels on either side of the fuzzy boundary. Computing
the Schur complement of the graph onto S1 ∪ S2 eliminates all vertices corresponding to
pixels in the boundary.

Some examples in which Cheeger’s inequality is not tight illustrate a similar phenomenon
in which there are many equally good cuts. For example, let G be an unweighted n-vertex
cycle. This is a tight example for the upper bound in Cheeger’s inequality, as no cut has
fractional conductance smaller than O(1/n) despite the fact that λG = Θ(1/n2). Instead,
divide the cycle into four equal-sized quarters and let S1 and S2 be two opposing quarters.
The Schur complement cut between S1 and S2 has fractional conductance at most O(1/n2),
which matches λG up to a constant factor.

1.3 Mixing Times of Markov Chains
Cheeger’s inequality and variants of it can be used to upper bound the relaxation time of
reversible Markov chains. The relaxation time of a reversible Markov chain is defined to
be 1/λG and approximates the mixing time of a chain up to a log(1/πmin) factor, where
πmin is the minimum stationary distribution probability. To do this, one finds a fractional
multicommodity flow that routes the demand degree(u)degree(v) for every pair of vertices
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u, v ∈ V (G). The relevant quantity is the congestion of this flow. Specifically, view a
multicommodity flow as a collection of paths P, where a flow path has flow value fp. The
congestion of the flow is defined to be

max
e∈E(G)

∑
p∈P:e∈p

|fp|

The fractional conductance of any cut can be lower bounded using the the congestion of
the flow. By the upper bound in Theorem 2, we get a lower bound on λG as well, which
in turn yields an upper bound on the relaxation time of G. However, the congestion of
the optimal fractional multicommodity flow is not a close approximation to the relaxation
time of the graph, due to the loss in both Cheeger’s inequality and in the gap between
fractional multicommodity flows and sparsest cuts. One can improve upon this by considering
a length-weighted form of congestion instead:

max
e∈E(G)

∑
p∈P:e∈p

|fp||p|

The length-weighted congestion of any multicommodity flow in G routing the right demand
is an upper bound on the relaxation time of G. For a precise statement of this, see Theorem
4.6 of [8]. This overcomes the square root present in the upper bound in Cheeger’s inequality.
However, this approach does not overcome the multicommodity flow-cut gap. In particular,
any multicommodity flow in a constant-degree random Erdos-Renyi graph has length-weighted
congestion at least Ω(log2 n) (see, for example, Section 4.1 of [9]), despite the fact that these
graphs have constant relaxation time.

Theorem 3 yields a upper lower bound on the relaxation time of a reversible Markov
chain. Unlike the bounds discussed in the previous paragraph, it is tight up to a constant
factor on all graphs. We do not know of a lower bound for Schur complement cut fractional
conductance analogous to multicommodity flows for standard cuts.

2 Preliminaries

Graph theory. Consider an undirected, connected graph H with edge weights {cHe }e∈E(H),
m edges, and n vertices. Let V (H) and E(H) denote the vertex and edge sets of H re-
spectively. For two sets of vertices A,B ⊆ V (H), let EH(A,B) denote the set of edges in
H incident with one vertex in A and one vertex in B and let cH(A,B) :=

∑
e∈EH (A,B) c

H
e .

For a set of edges F ⊆ E(H), let cH(F ) :=
∑
e∈F c

H
e . For a set of vertices A ⊆ V (H),

let ∂HA := EH(A, V (H) \ A). For a vertex v ∈ V (H), let ∂Hv := ∂H{v} denote the
edges incident with v in H and let cHv :=

∑
e∈∂Hv

cHe . For a set of vertices A ⊆ V (H), let
volH(A) :=

∑
v∈A c

H
v . When A and B are disjoint, let H/(A,B) denote the graph with

all vertices in A identified to one vertex a and all vertices in B identified to one vertex
b. Formally, let H/(A,B) be the graph with V (H/(A,B)) = (V (H) \ (A ∪ B)) ∪ {a, b},
embedding f : V (H) → V (H/(A,B)) with f(u) := a if u ∈ A, f(u) := b if u ∈ B, and
f(u) := u otherwise, and edges {f(u), f(v)} for all {u, v} ∈ E(H). Let H/A := H/(A, ∅).

Laplacians. Let DH be the n × n diagonal matrix with rows and columns indexed by
vertices in H and DH(v, v) = cHv for all v ∈ V (H). Let AH be the adjacency matrix of H;
that is the matrix with AH(u, v) = cHuv for all u, v ∈ V (H). Let LH := DH − AH be the
Laplacian matrix of H. Let NH := D

−1/2
H LHD

−1/2
H denote the normalized Laplacian matrix
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of H. For a matrix M , let M† denote the Moore-Penrose pseudoinverse of M . For subsets A
and B of rows and columns of M respectively, let M [A,B] denote the |A| × |B| submatrix
of M restricted to those rows and columns. For a set of vertices S ∈ V (H), let 1S denote
the indicator vector for the set S. For two vertices u, v ∈ Rn, let χuv := 1{u} − 1{u}. When
the graph is clear from context, we omit H from all of the subscripts and superscripts of H.
For a vector x ∈ Rn, let xS ∈ RS denote the restriction of x to the coordinates in S.

Let λH denote the smallest nonzero eigenvalue of NH . Equivalently,

λH := min
x∈Rn:xTD

1/2
H

1V (H)=0

xTNHx

xTx

For any set of vertices X ⊆ V (H), let

LSchur(H,X) := LH [X,X]−LH [X,V (H) \X]LH [V (H) \X,V (H) \X]−1LH [V (H) \X,X]

where brackets denot submatrices with the indexed rows and columns. The following fact
applies specifically to Laplacian matrices:
I Remark (Fact 2.3.6 of [12]). For any graph H and any X ⊆ V (H), LSchur(H,X) is the
Laplacian matrix of an undirected graph.

Let Schur(H,X) denote the graph referred to in Remark 2. Schur complementation
commutes with edge contraction and deletion and is associative:

I Theorem 4 (Lemma 4.1 of [7], statement from [12]). Given H, S ⊆ V (H), and any edge e
with both endpoints in S,

Schur(H \ e, S) = Schur(H,S) \ e

and, for any pair of vertices x, y ∈ S,

Schur(H/{x, y}, S) = Schur(H,S)/{x, y}

I Theorem 5. Given H and two sets of vertices X ⊆ Y ⊆ V (H), Schur(Schur(H,Y ), X) =
Schur(H,X).

The following property follows from the definition of Schur complements:
I Remark. Let H be a graph and S ⊆ V (H). Let I := Schur(H,S). For any x ∈ RV (H)

that is supported on S with xT1V (H) = 0,

xTL†Hx = xTSL
†
IxS

The weight of edges in this graph can be computed using the following folklore fact, which
we prove for completeness:

I Theorem 6. For two disjoint sets C,D ⊆ V (H), let I := Schur(H,C ∪D). Then

cI(C,D) = 1
χTcdL

†
H/(C,D)χcd

Proof. By definition, cI(C,D) = cI/(C,D)({c}, {d}). By Theorem 4, I/(C,D) =
Schur(H/(C,D), {c, d}). By Remark 2, cSchur(H/(C,D),{c,d})({c}, {d}) = 1

χT
cd
L†

H/(C,D)χcd
. Com-

bining these equalities gives the desired result. J
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We also use the following folklore fact about electrical flows, which we prove for the sake
of completeness:

I Theorem 7. For two vertices s, t ∈ V (H),

χTstL
†
Hχst = 1

minp∈RV (H):ps≤0,pt≥1 p
TLHp

Proof. We first show that

χTstL
†
Hχst = 1

minp∈RV (H):ps=0,pt=1 p
TLHp

Taking the gradient of the objective pTLHp shows that that the optimal p are the potentials
for an electrical flow with flow conservation at all vertices besides s and t. Therefore, p is
proportional to L†Hχst + γ1 for some γ ∈ R. The constant of proportionality is χTstL

†
Hχst

since the s-t potential drop in p is 1. Therefore,

min
p∈RV (H):ps=0,pt=1

pTLHp =
(

L†Hχst

χTstL
†
Hχst

)T
LH

(
L†Hχst

χTstL
†
Hχst

)

= 1
χTstL

†
Hχst

The desired result follows from the fact that in the optimal p, all potentials are between
0 and 1 inclusive. J

Notions of fractional conductance. For a set of vertices A ⊆ V (H), let

φHA := cH(∂H(A))
min(volH(A), volH(V (H) \A))

be the fractional conductance of A. Let

φH := min
A⊆V (H):A6=∅

φHA

be the fractional conductance of H.
For two disjoint sets of vertices A,B ⊆ V (H), let I := Schur(H,A ∪B) and

ρHA,B := cI(A,B)
min(volI(A), volI(B))

be the Schur complement fractional conductance of the pair of sets (A,B). Define the Schur
complement fractional conductance of the graph H to be

ρH := min
A,B⊆V (H):A∩B=∅,,A 6=∅,B 6=∅

ρHA,B

It will be helpful to deal with the quantities

σHA,B := cI(A,B)
min(volH(A), volH(B))

and

σH := min
A,B⊆V (H):A∩B=∅,A 6=∅,B 6=∅

σHA,B

as well, which we call the mixed fractional conductances of (A,B) and H respectively.
The following will be useful in relating ρHA,B to σHA,B :



A. Schild 65:7

I Proposition 8. For any two sets X ⊆ Y ⊆ V (H), let I := Schur(H,Y ). Then,

volI(X) ≤ volH(X)

Proof. It suffices to show this result when |X| = 1 because vol is a sum of volumes (degrees)
of vertices in the set. Furthermore, by Theorem 5, it suffices to show the result when
|Y | = |V (H)| − 1. Let v be the unique vertex in H outside of Y and let u be the unique
vertex in X. Then, by definition of the Schur complement,

volI(X) = cIu

=
∑

w∈V (I)

cIuw

=
∑

w∈V (I)

(
cHuw + cHuvc

H
vw

cHv

)

=

 ∑
w∈V (I)

cHuw

+ cHuv
cHv

 ∑
w∈V (I)

cHvw


≤

 ∑
w∈V (I)

cHuw

+ cHuv

= cHu

= volH(X)

as desired. J

To prove the upper bound, we given an algorithm for constructing a low fractional
conductance Schur complement cut. The following result is helpful for making this algorithm
take near-linear time:

I Theorem 9 (Theorem 8.2 of [23]). Given a graph H, there is a Õ(m)-time algorithm that
produces a vector x← ApxFiedler(H) ∈ RV (H) with xTD1/2

H 1V (H) = 0 for which

xTNHx ≤ 2λHxTx

3 Lower bound

We now show the first inequality in Theorem 3, which follows from the following lemma by
Proposition 8, which implies that σG ≤ ρG.

I Lemma 10.

λG ≤ 2σG

Proof. We lower bound the Schur complement fractional conductance of any pair of disjoint
sets A,B ⊆ V (G). Let I := Schur(G,A∪B). Let P be the (A∪B)×(A∪B) diagonal matrix
with P (u, u) = cGu for each u ∈ A ∪B. We start by lower bounding the minimum nonzero
eigenvalue λ of the matrix P−1/2LIP

−1/2. Let λmax(M) denote the maximum eigenvalue of
a symmetric matrix M . By definition of the Moore-Penrose pseudoinverse,

1/λ = λmax(P 1/2L†IP
1/2)

ITCS 2019
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By Remark 2,

λmax(P 1/2L†IP
1/2) ≤ λmax(N†G) = 1/λG

Therefore, λ ≥ λG. We now plug in a test vector. Let

z := P 1/2
(

1A
volG(A) −

1B
volG(B)

)
zT (P 1/21V (I)) = 0, so

λG ≤ λ

= min
x∈RA∪B :xTP 1/21V (I)=0

xT (P−1/2LIP
−1/2)x

xTx

≤ zT (P−1/2LIP
−1/2)z

zT z

= cI(A,B) ((1/volG(A)) + (1/volG(B)))2

(volG(A)/volG(A)2) + (volG(B)/volG(B)2)

= cI(A,B)volG(A ∪B)
volG(A)volG(B)

≤ 2σGA,B J

4 Upper bound

We now show the second inequality in Theorem 3:

I Lemma 11.

ρG ≤ 25600λG

To prove this lemma, we need to find a pair of sets A and B with low Schur complement
fractional conductance:

I Lemma 12. There is a near-linear time algorithm SweepCut(G) that takes in a graph
G with λG ≤ 1/25600 and outputs a pair of nonempty sets A and B with the following
properties:

(Low Schur complement fractional conductance) σGA,B ≤ 640λG
(Large interior) φGA ≤ 1/4 and φGB ≤ 1/4

We now prove Lemma 11 given Lemma 12:

Proof of Lemma 11 given Lemma 12. Let I := Schur(G,A ∪ B). For any two vertices
u, v ∈ A∪B, cIuv ≥ cGuv. Therefore, volI(A) ≥ 2

∑
u,v∈A c

G
uv and volI(B) ≥ 2

∑
u,v∈B c

G
uv. By

the “Large interior” guarantee of Lemma 12, 2
∑
u,v∈A c

G
uv ≥ (3/4)volG(A) and

2
∑
u,v∈B c

G
uv ≥ (3/4)volG(B). Therefore,

ρGA,B ≤ 4/3σGA,B ≤ 1280λG

by the “Low Schur complement weight” guarantee when λG ≤ 1/25600, as desired. When
λG > 1/25600, the lemma is trivially true, as desired. J
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Now, we implement SweepCut. The standard Cheeger sweep examines all thresholds
q ∈ R and for each threshold, computes the fractional conductance of the cut ∂S≤q of
edges from vertices with eigenvector coordinate at most q to ones greater than q. Instead,
the algorithm SweepCut examines all thresholds q ∈ R and computes an upper bound
(a proxy) for the σGS≤q/2,S≥q

for each positive q and σGS≤q,S≥q/2
for each negative q. Let

Iq := Schur(G,S≥q ∪ S≤q/2) for q > 0 and Iq := Schur(G,S≤q ∪ S≥q/2). Let κq(y) :=
min(q,max(q/2, y)) for q > 0 and κq(y) = min(q/2,max(q, y)) for q ≤ 0. The proxy is the
following quantity, which is defined for a specific shift of the Rayleigh quotient minimizer
y ∈ RV (G).

ĉIq (S≥q, S≤q/2) := 4
q2

∑
e=uv∈E(G)

cGe (κq(yu)− κq(yv))2

for q > 0 and

ĉIq (S≤q, S≥q/2) := 4
q2

∑
e=uv∈E(G)

cGe (κq(yu)− κq(yv))2

for q ≤ 0. We now show that this is indeed an upper bound:

I Proposition 13. For all q > 0,

cIq (S≤q/2, S≥q) ≤ ĉIq (S≤q/2, S≥q)

For all q ≤ 0,

cIq (S≤q, S≥q/2) ≤ ĉIq (S≤q, S≥q/2)

Proof. We focus on the q > 0, as the reasoning for the q ≤ 0 case is the same. By Theorems
6 and 7,

cIq (S≤q/2, S≥q) = min
p∈RV (G):pa≤0∀a∈S≤q/2,pa≥1∀a∈S≥q

pTLGp

The vector p with pa := 2
qκq(ya)−1 for all vertices a ∈ V (G) is a feasible solution to the above

optimization problem with objective value ĉIq (S≤q/2, S≥q). This is the desired result. J

This proxy allows us to relate Schur complement conductances together across different
thresholds q in a similar proof to the proof of the upper bound of Cheeger’s inequality given
in [22]. One complication in our case is that Schur complements for different values of q
overlap in their eliminated vertices. Our choice of ≤ q/2, ≥ q plays a key role here (as
opposed to ≤ 0, ≥ q, for example) in ensuring that the overlap is small. We now give the
algorithm SweepCut:

ITCS 2019
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Algorithm 1: SweepCut(G).
Input: A graph G with λG ≤ 1/25600
Output: Two sets of vertices A and B satisfying the guarantees of Lemma 12

1 z ← vector with zTNGz ≤ 2λGzT z and zT (D1/2
G 1V (G)) = 0

2 x← D
−1/2
G z

3 y ← x− α1V (G) for a value α such that volG({v : yv ≤ 0}) ≥ volG(V (G))/2 and
volG({v : yv ≥ 0}) ≥ volG(V (G))/2

4 foreach q ∈ R do
5 S≥q ← vertices with yv ≥ q
6 S≤q ← vertices with yv ≤ q
7 end
8 foreach q > 0 do
9 if (1) ĉIq (S≤q/2, S≥q) ≤ 640λG min(volG(S≤q/2), volG(S≥q))), (2)

cG(∂S≥q/2) ≤ 1/4volG(S≥q), and (3) φS≥q
≤ 1/4 then

10 return (S≤q/2, S≥q)
11 end
12 end
13 foreach q ≤ 0 do
14 if (1) ĉIq (S≥q/2, S≤q) ≤ 640λG min(volG(S≥q/2), volG(S≤q))), (2)

cG(∂S≥q/2) ≤ 1/4volG(S≤q), and (3) φS≤q
≤ 1/4 then

15 return (S≤q, S≥q/2)
16 end
17 end

Our analysis relies on the following key technical result, which we prove in Appendix B:

I Proposition 14. For any a, b ∈ R,∫ ∞
0

(κq(a)− κq(b))2

q
dq ≤ 10(a− b)2

Proof of Lemma 12.
Algorithm well-definedness. We start by showing that SweepCut returns a pair of sets.

Assume, for the sake of contradiction, that SweepCut does not return a pair of sets. Let
Iq := Schur(G,S≥q ∪ S≤q/2) for q > 0 and Iq := Schur(G,S≤q ∪ S≥q/2) for q ≤ 0. By
the contradiction assumption, for all q > 0,

volG(S≥q) ≤
ĉIq (S≥q, S≤q/2)

640λG
+ 4cG(∂S≥q) + 4cG(∂S≤q/2)

and for all q < 0,

volG(S≤q) ≤
ĉIq (S≤q, S≥q/2)

640λG
+ 4cG(∂S≤q) + 4cG(∂S≥q/2)

Since
∑
v∈V (G) c

G
v xv = 0,∑

v∈V (G)

cGv x
2
v ≤

∑
v∈V (G)

cGv y
2
v
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Now, we bound the positive yv and negative yv parts of this sum separately. Negating y
shows that it suffices to bound the positive part. Order the vertices in S≥0 in decreasing
order by yv value. Let vi be the ith vertex in this ordering, let k := |S≥0|, yk+1 := 0,
yi := yvi , ci := cGvi

, and Si := {v1, v2, . . . , vi} for each integer i ∈ [k]. Then

∑
v∈S≥0

cGv y
2
v =

k∑
i=1

ciy
2
i

=
k∑
i=1

(volG(Si)− volG(Si−1))y2
i

=
k∑
i=1

volG(Si)(y2
i − y2

i+1)

= 2
∫ ∞

0
volG(S≥q)qdq

By our volume upper bound from up above,

2
∫ ∞

0
volG(S≥q)qdq

≤ 2
∫ ∞

0

ĉIq (S≥q, S≤q/2)
640λG

qdq + 8
∫ ∞

0
cG(∂S≥q)qdq + 8

∫ ∞
0

cG(∂S≤q/2)qdq

= 2
∫ ∞

0

ĉIq (S≥q, S≤q/2)
640λG

qdq + 8
∫ ∞

0
cG(∂S≥q)qdq + 8

∫ ∞
0

cG(∂S>q/2)qdq

= 2
∫ ∞

0

ĉIq (S≥q, S≤q/2)
640λG

qdq + 40
∫ ∞

0
cG(∂S≥q)qdq

Substitution and Proposition 14 show that

2
∫ ∞

0
volG(S≥q)qdq ≤ 8

∑
e=uv∈E(G)

cGe

∫ ∞
0

(
(κq(yu)− κq(yv))2

640λGq
+ 51q∈[yu,yv]q

)
dq

≤ 8
∑

e=uv∈E(G)

cGe

(
10

640λG
(yu − yv)2 + 5|y2

u − y2
v |
)

By Cauchy-Schwarz,

8
∑

e=uv∈E(G)

cGe

(
10

640λG
(yu − yv)2 + 5|y2

u − y2
v |
)

≤ 1
8λG

∑
e=uv∈E(G)

cGe (yu − yv)2

+ 40
√ ∑
e=uv∈E(G)

cGe (yu − yv)2
√ ∑
e=uv∈E(G)

cGe (yu + yv)2

≤ 1
4
∑

v∈V (G)

cGv x
2
v

+ 80
√
λG

√ ∑
v∈V (G)

cGv x
2
v

√ ∑
v∈V (G)

cGv y
2
v
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But since
∑
v∈V (G) c

G
v x

2
v ≤

∑
v∈V (G) c

G
v y

2
v and λG < 1/25600,

1
4
∑

v∈V (G)

cGv x
2
v + 80

√
λG

√ ∑
v∈V (G)

cGv x
2
v

√ ∑
v∈V (G)

cGv y
2
v <

1
2
∑

v∈V (G)

cGv y
2
v .

Negating y shows that
∑
v∈S≤0

cGv y
2
v < 1/2

∑
v∈V (G) c

G
v y

2
v as well. But these statements

cannot both hold; a contradiction. Therefore, SweepCut must output a pair of sets.

Runtime. Computing z takes Õ(m) time by Theorem 9. Therefore, it suffices to show that
the foreach loops can each be implemented in O(m) time. This implementation is similar
to the O(m)-time implementation of the Cheeger sweep.
We focus on the first foreach loop, as the second is the same with q negated. First, note
that the functions φS≥q

, cG(∂S≥q/2), and volG(S≥q) of q are piecewise constant, with
breakpoints at q = yu and q = 2yu for each u ∈ V (G). Furthermore, these functions can
be computed for all values in O(m) time using an O(m)-time Cheeger sweep for each
function.
Therefore, it suffices to compute the value of ĉIq (S≤q/2, S≥q) for all q ≥ 0 that are local
minima in O(m) time. Let h(q) := ĉIq (S≤q/2, S≥q). Notice that the functions h(q) and
h′(q) are piecewise quadratic and linear functions of q respectively, with breakpoints
at q = yu and q = 2yu. Using five O(m)-time Cheeger sweeps, one can compute the
q2, q and 1 coefficients of h(q) and the q and 1 coefficients of h′(q) between all pairs
of consecutive breakpoints. After computing these coefficents, one can compute the
value of each function at a point q in O(1) time. Furthermore, given two consecutive
breakpoints a and b, one can find all points q ∈ (a, b) with h′(q) = 0 in O(1) time. Each
local minimum for h is either a breakpoint or a point with h′(q) = 0. Since h and h′ have
O(n) breakpoints, all local minima can be computed in O(n) time. h can be evaluated at
all of these points in O(n) time. Therefore, all local minima of h can be computed in
O(m) time. Since the algorithm does return a q, some local minimum for h also suffices,
so this implementation produces the desired result in O(m) time.

Low Schur complement fractional conductance. By Proposition 13,

cIq (S≥q, S≤q/2) ≤ ĉIq (S≥q, S≤q/2)

Therefore, cIq (S≥q, S≤q/2) ≤ 640λG min(volG(S≥q), volG(S≤q/2)) for q ≥ 0 by the foreach
loop if condition. Repeating this reasoning for q < 0 yields the desired result.

Large interior. By definition of α, volG(S≥q) ≤ volG(S≤q/2) for q > 0. Since cG(∂S≤q/2) ≤
1/4volG(S≥q), φS≤q/2 ≤ 1/4, as desired. J
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A Proof of Theorem 1

Proof of Theorem 1. For any two sets of vertices S1, S2 in a graph G,

ReffG(S1, S2) min(volG(S1), volG(S2)) = 1
σGS1,S2

Therefore, the desired result follows from Lemmas 11 and 10. J

B Proof of Proposition 14

Proof of Proposition 14. Without loss of generality, suppose that a ≤ b. We break the
analysis up into cases:

Case 1: a ≤ 0. In this case, κq(a) = q/2 for all q ≥ 0, so

∫ ∞
0

(κq(a)− κq(b))2

q
dq =

∫ b

0

(q/2− q)2

q

+
∫ 2b

b

(q/2− b)2

q
dq

+
∫ ∞

2b

(q/2− q/2)2

q
dq

= b2

8 +
∫ 2b

b

(q/4− b+ b2/q)dq

= b2

2 − b
2 + b2(ln 2)

≤ 10(a− b)2

as desired.
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Case 2: a > 0 and b ≤ 2a. In this case,∫ ∞
0

(κq(a)− κq(b))2

q
dq =

∫ a

0

(q − q)2

q
dq

+
∫ b

a

(a− q)2

q
dq

+
∫ 2a

b

(a− b)2

q
dq

+
∫ 2b

2a

(q/2− b)2

q
dq

+
∫ ∞

2b

(q/2− q/2)2

q
dq

≤
∫ 2b

a

(a− b)2

q
dq

= (a− b)2 ln(2b/a)
≤ (a− b)2 ln 4 ≤ 10(a− b)2

as desired.
Case 3: a > 0 and b > 2a. In this case,∫ ∞

0

(κq(a)− κq(b))2

q
dq =

∫ a

0

(q − q)2

q
dq

+
∫ 2a

a

(a− q)2

q
dq

+
∫ b

2a

(q/2− q)2

q
dq

+
∫ 2b

b

(q/2− b)2

q
dq

+
∫ ∞

2b

(q/2− q/2)2

q
dq

≤
∫ 2b

a

(q/2− q)2

q
dq

≤ b2/2
≤ 2(a− b)2 ≤ 10(a− b)2

as desired. J
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Abstract
The efficiency of a game is typically quantified by the price of anarchy (PoA), defined as the worst
ratio of the value of an equilibrium – solution of the game – and that of an optimal outcome. Given
the tremendous impact of tools from mathematical programming in the design of algorithms
and the similarity of the price of anarchy and different measures such as the approximation and
competitive ratios, it is intriguing to develop a duality-based method to characterize the efficiency
of games.

In the paper, we present an approach based on linear programming duality to study the effi-
ciency of games. We show that the approach provides a general recipe to analyze the efficiency
of games and also to derive concepts leading to improvements. The approach is particularly
appropriate to bound the PoA. Specifically, in our approach the dual programs naturally lead to
competitive PoA bounds that are (almost) optimal for several classes of games. The approach
indeed captures the smoothness framework and also some current non-smooth techniques/con-
cepts. We show the applicability to the wide variety of games and environments, from congestion
games to Bayesian welfare, from full-information settings to incomplete-information ones.
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1 Introduction

Algorithmic Game Theory – a domain at the intersection of Game Theory and Algorithms –
has been extensively studied in the last two decades. The development of the domain,
as well as those of many other research fields, have witnessed a common phenomenon:
interesting notions, results have been flourished at the early stage, then deep methods,
techniques have been established at a more mature stage leading to further achievements.
In Algorithmic Game Theory, a representative illustration is the notion and results on the
price of anarchy and the smoothness argument method [24]. In a game, the price of anarchy
(PoA) [15] is defined as the worst ratio between the cost of a Nash equilibrium and that
of an optimal solution. The PoA is now considered as standard and is the most popular
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measure to characterize the inefficiency of Nash equilibria – solutions of a game – in the
same sense of approximation ratio in Approximation Algorithms and competitive ratio in
Online Algorithms.

Mathematical programming in general and linear programming in particular are powerful
tools in many research fields. Among others, linear programming has a tremendous impact on
the design of algorithms. Linear programming and duality play crucial and fundamental roles
in several elegant methods such as primal-dual and dual-fitting in Approximation Algorithms
[34] and online primal-dual framework [6] in Online Algorithms. Given the similarity of the
notions of PoA, approximation and competitive ratios, it is intriguing and also desirable
to develop a method based on duality to characterize the PoA of games. In this paper, we
present and aim at developing a framework based on linear programming duality to study
the efficiency of games.

1.1 A primal-dual approach
In high-level, the approach follows the standard primal-dual or dual-fitting techniques
in approximation/online algorithms. The approach consists of associating a game to an
underlying optimization problem and formulate an integer program corresponding to the
optimization problem. Next consider the linear program by relaxing the integer constraints
and its dual LP. Note that until this step, no notion of game has been intervened. Then
given a Nash equilibrium, construct dual variables in such a way that one can relate the
dual objective to the cost of the Nash equilibrium. The PoA is then bounded by the ratio
between the primal objective (essentially, the cost of the Nash equilibrium) and the dual
objective (a lower bound of the optimum cost by weak duality). This approach has been
considered by Kulkarni and Mirrokni [17] for full-information games with convex objectives.

There are two crucial steps in the approach. First, by this method, the bound of PoA is at
least as large as the integrality gap of the formulation. Hence, to prove optimal PoA one has
to derive a formulation (of the corresponding optimization problem) whose the integrality gap
matches to the optimal PoA. This is very similar to the issue of linear-programming-based
approaches in Approximation/Online Algorithms. Note that this issue is a main obstacle in
[17] in order to study non-convex objectives (see discussion in Section 1.3). The second crucial
step is the construction of dual variables. The dual variables need to reflect the notion of Nash
equilibria as well as their properties in order to relate to the costs of equilibria. Intuitively, to
prove optimal bound on the PoA, the constructed dual variables must constitute an optimal
dual solution.

To overcome these obstacles, in the paper we systematically consider configuration
linear programs and a primal-dual approach. Given a problem (game), we first consider a
natural formulation of the problem. Then, the approach consists of introducing exponential
variables and constraints to the natural formulation to get a configuration LP. The additional
constraints have intuitive and simple interpretations: one constraint guarantees that the game
admits exactly one outcome and the other constraint ensures that if a player uses a strategy
then this strategy must be a component of the outcome. As the result, the configuration
LPs significantly improve the integrality gap over that of the natural formulations.

The configuration LPs have been considered in approximation algorithms and to the
best of our knowledge, the main approach is rounding. Here, to study the efficiency of
games, we consider a primal-dual approach. The primal-dual approach is very appropriate
to study the PoA through the mean of configuration LPs. In the dual of the configuration
programs, the dual constraints naturally lead to the construction of dual variables and the
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PoA bounds. Intuitively, one dual constraint corresponds exactly to the definition of Nash
equilibrium and the other dual constraint settles the PoA bounds. Note that our approach
gives stronger formulations and leads to more general results than that in [17] (see Section
1.3 for a discussion in more details).

1.2 Overview of Results
We illustrate the potential and the wide applicability of the approach throughout various
results in the contexts of complete and incomplete-information environments, from the
settings of congestion games to welfare maximization. The approach allows us to unify
several previous results and establish new ones beyond the current techniques. It is worthy
to note that the analyses are simple and are guided by dual LP very much in the sense of
primal-dual methods in designing algorithms. Moreover, under the lens of LP duality, the
notion of smooth games in both full-information settings [24] and incomplete-information
settings [25, 31], the recent notion of no-envy learning [10] and the new notion of dual smooth
(in this paper) can be naturally derived, which lead to the optimal bounds of the PoA of
several games.

1.2.1 Smooth Games in Full-Information Settings
We first revisit smooth games by the primal-dual approach and show that the primal-dual
approach captures the smoothness framework [24]. Roughgarden [24] has introduced the
smoothness framework, which became quickly a standard technique, and showed that every
(λ, µ)-smooth game has a PoA of at most λ/(1 − µ). Through the duality approach, we
show that in terms of techniques to study the PoA for complete information settings, the LP
duality and the smoothness framework are exactly the same thing. Specifically, one of the
dual constraint corresponds exactly to the definition of smooth games given in [24].

I Informal Theorem 1. The primal-dual approach captures the smoothness framework in
full-information settings.

1.2.2 Congestion Games
We consider fundamental classes of congestion games in which we revisit and unify results
in the atomic, non-atomic congestion games and prove the optimal PoA bound of coarse
correlated equilibria in splittable congestion games.

Atomic congestion games. In this class, although the PoA bound follows the results for
smooth games (Informal Theorem 1), we provide another configuration formulation and a
similar primal-dual approach. The purpose of this formulation is twofold. First it shows the
flexibility of the primal-dual approach. Second, it sets up the ground for an unified approach
to other classes of congestion games.

Non-atomic congestion games. In this class, we re-prove the optimal PoA bound [29].
Along the line toward the optimal PoA bound for non-atomic congestion games, the equi-
librium characterization by a variational inequality is at the core of the analyses [29, 9, 8].
In our proof, we establish the optimal PoA directly by the means of LP duality. By the
LP duality as the unified approach, one can clearly observe that the non-atomic setting is
a version of the atomic setting in large games (in the sense of [12]) in which each player
weight becomes negligible (hence, the PoA of the atomic congestion games tend to that of
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non-atomic ones). Besides, an advantage with LP approaches is that one can benefit from
powerful techniques that have been developing for linear programming. Concretely, using
the general framework on resource augmentation and primal-dual recently presented [19], we
manage to recover and extend a resource augmentation result related to non-atomic setting
[28].

I Informal Theorem 2. In every non-atomic congestion game, for any constant r > 0, the
cost of an equilibrium is at most 1/r the optimum of the underlying optimization problem in
which each demand is multiplied by a factor (1 + r).

Splittable congestion games. Roughgarden and Schoppmann [26] has presented a local
smoothness property, a refinement of the smoothness framework, and proved that every
(λ, µ)-local-smooth splittable game has a PoA of λ/(1− µ). This bound is tight for a large
class of scalable cost functions in splittable games and holds for PoA of pure, mixed, correlated
equilibria. However, this bound does not hold for coarse correlated equilibria and it remains
an intriguing open question raised in [26]. Building upon the resilient ideas of non-atomic
and atomic settings, we define a notion, called dual smoothness, which is inspired by the
dual constraints. This new notion indeed leads to the tight PoA bound for coarse correlated
equilibria in splittable games for a large class of cost functions; that answers the question
in [26]. Note that the matching lower bound is given in [26] and that holds even for pure
equilibria.

I Definition 3. A cost function ` : R+ → R+ is (λ, µ)-dual-smooth if for every vectors
u = (u1, . . . , un) and v = (v1, . . . , vn),

v`(u) +
n∑
i=1

ui(vi − ui) · `′(u) ≤ λ · v`(v) + µ · u`(u)

where u =
∑n
i=1 ui and v =

∑n
i=1 vi. A splittable congestion game is (λ, µ)-dual-smooth if

for every resource e in the game, function `e is (λ, µ)-dual-smooth.

I Informal Theorem 4. The price of anarchy of coarse correlated equilibria of a splittable
congestion game G is at most inf(λ,µ) λ/(1− µ) where the infimum is taken over (λ, µ) such
that G is (λ, µ)-dual-smooth. This bound is tight for the class of scalable cost functions.

1.2.3 Welfare Maximization
We next consider the inefficiency of Bayes-Nash equilibria in the context of welfare maximiz-
ation in incomplete-information environments.

Smooth Auctions. The notion of smooth auctions in incomplete-information settings,
inspired by the original smoothness framework [24], has been introduced by Roughgarden
[25], Syrgkanis and Tardos [31]. This powerful notion has been widely used to study the
PoA of Bayes-Nash equilibria (see the recent survey [27]). We show that the primal-dual
approach captures the smoothness framework in incomplete-information settings. In other
words, the notion of smooth auctions can be naturally derived from dual constraints in the
primal-dual approach.

I Informal Theorem 5. The primal-dual approach captures the smoothness framework in
incomplete-information settings.
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Simultaneous Item-Bidding Auctions: Beyond Smoothness. Many PoA bounds in auc-
tions are settled by smoothness-based proofs. However, there are PoA bounds for auctions
proved via non-smooth techniques and these techniques seem more powerful than the smooth-
ness framework in such auctions. Representative examples are the simultaneous first- and
second-price auctions where players’ valuations are sub-additive. Feldman et al. [11] have
proved that the PoA is constant while the smooth argument gives only logarithmic guarantees.
We show that in this context, our approach is beyond the smoothness framework and also
captures the non-smooth arguments in [11] by re-establishing their results. Specifically, a
main step in our analysis – proving the feasibility of a dual constraint – corresponds exactly
to a crucial claim in [11]. From this point of view, the primal-dual approach helps to identify
the key steps in settling the PoA bounds.

I Informal Theorem 6 ([11]). Assume that players have independent distributions over
sub-additive valuations. Then, every Bayes-Nash equilibrium of a first-price auction and
of a second price auction has expected welfare at least 1/2 and 1/4 of the maximal welfare,
respectively.

Subsequently, we illuminate the potential of the primal-dual approach in formulating new
concepts. Concretely, Daskalakis and Syrgkanis [10] have very recently introduced no-envy
learning dynamic – a novel concept of learning in auctions. Note that when players have
fractionally sub-additive (XOS) valuations1, no-envy outcomes are a relaxation of no-regret
outcomes. No-envy dynamics have advantages over no-regret dynamics. In particular, no-
envy outcomes maintain the approximate welfare optimality of no-regret outcomes while
ensuring the computational tractability. Perhaps surprisingly, there is a connection between
the primal-dual approach and no-envy dynamics. Indeed, the latter can be naturally derived
from the dual constraints very much in the same way as the smoothness argument is. We
show this connection by revisiting the following theorem by the means of the primal-dual
approach.

I Informal Theorem 7 ([10]). Assume that players have XOS valuations. Then, every
no-envy dynamic has the average welfare at least half the expected optimal welfare.

Sequential Auctions. To illustrate the applicability of the primal-dual approach, we consider
thereafter another format of auctions – sequential auctions. In a simple model of sequential
auctions, items are sold one-by-one via single-item auctions. Sequential auctions has a long
and rich literature [16] and sequentially selling items leads to complex issues in analyzing PoA.
Leme et al. [18], Syrgkanis and Tardos [30] have studied sequential auctions for matching
markets and matroid auctions in complete and incomplete-information settings in which
at each step, an item is sold via the first-price auctions. In this paper, we consider the
sequential auctions for sponsored search via the second-price auctions. Informally, auctioneer
sells advertizing slots one-by-one in the non-increasing order of click-though-rates (from the
most attractive to the least one). At each step, players submit bid for the currently-selling
slot and the highest-bid player receives the slot and pays the second highest bid. In the
auction, we study the PoA of perfect Bayesian equilibria and show the following PoA bound
for the sponsored search problem.

1 A valuation v(·) is XOS if there exists a family of vectors W = (w`)` where w` ∈ Rm
+ such that

v(S) = maxw`∈W
∑

j∈S
w`

j ∀S ⊂ [m]. The class XOS is a subset of sub-additive functions and is a
superset of sub-modular functions.
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I Informal Theorem 8. The PoA of sequential second-price auctions for the sponsored search
problem is at most 2.

Note that among all auction formats for the sponsored search problem, the best known PoA
guarantee [7] is 2.927 which has been achieved in generalized second price (GSP) auctions.
An observation is that although the behaviour of players in sequential auctions might be
complex, the performance guarantee is better than the currently best-known one in GSP
auctions for the sponsored search problem. Consequently, this result shows that the efficiency
of sequential auctions is not necessarily worse than the GSP ones and using primal-dual
approach, analyzing sequential auctions is not necessarily harder than analyzing GSP ones
neither.

Building upon the resilient ideas for the sponsored search problem, we provide an improved
PoA bound of 2 for the matching market problem where the best known PoA bound is
2e/(e− 1) ≈ 3.16 due to Syrgkanis and Tardos [30] . That also answers an question raised in
[30] whether the PoA in the incomplete-information settings must be strictly larger than the
best-known PoA bound (which is 2) in the full-information settings.

I Informal Theorem 9. The PoA of sequential first-price auctions for the matching market
problem is at most 2.

Due to the space limit, the results in sequential auctions can be found in the full paper
available online [32].

1.3 Related works
As the main point of the paper is to emphasize the primal-dual approach to study game
efficiency, in this section we mostly concentrate on currently existing methods. Results
related to specific problems will be summarized in the corresponding sections.

The most closely related to our work is a recent result [17]. In their approach, Kulkarni
and Mirrokni [17] considered a convex formulation of a given game and its dual program
based on Fenchel duality. Then, given a Nash equilibrium, the dual variables are constructed
by relating the cost of the Nash equilibrium to that of the dual objective. In high-level, our
approach has the same idea as [17] and both approaches indeed have inspired by the standard
primal-dual and dual-fitting in the design of algorithms. Our approach is distinguished
to that in [17] in the two following aspects. First, we consider arbitrary (non-decreasing)
objective functions and make use of configuration LPs in order to reduce substantially the
integrality gap while the approach in [17] needs convex objective functions. In term of
approaches based on mathematical programs in approximation algorithms, we have come up
with stronger formulations than those in [17] – a crucial point toward optimal bounds. Second,
we have shown a wide applicability of our approach from full-information environments
to incomplete-information ones while the approach in [17] dealt only with full-information
settings. A question has been raised in a the recent survey [27] is whether the framework in
[17] could be extended to incomplete-information settings. Our primal-dual approach tends
to answer that question.

The connection between LP duality and the PoA have been previously considered by
Nadav and Roughgarden [22] and Bilo [5]. Both papers follow an approach which is different
to ours. Roughly speaking, given a game they consider corresponding natural formulations
and incorporate the equilibrium constraint directly to the primal (whereas in our approach
the equilibrium constraint appears naturally in the dual). However, this approach encounters
also the integrality-gap obtacle when one considers pure Nash equilibria and the objectives
are non-linear or non-convex.
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For the problems studied in the paper, we systematically strengthen natural LPs by the
construction of configuration LPs presented in [20]. Makarychev and Sviridenko [20] propose
a scheme that consists in solving the new LPs (with exponential number of variables) and
rounding the fractional solutions to integer ones using decoupling inequalities for optimization
problems. Instead of rounding techniques, we consider a primal-dual approach which is more
adequate to studying game efficiency.

The smoothness framework has been introduced by Roughgarden [24]. This simple,
elegant framework gives tight bounds for many classes of games in full-information settings
including the celebrated atomic congestion games (and others in [24, 2]). Subsequently,
Roughgarden and Schoppmann [26] presented a similar notion, called local-smoothness, to
study the PoA of splittable games in which players can split their flow to arbitrarily small
amounts and route the amounts in different manners. The local-smoothness is also powerful.
It has been used to settle the PoA for a large class of cost functions in splittable games [26]
and in opinion formation games [3].

The smoothness framework has been extended to incomplete-information environments
by Roughgarden [25], Syrgkanis and Tardos [31]. It has successfully yielded tight PoA
bounds for several widely-used auction formats. We recommend the reader to a very recent
survey [27] for applications of the smoothness framework in incomplete-information settings.
However, the smoothness argument has its limit. As mentioned earlier, the most illustrative
examples are the simultaneous first and second price auctions where players’ valuations are
sub-additive. Feldman et al. [11] have proved that the PoA is constant while the smooth
argument gives only logarithmic guarantees. An interesting open direction, as raised in [27],
is to develop new approaches beyond the smoothness framework.

Linear programming (and mathematical programming in general) has been a powerful
tool in the development of game theory. There is a vast literature on this subject. One of
the most interesting recent treatments on the role of linear programming in game theory is
the book [33]. Vohra [33] revisited fundamental results in mechanism design in an elegant
manner by the means of linear programming and duality. It is surprising to see that many
results have been shaped nicely by LPs.

2 Smooth Games under the Lens of Duality

In this section, we consider smooth games [24] in the point of view of configuration LPs
and duality. In a game, each player i selects a strategy si from a set Si for 1 ≤ i ≤ n and
that forms a strategy profile s = (s1, . . . , sn). The cost Ci(s) of player i is a function of the
strategy profile s – the chosen strategies of all players. A pure Nash equilibrium is a strategy
profile s such that no player can decrease its cost via a unilateral deviation; that is, for every
player i and every strategy s′i ∈ Si, Ci(s) ≤ Ci(s′i, s−i) where s−i denotes the strategies
chosen by all players other than i in s. The notion of Nash equilibrium is extended to the
following more general equilibrium concepts.

A mixed Nash equilibrium [23] of a game is a product distribution σ = σ1× . . .×σn where
σi is a probability distribution over the strategy set of player i such that no player can decrease
its expected cost under σ via a unilateral deviation: Es∼σ[Ci(s)] ≤ Es−i∼σ−i

[Ci(s′i, s−i)]
for every i and s′i ∈ Si, where σ−i is the product distribution of all σi′ ’s other than σi. A
correlated equilibrium [1] of a game is a joint probability distribution σ over the strategy
profile of the game such that Es∼σ[Ci(s)|si] ≤ Es∼σ[Ci(s′i, s−i)|si] for every i and si, s′i ∈ Si.
Finally, a coarse correlated equilibrium [21] of a game is a joint probability distribution σ
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over the strategy profile of the game such that Es∼σ[Ci(s)] ≤ Es∼σ[Ci(s′i, s−i)] for every i
and s′i ∈ Si. These notions of equilibria are presented in the order from the least to the most
general ones and a notion captures the previous one as a strict subset.

The notion of smooth games and robust price of anarchy are given in [24]. A game with
a joint cost objective function C(s) =

∑n
i=1 Ci(s) is (λ, µ)-smooth if for every two outcomes

s and s∗,

n∑
i=1

Ci(s∗i , s−i) ≤ λ · C(s∗) + µ · C(s)

The robust price of anarchy of a game G is

ρ(G) := inf
{

λ

1− µ : the game is (λ, µ)-smooth where µ < 1
}

I Theorem 10 ([24]). For every game G with robust PoA ρ(G), every coarse correlated
equilibrium σ of G and every strategy profile s∗,

Es∼σ[C(s)] ≤ ρ(G) · C(s∗)

Until the end of the section, we revisit this theorem by our primal-dual approach.

Formulation. Given a game, we formulate the corresponding optimization problem by a
configuration LP. Let xij be variable indicating whether player i chooses strategy sij ∈ Si.
Informally, a configuration A in the formulation is a strategy profile of the game. Formally,
a configuration A consists of pairs (i, j) such that (i, j) ∈ A means that in configuration A,
xij = 1. (In other words, in this configuration, player i selects strategy sij ∈ Si.) For every
configuration A, let zA be a variable such that zA = 1 if and only if xij = 1 for all (i, j) ∈ A.
Intuitively, zA = 1 if configuration A is the outcome of the game. For each configuration
A, let c(A) be the cost of the outcome (strategy profile) corresponding to configuration A.
Consider the following formulation and the dual of its relaxation.

min
∑
A

c(A)zA∑
j:sij∈Si

xij ≥ 1 ∀i

∑
A

zA = 1∑
A:(i,j)∈A

zA = xij ∀i, j

xij , zA ∈ {0, 1} ∀i, j, A

max
∑
i

αi + β

αi ≤ γij ∀i, j

β +
∑

(i,j)∈A

γij ≤ c(A) ∀A

αi ≥ 0 ∀i

In the formulation, the first constraint ensures that a player i chooses a strategy sij ∈ Si.
The second constraint means that there must be an outcome of the game. The third constraint
guarantees that if a player i selects some strategy sij then the outcome configuration A must
contain (i, j).
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Construction of dual variables. Assuming that the game is (λ, µ)-smooth. Fix the para-
meters λ and µ. Given a (arbitrary) coarse correlated equilibrium σ, define dual variables as
follows:

αi := 1
λ
Es∼σ[Ci(s)], β := −µ

λ
Es∼σ[C(s)], γij := 1

λ
Es∼σ[Ci(sij , s−i)].

Informally, up to some constant factors depending on λ and µ, αi is the cost of player i in
equilibrium σ, −β stands for the cost of the game in equilibrium σ and γij represents the
cost of player i if player i uses strategy sij while other players i′ 6= i follows strategies in σ.
We notice that β has negative value.

Feasibility. We show that the constructed dual variables form a feasible solution. The
first constraint follows exactly the definition of (coarse correlated) equilibrium. The second
constraint is exactly the smoothness definition. Specifically, let s∗ be the strategy profile
corresponding to configuration A. Note that Es∼σ[Ci(s∗)] = Ci(s∗). The dual constraint
reads

−µ
λ
Es∼σ[C(s)] +

∑
i

1
λ
Es∼σ[Ci(s∗i , s−i)] ≤ Es∼σ[Ci(s∗)]

which is the definition of (λ, µ)-smoothness by arranging the terms and removing the
expectation.

Price of Anarchy. By weak duality, the optimal cost among all outcomes of the problem
(strategy profiles of the game) is at least the dual objective of the constructed dual variables.
Hence, in order to bound the PoA, we will bound the ratio between the cost of an (arbitrary)
equilibrium σ and the dual objective of the corresponding dual variables. The cost of
equilibrium σ is Es∼σ[C(s)] while the dual objective of the constructed dual variables is

n∑
i=1

1
λ
Es∼σ[Ci(s)]−

µ

λ
Es∼σ[C(s)] = 1− µ

λ
Es∼σ[C(s)]

Therefore, for a (λ, µ)-smooth game, the PoA is at most λ/(1− µ).

Remark. Having shown in [24], Theorem 10 applies also to outcome sequences generated
by repeated play such as vanishing average regret. By the same duality approach, we can
also recover this result (by setting dual variables related to the average cost during the play).

3 Splittable Congestion Games

Model. In this section we consider the splittable congestion games in discrete setting.
Fix a constant ε > 0 (arbitrarily small). In a splittable congestion game, there is a set
E of resources, each resource is associated to a non-decreasing differentiable cost function
`e : R+ → R+ such that x`e(x) is convex. There are n players, a player i has a set of
strategies Si and has weight wi, a multiple of ε. A strategy of player i is a distribution ui
of its weight wi among strategies sij in Si such that

∑
sij∈Si

uisij
= wi and uisij

≥ 0 is a
multiple of ε. A strategy profile is a vector u = (u1, . . . , un) of all players’ strategies. We
abuse notation and define uie =

∑
e∈sij

uisij
as the load player i distributes on resource e and
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ue =
∑n
i=1 u

i
e the total load on e. Given a strategy profile u, the cost of player i is defined

as Ci(u) :=
∑
e u

i
e · `e(ue). A strategy profile u is a pure Nash equilibrium if and only if for

every player i and all sij , sij′ ∈ Si with uisij
> 0:∑

e∈sij

(
`e(ue) + uie · `′e(ue)

)
≤
∑
e∈sij′

(
`e(ue) + uie · `′e(ue)

)
The proof of this equilibrium characterization can be found in [13]. Again, the more general
concepts of mixed, correlated and coarse correlated equilibria are defined similarly as in
Section 2. In the game, the social cost is defined as C(u) :=

∑n
i=1 Ci(u) =

∑
e ue`e(ue).

The PoA bounds has been recently established for a large class of cost functions by
Roughgarden and Schoppmann [26]. The authors proposed a local smoothness framework
and showed that the local smoothness arguments give optimal PoA bounds for a large class
of cost functions in splittable congestion games. Prior to Roughgarden and Schoppmann [26],
the works of Cominetti et al. [8] and Harks [13] have also the flavour of local smoothness
though their bounds are not tight. The local smooth arguments extends to the correlated
equilibria of a game but not to the coarse correlated equilibria. Motivating by the duality
approach, we define a new notion of smoothness and prove a bound on the PoA of coarse
correlated equilibria. It turns out that this PoA bound for coarse correlated equilibria is
indeed tight for all classes of scale-invariant cost functions by the lower bound given by
Roughgarden and Schoppmann [26, Section 5]. A class of cost function L is scale-invariant
if ` ∈ L implies that a · `(b · x) ∈ L for every a, b > 0.

Formulation. Given a splittable congestion game, we formulate the problem by the same
configuration program for non-atomic congestion game. Denote a finite set of multiples of ε
as {a0, a1, . . . , am} where ak = k · ε and m = maxni=1 wi/ε. We say that Te is a configuration
of a resource e if Te = {(i, k) : 1 ≤ i ≤ n, 0 ≤ k ≤ m} in which a couple (i, k) specifies the
player (i) and the amount ak of the weight wi that player i distributes to some strategy
sij ∈ Si where e ∈ sij . Intuitively, a configuration of a resource is a strategy profile of a
game restricted on the resource. Let xijk be variable indicating whether player i distributes
an amount ak of its weight to strategy sij ∈ Si. For every resource e and a configuration Te
on resource e, let ze,Te

be a variable such that ze,Te
= 1 if and only if for (i, k) ∈ Te, xijk = 1

for some sij ∈ Si such that e ∈ sij . For a configuration Te of resource e, denote w(Te) the
total amount distributed by players in Te to e.

min
∑
e,Te

w(Te)`e(w(Te))ze,Te∑
j,k

akxijk = wi ∀i

∑
Te

ze,Te
= 1 ∀e

∑
Te:(i,k)∈Te

ze,Te =
∑

j:e∈sij

xijk ∀(i, k), e

xij , ze,Te ∈ {0, 1} ∀i, j, e, Te

max
∑
i

wiαi +
∑
e

βe

akαi ≤
∑

e:e∈sij

γi,k,e

∀i, k, j

βe +
∑

(i,k)∈Te

γi,k,e ≤ w(Te)`e(w(Te))

∀e, Te

Again, in the primal, the first constraint says that a player i distributes the total weight wi
among its strategies. The second constraint means that a resource e is always associated to a
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configuration (possibly empty). The third constraint guarantees that if a player i distributes
an amount ak to some strategy sij containing resource e then there must be a configuration
Te such that (i, k) ∈ Te and ze,Te

= 1.
All previous duality proofs have the same structure: in the dual LP, the first constraint

gives the characterization of an equilibrium and the second one settles the PoA bounds.
Following this line, we give the following definition.

I Definition 11. A cost function ` : R+ → R+ is (λ, µ)-dual-smooth if for every vectors
u = (u1, . . . , un) and v = (v1, . . . , vn),

v`(u) +
n∑
i=1

ui(vi − ui) · `′(u) ≤ λ · v`(v) + µ · u`(u)

where u =
∑
i ui and v =

∑
i vi. A splittable congestion game is (λ, µ)-dual-smooth if every

resource e in the game, function `e is (λ, µ)-dual-smooth.

I Theorem 12. For every (λ, µ)-dual-smooth splittable congestion game G, the price of
anarchy of coarse correlated equilibria of G is at most λ/(1− µ). This bound is tight for the
class of scalable cost functions.

Proof. The proof follows the duality scheme.

Dual Variables. Fix parameter λ and µ. Given a coarse correlated equilibrium σ, define
corresponding dual variables as follows.

αi = 1
λ
Eu∼σ

[∑
e∈sij

`e(ue) + uie`
′
e(ue)

]
for some sij ∈ Si : uisij

> 0,

βe = − 1
λ
Eu∼σ

[
µ · ue`e(ue) +

∑
i

(uie)2 · `′e(ue)
]
,

γi,k,e = 1
λ
Eu∼σ

[
ak
(
`e(ue) + uie`

′
e(ue)

)]
.

The dual variables have similar interpretations as previous analysis. Up to some constant
factors, variable αi is the marginal cost of a strategy used by player i in the equilibrium; and
γi,k,e represents an estimation of the cost of player i on resource e if player i distributes an
amount ak of its weight to some strategy containing e while players i′ other than i follows
their strategies in the equilibrium.

Feasibility. By this definition of dual variables, the first dual constraint holds since it is the
definition of coarse correlated equilibrium. Rearranging the terms, the second dual constraint
for a resource e and a configuration Te reads

1
λ

∑
(i,k)∈Te

Eu∼σ
[
ak · `e(ue) + uie(ak − uie)`′e(ue)

)]
≤ w(Te)`e(w(Te)) + µ

λ
Eu∼σ

[
ue`e(ue)

]
This inequality follows directly from the definition of (λ, µ)-dual-smoothness and linear-
ity of expectation (and note that w(Te)`e(w(Te)) = Eu∼σ

[
w(Te)`e(w(Te))

]
and w(Te) =∑

(i,k)∈Te
ak).
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Bounding primal and dual. By the definition of dual variables, the dual objective is∑
i

wiαi +
∑
e

βe =
∑
e

(∑
i

uieαi + βe

)
= 1
λ
Eu∼σ

[∑
e

ue`e(ue) +
∑
i

(uie)2 · `′e(ue)
]
− 1
λ
Eu∼σ

[
µ · ue`e(ue) +

∑
i

(uie)2 · `′e(ue)
]

= 1− µ
λ

Eu∼σ
[∑

e

ue`e(ue)
]

while the cost of the equilibrium σ is Eu∼σ
[∑

e ue`e(ue)
]
. The theorem follows. J

4 Efficiency in Welfare Maximization

In a general mechanism design setting, each player i has a set of actions Ai for 1 ≤ i ≤ n.
Given an action ai ∈ Ai chosen by each player i for 1 ≤ i ≤ n, which lead to the action
profile a = (a1, . . . , an) ∈ A = A1 × . . . × An, the auctioneer decides an outcome o(a)
among the set of feasible outcomes O. Each player i has a private valuation (or type) vi
taking values in a parameter space Vi. For each outcome o ∈ O, player i has utility ui(o, vi)
depending on the outcome of the game and its valuation vi. Since the outcome o(a) of the
game is determined by the action profile a, the utility of a player i is denoted as ui(a; vi).
We are interested in auctions that in general consist of an allocation rule and a payment
rule. Given an action profile a = (a1, . . . , an), the auctioneer decides an allocation and a
payment pi(a) for each player i. Then, the utility of player i with valuation vi, following
the quasi-linear utility model, is defined as ui(a; vi) = vi − pi(a). The social welfare of an
auction is defined as the total utility of all participants (the players and the auctioneer):
Sw(a;v) =

∑n
i=1 ui(a; vi) +

∑n
i=1 pi(a).

In the paper, we consider incomplete-information settings. In contrast to the full-
information settings where private valuations are deterministically determined, in incomplete-
informations settings the valuation vectors v (in which each component is the valuation of a
player) is drawn from a publicly known distribution F with density function f . Let ∆(Ai) be
the set of probability distributions over the actions in Ai. A strategy of a player is a mapping
σi : Vi → ∆(Ai) from a valuation vi ∈ Vi to a distribution over actions σi(vi) ∈ ∆(Ai).

I Definition 13 (Bayes-Nash equilibrium). A strategy profile σ = (σ1, . . . , σn) is a Bayes-Nash
equilibrium (BNE) if for every player i, for every valuation vi ∈ Vi, and for every action
a′i ∈ Ai:

Ev−i∼F−i(vi)
[
Ea∼σ(v) [ui(a; vi)]

]
≥ Ev−i∼F−i(vi)

[
Ea−i∼σ−i(v−i) [ui(a′i,a−i; vi)]

]
For a vector w, we use w−i to denote the vector w with the i-th component removed. Besides,
F−i(vi) stands for the probability distribution over all players other than i conditioned on
the valuation vi of player i.

The price of anarchy of Bayes-Nash equilibria of an auction is defined as

inf
F ,σ

Ev∼F
[
Ea∼σ(v)[Sw(a;v)]

]
Ev∼F

[
Opt(v)

]
where the infimum is taken over Bayes-Nash equilibria σ and Opt(v) is the optimal welfare
with valuation profile v.
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In the paper, we consider discrete settings of valuations and payments, i.e., there are only
a finite (large) number of possible valuations and payments. The main purpose of restricting
to discrete settings is that we can use tools from linear programming. The continuous settings
can be done by considering successively finer discrete spaces.

4.1 Smooth Auctions
In this section, we show that the primal-dual approach also captures the smoothness framework
in studying the inefficiency of Bayes-Nash equilibria in incomplete-information settings.
Smooth auctions have been defined by Roughgarden [25] and Syrgkanis and Tardos [31]. The
definitions are slightly different but both are inspired by the original smoothness argument
[24] and all known smoothness-based proofs can be equivalently analyzed by one of these
definitions. In this section, we consider the definition of smooth auctions in [25] and revisit
the price of anarchy bound of smooth auctions. In the end of the section, we show that a
similar proof carries through the smooth auctions defined by Syrgkanis and Tardos [31].

I Definition 14 ([25]). For parameters λ, µ ≥ 0, an auction is (λ, µ)-smooth if for every
valuation profile v = (v1, . . . , vn), there exists action distribution D∗1(v), . . . , D∗n(v) over
A1, . . . ,An such that, for every action profile a,∑

i

Ea∗
i
∼D∗

i
(v)
[
ui(a∗i ,a−i; vi)

]
≥ λ · Sw(a∗;v)− µ · Sw(a;v) (1)

I Theorem 15 ([25]). If an auction is (λ, µ)-smooth and the distributions of player valuations
are independent then every Bayes-Nash equilibrium has expected welfare at least λ

1+µ times
the optimal expected welfare.

Proof. Given an auction, we formulate the corresponding optimization problem by a con-
figuration LP. A configuration A consists of pairs (i, ai) such that (i, ai) ∈ A means that in
configuration A, player i chooses action ai. Intuitively, a configuration is an action profile
of players. For every player i, every valuation vi ∈ Vi and every action ai ∈ Ai, let xi,ai

(vi)
be the variable representing the probability that player i chooses action ai. Besides, for
every valuation profile v, let zA(v) be the variable indicating the probability that the chosen
configuration (action profile) is A. For each configuration A and valuation profile v, the
auctioneer outcomes an allocation and a payment and that results in a social welfare denoted
as cA(v). In the other words, if a is the action profile corresponding to the configuration A
then cA(v) is in fact Sw(a;v). Consider the following formulation and its dual.

max
∑
v

cA(v)zA(v)∑
ai∈Ai

xi,ai(vi) ≤ fi(vi) ∀i, vi∑
A

zA(v) ≤ f(v) ∀v∑
A:(i,ai)∈A

zA(vi,v−i) ≤ f−i(v−i) · xi,ai
(vi)

∀i, ai, vi,v−i
xi,ai

(vi), zA(v) ≥ 0 ∀i, ai, A, vi,v

min
∑
i,vi

fi(vi) · αi(vi)+
∑
v

f(v) · β(v)

αi(vi) ≥
∑
v−i

f−i(v−i) · γi,ai
(vi,v−i)

∀i, ai, vi
β(v) +

∑
(i,ai)∈A

γi,ai
(v) ≥ cA(v) ∀A,v

αi(vi), β(v), γi,ai(v) ≥ 0 ∀i, vi,v
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In the primal, the first and second constraints guarantee that variables x and z represent
indeed the probability distribution of each player and the joint distribution, respectively.
The third constraint makes the connection between variables x and z. It ensures that if a
player i with valuation vi selects some action ai then in the valuation profile (vi,v−i), the
probability that the configuration A contains (i, ai) must be f−i(v−i) · xi,ai

(vi). The primal
objective is the expected welfare of the auction.

Construction of dual variables. Assuming that the auction is (λ, µ)-smooth. Fix the
parameters λ and µ. Given an arbitrary Bayes-Nash equilibrium σ, define dual variables as
follows.

αi(vi) := 1
λ
Ev−i

[
Eb∼σ(vi,v−i)[ui(b; vi)]

]
,

β(v) := µ

λ
Eb∼σ(v)

[
Sw(b;v)

]
,

γi,ai(v) := 1
λ
Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)].

Informally, up to some constant factors depending on λ and µ, αi(vi) is the expected utility
of player i in equilibrium σ; β(v) stands for the social welfare of the auction where the
valuation profile is v and players follow the equilibrium actions σ(v); and γi,ai

(v) represents
the utility of player i in valuation profile v if player i chooses action ai while other players
i′ 6= i follows their equilibrium strategies σ−i(v−i).

Feasibility. We show that the constructed dual variables form a feasible solution. By the
definition of dual variables, the first dual constraint reads

1
λ
Ev−i

[
Eb∼σ(v)[ui(b; vi)]

]
≥ 1
λ

∑
v−i

f−i(v−i) · Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)]

= 1
λ
Ev−i

[
Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)]

]
This is exactly the definition that σ is a Bayes-Nash equilibrium.

For every valuation profile v = (v1, . . . , vn) and for any configuration A (corresponding
action profile a = (a1, . . . , an)), the second constraint reads:

µ

λ
Eb∼σ(v)

[
Sw(b;v)

]
+

∑
(i,ai)∈A

1
λ
Eb−i∼σ−i(v−i)[ui(ai, b−i; vi)] ≥ Sw(a;v). (2)

Note that we can write Sw(a;v) = Eb∼σ(v)
[
Sw(a;v)

]
. For any fixed realization b of σ(v), by

(λ, µ)-smoothness µ
λSw(b;v) +

∑
i

1
λui(ai, b−i; vi) ≥ Sw(a;v). Hence, by taking expectation

over σ(v), Inequality (2) follows.

Price of Anarchy. The welfare of equilibrium σ is EvEb∼σ(v)
[
Sw(b;v)

]
while the dual

objective of the constructed dual variables is∑
i,vi

fi(vi) ·
1
λ
Ev−i

[
Eb∼σ(v)[ui(b; vi)]

]
+
∑
v

f(v) · µ
λ
Eb∼σ(v)

[
Sw(b;v)

]
which is bounded by 1+µ

λ ·EvEb∼σ(v)
[
Sw(b;v)

]
. Therefore, the PoA is at most λ/(1+µ). J
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4.2 Simultaneous Item-Bidding Auctions

Model. In this section, we consider the following Bayesian combinatorial auctions. In the
setting, there are m items to be sold to n players. Each player i has a private monotone
valuation vi : 2[m] → R+ over different subsets of items S ⊂ 2[m]. For simplicity, we denote
vi(S) as viS . The valuation profile v = (v1, . . . , vn) is drawn from a product distribution F .
In other words, the probability distributions Fi of valuations vi are independent. Designing
efficient combinatorial auctions are in general complex and a major direction in literature is to
seek simple and efficient auctions in term of PoA. Among others, simultaneous item-bidding
auctions are of particular interest. We consider two forms of simultaneous item-bidding
auctions: simultaneous first-price auctions (S1A) and simultaneous second-price auctions
(S2A). In the auctions, each player submits simultaneously a vector of bids, one for each item.
A typical assumption is non-overbidding property in which each player submits a vector bi of
bids such that for any set of items S,

∑
j∈S bij ≤ viS . Given the bid profile, each item is

allocated to the player with highest bid. In a simultaneous first-price auction, the payment of
the winner of each item is its bid on the item; while in a simultaneous second-price auction,
the winner of each item pays the second highest bid on the item.

4.2.1 Connection between Primal-Dual and Non-Smooth Techniques

In this section, we consider the setting in which all player valuations are sub-additive. That
is, vi(S ∪ T ) ≤ vi(S) + vi(T ) for every player i and every subsets S, T ⊂ 2[m]. The PoA of
simultaneous item-bidding auctions has been widely studied in this setting. Using smoothness
framework in auctions, logarithmic bounds on PoA for S1A and S2A are given by Hassidim
et al. [14] and Bhawalkar and Roughgarden [4], respectively. Recently, Feldman et al. [11]
presented a significant improvement by establishing the PoA bounds 2 and 4 for S1A and
S2A, respectively. Their proof arguments go beyond the smoothness framework. In the
following, we revisit the results of Feldman et al. [11] and show that the duality approach
captures the non-smooth technique in [11].

Formulation. Given a valuation profile v, let xij(v) be the variable indicating whether
player i receives item j in valuation profile v. Let ziS(v) be the variable indicating whether
player i receives a set of items S. Then for any profile v and for any item j,

∑
i xij(v) ≤ 1,

meaning that an item j is allocated to at most one player. Moreover,
∑
S:j∈S ziS(v) = xij(v),

meaning that if player i receives item j then some subset of items S allocated to i must
contain j. Besides,

∑
S ziS(v) = 1 since some subset of items (possibly empty) is allocated

to i.

Let xij(vi) and ziS(vi) be interim variables corresponding to xij(v) and ziS(v) and are
defined as follows: xij(vi) := Ev−i∼F−i

[
xij(vi,v−i)

]
and ziS(vi) := Ev−i∼F−i

[
ziS(vi,v−i)

]
where F−i is the product distribution of all players other than i. Consider the following
relaxation with interim variables and its dual. The constraints in the primal follow the
relationship between the interim variables xij(vi), ziS(vi) and variables xij(v), ziS(v).
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max
∑
i,S

∑
vi

fi(vi)
[
viS · ziS(vi)

]
∑
i

∑
vi∈Vi

fi(vi)xij(vi) ≤ 1 ∀j

∑
S

ziS(vi) = 1 ∀i, vi∑
S:j∈S

ziS(vi) = xij(vi) ∀i, j, vi

xij(vi), ziS(vi) ≥ 0 ∀i, j, S, vi

min
∑
i,vi

αi(vi) +
∑
j

βj

fi(vi) · βj ≥ γi,j(vi) ∀i, j, vi
αi(vi) +

∑
j∈S

γi,j(vi) ≥ fi(vi) · viS

∀i, S, vi
αi(vi) ≥ 0 ∀i, vi

Dual Variables. Fix a Bayes-Nash equilibrium σ. Given a valuation v, denote b =
(b1, . . . , bn) = σ(v) as the bid equilibrium. LetB be the distribution of b over the randomness
of v and σ. Let B(vi) be the distribution of b over the randomness of v and σ while the
valuation vi of player i is fixed. Since vi and v−i are independent and each σi is a mapping
Vi → ∆(Ai), strategy bi is independent of b−i. Let B−i be the distribution of b−i. We
define dual variables as follows.

Let αi(vi) be proportional to the expected utility of player i with valuation vi, over the
randomness of valuations v−i of other players. Specifically,

αi(vi) := 2fi(vi) · Ev−i∼F−i

[
Eσ
[
ui
(
σ(vi,v−i), vi

)]]
= 2fi(vi) · Eb∼B(vi)

[
ui
(
b, vi

)]
Besides, let γi,j(vi) be proportional to the expected value of the bid on item j if player i with
valuation vi wants to win item j while other players follow the equilibrium strategies. Formally,
γi,j(vi) := 2fi(vi) ·Eb−i∼B−i

[maxk 6=i bkj ] . Finally, define βj := 2 maxi Eb−i∼B−i
[maxk 6=i bkj ].

The following lemma shows the feasibility of the variables. The main core of the proof
relies on an argument in [11].

I Lemma 16. The dual vector (α, β, γ) defined above constitutes a dual feasible solution.

I Theorem 17 ([11]). If player valuations are sub-additive then every Bayes-Nash equilibrium
of a S1A (or S2A) has expected welfare at least 1/2 (or 1/4, resp) of the optimal one.

Proof. For an item j, let i∗(j) ∈ arg maxi Ev−i∼F−i [maxk 6=i bkj ]. Hence,

βj = 2Ev−i∗(j)∼F−i∗(j)Eσ
[

max
k 6=i∗(j)

bkj

]
= 2Evi∗(j)∼Fi

Ev−i∗(j)∼F−i∗(j)Eσ
[

max
k 6=i∗(j)

bkj

]
= 2Ev∼FEσ

[
max
k 6=i∗(j)

bkj

]
where the second equality is due to the fact that the term Ev−i∗(j)∼F−i∗(j)Eσ

[
maxk 6=i∗(j) bkj

]
is independent of vi∗(j). Therefore, the dual objective is

∑
i,vi

αi(vi) +
∑
j

βj = 2Ev∼FEσ
[∑

i

ui(b, vi) +
∑
j

max
k 6=i∗(j)

bkj

]

Fix a random choice of profile v and σ (so the bid profile b is fixed). We bound the dual
objective, i.e., the right-hand side of the above equality, in S1A and S2A. Note that the
utility of a player winning no item is 0.
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First Price Auction. Partition the set of items into the winning items of each player.
Consider a player i with the set of winning items S. The utility of this player i is viS −∑
j∈S maxk bkj . Hence, viS −

∑
j∈S bij +

∑
j∈S maxk 6=i∗(j) bkj ≤ viS since by the allocation

rule, bij = maxk bkj for every j ∈ S. Hence, summing over all players, the dual objective is
bounded by twice the total expected valuation of winning players, which is the primal. So
the price of anarchy is at most 2.

Second Price Auction. Similarly, consider a player i with the set of winning items S. The
utility of player i as well as its payment (by no-overbidding) are at most viS . Therefore,
summing over all players, the dual objective is bounded by four times the total expected
valuation of winning players. Hence, the price of anarchy is at most 4. J

4.2.2 Connection between Primal-Dual and No-Envy Learning
Very recently, Daskalakis and Syrgkanis [10] have introduced no-envy learning – a novel
concept of learning in auctions. The notion is inspired by the concept of Walrasian equilibrium
and it is motivated by the fact that no-regret learning algorithms (which converge to
coarse correlated equilibria) for the simultaneous item-bidding auctions are computationally
inefficient as the number of player actions are exponential. When the players have fractionally
sub-additive (XOS) valuation, Daskalakis and Syrgkanis [10] showed that no-envy outcomes
are a relaxation of no-regret outcomes. Moreover, no-envy outcomes maintain the approximate
welfare optimality of no-regret outcomes while ensuring the computational tractability. In
this section, we explore the connection between the no-envy learning and the primal-dual
approach. Indeed, the notion of no-envy learning would be naturally derived from the dual
constraints very much in the same way as the smoothness argument is.

We recall the notion of no-envy learning algorithms [10]. We first define the online
learning problem. In the online learning problem, at each step t, the player chooses a bid
vector bt = (bt1, . . . , btm) where btj is the bid on item j for 1 ≤ j ≤ m; and the adversary picks
adaptively (depending on the history of the play but not on the current bid bt) a threshold
vector θt = (θt1, . . . , θtm). The player wins the set S∗(bt, θt) = {j : btj ≥ θtj} and gets reward:

u(bt, θt) := v
(
S∗(bt, θt)

)
−

∑
j∈S∗(bt,θt)

θtj

where v : 2[m] → R is the valuation of the player.

I Definition 18 ([10]). An algorithm for the online learning problem is r-approximate
no-envy if, for any adaptively chosen sequence of (random) threshold vector θ1:T by the
adversary, the (random) bid vector b1:T chosen by the algorithm satisfies:

1
T

T∑
t=1

E
[
u(bt, θt)

]
≥ max
S⊂[m]

(
1
r
· v(S)−

∑
j∈S

1
T

T∑
t=1

E
[
θtj
])
− ε(T ) (3)

where the no-envy rate ε(T )→ 0 while T →∞. An algorithm is no-envy if it is 1-approximate
no-envy.

Now we show the connection between primal-dual and no-envy learning by revisiting the
following theorem. As we will see, the notion of no-envy learning corresponds exactly to a
constraint of the dual program.
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I Theorem 19 ([10]). If n players in a S2A use a r-approximate no-envy learning algorithm
with envy rate ε(T ) then in T steps, the average welfare is at least 1

2rOpt− n · ε(T ) where
Opt is the expected optimal welfare.

Proof. Let bti be the bid vector of player i where btij is the bid of player i on item j in step
t. In a S2A the threshold θtij = maxk 6=i btkj . Consider the same primal and dual LPs in
Section 4.2.1.

Dual variables. Recall that r is the approximation factor and ε(T ) the no-envy rate of the
learning algorithm. Define dual variables (similar to the ones in Section 4.2.1) as follows.

αi(vi) := r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)

[
ui

(
b

t
i, θ

t
i

)]]
+ r · ε(T )

γi,j(vi) := r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)

[
θ

t
ij

]]
= r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt
−i

(v−i)

[
θ

t
ij

]]
βj := r ·max

i
max

vi

Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)

[
θ

t
ij

]]
= r ·max

i
Ev−i∼F−i

[
1
T

T∑
t=1

Ebt
−i

(v−i)

[
θ

t
ij

]]
where the second equalities in the definitions of γ and β follow the fact that player valuations
are independent and θtij does not depend on btij for every i, j.

Feasibility. The first dual constraint follows immediately by the definitions of dual variables
β and γ. For a fixed set S and a player i with valuation vi, the second dual constraint reads

r · fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt(vi,v−i)
[
ui
(
bti, θ

t
i

)]]
+ r · ε(T )

+ r ·
∑
j∈S

fi(vi) · Ev−i∼F−i

[
1
T

T∑
t=1

Ebt
−i

(v−i)
[
θtij
]]
≥ fi(vi) · viS

This inequality follows immediately from the definition of r-approximate no-envy learning
algorithms (specifically, Inequality (3)) by simplifying and rearranging terms. (Note that
Ev−i∼F−i

[fi(vi) · viS ] = fi(vi) · viS).

Bounding the cost. In T steps, the average welfare is

Ev
[ 1
T

T∑
t=1

Ebt(v)
[
vi
(
bti, θ

t
i

)]]
= Ev

[ 1
T

T∑
t=1

Ebt(v)
[
vi
(
S∗(bti, θti)

)]]
.

Besides, in the dual objective,

∑
i,vi

αi(vi) ≤ r · Ev
[

1
T

T∑
t=1

Ebt(v)
[
vi
(
S∗(bti, θti)

)]]
+ n · r · ε(T ),

∑
j

βj ≤ r · Ev
[

1
T

T∑
t=1

Ebt(v)
[
vi
(
S∗(bti, θti)

)]]
where the last inequality is due to the non-overbidding property. Hence, the theorem follows
by weak duality. J
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5 Conclusion

In the paper, we have presented a primal-dual approach to study the efficiency of games.
We have shown the applicability of the approach on a wide variety of settings and have
given simple and improved analyses for several problems in settings of different natures.
Beyond concrete results, the main point of the paper is to illuminate the potential of the
primal-dual approach. In this approach, the PoA-bound analyses now can be done similarly
as the analyses of LP-based algorithms in Approximation/Online Algorithms. We hope that
linear programming and duality would bring new ideas and techniques, from well-developed
domains such as approximation, online algorithms, etc to algorithmic game theory, not only
for the analyses and the understanding of current games but also for the design of new games
(auctions) and new concepts leading to improved efficiency.
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